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À René, moustache érudite qui n’aura pas vu la fin de ce périple...





A B S T R A C T

An individual’s adaptive immune system needs to face repeated challenges of
a constantly evolving environment with a virtually infinite number of threats.
To achieve this task, the adaptive immune system relies on large diversity of B-
cells and T-cells, each carrying a unique receptor specific to a small number of
pathogens. These receptors are initially randomly built through the process of
V(D)J recombination. This initial generated diversity is then narrowed down
by a step of functional selection based on the receptors’ folding properties
and their ability to recognize self antigens. Upon recognition of a pathogen
the B-cell will divide and its offsprings will undergo several rounds of succes-
sive somatic hypermutations and selection in an evolutionary process called
affinity maturation.

This work presents principled probabilistic approaches to infer the proba-
bility distribution underlying the recombination and somatic hypermutation
processes from high throughput sequencing data using IGoR - a flexible soft-
ware developed throughout the course of this PhD. IGoR has been developed
as a versatile research tool and can encode a variety of models of different bi-
ological complexity to allow researchers in the field to characterize evermore
precisely immune receptor repertoires. To motivate this data-driven approach
we demonstrate that IGoR outperforms existing tools in accuracy and estimate
the sample sizes needed for reliable repertoire characterization. Finally, using
obtained model predictions, we show potential applications of these methods
by demonstrating that homozygous twins share T-cells through cord blood,
that the public core of the T cell repertoire is formed in the pre-natal period
and finally estimate naive T cell clone lifetimes in human.

R É S U M É

Le système immunitaire de chaque individu doit faire face à des agressions
répétées d’un environnement en constante évolution, constituant ainsi un nom-
bre de menaces virtuellement infini. Afin de mener ce rôle à bien, le système
immunitaire adaptatif s’appuie sur une énorme diversité de lymphocytes T
et B. Chacune de ces cellules exhibe à sa surface un récepteur unique, créé
aléatoirement via le processus de recombinaison V(D)J, et spécifique à un pe-
tit nombre de pathogènes seulement. La diversité initiale générée lors de ce
processus de recombinaison est ensuite réduite par une étape de sélection
fonctionnelle basée sur les propriétés de repliement du récepteur ainsi que
ses capacités à interragir avec des proteines du soi. Pour les cellules B, cette
diversité peut être à nouveau étendue après rencontre d’un pathogène lors du
processus de maturation d’affinité durant lequel le récepteur subit des cycles
successifs d’hypermutation et sélection.
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Ces travaux présentent des approches probabilistes visant à inferrer les dis-
tributions de probabilités sous-tendant les processus de recombinaison et d’hypermutation
à partir de données de séquençage haut débit. Ces approches ont donné nais-
sance à IGoR, un logiciel polyvalent dont les performances dépassent celles des
outils existants. En utilisant les modèles obtenus comme base, je présenterai
comment ces derniers peuvent être utilisés afin d’étudier le vieillissement et
évolution du répertoire immunitaire, la présence d’emprunte parentale lors de
la recombinaison V(D)J ou encore pour démontrer que les jumeaux échangent
des lymphocytes au cours de la vie fœtale.
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Part I

I N T R O D U C T I O N





I N T R O D U C T I O N

Entanglement of mathematics, physics and biology (or medicine) dates from
immemorial time. Eminent figures of this multidisciplinarity are embodied
by Middle-Age Arab physicians such as Avicenna or Averroes. Throughout
the ages many scientists have routinely crossed barriers imposed by these
disciplines, revolutionizing one field for the purpose of another. Isaac New-
ton invented calculus to solve the equations derived from the laws of motion.
Ronald Fisher constructed modern statistics concurrently with population ge-
netics. However, it is only recently that such disciplinary wanderings have
been baptized, as inderdisciplinary science.

Physicists have been puzzled by the functioning of biological systems for a
long time. In his short essay What is life? [151], Schrödinger wondered how liv-
ing systems can remain out of equilibrium and reliably function despite small
number and thermal fluctuations. Due to the lack of suitable measurements,
his considerations remained however very abstract. During the last decades
the appearance of quantitative methods in biology, and biologists’ zeal to dis-
sect and describe every actor of life at various scales have depicted formidably
complex interacting systems. These investigations have produced results that
appealed to physicist eager to understand the quantitative laws governing bi-
ological systems. This large endeavor of physicist and the growing interest
of biologists for quantitative predictive theories have consolidated the bridge
between physics and biology that is now known as biophysics.

More recently, the growing throughput of quantitative methods have en-
abled to probe complex biological systems. The adaptive immune system of
jawed vertebrates, the subject of study for the work presented in this manuscript,
is one of these systems.

Across his lifetime an individual will face repeated challenges from a vir-
tually infinite number of threats or pathogens. Because these threats are so
diverse and evolve faster than the lifetime of the individual, providing a spe-
cific defense against each is a tour de force that the adaptive immune system
manages to achieve. In order to be able to fight specifically each pathogen,
the adaptive immune system relies on a set of tremendously diverse antigen
receptors carried by T and B-cells. Each T or B-cell carries one receptor able
to recognize specifically a small number of antigens. This diversity is initially
generated through a stochastic germline DNA editing process called V(D)J re-
combination. Because of the stochastic nature of this process, receptors that
are reactive against the host can emerge. In order to avoid self destruction,
this initially created diversity is then narrowed down by a step of functional
selection against recognition of the individual’s self-proteins. The ensemble of
receptors that has passed this selection is called the repertoire. Upon encounter
of their cognate antigen some of these random receptors will be further ran-
domly edited by somatic hypermutations and evolve towards larger affinity
for the targeted antigen in a process called affinity maturation.

3
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Because of its complexity and stochastic foundations, its connections with
population genetics and epidemiology, theoretical immunology is an active
field that has drawn interest of many physicist. Some of them have been ap-
pealed by theoretical considerations such as the fraction of antigenic environ-
ment an immune cell can react to [126], the existence of idiotypic networks1

[127], the optimal organization for an adaptive immune system [104], knowing
whether an immune system organization achieves optimal performance for its
environment [105] or immune systems links with defenses of computer net-
works [75]. Others were appealed by more applied considerations aiming at
building descriptive models whose predictions could help cure diseases such
as HIV [125, 184].

The work presented in this manuscript belongs to this second class and aims
at designing a general statistical framework to describe the recombination, se-
lection and hypermutation processes. The empirical use of vaccination [53],
monoclonal antibody treatments [136] and more recently cancer immunother-
apy [152] are already successful clinical achievements. However, such tech-
niques are only using fractions of the immune system’s capabilities, the full
understanding of the adaptive immune system formation and dynamics re-
mains a cornerstone for personalized medicine. The advent of high through-
put repertoire sequencing providing a snapshot of an individual’s adaptive im-
mune system, promises to revolutionize personalized medicine by providing
new statistical diagnostic tools for biology and medicine. The state of one’s
repertoire could be used to infer an individual’s past and present immune
challenges, and their susceptibility to future infections or diseases. However,
because of the adaptive immune system’s formidable complexity and stochas-
tic nature interpreting this data is challenging and should rely on the under-
standing of the rules governing the system.

What should be the scale for these rules? Shall we model the recombination
machinery along with all its molecular constituents and dynamics to capture
an individual’s repertoire statistics? In his 1972 paper More is different [4], An-
derson argued that one does not need to model physical systems from their
most fundamental constituents because, climbing the ladder of complexity,
some microscopic details will become irrelevant as one see the emergence of
new macroscopic properties. His argument mostly relies on the irrelevance of
such an approach, while some more fundamental ideas [37, 67] would suggest
that building biology from fundamental physical constituent might simply be
doomed to fail.

At the other extreme of the constructionist scale lies machine learning. The
past years have seen the explosion of computational power and an ever grow-
ing amount of data. Conjugated with the advent of deep neural networks [90]
some have been tempted to call it the end of theory and the scientific method
altogether [3]. Such techniques have recently been used in physical and biolog-
ical systems [34, 202] to investigate hard problems such as many body local-

1 Because a large variety of receptors are created and cannot be tested as belonging to the self
it was thought that two receptors could bind to each other. Such binding would provide an
"antigenic" stimulation and all these interactions would regulate the composition of lymphocyte
populations.
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ization [29], detecting phases of matter and their associated phase transitions
[30, 123], or inference of selection in population genetics [158]. Despite their
very strong predictive power the actual features learned by these methods are
not understood and might simply not correspond to a sensible representation
of the object to characterize [68, 122].

I believe that taken together, the limitations of the two approaches justify
the intermediate data-driven approach we adopt in the work presented in this
manuscript. Provided current biological knowledge we will build simplified
and interpretable statistical models to infer V(D)J recombination and hypermu-
tation rules, and increase their complexity only when they do not recapitulate
correctly some data statistics. In general, we wish to delineate which traits are
universal or individual specific to understand whether the differences of effi-
ciency of different individuals’ immune systems can be attributed to physical
parameters or stochastic fluctuations.

The rest of the dissertation is organized as follows:

• Chapter 1 introduces the functioning of the immune system in verte-
brates with strong emphasis on the adaptive immune system. The cur-
rent knowledge about T and B-cell roles and their interactions, the V(D)J
recombination process, and initial functional selection will be summa-
rized before introducing modern sequencing techniques that will consti-
tute the basis of our modeling work.

• The following chapter, Chapter 2, introduces the mathematical tools and
concepts that are used or useful to understand the work presented in the
manuscript. The end of the chapter presents the challenges and achieve-
ments of repertoire sequencing analysis along with the already existing
bioinformatic tools my work relates to.

• Chapter 3 presents a probabilistic assignment approach to characterize
and infer V(D)J recombination rules. Because different types of data
might exhibit different peculiarities we made our general method avail-
able through IGoR a versatile software tool.

• Chapter 4 introduces how from these models of V(D)J recombination we
can extract information about an individual’s haplotype and estimate the
recombination rescue probability.

• In chapter 5 I will show how, combining these models with models of
somatic selection, we tackle the notion of shared or public receptors, and
how our data-driven approach led us to demonstrate that twins exchange
immune receptors in utero and that such early immune cells are long
lived.

• Chapter 6 presents work aiming at statistically describing the somatic
hypermutation process. After reviewing current knowledge and work, I
will present an independent site targeting model and its shortcomings.
Using our probabilistic assignment approach I will show that hypermu-
tation cluster and call for better models.
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• Finally, in Part iv I will summarize our findings and propose future re-
search directions.



Part II

B A C K G R O U N D , C O N C E P T S A N D M E T H O D S .

In this part of the manuscript I will introduce notions of immunol-
ogy and mathematical tools that will be used in the following parts.

The first chapter presents an overiew of the immune system with a
strong emphasis on the adaptive immune system.

The second chapter presents an overview of the methods on which
my work was built.





1
A N O V E RV I E W O F T H E A D A P T I V E I M M U N E S Y S T E M

1.1 introduction

The birth of immunology (from Latin immunis, meaning exempt) is often at-
tributed to Edward Jenner coining the term vaccination for the inoculation of
cowpox (vaccinia) as a protection for smallpox in 1796. However ideas about
non-mystical disease mechanisms and natural or acquired immunity are doc-
umented since ancient Greece. It is remarkable how tight the relationship be-
tween smallpox and immunology is. Indeed, the Hippocratic school with the
general humor theory described diseases as a quantitative imbalance among
humors (blood, yellow bile, black bile and phlegm). Galen of Pergamon further
introduced the notion of possible qualitative changes in these humors, such
that smallpox was for long described as the result of blood fermentation [161].
Later, in a treaty on smallpox and measles [138] the Arab physician Abu Bekr
Mohammed ibn Zakariya al-Razi (880–932 AD, also known as Rhazes) along
with a precise description of the disease expressed his belief in the existence
of a long lasting acquired immunity to smallpox. He proposed that smallpox
was due to an excess moisture of the blood that would be expelled through
the fluid contained in the pustules. Thus in agreement with humor theory,
stating that the blood dries with age, only young people could suffer from the
disease and immunity would be acquired with age or upon previous contrac-
tion of the disease. While those descriptions depict diseases as an individual
purely internal dysregulation, in 1546 Girolamo Fracastoro proposed that the
disease would be transmitted through small seeds (seminaria) and would be
transmissible from a person to another [161]. All those seeds would have par-
ticular affinity and would in turn only affect subsets of animals and plants,
thus providing a first basis for natural (or innate) immunity.

While these tentative theories are conceptually interesting they did not pro-
vide much insights (or at least accurate ones) into possible ways of treating
diseases. At the same time in Asia and Middle East more practical solutions
were used and inoculation of ground smallpox pustules was used to prevent
future infection. In the early 18th century such practices were brought to the
attention of Western medicine, and before risking these procedures on noble’s
children, led to the conduction on prisoners and orphans of the first immuno-
logical clinical trial. Extending this procedure, Edward Jenner using cowpox
for protecting against smallpox proved the existence of cross-immunity.

The rise of modern bacteriology in the 1870s, with prominent figures such
as Louis Pasteur and Robert Koch, provided the etiologic agents responsible
for diseases and enabled in vitro and in vivo experimentations. From then the
field of immunology, along with pathology, bacteriology and medicine, started
blossoming. Over the last hundred years, much progress has been made and
countless names would need to be cited to reach the evermore precise and rich

9
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view we have nowadays. Our vision of the role has widened such that we now
talk about antigen to merely be any substance potentially recognized by the
immune system such as proteins, polysaccharides or even metals [114].

Despite this, much remains to learn about the vertebrate adaptive immune
system concerning its generation and dynamics as a whole system, problems
that we partially try to address in this work. In the remainder of this chapter
I will try to give a brief overview of our current knowledge with particular
emphasis on concepts relevant to understand the framework and results pre-
sented throughout this manuscript.

1.2 innate and adaptive immune systems

Vertebrate immune systems are classically described in two parts: the innate
immune system and the adaptive immune system. Both systems’ responses
depend upon the activities of white blood cells or leukocytes, and while the
inclusion in either one of different cell types or effectors might be fuzzy, most
cells actively participating in the immune system derive from the same pluripo-
tent progenitor Hematopoietic Stem Cell (HSC), develop and then potentially
mature in the bone marrow. 1 Once mature, those cells migrate through the
blood and a dedicated transport system called the lymphatic system. The lym-
phatic system drains the extra cellular fluid along with immune cells from
tissues, forming lymph, towards peripheral lymphoid organs and eventually
back to the vascular system. These lymphoid organs comprising the spleen,
lymph nodes and mucosa-associated lymphoid tissues (MALTs) 2 are the site of
the adaptive immune system’s activation by the innate immune system.

The innate immune system is responsible for natural immunity. Although
comprising cells whose primary role is not immune defense, the first line of
the innate immune system are anatomical and chemical barriers. Those epithe-
lial barriers, such as skin or gut lumen or even the brain blood barrier 3 , must
be first breached by foreign pathogens in order to harm the individual and
potentially trigger an immunological response. Once breached, pathogens will
face sentinel cells dedicated to the innate immune system such as dendritic
cells, macrophages and neutrophils. These censor cells will initiate the im-
mune response through secretion of inflammatory 4 mediators (or cytokines)
and chemo-attractants (or chemokines) upon recognition of pathogenic threats
through a limited set of invariant innate recognition receptors. Those Pattern
Recognition Receptors (PRRs) target common pathogenic signal known as
pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharides
(LPS) contained in bacterial membranes or byproducts of pathogenic damages

1 Some effector cells of the innate immune system, such as the tissue-resident macrophages in
the brain (microglia) are generated during embryonic life from the yolk sack or fetal liver

2 MALTs are immunological structures sitting directly at mucosal anatomical barriers. Well stud-
ied examples in the gut are Peyer’s patches, however similar structures can be found in e.g the
nasal and bronchus mucosa.

3 The brain blood barrier is so tight and selective that even antibodies and most antibiotics cannot
pass it, making brain infections extremely severe. In order to enable brain infection clearance
brain specific immune cells such as microglia reside there from early development.

4 Inflammation is the result of an increased blood vessel epithelium permeability, leading to a
net flow of fluid, proteins and cells from blood to the extra-cellular medium.
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such as ATP in the extra cellular medium. The extent of the innate immune
system activation is a balance between pro and anti inflammatory signals [102],
leading individual cells to secrete mediators damaging pathogens or engage in
more direct actions such as phagocytosis. While some cells such as neutrophils
phagocyte pathogens simply for pathogen extermination, Antigen Presenting
Cells (APCs) comprising mostly macrophages and dendritic cells serve other
purposes. Indeed, after phagocytosis (or macropinocytosis) activated APCs mi-
grate towards the lymphoid organs where they relay infection information and
activate the adaptive immune system. 5

The adaptive immune system comprises antigen-specific lymphocytes, namely
B and T lymphocytes. Both derive from the lymphoid lineage a differentiation T and B-cells specificities

are presented in sections
1.5 p.21 and 1.4 p.18

respectively.

of HSCs. Contrary to innate immune cells each B and T lymphocyte carry one
specific receptor 6 whose sequence is not contained in the individual germi-
nal DNA and is randomly produced through the process of V(D)J recombi-
nation. BCRs are formed by the same genes that encode antibodies as shall
be explained in later sections 7 , while T cell receptors (TCRs) have a slightly
different structure and function. After the long journey from precursor lym- The processes through

which each receptor is
randomly created, matured
and selected are described
in sections 1.3.2 and 1.6.

phoid cell to functional naive lymphocyte, each lymphocyte divides according
to some external stimulus as described by clonal selection theory [27]. Because
the gene rearrangement process irreversibly edits the lymphocyte’s DNA, all
its progeny inherit the same receptor. The ensemble of lymphocytes deriving
from the same ancestor, carrying the same random receptor8, is called a clone -
a concept that we shall discuss at length in the next sections and later in chap-
ter 5. Young mature lymphocytes continually recirculate between peripheral
lymphoid organs to which pathogenic antigens are brought by APCs. Those
lymphocytes that have not yet been activated by one of their cognate antigen
are known as naive lymphocytes; those that have met their antigen, after a pro-
liferation step, differentiate further into fully functional effector lymphocytes.
A unique feature of the adaptive immune system is its capacity of generating
immunological memory, so that having been exposed once to an infectious
agent, an individual will make a faster and stronger response against any sub-
sequent exposure to it.

This short presentation emphasizes the role of the innate immune system as
a trigger for the adaptive one thus hiding many roles of the former and the
formidable mesh of interactions between these two systems. Indeed the innate
immune system can to some extent clear pathogens independently, but is also
a major downstream effector of the adaptive response for which the adaptive
immune system acts as a targeting aid. Those two systems act in complete
synergy and the boundary in between them is fuzzy. The work presented in Some examples of effector of

the innate immune system
roles will be given in the
next sections.

this manuscript dealing exclusively with the adaptive immune system, the pur-

5 Note that I have left out of this description numerous actors of the innate immune system such
as natural killers lymphocytes, innate lymphoid cells, basophils, eosinophils, mast cells and
finally the complement system that I will briefly present in section 1.4.3 p.19.

6 Each lymphocyte carries only one sort of random receptor but carries many copies of it on its
membrane.

7 BCRs are thus sometimes referenced as membrane or surface immunoglobulins, however for the
sake of simplicity we will not use these denominations in this manuscript.

8 Or a slight variation of it for hypermutated BCRs
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pose of this emphasis is to pass one message to the reader: without the innate
immune system the adaptive immune system’s response cannot be elicited.
This was realized during the first half of the 20th century, by observing that
purified antigens were not sufficient to elicit a specific immune response and
that adding bacterial materials as adjuvant9 (or "helper") enabled this response
[45, 55]. Along with this concept I will finally insist on four major differences
between these systems. First their timescales of action: the innate adaptive im-
mune system gets activated and acts within hours, while the time needed for
an APC to migrate (or a soluble antigen to diffuse) from the afferent lymphatic
to the lymph node, activate lymphocytes, and the activated lymphocytes mi-
grate through the efferent lymphatic to the blood and then towards the site of
infection is 4-6 days. Second, as previously mentioned the adaptive immune
system relies on a large diversity of receptors, each specific to a few antigens,
while the innate immune system relies on a few receptors targeting generic
pathogenic signatures. Lastly, with the ability to produce new receptors10 and
as mentioned earlier the ability to form an immunological memory the adap-
tive immune system can be trained while the innate immune system is static.

1.3 adaptive immune system receptors

As soluble molecules antibodies were easier to study than membrane bound
receptors that are BCRs and TCRs. Their architecture being extremely similar
(appart for slight specific differences outlined in the next section) detailing
their structure will give the reader a good understanding of how those mem-
brane receptors work. This section focuses on commonly described human
and murine immune receptors, however in nature exception is the rule and,
through the course of evolution, other species such as camelids or sharks have
acquired slight variations that will not be discussed in this manuscript.

1.3.1 General structure

TCRs and BCRs (or antibodies) are composed of respectively one or two het-
erodimers formed by two polypeptidic chains: one of lesser diversity (respec-
tively α or light chain) and one of greater diversity (respectively β and heavy
chain). Each of these chains are independent random products of the germline
DNA editing process of V(D)J recombination that I present in section 1.3.2.
Each chain contains a constant region (Cα, CL, Cβ, CH) where the disulfide
bonds necessary to assemble the heterodimer will be formed (Fig. 1.1). These
constant regions are regions anchoring TCRs and BCRs to the cellular membrane
and take on a functional importance for different antibody classes as explained
in section 1.4.5. Each chain also contains a variable region (not surprisingly re-
spectively named Vα, VL, Vβ and VH). The variability created by the recombi-
nation process is however not constant over the full variable region. While the
peptide variability remains rather low in most regions, most likely due to fold-

9 Finding good adjuvants (such as aluminium salts) is still a challenge for vaccination.
10 Although this production goes down with age.
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Figure 1.1: Schematic representation of antibodies and TCRs. The antibody (left) is a
homodimer of heterodimers connected through disulfide bonds (purple).
TCRs (right) are smaller heterodimers anchored in the cell membrane.

ing and stability constraints, a few regions (3 in most cases), spanning less than
tens of residues exhibit high variability. From X-Ray crystallography the low
variability or Framework Regions (FRs) are known to each form a beta sheet,
together assembling in a beta sandwich. The three hypervariable regions or
Complementarity-Determining Regions (CDRs) (CDR1, CDR2 and CDR3) form
free flexible neighboring loops connecting the beta strands. The six flexible
hypervariable structures of the two chains are neighboring in the heterodimer
and together form the antigen binding site (see Fig. 1.1). This antigen binding
site binds specifically subparts of one or a few antigens. Each antigen subpart
recognized by a TCR, a BCR or an antibody is called an epitope. The multiplicity
of possibly recognized epitopes is referred to as cross-reactivity. B and T-cells receptors

recognize different types of
epitopes. Their specificities
are detailed in sections
1.4.1 p.18 and 1.5.1 p.21.

As mentioned earlier BCRs and antibodies are homodimers formed of two
copies of a heavy and light chain heterodimer. The heavy chain is much larger
than the light11, due to a large constant region. Disulfide bonds are formed
between the heavy chains’ constant regions and form the homodimer. The
end product is a Y (Fig. 1.1) shaped protein with three globular regions of
comparable sizes. Arms of the Y (containing the light chain) are flexible and
bind to antigens12. The trunk of the Y has functional importance to define the
Ig class and thus the role of the antibody as well as the BCR anchor point in the
B-cell’s membrane. See section 1.4.5 for Ig

classes and rolesTCRs on the other hand are composed of only one α :β heterodimer. Those
two chain have roughly the same size13 such that the heterodimer much ressem-
bles an arm of the Y shaped Ig. Slight variation of the folding makes the antigen

11 50kDa against 25kDa
12 These flexible arms allow the Immunoglobulin (Ig) to bind more efficiently antigens, and for

several soluble Igs to bind the same antigen with less steric constrains forming structure called
haptens.

13 Around 40kDa
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Figure 1.2: Recombination locus organization for the different chains.

binding end hypervariable loops less flexible than its Ig counter part which is
of functional importance.

1.3.2 V(D)J recombination

As previously mentioned adaptive immune receptors are not directly encoded
in the genome but arise from the stochastic germline DNA editing process of
V(D)J recombination. This process involves recombination of three or four gene
families called: V for Variability genes, D for Diversity genes 14 , J for Joining
genes and C for Constant genes. For V, D and J gene classes several genes are
initially present and a fully recombined receptor is formed by a combination
of one of each of these genes. The V gene choice fully determines the CDR1

and CDR2 regions while the most hypervariable CDR3 region is encoded by
the combination of a V, a D (for heavy and β ) and J gene. The C gene encodes
the constant region of the receptor. Several C genes might be present and can
carry different functions for the receptor (see section 1.4.5 for Igs example).

1.3.2.1 General recombination mechanism

In order to ensure the recombination of a V(D)J triplet, DNA rearrangements
are guided by conserved noncoding DNA sequences, called Recombination
Signal Sequences (RSSs), that are adjacent to the recombination spots. At each
recombination spot (at the beginning or end of a V, D or J gene), two RSS are
present: a nonamer and a heptamer and are separated by a variable spacer
sequence of either 12 or 23 base pairs15 . The length of the spacer sequence
determines whether two recombination spots can be joined, such that RSSs

14 D genes are only present in heavy and β chains and are responsible for the extra diversity
encoded in those chains.

15 12 nucleotides correspond two one DNA double helix turn while 23 corresponds to two turns
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Figure 1.3: V(D)J recombination in Ig heavy chain. V(D)J recombination proceeds by
joining randomly selected segments (V, D, and J segments in the case of
IGH). Each segments gets trimmed at its ends (hashed areas), and a vary-
ing number of nontemplated insertions are added between them (orange).
The resulting sequence encodes the CDR3 region contained between con-
served Cystein and Tryptophan.

with a 12bp spacer can only recombine with a 23bp one. This is known as the
12/23 rule. A violation of this rule for

BCRs will be discussed in
section 3.7

During the recombination process the V(D)J recombinase enzyme complex
16 first brings two corresponding RSSs together forming a DNA loop and excise
the RSSs and all remaining genes potentially contained in the loop. This creates
two DNA ends with double strand break. At each of these ends a DNA hairpin
is then created by joining the two last complementary base pairs. Once the
hairpins created the Artemis enzyme will create a single strand DNA break at
a random position, thus creating a palindromic sequence on one of the strands.
These extra palindromic insertions are called P-nucleotides.

Although the precise mechanism is unknown, Artemis is also thought to
have an exonuclease activity and delete a random number of nucleotides on
the free single strand sequence possibly further than the P nucleotide range
thus effectively deleting base pairs somatically encoded in the genomic tem-
plate. This mechanism is supported by the fact that P nucleotides are not ob-
served together with deletions [115]. These deletions constitute an extra source
of diversity for the resulting receptor sequence. Contribution to the

diversity of each
recombination element is
discussed in section 3.4

Finally, random non templated insertions (also called N nucleotides) can
be added on each free single strand end by the Terminal deoxynucleotidyl
transferase (TdT) enzyme. The two resulting single strand sequences will then
join upon a sequence of complementary nucleotides. Extra nucleotides beyond
the paired region are then excised and remaining single stranded regions are
complemented to form a double stranded DNA molecule.

1.3.2.2 Heavy and β chain recombination

Lymphocytes arise from progenitors cells with intact chromosomes and evolve
through many intermediary maturation steps until reaching the mature lym-
phocyte state. Those steps are well documented and well characterized by the

16 The V(D)J recombinase complex contains lymphocyte specific enzymes RAG-1 and 2 and a
number of ubiquitous proteins involved in DNA double strand break repair.
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presence or absence of a number of cell surface proteins called Cluster of differ-
entiations (CDs) that will be overlooked here. These proteins serve as a general
classification system for immunophenotyping.

Both B and T-cells start by recombining the DJ junction of their large diver-
sity chain. At this stage the recombination is thought to occur on both chro-
mosomes at the same time. Once the DJ junction recombined, the VD junc-
tion of only one of the two chromosomes is recombined, while the other stay
untouched. This is known as allelic exclusion. Currently, it is unknown how
allelic exclusion and the recombination timing of DJ and VD recombinations
are imposed.

Once the full chain recombined, it is mounted on a surface receptor with a
surrogate lesser diversity chain somatically encoded in the genome. These are
called pre-BCR and pre-TCR for B and T-cells respectively. At this point no
ligand binding testing is carried out, and dimerization of those receptors on
the cell surface will carry an intracellular message to suspend expression of
the V(D)J recombinase and carry on the development further. This step is thus
simply testing for the ability of the recombined chain to fold and interact with
a templated lesser diversity chain.

Transduction of the dimerization signal will stop the recombination process
and stimulate the pre-lymphocyte proliferation. However chances of obtaining
a non functional chain are high, for instance a frame shift in the CDR3 region
occurs ∼ 2/3 of recombination attempts. The expression of the recombination
enzyme complex will then trigger the recombination of the VD junction of the
so far untouched chromosome17. Upon failure of the second recombination theEstimating the frequency of

this rescue mechanism is
the topic of section 4.2

lymphocyte engages in apoptosis.

1.3.2.3 Light and α chain recombination

After the replication step each lymphocyte with an identical β or heavy chain
will recombine the second lower diversity chain separately, and will in turn
obtain a different receptor.

Due to the absence of the D gene cluster, recombination of the second chain
is a one step process joining the V and J region. While light chains exhibit
allelic exclusion and recombine one chromosome at a time, alpha chains do
not and are known to recombine both loci concomitantly. Due to their similar
organization, both α and light chains can recombine several times on the same
loci. Indeed, upon the joining of a V and a J gene all genes in between will
be excised. However all 5’ most V and 3’ most J genes are still intact and can
recombine thus excising the previously joined VJ couple.

As for the recombination timing, the recombination stopping criterion is also
thought to be different between B and T-cells. Upon recombination of the light
chain, the full BCR receptor is expressed on the B-cell surface. As for pre-BCR,
the newly recombined BCR provides a ligand independent tonic basal signal

17 Actually due to the organization of the TCRβ locus, failed β recombinations can sometimes get
a second recombination attempt. Indeed, if the first recombination involved the Dβ1-Jβ1 cluster,
the second one with its own constant region has not been excised and can still recombine with
a V gene upstream of the one involved in the first recombination that has not been excised
during the VD joining.
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indicating that a functional protein can be expressed on the cell surface. This
signal temporarily prevents further recombination of the light chain locus. This
process remains independent of any ligand binding solely assessing folding
and assembling capabilities of the resulting BCR. Further recombination of the
light chain, called receptor editing, could be re-induced if the receptor is found
to be reactive to self antigens as described in section 1.6.1. Such tonic signaling
has not been described for T-cells, such that it is thought that both α chains
loci will keep recombining until a positive selection signal based on ligand
binding capabilities is delivered (see section 1.6.2). In practice T-cells could
exhibit two different receptors with identical β and different α chains, however
it is unlikely that both have a functional role18.

1.3.2.4 Non productive sequences

There exist many reasons why a recombined sequence may be non-functional
(beyond ligand binding capabilities) meaning producing a correctly folded re-
ceptor. The protein could be a truncated protein, or use a gene segment known
to produce non-functional rearrangements or even exhibit an amino acid in the
CDR3 region destabilizing the full protein structure. This ability is tested by
producing pre-lymphocyte receptors after β or heavy chain recombination, or
by integration of BCR tonic signals for light chain functional testing. How-
ever mapping the sequence to a folding state for a protein is a hard problem
and we are therefore incapable of predicting if a given sequence produces a
functional protein. Still, for a few obvious cases we are able to call sequences
non-productive. Because it reflects almost entirely the recombination product,
the CDR3 region is determinant in assessing the productivity of a sequence.
This CDR3 is generally defined between a conserved cystein in the V gene and
a conserved phenylalanin, for TCRs, or tryptophan, for BCRs, in the J gene. In
the rest of this manuscript we will consider all sequences with a frameshift19

or a stop codon in the CDR3 junction to be non productive or non coding. We
will denote the ensemble of the remaining sequences as productive sequences.

We will assume non productive sequences to be non functional, and thus not
contributing to clonal selection. In order to pass initial selection, each mature
lymphocyte must carry at least one functional receptor. Thus all non functional
sequences that can be observed through immune repertoire sequencing are
subject to random selection due to the necessary functional sequence carried
on the second chromosome. In chapters 3 and 6 we will use these non selected
non productive sequences to build models capturing the V(D)J recombination
and the somatic hypermutation process statistics.

On the other hand productive sequences are not necessarily functional and
trying to predict functionality is a general problem addressed briefly men-
tioned in chapter 5. The term coding instead of productive might thus some-
time be preferred to lift this ambiguity. Still, a majority of productive sequences

18 Having two receptors with a functional role would first require that both can be expressed and
form a surface receptor, one of the two to be kept by positive selection and finally none of them
to be deleted by negative selection.

19 Rearrangements whose CDR3 regions contains a number of nucleotides that is not multiple of
3.
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in repertoire sequencing data should be functional since each sampled mature
lymphocyte must carry at least one functional receptor. This subject will be
discussed in more details in section 4.2.

1.4 b-cells , surface receptors and antibodies

From the lymphoid progenitor to the mature lymphocyte state B-cell stay and
develop in the bone marrow. They will only leave it once they complete matu-
ration and selection against recognition of self-antigens, as detailed in section
1.6 p.23. This section briefly presents how their receptors bind to ligands and
their role in the immune response.

1.4.1 BCRs and antibodies ligands’

BCRs and antibodies generally recognize small molecules such as vitamins, or
only a small region of the exterior surface of a large molecule such as a polysac-
charide or protein. These molecules can be freely diffusing soluble molecules
or membrane bound ones such as membrane constituents of bacteria or viral
capsides.

Binding operates through non covalent interactions (electrostatic, dipole-
dipole, Van der Waals or hydrophobic entropic forces) between the epitope
atoms and amino acids of the light and heavy chain CDRs. Because they interact
with intact proteins, BCRs and antibodies cannot access the hydrophobic core of
globular or membrane proteins and only interact with their hydrophilic shell.
This is of particular relevance for e.g Human Immunodeficiency Virus (HIV)
infection control by broadly neutralizing antibodys (BNAbs) [192]. These anti-
bodies have the ability to bind a hidden conserved region of an HIV capside
receptor. It has been reported that those antibodies tend to have a long CDR3

loop region whose flexibility could help reaching hidden conserved subparts
of the antigen [192].

1.4.2 Plasmocytes

Upon binding of a B lymphocyte’s BCR to one of its cognate antigen and re-
ception of additional signals from helper cells20, the B-cell proliferates and dif-
ferentiates into its corresponding effector cell called a plasmocyte or a plasma
cell.

