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Novembre 2017



2

Acknowledgement

This work could not have been accomplished without the help of people I was in contact

with from the beginning until now. The following lines are dedicated to them, I hope no one is

left unmentioned.

Firstly, I would like to express my sincere gratitude to my advisor Jean-Régis Angilella who

offered me a chance to be his student, to work with him during the time in Cherbourg. To be

honest, before coming to France, I was not familiar with Fluid Mechanics. If it was not him to

tell me ’you are here to learn, you can do it’ , I would have quitted. I do appreciate his patience,

his guidance and continuous support. I’ve learned a lot from him, not only from his fruitful

knowledge in common and specific, but also his behaviour of a gentleman. My appreciation also
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Résumé

Les travaux présentés dans ce manuscrit portent sur les courants et le transport de matière

solide en suspension, au voisinage de grandes structures immergées en eau peu profonde. Nous

avons focalisé notre étude sur le cas de cages d’aquaculture installées dans la rade de Cher-

bourg. Situées dans une zone de fort courant, elles impactent leur environnement en modi-

fiant l’écoulement et la turbidité locale. En dépit de nombreuses études déjà disponibles sur

l’impact hydrodynamique de tels obstacles, de nombreuses questions se posent encore concer-

nant l’écoulement sous la cage, la production de turbulence, l’érosion du sol et la remise en

suspension de sédiments, ainsi que le devenir des déchets produits par la cage. Nous avons

choisi de développer trois approches complémentaires pour apporter des éléments de réponse

à ces questions. La thèse débute par une étude purement théorique de l’hydrodynamique au

voisinage d’un obstacle immergé, assimilé à un milieu poreux, et dans une géométrie simplifiée.

Ce modèle bi-dimensionnel, dans le plan vertical, donne de premiers ordres de grandeurs con-

cernant la chute de pression motrice le long du courant, l’accélération du fluide sous la cage, la

production de turbulence. Cette étude est suivie d’une analyse numérique de ce même modèle,

dans laquelle certaines approximations seront levées. En particulier, le modèle numérique per-

met de considérer des cages plus imperméables que celles analysées par le modèle théorique. Il

est cependant limité en nombre de Reynolds, et a été appliqué avec des échelles réduites. Ce

modèle numérique a permis d’analyser le lien direct entre le coefficient de trâınée effectif de la

cage et diverses quantités-clés : le débit à travers la cage, la chute de pression le long du courant,

la production de turbulence et l’apparition d’une zone de recirculation à l’arrière de l’obstacle.

Ce dernier effet, visible seulement pour des cages très imperméables, a un impact notable sur le

transport de sédiments et d’effluents : lorsque l’arrière de la cage devient une zone morte (zone

de recirculation), l’essentiel du débit passe au dessous, ce qui crée de fortes survitesses et produit

de la turbulence. Celle-ci peut alors entrâıner des particules indésirables dans la zone morte, ce

qui augmente notablement la complexité de leurs trajectoires et retarde leur évacuation. Enfin,

ces études théoriques ont été complétées par des mesures vélocimétriques et turbidimétriques à

l’amont et à l’aval d’une grande cage installée dans la rade de Cherbourg. Celles-ci confirment

la présence d’une survitesse en provenance du dessous de la cage, comparable à celle prédite

par le modèle théorique. Dans le cas d’une cage très peu perméable, la persistence d’une forte

turbidité a été mesurée à l’aval de celle-ci, en accord qualitatif avec les simulations numériques.
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Abstract

This manuscript presents investigations of current and sediment transport in the vicinity of

large immersed structures in shallow water flows. It focuses on aquaculture cages installed in

the roadstead of Cherbourg. Being located in a high stream zone, these obstacles have a non-

negligible effect on currents as well as turbidity. In spite of numerous references on this topic,

many questions still arise concerning the environmental impact of such objects. Quantitative

information are still needed about the flow below the cage, turbulence production, erosion of

the sand bed, sediments resuspension, and evacuation of effluents. To deal with these open

questions, we have chosen to develop three complementary approaches. The thesis starts with an

analytical study of the flow in a simplified two-dimensional model containing a large rectangular

porous structure. Only the motion in the vertical mid-plane of the obstacle is considered.

This preliminary model provides estimations of various dynamic quantities, like the velocity

increase below the cage, the decay of piezometric pressure along the stream, and turbulence

production. Then follows a numerical analysis of the very same flow, based on less stringent

approximations. Because of the high cost of computations, simulations have been done at a

reduced scale. Nevertheless, they confirm most of the findings of the analytical approach for

very permeable cages, and provide crucial information also about weakly permeable cages which

were out of reach of the analytical model. In particular, the formation of a recirculation cell

behind such cages, together with turbulence production, have been studied with the numerical

model. This effect has been observed to affect sediment and effluent transport: when the flow at

the rear of the cage takes the form of a cell with closed streamlines, the cage can be thought of

as closed and most of the flow passes below. This creates large velocity gradients and produces

turbulence which significantly increases the dispersion of sediments and effluents. These particles

are then likely to be captured for some time in the cell, instead of being evacuated away. In

addition to these theoretical approaches, in-situ current and turbidity measurements have been

performed upstream and downstream of a large cage immersed in the roadstead of Cherbourg.

They confirm the existence of a fast stream emerging from below the cage. Vertical streamwise

velocity profiles have been shown to agree with theoretical ones, in the case of a very permeable

cage. Also, large turbidity levels have been recorded at the rear of a weakly permeable cage, in

qualitative agreement with simulations.
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Chapter 1

Introduction

This part of the thesis proposes general information about aquaculture activities in

coastal flows. The environmental impact of these activities is discussed, and informa-

tion are given about the hydrodynamics of fish cages in strong flows. The objectives

of the thesis are then presented.

1.1 Context and general considerations

Nowadays, more and more industrial activities take place in coastal areas to take advantage of

coastal flow potentials. Therefore, the so called anthropic pressure is expected to grow in the

next decades. To quote but a few examples, the environmental impact of shorelines, marine

works, harbor traffic, marine energy facilities, and food industry is clearly unavoidable.

Aquaculture also has an impact on environment, and is in return very sensitive to environ-

mental conditions (see for example Holmer & Kristensen (1994) [48] ; Doglioli et al. (2004) [25] ;

Naylor et al. (2005) [64]). As a matter of fact, fish cages are strongly affected by the quality of

water, the concentration and type of suspended sediments, and the intensity of flows. They are

generally installed in zones where streams naturally bring clean water and drive effluents away.

These effluents (faeces, uneaten food, etc.) are produced in very large amounts and can also af-

fect the environment. The transport of these materials must then be controlled not only to avoid

pollution downstream of the cages, but also for the cages themselves. Indeed, in most situations

the plume of effluents has a complex evolution which is difficult to predict, as it depends on the

flow conditions (slow, fast ; laminar, turbulent), the strength of winds, the quality of the cage

13



14 CHAPTER 1. INTRODUCTION

(clean and permeable, dirty and impermeable), and many other factors. An important effort

must then be made to enhance our understanding of these complex effects. For this reason, in

addition to the classical experimental approaches (turbidity and flow measurements, biological

analyses, etc.), some numerical techniques have been developed in the past decades to allow an

accurate prediction of the transport processes near aquaculture facilities.

Most of the classical approaches to model coastal flows are based on the two-dimensional

Saint-Venant equations in the horizontal plane, which provide the fluid velocity averaged over

the water column. This approach is also used in the context of aquacultural activities (see for

example Venayagamoorthy (2011) [81]). Though this method predicts efficiently the large scale

flow/structure interaction, with a relatively low computational cost, it does not provide any

information about the vertical motion of water, the short-time unsteadiness, and the vertical

mixing of sediments1. These mechanisms however, are of fundamental importance to understand

and predict efficiently the effect of the flow on any immersed structure, and the effect of the

structure on flow and sediment transport.

The goal of this thesis is precisely to model these interactions in details in the

vertical plane, and to compare results, at least qualitatively, to in-situ measure-

ments performed along the water column in the set of cages installed in Cherbourg’s

roadstead.

1.2 Hydrodynamic models for aquaculture facilities in natural

streams

Even though near-shore aquaculture has expanded worldwide in the last decades, the develop-

ment of methods to understand hydrologic conditions within net cages enclosed in fish farms

near-shore has been limited. This is mainly due to a lack of field data, and to the complexity

and number of relevant hydrologic processes: tidal and wind forcing, evapotranspiration, over-

land flow through emergent vegetation, salinity-induced density-dependent flow, and surface-

water/ground-water interactions [54]. In recent years, extensive investigations have been carried

out with an ambition to gain wider knowledge about the hydrodynamic fields of net cages. A

1More information about the modelling of sediment transport can be found in Refs. [3][6][4][9][8].
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series of tests have been carried out by Aarsnes et al. (1990) [1] to study the velocity distribution

within net cage systems. Many other scientists also concentrated on physical model tests and

field measurement. The nets being flexible structures (Tsukrov et al. [80]), numerical studies on

flow field around net cages are rather complex due to the fluid/structure interaction. However,

significant advances could be made possible by treating a net cage as a porous medium (Cheng

et al. (2004) [22], Partusson et al. (2010) [65], Zhao et al. (2011) [87], Chun-Wei Bi et al. (2013)

[11]). This approach will be used in the present thesis also.

Characteristics of the flow field inside and around fishnet-cages can be described through a

combination of theories, CFD2 models and measurements. Typically, a fish-net cage is composed

of knots and twines and the total amount of twines in a trawl can reach values of the order of

106. It is therefore impractical and computationally expensive to model every single twine.

Moreover, when being immersed for a long period of time in water, cages undergo bio-fouling

and contamination processes which may decrease their permeability. This means that the ability

of cages to restrict the flow passing through them varies with time and, as a consequence, the

problem becomes more and more complicated. This is the reason why many authors suggest to

model net cages as porous media. Many 2D studies using this technique were reported in the

publication of Patursson et al. (2010) [65] while Vincent and Marichal (1996) [84] used a similar

but different description of the flow through the net for modelling asymmetric net structures.

Helsley and Kim (2005) [45] also used CFD for investigating mixing behind an aquaculture cage.

Other approaches including analytical models have also been used (e.g. Loland (1991 and 1993)

[59] [60] ; Li et al. (2006) [58]).

However, even if the porous medium analogy is an important simplification, finding the best

porous media coefficients for the specific net under study is a difficult task (Bi et al. (2014

and 2015) [11] [12]). In the present thesis, the hydrodynamic performance of the cage will be

characterized by an effective drag coefficient Cnet, that will be defined in Chapter 2, and which

will represent the additional drag due to the presence of many obstacles inside the net.

2CFD: computational fluid dynamics.
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1.3 Hydrodynamic performances of empty nets

To quantify the interaction between aquaculture cages and the surrounding flow, one has to study

the hydrodynamic performance of nets, and to determine the corresponding drag coefficient. Key

physical factors to be considered are the water depth, current velocity, near field circulation and

the solidity of the net. The latter is defined as [54]:

solidity =
projected area of the net

total area enclosed by the net
,

and has various expressions depending on the geometry of the fish net. This quantity arises as

soon as one consider the drag and lift due to the twines forming the net.

In the 1990’s, Aarsens et al. [2] firstly classified the external forces acting on a supple net cage

into drag force and lift force and laid a foundation for further studies of dynamic characteristics of

net cages. Loland (1991) [59] developed a model to calculate drag and lift forces and investigate

wake effects behind net structures. However, results gained from these models were not accurate

enough to evaluate the flow field around and inside net cages. Fredheim and Faltinsen (2003)

[29] and Fredheim (2005) [28] presented numerical models to calculate the flow field in front of

and inside a three-dimensional porous structure. These models are not practical for the analysis

of large and integrated net cage arrays but they agree with experimental studies carried out by

Gansel et al.[36], [34], [33] and Harendza et al. (2008)[44], which illustrated the complexity of

the flow around porous cylinders within a solidity range from 1 (solid) to 0.1.

Hydrodynamic performance of nets is often characterized in terms of the solidity ratio defined

above (Aarsnes et al. (1990); Balash et al. (2009) [7]; Lader and Enerhaug (2005) [57]; Zhan et

al. (2006) [86], Klebert et al. (2013) [54]), which depends on the net geometry and on the nature

of materials used to construct the net. The netting of a fish cage drowned in a coastal flow is

subjected to changes in geometry and porosity. Deformation induced by external forces and

changes in porosity due to bio-fouling and contamination may lead to a considerable variation

of drag force acting on the net frame, as shown in Fig. 1.2 by Fridman (1986) [32](see also

Braithwaite et al. (2007) [13], Firtridge et al. [27]). Generally, a decrease in the porosity of

fish cages leads to a greater water blockage, to an increase in the flow speed at the flanks of

the cages and to a stronger velocity reduction in their wakes (Gansel et al. (2008) [33], see also

Refs. [34][35][36]). Gansel’s studies furthermore confirm that the separation point of the wake

shifts downstream with the increasing of porosity. They proposed three valuable regimes of the
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Figure 1.1: Flow blockage and regimes of the flow through fish cage netting with different values

of solidity, Gansel et al (2010)[34]. The flow speed (u) at the flanks of the fish cage, is given as

a percentage of the ambient flow speed, U∞.

flow around and through porous cylinders as indicated in Fig. 1.1. Each regime corresponds to

a certain range of the net cage solidity.

Moe et al. (2010) [43] showed that a cage with a netting solidity of 0.23, in currents from 0.1

to 0.5 m.s−1 experienced relatively large deformations (volume reduction up to 70 %). Aarsnes

et al. (1990) [2][1] observed that 80% of the expected volume available to hold fish in gravity cage

may be lost in a current of 1m.s−1, and the velocity reduction from cage to cage was estimated

to be 20% (19,7 % solidity), 30% (40.8 % solidity) and 58% (58.8 % solidity) – Fredricksson [31].

Types of netting and biofouling. In the aquaculture industry, four types of copper netting

are mainly used. Expanded copper–nickel (Fig. 1.3a) was originally employed in inshore fish

farms in the 1970’s (Ansuini and Huguenin, 1978 [51], Huguenin, (1978) [50]; Powell, (1976)

[71]). It is made of 90% copper and 10% nickel and is available in a wide range of openings

and gauges (NAAMM EMMA 557, 1999; WHEA, 1984). The chain-link woven brass (Fig.

1.3b) is a composition of 65% copper and 35% zinc. Being used inshore since the 1990’s, it has

been recently adapted for offshore farming (Celikkol et al., (2010) [19]; DeCew et al., (2010)

[24]). New material designs include welded silicon–bronze (Fig. 1.3c) and woven silicon–bronze

composed of 97% copper with 3% silicon. Researches recently indicated that material and color
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Figure 1.2: Drag coefficient of an empty net versus the flow Reynolds number, for various net

solidities (from Fridman [32]).

also affect salmon-cage biofouling. Copper treatment, as shown in some studies, reduced fouling

and caused a reduction in twine diameter. However, the coating roughness caused a significant

increase in the drag coefficient. Results from many other researches also indicate that drag of

biofouled nets may be over three times bigger than that of clean nets (see for example Swift

(2006) [78]).

Net cages and wave loading. Net cages in open sea will experience more severe wave loading

than those used in sheltered areas. But open sea areas are more suitable to keep favourable

environmental conditions and avoid pollution. For this reason, it is also necessary to understand

the behavior of net cages as they are exposed to large sea-loads from waves and current. However,

in the present study, we will concentrate only on steady water region and on the horizontal effect

of the current on a vertically seated obstacle. This means that waves will be neglected.

Volumetric sources of drag. The drag discussed in this section is due to the net alone

(”empty net”), as twines act as tiny obstacles evenly distributed on a 2D surface. When the

volume enclosed by the net contains a large number of objects (structures, fishes, etc.) these

objects are also a source of dissipation and drag. Therefore a volumetric source of drag has to

be accounted for. This is the approach used in the thesis. This point is discussed in Chapter 2.
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Figure 1.3: Examples of nettings. (a): flattened expanded copper-nickel, (b): chain-link woven

brass, (c): welded siliconbronze, (d): woven silicon-bronze, (e): nylon knotless square net. From

Igor Tsukrov (2011)[79].

1.4 Sediment transport around nets.

Coastal fluid flows bring along billions of particles of various shapes and sizes (see for example

Abbott & Francis (1977) [3] ; Bagnold (1966) [6] ; Aldridge (1997) [4] ; Barndorff & Christiansen

(1988) [9] ; Barbry (2000) [8], to name but a few references). Obstacles present along the stream

cause many changes to the flow itself and to the motion of suspended particles. Indeed, obstacles

create wakes, recirculation cells, turbulence, intense unsteady vortices, three-dimensional effects,

etc. which significantly affect the motion of particles. In the vicinity of aquaculture cages, these

effects are expected to be present, especially if the cage is located in a strong flow area. As

discussed at the beginning of this chapter, effluents produced by the cage will also be affected

by this complex flow. In addition, the sandbed beneath the cage, where flows are expected

to be strong, is likely to be eroded. Therefore, resuspended matter produced below might be

transported back into the main flow. These effects have received little attention so far and will

be discussed in this thesis.
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1.5 Thesis objectives and organization

As described in this chapter, the goal of the thesis is to enhance our understanding of flow

and particulate transport in the vicinity of a cage, in the vertical plane. Indeed, the cage itself

creates strong vertical gradients of velocity and concentration, which are often neglected in the

classical, vertically-averaged, models. Two complementary models (analytical and numerical)

will be developed. They will rely on the following approximations:

• two-dimensional flow in the vertical plane,

• rigid rectangular cage,

plus many other approximations that will be described in details later. In spite of these approx-

imations, our models will be compared to flow and turbidity measurements performed in the

vicinity of cages installed in the roadstead of Cherbourg. The thesis is organized as follows.

Chapter 2 is an analytical study of the flow through and below an immersed structure.

Again, it is based on many approximations (2D flow in the vertical plane, elongated rectangular

immersed structure, etc.) but is expected to provide relevant orders-of-magnitude of the various

hydrodynamic quantities (velocity and pressure drop) affected by the presence of the cage. It is

valid in the limit of highly permeable cages and allows to calculate the reduced velocity inside

the cage, as well as the velocity increase below the cage.

Chapter 3 contains a numerical analysis of the same flow, where most of the findings of the

analytical model will be confirmed for highly permeable cages. The case of weakly permeable

cages will also be considered numerically.

Chapter 4 presents in-situ measurements of current velocities upstream and downstream

of the cage. These have been done in October 2016 in the aquaculture farm located in the

roadstead of Cherbourg, by means of ADCP facilities. Results are then discussed and compared

to our models.

Chapter 5 is devoted to the transport of suspended materials in the vertical plane. It will be

shown numerically that the flow perturbation due to the immersed structure can induce a strong

vertical mixing which can lead to the ”self-contamination” of the cage when its permeability is

very small. Results will be compared, qualitatively, to turbidity measurements.

Chapter 6 is the general conclusion of the thesis.



Chapter 2

Analytical model for the flow in the

vicinity of immersed structures

Before performing heavy numerical computations at extremely large Reynolds num-

bers, which are always costly and time consuming, we have chosen to develop an

asymptotic analysis of the flow in the vicinity of the farm. It will help us understand

the evolution of the flow across the cage, and will bring useful orders-of-magnitudes.

