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General Introduction

Ferrite materials are widely used in microwave electronics for many telecommunication ap-

plications because of their high resistivity and their high saturation magnetization. When

these materials are magnetized by a static magnetic field Hdc, they exhibit anisotropic

properties and nonreciprocal behavior.

These characteristics are at the heart of the design of nonreciprocal devices and tunable

devices. The first type includes devices such as insulators and circulators, in which the

nonreciprocal nature of the wave propagation is paramount. Devices like tunable filters,

delay lines, phase shifters, and variable attenuators exploit the non-linearity of the electro-

magnetic (EM) behavior of ferrites with respect to a static magnetic field.

For each of these devices, an external control is necessary to ensure their state of operation.

The dynamic and static intrinsic properties of ferrites change as a function of magnetization

state. In other words static and dynamic behavior of these devices can be controlled by

an external magnetic field Hdc. Precise control over the performance of these components

requires prior knowledge of the dynamic behavior of ferrite materials.

Dynamic behavior of ferrite material can be represented by the tensor permeability µ̂, each

component of which has a double dependence with respect to the frequency and the static

magnetic field Hdc. Consequently, design and optimization of microwave devices using fer-

rite materials requires a realistic knowledge of its dynamic response, namely permittivity

and permeability and, on the other hand, control of wave propagation that condition their

performance.

Experimentally, the EM characterization of ferrites is commonly carried out in demagne-

tized or saturated states, for example using the transmission/reflection technique in a coax-

ial line, and when in saturation using a resonant cavity. For partially magnetized states

different characterization techniques have been developed in the laboratory (Lab-STICC)

using microstrip lines, rectangular waveguides, and strip lines. The main advantage of these

previously developed techniques is directly related to the fact that they provide access to

the constituent material parameters, scalar permittivity ǫ and permeability tensor µ̂.

One of the specificities of the magnetic materials is the dependence of their dynamic re-

sponse to the shape of the sample. The permeability of a sample ring is not the same as

13



General Introduction

that of a wafer. In addition, for non-ellipsoidal magnetic material which is the case most

commonly encountered in ferrite devices, the internal static biasing field is not uniform. In

a previous study, it is seen that in the most common microwave applications, unsaturated

regions in ferrimagnetic materials still exist, even when strong DC fields are applied. This is

due to the inhomogeneous nature of the demagnetizing fields within non-ellipsoidal samples.

Under these conditions, characterization of material from an actual or average permeability

does not constitute the most accurate solution to help the designer with ferrite devices.

The existing commercial simulation software use different theoretical models to describe the

permeability tensor, according to the state of magnetization. These models use a number

of physical parameters like saturation magnetization 4πMs, anisotropy field Ha, resonance

linewidth ∆H, etc. as input parameters to describe the tensor permeability. With this

procedure, one can describe the behavior of the ferrites in the saturated state in a very

satisfactory manner. However, most of the EM simulators remain limited to certain states

of magnetization, due to the simplified assumptions on which their permeability models

are based upon. This limitation makes the design of devices laborious when the ferrite is

neither in the saturated nor demagnetized state.

Designers often use two linewidth parameters, the resonance linewidth ∆H and the ef-

fective linewidth ∆Heff to represent the ferromagnetic losses. These quantities are not

physical parameters in the strict sense of the term, which appear in Maxwell’s or Landau-

Lifshitz-Gilbert equations like the damping factor α. These quantities are directly related

to damping factor by Polder’s formulations, which is only valid in the saturated state. Res-

onant cavity methods make it possible to measure ∆H and ∆Heff at a given frequency

(mono-frequency method). Measuring these parameters in a wide band of frequencies would

involve too many cavities and sample sizes. Moreover, the representation of the magnetic

losses by two values, one near the vicinity of the gyromagnetic resonance (∆H) and the

other outside this resonance (∆Heff ), reduces the predictive character of the permeability

model.

Design of the new classes of ferrite devices has to be based on the combination of exper-

imental methods and theoretical tools capable of describing the dynamic EM behavior of

the ferrites. We need experimental methods to find the physical parameters of the ferrites

and theoretical models which will use these parameters to describe the dynamic behavior

of ferrites in all magnetization states. In this context, the general objective of our research

work is to improve the electromagnetic modeling of anisotropic ferrites in order to make

the design procedure more predictive and accurate for any state of magnetization. In this

line of research our objective is to develop a predictive EM simulation tool for accurate

modeling of ferrite based devices.
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Our first objective is to develop a simple and generalized broadband measurement method

for the characterization of damping factor α of polycrystalline ferrites by overcoming the

constraints of the standard linewidth measurements. This parameter, being the only dy-

namic input parameter of the theoretical permeability model, will be very useful for the

designers of the microwave devices. It will allow us to predict the dynamic behavior of

the ferrites more accurately at any magnetization state, and thus to optimize the design

procedures.

The demagnetizing field effects due to the size and shape of the sample are prominent in

non-ellipsoidal samples and accurate calculation of internal DC fields and understanding

of the demagnetizing field effects are necessary to get better results with electromagnetic

simulations. This brings us to our second objective, which is to improve the electromagnetic

modeling of ferrite devices by integrating the magneto-static analysis and generalized per-

meability tensor model with a commercial simulation software like Ansys HFSS. A dynamic

electromagnetic analysis of the structure, considering inhomogeneity of the internal fields

and a generalized permeability tensor model would enable us to understand the inhomoge-

neous internal field distribution and the demagnetizing field effects on the performances of

the ferrite based microwave devices.

In order to highlight the effectiveness of the developed EM simulation tool, and to demon-

strate the need for a tool capable of realistically predicting their performance, it will then be

used in the design of a ferrite device - a microwave ferrite circulator. Within the frame work

of this thesis, we will work on the modeling and optimization of a microstrip Y-junction

circulator.

This manuscript is organized in the following way: In the first chapter, we explain the

current use of ferrites in the design of microwave device. We will present the intrinsic char-

acteristics of ferrites which can influence their dynamic behavior. Then we will present the

state of the art of the microwave material characterization methods and will highlight the

problems that arise in the field of microwave characterization of ferrite materials.

In the second chapter, a simple and generalized measurement method to find a unique

quantity representing the dynamic losses in ferrite material, the damping factor α will be

presented. This unique dynamic property combined with the static characteristics (satura-

tion magnetization 4πMs, anisotropy field Ha) would be the input parameters of theoretical

tool describing the dynamic properties of the ferrite material. First, we will discuss the theo-

retical models of permeability existing in the literature for different states of magnetization.

Secondly a general principle of the proposed coaxial line measurement method will be pre-

sented. Finally a description of quasi-TEM analysis of measurement cell will be presented

and the EM analysis will be validated in the limit cases.
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General Introduction

In third chapter, the inverse problem of the proposed coaxial line method and the experi-

mental results will be discussed in detail. The inverse problem will optimize the damping

factor α by matching theoretical S parameters with the measured S parameters. This dy-

namic quantity α will be one of the input parameter for the theoretical tool which we will

present in detail in the fourth chapter. The inverse problem results will be validated by

comparing optimized values with the supplier’s data sheet. This method eliminates the

constraints related to the cavity and sample dimensions imposed by standard measurement

methods. Knowledge of a unique parameter representing dynamic losses would assist engi-

neers in optimizing design and adjustment procedures for ferrite-based microwave devices.

Finally, in the fourth and last chapter, we will present a theoretical EM tool for accurately

describing the dynamic behavior of ferrite based devices by taking into account the inter-

nal polarizing fields of anisotropic ferrite materials. This theoretical tool will combine a

magneto-static analysis and the general permeability tensor model with a commercial EM

simulation software Ansys HFSS. The input parameters of this theoretical tool will be the

static properties of the ferrite material except the damping factor α which represents the

dynamic losses. Static input parameters will be obtained using standard characterization

measurements. Damping factor α will be determined using the coaxial line method devel-

oped in the first part of thesis.

We will discuss in detail about the non-homogeneity of the internal magnetic fields and its

effect on the dynamic response of the anisotropic ferrite materials. By considering the inho-

mogeneity of the internal polarizing fields, proposed theoretical tool will be able to predict

the dynamic behavior of ferrite devices more accurately, at all magnetization states. This

theoretical tool will be validated in the limit case by modeling, and realizing a microstrip

Y-junction circulator.
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I.1 Introduction

The initial chapter is devoted to the presentation of general context of our research. First,

we will discuss in detail about the intrinsic properties of the ferrites and their microwave be-

havior. Then we will present the state of the art of the microwave material characterization

methods and will highlight the problems that arise in the field of microwave characterization

of ferrites, in order to define the objectives of our work.

I.2 Ferrites

In the atomic level, due to the angular momenta of electrons, individual atoms can have a

net magnetic moment associated with them. The effective sum of these atomic magnetic

moments results in the macroscopic magnetic field of the material. The magnetic materials

can be classified according to their response to the internal magnetic field as diamagnetic,

paramagnetic, antiferromagnetic, ferromagnetic, and ferrimagnetic materials. The latter

two are of great interest due to their macroscopic magnetic properties [1].

A ferromagnetic material can retain a net magnetic moment even after the external mag-

netic field is removed. General theory of ferrimagnetism was developed by Neel in the 1940’s.

Ferrimagnetic materials behave like paramagnetic materials above Curie temperature and

can retain spontaneous magnetization below the Curie temperature like ferromagnetic ma-

terials.

(a) Ferromagnetic. (b) Ferrimagnetic.

Figure I.1: Magnetic moment distribution in materials.

The ferromagnetic, and ferrimagnetic materials (ferrites) possess ions having permanent

magnetic moments (~m) which are locally coupled by the exchange interactions. In the case

of ferromagnetic materials, magnetic moments are aligned parallel resulting in a strong

spontaneous magnetization (Figure I.1a). On the other hand, in the case of ferrimagnetic

materials, the magnetic moments occupy two oppositely oriented sub-lattices with different

densities (Figure I.1b). This arrangement of the magnetic moments leads to a much lower
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I.2 Ferrites

spontaneous magnetization (Mferri) than that of the ferromagnetic materials (Mferro).

This results in a non-zero spontaneous magnetization similar to the ferromagnetic magne-

tization but remains weaker than the latter.

Ferrites are ferrimagnetic materials with iron oxides (Fe3+) as their main component. Fer-

rimagnetic substances are industrially important because they exhibit a substantial spon-

taneous magnetization at room temperature. Like ferromagnet, ferrimagnet also consists

of self-saturated domains and they exhibit magnetic saturation and hysteresis phenomena.

However, unlike ferromagnetic materials, ferrites have an insulating character with a high

resistivity between 105 and 106 Ω.m, allowing their use in many microwave applications [2].

At high frequencies, the skin effect greatly limits the penetration of electromagnetic (EM)

waves in the conductive materials [3]. On the contrary, the ferrimagnetic materials have a

strong interaction with the EM waves due to their magnetic properties.

Other electromagnetic properties of the ferrites are relative dielectric constant ǫr, anisotropy

field Ha, Curie temperature Tc, and saturation magnetization, 4πMs. The microwave fer-

rites have a relative dielectric constant in between 11 and 17 (little dispersive in frequency)

with very low dielectric losses (tan δe <10−4).

The anisotropy field, Ha characterizes the rigidity with which the magnetization is main-

tained in the preferred directions and Curie temperature, TC represents the maximum

temperature up to which the ferrites can retain their magnetic properties. Finally the sat-

uration magnetization, 4πMS is the maximum possible value of the magnetization.

The ferrites are mainly divided into 3 sub-groups: spinel ferrites, garnets (soft ferrites) and

hexaferrites (hard ferrites).

Spinel ferrites have a general chemical formula of the form MFe2O4 where M is a bivalent

metal ion (Co, Mg, Mn, Ni, etc.). These ferrites have anisotropy fields of the order of a few

tens of Oersteds, which locate their gyromagnetic resonance in the vicinity of megahertz

in the absence of applied magnetic field (natural gyromagnetic frequency). This type of

ferrite is mainly used in the C, S and X frequency bands. Beyond X-band, the size of the

permanent magnet needed to saturate the material, becomes too large to be integrated into

the microwave devices.

The garnet type ferrites have a chemical composition of the M3Fe3O12 form, M being one

or more rare earth ions. The most common magnetic garnet is Yttrium-Iron (YIG) which

has the chemical formula Y3Fe5O12. These materials are widely used in microwave applica-

tions, despite their less saturation magnetization value because they exhibit very low losses.

The basic compounds of the hexaferrites are barium ferrite (BaFe12O19). Due to their crys-

tallographic structure, these materials are characterized by their strong magnetic anisotropic

field, which is 100 to 1000 times greater than that of garnet or spinel ferrites.
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Hexaferrites possess saturation magnetization around 5000 Gauss. These ferrites find their

applications particularly in the field of millimeter waves (30 GHz - 100 GHz), because of

their high values of natural gyromagnetic resonance frequency. When pre-oriented during

the fabrication process, with their high remanent magnetization, these materials can even

avoid the use of an external DC biasing field. This results in a significant decrease in the

physical volume of the devices.

I.2.1 Static properties

In the beginning of the twentieth century, Pierre Weiss put forward a theory on ferro-

magnetism. At microscopic level, magnetic moments are reorganized themselves and the

magnetic material is spontaneously subdivided into domains (Figure I.2), in order to min-

imize the internal energy in the system. These domains are called Weiss domains. A

homogeneous magnetization exists within each domain resulting in local saturation of the

domain. Adjacent domains have different magnetization directions which results in the

cancellation of moments and at the macroscopic level, there is no resultant moment, i.e.

zero macroscopic magnetization.

These adjacent domains are separated by a transition zone called the Bloch wall, which

correspond to a certain number of atomic planes whose moment orientation varies progres-

sively from one domain to the other. In this zone, the magnetization changes its orientation

gradually from one domain to another (Figure I.2).

Figure I.2: Microscopic magnetic structure of ferrites.

Under the action of an external magnetic field Hdc, magnetic moments of the ferrites move

away from their equilibrium positions in order to orient themselves in the direction of Hdc

to minimize their potential energy. This results in the displacement of Bloch walls causing
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energetically favorable domain creation and gradual disappearance of the others.

The domains whose orientation is close to the applied field direction will grow in size and

the others which are oriented away from the field direction diminish in size. Consequently,

a non-zero resultant magnetization M appears inside the ferrites. This behavior is charac-

terized by the first magnetization curve and the hysteresis loop. The magnetization process

in each grain in a polycrystalline material is similar to that of mono crystalline material.

However net magnetization of the material becomes complicated due to the magneto-static

processes and the magnetostriction between adjacent grains.

Hysteresis loop

During the first magnetization of ferrimagnetic material, the material is in demagnetized

state with domains whose spontaneous magnetizations are oriented in different directions.

In the low magnetic fields, a slight movement of the Bloch wall favors magnetization, re-

sulting in a modification of the magnetic moment arrangement. The displacements of walls

in this zone are reversible.

Figure I.3: Hysteresis loop.

Magnetization increases with increase in the static magnetic field strength, Hdc. During a

medium magnetic field, magnetization M increases rapidly as a function of the applied field

Hdc. The rotation of the magnetic moments becomes important and resulting in the switch-

ing of domains, a sudden change in direction of spontaneous magnetization in a domain.

The switching of the domains and the displacements of walls in this zone are irreversible

processes. This continues until the disappearance of Bloch walls and almost all the magnetic

moments are aligned in the direction of the applied field. The magnetization M reaches a

maximum value Ms (saturation magnetization), which is the sum of the contributions from

all magnetic moments oriented in the same direction.
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If the intensity of the static magnetic field is then decreased, we see that the variation of M

is no longer the same. When the field becomes zero, there remains a certain magnetization,

called remanent magnetization (Mr). To cancel this magnetization, it is necessary to apply

a magnetic field of opposite direction with amplitude Hc. This field Hc is called coercive

field. In general, the magnetization M as a function of the applied field is described by a

closed loop, known as the hysteresis loop (Figure I.3) where all the phenomena mentioned

above contribute to the static response of the material [4].

Figure I.4: Initial magnetization for easy and hard axis.

If we consider the domain configuration in the single crystal of a ferrite, we observe that

the spontaneous magnetizations align in well-defined directions. Saturation of the material

is reached more easily according to certain orientations of the static field. This leads to

the definition of easy axes of magnetization (easy axes) where the magnetic field necessary

to saturate the material is minimal and hard axes where the magnetic field necessary to

saturate the material is maximal. Figure I.4 shows the first magnetization curves along the

axes of easy and hard magnetization.

Depending on the magnetization direction relative to the easy axis of the crystal, anisotropy

energy may be present in the crystal. The energy difference found between the two cases

gives the energy of the magneto crystalline anisotropy Ea. This energy is associated with
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the intrinsic anisotropy field Ha of the ferrite. Anisotropy field Ha characterizes the rigid-

ity with which the magnetization is maintained in preferred directions of the crystal (easy

axis). The smaller the anisotropy field, the more easily the magnetization moves under the

action of an external magnetic field.

Magnetic materials can be classified into soft and hard magnetic materials according to

their coercive field values. Generally soft materials have high value of permeability. The

hysteresis loop covers only a small area, so only a small amount of energy is lost during

magnetization of material. Reversal of the magnetization direction can be obtained with

very small magnetic field strength. Soft magnetic materials are widely used for applications

like transformer cores. Hard magnetic materials have high coercive fields and it is difficult

to demagnetize them. They have high remanent magnetization and often used as perma-

nent magnets. Hysteresis loop of these materials encloses a large area. Usually Hc of soft

materials is less than 10 Oe whereas hard magnetic material have Hc values in the range of

several hundred Oersteds.

Demagnetizing fields

Another static property of the finite ferrite sample is the demagnetizing field which is related

to the shape of the sample. Due to the magnetization discontinuities at the boundaries,

there exists a demagnetizing field (Hd) inside the sample, opposite in direction to applied

static magnetic field.

The internal static field seen by the magnetic moments in the sample is decreased by the

demagnetizing fields as given by:

~Hd = −N̂ ~M. (I.1)

In this equation, N̂ is a tensor variable known as the demagnetizing factor, which depends

only on the shape of the sample. This tensor becomes diagonal for ellipsoidal materials,

where one of the axes is directed along the axis of revolution of the ellipsoid under consid-

eration.

N̂ =




Nx 0 0

0 Ny 0

0 0 Nz




For the Cartesian coordinate system, we identify the diagonal coefficients Nx, Ny and Nz

which are linked together by the relationship,

Nx +Ny +Nz = 1. (I.2)
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In conclusion, the magnetic field internal to the ferrite can be expressed by the superposition

of the different static magnetic fields in the form:

~Hint = ~Hdc + ~Ha + ~Hd

= ~Hdc + ~Ha − N̂ ~M

(I.3)

For a uniformly magnetized elongated ellipsoid of diameter d, length L (L/d >> 1) and

axis of revolution z, the demagnetizing coefficient is zero in the axis of revolution, Nz = 0

and for a flattened ellipsoid (L/d << 1) Nz = 1.

For spherical sample, Nx = Ny = Nz = 1/3 [1, 5, 6]. Exact calculation of N factor is only

possible in the case of ellipsoidal forms and uniform magnetization.

In the case of non-ellipsoidal samples, the use and calculation of the coefficients Nx, Ny

and Nz is only by an approximation allowing the determination of the internal field using

simple analytical relationships [7].

Several studies have proposed formulations to calculate the demagnetization coefficient of

non-ellipsoidal shapes like hollow cylinder (thick ring) [8, 9].

For a longitudinally magnetized hollow ferrite cylinder of length L, outer diameter D, and

inner diameter d, Sandomirskii et al [9] gives the following interpolating formulas for cal-

culation of demagnetizing factor N,

λ =
L

D
, h =

2.H
D

, H =
D − d

2

E(λ) =





1
1 − λ2

[
1 − λ√

1 − λ2
arccosλ

]
, for 0 ≤ λ < 1

1
λ2 − 1

[
λ√

λ2 − 1
ln(λ+

√
λ2 − 1) − 1

]
, for λ > 1

(I.4)

K(λ) =
1 + 2.35 ln(1 + 0.137λ)
1 + 2.28 ln(1 + 0.248λ)

, (I.5)

ǫ = 0.3075


1 +

1
1.41

h(2 − h)
− 1


 , β = 5ǫ

[
1.41

h(2 − h)
− 1

]
(I.6)
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N ≈





h.(2 − h) ∗ E(λ).K(λ), for 0.2 < λ < ∞, 0 ≤ h ≤ 1

1
1 + β.λǫ

, for λ ≤ 0.2

(I.7)

These theoretical formulations (Eq. I.7) can be used to calculate the demagnetizing factor

of hollow ferromagnetic cylinders when they are magnetized in the longitudinal direction.

I.2.2 Dynamic properties

It is well known that in a magnetized ferrite, magnetic moments within the grains and

domains tend to align themselves in the direction of applied magnetic field to minimize

their potential energy in the sample. This alignment is progressive and damped over time,

reflecting the dissipative effects of ferrite materials.

(a) without damping (b) with damping

Figure I.5: Precession of magnetic moment.

In order to describe this behavior , Landau and Lifshitz [10] proposed the equation for the

evolution of magnetic moment which was reformulated by Gilbert [11, 12].

The Landau- Lifshitz- Gilbert (LLG) equation can be written as,

∂
−→
M

∂t
= γ ·

(−→
M ∧ −→

H int

)
− α

|−→M |

(
−→
M ∧ ∂

−→
M

∂t

)
, (I.8)
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In this equation, γ is the gyromagnetic ratio (2.8 MHz/Oe), α is the damping factor related

to material losses, M is the magnetization vector, and Hint is the local field seen by the

individual moment.

The LLG equation (Eq. I.8) shows that the magnetic moment behaves like a gyroscope

performing a damped precession movement around Hint (Figure I.5b). The first term

represents the precession of the magnetization around its equilibrium position, under the

action of a dynamic field perpendicular to the static field.

The second term represents the damping force which exerts a return torque and which leads

the magnetic moment back to its equilibrium position.

This precession has an angular velocity called the Larmor frequency,

ω0 = γHint (I.9)

When the driving frequency is equal to the natural precession frequency of the moments, and

the magnetic field rotates in the same direction as that of the magnetic moments, the energy

from the microwave field is transferred most efficiently to the system. The permeability

tensor shows a singularity at this frequency, which is known as the ferromagnetic resonance

[13, 14].

When the ferrite is in the demagnetized state (Hdc = 0), the internal field (Hint) is equal

to the anisotropy field (Ha) and the precession frequency is given by:

ωa = γHa (I.10)

This shows that resonance can be observed in ferrites even without an external magnetic

field.

Polder-Smit effect

Polder and Smit have shown that the precession of the magnetization vectors can induce

the presence of magnetic charges of opposite signs at the Bloch walls [15]. This leads to

the appearance of dynamic demagnetizing fields inside the domains.

The magnetization vectors of the neighboring domains can then be considered as systems

coupled by these dynamic demagnetizing fields. Domains with different sizes and orienta-

tion would induce a full distribution of local demagnetizing fields between zero and 4πMs.

This effect associated with a dispersion of the shape of the domains, and in the case of

polycrystalline ferrites, an isotropic distribution of their orientation (relative to the field
~h), leads to a spreading of the gyromagnetic resonance frequency relative to different do-

mains present in the material.
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Figure I.6: Polder-Smit effect.

The gyromagnetic resonance phenomenon does not occur at a single frequency, but depend-

ing on the zone considered in the material will be spread between the two limit values:

ω1 =γHa and ω2 = γ(Ha + 4πMs).

Ferromagnetic losses

Ferrite materials in general, exhibit a power loss or absorption which is a function of an

applied DC magnetic field [16] at microwave frequencies.

These losses are due to the damping forces which oppose the precessional motion. These

forces exert a return torque which relaxes magnetic moments back to its equilibrium posi-

tion.

Dynamic losses can be represented by the variation of imaginary part of susceptibility or per-

meability, as a function of applied magnetic field. This variation is usually non-Lorentzian

in nature. To account these losses, a dimensionless damping coefficient α is introduced

in Gilbert’s equation (Eq. I.8). For ferrite materials showing this behavior, it is useful to

characterize the absorption by means of an effective gyromagnetic ratio and a resonance

linewidth.

In practice two different resonance linewidth parameters ∆H and ∆Heff are used to repre-

sent these losses, which are extracted from the relation between imaginary part of measured

permeability, µ” and the applied field Hdc at a given frequency.
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Figure I.7: Resonance linewidth.

- ∆H is the linewidth of the Lorentzian curve along the experimental µ” points near the

resonance (Hdc ≈ Hr).

- ∆Heff is the linewidth of the Lorentzian curve along the experimental µ” points outside

the vicinity of the resonance (Hdc 6= Hr) , where

Hr =
fr
γ

(I.11)

fr= gyromagnetic resonant frequency, γ=gyromagnetic ratio.

For a given microwave application, the choice between ∆H and ∆Heff depends strictly on

the magnetic field value Hdc.

At saturation, damping coefficient α is related to ∆H by the relation [14],

α ≃ γ∆H
2ω

, (I.12)

where ω is the frequency at which linewidth is measured.

The resonant frequency in a real sample can be influenced by other losses due to demag-

netization, magnetic anisotropy, porosity of the material, and crystalline imperfections. In

many ferrites, this dependence is of a simple form, having a single maximum at some value

of the magnetic field, which depends on the microwave frequency and on the specimen

shape.

Standard method for resonance linewidth ∆H measurement of ferrites is by using a res-

onant cavity. This method is usually very accurate, but it is a mono-frequency method.
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The measurements are done usually around 9.4 GHz using spherically shaped samples. The

effective linewidth is calculated from the Q factor and resonance frequency measurements

in a resonance cavity [16].

I.2.3 Microwave behavior of ferrites

The small signal approximation of the precession of the magnetic moments (Eq. I.8), sub-

jected to a static magnetic field Hdc and a microwave magnetic field ~h(t), leads to the tensor

relationship between the magnetic flux density ~b and the field ~h.

~b = µ0µ̂~h , (I.13)

where µ0 is the permeability of vacuum (4π ∗ 10−7 H/m ), and µ̂ is the tensor permeability.

If the magnetic field is applied along the z axis of the Cartesian coordinate system, the

tensor permeability is given by [14] :

µ̂ =




µ −jκ 0

jκ µ 0

0 0 µz


 (I.14)

When a ferrite material is placed in a static magnetic field Hdc, its EM properties vary

according to the direction of wave propagation. Under the action of an external magnetic

field, the extra diagonal term κ becomes non-zero and material becomes anisotropic in

nature. This induced anisotropy is the reason for the nonreciprocal behavior of ferrites.

On the other hand, for a demagnetized ferrite κ = 0, and the permeability tensor becomes

diagonal. In this case the ferrite is considered as an isotropic material [2]. Ferrites are

widely used in microwave devices due to this nonreciprocal behavior towards EM wave

propagation.

In the field of microwave electronics, ferrites are widely used in many signal processing and

telecommunication applications. Devices like circulators/isolators are based on the non-

reciprocal behavior of EM wave propagation in magnetized ferrites. Devices like tunable

filters, delay lines, phase shifters and variable attenuators etc. exploit the non linearity of

the EM behavior of ferrites with respect to a static magnetic field. Ferrites are also used

for miniaturization of antennas and realization of absorbers in UHF band. These devices

exploit the high permeability exhibited by the ferrite materials in the demagnetized state.

The flexibility of the magnetic properties of the ferrite is obtained by controlling its magne-

tization state using the static magnetic field, Hdc. This static field determines the location

of the magnetization of the ferrite in the hysteresis loop.
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Figure I.8: Microwave devices based on ferrites.

Figure I.8 shows the state of magnetization of the various microwave applications based on

ferrites. We find phase-shifters in the remanent state, circulators and isolators at satura-

tion, tunable filters at partially magnetized states, and antennas in the demagnetized state.

In practice, anisotropy of the ferrites and the frequency tunability of the devices are achieved

by the application of a static magnetic field [17]. Finally, ferrite in the state of remanence

offers a fast and stable switching, which is very useful for phase shifters and makes it pos-

sible to avoid the use of permanent magnets in microwave devices

For majority of applications of reciprocal devices, there are one or more semiconductor-

based devices that meet the same specifications. This is not the case for nonreciprocal de-

vices. Semiconductor-based alternatives often have limitations in power, mechanical stress,

and non-linearity. So, undoubtedly microwave devices based on magnetic materials play a

very important role in microwave technology, especially in nonreciprocal devices.

Precise control of the performance of these devices requires prior knowledge of the dynamic

behavior of ferrite materials. Dynamic behavior of the ferrites is first modeled by the sus-

ceptibility tensor, which defines the relation between the microwave magnetization ~m and

the microwave excitation ~h in the form:

~m = µ0χ~h (I.15)

However, this behavior is usually represented by the permeability tensor, which connects

the microwave magnetic induction ~b and the microwave excitation ~h, (Eq. I.13).
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The elements of µ̂ tensor have a dual dependency on the frequency and the magnetic field.

In practice, the static magnetic field Hdc determines the state of magnetization of the ferrite,

that is to say its operating point, which thus influences the dynamic behavior of the ferrite.

µ̂ =




µ(f, ~Hdc) −jκ(f, ~Hdc) 0

jκ(f, ~Hdc) µ(f, ~Hdc) 0

0 0 µ(f, ~Hdc)


 (I.16)

To fully describe the dynamic response of magnetic materials, including losses, complex

components of the permeability tensor:µ= µ′-jµ′′, κ=κ′-jκ′′ must be taken into account

when applying in the Maxwell’s equations.