These cells migrate from the secondary lymphoid organs to the bone mar-
row. These cells are characterized by a large Golgi apparatus indicating an im-
portant proteo-synthesis activity. Since they are terminally differentiated cells,
most of the plasma cell activity consists of producing antibodies that will flow
in the blood and finally to the infection sites.

20 Upon recognition of an antigen by their BCR B-cells can internalize the pathogen and mount it
on MHC class II in order to gather additional signals from follicular helper T-cells introduced
in section 1.5.2 p.22
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1.4.3 Role of antibodies

Antibodies are found in blood, extra cellular fluids and lumen of organs com-
municating with the outside world. Because body fluids were once known as
humors, immunity mediated by antibodies is known as humoral immunity.
There exist different kinds of antibodies detailed in the subsection1.4.5, each
specialized in one of the following tasks:

• The most direct effect of antibodies is neutralization. Through binding
directly to an antigenic molecule the antibody can block the antigen’s
function. This is particularly important for preventing viruses to enter
their target cells. By binding the surface antigen enabling entrance in the
cell the antibody can block the infection. Neutralization is also a major
defense against toxic or poisonous hazards. Toxins such as the ones se-
creted by some bacterias are usually composed of two chains, one with
toxic activity the other enabling to enter desired cells. By binding the
latter one antibodies can prevent damages. Antibodies fulfilling such a
neutralizing role are called neutralizing antibodies. The currently widely
studied HIV BNAbs are part of this class. The term broad stem for their
ability to neutralize HIV despite its constant evolution by targeting a
structurally conserved region of a surface antigen.

• By coating the surface of pathogens that are self replicating such as bac-
teria, antibodies can act as targeting flags for innate immune cells with
receptors binding constant regions of the antibodies. This coating process
is known as opsonization.

• Finally by coating pathogens’ surfaces antibodies can also trigger the ac-
tivation of an important ingredient of the innate immune system: the
complement. The complement system is an acellular system composed
of a set of ∼ 30 soluble proteins found in the blood and extra cellular
fluids. In the absence of pathogens most of these proteins are inactive
and their activation comes from a cascade of proteolytic activity cleav-
ing inactivating subparts of the proteins. Once activated the complement
system can diffuse and promote inflammation by recruiting phagocytic
cells, coating pathogens’ surfaces and facilitate pathogens phagocytose
by innate immune cells or directly disrupting the pathogens’ membrane
through formation of membrane-attack complexes.

1.4.4 Affinity maturation and somatic hypermutations

This section only gives a very brief outline of the affinity maturation pro-
cess, and will only skim through the Somatic Hypermutation (SHM) process. A
much more detailed summary of the current knowledge on SHMs is made as
an introduction for chapter 6.

As described above, the primary B-cell response promotes cell division and
for some, further differentiation into plasmocytes effector cells. However, some
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of the newly divided cells will migrate within the lymph node21 and keep
dividing to form a structure known as a germinal center.. This structure com-
prises some B-cells, follicular dendritic cells, macrophages and follicular helper
T-cells.

In those germinal centers B-cells start producing the Activation Induced cyti-
dine Deaminase (AID) hypermutating enzyme. Because of this enzyme, B-cells
accumulate random mutations at each cell division in their BCR variable region
with a rate of ∼ 10−3 mutations per base pair per division. B-cells are then
selected on their ability to recognize the antigen presented by follicular den-
dritic cells and present it to the helper T-cells, that will in turn provide signals
preventing apoptosis and promoting division. Thus, B-cells bearing mutations
destabilizing the receptor structure and preventing antigen binding will go
through apoptosis (purifying or negative selection). For the ones still able to
bind the antigen they will compete for follicular helper T-cell division signals,
such that B-cells with receptors of higher affinity will carry an evolutionary
advantage (positive selection).

The full process of division, mutation and selection is what is called affinity
maturation. Overall, it is an accelerated evolution process aiming at provid-
ing B-cells with BCRs evermore affine for a given antigen. The full phylogeny
deriving from an initial B-cell is called a clone.

1.4.5 Ig classes and class switch

On top of SHMs, the AID enzyme presented in the previous section serves an-
other purpose. By creating double strand DNA breaks it allows to change the
constant region lying on the 3’ side of the J gene cluster (see Fig. 1.2 p. 14) and
thus the function of the Ig encoded in a B-cell. Their function is dictated both
by the downstream effector mechanisms their constant region triggers and the
specific transporters carrying them to their specific sites of action. This process
changing the expressed Ig type class is called class switch..

There exist five main Ig classes:

• immunoglobulin M (IgM) and immunoglobulin D (IgD). Respectively
encoded by the Cµ and Cδ constant regions, lying right after the J genes
cluster. These two types of Ig are concomitantly expressed as membrane
receptors by alternative mRNA splicing. Since they lie right after the J
gene cluster, these are the Igs that are expressed by B-cells before any class
switch and thus before encountering of their cognate antigens. These are
also the antibodies secreted by the primary plasma cells upon the first
encounter of an antigen. Being produced before any affinity maturation,
they generally have lower affinity than other Ig types. Still, IgM can form
pentamers allowing strong binding on antigens with repeated epitopes
such as bacterial membrane polysaccharides. Their primary role is to
activate the complement. The role of IgD on the other hand is still poorly
understood.

21 Together with their associated follicular helper T-cells
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• immunoglobulins G (IgGs) come in four subsets (IgG1, IgG2, IgG3 and
IgG4) respectively encoded by the Cγ1, Cγ2, Cγ3, and Cγ4 regions. Taken
together IgGs are quite generalist and act through neutralization, op-
sonization or complement activation. They are found freely diffusing in
the blood and extra vascular fluids. Some IgGs can also cross the pla-
centa barrier so the mother can provide protection to the foetus during
embryonic and early life. IgGs generally have a long plasmatic lifetime
and are found in abundance in the blood.

• immunoglobulin A (IgA) are encoded by the Cα constant region. To-
gether with IgG they are the predominant antibody class. Upon dimer-
ization IgAs can be transported through epithelial barriers by specific
transporters and thus be secreted in hollow organ lumens. There they
mostly act by neutralization of pathogens and exogenous toxins. As a
complement of placental IgGs, some IgAs are present in the mother’s
milk to transfer a temporary immunity to the newborn’s gut.

• immunoglobulin E (IgE) encoded by the Cǫ constant region. IgE antibod-
ies are present only at very low levels in the blood and trigger mast cells
activation. These are mostly involved in expulsion (and allergic) reactions
such as sneezing, coughing or vomiting.

Class switch is a definitive change of the B-cell somatic DNA. It is triggered
by follicular helper T-cells signal. The cocktail of cytokines expressed by fol-
licular helper T-cells in germinal centers directs the choice of the class switch
identity.

1.5 t-cells and their receptors

T-cells accomplish almost all their development in the thymus. Different mat-
urations stages correspond to occupancy of different zones of the highly orga-
nized organ that is the thymus. There they will acquire their unique receptor
whose functionality will be tested against self antigens. This process will be
more thoroughly described in section 1.6 while this section will focus on de-
scribing TCR functioning along with the different T-cell subpopulations and
their respective roles in the adaptive immune system.

1.5.1 Ligands

While BCRs recognize parts of soluble or membrane bound full proteins, TCR

epitopes are fragments of antigens presented to the T-cell by other cells through
an adapter protein. These proteins fragments are generated by degradation
of exogenous, or the cells own, proteins, and then mounted inside the dedi-
cated groove of the adapter protein, stabilizing its structure, before the antigen-
adapter complex can be expressed on the cell’s membrane. These transmem-
brane adapters are widely known as Major Histocompatibility Complexess
(MHCs)22.

22 For humans these are also referred to as Human leukocyte antigens (HLAs)
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There exist two major classes of MHC molecules differing both by the type of
peptide they can present and the cell types expressing them. Each individual
possesses a combination of several MHC alleles of each class from maternal
and paternal origin. Since not all MHC within a class can present the same
protein fragments the large number of alleles allows one individual to have a
larger epitope coverage . Class I MHCs bind short peptides of 8–10 amino acids
and are ubiquitously expressed among nucleated cells. This class of MHC can
be seen as a way for the adaptive immune system to constantly monitor the
internal state of a cell and detect anomalies such as viral infection or cancer-
ous protein expression. Class II MHCs on the other hand can bind peptides of
various length greater than 13 amino acids and are expressed only by APCs.

As will be detailed in section 1.6 functional TCRs thus need to be able to bind
to an MHC molecule and then recognize specifically the presented peptide.
Specific co-receptors help the TCR bind to the MHC complex away from the
peptide binding site. Their impact on T-cells role will be detailed in the next
subsection.

Since T-cells recognize degraded protein fragments,they can access peptides
hidden in the hydrophobic core of globular proteins that antobodies cannot
access.

1.5.2 Cytotoxic, helper and regulatory T-cells

The two main classes of T-cells express either a cell-surface co-receptor protein
called CD8 or another called CD4. As aforementioned, these co-receptor bind
to subparts of the MHC complex. While CD8 only binds MHC class I, CD4 only
binds MHC class II. The commitment to either receptor expression is made after
full recombination of a TCR upon the positive selection step, and thus solely
depends on the recombination product affinity for either MHC class molecule.T-cell initial selection is

presented in more details in
section 1.6.2 p.24.

All CD8 mature T-cells are called cytotoxic T-cells. Their role is to kill cells to
which their TCR binds by triggering their apoptosis (programmed cell death).
Since CD8 promotes binding to MHC class I, that is ubiquitously expressed
by nucleated cells, CD8 T-cells role is thus to kill all cells with abnormal (non
self) proteic content and are thus of primary importance in fighting viral or
intracellular infections or even cancerous cells.

CD4 T-cells are further subdivided in several subfamilies however their gen-
eral role is mostly indirect through secretion of cytokines regulating activity
of other immune cells. Subfamilies comprise:

• TH1, TH2 and TH17 helper T-cells regulate the innate immune system ac-
tivity. TH1 mostly regulates macrophages, while TH2 controls eosinophils,
mast cells and basophils and TH17 neutrophils.

• TFH follicular helper T-cells regulating B-cell activity and affinity matu-
ration in the lymph nodes

• Treg regulatory T-cells. While other CD4 T-cells promote the immune
response, Tregs generally dampen it.
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1.5.3 α : β and γ : δ receptors

So far we have only described T-cells bearing α : β receptors however there
exist a second class of T-cells with different receptors that we briefly mention
in chapter 3’s conclusion. These γ : δ receptors originate from different recom-
bination gene clusters. To this day it seems these receptors are not restricted
to recognize ligands presented by the MHC, but their precise ligands remain
unclear and so do the mechanisms controlling the commitment to the γ : δ or
α : β lineages. Still, most γ : δ appear to lie in epithelial mucosal tissue and
seem to be an intermediate level between the innate and adaptive immune
systems.

1.6 initial and peripheral selection

While being able to face virtually any pathogen armed with the tremendous di-
versity generated through the recombination process might already seem like a
challenge, the task is even more extraordinary provided the constraints of self-
antigen avoidance (autoimmunity) and finite resources (i.e finite total number
of lymphocytes). As exposed in the following subsections this first constraint
is dealt with by eliminating lymphocytes whose receptors bind strongly to self
antigens in a process of purifying or negative selection. The second one should
aim at keeping only the cells with most useful receptors. This is accomplished
in several steps throughout the lymphocyte’s life. First as mentioned in sec-
tion 1.3.2, recombination products that cannot produce a viable receptor on
the cell’s membrane are negatively selected. Upon success to this functionality
test, the receptor might then be tested for its ability to bind its cognate ligands
and if so be positively selected. Finally, through competition for finite amounts
of survival and division signals the population dynamics of peripheral selec-
tion will select the most useful receptors.

1.6.1 B-cells central and peripheral tolerance

B-cells development mostly implements negative selection. As briefly men-
tioned in section 1.3.2.3 p.16, upon recombination of a light chain a full BCR

can be mounted on the cell membrane. Once on the membrane, the receptor
is exposed to antigens expressed by the bone marrow cells or freely diffus-
ing antigens produced elsewhere in the body. Binding of the receptor on a
molecule at this stage is a signal of auto-reactivity, and will cause the B-cell to
recombine again its light chain or die. Cells that do not react to any pathogen
exit the marrow and migrate to the periphery.

At this point a number of self-antigens might not have been sampled by
the developing B-cell, either due to their low concentration in the marrow or
because of their tissue specific expression. Before the B-cell final maturation
in the spleen, binding to an antigen while circulating will also result in the
death of the lymphocyte. Because of the limited amount of maturing follicles
in the spleen, newly created B-cell face harsh competition to enter them and
thus spend some time sampling peripheral antigens.
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1.6.2 T-cell thymic selection

Because they cannot directly bind antigens and need MHCs as adapter proteins,
T-cells’ selection process differs from B-cells’. A this stage immature T-cells
express both CD4 and CD8 co-receptors. Without a signal of binding of its TCR

to an MHC:self-antigen complex the immature T-cell will go trough apoptosis.
This process is known as positive selection. On the other, hand upon too strong
binding to one of those complexes the immature T-cell will be considered auto-
reactive, and thus engage apoptosis. This in turn is called negative selection.
T-cell thymic selection is thus a subtle balance between the ability to generally
bind an MHC but not bind a specific MHC:self-antigen as illustrated in Fig. 1.4.
This process, together with T cell activation, has been widely studied both at
the molecular and the population scale [52], and the details of this decision are
still not clear.

Figure 1.4: Schematic for thymic selection. Lymphocytes binding too weakly to the
self MHC-peptides (left) engage in apoptosis implementing positive selec-
tion. Lymphoctyes binding too strongly (middle) also undergo apoptosis
through negative selection. The obtained naive population binds but not
too much self MHC:peptides complexes (right).

1.6.3 Peripheral selection

Once mature, lymphocyte populations compete for antigen resources and pro-
liferation. This was initially described by the term clonal selection. Some recent
theoretical work [42, 43, 96] has tried to describe clonal dynamics, however in-
terpreting them to e.g detect clonal expansion upon vaccination trials remains
a major challenge.

1.7 naive and memory repertoires

Mature lymphocytes that have passed the different initial selection steps reside
in the secondary lymphoid organs where they wait for activation. These ma-
ture lymphocytes that have not yet met their cognate antigen are termed naive.
The ensemble of naive T or B lymphocytes constitute the naive repertoire.

Upon the encounter of its target antigen the naive lymphocyte divides and
most of its progeny become effector cells. The remaining will constitute a pool
of long lived and slowly dividing lymphocytes constituting the memory reper-
toire. This pool of memory cells is more numerous and easier to activate than
the pool of naive lymphocytes. The presence of this memory repertoire is the
basis of immunological memory and allows for a faster and stronger response
upon successive encounters of the same pathogen. The stronger response is



1.8 Tools to study the adaptive immune system 25

due both to the amount of memory cells present and to their efficiency. Mem-
ory B-cells for instance can be created after several rounds of affinity matu-
ration, such that class switched antibodies with sharpened affinity can read-
ily be secreted upon secondary detection of an antigen. The long lifetime of
these memory cells can provide to an individual a lifelong protection against
a pathogen.

1.8 tools to study the adaptive immune system

In this section I give a brief description of experimental techniques that may be
useful to understand the work and results presented throughout the manuscript.

1.8.1 Flow Cytometry

As introduced in section 1.5.2 presence or absence of some membrane CD pro-
tein helps differentiating different stages of developpment, different popula-
tions and naive/memory repertoire. Flow cytometry typically uses fluorescent
tags to count the amount of a given receptor on each cell membrane. Sev-
eral tags 23 can be used to perform a multidiemnsional population analysis.
A large field of immunology aims at performing immunophenotyping and
divide functional cell classes according to their surface markers. The recent
development of mass cytometry (CyTOF), relying on heavy metals as tags in
mass spectrometry assays, enables large dimensional analysis of surface mark-
ers without fluorescence spectrum overlap restriction and promises to provide
ever fine grained population description.

Such technique coupled with microfluidic droplets can be also used to iso-
late populations and perform cell sorting on the fly. This technique is re-
ferred to as Fluorescence-activated cell sorting (FACS). This is how sequencing
datasets can be broken into naive/memory or even CD4/CD8 for T-cells.

1.8.2 Immune repertoire sequencing

The last decade has seen the advent of high-throughput repertoire sequencing
with Next Generation Sequencing (NGS) techniques. These techniques allow to
sequence millions of BCRs or TCRs around the CDR3 region containing most of
the V(D)J recombination information and thus most of the repertoire’s diver-
sity.

A typical sequencing workflow consists of a few steps: genetic information
extraction from the desired lymphocyte population, library preparation, Poly-
merase Chain Reaction (PCR) amplification24 and sequencing. An example se-
quencing protocol used in Ref. [129] can be found in appendix B.1.

23 Up to non overlapping fluorescence spectra of the probes
24 PCR allows to duplicate genetic information. Starting from double stranded DNA, a first de-

naturation step is performed to obtain single stranded DNA. Using a small complementary
sequence of each strand or primer, the genetic information is copied with a DNA polymerase
synthesizing the rest of the complementary strand. This procedure is iterative and allows in
theory to double the number of copies of a sequence at each cycle.
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There currently exist two competing technologies using either genomic DNA
or messenger RNA (reviewed in Refs. [28, 63]) as starting material

• DNA sequencing [88, 140, 189] uses the stable chromosomic information.
Because productive and non productive rearrangements are equally ef-
ficiently sequenced and each cell contains the same amount of genetic
material DNA sequencing should be extremely advantageous for unbi-
ased clone size estimation (i.e number of cells carrying the same recep-
tor). However, because the genetic information initially only exists in one
copy many PCR cycles will be needed for sequencing. Since intronic re-
gions are still present in DNA, this PCR relies on specific primers for the
different V and J genes. Because PCR primers have different efficiencies
and because the PCR amplification is itself a noisy process [9], in practice,
DNA sequencing does not provide accurate sequence counts statistics
despite its theoretical advantages.

• RNA sequencing [100, 124, 181] technologies on the other hand rely
on the expressed genetic material. This introduces clear biases in count
statistics as cells containing more mRNA will be overrepresented. Such a
bias could potentially come from differential expression (e.g with allelic
exclusion) or mRNA stability, and has been shown to strongly affect non
productive rearrangements [28]. Although the starting amount of genetic
material is larger, RNA-Seq technologies still require PCR amplification
after retro-transcription in cDNA. Because, intronic regions have been ex-
cised during transcription a unique primer in the C region can be used to
alleviate primer amplification biases. As for the inherent PCR bias, tech-
nologies using unique random molecular barcodes [83, 84], or Unique
Molecular Identifiers (UMIs), attached to each cDNA molecule have been
developed in order to track the number of times each molecule has been
duplicated during the PCR process. Using these barcodes allows to effi-
ciently correct for amplification biases. Because retrotranscription is not
needed, adaptation of this technique to DNA sequencing would require
to introduce UMIs in a first PCR replication step[155], along with an inher-
ent primer bias, and has to this date not been done. Overall with molec-
ular barcoding RNA techniques provide more accurate count statistics
than their DNA counterparts, despite the inherent expression bias.

While this section only outlines the basic principles behind repertoire se-
quencing there exist many different methods varying in their depth, quality
or read length are in constant development. One special case to mention is
paired end sequencing allowing to obtain much longer reads (∼ 200nt) than
single read sequencing (∼ 100nt) with lower error rates, however with the
downside of using a second sequencing primer in the V region with possible
subsequent primer bias. Such approaches however are still limited to study
one chain and not the full receptor. The last years have seen the apparition of
techniques to sequence paired receptors (α β or light-heavy) either through
biochemical pairing [40] or statistical pairing [76, 91], an exciting development
to study full receptor function.
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Although I have clearly emphasized high throughput techniques targeting
the hypervariable region some repertoire information have also been obtained
using single cell RNA-Seq [26, 168], providing information on the whole cell
transcriptional activity and paired receptor chains. Another recent develop-
ment to mention is the assembly of immune receptor sequences from whole
genome shotgun sequencing [15].

Because of the unprecedented insights in the immune repertoire global com-
position they offer, repertoire sequencing techniques promise to answer many
long standing immunological questions. To mention just a few, Rep-Seq has al-
ready been used to try and assess repertoire overlap and its random or genetic
basis [181, 206], recombination machinery statistics [115] and development
[137, 154], initial selection traits [49], affinity maturation diversification [38,
195] and selection [194], repertoire diversity [140], and its links to aging [23]
and diseases [183], dynamics of response to acute [59, 60, 77, 169] or chronic
[73, 180, 193] infections. Although not directly sequencing the full repertoire,
other approaches aiming at understanding the sequence to function mapping
[1, 39, 203] are also an important development of immune receptor sequenc-
ing. However, interpretation of this wealth of data is arduous, and our ability
to use it depends on the development of complex statistical and computational
pipelines briefly presented in the next chapter.
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I N F E R E N C E , B I O I N F O R M AT I C S A N D I M M U N E
R E P E RT O I R E S E Q U E N C I N G

In this chapter I will introduce the quantitative methods I have used in this
thesis. The first section presents the Expectation-Maximization (EM) algorithm
and variants that we use in our probabilistic framework. Section 2.2 presents
various models used in bioinformatics that we shall use or discuss within
this manuscript. In the last section I will review challenges and existing so-
lutions for repertoire sequences motivating the probabilistic approach we have
adopted in this work. As a complement to this chapter, appendix A presents
basic notions of optimization, information theory and bayesian statistics un-
derlying the presented work.

2.1 incomplete data and the expectation-maximization algo-
rithm

Some problems come naturally with incomplete-data (degrees of freedom that
are not or cannot be measured). In the case of Hidden Markov Models, as we
will discuss in section 2.2.2.2, latent variables can be introduced on purpose
to circumvent some model limitations. Solving problems that contain hidden
variables can be done with the help of the Expectation-Maximization (EM) algo-
rithm [41]. The EM algorithm allows one to perform Maximum likelihood (ML)1

estimation of parameters given a statistical model by iteratively alternating be-
tween Expectation and Maximization steps. Because the V(D)J recombination
machinery is degenerate and mutations cannot be assessed without the knowl-
edge of the ancestor sequence the work presented in this manuscript naturally
falls in the class of incomplete-data problems and EM will be at the center of
this work. I will start this section by presenting a derivation of the EM algo-
rithm and discussing its uses. I will then present extensions of this algorithm
and finally propose a new stochastic variant of the algorithm.

2.1.1 Derivation and use

Let’s assume we observe a dataset D of N independently and identically dis-
tributed observations xn. Each of these observations is the result of a set of
hidden variables zn, with probability P(xn|zn, θ̂), distributed according to the
distribution P(zn|θ̂). The true parameter set θ̂ parameterizing these two distri-
butions is unknown a priori and our goal is to estimate it using ML estimation.

1 Some variants can also be used to perform Maximum a posteriori (MAP) estimation [106], how-
ever we will not use this property in this work, implicitly assuming a uniform prior over the
space of parameters.

29
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Provided these ingredients the likelihood of a single observation xn for an
arbitrary set of parameters θ is

L(xn, θ) = P(xn|θ) =
∑

zn

P(xn, zn|θ)

=
∑

zn

P(zn|θ)P(xn|zn, θ). (2.1)

From Eq. 2.1 it is straightforward to compute the total likelihood of the
dataset for a set of parameter θ

L(D, θ) =
∏

xn

P(xn|θ) =
∏

xn

∑

zn

P(zn|θ)P(xn|zn, θ). (2.2)

For a large state space of hidden variable this calculation is hard (when not
intractable) thus classical optimization techniques requiring many evaluations
of the function before convergence might be extremely computationally expen-
sive for directly maximizing this likelihood. After deriving correctness of the
EM algorithm I will discuss its use and advantages compared to other convex
optimization methods.

From the initial guess of the set of parameters θ one wishes to update these
parameters to another set of parameters θ ′. From Bayes formula the updated
likelihood is P(xn|θ ′) = P(xn, zn|θ ′)/P(zn|xn, θ ′) and by computing the expec-
tation of this likelihood over hidden variables with the current set of parame-
ters θ on both sides we obtain

∑

zn

P(zn|xn, θ) lnP(xn|θ
′) =

∑

zn

P(zn|xn, θ)[lnP(xn, zn|θ ′) − lnP(zn|xn, θ ′)]

⇐⇒ lnP(xn|θ) = q(θ ′|θ, xn) + h(θ ′|θ, xn), (2.3)

where we have used
∑

zn

P(zn|xn, θ) = 1 and have defined

q(θ ′|θ, xn) =
∑

zn

P(zn|xn, θ) lnP(xn, zn|θ ′) (2.4)

h(θ ′|θ, xn) = −
∑

zn

P(zn|xn, θ) lnP(zn|xn, θ ′). (2.5)

The difference between the log-likelihood lnL(D, θ) between the current set
of parameters θ and the candidate new parameters θ ′ reads:

lnL(D, θ ′) − lnL(D, θ) =
∑

xn

q(θ ′|θ, xn) − q(θ|θ, xn) + h(θ ′|θ, xn) − h(θ|θ, xn)

>
∑

xn

q(θ ′|θ, xn) − q(θ|θ, xn)

> Q(θ ′|θ) −Q(θ|θ), (2.6)



2.1 Incomplete data and the Expectation-Maximization algorithm 31

where Q(θ ′|θ) =
∑

xn

q(θ ′|θ, xn) and where we have used Gibbs inequality

(Eq. A.19):

h(θ ′|θ, xn) − h(θ|θ, xn) =
∑

zn

P(zn|xn, θ) ln
P(zn|xn, θ)
P(zn|xn, θ ′)

> 0. (2.7)

This inequality ensures that maximizing the quenched average of the joint
likelihood or “pseudo-log-likelihood” Q(θ ′|θ) over θ ′ increases the total like- In the rest of the

manuscript Q(θ ′|θ) will
always denote this
quenched average likelihood
or pseudo likelihood in the
context of EM.

lihood by at least the same amount. The Expectation-Maximization scheme
updates θ by doing such a maximization, and repeating the procedure iter-
atively. This guarantees linear [106] convergence of the algorithm to a local
maximum of the likelihood.

The EM algorithm thus finds the global optimum of the likelihood provided
the likelihood function is convex. This task could also be carried through the
use of convex optimization methods (see section A.1). What are the advan-
tages of EM? In fact EM and gradient methods are tightly connected and it can
be shown that the convergence speed of EM varies with the amount of missing
information contained in the latent variables [147]. While for problems with
small amounts of missing information2 EM converges in a Newton-like fash-
ion it can prove worse than direct gradient methods for problems with the
fraction of missing information approaching unity. For well conditioned cases
it thus offers fast convergence without the cost of Newton’s Hessian inversion,
quickly prohibitive for large numbers of parameters. Moreover, although one
still has to optimize the Q function the quenched average allows to decouple
model components for composite models such as Bayesian Networks, and thus
perform independent optimizations in subspaces of lower dimensionality. Fi-
nally, in practice EM is a parameter free optimization thus preventing potential
ill conditioning problems.

2.1.2 Accelerating EM

In this section I will briefly introduce possible accelerations of the EM scheme.
Although some solutions involving switching (based on local estimations of
the amount of missing information) between EM and gradient or Newton like
methods to improve convergence exist [147] I will focus on techniques directly
improving EM itself.

2.1.2.1 Generalized EM

Although initially formulated with a maximization step Eq. 2.6 implies that
any marginal improvement of the pseudo likelihood yields improvement of the
log-likelihood. For settings where the maximization step is computationally
more costly than the expectation one, one can slightly improve the pseudo
likelihood without carrying the full maximization, e.g using only one Newton
step with line search. Such variants are known as Generalized EM or GEM.

2 E.g a mixture of well separated gaussians
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2.1.2.2 Sparse and stochastic EM

On the other hand if the expectation step is the limiting one another strategy
is to perform an approximate version of it. Indeed, the EM algorithm can beSparse EM use will be

discussed in 3.2.6 p.57 viewed as a maximization-maximization procedure by rewriting it in terms of
a variational free energy (up to sign inversion) [119]:

Fn(Rn, θ) ≡ ERn
[lnP(xn, zn|θ)] +H(R) (2.8)

= −DKL(Rn(zn) || p(zn|xn, θ)) + lnL(xn, θ), (2.9)

with Rn(zn) an arbitrary probability distribution over hidden variables. From
Eq. 2.9 one can show that if Fn(R, θ) has a local maximum at (R∗

n, θ∗) then
L(xn, θ) also has a local maximum at θ∗. The likelihood of a data point L(xn, θ)
can then be maximized by a coordinate ascent procedure alternatively max-
imizing Fn(R, θ) with respect to Rn and θ while keeping the other param-
eter set fixed. This first maximization step is carried by setting Rn(zn) =

p(zn|xn, θ) and is simply the expectation step. However as for generalized EM,
on does not have to directly maximize Fn regarding Rn since any decrease in
DKL(Rn(zn) || p(zn|xn, θ)) allows us to iterate the coordinate ascent.

For very large state space of zn for which the exact expectation step might be
intractable, this formulation justifies approaches with inexact expectation steps
through Monte Carlo integration (Stochastic EM), or only looking at subsets
of the most likely hidden variables when a majority of them have negligible
contributions (Sparse EM)3.

2.1.2.3 Incremental EM

In the previous section I have presented a view of EM justifying approximations
to the expectation step for a single observation xn. Building on this construc-
tion we can write the variational free energy for the full dataset

F(R1, . . . ,Rn, θ) =
N∑

n=1

Fn(Rn, θ) (2.10)

= lnL(D, θ) −
N∑

n=1

DKL(Rn || p(zn|xn, θ)). (2.11)

Maximizing F regarding all Rn at the same time thus entails performing the
exact expectation step over the whole data set. However, using the previous
coordinate ascent view, the Rn being independent dimensions, maximizing F

regarding only one or a subset of them increases F and allows us to iterate the
coordinate ascent in θ.

Such a view justifies performing the expectation step on small observation
batches [119, 121] in order to perform the maximization step more frequently
and use more quickly the newly acquired information, leading to faster conver-
gence. Assuming the pseudo likelihood Q can be formulated through a vector

3 This approach however does not guarantee to find the ML estimate, and gets arbitrary closer
with the number of hidden states taken into account.
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of sufficient statistics s(t)(D) =
∑

n s
(t)
n (xn) summarizing the inferential im-

port of the complete data for the current set of parameters, an incremental
version of the EM algorithm can be formulated as:

1. E Step: Chose a random subset x ′ of N ′ observations

a) for each xn in x ′ compute s
(t)
n (xn) and update s(t)(D) = s(t−1)(D)−

∑

xn∈x ′

s
(t−1)
n (xn) +

∑

xn∈x ′

s
(t)
n (xn)

b) for each xn not in x ′, s(t)n = s
(t−1)
n (xn) (do nothing)

2. M Step: Maximize Q(θt|s(t)) with respect to θt

Such a design is exact and will lead to the ML estimate of the parameters θ.
However if N is large this algorithm will still take time to forget out-dated suf-
ficient statistics and storage of individual observations stn might be prohibitive.
An approximate incremental version with exponentially decaying memory can
then be used where s is updated by

s(t) = γs(t−1) + s
(t)
n , (2.12)

with γ ∈]0, 1[. These dynamics resemble a lot the stochastic gradient with mo-
mentum mentioned in section A.1.5 and the same proposed adaptive sampling
strategy could thus be used to improve EM’s convergence.

With modern parallel computing architectures one can increase linearly the
computation speed, however the rules to synchronize and learn parameters in
a stochastic setting are not obvious and should be a matter of caution [200].

2.2 bioinformatic approaches to sequence annotation

2.2.1 Pairwise alignments and probabilistic interpretation

Ever since the advent of DNA, RNA or protein sequencing techniques, assess-
ing whether two complete or two pieces of sequences are related, has been
a much sought after question. Phylogenist have tried to order the tree of life
assessing the homology of two sequences, geneticists have tried to map RNA
sequences to the underlying DNA substrate creating them and understand al-
ternative splicing, or assemble genomes from sequence fragments by finding
sequence overlaps. Finally, on their side immunologist have been interested
in assigning the correct V, D and J segments used to create a particular re-
ceptor. In this section I will first introduce the principles and scoring scheme
of pairwise alignments and how these can be implemented to study immune
repertoires.

2.2.1.1 Principle

Pairwise alignments rely on a local probabilistic assessment of the relationship
between nucleotides of two sequences [47]. Let’s consider two sequences x and
y, which for simplicity we will assume to be vectors of same length L such that
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x,y ∈ (A,C, T ,G)L. The aim of the pairwise alignment is to assess whether the
two sequences are related (hypothesis R) or unrelated (R̄).

Given P(n) the probability of observing nucleotide n, one can construct the
likelihood of observing x and y from unrelated sources as:

P(x,y|R̄) =
L∏

i=1

P(xi)P(yi). (2.13)

Now assuming we know P(n,m|R) the probability of observing nucleotides
n and m given that they descend from the same unknown parent nucleotide,
we can write the likelihood for the two sequences to descend from the same
ancestor:

P(x,y|R) =
L∏

i=1

P(xi,yi|R). (2.14)

From this we can define the alignment score S(x,y) as the log-odds of the
sequences to be related:

S(x,y) = log
(

P(x,y|R)
P(x,y|R̄)

)

. (2.15)

Using such a logarithmic score allows us to break the global alignment of
the two sequence problem into simpler subproblems that are the alignments
of individual nucleotides:

S(x,y) =
L∑

i=1

s(xi,yi) =

L∑

i=1

P(xi,yi|R)

P(xi)P(yi)
. (2.16)

The s matrix is referred to as the substitution matrix. Given this matrix
one can compute the alignment score of x and y. However the choice of the
parameters contained in this matrix is not obvious to fulfill our probabilistic
interpretation and the choice of a good matrix will be discussed in the next
section.

So far we have considered the case of a global alignment of two sequences
of identical length. This is however an idealized case. For instance, finding a
homologous sequence in a full genome entails finding the best global align-
ment between two sequences of very different sizes. In high throughput reper-
toire sequencing, since genomic templates undergo deletions it entails finding
the best local alignment between the read and the genomic template. Section
2.2.1.3 details a dynamic programming algorithm solving this problem. Finally,
evolutionary processes, SHMs, and sequencing machines can introduce inser-
tions and deletions in sequences. These are modeled as gaps. Gaps can also be
given a probabilistic interpretation.