In particular, this model will provide an interesting relation between the effective drag

coefficient of the net (which measures its lack of permeability) and the pressure drop

as well as the velocity perturbation it creates. These information will be used in the

next chapters to find the appropriate effective drag coefficient in realistic situations.

2.1 Problem setting and general considerations

The salmon fish farm located in the roadstead of Cherbourg covers an area of about 17 hectares,

the depth of the immersed cages being around 10 meters. There have been many researches

on the hydrodynamics of such flows, but most of them are 2D analyses in a horizontal plane

(depth-averaged approaches, see for example Ref. [81]), which do not bring any information

about the vertical velocity and concentration gradients. Thus, we consider in this chapter and

throughout the thesis a 2D situation in a vertical plane, as sketched in Fig. 2.1, assuming that

the net is sufficiently wide to allow this two dimensional approximation. In addition, for the sake

21
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of simplicity, the cage is taken to be a fixed rectangular object denoted as ABCD in Fig. 2.1.

The bottom wall is flat and horizontal. The length AB of the cage is denoted as lx = xb − xa,

and its depth AD is denoted as ly in the following. The depth of the water column is Ly, and the

upstream velocity is U∞. As expected, the typical Reynolds number of the flow in such a large

domain is huge. Indeed, by taking relevant values for the cages in the roadstead of Cherbourg,

such as Ly = 12m and U∞ = 0.5m.s−1, we are led to:

Re =
U∞Ly

ν
≈ 6. 106 (2.1)

where ν is the kinematic viscosity of sea water. The flow is therefore expected to be turbulent

and difficult to simulate with a computer, as it presents sharp gradients near walls as well as

multi-scale disordered eddies. This is what motivated the asymptotic model developed in this

chapter.

Figure 2.1: Sketch of a rectangular cage ABCD in the vertical plane. The streamwise flow slows

down within the cage (ūn < U∞), and accelerates below (ūs > U∞).

For fully impermeable structures (zero flow rate through the cage), Poizot et al. [70] showed

that the flow consists of three parts (Fig. 2.2): a quasi-uniform flow upstream of the obstacle, a

very strong flow below and a strong recirculation cell at its rear. In this thesis, cages with a large

permeability will be considered, to approach more realistic situations where a non-negligible flow

exists through the cage ABCD. In particular, no recirculation cell is visible in the wake of such

cages, provided their permeability is large enough. The flow structure is therefore simpler, as
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Figure 2.2: Typical streamlines of the mean flow near a fully impermeable 2D cage ABCD (graph

(a), Cnet = ∞, numerical simulations by Poizot et al. [70]). Here, a strong recirculation cell is

visible at the rear of the cage. In contrast, for very permeable cages as the ones considered in

this thesis, recirculation cells are unlikely and the flow structure is expected to be much simpler

(as sketched in graph (b)). Axes are not to scale.

sketched in Fig. 2.2(b). To model these situations, the immersed obstacle will be taken to be a

kind of porous medium, described in the next few lines.

2.1.1 Motion equation and porous medium analogy

In the vertical symmetry plane of the cage, the fluid flow is characterized by the mean velocity

~V = (ū(x, y), v̄(x, y)) and the mean pressure P̄ (x, y). Throughout this calculation, in order to get

rid of the gravitational force, we denote the value of mean piezometric pressure as P̂ = P̄ +ρgy,

where y is the upward vertical coordinate. The fluid is assumed to be incompressible and

homogeneous, so that

∇.~V = 0.
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The fluid momentum balance equation is:

ρ(∇~V ).~V = −∇P̂ + µ∆~V +∇.τ t + n~F , (2.2)

where µ is the dynamic viscosity of the fluid, ρ is the fluid density, and τ t is the turbulent stress

tensor. The volume force n(~x) ~F (~x) appearing in the momentum balance (~F in newton N and

n in m−3), manifests the effect of the cage ABCD on the fluid flow. Indeed, as noticed above,

the cage is assumed to be a porous medium defined here as a set of small elementary obstacles

distributed within the whole domain ABCD. The number of obstacles per unit volume is n(~x),

and the drag experienced by each obstacle is assumed to be:

−~F =
1

2
CD s ρ|~V |~V , (2.3)

where CD is the individual drag coefficient of each object, which is assumed to be constant and

identical for all obstacles. The surface s is the apparent surface of each obstacle. This is clearly a

very rough approximation for fish farm flows. In particular, the wakes of neighbouring obstacles

are assumed not to interact. However, as discussed in the introduction, this approach is widely

used in environmental flows (see for example Ref. [81]).

Surface or volume distribution of elementary obstacles ? At this stage, one must define

whether the elementary obstacles are distributed over the net only (Fig. 2.3(a)), or inside the

entire domain enclosed by the net (Fig. 2.3(b)). In the former case, the solidity of the net,

discussed in the introducing chapter, naturally arises in the calculation of the drag (see section

2.1.2 below). We will place ourselves in the latter case, where the drag is induced by the presence

of a volume distribution of fixed obstacles with individual drag coefficient CD.

We introduce the coefficient Cnet of the cage, defined by:

n lx ly lz ~F = −Cnetly lz
1

2
ρ|~V |~V , (2.4)

which can be thought of as an ”effective drag coefficient” of a cage with apparent surface ly × lz

and volume lx × ly × lz in a uniform flow of velocity ~V . It will also be called ”impermeability”

in this thesis, as it is indeed a measure of the lack of permeability of the cage. It is related to

the ”individual drag coefficient” CD as:

Cnet = n(~x) lx sCD. (2.5)
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Figure 2.3: Distribution of elementary obstacles (�) in the porous medium analogy. (a): surface

distribution, where the drag is induced by the twines of the net only (and by the biofouling of

these twines). (b): volumic distribution corresponding to fixed obstacles occupying the entire

volume enclosed by the net, together with the net ABCD itself: this is the approach used in this

thesis.

Therefore, even if CD is small (wing, foil, ...) or of order unity (cube, sphere, ...), the effective

drag coefficient Cnet can be large, because it is proportional to the number of objects per unit

volume. It depends on position ~x = (x, y), and is equal to zero outside the cage. Finally, note

that the limiting case Cnet = 0 corresponds to a perfectly clean (or to the absence of) cage, and

Cnet = ∞, corresponds to the fully impermeable cage studied by Poizot et al. [70] and shown

in Fig. 2.2(a).
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Under these hypotheses, the Reynolds equations (2.2), projected along the x-direction, read:

ū
∂ū

∂x
+ v̄

∂ū

∂y
= −1

ρ

∂P̂

∂x

− ∂

∂x
u′2 − ∂

∂y
u′v′ + ν(

∂2ū

∂x2
+

∂2ū

∂y2
)− 1

2

Cnet

lx

√
ū2 + v̄2 ū (2.6)

and in the y-direction:

ū
∂v̄

∂x
+ v̄

∂v̄

∂y
= −1

ρ

∂P̂

∂y

− ∂

∂x
u′v′ − ∂

∂y
v′2 + ν(

∂2v̄

∂x2
+

∂2v̄

∂y2
)− 1

2

Cnet

lx

√
ū2 + v̄2 v̄, (2.7)

together with the continuity equation:

∂ū

∂x
+

∂v̄

∂y
= 0, (2.8)

where (u′, v′) is the fluctuating velocity. For small or moderate Cnet we conjecture that the flow,

for xa < x < xb is characterized by four zones (see Fig. 2.1):

• A decelerating flow inside the net ABCD, with a horizontal velocity denoted as ūn(x, y).

• An accelerating flow below the net ABCD, with a horizontal velocity denoted as ūs(x, y).

• A mixing-layer between the two previous zones, with thickness δ(x) ≪ a and ly. This layer

extends along segment AB and downstream of this segment.

• A wall boundary layer near the bottom.

In the present model, the bottom wall boundary layer will be neglected, even though it probably

dissipates an important part of the kinetic energy. This effect will be left as a perspective.

2.1.2 Link between Cnet and the drag coefficient of the cage CX

In the lines above, two drag coefficients have been introduced:

• CD: drag coefficient of elementary obstacles placed within the cage. It only depends on

the shape of objects, and is given by classical hydrodynamic tables.

• Cnet: the effective drag coefficient of the cage, or ”impermeability”, which depends on

both the shape and the concentration n(~x) of elementary obstacles.
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These two coefficients are linked by Eq. (2.5). In addition, the total drag experienced by the

cage, F cage
X , and the total drag coefficient CX are related by:

F cage
X = CX

1

2
ρAU2

∞
(2.9)

where A = ly lz is the apparent surface of the cage. Since F cage
X is the sum of the individual

drags experienced by elementary obstacles, we have:

F cage
X

~i = −
∫

ABCD
n(~x) ~F dx dy dz (2.10)

where ~i is the unit vector in the x-direction. Assuming that the distribution is uniform (n is

constant), this leads to:

CX = Cnet

∫ xb

xa

√
ū2 + v̄2

U2
∞

dx dy dz

lx ly lz
(2.11)

One can easily check that CX ≈ Cnet when Cnet is small (clean cages). For more and more

impermeable cages, Cnet becomes large, but CX remains of order unity.

An approximate estimation of CX from Cnet. For the sake of simplicity, assume that ū is

constant within the cage, equal to some value u0, and that v̄ is small. Then Eq. (2.11) leads to:

CX ≈ Cnet

(
u0
U∞

)2

(2.12)

This equation will be used later to estimate CX . A more accurate expression will be given at

the end of this chapter, once the flow equation is solved. Prior to this, we calculate CX in the

case of a surface distribution of elementary obstacles.

2.1.3 Surface distribution of obstacles: link between CX and solidity

In the case where obstacles are uniformly distributed along the net only (as sketched in Fig. 2.3

(a)), the number of obstacles per unit volume is taken to be:

n(~x) =
N

S
δS(~x) (2.13)

where N is the total number of obstacles, S is the net surface, and δS (m−1) is the Dirac delta

function centred on the net surface S, such that:

∫

R
3

f(~x)δS(~x) dx dy dz =

∫

S
f(~x) dS
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for any integrable function f(~x). After injecting this n(~x) into Eq. (2.10) we are led to (in

projection along x):

F cage
X = CD

1

2
ρ
N s

S

∫

S

√
ū2 + v̄2 ū dS. (2.14)

The solidity Es of the net therefore naturally appears in this expression

Es =
β N s

S
(2.15)

where we have assumed that only the portion AD (the upstream side) of the net contributed to

its apparent surface, and β is the proportion of obstacles on this side. This leads to:

CX = CD Es
1

β

∫

S

√
ū2 + v̄2 ū

U2
∞

dS

ly lz
. (2.16)

This equation will not be used in the thesis, since we will consider a volumetric distribution.

2.2 Potential flow outside the mixing layer

In the rest of the thesis, we will assume that elementary obstacles are distributed in a uniform

volumic manner (as sketched in Fig. 2.3(b)). This means that Cnet is constant in the interior of

the cage, and zero outside.

We first determine the flow outside the mixing or boundary layers (”external flow”), where

turbulence and viscosity will be assumed to be absent. We are aware of the fact that turbulence

is very likely to occur within the cage, due to the net and the fishes. However, we will neglect

this effect in the present work, i.e. we will assume that turbulence is concentrated inside the

mixing layer or the bottom boundary layer. In addition, we assume that the cage is strongly

permeable and is much longer than deep. Hence, the flow is assumed to be nearly horizontal, as

sketch in Fig. 2.2(b).

These assumptions allow us to assume that the velocity field (ū, v̄) in external zones is irrota-

tional:

∂v̄

∂x
− ∂ū

∂y
= 0, (2.17)

and has a strong component towards x, that is

|v̄| ≪ |ū|. (2.18)
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Under these conditions, the horizontal acceleration of fluid points satisfies:

ū
∂ū

∂x
+ v̄

∂ū

∂y
= ū

∂ū

∂x
+ v̄

∂v̄

∂x
≃ ū

∂ū

∂x
. (2.19)

Indeed, if L is a typical scale of velocity variation along x, we have

ū
∂ū

∂x
∼ ū2/L

and

v̄
∂v̄

∂x
∼ v2/L ≪ ū2/L.

Therefore, the streamwise fluid motion equation (2.6) outside the mixing layer takes the simpli-

fied form

ρ ū(x)
∂ū

∂x
= −∂P̂

∂x
− 1

2
ρ
Cnet

lx
ū2, (2.20)

where ū denotes either ūn (inside the cage), or ūs (below the cage, with Cnet ≡ 0).

One can argue that the drag force (Cnet term) appearing in the motion equation is not a gradient

in general (i.e. it is not a conservative force). It can therefore be a source of vorticity. However,

in the quasi-unidirectional flow considered here, one can check that this effect is small, and that

the potential flow approximation is valid outside the mixing layer. Along the line AB however,

the discontinuity of this force will be a source of vorticity.

The fluid motion equation (2.7), combined with the continuity equation (2.8) leads to:

ρ (ū
∂v̄

∂x
− v̄

∂ū

∂x
) = −∂P̂

∂y
− 1

2
ρ
Cnet

lx
ūv̄, (2.21)

where we neglected viscosity and made use of approximation (2.18). This result shows that, as

long as Cnet is below a few units, we have:

|∂P̂
∂y

| ∼ ρ
ūv̄

L
≪ ρ

ū2

L
∼ |∂P̂

∂x
|. (2.22)

The transverse (piezometric) pressure gradient is therefore much smaller than the streamwise

gradient:

|∂P̂
∂y

| ≪ |∂P̂
∂x

|. (2.23)

In addition to these approximations, we make use of results of numerical simulations (presented

in the next chapters) which show that, as long as Cnet is not too large, we have for all x ∈ [xa, xb]:

∂P̂

∂x
= negative constant ≡ −α (2.24)
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where α denotes the absolute value of the pressure gradient. The pressure drop along x is due

to the drag of the net. If the upper bound corresponds to an air/water interface y = H(x), then

P̂ (x,H) = Patm + ρgH(x), and the piezometric pressure loss corresponds to a (slight) decrease

in the height of the interface (H(x) decays with x), since the absolute pressure at y = H(x)

is constant and equal to the atmospheric pressure. In practice this effect is negligible and the

numerical simulations can be performed by assuming a horizontal air/water interface.

For x > xb, that is behind the cage, the mean flow is composed of a slow stream with

horizontal velocity ūn(xb) for y > a + δ of a fast stream with velocity ūs(xb) for y < a − δ/2,

and a mixing layer of thickness δ(x) expanding between the two.

Flow inside the cage, outside the mixing layer.

By including Eq. (2.24) into (2.20), we are lead to:

ρūn(x)ū
′

n(x) = α− 1

2
ρ
Cnet

lx
ū2n, (2.25)

which can be readily integrated, using the condition ūn(xa) = U∞, and gives:

ū2n(x) =
2α lx
ρCnet

+

(
U2
∞

− 2α lx
ρCnet

)
e−Cnet(x−xa)/lx (2.26)

In particular, the (squared) velocity of the fluid exiting the cage at x = xb, above the mixing

layer, reads:

ū20(xb) =
2α lx
ρCnet

+

(
U2
∞

− 2α lx
ρCnet

)
e−Cnet . (2.27)

Flow below the cage, outside the mixing layer.

The same arguments, applied to the quasi-horizontal flow ūs(x) below the cage lead to:

ρ ūs(x)ū
′

s(x) = α (2.28)

so that:

ū2s(x) = U2
∞

+
2α

ρ
(x− xa), (2.29)

and the velocity of the fluid exiting the bottom zone of the cage is:

ū2s(xb) = U2
∞

+
2α

ρ
lx. (2.30)
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In addition, flow rate conservation, in this 2D configuration, reads:

U∞Ly = ūn(xb) ly + ūs(xb) a, (2.31)

even if the velocity profile is smoothed out in the mixing layer, provided δ(x) ≪ a and ly.

Flow at the rear of the cage, outside the mixing layer

Because our experimental approach will be devoted to current measurements at the rear of the

cage, we are particularly interested in determining ūn(xb) and ūs(xb), as well as the pressure

drop α, in terms of the various parameters of the problem. Equations (2.27), (2.30) and (2.31)

can be solved to determine these three unknowns. After some algebra we are led to:

u0 ≡ ūn(xb) = U∞

√
B2 −AC −B

A
, (2.32)

u1 ≡ ūs(xb) = U∞

[
1 +

ly
a
− ly

a

√
B2 −AC −B

A

]
, (2.33)

α ≡ −∂P̂

∂x
=

1

2

ρU2
∞

lx



(
1 +

ly
a
− ly

a

√
B2 −AC −B

A

)2

− 1


 , (2.34)

where A, B and C are functions of Cnet and of the sole ratio ly/a:

A(Cnet,
ly
a
) = 1− 1− e−Cnet

Cnet

(
ly
a

)2

, (2.35)

B(Cnet,
ly
a
) =

1− e−Cnet

Cnet

[(
ly
a

)2

+
ly
a

]
, (2.36)

C(Cnet,
ly
a
) =

e−Cnet − 1

Cnet

ly
a
(
ly
a
+ 2)− e−Cnet . (2.37)

To shorten notations, Eq. (2.34) will be written:

α =
1

2

ρU2
∞

lx
K(Cnet,

ly
a
) (2.38)

where

K(Cnet,
ly
a
) =

(
1 +

ly
a
− ly

a

√
B2 −AC −B

A

)2

− 1. (2.39)

Also, we have chosen to simply note u0 in place of ūn(xb) and u1 in place of ūs(xb), as these

quantities will be extensively used below. The piezometric pressure difference between the inlet

and the outlet of the cage is simply αlx, that is:

P̂ (xa)− P̂ (xb) =
1

2
ρU2

∞
K(Cnet,

ly
a
). (2.40)
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If one works with a free air/water surface, the decay of the height of the interface H(x) between

sections x = xa and x = xb will be given by:

Ha −Hb =
P̂ (xa)− P̂ (xb)

ρ g
=

U2
∞

2g



(
1 +

ly
a
− ly

a

√
B2 −AC −B

A

)2

− 1


 . (2.41)

One can check that it is negligible for the parameters considered in this thesis: this is the reason

why numerical simulations of Chapter 3 will involve a simple rigid air/water interface with a

stress-free boundary condition.

Equations (2.32), (2.33) and (2.40) are the main result of this section: they will be compared

to simulations and in-situ measurements in the next chapters. Prior to that, we study the flow

equation inside the mixing layer to derive an appropriate expression for the complete mean

velocity profile from bottom to top.

The resultant drag of elementary obstacles

Since the velocity ūn(x) inside the cage is known, one can make use of Eq. (2.11) to evaluate

the total drag coefficient due to the entire set of elementary obstacles present in the cage. After

some algebra we are led to:

CX = K(Cnet) +

(
1− K(Cnet)

Cnet

)
(1− e−Cnet) (2.42)

Note that it only contains the contribution of the flow outside the mixing layer. One can check

that, when Cnet → 0, this expression leads to CX → 0, as expected.

