
HAL Id: tel-01778152
https://theses.hal.science/tel-01778152

Submitted on 25 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuous processing of top-k queries in social networks
Abdulhafiz Alkhouli

To cite this version:
Abdulhafiz Alkhouli. Continuous processing of top-k queries in social networks. Social and Information
Networks [cs.SI]. Université de Cergy Pontoise, 2017. English. �NNT : 2017CERG0895�. �tel-01778152�

https://theses.hal.science/tel-01778152
https://hal.archives-ouvertes.fr

Université de Cergy-Pontoise, Université de Paris Seine,
ENSEA, CNRS (UMR 8051)

ETIS, Equipes Traitement de l’Information et Systémes -

École doctorale Sciences et Ingénierie

THÈSE DE DOCTORAT

présentée pour obtenir le titre de DOCTEUR en Informatique

Abdulhafiz ALKHOULI

Continuous top-k queries in social networks

Directeur de thèse
Dan VODISLAV, Professeur, laboratoire ETIS

Co-encadrant
Boris BORZIC, Ingénieur de recherche, laboratoire ETIS

Date de soutenance : 29 Septembre 2017

COMPOSITION DU JURY
M. Bernd AMANN, Professeur, laboratoire LIP6, Université Pierre et Marie Curie, Paris Rapporteur
M. Jean-Marc PETIT, Professeur, laboratoire LIRIS, INSA Lyon Rapporteur
Mme. Salima BENBERNOU, Professeure, laboratoire LIPADE, Université Paris Descartes Examinatrice
M. Cédric DU MOUZA, MCF HDR, laboratoire CEDRIC, CNAM Paris Examinateur
M. Dimitris KOTZINOS, Professeur, laboratoire ETIS Examinateur
M. Dan VODISLAV, Professeur, laboratoire ETIS Directeur de thèse
M. Boris BORZIC, Ingénieur de recherche, laboratoire ETIS Co-encadrant

2

Contents

Abstract 1

Abstract 3

1 Introduction 5
1.1 Information streams . 5
1.2 Processing models . 9
1.3 Diversification . 10
1.4 Thesis focus . 11
1.5 Thesis outline . 13

2 State of the art 15
2.1 Continuous top-k queries for information streams 15

2.1.1 Filtering text streams . 17
2.1.2 Top-k multicriteria algorithms 18
2.1.3 Filtering social streams . 20
2.1.4 Web search with social network-aware personalization 22
2.1.5 Processing top-k queries in a social network context 25
2.1.6 Real-time search . 26
2.1.7 Continuous processing of top-k queries over text streams . . . 28

2.2 Diversity-Aware top-k query processing over information streams . . . 35
2.2.1 Query results diversification 37
2.2.2 Diversification for top-k queries over streaming data 39
2.2.3 Diversification in Publish/Subscribe system 40

3 Continuous top-k queries in social networks 43
3.1 Data and processing models . 44

3.1.1 Data model . 44
3.1.2 Scoring function . 45
3.1.3 Problem statement . 46
3.1.4 Processing model . 47

3.2 The SANTA algorithm . 48
3.2.1 Index and other data structures. 48
3.2.2 Scoring function . 49
3.2.3 The algorithm . 49
3.2.4 SANTA+: improving action processing 52

i

Contents Contents

3.2.5 CF+: an extended version of COL-Filter 56
3.3 Experimental evaluation . 56
3.4 Summary . 65

4 Diversity-aware continuous top-k queries in social networks 67
4.1 Data and processing models . 68

4.1.1 Data model . 68
4.1.2 Relevance scoring function . 68
4.1.3 Diversity model . 68
4.1.4 Processing model . 69
4.1.5 Problem statement . 69

4.2 The DA-SANTA algorithm . 70
4.2.1 DA-SANTA scoring . 70
4.2.2 Victim selection heuristics . 71
4.2.3 The DA-SANTA index . 71
4.2.4 The case of time-dependent scoring 73
4.2.5 The algorithm . 73

4.3 Experimental evaluation . 75
4.3.1 Experimental setting . 75
4.3.2 Effectiveness of DA-SANTA 77
4.3.3 Efficiency of DA-SANTA . 79
4.3.4 Comparison with Baseline and Incremental 80

4.4 Summary . 81

5 Conclusion and Future Work 83
5.1 Thesis Summary . 83
5.2 Future Works . 85

Bibliography 87

ii

Abstract

Information streams provide today a prevalent way of publishing and consuming con-
tent on the Web, especially due to the great success of social networks. In the social
networks context, users may subscribe to several information sources of interest and
continuously receive new published content. But, this new publishing/consumption
mode may lead to huge amounts of received information, overwhelming for human
processing. Thus, there is a vital need to develop effective filtering and ranking
techniques which allow users to efficiently be updated with the most interesting
content.
Continuous top-k queries over the streams of interest allow limiting results to the
most relevant content. To provide a relevant content, the ranking model should
consider various context factors including the traditional content-based ones, but
also time-based and social network factors. In the social network, maintaining top-k
sets may be more difficult because of their dynamic context: users not only publish
new messages, but may also interact with existing ones, modify relations, change
the profile, etc. For a large social network with millions of users and billions of
messages, the continuous processing of the continuous top-k queries is the most
effective approach. However, current systems fail in combining continuous top-k
processing with rich scoring models including social network criteria. Moreover,
such systems do not consider the diversity of published content.
In this thesis, we focus on filtering information streams based on the computation of
top-k messages for each user in the social network. We aim at developing a scalable
system able to efficiently evaluate the continuous top-k queries with a complex
scoring function. We propose the SANTA algorithm, able to handle scoring functions
including content similarity, recency, but also social network criteria and events in
a continuous processing of top-k queries. We propose a variant (SANTA+) that
accelerates the processing of interaction events in social networks. To provide both
diverse and relevant messages in top-k sets, we propose the DA-SANTA algorithm
which extends the SANTA algorithm to integrate the diversity into the continuous
top-k model while maintaining the efficiency of the system. Our experiments are
conducted over a real dataset extracted from Twitter, illustrating the properties of
our algorithms and demonstrating their efficiency.

1

Résumé

En raison du grand succès des réseaux sociaux, la nature et mode de diffusion de
l’information sur le Web a changé en faveur de contenus dynamiques diffusés sous
forme de flux d’information. Dans le contexte des réseaux sociaux, les utilisateurs
peuvent s’abonner à de multiples sources d’information et recevoir continuellement
de nouveaux contenus. Or, ce nouveau mode de publication/consommation peut
entraîner d’énormes quantités d’information, en surchargeant les utilisateurs. Ainsi,
il est essentiel de développer des techniques efficaces de filtrage et de classement qui
permettent aux utilisateurs d’être efficacement mis à jour avec le contenu le plus
intéressant.

Les requêtes top-k continue sur les flux d’information limitent les résultats au contenu
le plus pertinent. Pour améliorer la pertinence des résultats, le modèle de classement
des résultats de requêtes devrait tenir compte de divers facteurs de contexte, y
compris les facteurs traditionnels basés sur le contenu, mais aussi sur le temps les
facteurs liés aux utilisateurs et à leurs relations (réseau social). Dans le réseau
social, le maintien des ensembles de top-k peut être plus difficile à cause de son
caractère dynamique: au-delà de la publication de messages, on peut interagir avec
des messages existant, modifier les liens avec d’autres utilisateurs, changer son profil,
etc. Pour un grand réseau social avec des millions d’utilisateurs et des milliards de
messages, le traitement continu des requêtes top-k continue est l’approche la plus
efficace. Cependant, les systèmes actuels pour le traitement continu des requêtes
top-k ne considèrent pas des modèles de classement riches, incluant des critères de
réseau social. En outre, de tels systèmes ne tiennent pas compte de la diversité des
contenus publiés.

Dans cette thèse, nous nous concentrons sur le filtrage des flux d’information basé
sur le calcul des messages top-k pour chaque utilisateur dans le réseau social. Nous
visons à développer un système à large échelle capable d’évaluer efficacement les re-
quêtes top-k continues avec une fonction de classement complexe. Nous proposons
l’algorithme SANTA, capable d’utiliser des fonctions de classement, incluant la sim-
ilarité du contenu, le temps mais aussi les critères et les événements du réseau social
avec un traitement continu des requêtes top-k. Nous proposons aussi une variante
(SANTA +) qui accélère le traitement des interactions avec les messages dans les
réseaux sociaux. Pour fournir des réponses pertinentes et diverses, nous proposons
l’algorithme DA-SANTA qui étend l’algorithme SANTA pour intégrer la diversité
dans le modèle top-k continu tout en maintenant l’efficacité du système. Nos ex-
périmentation sont menées sur des données réelles extraites de Twitter, permettant

3

d’étudier les propriétés de nos algorithmes et de montrer leur efficacité.

4

1 Introduction

1.1 Information streams

Web 2.0 technologies have deeply changed the way information is published and
consumed on the Web. Content publishing takes more and more the form of infor-
mation streams available through various information channels. As a result, infor-
mation consumption becomes per stream where users receive in real-time contents
from different information sources. Information streams consist of flows of items,
usually short semi-structured text messages, possibly containing links to some Web
resources (images, videos, pages, etc.), and continuously published through specific
diffusion channels, e.g. RSS feeds from media, blogs, discussion forums, social net-
works, etc. Users may subscribe to several information channels of interest and
continuously receive new published content. Users may also query this dynamic
streams to retrieve relevant information. Every moment, billions of messages being
published with a variety of topics and millions of users expect to receive in real-time
a stream of the most interesting messages. For example, Twitter1 has 320 million
active users with 340,000 tweets per minute2.
This dynamic content generation and consumption has continuously gained im-
portance compared to traditional Web publishing (of Web pages) and exploring
(through bookmarks, search engines and hyperlink navigation). Nevertheless, the
new publishing/consumption mode may lead to huge amounts of received items,
overwhelming for human processing. Thus, there is a vital need to develop effec-
tive filtering and ranking techniques which allow users to efficiently be updated
with the most interesting items. Effective processing of the enormous amount of
messages in information streams has generated considerable recent research interest
[CNN+10, CC15, BOPY07, HMA10]. One of the main objectives of these studies is
how to provide an interesting content for a large number of users and ensure effective
filtering techniques given this unprecedented amount of messages.
Nowadays, users play a key role in the production and consumption of information
streams. Previous passive readers have become both active information collectors
and producers. With the great success of the social network, users actively par-
ticipate in providing information. In social network services, users can have sev-
eral social activities such as publishing a message in Twitter, uploading a video on

1www.twitter.com
2https://about.twitter.com/company

5

Chapter 1 Introduction

Youtube3, tagging a picture in Flickr4 or sharing a message in Facebook5. This
user-generated content contributes to the exponential growth of the Web as seen in
Figure 1.1 which shows the large amount of data generated by several social services
every minute in 2016. In this context, the large number of social network users be-
comes a challenge in the ranking techniques. The collection of the generated content
in the social network, ranking, and filtering of such large-scale multi-query environ-
ment should be made in real-time. In addition, user queries could be implicit based
on user profiles that consider long queries, which have a significant impact on the
effectiveness of the filtering approach compared to small queries.
A common behavior in almost all social networks is that each user follows other
users “friends” in order to be informed of newly published content. Consequently,
users receive real-time content published by their friends. An important dimension
in this publish-subscribe (pub/sub) framework is the relationship between publishers
of information streams and subscribers. This social network dimension varies from
no relationship at all in the case of RSS/Atom feeds, to possible interaction with the
published messages on blogs (comments) and discussion forums (reply messages),
and to explicit relationships between users playing the double role of publishers and
subscribers on social networks such as Facebook (symmetric “friendship” relations)
or Twitter (asymmetric “following” relations). The social network dimension con-
tributes not only with providing information streams of interest to end users, but
also comes with criteria to measure this potential interest.
Furthermore, social networks allow users to evaluate content by giving feedback
at different levels. Users can produce different types of feedback on the published
content, e.g. they can like a message, comment on it or share it. Each of these
types plays an important role in assessing the importance of the published content
and the visibility of information. Many research works in the web search domain
have focused on integrating the social network dimension and social feedback in the
filtering techniques in order to personalize the results and to improve their quality
[YLL10, GCK+10, KS12]. Unfortunately, these studies fail to process in real-time a
huge amount of information for a large number of users.
One way to cope with the huge amount of information, potentially interesting,
available from different information channels is to organize the channels of interest
by topic. Mechanisms such as RSS/Atom allow users to subscribe to information
sources; once a new information is available in the subscriptions sources, users will
immediately be notified. By using RSS reader applications such as Feedly6, users
can group the information sources by topic (e.g Politics, Science, Tech, etc.), to help
users to choose information streams of interest. This is impractical since it limits
the number of the subscriptions sources made by users, otherwise users would still
be overloaded by the published content. Also, in each channel not all the published

3www.youtube.com
4www.flickr.com
5www.facebook.com
6www.feedly.com

6

1.1 Information streams

Figure 1.1: Content generated by users every minute in 2016
source: https://www.domo.com/learn/data-never-sleeps-4-0

7

Chapter 1 Introduction

content is equally useful to users. Thus, models for ranking content and filtering are
necessary.
Recent research studies propose methods for filtering information streams. Boolean
filteringmodel has been first proposed for text streams, using filters based on boolean
keyword predicates. However, it is difficult to manage the number of results because
in one context it may retrieve too many results and too few in another context.
An alternative way to organize the large amounts of stream messages is to define a
ranking model based on the importance of a message relative to a given subscription
query. Measuring this importance by a relevance score allows end users to identify
and to focus on the most important messages for them. Some approaches [ZC01,
YGM99] limit the number of query results through a predefined threshold for the
relevance score, only the messages that pass the threshold are presented to users.
Nevertheless, choosing a threshold value to be suitable for a given context is a very
hard task.
More recent works over information streams [MP11, RCCT14] consider only the k
most relevant results in (pub-sub) publish-subscribe framework. This thesis adopts
the filtering of the stream messages based on the continuous top-k model. This model
continuously maintains the k most relevant messages of the stream for each subscrip-
tion query in the pub-sub system. In this context, the first significant challenge is
to define the ranking model since it plays a key role in determining the complexity
and quality of results in the system.
The ranking model may depend on various context factors, among which we em-
phasize the following ones:
• Content based factors, measuring the adequacy of the message content with

the subscription query. Since textual content is characteristic to information
streams, content-based subscription queries are usually based on sets of terms
of interest, and the importance of a message is evaluated from an information
retrieval perspective, as the relevance of the text message to the query, based
on popular models such as tf-idf [SB88] or BM25 [JWR00].
• User based factors, measuring the importance of users and of their relation-

ships in the social network, for instance the importance of the message pub-
lisher and of the relationship between the subscriber and the publisher. In
most cases user-based importance is measured on the social network graph, by
evaluating e.g. node centrality and distance between nodes.
• Interaction based factors, measuring the importance of messages by the reac-

tion they provoked, expressed through actions of other users on that message.
Depending on the social network context, current actions may be likes, com-
ments, forwards, tagging as favorite, etc.
• Time based factors, measuring the decrease of importance for a message as

time goes by. Two main approaches are used to take into account this dimen-
sion: sliding time windows [GÖ03], resulting in dropping messages older than

8

1.2 Processing models

a given duration, and time decay functions [SGFJ13, VAC12], expressing a
continuous decrease of importance.

Other context factors, that we do not consider here, may contribute to evaluate the
importance of messages, such as geographic location or other information elements
specific to the social network and to the pub/sub environment. In Chapter 3, we will
describe in detail our ranking model and how to implement these different factors.
We will also see how to manage in particular the last two factors since these factors
are dynamic (change over time).