Let’s assume we know the probability of a gap of length l to occur and
that this probability is a function g(l) solely depending on the gap length.
Assuming the inserted nucleotides are independent from the gap length and
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are randomly drawn from the null distribution used to simulate the unrelated
model:

P(gap) = g(l)
∏

i in gap

P(xi). (2.17)

Since we would like to know whether this sequence is a gap introduced
after the common ancestor or if it is a random sequence, and thus compute the
log-odds for a gap:

γ(gap) = log
(

(
P(gap)

P( ¯gap)
)

)

= log

(

g(l)
∏

i in gap P(xi)
∏

i in gap P(xi)

)

= logg(l). (2.18)

Note that assuming the probability of a deletion of length l follows the same
function g(l) we obtain directly the same result. Since the hidden common an-
cestor is usually unknown it is natural to chose such a convention when it is
impossible to assess whether nucleotides were deleted from one sequence or
inserted in the other. As for substitution parameters, the choice of the function
g is left to parametrize the alignment score. The most common choice is to as-
sume the gap length follows a geometric distribution, albeit other alternatives
such as powerlaws have been proposed [199]. Such a geometric distribution
again allows to have a simple linear or affine4 additive score to model gaps al-
lowing dynamic programming approaches to find the best alignment between
two sequences.

2.2.1.2 Substitution parameters estimation

I emphasized the elegant probabilistic foundation of pairwise sequence align-
ments with a clear purpose: I want to stress that these methods encode a prob-
abilistic model that might not be well suited for V(D)J recombination analysis.

Alignment of each genomic template allows to assess whether each nu-
cleotide of the read is likely to originate from the template or another source.
This source can be: random insertions, another gene class (such as D or J when
aligning V genes) or another allele or gene of the same gene family5. It is
thus unclear how to build a correct "null" model as we have done earlier for
the traditional alignment examples discussed. Traditional substitution matri-
ces such as NUC4.4 were computed to assess phylogenetic data and encode
evolutionary pressures on sequence changes. However this bias due to evolu-
tionary pressures is irrelevant for V(D)J annotation. Finally, through their dy-
namic programming approach, alignments use only local information of the
sequence while long range correlations might arise from the recombination

4 The affine scoring scheme γ(gap) = −d− l× e takes a gap opening penalty d > 0 and a gap
extension penalty e > 0, where l is the length of the sequence.

5 For genes of the same family the sequence alignment score is used to chose the best gene
candidate. However this is biasing the question, answering "What is the longest sequence I can
align?", instead of "What is the sequence best explaining this recombination product?". Here
again long range correlations might provide information.
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process. In chapter 3 I will show to which extent modeling these long range
correlations can improve recombination scenario assignment results.

Despite these limitations pairwise sequence alignments remain useful to ex-
tract coarse grained features of the V(D)J recombination process. In the frame-
work presented in chapter 3 we will thus use pre-alignments as general guides
to position6 putative genomic templates on the sequencing read, assuming that
such a positioning is "easy" to obtain and weakly sensitive to the underlying
alignments parameters.

2.2.1.3 Smith-Waterman local alignment

The Smith-Waterman alignments allows one to find the best aligning subse-
quences of two sequences x and y accounting for possible gaps with a linear
penalty. It is a dynamic programming approach allowing one to find one or
several best local alignments with a complexity proportional to the product of
the length of the two sequences (O(L2) for sequences of comparable length).
The algorithm proceeds by iteratively filling an alignment score matrix S start-
ing from (i, j) = (0, 0) with the following recursion rule:

S(i, j) = max






0 begin/end of alignment

S(i− 1, j− 1) + s(xi,yj) match/mismatch

S(i− 1, j) − e insertion in x

S(i, j− 1) − e insertion in y.

(2.19)

The same recursion without the possibility to begin/end (by setting S(i, j) =
0) a new local alignment enforces global alignment of the two sequences and
is known as the Needleman-Wunsch algorithm. The best local alignment is
obtained by starting from the position (i, j) of the matrix S with highest score
and backtracking following the path used to fill the matrix until the begin-
ning of the alignment (S(i, j) = 0). Finding the best global alignment via the
Needleman-Wunsch algorithm also involves starting from the position with
the best score which is now constrained to the last row or column.

2.2.1.4 Hybrid strategy

In order to identify potential V, D and J gene ancestors for a given sequencing
read, one can use similar sequence alignment techniques. Since the D gene
undergoes deletions from both sides we really seek a local alignment of the
D gene on the read, and the Smith-Waterman (SW) algorithm is well suited.
However V and J genes can only be deleted from one side, while the other
side should fully align to the sequencing read. This calls for a hybrid strategy
between global and local alignment.

6 Disregarding the score, and asking "If those sequences were to be related, how would they align
best?".
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Such a strategy can be implemented by removing the possibility to start/be-
gin alignments and still starting backtracking from the position with the high-
est score, regardless of its location in the matrix7.

2.2.2 Markov Chains and Hidden Markov models

So far the described inference algorithms considered identically distributed
independent observations. However many real world observations come as or-
dered sequential data (such as time in speech recognition) or could be viewed
as such (such as biological sequences). Markov chains are examples of such
ordered sequential data and will be briefly introduced in the first subsection.
Some of the presented notions will be used in chapter 3. The rest of the section
focuses on the Hidden Markov Model (HMM) construction and related algo-
rithms. Such models are widely used in biology [47], and, as will be discussed
in section 2.3, more specifically in the field of our interest that is V(D)J recom-
bination scenario assignment. Although the work presented in this thesis does
not use HMMs I emphasize their importance because many software tools en-
code them, and a good understanding of their power and weaknesses will be
useful to the reader to assess the work presented in chapter 3 and 6.

2.2.2.1 Markov chains

Markov processes are memoryless stochastic processes satisfying the Markov
property:

P(xt+1|xt, xt−1, . . . , x0) = P(xt+1|xt). (2.20)

where xt is the state of the system at time t and x0 the initial condition. This
memoryless property is often summarized saying that the next state of the
system only depends on its current state .

Markov chains are stochastic processes with either a discrete state space or
a discrete index set8 satisfying this property. For the focus of this manuscript
only discrete state space with discrete time chains will be discussed. Such
processes can be summarized by a transition matrix T whose entries satisfy
P(xt+1 = j|xt = i) = Tij

9 and a probability distribution over states πt, a row
vector with entries πi

t = P(xt = i). The dynamics of the stochastic process are
then given by:

πt+1 = πtT . (2.21)

7 This strategy does not directly apply to J genes since it allows for deletions on the 5’ side
instead of 3’ side. By reverting the genomic J and the read sequence this strategy can however
be directly applied.

8 The index set is often time in physical processes, however as we will see in the next subsection
it can be other sequential series such as position along a DNA sequence

9 Since the transition probability from state i to all other states must be 1, the sum over rows
of T must be equal to one. This defines a right stochastic matrix. The problem could also
be formulated with a left stochastic matrix with sum over columns equal 1. In that case the
probability distribution over states is given by a column vector.
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For time homogeneous Markov chains (whose transition matrix does not
vary over time) one can easily compute a unique steady state distribution π∗

provided the chain is irreducible (any state can be reached by any other state)
and all its states are positive recurrent10. By definition, such a distribution π∗

satisfies π∗T = π∗ and is thus the row eigenvector of the transition matrix T

associated with eigenvalue 1.
Provided the steady state distribution of the Markov chain one can compute

a proxy (assuming steady state) for the entropy of a chain of length t. In gen-
eral, for any stochastic process, the entropy rate Hr is the average information
per unit time produced by the stochastic process such that:

Hr(x) = lim
t→∞

1

t
H(x1, . . . , xt), (2.22)

where H(x1, . . . , xt) is the entropy of the sequence. Knowing the Markov chain
has a stationary distribution, the entropy rate is independent of the initial
distribution and converges to:

Hr(x) = −
∑

ij

π∗
iTij log Tij. (2.23)

Assuming the initial distribution π0 is equal to the stationary one (or that
the convergence time is small compared to t) the entropy of the Markov chain
sequence S(X, t) at time t is:

H(x, t) ≃ S(π0) + (t− 1)Hr(x). (2.24)

2.2.2.2 Hidden Markov Models (HMMs)

Sequential or ordered data refers to any process whose current state only de-
pends on past states (not future ones) and for which, without loss of generality,
one could capture the full sequence probability by writing:

P(x1, . . . , xN) =

N∏

n=1

P(xn|x1, . . . , xn−1). (2.25)

Although exact, such a design is obviously not tractable since it would re-
quire learning ever larger sets of parameters with increasing sequence length
N. Most sequential processes have finite memory and one could imagine re-
stricting the learning to a conditional distribution on the M latest ancestors.
Although viable this approach would still suffer from a large number of pa-
rameters to be learned, increasing exponentially with M. To circumvent this
issue, one approach is to reduce the number of parameters by assuming some
parametrized distribution for xn and some relationship between parameters of
the current distribution and those of the Mth last ancestors . Another approach
is to add a layer of hidden variables.

Problems involving hidden variables have already been discussed within
the scope of Expectation-Maximization (EM) in section 2.1. Hidden Markov

10 Starting from state i the chain will return to state i within finite time with probability 1.
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Models (HMMs) [14] are a class of models describing sequential visible data xn
through a layer of latent variables zn following a Markov Chain. An HMM can
be generally defined as follows:

P(x1, . . . , xN, z1, . . . , zN) = P(z1)

(

N∏

n=2

P(zn|zn−1)

)(

N∏

n=1

P(xn|zn)

)

, (2.26)

where P(zn|zn−1) is the transition matrix11 for the Markov chain and P(xn|zn)

the emission probability is the observed variables’ dependency on the latent
ones. Note that both x and z could be multidimensional and that there is no re-
quirement for x and z to have equal dimension. In fact, x could be continuous.
In a simple example the emission probability follows a Gaussian distribution
parametrized by z and the resulting observed variable x follows a Gaussian
mixture distribution. The emission probability p(x|z) thus encodes possibly
complicated non linear operations on top of a random process making the
framework quite general.

An most interesting property of HMMs is that the resulting memory encoded
for xn need not be Markovian. From Eq. 2.26 and using Bayes formula, one
can rewrite:

P(xn|x1, . . . , xn−1) =
P(x1, . . . , xn)

P(x1, . . . , xn−1)

=

∑
z1,...,zn P(x1, . . . , xn, z1, . . . , zn)

∑
z1,...,zn−1

P(x1, . . . , xn−1, z1, . . . , zn−1)
. (2.27)

This simple manipulation outlines the fact that P(xn|x1, . . . , xn−1) cannot gen-
erally be reduced to P(xn|xn−1) and that a well designed HMM can in principle
describe a general sequential process as introduced in Eq. 2.25. In the end, by
introducing latent variables we are able to leviate the growth in the number of
parameters needed to retain memory in a brute force design and can record
long range correlations by learning a transition matrix and the emission prob-
ability distribution parameters.

A simple example can provide useful intuition. Let’s consider an HMM for a
dice game. In this dice game, the player throws two six-sided dice in a black
box and a croupier announces the sum of numbers on the upper face of each
dice. In this construct we thus have a two dimensional hidden variable z stand-
ing for the result of each dice whose value is converted to an observed variable
x through a deterministic linear operation (the emission probability p(z|x) is
thus a delta Dirac peaked distribution). Now let’s relax one of these assump-
tions and under the assumption that casinos are evil assume the croupier can
lie and add ±1 with equal probability to the score of each throw with prob-
ability q12. We now have constructed an emission probability distribution en-
coding a linear operation and a random process. However this problem still

11 Note that for large state spaces the transition matrix could be sparse and could be abandoned
for a graph oriented approach.

12 Note that in this case, anytime a 0 or 13 is announced the croupier lies with probability 1

and one could trivially learn the parameter q simply using this data. However we could easily
design another model with a more clever croupier and remove this possibility.



40 inference , bioinformatics and immune repertoire sequencing

does not require to be solved by an HMM, since each throw is independent and
data are not really sequential. In order to refine our toy HMM let’s now change
the rules of the game such that instead of throwing the dice the player has to
give a slight flick to each die such that the dice can only roll on one of the
side faces or stand still but cannot roll twice and display the face previously
facing the ground as a result. Now our toy HMM is complete and our hidden
variable follows a reducible Markov chain since the next result of each dice
clearly depends and only depends on its present state. Given this physical
HMM implementation and its parameters could one try and predict the most
likely hidden dice results z underlying the announced score x? If the dice were
to be biased could one learn their bias along with that of the croupier? These
two questions can be respectively answered using two well known algorithms,
the Viterbi and Baum-Welch algorithms, each succintly presented in the next
subsections.

2.2.2.3 Viterbi algorithm

The aim of the Viterbi algorithm is to find the most likely path through an
HMM given a sequence of observed variables (x1, . . . , xN). We look for the path
maximizing P(x1, . . . , xN, z1, . . . , zN) over hidden variables states. The Viterbi
algorithm much ressembles the transfer matrix approach for a one dimensional
Ising spin chain at zero temperature, and thus only one accessible state, with
each spin under an individual local field [6]. The spins stand for the hidden
variables and the observed variables impose a local field for each spin.

Following Eq. 2.26 the algorithm functions as follows:

• compute P(x1, z1) = P(z1)P(x1|z1) for each possible state of z1 where
P(z1) is the initial state distribution.

• compute P(x1, x2, z1, z2) for each couple of states (z1, z2). Since we are
interested in finding only the most likely path, any transition from a state
z1 to a given state z2 that is not locally the most likely cannot be part of
the most likely path and shall not be remembered. We shall thus record
only the K values max

z1
P(x1, x2, z1, z2) for each state z2, where K is the

number of states for any node zn. These values will be used for the next
iteration to compute the most likely path leading to any state z3. In order
to further be able to backtrack the most likely path, we shall store the K

links between each state z2 and its most likely ancestor.

• iterate until reaching the final node zN by computing iteratively at each
node max

z1,...,zn−1

P(x1, . . . , xn, z1, . . . , zn) for each K possible states and record

the K links pointing towards the most likely ancestor for each state of the
current node zn.

• once the last node is reached look for the state ending the most likely
path and start backtracking.

Overall this approach provides the most likely path with O(K2N) comput-
ing complexity and O(NK) memory requirement. This approach can be ex-
tended to extract the M most likely paths in parallel with the same computing
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complexity or sequentially with O(MK2) computing complexity, both with
O(NMK) memory requirements [153].

Note that finding the most probable sequence of latent states is not the same
as that of finding the set of states that are individually the most probable, since
such a sequence might not even be viable if the Markov chain is reducible.

2.2.2.4 Forward, Backward and Baum-Welch algorithms

The Forward algorithm allows to compute α(zn) ≡ P(x1, . . . , xn, zn) and is
very similar to the Viterbi algorithm although instead of recording only the
most likely transition leading to one state of the node zn, all possible path
leading to this node are summed. The computing complexity is thus compa-
rable with O(K2N). Running the forward algorithm until the last node N is
thus similar to using the transfer matrix approach to compute the partition
function of the formerly described Ising spin chain with arbitrary temperature.
The forward algorithm can be used to predict the most likely next observable
xN+1 given the full history.

The Backward algorithm, sometimes referred to as smoothing, allows to com-
pute β(zn) ≡ P(xn+1, . . . , xN|zn). Together with the Forward algorithm it can
be used to compute the probability of a symbol xn to come from a given hid-
den state zn:

P(zn|x1, . . . , xN) =
P(x1, . . . , xn, zn)P(xn+1, . . . , xN|x1, . . . , xn, zn)

P(x1, . . . , xN)

=
α(zn)β(zn)
∑

zN

α(zN)
. (2.28)

The Baum-Welch algorithm is the formulation of EM in the context of an
HMM. Skipping the derivations, the expectation step consists in computing
the posterior one point P(zn|x1, . . . , xN) and two points P(zn−1, zn|x1, . . . , xN)

marginal probabilities of the hidden state node zn. Both these quantities can
be computed from α(zn) and β(zn) (Eq. 2.28), obtained respectively by the for-
ward and backward algorithms. Computing these two quantities from α(zn)

and β(zn) is usually referred to as the Forward-Backward algorithm. The
pseudo-likelihood Q(θ, θ ′)13 can then be maximized. Iterating the E and M
steps will lead to a maximum likelihood estimation of the HMM parameters
(initial state distribution, transition matrix, and emission probabilities).

2.2.3 Bayesian Networks

Bayesian networks are a class of graphical models encoding conditional de-
pendencies between random variables through a directed acyclic graph [14].
Graphical models are generally useful as their representation provides intu-
ition and their correct implementation allows flexibility in model design. More-

13 Please note that so far no mention of the HMM parameters θ was made although all quantities
related to the Viterbi, Forward and Backward algorithm are conditioned on θ. This conditioning
has been omitted for clarity of exposition.
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over, Bayesian networks exhibit interesting factorization properties regarding
the inference of the parameters governing the random variables e.g through
the use of the EM algorithm as shall be used in 3 p.51 or to compute quantities
such as its entropy (section 2.2.3.2). The following subsections present formal
definition of Bayesian Networks and factorization for entropy computation.
Since a large amount of my work has been dedicated to implement a flexible
software for V(D)J recombination statistics assessment through a Bayesian Net-
work, I will use notations favoring intuition for the work presented in chapter
3.

2.2.3.1 Definition

Bayesian networks are encoded as directed acyclic graphs, whose vertices
i = 1, . . . ,K label individual random variables Ei. Note that we shall not make
any formal distinction between a node and the variable to which it corresponds
but will simply use the same symbol to refer to both. Dependence of the ran-
dom variable Ej upon Ei is encoded, in the adjacency matrix v, by a directed
edge between Ei and Ej, denoted vij = 1 (while vij = 0 means no direct depen-
dence). The set of parents of Ei, i.e. processes on which Ei depends directly, is
denoted by Pi = {j|vji = 1}.

Using these definitions we can, generally and irrespectively of the assumed
form of the underlying model, write the joint probability of a complete sce-
nario E = (E1, . . . ,EK) as:

P(E|θ) =

K∏

i=1

P(Ei|{Ej}j∈Pi
, θ), (2.29)

with θ the parameter set parametrizing individual nodes distributions. Note
that there is no constraint on the actual form of the distributions underlying
the different random variables, such as whether they are discrete or continu-
ous.

2.2.3.2 Cross Entropy

Since both the entropy and the Kullback-Leibler divergence between two dis-
tributions can be computed once one knows how to compute the cross entropy
H(θ1 || θ2) =

∑
x P(x|θ1) lnP(x|θ2) between the distributions for the two sets

of parameters θ1 and θ2, we focus here on the computation of H(θ1, θ2).
For Bayesian networks, the cross-entropy can be divided into subparts for

each model component or node,

H(θ1 || θ2) =

K∑

i=1

Hi(θ1 || θ2), (2.30)

with

Hi(θ1 || θ2) =
∑

E

P(E|θ1) lnP(Ei|{Ej}j∈Pi
, θ2). (2.31)
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To calculate this sum, one does not need to sum over all possible scenarios E,
but only over combinations of processes that affect Ei directly or indirectly. Let
us call Ai ⊂ {1, . . . ,K} the set of indices affecting process i. These are defined
as the “ancestors” of i in the acyclic graph, i.e. indices j such that there exists a
lineage from j to i, (i1 = i, i2, . . . , ik = j) with iℓ+1 ∈ Piℓ (note that Ai includes
i itself as a 0th order ancestor). Then the previous sum can be reduced to a
sum over the processes in A only:

Hi(θ1 || θ2) =
∑

EAi





∏

j∈Ai

P(Ej|{Ej ′}j ′∈Pj
, θ1)



 lnP(Ei|{Ej}j∈Pi
, θ2). (2.32)

where EAi
denotes the subvector of elements of E with indices in A. Estimating

the cross entropy for an event Ei requires exponential time in the number of
ancestors of that node. Fortunately, in the models considered in this work the
set of ancestors are small and obtaining the cross entropy is easy for every
event.

2.3 existing methods for rep-seq analysis

Analysis of repertoire sequencing data is challenging in many aspects. The
degeneracy of the V(D)J recombination and hypermutation processes already
naturally make the assignment of a recombination scenario ambiguous, with
e.g identification of the incorporated D gene when it has undergone many
deletions. During repertoire sequencing, PCR and sequencing further introduce
errors. Short read length not covering the whole V and J region further intro-
duce uncertainty as e.g analogous TCR V genes only differ by a few nucleotides.
Finally, the wealth of data obtained, despite bringing unprecedented analysis
opportunities, remains a major computational challenge.

Throughout the last few years a large bioinformatics endeavor has tried to
propose solutions to tackle this analysis load, resulting in a variety of soft-
wares, T or B-cell specific or generalist, each addressing a particular issue. As
reviewed in Ref. [72] it is conceptually useful to separate low level processing
methods aiming at preprocessing raw sequencing data for further data analy-
sis from higher level methods aiming at extracting biological information. One
should however bear in mind that this division is artificial, as preprocessing
potentially influences the obtained biological information and accurate mod-
eling of biological and sequencing processes should improve preprocessing.
This simplifying hypothesis remains however for now necessary, as no tool
can address all major conceptual issues of Rep-Seq. In the rest of this section
I will expose the three major computational challenges of Rep-Seq analysis,
their implications in low and high level data processing, existing solutions
and interconnections. The last subsection will give a brief overview of higher
level methods building on them.
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2.3.1 Error correction, clustering and clonal inference

As mentioned earlier PCR and sequencing are error prone procedures. Intro-
duced errors produce reads not corresponding to real receptor sequences, pos-
sibly biasing further diversity estimates, count statistics, or simply sequences
themselves. Correcting for these errors by aggregating sequences originating
from the same clone is thus of biological importance.

Such processing is sometimes carried by sequencing companies using pro-
prietary software [72], for which reproducibility and detection of error correc-
tion artifacts are an issue. However, in general such software rely on a few
simple approaches (reviewed in [72]):

• filtering of sequences with a low sequencing quality (Phred) score14

• clustering sequences based on pairwise similarity or distance, such as the
Hamming or Levenshtein distance between sequences. Such an approach
alone could however bias the resulting sequence statistics, for example
sequences with lower number of insertions might be more prone to be
clustered as nucleotide diversity is larger in the inserted region than in
the genomic parts.

• removal of rare reads as they might come from late PCR or sequencing
errors. This however artificially reduces the observed sequence diversity
as sequence counts distribution are known to exhibit long tails [110, 112].

One of the most efficient error correction scheme relies on the mRNA molec-
ular barcoding strategy previously described in section 1.8.2. The diversity of
both the molecular barcode and V(D)J recombination makes very unlikely the
pairing of similar UMI for two sequences that also resemble each other, and
error correction simply consists in clustering similar sequences with similar
UMIs. Despite being very effective, this strategy cannot correct errors that oc-
curred during retro-transcription or early PCR steps. Refinement of the naive
strategies involve using assigned V(D)J genomic templates to detect errors in
the assigned genomic parts and perform clustering based on the CDR3 region
(pRESTO [176], IMSEQ [87]). Some recent methods,such as MiGEC [160] or
RTCR [64], model PCR error bias to further refine error detection even in bar-
coded data.

For memory B-cells, the clustering procedure is complicated by the fact that
several distinct receptors may originate from a common ancestor due to affin-
ity maturation. Reconstructing B-cells phylogenies is of biological interest to
study disease evolution or quantify selection during affinity maturation. A
wealth of software have been developed to address B-cells clustering using
tailored distances [195], raw V(D)J annotation [15, 22] or more refined proba-
bilistic approaches [79, 134]. Because hypermutated sequences in a clone might
differ by only a single nucleotide and PCR errors are introduced in a branching
process, also producing phylogenies, it is clear that error correction and clonal
inference strategies might interfere.

14 This score is an output of the sequencing machine based on the likelihood of calling the incor-
rect nucleotide given the observed light spectrum upon nucleotide identification.
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In the work presented in this manuscript we will rely on the provided clus-
tered data for DNA TCRβ and heavy chains, and use a simple clustering based
on alignments for the analyzed RNA TCRα and β .

2.3.2 V(D)J annotation

V(D)J annotation is probably the most prolific software field for repertoire
sequencing analysis. The approaches relying on different algorithmic concepts
differ in accuracy and speed by orders of magnitudes.

A number of assignment software tools rely on sequence alignment for
V(D)J annotation. Some rely on the Smith-Waterman algorithm described in
section 2.2.1.3 such as IMGT-V-QUEST [65]. However because the use of this
algorithm is computationally demanding a majority of alignment software use
the much faster BLAST [2]15 approach (IgBLAST [198], IMonitor [204], MiXCR
[15]). Even faster methods focusing on small tags specific to each genomic tem-
plates can also be used. Such methods are implemented in Vidjil [46], LymAn-
alyzer [201], TCRklass [197], JOINSOLVER [165] or Decombinator [172] that
implements an Aho-Corasick algorithm similar to the UNIX grep command.
Although very efficient, these approaches will yield poorer results when there
is only small portions of a gene that can be observed.

Another variety of software encode HMMs (RepGenHMM [48], iHMMune-
align [58], Partis [135], SoDa2 [113]). All rely on pre-alignment processing and
differ in their graph structure. Assignment is generally carried out using the
Viterbi algorithm. The major difference between these algorithms is in their
graph structure (i.e their statistical model assumptions) and the way their
parameters (transition and emission probabilities) are estimated. As for the
alignment based softwares some of them (iHMMune-align and SoDa2) rely on
ad-hoc parameters while the others (Partis and RepGenHMM) are designed
to be trained and learn parameters directly on provided datasets. Such a data
driven approach is the focus of the work presented in this manuscript, how-
ever HMM model formulation is restrictive and cannot natively include long
range correlations.

Alternatively more general methods can be used, using the same Bayesian
framework as HMMs, by direct enumeration of possible recombination scenar-
ios [115]. This direct enumeration, although computationally costly, does not
suffer any model restriction thus enabling precise modeling of the biological
process that is V(D)J recombination. The work presented in this manuscript
generalizes this approach to provide IGoR (Inference and Generation of Reper-
toires) - a modular software that can encode models of arbitrary biological
complexity. The general framework and applications to V(D)J annotation are
presented in chapter 3, while chapter 6 illustrates how this general framework
can be used to implement and infer a context dependent hypermutation model,
a feat that is impossible for alignment and HMM based methods.

15 BLAST alignments consist of finding small identical regions between the query and reference
sequences and elongate the alignment from there.
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2.3.3 Genomic templates inference

The third cornerstone of accurate repertoire sequence analysis is the use of
correct genomic templates for V(D)J annotation. Because erroneous or missing
alleles can bias annotations and error or hypermutation assessment, inferring
the appropriate alleles for each individual is primordial.

A first effort to standardize and centralize reference genomic templates an-
notation for different species was made with IMGT [92]. This manually an-
notated database has been successful and is the genomic base of many V(D)J
annotation tools. However not all species have been annotated and not all al-
lelic variants and Single Nucleotide Variants (SNPs) can be reported while the
high variability and copy number variations of e.g V genes have been reported
several times [18, 57, 185]. Because of the number of existing variants and
their inference from short reads it is hard to constitute a complete and precise
database [188].

In order to address this issue several tools have been specifically developed
to infer dataset specific variants through alignment [198] or phylogenetic algo-
rithms [56, 205].

2.3.4 Other high level computations

In the previous sections I have introduced the computational pillars support-
ing high level biological predictions based on repertoire sequencing. The fol-
lowing details a few examples of higher level computations embodying the
successes of the dawn of repertoire sequencing analysis.

Borrowing diversity measures from ecology the large amount of sequences
produced by repertoire sequencing has been used to estimate the diversity of
an individual’s repertoire, as reviewed in Ref. [110].

Despite the large diversity created by the V(D)J recombination process, the
same clones can often be found to react against the same pathogen in different
individuals. Using high throughput sequencing Venturi and colleagues have
shown that such "public" response could arise simply from convergent recom-
bination [179, 181], while N. Friedman’s group suggested a link with sequence
abundance and selection for self-associated antigens [98, 118].

The estimation of recombination statistics is both useful for V(D)J annota-
tion and biological interest. As carried out in Refs. [48, 50, 115], using non-
productive sequences one can extract raw V(D)J recombination statistics pro-
vided unbiased V(D)J recombination scenario exploration. Such statistics con-
stitute a baseline and can be compared between individuals and receptor
chains to delineate universal from specific V(D)J components. Building on
this work, Ref. [49] proposed a framework to quantify selection on immune
receptors. Altogether, these frameworks allow to estimate the potential diver-
sity of the generated repertoire and compute the expected number or shared
clones between individuals as discussed in chapter 5. Interestingly, this work
also hints that the recombination machinery might have evolved to be biased
towards the production of sequences that will be selected upon and antici-
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pate selection. However it remains a challenge to relate these selection traits to
physical constraints.

Similarly, predicting clonotypes that will respond to an infection based on
their sequence remains far from our reach. Still significant progress has been
made to predict the infection status of an individual based on its full reper-
toire. Using machine learning techniques B. Chain’s group in Refs. [35, 173]
managed to capture signatures of past infections and predict with great accu-
racy whether a repertoire has been exposed to a disease or not. Again, such
approaches are still far from providing an understanding of the underlying
physical processes but are still encouraging as they promise that repertoire
sequencing data contains such information.

In the work presented in this manuscript we will build on IGoR’s general
statistical framework presented in chapter 3 to address biological questions
such as the existence of BCR rearrangements incorporating several D genes.
In chapter 4 we will use the inferred gene usage to reconstruct the chromo-
some organization and evaluate the probability of rescue upon failure of a
first recombination attempt. Finally, in chapter 6 we will show that somatic
hypermutations introduced during affinity maturation cluster.
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3
T H E V ( D ) J R E C O M B I N AT I O N P R O C E S S

Most of this chapter has been submitted for publication in Ref. [103].

3.1 introduction

The adaptive immune system recognizes pathogens by binding their antigens
to specific surface receptors expressed on T and B cells. The recent advent of
high throughput immune repertoire sequencing (RepSeq) [63, 162, 186, 191]
gives us direct insight into the diversity of B-cell and T-cell receptor (BCR and
TCR) repertoires with great potential to change the way we diagnose, treat
and prevent immune system related disorders. A growing number of algo-
rithms and software tools have been designed to address the new challenges
of RepSeq, in particular sequence analysis, germline assignment and clone
construction [15, 25, 46, 70, 135, 172]. However, each receptor sequence can
be generated in a large number of ways, or “scenarios,” through recombina-
tion of genomic segments, insertions and deletions and hypermutations. Stan-
dard assignments introduce systematic errors when describing this inherently
stochastic process. Quantitatively characterizing the diversity and the biases of
these mechanisms remains a challenge for understanding adaptive immunity
and applying RepSeq for diagnostics.

We present a flexible computational method and software tool, IGoR (In-
ference and Generation of Repertoires), that processes raw immune sequence
reads from any source (cDNA or gDNA) and learns unbiased statistics of V(D)J
recombination and somatic hypermutations. Using these statistics, for each se-
quence IGoR outputs a whole list of potential recombination and hypermu-
tation scenarios, with their corresponding likelihoods. IGoR’s performance at
identifying the correct scenario is 2.5 times better than current state-of-the-art
methods. IGoR used as a sequence generator produces an arbitrary number of
randomly rearranged sequences with the same statistics as in the dataset.

This section details our general framework and how IGoR models the re-
combination machinery. Some sections will outline how the output informa-
tion can be used to answer a few biological questions. Details about handling
of hypermutations will be discussed in chapter 6.

3.2 methods

3.2.1 Probabilistic assignment of recombination scenarios

V(D)J recombination selects two or three segments (V and J for TCR α and
BCR lights chains; V, D, and J for TCR β and BCR heavy chains) from a library
of germline genes, and assembles them while deleting base pairs and inserting
other non-templated ones at the junctions (Fig. 3.1a). B cell receptors can fur-
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Figure 3.1: IGoR’s pipeline for sequence analysis. (a) V(D)J recombination proceeds
by joining randomly selected segments (V, D, and J segments in the case
of IGH). Each segments gets trimmed at its ends (hashed areas), and a
varying number of nontemplated insertions are added between them (or-
ange). Hypermutations (in the case of B cells) or sequencing errors (in
red) further enhance diversity. IGoR lists putative recombination scenar-
ios consistent with the observed sequence, and weighs them according to
their likelihood. (b) The likelihood of each scenario is computed using a
Bayesian network of dependencies between the recombination features (V,
D, J segment choices, insertions and deletions), as illustrated here for the
human TRB locus. Architectures for TRA and IGH are described in Online
Methods. (c) IGoR’s pipeline includes three modes. In the learning mode,
IGoR learns recombination statistics from data sequences. In the analysis
mode, IGoR outputs detailed recombination scenario statistics for each se-
quence. In the generation mode, IGoR produces synthetic sequences with
specified recombination statistics.

ther diversify through somatic hypermutations during affinity maturation. The
recombination process is degenerate, as the same sequence can be generated
in many different ways [179]. IGoR starts by listing the possible recombination
and hypermutation scenarios leading to an observed sequence in the dataset.
It then assigns probability weights reflecting the likelihood of these scenarios.
As the example in Fig. 3.1a shows, explored scenarios can be very different
yet have comparable contributions to the sequence likelihood. Since exploring
all possible scenarios would be computationally too costly, IGoR restricts its
exploration to the reasonably likely ones. Scenario exploration takes from 1 ms
up to less than a second per sequence on a single CPU core, depending on the
chain (see full distributions of runtimes in Fig. C.1). Different recombination
architectures and dependencies can be configured within IGoR by specifying
dependencies between elementary events (gene choices, deletions, insertions,
hypermutations) through an acyclic directed graph, or Bayesian network, as
illustrated in Fig. 3.1b for the case of TCR β chains (see section 3.2.2 for the
other used structures).

IGoR functions according to three modes: learning, analysis, and genera-
tion (Fig. 3.1c). In the learning mode, IGoR infers the recombination statistics
of large datasets of sequences using a Sparse Expectation-Maximization algo-
rithm (see section 3.2.6). In the analysis mode, IGoR assigns recombination
events to sequences in a probabilistic way, by outputing the most likely scenar-
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ios ranked by their probabilities, as well as the overall generation probability
of the sequence. In the generation mode, IGoR outputs random sequences with
specified statistics, e.g. learned from real datasets.

In the next section we give the particular model structures used in this study.
We then give a more general definition applicable to other general types of
recombination products.