The intrinsic gyromagnetic effects of the ferrites give a frequency resonant characteristic to

the components of the tensor. The knowledge of permeability tensor (Eq: I.16) makes it

possible to describe the dynamic EM behavior of the ferrites.

I.3 EM characterization of ferrite materials

Characterization of materials is an important and necessary step, even before the design

and realization of microwave devices. There are different methods for characterizing the

properties of materials. These methods vary according to their specifications such as the

range of operating frequencies, the isotropic or anisotropic nature of the material, the shape

of the sample and its dielectric or magnetic character.

Figure I.9: EM characterization techniques.
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This section gives a brief overview on the state of the art of the microwave theory and tech-

niques for the characterization of magnetic materials. Figure I.9 illustrates qualitatively the

techniques used to characterize the EM properties of materials as a function of frequency.

The resonant cavity methods make it possible to precisely determine the permittivity or

the permeability of the magnetic material for a fixed frequency value. These methods are

usually very accurate but they are mono-frequency techniques. There are constraints re-

garding the size and shape of the cavity and the sample to be measured. In order to obtain

parameters at different frequencies, we have to use different cavities of different sizes. The

frequency dependent properties of the material cannot be obtained with these methods. In

addition, they are only suitable for low-loss materials. High magnetic losses will reduce the

quality factor of the cavity, as well as the sensitivity of the measurement.

On the other hand with transmission/reflection techniques, it is possible to determine con-

stituent parameters of the materials over a broad frequency band from the transmission

and reflection coefficients. For the characterization of the constituent parameters of the

material, it is necessary that the number of independent parameters measured, is greater

than or equal to the number of constituent parameters to be determined. That is to say,

to determine ǫ and µ of an isotropic material such as a demagnetized ferrite, it is necessary

to measure at least two distinct parameters (S11 or S22 and S12 or S21).

In the case of an anisotropic material, such as a magnetized ferrite where the permeability is

a tensor quantity, it is necessary to measure three distinct S-parameters (S11, S12 and S21)

in order to find µ, κ and ǫ in their complex form. Thus we have to make sure that the mea-

surement cell is nonreciprocal in nature (S21 6= S12). Although the transmission/reflection

techniques are very practical, S-parameter measurement in a wide frequency band leads to

a reduction in the accuracy with respect to single-frequency resonant methods, in particular

for low loss materials.

Experimentally, EM characterization of ferrites is commonly carried out in demagnetized or

saturated states. For example the transmission/reflection technique in a coaxial line [18, 19]

is used to extract the scalar permittivity and scalar permeability of isotropic ferrites in the

demagnetized state. In saturation, a resonant cavity is used for the linewidth measurements

(∆H and ∆Heff ). This quantity, which represents the magnetic losses of the material, is

an input parameter of the Polder model. The characterization of ferrites in partial mag-

netization states is less easy. For partially magnetized states which are found in practice

in self-biased circulators/ isolators, phase shifters and tunable antennas or filters, different

characterization techniques have been developed in the laboratory, Lab-STICC, using micro

strip line [20], rectangular waveguides [21] and strip lines [22, 23]. The main advantage of

these techniques is directly related to the fact that they provide access to the constituent

material parameters, scalar permittivity and permeability tensor components.
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We will discuss in detail about some of the resonant cavity methods and transmission-

reflection measurement methods in the following.

I.3.1 Demagnetized state - Coaxial line method

The coaxial line characterization method was developed by Weir [18] using the work of

Nicolson and Ross [19] and is called Nicholson-Ross-Weir (NRW) method. This method be-

came the reference method for the permittivity and permeability measurements of isotropic

materials in the demagnetized state. Main advantage of this method is the simplicity in

the analysis and calculations using the classical transmission line theory. It is possible to

calculate the magnetic permeability and the electrical permittivity from the measured S-

parameters simultaneously with this approach.

The sample is toroidal in shape and inserted in between the inner and outer conductors of

the coaxial line. The fundamental mode of propagation in a coaxial line is the TEM mode.

(a) Coaxial line (b) TEM mode

Figure I.10: Coaxial line method.

The validity of the method is related to the frequency (fc) of the occurrence of the first

higher order mode. The appearance of higher order modes in a coaxial line depends on the

dimensions of the line and the EM properties of the propagation medium (permeability and

permittivity).

fc =
2c

π(a+ b)
√
ǫrµr

, (I.17)

where a and b are the inner and outer diameters of the coaxial line respectively.

For APC7 coaxial line standard, cut off frequency, is equal to 19 GHz. Using the transmis-

sion line theory, it is possible to connect the S-parameters to the scalar permittivity and

scalar permeability of the material.
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Nicolson, Ross, and Weir have formulated relations between the scattering parameters of

the line and the permeability and permittivity of the material,

ε =
√
c1c2 and µ =

√
c1

c2
, where (I.18)

c1 = −
(
c

ωd
ln
(

1
T

))2

,

c2 =
(

1 + Γ
1 − Γ

)2

Γ = χ±
√
χ2 − 1

T =
S11 + S21 − Γ

1 − (S11 + S21)Γ

χ =
S2

11 − S2
21 + 1

2S11
.

Given the symmetrical character (S11 = S22) and the reciprocal nature (S21 = S12) of the

coaxial line, this method cannot be used to characterize ferrite materials in the magnetized

state.

For a plane wave propagating through ferrite material with a biasing field applied in the

propagation direction, there are two modes of propagation due to the Faraday effect [14].

The propagated wave can be considered as a combination of a right hand circularly polarized

wave (RHCP) with a propagation constant γ+ and a left hand circularly polarized wave

(LHCP) with a propagation constant γ−.

γ+ =
ω

c

√
ǫ
√
µ+ κ

γ− =
ω

c

√
ǫ
√
µ− κ

(I.19)

In this expression, µ and κ are the diagonal and extra-diagonal terms of the permeability

tensor.

For RHCP wave, ferrite material can be represented with a medium of effective permeabil-

ity µ+ κ and where as for LHCP wave, the effective permeability is µ− κ. In other words,
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the propagated wave finds the same effective medium in the two directions of propagation,

i.e the measurement cell is reciprocal in nature.

This effective medium has an effective permeability which depends on the intrinsic param-

eters of the material through the expression:

γ =
ω

c

√
ǫ

√
µeff (I.20)

µeff =
[√

µ+ κ+
√
µ− κ

2

]2

, (I.21)

It is not possible to determine the permeability tensor components µ and κ with this

method. As the cell is reciprocal in nature, the inverse problem gives the effective perme-

ability µeff . Accuracy of this measurement method is limited by the errors due to the air

gaps between the sample and the conductors. When the sample length is the multiple of

half wavelength in the material, there may be undesirable ripples and accuracy is limited.

In conclusion, the coaxial line method is widely used for the broadband measurement of EM

parameters of demagnetized ferrites, but it is not well suited for the permeability tensor

measurement of saturated or partially magnetized media.

I.3.2 Saturated state - Resonant cavity methods

Resonant cavity methods are widely used for measuring the dielectric or magnetic properties

of the materials due to their sensitivity and high accuracy [4, 16]. The general principle

of resonant cavity perturbation methods consists of measuring the shift in the resonance

frequency (Fr) and quality factor (Q) of the loaded cavity with respect to that of an

empty cavity. The resonance frequency and quality factor of the cavity is determined with

and without the sample. From these values, the permittivity and permeability are then

extracted using theoretical relations.

The sample must be very small compared with the size of the cavity so that there is only a

small shift in frequency when the sample is inserted. The sample length must be less than

λ/4 of the cavity to avoid dimensional resonances. These are mono-frequency methods

based on the perturbation theory. To measure the dielectric properties of the material,

sample should be placed in a cavity where the electric field is at maximum and magnetic

field is at minimum. When the sample is placed at a position where magnetic field is at

maximum, magnetic properties of the material can be characterized.
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I.3.2.1 Permeability measurement

For permeability measurements, the sample is placed in the cavity where electric field is

zero or permittivity is equal to that of vacuum ǫ0. The shift in the resonance frequency

when the sample is inserted with respect to the empty cavity is given by the relation,

fLoaded − fempty
fempty

= A(µ′

r − 1)
Vs
Vc

, (I.22a)

1
Qempty

− 1
QLoaded

= Bµ′′

r

Vs
Vc

, (I.22b)

where Vs and Vc, are the respective volumes of the sample and the cavity. The quantities

A and B depend on the propagation modes used for the study and the shape and position

of the sample. These parameters are usually determined using a calibration measurement

with a sample of known parameters.

In literature there are different types of resonant cavities used for the characterization of

magnetic materials [4, 16]. A cylindrical cavity is the most commonly used geometry. The

ferrite sample is placed at the center of the cavity cross section, where the magnetic field

is at maximum. By solving the wave equations for the propagated modes, the real and

imaginary parts of the permeability µ are obtained from analytical relations. Generally, in

this case the exploited modes are TM010 and TM020. Spherical and disk shaped samples

are the mostly used forms for cavity measurement due to the fact that they have less

demagnetizing field effects and their demagnetizing coefficients are well known.

I.3.2.2 Resonance linewidth measurements

At microwave frequencies, ferrite materials, in general, exhibit a power loss or absorption as

a function of an applied DC magnetic field [16]. For ferrite materials showing this behavior,

it is useful to characterize the absorption by means of an effective gyromagnetic ratio, γ

and a resonance linewidth. In practice two different resonance linewidth parameters ∆H

and ∆Heff , are used to represent these losses. Conventionally, these linewidth parameters

are extracted from the relation between imaginary part of measured susceptibility χ and

the applied field Hdc at a given frequency using the resonant cavity method.

(a) Gyromagnetic resonance linewidth, (∆H)

Gyromagnetic resonance linewidth is a fundamental property used to describe the dynamic

losses in the ferrite material. Resonance linewidth ∆H is defined as the difference between

the applied field values at which absorption is half of the maximum value. Standard method

for measuring the resonance linewidth, ∆H of ferrites is by using resonant cavities as de-

scribed in IEC standard [16].
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Figure I.11: Cavity for ∆H measurement (IEC std.2006 [16]).

This method is based on the cavity perturbation theory which requires that the sample

dimension should be small compared to one quarter of the wavelength of the microwave

radiation in the sample. This method is limited to a single frequency, corresponds to

the resonant frequency of the measurement cavity (generally operating around 9.4 GHz).

This method is applicable to saturated ferrites with uniform precession resonance (Kittel’s

mode). Ambiguities due to other magneto static modes are ignored.

A typical measurement cell is a transmission type cavity resonates between 9 and 10 GHz

with a loaded Q greater than 2000. The sample is in the form of a small polycrystalline

sphere. The sample is positioned away from the cavity walls mounted on a fused silica

or other dielectric rod at a point of minimum microwave electric field and maximum mi-

crowave magnetic field. The hole for inserting the specimen into the cavity is located in the

narrow cavity wall and is no larger than 1.90 mm in diameter for the X-band cavity. It is

necessary that the microwave frequency should be adjusted to cavity resonance for all the

measurements.

The absorption in the sample is measured by determining the change of incident power on

the cavity, required to keep the output power at a fixed reference level when the sample is

loaded. Reference level is set when transmission is at maximum in the empty cavity. Sam-

ple insertion should have negligible effect on the output level. Magnetic field is adjusted to

get maximum absorption, i.e. minimum transmission.

To maintain a reference output level, attenuation is inserted between the source and the

cavity. The variation in inserted attenuation is taken as the variation in input power. The

new attenuator value αR is determined at which the reference output level is restored.
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The attenuation required to obtain the reference output level at half-power points of ab-

sorption is then calculated from the expression,

α1/2 = α0 + 20 log2 − 20 log


10

(α0 − αR)
20 + 1


 , (I.23)

where α0 is the reference attenuator value measured, when the cavity is empty.

The precision attenuator is now set to this calculated value, α1/2 . The magnetic field is

then varied and the two field values at which the output reaches the reference output level

are measured.

The difference between these magnetic fields will give the ferromagnetic resonance linewidth

(∆H).

∆H = |H1 −H2| . (I.24)

(b) Effective linewidth, (∆Heff )

For the devices that work outside the gyromagnetic resonance region, calculation of perme-

ability tensor using the gyromagnetic resonance linewidth ∆H value will result in an error.

In order to take into account losses in off resonance region and the deviations from the

classical Lorentzian behavior, an effective linewidth parameter ∆Heff is introduced (see

Figure I.7).

This effective linewidth is defined as the linewidth of the Lorentzian curve along the exper-

imental µ” curve outside the vicinity of the gyromagnetic resonance. Standard method for

measuring effective linewidth parameter is by using the resonant cavity [16].

This method is valid for saturated ferrite materials working at low power, outside the

vicinity of the gyromagnetic resonance region. This method includes the measurement of

permeability tensor components in a resonant cavity at a single frequency and effective

linewidth is deduced from cavity Q factor and gyromagnetic resonance frequency.

For an isotropic magnetic material, magnetic flux density B is related to H by the relation,

B = µ0µH = µ0(1 + χ)H (I.25)

Effective linewidth ∆Heff is related to imaginary part of effective susceptibility, χe, by the

relation,

∆Heff = 2Ms.Im

(
1
χe

)
(I.26)
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The basic measurement setup consists of a cylindrical TM110, high Q cavity and a rod-

shaped sample. The sample is inserted through holes in the cavity wall and a uniform axial

magnetic field is applied.

For an applied field of H0 and a microwave magnetic field with circular polarization in the

clock wise direction, the resonant frequency and the cavity Q factor are measured with and

without sample. The permittivity values are measured separately (IEC std-Clause.9).

Figure I.12: Cavity for ∆Heff measurement at 9.1 GHz (IEC std.2006 [16]).

By knowing the cavity dimensions, the real and imaginary parts of effective susceptibility

can be calculated using the relations given by [16].

The effective resonance linewidth ∆Heff is then measured from the susceptibility values

by using the relation given above (Eq. I.26).

Although these resonant methods give precise and reliable values of the constitutive pa-

rameters of the ferrites, they are very limited in frequency since the working frequency is

related to the dimensions of the cavity.

There are constraints due to the shape and size of the sample. The development of a

method to lower frequency would require large measurement cavities. Moreover, these

methods remain limited to a saturated state.
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I.3.3 Partially magnetized state

For partially magnetized ferrites, different characterization techniques have been developed

in Lab-STICC using micro strip line [20], rectangular waveguides [21] and strip line [22, 23].

These methods make use of the nonreciprocal nature of the respective measurement cells

to characterize the permeability tensor of anisotropic ferrites.

I.3.3.1 Nonreciprocal microstrip line – Quasi-TEM method

In order to characterize the anisotropic properties of the magnetized materials, it is neces-

sary to ensure the nonreciprocal character of the measuring cell S12 6= S21. A nonreciprocal

microstrip line characterization method based on quasi-TEM analysis was previously devel-

oped [22] within Lab-STICC. This method makes it possible to measure the permeability

tensor µ̂ and permittivity ǫ of magnetized ferrites in a wide frequency band.

The measurement cell is a microstrip transmission line partially filled with the sample to

be characterized. The cross-section of this line is asymmetrically loaded with two dielectric

materials of different permittivities (Figure I.13b).

(a) Microstrip line (b) cross section

Figure I.13: Measurement cell

To increase cell sensitivity, the center conductor is made wide compared with the thickness

of the ferrite so that most of the microwave energy is concentrated in the rectangular section

containing the test sample.

The arrangement of the dielectrics and the field displacement phenomenon in gyromagnetic

propagation structures, result in a nonreciprocal behavior (S21 6= S12) of the measurement

cell. This condition is necessary to solve a system of equations that has three complex

unknowns: permittivity, diagonal and extra-diagonal elements of the permeability tensor.

This method allows characterization of a material in any state of magnetization.

In this method, the EM analysis is based on a quasi-static approach, where the fundamental

mode considered is a quasi-TEM mode. The existence of a pure TEM fundamental mode

in a microstrip line is impossible because the continuity of the EM fields is disturbed by
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the appearance of the longitudinal components. The quasi-static approximation is valid at

low frequency as long as the amplitudes of the longitudinal components remain negligible

with respect to the transverse components. Thus the EM analysis of the quasi-static mode

remains limited to frequencies lower than the first higher order mode.

Method can be divided into two stages: the direct problem and the inverse problem.

Direct problem:

The EM modeling of this measurement cell is done with the classical theory of transmission

lines adapted to a nonreciprocal line. In this approach, a new parameter, called the mem-

ductance, M is introduced to take into account the anisotropic properties of the magnetized

materials and to model the nonreciprocal effect.

Figure I.14: Equivalent electrical circuit model of loaded section

An equivalent electrical circuit model of a short portion of the loaded line is shown in Fig-

ure I.14. By solving the Telegrapher’s equations with the new parameter, M , two different

solutions are obtained for the propagation constants γ+ and γ−, depending on the direction

of propagation.

γ+ = ω
(√

M2L2 + LC +ML
)

(I.27)

γ− = ω
(√

M2L2 + LC −ML
)

, (I.28)

where ω is the angular frequency of the signal. The quantities L, C and M are the induc-

tance, capacitance and memductance parameters per unit length respectively.

The propagation constants γ+and γ− correspond to the forward and backward propagation

waves.

These parameters are directly related to the dimensions of the line (a1, b1), properties of

the dielectrics (ǫ1, ǫ2), and properties of the magnetic material (ǫf , µ, κ). In the quasi TEM

approximation, the µy component of the tensor is not excited by any component of the

magnetic field, so it disappears from the dispersion relations.
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Figure I.15: Equivalent model of the measurement cell loaded with sample

In the loaded section of the cell, the wave is characterized by the propagation constant

γ+ in the forward direction and by γ− in the backward direction over a distance d, which

corresponds to the length of the magnetic material. The global transfer matrix [T ] is cal-

culated by taking into account the wave propagation in the loaded section of the line and

the impedance discontinuities between the empty and loaded sections of the transmission

line in the propagation direction of the wave (Figure I.15).

The discontinuities are characterized by the reflection and transmission coefficients. Finally,

the scattering parameters of the measurement cell are calculated by using the relations

between the transfer matrix [T ] and scattering matrix [S]. A comparison between the ana-

lytical S-parameters and the measured results makes it possible to validate the Quasi-TEM

assumption up to 6 GHz [22].

Inverse problem

In order to find the permeability tensor components µ and κ, the inverse problem relies on

the EM analysis described previously. From this analysis, explicit analytic expressions of

µ(ω) and κ(ω) are obtained as a function of the measured S parameters.

This procedure is carried out in two steps. The first step consists of calculating the propa-

gation constants γ+ and γ−, as a function of the measured S-parameters.

The expressions obtained are:

γ+ =
j

d
ln
(

S21

1 −R+S11

)
and γ− =

j

d
ln
(

S12

1 −R+S22

)
, (I.29)

where d is the length of the sample. This length must be sufficiently short to avoid the

appearance of dimensional resonances in the working frequency band.
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Then in the second step, the diagonal component µ and the extra-diagonal component κ

are obtained from the expressions proposed by P. Queffelec and S. Mallégol in [22]:

µ(ω) =
2a− 1 · γ+γ−

µ0ε0ω2 [(b1 − a1) · (ε1 + ε2) + 2a1εf ] − 2 (b1 − a1) · γ+γ−
(I.30a)

κ(ω) =
[(b1 − a1) · µ(ω) + a1] · (γ+γ−)
µ0ε0ω2 (ε1 + ε2) · (b1 − a1)

. (I.30b)

These explicit expressions for the components of the permeability tensor allow us to solve

the inverse problem while avoiding the use of a numerical optimization procedure which

often requires long calculation times. The expressions Eq. I.30 are valid for the case of

saturated or partially magnetized ferrites in the frequency band where the quasi-TEM

approximation is verified.

In conclusion, the main advantage of this method is that it gives analytical expressions

for the permeability and allows us to find the permeability tensor components at different

states of magnetization. Finally, the explicit analytical expressions make it possible to avoid

the use of a numerical optimization procedure, this will reduce the calculation time.

I.3.3.2 Partially filled waveguide method

A characterization method based on full wave EM analysis [21, 24] to measure the complex

permeability tensor components, and complex permittivity of magnetized ferrites was pre-

viously developed in our laboratory. This method uses a rectangular waveguide partially

filled with a magnetic sample and a dielectric material [24] (Figure I.16) as the measure-

ment cell.

Figure I.16: Rectangular waveguide measurement cell
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The principle behind this method is the use of the magnetic anisotropy of the material

to achieve non-reciprocity for the measurement cell in order to have the same number of

measurable parameters (S-parameters) as the number of parameters to be determined. The

measurement configuration is similar to the one used for the nonreciprocal waveguide de-

vices, except that there is no absorbing material. The waveguide is placed between the

poles of an electromagnet.

Application of a static magnetic field Hdc, along the short side of this wave guide (y-axis)

causes field displacement effect along the large side of the guide (x-axis). This effect as-

sociated with the arrangement of the materials in the guide (Figure I.16), ensures the

nonreciprocal nature of the device (S21 6= S12). The sample has different effects on the

forward directed modes (wave propagated in the positive direction) and the reverse modes

(wave propagated in the negative direction), so transmission coefficients of the measure-

ment cell (S21, S12) will be different.

Figure I.17: Cross section of the rectangular waveguide-based measurement cell

The determination of material properties includes two different calculation procedures:

direct problem and inverse problem.

The direct problem calculates the scattering parameters as functions of the scalar permit-

tivity, tensor permeability, and dimensions of the ferrite through a rigorous EM model

analysis (mode matching method). In this analysis, propagation constant of each mode

inside the guide is determined (propagation constant and associated field pattern). Then,

the continuity of the transverse components of the fields associated with these modes is

checked at the discontinuities between empty and loaded section of the waveguide.

From this theoretical analysis, S-parameters of the waveguide are calculated. The final part

is a numerical optimization procedure, which permits the determination of the scalar per-

mittivity, (ǫf ) and permeability (µ, κ) of the sample material by matching the theoretical

S-parameters with the measured results.
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Direct problem

The propagation constants of all the modes in each section of the guide (empty and loaded)

must be determined by a modal analysis. In the empty sections, waveguide EM theory

gives a complete analytical description of the modes [14]. On the other hand, in the loaded

section, a more rigorous analysis must be carried out.

Figure I.18: Modal analysis of the measurement cell.

The loaded section is composed of three different materials: ferrite, dielectric, and air

(Figure I.17). Electromagnetic fields in each of these materials are determined by solving

Maxwell’s equations. Then the boundary conditions are established for these fields at the

boundaries between the material (x = h and x = L), thus making it possible to determine

the dispersion equation of the loaded section. The solutions to this equation are the prop-

agation coefficients of the modes in the forward direction (γ+
i ) and in the reverse direction

(γ−

i ) of the wave guide.

Once the propagation constants of these modes are determined, a mode matching technique

is applied at the wave guide discontinuities between the empty sections and the loaded sec-

tion (Figure I.18) and reflection coefficients (ρi and Ri) and transmission coefficients (Ti
and ti) are determined.

The theoretical S-parameters (S11 and S21) can be obtained from the coupling coefficients

of the dominant mode in the empty transmission line ρ1 and t1, which is given by:

S11 = ρ1 e−2γ0d1 (I.31a)

S21 = t1 e−γ0(d1+d2) (I.31b)

In these expressions, γ0 is the propagation constant of the dominant mode in the empty

sections of the guide.
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To determine the parameters S22 and S12, the same procedure is performed but considering

that the fundamental mode TE10 propagates in the backward direction. The number of

modes taken into account by this dynamic analysis is truncated to a value n which ensures

the convergence of the calculated S-parameters.

Inverse problem

Dynamic methods are based on the rigorous resolution of Maxwell’s equations which take

into account many EM phenomena, such as the appearance of higher order modes (propa-

gated or evanescent), radiation phenomenon in open structures, metal losses, etc. Although

dynamic EM analysis requires far more complex calculations than a quasi-static analysis, it

ensures high levels of accuracy. In general, the complexity of the equations to be solved does

not allow the determination of explicit solutions. This fact leads to the use of numerical

optimization procedures for the determination of µ and κ.

The optimization procedure involves matching the theoretical and measured parameters by

minimizing an error function of several variables. Theoretical S-parameters as a function of

the scalar permittivity and permeability tensor components are calculated using the previ-

ously described EM analysis.

The objective function can be defined as a sum of squared functions as,

E (ǫf , µ, κ) =
2∑

i=1

2∑

j=1

∣∣∣Stheoij (ǫf , µ, κ) − Smeasij

∣∣∣
2
, (I.32)

where the quantities ǫf , µ and κ are the optimization variables.

At a given frequency, the optimization procedure consists of adjusting the complex values of

ǫf , µ and κ in successive iterations in order to ensure a convergence between the theoretical

S-parameters (Stheoij ) and the measured S-parameters (Smesij ). The optimization function

which permits fast location of the global minimum by avoiding the local minima, is chosen.

The procedure used is the sequential quadratic type, in order to impose limits on the

optimization variables and thus to avoid non-physical solutions [25].

The dynamic analysis of the method assumes that only the fundamental mode TE10 is

propagated in the empty section of the guide. Therefore, the operating band of this method

remains limited to the single-mode band of the waveguide (8-12 GHz for an X-band guide).

This method can be applied to several guide sizes to cover varying operating frequency

bands. On the other hand, any change in cross-section of the rectangular guide results in

a change of sample, thus additional steps of machining and measurement.
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I.3.3.3 Nonreciprocal strip line method

Another broadband transmission/reflection method was developed in the Lab-STICC based

on the work of J. Lezaca [23, 26]. This method is intended to measure the properties of

isotropic and anisotropic materials. The measurement using a strip line is advantageous

compared to other type of transmission lines (waveguide, microstrip etc.), because the fun-

damental propagation mode is TEM while in others the fundamental mode is quasi-TEM.

This topology allows ”in− situ” measurements, i.e. with a sample shape very close to that

met in practice, for example in circulators realized using the microstrip technology.

The validity of this method extends from 100 MHz to 10 GHz [26]. The measurement cell

consists of an asymmetric strip line partially filled with the material to be characterized.

It is shown in Figure I.19a. Two identical samples are placed above and below the metal

strip. The width of the strip is greater than the height between the strip and the ground

planes, to avoid the fringing field effects.

(a) Strip transmission line (b) Theoretical equivalent model

Figure I.19: Asymmetrically loaded strip line

Two dielectrics with different permittivity values (ǫ1, ǫ2) are placed on each side of the strip

line to ensure the nonreciprocal behavior of the structure (S12 6= S21), when the magnetic

sample is magnetized. In the forward direction of EM wave propagation, there is a strong

wave-material interaction with the dielectric 1.

In the backward direction, the EM wave interacts with the dielectric 2 under the displace-

ment effect of the field. This nonreciprocal nature of the measurement cell makes it possible

to determine the extra-diagonal component κ of the permeability tensor.

Direct problem

This corresponds to the dynamic EM analysis of the measurement cell loaded by the ma-

terial to be characterized. This procedure makes it possible to retrieve the S parameters

theoretically from the constituent parameters of the material.

This problem can be described in two steps. First part is the full wave analysis of the

loaded section of strip line and the calculation of dispersion diagram of the first N modes.
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In the second part, a mode matching technique is employed at the impedance discontinu-

ities to find out the theoretical S-parameters.

Material parameters are defined by analytical models, which describe the frequency de-

pendent behavior of the parameters ǫ(ω), µ(ω) and κ(ω) from the measurable physical

quantities of the materials. In the case of ferrites, the Generalized Permeability Tensor

(GPT) model [27] is used to represent the tensor permeability µ̂ and the Debye model [4]

to represent the permittivity.

The loaded section can be represented by a theoretical equivalent structure as shown in

Figure I.19b. In this structure perfect electric conductors (PEC) replace the strip and the

ground conductors, and perfect magnetic conductors (PMC) are used to enclose the energy

inside. The equivalent structure represents one half of the measurement cell. In the other

half the fields are mirror quantities and therefore do not interfere with the energy reparti-

tion inside the cell [26].

In the full wave analysis, fields inside each material are calculated, by taking into account

the boundary conditions defined in the theoretical model. Applying boundary conditions

at the dielectric-ferrite discontinuities leads to a system of equations.

By annulling the determinant of coefficient matrix, the dispersion equation can be obtained

as follows,

F (γ, ω, µ, κ, ǫ) = 0 (I.33)

This dispersion equation depends on the frequency, propagation constant and the EM

properties of the material. The values of γ for which Eq. I.33 is satisfied, will give the prop-

agation constants of the different modes inside the line. Once the propagation constants of

all the modes (forward and reverse) in the loaded and air sections of the transmission line

are known, S-parameters can be obtained by using a mode matching technique in the Oz

direction.

Inverse problem

In order to measure the permeability and the permittivity of the material, an optimization

procedure is defined to match theoretical S-parameters with the measured values by mini-

mizing a broad band error function.

The optimization variables are the input parameters of the analytical models used to define

frequency dependent parameters ǫ(ω), µ(ω), and κ(ω) in the direct problem.
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The broadband error function is defined as,

E [ǫ(ω), µ(ω), κ(ω)] =
fmax∑

f=fmin




2∑

i=1

2∑

j=1

(
|Sfijtheory| − |Sfijmeas|

)2


 , (I.34)

This corresponds to the error value between the magnitudes of the theoretical and the

measured S-parameters for each frequency value over the entire working band. The opti-

mization procedure is done by the MATLAB subroutine lsqnonlin.

Only the magnitudes of the S-parameters are used in the error function to avoid phase

related errors which are very important at frequencies corresponding to dimensional reso-

nances (related to the thickness of the sample under test).

When the theoretical S-parameters are converged to the measured S-parameters, the ana-

lytical functions ǫ(ω), µ(ω), and κ(ω) represent the constituent parameters of the sample.