1.2 Processing models

The second main challenge in the continuous top-k model for filtering information
streams is the design and implementation of efficient processing models at a very
large scale (millions, up to billions of users and information streams). In the case of
ranking models based on scoring functions, where subscription results are limited to
the most important messages, the main difficulty comes from the need of continu-
ously (re-)computing the score of every message relative to every subscription query
and of subsequently maintaining the lists of subscription results. The complexity of
this task depends not only on the number of messages and queries, but also on the
form of the scoring function.

Two main approaches of processing models have been proposed in the literature and
in the commercial systems. The static approach runs periodic snapshot queries on
all published messages to get the list of the most important messages for each user.
The continuous approach handles subscriptions as continuous queries reacting to
new messages and to other events, in order to incrementally maintain the important
messages. If the continuous approach is more efficient, it also has more difficulties
to handle complex scoring functions. To the best of our knowledge, the continuous
methods proposed so far only explored simple scoring functions, most of the time
based on the textual content, eventually combined with time factors. More com-
plex scoring, including social network factors has been proposed, but only handled
through a static approach.

Figure 1.2 presents the general architecture of continuous top-k processing of infor-
mation streams, behaving as an event-based system. The result of such a process
is the set of top-k messages for each user in the social network, continuously main-
tained by the system. The event processor handles every input event that may
produce changes to the result lists, computes changes and subsequently updates the
result lists. Change computation is based on the data structures representing the
information streams and the social network, and on the index structures that enable
efficient event processing.

In our information stream context, we distinguish two categories of events:

9

Chapter 1 Introduction

• Continuously handled events, with potentially strong impact on top-k update,
and that must be processed on the spot. We include in this category, the
publication of a new message and the interaction with an existing message.
• Secondary events, with a weaker impact on the top-k lists; they may be accu-

mulated and processed from time to time. We include in this category changes
in the social network that may produce small changes in the scoring parame-
ters.

Evaluating the impact of various categories of events depending on the scoring model
is a difficult problem, but continuously reacting to any event that may change some
message score component is not realistic in practice, given the complexity of our
scoring function. The above classification of events is a necessary trade-off between
efficiency and precision.
In Chapter 3, we present our model for continuous top-k processing and we describe
the SANTA algorithm, able to handle scoring functions taking into account the
above factors. We also present a variant (SANTA+) that improves the processing
of interaction events in social networks.

Figure 1.2: General architecture for continuous top-k processing of information
streams

1.3 Diversification

Despite the positive effect of the proposed scoring models to improve the filtering
process and increase user satisfaction in the top-k pub/sub system, such models
do not guarantee that messages in top-k are diverse. Indeed, ranking based solely
on relevance can often produce results that are too homogeneous, which could lead
to the over-specialization problem. Moreover, in the social network environment,
when an important event occurs, for example “Brexit”, stream messages published
on this event tend to be similar due to the nature of the actions in this environment,
i.e sharing, retwetting, tagging, liking, etc. Thus, users may receive similar and
redundant messages in real time.

10

1.4 Thesis focus

The diversification of results is widely studied in traditional IR system and web
search to improve the results quality [VRB+11, AK11, GS09]. The aim of diversi-
fication is to ensure that the query results are the most relevant and, at the same
time, as diverse as possible. In the literature, several forms of the diversity have
been studied. Content-based diversification focuses on increasing dis-similarity be-
tween documents in search result. Intent-based diversification interprets explicitly
all possible intents (topics) of user’s query using external information such as query
logs, and retrieves documents that satisfy all these intents. In this thesis, we focus
on the content-based diversification in order to avoid duplicate content in the top-k
lists.
In general, a new message can enter a top-k of a given user, if it has a good enough
relevance score. In content-based diversification, a new criteria (diversity) is added
to the relevance to rank the messages in the top-k list. The relevance expresses the
importance of a message for a user query, diversity could express the distance of a
message to other messages in top-k. This creates a new filter for stream messages
because we want to avoid similar messages in the results, even if the new message
has a good relevance score to be ranked high in the top-k, it can be excluded if
its diversity is low, i.e it is very similar to existing messages in top-k. In order to
combine these two criteria, we adapt bi-criteria objective functions ([GS09]) that
mix the relevance and diversity in a linear way.
In information streams context, few researchers have addressed the problem of diver-
sity for a large number of queries. To our knowledge, all of top-k pub/sub systems
excepting [CC15], do not consider the diversification of results. In the second part
of the thesis, we focus on the diversity alongside the relevance in the computation
of top-k. We develop an effective solution to scaling up on the number of stream
messages and users. In Chapter 4, we present the DA-SANTA (Diversity-aware
SANTA) algorithm, which is able to continuously maintain the k messages that are
both diverse and relevant for each subscription query in the top-k pub/sub system.

1.4 Thesis focus

In this thesis, we focus on filtering information streams in a social network context
based on the computation of top-k messages for a large number of users. We follow
the continuous approach to evaluate the top-k queries using a rich scoring function
mixing content-based, user-based, interaction-based and time-based components.
We also tackle the diversity problem to improve the effectiveness of results and
increase the user satisfaction. We model the social network as a pub/sub environ-
ment, where users publish messages and subscribe to information streams produced
by other users in the network. The subscription queries are implicit, based on the
user profile. In this model, when a new message is published by a user, all other
users are candidates. We aim to achieve two main objectives. First, to develop a
scalable method to maintain the k most relevant messages for each user in the social

11

Chapter 1 Introduction

network at all time. Second, to introduce diversity into this model in order to ensure
that messages in top-k lists are relevant and diverse while preserving the efficiency
and the quality of the results.

The main contributions of this thesis are the following ones:

• We propose a general model of information stream social network (ISSN) cov-
ering many existing social networks. In an ISSN model, stream messages
are generated by social network users and relations between users are non-
symmetric. User profiles constitute implicit queries over message streams. In
order to filter/rank stream messages, we propose a rich scoring model includ-
ing all the factors introduced above: textual content importance, user relative
importance, interaction importance and time factor.

• Based on this model, we propose an algorithm, SANTA (Social and Action
Network Threshold Algorithm), for continuous top-k processing of information
streams, using a scoring function that includes all the social network factors
identified above, and able to handle both publication and action events - to
the best of our knowledge, SANTA is the first algorithm of this type. SANTA
adopts a simple sorted-lists index that provides flexibility for the extension to
new score criteria in a social network context, and for parallel processing. To
enable efficient processing for a new event, we use an index structure for queries
(user profiles). SANTA using threshold-based techniques evaluates the new
event with a limited number of queries in the index. Existing algorithms for
continuous top-k processing [VAC12, HMA10, SGFJ13, MP11] can be hardly
extended with social network criteria in the scoring function and face the
problem of heavy index updates when the top-k scores change. Unlike them,
SANTA minimizes index updates by isolating changes into a single dimension.

• A variant of SANTA, called SANTA+, that significantly improves the pro-
cessing of action events. SANTA+ avoids re-processing messages by main-
taining an additional data structure to store the processed messages with in-
formation calculated when the message is published.

• The DA-SANTA (Diversity-aware SANTA) algorithm extending the SANTA
algorithm for top−k continuous processing, and is able to continuously main-
tain the k messages that are both diverse and relevant for each query in the
system. The DA-SANTA algorithm adopts the commonly used max-sum di-
versification bi-criteria objective function [GS09] to combine relevance and
diversity into a single scoring function for top−k computation.

• A rich set of experiments over a real dataset extracted from Twitter, illus-
trating the properties of our algorithms and demonstrating their efficiency
compared to an extension of a state-of-the-art algorithm.

12

1.5 Thesis outline

1.5 Thesis outline

Chapter 2 presents a literature survey of the related work. The first part of this chap-
ter presents a review in the context of the continuous top-k queries for information
streams. We present the filtering and ranking models proposed over text streams.
For the top-k queries, we first introduce the general algorithms for processing top-k
queries. We also present new filtering approaches used when the streams are pro-
duced in social networks. Then, we introduce the ranking models based on social
network criteria in the search on the Web. We present the works that addressed the
problem of processing top-k queries in the context of the social network. Finally, we
present the closest studies to this thesis, the continuous top-k queries over informa-
tion streams. The second part presents the problem of query results diversity. We
first present a general introduction to the problem. Then, we introduce approaches
for computing the diverse top-k result over a static collection of data. Finally, we
present the continuous version of the query results diversity.
Chapter 3 describes our first contribution. We present our model of information
stream social network (ISSN), the ranking model including social network criteria,
and the SANTA/SANTA+ algorithms. Finally, we compare our algorithms with an
extension of the closest approach in the state of the art, the COL-Filter algorithm.
Chapter 4 describes the second contribution. We present the problem of query
results diversity, in particular, the continuous version of the diversification. We in-
troduce the adopted diversity model. Then, we describe the DA-SANTA algorithm.
Finally, we present the experimental evaluation of our approach.
Chapter 5 concludes and provides a discussion about possible future works.

13

2 State of the art
This work aims at realizing two main objectives. The first one is to propose an
efficient solution for filtering content over text streams based on top-k selection
with an efficient continuous processing approach. The proposed ranking function
in the top-k model considers social network factors combined with text relevance
factors. The second objective is to consider the results diversification problem in
this continuous top-k model, while preserving the efficiency and effectiveness of our
model.
This Chapter is divided into two parts. In the first part, section 2.1 presents an
overview of the continuous top-k queries for information streams. In the second
part, section 2.2 presents the problem of query results diversity.

2.1 Continuous top-k queries for information streams

Publishing and consuming content through information streams is today at the heart
of the new Web. Information streams consist of flows of items, usually short semi-
structured text messages, possibly containing links to some Web resources (images,
videos, pages, etc.), and continuously published through specific diffusion channels,
e.g. RSS feeds from media, blogs, discussion forums, social networks, etc. Users
may be both producers and consumers; as consumers, they subscribe to informa-
tion channels of interest and continuously receive on it, in real-time, new published
content. Nevertheless, this new dynamic publishing/consumption mode may lead to
huge amounts of received items, overwhelming for human processing. Thus, there is
a vital need to develop effective filtering and ranking techniques which allow users
to efficiently be updated with the most interesting items.
Our first goal is to propose an efficient solution for filtering content over text streams
based on top-k selection with an efficient continuous processing approach. We dis-
tinguish in general two types of top-k queries, snapshot top-k queries and continuous
top-k queries.
• Snapshot top-k queries return the k most relevant results from a static col-

lection of items at a moment in time. The top-k results do not change in
time.
• Continuous top-k queries are applied over a stream of items. These queries

maintain the k most relevant results of the stream at all time. That is, continu-
ous queries continue to update the top-k results when new items are available.

15

Chapter 2 State of the art

Many of algorithms are proposed for processing snapshot top-k queries in databases
and information retrieval systems. In the case of multicriteria ranking, the most
popular algorithms are Threshold Algorithm (TA) and No Random Access (NRA)
[Fag02], presented below.
In this thesis, we are interested in the continuous top-k queries over information
streams in the social networks. As mentioned above, two main categories of process-
ing models for the continuous top-k queries have been proposed to date, the static
approach and continuous approach.

1. The static approach is based on periodic snapshot queries over the set of pub-
lished messages to get the top-k list for each query. In this model, the published
messages are maintained in some index structure. Then, with a predefined
scheduling strategy, a top-k algorithm is applied on the indexed messages for
computing the top-k set from scratch for every subscription query. One of
the major challenges is that messages arrive in real time and with a very high
throughput. Maintaining all messages in an index structure is very costly.
Also, the periodic evaluation of a large number of queries from scratch is
clearly inefficient. The static approach is used in Twitter’s search service, see
subsection 2.1.6 for more details.

2. The continuous approach handles subscriptions as continuous queries reacting
to new messages and to other events, in order to incrementally maintain the
important messages. Here, only the subscription queries are indexed, and
the incoming events are processed on-the-fly. Only the top-k results for the
impacted queries are incrementally updated when a new event arrives to the
system.

Recent works over information streams [MP11, HMA10, RCCT14, VAC12, SGFJ13]
have adopted the continuous processing approach for top-k computation. If the
continuous approach is more efficient, it also has more difficulties to handle complex
scoring functions. The continuous methods proposed so far only explored simple
scoring functions, most of the time based on the textual content, possibly combined
with time factors. More complex scoring, including social network factors has been
proposed, but only handled through the static approach.
We organize this section as follows: Subsection 2.1.1 presents filtering techniques
used over text streams, in particular, the boolean filtering model and the filtering
based on ranking models (top-k filtering). In Subsection 2.1.2, we present the pop-
ular algorithms for processing snapshot top-k queries in databases and information
retrieval systems. In Subsection 2.1.3, we present specific filtering techniques and
recommender systems when text streams are produced in a social network. Subsec-
tion 2.1.4 presents works that focused on the personalization of web search results
and ranking models based on social network criteria. Subsection 2.1.5 introduces
techniques and approaches for processing snapshot top-k query that use ranking
models based on social networking criteria. In Subsection 2.1.6, we introduce top-k
processing for continuous top-k multi-query environment based on the static ap-

16

2.1 Continuous top-k queries for information streams

proach. Subsection 2.1.7 presents continuous processing of top-k queries for a large
scale pub/sub environment.

2.1.1 Filtering text streams

Several approaches have been proposed to tackle the problem of reducing the amount
of information received from different streams by filtering their contents. We present
in this section the most important filtering models proposed over text streams.

The Boolean filtering model has been first proposed for text streams, using filters
based on Boolean predicates. In this model, the query is expressed by boolean
expressions on terms, the terms are equally weighted. All items that match the query
predicates, will be retrieved without any relevance ranking. In a pub/sub context
such solutions [HKC+12, YGM94b] come with various index structures based on
inverted lists for fast detection of the subscription queries concerned by a stream
input message and avoid checking all subscriptions queries, in the context of a large
number of subscriptions. The drawback of boolean filtering is that the number of
results may be in some cases too big or too small.

Filtering based on ranking models. By using ranking models based on relevance
scores, it is possible to select the best results and to adapt their number to the
needs of the end users. Information retrieval (IR) ranking models, such as tf-idf
[SB88] or Okapi BM25 [JWR00] provide ranking of results through a relevance
score computed for each item in the context of a given text query. Usually, the
Vector Space Model is used to represent queries and items and the cosine similarity
function is considered to compute the query-item text relevance score [BM96].

Two main approaches have been proposed for filtering stream messages in an IR
ranking context. The first one uses a predefined threshold for the relevance score
[YGM94a, YGM99, Cal96, SB88] and it only keeps items in the query’s result with
a query-item similarity score that exceeds the threshold. However, finding the right
threshold in a given context is a difficult task. A low threshold value may make the
user be overloaded with an important amount of results, on the other hand, a high
threshold value return no results at all. For this reason, [ZC01] proposes a method
for adaptive detection of this threshold.

The second approach is a top-k computation that keeps only the k most relevant
items in the query’s results. The difficulty in this case, compared to threshold-based
ranking, is to continuously maintain a changing list of top-k results.

In this context, our work addresses top-k filtering for information streams in a so-
cial network environment, going beyond text-only scoring models. We propose a
social relevance score to compute the relevance of a message in the social network
environment. Our purpose is to go beyond the state of the art methods for contin-
uous processing of top-k queries over information streams, by considering a social

17

Chapter 2 State of the art

network environment with complex scoring functions that include the ranking fac-
tors mentioned above: content-based, social network based criteria and time-based
factor.