3.2.2 Models for TRA, TRB and IGH

We define a probabilistic model for each type of chain (e.g. α, β, heavy, light)
that describes the probability of each recombination event E by the proba-
bilities of the known elements of the recombination subprocess (gene choice,
insertions, deletions at each of the junctions etc) for each chain, and assumes
only the minimum correlations between the subprocesses needed to explain
the correlations observed in the data. We model insertions as a Markov chain
(the identity of an inserted nucleotide only depends on the previously inserted
one) with a nonparametric length distribution [50, 115, 129]. For each inser-
tion site (X= VD and DJ for β and heavy chains and X=VJ for α and light
chains) we infer the probability of observing a non-templated sequence of a
given length, P(insX), and the transition matrices PVJ(ni|ni−1), PVD(ni|ni−1),
PDJ(mi|mi−1) giving the probability of inserting a given nucleotide as a func-
tion of the identity of previous one. For each gene we infer the probability of
the number of deletions conditioned on the gene identity, e.g. P(delV |V) for
deletions from the V gene. We model templated palindromic insertions as neg-
ative deletions [50, 115]. The D gene is very short and may get fully deleted.
This introduces correlations between the deletions on both sides of the origi-
nal D gene template. We account for these correlations by inferring the joint
probability P(delDl, delDr|D). We treat every allele as a different gene [50] and
infer the joint gene usage P(V ,D, J) for β and heavy chains, and P(V , J) for α

and light chains, to be able to capture correlations between segment usage.
For TCR α chains or BCR light chains, the probability of a recombination

event E = (V , J, delV , delJ, insVJ) is:

P
α/L
recomb(E) = P(V , J)P(delV |V)P(delJ|J)

× P(insVJ)
insVJ∏

i

PVJ(ni|ni−1).
(3.1)

Similarly, the probability P
β/h
recomb(E) of a recombination event

E = (V ,D, J, delV , delDl, delDr, delJ, insVD, insDJ)
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for a TCRβ or BCR heavy chain is:

P
β/H
recomb(E) = P(V ,D, J)P(delV |V)

× P(insVD)P(delDl, delDr|D)

× P(insDJ)P(delJ|J)

×

insVD∏

i

PVD(ni|ni−1)

insDJ∏

i

PDJ(mi|mi−1).

(3.2)

In the case of TRB, gene usage is further factorized as P(V ,D, J) = P(V)P(D, J).
These models are similar to those used in Refs. [50, 115, 129]. The conditional

dependencies were introduced so as to reproduce the mutual information com-
puted between the different recombination events on real sequencing data.

3.2.3 General model formulation

IGoR is designed in a modular way so the user can define arbitrary model
forms. The models are Bayesian networks encoded as directed acyclic graphs,The definition and

properties of Bayesian
Networks are given in

section 2.2.3 p.41

whose vertices i = 1, . . . ,K label individual recombination subprocesses Ei (V,
D, J choices, deletions, etc. in the examples above).

As introduced in section 2.2.3.1 we can write the probability of a recombina-
tion scenario E = (E1, . . . ,EK) as:

Precomb(E|θ) =

K∏

i=1

P(Ei|{Ej}j∈Pi
, θ), (3.3)

where θ denotes the underlying model parameters (i.e. probability distribu-
tions of gene choice, insertions at a given junction, and deletions from a given
gene in the studied examples) and Pi the set of parents of the event indexed
by i.

Each recombination scenario E leads to a unique sequence Ŝ(E) = (Ŝ1, . . . , ŜL),
Ŝi(E) ∈ {A,C,G, T } (in the following we often write S for Ŝ(E) for brevity).
However, in order to produce a given sequence S several scenarios might be
equivalent, and we can write the probability of generating a given sequence
as:

Pgen(S|θ) =
∑

E|Ŝ(E)=S

Precomb(E|θ). (3.4)

The above description only holds to assess the generation probability of a pure
product of recombination and does not account for sequencing errors or hyper-
mutations. Note that, since longer reads allow for more reliable determination
of V and J gene segments, Pgen depends in general on read length: shorter
reads can be created in more ways than longer reads, leading to larger Pgen.
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3.2.4 Errors and hypermutations

Sequencing is inherently noisy and introduces nucleotide substitutions. In ad-
dition, BCRs can accumulate hypermutations, which can be mathematically
treated in the same way as errors. For the sake of clarity, we distinguish be-
tween the sequencing read R and the original sequence S resulting from re-
combination, as defined above. For simplicity we ignore insertion and deletion
errors, so that R and S are of the same length L.

We define our error model as deviations from the initial recombination event
(through sequencing errors or somatic hypermutations) such that Perr(R|S, θ)
is the probability of observing the sequencing read R given the recombina-
tion product S. Since the recombination scenario E completely determines S,
Perr(R|S, θ) = Perr(R|E, θ), and we use these two notations interchangeably. The
dependence on θ reflects the fact that θ also includes the parameters of the er-
ror or hypermutation model.

We write the joint probability of producing a given sequence S and observ-
ing a given read R as:

P(R,S|θ) = Pgen(S|θ)Perr(R|S, θ). (3.5)

Summing over all possible recombination products, the likelihood of a se-
quencing read is:

Pread(R|θ) =
∑

S

P(R,S|θ)

=
∑

E

Precomb(E|θ)Perr(R|E, θ),
(3.6)

and the total likelihood of the model given a dataset of reads (R1, . . . ,RN) is
given by:

Ltotal(θ) =

N∏

a=1

Pread(R
a|θ). (3.7)

3.2.5 Maximum likelihood estimate

The recombination machinery is degenerate, as several scenarios of recombi-
nation and hypermutations can lead to the same sequence, and the recombi-
nation scenario E from which the sequencing read R comes from is in general
unknown. As previously introduced, the Expectation-Maximization algorithm
is a commonly used algorithm that maximizes the likelihood of models with A derivation and

justification of the
Expectation-Maximization
algorithm is given in
section 2.1 p.29

hidden variables given the data. In this section we derive the update rules for
our class of models.
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3.2.5.1 Optimizing the recombination model

The pseudo-log-likelihood can be broken up in two independent terms, Q(θ ′|θ) =

Qrecomb(θ
′|θ)+Qerr(θ

′|θ), respectively corresponding to the recombination model
and the error or hypermutation model:

Qrecomb(θ
′|θ) =

N∑

a=1

∑

E

P(E|Ra, θ) lnPrecomb(E|θ
′). (3.8)

Qerr(θ
′|θ) =

N∑

a=1

∑

E

P(E|Ra, θ) lnPerr(R|E, θ ′). (3.9)

In order to maximize the pseudo-log-likelihood of the recombination model
we need to maximize Qrecomb(θ

′|θ) with respect to every model component
contained in the parameter set θ ′, P ′(Ei|{Ej}j∈Pi

). We impose normalization
using Lagrange multipliers, λi, and define:

Q̂recomb(θ
′|θ) = Qrecomb(θ

′|θ) +
∑

i

λi



1−
∑

Ei

P ′(Ei|{Ej}j∈Pi
)



 . (3.10)

Taking the functional derivative of Q̂recomb(θ
∗|θ) with respect to the model

parameter we get:

∂Q̂recomb(θ
′|θ)

∂P ′(Ei|{Ej}j∈Pi
)
=

N∑

a=1

∑

E
′

δEi,E ′
i

P(E ′|Ra, θ)
P ′(Ei|{Ej}j∈Pi

)
+ λi. (3.11)

Setting this derivative to zero gives:

P ′(Ei|{Ej}j∈Pi
) =

1

N

N∑

a=1

∑

E
′

δEi,E ′
i
P(E ′|Ra, θ), (3.12)

where the Lagrange parameter λi = N ensures normalization. In other words
the modified log-likelihood is maximized by using an update rule that equates
the probability of a realization of a recombination event to its posterior fre-
quency.

3.2.5.2 Optimizing the independent single nucleotide sequencing error model

The independent single nucleotide error model is the simplest instance of an
error model, where each nucleotide of the read has a probability r to be mis-
sequenced as one of the three other nucleotides with equal probability. For this
model we have

Perr(R|S, θ) =
( r

3

)Nerr
(1− r)L)−Nerr(R,S). (3.13)



3.2 Methods 57

where Nerr(R,S) the number of mismatches between R and S, and L the num-
ber of error-prone base pairs. We compute the derivative of the modified log-
likelihood of the error model with respect to R∗ as:

dQerr(θ
′|θ)

dr ′
=

N∑

a=1

∑

E

P(E|Ra, θ)
(

Nerr(R
a, Ŝ(E))
r ′

−
L(Ra,E) −Nerr(R

a, Ŝ(E))
1− r ′

)

.

(3.14)

Setting this derivative to zero yields:

R ′ =

∑N
a=1

∑
E
P(E|Ra, θ)Nerr(R

a, Ŝ(E))
∑N

a=1

∑
E
P(E|Ra, θ)L(Ra,E)

, (3.15)

where L(Ra,E) is the number of potentially erroneous nucleotides in read a.
For simplicity we ignore errors and hypermutations in the insertion part of the
sequence, as they are almost indistinguishable from unmutated random inser-
tions, and accounting for them would imply summing over an exponentially
large number of scenarios. As a result, L in the above formula is not the read
length, but rather the number of genomic nucleotides in each scenario, which
depends on the scenario E as well as on the sequence read.

3.2.6 Pruning the tree of scenarios

Since enumerating all possible scenarios for each sequence is not tractable, we
used a heuristic method for reducing their numbers. Exploring all possible sce-
narios is equivalent to exploring all the terminal leafs of a tree. Our heuristic
is to prune all branches that do not contribute substantially to the likelihood
of the read. To do this we implement a Sparse Expectation Maximization al-
gorithm as previously motivated in section 2.1.2.2. Due to the acyclicity of the
directed graph underlining the Bayesian network, there exists a topological
sorting of the events constituting a partially ordered set (we will assume in
the following that the indices of the different events Ei respect this ordering).
IGoR processes event realizations according to this order corresponding to dif-
ferent layers of depth in the tree. To discard irrelevant branches (containing
negligible scenarios) IGoR computes at each depth k (with 0 6 k < K) an
upper bound on the probability of the currently explored scenario:

∏

06i6k

P(Ei,R|{Ej}j∈Pi
, θ)

∏

k<i<K

max
ei

P(Ei,R|θ)

max
E∈E

P(E,R|θ)
> ε, (3.16)

where E is the set of already fully explored scenarios, and 0 6 ε 6 1 is a
tunable parameter setting the precision of the sparsity approximation. While
ε = 0 will explore every possible scenario and perform an exact Expectation
step, ε = 1 will explore only scenarios more likely that any scenario already
explored.
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Figure 3.2: IGoR infers reproducible recombination statistics. (a) Distribution of the
number of insertions at the junctions of recombined genes: IGH at the VD
and DJ junctions from DNA data [88], TRB at the VD and DJ junction
from both DNA [140] and mRNA data [129], and TRA at the VJ insertion
site from mRNA data [129]. (b),(c). Average distribution of the number
of deletions across (b) V and (c) J genes. Negative deletions correspond
to palindromic insertions (P nucleotides), e.g. -2 means 2 P-nucleotides.
The inferred distributions are robust to the choice of individuals, genetic
material (mRNA or DNA) and sequencing technology. Error bars show 1

standard deviation across individuals.

Although Eq. 3.16 captures the essence behind our tree pruning approach, in
practice IGoR uses more information than a simple upper probability bound.
By picking two gene choice realizations, imposing the identity and position of
these specific V and J genes, we explicitly impose the total nucleotide length
of event realizations between those V and J genes (number of insertions, dele-
tions, D gene length, ...). When computing the probability upper-bounds IGoR
computes the upper probability bound for a given junction length between two
event realizations, and uses this refined bound to efficiently prune the tree of
scenarios.

3.3 parameters learned on sequencing data

We used IGoR’s learning mode to infer the accurate statistics of V(D)J recombi-
nation from four datasets comprised of unique sequences of non-productive re-
arrangements of three different chains, sequenced either at the levels of mRNA
(TCRα chain or TRA, and TCRβ chain or TRB [129]) or DNA (TRB [140], BCR
heavy chain or IGH from naive cells [88]), generalizing earlier methods [48, 50,
115]. Restricting to nonproductive unique sequences allowed us to avoid biases
introduced by functional selection. The Expectation-Maximization algorithm
converged within a few iterations (see Fig. C.2 for convergence of parameters,
and Fig. C.3 for the case of IGH).

The same TRB insertion and deletion distributions were inferred regardless
of the individual, laboratory of origin, or sequencing protocol, and of whether
DNA [140] (light blue distributions in Fig. 3.2) or mRNA [129] (dark blue)
was used. By contrast, V and J gene usage varied moderately but significantly
across individuals, and even more across sequencing technologies, suggest-
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Nucleotide Sequence: 70 bits
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Figure 3.3: Recombination entropy for TCRα ,TCRβ and BCR heavy chains. The total
recombination entropy (purple) can be decomposed into individual con-
tributions of the recombination events. This figure decomposes contribu-
tions of the choice of the V(D)J genes (blue), the number and identity of
non templated insertions (yellow), and number of deletions (light green).
The sequence entropy (red) is slightly smaller than the recombination en-
tropy because several recombination events can lead to the same sequence
(convergent recombination, in gray). Adapted from Ref. [110] with authors’
permission.

ing possible primer-dependent biases (Fig. C.4, see also Fig. 3.7 for IGH D-J
gene usage). Insertions at the TRA V-J junction, and at the TRB V-D and D-J
junctions have similar distributions (Fig.3.2a), as previously reported [48]. IGH
have significantly more insertions at the junctions than TCRs, consistent with
previous observations [50].

3.4 recombination entropy

IGoR’s recombination models are encoded by Bayesian networks. As such, re-
combination entropy can be computed as explained in section 2.2.3.2. For most
recombination elements representing categorical distributions this computa-
tion is straightforward. The dinucleotide Markov model encodes a Markov
chain whose length is dictated by the insertion length distribution and its en-
tropy can be approximated as presented in section 2.2.2.1. The cross entropy
of an inserted region of length insVJ (or insVD, or insDJ) for two sets of pa-
rameters θ1 and θ2 is given by

h(insVJ, θ1, θ2) =
∑

n

P(n, θ1) lnP(n, θ2) (3.17)

=
∑

n1

Ps(n1|θ1) lnPs(n1|θ2) (3.18)

+ (insVJ − 1)
∑

n1,n2

Ps(n1|θ1)P(n2|n1, θ1) lnP(n2|n1, θ2),

(3.19)

where n = (n1, . . . ,ninsVJ) is the inserted sequence, and Ps(n1, θ) is the station-
ary distribution of the Markov chain of insertions.

Although not necessarily conditioned on insertion length the dinucleotide
model functionally depends on the number of insertions. The cross entropy
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for a dinucleotide model, once averaged over possible lengths is then given by

HVJ insertions(θ1 || θ2) =
∑

EB





∏

j∈B

P(Ej|{Ej ′}j ′∈Pi
, θ1)



h(insVJ, θ1, θ2), (3.20)

where B ⊂ {1, . . . ,K} is the subset of processes affecting either insVJ or n,
excluding insVJ itself.

The partition of the entropic contributions of the inferred model components
for the different receptor chains is shown in Fig. 3.3. As previously reported
in Refs. [48, 50, 110, 115] non templated insertions are responsible for a large
part of the recombination entropy, dominating the combinatorial diversity gen-
erated by the choice of genomic templates.

Note that the entropy of IGoR’s model stands for the recombination scenario
entropy. The recombination machinery being degenerate several scenarios may
lead to the same resulting sequence. Sequences entropy cannot be computed
in closed form and must be approximated through Monte-Carlo sampling

HS(θ) =
1

Z

∑

S

Pgen(S) lnPgen(S) − lnZ, (3.21)

where Z =
∑

S

Pgen(S) is a normalization for finite sampling of S from the

inferred distribution.
The sequence entropy corresponding to the different receptor chains is dis-

played in Fig. 3.3. Assuming TCR α and β recombinations to be indepen-
dent, the total nucleotide TCR diversity is ∼ 77bits corresponding to ∼ 1023

equiprobable sequences. Because the generated sequences are not equiproba-
ble the potential number of sequences is actually greater. However this number
clearly indicates that an individual’s composed of ∼ 1013 [12] cells repertoire is
only a small sample of a large statistical ensemble. The difference between se-
quences and recombination entropy corresponds to convergent recombination
scenarios entropy. The importance of this convergent recombination entropy
for V(D)J recombination scenario assignment will be discussed in section 3.6.

3.5 consistency of the maximum likelihood estimate

We then validated the learning algorithm on synthetic datasets. Sequences
were generated in batches of 103 to 105 by IGoR with a variable error rate,
using statistics inferred from 60bp DNA TRB data. IGoR’s learning algorithm
was then run on these raw sequences, and the resulting statistics compared
to the known ground truth. We found that the inference was highly accurate
for datasets of 105 sequences and an error rate set to its typical experimental
value, 10−3 (Fig. 3.4a and b), and was not affected by overfitting. However, not
all high-throughput sequencing datasets reach this depth, especially when re-
stricted to unique non-productive sequences. In addition, hypermutation rates
in BCRs, which IGoR treats in the same way as errors, can reach 1-10%. To as-
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Figure 3.4: Validation on synthetic data. Short synthetic reads of recombined TRB or
IGH sequences were generated with known recombination statistics, and
given to IGoR as input to re-infer these statistics. Inference with 105 se-
quences and a typical sequencing error rate of 10−3 gives excellent agree-
ment for (a) gene usage and insertion statistics and (b) deletion statistics
(Pearson’s r for deletions is calculated on the joint statistics of gene usage
and deletion number; cross size scales with gene usage). (c) Discrepancy
between true and inferred values of the recombination statistics, measured
by the Kullback-Leibler divergence, as a function of the number of unique
sequences in the sample, and decomposed according to the features of the
recombination scenario. (d) Same as (c), for increasing rates of sequencing
errors or of hypermutations.



62 the v(d)j recombination process

sess how these limitations affect accuracy, we calculated the Kullback-Leibler
divergence (a non-parametric measure of difference between probability dis-
tributions defined in section A.2.2) between the true distributions and the in-
ferred ones, for varying sizes of datasets and error rates. For an error rate of
10−3, ∼ 5000 unique out-of-frame sequences (which can be obtained from less
than 2ml of blood with current mRNA sequencing technologies [129]) were suf-
ficient to learn an accurate model of TRB (Fig. 3.4c), with the majority of the
estimation error due to deletion profiles (which account for the majority of pa-
rameters). Increasing the error rate has little effect up to rates of 10−2, but sig-
nificantly degrades accuracy for typical hypermutation rates, 10−1 (Fig. 3.4d),
with the gene usage distribution affected the most (Fig. C.5). This suggests that
the recombination statistics of BCRs should be inferred using sequences from
naive, non hypermutated cells (as we did in Fig. 3.2).

3.6 the "assignment" problem

3.6.1 Analysis of scenario degeneracy

By considering all possible recombination scenarios for each sequence, our ap-
proach departs significantly from most existing methods, whose goal is to find
the most likely one. To assess how often the most plausible scenario is the cor-
rect one, we analyzed synthetic sequences for which the generation scenario
is known. For each generated sequence, we used IGoR’s analysis mode to enu-
merate the set of scenarios that were consistent with the nucleotide sequence,
and ranked them according to their likelihood. Fig. 3.5a shows the distribu-
tion of the rank of the true recombination scenario for TRB and IGH synthetic
data. The maximum-likelihood scenario is not the correct one in 72% of IGH
sequences and 85% of 60bp TRB sequences. The distributions have long tails,
meaning that a substantial fraction of sequences have a very large recombina-
tion degeneracy.

We then estimated how many scenarios, ranked from most likely to least
likely, were needed to explain a given fraction f of the total sequence likelihood.
The distributions of this number across 100,000 generated sequences are shown
in Fig. 3.5b for various values of f (see Fig. C.6 for the equivalent plot for TRB
data). To enumerate the correct scenario with f = 95% confidence requires to
include at least 30 to 50 scenarios. This analysis indicates that many scenarios
need to be considered to correctly characterize the generation process.

IGoR outputs the probability of generation of the processed sequences, by
summing the probabilities of all their possible scenarios, which deterministic
assignment methods cannot do. It was shown that this generation probability
was predictive of sharing properties between healthy individuals [115, 129] as
will be discussed in chapter 5. This functionality could be used as a useful in-
dicator of convergent recombination in studies attempting to identify antigen-
specific or auto-immune related sequences from large clinical datasets.
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Figure 3.5: Probabilistic analysis of putative recombination scenarios and compar-
ison to existing methods. Synthetic 130-bp reads of recombined IGH se-
quences and 60-bp reads of TRB sequences were generated with a 5 · 10−3

error rate, and processed for analysis by IGoR and two existing methods,
MiXCR [15] and Partis [135]. IGoR ranks putative scenarios by descend-
ing order of likelihood. (a) Distribution of the rank of the true scenario as
called by IGoR. Note that the best-ranked (maximum-likelihood) scenario
is the correct one in less than 30% of cases. (b) Distribution of the num-
ber of scenarios that need to be enumerated (from most to least likely) to
include the true scenario with 50% (blue), 75% (green), 90% (red), or 95%
(cyan) confidence. (c) Frequency with which IGoR, MiXCR and Partis call
the correct scenario of recombination as the most likely one (‘scenario’), as
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sponds to sequences for which the algorithm did not output an assignment.
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the IGoR and MiXCR (Partis does not handle TCR sequences). IGoR re-
covers the physiological exclusion between D2 and J1, while MiXCR does
not.
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3.6.2 Comparison to other methods

We compared our method to two representative state-of-the-art algorithms:
MiXCR [15], an efficient assignment tool that finds the best matching germline
genes through deterministic alignment, and Partis [135], a BCR-specific tool
encoding an HMM that uses maximum likelihood to find the most plausible
scenario. 130 base-pair IGH sequences were synthetized in silico from a data-
inferred model using IGoR’s generation mode. We then assigned recombina-
tion scenarios using MiXCR, Partis and IGoR, and compared them to the true
scenarios with which sequences were generated. In IGoR’s and Partis’ case,
the model parameters were learned from the generated dataset to mimick the
analysis of real data. Fig. 3.5c shows the performance of the three methods
in assigning the correct scenario of recombination. IGoR performs about 2.5
times better than MiXCR and Partis in predicting the complete recombination
scenario, as well as each of its individual components. Note that Partis does
not include palindromic insertions, which both IGoR and MiXCR treat by ap-
pending a short palindromic sequence at the end of each germline segment;
restricting the analysis to sequences generated without palindromic insertions
makes Partis’ performance comparable to that of MiXCR (Fig. C.7).

Next, we compared the recombination statistics learned by the three meth-
ods to the true statistics used to generate the data. For MiXCR and Partis, we
built the distribution of recombination events assigned to each sequence, while
for IGoR these distributions were inferred using Expectation-Maximization, as
explained before. All three methods yield similar statistics for V and J gene us-
age and deletion profiles (see Fig. C.8). However, the dependency between D
an J usage in TRB is correctly captured by IGoR but not by the other methods
(Fig. 3.5d). TRB D and J genes are organised in two clusters, one containing D1

followed by genes of the J1 family, the other containing D2 followed by genes
of the J2 family (see Fig. 1.2 p. 14). Because of this organisation, D2 cannot
be recombined with genes from the J1 family [114]. MiXCR assigns 20% of
impossible D2-J1 recombination events to sequences (note that Partis does not
process TCRs). By constrast, IGoR correcly learns the rule by assigning zero fre-
quency to these impossible D-J pairs. The same results are obtained directly on
real data (see Fig. C.9). Finally, IGoR accurately reconstructs the distribution of
insertions, while the other methods systematically overestimate the probability
of zero insertions (Fig. C.8a and b).

3.7 double ds insertion and universal insertion distribution

Section 3.3 showed that TCRβ VD, DJ and TCRα VD insertion profiles are identi-
cal while BCR heavy chains VD and DJ insertions profile are broader. Although
these longer junctional regions have already been reported, the same TdT en-
zyme [114] introducing non templated insertions acts at every loci. It is thus
not clear why BCRs would exhibit broader insertion distribution.

Several studies have already reported the existence of recombinations events
in BCR heavy chains containing multiple tandem D genes in the junctional re-
gion [21, 85, 88, 148], thus violating the 12-23 recombination rule. However,
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Figure 3.6: BCR reversed complement Ds usage. By appending the reversed comple-
ment of each D gene to the list of D genes we have tested the occurrence
of reversed Ds during the VDJ recombination process. We can see that al-
though some reversed complement Ds can be observed the effect is minor.

because of D shortness and deletions it is challenging to distinguish those re-
arrangements from random insertions. To test this, we computed the frequency
with which one could deterministically align (with the Smith-Waterman algo-
rithm) two non-overlapping Ds over at least 10 consecutive nucleotides, be-
tween the best V and best J alignments in BCR heavy and TCR beta chains se-
quencing data. We then compared these results with predictions from IGoR’s
synthetic sequences generated with models allowing for a single D segment
learned on the very same datasets. We found 5 times more double-D assign-
ments in IGH data than in the control, validating the findings of [88]. In con-
trast, the same analysis performed on TRB showed no significant presence of
tandem Ds. Future versions of IGoR should include the possibility of including
multiple D rearrangements and possibly uncover the same universal insertion
distribution for all loci.

Using IGoR we learned a recombination model including the possibility of
reversed D gene usage. Overall we found that only 3 reversed D genes ap-
peared for a total of 1% of recombined sequences (Fig. 3.6) and conclude that
if existing incorporation of reversed Ds is a minor feature. Inspired by TCR DJ
association we also checked whether a similar pairing could be observed for
BCRs (Fig. 3.7), and although we do find some correlations, no clear pattern as
for TCRs could be observed. Such correlations have already been reported, and
it has been hypothesized that they originate from the distances separating the
D and J gene [81]. A more in depth analysis of these correlations could give
precious insights on the recombination biophysical process.

3.8 probability of generation

From the inferred models of recombination we are can sample the distribution
of probability of generation (Fig. 3.8). As already described in Refs. [48, 50,
115] these distribution span many orders of magnitude and should serve as a
null model for over representation of some sequences. As we will discuss in
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Figure 3.7: BCR D-J association. As we have shown the D,J pairing rule for TCRs in
Fig. 3.5d, we plot P(D|J) for each pair. Unlike TCRs, BCRs do not seem to
exhibit such a clear coupling.
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Figure 3.8: Pgen distribution for the different chains. By randomly generating se-
quences according to the inferred models of recombination we can repro-
duce the probability of generation for TCRα (blue), TCRβ (green) and BCR

heavy (red) chains

chapter 5 these distributions are also good predictors for the number of shared
sequences between two samples, and we shall use them as a null hypothesis
for over sharing between twins.

IGoR can in principle calculate the generation probability of any sequence.
However, highly hypermutated sequences pose an additional challenge be-
cause the ancestral (unmutated) recombined sequence itself is sometimes not
known with certainty. Indeed, although the probability of generation of a se-
quence without errors or hypermutations is well defined (section 3.2.3), com-
puting the probability of generation of a mutated sequence1, before mutations
occurred, is strictly speaking not possible because that sequence is not know
with certainty. However, we can compute a good approximation for it, and we
can also calculate its distribution across sequences.

To approximate Pgen(S) from a noisy or hypermutated sequence R, we take
its geometric average weighted by the probability of the recombination prod-
uct S:

lnP∗
gen(R) ≈

∑

E

P(E|R, θ) lnPgen(Ŝ(E), θ), (3.22)

with P(E|R, θ) = Precomb(E, θ)Perr(R|Ŝ(E), θ)/Pread(R, θ). Alternatively, one can
take the generation probability of the most likely recombination product:

P∗
gen(R) ≈ Pgen(S

∗, θ), (3.23)

1 Or to a lesser extent sequences from an error-prone sequencing experiment.
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where S∗ = argmax
S
P(S|R, θ).

Using synthetic data, we checked the performance of these two estimators
for the generation probability of individual sequences and observe that it is
well predicted by this method (r = 0.97, see Fig. 3.9).

The distribution ρ(x) of the log-probabilities of generation, x = logPgen, can
be computed from data using:

ρ(x) =
1

N

N∑

a=1

∑

E

P(E|R, θ)δ
[

x− lnPgen(Ŝ(E), θ)
]

. (3.24)

Note that unlike estimates for single sequences, this expression should become
exact in the limit of N → ∞. Using the same synthetic sequences as before we
show that the generation probability distribution is accurately reproduced (see
Fig. 3.10).

The precision of these estimation however relies on the correctness of the
error/mutation model at hand.

This chapter outlined our probabilistic framework for V(D)J annotation and
its general software implementation IGoR. Although we demonstrated its func-
tions on human TCRα , β and BCR heavy chains, IGoR’s flexible structure makes
it applicable to any variable lymphocyte receptor (TCR or immunoglobulin)
and species for which genomic data is available. Unlike HMMs based methods
(e.g. [48, 135]), it can include a wide array of possible dependencies between
the recombination events. As we have illustrated modeling these correlation,
and more generally accurately modeling the actual recombination process is
of importance for V(D)J assignment as our method outperforms existing ones.
IGoR’s model can also be adapted to handle unusual or incomplete rearrange-
ments (D-J rearrangments, DD2/DD3 rearrangements in TCR δ chains, hybrid
TRA/TRD recombinations, etc.).

Although the learning procedure could be carried on any sequence dataset,
we used non-productive sequences in order to access the raw V(D)J recombi-
nation statistics and potentially some of its biophysical parameters as we will
discuss in the next chapter. This allows us to derive meaningful quantities
such as the recombination entropy and sequences’ probability of generation.
The ability to generate sequences mimicking the recombination process is also
of importance both for benchmarking and providing null model datasets for
sequences that did not undergo selection as we will use in chapter 5.
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Figure 3.9: Sequence probability of generation estimation By generating synthetic
130bp BCR sequences from an inferred recombination model without er-
rors we were able to compute their probability of generation Pgen (see
SI 3.2.4). We further introduced errors in those sequences, errors whose
statistics correspond to an inferred hypermutation model and computed
an estimate for the probability of generation of the unmutated ancestor.
We propose two different estimators: Pgen a geometric average of putative
ancestors probability of generation weighted by it’s posterior probability
(green and middle) and Pgen(argmax

S

P(S|r)) the probability of generation

of the most likely ancestor (pink and bottom). Note that due to convergent
recombination the most likely ancestor does not necessarily correspond to
the sequence implied by the most likely scenario. Thus these two estimates
can only be made thanks to direct exploration of recombination scenarios.
Both estimators show almost perfect correlation despite the error distribu-
tion of most likely ancestor probability of generation being non symmetric.
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Figure 3.10: Density of the probability of generation of sequences We plot the dis-
tribution of probability of generation obtained from different estimators
against the true distribution of generation probabilities. The true probabil-
ity of generation, the geometric average and the probability of generation
of the most likely ancestor are presented in Fig. 3.9’s caption. The inferred
density (blue) is a histogram of each sequence putative ancestors proba-
bility of generation weighted by it’s posterior probability. We also plot
the distribution of sequence likelihoods, that could be obtained by other
methods (e.g forward algorithm) and show that it greatly differs from the
distribution of generation probability.
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A L L E L I C E X C L U S I O N A N D R E C O M B I N AT I O N R E S C U E

The recombination models presented in the previous chapter provide direct
insights to the recombination process and unbiased sequence statistics. The
obtained models and their predictions also contain information that can read-
ily be used to extract hidden larger scale biological features with little effort.
This short chapter presents two such examples, first showing how from the in-
ferred recombination models we infer chromosome organization and relative
usage and second how we use model prediction to evaluate the recombination
rescue probability.

4.1 building chromosomic association

The method described in this section has been published as part of Ref. [50].

As presented in section 1.3.2 and confirmed by the results obtained in sec-
tion 3.6.2, the V(D)J recombination machinery introduces long range correla-
tions in the gene usage statistics within a single chromosome. This only ex-
plains correlations at the level of genes and not at the level of allele identity.
The recombination process only allows for gene recombination within a sin-
gle chromosome, so such correlations can be attributed to the assignment of a
given allele to one of the two chromosomes.

By treating every allele as different genes and learning the P(V ,D, J) prob-
ability for producing a VDJ triplet, we can exploit observed correlations to
build the underlying chromosome organization. From the organization of the
different alleles on two different chromosomes, some V-D, D-J and V-J allele as-
sociations are impossible because the recombination machinery works on one
chromosome or the other at a given time, never on both at the same time. Given
our probabilistic approach, this should be reflected in a lower probability for
inappropriate V-D-J triplets involving alleles of different chromosomes in the
inferred joint P(V ,D, J) probability. For instance, since rearrangements happen
on a single chromosome, the probability of recombining a heterozygous V al-
lele with a heterozygous D allele on different chromosomes should be zero,
up to assignment errors (Fig. 4.1). We exploit this fact to reconstruct the chro-
mosomal organization as follows: each gene with two alleles is assigned a two
state variable: each gene is marked as either heterozygous or homozygous. At
this point, based on the initial list of genomic templates, each gene that has at
least two candidate alleles is marked as heterozygous. An iterative procedure
described below re-assigns the homo/heterozygosity parameters.

If the gene is marked as heterozygous, each allele is assigned to one of the
two chromosomes or marked as erroneous, with the constraint that two alleles
of the same gene cannot lie on the same chromosome and that each chromo-
some must be assigned an allele. If the gene is marked as homozygous, one

71
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Figure 4.1: The organization of heterozygous genes into chromo- somes can be prob-
abilistically determined. Every recombina- tion event ties together a V, a
D, and a J gene, as indicated by the arcs drawn above and below the two
chromosomes. Links that recombine alleles on different chromosomes are
forbidden (red crosses). Our method gives the probability P (V, D, J) of all
possible linkages between three genes (distinguishing be- tween alleles of
the same gene), but does not address how the various alleles are grouped
on chromosomes. We find the best chromosomal segregation by minimiz-
ing the sum of all terms in P (V, D, J) that contain forbidden links (red
crosses).

of the alleles is “real”, while the other is erroneous (again with the constraint
that the two alleles of a given gene must be in two different states - real or
erroneous.). Finding the chromosomal organization entails doing a search to
find the values of these parameters that minimize the net probability (derived
from the P(V ,D, J) distribution) of recombination scenarios involving V, D or
J alleles that do not lie on the same chromosome.

In practice, all genes with two alleles are initially taken to be heterozygous
and all alleles are assigned randomly to a chromosome (or erroneous state
for genes with more than two candidate alleles). After initialization, a gene is
chosen at random and the probability of scenarios violating the chromosomal
organization is computed for the five possible states of the two alleles of this
gene (heterozygous - chromosome 1, heterozygous - chromosome 2 , heterozy-
gous - erroneous allele, homozygous - real allele, homozygous - erroneous al-
lele) given by the previously defined two and three state variables. A change in
the assignment of these parameters is accepted only if it decreases the probabil-
ity of erroneous recombination events. This step is iteratively repeated until no
further change is possible, thus implementing a simple hill-climbing algorithm
[146]. This procedure is ensured to converge to a local minimum. Repetitions
of this procedure starting from randomly chosen initial states always converge
to the same final state, and we conclude that only one global minimum exists.
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Ch1

Ch2
Ch2

Figure 4.2: Simplified diagram for recombination outcomes. This is valid for chains
with allelic exclusion

Because we tacitly impose diploidy, this procedure can be used to clean
up genomic information for an individual by removing spurious "erroneous"
alleles as in Ref. [50].