It should be noted that this procedure allows the characterization of samples of significant

lengths because the method exploits only the magnitudes of the S-parameters. Thus the

uncertainties on the phases measurements related to the appearance of dimensional reso-

nances do not hinder the optimization procedure. On the contrary, these resonances are

used to match the S-parameters more rapidly.

With strip line method we push the limits of nonreciprocal measurement methods by in-

corporating a non-50 Ω measurement cell, a de-embedding procedure, a general model for

permeability tensor and a full wave analysis. This method has shown its ability to charac-

terize magnetic materials for different magnetization states [23, 26, 28].
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I.4 Motivation and Objectives

Microwave ferrite circulators/isolators are essential components for telecommunication ap-

plications because of their low insertion losses and high isolation properties. The operation

of microwave circulators/isolators is based on the non-reciprocal effect of magnetically sat-

urated ferrites. Precise control over the performance of these components requires prior

knowledge of the dynamic behavior of ferrite materials. To fully describe the dynamic

response of magnetic materials, including losses, complex quantities of the permeability

tensor components µ = µ′ − jµ′′, κ = κ′ − jκ′′, and the complex permittivity ǫ = ǫ′ − jǫ′′

have to be taken into consideration when applying in the Maxwell’s equations.

Experimentally, the EM characterization of ferrites is commonly carried out in demagne-

tized or saturated states. For partially magnetized states different characterization tech-

niques have been developed in the laboratory using microstrip line [20], rectangular waveg-

uides [21] and strip line [22, 23]. The main advantage of these techniques is that they

provide access to the constituent material parameters, scalar permittivity and permeability

tensor.

One of the characteristics of the magnetic materials is the dependence of their dynamic

response to the shape of the sample. In addition, for non-ellipsoidal magnetic material

which is the case most commonly encountered in ferrite devices, the internal static biasing

field is not uniform. In a previous study, it is seen that in the most common microwave

applications, unsaturated regions in ferrimagnetic materials still exist, even when strong

fields are applied [29]. This is due to the inhomogeneous nature of the demagnetizing fields

within non-ellipsoidal samples.

Under these conditions, characterization of material from an actual or average permeability

does not constitute the most accurate solution to help the designer with ferrite devices.

Commercial simulation softwares use different theoretical models to describe the perme-

ability tensor, µ̂ according to the state of magnetization. These models use a number of

physical parameters like saturation magnetization, anisotropy field, resonance linewidth,

etc., as input parameters to describe the tensor permeability. With this procedure, one

can describe the behavior of the ferrites only in the saturated state in a very satisfactory

manner.

However, most of the EM simulators remain limited to certain states of magnetization, due

to the simplified assumptions on which their permeability models are based upon. This

limitation makes the design of devices laborious when the ferrite is neither in the saturated

nor demagnetized state.

Designers often use two linewidth parameters, the resonance linewidth ∆H and the effective
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linewidth ∆Heff to represent the ferromagnetic losses. These quantities are not physical

parameters in the strict sense of the term, which appear in Maxwell’s or LLG equations

like the damping factor. These quantities are directly related to damping factor by Polder’s

formulations, which is only valid in the saturated state. Resonant cavity methods make

it possible to measure ∆H and ∆Heff at a given frequency (mono-frequency method).

Measuring these parameters in a wide band of frequencies would involve too many cavities

and sample sizes. Moreover, the representation of the magnetic losses by two values, one

near the vicinity of the gyromagnetic resonance (∆H) and the other outside this resonance

(∆Heff ), reduces the predictive character of the permeability model.

Design of the new classes of ferrite devices has to be based on the combination of exper-

imental methods and theoretical tools capable of describing the dynamic EM behavior of

the ferrites. We need experimental methods to find the physical parameters of the ferrites

and theoretical models which will use these parameters to describe the dynamic behavior

of ferrites in all magnetization states. In this context, the general objective of our research

work is to improve the EM modeling of anisotropic ferrites in order to make the design

procedure more predictive and accurate for any state of magnetization.

In this line of research our objective is to develop a predictive theoretical EM simulation

tool for accurate modeling of ferrite based devices by integrating the magneto-static analysis

and generalized permeability tensor model with a commercial EM simulation software. A

dynamic EM analysis of the structure, considering inhomogeneity of the internal fields and

a generalized permeability tensor model would enable us to understand the inhomogeneous

internal field distribution and the demagnetizing field effects on the performances of ferrite

devices.

Most of the input parameters of generalized permeability model are the static properties

of the ferrite, except the damping factor used to represent the dynamic losses. The damp-

ing factor α is a more realistic representation of the microwave losses of ferrites than the

parameters currently used: ∆H and ∆Heff . Static input parameters like saturation mag-

netization Ms, anisotropy field Ha, etc. can be measured using standard measurement

methods. But the damping factor, α cannot be directly characterized with the standard

measurement methods (VSM-vibrating sample magnetometer). Determination of α will

allow us to describe the dynamic EM behavior of anisotropic ferrites accurately at all mag-

netization states.

Our first objective is to develop a simple and generalized broadband measurement method

for the characterization of damping factor of polycrystalline ferrites by overcoming the

constraints of the standard linewidth measurements. This parameter being the only dy-

namic input parameter of the theoretical model will be very useful for the designers of the

microwave devices. It will allow us to predict the dynamic behavior of the ferrites more
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accurately at any magnetization state and thus to optimize the design procedures.

The demagnetizing field effects due to the size and shape of the sample are prominent in

non-ellipsoidal samples and accurate calculation of internal DC fields and understanding of

the demagnetizing field effects are necessary to get better results with EM simulations. This

brings us to our second objective, which is to improve the EM modeling of ferrite devices

by integrating the magneto-static analysis and generalized permeability tensor model with

a commercial simulation software like Ansys HFSS. By taking into account the variation

in direction and magnitude of the demagnetizing tensor, N̂ , a rigorous theoretical tool will

be able to predict EM properties of the ferrites more accurately and will help the designers

with the design of the ferrite based devices like Circulators/Isolators, tunable filters, phase

shifters, etc.
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Chapitre 1. Résumé

Les matériaux ferrites sont largement utilisés dans l’électronique hyperfréquence pour de

nombreuses applications de télécommunication en raison de leur forte résistivité électrique et

de leur aimantation spontanée élevée. Les dispositifs comme les circulateurs/Isolateurs sont

basés sur le comportement non réciproque de la propagation électromagnétique (EM) dans

les ferrites aimantés. Les dispositifs tels que les filtres accordables, les lignes à retard, les

déphaseurs et les atténuateurs variables, etc., exploitent la non-linéarité du comportement

EM des ferrites par rapport à un champ magnétique statique. Les ferrites sont également

utilisées pour la miniaturisation des antennes et la réalisation d’absorbants dans la bande

UHF. Ces dispositifs exploitent la perméabilité et la permittivité élevées qui caractérisent

les ferrites à l’état désaimanté.

Un contrôle précis des performances de ces composants nécessite une connaissance préal-

able du comportement dynamique des matériaux de ferrite. Le comportement dynamique

des ferrites est représenté par la perméabilité, qui est une grandeur tensorielle µ̂ lorsque le

milieu est aimanté. Chaque composant du tenseur à une double dépendance par rapport

à la fréquence et au champ magnétique statique Hdc. Par conséquent, la conception et

l’optimisation des dispositifs micro-ondes utilisant des ferrites nécessitent une connaissance

réaliste de leur réponse dynamique, à savoir la perméabilité qui est un tenseur d’ordre 3

lorsque le matériau est aimanté (anisotropie induite par un champ magnétique statique de

polarisation). statique.

Ce premier chapitre est consacré à la présentation de l’état de l’art des méthodes de car-

actérisation des matériaux en hyperfréquences et au contexte général de nos travaux de

recherche. Ce chapitre décrit les propriétés intrinsèques des ferrites ainsi que leur réponse

dynamique dans le domaine des hyperfréquences. Les problèmes qui se posent dans le do-

maine de la caractérisation micro-ondes des ferrites sont mis en évidence pour définir les

objectifs de notre travail.

La caractérisation des matériaux est une étape importante et nécessaire, en amont de la

conception et la réalisation des dispositifs hyperfréquences. Il existe différentes méthodes

pour caractériser les propriétés EM des matériaux. Ces méthodes diffèrent selon différentes

réalités expérimentales telles que la gamme de fréquences du matériau, sa nature isotrope

ou anisotrope, la forme de l’échantillon et son caractère diélectrique ou magnétique. Ce
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chapitre dresse une synthèse de l’état de l’art des techniques de caractérisation EM des

matériaux magnétiques.

Expérimentalement, la caractérisation EM de ferrites est généralement réalisée dans des

états désaimanté ou saturé. Par exemple, la technique en transmission / réflexion basée sur

l’utilisation d’une ligne coaxiale est utilisée pour extraire la permittivité et la perméabil-

ité scalaires des ferrites polycristallines à l’état désaimanté qui sont pas nature isotropes.

A l’état saturé, une cavité résonante est utilisée pour déterminer les largeurs de raies

d’absorption à mi-hauteur (∆H et ∆Heff ). Ces grandeurs, qui représentent les pertes

magnétiques du matériau, constituent un paramètre d’entrée du modèle de Polder, dont les

formulations analytiques ne sont valables pour des milieux totalement saturés. La carac-

térisation des ferrites dans ses états de partielle aimantation est moins facile. Pour les états

partiellement aimantés qui se retrouvent en pratique dans des circulateurs/ Isolateurs auto-

polarisés, des déphaseurs et des antennes ou des filtres accordables, différentes techniques

de caractérisation ont été développées dans notre laboratoire. Ces techniques utilisent des

lignes microruban, des guides d’ondes rectangulaires et des lignes triplaques. Le principal

avantage de ces techniques est lié au fait qu’elles permettent de remonter directement aux

éléments complexes du tenseur de perméabilité, quel que soit l’état d’aimantation du ferrite,

ainsi qu’à sa permittivité scalaire.

L’une des spécificités des matériaux magnétiques est la dépendance de leur réponse dy-

namique vis-à-vis de la forme de l’échantillon. La perméabilité d’un échantillon torique

n’est pas la même que celle d’une plaquette. En outre, pour un matériau magnétique de

forme non ellipsoïdale, ce qui est le cas le plus couramment rencontré dans les dispositifs à

ferrite, le champ de polarisation statique interne n’est pas uniforme. Dans ces conditions,

la caractérisation du matériau via une perméabilité effective ne constitue pas la solution la

plus précise pour aider le concepteur de dispositifs à ferrite.

Les ferrites polycristallins présentent dans le domaine des hyperfréquences des effets dissi-

patifs qui dépendent du champ magnétique statique de polarisation appliqué. Ces pertes

peuvent être représentées par une force d’amortissement qui contrecarre le mouvement de

précession des moments magnétiques de spin. Les pertes dynamiques peuvent être représen-

tées par la variation de la partie imaginaire de la susceptibilité ou de la perméabilité, en

fonction du champ magnétique appliqué. Cette variation est habituellement de nature

non-Lorentzienne. Pour tenir compte de ces pertes, un coefficient d’amortissement α est

introduit dans l’équation de la cinétique d’un moment magnétique de spin, appelé équation

de Landau-Lifshitz–Gilbert (LLG). En pratique, les concepteurs utilisent deux paramètres

différents de largeur raie d’absorption ∆H et ∆Heff qui représentent les pertes magnétiques

dynamiques respectivement au voisinage de la résonance gyromagnétique et en dehors de

la résonance gyromagnétique. Ces paramètres de largeur de raie à mi-hauteur sont extraits

54



I.4 Motivation and Objectives

des points expérimentaux qui donnent l’évolution de la partie imaginaire de la perméabilité

mesurée µ′′ en fonction du champ statique appliqué Hdc à une fréquence donnée. Ces quan-

tités ne sont pas des paramètres physiques au sens strict du terme, qui apparaissent dans

les équations de Maxwell ou l’équation LLG, comme peut l’être le facteur d’amortissement.

Ces quantités sont directement liées au facteur d’amortissement par les formulations de

Polder, qui, rappelons-le, ne sont valables qu’à l’état saturé.

Les méthodes basées sur l’utilisation de cavités résonantes permettent de mesurer ∆H et

∆Heff à une fréquence donnée (méthodes mono-fréquence). La mesure de ces paramètres

dans une large bande de fréquences impliquerait trop de cavités et de tailles différentes

d’échantillons. En outre, la représentation des pertes magnétiques par deux valeurs, l’une

au voisinage de la résonance gyromagnétique (∆H) et l’autre en dehors de cette résonance

(∆Heff ), réduit le caractère prédictif du modèle de perméabilité.

La conception des nouvelles classes de dispositifs de ferrite doit être basée sur la combinaison

de méthodes expérimentales et d’outils théoriques capables de décrire le comportement EM

dynamique des ferrites. Nous avons besoin de méthodes expérimentales pour déterminer

les paramètres physiques des ferrites, notamment leurs caractéristiques statiques (aiman-

tation à saturation, champ d’anisotropie) et dynamiques (facteur d’amortissement) et des

modèles théoriques qui utiliseront ces paramètres pour décrire le comportement dynamique

des ferrites quel que soit leur état d’aimantation. Dans ce contexte, l’objectif général de

notre travail de recherche est, d’une part le développement d’une technique de mesure du

facteur d’amortissement et, d’autre part, d’améliorer la modélisation électromagnétique des

ferrites afin de rendre la procédure de conception plus réaliste, prédictive et précise pour

tout état d’aimantation.

In fine, notre objectif est de développer un outil de simulation EM prédictif pour la mod-

élisation précise des dispositifs à base de ferrite. Préalablement, nous avons besoin d’une

méthode de mesure large bande et simple d’utilisation pour la détermination du facteur

d’amortissement des ferrites polycristallines de manière à contourner les contraintes des

mesures de largeur de raie d’absorption standard de nature mono-fréquence. Ce paramètre,

qui est le seul paramètre d’entrée dynamique du modèle de perméabilité théorique, sera très

utile pour les concepteurs des dispositifs hyperfréquences à ferrite. Cela nous permettra de

prédire le comportement dynamique des ferrites plus précisément et ce quel que soit leur

état d’aimantation. Au final cela permettra d’optimiser les procédures de conception.

La modélisation électromagnétique des ferrites peut être améliorée en intégrant l’analyse

magnétostatique et le modèle de tenseur de perméabilité généralisé avec dans un logiciel

de simulation commercial comme HFSSTM d’Ansys, compte tenu de l’inhomogénéité des

champs de polarisation interne. En tenant compte de la variation de direction et de la

grandeur valeur des éléments du tenseur de démagnétisation désaimantation N̂ , un outil
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théorique rigoureux pourra prédire plus précisément les propriétés EM des ferrites et aidera

les concepteurs à concevoir des dispositifs à base de ferrite comme les circulateurs / iso-

lateurs, des filtres accordables, des déphaseurs, etc. Une analyse électromagnétique dy-

namique de la structure, compte tenu de l’inhomogénéité des champs internes et d’un mod-

èle de tenseur de perméabilité généralisé, nous permettrait de comprendre la distribution

inhomogène du champ interne et les effets du champ de démagnétisationdémagnétisants sur

les performances de ces dispositifs.
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II.1 Introduction

The purpose of this chapter is to present a simple and generalized measurement method for

the determination of damping factor α, a unique quantity representing the dynamic losses

in ferrite material. This unique dynamic property combined with the static characteristics

(saturation magnetization, anisotropy field, etc.) would be the input parameters of theo-

retical tool describing the dynamic properties of the ferrite material. First, we will present

theoretical models of permeability existing in the literature for different states of magneti-

zation. Secondly a general principle of the proposed coaxial line method will be presented.

Finally a description of quasi-TEM analysis of measurement cell will be presented and the

EM analysis will be validated in the limit cases.

II.2 Permeability tensor models

When a static magnetic field is applied on a ferrite material, its intrinsic characteristics

change. It exhibits a magnetic anisotropy and tensor permeability, µ̂, is then used to

describe the dynamic behavior of the material. Determination of the dynamic behavior

of ferrites has been the subject of numerous studies leading to different expressions for

the permeability tensor components, Schloemann [30] for demagnetized ferrites, Rado [31],

Green and Sandy [32], and Igarashi and Naito [33, 34] for partially magnetized ferrites, and

Polder [35] for saturated media.

Within the Lab-STICC, Gelin and Queffelec have developed a model to determine the

permeability tensor components in any state of magnetization, taking into account the hys-

teresis phenomenon and the Polder-Smit effect [27, 36].

In this section we will discuss the most remarkable models proposed in the literature to

determine the permeability tensor, µ̂ identifying their main characteristics and limitations.

We classified the models into four different cases: models working in saturated state, par-

tially magnetized state, demagnetized state and model working at all magnetization states.

II.2.1 Saturated state - Polder model

The permeability of a ferrite material is directly related to its internal structure, and in

particular to the existence of domains and domain wall formations. It is well known that

magnetic moments tend to align themselves in the direction of applied magnetic field.

At saturation, the intensity of the applied static field Hdc is strong enough to overcome

the internal constraints, leading to a disappearance of domains and Bloch walls. All the

moments are then aligned in the direction of the static field. Thus, it is possible to consider,

for this state, a single moment of magnetization Ms, called saturation magnetization.
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II.2 Permeability tensor models

The small signal approximation of the equation of evolution of the magnetic moments,

subjected to a static magnetic field, Hdc and perpendicular microwave magnetic field
−→
h ,

leads to the tensor relationship between the magnetic flux density
−→
b and the field

−→
h (t).

−→
b = µ0µ̂

−→
h .

−→
b = µ0




µ −jκ 0

jκ µ 0

0 0 µz




−→
h (II.1)

µ = 1 +
ωm(ω0 + jαω)

(ω0 + jαω)2 − ω2
(II.2a)

κ =
ωmω

(ω0 + jαω)2 − ω2
, (II.2b)

where α is the damping factor that describes the dissipative effects in the material, ω0 is the

gyromagnetic resonance frequency (Larmor frequency) and ωm is the frequency proportional

to the saturation magnetization Ms of the material.

ω0 = γHint

ωm = γMs ,

where γ is the gyromagnetic ratio (2.8 MHz/Oe).

The tensor µ̂ is called the Polder tensor [35]. The extra-diagonal terms denoted by ±jκ
represent the induced anisotropy of the medium under the external magnetic field and re-

sults in the nonreciprocal nature of the EM wave propagation in a ferrite material.

The spectra of tensor components µ and κ are presented in Figure II.1. These components

exhibit resonant behavior and the resonance peak occurs at the gyromagnetic resonance

frequency of the ferrite material. The expressions of µ and κ (Eq. II.2a and Eq. II.2b) are

valid only for uniform precession of the magnetic moments of a supposedly infinite medium

and in a completely saturated state of magnetization.

In order to make the model more realistic, Kittel [37] proposes an expression for the local

effective field Hint, which takes into account the demagnetizing fields related to the finite

dimensions of the ferrite.
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Figure II.1: Spectra of the real and imaginary parts of the diagonal µ and off-diagonal κ components
of the Polder tensor.

When the applied filed Hdc is along the z-direction, the local effective field Hint in a ellip-

soidal sample is given by the expression [37],

Hint =
√

(Hdc + (Ny −Nz)Ms)(Hdc + (Nx −Nz)Ms). (II.3)

The demagnetization components Nx, Ny, and Nz are directly related to the shape of the

sample, and results in the displacement of gyromagnetic resonance frequency.

II.2.2 Demagnetized state - Schloemann model

In 1970 Schloemann characterized the dynamic behavior of ferrites in the demagnetized

state based on the magneto-static approximations, by defining an effective permeability

tensor [30]. The model is based on cylindrically symmetric domain configuration and con-

tains only two types of domains:- ‘up’, u and ‘down’, d. These domains are magnetized

to saturation and have a local permeability tensor comparable to that of Polder model,

because within each domain, all the moments are parallel to each other.

Figure II.2: Schloemann model
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Thus the permeability tensors of these two domains are given by:

µ̂u =




µ −jκ 0

jκ µ 0

0 0 1


 and µ̂d =




µ jκ 0

−jκ µ 0

0 0 1


 (II.4)

The application of effective medium approximation (mean field theory) allows expressing the

components of an effective permeability from the elements of the Polder tensor (Eq. II.4).

µ̂e =




µe −jκe 0

jκe µe 0

0 0 1


 (II.5)

The extra-diagonal components of the effective tensor permeability disappear in the de-

magnetized ferrite. This effective tensor can now be represented by a diagonal tensor,

µ̂e =




µe 0 0

0 µe 0

0 0 1


 , (II.6)

The components of the effective permeability (Eq. II.6) are then expressed as a function of

the elements of the Polder tensor as follows:

µ2
e = µ2 − κ2 (II.7)

Taking into account the randomness of the magnetization direction of the domains and by

making the spatial average of the three diagonal elements of the local permeability tensor,

Schloemann proposed an expression for the scalar permeability of the demagnetized state :

µdemag =
1 + 2µe

3

µdemag =
1
3

+
2
3

√
ω2 − (ω0 + ωm)2

ω2 − ω2
0

, (II.8)

where ω is the microwave signal frequency, ωm is the frequency proportional to the satura-

tion magnetization (ωm = γMs), and ω0 is the gyromagnetic resonance frequency.

The equation Eq. II.8 is initially established for the lossless case. This can be generalized

by taking the damping factor into account by replacing ω0 by (ω0 + jαω). Although the

Schloemann model correctly describes the microwave response of ferrites, in particular the

real part of the permeability spectrum, the model remains valid only for the demagnetized

case.
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II.2.3 Partially magnetized state

When a ferrite is partially magnetized, existence of Weiss domains and Block walls are

inevitable. Dynamic properties of the ferrite can no longer be studied using the approx-

imation of a single magnetic moment precessing around the magnetic field. In this case,

the component of the permeability tensor in the applied field direction is no longer equal

to one.

Generally at any magnetization state if the applied field is along z direction, permeability

tensor can be defined as:

µ̂ =




µ −jκ 0

jκ µ 0

0 0 µz


 ,

where, µz is the component of the permeability in the direction of the applied magnetic

field. Polder formulations are not applicable in this state. We will now describe models

that give expressions for the different components of the permeability tensor in the partial

magnetization states.

II.2.3.1 Permeability model by Rado

In 1953, Rado published a theory based on the microscopic phenomena of magnetization

which allowed him to deduce the expressions of the permeability tensor components [31] in

partially magnetized state. By making a statistical average over all the directions of easy

magnetization of the domains, this theory takes the heterogeneous factor of the media into

account. In his model, Rado considers an isotropic and random distribution of magnetic

moments around the direction of the static magnetic field.

By performing a spatial average, the following expressions are obtained for permeability

tensor components:

µ = µz = 1 ,

κ =
−M
Ms

ωm
ω

(II.9)

For frequencies above the gyromagnetic resonance (ωa = γHa), this model gives relatively

accurate expressions for the extra diagonal term κ, but gives inaccurate values for the

diagonal ones. The diagonal components (µ=µz=1) are far from reality.

In conclusion, this theory presents serious limitations for the permeability modeling of

unsaturated media.
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II.2.3.2 Green and Sandy model

Based on the analysis of the experimental results, Green and Sandy proposed an empirical

model for the components of the permeability tensor, µ̂ [32].

They developed a method for the direct measurement of the permeability as a function

of magnetization state of the material. These measurements are done with a cylindrical

cavity TM110 in which ferrite rods are introduced. The permeability is then calculated as

a function of the change in the resonance frequency and the quality factor, Q of the cavity.

The ferrite rod is magnetized by using an electromagnet. The poles of the electromagnet

are in contact with the ends of the ferrite rod to close the magnetic flux, thus ensuring

the uniformity of the magnetization. Parallel permeability components µ′
z and µ

′′

z were

measured by using spherical samples with rectangular TE102 reflection cavity.

From the experimental results, Green and Sandy proposed the following empirical expres-

sions for the diagonal terms of permeability tensor:

µ = µ(H=0) +
(
1 − µ(H=0)

)(M
Ms

) 3

2

(II.10)

µz = µ(H=0)

(
1 − M

Ms

) 5

2

(II.11)

µ(H=0) =
2
3

[
1 −

(
γ4πMs

ω

)2
] 1

2

+
1
3

(II.12)

In these expressions, Ms is the saturation magnetization of the sample, and the ratio, M/Ms

represents the reduced magnetization of the sample.

The expression for diagonal terms obtained by Green and Sandy for µ(H=0) is similar to that

proposed by Schloemann in the demagnetized case (Eq. II.8). But in magnetized states,

this model is not very accurate. Moreover, it does not give access to the magnetic losses of

the material.

II.2.3.3 Igarashi and Naito

In their papers [33, 34] Igarashi and Naito presented two models with semi empirical for-

mulations for the permeability tensor components. In their first paper [33], the authors

propose expressions for the diagonal components of the tensor. In their subsequent pa-

per [34], they gave an expression for the extra diagonal terms.

These formulations are made using spatial averages and adjustment parameters set using
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the experimental results. They describe the medium through a random distribution of do-

mains with different magnetizations, positive and negative, without imposing a particular

shape on them.

For partially magnetized ferrites with random domain orientation, they give an expression

for the diagonal component of the effective tensor permeability,

〈µ〉 =
2
3

{√
µ2 − κ2

(
1 − 〈α3〉2

)
+ µ〈α3〉2

}
+

1
3
. (II.13)

Compared to the other models, the main difference is the introduction of the quantity 〈α3〉
in the tensor calculations. Igarashi and Naito have proposed an empirical formulation for

the variable 〈α3〉 of the form:

〈α3〉 = sin(bHN ) , (II.14)

HN =
H

NzMs/µ0
(II.15)

where Nz corresponds to the demagnetizing coefficient in the direction of magnetization,

H is the static field applied and the coefficient b is an adjustable coefficient.

In the particular case of the demagnetized state (〈α3〉 = 0), the results correspond well to

the theory proposed by other models such as Schloemann’s. Similarly when the material is

saturated (〈α3〉 = 1), this model coincides with the expression of the diagonal components

of Polder model.

In their second model [34], authors deduce expressions for the diagonal component µz and

the off-diagonal component κ of the permeability tensor. The expression obtained for the

off-diagonal component κ is the same as that proposed by Rado. For the µz component,

the authors proposed the following expression:

〈µz〉 = 1 + χ
(
1 − 〈α3〉2

)
= 1 +

ωm (ωe + jαω)

(ωe + jαω)2 − ω2

[
1 − 〈α3〉2

]
(II.16)

In this expression, when the magnetization is close to saturation, 〈α3〉 approaches unity,

and the real part of µz tends to 1 while the imaginary part tends to zero.

In the partially magnetized case, the parameter ωe in the expressions of the tensor com-

ponents has to be adjusted experimentally. Since the values of b and H are determined

experimentally, this model cannot be considered as a predictive model. Moreover, this

model does not take into account the hysteresis phenomenon. Finally, the expression can-

not predict the displacement of the gyromagnetic resonance frequency with the magnitude

of the field H.
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II.2.4 Any magnetization state: Generalized permeability tensor model (GPT)

The models described above are not suitable for rigorously describing the dynamic behavior

of the components of the permeability tensor, µ̂ at all the magnetization states. In general,

these models do not take into account all the static and dynamic phenomena influencing

the dynamic behavior of the ferrites. For example, none of the models predicts the actual

value of the static magnetic field within domains. For the most part, these models use the

ratio M/Ms to represent the magnetization state of the ferrite.

However, this is not sufficient to describe the static properties of ferrites (direction and

configuration of magnetic moments, local internal field to the domains, hysteresis phe-

nomenon, etc.). Consequently, it is necessary to have a better approach at the static level,

for example, with a magnetization law connected to the internal structure which makes

it possible to calculate the local fields in the domains. In the previous models, dynamic

interactions between magnetic domains are not taken into account, with the exception of

the Schloemann model. These interactions essentially influence the dynamic behavior of the

magnetized media and depend considerably on the shape of the magnetic domains, defects

or porosity [15].

Under these conditions, Gelin and Queffelec [27, 36] proposed a generalized model for the

permeability tensor components known as the "Generalized Permeability Tensor Model"

(GPT). This model predictively describes the dynamics of the permeability tensor compo-

nents of polycrystalline ferrites using a more realistic approach than previously proposed

models. This approach takes into account the inherent physical phenomena in polycrys-

talline ferrites such as the Polder-Smit effect, the hysteresis phenomenon and statistical

distribution on the shape of grains and domains.

GPT model framework

The GPT model considers ferrite as an agglomeration of grains, which are themselves di-

vided into magnetic domains. The model approach is divided into two problems, as shown

in Figure II.3.

First the static quantities are determined within each domain. This includes the calcula-

tion of the magnitude and direction of the internal magnetic field Hint and the associated

magnetization vector
−→
M as a function of the static field applied by taking into account the

hysteresis phenomena, the demagnetizing fields and the anisotropy field. This procedure is

called the static problem.

The second step is called the dynamic problem, consists of taking into account the in-

teractions between adjacent domains and grains which depend on their respective shapes

(Polder-Smit effect [15]). This is done by solving the equation of evolution of the magnetic
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Figure II.3: GPTmodel- Principle.

moments (Eq. II.21) in each domain. Once these two problems are solved, a statistical sum-

mation of the set of dynamic magnetization vectors −→mi is carried out in space to obtain the

permeability tensor µ̂ of the ferrite. The limits of this statistical summation vary according

to the state of magnetization of the material.

As this model plays an important part of our research work, we will make a more detailed

description in the following.