2.1.2 Top-k multicriteria algorithms

In this section, we introduce the most popular algorithms for processing snapshot
top-k query based on multiple criteria used in databases and information retrieval
systems. The most known algorithm in this context is the Threshold Algorithm
(TA) [Fag02]. Our work and many of the top-k algorithms for information streams
that will be presented below, are based on the TA algorithm. In the following, we
explain the TA algorithm from the perspective of information retrieval.
Given a finite set of documents D, for a document d ∈ D having m terms Td =
{t1, ..., tm}, we note wt1d,, wtnd the weights of terms in d (each term weight in the
interval [0, 1]). Given a query q with n terms Tq =

{
t
′
1, ..., t

′
n

}
, with wt′1q, ..., wt′nq the

weights of terms in q. The overall relevance score for a document d relative to q is
f(wt′1q, ..., wt′nq;wt1d,, wtnd). Given a fixed number k, the top−k algorithm should
find the best k documents with the highest overall score.
In information retrieval, the TA algorithm supposes the documents are indexed in
an inverted index sorted by the term weights. Let ω be the number of all terms
appearing in D, the inverted index consists of ω sorted lists l1, ..., lω. Each term t
maps to a list l that indexes documents containing t, sorted in the descending order
of the term weight where each entry in the list has the form (di, wtdi

). The TA
algorithm requires the aggregation function f to be monotonic, which is the case
with cosine similarity or with BM25.
At query evaluation, the algorithm identifies the lists corresponding to the query
terms. The TA algorithm traverses the lists as follows: it sequentially accesses the
first entry of each of the lists, then the second entry of each of the lists, and so
on. For each document seen in the index, the overall score is computed and if this
score is greater than the k − th score in the current top-k then the document can
be added to the top−k list. To avoid evaluating all the documents in the lists, TA
examines a stopping condition at each step. Let (di, wtj) be the last entry seen in
each list lj, the threshold value τ is f(wt′1q, ..., wt′nq;wt1d,, wtmd) and TA stops if
the k − th current score is equal or greater than τ . Note that, the threshold value
represents the best possible score for unseen documents because of the monotonicity
of the aggregation function and the order in the inverted lists. This means that the
stopping condition guarantees that no unseen document can enter the top-k, because
its best score would be smaller than the k − th score.
In the TA algorithm, in order to compute the overall score for a document seen in
the sequential access on a list, it should randomly access to the other lists to get the
weights of the document for the other terms. A variant to the TA algorithm, called

18

2.1 Continuous top-k queries for information streams

no random access (NRA) could be used when the random access is not available
to the lists. An interval of scores is computed for each document instead of the
overall score. In this interval, the minimum(maximum) value represents the mini-
mum(maximum) score of the document and is updated by traversing the lists. Note
that, in this case, the documents in the current top-k are sorted by the minimum
score values. Like in the TA the threshold value τ is computed by aggregating the
last entries seen in the lists and the NRA stops when the minimum score of the
k − th document is greater than the threshold value τ and exceeds the maximum
values of the candidates’ scores.

Figure 2.1: Execution example for the threshold algorithm TA
Example 1. Figure 2.1 shows the evaluation of the top−1 results of the query
q(t1, t2) with the TA algorithm. We consider that the aggregation function is the
cosine similarity presented below. For simplicity, the query term weights are equal to
1; wq,t1 = 1, wq,t2 = 1 and we did not use here normalized weights. We consider the
two lists (L1, L2) in the inverted index which correspond to the query terms(t1, t2)
sorted in descending order of the documents term weights wd,t1 , wd,t2 .
In step 1, the documents d1, d2 are retrieved following a sequential access on the
lists L1, L2 respectively. For each document, the algorithm randomly accesses the
another list in order to compute the overall score. Then, the two documents can

19

Chapter 2 State of the art

be added to the current top−k with their final scores d1 = 1.2, d2 = 0.5 and the
threshold value is computed τ = 1.3. Remember that, the the threshold value is
obtained by applying the aggregation function to the last entry seen in each list.
In this step the TA does not stop since the threshold value τ = 1.3 is greater than
the k − th document score in the current top−k, d1 = 1.2. Note that here the
k − th document is d1 since k = 1. In step 2, TA retrieves a new candidate d3 and
the threshold value becomes τ = 0.9. In this step, TA confirms that the document
d1 = 1.2 is the top−1 result for the query q and it stops since τ = 0.9 < d1 = 1.2,
which means that the maximum score for any unseen document τ is below of the
k − th current score.
Figure 2.2 shows the evaluation of the query q(t1, t2) using the NRA algorithm. As
mentioned above, NRA only allows the sequential access to the lists and maintains
an interval of scores for each candidate. In step 1, as for TA the documents d1, d2
are retrieved following a sequential access to the lists L1, L2. But here, the interval
of scores is computed for each of them instead of an exact score. For example, the
document score interval of d1 is [0.9 − 1.3] where its partial score in the list L1
(the minimum score) is 0.9 and its maximum overall score is 1.3. Note that, the
maximum overall score of d1 is obtained by applying the aggregation function on
its partial score in L1, (0.9) and the maximum partial score that would have in L2,
(0.4). The documents are maintained in descending order of their minimum scores
in the current top-k list. Like in TA, the threshold value τ equal to 1.3. In step 2,
the interval scores for each candidate are updated. In this step, the document d1has
its exact score [1.2−1.2]. The algorithm NRA stops since the minimum score of the
k − th document in the current top−1 , d1[1.2 − 1.2] is greater than the threshold
value τ = 0.9 and all the maximum scores of the other documents in the current
top-k list.

2.1.3 Filtering social streams

This section presents information filtering over the streams produced by the users
of the social network, in this context the proposed filtering techniques benefit from
the social dimension. The relationship between users introduces the social network
dimension that may provide additional criteria, beyond the traditional content-based
ones to measure the potential interest of information messages for users.
The increased number of users on social networks results consequently into an im-
portant increase of user-generated content. Social networks services such as Twitter1

and Facebook2 constantly generate millions of messages on a variety of topics every
day. Without filtering these streams, it leads to an overload of information. Unlike
simple text streams, social streams have new characteristics that may help in the
filtering process. Users in social networks create explicit relationships like symmetric

1www.twitter.com
2www.facebook.com

20

2.1 Continuous top-k queries for information streams

Figure 2.2: Execution example for the no random access algorithm NRA

“friendship” relations in Facebook or asymmetric “following” relations in Twitter.
Thus, users receive in real-time information messages published by their friends. In
addition, social networks users can evaluate content by giving feedback on messages
such as likes, comments, forwards, tagging as favorite, etc. User feedback can be
helpful in assessing the importance of published messages and may change the initial
ranking at some point.
Content recommendation systems over social streams have widely studied in the re-
search community [CNN+10, CCZ+12, SCZ09, KOSP11, KSJ09, PGC+10, CNC11]
and in the industry. These systems use ranking models based on social network
criteria. The role of these systems is to help users to be updated only with an
interesting content.
[CNN+10] proposes a URL recommendation to users in Twitter by ranking the
URLs. The ranking is based on text relevance score between user profile keywords
and the URL description keywords. It also considers a social voting by recommend-
ing the popular URLs mentioned by most of the users.
[DFMGL12] proposes a recommendation system to recommend top-k interesting
news articles to users by combining two kind of streams, news streams (from Yahoo!
News) and social streams (from Twitter). News streams have a large volume of news

21

Chapter 2 State of the art

articles and users’ social streams have social signals that can be exploited to address
the problem of personalization. The relevance model is based on the profile of user’s
friends in the social network, on the content of user’s messages in their own stream,
and on the popularity of topics in the news streams and the social network.

In [CCZ+12] authors recommend useful tweets to users based on a collaborative
ranking model. They consider three majors elements in the model: tweet content,
user social relationships and other extra information such as publisher authority and
quality of the tweet.

[PGC+10] predicts the importance of messages in Facebook feeds using support
vector machine (SVM). While above works focused on recommending individual
messages, [CNC11] recommends multiple messages (conversation) on Twitter, their
algorithms explore three factors to discover the best ranking model: the number of
messages in the conversation, the topic relevance and social relationships between
users.

Typically, in the recommender systems presented above, the efficiency issue was
out of the scope and real-time recommendation for million of users is not consid-
ered. These recommender systems are only proposed to provide a better relevance
estimation in social network environments.

We propose a real-time recommender system that supports a large number of users
in a social networks context, for each of them we recommend in real-time the best
k ranked messages published by the users in the network.

In the industry, several filtering techniques and recommendation services have been
proposed. Facebook uses its algorithm EdgeRank to determine messages that should
appear to users when they log in. An “edge” in Facebook is any event in the network
such as publishing a message, liking a message or a comment on it. Three differ-
ent components are considered in EdgeRank: the strength of relationships between
the edge’s creator and the consumer, the edge’s weight (for example, publishing a
message is more important than a like) and time decay to consider the recency. At
the same time, Twitter since its creation, uses a simple display strategy without
any filtering technique, simply based on reverse chronological order. More recently,
Twitter started to apply some filtering methods based on relevance. Also, many of
third-part applications propose techniques to filter social streams such as Flipboard3

and my6sense4.

2.1.4 Web search with social network-aware personalization

This section explores the personalization of web search results and ranking models
based on social network criteria.

3www.flipboard.com
4www.my6sense.com

22

2.1 Continuous top-k queries for information streams

Personalizing the search in order to improve the quality of results has been exten-
sively studied in information retrieval (IR) and Web search. Search personalization
adds various types of the information from the user who initiated the query when
evaluating the query. Users have different preferences and interests and may need
different results, even when they initiate the same queries. In the non-personalized
search (user-neutral), the user who initiates the query is negligible. Thus, two differ-
ent users initiate the same query, seeing the same results. While in the personalized
search, user is actively involved in the search process and user information has an
impact on ranking.
Several studies propose profiling models based on tracking and gathering users’
preferences and interests, they also offer approaches to incorporate them into ranking
models to personalize the search. In general, profiling models include users’ searching
histories[TSZ06], click-through analysis[JGP+05], personal bookmarks[JW03] and
topics of interest[CNPK05]. Tracking implicit user’s activities to create the user
profile pose often the problem of privacy.
Users’ social network provides a relevant public information about their needs and
interests. Explicit relationships between users and interactions in the social network
provide social data ideal for personalization. Users are generally more interested
in content coming from friends than others in the network. On-line social services
give users the possibility to express their opinions by publishing content and also by
evaluating content through feedback such as likes, comments, forwards, tagging as
favorite, etc. User profiles created from the public social data would be appropriate
to express user’s interests and do not violate the privacy.
In the following, we present works that focused on personalizing search results and
improving the textual search on the Web using social data. Several ranking models
to combine social data with textual relevance rankings have been proposed to im-
prove the accuracy and quality of query results [KS12, YLL10, GCK+10, CZG+09,
MGD06].
[CZG+09] investigates personalized search over “social” data collected from Web
2.0 applications, such as social networks, blogs, forums, etc., based on the user’s
social relationships. They re-rank the search results by considering the relationships
between users that belong to the searcher’s social network and the results. Thus,
objects that are strongly related to the “close” users in the searcher’s social network,
are highly ranked. The relationships strength with the objects in the results depends
on its type, which could be authorship, tagging, or commenting. They experiment
with different social networks of the user either through explicit connections or
implicit connections through social activities (e.g., tagging with the same tag, liking
the same object). They show that personalization based on the social network factors
significantly outperforms non-personalized social research and other personalization
strategies.
[KS12] proposes a scoring model to calculate socio-textual relevance between web
documents and users by utilizing social data available in their social network. The

23

Chapter 2 State of the art

proposed model considers several social parameters including relationships between
users, importance of users in the network and actions that users perform on web
documents. Then, they linearly combine the social parameters with the textual
relevance model (tf-idf).

[YLL10] focuses on efficient top-k search on Web documents and proposes two pro-
cessing strategies: textual relevance TR-based search and social influence SI-based
search. The scoring model combines two factors, textual relevance (TR) and social
influence (SI) to determine the relevance of documents relative to users’ queries. SI
relevance is represented by the distance between two users in the social graph and
the tf-idf model is used to compute TR relevance. The two strategies operate in a
pipeline fashion. TR-based strategy firstly fetches in descending order of TR score
all documents with non-zero TR score, then for each retrieved document, it traverses
the social network to determine SI score between the querying user and document
publisher, finally it computes the total score. SI-based strategy firstly traverses the
social network and get users in descending order of SI, then for each document, the
total score is computed.

[GCK+10] proposes a social network-aware ranking framework that considers both
text relevance and social relevance. Text relevance is based on popular models like
tf-idf or BM25. Social relevance relies on the relationships between document owners
and the querying user in the social network. The relationships between two users is
modeled by a similarity function which is based on the structural information of the
social network. For example, the more common neighbors between two users more
those users are similar. They propose an algorithm MAS to compute the similarity
functions. They focus on how to efficiently compute these similarity functions over
large social networks with millions of users.

The studies in this section focus on discovering different social signals and how to
integrate them with traditional content-based ranking models to improve ranking
relevance and improve search results. These methods are designed for searching web
documents, but their complexity prevents their use for streaming data with continu-
ous top-k processing. Our work aims at personalizing the query results on the basis
of criteria issued from the user’s social network. We propose a rich score model,
including social network components, providing a good compromise between ex-
pressiveness and complexity for continuous top-k processing of information streams.

We can classify the social criteria used in the scoring model for search personalization
on the Web into two components:

1. User based factors, measuring the importance of users and of their relation-
ships in the social network. In this category, we can consider two different
parametrs, the global importance of the user in the social network and the
relative importance between the users. In most cases user-based importance
is measured on the social network graph, by evaluating e.g. node centrality
and distance between nodes.

24

2.1 Continuous top-k queries for information streams

2. Interaction based factors, measuring the importance of documents by the re-
action they provoked, expressed through actions of other users on that docu-
ment. Depending on the social network context, current actions may be likes,
comments, forwards, tagging as favorite, etc.

2.1.5 Processing top-k queries in a social network context

In this section, we present the works that addressed the problem of processing snap-
shot top-k query in a social network context, particularly in social tagging networks,
with a focus on efficiency issues. In this context, top-k retrieval algorithms consid-
ering social criteria have been proposed in [MC13, SCK+08, YLAY09].

Social tagging networks, such as Delicious5 or Flickr6, are a particular case of social
network, where users can publish items and also add some keywords (tags) to items
published by other users. Items in social tagging networks could be images, videos or
text. Collective human tagging is a significant feature for describing and classifying
the content and more importantly make it search-able. Browsing the information by
tags is an effective manner to access content. In this social environment, users may
also be interested in querying the content and retrieving the most relevant results.
“Tags” added manually by users make these social networks rich in both textual
and social factors, it is therefore interesting to apply a combined textual-social top-
k query in such social networks where items that are tagged by the querying user’s
“friends“ should be ranked higher. Traversing all users and testing their items for
ranking is a costly operation. In such context, efficient processing for snapshot top-k
queries is a challenging task due to a large number of items in the social network.
In the following, we describe the studies that address the problem of processing
snapshot top-k query in social tagging networks.

[YBLS08] proposes network-aware search in collaborative tagging sites and defines
the problem of efficiently processing top-k queries. Authors consider only a subset
of users that contribute to the social relevance score, those who have a direct rela-
tionship with the querying user. The relevance score of an item i for a user u w.r.t a
tag tj is defined as a montone function of the number of users in the social network
of u who tagged i with tag tj. They develop generalizations of top-k processing
algorithms (NRA[FLN01] and TA[Fag02]) to incorporate network-aware search.