One question of interest is the relative usage of both chromosomes for V(D)J
recombination and the existence of a parental imprinting1 to allelic exclusion.
With the approach described above we were able to compute this relative gene
usage for BCR heavy chains. In this way we found a chromosomal organization
for the two individuals that accounted for about 90% of all sequences. We
can also evaluate the usage probability of the two chromosomes identified
using this procedure. For both individuals, it was consistent with equal usage
probability between the two chromosomes, within errors.

4.2 rescue probability

This work is for the moment unpublished in the hope to gather more precise measure-
ments with different datasets.

As introduced in section 1.3.2.2, upon failure of recombining the heavy or
β loci and assembling a pre-receptor on the cell surface the immature lympho-
cyte can be rescued and attempt a second recombination on the untouched
chromosome2. It is however unknown whether this rescue is systematic, and
if not, how frequent it is. In this section we discuss a simple calculation to
estimate this frequency.

So far we have treated coding and non-coding sequences as separate datasets
in order to infer raw V(D)J recombination statistics from the latter one. How-

1 The epigenetic phenomenon by which genes are expressed in a parent of origin specific manner.
2 For the β chain there exist a possibility to be for a second recombination on the same chromo-

some depending the DJ cluster involved in the first one. We will however assume that this is a
feature effectively learned by our models.
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ever, both arise from the same sequencing experiment and as DNA sequencing
is not sensitive to allelic exclusion it should output coding and non-coding se-
quences with the same efficiency3. The relative fraction of sequences of each
sequencing experiment should thus reflect the efficiency of lymphocyte devel-
opment to produce functional sequences in one or two attempts.

In order to extract this information we write a simple model for each re-
combination outcome as summarized in Fig. 4.2. This model depends on three
parameters:

• Pnc the probability for a recombination shot to produce a non-coding se-
quence. This parameter can be readily estimated by generating sequences
from our inferred model. This way we estimate to 27.1% the chance of
obtaining a non coding TCR β chains.

• Pr the rescue probability or frequency at which a second attempt of re-
combination is made on the second chromosome after failure of the first.
We assume this probability to be a scalar independent of the previous
recombination product.

• Pf the probability of a sequence to be functional given that it is an ap-
parently coding sequence. Because heavy and β chains are not initially
tested for their ligand binding abilities, this quantity only reflects the abil-
ity of a sequence to form a functional folded pre-receptor. Here again for
the sake of simplicity we will assume this probability to be a scalar while
it is clear that it depends on the recombination product.

From these three parameters and the decision tree for lymphocyte fate in
Fig. 4.2 we can write the expected fraction of non-productive sequences Fnc in
a sequencing experiment as

Fnc =
Pnc(1− Pnc)PrPf

(1− Pnc)Pf + 2(1− Pnc)2(1− Pf)PfPr + 2Pnc(1− Pnc)PrPf
(4.1)

=
PncPr

1+ 2(1− Pnc)(1− Pf)Pr + 2(1− Pnc)Pr
. (4.2)

By drawing a colormap of Fnc (Fig. 4.3) as a function of the two unknown
parameters Pr and Pf we observe that the value of Pf only weakly influence the
expected fraction of non-coding sequences4. By overlaying the fraction of non
coding sequences observed in DNA sequencing experiments as contour lines
we can estimate the probability of rescue. This back of the envelope calculation
would then suggest that the recombination rescue, far from being systematic,
only occurs with ∼ 35% chance for TCR β chains.

Because of the simplicity of the model this indirect estimate remains impre-
cise. With the recent development of statistically paired sequences [76, 91] we
should be able to access a more direct measure for Pr by directly measuring the
relative fraction of recombination end products shown in Fig. 4.2. Sadly, suchThis work using

statistically paired
sequences is currently
under investigation in

collaboration with T. Dupic.

experiments have been carried with RNA sequencing technologies sensitive to

3 Up to primer PCR amplification bias.
4 This could have been guessed from Eq. 4.2 as Pf is a dominated term in the denominator
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Figure 4.3: Fraction of non coding sequences in a naive TCR dataset.

allelic exclusion thus making the direct estimates incorrect without a proper
statistical correction.

By reconstructing the chromosomic organization from joint gene usage prob-
abilities we have shown that there is no preferential allelic exclusion for one
chromosome or the other. A similar analysis for haplotype inference was con-
ducted in Ref. [82], however relying on assignments that did not model long
range correlations. The authors report frequent copy number variations in con-
tradiction with our diploidy hypothesis and confirm the high variability in
genomic information between individuals. This assumption could however be
easily relaxed and a proper inference of genomic templates contained in the
dataset should be conducted.

The estimation of the probability of rescue on the other hand did not seem
to have been previously addressed by the community, and suggest that recom-
bination rescue is far from being systematic. As the presented methodology
is rather simple it shall be extended to other receptor chains exhibiting allelic
exclusion such as BCR heavy chains.





5
I N T E R - I N D I V I D U A L R E C E P T O R S H A R I N G .

Is an individual’s ability to fight against pathogens tied to the identity of the
precise set of clones constituting the individual’s repertoire? As mentioned
in 1.3.1 one receptor can recognize different antigens. Conversely the same
antigen can be recognized by different receptors with different strength such
that 20− 200 out of ∼ 107 TCRs can bind the same MHC-peptide dimer [109].

While theoretical studies [104] incorporating these ingredients would sug-
gest that the precise set of receptors is not important and that the repertoire is
organized as a whole, many studies have reported "public" clonotypes shared
among several individuals either in health [177, 181, 206] or disease [51, 179].
Following these theories, could these clones be shared by pure chance?

Our ability to answer this question depends greatly on our ability to quantify
clonal diversity at the sequence ensemble, individual and sequencing sample
levels. A number of different diversity measures (Shannon entropy, Simpson
index, species richness, Chao1 [32] and 2 [33], DivE [89]) deriving from ecol-
ogy have been used to quantify lymphocyte repertoires diversity from clone
abundance data in sequencing experiments. All these estimations, reviewed in
Ref. [110], are related to Rényi entropy and put the accent on different parts
of the clone abundance distribution [111]. More importantly, Ref. [110] demon-
strates the limit of these estimations on the finite amount of data exhibiting
fat-tailed distributions such as power laws in repertoire sequencing data.

By learning the probability distribution underlying the V(D)J recombination
process we obtain an ensemble description of unselected sequences and reduce
the rare clone sampling issue1. We can thus compute the Simpson index of
this ensemble, related to the potential diversity of V(D)J recombination, that is
the probability of two independently recombined sequences to be identical by
chance:

〈Pgen〉S =
∑

S

P2
gen(S), (5.1)

where Pgen(S) is the probability of generation of sequence S as defined in
section 3.2.3. Note that this calculation cannot be performed in closed form and
is estimated via Monte Carlo sampling. Assuming cell proliferation and pe-
ripheral selection completely dominate clone abundance distributions2, counts
only reflect the frequency at which a lymphocyte functional receptor can bind
to its cognate antigens. Non productive sequence counts would then also re-
flect functional receptor fitness and shall be discarded to retain only unique
sequence information. From our recombination model, the number of shared

1 Still, under-sampling remains an issue especially when recombination statistics seem to be
linked to clone abundance as suggested by the work presented in this chapter.

2 Although again, some data presented in this chapter suggest that time of generation and home-
ostatic state of the repertoire could play a role in abundance of species.
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unique non productive sequences between two datasets should thus be pre-
dicted by Mpre = |N1|.|N2|〈Pgen〉S where |N1| and |N2| are the number of
unique non productive sequences contained in each dataset.

Provided a V(D)J recombination model one is able to compute Pgen(S) the
probability to generate a sequence S from the recombination machinery. As ex-
plained in chapter 3, this is good descriptor for sequences that did not undergo
selection such as non productive sequences. Productive sequences on the other
hand, have gone through several steps of functional selection (folding, central
and peripheral selection) biasing their statistics that no longer represent the
raw recombination. We shall call Ppost(S) the obtained distribution. Biologi-
cally, this distribution should accurately describe naive functional lymphocyte
receptor statistics.

In Ref. [49] Elhanati and collaborators compute a generic selection factor
Q(S) > 0 per sequence defined as

Q(S) =
Ppost(S)

Pgen(S)
. (5.2)

They propose a simple decomposition for this selection factor into

Q(S) = Q(τ,V , J) =
1

Z
qVJqL

L∏

i=0

qi,L(τi), (5.3)

where τ denotes the amino acid CDR3 of sequence S and L its length. The
Z constant ensures normalization. The qVJ coefficient is a selection factor for
the joint usage of a pair of V and J genes, qL a selection factor for the CDR3

length. Finally, qi,L(τi) is a selection factor for the identity of the amino acid
at position i for a CDR3 of length L. Because CDR1 and CDR2 loops are encoded
in the V gene sequence, this model incorporates all regions responsible for
antigen binding.

The parameters are inferred by comparing statistics of "productive" 3 se-
quences randomly generated from the recombination model and naive pro-
ductive sequences from a sequencing experiment. Note that by using naive
productive sequences it is implicitly assumed that Q(S) = 0 for non produc-
tive sequences. Because V and J genes cannot be unambiguously assigned to
sequencing reads, they are treated as hidden variables and the ML estimate for
Q(S) parameters is obtained via the EM algorithm.

From these selection models we can compute a Simpson index, similar to
the one presented above for non-productive sequences, for the potential di-
versity of sequences post selection. While, as previously discussed in 3.3, the
recombination statistics inferred on different individuals are almost identical,
inferred selection factors may vary slightly. The predicted number of shared
productive sequences is

Mpost = |N1|.|N2|
∑

S

P
(1)
postP

(2)
post, (5.4)

3 Or at least not obviously non productive, as discussed in section 1.3.2.4 p.17
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where |N1| and |N2| are now the number of productive sequences in the dataset,
and P

(i)
post the resulting post selection distribution with the selection model in-

ferred on individual i4. As for Pgen, Ppost cannot be computed in closed form
and Mpost can readily be approximated via Monte-Carlo sampling

Mpost =
|N1|.|N2|

|S1|.|S2|

∑

S∈S1

⋂

S2

Q(1)(S)Q(2)(S), (5.5)

where S1 and S2 are sets of respectively |S1| and |S1| sequences drawn from an
inferred recombination model.

These estimators have proven to be accurate predictors [49, 115] of the ob-
served number of shared sequences between individuals5 and represent good
validation of our models.

This chapter recapitulates how we used these tools to study how persist-
ing fetal clonotypes influence repertoire overlap among twins and unrelated
individuals. It has been published in Ref. [129].

5.1 abstract

The diversity of T-cell receptors recognizing foreign pathogens is generated
through a highly stochastic recombination process, making the independent
production of the same sequence rare. Yet unrelated individuals do share re-
ceptors, which together constitute a “public” repertoire of abundant clono-
types. The TCR repertoire is initially formed prenatally, when the enzyme
inserting random nucleotides is downregulated, producing a limited diversity
subset. By statistically analyzing deep sequencing T-cell repertoire data from
twins, unrelated individuals of various ages, and cord blood, we show that
T-cell clones generated before birth persist and maintain high abundances in
adult organisms for decades, slowly decaying with age. Our results suggest
that large, low-diversity public clones are created during pre-natal life, and
survive over long periods, providing the basis of the public repertoire.

5.2 introduction

The adaptive immune system relies on the diversity of T-cell repertoires to
protect us from many possible pathogenic threats. Each T cell expresses on its
surface many copies of a unique T-cell receptor (TCR), which engages with
antigenic peptides – from self or foreign proteins – presented by other cells
through their Major Histocompatibility Complex (MHC) molecules. The bind-
ing strength between the TCR and the peptide-MHC complex, which is typi-
cally weak for self peptides, and strong for some foreign peptides, is a major
factor in determining the onset of an immune response. Since each TCR is only

4 Note that without assumption on universal V(D)J recombination statistics we can also learn
private models for it. This is what will be done in the rest of this chapter in order to discard
any genetic basis for twin receptor sharing.

5 Up to a multiplicative factor for some sequencing strategies.
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specific to a small fractions of the possible peptides, the body needs to main-
tain a very large diversity of TCRs to be able to recognize any possible foreign
peptide from pathogens. Understanding how this diversity is generated, and
how it develops and matures with age, is thus paramount to understanding
adaptive immunity.

TCR diversity is produced by the V(D)J recombination machinery which
generates the repertoire de novo in each individual. Repertoire diversity is en-
coded not only in the set of specific receptors expressed in a given individ-
ual, but also in their relative abundances – the number of T-cells expressing
each unique TCR – which can differ by orders of magnitude. These differences
are in part due to antigenic stimulation (infection, vaccination), implying that
clones increase their sizes in response to common or recurring infections. De-
spite this great diversity, different individuals—regardless of their degree of
relatedness—do express a subset of the exact same receptors, called the public
repertoire [179]. This overlap is often interpreted as the convergence of indi-
vidual repertoire evolutions in response to common antigenic challenges [98].
Indeed, some public TCRs are known to recognize common pathogens such
as the cytomegalovirus (CMV) or the Epstein-Barr virus (EBV) [107]. However,
this interpretation is challenged by the fact that these two properties—large
differences in clone sizes and public repertoires—are also observed in naive
repertoires, for which antigenic stimulation is not expected to be important
[109, 120].

An alternative explanation for public clones, which does not invoke conver-
gent repertoire evolution, is that both abundant and public receptors are more
likely to be produced by rearrangement, and just occur by coincidence [179,
181]. This idea is backed by some compelling evidence. First, the amount of
clonotype sharing between pairs of individuals can be accurately predicted in
both naive and memory pools from statistical models of sequence generation
[49]. Second, the likelihood that a clonotype sequence is shared by individu-
als has been reported to correlate with its abundance [181, 206]. However the
origin of this correlation remains elusive. In addition, public clonotypes often
have few or no randomly inserted N nucleotides, which limits their diversity
[181]. Terminal deoxynucleotidyl transferase (TdT), the enzyme responsible
for N insertions, is inactive in invariant T-cell subsets [178] and in some fetal
T-cell clones. These subsets could contribute to the emergence of the public
repertoire. Another confounding factor is the ageing of repertoires, and the
concomitant loss of diversity, which is expected to affect the structure of clonal
abundances as well as the repertoire’s sharing properties. How do all these
effects shape the structure and diversity of TCR repertoires, and control their
functional capabilities? Here we propose and test the hypothesis that a size-
able fraction of public clonotypes are created before birth. These clonotypes
have low diversity because of reduced TdT activity, making them more likely
to be shared among unrelated invididuals. Their large abundances, due to
reduced homeostatic pressures in the early stages of repertoire development,
allow them to survive over long periods.
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5.3 results

5.3.1 Clonotype sharing between individuals

We first examined in detail the question of clonotype sharing between individ-
uals. Each TCR is a heterodimer made of two chains encoded by two distinct
genes. Each gene is formed in the thymus by assembling together two or three
gene templates from a finite set of germline segments – V and J segments for
the α chain, and V, D and J segments for the β chain. In addition to the large
diversity created by the combinatorial choice of germline segments, further di-
versity is produced by randomly deleting base pairs from the joining ends of
the segments, and by inserting random non-templated (N) base-pairs at each
junction. Each chain forms three loops, called Complementarity Determining
Regions (CDR), which come in contact with the peptide-MHC complex during
recognition. The first two loops, CDR1 and CDR2, are encoded in the germline
V gene and are thought to interact mostly with the MHC. By contrast, the
CDR3 concentrates most of the diversity, as it covers the junctions between the
germline segments. The CDR3 interacts with the peptide directly, and is thus
believed to play the biggest role in the recognition of foreign peptides.

After recombination, receptors are tested and selected for function and lack
of auto-reactivity. The recombination mechanism frequently produces non-
functional (also called nonproductive) receptor sequences, typically containing
frameshifts or stop-codons. If the recombination result of the first chromosome
is non productive, the second chromosome will recombine. In case this second
recombination is successful, the cell will contain two recombined genes—one
productive and one nonproductive. To avoid confounding effects due to con-
vergent selection (both selection in thymus and clonal expansion in response to
infection), we first focused on out-of-frame receptor sequences, which are non-
productive and hence must result from these first unsuccessful recombination
events. Because the cells that contain them owe their selection and survival to
the productive gene on the second chromosome, these out-of-frame sequences
give us direct insight into the raw V(D)J recombination process [115, 141], free
of clonal selection effects. The number of shared clonotypes between two sets
of clonotypes, or clonesets, is approximately proportional to the product of
the cloneset sizes [115, 159, 206]. We call the ratio of the two the normalized
sharing number. In the regime of rare convergent recombination, this number
is equal to the probability that two independent recombination events give
the same sequence; it is thus independent of the cloneset sizes, and provides
an appropriate measure of sharing for comparing different pairs of datasets
with different sequencing depths. Under the assumption that sharing occurs
by pure chance, only due to convergent recombination, this number can be
predicted using data-driven generative probabilistic models of V(D)J recombi-
nation accounting for the frequencies of the assembled V, D, and J gene seg-
ments and the probabilities of insertions and deletions between them [48, 49,
103, 115]. We can estimate sharing either of the entire nucleotide chain (alpha
or beta), or of the CDR3.
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5.3.2 Twins share more clonotypes than unrelated individuals

Genetically identical individuals may be expected to have more similar recom-
bination statistics due to similar recombination enzyme biases [66, 71, 131, 144,
182, 206], and therefore share more sequences. To assess these genetic effects,
we looked at the sharing of TCR alpha and beta-chain receptor repertoires
between three pairs of monozygous twins (6 individuals). We synthesized
cDNA libraries of TCR alpha and beta chains from the donors’ peripheral
blood mononuclear cells and sequenced them on the Illumina HiSeq platform
(see Fig. B.1 p. 136 and section B.1 p.127). For each pair of individuals, the
normalized number of shared out-of-frame alpha sequences was compared
to the prediction from the recombination model trained on the out-of-frame
repertoire of each individual, as shown in Fig. 5.1 (see also Fig. B.2 p. 137

for similar results on sharing of CDR3 nucleotide sequences). Sharing in un-
related individuals (the 12 non-twin pairs among 6 individuals, black circles)
was well predicted by the model (Pearson’s R = 0.976), up to a constant mul-
tiplicative factor of 2.07, probably due to differences in effective cloneset sizes.
While twins did share more sequences than unrelated individuals (the 3 twin
pairs, red circles), this excess could not be explained by their recombination
process being more similar. The model prediction was obtained by generating
nucleotide sequences from models inferred using each individual’s cloneset
as input [48, 103], mirroring their specific recombination statistics (see section
B.1 p.127). The normalized sharing number departed significantly from the
model prediction only in twins, calling for another explanation than coinci-
dence in that case. The same result was obtained for beta out-of-frame CDR3

nucleotide sequences (Fig. B.3 p. 138), although less markedly because of a
lower signal-to-noise ratio due to smaller numbers of shared sequences. Most
of beta out-of-frame nucleotide sequences shared among the highest-sharing
twin pair associated with CD8 CD45RO+ (memory) phenotype in both indi-
viduals. This observation is surprising, because the non-functionality of these
sequences excludes convergent selection as an explanation for it (see S1 Text
for details).

We then examined the sharing of in-frame nucleotide CDR3 sequences. Most
of in-frame sequences are functional, and have passed thymic and peripheral
selection. Since these selection steps involve genetically-encoded HLA types
(the type of MHC that cells express) and are therefore expected to be simi-
lar in related individuals, we wondered whether the functional repertoires of
twins also displayed excess sharing. Remarkably, we found some excess shar-
ing in the in-frame beta repertoire (Fig. B.4 p. 139), but none in the in-frame
alpha repertoire (Fig. B.5 p. 140). However, the failure to observe excess shar-
ing in this last case can be explained by the much higher expected number
of shared nucleotide sequences in the alpha in-frame repertoire (due to both
in-frame sequences being more numerous than out-of-frame ones, and to the
lower diversity of alpha chains compared to beta chains) which could mask
this excess in twins (see S1 Text).
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Figure 5.1: TCR out-of-frame repertoire sharing in monozygous twins is higher than
in unrelated individuals, or than predicted by stochastic models of re-
combination. The number of shared out-of-frame alpha TCR clonotypes
between all 15 pairs among 6 donors consisting of 3 twin pairs (ordinate)
is compared to the model prediction (abscissa). To be able to compare pairs
of datasets of different sizes, the sharing number was normalized by the
product of the cloneset sizes. The three outstanding red circles represent
the twin pairs, while the black circles refer to the 12 pairs of unrelated indi-
viduals among the 6 twins. The model prediction is based on a generative
stochastic model of VJ recombination [48, 103], inferred separately for each
donor to account for differences between individuals. It agrees well with
the data from unrelated individuals up to a common multiplicative factor,
but systematically underestimates sharing in twins. Error bars show one
standard deviation.
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5.3.3 Low generation probabilities of excess shared clonotypes between twins suggest
in utero T cell trafficking

To investigate the origin of excess sharing between twins, we looked at the
statistical properties of shared alpha out-of-frame nucleotide sequences from
Fig. 5.1. Shared clonotypes between non-twins, which happen by coincidence,
should have a higher probability Pgen to have been produced by V(D)J rear-
rangement compared to non-shared clonotypes. Indeed, the distribution of
Pgen among shared sequences, plotted in Fig. 5.2, can be calculated from the
probabilistic model of generation (blue curve), and the prediction agrees very
well with the data between non-twins (red curves). By contrast, shared se-
quences between twins deviate from the prediction (green curve), especially
in the tail of low-probability sequences, but are consistent with a mixture
of 18± 3% of regular sequences (black curve), and the rest of coincidentally
shared sequences (blue curve). These numbers agree well with the excess
sharing in twins, which amounts to 17% ± 3% of non-coincidentally shared
sequences, as estimated from Fig. 5.1. Nucleotide sequences shared between
twins also have higher numbers of insertions and are therefore longer than
those shared between unrelated individuals or according to the model (Fig. B.6
p. 141, p = 2 · 10−8, two-sided t-test) – a trend that is even more pronounced
in memory cells (Fig. B.7 p. 142, p < 10−16). Note these observations about re-
combination probabilities and the number of insertions are related: sequences
with many insertions each have a low generation probability because of the
multiplicity of inserted nucleotides.

Taken together, these observations support the existence of another source
of shared sequences than coincidence in twins. Since the sharing of cord blood
between twins is the only natural instance when the immune systems of two
individuals share cells, we propose that the increased sharing of private TCRs
between identical twins dates back to the sharing of cord blood cells, and that
these shared clones persist into late age. This persistence of fetal clonotypes
could be due to the long lifetime of the exchanged naive clones. Alternatively,
long persistence could be achieved by the independent transition to memory
of the shared clones in both twins.

5.3.4 Sequences with no N insertions are enriched among abundant naive clonotypes
in cord blood and in young adults

To verify the hypothesis that clones formed during fetal life persist over long
periods, we now turn to the analysis of data from unrelated individuals. We
characterized the in-frame beta-chain repertoire of human cord blood and also
three healthy non-twin adult donors of different ages (see Materials and meth-
ods and S1 Text). One feature of the rearranged chains is the number of inser-
tions at the junctions between the gene segments (VD and DJ in the case of
beta chains). We ranked beta TCR clonotypes from human cord blood data
by decreasing abundances and plotted the mean number of insertions (in-
ferred iteratively and averaged over groups of 3000 clonotypes, see S1 Text),
as a function of this abundance rank (Fig. 5.3A). The most abundant clones in
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Figure 5.2: TCR nucleotide sequences shared between twins are statistically differ-
ent from sequences shared between unrelated individuals. Distribution
of log10 Pgen, with Pgen the probability that a sequence is generated by the
VJ recombination process, for shared out-of-frame TCR alpha clonotypes
between one individual and the other five. While the distribution of shared
sequences between unrelated individuals (red curves) is well explained
by coincidental convergent recombination as predicted by our stochastic
model (blue), sequences shared between two twins (green) have an excess
of low probability sequences: 31 sequences with log10 Pgen < −10. For
comparison the distribution of Pgen in regular (not necessarily shared) se-
quences is shown in black.
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Figure 5.3: The number of inserted nucleotides in in-frame TCR beta clonotypes de-
pends on their abundance. A. Mean numbers of insertions were obtained
by analysing groups of 3000 sequences of decreasing abundance. Clono-
types from the cord blood (black) show a strong dependence on abun-
dance, with high-abundance clones having much fewer insertions than
low-abundance ones. Clonotypes in a young adult naive repertoire (blue)
show a similar but less marked trend. Naive clonotypes in older adults (vi-
olet and green) show an even weaker trend. Adult memory samples of all
ages show no dependence at all (red, yellow and maroon). Error bars show
2 standard errors. B. Probability distributions of the number of insertions
in two rank classes, for young naive and cord-blood samples (ranks 1-3000

on top, ranks 45001-48000 on bottom). For high-ranking sequences, the
probability of having zero insertions is high both for adult naive and cord
blood samples. For middle-ranking sequences, the probability of 0 inser-
tions is much lower, and the distributions are similar between adult naive
and cord-blood samples. C. Fraction of clonotypes with zero insertions for
different abundance classes. Error bars show one standard deviation. We
present the analysis for independently published cord blood donors and
different bin sizes in Fig. B.11 and Fig. B.10 p. 145 respectively.
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cord blood had markedly smaller numbers of insertions (black line). The naive
repertoire of a young adult (blue line) showed a much weaker dependence on
abundance than the cord blood repertoire, but followed a similar trend. The
dependence was even further reduced in older adults (purple and green lines).
Interestingly, the number of insertions in the beta chains of the adult memory
repertoire (red, orange and maroon lines) did not depend of the abundance
of these cells. This observation can be explained by the resetting of the size of
memory clones following an infection, erasing features of the abundance dis-
tribution inherited from fetal life. Looking more closely into the distribution
of the number of insertions (Fig. 5.3B) reveals that low mean numbers of inser-
tions are associated with an enrichment in clonotypes with zero insertions. Ac-
cordingly, the fraction of naive zero-insertion sequences generally decreased
with abundance rank (Fig. 5.3C), with again a stronger dependency in cord
blood and young adults. Fewer numbers of insertions in the cord blood are ex-
pected because TdT, the enzyme responsible for random insertions, is initially
strongly downregulated in prenatal development [7, 62]. This enrichment in
low-insertion sequences persists and shows weak signatures in the adult naive
repertoire, suggesting long lifetimes of cord blood clonotypes (although not
necessarily of individual cells).

5.3.5 Abundant clonotypes with no N insertions decay slowly with age, but faster
than the attrition of the naive cell pool

The enrichment of zero-insertion sequences in large clonotypes of young peo-
ple, relative to the baseline of zero-insertion clonotypes produced in adulthood,
can be used to verify the hypothesis of long lived fetal clonotypes originating
from the cord blood. Analysing publicly available TCR beta repertoire data
from individuals of different ages [23, 24], we observed a slow decay of abun-
dant zero-insertion clonotypes in the unpartitioned repertoire (memory plus
naive) with age, with decay rate of 0.027± 0.009 yr−1, or a characteristic time
of 37 years (Fig. 5.4). However, the excess of abundant TdT- clonotypes of fetal
origin only affects naive cells (Fig. 5.3A), whose relative fraction in the reper-
toire is also known to decrease with time [23]. To assess the importance of
this confounding effect, we fit an exponential decay model for the percentage
of naive cells measured in same donors using flow cytometry (see S3 Table)
and found a characteristic decay rate of 0.015± 0.002 yr−1, or a decay time of
67 years. The red curve in Fig. 5.4, which shows the expected decay of zero-
insertion clonotypes if it had been solely caused by the decay of the naive pool,
does not agree with the data. Although the decay of naive cells within the top
2000 clonotypes could in principle be faster than in the overall T-cell popu-
lation, we did not observed such an effect in the three individuals for which
we have data partitioned into memory and naive clonotypes (see S1 Text I.G).
Therefore, the attrition of the naive pool alone cannot explain the decrease
of zero-insertion clonotypes, which we attribute instead to the progressive ex-
tinction of clones of fetal origin combined with their gradual replacement by
newly generated naive cells. This is consistent with the hypothesis that ex-
cess clonotype sharing between twins is enabled by long-lived naive cells, but



88 inter-individual receptor sharing .

0 20 40 60 80 100

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

Age [years]

F
ra

c
ti
o
n
 o

f 
z
e
ro

−
in

s
e
rt

io
n
 c

lo
n
o
ty

p
e
s

decay rate=0.015, lifetime=67y

decay rate=0.027, lifetime=37y

0
2
0

4
0

6
0

8
0

1
0
0

P
e
rc

e
n
ta

g
e
 o

f 
n
a
iv

e
 T

−
c
e
lls

, 
%

Figure 5.4: Lifetime of abundant in-frame TCR beta clonotypes with zero insertions.
The fraction of zero-insertion clonotypes among the 2000 most abundant
clonotypes in the unpartitioned repertoire as a function of age (black cir-
cles) is well fitted by an exponentially decaying function of time (black
curve). This decay is faster than would be predicted from the decay of
the naive compartment alone (red curve), indicating a slow decay of zero-
insertion clonotypes of fetal origin. Red diamonds show percentage of
naive T-cells measured using flow cytometry (see [23] for details). Scale of
red axis was chosen so that the two decay curves start at the same point
at age 0, and have the same long-time limit. We present the analysis for
different bin sizes in Fig. B.10
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does not exclude the possibility that this excess sharing can be supported by
memory cells as well.

5.3.6 Clonotypes with zero N insertions quantitatively explain the relation between
clonotype abundance and sharing between unrelated individuals

We have shown that abundant clones are enriched with zero-insertion sequences,
both in the cord blood and in the adult naive repertoire. Zero-insertion clono-
types (regardless of their origin) are most likely to be shared by convergent
recombination than regular sequences, because they are more likely to be gen-
erated due to reduced diversity. What are the implications of this observation
for sharing between unrelated individuals? Since zero-insertion sequences are
overrepresented among abundant clonotypes (Fig. 5.3), we predict that abun-
dant out-of-frame clones are more likely to be shared.

To make our prediction quantitative, we built a mixture model of the out-of-
frame alpha repertoire (see S1 Text for details). We assumed that clonotypes
of a given abundance C are made up of a certain fraction F(C) of TdT-, zero-
insertion clonotypes, and a complementary fraction 1− F(C) of regular TdT+
clonotypes. Because TdT+ clonotypes may also have no insertions, the fraction
of the TdT+ and TdT- sets had to be learned in a self-consistent manner. To
learn these fractions, for each abundance class C we directly quantified the
fraction F0(C) of sequences in the data that are consistent with zero insertions
(i.e. can be entirely matched to the germline segments). Because non-templated
nucleotides can coincide with the template, and also because TdT+ cells may
have no insertions, F0(C) is not equal to F(C). However they are linearly re-
lated, so that it is enough for a model to agree with the data in terms of F0(C)
to also guarantee agreement in terms of F(C). We generated a large number of
nucleotide alpha out-of-frame sequences using our recombination model, and
separated them into two groups: those that are consistent with no insertions
(group A), and the others (group B). For each abundance class C, we created
articifical datasets made of a fraction F0(C) of sequences from group A, and a
fraction 1− F0(C) from group B, where we recall that F0(C) is estimated from
the data. We then repeated the sharing analysis in these artificial datasets in
the same way as in the real datasets. The model accurately predicts the nor-
malized sharing number of out-of-frame alpha-chain CDR3s as a function of
clonotype abundance (Fig. 5.5), up to the common multiplicative factor of 1.7
by which the non-mixture model generally underestimates CDR3 sharing (see
Fig. B.2 p. 137). Thus, the enhanced sharing of high-abundance clonotypes is
entirely attributable to their higher propensity to have no insertions, making
them more likely to be shared by chance.

5.4 discussion

We found that adult twins present an interesting case of microchimerism in
the adaptive immune system: shared rare TCR variants that recombined before
birth survive for decades in their repertoires. We have also shown that adult
naive repertoires, but not memory repertoires, have similar zero-insertion TCR
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Figure 5.5: Sharing of alpha out-of-frame TCR clonotypes as a function of clonal
abundance. The normalized number of shared out-of-frame alpha CDR3

nucleotide sequences between two individuals is showed as a function of
clonotype abundance (e.g. normalized sharing for 2000 most abundant
clones from both repertoires, 4000 most abundant, etc.), and compared
to the amount of sharing that would be expected by chance (blue curve),
taking into account the variable fraction of zero-insertion clonotypes as a
function of their abundance. Data and predictions show excellent quanti-
tative agreement (inset), with one fitting parameter. Error bars show one
standard deviation.
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clones distributions as cord blood repertoires. With age, the clone size distri-
bution of naive adult repertoire becomes more similar to that of the memory
repertoire. We hypothesize that this similarity between adult naive and cord
blood repertoires is maintained by long lived fetal clones. Our results on the
biological trafficking of T cells in twins are robust to possible experimental
artefacts. First, our framework relies on the accurate counting of TCR cDNA
sequences using unique molecular identifiers [84]. To exclude the possibility of
contamination during the PCR and sequencing process, we double barcoded
each cDNA library. To further exclude the possibility of early contamination of
the blood samples, we performed replicate experiments at different times us-
ing different library preparation protocols. Comparison of repertoire overlaps
from such replicate experiments for the same set of twins shows no differ-
ence and rules out experimental contamination as a confounding effect (see
B.1 p.127). We also observed the same effects in previously and independently
collected datasets [206], further excluding the possibility of experimental arte-
facts (Fig. B.8 p. 143). This reproducibility also suggests that the majority of
out-of-frame sequences are not sequencing errors. Additional evidence for this
fact comes from the different fractions of out-of-frame sequences observed in
alpha and beta chains in TCR cDNA sequencing data, 13 and 3 percents re-
spectively [206]– both of these fractions are much higher than the indel rate
for the illumina platform [16, 149]. Our conclusions rely on a variety of data
sources, and make extensive use of statistical analysis. As it is not yet possible
to collect data from the same donors over many years, statistical evidence such
as the amount of sharing in twins, or the amount of zero-insertion clonotypes
versus age, is needed to investigate the evolution of repertoires over decades.

Cord blood sharing between twin embryos could have important implica-
tions on twin immunity: they could share and respond with private clono-
types, which would otherwise not be likely to be produced independently.
This could possibly include sharing of malignant [54, 171, 190] or autoimmune
clones, leading to disease in both individuals. In very rare cases such trans-
fusion could also occur between dizigotic twins, leading to chimerism [13].
Anastomoses between monochorionic twin placentas are very common (more
than 85 percent of uncomplicated pregnancies [95]), however the amount of
exchanged blood may vary, and in some extreme cases it even leads to ad-
verse outcomes such as twin-to-twin transfusion syndrome [94]. These effects
could possibly affect the initial number of in-utero shared clonotypes. This
mechanism of sequence sharing is very different from sharing by convergent
recombination [181], because it also implies the sharing of the second TCR
chain and of the cell phenotype. Paired repertoires studies, which combine al-
pha and beta chains together [76, 174], could be used to track clones shared
between twins more precisely, and distinguish them from convergently recom-
bined ones.