Static problem

In the demagnetized state, grains in polycrystalline ferrite are divided into domains as in

Figure II.4. The grains are considered as mono crystals with easy axis described by the

angles (ϑ, ϕ) (see Figure II.4a). Within each grain, adjacent domains are aligned either

parallel or antiparallel to the easy axis direction.

Consequently magnetization vector
−→
M1 in domain 1 will have a direction −→u1 and

−→
M2 in

domain 2 will have a direction −→u2. Thus, for two adjacent domains the effective magneto

static fields will be
−→
H1 = Ha

−→u1 and
−→
H2 = Ha

−→u2, where Ha corresponds to the anisotropy

field.

When the ferrite is in a partially magnetized state (Figure II.4b), the magnitudes of mag-

netizations (
−→
M1,

−→
M2) and their equilibrium positions (−→u1,

−→u2) change with respect to their

initial values (see Figure II.4b). This change depends on the magnitude of the static field

Hdc, the anisotropy field Ha, and also on the previous state of magnetization (hysteresis

phenomenon). In order to find the new effective local magnetic field and its associated
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(a) demagnetized state (b) partially magnetized state

Figure II.4: Moment directions in polycrystalline ferrites.

equilibrium direction, a hysteresis model based on the work of Stoner and Wohlfarth [38]

is used.

The model of Stoner and Wohlfarth (1948) is an energy model that links the behavior of

the magnetization M to the applied field Hdc. This model assumes that the domains are

isolated from each other and considers only the hysteresis phenomenon by rotation and

tilting of the magnetic moments. The value of the equilibrium direction −→ui is obtained by

minimizing the total energy Wi of a domain i (Figure II.5).

This energy Wi is the sum of the magneto-crystalline energy and the magneto static energy.

The new equilibrium direction ζ is thus determined by the equation,

K1 sin 2 (ϑ− ζ) = MsH0 sin ζ, (II.17)

K1 is related to anisotropy field Ha,

Ha =
2K1

Ms
. (II.18)

It is important to note that the position ζ is independent of the angle ϕ (Figure II.5).

The magnetic field within the domain Hi corresponds to the second order derivative of the
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Figure II.5: Magnetized equilibrium direction of the domains

energy Wi and is given by,

Hi (H0, ϑ) = Ha cos (2ϑ− 2ζ) +H0 cos ζ. (II.19)

For the demagnetized state, where H0 = 0 and ζ = ϑ, internal field Hi is equal to anisotropy

field Ha. Finally, the GPT model takes into account macroscopic demagnetizing fields re-

lated to the shape of the ferrite sample. The internal static field is then corrected according

to the relation:
−→
H 0 =

−→
H dc −N

−→
M (II.20)

The demagnetizing coefficient N in the direction of the static field depends only on the

geometrical dimensions of the ferrite sample.

Dynamic problem

The GPT model uses the Landau-Lifshitz-Gilbert equation to describe the evolution of

magnetic moments under the effect of the microwave field
−−→
h(t) taking into account the

inter-domain coupling [10].

∂
−→
M i(t)
∂t

= γ
−→
M i ×

(−→
H i +

−→
h i(t)

)
− α

Ms

−→
M i(t) × ∂

−→
M i(t)
∂t

, (II.21)

−→
M i = Msûi + −→mi(t) ,

−→
H i = Hiûi, where i = 1, 2 .
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In the equation Eq. II.21, −→mi is the dynamic magnetization in the domain ′i′, α is the

damping coefficient,
−→
hi(t) is the local variable magnetic field, γ is the gyromagnetic ratio

and Ms is the saturation magnetization.

The equation Eq. II.21 is then applied to all the adjacent domains of the grain and thus

forming a system of coupled equations Eq. II.22. These adjacent domains have their internal

fields defined respectively by
−→
H1 and

−→
H2 with their associated directions û1 and û2.

∂
−→
M1(t)
∂t

= γ
−→
M1 ×

(−→
H 1 +

−→
h − −→

h d − −→
h g
)

+
α

Ms

−→
M1 × ∂

−→
M1(t)
∂t

(II.22a)

∂
−→
M2(t)
∂t

= γ
−→
M2 ×

(−→
H 2 +

−→
h − −→

h d − −→
h g
)

+
α

Ms

−→
M2 × ∂

−→
M2(t)
∂t

, (II.22b)

The field
−→
hd corresponds to the dynamic demagnetizing field bounded to the shape of the

domain and nd is the demagnetizing coefficient in the direction of the dynamic magnetiza-

tion (Eq. II.23). This term allows to take into account Polder-Smit effect [15], that is to

say the dynamic coupling between magnetic moments of adjacent domains.

−→
h d = −nd (−→m1 − −→m2) , (II.23)

−→
h g = −ng

(−→m1 + −→m2

2
− M

Ms
〈−→m〉

)
(II.24)

It should be noted that
−→
hd is maximal when −→m1 and −→m2 are opposite in phase and minimal

when they are in phase. Similarly, the field
−→
hg represents the dynamic demagnetizing field

linked to the shape of the grain and ng is the demagnetizing coefficient in the direction of

the dynamic magnetization (Eq. II.24). This grain is surrounded by an effective medium

with an effective magnetization 〈−→m〉.

Permeability tensor

Once all the static parameters are determined, the system of coupled equations of the

dynamic problem (Eq. II.22) can be solved and the dynamic magnetization vector −→mi is

calculated as a function of microwave field
−→
h i, the applied magnetic field (Hdc, ϑ) and the

demagnetizing coefficients of the grain (ng) and the domain (nd).

−→mi =
(
Hdc, ϑ,

−→
h i, ng, nd

)
. (II.25)

In order to calculate the permeability tensor µ̂ of a bulk sample, a statistical summation

of the local dynamic magnetizations is performed. This summation takes into account the

possible directions of the vector −→mi described by the angles ϑ and ϕ and the possible grain
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and domain shapes (Eq. II.26).

〈−→mi

(−→
h ,Hdc

)〉
=
∫

ϕ

∫

ϑ

∫

ng

∫

nd

P1 · P2 · P3
−→mi dnddngdϑdϕ, (II.26)

P1 = P1 (ϕ, ϑ) , P2 = P2 (ng) , P3 = P3 (nd) .

The functions P1, P2 and P3 are the distribution functions chosen as a function of the easy

axes orientation, and the grain and domain shapes. Finally permeability tensor is obtained

using the relation,

−→
b = µ0

(−→
h +

〈−→m
(−→
h ,Hdc

)〉)
= µ0µ̂gpt

−→
h (II.27)

From a self-consistent theoretical approach, this model provides the tensor permeability

µ̂gpt, whatever the frequency range and the state of magnetization are, from the demagne-

tized state to the saturation. This model takes into account the demagnetizing field effects

in the grains and domains and the dynamic interactions between domains and grains and

ensures causality of the tensor components.

II.3 Measurement cell

Broadband measurement techniques allow characterization of materials in a very broad

frequency band. Among the broadband techniques, there are basically three types: free

space, guided structures and radiating probes (for example coaxial probe). Radiating probes

are limited to the characterization of dielectric materials because only one parameter is

measured, i.e. the reflection coefficient, giving access to one constitutive parameter of the

material to be characterized. Then, the case of magnetic materials can not be treated by

this approach because two constitutive parameters, the permittivity and the permeability

of the materials are unknown.

Free space techniques offer some freedom in choosing the shape of the sample. But there are

some errors related to the edge effects. These methods are more suitable for the millimeter

wave range with typical surface area of the sample around 10x10 cm2. On the other hand

in guided structures, the sample under test is placed inside a waveguide or a transmission

line where it can fill all or part of its cross-section. For these structures, the size of the

sample under test is generally smaller than the one required with the free space method.

The operating frequency band of these techniques is determined by the cut off frequency of

the first higher order mode. In the case of waveguides, operating band remains relatively

narrow, ranging from the frequency of appearance of the fundamental mode to the frequency
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of occurrence of the first higher order mode. These two frequencies are closely related to

the dimensions of the waveguide.

In the case of transmission lines, the fundamental mode is the TEM (or quasi-TEM for

planar structures : microstrip and coplanar) mode and the occurrence of first higher order

mode can easily be chosen above 10 GHz. The shielding provided by the outer conductor

of the coaxial line or the two ground planes of the strip line avoid radiation losses. The

fundamental mode in these transmission lines is the TEM mode. On the other hand, in

the case of the microstrip and coplanar transmission lines, fundamental mode is quasi-

TEM. TEM mode can be easily described by the classical transmission-line theory and its

inclusion in a dynamic EM analysis is simple and straightforward. Under these conditions,

a transmission/reflection technique is the most adapted method for the problem posed.

(a) Coaxial line (b) TEM mode

Figure II.6: Coaxial line-based measurement cell and field patttern for the TEM dominant mode.

Material characterization techniques previously developed in Lab-STICC [20–23] make use

of the non-reciprocity of the measurement cell to directly access the constituent material

parameters, scalar permittivity and tensor permeability components. Our objective is to

develop a method to determine the damping factor which will be then used as an input

parameter for theoretical tools to describe the dynamic behavior of anisotropic ferrites.

Since the only parameter to be determined is the damping factor, nonreciprocal behavior

of the measurement cell is not a requirement any more.

Considering all this factors, a coaxial line is chosen as the measurement cell for the proposed

method. The coaxial measurement cell is of APC7 standard with an outer diameter of 7

mm and an inner diameter of 3.04 mm. The fundamental mode of propagation in the empty

section of coaxial line is pure TEM mode. The sample is square toroidal in shape. The

ferrite sample is inserted between the inner and the outer conductors of the coaxial line. The

coaxial line partially filled with sample to be characterized is placed in between the poles of

an electromagnet and the sample is magnetized in the longitudinal direction (propagation

direction). Under the action of an applied static magnetic field, sample becomes anisotropic

in nature.

71



Chapter II A Coaxial Line Method For Damping Factor Measurement

II.4 General description of the method

The proposed measurement method can be divided into two parts: the direct problem (EM

analysis) and the inverse problem (optimization procedure) as shown in Figure II.7.

(a) direct problem

(b) inverse problem

Figure II.7: General description of the method.

The direct problem corresponds to the dynamic EM analysis of the measurement cell con-

taining the sample to be characterized. This dynamic analysis takes into account the

contributions from the fundamental quasi-TEM and higher symmetrical modes in the wave

propagation inside the sample. The propagation constant of the symmetric modes (quasi-

TEM) in the ferrite sample are calculated by solving boundary value problems, when the

fields in the ferrite are made to satisfy the boundary conditions at the inner and outer

conductor surfaces.

The S-parameters of the loaded section of the coaxial cell are determined theoretically from

this EM analysis. In these calculations, the constitutive parameters of the sample ǫf , µ,

and κ are represented by the analytical functions which reproduce dispersive and resonant

behavior of the materials.
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Generalized permeability model is used to describe the permeability tensor components and

Cole-Cole model [39] is used to represent the dispersive nature of permittivity. The input

parameters of these analytical functions are the static and dynamic properties of the ma-

terial. In summary, the direct problem provides a relation between constituent parameters

of the material and the theoretical S-parameters of the measurement cell.

The inverse problem consists of a broadband optimization procedure for finding the damp-

ing factor of the sample to be characterized. The optimization procedure ensures the

convergence of theoretical S-parameters with the measured S-parameters over the entire

frequency band, by minimizing a broadband error function. This numerical procedure uses

the damping factor and applied field as optimization variables.

This broadband characterization method can be used from DC to millimeter wave frequen-

cies since the dominant mode propagated in the empty coaxial line is TEM mode which has

no cut-off frequency. Only the magnitudes of the S-parameters are taken into account in

the optimization procedure to avoid phase related errors associated with the dimensional

resonances. The frequency of occurrence of these resonances is strictly related to the length

of measured sample. Thus by avoiding the use of the phase in the optimization procedure,

these dimensional resonances do not affect the accuracy of the method. On the contrary,

the inverse problem use these dimension resonances to converge S-parameters more rapidly

and more precisely.

II.5 Direct problem

In our case, direct problem consists of the calculation of theoretical S-parameters of the

measurement cell from constitutive parameters (ǫ, µ, κ) of the material. It is based on

the rigorous description of the EM behavior of the coaxial transmission line loaded by the

material to be characterized by using a quasi-TEM approximation.

Direct problem takes place in two steps:

• Definition of the analytic functions representing the frequency dependent parameters

ǫ(ω), µ(ω), and κ(ω) of the material.

• An EM analysis to compute theoretical S-parameters.

Once the analytical functions ǫf (ω), µ(ω), and κ(ω) are defined, an EM analysis is carried

out at the discontinuities between the empty section and ferrite loaded section of the coaxial

line. A complex root searching procedure is used to calculate the theoretical propagation

constants of the electromagnetic wave propagating inside the loaded section of the mea-

surement cell. Theoretical S-parameters are then determined using classical transmission

line theory.
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II.5.1 Analytical functions for constituent parameters

The direct problem requires prior knowledge of the constituent parameters ǫ, µ, κ of the

material present in the cell. These parameters will be represented by analytical functions

which reflect the physical properties of material. The resonant character of permeability,

and slightly dispersive or relaxation behavior of permittivity can be represented either by

existing theoretical models of permeability [33, 35, 36] and permittivity [39] or simply by

using general polynomial functions.

Cole-Cole model [39] can be used to represent the dispersion of permittivity of dielectrics

and those of ferrites. A general Cole-Cole formulation is given by,

ǫf (ω) = ǫ∞ +
ǫs − ǫ∞

(1 + jωτ)1−ψ
(II.28)

This function depends on four variables: the static permittivity ǫs, ‘infinite frequency’ per-

mittivity ǫ∞, the relaxation time τ , and an experimental correction factor ψ (1<ψ<0). Note

that when ψ=0, the Cole-Cole function becomes a Debye-type relaxation function [39]. The

Cole-Cole function makes it possible to represent the majority of the cases encountered in

our study: materials with constant permittivity (when τ is zero), low dispersive materials

(when τ is low) and materials with relaxation behavior.

Several theoretical models have already been proposed in the literature to describe the per-

meability tensor components [27, 30–36].

Table II.1 summarizes the main features of the permeability tensor models presented in

(Section II.2).

Model Properties Limitations

1 Polder
⋄ LLG equation

⋄ Linewidth parameters,
∆H and ∆Heff

⋄ Saturated state

5 Schloemann

⋄ Predictive model,
in particular for Re{µ}

⋄ interactions between
domains

⋄ Simple domain structure

⋄ Demagnetized state

⋄ Does not follow
Polder model
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2 Rado ⋄ Spatial average of different
orientations of the domains

⋄ Partially magnetized state

⋄ Non-predictive for
diagonal elements of the µ
tensor

⋄ Interactions between
domains are neglected

3 Green and Sandy

⋄ M/Ms ratio to define
magnetization state

⋄ Consistent with Schloemann’s
model

⋄ Does not take into account
the hysteresis effect

⋄ Limited to low magnetic
losses

4 Igarashi and

Naito

⋄ Magnetization law

⋄ Consistent with Schloemann
and Polder models

⋄ Spatial average of evolution of
magnetic moments

⋄ Non-predictive

⋄ Semi empirical model

⋄ Does not take into account
the hysteresis effect

6 Generalized Per-

meability Tensor

⋄ Calculation of internal field as
a function of external field

⋄ Hysteresis phenomenon

⋄ Taking into account the
interaction between domains

⋄ LLG equation

⋄ Taking into account
demagnetizing fields

⋄ Good agreement with
measurements

⋄ The choice of probability
distribution functions on
grain and domain shapes
is difficult.

Table II.1: Comparison between the permeability tensor models.

Most of these models remain limited to a single state of magnetization. With the exception

of the GPT model, no model is able to predict the evolution of the permeability tensor,

starting from demagnetized state to remanent state passing through saturation.

Designers often use Polder model due to the fact that it describes dynamic behavior of

ferrite materials in a very satisfactory manner in the saturated state. The losses are de-

termined from two linewidth quantities ∆H and ∆Heff , one deducted from the magnetic

susceptibility measurements in the vicinity of the gyromagnetic resonance (∆H), the other
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determined from experimental data obtained outside the resonance region (∆Heff ). Damp-

ing factor α is calculated from the linewidth parameters using Polder theory. As a result,

device designers often perform interpolations to calculate losses at different frequencies. In

addition, Polder model assumes a uniform magnetization in the material with ellipsoidal

sample shapes, which is not always true in practice. Non-ellipsoidal sample forms used in

practice lead to non-homogeneity of the demagnetizing fields.

On the other hand, Generalized Permeability Tensor (GPT) model developed in our lab-

oratory obtained satisfactory results in the description of permeability tensor components

of the polycrystalline ferrites for any state of magnetization. GPT model can describe a

more realistic and predictive frequency behavior of ferrites from known intrinsic quantities.

The input parameters are static properties like saturation magnetization 4πMs, anisotropy

field Ha, and the damping factor α used to represent the ferromagnetic losses in the ferrite

material.

Damping factor being the single dynamic input parameter of GPT model, helps us to de-

scribe a relation between the intrinsic losses in ferrites with its high frequency behavior.

Thanks to its predictive nature, GPT model can be used for confrontation of theory with

measurement for different magnetization states. Since our objective is to find a unique value

for damping factor, we chose GPT model to compute the permeability tensor components

of anisotropic ferrites.

II.5.2 EM analysis of the measurement cell

The theoretical solutions for cylindrical waveguide filled with ferrite medium magnetized

in the longitudinal direction, are well known in literature [40, 41]. The case of ferrite

filled coaxial wave guide magnetized in the longitudinal direction is implied by Kales [40].

Epstein [41] presented explicit theoretical solutions for fields inside a coaxial wave guide

filled with ferrite medium.

Figure II.8: Axially magnetized coaxial cell filled with ferrite sample.
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When a coaxial line containing ferrite medium is magnetized in the longitudinal direction,

ferrite medium become anisotropic in nature. This leads to a tensor relationship between

the magnetic induction B and applied field H,

B = µ̂H , (II.29)

Here µ̂ denotes the tensor permeability.

µ̂ =




µ −jκ 0

jκ µ 0

0 0 µz


 , (II.30)

For a time dependence ejωt and z-dependence e−γz, Kales defined a pair of wave equation

of the form [40],

∆2
t u1 + S2

1 u1 = 0

∆2
t u2 + S2

2 u2 = 0

(II.31)

The functions u1 and u2 are defined as the solutions to the wave equation (Eq. II.31).

The parameters S1 and S2 are called the separation constants. They are defined as the

square root of Kale’s separation constants [40] for convenience.

S2
i =

1
2

[
a+ c±

√
(a− c)2 + 4bd

]
, (II.32)

where

a = ω2ǫµ0
µ2 − κ2

µ
− γ2

b = jωγµ0
κ

µ

c =
1
µ

(ω2ǫµ0µ− γ2)

d = −jω γǫ
κ

µ
.

In these relations γ = α+ jβ is the propagation constant and ω is the angular frequency.
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If r is the radial variable and an angular field dependence of ejnφ is assumed, Eq. II.31

becomes Bessel’s equation of order n with solution,

ui = [ AiJn(Sir) +BiNn(Sir) ] ejnφ , (II.33)

whereAi, Bi are unknown field magnitudes, the functions Jn andNn are the Bessel functions

of first and second kinds respectively.

The general field equations can be written as,

Ez =
2∑

i=1

S2
i

[
AiJn(Sir) +BiNn(Sir)

]
e±jnφ (II.34a)

Hz =
2∑

i=1

(S2
i − a)
b

S2
i

[
AiJn(Sir) +BiNn(Sir)

]
e±jnφ (II.34b)

Er =
2∑

i=1

{
S2
i − a

b

µn

jγκ

[
AiJn(Sir) +BiNn(Sir)

]
− jγSi

[
AiJ

′

n(Sir) +BiN
′

n(Sir)
]}
e±jnφ

(II.34c)

Eφ =
2∑

i=1

{
γn

r

[
AiJn(Sir) +BiNn(Sir)

]
+
µ(S2

i − a)
γκ

Si
[
AiJ

′

n(Sir) +BiN
′

n(Sir)
]}
e±jnφ

(II.34d)

Hr =
2∑

i=1

{
− nωǫ

[
AiJn(Sir) +BiNn(Sir)

]
+ (ω2µǫ− γ2 − S2

i )
Si
ωκ

[
AiJ

′

n(Sir) +BiN
′

n(Sir)
]}
e±jnφ

(II.34e)

Hφ =
2∑

i=1

{
(ω2µǫ− γ2 − S2

i )
jn

ωκr

[
AiJn(Sir) +BiNn(Sir)

]
+ jωǫSi

[
AiJ

′

n(Sir) +BiN
′

n(Sir)
]}
e±jnφ

(II.34f)

78



II.5 Direct problem

II.5.2.1 Theoretical solutions for propagation constant

In the general field equations, setting n = 0 yields the expressions for the quasi-TEM and

all higher symmetrical modes. The technique for obtaining the propagation constant inside

a ferrite filled coaxial line has been reported [42–44] in literature. The propagation constant

of the quasi-TEM mode is obtained by solving the boundary value problems when the fields

in the ferrite are made to satisfy the boundary conditions at the inner and outer conductor

surfaces of the coaxial line.

The tangential electric fields of the quasi-TEM mode and higher symmetrical modes in the

ferrite filled section are given by,

Ez =
2∑

i=1

S2
i

[
AiJ0(Sir) +BiN0(Sir)

]
(II.35)

Eφ =
2∑

i=1

µ(S2
i − a)
βκ

Si
[
AiJ

′

0(Sir) +BiN
′

0(Sir)
]

(II.36)

Applying boundary conditions, tangential components of the electric field vanishes at the

inner (r = R1) and outer (r = R2) conductor surfaces of the coaxial line. This boundary

conditions yield four linear, homogeneous equations with unknown coefficients of Ai and

Bi.

For nontrivial solutions of these system of equations, the determinant of the coefficient

matrix must be equal to zero.

The characteristic determinant equation is given by,




(S2
1 − a)S1J1(S1R1) (S2

2 − a)S2J1(S2R1) (S2
1 − a)S1N1(S1R1) (S2

2 − a)S2N1(S2R1)

(S2
1 − a)S1J1(S1R2) (S2

2 − a)S2J1(S2R2) (S2
1 − a)S1N1(S1R2) (S2

2 − a)S2N1(S2R2)

S2
1J0(S1R1) S2

2J0(S2R1) S2
1N0(S1R1) S2

2N0(S2R1)

S2
1J0(S1R2) S2

2J0(S2R2) S2
1N0(S1R2) S2

2N0(S2R2)




= 0

(II.37)

Eq. II.37 is a transcendental equation in the propagation constant since the separation

constants S1 and S2 are functions of propagation constant and material parameters. The

zeros of the determinant equation will correspond to the propagation constants of the

symmetrical modes. The separation constants S1 and S2 are either pure real or pure

imaginary in the lossless case. When the losses are included, the separation constants

become complex.
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Propagation constant inside the loaded section of coaxial line

The zeros of the characteristic determinant equation (Eq II.37) occur at the propagation

constants of the symmetrical modes. A complex root searching procedure based on Muller’s

method is implemented to calculate propagation constant inside the loaded section of the

measurement cell. Muller’s method is based on secant method, but considers three consec-

utive points. For each iteration Muller’s method constructs a parabola through these three

points, and takes x-intercept as the next approximation. In the following, we present prop-

agation constant of wave propagating inside the loaded section of the coaxial line calculated

for different scenarios.

(a) Dielectric material

In order to validate the results obtained using the complex root searching procedure, we

calculated propagation constant in a coaxial line containing dielectric materials and com-

pared with propagation constant obtained directly using transmission line theory [14].
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Figure II.9: Propagation constant

For a material with permittivity ǫ = 7.8−j0.01 and thickness 2.9 mm, propagation constant

is calculated using both the methods and the results obtained are shown in Figure II.9. The

solid lines in the figure correspond to the results from our numerical root searching proce-

dure, and ′×′ corresponds to the results obtained using transmission line theory [14].

We observe a perfect agreement between the phase and attenuation constants calculated

using transmission line theory and those computed with our root search method. We em-

phasize that in the absence of magnetic material, the fundamental mode in the loaded

region remains as pure TEM mode (fundamental mode in the empty coaxial line).
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(b) Magnetic material

In the case of magnetic material, we need a theoretical model to describe the permeability

tensor components in different magnetization states.
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Figure II.10: Permeability tensor components.

Permeability tensor components are defined using Generalized Permeability Tensor model [36].

The spectra of the permeability tensor components (µ and κ) obtained with the GPT model

are shown in Figure II.10.

The sample is a ferrite with a relative permittivity ǫf= 7.8 − j0.01, saturation magnetiza-

tion 4πMs = 600 G, magneto-crystalline anisotropy field Ha=81 Oe, damping factor α =

0.06, and thickness l = 2.9 mm. The ferrite is magnetized with a static magnetic field of

Hdc = 1600 Oe.
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Figure II.11: Propagation constant inside the ferrite material.

The real and imaginary parts of propagation constant is shown in Figure II.11. In an

empty coaxial line, the fundamental mode is TEM mode. In the ferrite loaded section of

the coaxial line fundamental mode is quasi-TEM mode.
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II.5.2.2 Theoretical solutions for scattering parameters

An equivalent model of the coaxial line partially filled with the ferrite sample is shown in

Figure II.12. In the loaded section, the wave is characterized by a propagation constant γ.

Figure II.12: Measurement cell - discontinuities.

The discontinuities are characterized by the reflection and transmission coefficients. In [42],

Brodwin and Miller described a relation between the propagation constant in the ferrite and

an approximation to the TEM mode reflection coefficient (R) at the ferrite-air interface.

R =
1 − ωǫ

γ

√
µ0

ǫ0

1 +
ωǫ

γ

√
µ0

ǫ0

(II.38)

Applying the transmission line theory, a transmission matrix of the ferrite sample is cal-

culated from the propagation constant in the ferrite and the reflection coefficients at the

air-ferrite-air interfaces.

The wave matrices at the ferrite-air and the air-ferrite interfaces are,

[
a3

b3

]
=

1
1 −R

[
1 −R

−R 1

] [
b4

a4

]
(II.39)

[
a1

b1

]
=

1
1 +R

[
1 R

R 1

] [
b2

a2

]
(II.40)

The global transfer matrix [T ] is calculated by taking into account the wave propagation

in the loaded section of the line and the impedance discontinuities between the empty and
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loaded sections of the transmission line in the propagation direction of the wave.

[
T11 T12

T21 T22

]
=

1
1 −R2

[
1 R

R 1

] [
ejγl 0

0 e−jγl

] [
1 −R

−R 1

]
(II.41)

Finally, the scattering parameters are calculated by using the relations between the transfer

matrix [T ] and scattering matrix [S] as given by,

T11 =
1
S11

, T12 = −S22

S11

T21 =
S11

S21
, T22 = S12 − S11S22

S21

(II.42)

S-matrix can be represented as,

[
S
]

=

[
S11 S12

S21 S22

]
=




R(1 − T 2)
1 −R2T 2

T (1 −R2)
1 −R2T 2

T (1 −R2)
1 −R2T 2

R(1 − T 2)
1 −R2T 2


 (II.43)

II.5.3 Direct problem - Results

Complex permittivity and tensor permeability of the material are defined by analytical

functions where the input parameters are the static and dynamic properties of the material.

Once the analytical functions ǫf (ω), µ(ω), and κ(ω) are defined, an EM analysis is carried

out at the discontinuities between the empty and ferrite loaded section of the coaxial line.
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Figure II.13: Spectra of real and imaginary parts of the diagonal and off-diagonal components of
permeability tensor computed using GPT model. Sample properties: ǫf = 7.8 − j0.01, 4πMs= 580
G, Ha= 54 Oe, α= 0.06, and thickness = 2.9 mm. Hdc = 1400 Oe.

Applying boundary conditions, we get a determinant equation, zeros of which correspond

to the propagation constant of the wave propagating inside the material. A complex root

searching procedure is used to calculate the theoretical propagation constant inside the

loaded section of the measurement cell by solving the characteristic determinant equation.
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Once the propagation constant is calculated, reflection coefficient at the air-ferrite interface

is calculated from the propagation constant and material parameters using the relation

described by Eq. II.38. Then theoretical S-parameters are determined at the reference

planes P1 and P2 using the transmission line theory.

We study the configuration where a ferrite material is inserted between the inner and outer

conductors of the coaxial line. The sample is magnetized in the longitudinal direction by

using an electromagnet.

The sample under test is a ferrite with a relative permittivity ǫf= 7.8 − j0.01, saturation

magnetization 4πMs = 580 G, magneto-crystalline anisotropy field Ha=54 Oe, damping

factor α = 0.06, and thickness l = 2.9 mm. The ferrite is magnetized with a static magnetic

field of Hdc = 1400 Oe. In our EM analysis, GPT model is used to calculate the diagonal

and off-diagonal components of permeability tensor (Figure II.13).

From the calculated S-parameters (Figure II.14), we can easily determine the frequencies at

which the magnetic effects are most important. A change can be observed in the frequency

dependence of the S-parameters with respect to the conventional dielectric behavior due to

the presence of gyromagnetic resonance.

Figure II.14: Theoretical S-parameters.

Power absorption can be calculated from the scattering parameters using the relation,

P = 1 − |S11|2 − |S21|2 (II.44)

The losses in the system can be characterized by power absorption spectrum (Figure II.15).

Maximum absorption of EM energy in the power absorption spectrum occurs at a frequency
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slightly higher than the gyromagnetic resonance of the ferrite material.

Figure II.15: Power absorption in the system.

EM analysis is independent of the analytic functions chosen for ǫf (ω), µ(ω), and κ(ω).

This analysis constitutes the main part of the inverse problem in the proposed method.