2.3 Flow inside the mixing layer

Due to the velocity difference u1−u0, a mixing layer arises somewhere below the cage (at x = xt,

say) and extends in the downstream direction. Even if this velocity difference is only of a few

10 cm.s−1, the large Reynolds numbers considered here allow us to treat the mixing layer as

a turbulent one. This is done in the next sections, to determine the mean streamwise velocity

profile.
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2.3.1 Normalized flow transport equations in the case of strongly permeable

cages

We will non-dimensionalize the Reynolds equations (2.6)-(2.7), by using relevant orders-of-

magnitude. Then, dominant terms only will be conserved to derive a simplified model involving

the key quantities. The approach is classical, and can be found for example in the book by

Candel [14].

We assume that the mixing layer is thin, with a thickness denoted as δ(x). The typical value of

δ(x), denoted ∆, is therefore assumed to satisfy:

∆ ≪ ly ≪ lx = xb − xa.

In addition, we assume here that the cage is strongly permeable, i.e. that Cnet is small enough

(this will be rigorously specified later, in Eq. (2.52)). This implies that u1 − u0 is much smaller

than (u1 + u0)/2, which is itself of the order of the upstream flow U∞:

|u1 − u0|
u1 + u0

≪ 1. (2.43)

Within the mixing layer, variables are non-dimensionalized as follows:

x = x∗lx, y = y∗∆, ū(x, y) = U∞u∗(x∗, y∗), v̄(x, y) = V v∗(x∗, y∗), (2.44)

where starred variables are assumed to be of order unity, and the order-of-magnitude V is a

priori unknown. Equations (2.44) manifest the fact that vertical gradients, inside the mixing

layer, are much stronger than horizontal gradients. The continuity equation reads:

U∞

lx

∂u∗
∂x∗

+
V

∆

∂v∗
∂y∗

= 0, (2.45)

so that the coherence of this equation requires V ∼ U∞∆/lx. We therefore set:

V := U∞

∆

lx
≪ U∞.

Let ũ be the order-of-magnitude of turbulent fluctuations within the mixing layer:

u′ = ũ u′
∗
, v′ = ũ v′

∗
.

Then, let us write P̂ = P̂∗ ρU
2
∞
. Under these hypotheses the Reynolds equations inside the

mixing layer read:

u∗
∂u∗
∂x∗

+ v∗
∂u∗
∂y∗

= −∂P̂∗

∂x∗
−
(

ũ

U∞

)2 ∂

∂x∗
u′2
∗
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−
(

ũ

U∞

)2 lx
∆

∂

∂y∗
u′
∗
v′
∗
+

ν

U∞lx

(
∂2u∗
∂x2

∗

+

(
lx
∆

)2 ∂2u∗
∂y2

∗

)
− 1

2
Cnetu

2
∗

(2.46)

and:

u∗
∂v∗
∂x∗

+ v∗
∂v∗
∂y∗

= −
(
lx
∆

)2 ∂P̂∗

∂y∗
−
(
lx
∆

)(
ũ

U∞

)2 ∂

∂x∗
u′
∗
v′
∗

−
(
lx
∆

)2( ũ

U∞

)2 ∂

∂y∗
v′2
∗
+

ν

U∞lx

(
∂2v∗
∂x2

∗

+
∂2v∗
∂y2

∗

(
lx
∆

)2
)

− 1

2
Cnet|u∗| v∗. (2.47)

2.3.2 Identification of dominant terms

Equations (2.46)-(2.47) highlight various non-dimensional ratios, the order-of-magnitude of

which can be easily determined. In particular, we have:

lx
∆

≫ 1.

The ratio ũ/U∞ is the order of turbulent intensity. It seems coherent to assume that ũ ∼ |u1−u0|,
so that (2.43) implies:

ũ

U∞

≪ 1.

Finally, the Reynolds number U∞lx/ν is clearly very large. The reduced equation (2.47), to

leading order, implies:

∂P̂∗

∂y∗
= 0 (2.48)

so that the piezometric pressure is constant in each cross-section, like in the external flows. This

quantity will be matched with pressure in the uniform zones satisfying Eq. (2.25).

If we add the constraint (
ũ

U∞

)2 lx
∆

= O(1)

and keep orders O(1) in (2.46), and use Eq. (2.38) reproduced here in non-dimensional form:

∂P̂∗

∂x∗
= −1

2
CnetU

∗2
∞

K (2.49)

where K(Cnet, ly/a) is a constant of order unity (and U∗

∞
≡ 1), we get:

u∗
∂u∗
∂x∗

+ v∗
∂u∗
∂y∗

= −
(

ũ

U∞

)2 lx
∆

∂

∂y∗
u′
∗
v′
∗
− 1

2
Cnet(u

2
∗
−K U∗2

∞
). (2.50)
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The drag term appearing in this equation is proportional to the difference between u∗ and

U∗

∞

√
K. It is therefore of the order of Cnetũ/U∞. Therefore, if

Cnet
ũ

U∞

≪
(

ũ

U∞

)2 lx
∆

∼ 1, (2.51)

the drag term will be negligible in Eq. (2.50) and the two other terms will remain. This condition

is not very strong, as it can be satisfied even if Cnet is larger than unity. One just has to make

sure that:

Cnet ≪
(

ũ

U∞

)
lx
∆
. (2.52)

Under these conditions, Eq. (2.50) becomes:

u∗
∂u∗
∂x∗

+ v∗
∂u∗
∂y∗

= −
(

ũ

U∞

)2 lx
∆

∂

∂y∗
u′
∗
v′
∗
. (2.53)

This is the turbulent Prandtl equation without pressure gradient. To close these equations we

will make use of the Boussineq hypothesis:

u′v′ = −νT (x, y)
∂ū

∂y
(2.54)

where the turbulent kinematic viscosity is taken to be much larger than the molecular viscosity:

νT ≫ ν.

Coming back to dimensional variables we get the reduced dimensional Prandtl equations inside

the mixing layer:

ū
∂ū

∂x
+ v̄

∂ū

∂y
=

∂

∂y

(
νT

∂ū

∂y

)
. (2.55)

The matching conditions for velocity are taken to be:

ū(x,+∞) = u0 et ū(x,−∞) = u1. (2.56)

This is therefore a classical mixing layer without pressure gradient. One should not believe

however that Cnet is absent from this model: the effect of the net appears in boundary conditions

u0 and u1 (Eqs. (2.32) and (2.33)), which depend on Cnet.
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2.4 Mixing length model and self-similar solution

To solve the equation (2.55) above, we have to find a model for turbulent viscosity. Numerical

simulations suggest to choose a model of the form:

νT = κ(x− xa)(u1 − u0) (2.57)

where κ is a non-dimensional constant. Under these conditions, invariant subgroup analysis of

Eq. (2.55) shows that there exists a self-similar solution in terms of the reduced variable:

ξ = σ
y − a

x− xt
(2.58)

where σ is the spread rate of the mixing layer and xt is x-coordinate of the origin of the turbulent

zone.

2.4.1 Mean velocity

The self-similar solution of Eq. (2.55), first exhibited by Goertler [39], reads:

ū ≃ u1 + u0
2

− u1 − u0
2

erf(ξ). (2.59)

It has been obtained to leading order in |(u1 − u0)/(u1 + u0)| (see for example Candel [14] for

a detailed derivation). The spread rate σ is related to the reduced velocity difference by the

empirical formula:

σ = σ0
u1 + u0
u1 − u0

,

where the non-dimensional constant σ0 has been measured by means of various experiments [85],

and one usually takes σ0 ≃ 11. The non-dimensional constant κ is related to the spread rate by:

κ =
1

4σ2

u1 + u0
u1 − u0

=
1

4σ2
0

u1 − u0
u1 + u0

(2.60)

2.4.2 Second-order moments and turbulent intensity

Once the average velocity is known, the Boussinesq hypothesis allows to calculate the moments

of 2nd order. We obtain:

u′v′ = quv (u1 − u0)
2 e−ξ2 (2.61)
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where the constant quv is given by:

quv =
1

4σ0
√
π
≈ 0.013 (2.62)

The moment u′u′ is out of reach of the model, but is taken to be of a similar form:

u′u′ = quu (u1 − u0)
2 e−ξ2 (2.63)

where the constant quu has been studied experimentally [85]: 0.025 ≤ quu ≤ 0.034. The turbulent

intensity at any point (x, y) is:

I(x, y) =

√
u′u′

u
=

√
quu (u1 − u0) e

−ξ2/2

u1+u0

2 − u1−u0

2 erf(ξ)
. (2.64)

It is maximum and independent of x along the axis of the mixing layer y = a:

I0 ≡ I(x, a) = 2
√
quu

u1 − u0
u1 + u0

. (2.65)

By using the results of the previous section, we obtain the turbulent intensity in terms of the

effective drag coefficient Cnet and of the ratio ly/a:

I0 = 2
√
quu (

ly
a
+ 1)

A+B −
√
B2 −AC

(
√
B2 −AC −B)(1− ly

a ) +A(1 +
ly
a )

. (2.66)

2.5 A preliminary result from the asymptotic model

To illustrate these formulas, we have chosen to plot a single key quantity appearing in this model,

namely u0/U∞ the slow velocity at the exit of the net, being understood that more results will

be presented and compared to simulations and in-situ measurements in the next chapters.

Figure 2.4 shows a comparison between our result of Eq. (2.32) and three numerical simu-

lations. Two simulations have been performed by using the OpenFoam software (post-doc of

Romuald Verjus, 2015), and one has been done by means of the Fluent software presented in

the next chapter. The same computational domain is used for the three computations, only the

upstream velocity U∞ differs. Agreement between numerics and theory is acceptable in regard of

the numerous approximations of the model and of the fact that no parameter has been tuned ad

hoc. Discrepancies are due to the limitations of the theoretical model which neglects some im-

portant and realistic physical aspects, like the boundary layer near the bottom (y = 0). Indeed,

because the bottom boundary layer is not accounted for in the theoretical model, the velocity
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u1 below the cage is overestimated, so that the velocity u0 inside the cage is underestimated.

This explains why numerical predictions are above the theoretical curve, with an error from a

few percent to about 15%.

This preliminary result is encouraging, and will allow us to estimate what Cnet should be

used in realistic situations. Indeed, suppose one measures the velocity inside and/or below the

net, then Eq. (2.4) will directly indicate what effective drag coefficient should be used to mimic

the effect of the cage. This will be done in Chapter 4. Prior to this, the numerical modelling of

the cage is presented in the next chapter.
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Figure 2.4: Plot of the ratio u0/U∞ (solid line), versus the effective drag coefficient of the

cage, obtained from the analytical solution (2.32), with U∞ = 0.5m.s−1, Ly = 12m, ly = 8m.

Symbols correspond to three simulations done with slightly different numerical solvers, using

a similar domain. OpenFoam computations have been done during the post-doc of R. Verjus

(2015), Fluent computations have been performed during the present thesis. This curve will be

used to estimate the effective Cnet of real cages (see Chapter 4).
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2.6 Conclusion of this chapter

We have derived a simple set of formulas to determine the perturbation of the flow due to

the presence of the permeable cage, in the limit of very large Reynolds numbers. The lack of

permeability of the cage was characterized by the effective drag coefficient Cnet which has been

rigorously defined. The model is based on a few approximations, some of which can be removed

in a next version and are listed in the next few lines.

Turbulence intensity within the cage. It is zero in both the analytical and the numerical models,

but one can add this effect, provided turbulence intensity can be measured within the cage.

Indeed, the inner cage itself is a source of turbulence due to the net and to the presence of the

numerous small-scale objects (”fishes”) within the cage. Accounting for this source of turbulence

could be done the same way as in Caton et al. [18] (urban flows).

Absence of pressure gradient inside the mixing layer. Inside the mixing layer, the Cnet term has

no effect to leading order, so that Eq. (2.50) could be approximated by the classical Prandtl

equation (2.55). This is valid only if Cnet is moderate and satisfies the asymptotic condition

(2.52). If this condition is removed (very large Cnet), then Eq. (2.50) has to be solved instead

of (2.55). This is feasible at least numerically, as a self-similar solution has not been shown to

exist in this case to the best of our knowledge.

Bottom boundary layer. The bottom boundary layer is absent from this model. This is clearly

a serious limitation of the theory, and a non-trivial one. We believe it can be solved, in the

near future, by considering the Prandtl equation in the vicinity of the bottom wall y = 0. Here,

the Cnet term does not exist (and does not balance the longitudinal pressure drop), but the

longitudinal pressure drop in the uniform flow zone below the net (where velocity is equal to

u0) will induce a pressure gradient inside the bottom boundary layer. The analytical model will

then require to solve the turbulent Prandtl equation with constant pressure gradient, which will

not lead to the classical logarithmic law-of-the-wall. Note that this limitation will also make the

numerical computations approximate as soon as standard wall functions are used.

Constant and moderate Cnet. We have assumed that Cnet was piecewise constant, i.e. that

fishes are uniformly distributed within the cage. If fishes accumulate near the bottom of the

cage, as can be observed in real farms, one has to introduce variable Cnet’s in the model. In
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addition, the present theory requires the drag coefficient to be moderate, and cannot predict

the hydrodynamics of very impermeable cages.

Most of the limitations and perspectives described in the above lines will require the use of

computational techniques, like the one described in the next chapter.
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Chapter 3

Numerical modeling of the flow in

the vicinity of an immersed structure

To validate the theoretical calculations proposed in the previous chapter, numerical

simulations have been carried out by means of a finite volume model (Fluent). The

k − ω SST turbulence model has been used, for its ability to give convincing results

in flows where boundary layer separation and reattachment occur. The physical hy-

potheses and the numerical method will be discussed first. Then, numerical results

concerning the flow structure, pressure drop and velocity profiles will be presented

and compared to the analytical model whenever possible.

3.1 Introduction

Nowadays, with the rapid development of science and technology, more and more computational

methods have been introduced to solve complex problems of fluid mechanics. Hence, a large

variety of methods can be used to simulate a flow in either simple or complex geometries.

Regarding aquacultural fish nets, numerous research works have already been carried out and

proposed valuable results and conclusions, with different kinds of approaches and approximations

(see for example Ref. [81] and references therein). Generally speaking, there exists no universal

model to cover all fluid dynamics problems, even for newtonian fluids in simple geometries as

considered here in our 2D model. Indeed, when the Reynolds number is very large turbulence

43
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plays a key role in friction, energy dissipation, mixing, and detachment of boundary layers.

Unfortunately, different turbulence models can then lead to very different mean flows and forces,

and to paradoxical results. In spite of these difficulties, we aim at developing a model that

should be as simple as possible, but should capture the relevant physical properties of interest.

In addition, the transport of suspended sediments should also be included in this model (this

will be discussed in Chapter 5).

According to Huang et al. [49], and Zhao et al. [88] [10], the inertial force on a fishing net

is rather small compared to external forces, and can be neglected. In the present work, the net

has been assumed to have a fixed rectangular shape, and its dynamics is completely frozen: only

the force balance on the fluid has to be considered. The fishnet cage has been taken to be the

same porous medium as in the previous chapter, modeled with an effective drag coefficient Cnet,

and the fluid flow through the net satisfies the Reynolds equations (2.6)-(2.7), together with the

continuity condition (2.8). The Cnet terms appearing in Eqs. (2.6)-(2.7) have been introduced

into the Fluent code by means of User Defined Functions.

In the next section, some turbulence models are quickly recalled. The reader familiar with

such models may skip this part.

3.2 A short review of 1st order turbulence models

3.2.1 Averaging process - Boussinesq’s hypothesis

In turbulent flows, the detailed structure of instantaneous fields is not reproducible. However,

statistical moments are reproducible, and these are key quantities for the scientist as well as

the engineer (Candel [14], Chassaing [20]). This is the reason why one often decomposes the

instantaneous velocity vi as a mean velocity Vi ≡ v̄i plus a fluctuating velocity v′i:

vi(~x, t) = Vi(~x, t) + v′i(~x, t), v′i = 0, (3.1)

the average operator (.) being the ensemble average, that is the average over a large number

of realizations of the flow. (It can also be taken as the time average of a single realization if

the ergodic hypothesis applies.) A similar decomposition applies for pressure, and any other

variable field if any. Assuming that averaging operator commutes with derivatives, and that
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āb = ā b̄, the Navier-Stokes equations lead to the Reynolds equations (or RANS1) (2.6)-(2.7) of

page 26, reproduced here in index notation and repeated indices summation (v1 ≡ u, v2 ≡ v):

∂Vj

∂xj
= 0, (3.2)

∂Vi

∂t
+

∂Vi

∂xj
Vj = −1

ρ

∂P

∂xi
+ ν

∂2Vi

∂xj∂xj
− ∂

∂xj
v′iv

′

j + nFi/ρ, (3.3)

where the volume force Fi due to the cage has been defined in Chapter 2 (Eq. (2.4)). Therefore,

the motion equation of the mean flow is the classical Navier-Stokes equation plus the divergence

of a new stress (”Reynolds stress”):

τ tij = −ρv′iv
′

j (3.4)

which manifests the effect of turbulence on the mean flow. To solve (3.2)-(3.3) one has to

calculate, or model, this tensor. For that, various models exist according to their degree of

accuracy.

Boussinesq’s hypothesis and 1st order models. On can model this tensor directly, by

relating it to the mean flow. Doing this, Eqs. (3.2)-(3.3) will be closed, and can be solved

provided one makes use of appropriate boundary conditions for the average quantities Vi and P .

These are ”1st order” models because the closure appears explicitly in the equation of the 1st

order moment v̄i ≡ Vi. The most common closure is the Boussinesq hypothesis which relates

turbulent stresses to zones where mean deformation is present:

−v′iv
′

j +
2

3
k δij = νT

(∂Vi

∂xj
+

∂Vj

∂xi

)
, k =

1

2
v′jv

′

j . (3.5)

This model introduces two new unknown variables: the turbulent viscosity νT (~x, t) (in units of

m2.s−1, also called eddy viscosity) and the turbulent kinetic energy per unit mass k (in units

of J.kg−1). This is precisely the equation used in the theoretical model of Chapter 2, where a

turbulent viscosity had been introduced and modeled by means of a mixing length hypothesis

(see Eqs. (2.54) and (2.57) page 36).

If no other equation is necessary to close (3.2)-(3.3), like in our theoretical model, one talks

about a ”1st order model with 0 transport equation”, i.e. no extra transport equation is needed

to determine all quantities. This is the most common model for turbulent mixing layers (mixing

length model) or turbulent boundary layers. If one needs an extra (closed) transport equation

1Reynolds Averaged Navier-Stokes equations.
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to determine either νT or k, then the model is a ”1st order model with 1 transport equation”

(e.g. the Spalart-Allmaras model).

Models with 2 transport equations. If turbulent viscosity is assumed to depend only on

k and on the viscous dissipation rate of turbulent kinetic energy ε (in units of W/kg), then

dimensional analysis leads to:

νT = Cµk
2/ε,

where Cµ is a non-dimensional constant close to 0.09. A transport equation has then to be

introduced, and closed, to determine ε, and we obtain the family of k − ε models which are the

most widely used 1st order models with 2 equations. If, instead of considering the dissipation

rate ε, one introduces the specific dissipation rate ω = ε/k (in units of s−1) to model the

turbulent viscosity, dimensional analysis leads to:

νT = α∗k/ω,

where α∗ is a non-dimensional constant. This is the k − ω model of Wilcox, which is also a

1st order model with 2 transport equations (one for k and one for ω). It has been shown to

be efficient near walls. It is a variant of this model that will be used in the present chapter,

an which is presented below. For higher-order models, we refer the reader, for example, to the

book by Chassaing [20].