Our results suggest two mechanisms with opposite effects on the sharing
of clonotypes in twins as a function of the number of insertions. On the one
hand, we have argued in Figs. 5.1 and 5.2 that clonotypes shared through di-
rect cell exchange should have a ‘normal’ number of insertions, because they
are not due to random convergent recombination (which favors low numbers
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of insertions). On the other hand, we have shown in Fig. 5.3 that cord blood
cells are enriched in zero-insertion clonotypes, suggesting that clones shared
in utero should be enriched in clonotypes with no of few insertions. Which one
of these two effects dominate? TdT is suppressed in human embryos mostly in
the first trimester of pregnancy [62]. Since TdT is active in the later trimesters
the majority of the cord blood repertoire consists of clones with non-zero inser-
tion numbers [137] similarly to the regular TdT+ post-natal clones. We show
that the insertion distribution for non-abundant clones in cord blood closely
resembles the insertion distribution observed in adults, with most clonotypes
having insertions (see Fig. 5.3B II). Such clonotypes could be exchanged in
utero between twins, and easily identified as shared clonotypes with low Pgen.
Our theory predicts that twins should also exchange zero-insertion clonotypes,
which are abundant in cord blood. However these shared clonotypes are indis-
tinguishable from clonotypes shared by convergent recombination, which are
also likely to have zero insertions. Therefore, the higher abundance of zero-
insertion clonotypes in cord blood relative to mature repertoires does not con-
tradict the observed sharing of high-insertion clonotypes due to cord blood
exchange.

We have also showed that some of the clonotypes transferred in utero have
the CD45RO+ phenotype, typical of central memory cells. It is possible that
the longevity of these clones is connected with their memory status acquired
early in life. To test this hypothesis, one would need to perform deep sequenc-
ing of purely sorted naive T-cells from adult twins and repeat the analysis
presented in this paper. The transition from naïve to memory is also associ-
ated with clonal expansion, so it is possible that, within the in utero transfer
hypothesis, the most easily detectable clonotypes shared between twins come
from the memory population simply due to sampling effects. At the same
time, the results plotted in Fig. 5.3 suggest that naïve clonotypes may also be
long lived. Thus, clonotypes transferred in utero in twins could be either of
naive or memory origin.

Our conclusion that fetal clonotypes are long-lived is based on the analysis
of over-abundant zero-insertion clonotypes. Invariant T-cells, MAIT (Mucosal-
Associated Invariant T-cells) and iNKT (Invariant Natural Killer T-cells) are
intrinsically insertion-less, have restricted VJ usage for alpha chain, and are
often abundant. These cells are produced in adulthood and could in princi-
ple constitute a substantial fraction of our zero-insertion dataset, confounding
our analysis. Since our abundant zero-insertion clonotypes have a very diverse
usage of VJ genes, we can exclude that the majority of them are from invari-
ant T-cells, although we did identify a small number of such invariant TCR
alpha chain clonotypes, see S1 Text. An alternative explanation of the skewed
zero-insertion clone size distribution of naive repertoires (see Fig. 5.3A) is the
existence of previously unknown subset of insertionless T-cells characterized
by large proliferation activity, which would be produced in adulthood and
make up the most abundant clones of the naive repertoire. To support this hy-
pothesis, one would need to further assume that the production of these cells
decays with age, to be consistent with the observations of Fig. 5.4. Another
related possibility is that insertionless clonotypes are generally favored by
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thymic selection, again in a age-dependent manner. However, in-frame clono-
types have been reported to be only moderately enriched (by less than 20%)
in zero-insertion sequences relative to out-of-frame sequences (see Ref. [49],
Fig. 5.3E-F), meaning that thymic selection does not substantially favor zero-
insertion clonotypes on average.

Our current data clearly shows that clonotypes that originated in the cord
blood tend to be among the most abundant in the naive repertoire, but we
cannot unambiguously point to the source of this effect. One possibility is
convergent recombination [132, 181]: high clonotypes abundances could be
due to the accumulation of multiple convergent recombination events made
more likely by the limited recombination diversity during fetal development.
However, we observed clonotypes with low generative probabilities among the
most abundant clones in the cord blood repertoire, and also clonotypes with
high generation probability among the least abundant clones. We conclude
that convergent recombination alone could not predict cord blood clone fre-
quencies. An alternative explanation is that these clones have had more time
to expand than others. Fetal cells come from different precursors, and ma-
ture in a different environment (the fetal liver), than post-natal cells [108]. In
vitro experiments have shown that fetal T-cells have a different proliferation
potential than post-fetal cells [150]. Additionally, a vacant ecological niche ef-
fect may play a role. When these clones first appeared, the repertoire had not
reached its carrying capacity set by homeostatic regulation, leaving room for
future expansion. These clones may have initially filled the repertoire, later
to be gradually replaced by post-fetal clonotypes. Consequently, fetal clones,
including those whose TCR was recombined with no TdT, would be expected
to have larger sizes. Quantitative TCR repertoire profiling (preferably with the
use of unique molecular identifiers for accurate data normalization and error
correction), performed for species with no TdT activity in the embryo, such as
mice, as well as novel cell lineage tracking techniques [116] could be used to
investigate the detailed dynamics of fetal clones. This large initial expansion
of fetal clones could protect them from later extinction. This would suggest
that the estimated 37-year lifetime of zero-insertion fetal clonotypes could be
longer than that of regular clones produced after birth.

Sharing of beta TCRs has previously been shown to decrease with age [23].
Depletion of fetal clonotypes, which are more likely to be shared, could con-
tribute to this phenomenon. Our results also predict that the excess sharing of
clonotypes between twins due to the trafficking of fetal cells should decrease
with age. In general, the observed abundance of large zero-insertion clono-
types and their persistence through significant part of our life should have
important consequences for the adaptive immunity regulation both in pre-
and post-fetal period. Interestingly, transgenic mice with induced fetal TdT
expression showed impaired antibody response to certain bacterial pathogens,
suggesting an important functional role of the low-diversity fetal repertoire in
immune competence [7]. We could speculate that the primary target of these
cells might be common pathogens with a long history of coevolution with
humans, such as CMV and EBV.
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Lastly, our general framework for analyzing the overlap between different
repertoires has far-reaching practical implications for the tracking of T-cell
clonotypes in the clinic. In particular, the analysis of overlap between pre-
and post-treatment repertoires using probabilistic characteristics of clonotypes
sharing could help determine the host or donor origin of clonotypes after
hematopoietic stem cell transplantation (HSCT), and also increase reliability
of malignant clones identification in minimal residual disease follow-up.

5.5 materials and methods

For a more detailed description of experimental and data analysis procedures
see S1 Text Materials and Methods.

NGS library preparation. RNA was isolated from the PBMC of healthy
Caucasian donors: 3 pairs of female monozygotic twins (aged 23, 23 and 25

years old), 19 year old and 57 year old males, a 51 year old female and cord
blood from a female newborn. CD4+ and CD8+ populations were isolated us-
ing CD4+ and CD8+ T-cell positive isolation kits (Invitrogen), CD45RO+ and
naive cells were isolated from PBMC using CD45RO+ enrichment and human
naive T-cell isolation kits (Myltenyi) respectively. cDNA of TCR alpha and
beta chain was synthesized and sequenced on the Illumina HiSeq platform
(see Fig. B.1 p. 136). for library preparation technique, Table ?? p.147 for the
oligonucleotides used, Table ?? p.148 for all samples and numbers of sequenc-
ing reads).

Raw data processing. Raw data processing and data analysis were per-
formed using published open-source software tools: MiGEC (https://github.
com/mikessh/migec), MiXCR (https://github.com/milaboratory/mixcr/), tcR
(https://github.com/imminfo/tcr) and repgenHHM (https://bitbucket.org/
yuvalel/repgenhmm/downloads). We processed raw sequencing data with MiGEC
[160] to extract unique molecular identifiers and we used MiXCR [15] to deter-
mine the CDR3 position. All raw data is available online on our server (see S1

Text Methods E. for the links) and also in Short Read Archive (SRP078490).
Data analysis. Recombination models for beta and alpha chains were in-

ferred using an EM-algorithm as described in [48, 103, 115], using the repgen-
HHM [48] and IGoR[103] software tools, selection models were inferred as
described in [49]. The shared clonotype analysis was performed using the tcR
package [117] and R statistical programming language [133]. To predict the
number of shared out-of-frame clonotypes we generated random sequences
using the recombination model parameters inferred separately for each in-
dividual in the previous step. We then filtered out-of-frame clonotypes and
calculated the number of shared sequences between these simulated datasets
using the tcR package.

To predict the number of shared in-frame clonotypes we also generated
random sequences with recombination model parameters, filtered in-frame
sequences and calculated the Q selection factors for each CDR3 amino acid
sequence using selection models inferred separately for each individual. The

https://github.com/mikessh/migec
https://github.com/mikessh/migec
https://github.com/milaboratory/mixcr/
https://github.com/imminfo/tcr
https://bitbucket.org/yuvalel/repgenhmm/downloads
https://bitbucket.org/yuvalel/repgenhmm/downloads
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number of shared sequences in the simulated in-frame datasets was reweighted
by the Q factors as:

1

|S1| · |S2|

∑

s∈S1∩S2

Q(1)(s)Q(2)(s), (5.6)

where S1, and S2 are two synthetic sequence samples drawn from two mod-
els P

(1)
gen,P(2)

gen learned separately from the out-of-frame sequences of the two
individuals, and Q(1)(s), Q(2)(s) are selection factors learned separately from
these two individuals’ in-frame sequences. |S1| and |S2| denote the size of the
two samples. The sum runs over sequences s found in both samples.

To estimate the distribution of the number of inserted nucleotides for dif-
ferent subsets of the repertoire (Fig. 5.3 and Fig. 5.4), we used the same EM-
algorithm when inferring the full repertoire models. To minimize the noise
due to small subset sizes, we only learned the insertion distribution and took
all other model parameters to be the same as in the previously inferred model
in [115].

To fit the exponent decay of the ageing data we used the nlm2 R package.
The data used in these fits is given in S3 Table. Fitting an exponentially de-
caying curve to the fraction Z of zero-insertion clonotypes in the 2000 most
abundant clones as a function of age T (Fig. 5.4):

Z ≈ c+ a exp(−bT), (5.7)

we found c = 0.00363±0.00154, b = 0.0272±0.0091 yr−1, and a = 0.016696± =

0.00188.
Fitting an analogous model for the attrition of the naive T-cell pool, i.e. the

fraction N of naive T-cells as identified using flow cytometry (see [23] for de-
tails),

N ≈ a ′ exp(−b ′T). (5.8)

we obtained a ′ = 0.68± 0.054 and b ′ = 0.01485± 0.0018 yr−1.





6
S O M AT I C H Y P E R M U TAT I O N S

Most of the results presented in this chapter have been submitted for publication in
Ref. [103].

Section 1.4.4 briefly introduced the affinity maturation process, during which
B cell clones diversify and evolve to create more and more specific receptors
for a given antigen. This chapter focuses on understanding the statistical rules
governing this diversification arising from Somatic Hypermutations (SHMs).

6.1 introduction

Somatic Hypermutations (SHMs) are introduced by the AID hypermutating en-
zyme and elements of the constitutive DNA repair machinery. Functioning of
this process is puzzling at different scales.

First, at the global scale, how does the mutating complex find the correct
loci to mutate? Several studies have shown that the transcriptional activity
regulated by promoters [128], remote regulatory elements [10, 143] or the chro-
matin state (methylation, acetylation) controls the overall mutation rate such
that genes with expression comparable to the Ig loci will exhibit similar mu-
tation rate [5]. This lack of specificity is known to promote lymphomagenesis
[167] by accidental edition of oncogenes and is thus of clinical interest.

Second, at the local scale, what are the mutation rules and what makes a
nucleotide more prone to mutation than its neighbor? These questions have
been partially answered by numerous studies either from a mechanistic or
statistical point of view. The rest of the section will review the current state
of knowledge from these complementary approaches. The next sections will
present some work investigating an independent site targeting model for SHMs

and its possible improvements.

6.1.1 Mechanistic models

Many reviews found in Ref. [31, 44, 78, 166, 167] aggregate current experimen-
tal knowledge with different mechanisms proposal. I here summarize what
seems agreed upon.

AID binds single stranded DNA, most likely upon opening of the double
DNA strand by the Pol. II RNA polymerase complex [86]. Upon binding AID

catalyzes deamination of deoxycytidine (C) to deoxyuridine (U) consequently
transforming C:G pairs into U:G mismatched pairs. From then, the most sup-
ported DNA-based hypermutation model proposes three alternative pathways
for somatic mutations:

• if the mismatch is not detected by the DNA repair machinery, it will be
fixed by DNA replication upon cellular division. A daughter cell will

97
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then inherit a T:A base pair, while the other will inherit the original C:G
pair.

• the newly created uracil is excised through Base excision repair (BER).
This involves the uracil-DNA glycosylase (UNG) enzyme, cleaving the
uracil base and leaving an abasic site (i.e a DNA base without any purine
or pyrimidine). Upon cellular division, the abasic site will make the repli-
cation machinery stall and depending on the polymerase and other fac-
tors might introduce transversions or transitions. This mechanism could
also be a source of insertions and deletions.

• the U:G mismatch is recognized by MSH2/MSH6 mismatch recognition
heterodimer. This Mismatch repair (MMR) pathway would trigger a patch
DNA synthesis process with an error prone DNA polymerase (Pol. η).
Because the two previous mechanisms only explain mutations at C:G
pairs, the MMR mechanism is the only explanation for A:T pairs mutation
accumulation.

Conversely, a less supported RNA and not DNA based mechanism [166],
suggests that mutations are accumulated via retrotranscription and integration
of mutated cDNA in the locus.

The mechanism by which AID acts on given regions and limits its range of
action is not understood. Ref. [167] proposes a halting mechanism for Pol. II.
Not all Pol. II complexes would be associated with AID and would thus be
able to keep fully transcribing the BCR. The ones associated with AID would
halt at some random positions stopping RNA transcription. This model would
explain a finite range from transcription initiation for mutations, but remains
however highly hypothetical, and it is not clear whether purifying selection,
in some experiments, would not be an alternative candidate explanation for
reduced mutability outside variable regions.

Finally, cytidine deamination in the switch regions created by AID would
also lead to DNA double strand breaks triggering class switch recombination.
Although not studied in details in this work SHMs are known to introduce in-
sertions and deletions on top of point mutations with a frequency that remains
unknown [17].

6.1.2 Statistical models

Parallel to the molecular and structural biologist endeavor to explain SHMs

mechanism geneticist and bioinformaticians have studied statistical models for
predicting per base mutability and provide a neutral model for SHM targeting.
In order to access raw SHM statistics without selection biasing two approaches
have been explored, both aiming at providing context dependent mutation
models:

• as for evolutionary biology, synonymous mutations provide mutation
statistics in principle free of selection1. Ref. [196] constructs a penta-

1 Although one could imagine that a base change could change the RNA secondary structure
leading to a less stable mRNA.
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nucleotide context dependent mutation model from such synonymous
mutations from long VH sequences. Because only half of possible pen-
tamers can be observed from synonymous mutations, the authors in-
ferred the remaining ones by averaging over related observed pentamers.

• because non productive rearrangements also undergo somatic hypermu-
tations, their statistics should provide unbiased relative mutation fre-
quencies. In Ref. [157], the authors use VH and JH from non produc-
tive rearrangements in different species to build di- and tri-nucleotide
context mutation models from low throughput sequencing experiments.
More recently, Ref. [38] built a penta-nucleotide model from long VH

genes sequences in rearrangements engineered not to be productive in
transgenic mice.

Such models include large sets of parameters, exponentially large in the
context size, and are prone to over-fitting as a large context size quickly com-
pletely specify the position on the gene. Building these models still require
proper assignment of the underlying unmutated gene ancestor. Because the V
gene is long and easier to identify with certainty, most of these approaches
have focused on building models solely on V gene. However, as we are inter-
ested in extracting the physical parameters of the hypermutation process, we
seek a universal description that would also describe observed D and J gene
mutation rates. In this section we relax the full context dependence assump-
tion by using a independent site model, allowing us to probe various context
sizes while keeping the number of parameters small.

6.2 independent site mutation model

To study patterns of SHMs in BCR expressed by memory B cells, we included
into IGoR the possibility to infer a sequence-dependent hypermutation rate.
The probability of error or mutation at a given position on the nucleotide se-
quence is assumed to depend on its immediate n-mer context (see Fig. 6.1a),
through the logistic transformation of an additive score computed using a Po-
sition Weight Matrix (PWM), similar to binding energy motifs used to describe
DNA binding sites [8].

6.2.1 Model definition

The hypermutation model assumes the following form for the probability of
hypermutations:

Perr(R|S) =
∏

x,Sx 6=Rx

Pmut(Sx−m, . . . ,Sx+m)

3

∏

x,Sx=Rx

[1− Pmut(Sx−m, . . . ,Sx+m)] ,

(6.1)
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with

Pmut(π)

1− Pmut(π)
= µ exp

(

m∑

i=−m

ei(πi)

)

, (6.2)

where (π−m, . . . ,πm) = (Sx−m, . . . ,Sx+m) is the sequence context of the origi-
nal recombination product around a hypermutation at position x. The param-
eters ei(N), the position-weight matrix, and µ, the overall mutation rate, are
part of the parameter set θ. In order to lift the degeneracy of the model we
impose that

∑
N=A,C,G,T ei(N) = 0 at every position i.

The pseudo-log-likelihood of the hypermutation model reads:

Qerr(θ
′|θ) =

M∑

a=1

∑

E

P(E|Ra, θ)
L∑

x=1

[

δSx,Rx
ln

1

1+ r ′(S, x)
+ (1− δSx,Rx

) ln
r ′(S, x)/3

(1+ r ′(S, x))

]

,

(6.3)

where r ′(S, x) = r ′(Sx−m, . . . ,Sx+m) = µ ′ exp
(∑m

i=−m e ′i(Sx+i)
)

. It can be
rewritten as:

Qerr(θ
′|θ) =

∑

π

[(

ln(µ ′/3) +

N∑

i=0

e ′i(πi)

)

Nmut(π) − ln

(

1+ µ ′ exp

(

N∑

i=1

e ′(πi)

))

Nbg(π)

]

,

(6.4)

where

Nbg(π) =

M∑

a=1

∑

E

P(E|Ra, θ)
L∑

x=1

m∏

i=−m

δSx+i,πi
(6.5)

Nmut(π) =

M∑

a=1

∑

E

P(E|Ra, θ)
L∑

x=1

(1− δSx,Rx
)

m∏

i=−m

δSx+i,πi
. (6.6)

During the Expectation step, we compute these two quantities for each
(2m+1)-mer and then maximize Qerr at each step of the Expectation-Maximization
scheme using Newton’s method with a backtracking line search. To impose
∑

σ ei(σ) = 0 we remove one parameter per position i by setting for one nu-
cleotide, ei(N) = −

∑
σ6=N ei(σ).

We can then compute the entries of the gradient vector J (of size 3(2m+ 1)+

1):

∂Qerr(θ
′|θ)

∂µ ′
=

∑

π

(

Nmut(π)

µ ′
−Nbg(π)

r ′(π)

µ ′(1+ r ′(π))

)

, (6.7)

∂Qerr(θ
′|θ)

∂e ′i(σ)
=

∑

π

(δπi,σ − δπi,N)

[

Nmut(π) −Nbg(π)
r ′(π)

1+ r ′(π)

]

, (6.8)
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along with the Hessian matrix H entries:

∂2Qerr(θ
′|θ)

∂µ ′2
=

∑

π

(

Nbg(π)
r ′(π)2

µ ′2(1+ r ′(π))2
−

Nmut(π)

µ ′2

)

, (6.9)

∂2Qerr(θ
′|θ)

∂µ ′∂e ′i(σ)
=

∑

π

(δπi,N − δπi,σ)Nbg(π)
r ′(π)

µ ′(1+ r ′(π))2
, (6.10)

∂2Qerr(θ
′|θ)

∂e ′i(σ)∂e
′
j(σ

′)
=

∑

π

(δπi,N − δπi,σ)(δπj,N − δπj,σ ′)Nbg(π)
r ′(π)

(1+ r ′(π))2
.

(6.11)

For each step of Newton’s method we find the step direction by solving
H∆θ ′ = −J and we gradually refine the step size based on the Armijo-Goldstein
condition. These operations are iteratively repeated until the pseudo-log-likelihood
of the error model for a given Maximization step of the EM framework is max-
imized.

6.2.2 Results

We ran IGoR on memory out-of-frame IGH sequences from Ref. [88] to learn
7-mer PWMs, as well as overall mutation rates (the geometric mean of the mu-
tation rate over all possible 7-mers), while fixing the recombination statistics to
those previously learned from naive sequences, using Expectation Maximiza-
tion. IGoR’s probabilistic framework handles the degeneracy of sequence ori-
gin caused by convergent combinations of gene choices and hypermutations.
The learning procedure differs crucially from Ref. [50], where the hypermu-
tation rate was uniform. Three distinct PWMs were learned for V, D, and J
templated regions (Fig. 6.1b). To validate our PWM and mutation rate learning
algorithm, we generated synthetic data with hypermutations according to the
model learned from the real dataset, and re-learned its parameters using IGoR,
finding excellent agreement (Fig. C.10).

The PWM prediction for the position-dependent probability of hypermuta-
tions correlated well with that actually observed in the sequences (r = 0.7 for
V genes, see Fig. 6.1c and Fig. 6.2). PWMs were very reproducible across the two
tested individuals (r = 0.98, Fig. C.11), indicating that the inference procedure
is robust to the individual history of infections, and pointing to the universal
nature of the SHM mechanism. By constrast, the inferred overall mutation rate
differred by a two-fold factor between the two individuals, probably owing to
differences in age, past infections, or lifestyle (Fig. C.11). The motifs we found
recapitulate previously reported hotspot motifs (positive values of the PWM)
for every gene, including WRCY (or WRCH [142]) and WA [11, 157] (W = A or
T, Y = C or T, R = G or A; mutated position underlined), as well as cold-spot
motifs albeit to a lesser extend (SYC, where S = C, G) [20]. In all three motifs,
C and G are generally underrepresented, except for the mutated position in
V and D genes where T is less mutated than others. We assessed the robust-
ness of the model to n-mer length by learning PWMs of sizes ranging from 3

to 9 (Fig. 6.3). The contributions of each relative position did not change sub-
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Figure 6.1: Hypermutation landscape. (a) Position-Weight Matrix (PWM) model for
predicting hypermutation hotspots in IGH. Each nucleotide σ at position
i within ±m of the hypermutation site (in red) has an additive contribu-
tion ei(σ) to the hypermutation log odd (Eq. 6.2). The PWM is learned by
Expectation-Maximization from the out-of-frame sequences of memory B
cells. (b) Comparison between the observed mutation rate per nucleotide
and its prediction by the PWM model, as a function of position along the
V segment, for the four most frequent V genes. Pearson correlation coef-
ficient ρ and gene usage are given for each. (c) PWMs inferred from the
V, D, and J genes. (d) Distribution of the number of mutations in each se-
quence. Data sequences have a broader distribution than predicted by the
model (as computed from generating synthetic sequences and mutations
with a data-inferred 7-mer PWM model). (e) Spatial co-localization index
g(r), measuring the overrepresentation of pairs of hypermutations at ge-
nomic distance r from each other. Synthetic sequences have g(r) ≈ 1 by
construction (green).
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Figure 6.2: Prediction of the mutation frequencies on real data. By direct exploration
of recombination scenarios we recorded the posterior mutation frequency
per individual base pairs on V and J genomic templates and compare it
to the independent 7-mer model. We plot a scatter for base pairs that have
been observed at least 2000 times on a 100 000 sequences dataset, for which
we can compute a reliable mutation frequency, and the mutation frequency
predicted by our model. The two top panels show good predictive power
for the gene on which the model was learned. However the two bottom
panels show a lesser ability to predict the correct mutation frequencies on
the whole locus, hence suggesting that differences observed in inferred
position weight matrices (Fig. 6.3) are of biological relevance.
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Figure 6.3: Context logo for different context sizes on the three different genes. We
inferred position weight matrices for different n-mer sizes for V, D and J.
With increasing n-mer sizes, side contributions do not vanish.
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stantially as a function of context length. Positions at least up to 4 nucleotides
away from the mutation locus contribute to the motif. This could mean that the
context dependence is broad, or alternatively that the motif model is indirectly
capturing non-contextual effects. Overall, the inferred PWMs give both a more
detailed and more nuanced view of the rules that govern hotspot positions,
and cannot be reduced to a few easily describable motifs.

Fig. 6.1b shows that the motifs differ substantially between V, D, and J genes.
V-learned PWMs only moderately predict J-gene hypermutation rates (r = 0.5
versus r = 0.7 for V-gene rates), and J-learned PWMs predict V-gene rates even
worse (r = 0.24, see Fig. 6.2). This disagreement indicates that predictions
purely based on context-dependent motifs are insufficient to explain all of the
variability in hypermutation probabilities, and that other mechanisms must be
at play. The overall mutation rate was also different between germline genes,
consistent with reports that the chromatin state affects hypermutation rates
[31, 78, 166].

6.3 mutation ordering

As the context of different mutations might overlap the unknown order in
which these mutation appear matters. In theory each mutation ordering cor-
responds to a hypermutation scenario and one should sum over all these sce-
narios. However the number of these scenarios increases exponentially with
the number of mutations, and would thus quickly becomes intractable. Be-
cause only neighboring mutations with overlapping context interfere, the ac-
tual number of scenarios to explore only increases exponentially with the num-
ber of mutations with overlapping contexts. Overall, summing over all these
scenarios is similar to finding all Hamiltonian paths2 of the connected compo-
nents3 of a graph whose vertices correspond to mutated positions and edges
are drawn for mutated positions whose distance on the sequence is smaller
than the context size n. Although finding a Hamiltonian path in a generic
graph is in principle an NP-complete problem, the particular structure of the
described mutation graph is suitable to use a dynamic programming approach
and sum efficiently over mutation scenario orderings.

However, taking into account the mutation ordering would only be neces-
sary if we observed that our ability to infer the mutation PWM is affected. In
practice our synthetic mutated sequences were generated taking mutation or-
der into account and we observe that the naive strategy described in section
6.2.1, always using the germline sequence as a baseline, is sufficient to correctly
re-infer the hypermutation model (see Fig. C.10) for our sizes of contexts and
the considered ∼ 10% mutational load .

2 A path going through each vertex of the graph exactly once.
3 A subgraph in which a path exist between any two vertices.
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Figure 6.4: Asymmetric mutation spatial-co-localization function. By conditioning
on the identity (top left) of the central (r = 0) nucleotide the symmetry of
the radial distribution function is broken. Each figure shows the averaged
(blue) mutation enrichment over two individuals (magenta). As a control
the same quantity was computed on synthetic sequences with hypermuta-
tions distributed according to an inferred independent site mutation model
(green).

6.4 beyond poisson process

We then used the inferred PWM within IGoR to probabilistically call putative
hypermutations in sequences. We first examined the distribution of the num-
ber of mutations in a sequence (Fig. 6.1d). The empirical distribution (red) is
more skewed and has a longer tail than would be expected by assuming in-
dependent hypermutations in each sequence, as predicted by generating ran-
domly hypermutated sequences with the inferred PWM (blue). This observa-
tion is consistent with the fact that different B cells have undergone a variable
number of cycles of affinity maturation, resulting in differences in effective
hypermutation rates.

6.5 spatial correlation

We asked whether hypermutations co-localized within the same sequence, by
calculating the enrichment, or radial distribution function g(r), of hypermuta-
tions at two positions as a function of their genomic distance (Fig. 6.1e)

g(r) =
1

Nr

∑

V ;(i,j)∈CV(r)

f(i, j,V)
f(i,V)f(j,V)

, (6.12)

where f(i,V) and f(i, j,V) are the frequencies of hypermutations at position i,
and at both positions i and j, respectively, calculated from individual scenario
statistics weighted by their posterior probabilities. CV(r) is the set of pairs of
positions separated by r that were observed a large enough number of times
in gene V , and Nr =

∑
V |CV(r)|.

While this enrichment is 1 in synthetic sequences (since our model assumes
that hypermutations are independent of each other), real data shows up to
a 4-fold enrichment of hypermutations at nearby positions. This difference
is consistent with the fact that AID can cause repairs of DNA over large re-
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Figure 6.5: Observed context dependence of substitution statistics in SHMs. Substi-
tution probabilities to the different bases as stacked columns vs. the local
trimer context, grouped by the central base. Substitution is not uniform, de-
pending primarily on the base being mutated, but varying with the context.
This figure has been published in Ref. [50].

gions [175]. The typical distance at which the co-localization enrichment index
decays gives an estimate for the length of these correlated regions of hypermu-
tations, about 15 base pairs.

The radial distribution function in Eq. 6.12 is by construction a symmetric
object. This symmetry can be broken by conditioning on the identity of the
central nucleotide (r = 0) as shown in Fig. 6.4. While again the enrichment
is always 1 in synthetic sequences we observe different enrichments in data
depending on the central nucleotide such that C shows greater enrichment
than A, G and T. From the mechanisms reviewed in section 3.7 this enrich-
ment remains counter intuitive provided that C is the initial lesion and can
be mutated without patch repair, the only proposed mechanism that would
lead to co-occurrence of mutations. Strikingly, the patterns observed for the
two individuals are extremely similar suggesting that this measure captures
biophysical features of the hypermutation process. The apparent symmetry
is reassuring regarding the abundance of insertions or deletions that would
create an over enrichment on r > 0 part.

6.6 substitution statistics

The model described in the previous sections only explains the preferential tar-
geting of hypermutations from the nucleotide context, and assumes that the
central nucleotide can mutate to any of other three nucleotides with equal
probability. However preferential substitutions have already been reported
[167]. Although we do not directly model them, the substitution statistics
can be extracted from the individual scenarios statistics. Fig. 6.5 shows a
clear dependence on the identity of the mutated base, with additional context-
dependent variability from the local trimer sequence. The clear preference for
C → T and corresponding G → A transitions are in agreement with the unre-
paired uracyl replication.
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In this chapter we have investigated an independent site context dependent
hypermutation model built within IGoR’s statistical framework. We inferred
the parameters associated to this model on non-productive hypermutated data
separately on V, J and for the first time on D, showing that our probabilistic
treatment allows to lift the uncertainty even on D nucleotides. The inferred
PWMs on a single gene were found to be very reproducible among individuals
as previously reported [38]. However the inferred parameters were not repro-
ducible among genes, questioning the ability of a context model to capture the
biophysical process underlying SHMs. Because of the form of the model, this
could arise if we were missing some dependencies captured by a full Nmer
model and if the Nmer background was very different among genes. How-
ever, by constructing a full 5-mer model from the posterior number of times
each background has been observed mutated or not (Eqs. 6.5 and 6.6) we also
observe much weaker inter-gene (r = 0.43) than inter-individual (r = 0.93)
agreement, confirming our first interpretation.

Using IGoR’s ability to aggregate individual recombination scenario statis-
tics we also showed that hypermutations cluster confirming once more that
context dependent models cannot fully capture the SHM process. Overall, this
analysis calls for a better modeling of SHMs, inspired by the known molecular
processes, and confirms the need for a generic tool as IGoR to handle arbitrary
complex probabilistic models.
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C O N C L U S I O N S A N D O U T L O O K S

In this manuscript I have introduced principled probabilistic approaches to de-
scribe immune receptor repertoire formation from high throughput sequenc-
ing experiments.

In chapter 3 I have presented IGoR, a statistical framework to study V(D)J
recombination. By treating alignments of immune receptors to the germline
probabilistically [115], IGoR corrects for systematic biases in the estimate of
V(D)J recombination statistics, and predicts recombination scenarios more ac-
curately than previous methods. Its detailed analysis of recombination scenar-
ios further reveals that, even with a perfect estimator, the scenario is incorrectly
called in more than 70% of sequences, suggesting caution when interpreting
results from deterministic assignments. All models presented in this work are
readily available with IGoR to allow researchers from the field to annotate
their sequences, compute their generation probability and generate synthetic
datasets. IGoR’s modular design is a baseline for future research and an in-
vitation for researchers in the field to help characterize new species, types of
rearrangements, and refine our comprehension of V(D)J recombination and,
more generally, immune repertoires formation.

Such refinements should be data-driven, and guided by the observation of
discrepancies between real sequencing data statistics and synthetically gener-
ated ones. An example of such a discrepancy were the tandem Ds observed in
BCR rearrangements, in section 3.7, found using deterministic alignments. This
observation also outlines that simple methods, such as alignments, are use-
ful to exhibit differences between two datasets, however proper quantification
of the processes creating these differences must rely on a complete statisti-
cal treatment. In this spirit, further work on IGoR’s BCR heavy chain model
should be carried out, allowing for multiple D gene inclusion upon recombi-
nation. Beyond simply better characterizing the V(D)J recombination process
in BCR heavy chains, understanding how frequent such rearrangements are is
of clinical interest as most reported BNAbs in HIV controlling patients exhibit
unusually long CDR3 regions [192]. Our ability to compute the probability of
generation of the unmutated ancestors of such antibodies could thus be useful
to design a vaccine maximizing the probability of a host response.

IGoR’s modularity goes beyond its model definition as the full implementa-
tion has been designed to ensure evolvability and usability for new challenging
data types such as paired receptor chain data. By making IGoR a fully open
source platform, we hope to gather the community around the development of
this research tool and allow the possibility to combine it with already existing
software to allow seamless analysis of repertoire sequence of any technological
origin.

As discussed in section 2.3 V(D)J annotation is only one of the three pillars
of high throughput repertoire sequencing analysis. Because error detection,
V(D)J annotation and genomic template inference are interconnected the need
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for a tool addressing simultaneously these issues is great. With IGoR we hope
to provide a good starting base to build a framework for a concurrent prin-
cipled probabilistic handling of these issues. Such a framework will have a
high computational cost. With the increasing popularity of repertoire sequenc-
ing, larger sequencing depth and new sequencing techniques the amount of
data to treat quickly grows and keeping such a framework relatively fast in
calculation time is a real challenge. For this purpose, future development of
IGoR will soon implement modern stochastic optimization techniques as pro-
posed in section 2.1.2.3. Such approaches will allow to considerably speed up
the learning phase and keep the model inference tractable for regular comput-
ers despite the increasing dataset size and without subsampling drawbacks.
Another development direction is the coupling of the already existing Sparse
EM algorithm to a dynamic programming approach for scenario exploration.
As presented in section 3.2.6 exhaustive scenario exploration is equivalent to
traversing all terminal leaves of a tree. Because some events are functionally in-
dependent, the same operations might be carried several times without change.
These functional dependences define a directed graph whose connected com-
ponents can be separately explored as subtrees of the initial scenario tree.