Therefore, we can conclude that in the direct problem we determine the relation between

the permittivity and the permeability spectra of the sample, and theoretical S-parameters

of the measurement cell. This analytic relation is not explicit, and is based on the resolution

of Maxwell’s equations.

II.6 Validation of the direct problem

In order to validate our direct problem, we consider three limit cases - dielectric material,

demagnetized ferrites, and saturated ferrites. The measurement cell is loaded by stan-

dard samples and S-parameters are measured with vector network analyzer. Theoretical

S-parameters are calculated with direct EM analysis. Direct problem results are then com-

pared with measured S-parameters. It is very difficult to define a standard ferrite material.

In the demagnetized state, Nicholson- Ross -Weir method [18, 19] allows us to determine the

scalar permittivity and effective permeability of ferrite materials. For magnetized ferrites,

currently standard measurement methods can not directly trace the permeability tensor

components in a broad frequency range.

Commercial simulation software use theoretical model to describe the permeability tensor in

different magnetization states. These theoretical models are often limited to a single mag-

netization state that depends on the assumptions on which they are based upon. Suppliers

of ferrite materials give specifications like saturation magnetization (Ms) and resonance

linewidth parameters (∆H and ∆Heff ) at microwave frequency. They give no information
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about the broadband behavior of their permeability tensor. Although we can use these

static and microwave parameters in the theoretical permeability tensor models [30, 35], we

cannot guarantee the predictive character of these parameters. Most of the commercial

simulation software uses Polder model [35], which provides a satisfactory description of the

microwave behavior of ferrites in the saturated states. So we chose to compare theoretical

results with a commercial 3D simulation software (Ansys HFSS) in saturated states where

the Polder model is applicable.

II.6.1 Dielectric material

First we consider the case where a standard dielectric material is inserted between inner

and outer conductors of the coaxial line.

For a material with complex permittivity 7.8 − j0.01 and thickness 2.9 mm, theoretical S-

parameters of the coaxial line are calculated using our EM analysis and results are compared

with simulation software Ansys HFSS.
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Figure II.16: S-parameters calculated using EM analysis and Ansys HFSS. Dielectric sample:ǫ =
7.8 − j0.01, thickness = 2.9 mm.

Figure II.16 presents S-parameters calculated from the two theoretical approaches. A very
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good agreement is found between the S-parameters obtained from these two methods. This

result validate our EM analysis in the case of dielectric material.

II.6.2 Magnetic material

In order to validate EM analysis in the case of magnetic material, we study the configu-

ration where a ferrite material is inserted between the inner and outer conductors of the

coaxial line. For comparison we take two different case scenarios: demagnetized state and

saturated state. The standard measurement methods can not trace the permeability ten-

sor components in the magnetized state. So we compared direct problem results with a

commercial simulation software Ansys HFSS when the material is in the saturated state.

II.6.2.1 Demagnetized ferrites

In the demagnetized state Nicholson-Ross-Weir (NRW) method allows us to characterize

the ferrite materials from measured scattering parameters. By using this method we can

calculate the scalar permittivity and permeability of the ferrite material from the measured

reflection and transmission coefficients.

The sample under test is a Yttrium Iron Garnet (YIG) composite material (magnetic vol-

ume fraction 70%) of thickness, l= 2.9 mm. The ferrite sample is inserted in a APC7

coaxial line and S-parameters are measured using a vector network analyzer (VNA). The

measurement are done in the frequency range 130 MHz to 10 GHz.

The permittivity and permeability of the sample is calculated from measured S-parameters.

The permittivity and permeability spectra obtained using NRW approach is shown in Fig-

ure II.17.
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Figure II.17: Real and imaginary parts of scalar permittivity, and permeability spectra measured
using NRW method. Sample: YIG composite material (magnetic volume fraction=70%), thickness
l =2.9 mm.
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These effective values are then used to define the electrical and magnetic properties of the

sample in the direct analysis. Off-diagonal terms of the permeability tensor are defined as

zeros.
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Figure II.18: Measured and simulated S-parameters of demagnetized ferrite material. Sample: YIG
composite material (magnetic volume fraction=70%), thickness l = 2.9 mm.

Theoretical scattering parameters are calculated using the direct EM analysis and com-

pared with the measured S-parameters. The results obtained are presented in Figure II.18.

A very good agreement is found between theoretical and measured S-parameters.

II.6.2.2 Saturated ferrites

In the saturated state, most of the commercial software use Polder tensor model [35] to

describe the tensor permeability of ferrite materials. In order to validate the direct problem

in saturated state, we compare theoretical S-parameters with the 3D simulation software,

Ansys HFSS.

In order to take into account the macroscopic demagnetizing effects due to the shape of the

magnetic sample, the internal field is calculated from the relation,

Hint = Hdc −Nz ∗ 4πMs. (II.45)
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The sample under test is a ferrite with a relative permittivity ǫf= 7.8 − j0.01, saturation

magnetization 4πMs= 580 G, resonance linewidth ∆H = 400 Oe, and thickness l = 2.9

mm.

The ferrite is magnetized to saturation in the longitudinal direction with a static magnetic

field of Hdc = 1600 Oe. In our EM analysis, Polder model is used to calculate the diagonal

and off-diagonal components of permeability tensor. The permeability spectra obtained

using the Polder model is shown in Figure II.19.
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Figure II.19: Real and imaginary parts of diagonal and off-diagonal components of the permeability
tensor (Polder model) in saturated state. Sample properties: ǫf = 7.8 − j0.01, 4πMs= 580 G, ∆H=
400 Oe, l = 2.9 mm. Hdc = 1600 Oe.

In the saturated state, HFSS uses Polder model to determine the permeability tensor com-

ponents (µ and κ). The internal field value calculated from Eq. II.45 is used to define the

uniform magnetic biasing field in HFSS.

S-parameters obtained using direct EM analysis and HFSS simulation software are shown

in Figure II.20.

S-parameters obtained from the two simulations are in good agreement with each other.

A slight difference near the resonance frequency is due to the fact that HFSS considers

all the higher order modes in the full wave analysis where as our EM analysis is based

on quasi-TEM approximation. These simulation results validate the direct problem in the

saturated case.
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Figure II.20: S-parameters calculated using theoretical EM analysis, and Ansys HFSS for saturated
ferrite material. Sample properties: ǫf = 7.8−j0.01, 4πMs = 580 G, ∆H=400 Oe. Sample thickness
l = 2.9 mm. Applied DC field Hdc = 1600 Oe.

Direct problem is validated in the case of dielectric material, demagnetized ferrite and

saturated ferrites. Considering these limit cases we can conclude that direct problem can

be used for different magnetizations states.

II.7 Conclusion

In this chapter, we presented a new method for measuring the damping factor α, a physical

quantity that represents the magnetic losses of polycrystalline ferrites which is the only

dynamic input parameter of the generalized permeability tensor model. Validation of the

direct problem in several limit cases are presented. This direct EM analysis plays an

important part in the inverse problem developed to find the damping factor (α) from the S-

parameters measured in the coaxial measurement cell. In the next chapter we will present

the optimization procedure which will match theoretical S-parameters with measured S-

parameters by minimizing a broadband error function.
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Chapitre 2. Résumé

Le but de ce chapitre est de présenter une méthode de mesure simple permettant de déter-

miner la grandeur physique représentant les pertes magnétiques des ferrites, le facteur

d’amortissement, de manière à remplacer la technique conventionnelle qui consiste à mesurer

la largeur de raie d’absorption à mi-hauteur qui requiert l’usinage d’échantillon sphérique et

qui donne accès à cette dernière grandeur qu’à une certaine valeur de fréquence (9,40 GHz

pour la technique standard). Le facteur d’amortissement associé aux caractéristiques sta-

tiques (aimantation à saturation 4πMs, champ anisotropie Ha) constituent les paramètres

d’entrée d’un modèle de perméabilité développé au laboratoire prédisant les propriétés dy-

namiques des ferrites polycristallins.

Lorsqu’un ferrite est soumise à un champ magnétique statique, ses caractéristiques intrin-

sèques changent et le tenseur de perméabilité µ̂ est ensuite utilisé pour décrire le comporte-

ment dynamique du matériau. La détermination du comportement dynamique des ferrites

a fait l’objet de nombreuses études menant à différentes expressions pour les composants

du tenseur de perméabilité, Schloemann pour les ferrites démagnétisées, ou Rado, Green et

Sandy, et Igarashi et Naito pour les ferrites partiellement magnétisées. Au laboratoire, Gelin

et Queffelec ont développé un modèle pour déterminer les composantes du tenseur de per-

méabilité dans n’importe quel état d’aimantation, compte tenu du phénomène d’hystérésis

et de l’effet Polder-Smit. Nous avons discuté des modèles les plus courants proposés dans

la littérature pour déterminer le tenseur de perméabilité, µ̂ en identifiant leurs principales

caractéristiques et les limites de leur domaine de validité respectives. Nous avons classé

les modèles en quatre catégories : les modèles décrivant l’état saturé, l’état partiellement

aimanté, l’état totalement désaimanté et le modèle développé au laboratoire qui permet de

calculer le tenseur de perméabilité quel que soit l‘état d’aimantation du matériau.

Les techniques de caractérisation des matériaux développées précédemment au laboratoire

utilisent la non-réciprocité de la cellule de mesure pour accéder directement aux éléments

du tenseur de perméabilité et à la permittivité scalaire. Notre objectif est de développer

une méthode pour déterminer le facteur d’amortissement α qui sera ensuite utilisé comme

paramètre d’entrée pour la modélisation afin de décrire le comportement dynamique des

ferrites anisotropes. Étant donné que le seul paramètre à déterminer expérimentalement est

le facteur d’amortissement, le comportement non réciproque de la cellule de mesure n’est
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plus une exigence.

Compte tenu de tous ces facteurs, une ligne coaxiale est choisie comme cellule de mesure

pour la méthode proposée. La cellule de mesure coaxiale est de norme APC7. Le mode

de propagation fondamental dans la section vide de la ligne coaxiale est le mode TEM.

L’échantillon est de forme toroïdal section carrée. L’échantillon de ferrite est inséré entre

les conducteurs intérieur et extérieur de la ligne coaxiale. La ligne coaxiale chargée par

l’échantillon à caractériser est placée entre les pôles d’un électro-aimant et l’échantillon est

aimanté dans la direction axiale. Dans un champ magnétique appliqué, l’échantillon de-

vient anisotrope de par l’alignement des moments magnétiques dans la direction du champ

statique de polarisation.

En général, le problème direct consiste à calculer les paramètres S théoriques de la cellule

de mesure à partir des paramètres constitutifs du matériau (ε, µ, κ). Il est basé sur la

description rigoureuse du comportement EM de la ligne de transmission coaxiale chargée

par le matériau à caractériser en utilisant une approximation quasi-TEM.

Le problème direct se déroule en deux étapes:

• Définition des fonctions analytiques représentant les paramètres constitutifs du matériau

qui dépendent de la fréquence (ε(ω), µ(ω), κ(ω)).

• Analyse EM pour trouver des paramètres S théoriques

Une fois que les fonctions analytiques ε(ω), µ(ω), et κ(ω) sont définies, une analyse EM

complète de la cellule de mesure est effectuée. Cette dernière est constituée de deux discon-

tinuités qui séparent la section vide et la section chargée en ferrite de la ligne coaxiale. Une

procédure de recherche des racines complexes d’une équation déterminentale complexe est

utilisée pour calculer les constantes de propagation théoriques de l’onde EM se propageant

à l’intérieur de la section chargée de la cellule de mesure. Les paramètres S théoriques sont

ensuite déterminés à l’aide de la théorie classique des lignes de transmission.

Afin de valider notre problème direct, nous considérons trois cas limites: matériau diélec-

trique, ferrites désaimantés et ferrites saturés. La cellule de mesure est chargée par un

échantillon et les paramètres S sont mesurés avec un analyseur de réseau vectoriel. Les

paramètres S théoriques sont calculés à partir de l’analyse EM (problème direct). Les ré-

sultats issus du problème direct sont ensuite comparés aux paramètres S mesurés.

À l’état désaimanté, la procédure de dépouillement des données intitulée méthode de

Nicholson-Ross-Weir nous permet de déterminer la permittivité scalaire et la perméabil-

ité effective des ferrites testés. Pour les ferrites aimantés, les méthodes de mesure con-

ventionnelles ne peuvent pas remonter directement aux composantes du tenseur de per-

méabilité dans une large gamme de fréquences. Les logiciels de simulation commerciaux
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utilisent un modèle théorique pour décrire le tenseur de perméabilité dans différents états

d’aimantation. Ces modèles théoriques sont souvent limités à un seul état d’aimantation

selon les hypothèses simplificatrices sur lesquelles ces modèles sont basés. Et il s’agit dans

la majorité des cas de modèles empiriques, non prédictifs car ils font intervenir dans les for-

mulations proposés la valeur de l’aimantation du matériau, grandeur que l’expérimentateur

ou le concepteur de dispositif ne peut connaitre. En effet, c’est le champ statique de polar-

isation que l’expérimentateur contrôle et non l’aimantation qui va dépendre de « l’histoire

magnétique » qu’a suivi le milieu (phénomène d’hystérésis). C’est pour cette raison que ces

modèles empiriques sont qualifiés de non prédictifs.

La plupart des logiciels de simulation commerciaux utilisent le modèle Polder, qui fournit

une description satisfaisante du comportement hyperfréquence des ferrites à l’état saturé.

Nous avons donc choisi de comparer les résultats théoriques avec le logiciel commercial

de simulation EM 3D (Ansys HFSSTM) dans des états saturés pour lesquels le modèle de

Polder est applicable et apportent des résultats satisfaisants.

Le problème direct est validé dans le cas d’un matériau diélectrique, d’un ferrite totale-

ment désaimanté et de ferrites saturés. Dès lors que la comparaison théorie/expérience sera

validée pour ces cas limites, nous pourrons conclure que le problème direct peut être utilisé

pour différents états d’aimantation.

Dans ce chapitre, nous avons présenté une nouvelle méthode de mesure du facteur d’amortissement,

grandeur physique qui représente les pertes magnétiques des ferrites polycristallins et qui

constitue l’unique paramètre d’entrée dynamique des modèles du tenseur de perméabilité.

La validation du problème direct dans plusieurs cas limites est présentée. Cette analyse

EM directe joue un rôle primordial dans le problème inverse développé pour remonter au

facteur d’amortissement (α) à partir des paramètres S mesurés sur la cellule de mesure

coaxiale.
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III.1 Introduction

In this chapter, we present the inverse problem of the proposed coaxial line method and

the experimental results in detail. The inverse problem will optimize the damping factor

α by matching theoretical S-parameters with the measured S-parameters. Results will be

validated by comparing with supplier data sheet.

III.2 Inverse problem

The main objective of the inverse problem is to extract damping factor, α by compar-

ing theoretical S-parameters obtained from direct problem (electromagnetic analysis of the

measurement cell) with the measured S-parameters.

The general scheme of the inverse problem is presented in Figure III.1.

Figure III.1: Inverse problem - Description

Theoretical S-parameters are calculated using the direct EM analysis of the measurement

cell. A numerical optimization procedure is defined to match the theoretical S-parameters

with measured ones. In this optimization procedure, a broadband error function (Err) is

minimized to match the theoretical S-parameters with measured S-parameters.

The optimization variables are the input parameters of the analytical functions chosen

in the direct problem. The aim of the optimization procedure is to match theoretical S-

parameters to the measured S-parameters by iteratively adjusting the input parameters of

the analytical functions representing the properties of the material.

Once the error between the theoretical and measured S-parameters is minimized (Err ≈ 0),

the optimized functions represent the constituent parameters of the sample to be character-

ized. The optimization variable will then represent the values of parameter to be measured.
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III.2.1 Optimization procedure

Generally inverse problems of this type are solved using a frequency-by-frequency applied

optimization procedure. At each frequency value, a system of 6 equations (differences

between the magnitudes and the phases of the S-parameters) is solved for unknown param-

eters. However, appearance of dimensional resonances in the operating band makes some

uncertainties in the phase measurements of the reflection coefficients. Therefore, in order

to ensure the accuracy of the results, these optimization procedures require a relatively

short sample length to avoid the appearance of dimensional resonances in the operating

frequency band.

In order to avoid these problems, we decided to use a broadband optimization proce-

dure instead of frequency by frequency method considering only the magnitudes of the

S-parameters. A set of error values measured over the entire frequency band is used to

define the objective error function. Given the quantity of information acquired over the

set of S-parameters, this comparison gives us an over sized system of equations, where the

number of equations is greater than the number of unknowns. In this system the number

of equations is given by the sampling number taken in practice for the S parameter mea-

surements and the number of unknowns is given by the number of input variables of the

analytical functions defined in the direct problem.

Figure III.2: Broadband optimization procedure

The number of adjustment parameters depends on the analytical functions chosen in the

direct problem. Our inverse problem has only two optimization variables (Hdc and α). All

other input parameters (4πMs, Ha, etc.) are determined through standard static measure-

ments. The optimization procedure determines the values for input parameters Hdc and α

by matching theoretical S-parameters with those measured over a wide frequency band. By

taking into account only the magnitudes of S-parameters, uncertainties due to the dimen-

sional resonances are avoided in the inverse problem. On the contrary, our inverse problem

exploits these resonances to converge S-parameters more rapidly and more precisely.
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Resolution of the system of equation

We solve our system of equations using the curve fitting techniques. The scientific comput-

ing software MATLAB has a library of subroutines dedicated to numerical optimization:-

Optimization toolbox.

We use lsqnonlin (non-linear least square fitting) subroutine from optimization tool box to

solve our system of equations.

The subroutine lsqnonlin is designed to minimize the modulus of an error vector denoted

Err in the least squared direction. This vector Err is obtained by calculating the difference

between the fixed data curve and the variable curve. The variable curve must be a function

of the coefficient vector (X) which contains the parameters to be optimized.

Err(X) = fvar(X) − fdata, (III.1)

where Err, fvar and fdata are vectors of size η (number of frequency points) and X is a

vector of size υ (number of optimization parameters). The subroutine lsqnonlin will solve

the system for υ parameters of the vector X.

η∑

i=1

Erri(X)2 = min
(
Err1(X)2 + Err2(X)2 + Err3(X)2 + ....+ Errη(X)2

)
. (III.2)

Moreover lsqnonlin subroutine gives the possibility to define lower limits Li and higher limit

Ui for the optimization variables of the vector X.

Li < Xi < Ui

In summary, Eq. III.2 represents the objective error function of the system. The values of

Li and Ui are the bound constraints of the system. This lsqnonlin subroutine is based on

Trust region reflective method [45]. For each iteration cycle this subroutine determines an

approximate solution to the objective function with conjugate gradient method.

A major disadvantage of curve fitting routines is the non-uniqueness of the solution. An

overabundant system does not necessarily have a unique solution. To find the correct

solution of our system of equations, we must ensure that the lsqnonlin subroutine can only

work with physical (realistic) solutions.

To do this we must guarantee two conditions:- the determination of an initial point (for

optimization variables) which is not very far from the physical solution, and the definition

of values Li and Ui which limits the variables of optimization within physical reality. It

is possible to achieve these conditions by choosing realistic models of permittivity and

permeability based on physical parameters.
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III.2.2 Choice of the permittivity and permeability models

Generally dielectric materials exhibit low dispersion in the microwave region. In order to

take into account the dispersive nature of permittivity, Cole-Cole model [39] is used to

represent the ferrite permittivity in the direct problem. The high frequency behavior of the

permittivity can be described by the Cole-Cole model as shown in Figure III.3.

Figure III.3: Microwave behavior of permittivity- Cole-Cole model

A general Cole-Cole formulation is given by,

ǫf (ω) = ǫ∞ +
ǫs − ǫ∞

(1 + jωτ)1−ψ
(III.3)

This function depends on four variables: the static permittivity ǫs, ‘infinite frequency’ per-

mittivity ǫ∞, the relaxation time τ and an experimental correction factor ψ (1<ψ<0). We

can limit the values of relaxation time τ to ensure that relaxation is happening beyond the

maximum frequency of the method. Finally, the parameter ψ modifies the width of the

absorption peak. Its value is bounded by definition between 0 and 1. Note that when ψ=0,

the Cole-Cole function becomes a Debye-type relaxation function [39].

Generalized permeability tensor model is used to represent the permeability tensor of the

magnetic materials. This model has been discussed in detail in section II.2. This model

describes the dynamic behavior of the permeability tensor components µ, κ, and µz in a pre-

dictive way by taking into account the hysteresis phenomenon and the dynamic interactions

within the material. We can define the GPT model by the following function,

[µ
′

(ω), µ
′′

(ω), κ
′

(ω), κ
′′

(ω), µ
′

z(ω), µ
′′

z (ω)] = GPT (Hdc, 4πMs, Ha, α, ω). (III.4)

The input parameters of the GPT model are: saturation magnetization 4πMs, anisotropy

field Ha, damping factor α, demagnetizing coefficient in the applied field direction Nz, and

applied DC magnetic field Hdc. All of these are measurable physical parameters.
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Figure III.4: Spectra of real and imaginary parts of the diagonal components of µ̂ tensor obtained
using GPT model: Ferrite properties: 4πMs=810 G, Ha=54 Oe, α=0.0068, Nz=0.35 and Hdc=0 -
2400 Oe

Most of the input parameters of the GPT model can be obtained using the standard static

measurements. Hysteresis measurements are done using the vibrating sample magnetome-

ter (VSM). The saturation magnetization is calculated from the measured hysteresis curve.

The external magnetic field strength Hdc can be obtained by directly measuring the mag-

netic field inside the cell using a Hall effect probe. However we have retained parameter

Hdc as an optimization variable in the inverse problem. This makes it possible, if necessary,

to bridge the gap between reality and GPT model. In this case, Hdc parameter can be

bounded between values close to those measured inside the cell.

With five input parameters, GPT model can simultaneously determine the frequency de-

pendent, complex components of the permeability tensor µ, κ, and µz. This is not the case

with the general mathematical formulations of permeability tensor components.

A typical response for the diagonal components of permeability tensor obtained with GPT

model is shown in Figure III.4.

Thus, the usage of Cole-Cole model for permittivity, and GPT model for permeability in

our optimization procedure ensures the uniqueness of the solution. In one hand we can

choose initial points close to solution, and on the other hand, the optimization procedure

will use realistic µ(ω) and κ(ω) responses to search for the solution. This is made possible

by the physical input parameters of the Cole-Cole model and GPT model (ǫs, ǫ∞, τ , 4πMs,

Ha, α, Nz and Hdc) used in the direct problem.

III.2.3 Optimization algorithm

In Figure III.5, we present the optimization algorithm used to determine the constituent

parameters of the sample material. The objective of this algorithm is to optimize the vector

X which consists of the input parameters of the permeability and permittivity models

(optimization variables).
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The initial parameter Hdc can be set to the value of the magnetic field measured using

the Gauss meter and saturation magnetization 4πMs can be obtained from the hysteresis

cycle measurement using vibrating sample magnetometer (VSM). Demagnetizing factor Nz

is approximated from the sample dimensions (Chapter I, Section 2.1) and anisotropy field

Ha can be approximated from gyromagnetic resonance frequency.

Figure III.5: Optimization algorithm. (4πMs is optional)

The limit values of the elements of the vector X are defined in the vectors Xlb and Xub.

If one of the parameters is not defined in the initial vector X0, the latter takes the mean

value between its upper and lower limits. The value of the input parameter ψ in Cole-Cole

permittivity model can be set to zero to convert it to a simpler Debye-type permittivity

model.

The lsqnonlin subroutine initializes with the input vector X0 which becomes the vector Xi

to be optimized. The vector Xi is used to obtain the spectra of ǫf (ω), µ(ω), and κ(ω) using

GPT model (Eq. III.4) and Cole-Cole model (Eq. III.3).

These spectra are then introduced into the direct problem to determine the theoretical

S-parameters of the measurement cell containing the ferrite sample. Then the error (Err)

between the magnitudes of theoretical (|S|theo) and measured S-parameters (|S|meas) are

calculated.
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The broadband error function is defined as,

Err(X,ω) = |Sjk(X,ω)|theo − |Sjk(ω)|meas,
j = k = 1, 2.

(III.5)

In order to converge the theoretical S-parameters with measured S-parameters, we must

minimize this broadband error function over the entire frequency band used.

The objective function of subroutine lsqnonlin is defined as,

Fobj(X) =
fmax∑

f=fmin




2∑

j=1

2∑

k=1

Err(X,ω)2


 (III.6)

Then we get the broadband optimization problem of the form,

min (Fobj) with limits Xlb < X < Xub.

A maximum tolerance value (eg : tol=10−4) which represents the maximum difference that

can be tolerated between two consecutive approximations of the solution is defined to ensure

the convergence of S-parameters. From each ith iteration, we obtain an approximation of

the solution Xi+1. This approximation Xi+1 becomes the variable Xi to close the algorithm

(Figure. III.5). Once the tolerance level is reached (convergence of theoretical S-parameters

with measured results), the iterative process ends resulting in the optimized vector Xopt.

This vector contains the optimized values of the adjustment variables.

III.3 Measurement setup

The measurement cell is an APC7 standard coaxial line with inner conductor diameter

3.04 mm and outer conductor diameter 7 mm. A square toroidal shaped ferrite sample is

inserted in between the inner and outer conductors of the measurement cell.

The sample is magnetized in the axial direction by placing the measurement cell between

the poles of an electromagnet. This electromagnet controlled by the electric current pro-

vides a uniform magnetic field in between the poles. Experimental setup for coaxial line

characterization of damping factor is shown in Figure III.6.

A current source Kepko Bop 20-20M is used to control the static magnetic field of the elec-

tromagnet. This setup provides a maximum magnetic field of 2200 Oe in between the poles

of the electromagnet. The maximum magnetic field is limited to 2200 Oe by the minimum

space required for placing the coaxial cell between the magnetic poles.

Intensity of the DC magnetic field in the coaxial cell is measured by using a Hall Effect

probe. We use TE2M GN20000E Gauss meter to measure the static biasing magnetic field
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strength. Under the action of static magnetic field, the material is magnetized and becomes

anisotropic in nature.

Figure III.6: Measurement setup

Scattering parameters S11 and S21 are then measured using a vector network analyzer

HP8720 in the frequency band 130 MHz – 20 GHz. Hysteresis loop measurements are done

using a vibrating sample magnetometer (VSM).

III.4 Measurement results

In order to validate the optimization procedure we first consider the case of the dielectric

material. For dielectric materials, inverse problem optimizes only three quantities: ǫs, ǫ∞
and τ , which correspond to the input variables of a Debye-type permittivity model (ψ= 0

in the Cole-Cole model) [39]. Diagonal components of permeability tensor is set to one and

off-diagonal components are set to zero (µ = 1 − j0 and κ = 0 − j0).

The sample under test is a dielectric sample Teflon of length 3 mm. The measurements

are done for a frequency range from 130 MHz to 20 GHz. The inverse problem optimizes

only three input quantities: ǫs, ǫ∞ and τ , which correspond to the adjustment variables of

a Debye type permittivity model. In the inverse problem only the magnitudes of the two

measured S-parameters: |S11|mes and |S21|meas are used.

Measured and optimized S-parameters of the coaxial transmission line partially filled with

teflon sample is shown in Figure III.7. A good agreement is found between the optimized

and measured S-parameters.

Note that in this case, the optimized function in the inverse problem ǫopt represents an
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effective value of permittivity. To determine the permittivity of the sample, we must take

into account correction due to the 50 µm air gap between the sample and the measurement

cell. The air gap correction is done by considering the sample with air gap as a set of series

capacitors as described in the reference [46].
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Figure III.7: Measured and optimized S-parameters of a Teflon sample of length 3 mm

We observe that results are completely consistent with the measurement carried out using

a standard NRW characterization method [18, 19]. From this results it is clear that broad-

band inverse problem precisely determines the permittivity of the dielectric material using

only the magnitudes of the S-parameters (avoiding the inaccuracies linked to the phase

measurements of S-parameters).

Figure III.8: Real and imaginary parts of effective permittivity ǫ of the dielectric sample - Teflon
(− − − : NRW method, × : Optimization).

To ensure correct operation of the inverse problem, we must limit the occurrence of air

gaps between the sample and the cell. These results validate the inverse problem of the

proposed measurement method.

In the case of magnetic materials, permittivity and permeability spectra are unknown. The

permittivity of the material can be obtained from coaxial line NRW method [18, 19] in
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the demagnetized state. But the direct problem needs to calculate the permittivity of the

material for any given frequency value. So we chose a theoretical permittivity model, Debye

model [39] that fits the experimental permittivity of the demagnetized sample to represent

permittivity spectra in the direct problem. The input parameters of the Debye permittivity

model are ǫs, ǫ∞ and τ .

The inverse problem uses GPT model [36] to describe the permeability tensor components.

The input parameters for GPT model are saturation magnetization 4πMs, anisotropy field

Ha, demagnetizing coefficient Nz, applied magnetic field Hdc and the damping factor α.

All the input parameters except damping factor α can be calculated from other static mea-

surements. Saturation magnetization 4πMs is obtained from the hysteresis measurement

and anisotropy field Ha can be approximated from the gyromagnetic resonance frequency

measurements in the demagnetized state. The demagnetizing factor Nz can be approxi-

mated from the sample dimensions (Chapter I, Section 2.1).

Given the complexity of the system and the mathematical functions used (Debye and GPT

models), the inverse problem in the case of magnetic material requires significant compu-

tation time and presents problems of non-uniqueness of the solution. To overcome these

difficulties, we have established a characterization protocol for the measurement of magnetic

samples. We define two inverse problems - first one is to measure the static permittivity

ǫf of the material and the second one is to determine the dynamic quantity, the damping

factor α.