3.2.2 SST k − ω model

This is the model that will be used in the present thesis. Like the k−ε and the k−ω models, the

SST k − ω turbulence model is a 2 equation model based on the concept of turbulent viscosity

(Boussinesq hypothesis) briefly described above. It can be thought of as a combination of the

k−ε and the k−ω models, and has been designed to be efficient near walls as well as in the free

stream (away from walls). A ”blending function” is used to activate the k−ε in the free stream,

and the k−ω model near walls. However, the STT k−ω model requires highly meshed domains

to resolve the laminar sub-layer, so that the dimensionless wall distance of the first node should

be y+ ∼ 1. In practice, one can hardly reach this critical value of y+, and it is difficult for the

model to converge in general, so one has to accept results where residuals drop down about 4

orders.
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Figure 3.1: Comparison of turbulence models, reproduced from Ref. [83].
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3.3 Numerical computation of the 2D flow near the cage

We consider the same two-dimensional domain as the one depicted in Chapter 2, reproduced

below. The dimensions of the computational domain are taken to be much smaller than in real

conditions:

Lx = 40m, Ly = 1.2m, ly = 0.8m, a = 0.4m, xa = 10m, xb = 20m, (3.6)

so that our numerical model can be thought of as a simulation of the flow in a laboratory

experiment at a reduced scale (about 10 times smaller than the real flow domain). The Reynolds

number is still very large (a few 105), so that very fine meshing will be required to make sure

that the near wall treatment is accurate enough.

Figure 3.2: Sketch of the computational domain and of the rectangular cage ABCD in the vertical

plane.

The Reynolds equations (3.2)-(3.3), or equivalently (2.6)-(2.7), have been discussed in details

in Chapter 2 and at the beginning of the present chapter. They are solved using a finite-volume

method (Fluent), with User Defined Functions to implement the Cnet terms. It is assumed that

the mean flow is steady. The corresponding boundary conditions, which are of great importance

for the validity of the computation, are discussed in the next section.



3.4. SIMULATION RESULTS FOR A CAGE AT LABORATORY SCALE 49

3.3.1 Boundary conditions

Inlet and outlet conditions. To ensure a smooth velocity profile at the inlet, velocity at

x = 0 has been taken to be an empirical power-law function of the form:

uin(y) ≡ u(0, y) =
9

8
U∞

(
y

Ly

)1/8

(3.7)

which has been normalized to have U∞Ly =
∫ Ly

0 uin(y) dy. The upstream velocity recorded in

the roadstead of Cherbourg ranges from 0.1m.s−1 up to 1.5m.s−1. The averaged velocity of

the mean flow has been chosen as U∞ = 0.5m.s−1 in the following simulations. The outflow

boundary condition has been set at the outlet of the calculating domain.

Turbulence at the inlet. The turbulent intensity I at the inlet is taken to lie in the range

1% < I < 5%, which corresponds to the case of common turbulence conditions with moderate

intensity.

Near-wall treatment and meshing. At the bottom wall y = 0, the no-slip boundary con-

dition has been set in our calculations. Standard wall functions are used, so that the so-called

’log-law’ describes the turbulent boundary layer. The non-dimensional wall distance y+ ranges

from about 30 to 60, as required for the use of such wall functions.

Upper surface. Finally, to approach real conditions, the surface y = Ly has been set as a free-

slip boundary condition to account for the negligible viscous stress exerted by air on water. Note

that this interface is frozen (i.e. it does not deform), as the theoretical model has shown that

the deformation of the air/water interface due to the drop of piezometric pressure is negligible

here (see Eq. (2.41) page 32).

3.4 Simulation results for a cage at laboratory scale

3.4.1 Pressure drop

The following figures show the drop of piezometric pressure for various drag coefficients Cnet

ranging from of a few units to a few hundreds. Again, the pressure is plotted for various

horizontal lines from the bottom (y = 0) to the surface (y = Ly).

In the case of moderate effective drag coefficients (Cnet of a few units), pressure along hori-

zontal planes all collapse on the same curve (Fig. 3.3), and this confirms that P̂ is independent
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of y. These curves also show an abrupt pressure drop due to the presence of the cage, in quanti-

tative agreement with Eq. (2.25). For these values of Cnet, the asymptotic condition (2.52), that

is Cnet ≪
(

ũ
U∞

)
lx
∆ , is satisfied, since

(
ũ

U∞

)
lx
∆ is about a few tens. As long as this condition,

together with Eq. (2.49) are fulfilled, the Prandtl equation (2.55) is expected to be valid.

The table below shows the difference in piezometric pressure P̂ (xa)− P̂ (xb) predicted from

Eq. (2.40), and obtained from the simulations of Fig. 3.3. We observe that the global behavior

is recovered without any ad hoc tuning of parameters, though discrepancies are visible. These

discrepancies are due to the fact that the model relies on the assumption that ly/lx ≪ 1, and

this ratio is not so small in the numerical computation.

Cnet 1 2 3 4

P̂a − P̂b (Eq. (2.40)) 76 Pa 136 182 219

P̂a − P̂b (simulations) 58 Pa 108 153 192

relative error 31 % 26 % 19 % 14 %

Under increasing Cnet (Fig. 3.4, Cnet = 50, 100, 200, 500), we observe that the horizontal pressure

profiles are still independent of y, but the linearity of P̂ (x) (Eq. (2.25)) is no longer satisfied.

This means that convective acceleration terms come into play, even outside the mixing layer,

and that streamlines becomes much more distorted, especially near the inlet section of the cage

x = xa where the flow is forced to go below the cage. In addition, the asymptotic condition

(2.52) page 35 is no longer fulfilled when Cnet is of a few hundred. For both reasons, we do

not expect the asymptotic model to be valid here, as a more complex flow takes place for such

”dirty” cages with a low permeability. Finally, Fig. 3.5 shows P̂ (x) for various Cnet, to highlight

the role of the low permeability on the pressure drop.
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Figure 3.3: Piezometric ressure drop P̂ (x), along various horizontal lines equispaced from the

bottom (y = 0) to the surface (y = Ly), in the case of moderate Cnet. Parameters are given by

Eqs. (3.6) and (3.7). The cage covers the range 10m = xa < x < xb = 20m.
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Figure 3.4: Pressure drop across the computational domain, in the case of large Cnet. Parameters

are given by Eqs. (3.6) and (3.7). The cage covers the range 10m = xa < x < xb = 20m.
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Figure 3.5: Pressure drop across the computational domain for various values of Cnet between 0

and 500. Parameters are given by Eqs. (3.6) and (3.7). The cage covers the range 10m = xa <

x < xb = 20m.

3.4.2 Bottom shear stress

The shear stress τw = µ
∂ū

∂y
at the bottom of the domain (y = 0), where µ is the dynamic viscosity

of the fluid, is a quantity of great interest to predict the appearance of erosion and resuspension

of materials below the cage. Indeed, as soon as τw is known, one can make use of Shield’s

criterion to estimate whether the motion of particles could be initiated. Resuspension is an

important impact of any immersed structure on its environment, especially when permeability

is low (see for example Poizot et al. [70]). Figure 3.6 shows the bottom shear stress obtained from

numerical simulations (same parameters as above, Eqs. (3.6) and (3.7)): clearly, the presence

of the cage has a huge effect of this quantity, as it can significantly increase the bottom shear

stress as soon as the effective drag coefficient Cnet is of a few tens.

3.4.3 Turbulent intensity

The turbulent intensity I is defined as I = u′/U , where u′ is the root-mean-square (rms) of the

turbulent velocity fluctuation and ū is the mean velocity amplitude:

U =
√
(ū)2 + (v̄)2. (3.8)
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Figure 3.6: Bottom shear stress τw versus x, for various effective drag coefficients of the cage.

Parameters are given by Eqs. (3.6) and (3.7). The cage covers the range 10m = xa < x < xb =

20m.

The rms velocity is also related to the fluctuating kinetic energy k per unit mass (already met

in section 3.2) via:

k =
3

2
u′

2
.

A global view of turbulent intensity, obtained from our numerical simulations, is shown in

Fig. 3.7, for various values of Cnet. As can be seen from this picture, turbulence has a tendency

to increase under the cage and downstream of the cage. For small values of Cnet, the thickness of

the turbulent mixing layer increases linearly with x below and behind the cage, and this comforts

the choice (2.58) for the normalized x-coordinate of the theoretical model. For larger values of

Cnet, numerical simulations clearly show that this linear growth breaks, and the topology of the

turbulent zone is more complex. This is due to the appearance of the recirculation zone, which

will be discussed in section 3.4.4.

Figure 3.8 shows the turbulent intensity at moderate Cnet’s, along the horizontal line y =

a = 0.4m. We clearly observe that the effective drag coefficient has a huge effect on turbulence

production, as I growth drastically, and reaches a peak value which increases with Cnet. The

dashed lines corresponds to the theoretical value I0 obtained from Eq. (2.66) with quu = 0.02

(i.e. smaller than the accepted experimental values). Even though discrepancies are visible, the

model gives an acceptable estimate of turbulent intensity due to the turbulent mixing layer.
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Figure 3.7: Turbulent intensity for different values of Cnet. Red: large intensities. Blue: small

intensities.
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Figure 3.8: Profiles of turbulent intensity (in per cent) along the horizontal line y = a, for Cnet =

1, 2, 3 and 4. Solid lines: numerical simulations. Dashed lines (same color code): theory, Eq.

(2.66). The cage goes from xa = 10m to xb = 20m.

3.4.4 Flow structure - Streamlines and extent of the recirculation cell

Figure 3.9 shows the streamlines of the mean flow obtained from our numerical simulation. For

small values of Cnet, streamlines are almost parallel and horizontal. A vertical flow component

appears near the inlet of the cage when Cnet increases. In addition, a recirculation cell is visible

at the rear of the cage. Clearly, the typical size of the cell increases with Cnet. In order to

quantify this dependence, we have chosen to define the ”cell extent” as the length of the reverse

flow zone along the interface (see Fig. 3.10 (upper graph)):

L = |CS|.

In terms of the upper horizontal velocity component u(x, Ly) (obtained from our simulations),

the cell extent has a simple expression:

L =
1

2

[
xE − xC −

∫ E

C
sign(u(x, Ly))dx

]
(3.9)

Indeed, in the absence of cell we have u(x, Ly) > 0 for all x ∈ [xC , xE ], so that L = 0. When a

cell is present, with a reattachment point S, we have:

L =
1

2
[xE − xC + xS − xC − (xE − xS)] = xS − xC .
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Figure 3.10 (lower graph) shows the cell extent L versus Cnet. We observe that L remains equal

to 0 for all Cnet below 15. Then, L takes positive values and increases abruptly. This confirms

that there exists a critical value of Cnet where a bifurcation occurs, and the topology of the flow

changes. We are aware of the fact that boundary layer detachment, which is a key mechanism

for the occurrence of recirculation cells, is very difficult to recover with a CFD code, i.e. it

requires to use very fine meshes and very efficient turbulence models. By changing either the

turbulence model or the near-wall treatment, one might obtain different values for the critical

Cnet. However, the overall behaviour might not be too different and bifurcations will occur,

whatever the details of the numerical method.

For larger values of Cnet, the cell extent converges to a constant value of about 5 m. We

have checked that this limiting value is independent of the horizontal dimension Lx of the

computational domain, provided the outlet is far enough from the net.

Figure 3.9: Streamlines of the mean flow for various finite values of Cnet.
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Figure 3.10: Upper graph: mean streamlines when Cnet = ∞. The ”cell extent” L is defined as

the length of the reverse flow zone along the interface, that is L = |CS|. Graphs (a) and (b):

plot of the cell extent L versus Cnet.
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3.4.5 Flow reduction within the cage

As discussed in the first chapter, many experimental studies about fishnets have shown that a

significant reduction of the flow could happen inside the cages [30][56][52][49][36][55]. According

to the conditions of these measurements (shape and size of the cages, intensity of biofouling, fish

concentration, upstream flow, etc.), the percentage of velocity reduction can take very different

values ranging between 10 % and 80 %. In this section, we aim at proposing a simple model for

the link between the effective drag coefficient of the cage Cnet and the relative flow rate passing

through the cage. For that, we define the flow rate, per unit width through the net, as the flux

of velocity through the exit of the net (in units of m3.s−1.m−1):

Qnet =

∫ Ly

a
u(xb, y)dy. (3.10)

The total flow rate is:

Qtotal =

∫ Ly

0
u(xb, y)dy = U∞Ly. (3.11)

The relative flow rate through the rear end of the cage Qi is defined as:

Qi =
Qnet

Qtotal
(3.12)

and is plotted in Fig. 3.11. We observe that Qi is below 10 % when Cnet is above 500: such cages

can be considered as nearly impermeable. The same curve in log-log plot for 5 ≤ Cnet ≤ 500

shows a nearly linear decay, and this strongly suggest a power-law of the form:

Qi ≃ αC−β
net (3.13)

with α ≃ 0.8 and β ≃ 0.3, and Cnet larger than 5. The dashed line of the upper graph of Fig.

3.11 confirms that Eq. (3.13) is a good approximation.

As stated in Chapter 2, the theoretical model is expected to give satisfactory results for Cnet

of order unity. In this case, Eq. (2.32) page 31 leads to2:

Qi ≃
u0(Cnet) ly
U∞ Ly

=

√
B2 −AC −B

A

1

1 + a/ly
, (3.14)

2Here we assume that the flow rate at the rear end of the net x = xb is u0ly, i.e. that the flow is uniform here.

We could also integrate the erf profile (2.59) from y = a to y = Ly, to account for the velocity inside the mixing

layer, but this would bring minor corrections.
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Figure 3.11: Relative flow rate Qi through the rear end of the cage versus Cnet, in lin-lin plot

(upper graph) and in log-log plot (lower graph).
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where the non-dimensional functions A(Cnet, ly/a), B(Cnet, ly/a) and C(Cnet, ly/a), have been

given in Eqs. (2.35)-(2.37). We have checked that this formula agrees with our numerical results.

For example, when Cnet = 5, Eq. (3.14) leads to Qi ≈ 42%, in agreement with our numerical

result shown in Fig. 3.11. For very small Cnet’s, the theoretical model leads to the trivial result

Qi ≃ ly/Ly ≃ 0.66, as the velocity is nearly uniform here (except near the bottom boundary

layer). This result is recovered in our numerical computations (see first point in Fig. 3.11).

Finally, to give an idea of velocity reduction for large Cnet’s we have plotted the horizontal

velocity ū(x, y0) versus x, along a fixed horizontal line of height y0 = 3Ly/4 crossing the cage,

and for various Cnet’s (Fig. 3.12). We observe that velocity at the end of the cage is divided by

about 5 when Cnet is above 200. This reduction then seems to be less sensitive to Cnet for even

larger Cnet’s.

Figure 3.12: Horizontal velocity ū(x, y0) versus x, along a fixed horizontal line of height y0 =

3Ly/4 crossing the cage.

3.5 Conclusion of this chapter

The analytical model presented in the previous chapter helped us design a numerical model for

the flow in the vertical plane. The main advantage of these simulations is that they generalize

the theoretical approach to less permeable cages, since they allow to consider not only moderate,

but also large values of Cnet. However, they still rely on a large number of approximations (2D

domain, fixed rectangular cage, moderate dimensions, absence of waves, etc.) and cannot be

considered as extremely realistic. Nevertheless, they bring some interesting information about
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the hydrodynamics, which are listed below.

Pressure drop. Piezometric pressure drop along the stream is an interesting effect that has

been captured by our model. It is due to the presence of the cage which creates a drag. Even

though this drag acts inside the cage only, the longitudinal piezometric pressure gradient exists

also below the cage, where the fluid velocity increases with x. In particular, the boundary layer

at the bottom wall has a favourable pressure gradient: this effect will be taken into account in

further studies.

Bottom shear stress. The acceleration of the flow below the cage increases the bottom shear

stress. In the case of our cage at laboratory scale (depth = 1.2 m, cage length = 10 m, total

length = 40 m), and with an inlet velocity of 0.5 m.s−1, the bottom shear stress can reach

values of a few Pa. Such stresses could have en effect on the sand bed below. This point will

be discussed in Chapter 5.

Streamlines and flow structure. For small or moderate Cnet’s, streamlines are nearly parallel,

i.e. the flow is mostly towards x at each point of the computational domain, even at the rear

of the cage. No recirculation cell exists, and the cell-extent L is perfectly equal to zero for all

Cnet below 15. Clearly, this critical value depends on the geometry of the domain and on the

upstream velocity. Then, a bifurcation occurs, a recirculation cell appears at the rear of the

cage, and L increases abruptly with Cnet, and reaches an asymptotic value of about 5 m (Fig.

3.10). When the cell appears, the flow rate through the cage drops. This effect is expected

to be of major importance for sediment transport (that will be studied in Chapter 5): when

the recirculation cell reaches its limiting extent, the cage is ”hydrodynamically blocked” and all

effluents produced by fishes will exit the cage from below, instead of being driven away by the

main stream.

The recirculation cell has an additional effect (studied in details by Poizot et al. [70]):

suspended particles traveling below the cage and passing near the ”separatrix” streamline BS

(see upper graph of Fig. 3.10) are likely to be trapped by the recirculation cell. This trapping

phenomenon has been observed in many different situations, as soon as separatrices exist in a

flow. In this case, they spend a long time spinning inside the cell and can be driven back towards

the border of the cage. Effluents transported this way create a so called ”self-contamination” of

the cage [70]). This effect will be discussed in more details in Chapter 5.
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Flow reduction within the cage. The flow rate within the cage decreases when the effective

drag coefficient increases. For the parameters considered here, and for large Cnet’s, simulations

clearly suggest that the relative flow rate through the cage Qi obeys a power-law of the form

of Eq. (3.13). For Cnet > 500, the relative flow rate is below 10 %, so that the cage is nearly

impermeable. The parameters α and β appearing in this power-law certainly depend on the

geometry of the problem (size of the cages, etc.) but this question requires to be investigated in

details.



64 CHAPTER 3. NUMERICAL MODEL



Chapter 4

In-situ flow measurements

After having performed theoretical and numerical analyses of the flow around a sim-

plified model of immersed obstacle, we now turn to real fish farms. This chapter is

devoted to flow measurements carried out during the thesis at the aquaculture fish

farm of Cherbourg, which has been mentioned several times in the previous chapters.

We first introduce flow measurements using current meters located at positions of

interest. These results will then be commented and compared with analytical and

numerical calculations described above.