In [SCK+08], the social relevance is considered under the general interpretation,
users in the whole network could contribute to it. The social scoring of item i for
a user u w.r.t a tag t includes the importance of a user v relative to u and the
importance of the tag t for the user v w.r.t the item i. All users vj that have a path
with u in the social graph are considered in the social relevance. Authors maintain
an index composed of three types of lists. Tag-item lists, for each tag t an inverted

5www.del.icio.us/
6www.flickr.com/

25

Chapter 2 State of the art

list of items tagged by the tag t. User-tag-item lists, for each user u and each tag t,
they maintain an inverted list of items tagged by u with t. User-user lists, for each
user u, they maintain a sorted list containing other users vj with their importance
relative to u. They propose disk-based algorithm ContextMerge which follow the
principle of top-k threshold algorithm TA [Fag02] over sorted lists. At each step,
ContextMerge chooses either to test the items retrieved from User-tag-item lists
(items tagged by the closest unseen user) or from Tag-item lists.
In [MC13], the social relevance is similar to the one of [SCK+08] and also considers
the users in the whole network but the similarity between users is not pre-computed
as in [SCK+08]. They propose a technique to compute the social relevance on-the-
fly for a large family of functions for similarity computation in a social network.
This is done based on the generalizations of Dijkstra’s shortest paths algorithm
[Dij59]. Then, an exact algorithm for top-k queries using a memory-based index is
proposed. In order to improve the execution time, authors explore some approximate
techniques in the computation of top-k results. Particularly, they use approximation
for the on-the-fly computation of the similarity between users in the social network.
we present the works that addressed the problem of processing snapshot top-k query
processing in a social network context,
introduces techniques and approaches for processing snapshot top-k query that use
ranking models based on social networking criteria
These algorithms propose an efficient snapshot top-k query processing in a social
network context using a specific index structure for a large number of items. We
address continuous top-k processing in a social network context, with top-k sets
recomputed at each publication or feedback event, for all the users in the social
network.

2.1.6 Real-time search

The previous section presented the works focused on the efficient processing of a
snapshot top-k query in a large social network. This section presents the studies
focused on processing top-k queries in a multi-query environment. This environment
receives a stream of messages and queries. The objective here is to handle the stream
of messages by indexing them in real-time and to efficiently evaluate the queries
over the messages. To process the continuous top-k queries, the static approach is
considered where the query results are updated by running periodic snapshot queries
on the messages as in [BGL+12]. Note that, in our solution we adopt the continuous
processing approach that indexes the queries and avoids the indexing of the stream
messages. Furthermore, in real-time search, new queries are applied to existing
messages and new messages, while in our work new queries are only interested in
new messages.
In social networks services and particularly in mircoblogging such as Twitter, users
expect real-time search, i.e information should be immediately available in search

26

2.1 Continuous top-k queries for information streams

results in order of few seconds after the publication. Thus, information should be
indexed efficiently and this is difficult given the throughput of message publication.
Conventional indexes proposed in the information retrieval community are not de-
signed to support very high update rates since in most cases these indexes are based
on inverted lists where their entries are sorted by a document’s partial score or by
the document identifier so updating with new documents may be expensive. To
address this challenge many works have addressed the updates overhead problem
[BGL+12, XXWL13, CLOW11].
Twitter’s Search service supports real-time search using the Earlybird index [BGL+12].
It uses the conventional inverted lists to index messages (tweets), and maintains
tweets in chronological order. This is highly efficient for tweet insertions, as a new
incoming tweet do not affect the order of entries, and is appended at the tail of
the lists. Earlybird is organized in two types of indexes: a read-only index only for
query evaluation and a write-friendly index that supports both efficient tweet index-
ing (write) and query evaluation (read). To manage the consistency in the write-
friendly index, they adopt a multi-thread environment where concurrent queries are
handled by multiple threads and indexing tweets is done by a single thread. The
synchronization between read and write threads is guaranteed by the JVM7. They
use a scoring function that combines different signals: static signals, interaction
based factors and user based factors. Note that the text relevance score is not con-
sidered in their scoring function, Earlybird supports boolean queries and phrase
queries. The recency is ensured by traversing lists in chronological order. However,
the scoring function and the query evaluation algorithms are not presented at all in
this study.
Unlike in [BGL+12], [XXWL13] uses a more complex scoring function that considers
three components: the global importance of a message, the text relevance and the
time dimension. The time is modeled by an exponential decay function (more details
on decay functions are presented in section 2.1.7.1) and the text relevance score
depends on tf-idf model. Unlike in the Earlybird wher new queries are applied
to existing messages and new messages, here queries are only applied to existing
messages. To enable a real-time search using the different factors of the scoring
function, they propose the Log-Structured Inverted Indices (LSII). LSSI consists
of a sequences of inverted indexes I0, I1,, Im where each of them maintains a
disjoint set of documents. The first index I0 is identical to Earlybird, it maintains
a fixed number of newly arrived documents. The other indexes I1,, Im maintain
older documents where each term t maps to three lists corresponding to scoring
function components, the first list sort documents in descending order of the global
importance of the document, the second sort them in descending order of the term’s
weight and the last list sorted in descending order of timestamp. LSSI can efficiently
handle updates as new documents are only inserted into I0 in chronological order,
an efficient merge strategy is applied to flush documents from one index to another.
LSSI also evaluates efficiently queries as follows. At query evaluation, LSSI first

7Java virtual machine

27

Chapter 2 State of the art

checks I0 to identify the k documents with the highest score. Then, it applies the
threshold Algorithm (TA) [Fag02] over the sorted lists corresponding to the query
terms in all other indexes I1,, Im. The documents in I1,, Im indexes have
smaller scores compared to those in I0 because the time decay effect, thus TA tends
to terminate early. LSSI manages also the dynamic score of a document following
the change of the global importance over time. They also assume the system works
in multi-thread environment where there are a reader thread that processes queries,
a writer thread that handles documents insertion, and multiple merger threads that
deal with index mergers.

We can remark that the above approaches focus on efficiently indexing the incoming
documents and make them search-able immediately. In addition, they focus on effi-
ciently evaluating queries on this dynamic index of messages. In such solutions, the
continuous top-k query is managed by the static approach as in Earlybird[BGL+12].
As mentioned in the beginning of this section, we focus on continuous query pro-
cessing reacting to new messages and to other events (interactions), in order to
incrementally maintain the lists of top-k messages.

2.1.7 Continuous processing of top-k queries over text streams

Our work focus on the continuous processing of top-k queries over information
streams in the social networks. Social networks have millions, up to billions of
users and streams messages. The main challenge is how to design and implement an
efficient processing at a very large scale in terms of the number of the queries and
messages. In this context, we consider a complex scoring model including textual,
social and time criteria.

In this section, we present the scoring functions considered in the literature and
describe the techniques for modeling time dimension. We present the algorithms
that deal with continuous top-k queries evaluation in publish-subscribe systems.

2.1.7.1 Scoring functions

In this section, we describe the scoring functions considered in the continuous top-k
queries on information streams. As mentioned above, continuous processing employs
simpler scoring functions than the static approach.

The scoring function measures the importance of a message w.r.t. a query. The
choice of the scoring function has a significant impact on the efficiency and effec-
tiveness of continuous top-k systems. A simple scoring function can speed up the
query evaluation, but it could have a negative impact on the results quality. On
other hand, a rich (complex) scoring function can yield better results quality with
complexity in the query evaluation.

28

2.1 Continuous top-k queries for information streams

Text relevance

Since textual content is characteristic to information streams, content-based queries
are usually based on sets of terms of interest, and the importance of a message is
evaluated from an information retrieval (IR) perspective, as the relevance of the text
message to the query, based on weighting models such as tf-idf [SB88] . Typically,
vector space model(VSM) is used to represent both messages and queries as a vector
of terms with a tf-idf weight associated to each term. Then, the text relevance score is
computed using a similarity function such as the cosine function. Given a messagem
and a query q and by considering normalized weights, the cosine similarity function
between m and q is defined by the following:

cos(q,m) =
∑

t∈q∩m
w(q, t).w(m, t)

Where w(q, t) and w(m, t) are the term weights of the term t in q andm, respectively.
Our work uses the tf-idf model with the cosine function to measure the text relevance
score, knowing that other weighting models and similarity functions could be used
in our solution as explained in subsection 3.2.2.

Social relevance

The social scoring is lacking in most of the works on continuous top-k queries over
text stream. To the best of our knowledge, the only work on continuous top-k pro-
cessing for information streams including a social network component in its score
model is [VAC12], but this is limited to the simplest component, a global, query
independent importance of each message. Recently [Vou15] reported an extension
of this work including user feedback in the score model, which can be assimilated to
our interaction score components in subsection 3.1.2. However, the user based fac-
tors that measure the importance of relationships between the users in the network
are not taken into consideration. In our ranking model, the social relevance score
considers interaction based factors and the user based factors with its two different
parametrs: the global importance of the user and the importance of relationships
between the users.
It is important to note that including in the scoring function the user based factors,
measuring the strength of relationships between the users in the network is a chal-
lenge given the size of the network. The on-the-fly computation of this parameter as
in the snapshot top-k query [MC13] is impractical in the continuous top-k scenario.
In our implementation, we followed [SCK+08] by pre-computing this parameter.
The Interaction based factors add another significant challenge to the continuous
top-k scenario because the actions on the messages update (increase) their scores.
Thus, it is possible that a message that has not entered into a user’s top-k, will enter
in the future because of the actions.

29

Chapter 2 State of the art

Time factor

Another important component of the scoring model for continuous top-k queries is
time. In the following, we describe how the time dimension is incorporated into the
scoring model.

Streaming data is usually characterized by a temporal dimension. All data stream
items are accompanied by an associated timestamp representing their creation or
update time. The time dimension plays an important role for the quality of the
results in information stream systems. Intuitively, more recent items are considered
more relevant for query results. Incorporating data recency in ranking algorithm
should allow them to cope with data quality and also scale well within streaming
system. Pub-sub systems in the literature have considered two models for handling
the time aspect in the information stream: the sliding window model and decay
functions.

Sliding window model

Many studies of continuous queries over text streams [HMA10, MBP06, HMA12]have
used this model for handling the time dimension. This model considers a simple
scenario based on keeping in a window only the most recent items of the stream.
Therefore, query results contain only the valid items, i.e. those in the window. The
semantic of the sliding window is simple, the newly arrived items are inserted into
the window and the oldest ones are dropped out from the window. Controlling the
number of items present in the window can be done either by count or time. In
count-based scenarios, the window only maintains a pre-defined number N of items.
In time-based scenarios, the window holds items that occur within a particular time
interval, e.g items in the last 2 hours. The sliding window model is a simple model
to represent the temporal dimension, it allows a direct incorporation into the rank-
ing algorithms, since time is not part of the scoring functions. But, it generates an
extra processing effort when some items expire (are dropped out the window). Some
queries, for which expired items are part of their results, need to be re-evaluated.

Decay Functions

In the decay function model, time is part of the scoring function. Time is explicitly
handled by considering the age of items. The decay function continuously decreases,
so the scores of items decrease. Therefore, the newly arrived items have greater
chances to be ranked higher. Recent studies in continuous top-k queries over text
streams [SGFJ13, VAC12, CC15] have considered decay functions to model the
temporal dimension.

Formally, a decay function is defined by a monotone decreasing function TD : R+ →
[0, 1] with TD(0) = 1. For an item i published at time ti, the score of item i for a
query q is computed by a scoring function score(i, q) and the variation in time of
the score of i for q is expressed by the time-dependent scoring function tscore(i, q, t)

30

2.1 Continuous top-k queries for information streams

such that for any moment t ≥ ti:

tscore(i, u, t) = score(i, u) · TD(t− ti) (2.1)

Generally, only order-preserving decay functions are considered, i.e. functions that
preserve in time the relative order of items scores. That means that if tscore(i, q, t) <
tscore(i′, q, t) then tscore(i, q, t′) < tscore(i′, q, t′) for any another moment t′. The
order-preserving decay prevents the reordering of the items in top-k results in time.
For instance, a linear or exponential decay function could be considerd in this case.

The use of time in the two models is different. In the sliding window the represen-
tation of time is implicit, all items present in the window are equivalent in terms of
time. The difference between the newer and older items only appear once an item
expires i.e its score suddenly becomes zero. Whereas, in the decay functions, the
representation of time is explicit as a part of the scoring function. The scores of
items continuously decrease over time.

On the other hand, unlike in the sliding window, decay functions do not generate
an extra processing effort since items do not expire. But, due to the continuous
decrease of scores as time passes, this needs to frequently recalculate scores of all
items.

Note that, the sliding window could be seen as a particular case of the decay function,

but it is not an order-preserving decay function. TSW (i) =

1 i ∈ window
0 i /∈ window

In the present work, we consider the time decay model. To avoid the re-computation
of scores we adopt the dual approach of time-bonus functions inspired from [CSSX09].
More details about this approach are presented in subsection 3.1.2.

2.1.7.2 Continuous top-k algorithms in publish-subscribe systems

We describe in details the closest algorithms to our work, that consider continuous
processing for the continuous top-k queries over information streams, and deal with
a large number of subscription queries and publications in a pub/sub environment.
The ranking model considers text relevance and time (recency) in most of these
algorithms. These algorithms provide efficient processing by processing messages on
the fly and by using data structures to index queries and to efficiently determine the
impacted queries for each message.

[PvA08] is the first work that proposes a new publish-subscribe model (top-k/w
publish- subscribe) that continuously maintains for each subscription the best k
publications in a predefined sliding time window w. They propose a probabilistic
computation for top-k/w queries. The proposed solution does not expect a large

31

Chapter 2 State of the art

number of subscriptions as it evaluates the incoming publication with every sub-
scription.
As opposed to the above work, all the following works adopt data structures for
subscription queries to enable the efficient processing.
[MP11] proposes a solution for top-k/w publish-subscribe over text message streams
based on classical tf-idf cosine similarity. It uses a sliding window to model the
temporal dimension. The proposed data structure used in their system is composed
of a single list of the valid documents D which belong to the sliding window and
two inverted indexes. The first index for documents D, is composed of lists for each
term t , containing the document d that has t, sorted in descending order of the
term’s weight wt,d. The second inverted index is for subscription queries Q where
the lists are sorted by the threshold value θq,t for the query q that includes t.
When a query q is submitted to the system, the TA algorithm is applied on the first
index structure for the initial computation of top-k lists. This will be efficient as
TA does not retrieve all entries in the lists but it benefits from the ordering of the
lists to early stopping while traversing them. In this phase, the top-k list for the
submitted query q is computed. Then for each term t in the query q, the threshold
value θq,t is initiated by the document term weight wd,t which is the last retrieved
entry in the list of the term t after the TA algorithm stops.
When a new document d arrives, it is inserted in the corresponding inverted lists
in the document index. Then, for each term t in the document d, they identify in
the second index all queries Qi where θQi,t ≺ wd,t; these queries are candidates that
may be affected by d. All the other queries Qj where for every term t in the Qj

θQj ,t � wd,t are not affected by d. However, since documents are indexed, a high
arrival rate results here in expensive index updates.
[HMA10] also tackles top-k/w publish-subscribe on text information streams and
proposes the COL-Filter algorithm and an improved variant POL-Filter. It also
considers the sliding window technique to manage time aspects and the TA algorithm
in the core of their two proposed variants. Unlike the previous work, the messages
are not maintained in the data structure.
COL-Filter only indexes subscription queries and uses a score-oriented order for the
inverted lists. More precisely, a list for a query term t indexes queries q containing t
, ordered by the ratio between the importance of the term t in q, wq,t and the current
score of the k − th document in the top-k list of q, Smin(q), in other words in the
descending order of wq,t

Smin(q) . Note that Smin(q) is the threshold for new documents to
enter the top-k list. This allows efficient top-k processing by using the TA algorithm
on the index lists since queries in the inverted lists have a good locality following
the ratio wq,t

Smin(q) . Queries with a small value of Smin(q) or an important value of wq,t
will be ahead in the lists. This enables TA to early find all good candidates ahead
in the lists for top-k update.
When a new document d arrives in the system, like in TA they traverse the corre-
sponding inverted lists in round robin fashion. They evaluate all retrieved queries

32

2.1 Continuous top-k queries for information streams

Qi with the document d using the similarity function score and if the score is greater
than Smin(Qi), the document d becomes a result in the top-k list of Qi. To avoid
retrieving all queries which appear in an inverted list of a term t in the document
d, they propose a stopping condition to be ckecked while traversing the inverted
lists. They prove that this stopping condition is correct: all queries for which a new
incoming documents serves as a top-k result appeared in the inverted lists before
this stopping condition.
This method suffers from a relatively high number of updates for maintaining the
inverted lists subsequent to k− th score changes. Message exit from the time sliding
window also results in updates to the top-k results.
While the previous works use the inverted list to index queries and evaluate docu-
ments, [RCCT14] indexes queries by a graph index based on a covering relationship
between subscription queries. They proposes a strategy for sharing effort among
queries in the top-k computation process. The covering relationship is defined based
on the query terms: a query q covers q′ if the terms in q are superset of terms in
q′. Based on this covering relationship, a directed graph GIS is created where nodes
represent queries and a directed link indicates that the source query covers the des-
tination query. A directory containing all distinct terms appearing in queries is also
maintained in the system.
Evaluating an incoming document d is done by checking the directory to retrieve
root queries for each term in the document. Then, the document is evaluated with all
queries by traversing the graph starting with those retrieved root queries. Following
the definition of the covering relationship, they derive a number of lemmas that
define interesting properties between the relevance score of d to the covering query
q and to the covered query q′. The proposed lemmas help save the evaluation cost.
However, the proposed lemmas are not adapted to the extension with more compli-
cated score functions including social network criteria since the covering relationship
is defined on the basis of the relationship between the queries terms. We think that
the proposed lemmas could be extended to more complicated scoring functions that
rely only on the text component.
[SGFJ13] proposes an adaptation of two IR top-k retrieval strategies to informa-
tion streams: the document-at-a-time (DAAT) algorithm WAND [BCH+03] and
the term-at-a-time (TAAT) algorithm of Buckley and Lewit [Cal96]. Instead of
time sliding windows, a continuous order-preserving decay function is proposed to
handle time-dependent scoring, which eliminates the problem of top-k recomput-
ing upon message expiration. Unlike the above index structures, the queries are
indexed two times in two different data structures. The first data structure indexes
the queries based on their identifiers. For each term t, an inverted list containing
all queries that contain t and sorted in the ascending order of queries identifiers.
The second one is a tree-based index, for each term t a balanced binary tree where
leafs represent the queries containing the term t and maintaining the corresponding
Smin(q), the minimal k − th document score in the top-k list. Each node in the

33

Chapter 2 State of the art

tree also stores the minimum value of Smin(q) for all queries Qi in its sub-trees i.e,
min(Smin(Qi)).