To find the input parameters of the Debye model, we can either fit the theoretical permit-

tivity values with experimental values measured using NRW method or we can define an

inverse problem in the high frequency region. To find the permittivity spectra of the ferrite

material, we chose to define an inverse problem of purely dielectric type in the frequency

band where only the dielectric properties of the magnetic material will have an influence on

the characteristics of the measurement cell. To achieve this, we consider the high frequency

region well above the gyromagnetic resonance of the demagnetized ferrite material where

the sample shows dielectric behavior. In this frequency band, we can assume that there is

no magnetic effects present (µ(ω)= 1 - j 0 and κ(ω)= 0 - j 0). Permittivity spectrum of the

magnetic sample ǫf (ω) is measured from optimized values of ǫs, ǫ∞ and τ . These values

are then compared with the measured permittivity using NRW method in order to validate

the inverse problem and the input parameters of the Debye model.

Once the permittivity values are obtained, a second inverse problem is realized in order

to determine the dynamic damping coefficient α. Since the permittivity of the magnetic

materials is independent of the static magnetic field, ǫf (ω) measured in the first inverse

problem remains unchanged for all states of magnetization. The variables to be optimized

are α and Hdc which correspond to the input variables of the GPT model.
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III.4.1 Composite ferrites

Sample under test is a composite material of Yttrium Iron Garnet (YIG 39- TEMEX

ceramics) powder and epoxy with relative permittivity 7.70.

Properties of the ferrite are given by,

4πMs = 800 G

Magnetic volume fraction = 70 %

thickness = 2.93 mm

ǫ′ = 7.7

tanδ < 1.2 × 10−4.

We use this data to initialize the variables to be optimized in the inverse problem. Anisotropy

field Ha is approximated from the demagnetized ferromagnetic resonance measurement to

be around 54 Oe. We initialize the demagnetizing coefficient Nz of the square toroidal

sample to be 0.42 which is the approximate value calculated using the method described

in [9] (Chapter I, Section 2.1). Magnetic volume fraction is taken into account in the GPT

model for computing the permeability tensor components.

The optimization variables are damping factor α and applied magnetic field Hdc. Table III.1

summarizes the initial values and the limits imposed on each of the variables to be opti-

mized in the inverse problem.

Parameter Initial value Lower limit Upper limit

Hdc Hmeas Hmeas-200 Oe Hmeas+ 200 Oe
α 0.06 0 1

Table III.1: Composite material of YIG 39- Initial values and boundaries of the optimization
variables

An APC7 standard coaxial line of length 30 mm is loaded with the toroidal ferrite sample

and scattering parameters are measured for static magnetic field values ranging from 0 Oe

to 1700 Oe. The measurements are carried out in a frequency range from 130 MHz - 20

GHz.

Maximum offset losses show an expected shift to high frequency values when the static

magnetic field is increased. The optimization procedure allow us to match the theoretical

S-parameters with the measured results by adjusting two parameters - the damping factor

α and the applied magnetic field Hdc.

In the first phase of inverse problem, we optimize the complex permittivity of the ferrite in

the high frequency region where sample shows pure dielectric behavior (µ(ω) = 1 - j 0 and

κ(ω) = 0 - j 0).
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Figure III.9 presents the measured and optimized S-parameters in frequency region where

the YIG sample shows pure dielectric behavior.

Figure III.9: Measured and optimized S-parameters of the demagnetized YIG 39 composite material
in the high frequency region.

The results obtained from the inverse problem are then compared with the permittivity

values obtained using NRW method [18, 19] in the demagnetized state. The optimized

results show good agreement with the measured value using the standard NRW method

(Figure III.10b). Real and imaginary parts of optimized permittivity are shown in Fig-

ure III.10b. These results validate the inverse problem and initial parameters.

(a) Permeability (NRW method). (b) Permittivity.

Figure III.10: Real and imaginary parts of scalar permittivity, and permeability spectra in the
demagnetized state. Sample: YIG 39 composite material.

Since the permittivity of the magnetic materials is independent of the static magnetic field,

ǫf (ω) measured in the first inverse problem is used to represent the permittivity of YIG

composite ferrite material in all the magnetization states. In the second step, we solve the

inverse problem to measure the damping factor α for different values of the static magnetic

fields Hdc.

For each applied field values, the inverse problem will give a vector Xopt which contains the

optimized values of the variables α and Hdc.
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Figure III.11: Optimized permeability spectrum and S-parameters of Y39 composite material for
different DC magnetic field (Hdc) values. Sample properties: 4πMs= 800 G, Ha= 54 Oe, Nz= 0.42.
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As with any optimization procedure, it is necessary to define criteria for the validation

of the optimized solution. Therefore, we have established criteria to validate or reject an

optimized solution - mean square error (MSE). MSE represents the average of the squares

of errors or deviations between the optimized values and the measured data. The mean

square error (MSE) is estimated for each optimized S parameter, and this indicates the

extent to which the optimized curve is dispersed from the measured curve. MSE value

less than 2 × 10−3 indicates that the optimized curve passes through most points of the

measured curve.

MSE =
1
n

n∑

i=1

(|S|opt − |S|meas)2 , (III.7)

where n is the number of frequency points.

Figure III.11 presents the measured and optimized S-parameters resulting from the resolu-

tion of the inverse problem for different magnetization fields Hdc well above saturation.

The optimized values for damping coefficient for different applied field values are plotted

in Figure III.12. A small variation observed in the damping factor values is due to the

simplifying assumptions used in the direct problem. The damping coefficient seems to be

reaching a constant value at high applied values when the material is saturated. To make

sure that sample is saturated, only the optimization results for applied field values above

1000 Oe are presented.

Figure III.12: YIG 39 sample- Optimized damping coefficient

The measured values of damping coefficient are quite high compared to those traditionally

observed for bulk ferrites. These high values are due to the sample’s composite nature in

which the non-homogeneities, random orientation of grains or the demagnetization effects

lead to an expansion of the power absorption spectrum.
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III.4.2 Bulk ferrites

Using the same characterization protocol as described above, we also measured the EM

properties of a YIG-type ferrite (Yttrium Iron Garnet - Y39, supplied by EXXELIA

TEMEX).

An APC7 coaxial line of length 7 mm is taken as the measurement cell. S-parameters of

the measurement cell loaded with ferrite samples are recorded for static magnetic values

ranging from 0 Oe to 2000 Oe. Measurements are done in a frequency range from 130 MHz

to 20 GHz.

The sample under test is a bulk ferrite material Yttrium Iron Garnet-Y39 (EXXELIA

TEMEX) of thickness 4 mm.

Properties of the ferrite are given by,

4πMs = 810 G

thickness = 4 mm

ǫ′ = 14.3

tanδ < 1.2 × 10−4.

We use this data to initialize the variables to be optimized in the inverse problem. Finally,

we initialize the demagnetizing coefficient Nz of the square toroidal sample to be 0.35 which

is the approximate value calculated using the method described in [9] (Chapter I, Section

2.1).

Figure III.13: Imaginary part of permeability µ′′ of YIG 39 sample

Initial permeability of multi domain ferrite samples has two main contributions, one from

the relaxation behavior of domain walls and the other due to the magnetization rotation.

This domain wall relaxation contribute a significant part to the initial permeability of the

bulk ferrite samples at low frequencies.
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Figure III.13 shows the imaginary parts of permeability of YIG 39 ferrite material measured

in the demagnetized state using NRW method.

From the Figure III.13, it is clear that initial permeability of our sample is mainly due

to the domain wall contribution and it is difficult to differentiate the contributions from

rotational resonance.

Figure III.14: YIG 39 sample- Domain wall relaxation and gyrotropic response.

The loss peak observed at 11 MHz, corresponding to a wall resonance is no longer exists

in the YIG 39 composite sample with a magnetic volume fraction of 70%. The second

resonance around 160 MHz corresponds to the gyromagnetic resonance which is masked by

the wall relaxation.

GPT model which we used in the direct problem, does not take into account the domain wall

motions in the calculation of permeability tensor components. The initial permeability can

be described as a sum of contributions from domain wall motions and gyrotropic response

(see Figure III.14).

Mathematical distribution functions like Log-normal distribution or Fisher distribution can

be used to describe the domain wall contributions in the imaginary part of permeability.

The contribution of magnetization rotation in the initial permeability can be described by

the GPT model.

In GPT model, dynamic magnetization vector −→mi is calculated as a function of microwave

field
−→
h i, the applied magnetic field (Hdc, ϑ) and the demagnetizing coefficients of the grain

(ng) and the domain (nd).
−→mi =

(
Hdc, ϑ,

−→
h i, ng, nd

)
. (III.8)
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In order to calculate the permeability tensor µ̂ of a bulk ferrite sample, a statistical summa-

tion of the local dynamic magnetizations is performed. This summation takes into account

the possible directions of the vector −→mi described by the angles ϑ and ϕ and the possible

grain and domain shapes (Eq. III.9).

〈−→mi

(−→
h ,Hdc

)〉
=
∫

ϕ

∫

ϑ

∫

ng

∫

nd

P1 · P2 · P3
−→mi dnddngdϑdϕ, (III.9)

P1 = P1 (ϕ, ϑ) , P2 = P2 (ng) , P3 = P3 (nd) .

The functions P1, P2 and P3 are the distribution functions chosen as a function of the

easy axes orientation and the grain and domain shapes. GPT model uses two empirical

probability distributions to describe the grain and domain shapes in the polycrystalline

ferrite materials. These distributions can be represented by linear or Gaussian distribution

functions.

For the case of bulk ferrite samples where initial permeability is mainly due to domain wall

motions, empirical distribution functions used to describe the grain and domain shapes

show major influence in the description of permeability tensor components. The imaginary

part of permeability shows a wider response and the gyromagnetic resonance is shifted to

a comparatively higher frequency value.

For bulk ferrite materials in which domain wall contributions are prominent, GPT model

have a major limitation in describing the permeability tensor components in the demagne-

tized state. Contributions of empirical distribution functions overshadows the contributions

from the damping factor in the low applied field regions. This limitation of GPT model

makes it difficult to use the direct problem proposed in Chapter II, for multi-domain ferrite

material in low magnetic field regions.

Domain wall contribution will disappear when the applied field is increased. Once the ma-

terial is saturated, the proposed coaxial line method can be used for the damping factor

measurements.

In the first phase of inverse problem (pure dielectric behavior of the sample, µ(ω) = 1 - j 0

and κ(ω) = 0 - j 0), we optimize the complex permittivity of the ferrite in the demagnetized

state. The optimized permittivity values are then compared with the measured values in

order to validate the inverse problem.

The optimization procedure matches theoretical S-parameters with measured parameters

in the high frequency region where only the dielectric properties of the material will have

an influence on the characteristics of the measurement cell.
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Figure III.15: Measured and optimized S-parameters of the demagnetized YIG 39 (EXXELIA
TEMEX) ferrite sample of length 4 mm in the high frequency region.

Measured and optimized S-parameters of the demagnetized YIG 39 ferrite in the high fre-

quency region are given in Figure III.15.

It is to be noted that the optimization procedure gives the effective value of the permit-

tivity in the demagnetized state. There is an air gap of 20 µm between the sample and

conductors of the measurement cell. In order to find the actual permittivity we have to

take into account the air gap between the sample the inner and outer conductors of the

measurement cell. The air gap correction is done by considering the sample with air gap

as a set of series capacitors as described in the reference [46].

Figure III.16: Real and imaginary part of measured permittivity spectra, ǫf of the ferrite material
of length 4 mm (considering the air gap correction using a layered capacitor model).

Figure III.16 presents the optimized broadband permittivity spectrum of the YIG 39 ferrite

material in the high frequency region considering air gap correction [46]. The optimized

permittivity of the material coincides with the value provided by the supplier EXXELIA

TEMEX ceramics (Figure III.16) and the permittivity value measured using NRW method.
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These results validate the inverse problem and optimized permittivity spectrum.

As the second step, we solve the inverse problem to measure the damping factor α for

different values of the static magnetic fields Hdc well above saturation. The optimization

variables are damping factor α and applied magnetic field Hdc. The anisotropy field Ha can

be approximated from the gyromagnetic resonance in the composite sample to be around

54 Oe.

Table III.2 summarizes the initial values and the limits imposed on each of the variables to

be optimized in the inverse problem.

Parameter Initial value Lower limit Upper limit

Hdc Hmeas Hmeas-200 Oe Hmeas+ 200 Oe
α 0.006 0 0.1

Table III.2: YIG 39- Initial values and limits of the optimization variables

Figure III.18 presents the measured and optimized S-parameters different magnetization

fields Hdc.

Figure III.17: YIG 39 sample- Optimized damping coefficient

For each applied field value, the inverse problem will give a vector Xopt which contains the

optimized values of the variables α and Hdc.

The optimized values of damping factor α for different applied field values are plotted in

Figure III.17. When the material is saturated, the damping factor α shows a constant

behavior with value close to 0.0068.
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Figure III.18: Optimized permeability spectrum and S-parameters of YIG 39 ferrite material for
different DC magnetic field (Hdc) values. Sample properties: 4πMs= 810 G, Ha= 54 Oe, Nz= 0.35.
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III.4.3 Validation of results

Saturated state

In the saturated state damping factor α is directly related to resonance linewidth ∆H by

Polder formulations [35].

α =
γ∆H

2ω
, (III.10)

where γ is the gyromagnetic ratio 2.8 MHz/Oe and ω is the angular frequency. This relation

is only valid in the saturated state.

In order to validate the inverse problem results, resonance linewidth ∆H is calculated from

the optimized damping factor value of a commercially available ferrite sample (Yttrium

Iron Garnet-Y39 from TEMEX).

Figure III.19: Measured resonance linewidth ∆H of Y39 ferrite material . ′×′ - value provided by
EXXELIA TEMEX

The result are then compared with the ∆H value provided by the supplier data sheet.

Figure III.19 shows the resonance linewidth ∆H calculated for the Y39 sample of length

4 mm in the saturated state. Mark ′×′ represents the value provided by the supplier data

sheet. TEMEX data sheet gives the resonance linewidth ∆H around 45 Oe (+/− 20%) at

9.3 GHz. From the Figure III.19, it is clear that the resonance linewidth calculated using

the proposed method shows very good agreement with supplier data.

EXXELIA TEMEX also provided us with the experimental power absorption data measured

in the resonance cavity using a spherical sample. The resonance linewidth is calculated from

this experimental data and found to be 44 Oe.
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Power absorption has linear relationship with the imaginary part of permeability µ′′.

P ∝ µ′′ (III.11)

In a single computation procedure GPT model is able to predict the permeability tensor

components for different applied values from a few input parameters. By using the dy-

namic damping coefficient α calculated using inverse problem, along with other static input

parameters (4πMs, Ha, etc.) GPT model is able to describe the permeability tensor com-

ponents in a broad frequency band for different applied field values.

Input parameters to the GPT model are: saturation magnetization 4πMs = 810 G, anisotropy

field Ha= 54 Oe, damping factor α=0.0068, and demagnetizing coefficient Nz=0.35. From

this permeability spectra, we can deduce the dynamic losses as a function of applied mag-

netic fields for every frequency value.

The absorbed power calculated for different applied field values at the frequency 9.3 GHz

are then compared with the measured data provided by EXXELIA TEMEX. Figure III.20

shows the measured power absorption in the resonant cavity and the power absorption cal-

culated from the imaginary part of permeability obtained using GPT model.

Figure III.20: YIG 39 sample- Measured and calculated power absorption

From the Figure III.20, it is clear that with the measured damping factor α, GPT model is

able to accurately describe the dynamic losses in the spin resonance region. These results

validate the inverse problem in the saturated states. This method show some limitations for

multi-domain ferrite materials in low magnetic field regions where the domain wall relax-

ation is prominent. This is due to the limitation of the GPT model to describe the domain

wall contributions in the demagnetized permeability spectrum.
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From the above results it is clear that proposed method is well suited for damping factor

α measurement in the magnetized state. This broadband characterization method can be

used from DC to millimeter wave frequencies since the dominant mode propagated in the

empty coaxial line is TEM mode which has no cut-off frequency. Standard resonant cavity

methods are limited to a single frequency corresponds to the resonant frequency of the mea-

surement cavity, and these methods require the sample to be spherical in shape and sample

length to be small compared to one quarter of the wavelength of the microwave radiation

in the sample. This coaxial line method eliminates the shape and size constraints related

to the resonant cavity and the samples imposed by the standard resonant cavity methods.

The damping factor α is a more realistic representation of dynamic losses of ferrites than

the parameters currently used: ∆H and ∆Heff .

III.5 Conclusion

Inverse problem of the proposed coaxial line damping factor measurement method is pre-

sented and the method is validated by comparing the results with the supplier’s data sheet.

This coaxial line method eliminates the size and shape constraints related to the cavity

and the sample imposed by standard measurement methods. More over this coaxial line

method is a broadband method and easy to implement. Knowledge of a unique parameter

representing dynamic losses would assist engineers in optimizing design and adjustment

procedures for ferrite-based microwave devices. This unique dynamic property α combined

with the static characteristics (saturation magnetization, anisotropy field, etc.) would be

the input parameters of theoretical tool describing the dynamic properties of the ferrite

material.

In the next chapter, we will present a theoretical EM tool incorporating a magneto-static

analysis, a general permeability tensor model, and a commercial EM simulation software

Ansys HFSS, for accurate description of dynamic behavior of ferrite based devices. This

theoretical modeling approach will combine experimental techniques to find the physical

parameters of the ferrites (saturation magnetization, damping factor, etc.), and a theoret-

ical permeability model which will use these physical parameters to describe the dynamic

behavior of ferrites at any magnetization state.
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Chapitre 3. Résumé

Dans ce chapitre, nous présentons le problème inverse de la méthode proposée en ligne

coaxiale et les résultats expérimentaux obtenus. L’objectif général du problème inverse

est d’extraire par une procédure d’optimisation le facteur d’amortissement α du matériau

testé en comparant les paramètres S théoriques obtenus à partir d’un problème direct,

avec les paramètres S mesurés. D’un côté, les paramètres S théoriques sont calculés

en utilisant l’analyse EM directe de la cellule de mesure. De l’autre côté, la procédure

d’optimisation numérique est définie pour faire correspondre les paramètres S théoriques

avec les paramètres S mesurés. Cette procédure d’optimisation est basée sur la minimisa-

tion d’une fonction erreur large bande (Err).

Les variables d’optimisation sont les paramètres d’entrée des fonctions analytiques choisies

dans le problème direct. L’objectif de la procédure d’optimisation est de faire correspondre

les paramètres S théoriques aux paramètres S mesurés en ajustant de manière itérative

les paramètres d’entrée des fonctions analytiques représentant les propriétés du matériau:

permittivité et perméabilité. Une fois que l’erreur entre les paramètres S théoriques et

mesurés est minimisée (Err≈0), les fonctions optimisées représentent les paramètres EM de

l’échantillon à caractériser. Les variables d’optimisations correspondent alors aux valeurs

des paramètres recherchés.

Le nombre de paramètres d’ajustement dépend des fonctions analytiques choisies dans le

problème direct. Notre problème inverse n’utilise que deux variables d’optimisation : le

champ statique appliqué Hdc et le facteur d’amortissement α. Tous les autres paramètres

d’entrée (4πMs, Ha, etc.) sont déterminés au préalable par des mesures statiques standard.

La procédure d’optimisation ajuste les valeurs des paramètres Hdc et α en faisant corre-

spondre les modules des paramètres S théoriques avec ceux mesurés. Cette comparaison

théorie/mesure est réalisée, non pas fréquence par fréquence, mais sur l’ensemble des valeurs

de la bande de fréquence mesurée. En prenant en compte uniquement les amplitudes des

paramètres S, les incertitudes sur les phases liées aux résonances de dimension sont évitées.

Au contraire, notre problème inverse exploite ces résonances lorsqu’elles existent pour faire

converger les paramètres S plus rapidement et plus précisément.
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Nous résolvons notre système d’équations en utilisant les techniques de type curve fitting.

Pour cela, nous utilisons le sous-programme lsqnonlin de la boîte à outils d’optimisation

MATLAB®. Pour s’assurer de trouver la solution correcte de notre système d’équations,

nous devons vérifier que le sous-programme lsqnonlin fonctionne avec des solutions physiques

(réalistes). Pour ce faire, nous devons garantir deux conditions: premièrement la détermi-

nation d’un point initial (pour les variables d’optimisation) qui n’est pas trop éloigné de la

solution physique et deuxièmement la définition de valeurs limites physiques pour les vari-

ables d’optimisation. Il est possible de respecter ces conditions en choisissant des modèles

réalistes de permittivité et de perméabilité basés sur des paramètres physiques.

Afin de tenir compte de sa nature dispersive, le modèle Cole-Cole est utilisé pour représen-

ter la permittivité du ferrite dans le problème direct. Le modèle «Generalized Permeability

Tensor (GPT)» est lui utilisé pour représenter le tenseur de perméabilité des matériaux

magnétiques. Ce modèle décrit le comportement dynamique des composants du tenseur

de perméabilité de manière prédictive en tenant compte du phénomène d’hystérésis et des

interactions dynamiques dans le matériau.

La plupart des paramètres d’entrée du modèle GPT peuvent être obtenus par des mesures

statiques standards. Les mesures d’hystérésis sont effectuées à l’aide d’un VSM (Vibra-

tion Sample Magnetometer). L’aimantation à saturation est déduite du cycle d’hystérésis

mesuré. L’intensité du champ magnétique externeHdc est mesurée e directement à l’intérieur

de la cellule à l’aide d’une sonde à effet Hall. Cependant, nous avons choisi de conserver

le paramètre Hdc comme variable d’optimisation dans le problème inverse. Cela permet, si

nécessaire, de corriger les écarts entre la réalité et le modèle GPT. Dans ce cas, le paramètre

Hdc sera limité entre des valeurs proches de celles mesurées à l’intérieur de la cellule.

L’utilisation de modèles physiques comme celui de Cole-Cole pour la permittivité et celui

de GPT pour la perméabilité dans notre procédure d’optimisation permet de garantir les

réalités physiques des solutions trouvées.

L’avantage du modèle GPT est de déterminer par une procédure de calcul unique, les com-

posantes du tenseur de perméabilité. En utilisant le coefficient d’amortissement dynamique

issu du problème inverse, et les paramètres statiques (4πMs, Ha, etc.), le modèle GPT

est capable de décrire les composants du tenseur de perméabilité dans une large bande de

fréquences et pour différentes valeurs de champ appliqués.

La cellule de mesure est une ligne coaxiale standard APC7. Un échantillon de ferrite de

forme toroïdale est inséré entre les conducteurs interne et externe de la cellule de mesure.

L’échantillon est aimanté dans la direction axiale en plaçant la cellule de mesure entre les

pôles d’un électro-aimant. Les paramètres S11 et S12 sont ensuite mesurés à l’aide d’un

analyseur de réseau vectoriel HP8720 dans la bande de fréquences de 130 MHz à 20 GHz.
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III.5 Conclusion

Dans le cas saturé, le facteur d’amortissement peut être directement relié à la largeur à

mi-hauteur des pertes selon les formulations de Polder. La largeur à mi-hauteur mesurée

selon la méthode proposée montre un très bon accord avec les données des fournisseurs. La

méthode de ligne coaxiale proposée est bien adaptée à la mesure du facteur d’amortissement

à l’état aimanté. Cette méthode élimine les contraintes liées aux cavités résonantes et aux

dimensions d’échantillon imposées par les méthodes de mesure standard. La connaissance

d’un paramètre unique « α » représentant des pertes dynamiques devrait aider les concep-

teurs à optimiser les procédures de conception et de réglage des dispositifs micro-ondes à

base de ferrite.

Cette méthode montre cependant certaines limites pour les matériaux multi-domaine dans

les régions de champs magnétiques faibles où les relaxations de parois sont importantes. En

effet, le modèle GPT, utilisé dans le problème direct, ne prend pas en compte l’aimantation

par mouvements de parois dans le calcul des composants du tenseur de perméabilité. Cela

limite l’utilisation de la méthode proposée pour le cas des ferrites multi-domaines dans la

région du champ magnétique faible.
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EM Modeling Of Anisotropic Ferrites -
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Chapter IV EM Modeling Of Anisotropic Ferrites

IV.1 Introduction

In this chapter we present a theoretical electromagnetic (EM) tool for accurately describing

the dynamic behavior of ferrite based devices by taking into account the internal polarizing

fields of anisotropic ferrite materials. This theoretical tool will combine a magneto-static

analysis and the general permeability tensor model with a commercial simulation software.

Most of the input parameters of this theoretical tool are the static properties of the fer-

rite material except the damping factor. In first part of this thesis, we have developed a

coaxial line technique for the determination of damping factor. All other input parameters

of the EM tool can be determined by standard characterization methods. By considering

the inhomogeneity of the internal polarizing fields, proposed theoretical tool will be able to

predict the dynamic behavior of ferrite devices more accurately, at all magnetization states.

First, we discuss the non-homogeneity of the internal magnetic fields and its effect on the

dynamic response of the anisotropic ferrite materials. Secondly we present the theoreti-

cal EM tool which combines a magneto-static analysis, a general model of permeability

and commercial simulation software Ansys HFSS. Finally, proposed tool is validated by

modeling and realizing a microstrip Y-junction circulator and comparing the results with

measurements and Ansys HFSS-Maxwell 3D simulations.

IV.2 Anisotropic ferrites - Non-homogeneous internal fields

Dynamic response of an anisotropic ferrite material is dependent on the shape of the sample.

The permeability of a sample ring is not the same as that of a wafer. In addition, for

non-ellipsoidal magnetic material which is the case most commonly encountered in ferrite

devices, the internal static biasing field is not uniform.

In a previous study in Lab-STICC, it is seen that in most common microwave applications,

unsaturated regions in ferrimagnetic materials exist even when strong fields are applied [29].

This is due to the inhomogeneous nature of the internal magnetic fields within the non-

ellipsoidal samples.

IV.2.1 Demagnetizing field effects

When the dielectric losses in ferrite materials are very small and constant, ferromagnetic

losses can be represented by the power absorption in the system. A 30 mm APC7 standard

coaxial line is taken as the measurement cell. The coaxial line is partially filled with toroidal

shaped ferrite material and inserted between the poles of an electromagnet.

124



IV.2 Anisotropic ferrites - Non-homogeneous internal fields

The S-parameters of the measurement cell loaded with toroidal ferrite samples are recorded

using a vector network analyzer (VNA) for static magnetic values ranging from 0 Oe to

1700 Oe. The measurements are done in a frequency range from 130 MHz to 10 GHz.

The measurements are done for the composite Yttrium Iron Garnet ferrite sample- Y39

(magnetic volume fraction 70%) of thickness 2.93 mm.

The power absorption can be obtained from the S-parameters using the relation,

P = 1 − |S11|2 − |S21|2. (IV.1)

Figure IV.1 shows the power absorption spectra of the coaxial line loaded with 2.93 mm

thick YIG 39 composite material for different applied DC field values.

Maximum offset losses show an expected shift to high frequency values when the static

magnetic field is increased. For each field value, optimization procedure proposed in Chapter

III.2 allows us to match the theoretical curves with experimental data by minimizing a

broadband error function.
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Figure IV.1: Evolution of the measured (-) and simulated (—) power absorption spectra of a coaxial
line loaded with a YIG ferrite material (Y39 composite) as function of the applied DC magnetic
field.

The frequency of maximum power consumption follows a linear law as a function of the

internal field in the material,

Fr ∝ Hin. (IV.2)
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Chapter IV EM Modeling Of Anisotropic Ferrites

The internal static field seen by the magnetic moments in the sample is decreased by the

demagnetizing field which is a function of the demagnetizing coefficient N ,

Hin = HDC +Ha −N.Mz, (IV.3)

where HDC is the applied static magnetic field, Ha is the magneto-crystalline anisotropy

field and Mz the magnetization of the material in the z-direction.

Indeed in the proposed coaxial line method we assume to know the exact value of the inter-

nal magnetic field. To get accurate results with the EM analysis, we have to calculate the

internal field inside the material. One challenge lies in the evaluation of the demagnetizing

fields inside the sample. In our samples the demagnetizing coefficient in the longitudinal

direction, depends on the sample thickness. Thinner the sample, stronger are the demag-

netizing fields.

In the composite YIG 39 ferrite, demagnetizing fields are local and each grains can be as-

sumed to be magnetized uniformly. To estimate the macroscopic demagnetization effects

due to the shape of the sample and not to its composition, we measured power absorption

spectra of bulk ferrite samples with identical composition (Yttrium Iron Garnet) but differ-

ent thicknesses 2 mm, 3 mm, 4 mm, 5 mm, and 6 mm. Since the samples are finite in size,

they have demagnetizing fields associated with their shape. The internal static magnetic

field seen by the magnetic moments in the sample is reduced by the demagnetizing field

effects.

Figure IV.2: Evolution of the maximum power absorbed by bulk ferrite materials (YIG 39- different
thickness) with the applied magnetic field.

A 7 mm long APC7 coaxial line is taken as the measurement cell. The measurement cell

is partially filled with ferrite sample and placed between the poles of an electromagnet.
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IV.2 Anisotropic ferrites - Non-homogeneous internal fields

Choice of a smaller measurement cell helps to reduce the space between the magnet poles

and thereby allows us to apply stronger DC fields. The S-parameters of the measurement

cell loaded with ferrite samples are recorded for static magnetic values ranging from 0 Oe

to 2100 Oe. The measurements are done for bulk Yttrium Iron Garnet-Y39 (EXXELIA

TEMEX) samples of thickness 2, 3, 4, 5, 6 mm. The samples are with permittivity value

14.3 and saturation magnetization equal to 810 G. For each sample, measurements are re-

peated in a frequency range from 130 MHz to 20 GHz.