4.1 Area under study and positions of current meters

Fig. 4.1 shows the study area located in the roadstead of Cherbourg. The aquaculture fish farm

covers an area of around 17 hectares (photographs of Figs. 4.2 and 4.3). This farm consists of

cylindrical and cubic nets. The average height of the nets lies between 7 and 8 metres below

the sea surface, and the distance from their bottom to the seabed ranges from 3 to 7 metres,

according to the deformation of the fishnet cage and to the sea level variations due to the tides.

In the numerical and analytical parts of the present thesis, the deformation of the net was

omitted. Thus, we don’t expect our models to accurately agree with measurements.

Flow velocities have been measured at various positions around and inside the fish farm.

For reasons of cost and convenience, only 3 positions were chosen to set our current meters.

A Seaguard current meter was located inside one of the fishnet cages and two ADCP’s were

65



66 CHAPTER 4. IN-SITU FLOW MEASUREMENTS

positioned upstream and downstream of the fishnet cage system. The three instruments were

positioned as follows (Fig. 4.4):

• the Seaguard current meter (Seaguard Andera) was set at the right corner of the last

fish net cage,

• the IRSN ADCP (Teledyne RDI Sentinel V50) was installed 20 meters beyond the cage,

on the East side,

• the Intechmer ADCP (Teledyne RDI Sentinel S50) was set 50 meters beyond the cage,

on the West side.

For safety and technical reasons, we could not install a device below the cages (as initially

planned), which is a zone of great interest that has received little attention so far. Therefore,

we have limited our study to the comparison between velocities in front of and behind the cage.

Positions of the three current meters (the Intechmer ADCP, the IRSN ADCP, the Seaguard

current meter) are illustrated in Fig. 4.4.

Figure 4.1: Map of the Cherbourg roadstead showing the aquaculture fish farm.

Figure 4.5 zooms on the locations of the three measuring instruments, installed in October

2016. Due to technical limitations and external circumstances, data recorded from the Seaguard

Andera were unreliable and had to be discarded. As a consequence, velocity measurements

inside the fishnet are unavailable. Measurements were performed during 18 days for the S50
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Figure 4.2: Photographs of the fish farm.
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Figure 4.3: Photograph of the fish farm (top view). The whole set of 16 cages covers a rectangular

domain 160m× 33m.

ADCP (from 10/06/2016 to 10/24/2016) and 16 days for the V50 ADCP (from 10/06/2016 to

10/22/2016), because this current meter ran out of battery sooner than scheduled. Both devices

operated on the same firmware with the same version (47.17.0.22) and were set up with the same

configuration, to ensure that they produce comparable data. Data were permanently collected

during this time.

4.2 General considerations about ADCP measurements

In this section, we introduce some common knowledge about ADCP’s, how they work and how

to use them efficiently in combination with the Teledyne RDI Sentinel V50 software. Readers

familiar with ADCP techniques may skip this part.

An ADCP is defined as a hydro-acoustic current meter, designed to measure water current

velocities over a certain range of depth, and based on the Doppler effect of sound waves scattered

back from particles within the water column. They can be considered as a device with multiple

current-meters monitoring the velocity vertically. These equipment could be utilized in different

ways and for different purposes depending on specific measurement requirements and conditions.
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Figure 4.4: Setting positions of the three current meters: the Intechmer ADCP (RDI Sentinel

S50), the IRSN ADCP (RDI Sentinel V50), the Seaguard Andera current meter.

Figure 4.5: Zoom on the locations of current meters. The scale is given by the length of the

fishnet cage which is about 160 m.
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4.2.1 Velocity measurements using the Doppler effect

The Doppler effect is the change in frequency, or equivalently in wavelength, of a waver (or

any other periodic event) for a moving observer. This effect can be met whenever a source of

waves moves with respect to an observer. Compared to the emitted frequency, the frequency of

the measured wave is higher during the approach and lower during the recession. The Doppler

shift is defined as the difference between the recorded frequency when one stands still and the

recorded frequency when one moves. One should bear in mind that the effect does not result

from an actual change in the frequency of the source.

To transmit and receive sound signals, ADCP’s make use of piezoelectric transducers which

transmit sound impulses at a constant frequency fs into the water. In practice, this frequency

ranges from 38 kHz to several MHz. This basal range of frequency is highly pitched, so that

it is out of reach of dolphins and toothed whales. Along their path, sound waves are affected

and scattered by suspended particles, and reflect back towards the instrument. If particles move

away from the instrument, the recorded frequency fD of reflected waves will be slightly smaller

than their original frequency fs. In contrast, if particles move towards the current meter, waves

with a higher frequency will be sent back. The instrument uses the difference in frequency

between the waves it sends and the waves it receives (the so-called Doppler shift) to calculate

how fast the suspended particles are moving. Sound waves that hit particles far away from the

profiler request longer time to come back than waves that strike particles in the vicinity of the

profiler. The profiler manages to measure current speed at various depths from each series of

impulses, by calculating the Doppler shift and the time it takes for the waves to bounce back.

The relation between the Doppler shifted frequency fD and the source frequency fs is expressed

as:

fD = 2fs
V

c
(4.1)

where c is the speed of sound in water (about 1500 m.s−1), V is the velocity of the back-scatterer

(i.e. the particles suspended in water). The factor 2 appearing in this equation manifests the

fact that an ADCP both emits and receives sound. Indeed, the Doppler effect occurs twice: a

first effect along the path from the transducer to the scatterer, and a second effect from the

scatterer to the transducer.

However, Doppler shift happens only when the distance between the source and the receiver
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changes. Indeed, if a scatterer moves perpendicular to the acoustic beam, the distance between

the ADCP transducer remains unchanged, then the Doppler shift does not occur. Thus, the

deflection of the velocity vector of the targeted scatterer from the acoustic beam axis of the

ACDP should be accounted for as:

fD = 2fs
V

c
cos(θ) (4.2)

where θ is the angle between the ADCP beam and the velocity vector of the scatterer (see Fig.

4.6). The velocity of the scatterer measured by the ADCP can therefore be calculated as:

V = c
fD

2fscos(θ)
(4.3)

Figure 4.6: Sketch illustrating the deflection of velocity from the scatterer.

4.2.2 Benefits and limitations

Benefits:

- ADCP’s provide a velocity profile along the water column. They avoid using long strings

of current meters, as was frequently done in the past.
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- ADCP’s can measure velocities along a water column up to 1000 m long.

- ADCP’s can measure small scale and low speed currents.

- Unlike previous technologies, ADCP’s measure the absolute speed of water, not just how

fast one water mass moves with respect to another.

Limitations:

- Recorded data are more accurate when high frequency impulses are used. However, low

frequency signals travel further in water. Therefore, scientists have to estimate a reasonable

distance within which measurements will be as accurate as possible.

- ADCP’s run out of batteries rapidly, so that the duration of measurements has to be

estimated a priori.

- To produce reliable data, ADCP’s must hit a sufficient amount of suspended particles, so

that truthful data are difficult to achieve in clear water regions.

- The device may miscalculate the current in the presence of bubbles in turbulent water or

swimming marine life.

- Users should take precautions against plankton, barnacles, algae etc,... that could cling on

to the transducers.

4.3 Environmental conditions of the fishnet cages of Cherbourg’s

roadstead

Measurements took place from mid October 2016 to the beginning of November of the same

year. The fish farm is located inside the roadstead, near a seawall (dyke) built in the Nineteenth

Century: this wall protects the nets from major swells or waves, as well as from the North

wind. However, if wind blows from East or West, waves are generated. Therefore, wind and

other meteorological parameters have been considered during our study by means of a weather

station (Davis Vantage Pro 2) set at CNAM-Intechmer. This weather station is located 4.8 km

southeast of the study area, as shown in the map of Fig. 4.7. These meteorological parameters
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are listed below.

Figure 4.7: Weather station positioned at CNAM-Intechmer.

4.3.1 Temperature and rainfall

During the 18 days of measurement, the temperature in the region of interest varied from 11.3

oC to 14.6 oC. The cumulative rainfall for this period was 2.1 mm per day, on average. The

three highest rainfalls were recorded on October 09th, 15th and 23rd 2016, and were equal to

4.6 mm, 14.4 mm, and 8.9 mm respectively (see Fig. 4.8).

4.3.2 Wind

During the first day, devoted to the deployment of the devices, the mean wind in the region of

interest was approximately 17.8 km.h−1. Five days later, the wind speed reached its peak of

around 25.0 km.h−1. The strongest wind lasted during three consecutive days, from October

18th to October 20th. These records allow us to foresee sea surface agitation during certain

periods of time. In fact, they must be correlated to the wind direction. Indeed, if wind comes

from the North, less surface agitation is expected to happen in comparison with other directions

like East or West, which are more aligned with the dyke. In practice, wind from the East
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Figure 4.8: Rainfall recorded during the period of measurements (October 2016).

occupies more than 50% of time and therefore waves were expected to be mostly induced by the

Eastern wind during measurements. Figure 4.9 illustrates the distribution of wind speeds.

4.3.3 Tides

The water depth measured near fish cages varied from 14.0 m to 18.0 m, depending on the

tidal height at the time of measurement. The instruments were set up at the beginning of a

spring tide cycle in order to capture the strongest and most significant current. Tide variation is

shown in Fig. 4.10. As can be seen on this graph, the lowest tide level (corresponding to a tide

coefficient equal to 32), was reached on October 10th, 2016, that is four days after the beginning

of measurements. The highest tide level, characterized by a tide coefficient of 114, was reached

on October 17th, almost in the middle of the measurement period.

4.3.4 Atmospheric pressure

Figure 4.11 shows the mean variation of atmospheric pressure during measurements, enclosed in

the blue area. As illustrated in the graph, the pressure recorded during the measurement period
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Figure 4.9: Mean wind speed during measurements (October 2016).

Figure 4.10: Tidal range during measurements (source: shom.fr).
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Figure 4.11: Atmospheric pressure recorded during measurements.
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tends to be anticyclonic. A first peak value of 1027 hPa was reached on October 9th, 2016, and

a second peak of 1023 hPa was reached on October 18th. During the period from October 14th

to 23rd, the pressure dropped to values around 1005 hPa and 1010 hPa.

4.4 Instruments deployment

As indicated above, the IRSN ADCP (Teledyne RDI Sentinel V50) was set to the East and the

Intechmer ADCP (Teledyne RDI Sentinel S50) was positioned on the West side of the fishnet

cage. They are fixed on the seabed, as illustrated in Fig. 4.12. The devices were moored using

bottom tripods (see photograph in Fig. 4.13), and mounted by professional divers to ensure that

the foundation on the seabed was stable and horizontal.

Figure 4.12: Sketch showing ADCP’s installed on the seabed, on the West (Intechmer ADCP

S50) and East (IRSN ADCP V50) sides of the cage. (Diagram not to scale.)

The two ADCP’s measured the same height of water column, ran the same firmware, and

were configured for the same depth-cell size. They did not have the same battery life, but this

didn’t affect the study. Each device recorded vertical velocities along the water column, in front

of and behind the fishnet cage respectively. They were both activated and started recording on

October 10th at 3:00 PM. The IRSN ADCP stopped functioning on October 22th at 12:51:02

PM and the Intechmer ADCP on October 24th at 10:16:11 AM. Technical properties of ADCP’s
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Figure 4.13: An ADCP fixed on its tripod during the measurements campaign (October 2016).
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corresponding to these measurements are written in the table of Fig. 4.14.

Figure 4.14: Technical properties of both ADCP’s during measurements. (Intechmer ADCP S50

and IRSN ADCP V50.)

Although ADCP’s were fixed on the seabed, they could not measure the current speed along

the whole water column, due to the blind zone of the instruments. As illustrated in Fig. 4.15,

this blind zone is composed of a 0.8 m height due to the frame itself, plus an extra limitation of

1.68 m due to the measurement device. Thus, both ADCP’s could not measure velocities within

a bottom layer of thickness 2.48 m. The green region of Fig. 4.15 indicates the zone where

velocity measurements could be performed. Depending on the tide at the time of measurement,

the ADCP’s could record velocities in the water column up to 14 m or 18 m above the bottom.

Concerning the Broadband ADCP, the depth cell size ranges from 0.12 m for the highest

frequencies to 32 m for the lowest. Both ADCP’s use 22 cells, with a depth cell size of 0.5 m.

Since the depth cell size is equal to the distance between current meters, each ADCP measures

a water column of 11 m. The number of depth cells represents the number of current meters,
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Figure 4.15: ADCP’s blind zone (grey), working zone (blue), sediment bed (brown).

i.e. each depth cell can be thought of as a single current meter. Hence, our ADCP’s contain 22

cells corresponding to 22 current meters placed along a vertical segment of 11 m.

During the period of measurements, the farm was almost perfectly clean. Moreover, it was

observed that the fish farm was predominantly occupied by salmons at an early stage, i.e, salmon

fry, parr and smolt etc. This implies a negligible fish concentration and a weak contamination of

the fishnet cage by bio-fouling. Besides, we also noticed that the outer space of the cage complex

was almost free from clinging plankton and phytoplankton or barnacle. This suggests that the

flow passing through this obstacle might not meet a significant hydrodynamic resistance due to

living organisms. In regard of previous results gained from our theoretical or numerical models,

we believe that a small or moderate value of Cnet should be applied to our problem. This point

will be discussed in details below.

After more than two weeks, current meters were pulled out of the water with the help of a diver.

They were all in good condition whilst being lifted up on the surface. ADCP data was then

processed by a specific software dedicated to these instruments: results are presented in the next
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section.

4.5 Data treatment

The post-processing software is highly flexible and allows both automatic and manual config-

uration, as well as the execution of individual steps. Data produced by a BroadBand ADCP

basically includes four different kinds of standard profiles. Velocity data obtained from these

ADCP measurements were recorded in earth coordinates format. This means that a velocity

measured at a single point and a given time is converted into North, East and up components

(corresponding to two horizontal and one vertical coordinates). Also, to reduce the impact of

uncertainties on our measurements, data has been averaged over a significant number of samples.

4.5.1 Raw data processing

ADCP’s produce raw data files containing different physical parameters measured in the form

of various trains of impulses (”pings”, see for example Fig. 4.16). These data files have been

processed to derive various average quantities of interest for our hydrodynamical problem.

Figure 4.16: An example of measured data, presented via the interface of the post-processing

software.

Raw data has been post-processed at Intechmer by E. Poizot: low-pass filtering (to account

for perturbations produced by fishes) and high-pass filtering (for the noise in back-scattered

intensity) have been used. More details can be found in the internal note in Ref. [69].
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Depth and mean flow direction

Our facilities measure water currents occurring mostly in two opposite directions: Westward

and Eastward flows. The following graphs (Figs. 4.17 and 4.18) illustrate the changes in the

direction of the mean flow during neap and spring tides, during the period of measurements. In

addition, the depth of the water column is shown. These two graphs emphasize some noteworthy

facts listed below:

- The measuring depth which could be reached by the instruments varies from 13.5 m to 18.5

m during spring tides, and from 15.5 m to 16.5 m during neap tides.

- Ebb currents flow to the West at almost 270o, and flood currents flow to the East at almost

90o.

- Ebb starts a few hours before high tide, and flood starts after low tide during spring tides, and

before low tides during neap tides.

- During neap tides, 2/3 of the flow is ebb, and 1/3 is flood.

- During spring tides, flood occupies 1/4 of the flow, and ebb takes the whole other 3/4 part.

Based on these observations, both ADCP’s introduce almost the same data.

Figure 4.17: Depth and mean flow direction during neap tides.

Figure 4.18: Depth and mean flow direction during spring tides.
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Figure 4.19: Direction (green) and speed (red) of the mean velocity recorded by the Intechmer

ADCP during four days.

Figures 4.19 and 4.20 show the direction (degree) and speed (m.s−1) of the mean velocity

recorded by the Intechmer ADCP during four days. Both curves have been obtained by averaging

recorded values over a time interval of 30 minutes. In general, the graph shows the changes of

water speed with respect to the variation of the tide. During ebb-tide, when the current reaches

its strongest, the East current (measured by the V50 ADCP) is stronger than the West current

(measured by the S50 ADCP). This is because the ebb streams to the West, and the fishnet

cage tends to attenuate the incoming flow. The same phenomenon can be observed when the

current is lowest. West (S50) current is lower for a longer period. An opposite phenomenon is

observed during the flood. At the end of the flood, the minimum water speed is reached for both

ADCP’s. This lowest velocity is observed to be slightly higher by the S50 (West) ADCP than

by the V50 (East) ADCP. This is a consequence of the fact that the flood flows to the East,

and is therefore slowed down by the fishnet cage located in between the two currents streaming

West and East. Or in other words, this could be regarded as an evidence of ”speed loss” due to

the presence of the immersed structure.



84 CHAPTER 4. IN-SITU FLOW MEASUREMENTS

Figure 4.20: Direction (green) and speed (red) of the mean velocity recorded by the IRSN ADCP

during four days.

4.6 Measurement results and comparison with models

4.6.1 Mean velocity profiles

To check qualitatively and quantitatively numerical and experimental data, we made compar-

isons between velocity magnitudes at corresponding positions. Thus, for each cell yj (j = 1, .., 22)

from top to bottom, we extracted samples Ui(yj) of velocity magnitude from ADCP’s, corre-

sponding to discrete times ti = i × δt, and averaged over N values to obtain the experimental

mean velocity profile:

U(yj) =

∑N
i=1 Ui

N
. (4.4)

We chose N = 1200, together with a time step δt = 1 s, so that the average was taken over N ×
δt = 20min. (Note that some samples with undefined values were excluded from the averaging

procedure.) Two datasets are presented, denoted as DATA1 and DATA2, corresponding to

two different times of measurement. Figure 4.21 shows the mean velocity profiles upstream

and downstream of the cage, obtained from the DATA2 dataset. We clearly observe that the

upstream velocity is almost uniform throughout the water column, whereas the downstream
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velocity is affected by the presence of the cage. This downstream profile will be compared to

models in the next few lines.

Comparison with the theoretical model

We have considered the theoretical model of Chapter 2, to verify whether it could be applied to

our field measurements. First, we noticed that the velocity averaged over the cross-flow direction

y, which should be independent of the streamwise (horizontal) coordinate x in a perfectly 2D

channel, does not take the same values upstream and downstream: differences of about 7 or 8

% are observed. This shows that the flow is not fully 2D here, and that, as expected, three-

dimensional effects are present in the real cages. In spite of this approximation, the model can

be used to recover interesting orders of magnitude. We observed that the ratio u1/U∞ was

approximately equal to 1.2 for both DATA1 and DATA2. According to Eq. (2.33) page 31, this

corresponds to an effective drag coefficient:

Cnet ≈ 1.1 (4.5)

This rather moderate value confirms the above observation (see dicussion page 80), i.e. that

cages are not very dirty and have a low hydrodynamic resistance. A pedagogical interpretation

of this value is proposed at the end of this section.

The experimental profile has been compared to our theoretical profile ū(xs, y) given in Eq.

(2.59), at x = xs, where xs is the x-coordinate of the ADCP (as sketch in Fig. 4.22). Because

the Intechmer ADCP was located 20 m away from the rear of the cage, we set:

xs = xb + 20m.