For the adaptation of Buckley and Lewit, when a new document arrives d, the
lists corresponding to each document term t are sorted in the descending order of
the maximal partial score of t in the list. The proposed algorithm processes the
lists sequentially and examines an early-termination condition to eventually skip
the remaining lists. When the upper bound on the score of d is below the Smin(q)
for every q in the list Lj, then the list Lj can be skipped. In this condition, the
Smin(q) for every q in the list Lj could be very small or be zero in some cases, making
the skipping strategy ineffective. They optimize the skipping strategy and skip a
segment of a list instead of the whole list. They use the tree to efficiently look for
any query q in the list that violates the above condition i.e, has Smin(q) smaller than
the upper bound score of d. Since the nodes in the tree store the minimum value of
Smin(q) for all queries Qi in its sub-trees, then these queries in the sub-trees can be
skipped if their root node holds the above condition.

Note that when top-k changes, only the tree-based index should be updated. Similar
to our work the decay function is considered to model the recency, but they consider
the exponential decay function, which has the property to be easily transformed into
an equivalent bonus function..

Unlike the above approaches considering text information streams with monotonic
and homogeneous scoring functions, [VAC12] introduces a more general scoring func-
tion by combining item importance score with query-document relevance score. This
results in non homogeneous scoring functions, where methods proposed by the ap-
proaches above are not applicable. Like in[SGFJ13], time-dependent scoring is han-
dled through decay functions. They use a two-dimensional inverted query indexing
scheme and explore efficient score bounds with drastic pruning of the search space.
Queries are indexed in spatial indexes with two dimensions, the minimal score of a
query Smin(q)-dimension and the term weight wq,t-dimension. More precisely, each
query q is maintained in the inverted grid for each of its terms t ∈ q by the Smin(q)
and wq,t. Based on this index, they define three linear upper bound conditions spa-
tially determining for each incoming document d and for each term t ∈ d a subset of
candidates queries whose top-k results is potentially impacted by d. Then for each
candidate query, they compute the total score and check if its top-k list is updated
by d. For all queries updated by d, their minimal score Smin(q) is increased and
the queries are moved to a new position in all inverted grids corresponding to the
queries terms. They propose four data structures in the design of their index that
take into account this moving behavior of queries following top-k update.

All these continuous top-k techniques are hardly extensible to include social network
criteria. A major drawback is the need of many index updates, since they include
the value of the k-th score (having frequent changes) into each index dimension.
Moreover, they consider short queries (a few terms), while social network environ-
ments come with implicit subscription queries based on user profiles (long queries).

34

2.2 Diversity-Aware top-k query processing over information streams

Since the number of updates grows with the size of the query and with the num-
ber of dimensions (that increases when introducing social network criteria), these
techniques are not adapted to the social network context. Our method separates
the k-th score from the other dimensions in the index, thus minimizing impact of
updates and facilitating the extension with new social network dimensions.

2.2 Diversity-Aware top-k query processing over
information streams

The problem of query results diversity has received much attention for many years in
different domains, databases [LSC09, DFZN10], recommendation systems [ZMKL05]
and information retrieval [RBS10, CKC+08, LTG09]. Results diversification is a way
to increase user satisfaction and to cover different aspects of the query. For that
purpose, systems should combien diversity and relevance in search results. For a
given query, the results set must include the most relevant documents and at the
same time as diverse as possible. Several approaches have been proposed to define
semantics of diversification [GS09, CKC+08].
In general, query result diversification can be categorized into content-based di-
versification and intent-based diversification. Content-based diversification focuses
on increasing dis-similarity between documents in search result. Intent-based di-
versification explicitly interprets all possible intents (topics) of the user’s query by
using external information. Our work belongs to the content-based diversification
approach.
Intent-based diversification explicitly interprets all possible intents (topics) of user’s
query by using external information, like taxonomies, query logs, etc., then it returns
objects that covers as many topics of the query as possible [AGHI09].
Content-based diversification focuses on increasing dis-similarity between documents
in search result and avoiding information redundancy. This is achieved by filtering
out documents that are similar to existing documents in the search results. In
general, a distance (dis-similarity) function is used to measure the distance between
documents.
Many studies for results diversification [CC15, MSN11, GS09] rely on a bi-criteria
objective function (originally proposed in [GS09]) that combines in a linear way the
relevance of documents to the query and the distance between documents. The
most popular objective functions lead to Max-Sum diversification and Max-Min
diversification, presented below.
Let O = {o1, o2,, on} be a set of n relevant objects for a query q. Let Sk ⊆ O
be a subset of k objects where k ≤ n. Let also the relevance of an object o ∈ O to
the query q be defined by the function R(q, o), where a higher value indicates that o
is more relevant to q. The diversity of a result set Sk is defined by aggregating the

35

Chapter 2 State of the art

dis-similarity between every two objects oi, oj ∈ Sk and the dis-similarity is defined
by a distance function D(oi, oj), where a low value means the two objects are more
similar.
Typically, the trade-off between the relevance and the diversity is modeled by an
objective function. The objective function is defined over a set of objects, and takes
into account both the relevance and the diversity. Let us consider an objective
function F (P (O), R,D), where P (O) is the power set of O, R is the relevance
function and D is the distance function.
The content-based diversity problem focuses on identifying the optimal set S∗k , by
maximizing the objective function as follows:

S∗k = argmaxF (q, Sk, R(.), D(., .))
Sk∈P (O)
|Sk=k|

As presented in [GS09] finding the optimal subset S∗k by solving the above problem is
NP-hard problem for various objective functions. Thus, several heuristics techniques
have been proposed in the literature to find the approximate subset S∗k .
In the following, we present the two most popular objective functions, Max-sum
and Max-min. Then, we present some of the proposed algorithms in literature to
approximately compute the subset S∗k .
The Max-sum diversification function is based on the sum of relevance and dis-
similarity measures of the top-k set and is defined as follows:

Fsum(q, Sk) = λ
∑
o∈Sk

R(q, o) + (1− λ) 2
k − 1

∑
oi,oj∈Sk

i<j

D(oi, oj)

The first term sums the relevance score for each object in the returned set. The
second term sums the distance of all pairs (oi, oj) in the set where i < j. λ ∈ [0, 1] is
a trade-off parameter between relevance and diversity. To compensate the fact that
there are k values in the relevance sum versus k ∗ (k − 1)/2 values in the distance
sum, the second one is penalized by a factor of 2/(k − 1). The diversity problem
that uses the Max-sum objective function aims to maximize the weighted sum of
relevance and dis-similarity for the selected set.
The Max-min diversification only considers the minimum relevance and the mini-
mum distance and is defined as follows:

Fmin(q, Sk) = λmin
o∈Sk

R(q, o) + (1− λ) min
oi,oj∈Sk

D(oi, oj)

36

2.2 Diversity-Aware top-k query processing over information streams

Here the diversity problem aims to maximize the minimum relevance and the mini-
mum dis-similarity for the selected set.
In the following, we present the algorithms of the state of the art for computing
a diverse top-k result set over a collection of static objects. Next, we present the
difficulties that arise when computing the diverse top-k result sets over streaming
data. Finally, we describe the results diversification problem in a publish-subscribe
system for a large number of queries.

2.2.1 Query results diversification

Since the divesification problem in its general form is NP-hard, several works have
proposed heuristic techniques to find the near-optimal set Sk among all relevant
objects O. In general, they employe greedy or interchange heuristics for computing
the diverse top-k resutls lists. With the greedy heuristics, the algorithm selects the
optimal item according to a heuristic technique at each time. With the interchange
heuristics, the algorithm establishes k resutls according to some simple strategy,
then it tries to improve it by an interchange operation between an item in the
current result Sk and one in O.
In the following, we present approaches that use the greedy heuristics.
[CG98], proposes a greedy approach, the Maximal Marginal Relevance (MMR) algo-
rithm that iteratively constructs the set Sk. The MMR algorithm ranks the objects
using the mmr(oi) function that coressponds to the Max-sum diversification as fol-
lows:

mmr(oi) = λR(q, oi) + (1− λ)
|Sk|

∑
oj∈Sk

D(oi, oj)

At each iteration, MMR selects the most relevant object to the query (the first
term), and at the same time the most distant to the objects in the current Sk (the
second term).
[VRB+11] proposes two methods, named Greedy Marginal Contribution (GMC) and
Greedy Randomized with Neighborhood Expansion (GNE) to find the set Sk. In
the two methods, they employ the Maximum Marginal Contribution (mmc) function
to rank the objects. Compared to the mmr function, mmc considers not only the
relevance and the distance to the objects aleardy selected, but also the distance to
the remaining objects in O that could be inserted into Sk.

mmc(oi) = λR(q, oi) + (1− λ)
k − 1

 ∑
oj∈Sp−1

D(oi, oj) +
l≤k−p∑
l=1

oj∈O−Sp−1

Dl(oi, oj)



37

Chapter 2 State of the art

Here 1 ≤ p ≤ k, Sp−1 is the current result set of size p − 1 and Dl(oi, oj) is the lth
largest D value in Dl(si, sj) : sj ∈ O − Sp−1.
Note that, in mmr, when the current result set S0 is empty, the objects are only
ranked based on the relevance, while mmc considers the relevace and the diversity
(the third term).
The difference between the GMC and GNE is how to choose the objects to be
included into Sk after ranking with the mmc function. In GMC, the object with
the highest mmc value is always included in the result set, while in GNE, a random
technique is used to choose the objects.
[GS09] presents the Max-Sum Dispersion (MSD) method which is based on the Max-
Sum Dispersion Problem described in [HRT97]. At each iteration, MSD selects a
pair of objects that are relevant to the query and are distant one from each other.

msd(oi, oj) = (1− λ)(R(q, oi) +R(q, oj)) + 2λD(oi, oj)

[YLAY09] is based on an interchange approach, the Swap algorithm which is com-
posed of two phases. The first phase initializes the result set Sk with the k most
relevant objects in O, follwing the R(q, o) values. In the second phase, at each
iteration an object among the remaning objects in O with lower relevance score
is replaced with each object in the current set Sk, and if it increases the overall
Max-sum objective function, then it takes place permanently.
In [vLGOvZ09], they try to solve the diversity problem by clustering the objects in
k clusters, then one object from each cluster is selected to be result in the result Sk.
They use the k−medoid algorithm to generate the clusters from objects in O using
the distance function D(., .).
While the above approaches could be applied in all domains and typically do not
consider the efficiency issues, [AK11] proposes an algorithm to find the diverisfied
top-k set for keyword queries in the information retrieval (IR) domain and focuses
on the query processing efficiency. They develop an efficient algorithm based on the
threshold algorithm TA [FLN01] for a large number of documents. The proposed
algorithm indexes the documents in inverted lists sorted by terms weights, and it
also uses an additional data structure maintaining information about the diversity.
They define a usefulness score of a document as a probablity function that combines
relevance and diversity. The threshold value is the upper bound usefulness score
for the non-seen documents. To obtain increasingly tighter threshold values, they
perform a sequential access on the inverted lists to bound the relevance and define
new data accesses on the diversity data structure to bound the diversity.
The proposed algorithms for results diversification are applied over static collections
of objects. All these studies differ from our context where we deal with a large
number of queries over continuous data in a pub/sub system.

38

2.2 Diversity-Aware top-k query processing over information streams

2.2.2 Diversification for top-k queries over streaming data

Our proposal for results diversification aims to continuously keep diversified top-k
result lists over streams of messages. The algorithms described above suppose that
the collections of objects are static and the diversified top-k lists do not change.
These algorithms are not adapted to the case of dynamic collections of objects. Re-
computing the diversified top-k lists over the updated collections is time-consuming
and incremental approaches must be explored. In addition, to allow an efficient
processing, all objects should be holded in the main memory, which is impossible
when the system has a large number of streamed objects. Thus, it is necessary to
redefine the diversity problem on a subset of data, usually sliding windows over the
stream. In the stream data, objects come with a temporal dimension represented by
their creation timestamp. The new definition of the diversity over continuous data
should consider the time in order to provide relevant, diverse, and “recent” objects.
The continuous version of the diversification problem has been addressed in several
works [MSN11, DP12, DP09], where the diversified top-k lists is computed over
continuous data. In general, these works employ greedy, interchange or index-based
approaches.
[MSN11] proposes an incremental approach to maintain an approximate diversified
top-k set, and is applicable to Max-Sum and Max-Min objective functions in the
context of continuous data. It processes the input as a stream of items and contin-
uously maintains a diversified top-k set at the arrival of a new item. The proposed
algorithm uses the interchange heuristics by replacing each item in the current result
set with the new item and maintains the set that maximizes the objective function.
Similarly to our approach, recency is considered as a decay function included in the
relevance score. We demonstrate in the results section that this approach does not
scale to a large number of queries.
[DP09] Drosou and Pitoura tackle the results diversification problem in the context
of publish-subscribe systems. They propose the SCG greedy algorithm that considers
the Max-sum objective function and computes the k most diverse and relevant items
over subsets of data. They apply the diversification over sliding windows that keep
a fixed number of the most recent items. To replace the expired items because of the
sliding window effect, the SCG algorithm selects the optimal items in the window
that maximize the Max-sum objective function.
Drosou and Pitoura in [DP12] also propose an efficient algorithm for the Max-
min diversification problem based on cover trees. They also adopt a sliding-window
model where the diversified top-k set is computed over sliding windows. In a different
way that for their study in [DP09], they propose an index-based approach that
allows the incremental evaluation of the diversified sets to reflect object updates.
The proposed data structure supports efficient insertions and deletion of objects
that appear in the sliding window. They focus on Max-min objective function in
which the relevance score is negligible, all relevant objects are indexed in a cover-
tree which has been proposed for approximate nearest-neighbor search in [BKL06].