The maximum offset values for power absorption are moved to higher frequencies when

applied field increases. We know that the resonant frequency has a direct proportionality

with the internal field in the material. When the material is saturated, the relationship

between the resonant frequencies and applied field follows the equation of a straight line

with positive slope close to the value of the gyromagnetic ratio, 2.8 MHz/Oe.

From Figure IV.2, it is clear that, for samples with different thickness, variation of fre-

quency corresponds to maximum offset losses with applied field, shows parallel behavior

with similar slope. These lines show same slope, but different Y intercept which can be

translated to different demagnetizing factor Nz.

Thinner the sample, the demagnetizing coefficient becomes higher, leading to a lower Y

intercept with lower origin. From the calculated Y intercept we can deduce a relation be-

tween the demagnetization coefficients of samples with identical composition and different

thickness, assuming all the samples have same anisotropy field and saturation magnetiza-

tion.

Theoretical calculation of demagnetization coefficient is not easy for non-ellipsoidal sam-

ples. Exact calculation of N factor is only possible in the case of ellipsoidal forms and

uniform magnetization [6, 7]. Several studies have proposed formulations to calculate the

demagnetization coefficient of hollow cylinder (thick ring) [8, 9]. These formulations give

an effective value for the demagnetizing coefficient N . They are based on different approx-

imations, and not often lead to similar results.

Thickness 2 mm 3 mm 4 mm 5 mm
N 0.562 0.414 0.346 0.296

Table IV.1: Demagnetizing factors calculated for the samples with different thickness

As an example, Table IV.1 shows the values of demagnetizing factors calculated with the

method proposed in [9] for our sample of APC7 standard (outer diameter, De = 7 mm, in-

ner diameter Di = 3.04mm). These results are consistent with the observed linear variation

of maximum offset losses with applied fields as shown in Figure IV.2. Ratio of the theo-

retical demagnetization coefficients of samples with different thickness gives a value very

close to the ratio of the demagnetizing fields calculated from the experimental Y-intercepts.
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Chapter IV EM Modeling Of Anisotropic Ferrites

For example consider N2 and N3 as the theoretical demagnetization coefficients calculated

for samples with thickness 2 mm and 3 mm respectively, ratio N2/N3 gives a value 1.365

which is in good agreement with ratio of the demagnetization fields calculated from the

Y-intercept 1.37. But an in-depth study is necessary to describe the demagnetizing field

effects more accurately and to determine the internal magnetic fields in the ferrite material.

IV.2.2 Effect of non-uniform internal fields in the power absorption spectrum

Power absorption spectra of toroidal shaped bulk ferrite materials show the presence of

secondary resonance peaks as shown in Figure IV.3. These secondary peaks results in a

broadening of the power absorption near the resonance. Standard measurement methods

use spherical shaped samples to avoid these demagnetizing effects because spheres are the

only shape providing uniform magnetization.

Figure IV.3: Power absorption spectra of YIG 39 (EXXELIA TEMEX) samples of different thick-
ness, 4πMs = 810 G, ǫ =14.3, α = 0.0068, HDC = 2000 Oe.

These peaks follow an expected behavior - when the static field increases resonant peaks

shift towards higher frequencies. After saturation, each resonance peak shows a linear vari-

ation in frequency with the increase in static field.

Initial EM analysis of the measurement cell with quasi-TEM approximation does not pre-

dict all these secondary peaks in the absorbed power spectrum. Classical frequency domain

simulation using uniform biasing in HFSS produces similar results as the quasi-TEM anal-

ysis, and it cannot account for the broadness of the power absorption near the resonant

frequency.

Indeed these simulations consider an approximate value for the demagnetizing coefficient,

and uniform magnetization inside the sample, but in reality demagnetization fields vary
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IV.2 Anisotropic ferrites - Non-homogeneous internal fields

in space, and in direction inside the sample. This leads to inhomogeneous internal fields

inside the ferrite material. In many cases, a numerical magneto-static simulation is the only

capable way of describing the reality of the internal static fields.

Several software solutions are available to compute the internal magnetization as a function

of the applied DC magnetic field. However the valid range of application of these software

products is limited.

IV.2.3 Commercial software solutions: Magneto-static simulations using Ansys

Maxwell 3D

A magneto-static study using Ansys Maxwell 3D can be used to find the non-uniform inter-

nal fields inside the ferrite material. In Maxwell 3D magneto-static simulations, the sample

is defined as a non-linear anisotropic material.

In order to describe the evolution of ferrite magnetization with magnitude and direction of

applied magnetic field, Maxwell 3D uses a single (B -H) hysteresis curve. The B-H curve

used is often extracted from the measured hysteresis cycle and it is applied to the whole

volume of the ferrite sample under study. The permeability in each direction is calculated

from the hysteresis (B-H) curve based on the magnitude of the applied DC magnetic field.

Specific boundary conditions are used to define uniform external magnetic field along the

propagation direction.

Figure IV.4: Internal fields calculated inside a 2 mm YIG ferrite sample using the Maxwell 3D,
when an external DC magnetic field HDC=1600 Oe is applied uniformly on the ferrite material.

Figure IV.4 shows the internal magnetic fields inside YIG ferrite material of thickness 2 mm

calculated using the Maxwell 3D analysis. An external DC magnetic field HDC=1600 Oe is

applied uniformly on the ferrite sample. From the Figure IV.4, it is clear that internal fields

inside the sample material is not uniform and varies in space inside the sample. In oder to

consider the non-homogeneity of the internal magnetic fields inside the ferrite material in

frequency domain simulations, we combine Maxwell 3D simulations with Ansys HFSS.
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The non-uniform internal biasing fields of ferrite material in HFSS is defined using the field

values obtained from the Maxwell 3D simulation. Once the non-homogeneous internal DC

magnetic fields inside the ferrite are obtained from the Maxwell 3D simulations, they are

used to compute the permeability spectra of the ferrite material in HFSS. These internal

field values in association with saturation magnetization 4πMs, and resonance linewidth

∆H, are used in classical Polder model to define the frequency dependent permeability

tensor of the sample material.

S-parameters are calculated using the frequency domain solver in HFSS. Measured and

simulated power absorption spectra of a coaxial line loaded with 2 mm sample are shown

in Figure IV.5, for different applied field values.

Figure IV.5: Measured (-) and Simulated (- -) power absorption of 2 mm sample for various applied
DC magnetic fields.

Power absorption spectra simulated using the combination of Maxwell 3D and HFSS show

multiple peaks and they are in good agreement with the measurement results. From these

results it is clear that multiple peaks and the broadening of losses in the power absorption

spectra are due to the non-uniformity of the internal fields inside the ferrite material. This

study concludes that the demagnetizing fields effects due to the size and shape of the sample

is prominent in non-ellipsoidal samples. It is necessary to evaluate the demagnetizing field

effects and accurately calculate the non-homogeneous internal fields in the ferrite material

to get better results with EM simulations.

The association of Maxwell 3D with HFSS produces satisfactory results in the case of sat-

urated ferrite materials. HFSS software uses Polder model to describe the permeability

tensor of the anisotropic ferrite and always uses saturation magnetization (4πMs) to de-

scribe the magnetization inside the sample. This presents a limitation for this approach.

The intensity of the internal magnetic field can be too low in some regions of the material
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IV.3 Electromagnetic modeling tool

and totally saturated medium assumed by the Polder model is not valid in those cases.

Moreover, for a given static field value, there may be several possible states of magnetiza-

tion depending on the magnetization history. But HFSS cannot take this phenomenon into

account, because one can only define a single B-H curve to represent the static magnetic

behavior of the whole sample.

This description of magnetization is sufficient for ferrite materials in saturated state but

not suitable for the general description of the ferrite magnetization. Dynamic behavior of

ferrite in remanent or partially magnetized states cannot be described by this theoretical

approach.

IV.3 Electromagnetic modeling tool

Design of the new classes of ferrite devices has to be based on the combination of experimen-

tal techniques to find the physical parameters of the ferrites and theoretical tools capable

of describing the dynamic EM behavior of the ferrites in all magnetization states. Within

the Lab-STICC, Gelin and Queffelec have developed a model to determine permeability

tensor components in any state of magnetization [36]. Most of the input parameters of the

generalized permeability tensor model are the static properties of the ferrite like saturation

magnetization 4πMs, anisotropy field Ha, etc. except the damping factor α used to repre-

sent the dynamic losses.

In Chapter II, we presented a broadband coaxial line technique to measure the damping

factor α. Static input parameters like saturation magnetization4πMs, anisotropy field Ha,

etc., can be measured using standard measurement methods. Now we have experimental

methods to find the physical parameters of the ferrites and theoretical model which will

use these parameters to describe the dynamic behavior of ferrites at any magnetization

state. A dynamic EM analysis of the structure considering inhomogeneous internal fields

and a generalized permeability tensor model would enable us to understand the internal

field distribution and the demagnetizing field effects on the performances of ferrite devices.

In this section, we are presenting a rigorous theoretical tool to determine the EM properties

of ferrites in a predictive way, whatever their magnetization state is, and takes into account

the inhomogeneity of the internal field polarization. This tool combines a magneto-static

analysis, a general model for permeability tensor and a commercial simulation software-

Ansys HFSS.

A magneto-static analysis is carried out to find the internal biasing field in the ferrite sam-

ple. The sample is then divided into finer zones where the internal field can be considered
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uniform. Permeability tensor is calculated for each zone using Generalized permeability ten-

sor model [36] taking into account corresponding demagnetizing tensor and internal field

magnitude and direction.

Figure IV.6: Predictive electromagnetic modeling tool.

In HFSS design, these zones are then defined as different materials or simply as compu-

tational regions in which material is the same but with different internal magnetic biasing

fields.

For each region, real and imaginary parts of the permeability tensor components are de-

fined as frequency dependent functions in HFSS. S-parameters are then calculated using

the frequency domain solver.

In the following, we will discuss in detail about the magneto-static solver and the integra-

tion of the permeability models with HFSS. The results will be validated by comparing

them with measurements and HFSS-Maxwell simulations.

IV.3.1 Magneto-static solver (Lab-STICC)

In order to study the inhomogeneity of the internal static magnetic fields in ferrite mate-

rials, a magneto-static solver has been developed in Lab-STICC [47]. This magneto-static

solver developed by G.Verissimo, a post-doctoral fellow in Lab-STICC, is based on the dis-

cretization of the Poisson equation using the finite difference method.
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Considering analogy to the polarization of electric dipoles,

∆Vm = −ρm , (IV.4)

where Vm is the scalar magnetic potential, and ρm is the magnetic charge density.

Magnetic charge density ρm is calculated from the magnetization vector ~M by the relation,

ρm = −div( ~M) , (IV.5)

The finite difference algorithm gives a system of equations,

Ā~Vm = −~ρm , (IV.6)

where Ā is a square matrix of the order Nl ( number of free nodes of the mesh), Vm is

the scalar magnetic potential on each free nodes, and ρm is the magnetic charge density on

each free node.

The algorithm used is a differential method, so we have to define an air box including the

ferrite sample. The nodes are defined on the edges of the mesh. An integral method based

on the knowledge of ρm at all nodes of the mesh, is used to model the free space opening.

Magnetic potential Vm is computed from the charge density ρm,

~Vm = −Ā−1 × ~ρm , (IV.7)

The demagnetizing field is then obtained from the relation between magnetic field intensity

and scalar magnetic potential,

~Hm = −∇Vm , (IV.8)

The magnetic field and the magnetization are computed in the center of each mesh cell

unlike scalar potentials and magnetic charge density. The magnetization M is computed

as a function of total DC magnetic field ~Ht,

~Ht = ~H0 + ~Hm. (IV.9)

For each mesh cell, this solver takes into account a hysteresis cycle based on Stoner-

Wohlfarth energy model [38]. This approach enables us to model the magnetization states

of polycrystalline ferrites containing domains by considering the magnetic domains as uni-

axial anisotropic particles. Since this is a numerical model the system of equations Eq. IV.6

becomes nonlinear in nature.
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An iterative Broyden algorithm (Quasi-Newton method) is used to solve the system of

equations, which comprises the use of a Jacobian matrix (J̄) approximation.

For kth iteration,

~Fk = Ā~Vmk + ~ρmk = 0. (IV.10)

• Initial point

~Vmk = 0, ~Hmk = 0, J̄k = Ā,

~Bk = stoner( ~H0), ~ρmk = −div( ~Bk).

(IV.11)

stoner= Stoner-Wohlfarth model.

• If error is greater than tolerance level,

~dV = −J̄k
−1 ~Fk,

~Vmk+1 = ~Vmk + ~dV ,

~Hmk+1 = −∇Vmk+1,

~Bk+1 = stoner( ~Ht),

~ρmk+1 = −∇ · ~Bk+1,

~Fk+1 = Ā~Vmk+1 + ~ρmk+1

error = |~Fk+1|.

(IV.12)

For the next iteration, ~Jk+1 is calculated using Broyden formulations.

When the algorithm is converged, in each mesh cell we obtain the microscopic quantities

such as local domain magnetization (computed using the Stoner and Wohlfarth model)

along with macroscopic quantities ( ~Hm, M).

In order to validate the results obtained with our magneto-static solver, we consider the

case of an APC7 standard hollow cylindrical shaped ferrite uniformly magnetized along

the axial direction. Internal static biasing fields are calculated using the magneto-static

analysis and the results are compared with a commercial software solution- Ansys Maxwell

3D.
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(a) Maxwell 3D (b) Magneto-static solver (Lab-STICC)

Figure IV.7: Internal fields calculated inside a 3 mm YIG ferrite using the magneto-static analysis,
when an external DC magnetic field HDC=1600 Oe is applied uniformly on the ferrite material.

Figure IV.7 shows the calculated internal DC biasing fields of the coaxial line loaded with

a 3 mm thick YIG ferrite when the material is magnetized along the z-direction with an

applied DC magnetic field 1600 Oe. In Maxwell 3D simulations, the whole ferrite material

is represented by a single hysteresis curve.

Figure IV.8: Illustration of major and minor hysteresis loops- Stoner and Wohlfarth model.

For an applied field, there can be several states of magnetization depending on the mag-

netization history. But Maxwell 3D cannot take this phenomenon into account, because

a single B-H curve is used to represent the whole sample. Our magneto-static analysis

presents a more realistic description of internal DC fields. Each mesh cell can follow a

different hysteresis cycle (major or minor) and is applicable for all magnetization states.
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IV.3.2 EM modeling of anisotropic ferrites – Ansys HFSS

Anisotropic nature of the ferrite material can be modeled using Ansys HFSS either by us-

ing Polder formulations or by using user defined permeability tensor. Conventionally HFSS

software uses Polder model - a small signal approximation of Landau-Lifshitz equations [35].

As we have seen in Chapter II, these formulas are established for a single spin magnetic

moment subjected to a static magnetic field HDC , and to a perpendicular microwave mag-

netic field
−→
h . This approximation is only valid for the case of saturated ferrites where all

the magnetic moments are aligned parallel to each other.

Internal DC magnetic field (magnetic biasing) can be defined as uniform or non-uniform.

For the case of uniform magnetic biasing, the internal static field is corrected using the

Kittel formula to take into account the demagnetizing fields related to the finite dimensions

of the ferrite.

(a) Anisotropic permeability definition (b) B-H curve - First magnetization curve

Figure IV.9: Material definition - Ansys HFSS.

Ferrite material can also be defined as a non-linear material by using a B-H hysteresis curve

(for example first magnetization curve). Another option is to define the material property

as anisotropic, where HFSS allows us to define the diagonal components of the anisotropic

tensor. The diagonal components can be defined as a simple value, a constant, a variable

or a non-linear B-H curve.

A combination of Maxwell 3D simulations with Ansys HFSS can be used to define the

non-uniform biasing in frequency domain simulations. The internal bias field and local co-

ordinate system are calculated on a tetrahedron by tetrahedron basis from magneto-static
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analysis using Maxwell 3D software.

Ansys Electronic Desktop version 2016.2 and above also offers an option to define all the

nine components of permeability and/or permittivity tensor. This function allows the user

to independently define the real and imaginary parts of the nine elements of the tensor. It is

also possible to define these elements as being frequency dependent functions or as project

variables. This opens up an opportunity to use theoretical permeability tensor models other

than Polder model with HFSS.

IV.3.2.1 Integration of theoretical permeability tensor models with HFSS

Conventionally, Ansys HFSS use Polder model to calculate the permeability tensor com-

ponents. As we have discussed in the previous sections, Polder model is only valid in the

saturated state. Several theoretical models have already been proposed in the literature to

describe the complex permeability tensor components - Schloemann [30] for demagnetized

ferrites, or Rado [31], Green and Sandy [32], and Igarashi and Naito [33, 34] for partially

magnetized ferrites. Within the LabSTICC, Gelin and Queffelec have developed a model

to determine permeability tensor components in any state of magnetization [27, 36].

When the applied field is along z direction, permeability tensor can be defined as,

µ̂ =




µ′ − jµ′′ −j(κ′ − jκ′′) 0

j(κ′ − jκ′′) µ′ − jµ′′ 0

0 0 µ′
z − jµ′′

z


 (IV.13)

HFSS offers a function to define datasets with user defined points. These data sets can be

used in the piecewise linear intrinsic functions of HFSS.

Figure IV.10: Definition of datasets in HFSS.
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The property of the material can be defined as being frequency dependent, using the dataset

as first parameter to the piecewise linear interpolation function (pwl (dataset_expression,

variable)).

Frequency domain solver in HFSS must be able to calculate the value of the permeabil-

ity tensor components at any frequency value. Our approach involves the definition of

(user defined) data points and linear interpolation of the defined data points into frequency

dependent functions. We use theoretical models to compute the permeability tensor com-

ponents and interpolate them as frequency dependent functions.

Material permeability is defined by using the Tensor function in HFSS. Real and imaginary

parts of the permeability tensor components are calculated using theoretical models and

imported as separate data sets in HFSS. Each data set is interpolated into frequency de-

pendent functions using intrinsic piecewise linear interpolation function. These frequency

dependent functions are then used to define the complex components of the permeability

tensor.

IV.3.2.2 Ansys HFSS – Macro programming

HFSS can be controlled via scripts in Microsoft Visual Basic programming language. These

scripts can be used, for example, to create libraries, datasets or to do automated tasks

(create 3D objects, material definition etc.). VB scripting is a fast and effective way to do

repetitive tasks.

Figure IV.11: Integration of GPT model with HFSS.

Scripts can be written using any text editor or we can record a script from the ANSYS
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Electronics Desktop interface. Scripts can also be executed from command line if they

are written in any language that supports Microsoft COM methods. This provides an

opportunity to create, control and execute HFSS simulations with MATLAB.

Using these functions we can create new materials in HFSS and it is possible to define the

nine elements of the permeability tensor from MATLAB environment. This allows us to

define the real and imaginary parts of nine components of permeability tensor calculated

using theoretical models other than Polder model in HFSS.

Permeability tensor is calculated using generalized permeability tensor (GPT) model. A

set of MATLAB functions is created to integrate the GPT model with HFSS. A VB Script

is created using MATLAB to add or edit a material definition in HFSS. Permeability of

the material is defined by tensor function and each component of the permeability tensor

is defined by frequency dependent functions.

Real and imaginary parts of permeability tensor components are defined as dataset points.

These data points are interpolated using inbuilt piecewise linear interpolation function of

HFSS software. Scripting with MATLAB allows us easy control over the material definition

in HFSS simulations.

IV.3.2.3 Validation of results

IV.3.2.4 Comparison with classical HFSS simulations

Polder model

In order to validate the new approach involving the manipulation of datasets, we consider

the case where a ferrite sample is inserted between the inner and outer conductors of a

coaxial line. The sample is magnetized to saturation by using an electromagnet.

The coaxial line is of APC7 standard and the sample is a ferrite material with relative

permittivity 8.3, saturation magnetization 4πMs= 800 G, anisotropic field Ha= 54 Oe,

demagnetizing coefficient Nz=0.42 and ∆H= 300 Oe.

For an applied magnetic field Hdc= 1400 Oe, permeability tensor is calculated with Polder

model. Real and imaginary parts of permeability tensor components are saved as the

frequency dependent datasets in HFSS. Real and imaginary parts of permeability tensor

components are then interpolated into frequency dependent functions using the intrinsic

pwl function in HFSS.

These frequency dependent functions are then used to define the user defined permeability

tensor in HFSS. Each complex component of the permeability tensor is defined using the

frequency dependent functions. S-parameters are calculated using frequency domain solver

in HFSS. The simulations are done for a frequency range from 130 MHz up to 20 GHz.
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Figure IV.12: Spectra of the real and imaginary parts of the diagonal µ and off-diagonal κ compo-
nents of permeability tensor computed using Polder model. 4πMs= 800 G, Ha= 54 Oe, Nz=0.42
and ∆H= 300 Oe. Sample thickness = 2.9 mm.

Figure IV.13: Simulated S-parameters of a coaxial line (APC7 standard) loaded with a magnetized
ferrite (Polder model) - Sample properties: 4πMs= 800 G, Ha= 54 Oe, Nz=0.42 and ∆H= 300 Oe.
Sample thickness = 2.9 mm.

S-parameters obtained from the frequency domain simulations are shown in Figure IV.13.

Results are then compared with the conventional HFSS simulations (uniform biasing) using

inbuilt Polder model. For the case of uniform magnetic biasing in HFSS, the internal mag-

netic field is corrected using the Kittel formula [37] to take into account the demagnetizing

fields. From these results it is clear that the use of tensor permeability gives very good

agreement with the conventional simulations using uniform biasing assumption.

GPT model

In saturation GPT model [36] gives similar results with Polder model. For the same condi-

tions as above permeability tensor is calculated using the GPT model.

Real and imaginary parts of all the nine components of the permeability tensor are then

imported as datasets in HFSS. Intrinsic piecewise linear interpolation function of HFSS
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(pwl), is then used to interpolate these datasets as frequency dependent functions. These

functions are then used to calculate the user defined permeability tensor in HFSS.

Figure IV.14: Spectra of the real and imaginary parts of the diagonal µ and off-diagonal κ compo-
nents of permeability tensor computed using GPT model. Sample properties: 4πMs= 800 G, Ha=
54 Oe, Nz=0.42 and ∆H= 300 Oe. Sample thickness = 2.9 mm.

S-parameters are calculated using frequency domain solver in HFSS. The simulations are

done for a frequency range from 130 MHz to 20 GHz. Results are then compared with the

conventional HFSS simulations (uniform biasing) using inbuilt Polder model.

Figure IV.15: Simulated S parameters (GPT model + HFSS). Sample properties: 4πMs= 800 G,
Ha= 54 Oe, Nz=0.42 and ∆H= 300 Oe. Sample thickness = 2.9 mm.

From Figure IV.14, it is clear that the new approach with GPT model gives very good

agreement with the conventional simulations using Polder model with uniform biasing as-

sumption. These results validate the proposed approach using Tensor function in HFSS.
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IV.3.2.5 Non-Uniform biasing – Comparison with Maxwell 3D simulations

In order to validate the proposed approach in the case of non-uniform biasing fields, we

studied the power absorption spectra of a coaxial line partially filled with toroidal ferrite

sample. The sample is in hollow cylindrical in shape and it is magnetized to saturation

with an electromagnet.

The coaxial line is of APC7 standard and the sample is a YIG39 ferrite material (from

EXXELIA TEMEX) with relative permittivity 14.3, saturation magnetization 4πMs= 810

G, anisotropic field Ha= 54 Oe, and damping coefficient α= 0.0068.

Power absorption spectra of a coaxial line loaded with bulk ferrite materials show the pres-

ence of secondary resonance peaks. These secondary peaks result in a broadening of the

power absorption curve near the resonance. Initial EM analysis of the measurement cell

with quasi-TEM approximation does not predict all these secondary peaks in the absorbed

power spectrum. Classical frequency domain simulation using uniform biasing in HFSS pro-

duces similar results as the quasi-TEM analysis, and it cannot account for the broadness

of the power absorption near the resonant frequency. Indeed these simulations consider an

approximate value for the demagnetizing coefficient and uniform magnetization inside the

sample but in reality internal fields are non-homogeneous in nature.

Figure IV.16: Internal DC magnetic fields calculated inside a 3 mm YIG ferrite using the magneto-
static analysis, when a uniform DC magnetic field HDC=1600 Oe is applied on the sample.

The inhomogeneity of the internal static magnetic fields in the ferrite, is studied using the

magneto-static solver previously developed in Lab-STICC [47]. This magneto-static analy-

sis presents a more realistic description of internal DC fields. For each mesh cell, this solver

takes into account a hysteresis cycle based on Stoner-Wohlfarth energy model [38]. Each

mesh cell can follow a different hysteresis cycle (major or minor) and is applicable for all

magnetization states.

142



IV.3 Electromagnetic modeling tool

Internal biasing fields inside the ferrite are determined using a magneto-static solver. The

internal static fields of a 3 mm YIG sample for applied magnetic field, HDC=1600 Oe are

shown in Figure IV.16.

The magneto-static study of sample shows that demagnetizing fields are space dependent

and internal DC fields are inhomogeneous in nature. The internal fields show no variation

along the θ direction. In order to consider the variation in direction and magnitude of the

demagnetizing fields, ferrite sample is divided into different concentric annulus regions in

which the internal DC field can be considered uniform (Figure IV.17).

Figure IV.17: Cross section of the ferrite sample- Definition of different regions where internal DC
magnetic fields can be considered as uniform.

In each annulus sector, the internal field is considered uniform and a permeability tensor is

then calculated for each sector using GPT model by taking into account its demagnetizing

fields. GPT model allows us to determine the permeability tensor components in a predic-

tive way at all magnetization states.

In this study, the generalized permeability tensor (GPT) model is used to describe the

permeability tensor components of the ferrite material. This model is based on the classical

Landau-Lifshitz-Gilbert equations and takes into account the inherent physical phenomena

in polycrystalline ferrites such as the Polder-Smit effect, the hysteresis phenomenon, and

statistical distribution on the shape of grains and domains. The input parameters are the

static parameters like saturation magnetization (4πMs), anisotropic field (Ha),etc., and the

damping factor (α) which represents the magnetic losses of the material.

GPT model is used to define the full (nine element tensor) tensor permeability of the fer-

rite material in HFSS software. The frequency domain solver in HFSS needs to be able to

calculate the permeability tensor components at any frequency value. Real and imaginary

parts of each element of the permeability tensor is defined as the frequency dependent func-

tions by using the piecewise linear interpolation of the data points in HFSS. S-parameters

are then calculated using the frequency domain simulations. Simulations are done in a

frequency range from 130 MHz up to 20 GHz.
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Power absorption can be calculated from the simulated S-parameters. Simulated and mea-

sured power absorption spectra of coaxial line loaded with a 3 mm-thick YIG sample for

different applied DC magnetic field values are shown in Figure IV.18. The power absorption

results are also compared with results obtained using the Maxwell 3D simulations as shown

in Figure IV.18.

Figure IV.18: Measured (-) and simulated power absorption spectra of 3 mm YIG ferrite (Maxwell
3D (. . . ), GPT+HFSS (- -)).

A very good agreement is found between the measured and simulated results. From the

Figure IV.18, it is clear that results obtained from our theoretical tool are closer to the

measurement results than those predicted by Maxwell-HFSS simulations. Integration of

magneto-static analysis enhances the predictive nature of GPT model.

By taking into account the inhomogeneity of the internal polarizing fields, proposed theo-

retical tool can predict the dynamic behavior of anisotropic ferrites more accurately, at all

magnetization states.

IV.4 Application - Microstrip Y-junction circulator

Circulators play an important role in the microwave communication systems for civil and

military applications. The working of ferrite circulators/isolators is based on the nonre-

ciprocal behavior of EM wave propagation in magnetized ferrites [48, 49]. Circulators are

generally used for full duplex communications whereas isolators (one port is ended with a

matched load) are used to protect the transmission components from parasitic radiations

or impedance mismatch.

The circulator is composed of at least three ports around a central junction. The prop-

agation of the EM wave takes place in a predetermined direction. This is due to the
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nonreciprocal behavior of wave propagation in magnetized ferrite placed at the center of

the structure. The S-parameter matrix of an ideal circulator is shown in Figure IV.19.

Figure IV.19: Symbol and S parameter matrix of an ideal circulator.

To meet the requirements for the rapid growth of microwave communication systems, de-

sign of circulators has to be based on new materials (low sintering temperature ferrites,

hexaferrites) [50, 51], new technologies [52] (LTCC, 3D printing) and predictive EM simu-

lation tools. Due to its complex nature (nonreciprocal behavior, anisotropic properties of

magnetic materials, heterogeneous configuration etc.), design of circulators which meet the

miniaturization conditions with good EM performances, requires better understanding of

the physical processes involved. This requires the development of new theoretical tools to

predict the dynamic behavior of ferrite devices.

One of the important parameters that affect the performance of circulators is the non-

uniformity of the DC biasing field. The reduction of transmission band in Y-junction

circulators due the DC field non-homogeneity within the ferrite is already discussed by

How et al [53]. In most ferrite devices, ferrite sample is non-spherical in shape, i.e. non-

homogeneity of static biasing field is quite common in those devices.