Also, simulations show that the turbulent zone does not start at x = xa (the very beginning of

the cage), but at an unknown position x = xt where instabilities below the cage have occurred,

and the laminar mixing layer has turned to a fully developed turbulent mixing layer. The

theoretical erf (error-function) profile of Eq. (2.59) is then used with a renormalized variable

ξ = σ0(y − a)/(x − xt) instead of σ0(y − a)/(x − xa). The origin of the fully turbulent zone

has been taken to be the last quarter of the cage, that is xt = xb − 40m. This choice has no

effect on the velocity reduction, by only affects the width of the erf profile. The shape of the

experimental downstream profile suggests that the axis of the turbulent zone should be located
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Figure 4.21: Velocity profiles from datasets DATA1 (upper graph) and DATA2 (lower graph).

Triangles: velocity upstream of the cage. Circles: velocity downstream of the cage.
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Figure 4.22: Sketch of the model cage ABCD, showing the position of the beginning of the

turbulent zone at x = xt.

at y = 5.5m, and this is the value that has been taken for a. We are aware of the fact that the

real cage does not have a rectangular shape, and this is certainly an important approximation

that will be discussed below.

Under these hypotheses, the resulting theoretical profiles could be calculated and are shown

in Fig. 4.23, together with the corresponding experimental profiles from datasets DATA1 and

DATA2. We observe that the agreement is acceptable, and that the value Cnet ≈ 1.1, as well

as the choice of the parameters xt and a, allow realistic predictions of the various tendencies.

As expected, the model is not very accurate, but this is due to the numerous simplifications it

contains and which have been discussed in details at the end of Chapter 2.

An interpretation of the numerical value of Cnet. To illustrate the value Cnet ≈ 1.1 for the effec-

tive drag coefficient, consider its definition (Eq. (2.5) page 24), in terms of the drag coefficient

CD of individual obstacles. In a real situation, these obstacles are composed of the border of the

net, together with the numerous fishes swimming against the flow. Assume that the net and the

fishes are removed, and replaced by fixed balls, with an individual drag coefficient CD ≈ 0.44 in

the limit of large Reynolds numbers, and a diameter d = 6 cm (like tennis balls). The appar-

ent surface of such balls is s = πd2/4 ≈ 0.0028m2. Assume that balls are equally distributed

throughout the cage, and that their number per cubic meter is n = 22, then formula (2.5) leads

to: Cnet ≈ 1.1. Therefore, our cage can be thought of (hydrodynamically speaking), as a set of

22 tennis balls per cubic meter held fixed inside the nets.
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Figure 4.23: Circles: mean velocity profile downstream of the cage, from DATA1 (upper graph)

and DATA2 (lower graph). Solid lines: theoretical profiles ū(xs, y) (Eq. (2.59)) with xs =

xb+20m, xb−xt = 40m, Ly = 12m, a = 5.5m, Cnet = 1.1. The upstream velocity U∞ used in

the model has been taken as the vertical average of the experimental downstream profile, which

is close to U∞ = 0.47m.s−1 in both cases.
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4.7 Conclusion of this chapter

The effect of a real cage on the main stream has been highlighted, by means of ADCP mea-

surements. Even though the cage under study was rather clean, a non-negligible flow reduction

behind the cage (and an acceleration below) could be measured. The cage is out of reach of

our numerical model, as the corresponding Reynolds number is of several million. However, we

observed that some features of the analytical model were recovered experimentally, in spite of

the numerous approximations of the theory.
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Chapter 5

Transport of suspended particles

around an immersed structure

This chapter is devoted to one of the most significant impacts of immersed struc-

tures in coastal flows, that is sediment resuspension and transport. Two approaches

will be used to study this effect. Firstly, a numerical approach based on our RANS

simulations, coupled to a discrete phase model for sediments, will be presented. Even

though erosion and resuspension will not be included strictly speaking in this model,

it will be shown that the immersed obstacle has a strong effect on sediment transport,

especially if the obstacle has a small permeability (large Cnet). Secondly, in-situ tur-

bidity measurements performed near the fish cages of Cherbourg’s roadstead will be

reported. These data are in qualitative agreement with simulations, as they confirm

that suspended sediments or effluents can be carried upward in the wake of the cage,

and remain in this zone for some time, instead of being flushed away by the main

flow.

5.1 General considerations and context of the study

As shown in the previous chapters, large immersed structures tend to act as floating barriers

which cause changes to the direction, speed and characteristics of the flow passing over. These

perturbations significantly affect the turbidity of water [68][38]. Therefore, estimating turbidity

91
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in the wake of the cages is a crucial task to develop sustainable coastal industries, especially in

the case of aquaculture. Indeed, as discussed in the introducing chapter, fish farms are placed

in areas with high water circulation [66], to reduce their environmental impact as well as risks

of fish diseases. This solution has two main advantages: (1) water inside the fishnet is regularly

refreshed, so that the oxygenation conditions are enhanced, leading to better growing conditions

for the fishes ; (2) faeces and uneaten fish food are expected to be transported downstream

and diluted, therefore reducing the local environmental impact of the fish farm. In spite of

these favourable conditions, high mortality rates can be recorded in farms under high stream

flows [73]. The salmon fish farm of the roadstead of Cherbourg investigated in this thesis is

under high tide current conditions, and its near area is regularly monitored by means of various

environmental indicators (salinity, turbidity, sediment quality, benthic life, hydrodynamics, etc.).

However, high mortality episodes were recorded in the last decade, and were not always clearly

understood.

To determine possible causes of these events, various external processes have been proposed,

such as flash floods, marine snow, amoeba infections, ferries and harbour traffic, etc. After field

observations and measurements, no clear evidence could be retained to identify any of these

external sources as directly responsible for fish mortality.

We therefore focused on possible contaminations by resuspended faeces or non-ingested feed

(or any other fine sediment) emerging from below the fishnets, and produced by the accelerated

flow under the production structures, as already suggested by Cromey et al. [23]. Our results

are presented in the following sections and in Ref. [70]: it will be shown, using turbidity mea-

surements and numerical simulations, that self contamination of cages by particles emerging

from below the nets is possible.

Sources of particles. In this chapter, we will consider three categories of particles, described

in the next few lines and sketched in Fig. 5.1, according to their sources.

• Far field particles: representing sediments carried by the mean flow upstream from the

immersed structure. In general, depending on the magnitude of the tide, they can have

a wide range of shapes and weights. (These particles will be represented in blue in our

simulations below.)

• Effluent particles: these are particles produced by the industrial activity related to
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the immersed structure itself. In the case of fishnets, effluent particles are mostly uneaten

food and excrements. (Colored in red in our simulations.)

• Particles resuspended from the sediment bed : this group includes materials accu-

mulated at the sea bottom, and consisting of gravels, pebbles, sands and silts, shells,

crustacean, etc. It can also contain effluents deposited on the bottom, and resuspended

under high current conditions. (Colored in green in our simulations.)

Figure 5.1: Sources of particles: far field particles (blue), effluent particles (red), particles re-

suspended from the sediment bed (green). This colour code will be used throughout the chapter.

5.2 Numerical analysis of sediment transport in a domain at

laboratory scale

Simulations of sediment transport have been done by means of the Fluent software. The flow

domain is the rectangular domain with a reduced scale already presented in Chapter 3 (i.e.

depth = 1.2 m, cage length = 10 m, total length = 40 m). The physical assumptions concerning

particles are presented in the next paragraphs.

5.2.1 Particle size distribution

ADCP measurements presented in the previous chapter have shown that the mean flow velocities

range from 0.1 to 1.5 m.s−1 according to the time of measurements. This current, upstream of

the cage, already contains particles (the far field particles), which are relatively light. It can also
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contain effluent particles with various weights and sizes, some of which are quickly deposited,

others being transported away. Also, the current is likely to resuspend particles from the sand

bed. We have chosen to simulate particles with radii rp distributed in the range:

0.1mm ≤ 2rp ≤ 10mm (5.1)

with a Rosin-Rammler distribution. According to the Hjulström - Sundborg diagram (Fig. 5.2),

in a flow of velocity U∞ = 0.5m.s−1 like the one considered here, particles between 0.1mm

and 1mm could be brought from the far field or produced by erosion from the bed. Particles

between 1mm and 10mm are also likely to be transported in the main stream. In contrast,

particles above a few 10mm are less likely to be suspended in such flows. Therefore, the range

(5.1) appears to be appropriate for the situation considered here.

The density of simulated particles is taken to be ρp = 2710 kg.m−3, which is close to usual

values of sand particles found in the site under study. The total mass flow rate of injected

particles has been taken to be 10−5 kg.s−1 in all cases.

5.2.2 Particle motion equation and non-dimensional parameters

Following discussions in the previous section, it is assumed that particles are much smaller than

the mean flow length scales, and that their concentration is small. In particular, they do not

modify the flow and do not interact. The motion equation of each particle reads:

d~xp
dt

= ~Vp(t), (5.2)

mp
d~Vp

dt
= CD

1

2
Sp ρf |~V (~xp, t)− ~Vp(t)|(~V (~xp, t)− ~Vp(t)) + (mp −mf )~g, (5.3)

where ~xp and ~Vp are the particle position and velocity, mp is the mass of the particle, mf

is the mass of fluid displaced by the particle (−mf~g is the buoyancy force). CD is the drag

coefficient, which depends on the particle Reynolds number Rep = 2|~V − ~Vp|rp/ν (where rp is

the radius of the particle, which is assumed to be spherical here). The apparent surface of the

particle is Sp = πr2p. Other contributions of the hydrodynamical force (pressure gradient of the

undisturbed flow (i.e. Tchen’s force), added mass, Boussinesq-Basset history force, lift), will be

neglected. For a detailed discussion about the physical origin and the relevance of these forces,

see Gatignol (1983) [37], Maxey & Riley (1983) [62]. Specific discussions about lift and Basset
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Figure 5.2: The Hjulström-Sundborg diagram [47][77], showing the relationships between par-

ticles’ size and their ability to be transported, eroded or deposited in river flows. The red line

corresponds to U∞ = 0.5m.s−1. Blue lines indicate the range of particle sizes considered in our

simulations.
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forces can be found in the works by Magnaudet (1997) [61], Candelier et al. (2004 and 2005)

[16][17], Candelier & Angilella (2006) [15]. For a discussion about the Maxey-Riley-Gatignol

equation applied to sediments, see Escaurazia & Sotiropoulos (2011) [26].

In Eq. (5.3), vector ~V is the mean fluid velocity given by the RANS simulations which have

been described in details in Chapter 3. Hence, the drag force appearing in this equation does not

account for the effect of turbulent eddies on the particle. This is an important effect however,

since it causes the turbulent dispersion of suspended sediments. In order to take this effect into

account, we make use of the classical ”eddy lifetime model” [74] [42] (also called the Discrete

Random Walk model), which consists in assuming that the particle interacts with an eddy of

typical velocity u′ =
√
2k/3 (the rms velocity of turbulent fluctuations), which is characterized

by an eddy lifetime τe depending on the local turbulence characteristics. One usually takes

τe = 2TL, where TL is the Lagrangian time scale, i.e. the integral scale of the autocorrelation

function of fluid points velocity. It is computed from the second-order moments as:

TL ≃ CL
k

ε

where CL ≈ 0.15 is a non-dimensional constant (other values are also proposed in the literature),

and k (turbulent kinetic energy per unit mass) and ε (turbulent dissipation per unit mass) have

been presented in Chapter 3. During a period τe, a random velocity component u′ ~ξ is added

to the mean fluid velocity (where ~ξ is a normalized random vector). The particle will interact

with this vortex during a time lapse T depending on τe and on the particle response time

τp = mp/(6πµrp). In the eddy lifetime model implemented in Fluent one uses (see also Graham

[41]):

T = min(τe, tcross) (5.4)

where tcross is the time required for the particle to cross the vortex, which is modelled as

tcross = −τp ln

(
1− Le

τp|~V − ~Vp|

)
. (5.5)

In the limit of large particle inertia this leads to

tcross ≈
Le

|~V − ~Vp|
(5.6)

which corresponds to the ballistic limit. In contrast, in the limit of weak particle inertia (τp → 0),

tcross diverges and the interaction time is simply equal to the eddy lifetime T = τe: the particle
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trajectory is affected by the vortex till the vortex vanishes. Finally, after a time T , a new

fluctuating velocity is considered by creating a new random vector u′ ~ξ.

Stokes number and fall velocity of particles. Prior doing heavy simulations, it is convenient

to estimate the orders-of-magnitude of the particle response time, Stokes number, fall velocities,

and fall Reynolds numbers. By using a linear drag law (i.e. taking CD = 24/Rep), as expected

for particles with a small Reynolds number, and dividing Eq. (5.3) by mp, we are led to:

d~Vp

dt
=

1

τp
(~V (~xp, t)− ~Vp(t))−

VT

τp
~ey, (5.7)

where

τp =
mp

6πµrp
=

2

9

ρp
ρf

r2p
ν

(5.8)

is the particle response time already discussed above, and

VT =
(mp −mf )g

6πµrp
=

2

9

(
ρp
ρf

− 1

)
g
r2p
ν

(5.9)

is the fall (or settling, or terminal) velocity in still fluid and in Stokes flow conditions (Rep less

than about 4). For more inertial regimes (Rep ≫ 1), Eq. (5.3) does not provide any explicit

relation for VT (because CD depends on the particle velocity in a more complex manner), so that

we choose to make use of the simplified, empirical, explicit and easy-to-use, formula of Chen

(1997) [21]:

VT =
ν

2rp

(√
25 + 1.2d2

∗
− 5
)3/2

(5.10)

where

d∗ = 2rp

(
(
ρp
ρf

− 1)
g

ν2

)1/3

.

From these quantities we obtain two important non-dimensional parameters. By using a flow

length scale L, and velocity scale U∞, the non-dimensional response time (Stokes number) is:

St =
U∞ τp
L

. (5.11)

When St ≪ 1, particles instantly obey the mean flow, i.e. they have no inertia. In contrast,

St ≫ 1 indicates an inertial regime. In the table below, we have taken L = 1m and U∞ =

0.5m.s−1, which are relevant orders-of-magnitude for our simulations at laboratory scale. The

fall Reynolds number, that is the particle Reynolds number Rep in still fluid, is

ReT =
2rpVT

ν
. (5.12)
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The table below shows these parameters for three typical particle sizes.

diameter 2rp (mm) 0.1 1 10

response time τp (s) 0.0014 0.14 14

Stokes number St 7 10−4 0.07 7

fall velocity VT (m.s−1) 0.01 0.11 0.44

VT /U∞ 0.02 0.22 0.88

fall Reynolds number ReT 1 110 4400

These values show that particles of size 0.1 mm travel in inertialess conditions: both the inertia

of the particle and the inertia of the fluid can be neglected to simulate these objects, as both

the Stokes and the terminal particle Reynolds numbers are smaller than unity. Also, these

particles sediment, but their settling velocity (1 cm.s−1) is much smaller than the main flow

velocity. Particles of size 1 mm still have a small Stokes number, but they are more sensitive to

gravity. They are expected to sediment in the conditions considered here. Particles of size 10

mm have an inertial dynamics: their proper inertia is not negligible (St 6≪ 1). In addition, the

inertia of the fluid displaced by such particles is important, as the Reynolds number of these

objects is large, so that their dynamics is dominated by wake effects and non-linear drag. Also,

sedimentation is significant for such particles.

Note that even though VT /U∞ is small, the ratio VT /un (where un is the typical horizontal

velocity inside the cage), might not be small. Indeed, according to the values of Cnet, velocities

inside the cage can be much smaller than the upstream velocity. In particular, when Cnet is

large, we expect sedimentation to be significant within the cage, even for our smallest particles.

This point will be checked in the following section.

Initial conditions for particles. In order to integrate Eqs. (5.2)-(5.3), initial conditions

are required for the position ~xp(0) and velocity ~Vp(0) of the particles. As already discussed in

Fig. 5.1, initial positions will be taken at the inlet of the domain for far field particles, along

a segment just below the net at y = a for effluent particles, and along a horizontal segment

slightly above y = 0 for particles from the sediment bed. Initial velocities are equal to the local

mean fluid velocity.
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5.2.3 Results: particle dispersion for Cnet = 1, 100 and 1000

Figures 5.3, 5.4 and 5.5 show particle trajectories for increasing values of Cnet, i.e. from very

permeable cages (Cnet = 1) to nearly impermeable cages (Cnet = 1000).

Figure 5.3: Particle trajectories in the case Cnet = 1. (a) : particles transported by the upstream

flow ; (b): particles from the seabed ; (c): effluent particles.

When Cnet = 1, trajectories are nearly linear, and show very few randomness. This is a

clear indication that turbulence intensity is small in this case, as expected since the only source

of turbulence is the velocity difference between the interior of the cage and the fast flow below.

This difference being rather limited for such a permeable (”clean”) cage, particles’ random walk

is also small. A small randomness is however visible below the cage, where some turbulence is

created, and is responsible for the expansion of the plumes. Sedimentation seems to have very

little effect in this flow where velocities are close to 0.5 m.s−1 almost everywhere, except in the

bottom boundary layer.

When Cnet = 100 (Fig. 5.4), the cage is much less permeable and trajectories are significantly

different from the previous case. Random walk is more pronounced, as the turbulent intensity

is now larger. A new effect is visible however: particles from the upstream flow now sediment

within the cage. This is in agreement with the fact that the velocity inside the cage drops down

to about 0.1m.s−1 (see Fig. 3.12 page 61). Therefore, the fall velocity is no longer negligible

compared to the mean fluid velocity, as soon as particles are larger than 1 mm (see table page

98). Settling therefore occurs along oblique lines that are clearly visible in Fig. 5.4.

A closer look at Fig. 5.4 also shows that effluents or particles from the upstream flow can
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Figure 5.4: Particle trajectories in the case Cnet = 100. (a) : particles transported by the

upstream flow ; (b): particles from the seabed ; (c): effluent particles.

Figure 5.5: Particle trajectories in the case Cnet = 1000. (a) : particles transported by the

upstream flow ; (b): particles from the seabed ; (c): effluent particles.
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contaminate the cage, whereas green particles, produced at the sandbed, are convected away

from the cage. This is no longer the case when Cnet = 1000 (Fig. 5.5). In this case the cage

is nearly impermeable, as shown in Chapter 3, a strong flow exists below the cage and a large

recirculation cell appears at the rear of the cage, like the one of Fig. 3.10 page 58. Under the

effect of turbulent dispersion, even green particles are trapped within this cell and spin there

for a few convective times. This effect can lead to a ”self-contamination” of the cage, which has

been studied in details in Ref. [70]. Even though such particles do not necessarily penetrate into

the cage by crossing its rear end limit, the fact that they remain there for a long time creates

favourable conditions for the self-contamination. Indeed, in case of flow reversal, these particles

will be driven towards the interior of the cage and contaminate the fishes.

Note on the validity of the eddy lifetime model for large turbulent intensities. The

eddy lifetime model used for turbulent dispersion, described in section 5.2.2, is known to be

very approximate when turbulent intensity is large [41][42]. Indeed, in this case the model

overestimates turbulent dispersion. Therefore, the results of Figs. 5.4 and 5.5 must be interpreted

with care. Other methods, like LBM-LES1, should provide more accurate results since they

accurately describe the dynamics of unsteady vortices. These approaches are left as a perspective

to this thesis.