39

Chapter 2 State of the art

Cover trees are constructed based on the distance between objects. The cover tree
is a hierarchy of levels where each level is a “cover” for all levels below. The lowest
level contains all objects in the sliding window. Objects at higher levels of the tree
are more distant from one another than objects on the lower levels of the tree. Thus,
the most diverse objects could be retrieved from the higher levels of the tree.
[CACH14] proposes a novel diversity model in microblogging posts based on a thresh-
old over diversity dimensions like time or sentiment polarity. The objective is to se-
lect the smallest subset of posts that match the keywords query. The selected subset
should cover all the non-selected posts with respect to the diversity dimensions. This
study is fundamentally different from all above works, since the diversity model does
not depend on inter-items similarity metrics and bi-criteria objective functions.
However, the above studies can not work well in the context of pub/sub systems with
a large number of queries. These works do not investigate query filtering techniques,
but evaluate the new item with all the queries in the system.

2.2.3 Diversification in Publish/Subscribe system

The closest work to our study in this domain is [CC15] where it considers the results
diversification problem in a publish-subscribe system for a large number of queries.
They consider the Max-sum objective function that includes the text relevance,
document recency, and results diversity. They continuously maintain a diversified
top-k list for every query in the system. The core idea is the following: given a
new document dn and a query q, if when replacing the earliest document de with
dn in the top-k list of q, the diversity and relevance score increase, then the new
document permanently replaces de . To efficiently process a large number of queries
in the system, they propose a mechanism of grouping queries on blocks and a block-
oriented query-processing. They use block-based query inverted lists and propose
an effective block filtering technique using a document-at-a-time DAAT strategy.
The proposed filtering technique is defined as follows: given a new document dn , a
block of queries b and the earliest document de in the results of queries in the block
b, the documents dn is filtered out by the block b if the upper bound of the diversity
and relevance score of dn considering the block b is below the lower bound of the
diversity and relevance score of de considering b. They propose many of estimations
to compute efficiently the upper bound and the lower bound for a block of queries.
However, their approach is limited to a specific model to compute the text relevance
between a document and a query, the language model. This model is necessary in
the proposed filtering technique in order to establish the upper bound over the text
relevance. It is not clear how the text relevance score could be extended to other
models such as the most popular ones, tf-idf with cosine similarity, BM25, etc.
Our approach is complementary to that of [CC15]. We adopt a flexible and easily
generalizable method for indexing user queries (profiles) with sorted lists over the
scoring and diversity criteria. A prof of this flexibility is the fact that we successfully

40

2.2 Diversity-Aware top-k query processing over information streams

extended the index structure and algorithms from a relevance-only top-k processing
to include diversity. The experimental results validate the efficiency and effectiveness
of our method.

41

3 Continuous top-k queries in social
networks

In this chapter, We present an efficient processing model for the continuous com-
putation of the top-k query results for all the users of a social network. In social
networks, users are interested in the streams of messages, and in particular, users
want to be updated with the most relevant message. We focus on filtering the
streams of messages using the continuous top-k model. The continuous top-k model
continuously maintains the k messages highly ranked. We aim to develop a scal-
able system that be able to efficiently evaluate the continuous top-k queries using
the continuous approach with a ranking function including social network crite-
ria. We introduce our ranking model that includes the content-based, user-based,
interaction-based and time-based components. While such ranking model is widely
studied in recommendation system and Web search to improve ranking performance
and search results, we are the first to propose such function in information stream
systems.

In the social network, many events may procduce changes in the top-k messages.
In this chapter, we present how to process the first categorie continuously handled
events that includes the new message and the interaction with an existing message.
As mentioned above, these events have a great impact on the top-k results, so we
treat them on the spot.

We present our SANTA algorithm for continuous top-k computation which can effi-
ciently handle our rich scoring function. SANTA process both message publications
and user actions on existing messages. It indexes the top-k queries in a simple data
structure based on the traditional IR inverted index and applies threshold-based
techniques to prune the search space to enable the efficient processing. Existing al-
gorithms for continuous top-k processing can be hardly extended with social network
criteria in the scoring function and face the problem of heavy index updates when the
top-k scores change, aggravated when the new, social network dimensions are added.
Unlike them, SANTA minimizes the index updates by isolating them within a single
dimension and can easily take advantage of its simple structure to extend to new
dimensions. We illustrate this difference in this chapter, by comparing SANTA with
an extension of the most popular state-of-the-art algorithm COL-Filter [HMA10].
We also present SANTA+, a variant of the SANTA algorithm that improves action
processing. In fact, SANTA implies message re-processing and index re-traversal
when processing a new action and this is time-consuming.

43

Chapter 3 Continuous top-k queries in social networks

The rest of this chapter is structured as follows: section 4.1 presents the platform
of information stream social network (ISSN) and introduces our proposed ranking
function. In addition, we state the problem of computing the lists of best k messages
for each user, and present our model for continuous top-k processing. section 3.2
introduces our algorithm SANTA and its varainat SANTA+ for improving action
processing. section 4.3 presents the experimental evaluation of our algorithms. Fi-
nally, section 4.4 concludes this chapter.

3.1 Data and processing models

3.1.1 Data model

We consider information streams produced by the users of a social network. Streams
are composed of messages (items), each message being characterized by a content
descriptor that allows evaluating content similarity. We focus here on text-only
messages, where content similarity is evaluated through vector models like tf-idf,
and content descriptors may be represented as a vector of terms with a tf-idf weight
associated to each term.
We model the social network as a pub-sub environment, where users publish mes-
sages and subscribe to information streams produced by other users in the network.
The subscription queries are implicit, based on the user profile. A profile expresses
the elements of interest for the user in messages and is also represented as a content
descriptor, e.g. a vector of terms with their weights. Therefore, the importance of
the content of a message m for a user u can be computed as the similarity between
the content descriptors of m and of u’s profile.
Users can also interact with messages, e.g. through likes, comments, forwarding,
tagging as favorite, etc. We call user actions such interaction events; each message
has a (possibly empty) set of associated user actions.
We consider social networks with asymmetric directed relations between users (such
as for Twitter), which also cover the case of symmetric social networks (such as
Facebook) by representing a two-way relation by two directed ones.

Definition 1. An information stream social network (ISSN) S is a tuple
S = (U,R, p, sim, f, s), where:

• U is a set of users.
• R={(u1, u2)|u1, u2 ∈ U, u1 6= u2} is a set of non-symmetric relations between
users; (u1, u2) ∈ R means that u1 “follows” the messages published by u2.
• p : U → D is a function associating a profile to each user. User profiles and
message contents are both modeled as content descriptors in D.
• sim : D2 → [0, 1] measures the similarity between two content descriptors.

44

3.1 Data and processing models

• f : U2 → [0, 1] is a function associating to each couple of users (u1, u2) the
importance of u2 for u1 in the social network.
• s : U → I is a function associating to each user the information stream
generated by that user.

For text messages, with tf-idf based cosine similarity, a content descriptor d ∈ D is
a vector of weights d = [wt|t ∈ T], where T is a fixed dictionary of terms appearing
in messages and wt ∈ R+ is the weight of term t, with wt = 0 for t not appearing
in the message. By considering normalized weights, the cosine similarity function
becomes sim(d1, d2) = ∑

t∈T w1tw2t.
Note that the user relative importance function f is defined for any couple of users in
the network, not only for those directly related through R. Like R, f is asymmetric.
Depending on the design choices, the values of f(u1, u2) may depend on many factors,
of u1 on the messages of u2, the similarity between the content descriptors of u1’s
profile and of u2’s profile, etc. and may change in time. In practice, each user has
only a limited number of users of interest (with f>0), which results into reasonable
effort to manage this information. In our case, we consider the influence of a limited
neighborhood in the graph and of users interacting with the messages.

Definition 2. An information stream I ∈ I is a couple I = (M,A), where:

• M = {(ts, d)|ts ∈ TS, d ∈ D} is a set of messages, where ts is the timestamp
of the message and d is the content descriptor of the message.
• A = {(ts, u,m)|ts ∈ TS, u ∈ U,m ∈ M} is a set of user actions (e.g. likes,
shares, etc.) on the stream messages. ts is the action’s timestamp, u the user
that realized it, m the target message of the action.

Note that even if user actions may be of several types, we only focus here on actions
as a proof of the interest of users for messages.

3.1.2 Scoring function

We consider here a scoring function score(m,u) that expresses the importance of
a message m for a user u, by combining content-based and social network factors.
For simplicity, we consider here a linear combination of factors, but any monotonic
function is compatible with our algorithm.

score(m,u) = α sim(m, p(u)) + (1− α) social(m,u)
social(m,u) = β global(m) + (1− β) f(u, um)
global(m) = γ UI(um) + (1− γ) AI(m)

(3.1)

Parameters α, β, γ ∈ [0, 1] express the relative importance of the scoring function
components. α expresses the balance between content-based similarity sim(m, p(u))

45

Chapter 3 Continuous top-k queries in social networks

and social network based criteria. Inside social(m,u), β gives the balance between
global, user-independent factors (UI(um), AI(m)) and user-dependent ones, ex-
pressed here by f(u, um), the importance of the message emitter um for the user in
the social network. Finally γ measures the balance between UI(um) ∈ [0, 1], the
global importance of the emitter um in the network, and AI(m) ∈ [0, 1], the impor-
tance of the message given by the reactions it provoked, i.e. the actions realized on
the message. We consider that new actions increase the value of AI(m), i.e. AI(m)
is monotonically increasing with the number of actions on message m.
We also explore the introduction of a time dependent factor, expressing the loss of
importance of messages in time. In fact, most applications consider recent messages
are more important than older ones. As mentioned in section 2.1.7.1 two models
were proposed to express the the freshness of information, sliding windows and time
decay.
We consider a decay function [VAC12][SGFJ13], TD : R+ → [0, 1], monotonically
decreasing and with TD(0) = 1. For a messagem published at time tm, the variation
in time of the importance of messagem for user u is expressed by the time-dependent
scoring function tscore :M× U × TS → R+ such that for any moment t ≥ tm:

tscore(m,u, t) = score(m,u) · TD(t− tm) (3.2)

Here score(m,u) is the scoring function from (Equation 3.1) and expresses the initial
importance of message m for user u at moment tm.
Generally, only order-preserving decay functions are considered, i.e. functions that
preserve in time the relative order of message scores. But even if this simplifies the
continuous processing of top-k queries by preventing message reordering because of
decay, maintaining time-dependent scores is unfeasible in practice.
Instead, we adopt the dual approach of time-bonus functions inspired from [CSSX09].
The idea is to give a score bonus to newer messages, instead of degrading scores in
time. This produces the same effect as decay (penalizing older messages), with
the advantage of fixed scores and of relative order preservation. A time bonus
function TB : R+ → [1,∞) is monotonically increasing and has TB(0) = 1. Given
a fixed origin moment to ∈ TS, the time-dependent scoring function becomes time-
independent:

tscore(m,u, t) = score(m,u) · TB(tm − to) (3.3)

3.1.3 Problem statement

Given an ISSN and a scoring function such as (Equation 3.1) or (Equation 3.3),
design an algorithm that efficiently computes and maintains the lists of best k mes-

46

3.1 Data and processing models

sages for each user, as new messages are published and new actions on the existing
messages are registered.

Figure 3.1: Model of continuous top-k processing in an ISSN

3.1.4 Processing model

We consider the ISSN essentially as an event-based system in which continuous top-
k processing is realized through event handling. We focus here on two main event
types that impact top-k results: the publishing of new messages and user actions on
the messages.

Other events produce changes in the social network (e.g. new edge, new user, profile
changes) and consequently impact the scoring parameters. Such events may have
both a local impact on some users and a global impact on the ISSN, e.g. adding an
edge from u1 to u2 locally impacts u1 and u2, but may also slightly change values
for f in the ISSN. If the local impact may need continuous processing, the small
global impact can be handled through periodic updates of the ISSN. Such changes
are considered in the following time consistency setting: the scoring parameters for
a message are those at publishing/action time, changes to the ISSN do not modify
the score of previous messages.

In this work we focus on the continuous processing of the main events only. The
study of handling the local impact of social network changes is presented, but only
a brief discussion in the next section.

Figure 3.1 presents our model for continuous top-k processing. New message pub-
lishing and actions on messages are continuously processed. They provoke a lookup
in the index structures, composed of a content-based index, a social index and a
k-th score index. The result of this lookup is a set of candidate users for the top-k
update. The role of the index is to drop from this set as many users not impacted
by the event as possible, in order to enable efficient top-k processing. The update of
the top-k lists provokes in return an update of the k-th score index. Social network
changes are handled through periodic updates of the ISSN parameters, producing
changes in the data and index structures. For simplicity, the local impact of these
events is not represented here.

47

Chapter 3 Continuous top-k queries in social networks

Figure 3.2: The SANTA index structure

3.2 The SANTA algorithm

The Social and Action Network Threshold Algorithm (SANTA) provides efficient
continuous top-k processing based on a simple index structure, composed of sorted
lists, traversed with threshold-based techniques to prune the search space.
Existing algorithms for continuous top-k processing can be hardly extended with
social network criteria in the scoring function and face the problem of heavy index
updates when the top-k scores change. Unlike them, SANTA minimizes index up-
dates by isolating changes into a single dimension, while its simple index structure
facilitates the extension to new social network dimensions. We illustrate this differ-
ence here, by comparing SANTA with an extension of the closest approach in the
state of the art, the COL-Filter algorithm [HMA10].

3.2.1 Index and other data structures.

The SANTA index structure (Figure 3.2) is composed of a text index, a social index
and the list µ of the current k-th score for each user. The text index is composed
of lists for each term ti, containing the users u that have ti in the profile, sorted in
descending order of the term’s weight wiu. The social index is composed of lists for
each user uj, containing users u for which uj is important (f(u, uj)>0), sorted by
decreasing f(u, uj). The µ list is sorted in descending order of -µu (i.e. increasing
µu). Note that µ is the only part of the index that needs updates during continuous
top-k processing.
SANTA also manages a user table (Figure 3.1) to keep information about each user
in the social network. The entry for user u in the table contains:
• the current top-k list for u;
• u’s profile, as a list of (term, weight) couples;
• the list of users u′ of interest for u, with the value f(u, u′) > 0 for each one;
• the user importance UI(u) in the social network.

48

3.2 The SANTA algorithm

The first component contains the current query results, while the other ones are
necessary to evaluate score(m,u) for any given message m.
Note an important scalability issue: SANTA processes messages on the spot and
does not store them in the system. To get a previous message addressed by a new
user action, we consider that the action event also provides the target message,
which is the case in practice. Note also that in practice each user has only a limited
number of users of interest (with f(u, u′) > 0), requiring reasonable memory space
for these lists and for the social index.

3.2.2 Scoring function

We consider the case of a scoring function such as (Equation 3.1) or (Equation 3.3),
with cosine similarity for the textual content, but any content similarity function
monotonic in the index dimensions is compatible with SANTA. For simplicity, let
us consider first the time-independent case. Scoring function (Equation 3.1) can be
written:

score(m,u) = a
∑
ti∈m

wimwiu + b f(u, um) + c G(m) (3.4)

Here G(m) = global(m) = γUI(um) + (1− γ)AI(m) is the global, user-independent
part of the score, a = α, b = (1− α)(1− β) and c = (1− α)β.
If we note F (m,u) = score(m,u) − µu, a message m will enter the top-k of u iff
F (m,u) > 0. Given the form of score(m,u) in (Equation 3.4), it is easy to remark
that for a given m, F (m,u) is a constant (c G(m)) plus a positive weighted sum in
the index dimensions wiu, f(u, um) and −µu. Consequently, F is monotonic in the
index dimensions, which allows threshold strategies such as TA [Fag02] to traverse
the index lists in order to get candidates u for top-k change.
In the case of the time-dependent scoring function (Equation 3.3), we have
F (m,u) = score(m,u)TB(tm − to) − µu, i.e. all the components of the score are
multiplied by the same positive factor. This does not change the monotony of F
and the same algorithm as for time-independent scores can be applied.