Conventional junction circulators require strong magnetic fields to bias the ferrite inte-

grated in the device [49]. These bias fields are provided by the permanent magnets which

increases the size and cost of these devices. For miniaturization of circulators, designers are

encouraged to use planar technologies (eg: microstrip) or pre-oriented materials [51, 54–56]

to avoid the use of permanent magnets. For microstrip circulators, only one magnet is used

to polarize the material. These topologies increase the non-homogeneity of the DC biasing

fields in ferrite materials.

More realistic description of EM behavior of circulators requires accurate computation of

permeability tensor components. A dynamic EM analysis of the structure, considering

inhomogeneous internal fields and a generalized permeability tensor model would enable
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us to understand the internal field distribution and the demagnetizing field effects on the

performances of ferrite circulators. A magneto-static analysis is carried out to find the

internal biasing field in the ferrite sample. Permeability tensor is described by generalized

permeability tensor (GPT) model [36] considering the spatial variation of internal magnetic

fields.

IV.4.1 Circulator Design

A microstrip Y-junction circulator is designed for an extended frequency range around X-

band. The design procedure of microstrip Y-junction circulator is based on Bosma princi-

ples [57].

Radius of the junction resonator at the center of the circuit was estimated according to the

first circulator equation. The circulator design is optimized by HFSS simulations.

The quarter wavelength lines are designed on the LTCC compatible substrate T950 and

connected to the 50 Ω access lines. The width of the quarter-wavelength line is tuned using

HFSS for maximum isolation. The design does not show ternary symmetry as the branches

of the junction are not identical.

Figure IV.20: Y-junction microstrip circulator- Design parameters. Quarter wavelength line: l1=1.8
mm, w1= 0.93 mm. 50 Ω Access line: lin=2 mm, w2=0.4 mm. Ferrite sample: radius Rf =1.82
mm, thickness=1 mm. Thickness of substrate, hf = 1 mm.

A Yttrium iron garnet (YIG) ferrite substituted with bismuth, and copper cations, is used

for the design and realization of microstrip Y-junction circulator. The ferrite puck at the

center of the dielectric substrate material has a thickness of 1 mm and radius 1.82 mm.

The ferrite material has the following properties: relative permittivity ǫf=19, tanδ=0.003,

saturation magnetization 4πMs=1710 G, anisotropy fieldHa=50 Oe, and resonance linewidth

∆H=10 Oe.
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The HFSS simulations are based on following material properties:

Material ǫ tanδ ∗ 1e−3 4πMs(G) Ha(Oe) ∆H(Oe)
Ferrite 19 3 1710 50 10

Dielectric substrate T950 21 3 - - -

In the EM simulations, applied DC magnetic field at the center of the ferrite is taken as

2800 Oe. The demagnetization coefficient is calculated to be 0.64, so the ferrite disk is as-

sumed to be magnetized with uniform internal DC magnetic field (Hin=HDC-N.Ms=2800-

0.636*1710=1712 Oe).

The operation frequency of the circulator is chosen above the FMR resonance region. The

optimized radius of the ferrite is 1.82 mm. The junction resonator is designed with the same

radius as the ferrite puck. The substrate material used is a LTCC compatible dielectric

T950 with a relative permittivity 21 and loss tangent,tanδ=0.003. The length and width

of microstrip access line are 1.8 mm and 0.93 mm respectively. The 50 Ω access lines are

optimized by HFSS simulations.

IV.4.2 Experimental results

The Y-junction microstrip circulator is fabricated with an additive multilayer process us-

ing LTCC technology (Low temperature co-fired ceramics). A bulk sample of substituted

yttrium iron garnet (YIG) ferrite material (chemical composition Y2.8Cu0.05Bi0.67Fe5O12

is chosen for the core of the circulator [50].

The circulator circuit is designed on top of the dielectric substrate. By substituting with

bismuth and copper cations, the sintering temperature of the Yttrium garnet is considerably

decreased from ∼1,450°C to down to ∼950°C. This decrease allows the co-firing of compat-

ible materials with silver or gold. The addition of bismuth ions increases the permittivity

of the material and subsequently reduces the core size of the circulator. The ferrite puck

has a radius of 1.82 mm and thickness 1 mm.

The DC biasing field is applied normal to the ferrite material by placing a permanent

magnet above the junction. We use a Sintered Samarium Cobalt Magnet (SmCo magnet)-

Recoma®20, with residual induction (Br) 9000 G, and coercivity 8800 Oe for magnetizing

the circulator junction.

The static field at the center of the ferrite is controlled by placing a dielectric in between

the junction conductor and the magnet. The radius of the magnet is 1.91 mm. The static

field provided by the magnet is enough to saturate the ferrite material. Usage of only one

magnet, instead of two with conventional stripline technology, increases the DC biasing

field non-uniformity in the junction.
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Figure IV.21: Y-junction microstrip circulator- Experimental setup and cutting view.

Circulator ground plane, conductive strips, and junction are realized by depositing thick

layers of silver. The junction radius is 1.82 mm. The quarter wavelength lines are deposited

on the substrate material and connected to the 50 Ω access lines.

The S-parameter measurements are done with Rohde & Schwarz ZVA24 (4 port) vector

network analyzer in the frequency range from 6 GHz up to 14 GHz. Figure IV.21 shows

the experimental setup of our microstrip Y-junction circulator biased by a single magnet.

Figure IV.22 shows the measured insertion loss, isolation and return loss of the microstrip

circulator. The circulator shows an isolation of 23 dB with corresponding insertion loss

of 0.6 dB and 39% bandwidth. The results show the dual band response which helps the

broadband behavior of circulator.

The measured results show a shift in center frequency to the lower frequency region. The

center frequency is shifted to lower frequency value compared to the HFSS simulations with

uniform biasing fields assumption. The measured 20 dB isolation bandwidth is found to

be higher than the simulated one. This difference is due to the fact that internal field in

ferrite material is not homogeneous as assumed in classical HFSS simulations.
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Figure IV.22: Measured (-) and simulated (–) S-parameters of Y-junction microstrip circulator:
HFSS with uniform biasing fields assumption.

Different parts of the ferrite material may have different static biasing fields and different

magnetization states. Some part of ferrite can be partially magnetized state where Polder

model is no longer valid.

A static field analysis of the ferrite disk magnetized by a single permanent magnet will help

us to understand the internal field polarization of ferrite material. An EM analysis of the

structure considering the non-homogeneity of internal static fields and use of a generalized

permeability model will enable us to better understand circulator performances.

IV.4.3 Non-uniform biasing fields- Electromagnetic analysis

The inhomogeneity of the internal static DC magnetic fields in the ferrites is studied using

the magneto-static solver previously developed in Lab-STICC [47]. This magneto-static

analysis presents a more realistic description of internal DC fields. For each mesh cell, this

solver takes into account a hysteresis cycle based on Stoner-Wohlfarth energy model [38].

We used only one permanent magnet placed above the junction for biasing the ferrite in

the circulator and this topology results in significant internal field non-homogeneity in the

ferrite medium. The ferrite disk shows a variation in internal field along radial direction as

well as along the thickness of the ferrite material.
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Figure IV.23: Magneto-static analysis of a ferrite disk magnetized by a permanent magnet- Mesh
settings.

The ferrite material shows a variation of magnetization along the thickness with maximum

field happens at the face closest to the magnet. The ferrite regions farther from the magnet

show low internal biasing fields and this can possibly result in unsaturated areas in the

ferrite disk.

The anisotropic properties of the material are dependent on the magnitude and direction

of internal DC biasing fields. In order to take into account the non-homogeneity of the

internal static fields, the ferrite disk is divided into different computational regions where

the internal field is considered to be uniform.

(a) top view (b) side view

Figure IV.24: 3D modeling of ferrite puck – Ferrite material is divided into different annulus sectors.
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The non-homogeneity in each layer is introduced by dividing the disk into several concen-

tric annuli around a central cylinder. In each region the internal field is considered to be

uniform in magnitude and direction. Each region is defined as a separate material with its

own permeability tensor in HFSS simulations.

EM properties of these computational regions are characterized by permeability tensors. In

each region the permeability tensor is calculated using the generalized permeability tensor

(GPT) model considering the internal field polarization and hysteresis phenomenon. GPT

model gives a more realistic representation of EM properties of the ferrite material in a

predictive way whatever their magnetization state is.

For each region, all the input parameters of the GPT model are the same except for the

internal field value. The predictive nature of the GPT model, make it possible to find

permeability tensor components for all the regions in a single computation procedure. Real

and imaginary parts of permeability tensor components are imported to HFSS as frequency

dependent dataset points. Each of the annulus regions is defined as a new material in Ansys

HFSS by using the frequency dependent functions obtained using inbuilt piecewise linear

interpolation function.

Figure IV.25: Measured and simulated S-parameters of Y-junction microstrip circulator: Non-
uniform biasing fields assumption.

The frequency domain simulations are done for a frequency range from 6 GHz up to 14

GHz. The simulated S-parameters are then compared with the measured S parameters.
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Measured and simulated S-parameters are shown in the Figure IV.25. Results are then also

compared with Maxwell-HFSS combined simulations. Theoretical results show good agree-

ment with the measurement results. These results validate the use of proposed theoretical

tool in the limit case- saturated ferrites.

Our approach shows good agreement with the results obtained with HFSS-Maxwell com-

bined simulations although these simulations use Polder model. This is due to the fact that

GPT model gives similar results with polder model in saturated state. The integration of

theoretical permeability tensor in Ansys HFSS made it possible to do the EM simulations

as a function of intensity of applied biasing field, irrespective of their state of magnetization.

By taking into account the inhomogeneity of the internal polarizing fields, proposed the-

oretical tool can predict the dynamic behavior of ferrite devices more accurately, at all

magnetization states. This new theoretical tool will be advantageous for the design of

devices working in the partially magnetized states: self-biased circulators/Insulators [51],

miniature antennas [58], tunable filters [59], phase shifters [60], etc.

IV.5 Conclusion

In this chapter, we presented a predictive EM tool to study the EM properties of ferrites

in a predictive way, whatever their magnetization state is, and takes into account the inho-

mogeneity of the internal polarization fields. The proposed EM tool combines a theoretical

magneto-static solver and generalized permeability tensor model with commercial EM sim-

ulation software Ansys HFSS.

Our theoretical EM tool is validated by modeling, and realizing a microstrip Y-junction

circulator. This theoretical tool is validated in the limit case saturation by comparing the

simulation results with measurements.

We discussed the non-homogeneous internal magnetic fields in anisotropic ferrite materials

and their effect on the dynamic behavior of ferrite base devices. A magneto-static analysis

of the structure considering inhomogeneous internal fields enabled us to understand the

internal biasing field distribution and the demagnetizing field effects on the performances

of ferrite based devices.

The integration of magneto-static analysis with EM simulations made it possible to predict

the dynamic behavior of ferrite devices more accurately. By taking into account the inho-

mogeneity of the internal polarizing fields, proposed theoretical tool predict the dynamic

behavior of ferrite devices more accurately, at all magnetization states.
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This theoretical modeling approach combines experimental techniques to find the physical

parameters of the ferrites, and theoretical model which will use these parameters to de-

scribe the dynamic behavior of ferrites at any magnetization state. Static input parameters

of this theoretical tool are determined using standard material characterization methods.

Only dynamic input parameter, damping factor is calculated using the coaxial line technique

proposed in the first part of this thesis (Chapter II). Integration of GPT model coupled

with magneto-static solver into a commercial EM simulator makes it possible to avoid the

limitations of commercial magneto-static, and EM simulations softwares.

This association of theoretical tools with commercial simulation software opens up new

perspectives for the study and the design of microwave ferrite based applications. Keeping

in mind the fact that GPT model is valid at any magnetization state unlike Polder model

which is only valid in the saturated state, the proposed approach show good advantage over

conventional EM simulation methods.

Integration of magneto-static analysis enhances the predictive nature of GPT model. Thanks

to universal nature of the GPT model, this EM tool will be applicable for the design of

other ferrite devices regardless of their state of magnetization. This new theoretical tool

will be more advantageous for the design of devices working in the partially magnetized

states: tunable filters, phase shifters, self-biased circulators/insulators, miniature antennas,

etc. This tool will allow us to understand influence of constituent material properties, and

their geometrical parameters on the performance of these devices.
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Chapitre 4. Résumé

Dans ce chapitre, nous discutons des champs magnétiques internes non homogènes dans les

matériaux ferrites anisotropes et de leurs effets sur le comportement dynamique des dis-

positifs à ferrite. Le champ magnétique statique interne vu par les moments magnétiques

dans l’échantillon est réduit par les effets du champ démagnétisant. Tout d’abord, pour

estimer les effets démagnétisants macroscopiques dus à la forme de l’échantillon, nous avons

mesuré les spectres d’absorption d‘échantillons denses de composition identique (Yttrium

Iron Garnet-YIG) mais d’épaisseurs différentes. Les pics d’absorption de puissance se dé-

placent vers des fréquences plus élevées lorsque le champ appliqué augmente. La variation

de la fréquence du pic d’absorption en fonction du champ appliqué suit une relation linéaire

de pente positive proche de la valeur du rapport gyromagnétique 2,8 MHz/Oe.

Les spectres d’absorption de puissance des matériaux ferrites denses montrent la présence

de pics de résonance secondaires. Ces pics secondaires entraînent un élargissement de

l’absorption à proximité de la résonance. Ces pics suivent un comportement attendu :

lorsque le champ statique augmente, les pics de résonance se déplacent vers des fréquences

plus élevées. Après la saturation, chaque pic de résonance montre une variation linéaire

de la fréquence avec l’augmentation du champ statique. L’analyse EM initiale de la cel-

lule de mesure dans l’approximation quasi-TEM ne prédit pas ces pics secondaires dans

le spectre de puissance absorbée. La simulation HFSS utilisant une polarisation uniforme

produit des résultats similaires à ceux de l’analyse quasi-TEM, et ne peut pas expliquer

l’élargissement de l’absorption de puissance près de la fréquence de résonance. En effet, ces

simulations considèrent une valeur approximative unique pour le coefficient démagnétisant

et une aimantation uniforme dans l’échantillon. En réalité, le coefficient démagnétisant

N est une quantité tensorielle qui varie suivant les directions de l’espace à l’intérieur de

l’échantillon. Cela conduit à des champs internes inhomogènes à l’intérieur du matériau

ferrite.

Une étude magnétostatique utilisant Maxwell 3DTM d’Ansys peut être utilisée pour trouver

les champs internes non uniformes dans le matériau de ferrite. Les spectres d’absorption

de puissance simulés à l’aide de la combinaison de Maxwell 3D et de HFSS montrent des

pics multiples en accord avec les résultats de mesure. A partir de ces résultats, il est clair

que les pics multiples et l’élargissement des pertes dans les spectres d’absorption sont dus
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à la non-uniformité des champs internes à l’intérieur du matériau de ferrite. Cette étude

conclut que les effets des champs démagnétisants sont importants dans les échantillons non

ellipsoïdaux. Il est donc nécessaire d’évaluer les effets du champ démagnétisant et de cal-

culer avec précision les champs internes non homogènes dans le matériau de ferrite pour

obtenir de meilleurs résultats avec des simulations EM.

L’association de Maxwell 3D avec HFSS produit des résultats satisfaisants dans le cas de

matériaux ferrites saturés. Cette description de l’aimantation est suffisante pour les matéri-

aux à l’état saturé mais ne convient pas à la description d’autres états d’aimantation. Le

comportement dynamique du ferrite dans les états rémanent ou partiellement aimanté ne

peut être décrit par cette approche théorique.

Dans la suite nous présentons un outil prédictif pour étudier les propriétés EM des fer-

rites de manière prédictive, quel que soit leur état d’aimantation, et prenant en compte

l’inhomogénéité des champs internes. L’outil proposé combine un solveur théorique magné-

tostatique et un modèle tensoriel généralisé de perméabilité avec un logiciel commercial de

simulation Ansys HFSSTM. L’analyse magnétostatique de la structure en considérant des

champs internes inhomogènes nous a permis de comprendre la distribution du champ de

polarisation interne et les effets du champ démagnétisant sur le performances des dispositifs

à ferrite. L’intégration de l’analyse magnétostatique avec des simulations EM a permis de

prédire plus précisément le comportement dynamique de ces dispositifs.

Cette approche de modélisation théorique combine des techniques expérimentales pour

trouver les paramètres physiques des ferrites et un modèle théorique qui utilisera ces

paramètres pour décrire le comportement dynamique à n’importe quel état d’aimantation.

Les paramètres statiques de cet outil théorique sont déterminés à l’aide de méthodes

standards de caractérisation des matériaux. Seul le paramètre dynamique, le facteur

d’amortissement « α », est calculé en utilisant la technique en ligne coaxiale proposée

dans la première partie de cette thèse (Chapitre II). L’intégration du modèle GPT cou-

plé au solveur magnétostatique dans un simulateur commercial EM permet d’éviter les

limites des logiciels commerciaux de simulation magnétostatique et EM. En considérant

l’inhomogénéité des champs internes de polarisation, l’outil théorique proposé sera capable

de prédire le comportement dynamique des dispositifs à ferrite de manière plus précise, à

tous les états d’aimantation.

Le tenseur de perméabilité est calculé dans plusieurs zones du matériau en utilisant un

modèle généralisé de tenseur de perméabilité prenant en compte le tenseur de coefficients

démagnétisants correspondant et l’amplitude et la direction du champ interne. Dans la

conception HFSS, ces zones sont définies comme des matériaux différents ou simplement

comme des régions de calcul dans lesquelles le matériau est le même mais avec différents

champs internes de polarisation magnétique. Pour chaque région, les parties réelles et

156



IV.5 Conclusion

imaginaires des composantes du tenseur de perméabilité sont définies comme des fonctions

dépendantes de la fréquence dans HFSS. Les paramètres S sont ensuite calculés en utilisant

le solveur dans le domaine fréquentiel. En tenant compte de l’inhomogénéité des champs

internes de polarisation, l’outil théorique proposé peut prédire le comportement dynamique

des ferrites anisotropes plus précisément, à tous les états d’aimantation.

Afin de mettre en évidence l’efficacité de l’outil de simulation EM développé et de démon-

trer la nécessité d’un outil capable de prédire de manière réaliste leurs performances, nous

l’avons appliqué à la conception d’un dispositif à ferrite. Notre outil EM théorique a été

utilisé pour la modélisation et la réalisation d’un circulateur micro-ruban à jonction Y. Cet

outil théorique a été validé dans des cas limites en comparant les résultats de simulation

avec les mesures.

Cette association d’outils théoriques et de logiciels commerciaux de simulation ouvre de

nouvelles perspectives pour l’étude et la conception de dispositifs micro-ondes à ferrite. En

gardant à l’esprit le fait que le modèle GPT est valide à n’importe quel état d’aimantation

contrairement au modèle de Polder qui n’est valable qu’à l’état saturé, l’approche proposée

présente un bon avantage par rapport aux méthodes conventionnelles de simulation EM.

L’intégration de l’analyse magnétostatique améliore la nature prédictive du modèle GPT.

Grâce à la nature universelle du modèle GPT, cet outil EM s’applique à la conception

d’autres dispositifs de ferrite indépendamment de leur état d’aimantation. Ce nouvel outil

théorique sera plus avantageux pour la conception de dispositifs fonctionnant dans les états

partiellement aimantés: filtres accordables, déphaseurs, circulateurs auto-polarisés, isola-

teurs, antennes miniatures, etc. Cet outil nous permettra de comprendre l’influence des

propriétés du matériau constitutif et de sa forme géométrique sur les performances de ces

dispositifs.
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Conclusion and Perspectives

Ferrite materials are widely used in microwave electronics for many telecommunication ap-

plications due to their low insertion loss in the direction of propagation, and their high

level of isolation in the other direction. Dynamic behavior of ferrite material can be rep-

resented by the tensor permeability µ̂, each component of which has a double dependence

with respect to the frequency and the static magnetic field Hdc. Consequently, design and

optimization of microwave devices using ferrite materials requires a realistic knowledge of

its dynamic response, namely permittivity and permeability and, on the other hand, control

of wave propagation that condition their performance. Commercial simulation software use

different theoretical models to describe the permeability tensor, µ̂ according to the state

of magnetization. However, most of the EM simulators remain limited to certain states of

magnetization, due to the simplified assumptions on which their permeability models are

based upon.

In this thesis work, we presented a predictive electromagnetic tool to study the EM prop-

erties of ferrites in a predictive way, whatever their magnetization state is, and takes into

account the inhomogeneity of the internal polarization fields. This theoretical modeling

approach combines experimental techniques to find the physical parameters of the ferrites,

and theoretical model which will use these parameters to describe the dynamic behavior of

ferrites at any magnetization state.

This thesis work is carried out mainly in two parts: in the first part, we worked on the

characterization technique to find the unique dynamic input parameter of generalized per-

meability tensor model, and in the second step we worked on the integration of this theoret-

ical permeability model and a magneto-static solver in a commercial EM simulator Ansys

HFSS.

In the first part of the thesis, we presented a broadband coaxial line method for damping

factor measurement. Theoretical S-parameters are calculated using the direct EM analysis

of the measurement cell. In the inverse problem of the coaxial line method, an optimiza-

tion procedure is developed to optimize the damping factor α by matching theoretical

S-parameters with measured S-parameters. The results are validated by comparing with

supplier’s data sheets.
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By avoiding the use of phases of S-parameters, uncertainties due to the dimensional reso-

nances are avoided in the inverse problem. On the contrary, our inverse problem exploits

these resonances to converge the spectra of the amplitudes of the S-parameters more rapidly

and more precisely. Standard resonant cavity methods are limited to a single frequency cor-

responding to the resonant frequency of the measurement cavity, and these methods require

the sample to be spherical in shape and sample length to be small compared to one quarter

of the wavelength of the microwave radiation in the sample. The coaxial line method elimi-

nates the shape and size constraints related to the resonant cavity and the samples imposed

by the standard resonant cavity methods. This broadband characterization method can be

implemented easily, and can be used from DC to millimeter wave frequencies. The damping

factor α is a more realistic representation of dynamic losses of ferrites than the parameters

currently used: ∆H and ∆Heff . Knowledge of a unique parameter representing dynamic

losses would assist engineers in optimizing design and adjustment procedures for ferrite-

based microwave devices (Eg: circulators).

During the second part of the thesis, we developed an EM modeling tool which combines a

theoretical magneto-static solver and generalized permeability tensor model with commer-

cial simulation software Ansys HFSS. Static input parameters like saturation magnetiza-

tion 4πMs, anisotropy field Ha, etc., are measured using standard material characterization

methods. Only dynamic input parameter, damping factor is calculated using the coaxial

line technique proposed in the first part of this thesis.

Our theoretical EM tool is validated by modeling, and realizing a microstrip Y-junction

circulator. Integration of GPT model coupled with magneto-static solver into a commercial

EM simulator made it possible to avoid the limitations of commercial magneto-static and

EM simulations softwares. Keeping in mind the fact that GPT model is valid at any mag-

netization state unlike Polder model which is only valid in the saturated state, the proposed

approach show very good advantage over conventional EM simulations. A magneto-static

analysis of the structure considering inhomogeneous internal fields enabled us to understand

the internal bias field distribution and the demagnetizing field effects on the performances

of circulator. Integration of magneto-static analysis enhances the predictive nature of GPT

model and enabled us to predict the dynamic behavior of ferrite devices more accurately.

It will allow us to understand influence of constituent material properties, and their geo-

metrical parameters, on the performance of these devices.

By taking into account the inhomogeneity of the internal polarizing fields, proposed the-

oretical tool can predict the dynamic behavior of ferrite devices more accurately, at all

magnetization states. This association of theoretical tools with commercial simulation soft-

ware opens up new perspectives for the study and the design of microwave ferrite based

applications.
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In conclusion, we have successfully developed a theoretical tool to fill the obvious void in

the field of ferrite based device modeling which forces the designers to follow a trial and

error approach. This theoretical and experimental tools we have developed, which give

direct access to the only dynamic input parameter (damping factor) of the GPT model and

association of theoretical models with commercial simulation software, constitute a serious

alternative to the conventional procedure (resonant cavity methods) and the use of Polder

formulations. Thanks to universal nature of the GPT model, this EM tool will be applicable

for the design of other ferrite devices regardless of their state of magnetization. This design

tool will help the designers to reduce the cost and time for the development of new ferrite

devices.

Furthermore, it will be interesting to use the coaxial line method for the determination of

damping factor of ferrite materials in the millimeter wave frequencies. New theoretical EM

tool will be more advantageous for the ferrite devices in the partially magnetized states like

tunable filters, phase shifters, self-biased circulators/insulators, miniature antennas, etc. It

will be interesting to use this theoretical tool in the case of devices which uses pre-oriented

ferrite materials and for frequency-agile antennas.
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Modélisation et Caractérisation de matériaux ferrites anisotropes pour les

dispositifs micro-ondes isolateurs/circulateurs

Les circulateurs et les isolateurs à ferrite sont couramment utilisés dans l’électronique hy-

perfréquence en raison de leur forte résistivité électrique et de leur aimantation spontanée

élevée. La conception et l’optimisation des dispositifs micro-ondes à ferrites nécessitent

d’une part la connaissance de leurs propriétés dynamiques, permittivité complexe et tenseur

de perméabilité, et d’autre part le contrôle de la propagation de l’onde électromagnétique

(EM) qui conditionne leurs performances. Les logiciels commerciaux de simulation utilisent

différents modèles théoriques pour décrire le tenseur de perméabilité en fonction de l’état

d’aimantation. Cependant la plupart de ces simulateurs EM restent limités à des états

particuliers d’aimantation en raison des hypothèses simplificatrices des modèles de perméa-

bilité utilisés.

Dans ce travail de thèse, nous présentons un outil prédictif pour l’étude des propriétés EM

des ferrites quel que soit leur état d’aimantation et qui tient compte de l’inhomogénéité des

champs internes de polarisation. Cette modélisation combine des techniques expérimentales

de détermination des paramètres physiques des ferrites et un modèle théorique qui utilise

ces paramètres pour décrire le comportement dynamique des ferrites quel que soit l’état

d’aimantation.

Dans la première partie de la thèse nous présentons une méthode large bande en ligne

coaxiale pour la mesure du coefficient d’amortissement. Les paramètres S théoriques sont

calculés à partir d’une analyse EM (problème directe) de la cellule de mesure. Pour le

problème inverse, une optimisation numérique a été développée pour calculer le coefficient

d’amortissement (α) par comparaison des paramètres S calculés avec ceux mesurés.

Dans la seconde partie de la thèse, nous présentons un outil théorique de modélisation EM

qui combine une analyse magnétostatique, un modèle du tenseur de perméabilité général-

isé (GPT) et le simulateur Ansys HFSSTM. La majorité des paramètres d’entrée comme

l’aimantation à saturation ou le champ d’anisotropie peuvent être mesurés à l’aide de tech-

niques standards de caractérisation statique. Seul le paramètre dynamique, le coefficient

d’amortissement, est déterminé à l’aide de la technique en ligne coaxiale proposée dans la

première partie de la thèse. L’outil théorique développé est ensuite validé par la modélisa-

tion et la réalisation d’un circulateur micro-ruban à jonction Y. Grâce à la prise en compte

de l’inhomogénéité des champs internes de polarisation, l’outil théorique proposé permet de

mieux prédire le comportement dynamique des dispositifs à ferrites et cela pour tout état

d’aimantation.

Mots-clés : Modélisation électromagnétique, caractérisation électromagnétique,

tenseur de perméabilité généralisé, circulateurs, analyse magnétostatique, HFSS.



Electromagnetic modeling and characterization of anisotropic ferrite materials

for microwave Isolators/Circulators

Ferrites are widely used in microwave electronics, particularly for circulators and insulators,

because of their high electrical resistivity and high spontaneous magnetization. Design and

optimization of microwave devices using ferrites requires realistic knowledge of its dynamic

response, namely complex permittivity and permeability tensor and, on the other hand,

control of wave propagation that condition their performance. Commercial simulation soft-

ware use different theoretical models to describe the permeability tensor according to the

state of magnetization. However, most of the electromagnetic (EM) simulators remain lim-

ited to certain states of magnetization, due to the simplified assumptions on which their

permeability models are based upon.

In this thesis work, we presented a predictive electromagnetic tool to study the EM prop-

erties of ferrites, whatever their magnetization state is, and takes into account the inho-

mogeneity of the internal polarization fields. This theoretical modeling approach combines

experimental techniques to find the physical parameters of the ferrites, and a theoretical

model which will use these parameters to describe the dynamic behavior of ferrites at any

magnetization state.

In the first part of the thesis, we presented a broadband coaxial line method for damping

factor measurement. Theoretical S parameters are calculated using the EM analysis (direct

problem) of the measurement cell. In the inverse problem, a numerical optimization proce-

dure is developed to compute the damping factor (α) by matching theoretical S parameters

with measured S parameters.

During the second part of the thesis, we developed a theoretical EM modeling tool which

combines a magneto-static solver, generalized permeability tensor model and commercial

simulation software Ansys HFSSTM. Most of the input parameters like saturation magne-

tization, anisotropy field, etc. can be measured using standard characterization methods,

except the damping factor used to represent the dynamic losses. Static input parameters

of this theoretical tool are determined using standard material characterization methods.

Dynamic input parameter, damping factor is calculated using the coaxial line technique

proposed in the first part of this thesis. Theoretical EM tool is validated by modeling, and

realizing a microstrip Y-junction circulator. By taking into account the inhomogeneity of

the internal polarizing fields, proposed theoretical tool can predict the dynamic behavior

of ferrite devices more accurately, at all magnetization states.

Keywords: Electromagnetic modeling, damping factor, microwave character-

ization, generalized permeability tensor, circulators, magneto-static analysis,

HFSS.