5.2.4 Path lengths

In order to quantify the tortuosity2 of particles’ motion, we have chosen to plot the path length

Lp(t) of a trajectory (x(t), y(t)) versus x(t). Indeed, in the case of a uniform motion at constant

velocity U∞ we have, obviously:

Lp(t) = x(t)− xinj , (5.13)

where xinj is the abscissa of the injection point. In other words, by differentiating with respect

to x, a regular trajectory is characterized by:

dLp

dx
= 1. (5.14)

1Lattice Boltzmann Method - Large Eddy Simulation.
2Rigorously speaking, tortuosity is defined as the path length Lp(t) between two points, divided by the distance

between these points. It is equal to 1 for straight trajectories and much larger than 1 for very convoluted

trajectories.
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This last equation is more general than (5.13): it indicates locally that the trajectory is regular

and horizontal. In contrast, when turbulent dispersion is present, the path length and x(t) are

linked in a more complex manner: the curve (Lp, x) is no longer single-valued, but it allows to

unfold the trajectory in the 2D plane. Figure 5.6 shows these curves when Cnet = 1 and 1000,

for a single effluent test particle released at xinj = 15m. In the former case we observe that the

law (5.13) is satisfied with a great accuracy. In the latter case, Eq. (5.13) is no longer satisfied:

the zigzags correspond to the capture of the particle in the recirculation cell behind the cage,

and to its backward motion towards the cage. After two rotations in this cell, the particle is

driven directly downstream in a regular manner and the law (5.14) is clearly satisfied. The final

path length, obtained when the particle exits the flow domain, is observed to be equal to 25 m

when Cnet = 1 and to 38 m when Cnet = 1000: this example shows how the lack of permeability

of the cage directly affects the complexity of trajectories and the evacuation of effluents.

Figure 5.6: Path length of a test effluent particle released at (x = 15, y = a), versus the x-

coordinate of the particle. The dashed line is Eq. (5.13). The rear of the cage is at x = xb =

20m, and the outlet section is at x = 40m.

The computations presented in this section suggest that effluents, but also particles eroded

from the sandbed below the net, could be found to wander for a long time near the rear end of

the cage. This is confirmed by in-situ measurements performed in the set of cages of Cherbourg,

and presented in the next section.
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5.3 Comparison with in-situ turbidity measurements

In May 2015, turbidity measurements were conducted near a set of cages, like the one discussed

in Chapter 4, composed of 8 square nets distributed on a horizontal 2-by-4 grid, in Cherbourg’s

roadstead. Winds were light or nil during the survey, and the sea surface was very flat. By using

a Niskin bottle, discrete samples were taken: 1) near the water surface (∼ 1m water depth), 2)

at mid depth, and 3) about 1m above the bottom (Fig. 5.7). Positioning at sea was performed

by means of a DGPS device.

Because the roadstead is under the influence of a semi diurnal tide regime, which generates

currents up to 1m.s−1 one meter above sea bottom, six successive surveys were conducted. The

first two were performed respectively 2 hours and 1 hour before current reverse. The four last

surveys were done respectively 1, 2, 3 and 4 hours after current reverse.

Six sample stations were regularly investigated. The first one was located 20m away from the

western side of the structure. The other stations were regularly distributed on the eastern side

(every 20m), along a line running through the middle of the set of square fishnets (Figs. 5.7A

and B). The turbidity of each water sample was measured using a Hach 2100AN turbidimeter

(Hach, USA) and expressed in NTU (Nephelometric Turbidity Units).

In the area under consideration, the mean turbidity is about 10 NTU [63] [53]. When the tidal

stream flows westward (Fig. 5.7 C and D), the area located upstream from the cages exhibits

low turbidities, of the order of the background level. However, a slight increase in turbidity (23-

27 NTU) is observed 20m before the foot cage. Downstream, turbidity is substantially higher

(> 40 NTU), whatever the depth and the current conditions under study. As the stream flows

eastward (Fig. 5.7 E to H), the turbidity is very low upstream from the cage. In contrast, the

bottom sample (i.e. near the foot cage), systematically shows higher turbidity levels (up to 54

NTU). In the downstream area, high turbidities appear evenly distributed close to the bottom

(1m above), and this is so whatever the conditions under study.

In the water column, very high turbidities (> 100 NTU, that is 10 times the background

level) were measured. These values were observed on the surface and at mid depth. No well-

defined organization could be highlighted, as very strong turbidity values (134 NTU) can mingle

with very low turbidity values (< 10 NTU).

In summary, high turbidity levels were measured near the foot cage in the upstream area. In
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Figure 5.7: Turbidity measurements in NTU units. (A): top view of water sample locations.

(B): cross-sectional view of water samples. From (C) to (H): cross-sectional view corresponding

to the various current times indicated on the figure.

the downstream area, strong turbidities were observed from the rear of the cage to more than

100m downstream, on average about 1 meter above the bottom, but strong heterogeneities along

the water column were identified, showing a ”bull’s-eye effect”.

These measurements are therefore in qualitative agreement with the numerical simulations

presented in section 5.2. Indeed, in contrast with the measurements of October 2016 described

in Chapter 4, the turbidity measurements of May 2015 were done at the rear of extremely dirty

cages3, which might correspond to large values of Cnet. Strong turbulence intensities, as well as

recirculation cells, might therefore explain the high turbidity levels recorded downstream of the

cages.

3Unfortunately, no ADCP measurements could be done in the May 2015 campaign. Such measurements would

have helped us to estimate an appropriate value for the effective drag coefficient Cnet to be used in the models.



Chapter 6

Conclusion and discussion

The work presented in this thesis brought some information about hydrodynamic transport in

the vicinity of an immersed structure in shallow water. The typical situation considered here

concerns aquaculture cages, but we believe that the concepts and methods developed throughout

the thesis can be applied to various situations. Three approaches have been carried out: a

theoretical (analytical) study, which is known to be very efficient for flows at extremely large

Reynolds numbers ; a numerical study, which accounts for key effects that are neglected in the

analytical approach ; an experimental campaign which brought us important information for the

understanding of the hydrodynamic environment of the cages.

This chapter summarizes the whole content of the thesis and accentuates its contributions.

We also discuss through this part the limitations of our approaches as well as possible perspec-

tives.

6.1 Recapitulation of the research

The complexity of transport phenomena considered here led us to develop an analytical model

(Chapter 2), valid in the limit of very large Reynolds numbers. This theoretical approach,

being based on strong simplifications, is not expected to predict currents with a high accuracy.

However, it helped us understand the relevance of the various mechanisms in different parts of

the domain. Also, it provided orders-of-magnitude for hydrodynamic quantities of interest like

the mean velocity or turbulent intensity.
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Because the thesis is devoted to the understanding of the flow in the water column, we chose to

perform all calculations in the vertical plane, and in two-dimensions only. The cage was assumed

to be a rectangular fixed and porous object. The various elementary obstacles that create the

drag were assumed to cover the whole volume of the cage, to mimic the presence of numerous

fishes swimming against the stream and remaining fixed with respect to the cage. A volume

force with effective drag coefficient Cnet was then included into the Navier-Stokes equation to

account for this drag. Assuming that the concentration of elementary obstacles was uniform,

the volume force took a very simple form. This approach is different from approaches based on

the sole net solidity, which are appropriate for empty nets were the drag is only due to a surface

distribution of elementary obstacles on the net boundary (the twines). The link between the

total drag of the cage and the distribution of these objects, either volumic or surfacic, has been

discussed in Chapter 2, page 24.

We then identified various zones where viscous effects and/or turbulence were non-negligible:

(1) the mixing layer between fast flow below the cage and slow flow inside or behind the cage, (2)

the bottom boundary layer. Outside these zones, we made use of the potential flow assumption

which allowed us to derive a simple set of equations for velocity and pressure drop (Eqs. (2.32),

(2.33) and (2.34) page 31). These results were in good agreement with numerical simulations

(see for example Fig. 2.4). These solutions were then used as external flows to be matched

with the flow inside the mixing layer (the bottom boundary layer was ignored). By revisiting

the Prandtl equations inside the mixing layer we could show that, for strongly permeable cages

(small Cnet), the self-similar profile of Goertler was an acceptable approximation.

A numerical study (Chapter 3) was also developed, in parallel with the analytical one, to

account for more complex effects and to study more impermeable cages (larger Cnet’s). The

same geometry was considered. Turbulence was modelled by means of the k − ω model (in

place of the mixing-length model in the analytical study). Fine meshing was used near walls.

In contrast with the analytical approach which is a priori valid for extremely large Reynolds

numbers, the simulations could not be run with Re of a few million. They were run with

Re = U∞Ly/ν = 6. 105 (that is U∞ = 0.5m.s−1 and Ly = 1.2m), instead of Re = 6. 106

(corresponding to the real depth Ly = 12m). This reduced scale model allowed us to have y+

of order unity to a few tens near walls.
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Though the numerical model also is based on strong simplifications (rectangular 2D domain,

rigid cage, absence of waves, no turbulence production inside the cage, etc.), it still brings

out interesting hydrodynamic information. As expected, simulations agree with the theoretical

model in the case of moderate Cnet’s, typically from 1 to 5. However, the numerical model goes

further with abundant qualitative results for larger Cnet’s, corresponding to more impermeable

cages, which can be thought of as ”full” or ”dirty”. For Cnet of a few tens, the formation of

a recirculation cell was observed at the rear end of the cage. The size of this recirculation cell

(or cell-extent) is very sensitive to the value of Cnet. When Cnet reaches a few hundred, an

asymptotic flow structure appears and the cell-extent no longer depends on Cnet. Numerical

simulations also show how the relative flow rate Qi passing through the cage depends on Cnet.

Qi drops down to about 10% for Cnet > 500, corresponding to nearly impermeable cages. An

empirical power-law, valid for a wide range of Cnet’s has been proposed (page 59).

In Chapter 4, in-situ measurements carried out during October 2016 were presented. The

environmental conditions of these measurements were also recorded: temperature and rainfall,

atmospheric pressure, tides. ADCP current meters deployed upstream and downstream of a

cage (streamwise length: 160 m, width: 33 m, average depth: 8 m) enabled to measure velocity

profiles showing that the flow is strengthen below the cage and reduced behind the cage. This

effect was in quantitative agreement with the theory, provided a value Cnet = O(1) was chosen.

This moderate value corresponds to rather clean cages, with a limited number of fishes, in

agreement with visual observations of the cage in October 2016.

Another set of measurements was also used in this thesis. It concerns turbidity measurements

recorded in May 2015 upstream and downstream of a cage. These results have been presented

in Chapter 5, which is devoted to sediment transport and is briefly discussed in the next few

lines.

The motion of sediments in this flow was investigated numerically (Chapter 5), by using a

Lagrangian approach for particles, which were assumed to be passive (no effect on the flow)

and isolated (no particle/particle interaction). This method allows to track clouds of suspended

sediments as soon as the fluid velocity field is known. Here, the local mean velocity of the fluid

was simply taken from the RANS simulations of Chapter 3. Particles were assumed to have a

density of about 2700 kg.m−3. By making use of the Hjulström-Sundborg diagram, we chose
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diameters in the range 0.1mm to 10mm. Turbulent dispersion was modelled by means of the

eddy-lifetime model.

These two-phase simulations revealed that sediment dispersion is very sensitive to the perme-

ability of the cage, as the complexity of particle trajectories depends on Cnet. This effect has

been highlighted by computing path lengths, which have been observed to drastically increase

when Cnet increases. It is due to the fact that weakly permeable cages create flow instabilities

and turbulence. This can lift up particles at the rear of the cage. In addition, the large steady

recirculation cell behind the cage has been observed to trap particles for some time and to delay

their evacuation. This effect could cause a kind of ”self-contamination” of the cage, as it can

retain effluent particles produced by the cage itself.

Turbidity measurements, carried out in May 2015 upstream and downstream of a very dirty

fishnet cage, have revealed high turbidity levels right behind the cage (Chapter 5, page 103).

These measurements show that weakly permeable cages create a high turbulence intensity and

increase particle dispersion and trapping by the rear circulation cell. Such observations agree,

at least qualitatively, with our numerical simulations at large Cnet.

6.2 Discussion and future works

We are aware of the fact that the various models presented here are based on very strong

approximations, so that their interpretation must be done with care. Nevertheless, they provided

interesting information and we believe that these models could be used in practice to estimate

the hydrodynamic impact of cages.

2D approximation and rigid cage. The most limiting feature of our models is that they are

two-dimensional, in a vertical (x, y) plane. They can be thought of as a cut through the mid-

plane z = 0 of a cage. The width of cage being very extended (about 33 m), we assumed that

side effects arising at the end of the flanks (i.e. at z = ±16.5m) have little influence on the

main flow. This is obviously very approximate, since secondary flows necessarily exist along

the z direction. This effect is particularly significant for very impermeable cages (Cnet → ∞).

Indeed, in this case the flow acceleration below the cage and the pressure decay at the rear end

is expected to create a transverse flow as well as three-dimensional vortex tubes with a complex
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and unsteady structure. The effect of these flows on particle dispersion and transport is among

the perspective of this thesis. Our research group has acquired a strong expertise in the use

of the Lattice Boltzmann Method (LBM). This algorithm is particularly efficient for unsteady

flows, and can now be used at very large Reynolds numbers when coupled to the Large Eddy

Simulation method. It will be used in the near future to account for both the three-dimensional

geometry and the unsteadiness of the flow. Deformable cages, whether 2D or 3D, should be also

investigated next. Indeed, the dynamics of the net can affect the flow, so that rigid cages like

the one considered here might overestimate the flow acceleration. Models of netted structures

already exist in the literature, some of which have been listed in the introduction. Here also

we believe that the LBM approach, coupled to a solid mechanics algorithm, could offer an

interesting opportunity.

The bottom boundary layer below the cage is an important zone were several significant phenom-

ena take place. First of all, our models clearly show that the piezometric pressure decays along

this boundary layer, and that the external flow has an algebraic form (Eq. (2.29)). Therefore,

any attempt to solve the Prandtl equations at the bottom should take this pressure gradient

into account. If this boundary layer is laminar (moderate velocities and/or reduced scale), some

solutions for the inner flow might exist, at least far from the inlet x = xa. Indeed, for large

x−xa Eq. (2.29) implies us ∼ (x−xa)
m with m = 1/2, so that the Falkner-Skan solution might

be used, leading to a wall shear stress τw ∼ (x−xa)
1/4. Numerical simulations, with a moderate

flow and under the hypotheses of laminar bottom boundary layer, could help verify this point.

If the boundary layer is turbulent, which is probably the case in real cages, the classical law-of-

the-wall must be adapted to the presence of the pressure gradient (see for example Spalart &

Watmuff (1993) [75]).

A correct modelling of the bottom boundary layer is also necessary to predict the occurrence of

erosion below the cage. Indeed, divers often noticed that currents were strong there, and that

the bottom was clean below the nets. Also, the Hjulström-Sundborg diagram (Fig. 5.2 page

95) suggests that erosion might occur for the type of particles considered here. The detailed

processes of erosion, saltation and resuspension, have not been modelled in this thesis. Instead,

particles produced from the sand bed have been injected arbitrarily along a segment slightly

above the bottom, and the sand bed has been assumed to remain flat and horizontal. The next
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version of the code will include erosion, as well as the deformation of the sand bed.

Our simulations at large Cnet’s show that some particles can be trapped by the large recirculation

cell at the rear of the cage (like the cell BSC in Fig. 6.1 below). In fact, a more detailed analysis

would show that only our lightest particles, injected just below the net, are likely to cross the

”separatrix streamline” BS under the effect of turbulence, and remain trapped in the cell for

some time. This behaviour is sketched in Fig. 6.1. The parameters determining whether the

particle can be trapped or not are the turbulent intensity I (which creates dispersion and causes

separatrix crossing), the particle response time τp (which measures particle’s inertia) and the

free-fall velocity VT (which measures the relevance of gravity). To the best of our knowledge,

no analytical criterion involving these parameters have been proposed so far, when the cause of

separatrix crossing is a random walk model of turbulence. In the near future, we will study this

problem with the asymptotic methods developed in Verjus & Angilella (2016) [82] and Angilella

[5]. These should provide the required criterion, at least in the limit of weak turbulence intensity.

Figure 6.1: Sketch of typical behaviours of particles behind a cage ABCD, near the separatrix

streamline BS. (1): a particle is driven away from the recirculation cell BSC, under the com-

bined effect of its inertia and gravity, in spite of turbulence. (2): a light particle crosses the

separatrix under the effect of turbulence, in spite of its inertia and of gravity.

Additional flow and turbidity measurements will be done in the near future, especially to study

the transport of effluents. Indeed, waste models have been quickly developed (Cromey et al.

(2002) [23], Stigebrendt et al. (2004) [76]) from earlier analyses (Gowen et al. (1989) [40], Hevia

et al. (1996) [46], Pérez et al. [67]). However, these numerical tools have not been widely

used so far, because they are cost effective and have been built for specific geographical areas

(Riera et al. (2017) [72]). They are parameterized with experimental data to suit environments
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and fish species from particular regions. To deal with this, we would like to link the results

achieved in this thesis (analytic, numeric and field results) with more accurate data related to

waste properties (e.g. species-specific food and faeces settling velocities, percentage of uneaten

food) and environmental conditions (e.g. macro-algae biofouling, amount of fishes and their

size, fishes’ location regarding water depth, etc.). To obtain these data, a four-step analysis will

be carried out. (i) First, sediment traps will be deployed underneath the cages and uneaten

feed and pellets will be analysed in terms of quantity and settling properties. (ii) Then, passive

integrated transponder (PIT) tags will be used to assess fishes movements as well as their

location in the cage (number vs. depth). (iii) The size of fishes will then be taken into account

and (iv) macro-algae biofouling will be quantified as a function of species and development.

In addition, seaweeds fouling will be monitored to characterize (e.g. species successions) and

quantify (e.g. biomasses, productivity) seaweeds communities, as well as their potential impacts

on water recirculation and oxygen depletion inside and outside the cages.

As these parameters evolve in time, current measurements will be carried out (outside,

below and inside the cages) to demonstrate the influence of each studied parameters on the drag

coefficient and on the settling velocities of particles issued from the cages. These relationships

could be later used by modellers wishing to improve their toolboxes and thus actively contribute

to an healthy aquaculture development.
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Chapter 7

Résumé étendu en français

7.1 Introduction

Les activités humaines en milieu côtier connaissent une expansion continue depuis plusieurs

décennies, et cette tendance est appelée à se prolonger dans les années à venir. La pression

anthropique est ainsi toujours plus importante, et l’impact environnemental d’activités telles

que le génie côtier, le transport maritime, les énergies renouvelables ou encore les industries

alimentaires, est non-négligeable.