3.2.3 The algorithm

Algorithm 3.1 presents the SANTA algorithm, as a set of two event handlers, newMes-
sage and newAction. Both use the same approach, expressed by the getCandAndUp-
date method: for each candidate user extracted from the index, check if the message
enters the top-k for that user; if so, update its top-k and the corresponding entry
of µ. The difference is that newMessage already has the incoming message, while

49

Chapter 3 Continuous top-k queries in social networks

Algorithm 3.1 The SANTA algorithm

Input: message m, action a, index I, user table U
newMessage (m, I, U)

getCandAndUpdate(m, I, U)
end
newAction (a, I, U)
m← getMessage(a)
getCandAndUpdate(m, I, U)

end
getCandAndUpdate (m, I, U)
foreach c in getCandidates(I,m) do
ue← getUserEntry(U ,c.user)
if c.upperBound > ue.kthScore then
s← computeScore(m,ue) //compute real score
if s > ue.kthScore then update ue and I.µ

end if
end foreach

end
getCandidates (I, m)

initTraversal(I,m); result← ∅; threshold← F (m)
while threshold > 0 do
u← nextIndexUser(I)
result← result ∪ (u, score(m))
threshold← F (m)

end while
return result

end

50

3.2 The SANTA algorithm

newAction retrieves it from the action. For newAction, the new action will increase
the value of AI(m), so G(m) grows and the F (m,u) > 0 condition will produce
more candidates from the index.
Note also a subtle difference between newAction and newMessage. Since processed
messages are not stored in the system, retrieving the message from the actions means
a new processing of the message to extract terms and their weights. This may add
a quite significant extra processing time for actions.
getCandAndUpdate checks each candidate c returned by the index traversal (get-
Candidates), where c contains both the user c.user and an upper bound estimation
c.upperBound for score(m, c.user). The entry ue of c.user in the user table is nec-
essary to compute the real score(m, c.user) with computeScore(m,ue) and to get
the k-th score of c.user. To avoid systematic computation of the real score (costly
operation), c.upperBound is first checked against the k-th score; the computation
is not necessary if c.upperBound is not greater. If the real score s exceeds the k-th
score, then m enters the top-k of c.user. Both the entries for c.user in the user
table (for the top-k list) and in the µ list are updated; c.user goes downward in µ
since its k-th score increases.
The threshold strategy for limiting the number of candidates is implemented by
the getCandidates method. For message m, initTraversal selects the related lists
from the index (those for the terms contained in the message m) and computes the
coefficients of F (m,u). The index lists traversal may follow any threshold algorithm
strategy through the call to nextIndexUser, which returns the next user in some of
the lists. The best known one is the TA strategy [Fag02], which considers lists in
a round-robin order, but other strategies are possible. We define F (m) as being
F (m,u) applied to the last visited value in each index list (or to its maximum value
if not yet accessed). Since F (m,u) is monotonic and index lists are traversed in
descending order of scores, F (m) gives the threshold (decreasing during index lists
traversal) that F (m,u) cannot exceed for any new candidate u to be found in the
index.
Any new candidate found while threshold > 0 may have m in its top-k; it is added
to the list together with its upper bound score score(m), computed like F (m) but
excluding the µ list. The traversal stops when threshold ≤ 0.
Figure 3.3 illustrates an example of execution of getCandidates with a TA strategy.
We consider a new message m, published by user u1, containing two terms, t1 of
weight 0.6 and t2 of weight 0.4. Hence, only lists for t1 and t2 in the text index, for u1
in the social index and µ are concerned. We consider a scoring function with a=0.5,
b=0.3, c=0.2 and G(m)=0.1. The TA strategy considers candidates and computes
the threshold line-by-line; for the first line candidates are u8, u3, u4 and u2, and
threshold F (m)=a·(0.6·0.5+0.4·0.4)+b·0.4+c·0.1-0.25 = 0.12 > 0. The four can-
didates are added to the result list, with an upper bound score(m)=0.12+0.25=0.37.
For the next line in the index lists, F (m)=a·(0.6·0.4+0.4·0.3)+b·0.3+c·0.1-0.3 = -
0.01 < 0. The traversal stops since for all the other u in the index F (m,u)<F (m)<0;

51

Chapter 3 Continuous top-k queries in social networks

only the previous four candidates are returned. Consider now the processing of an
action on m. For simplicity, we consider in this example the same values for µ,
even if they changed since the arrival of m. Since AI(m) increases, G(m) also, and
score(m,u) augments for any u. If, e.g. now G(m)=0.2, the index traversal will find
threshold values that increase with c·∆G(m)=0.02 for every line. The traversal will
accept also candidates from the second line (u11, u5, u6 and u7), since now F (m)=-
0.01+0.02>0. Their upper bound is score(m)=0.01+0.3=0.31. For the third line
however, F (m)=a·(0.6·0.3+0.4·0.3) + b·0.1+c·0.2-0.31 = -0.09 < 0.

3.2.4 SANTA+: improving action processing

Algorithm 3.2 The SANTA+ algorithm

Input: message m, action a, index I, user table U , window W
newMessage (m, I, U , W)
me← storeMessage(m,W)
initPos← initTraversalPos(m,I)
getCandAndUpdatePos(initPos, me, I, U , W)

end
newAction (a, I, U , W)
me← getMessageEntry(a, W)
if me exists then //use the stored message entry
increase← updateDelta(me, a)
foreach ce in me.candidates do
ue← getUserEntry(U ,ce.user)
ce.score← ce.score+ increase
if ce.score > ue.kthScore then update ue and I.µ
elsif me.delta ≤ ue.kthScore− ce.score then

remove ce from me.candidates
end if

end foreach
getCandAndUpdatePos(me.indexPos,me,I,U ,W)

else //use the SANTA algorithm
getCandAndUpdate(getMessage(a), I, U)

end if
end
getCandAndUpdatePos (pos, me, I, U , W)

(newPos,cand) ← getCandidatesPos(I,me.msg,pos)
foreach c in cand do
ue← getUserEntry(U ,c.user)
s← computeScore(me.msg, ue) //compute real score
if s > ue.kthScore then update ue and I.µ
if me.delta > ue.kthScore− s then add(me,c.user,s)

end foreach
me.indexPos← newPos

end

52

3.2 The SANTA algorithm

Action handling with SANTA implies message re-processing and index re-traversal.
We propose an improvement with the SANTA+ variant, which stores processed
messages and keeps for each of them the list of candidates (with the real score)
found at message publishing, that may be interested by the message if an action
increases its score.
When an action occurs, the stored candidates are first checked; this is fast, since their
real scores are already computed. Then the index traversal can continue to discover
new candidates, but starting from the previous position, not from the beginning.
Since we do not want to store all the messages, we consider a fixed size message
window. Most actions are close in time to the message publication, so the message
has great chances to be in the window when the action occurs. If not, the action is
processed with the basic SANTA algorithm.
Each message m in the window keeps the following information:
• content descriptor of the message;
• previous position in the index, after last action or after message arrival; since

the µ list is dynamic, the position in µ is kept as the last read µ value;
• number of actions on m and maximum increase of the AI score ∆AI(m);
• set of candidates represented as (user, score) couples.

As mentioned in subsection 3.1.2, AI(m) ∈ [0, 1] is monotonically increasing with
the number of actions on m. If AI(m)max is the upper bound of AI(m), then
∆AI(m) = AI(m)max−AI(m) is the (decreasing) maximum bonus m can get with
new actions.
Algorithm 3.2 also presents the SANTA+ algorithm. Unlike SANTA, here the in-
dex traversal and candidate processing are realized by getCandAndUpdatePos from
a given position in the index. The newMessage handler stores the message in the
message window, gets the initial index position with initTraversalPos and handles
candidates through getCandAndUpdatePos. Two main differences distinguish get-
CandAndUpdatePos from SANTA’s getCandAndUpdate. First, we manage the index
position: getCandidatesPos traverses the index like SANTA, but from a given start-
ing position and get candidates together with the new index position. Also, the final
position is stored in the message entry me. Next, candidates are also inserted into
the message’s candidate list if they have chances to have m in their top-k. Note that
here the real score is always computed, because needed for the message’s candidate
list.
The newAction handler distinguishes two cases. If the message is still in the window,
updateDelta computes the score increase given by the action and decreases ∆AI(m).
Then each candidate inm’s list augments its score and is tested for top-k. Also, if the
candidate has no chances to enter the top-k (because the current k-th score is high),
it is removed from the list. Finally, new candidates are extracted from the index, by
continuing the traversal from the stored position, by using getCandAndUpdatePos.

53

Chapter 3 Continuous top-k queries in social networks

Figure 3.3: Execution example for SANTA and SANTA+

In the case where the message has exited the window, it uses the SANTA algorithm
through getCandAndUpdate.

Figure 3.3 also illustrates SANTA+ execution. When m arrives, it enters the mes-
sage window and the index traversal returns the same four candidates. In the
example only three of them enter the candidate list of m, but not u3, e.g. because
score(m,u3) is too low compared to µu3 and actions cannot compensate the differ-
ence. When the action on m occurs, the message entry is updated with incremented
n and decreased ∆AI(m). Then m’s candidates (u8, u4, u2) are checked for top-k
considering the score increase produced by the action. Some of them may exit the
list if their decreased ∆AI(m) is not enough to reach the current (increased) top-k.
Then, index traversal is continued from the last position (line 2 for t1, t2, u1 and
µ=-0.3) and returns new candidates (u11, u5, u6, u7, as for SANTA) that are checked
for top-k. The message entry is then updated with the new index position and the
new index candidates with chances to get m in their top-k.

Remarks.

• The SANTA index allows a simple and efficient parallelization of the SANTA
and SANTA+ algorithms. By partitioning the set of users on N machines,
each one can build its own index and user table on that subset of users. Each
incoming message or action is processed in parallel by all the machines, on
their local index and/or message window, with no dependencies between them.
Results are distributed in the various user tables on the N machines.

• With the time consistency setting adopted in our processing model (subsection 3.1.4),
the SANTA algorithm is not impacted by periodic changes of the ISSN, since
the index is traversed from the beginning for each event. For SANTA+, a pe-
riodic change requires emptying the message window to ensure consis- tency.
The local impact of ISSN changes is also easy to handle, e.g. a new user u
requires a new entry in the user table and the insertion of u in the text index
given the profile terms, a new edge (u1 ,u2) requires the insertion of u1 into
the social index of u2 with some default importance, etc.

Theorem 1. The SANTA and SANTA+ algorithm are correct and complete.

54

3.2 The SANTA algorithm

Proof. Both algorithms update the top-k lists after evaluating candidate scores.
To be correct and complete, each algorithm must (i) not miss a candidate that
would update its top-k, and (ii) must use the right score for each candidate. For
SANTA, the monotonicity properties of the threshold algorithm ensure that a can-
didate c not delivered by the index respects the condition F (m, c.user) ≤ F (m) ≤ 0
when getCandidates() stops. Since F (m, c.user) ≤ 0, m cannot enter the top-k of
c.user. The same properties ensure that for any candidate c returned by the in-
dex, score(m, c.user) ≤ score(m) = c.upperBound. A candidate returned by the
index is not evaluated if c.upperBound ≤ ue.kthScore, but in this case we have
score(m, c.user) ≤ c.upperBound ≤ ue.kthScore, so m cannot enter the top-k of
c.user. This guarantees that condition (i) is satisfied. Condition (ii) is also true,
because for every candidate that updates its top-k, the score is directly evaluated
on the user entry. Both newMessage() and newAction() use the same algorithm,
so SANTA is correct and complete. SANTA+ uses the same algorithm as SANTA
for newMessage(), excepting the upper bound test, which results in testing all the
candidates returned by the index, so (i) and (ii) are satisfied. For newAction(),
the same is true if the message is not in the window, since we use SANTA. Let us
consider now the case when the message is in the window. We first check that the
candidate scores stored in the message window are always correct. These scores are
correctly set by newMessage() and updated by newAction() for any action on that
message. There is no other event that may change the score, which means that
scores are always up to date and correct. Top-k updates are based either on these
scores, or on the user entry, so they are always correct, i.e. (ii) is satisfied. For
condition (i), let us consider a “good” candidate missed by the algorithm. We saw
above that candidates not returned by the index cannot be “good” candidates. So
this may happen only if the candidate did not enter the window list or has been
removed from. But this happens only if me.delta ≤ ue.kthScore − score, i.e. the
candidate has no chance to get the message into its top-k in the future. Hence, no
“good” candidate is missed, so condition (i) is satisfied.

Figure 3.4: The CF+ index structure

55

Chapter 3 Continuous top-k queries in social networks

3.2.5 CF+: an extended version of COL-Filter

As mentioned above, the closest approach to ours is the COL-Filter algorithm
[HMA10], that also uses an index based on sorted lists, but for scoring functions
limited to textual similarity. The COL-Filter index is similar to the SANTA text
index, with the difference that µ is incorporated into the index by dividing each wiu
score by µu. Similarly to the SANTA condition for entering the top-k (F (m,u) =
score(m,u)−µu > 0), the condition for COL-Filter is F ′(m,u) = score(m,u)/µu >
1. This strategy reduces the number of dimensions to accelerate index traversal, but
extends the need for updates to all the dimensions.
To compare SANTA and COL-Filter strategies, we propose CF+, an extension of
COL-Filter to our scoring function, as follows. In CF+, the condition to enter the
top-k becomes F ′(m,u) = a

∑
ti∈mwimwiu/µu + b f(u, um)/µu + c G(m)/µu > 1.

Since F ′ is a positive weighted sum of wiu/µu, f(u, um)/µu and 1/µu, CF+ can
use an index structure (Figure 3.4) very similar to SANTA: textual index lists for
each term ti with wiu/µu values (like COL-Filter), social index lists for each user
um with values f(u, um)/µu and a k-th score list with the values of 1/µu. Based on
this index, CF+ handles messages and actions exactly like SANTA, and uses the
same threshold strategy for index traversal, with the specific difference of the stop
condition: F ′(m,u) ≤ 1.
In the next section we experimentally compare CF+ with SANTA variants and show
that the number of updates required by the COL-Filter strategy is prohibitive when
adding social network criteria.

3.3 Experimental evaluation

Dataset and scoring function
The graph. The ISSN used in the experiments is a subgraph extracted from
Twitter. It contains almost |U |=104 000 users with around |R|=18 million direct
links between them. The community was built starting from around 200 accounts
of known French politicians and journalists, by adding part of their followers, more
precisely those having a number of followees within the community, above a given
threshold. This method resulted into a coherent social network, with a good density
of links.
Messages and actions. For each user the last 200 tweets were extracted (or all,
if less) with the corresponding user actions (retweet, reply and mark as favorite).
The terms extracted from tweets are the hashtags, but also common nouns and
proper nouns, using the TreeTagger1 tool. We only kept non-empty messages (with
at least one term) and their actions, which results in around 1.25 million messages

1http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger

56

3.3 Experimental evaluation

and 180,000 actions. Each message contains only a few terms, between 1 and about
10 in our corpus, with an average between 3 and 4 terms.

Terms and user profiles. A dictionary of around 187,000 terms was built with
message terms that are used by at least 5 users. For each user, the profile contains
all the dictionary terms that occur in his messages. The profile size goes from 1 to
around 1000 terms, with an average size of 125 terms. The weights of the profile
terms, based on the tf and idf values, are computed by considering that the messages
of each user form a single document.