Beyond these algorithmic considerations, I discussed the use of IGoR to an-
swer concrete biological questions. Chapter 4 briefly outlined how simple pre-
dictions and parameters of these models could be used in this regard, by first
showing that there is no parental imprinting for V(D)J recombination using
the inferred joint VDJ usage probability. This discovery emphasizes again the
importance of modeling the long ranged correlations induced by V(D)J recom-
bination. Second, we used IGoR’s inferred model statistics to estimate for the
probability of rescue upon failure of the recombination process to produce a
valid receptor. This question had, to our knowledge, not been addressed by the
community. This measurement remains however a crude estimate. The analy-
sis of statistically paired-sequence data with productive and non-productive
rearrangement pairing is a potential lead to improve this estimate.

These two applications clearly show that some physical parameters of the
V(D)J recombination are captured by our models. A detailed study of the dif-
ferent model components should be carried to relate them to molecular pro-
cesses. For instance, we learn deletion profiles for each gene, while a single
exonuclease enzyme is involved. Finding the sequence determinants responsi-
ble for the different deletion profiles would be an interesting research direction.
Similarly, we model insertions as a Markov chain filling the junction from one
gene to the other. A much more complicated process has been described at the
molecular level (see section 1.3.2) and it would be of interest to assess whether
our insertion model captures correctly inserted regions statistics, refine it, and
relate the inferred parameters to the actual functioning of TdT.

While these predictions are based on single repertoire sequencing experi-
ments, Chapter 5 addressed the much more delicate question of sequencing
experiment comparison. From the inferred recombination model we predicted
the number of clones shared by chance between two individuals. We then
showed that the excess sharing observed in adult twins could not be explained
simply by their similar genome, and that this excess was due to long lived
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clones exchanged in utero. Armed with this proof of clonal persistence we
then estimated the lifetime of TCR clones created before birth to be tens of years.
Because clonotypes of fetal origin seem to be the largest clones this results sug-
gest that one should be cautious upon inferring a recombination model on a
small sequence sample, in which fetal clones would be overrepresented.

Finally, in chapter 6 we used IGoR’s framework to encode a context de-
pendent SHM model. Because of its spatial extension such a model could not
be encoded using an HMM. Within this probabilistic framework we were able
to infer PWMs corresponding to the hypermutation model on V, D and J. Us-
ing IGoR’s ability to aggregate detailed recombination scenario statistics we
showed that SHMs cluster. Together with the different PWMs obtained on the
three genomic templates this suggests that simple motif models [38, 157], de-
spite its good predictivity, cannot capture essential biophysical features behind
the SHM process.

A future development will be to combine detailed V(D)J annotation statis-
tics and existing biological theories about the molecular process described in
section 6.1.1 to build a successful neutral SHM model taking into account pref-
erential targeting, substitutions and possible insertion and deletion. Obtaining
such a model is of primary importance as it is the first brick to construct a null
model for affinity maturation in germinal centers and further quantify selec-
tion using known phylogenies. Recent experimental developments managed
to track B-cell clones evolution in situ [170] and provide example phylogenies
for which the clonal relation is certain. Such data would also constitute invalu-
able benchmarks for clonal reconstruction methods, although the throughput
of these methods is however limited.

However, such tracking techniques cannot be applied in humans for clinical
use, since the clonal relationship is unknown in the repertoire bulk sequencing
experiment. As introduced in section 2.3 assessing the clonal relationship of
sequences is a hard task and is an active field of research [80, 134, 195]. Fully
solving the clonal inference also entails inferring the phylogenetic relations
within clones. This problem is hard, as the unmutated ancestor is unknown
and the large span of generation probabilities may play a role to find its iden-
tity. It is also a formidable theoretical problem as SHMs are context dependent
and correlated, thus violating assumptions of existing phylogenetic methods
[74]. As SHMs might also accumulate outside the Ig loci, the use of single cell
RNA-seq techniques could simplify lineages reconstruction with the help of
non Ig loci mutations.

A problem only overviewed in this manuscript is somatic selection. As
briefly mentioned in chapter 5 the framework set up in Ref. [49] accounts
for multiple selection layers from mRNA stability or receptor folding to pe-
ripheral selection and competition for antigens. It was recently shown in mice
that such selection models inferred on blood or thymus extracted sequences
exhibited the same selection traits, pointing to the inability of such models
to capture peripheral selection [154]. The similarity of models obtained in dif-
ferent individuals also suggest that traits obtained by these models mostly
capture general features such as folding constraints. Decomposing selection
into its individual processes would allow to delineate individual from univer-
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sal selection pressures. Because not all coding sequences are actually produc-
tive, one could extend current selection models and model coding sequences
as coming from a mixture of selection traits: a set of selection traits for non-
folding receptors and thus non productive sequences and a set for productive
sequences and further functional central and peripheral selection. Such infer-
ence could be facilitated using cells containing two coding sequences from
statistically paired sequences or the possibly different mRNA expression dis-
tribution between productive and non productive sequences. By isolating fold-
ing constraints, testable predictions on the ability of receptors to produce a
pre-receptor could further be experimentally tested, similarly to WW protein
domains [164].
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A P P E N D I X





A
I N T R O D U C T I O N T O O P T I M I Z AT I O N , I N F O R M AT I O N
T H E O RY A N D B AY E S I A N S TAT I S T I C S .

a.1 optimization

Optimization denotes a set of mathematical tools aimed at finding the extrema
of an objective function (or functional) f with respect to its parameters.

Most optimization methods are formulated in terms of minimization prob-
lems, for which f is denoted as the cost or lost function. In turn, any maximiza-
tion problem can be translated into a minimization one by a simple transform
f̂ = −f. There are many classes of optimization problems among which prob-
lems involving functions with only one optimum1 define of convex optimiza-
tion [19]. For such problems we generally seek to find the root of the function’s
derivative (when it exists) either analytically or numerically.

This section briefly presents convex optimization problems and some nu-
merical methods to solve them. A particular emphasis will be put at the end
on stochastic methods and a potential new stochastic algorithm due to their
ever growing interest in large scale machine learning.

a.1.1 Convex problems

A function f : Rd → R is convex if and only if:

∀(x1, x2) ∈ (Rd)2, α ∈ [0, 1], f(αx1 +(1−α)x2) 6 αf(x1)+ (1−α)f(x2).

(A.1)

This geometric definition makes no assumption on the function’s properties
and simply states than any line drawn between two points of the function is
fully contained in the epigraph (the set of points above the function) of this
function. Assuming the function is differentiable once, an equivalent definition
is

∀(x1, x2) ∈ (Rd)2, f(x1) > f(x2) + f ′(x2)
T .(x1 − x2), (A.2)

where f ′ is the function’s derivative. Geometrically this inequality states that a
convex function always lies above its tangents. Assuming the function is twice
differentiable a third definition is

∀x ∈ R
d, f ′′(x) > 0 (positive semi-definite Hessian), (A.3)

1 There might be set of neighboring different values however all leading to the same value of the
objective function, such as for a constant loss function.
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where f ′′(x) is the function’s second derivative regarding x. The first definition
in Eq. A.1 can be generalized to an arbitrary number of points and is known
as Jensen’s inequality2

λi ∈ R,
∑

i

λi = 1, xi ∈ R
d, f(

∑

i

λixi) 6
∑

i

λif(xi). (A.4)

As previously mentioned convex functions are of much interest in optimiza-
tion since convexity ensures that all local minimas are also global minimas.
This property is useful when one tries to mathematically prove convergence
of an optimization scheme. However, in practice it is often hard to prove rig-
orously whether an optimization problem is convex or not (even when it is).
Still, since convex optimization methods are intuitive and easy to implement,
one might try and use them on possibly non-convex problems. For such non-
convex problems, upon trying different initialization parameters one might
obtain different optimal points thus calling for the use of more sophisticated
non convex optimization methods. This is the pragmatic approach we have
adopted within the frame of this work, for which we only used convex opti-
mization techniques, testing our assumption using different initializing condi-
tions.

a.1.2 Equality constraints

Some problems can be subject to various equality constraints g(x) = c such as
normalization constraints upon inferring a probability distribution. Such con-
straints can be incorporated into the cost function using Lagrange multipliers

f̂(x, λ) = f(x) − λ(g(x) − c), (A.5)

where f̂ is the new cost function and λ the Lagrange multiplier. This can be gen-
eralized to an arbitrary number of constraints. Note that adding a Lagrange
multiplier effectively adds a dimension to the optimization problem introduc-
ing possible issues with saddle points solutions that are not solutions of the
original problem. When suitable it is thus preferable to absorb the equality
constraint by eliminating one dimension.

a.1.3 Gradient descent

Optimization is a very active field and across the years many methods and
refinements have been proposed to solve convex optimization problems. Here
I will only present the two simplest first and second order methods around
which many algorithms are built: gradient descent and Newton’s method.
These methods rely on the ability to compute analytically respectively first
and second derivatives of the objective function. For non differentiable func-
tions or functions whose derivative cannot be computed in closed form there

2 This inequality is of use in probability theory since it provides f(E[x]) 6 E[f(x)]
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exist zeroth order methods relying on finite difference estimation. However
since none of these methods have been used in this work they shall not be
discussed.

Starting from a position x0 one wises to find x∗ ≡ argminx f(x), the global
minimizer of the loss function f. To find it, the most naive approach would be
to make small steps always in the direction of largest decrease in the objective
function’s value. This is what gradient descent achieves using the gradient
∇f(x) with the following recursion

xn+1 = xn − γn∇f(xn), (A.6)

where γn is the step size. This step size can be constant, vary as a function of
n or be computed at each time step using a line search procedure depending
on the setting of the problem. Line search refinement provides fastest con-
vergence, however it requires many extra calculations of the function’s value
and might prove computationally expensive in e.g large scale machine learn-
ing. Otherwise specific sequences of decreasing gamma values ensure conver-
gence. The constant step size on the other hand is mostly used for stochastic
approximation methods as discussed in section A.1.5. The recursion is stopped
upon finding a value of the gradient with a norm lower than an a priori set
threshold.

a.1.4 Newton Raphson methods

Newton-Raphson (often simply called the Newton method) is an iterative pro-
cedure initially designed to find roots f(x) = 0 of a differentiable function f(x).
At each step a linear approximation of the function is made, such that the next
step leads to the intercept between the tangent and the x = 0 axis

f ′(xn)(xn+1 − xn) + f(xn) = 0. (A.7)

This method finds a natural application in convex optimization for which
we seek to find the unique extrema of a function, and thus the root of its
derivative. The recursion then becomes

xn+1 = xn −
f ′(xn)

f ′′(xn+1)
. (A.8)

In a more general setting of a multidimensional space Eq. A.8 generalizes to

H∆xn = −J, (A.9)

where J is the Jacobian vector and H the Hessian matrix.
The method is prone to overshoot for some classes of functions, for which

convergence can be obtained using a backtracking line search. Starting with
a relatively large step size along the search direction (given upon solving
Eq. A.9), the step size is iteratively reduced until finding a decrease of the
cost function corresponding to the decrease expected by the value of the lo-
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cal gradient. Such conditions are known as Armijo-Goldstein conditions. Note
that such an approach does not aim at finding the best candidate point on the
search line but rather a good starting point from which Newton’s method can
be further iterated.

As a stopping criterion the magnitude of the difference between the objective
function at the current point and the minima of the quadratic approximation
of the function at this point can be used [19].

The major drawback of Newton’s method is the need to compute and invert
the Hessian matrix whose size grows quadratically with dimensionality. Quasi-
Newton methods have thus been developed to circumvent these issues. How-
ever for very high dimensional problems gradients methods remains more
tractable.

a.1.5 Stochastic Optimization

Sometimes the exact evaluation of the objective function is either not possible
or computationally too demanding. This is for instance the case for machine
learning applications over extremely large datasets.

At each iterate n one can make an inexact evaluation fn(xn) of the objective
function f(x) such that

E[fn(xn)] = f(xn). (A.10)

The stochastic gradient descent (SGD) [139] method uses noisy evaluations
of the gradient ∇fn(xn) on small random data batch at each iteration such
that

xn+1 = xn − γn∇fn(xn). (A.11)

These dynamics define an Ornstein-Uhlenbeck process [61] in the space of
parameters, whose steady state distribution can be computed in some simple
cases such as constant step size γn [101]. This steady state distribution is Gaus-
sian and a traditional way of estimating the optimal point is by averaging [130,
145]

x̂n =
1

n

∑

n

xn. (A.12)

In most cases the batch size remains constant during the optimization and
there exist a computational trade-off between how fast one can update the
parameters (inversely proportional to the batch size) and the noise in the
estimate (also inversely proportional to the batch size). For some settings,
the optimal batch size for fastest convergence of x̂n can be calculated [101].
However, such calculations are based on the steady state distribution of the
Ornstein-Uhlenbeck process and do not take into account how fast the algo-
rithm converges to the steady state distribution. Intuitively, this convergence
speed should be related to how fast the algorithm reaches the neighborhood
of the solution.
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A possible refinement of such algorithms would thus be to adopt an adap-
tive batch size. Starting from a small batch size would allow to move quickly
into the region of interest, and gradually increasing it to a desired value would
allow to converge faster to the solution. Because the successive parameters es-
timate xn reach a steady state distribution one could increase the batch size ev-
erytime stationarity is reached. A possible test for reaching stationarity would The algorithm proposed in

this paragraph has not been
tested and its development
and analysis would be an
interesting research
direction.

be to detect a decrease in the variance3 of the parameters value. Such technique
would also be applicable in stochastic gradient approaches with momentum.

a.2 basics of information theory

In his seminal 1948 paper A Mathematical Theory of Communication [156] Claude
Shannon paved the way for the birth of information theory. Its initial aim was
to quantify the amount of information that needed to be transfered through a
communication channel to convey a message. However to achieve this goal a
proper definition of information content was needed. The next subsections will
briefly present some information theoretic quantities starting with Shannon’s
entropy that we will simply call entropy.

a.2.1 Entropy

The information content [97] of the outcome x of a random variable whose
probability is given by the distribution P(x) is defined by

h(x) = log
1

P(x)
. (A.13)

An intuitive justification for it would be the following: consider a random event
with two possible outcomes a and b. If we have a strong belief that outcome a

is very likely and b is very unlikely, acquiring knowledge of outcome a would
only provide a slight "confirmation" information, thus low information content.
However acquiring knowledge of outcome b is surprising and challenges our
belief. In that sense b provides more information. Note the use of surprise or
uncertainty to denote information. Upon a random event uncertainty on the
outcome is lost and the same amount of information is gained. Uncertainty
thus relates to events yet to be observed and is transformed into information
upon data acquisition.

Shannon’s entropy [36, 97, 156], H(x), is defined as the average information
content over the probability distribution:

H(x) = −Ex[logP(x)] = −
∑

x

P(x) logP(x), (A.14)

where Ex denotes the expectation over x.

3 The Ornstein-Uhlenbeck process underlying potential is given by the loss function, the deter-
ministic motion increases the computed variance over iterates. Upon reaching the steady state
distribution the computed variance will start decreasing.
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Actually Shannon’s entropy is the only function fulfilling the following de-
sirable conditions for a measure of information:

• H(x) > 0 information cannot be negative4

• Entropy is additive. The entropy of a process is the sum of individual
entropies of it constitutive subprocesses, such that H(x,y) = H(x) +H(y)

if x and y are independent random variables.

• H(x) = 0 if and only if the process is deterministic

• The maximum entropy (or maximally uncertain) distribution corresponds
to the uniform one for which all outcomes are equally likely when no ad-
ditional constraint is imposed. Moreover, the entropy is a convex function
and there exist only one maximum entropy distribution for a given set
of constraints.

Entropy is defined up to a multiplicative constant, encoded by the choice of
the logarithm basis. Base 2 logarithm or bits is the most usual unit for entropy
as computers work with binary switches. This can also be interpreted as the
minimum number of dichotomic operations (yes/no questions) to perform to
answer a question where all answers are equiprobable.

From this definition result the definition of the joint entropy between two
random variables x and y governed by the joint probability distribution P(x,y)

H(x,y) = −
∑

x,y

P(x,y) logP(x,y), (A.15)

and conditional entropy

H(y|x) = Ex[−
∑

y

P(y|x) logP(y|x)] =
∑

x

P(x)[−
∑

y

P(y|x) logP(y|x)]. (A.16)

These definitions naturally satisfy the additivity property of entropy

H(x,y) = H(x) +H(y|x) (chain rule). (A.17)

The entropy of a process is thus the sum of the entropy of its subprocesses.

a.2.2 Kullback-Leibler Divergence and Cross Entropy

The relative entropy or Kullback-Leibler divergence is a non parametric mea-
sure of dissimilarity between two probability distributions P and Q. Often
denoted DKL(P ||Q) (of P with respect to Q) it is defined as

DKL(P ||Q) =
∑

x

P(x) log
P(x)

Q(x)
, (A.18)

4 Even a liar provides information provided we know he is lying
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with DKL(P ||Q) = ∞ if the value x occurs with non zero probability in P and
is assigned zero probability in Q.

Gibbs inequality (following Jensen’s inequality (Eq. A.4) for convex func-
tions) establishes

DKL(P ||Q) > 0, (A.19)

with equality if and only if P = Q. Although sometimes called ’KL distance’,
note that it is not a symmetric object nor does it fulfill the triangular inequality.

The Kullback-Leibler divergence DKL(P ||Q) is a measure of the inefficiency
of assuming that random events come from the distribution Q when the true
distribution is P. As briefly explained in the previous section, knowing the true
distribution P of the random variable, one could construct a code with average
description length H(P). If, instead, one used the code for a distribution Q, one
would need

H(P ||Q) = H(P) +DKL(P ||Q) (A.20)

=
∑

x

P(x) logQ(x), (A.21)

bits on average to describe the random variable. This quantity H(P ||Q) is
called cross entropy of P with respect to Q.

a.2.3 Mutual Information

Another natural quantity one can derive using the definition of entropy is
mutual information

I(x,y) = H(x) −H(x|y) (A.22)

= H(y) −H(y|x) (A.23)

= DKL(P(x,y) || P(x)P(y)). (A.24)

It corresponds to the amount of information gained (or uncertainty lost) about
x upon knowing y (or vice versa). As Eq. A.24 suggests it can also be inter-
preted as the inefficiency of assuming independent variables to describe the
joint process.

While correlation coefficients such as Spearman’s or Pearson’s ρ assume
respectively monotonic or linear relationship between two variables mutual in-
formation is much more general and can be used for characterizing dependen-
cies between the variables in any probability distribution. However as a draw-
back, while computing these correlations coefficients on a set of data points
is straightforward computing the mutual information will require binning or
fitting a correct distribution to the dataset.
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a.3 bayesian approaches and inference

Estimation of parameters from data is a central task in any research field rang-
ing from physics, chemistry, biology, medicine or even sociology. This task
arises in simple operations ranging from estimating the mean of a sample,
to building a predictive linear model via linear regression. In section A.1 I
have introduced techniques for solving optimization problems, i.e finding the
parameters estimate minimizing a provided objective loss function. Although
presented as a purely analytical problem, the value of the objective function
may depend on a set of data. This is, for instance, the case for linear regres-
sion with least squared error and more generally in any machine learning
algorithm. Although the same loss function will always provide the same solu-
tion, there is an infinite space of such functions that will provide an infinity of
different answers. Each instance of these loss function carries implicit assump-
tions. This naturally brings the following question: is there a principled way
for deriving a proper loss function or estimator?

While frequentist approaches aim at assessing the performance of a given
estimator (i.e a given loss function) on any conceivable data and consider prob-
abilities as limiting frequencies with infinite data, Bayesian inference provides
a framework for combining in a mathematical model all the observed data
and the a priori information or belief one has about the studied problem to
provide an estimator. By taking a probabilistic model Bayesian approaches
make explicit (subjective) assumptions and an estimator (or loss function) cor-
responding to these assumptions can be extracted. In this section I will briefly
present the Bayesian inference framework and reasoning.

a.3.1 Posterior, prior and likelihood

Let’s suppose we wish to study a dataset D of observations. In order to study
it we assume a mathematical model, arbitrarily broad or precise, encapsulated
in a global hypothesis H. This model is parametrized by a set of parameters θ.
These three ingredients are necessary and sufficient for a Bayesian approach
and their role can be decomposed using Bayes theorem

P(θ|D,H)
︸ ︷︷ ︸

Posterior

=

Likelihood
︷ ︸︸ ︷
P(D|θ,H)

Prior
︷ ︸︸ ︷
P(θ|H)

P(D|H)
︸ ︷︷ ︸
Evidence

, (A.25)

where the Ps are the different conditional probability distributions. The left
hand side of the equation or posterior summarizes all our knowledge about
the data and parameters. It depends on the likelihood function, summarizing
information provided by the data, weighted by the prior summarizing our sub-
jective belief for the value of a set of parameters. Evidence does not depend on
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the parameters we are interested in, and is thus a normalization constant that
we shall denote z5.

As mentioned previously Bayesian approaches are claimed subjective ap-
proaches in which our belief is encoded in the choice of the model and our a
priori belief in the model parameters value is encoded in the prior. Setting of
this prior can be done with different aims:

• Assuming the prior is not important, set a uniform prior6 or prior conju-
gate with respect to the likelihood for easier tractability of the problem.

• Prior is known and thus set to the known value.

• Subjective Bayesian approach where the prior is set by an "expert".

• Objective Bayesian: chose the least informative prior given the model.
This can be achieved for instance by choosing the prior minimizing mu-
tual information between posterior and prior. Such priors are known as
non informative or Jeffrey’s priors.

Previously I have made the dependence on the model assumptions H clear
to outline that subjectivity of any Bayesian approach not only depends on the
prior but also on the less disputed model assumptions. In fact, these model
assumptions could be fully encoded in the prior as delta peaked distributions
in the functional space to select e.g a family of distributions for our model.
Assumptions deterministically encoded in the prior can range from any scale
of assumption such as assuming i.i.d observations, a family of distributions or
the precise number of components in a mixture model. In a sense a strength of
Bayesian approaches is to make these subjective assumptions explicit. An even
bigger strength is that these assumptions need not be binary and can remain
fuzzy. In the context of model selection (e.g a family of distributions) one can
also compare the posterior probability of different models. While frequentist
predictions rely on a hard set of assumptions, a Bayesian approach could com-
bine predictions of different models weighted by their posterior probability as
a prediction 7 [97].

a.3.2 Maximum a posteriori and Maximum likelihood

From this simple definition how can we objectively design an estimator for the
parameters θ?

5 The choice of the letter z is not fortuitous and shall remind the partition function of a physical
system. Just as the partition function, the evidence is usually hard to compute as it involves
integrating over the space of parameters such that z =

∫
P(D|θ,H)P(θ|H)dθ.

6 Uniform priors can however be problematic as they are not invariant over some transformations.
A simple illustration of this is the learning of the probability of success p of a Bernouilli trial
on which we impose a flat prior P(p) = c expressing our lack of knowledge about p. Say now
that for some obscure reason the log odds ratio r = log(p/(1−p)) is easier to use than p for our
inference. The resulting prior for r with imposing a flat prior on p is then P(r) = er/(1+ er)2

is not flat although there exist a bijection between r and p [187].
7 Although if predictions of the different models are very different it is not clear if a linear

combination of these predictions would be a good predictor. Answering such a question is the
task of frequentist approaches.
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It may seen natural that the best set of parameters should be the one max-
imizing the posterior probability. However the obtained MAP estimator is not
a priori invariant under all desired transformations and discards much of the
posterior information. In theory, Bayes estimators are derived as estimators
minimizing the expectation of some loss function over the posterior distribu-
tion. When this loss function is the mean squared error the corresponding
Bayes estimator is the mean of the posterior. Still, under some regularity con-
ditions the posterior distribution is approximately normal and the MAP estima-
tor would thus be optimal too [187]. Provided a flat prior, from Eq. A.25 using
the ML estimator is the same as performing MAP estimation. Under some regu-
larity conditions ML is thus also optimal and unbiased. When such regularity
conditions are not fulfilled ML will remain asymptotically unbiased. Because of
these properties and its easier implementation we will thus use ML to perform
parameter estimation in the work presented in this manuscript.
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b.1 supplementary materials and methods

b.1.1 Blood samples

Blood samples were collected from 3 pairs of monozygotic twin female donors,
23 (donors S1 and S2), 23 (donors P1 and P2) and 25 (donors Q1 and Q2) years
old respectively. The individuals in each twin pair lived together for most of
their lives, they were also tested for absence of dangerous infections before
working with their blood (e.g. Hep C, HIV, syphilis). We also collected blood
from two 19 and 57 year old male donors, along with a 51 year old female
donor for memory and naive T-cells isolation, and a cord blood sample from
a female newborn. All donors were healthy Caucasians, blood samples were
collected with informed consent, and local ethical committee approval. The
genetic identity of the twins was checked using polymorphic Alu insertion
genotyping [99].

PBMCs were isolated from 12 ml of blood using Ficoll-Paque (Paneco, Rus-
sia) density gradient centrifugation. One third of the isolated PBMCs was
used for total RNA isolation with the Trizol reagent (Invitrogen, USA) accord-
ing to the manufacturer’s protocol. Other cells were used for CD4, CD8 and
CD45RO+ T-cells isolation.

b.1.2 CD4, CD8, 45RO+ T-cell isolation

CD4 and CD8 T-cells were isolated from PBMCs using the CD4+ and CD8+
positive selection kit (Invitrogen, USA) according to the manufacturer’s pro-
tocol. CD8 T-cells were isolated from CD4 depleted samples to maximize the
cell yield. 45RO+ cells were extracted using human CD45RO microbeads (Myl-
tenyi, USA). Naive T-cells were isolated with the CD8+ T-cell naive isolation
kit (Myltenyi, USA) according to the manufacturer’s protocol without the final
CD8 enrichment step.

Total RNA was immediately extracted from the isolated cells using the Trizol
reagent (Invitrogen).

b.1.3 TCR α and TCR β cDNA library preparation

The library preparation protocol was adapted from [100] with modifications.
The cDNA first strand was produced from the total RNA using the SmartScribe
kit (Clontech, USA) and universal primers specific for the C-segment (see
Fig. B.1A). Custom cap-switching oligonucleotides with unique molecular iden-
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tifiers (UMI) and sample barcodes were used to introduce the universal primer
binding site to the 3’ end of the cDNA molecules (see Fig. B.1 B). Each tube con-
tained 500 ng of total RNA (corresponding to approximately 500000 PBMCs),
1x SmartScribe buffer, dNTP (1 mM each), 10pcmol of BCuniR4vvshort and
TRACR2 primers (see Table S1 for sequences) and 1 µl of SmartScribe reverse
transcriptase. 5mkg of the total RNA was used for the cDNA synthesis for
each sample (10 tubes per sample, corresponding to approximately 5000000

PBMCs). The cDNA synthesis product was treated (45 min, 37C) with 1 µl
of 5u/µl UDG (NEB, USA) to digest the cap-switching oligonucleotide and
purified with the Quigen PCR purification kit. After the cDNA synthesis two
steps of PCR amplification were used to amplify the cDNA and also introduce
Illumina TruSeq adapters as well as the second sample barcode. After both
steps the PCR product was purified using the Quigen PCR purification kit
according to the manufacturer’s protocol. The first PCR step (see Fig. B.1C)
consists of 16 cycles of: 94 C for 20 sec, 60C for 15 sec, 72C for 60 sec. Each
tube contained (total reaction volume 15 µl) 1x Q5 polymerase buffer (NEB),
5 pmol of Sm1msq and RPbcj1, RPbcj2, RPacj primers, dNTP(0.125 mM each)
and 0.15 µl of Q5 polymerase. Then 1 µl of the purified PCR product was used
for the second amplification step (see Fig. B.1D) consisting of 12 cycles of: 94C
20 sec, 60C 15 sec, 72C 40 sec. Each tube contained (total reaction volume 25

µl): 1x Q5 polymerase buffer, 5 pmol of Smoutmsq and Il-bcj-ind or Il-acj-ind
primers (with sample specific indices, for beta and alpha libraries respectively,
one primer per sample), dNTP(0.125 mM each) and 0.25 µl of Q5 polymerase.
Size selection for 500-800bp fragments of the purified PCR product was per-
formed using electrophoresis in 1% agarose gel.

b.1.4 Next Generation Sequencing

cDNA libraries were sequenced on the Illumina HiSeq platform (2x100nt). Cus-
tom sequencing primer sequences are listed in Table S1. The total numbers of
sequencing reads are shown in Table S2.

b.1.5 Raw data preprocessing

All raw datasets used in this study are available online. For details about the
donors see SI Materials and Methods Section A.

Twin TCR alpha chain sequences (3 identical twin pairs):
https://files.pub.cdr3.net/pogorely/HtSyudY2lkJ78TgzUKEshYUj4/alpha.

tar

Twin TCR beta chain sequences (3 identical twin pairs):
https://files.pub.cdr3.net/pogorely/HtSyudY2lkJ78TgzUKEshYUj4/beta.

tar

Memory and naive cells TCR beta sequences for three donors aged 19, 51

and 57, and an unsorted cord blood sample:
https://files.pub.cdr3.net/pogorely/HtSyudY2lkJ78TgzUKEshYUj4/mem_

naive_cord.tar

Sample sheet containing barcode sequences and filenames of the samples:

https://files.pub.cdr3.net/pogorely/HtSyudY2lkJ78TgzUKEshYUj4/alpha.tar
https://files.pub.cdr3.net/pogorely/HtSyudY2lkJ78TgzUKEshYUj4/alpha.tar
https://files.pub.cdr3.net/pogorely/HtSyudY2lkJ78TgzUKEshYUj4/beta.tar
https://files.pub.cdr3.net/pogorely/HtSyudY2lkJ78TgzUKEshYUj4/beta.tar
https://files.pub.cdr3.net/pogorely/HtSyudY2lkJ78TgzUKEshYUj4/mem_naive_cord.tar
https://files.pub.cdr3.net/pogorely/HtSyudY2lkJ78TgzUKEshYUj4/mem_naive_cord.tar
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https://docs.google.com/spreadsheets/d/1YTBXYP8ITpaVkUx46s_DtfBlZfvIu6UdGjcde-csMy4

Sequencing data from individuals of different ages used in Fig. 5.4 is pub-
licly available in the SRA:
http://www.ncbi.nlm.nih.gov/sra/PRJNA316572

Raw sequencing data files were preprocessed with MiGEC [160], sequencing
reads were clustered by unique molecular identifiers (UMI). UMIs with less
than two reads were discarded to reduce the number of erroneous sequences.
Then sequences were processed with MiXCR [15] to determine the CDR3 po-
sition and nucleotide sequence. For the numbers of UMIs after filtering see
Table S2.

b.1.6 Learning recombination statistics

We built a generative model that describes the probability of generation of re-
combined sequences, following the theoretical framework described in [48, 103,
115]. The generation probability for each sequence is calculated as the sum over
all recombination scenarios r that can produce that sequence, Pgen(sequence) =
∑

r Prearr(r). For TCR alpha chains the model assumes the following factorized
form for a recombination scenario defined by the choice of genes (V and J),
P(V , J), deletions (delV and delJ), P(delV |V) and P(delJ|J) and insertions (ins),
P(ins):

Pα
rearr(r) = P(V , J)P(delV |V)P(delJ|J)P(ins). (B.1)

The parameters of the models, the different probabilities in the factorized
formula, were inferred by maximizing the likelihood of the observed out-of-
frame sequences given the model, using Expectation-Maximization [115]. For
alpha chains, the model was reformulated as a Hidden Markov Model, and
the parameters were learned efficiently using a Baum-Welch algorithm, as de-
scribed in [48].

For beta chains, the model describes probabilities for V, D and J choices,
with possible deletions and insertions at each of the two junctions:

Pβ
rearr(r) = P(V ,D, J)P(delV |V)P(insVD) (B.2)

×P(delDl, delDr|D)P(insDJ)P(delJ|J)

The parameters for the beta chain model were inferred directly using the
Expectation-Maximization algorithm, by enumerating all possible recombina-
tion scenarios that can produce each sequence, using the procedure described
in [103, 115].

This procedure allows us to learn the features of the recombination statis-
tics with great accuracy, in particular the distribution of number of insertions
at the junctions, even though the recombination events themselves cannot be
unambiguously be determined for each sequence because of convergent re-
combination.

https://docs.google.com/spreadsheets/d/1YTBXYP8ITpaVkUx46s_DtfBlZfvIu6UdGjcde-csMy4
http://www.ncbi.nlm.nih.gov/sra/PRJNA316572
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b.1.7 Distribution of insertions for each beta chains abundance class

We applied the procedure described in the previous section separately for each
abundance class of the beta-chain sequences. However, given the small size of
the datasets (2000 or 3000 sequences), we did not learn the full model for each
class. Instead, we used a previously inferred universal beta-chain recombina-
tion model [115] for the V,D,J gene usages and their deletion profiles, and
we learned the insertion distributions (P(insVD) and P(insDJ)) for each class
separately, while keeping the other parameters constant. The distribution of
insertions thus inferred are used to plot the results of Figs. 5.3 and 5.4 of the
main text.

It should be noted that the effect size depends on the bin size. We replicated
our analysis with different bin sizes, to show that the effect is still present (see
Fig. B.10). Larger bins lead to lower effect sizes, but also to lower errors, so the
significance of the difference in number of insertions between abundant and
non-abundant clones is robust to the choice of the bin size.

To show that our results are not specific to certain donors, we reproduced
our results shown on Fig. 5.3A for 7 additional published cord blood reper-
toires from [24], see Fig. B.11. All mean insertion distributions in all samples
follow the same trend as the one presented on Fig. 5.3.

We also show how abundance varies with ranks inside each sample pre-
sented on Fig. 5.3A on Fig. B.12. Memory clones are typically more abun-
dant than naive clones in same the individual, as was previously described
[181]. The high frequencies of the few most abundant naive clones could be ex-
plained by contamination with memory compartment on the magnetic column.
More accurate naive-memory separation method could potentially enhance the
effect seen in Fig. 5.3A.