L’aquaculture aussi a un impact sur l’environnement, et cette activité est aussi partic-

ulièrement sensible à la qualité de son environnement (voir par exemple Holmer & Kristensen

(1994) [48] ; Doglioli et al. (2004) [25] ; Naylor et al. (2005) [64]). Les cages d’aquaculture

sont en général installées dans des zones où les courants sont suffisants pour évacuer les effluents

(faeces, restes de nourriture, etc.) qui sont en général produits en grande quantité. Le transport

de ces matières doit alors être contrôlé non seulement pour limiter la pollution à l’aval des cages,

mais aussi pour protéger les cages elles-mêmes. En effet, dans de nombreux cas le panache des

effluents a une évolution complexe et difficile à prédire, car il dépend des conditions d’écoulement

(lent, rapide ; laminaire, turbulent), de la force des vents, de la qualité de la cage (propre et

perméable, encombrée et imperméable), et d’un grand nombre d’autres paramètres.

Un effort important est ainsi nécessaire pour améliorer notre compréhension fine de ces effets

complexes. Pour cette raison, en plus des approches expérimentales classiques (mesures de tur-

bidité, courantométrie, études biologiques, etc.), des techniques numériques ont été développées
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ces dernières décennies pour mieux comprendre les phénomènes de transport au voisinage des

cages d’aquaculture.

Cependant, la plupart des modèles numériques d’écoulements côtiers reposent sur les équations

de Saint-Venant, qui fournissent le champ de vitesse horizontale moyennée sur la direction ver-

ticale. Cette approche est aussi utilisée dans le contexte de l’aquaculture (voir par exemple

Venayagamoorthy (2011) [81]). Même si cette méthode a fait ses preuves pour les interactions

à grande échelle entre le courant et la structure, avec un coût de calcul relativement réduit, elle

ne donne aucune information sur les mouvements verticaux, l’instationnarité à courte échelle de

temps, ou le transport vertical de sédiments et effluents1. Ces mécanismes sont cependant cru-

ciaux pour comprendre l’influence des courants sur la structure, ainsi que l’effet de la structure

sur les courants et le transport sédimentaire.

Le but de cette thèse est précisément de modéliser ces interactions en détail,

dans le plan vertical, et de comparer ces résultats, au moins qualitativement, à des

mesures de terrain réalisées le long de la colonne d’eau près des cages installées

dans la rade de Cherbourg.

Pour atteindre ces objectifs, trois approches complémentaires ont été développées : un modèle

analytique des écoulements près d’une structure immergée, un modèle numérique de ce même

écoulement, et des mesures courantométriques de terrain. Ces trois approches sont présentées

dans les chapitres 2, 3 et 4. Ces chapitres sont suivis d’un chapitre dédié au transport de

sédiments (Ch. 5).

7.2 Etude analytique

Le modèle asymptotique développé ici porte sur un domaine bidimensionnel et rectangulaire,

dans le plan vertical (Fig. 2.1 page 22). La cage est elle aussi rectangulaire, et est assimilée à un

milieu poreux qui exerce sur le fluide une force de freinage proportionnelle au carré de sa vitesse

(Eq. (2.4)). Cette force provient de nombreux obstacles à l’intérieur de la cage. Pour simplifier la

formulation de cette force, nous avons supposé les obstacles hydrodynamiquement indépendants

et uniformément distribués. Le mouvement du fluide sous ces hypothèses est alors décrit par

1Pour plus d’informations sur le transport de sédiments voir les Refs. [3][6][4][9][8].
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les équations de Reynolds stationnaires (2.6) et (2.7), avec l’équation de continuité (2.8), page

26. La vitesse moyenne du fluide (ū, v̄) est ainsi affectée par les contraintes de pression et de

frottement moyennées et les contraintes turbulentes classiques, auxquelles se rajoute l’action de

la cage quantifiée par son ”coefficient de trâınée effectif” Cnet (Eq. (2.5) page 24). Ce coefficient

rend compte non-seulement du coefficient de trâınée individuel des obstacles, mais aussi de leur

concentration.

Malgré les nombreuses simplifications de ce modèle, les équations de Reynolds restent extrêmement

complexes, et leur résolution analytique a nécessité de distinguer deux zones, décrites ci-dessous,

où le modèle peut être encore simplifié.

(i) Ecoulement potentiel et quasi-unidirectionnel à l’extérieur des couches limites :

dans ces zones l’écoulement moyen est supposé irrotationnel (potentiel), et la turbulence est

négligée. On a ainsi posé l’équation (2.17), et l’approximation (2.18). Les termes convectifs

de l’équation de Reynolds (i.e. l’accélération du fluide) sont alors grandement simplifiés. Il

en résulte que la pression piezométrique ne dépend que de x, et on suppose que le gradient

de pression piezométrique est constant (hypothèse additionnelle suggérée par des simulations

préliminaires). Le système peut être entièrement résolu et l’écoulement potentiel extérieur est

ainsi déterminé dans la cage et sous la cage (Eqs. (2.26) et (2.26) page 30). La chute de pression

piézométrique peut aussi être obtenue après quelques calculs. Les champs de vitesse et de

pression peuvent alors être écrits en fonction de Cnet, de la vitesse amont U∞, et des dimensions

de la cage. Les expressions de ces quantités à l’arrière de la cage ont aussi été déterminées (Eqs.

(2.32), (2.33) et (2.34) page 31).

(ii) Ecoulement turbulent à l’intérieur de la zone de mélange : le déficit de vitesse

dans la cage, et la survitesse sous la cage, créent une zone de mélange turbulente qui prend

naissance à la base du filet. En supposant, hypothèse classique, que l’épaisseur de la zone de

mélange est faible devant l’échelle des gradients longitudinaux (et la profondeur du filet), nous

avons réduit les équations de Reynolds dans cette zone. En examinant l’ordre de grandeur de

chaque terme de ces équations, au moyen d’une renormalisation appropriée (Eq. (2.44) page

33), nous avons montré que, si le coefficient de trâınée effective Cnet est modéré (Eq. (2.52)), le

champ de vitesse dans la zone de mélange vérifiait l’équation de Prandtl usuelle (2.55). Dans

cette zone de mélange, la turbulence est prise en compte via une viscosité turbulente. Enfin,
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en raccordant la solution de cette équation (due à Goertler [39]) au champ de vitesse potentiel

trouvé en (i), nous avons pu déterminer le profil de vitesse dans toute la colonne d’eau, dans la

cage, sous la cage et dans son sillage.

Le modèle théorique ainsi développé donne de premiers ordres de grandeurs très précieux

sur le déficit de vitesse dû à l’objet immergé (voir Fig. 2.4 page 39). Il est valide dans la limite

des très grands nombres de Reynolds, et peut être utilisé dans le cas de nombres de Reynolds

beaucoup plus grands que ceux que l’on peut atteindre avec des méthodes numériques. Il repose

cependant sur un grand nombre de simplifications, en particulier une géométrie très simplifiée.

Il ne prend pas en compte la couche limite au voisinage de la parois du bas, ni l’agitation de la

surface libre.

7.3 Etude numérique

Afin de valider l’approche théorique nous avons effectué des simulations numériques avec le

code Fluent. Celui-ci permet un traitement rigoureux des couches limites turbulentes. Nous

avons choisi de l’utiliser avec le modèle de turbulence k − ω SST, conçu pour bien reproduire

les phénomènes de décollement. La géométrie est 2D, identique à celle du modèle théorique, et

avec les dimensions données par l’équation (3.6) page 48. Il s’agit de dimensions réduites d’un

facteur 10 par rapport aux cages réelles, correspondant par exemple à une expérience en canal

de laboratoire. Les conditions aux limites du modèle sont décrites en page 49.

Ces simulations correspondent à des nombres de Reynolds de l’ordre de 6. 105, et ont permis

de balayer une large gamme de coefficients de trâınée effectifs Cnet. Pour Cnet modéré, les

résultats théoriques sont retrouvés avec une assez bonne précision (Fig. 3.3 et tableau page 51),

les différences étant attribuées au fait que la couche limite du bas n’est pas prise en compte dans

la théorie. Lorsque Cnet devient grand (cages moins passantes car plus encombrées), l’étude

numérique montre que la chute de pression n’est plus linéaire (Fig. 3.4 page 52), de sorte que

notre théorie ne s’applique plus. Le modèle numérique donne alors des informations importantes

concernant le frottement sur le fond dû à la présence de la cage (Fig. 3.6 page 54) et qui pourrait

entrâıner de l’érosion. L’intensité turbulente est aussi analysée numériquement (Fig. 3.8) pour

des cages de perméabilité variable. Ces calculs montrent que la structure de l’écoulement change
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drastiquement lorsque Cnet atteint une certaine valeur, et qu’une cellule de recirculation se forme

à l’aval de la cage (Fig. 3.9). Lorsque cette cellule atteint sa longueur définitive (Fig. 3.10),

l’écoulement est presque entièrement dévié vers le dessous de la cage, qui peut alors être vue

comme un obstacle imperméable. Cela affecte le transport et l’évacuation des effluents, ainsi

que la production de particules par érosion sous la cage. La décroissance du débit à travers

la cage en fonction de Cnet correspond au modèle théorique lorsque Cnet est petit, et suit une

décroissance en loi de puissance lorsque Cnet est grand (Fig. 3.11).

7.4 Mesures de vitesse in-situ

Nous avons effectué des mesures courantométriques au voisinage de cages d’aquaculture situées

dans la rade de Cherbourg (Figs. 4.1 et 4.2). Deux ADCP ont été déployés durant environ

deux semaines à l’amont et à l’aval d’une cage de 160 m de long et 33 m de large. Des profils

de vitesse moyenne, sur 22 niveaux d’altitude, ont ainsi été obtenus sur une profondeur de 11

m. Les conditions météo, la pression atmosphérique, le vent, la température, la pluie et les

conditions de marée ont été enregistrées durant la campagne de mesure.

Ces profils de vitesse montrent clairement que la cage ralentit notablement l’écoulement

(Fig. 4.23 page 88), et crée un fort courant près du fond. Les profils obtenus sont comparables

aux profils théoriques, avec un coefficient de trâınée effectif Cnet d’ordre unité. Cette valeur

correspond à un obstacle peu imperméable, c’est-à-dire à une cage très passante, en accord avec

le fait que les cages étaient peu remplies et peu affectées par le biofouling durant la campagne

de mesures. D’autres champs de vitesse sont disponibles et seront analysés dans une prochaine

étude.

7.5 Transport sédimentaire au voisinage des obstacles immergés

Les études ci-dessus montrent que les courants sont perturbés par la présence de la cage, et qu’une

survitesse apparâıt sous la cage. La structure de l’écoulement peut être grandement modifiée

(turbulence, cellule de recirculation), et il est possible que des particules soient remises en

suspension sous l’effet de la contrainte de frottement sur le fond. Tous ces effets peuvent affecter

le transport de particules (effluents ou sédiments). Afin d’étudier ce point, nous avons réalisé
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des simulations en calculant les trajectoires de particules injectées à trois endroits différents

(Fig. 5.1 page 93) : des particules déjà en suspension dans l’écoulement amont, des particules

produites au bas de la cage (effluents), des particules produites au niveau du lit sableux sous

la cage (érosion et remise en suspension). Les diamètres des particules vont de 0,1 mm à 10

mm, et leur densité est de 2,7. L’équation du mouvement de chaque particule est résolue en

tenant compte de la trâınée et de la flottabilité, dans l’écoulement moyen issu des simulations

numériques décrites ci-dessus. La turbulence, qui induit une forte dispersion des trajectoires

particulaires, est prise en compte au moyen du modèle stochastique eddy lifetime model.

Les résultats de ces simulations montrent clairement que, lorsque Cnet est assez grand, des

particules issues du fond peuvent être transportées vers le haut, à l’arrière de la cage, par les

fortes fluctuations turbulentes. En outre, les effluents produits à la base du filet peuvent se

retrouver ”piégés” dans la zone de recirculation durant un certain temps, au lieu d’être évacués

au loin par le courant. Il semble ainsi que la turbidité pourrait être plus élevée à l’aval de la

cage, depuis le fond jusqu’à la surface. Ces résultats sont rassemblés dans les figures 5.3, 5.4,

5.5 et 5.6.

Ces résultats ont été comparés à des mesures de turbidité que nous avons réalisées durant

une autre campagne de terrain, à l’amont et à l’aval d’une cage peu perméable. Ces mesures

ont été réalisées tous les 20 m derrière la cage, et sur trois profondeurs : près de la surface,

à mi-profondeur, et près du fond (Fig. 5.7 page 104). Il apparâıt clairement que la turbidité

est plus élevée à l’aval qu’à l’amont, dans tous les cas de figure. Elle présente aussi de fortes

valeurs à l’aval près de la surface. Ces tendances sont clairement en accord qualitatif avec les

simulations numériques.

7.6 Conclusion - perspectives

Les trois études analytique, numérique et expérimentale présentées dans ce manuscrit montrent

de façon complémentaire divers aspects de l’hydrodynamique de grands objets immergés. En

dépit des hypothèses simplificatrices des modèles (écoulement 2D, absence d’agitation, fond plat,

cage rectangulaire, etc.) des accords qualitatifs sont observés. Dans tous les cas un écoulement

rapide est observé sous la cage, et une zone de mélange apparâıt à l’aval de celle-ci. Cette zone de

mélange est toujours turbulente. Lorsque la cage est peu passante la structure de l’écoulement
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change notablement et une zone de recirculation apparâıt dans le sillage. Dans le cas réel, donc

tri-dimensionnel, la structure de l’écoulement est plus complexe et des courants transverses (dans

la largeur de la cage) vont sans doute apparâıtre. Des simulations 3D permettront de mieux

comprendre l’écoulement et l’effet de ces structures 3D sur le transport sédimentaire.

Les mesures courantométriques, réalisées par ADCP sur toute la colonne d’eau, ont confirmé

l’accélération du fluide sous la cage. Elles ne donnent cependant aucune information sur les

fluctuations turbulentes. Celles-ci seront réalisées dans un futur proche à l’aide d’un dispositif

approprié. De nombreuses autres mesures environnementales sont proposées au chapitre 6 dans

les perspectives de cette thèse.

En plus des effets tridimensionnels, les futurs modèles numériques tiendront compte de la

déformation et de la dynamique de la cage. L’approche théorique sera elle aussi approfondie, car,

même si elle nécessite une géométrie simplifiée, elle permet d’atteindre de très grands nombres

de Reynolds. La capture des particules par la cellule de recirculation, et l’intensité turbulente

à partir de laquelle la capture peut se produire, seront analysées par les méthodes développées

dans les Réfs. [82] et [5].
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Modélisation des écoulements et du transport de sédiments au voisinage

de structures immergées : application aux cages d’aquaculture.

Thi Hai Yen Nguyen

Résumé. Les travaux présentés dans ce manuscrit portent sur les courants et le transport de matière solide
en suspension, au voisinage de grandes structures immergées en eau peu profonde. Nous avons focalisé notre
étude sur le cas de cages d’aquaculture installées dans la rade de Cherbourg. Situées dans une zone de fort
courant, elles impactent leur environnement en modifiant l’écoulement et la turbidité locale. En dépit de
nombreuses études déjà disponibles sur l’impact hydrodynamique de tels obstacles, de nombreuses questions se
posent encore concernant l’écoulement sous la cage, la production de turbulence, l’érosion du sol et la remise en
suspension de sédiments, ainsi que le devenir des déchets produits par la cage. Nous avons choisi de développer
trois approches complémentaires pour apporter des éléments de réponse à ces questions. La thèse débute par
une étude purement théorique de l’hydrodynamique au voisinage d’un obstacle immergé, assimilé à un milieu
poreux, et dans une géométrie simplifiée. Ce modèle bi-dimensionnel, dans le plan vertical, donne de premiers
ordres de grandeurs concernant la chute de pression motrice le long du courant, l’accélération du fluide sous la
cage, la production de turbulence. Cette étude est suivie d’une analyse numérique de ce même modèle, dans
laquelle certaines approximations seront levées. En particulier, le modèle numérique permet de considérer des
cages plus imperméables que celles analysées par le modèle théorique. Il est cependant limité en nombre de
Reynolds, et a été appliqué avec des échelles réduites. Ce modèle numérique a permis d’analyser le lien direct
entre le coefficient de trâınée effectif de la cage et diverses quantités-clés : le débit à travers la cage, la chute de
pression le long du courant, la production de turbulence et l’apparition d’une zone de recirculation à l’arrière
de l’obstacle. Ce dernier effet, visible seulement pour des cages très imperméables, a un impact notable sur le
transport de sédiments et d’effluents : lorsque l’arrière de la cage devient une zone morte (zone de recirculation),
l’essentiel du débit passe au dessous, ce qui crée de fortes survitesses et produit de la turbulence. Celle-ci peut
alors entrâıner des particules indésirables dans la zone morte, ce qui augmente notablement la complexité de
leurs trajectoires et retarde leur évacuation. Enfin, ces études théoriques ont été complétées par des mesures
vélocimétriques et turbidimétriques à l’amont et à l’aval d’une grande cage installée dans la rade de Cherbourg.
Celles-ci confirment la présence d’une survitesse en provenance du dessous de la cage, comparable à celle prédite
par le modèle théorique. Dans le cas d’une cage très peu perméable, la persistence d’une forte turbidité a été
mesurée à l’aval de celle-ci, en accord qualitatif avec les simulations numériques.

Abstract. This manuscript presents investigations of current and sediment transport in the vicinity of large
immersed structures in shallow water flows. It focuses on aquaculture cages installed in the roadstead of
Cherbourg. Being located in a high stream zone, these obstacles have a non-negligible effect on currents as
well as turbidity. In spite of numerous references on this topic, many questions still arise concerning the
environmental impact of such objects. Quantitative information are still needed about the flow below the cage,
turbulence production, erosion of the sand bed, sediments resuspension, and evacuation of effluents. To deal
with these open questions, we have chosen to develop three complementary approaches. The thesis starts with
an analytical study of the flow in a simplified two-dimensional model containing a large rectangular porous
structure. Only the motion in the vertical mid-plane of the obstacle is considered. This preliminary model
provides estimations of various dynamic quantities, like the velocity increase below the cage, the decay of
piezometric pressure along the stream, and turbulence production. Then follows a numerical analysis of the
very same flow, based on less stringent approximations. Because of the high cost of computations, simulations
have been done at a reduced scale. Nevertheless, they confirm most of the findings of the analytical approach
for very permeable cages, and provide crucial information also about weakly permeable cages which were out
of reach of the analytical model. In particular, the formation of a recirculation cell behind such cages, together
with turbulence production, have been studied with the numerical model. This effect has been observed to
affect sediment and effluent transport: when the flow at the rear of the cage takes the form of a cell with closed
streamlines, the cage can be thought of as closed and most of the flow passes below. This creates large velocity
gradients and produces turbulence which significantly increases the dispersion of sediments and effluents. These
particles are then likely to be captured for some time in the cell, instead of being evacuated away. In addition
to these theoretical approaches, in-situ current and turbidity measurements have been performed upstream and
downstream of a large cage immersed in the roadstead of Cherbourg. They confirm the existence of a fast
stream emerging from below the cage. Vertical streamwise velocity profiles have been shown to agree with
theoretical ones, in the case of a very permeable cage. Also, large turbidity levels have been recorded at the
rear of a weakly permeable cage, in qualitative agreement with simulations.