In Fig. 5.4 we show the decay of zero-insertion clonotypes from the 2000

most abundant clones in unsorted TCR repertoires from a published dataset
of donors of various ages [24]. We hypothesise that the observed decay is due
not only to the decay of naive pool, but also to the decay of fetal clones within
the naive pool. However, a possible dramatic difference in the naive-memory
partition of these abundant clones could confound this effect. To exclude this
possibility, we estimated the naive-memory composition of 2000 most abun-
dant clones from the unpartitioned, naive, and memory datasets of the three
donors presented on Fig. 5.3A, who are of different ages. We attribute a clono-
type from the unpartitoned dataset to the memory pool if the rank of this
clone in the memory dataset was higher than in the naive one. We show that
the ratio of naive to memory clonotypes in the 2000 most abundant clones is
similar among all 3 donors, and is not decaying significantly with age: 1159

memory to 767 naive for the 19 year old donor (74 clones have undetermined
phenotype), 1313 memory to 686 naive for the 57 year old donor (1 clone has
undetermined phenotype) , and 1128 memory to 858 naive (14 clones have
undetermined phenotype) for the 51 year old donor.
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b.1.8 Inference of selection factors

In-frame sequences statistically differ from out-of-frame sequences (besides
their frameshift), because in-frame sequences are functional and have passed
thymic selection. For each sequence we defined a selection factor Q as the
ratio of the probability of observing the sequence in the in-frame set, to the
probability of recombining the sequence according to out-of-frame statistics (as
inferred above). The overal selection factor Q is assumed to be the product of
several independent factors q acting on the CDR3 length L and on the identity
of amino acid ai at each position i of the CDR3 [49]:

Q ∝ qL

L∏

i=1

qi;L(ai) (B.3)

The parameters were inferred by maximizing the likelihood with gradient as-
cent, as described in [49].

b.1.9 Data analysis

Analysis of the shared clonotypes was performed using the R statistical pro-
gramming language [133] and the tcR package [117].

b.1.10 Out-of-frame sharing prediction

To predict sharing for each individual, we generated sequences using our re-
combination model Pgen (alpha or beta), with individually inferred model pa-
rameters. Normalized sharing of the TCR sequences between two clonesets is
defined as the number of the same unique TCR nucleotide sequences observed
in both of them, divided by the product of the total numbers of unique TCR
nucleotide sequences in the two datasets.

We calculated sharing of either whole chains, or of their CDR3, defined as
the sub-sequence going from the conserved cystein at the end of the V region,
to the conserved phenylalanine in the J region.

The alpha chain results for whole-chain sharing are plotted in the main text
in Fig. 5.1, and the data shows good agreement with the model. The results
for CDR3 sharing are shown in Fig. B.2. The model systematically underes-
timates the normalized sharing by a common multiplicative factor of 1.7 for
non-twins, with a Pearson correlation coefficient of 0.8 between the data and
the model prediction. Absolute numbers of shared CDR3 sequences for alpha
chains varied from 400 to 1200.

For beta chain sequences, the prediction of out-of-frame sharing is more
difficult because of the low numbers of out-of-frame sequences in the RNA
data, which, combined to a lower mean Pgen, results in a much lower number
of shared out-of-frame sequences. We also identified and removed from the
dataset 26 out-of-frame sequences shared between more than two individuals.
These sequences are likely to arise due to reproducible aligner errors or tech-
nology artifacts – some of them contained intronic sequences, etc. Absolute
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numbers of shared beta CDR3 sequences varied from 0 to 82. Nevertheless,
the number of shared beta out-of-frame CDR3 sequences for twins exceeded
the model prediction (see Fig. B.3), confirming our hypothesis of biological
contamination during pregnancy.

b.1.11 In-frame sharing prediction

To accurately predict the normalized sharing number for in-frame nucleotide
clonotypes, we generated sequences from Pgen as we did for out-of-frame se-
quences, but weighted them by their selection factor Q to account for thymic
selection. The predicted normalized sharing number was then calculated as:

1

|S1| · |S2|

∑

s∈S1∩S2

Q(1)(s)Q(2)(s), (B.4)

where S1, and S2 are two synthetic sequence samples drawn from two models
P
(1)
gen,P(2)

gen individually learned from the out-of-frame sequences of two individ-
uals, and Q(1)(s), Q(2)(s) are selection factors learned individually from these
two individuals’ in-frame sequences. |S1| and |S2| denote the size of the two
samples. The sum runs over sequences s found in both samples.

For both the beta and the alpha chains, the prediction agrees very well with
the data (Fig. B.4 and Fig. B.5). For the beta chain, twins share more CDR3

sequences than non-twin pairs, while no such effect was observed for the al-
pha chain sequences. This fact could be explained by the much higher number
of clonotypes shared due to convergent recombination in the alpha in-frame
dataset than in the beta in-frame and alpha and beta out-of-frame datasets.
Excess of shared CDR3 nucleotide sequences due to biological contamination
in twins is lower than the amount of convergent recombination noise in the al-
pha in-frame shared CDR3 nucleotide sequences. Absolute numbers of shared
in-frame CDR3 sequences for alpha chains varied from 30000-50000 sequences
depending of the pair, and 5000-9000 for beta chains.

b.1.12 Mixed model inference

We hypothesized that the larger amount of zero insertion clonotypes is respon-
sible for the increase in sharing between the most abundant clonotypes of the
out-of-frame repertoires of unrelated individuals. To test this hypothesis, we
constructed a mixture model for each abundance class, each class containing
2000 clonotypes ranked by decreasing abundance.

We assume that abundance class C contains a fraction F(C) of clonotypes
generated with zero insertions, and 1− F(C) of regular clonotypes. Obtaining
F(C) is not straightforward because regular clonotypes can also zero insertions.
In addition, the number of insertions cannot be determined with certainty – for
example, a deletion followed by an insertion matching the germline sequence
can be wrongly interpreted as a case of no insertions.

To circumvent this problem, we determine for each abundance class a sim-
pler quantity to estimate, namely the fraction F0(C) of clonotypes that are con-
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sistent with zero insertions, i.e. that can be entirely matched to the germline
genes. Because of the reasons outlined above, F0(C) is not equal to F(C). How-
ever, F0(C) is a linear function of F(C), F0(C) = A+ BF(C). Therefore, if we
can generate synthetic sequences such that their F0(C) agrees with data, then
we are guaranteed that their F(C) will coincide with the data as well, even if
we do not know the explicit mixing parameters F(C).

To obtain this mixture, we generated many sequences from our recombi-
nation model Pgen. To determine which generated sequences were consistent
with zero insertions, we aligned them to all possible V and J genomic tem-
plates. We then separated out the sequences consistent with zero insertions
from the others, and created, for each abundance class C, and artificial dataset
with a fraction F0(C) of such sequences, and 1− F0(C) of the other sequences
(not consistent with zero insertions), where F0(C) is given by the data.

We then calculated normalized sharing in the synthetic data by including
an increasing number of abundance classes, starting with the most abundant
ones, and compared to data in Fig. 5.5.

b.2 supplementary results

b.2.1 Distinctive properties of shared clonotypes between twins

Shared clonotypes in unrelated individuals appear in the process of conver-
gent recombination. Sequences with a higher Pgen are thus more likely to be
shared, and we can calculate accurately the distribution of Pgen among shared
sequences (see Fig. 5.2). We observe that sequences shared between twins vi-
olate this prediction, consistent with our hypothesis that some of these se-
quences are due to biological contamination. To confirm this, we used a se-
quence feature that is negatively correlated with Pgen [115]: the number of
insertions in the CDR3 region. The number of insertions in CDR3 sequences
shared between unrelated individuals was indeed lower (Fig. B.6) than the
mean number of insertions in non-shared sequences. However, the mean num-
ber of insertions in sequences shared between twins (black boxes) is higher
than in unrelated individuals, p = 1.83 · 10−8, two-sided t-test. The same and
even stronger effect is observed for memory (CD45RO+) cells, p < 10−16, two-
sided t-test (Fig. B.7).

Our theory also predicts that twins should have an excess of zero-insertion
shared clonotypes, relative to non-twins. To check for this, we compared the
normalized sharing number of zero-insertion out-of-frame clonotypes in the
data and according to the model (see Fig. B.9). Although we observe higher
sharing numbers in twins, this effect is made non-significant by high levels
of noise. Since zero-insertion clonotypes have low diversity, these normalized
sharing numbers are much higher than their generic counterpart of Fig. 5.1.
In other words, convergent recombination is much more likely, masking the
effects of fetal contamination.

Finally, the mean clone size of low-probability (Pgen < 10−10), twin-shared
sequences from Fig. 5.2, 8.8±0.7, is significantly larger than that of generic low-
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probability (Pgen < 10−10) clones from that individual, 1.83± 0.013, providing
another evidence of their fetal origin.

b.2.2 The phenotype of beta chain out-of-frame shared clonotypes

Two individuals displayed the most prominent excess of shared beta out-of-
frame sequences. Since the model prediction for the number of shared se-
quences is close to zero we suppose that most of these shared sequences did
not arise due to convergent recombination. These out-of-frame clones bear a
second functional allele (otherwise they would have been filtered by selection
in a thymus), and they also should have either the CD4 or the CD8 pheno-
type. To attribute these clonotypes a phenotype we separately sequenced CD4,
CD8 and CD45RO positive subsets for the two donors and searched for the
84 out-of-frame CDR3s shared between the unpartitioned out-of-frame reper-
toires. 44 CDR3s were found in the CD8 subsets of both individuals, and only
5 sequences were found in the CD4 subsets of both individuals. 25 out of the
44 CD8 and 3 out of the 5 sequences were also found in the 45RO+ compart-
ment. Only 3 sequences were mapped discordantly (e.g. CD4 in one twin and
CD8 in the second twin), and 2 sequences were absent from the CD4, CD8 and
CD45RO compartments of both individuals. For the other 32 sequences the
CD4/CD8 status could be determined only for one individual (most probably
due to the sequencing depth limitations). In case of convergent recombination
it is unlikely that shared nonproductive sequences would have the same phe-
notype in different donors. The phenotypic study thus confirms the biological
contamination hypothesis.

b.2.3 Our results are reproducible using previously published data

We tested the robustness of our results on previously published twin data
from [206]. We observed the same excess of low-probability shared sequences
in twins compared to unrelated individuals as in Fig. 5.2 (see Fig. B.8).These
data also allowed us to control for possible experimental contamination. One
of the twin pairs that participated in the present study was sequenced three
years ago, using a different technology described in [206], excluding the pos-
sibility of any contamination between the old and new samples. Out of 84

beta out-of-frame clonotypes shared between two new twin samples, 59 were
also shared between the new sample of one twin, and the old sample of the
second twin. Therefore the out-of-frame sequences shared between the twins
are reproducible and could not be result of experimental contamination with
PCR-products or RNA.

b.2.4 Invariant T-cell alpha clonotypes in the data

It was previously shown that mucosal-associated invariant T-cells (MAIT) and
natural killer T-cells (NKT) have an invariant alpha chain with very low diver-
sity [69]. Specific V-J combinations are chosen (TRAV10/TRAJ18 for NKTs and
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TRAV1-2/TRAJ33 for MAIT) and no nucleotides are inserted in the recom-
bination process of these clonotypes. To see whether these clonotypes could
potentially confound our analysis, we searched for published NKT and MAIT
sequences in our datasets. 25 out of the 27 known MAIT sequences were found
in the datasets at least once (21 out of them in the all six individuals), and 8 out
of the 13 known NKT sequences (2 of them in the all six individuals). MAIT
and NKT sequences are present in our data, but only a few shared sequences
could be explained by them, so we do not exclude MAIT and NKT alpha se-
quences from the analysis. The majority of shared zero insertion sequences
could thus not be attributed to known MAIT or NKT subsets.
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Figure B.1: Library preparation protocol. A) cDNA first strand synthesis for alpha
and beta chains starts from specific primers in the C-segment conserved
region. B) The template switching effect was used to introduce a universal
primer binding site to the 3’cDNA end. The SMART-Mk sequence con-
tains a sample barcode (black ellipse) for contamination control. C) and
D) In two subsequent PCR steps we introduce the TruSeq adapter se-
quences along with Illumina sample barcodes (black ellipse). E) The re-
sulting cDNA molecule is double barcoded, contains a Unique Molecu-
lar Identifier (UMI) and is suitable for direct sequencing on the Illumina
HiSeq platform with the custom primers.
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Figure B.2: Number of shared out-of-frame alpha TCR CDR3 clonotypes reported be-
tween all 15 pairs of 6 donors consisting of 3 twin pairs (ordinate) com-
pared to the model prediction (abscissa). To be able to compare datasets of
different sizes, the sharing number was normalized by the product of the
two cloneset sizes. The outlying three red circles represent the twin pairs,
while the black circles refer to pairs of unrelated individuals. Error bars
show one standard deviation. The diagonal line is a linear fit for unrelated
individuals, of slope 1.7.
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Figure B.3: Number of shared out-frame beta TCR CDR3 clonotypes reported between
all 15 pairs of 6 donors consisting of 3 twin pairs (ordinate) compared to
the model prediction (abscissa). The three outlying red circles represent the
twin pairs, while the black circles refer to pairs of unrelated individuals.
Error bars show one standard deviation.
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Figure B.4: Number of shared in-frame beta TCR CDR3 clonotypes reported between
all 15 pairs of 6 donors consisting of 3 twin pairs (ordinate) compared to
the model prediction (abscissa). To be able to compare datasets of different
sizes, the sharing number was normalized by the product of the two clone-
set sizes. The three outlying red circles represent the twin pairs, while the
black circles refer to pairs of unrelated individuals. Diagonal is equality
line. Error bars show one standard deviation.
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Figure B.5: Number of shared in-frame alpha TCR CDR3 clonotypes reported between
all 15 pairs of 6 donors consisting of 3 twin pairs (ordinate) compared to
the model prediction (abscissa). To be able to compare datasets of different
sizes, the sharing number was normalized by the product of the two clone-
set sizes. The three red circles represent the twin pairs, while the black
circles refer to pairs of unrelated individuals. Diagonal is equality line.
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Figure B.6: Mean number of insertions in shared sequences in alpha out-of-frame
repertoires.
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Figure B.7: Mean number of insertions in shared sequences in alpha out-of-frame
repertoires of CD45RO+ (memory) cells.
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Figure B.8: Reproducibility of our results using previously published data. Distribu-
tion of Pgen – the probability that a sequence is generated by the VJ recom-
bination process – for shared out-of-frame TCR alpha clonotypes between
individual A1 from [206] and the other five individuals. While the distri-
bution of shared sequences between unrelated individuals (red curves) is
well explained by coincidental convergent recombination as predicted by
our stochastic model (blue curve), sequences shared between two twins
(green curve) have an excess of low probability sequences: 68 sequences
with log10 Pgen < −10. For comparison the distribution of Pgen in regular
(not necessarily shared) sequences is shown in black.
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Figure B.9: Normalized sharing of out-of-frame zero insertion clonotypes. Number
of shared out-frame alpha zero insertion TCR CDR3 clonotypes reported
between all 15 pairs of 6 donors consisting of 3 twin pairs (ordinate) com-
pared to the model prediction (abscissa). The three red circles represent the
twin pairs, while the black circles refer to pairs of unrelated individuals.
Diagonal is equality line. Error bars show one standard deviation.
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Figure B.10: Dependence of mean insertion number on rank holds for different bin
sizes. Mean numbers of insertions were obtained by analysing subse-
quent groups of 1000 (A) and 4000 (B) sequences of decreasing abun-
dances, as in Fig. 5.3A from the main text. (C,D,E) are results for ageing
datasets reproduced for the top 1000, 2000 and 4000 clonotypes. Solid
lines are independent fits to exponential decays (see main text Methods).
Decay rate parameters for top 1000 and top 4000 clones are 0.0218 yr−1

and 0.0184 yr−1 respectively, within one standard error of the estimate
for the top 2000 clones, 0.0272± 0.0091 yr−1.
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Figure B.11: The dependence between clone abundance and mean insertion number
is robust across cord blood donors. Mean numbers of insertions were ob-
tained by analysing groups of 3000 sequences of decreasing abundances
as in Fig. 5.3A, for 7 independent published cord blood samples from
[24]. A similar decreasing trend is observed for all samples.
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Figure B.12: Rank-abundance dependencies. Here we show the dependence of the
clone abundance on its abundance rank in samples from Fig. 5.3A. Mem-
ory clones are typically larger than the naive and cord blood clones of
same rank, possibly due to the history of clonal expansions.
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SMART-Mk cap-switching oligonucleotides

MK-108 CAGUGGUAUCAACGCAGAGUACNNNNNNUAATGCUNNNNNNUCTT(rG)(rG)(rG)(rG)

MK-248 CAGUGGUAUCAACGCAGAGUACNNNNUNNTGGCANNUNNNNNNUCTT(rG)(rG)(rG)(rG)

MK-253 CAGUGGUAUCAACGCAGAGUACNNNNUNNTTATGNNUNNNNNNUCTT(rG)(rG)(rG)(rG)

MK-103 CAGUGGUAUCAACGCAGAGUACNNNNNNUAACGGUNNNNNNUCTT(rG)(rG)(rG)(rG)

MK-257 CAGUGGUAUCAACGCAGAGUACNNNNUNNTTGCGNNUNNNNNNUCTT(rG)(rG)(rG)(rG)

MK-143 CAGUGGUAUCAACGCAGAGUACNNNNNNUCAGATUNNNNNNUCTT(rG)(rG)(rG)(rG)

MK-135 CAGUGGUAUCAACGCAGAGUACNNNNNNUATGCAUNNNNNNUCTT(rG)(rG)(rG)(rG)

MK-227 CAGUGGUAUCAACGCAGAGUACNNNNUNNTAACCNNUNNNNNNUCTT(rG)(rG)(rG)(rG)

cDNA synthesis primers

BC_uni_R4vvshort TGGAGTCATTGA

TRAC_R2 ACACATCAGAATCCTTACTTTG

PCR I step primers

Sm1msq GAGATCTACACGAGTCAGCAGTGGTATCAACGCAG

RPbcj1 CGACTCAGATTGGTACACCTTGTTCAGGTCCTC

RPbcj2 CGACTCAGATTGGTACACGTTTTTCAGGTCCTC

RPacj CGACTCAAGTGTGTGGGTCAGGGTTCTGGATAT

PCR II step primers XXXXXX stands for the Truseq index

Sm-out-msq AATGATACGGCGACCACCGAGATCTACACGAGTCA

Il-bcj-indX CAAGCAGAAGACGGCATACGAGATXXXXXXCGACTCAGATTGGTAC

Il-acj-indX CAAGCAGAAGACGGCATACGAGATXXXXXXCGACTCAAGTGTGTGG

Custom sequencing primers

IL-AIRP ATATCCAGAACCCTGACCCACACACTTGAGTCG

IL-IRP-b1 GAGGACCTGAAAAACGTGTACCAATCTGAGTCG

IL-IRP-b2 GAGGACCTGAACAAGGTGTACCAATCTGAGTCG

IL-RP1-msq ACACGAGTCAGCAGTGGTATCAACGCAGAGTAC

IL-RP2-b1 CGACTCAGATTGGTACACGTTTTTCAGGTCCTC

IL-RP2-b2 CGACTCAGATTGGTACACCTTGTTCAGGTCCTC

IL-ARP2 CGACTCAAGTGTGTGGGTCAGGGTTCTGGATAT

Table B.1: List of primers used
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Alpha chain

Sample_id Number of reads Number of UMI Number of unique CDR3nuc

P1_CD4 6566952 430915 248457

P1_CD8 4620425 378044 162607

P1_unpart 9571058 574439 348419

P1_45RO 4099026 431529 173883

P2_CD4 4269624 941176 432476

P2_CD8 4040615 561437 204094

P2_unpart 8213565 873546 471850

P2_45RO 4608991 653326 228429

Q1_CD4 3894188 653649 277621

Q1_CD8 3201067 589757 147918

Q1_unpart 8360990 1091786 456024

Q1_45RO 3587344 687916 201218

Q2_CD4 3877893 828573 315922

Q2_CD8 3880048 825539 158954

Q2_unpart 9159719 1215155 473672

Q2_45RO 3890664 834828 224276

S1_CD4 4655514 734158 360161

S1_CD8 1009038 219433 105232

S1_unpart 3191701 621723 351923

S1_45RO 4977466 495057 189739

S2_CD4 11727155 761495 348109

S2_CD8 12436797 468345 190534

S2_unpart 11135704 610105 336177

S2_45RO 9064981 633362 228579

Beta chain

Sample_id Number of reads Number of UMI Number of unique CDR3nuc

P1_CD4 3757755 759270 235040

P1_CD8 3565384 517737 204963

P1_unpart 7429601 955106 444708

P1_45RO 4036708 695379 195023

P2_CD4 3042278 449048 475545

P2_CD8 3438238 477696 241048

P2_unpart 8144134 817306 624074

P2_45RO 4598733 578663 249001

Q1_CD4 3694288 673037 386005

Q1_CD8 4586088 758201 237511

Q1_unpart 6511237 1060251 581114

Q1_45RO 3171012 664732 216879

Q2_CD4 3066472 605062 351640

Q2_CD8 3389029 691438 174552

Q2_unpart 7256515 1241753 644594

Q2_45RO 3110044 667997 214628

S1_CD4 3510759 722883 423689

S1_CD8 3162597 489393 248236

S1_unpart 7019324 1181194 673755

S1_45RO 3363725 574876 218185

S2_CD4 4034384 717023 410283

S2_CD8 4267632 546529 258832

S2_unpart 7093628 875357 521882

S2_45RO 2848644 526765 209807

Memory_aged19 7486248 424156 149292

Naïve_aged19 9166800 932396 697091
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Sample id fraction of 0 ins in top 2000 Naive,% Age, years

A2-i132 0.015056135255 73.7 6

A2-i131 0.010037196444 43 9

A2-i136 0.027691639038 40 10

A2-i129 0.0108412940125 57 11

A2-i134 0.021007545075 68 16

A2-i133 0.0119257041822 60.9 16

A4-i194 0.013765206508 55 20

A4-i195 0.0119673129492 59 21

A4-i191 0.01637900271 45 22

A4-i192 0.012716977224 56 24

A4-i189 0.012839842368 44 25

A6-I201ob 0.0091925381272 NA 30

A3-i110 0.0078554903232 36.4 34

A3-i101 0.0107838068688 55 36

A4-i101 0.0090257537105 27 36

A4-i102 0.00628983345724 27.6 37

A3-i107 0.00851643362094 43 39

A4-i107 0.0064344051544 26 39

A3-i106 0.016159136094 39.4 43

A3-i102 0.0107591339774 27.3 43

A4-i110 0.018164859228 40 43

A4-i106 0.00642081990976 31 43

A5-S23 0.0046042762969 21.3 50

A5-S24 0.0061143105585 29.9 50

A6-I160 0.008621670788 38.9 51

A5-S21 0.0086245934928 51.3 51

A6-I215ob 0.00819076572358 NA 51

A5-S22 0.00695571384444 48.5 51

A6-I150 0.0061129801278 NA 51

A5-S20 0.00387005779589 25 51

A5-S19 0.0080402564192 41.2 55

A4-i185 0.0085319088075 29.6 61

A4-i186 0.00532914538306 14.6 61

A4-i184 0.00405847825812 21 61

A4-i188 0.00663226556694 18 61

A4-i128 0.0058717051432 23 62

A4-i125 0.00476704046791 4.5 64

A4-i124 0.00394006128853 16.3 66

A2-i141 0.0060990185169 30 71

A2-i140 0.0081195988401 47 73

A2-i138 0.00507840452028 6.7 74

A2-i139 0.008749966888 28.2 75

A4-i122 0.00606575047668 33 85

A3-i145 0.004749303571 37 86

A4-i132 0.0034771649962 14.5 87

A4-i183 0.00723588404502 24.6 87

A3-i150 0.0037069726895 13.3 87

A6-I214ob 0.0046188525124 21 88

A5-S10 0.007023235658 NA 89

A4-i118 0.00512286685575 54 89

A4-i127 0.005589445878 12.7 90

A5-S9 0.00642820638494 26.5 90

A6-I211ob 0.00432554146357 8.4 91

A5-S8 0.00421932231855 4.5 92

A5-S7 0.0078096377085 4.7 92

A6-I210ob 0.00368734455504 7.4 92

A6-I208ob 0.0045677109953 8.7 93

A5-S4 0.0046450251048 30.8 93

A6-I207ob 0.0044350512973 27.6 94

A6-I206ob 0.0061812657375 6.2 95

A6-I205ob 0.00481739413682 7.5 95

A5-S3 0.0040549739527 12.4 98

A6-I204ob 0.00431740407138 10.3 99

A5-S2 0.00486991171424 15.5 100

A5-S1 0.00541415235339 NA 103

Table B.3: Ageing data used for Fig. 4 and exponential decay fits. Percentage of the
naive T-cells defined using flow cytometry, see [23] for details.
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c.1 supplementary information

c.1.1 Data and software

c.1.1.1 Genomic templates

We used custom genomic templates derived from the IMGT database [93]. TCR
alpha V and J genomic templates were taken from the IMGT human database.
For TCR beta V, D and J genes we used curated genomic templates from [115].
BCR heavy chain V, D and J genes were taken from the customized genomic
templates used in [50]. For software comparison we used default genomic tem-
plates provided with Partis and MiXCR.

c.1.1.2 Alignments

Initial alignments to germline genes were performed using the Smith-Waterman
algorithm [163], with scores of 5 for matching base pairs, -14 for mismatches,
and a 50 gap penalty. Alignments with a score below the following gene de-
pendent threshold were discarded: 50 for TRBV, 0 for TRBD, 10 for TRBJ, 20 for
TRAV, 10 for TRAJ, 50 for IGHV, 40 for IGHD, 10 for IGHJ. We also discarded
alignments whose score fell below the maximum alignment score (found for
this read and segment type), minus the following variable range: 55 for TRBV,
35 for TRBD, 10 for TRBJ, 55 for IGHV, 20 for IGHJ.

The alignment offset (the index of the nucleotide on the read to which the
first letter of the undeleted genomic template is aligned) was constrained de-
pending on known primer locations on the J gene.

c.1.2 Generating synthetic sequences

Synthetic sequences are generated by randomly drawing scenarios of recom-
bination from the probability distribution in Eq. 3.1 or 3.2. In order to fit the
data, the resulting sequences are then cut to mimic the sequencing process (e.g.
fixed starting point and fixed read length).

c.1.3 Comparison to other software

We benchmarked our method against MiXCR 2.0.2 [15] – a commonly used
deterministic alignment method. We used the MiXCR sequence assignment to
compute the frequency of gene usage, insertion length, deletions and obtain
the distributions shown in Fig. C.8. We also compared to Partis [135] – a re-
cent HMM based model of recombination. Since Partis uses a Viterbi learning
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algorithm, we used the most likely assignments it outputs to compute the cor-
responding probability distribution shown in Fig. C.8. Since Partis is designed
to handle BCRs we assessed its performance on the BCR dataset only.

c.2 supplementary figures
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Figure C.1: Distribution of the processing time per sequence. Shows the processing
time for finding the Most Likely Scenario Only (MLSO) and to evaluate
all scenarios (full) for the different chains. Histograms were computed on
20000 sequences for each chain on a single core of an Intel(R) Xeon(R) CPU
E5-2680 v3 2.50GHz processor running code compiled with gcc (Debian
4.9.2-10). We benchmarked IGoR’s performance for evaluating possible re-
combination scenarios on real data sequences used to infer the models
presented in the main text. We used 60bp TCR β sequences for bench-
marking since the difficulty for finding the correct V and J for alignment
is higher. Finding the Most Likely Scenario Only(MLSO) is on average 3×
faster than evaluating all possible scenarios. Restricting possible scenarios
to deterministically assigned V and J genes is on average 6× faster(data
not shown).
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Figure C.2: Tested on simulated data with a known underlying model Igor con-
verges to the true distribution for different error rates. We show inser-
tion and deletion distributions obtained from 60bp TCR generated sam-
ples of various sizes and with various error rates, to underline qualitative
differences hidden by the Kullback-Leibler divergence shown in Fig. 3.4
and Fig. C.5.
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Figure C.4: Gene usage in TRB mRNA vs DNA data. We plot the marginal gene
usage averaged over conditional dependencies for V, D and J genes re-
spectively inferred using IGoR from mRNA 100bp (red) and DNA 60bp
(blue) technology datasets. We observe a higher inter-method than inter-
individual variability.
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Figure C.5: Synthetic sampling DKL breakup Kullback-Leibler divergence
(DKL(inferred || true)) in bits between models inferred on various
sample sizes of sequences with various error rates and the ground truth
decomposed for the different model components. All components reach a
small divergence value for sufficiently large sample sizes.
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Figure C.6: A probabilistic assignment approach is crucial for TCRs. Equivalent of
main text Fig. 3.5b for 30000 60bp TCRs. This figure shows the distribu-
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to least likely) to include the true scenario with 50% (blue), 75% (green),
90% (red), or 95% (cyan) confidence. The shorter read length compared to
130bp BCRs entail a higher uncertainty on the V gene identity, for which
a higher number of scenarios must be considered.
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Figure C.7: Assignment performance on sequences without palindromic insertions
We have shown in main text Fig. 3.5c the ability of MiXCR, Partis and
IGoR to predict the correct scenario of recombination. Since Partis does
not model palindromic insertions we here present the performance of the
three software one sequences that were generated without any. Although
Partis’ prediction is improved and reaches 7.4% close to MiXCR’s 9.8%
accuracy, both remain lower than IGoR’s 26.5% correct predictions.
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Figure C.8: Comparison of distributions obtained from different softwares. MiXCR
performing deterministic alignments and Partis Viterbi learning we used
the output assignments to compute the corresponding recombination
statistics. We plot them along with IGoR’s distribution obtained from our
maximum likelihood approach. Note that for ease of presentation we show
distributions averaged over conditional dependences. From the two top
panels we observe that Partis and MiXCR overestimate the frequency of
low number of non templated insertions. Gene usage is mostly consistent
between methods. In the four bottom panels, negative number of deletions
denote palindromic insertions. We observe that the three methods obtain
qualitatively different marginal distribution of number of deletions.
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Figure C.9: Data TRB D2-J association. As we have shown the D,J pairing rule for
TCRs on synthetic data in main text Fig. 3.5D, we plot here the distri-
butions P(D2|J) obtained on real 100bp TCR mRNA data for IGoR and
MiXCR. Again, IGoR is able to capture the physiological exclusion be-
tween D2 and J1 while MiXCR is not.
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Figure C.10: Inference of the 7mer hypermutation model on synthetic sequences. In
order to assess the validity of our method we generate synthetic BCRs
sequences from a heavy chain model learned on naive data sequences.
We then generate Poisson distributed errors on the sequences by simu-
lating mutations at each base pair by a Bernouilli process according to
the hypermutation model learned on the V gene of memory sequences.
We then cut the sequences in 130bp reads in order to mimic real data
sequences. The results of this experiment shows that the model can be
perfectly inferred on V and D genes while the scatter on J gene is higher.
This can be explained by the limited number of n-mers observed on J
gene since sequences were cut to mimic sequencing from a primer in the
J.
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Figure C.11: Inference of the hypermutation model on real non productive memory
BCR sequences. a, b and c compare the position weight matrices inferred
on respectively V, D and J genes for different n-mer length. For all sizes
and gene the inferred contributions are extremely reproducible from an
individual to the other. d Comparison of the overall mutational load on
different individuals and gene for different n-mer size. This overall mu-
tational load varies from individual to individual and within the locus. e
and f Comparison between contributions inferred on different genes. We
observe weaker inter gene correlations than the one observed for inter
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Abstract
An individual’s adaptive immune system needs to face

repeated challenges of a constantly evolving environment

with a virtually infinite number of threats. To achieve this

task, the adaptive immune system relies on large diver-

sity of B-cells and T-cells, each carrying a unique recep-

tor specific to a small number of pathogens. These re-

ceptors are initially randomly built through the process

of V(D)J recombination. This initial generated diversity

is then narrowed down by a step of functional selec-

tion based on the receptors’ folding properties and their

ability to recognize self antigens. Upon recognition of

a pathogen the B-cell will divide and its offsprings will

undergo several rounds of successive somatic hypermu-

tations and selection in an evolutionary process called

affinity maturation.

This work presents principled probabilistic approaches

to infer the probability distribution underlying the recom-

bination and somatic hypermutation processes from high

throughput sequencing data using IGoR - a flexible soft-

ware developed throughout the course of this PhD. IGoR

has been developed as a versatile research tool and

can encode a variety of models of different biological

complexity to allow researchers in the field to charac-

terize evermore precisely immune receptor repertoires.

To motivate this data-driven approach we demonstrate

that IGoR outperforms existing tools in accuracy and es-

timate the sample sizes needed for reliable repertoire

characterization. Finally, using obtained model predic-

tions, we show potential applications of these methods

by demonstrating that homozygous twins share T-cells

through cord blood, that the public core of the T cell

repertoire is formed in the pre-natal period and finally

estimate naive T cell clone lifetimes in human.

Keywords
biophysics, immunology, inférence, V(D)J recombination,

hypermutations

Résumé
Le système immunitaire de chaque individu doit faire

face à des agressions répétées d’un environnement en

constante évolution, constituant ainsi un nombre de men-

aces virtuellement infini. Afin de mener ce rôle à bien, le

système immunitaire adaptatif s’appuie sur une énorme

diversité de lymphocytes T et B. Chacune de ces cel-

lules exhibe à sa surface un récepteur unique, créé aléa-

toirement via le processus de recombinaison V(D)J, et

spécifique à un petit nombre de pathogènes seulement.

La diversité initiale générée lors de ce processus de re-

combinaison est ensuite réduite par une étape de sélec-

tion fonctionnelle basée sur les propriétés de repliement

du récepteur ainsi que ses capacités à interragir avec

des proteines du soi. Pour les cellules B, cette diver-

sité peut être à nouveau étendue après rencontre d’un

pathogène lors du processus de maturation d’affinité du-

rant lequel le récepteur subit des cycles successifs d’hypermutation

et sélection.

Ces travaux présentent des approches probabilistes visant

à inferrer les distributions de probabilités sous-tendant

les processus de recombinaison et d’hypermutation à

partir de données de séquençage haut débit. Ces ap-

proches ont donné naissance à IGoR, un logiciel polyva-

lent dont les performances dépassent celles des outils

existants. En utilisant les modèles obtenus comme base,

je présenterai comment ces derniers peuvent être util-

isés afin d’étudier le vieillissement et évolution du réper-

toire immunitaire, la présence d’emprunte parentale lors

de la recombinaison V(D)J ou encore pour démontrer

que les jumeaux échangent des lymphocytes au cours

de la vie fœtale.

Mots Clés

biophysique, immunologie, inférence, recombinaison V(D)J,

hypermutations
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