Social relations. For the values of the f(u1, u2) function in the ISSN, we combined
only two factors: the existence of a direct link (u1, u2) and the number of actions
made by u1 in relation with u2. Besides the 18 million direct links, we obtained
almost 1 million extra non zero values for f . These 19 million relations of interest
are retrieved in the 104,000 social index lists.

Scoring function. The scoring function uses as default coefficient values α=0.5
(equal weight for content and social criteria), β=0.25 (25% weight for the global,
user-independent criteria and 75% for the local relations of interest expressed by
the f function) and γ=0.4 (40% weight for the user importance UI and 60% for
the action impact AI). For UI(um) we use the Klout2 score, which expresses the
influence of users in the main social networks, normalized to the [0, 1] interval. For
AI(m) we consider only the influence of the number n of actions on the message m:
AI(m) = 1− e−λan, with λa = 0.5.

For the time bonus we use a linear function TB(tm − to) = 1 + (tm − to)/Tb, where
Tb is the period of time after which an extra bonus equal to the time-independent
score(m,u) is earned.

Experimental protocol. If not specified, the default values used in the experi-
ments are: k=10, α=0.5, β=0.25, γ=0.4 and no time bonus. The message window
size for SANTA+ is not bounded in the experiments, but, as illustrated below, the
impact of a reasonably large bounded window is small, wiExperimental protocolth
no consequence on the conclusions. For most experiments we use the whole dataset,
with messages and actions processed in timestamp order.

Since we aim at measuring performance in a stable status, we consider an initial-
ization phase, followed by the measure phase. The stream of messages and actions
in split in two almost equal parts, initialization considers the first 600,000 messages
and 90,000 actions, then measures are realized on the remaining 650,000 messages
and around 90,000 actions. In experiments considering a subset of these messages
and actions, we specify the balance between initialization and measure. Algorithms
are programmed in Java and run on a multi-core server. Memory requirements are
here of about 1 GB for the index and 0.5 GB for the user table.

2https://klout.com

57

Chapter 3 Continuous top-k queries in social networks

Comparing CF+ and SANTA variants

We compare the CF+ and SANTA algorithms by measuring the average processing
time for new messages and new actions. To illustrate the drawback of the COL-
Filter approach, we measured separately the time needed for index search and for
index/result updates. Besides SANTA and SANTA+, we considered a variant of
SANTA called SANTACF , which handles index updates in the same way as CF+,
in a separate phase, while SANTA and SANTA+ realize them during search. This
allows measuring in a reliable way the update time for CF+ and SANTACF , while
for SANTA and SANTA+ we only can measure the aggregate time.
Figure 3.5 presents this comparison. Measures for the average processing time per
message show that CF+ is faster than SANTACF for search (0.11 vs 0.3 ms), but
much worse for update (5.09 vs 0.76 ms); globally SANTACF is almost 5 times faster.
The mix of search and update realized by SANTA is beneficial, the global time for
SANTA being comparable with the search time only for SANTACF . SANTA+
needs slightly more processing time than SANTA because of the message window
management.
Measures for action processing show that CF+ is not adapted for action handling,
the update time (101 ms) is two orders of magnitude larger than for SANTA. We
notice the effectiveness of SANTA+ for dealing with actions, materialized by an
execution time almost 10 times faster than for SANTA.
In conclusion, SANTA algorithms provide an effective solution for message and
action processing when the scoring function includes new, social network criteria.
Their simple index structure favors fast index updates, which is not the case for
the COL-Filter approach, which obtains strongly degraded update times. Note that
POL-Filter, the improved variant of COL-Filter presented in [HMA10] only reduces
the update time with about 11%, which does not change the conclusions of this
comparison.

SANTA and SANTA+

We follow the comparison between SANTA and the SANTA+ variant with an in-
depth analysis of their behavior. Besides the execution time, we measure the number
of candidates whose score is computed and the number of top-k lists updates. To
evaluate the impact of the time-dependent factor in the score, we consider two cases:
without time bonus and with moderate time bonus, corresponding to Tb=15 days.
To compare with the time bonus case, we use here a dataset restricted to a period of
about 10 months and better adapted to time-dependent score analysis. It contains
about 500,000 messages and 75,000 actions, of which 300,000 messages and 40,000
actions are used in the initialization phase.
The measures, in the table on Figure 3.6, correspond to an average over the test
dataset. In the no time bonus case measures are similar to those from the comparison

58

3.3 Experimental evaluation

Figure 3.5: Comparison between CF+, SANTA and SANTA+

with CF+. For message processing, SANTA+ is slower than SANTA, which is
explained by the message window management, but also by the higher number of
candidate score evaluations. Indeed, SANTA avoids computing the real score for
part of the candidates (only 250 up to 518 in average per message), which is not
possible for SANTA+. In average, less than one top-k list is impacted for each
message.
Since not all messages receive user actions, in parenthesis are reported measures
for the subset of messages with actions, for a better comparison with the action
processing case. All the values significantly increase in this case. This suggests that
messages provoking actions are in a great measure published by influential users,
which results into higher social and global scores, longer index traversals, more
candidates and more chances to enter the top-k. In this light, the strong difference
in processing time for messages and actions in SANTA (0.35 vs 3.15 ms) is highly
reduced (2.21 vs 3.15 ms).
For actions, SANTA+ behaves much better than SANTA. We separately measured
the time spent to search the message’s candidate list in the message window and
the retrieval of new candidates from the index. SANTA+ is up to an order of
magnitude faster, by taking advantage of the preprocessed candidate list in the
window, already pruned and with computed scores. This leaves only 210 candidates
to evaluate, instead of 2100 for SANTA.
In the case of scoring with time bonus, new messages have more chances to enter
the top-k and the action impact is amplified for recent messages. For message
processing, this results in an increase of the number of candidates and thus of the
execution time (with about 50% here). This also explains the strong increase of the
ratio of updated top-k lists compared to the no bonus case.

59

Chapter 3 Continuous top-k queries in social networks

Figure 3.6: Detailed comparison between SANTA and SANTA+

For actions, the impact is stronger, especially because of the increase of the number
of candidates given by the index, both for SANTA and for the index-based part of
SANTA+. The extent of this impact is also measured by the strong increase of the
number of updated top-k lists.

Remark: the comparison for actions does not measure the time needed to re-process
the message in SANTA. This time is difficult to evaluate and hardly depends on
the access time to the message and on the processing method. In our context,
for instance, only the average processing time for the TreeTagger tool is about 7
ms / message, but globally the extra-time may be much higher. In conclusion,
SANTA+ is much better than SANTA for action handling, but needs a slightly
longer time for message processing. In a context with many user actions, the choice

Figure 3.7: The impact of a bounded message window

60

3.3 Experimental evaluation

of SANTA+ is natural, while SANTA is more appropriate in social networks with
few user actions. Also a dynamic combination of SANTA and SANTA+ is possible,
by applying SANTA+ only on “important” messages, with more chances to provoke
interaction. The use of a time bonus increases the probability of top-k updates and
the number of candidates, especially for action processing. A more detailed analysis
of this impact is given below.

SANTA+ and the message window size

The previous comparison considered an unbounded message window for SANTA+,
but for memory constraints, a fixed size window is necessary in practice. The impact
on SANTA+ is that message lookups in the window upon a new action may fail if the
message exited the window; in this case SANTA+ uses SANTA. We measure here
the impact of the window size on SANTA+ as the success ratio of message lookups
in the window. The execution time can then be estimated as a linear combination
of those of SANTA+ and SANTA, with this success ratio.

Figure 3.7 presents the variation of the success ratio as a function of the window size.
We use two datasets, one with messages over about 10 months (500,000 messages
and 75,000 actions) and another one over about 18 months (1,100,000 messages and
170,000 actions). The variation follows the same shape in both cases, with about
80% of success for a window of 500 messages, 90% for a size of 2000 and 95% for a
size of about 8000.

In conclusion, a small amount of memory for the message window (several MB here)
is enough to keep the good performances of the SANTA+ algorithm.

61

Chapter 3 Continuous top-k queries in social networks

Varying k

Figure 3.8: Variation with k

We measured the impact of k on the processing time for messages and actions, by
varying k between 10 and 100. The results in Figure 3.8 indicate a small, quasi-linear
increase of time with k for message processing for both SANTA and SANTA+. The
increase rate is clearly larger for action processing for both algorithms, bur remains
linear.

Time-dependent scoring

We noticed above the influence of a time bonus on the processing time, given the
greater scores of newer messages. Figure 3.9 presents a finer analysis of this phe-
nomenon for message processing and Figure 3.10 for action processing , when the
bonus period Tb varies from 1 to 180 days. The horizontal axis is graduated in 1/Tb
with Tb expressed in days, the 0 value corresponding to the no time bonus case, then
points at Tb=180, 90, 45 and 15 days. To zoom on the most interesting values, since
all the curves have the same shape, with an initial increase followed by a stationary
zone, the values for Tb=1 day are not shown - they are slightly greater than for
15 days. For SANTA+ action processing we also separately show the time spent
with candidates from the message window (SANTA+ window) and from the index
(SANTA+ index).
In all the cases we observe a real impact of the time bonus on the processing time,
even for the smaller values of the time bonus. The increase, larger for action process-

62

3.3 Experimental evaluation

ing, remains limited to reasonable values. Only SANTA becomes rather expensive
for action processing, but this only enforces the recommendation of using SANTA+
in this case.

Varying α, β, γ.

The behavior of our algorithms may depend on the relative weight given to the
textual, graph, user importance or action components of the score. This balance is
expressed by the α, β and γ parameters of the scoring function. We measured the
processing time for various combinations of α, β and γ around the default values
(α = 0.5, β = 0.25, γ = 0.4), but not only.
As can be seen on the left side of Figure 3.11, for messages, variation α has a con-
siderable impact on the processing time for both SANTA and SANTA+. Remember
that α expresses a compromise parameter between textual (text index) and social
network (social index and importance of the user) components. We can note that
higher values of α results in more user candidates retrived from text index, which
leads to a higher processing time. For actions, the right side of Figure 3.11 shows the
processing time decreases slightly when α grows for both SANTA and SANTA+.
This is obvious since a large value of α means less weight for the social network
factors in which actions are included, therefore, new actions are less likely to update
top-k.
Variation of β has a significant impact when increasing, illustrated on the left side
of Figure 3.12. For messages, the processing time strongly decreases when β grows.
This can be explained through the fact that big β values give a great weight to
the user importance (the action impact is 0 for new messages), which increases the

Figure 3.9: Varying the time bonus for message processing

63

Chapter 3 Continuous top-k queries in social networks

Figure 3.10: Varying the time bonus for action processing

Figure 3.11: Varying α

impact of important users, whose messages will have high scores for all the users
in the network. On one hand this will populate top-k list with these messages and
decrease the chances of other user messages to enter the top-k, which results in
few candidates from the index, few updates and fast execution time. For actions,
SANTA has a less abrupt but similar variation, since it is based on the index but the
score increase brought by the action attenuates the influence of the user importance.
Unlike SANTA, SANTA+ is much less affected by the index and keeps a small
increase of the processing time withβ.

Variation of γ can be seen in Figure 3.13, both SANTA and SANTA+ are stable,
with only minor variations.

64

3.4 Summary

Figure 3.12: Varying β

Figure 3.13: Varying γ

3.4 Summary

Prior works have proposed efficient algorithms for continuous top-k processing of
information streams using query-based index data structures to prune the search
space. However, these studies have considered simple scoring functions including
textual and time factors; [VAC12] considers a global importance of message (query-
independent component) which can be assimilated to our interaction-based score
components. Moreover, these studies are not adapted to the social network context
since the need of many index updates. As mentioned above, these studies include
the value of the k-th score (having frequent changes) into each index dimension.
This can be effective in case of short queries (a few terms). However, for social
networking environments with implicit subscription queries based on user profiles
(long queries), these indexes fail to effective processing since the number of updates
grows with the size of the query and with the number of dimensions (that increases
when introducing social network criteria).

We have presented the adopted ranking model that includes the content-based,
social-based and time-based components. The social component in our ranking
model includes the global importance of the message and the relationships between
users. We have considered the global importance of the message is dynamic when

65

Chapter 3 Continuous top-k queries in social networks

the message has interactions, that produces changes in the scores of messages in top-
k sets. Next, we have proposed an index structure composed of the text index, social
index, and list µ. This structure adapts to the social network context and optimizes
index updates following the changes in scores of messages. In contrast to previous
work, index updates in the proposed structure are not related to users queries (text
index) or users "friends" (social index) and are occurred in a single dimension (list µ).
We have introduced the algorithm SANTA and its variant SANTA+ for continuous
top-k queries processing that can handle both new messages and new actions on
the spot. We have compared SANTA with an extension of the closest approach in
the state of the art, the COL-Filter algorithm. In conclusion, our system provides
an effective solution for message and action processing when the scoring function
includes new, social network criteria.

66

4 Diversity-aware continuous top-k
queries in social networks

In this chapter, we tackle the problem of query results diversity. In the continuous
top-k model presented in the previous chapter, users may receive similar and redun-
dant messages in their top-k sets since the ranking model is based on relevance-only
criteria. Result diversification aims at avoiding redundancy and too homogeneous
results. In this chapter, we aim to continuously keep diversified top-k result lists
over streams of messages.

The first challenge in this context is how to define and measure the diversity for
query results. The content diversity of a results set is generally measured either by
the average or the minimum of the distances between all the results. The general
approach to add diversity to top-k querying is to use a bi-objective scoring function
that combines relevance and diversity. In this chapter, we focus on the content-based
diversification where we want to maximize the dis-similarity between messages in the
top-k list. The seconde challenge is how to integrate diversity into the continuous
top-k model while maintaining the efficiency of the system. The existing works on the
continuous version of the diversification problem are not adapted to large pub/sub
environments such as social networks, since they evaluate each new item with all the
queries. The only work to date that proposes a diversity-aware method adapted to a
large number of queries is [CC15]. In this context, this Chapter proposes a smooth
integration of content-based diversity into the continuous top-k processing model
presented in Chapter 3. The proposed model includes heuristics for approximate
diversification and a query indexing structure for efficient processing of diversity-
aware top-k queries at the social network scale.

We present the DA-SANTA (Diversity-Aware Social and Action Network Threshold
Algorithm), based on continuous top-k processing model, that provides efficient
continuous processing of relevance-diversity top-k queries over information streams.
The DA-SANTA adopts the max-sum diversification bi-criteria objective function
to combine relevance and diversity.

The rest of this chapter is structured as follows: section 4.1 presents the data and
processing models and the adopted diversity model. In section 4.2, we introduce
the DA-SANTA algorithm. In section 4.3, we present the experimental evaluation
of our algorithm. Finally, section 4.4 concludes this chapter.

67

Chapter 4 Diversity-aware continuous top-k queries in social networks

4.1 Data and processing models

4.1.1 Data model

We are based on the ISSN model presented in Chapter 3, but we only focus on the
publication of a new message.

4.1.2 Relevance scoring function

We consider the scoring function presented in Chapter 3, Equation 3.3 or Equation 3.1.

4.1.3 Diversity model

We adopt the commonly used max-sum diversification bi-criteria objective function
[GS09] to combine relevance and diversity into a single scoring function for top-k
computation. In this case, the diversity of a set of results is measured by the sum of
distances between the set elements. More precisely, if we note u.TLk = {m1, ...,mk}
the top-k result list for user u, the diversity of u.TLk is given by the following
expression:

D(u.TLk) =
∑

mi,mj∈u.TLk,i<j

dist(mi,mj) (4.1)

Since we consider content-based diversification, the commonly used measure for the
distance between two messages is the complement of their content-based similar-
ity, dist(mi,mj) = 1 − sim(mi,mj) ∈ [0, 1]. This distance is also appropriate for
building a combined measure of relevance and diversity, since both measures are
based on content similarity. The combined relevance-diversity score DR is a linear
combination between relevance and diversity.

DR(u.TLk) = ν fR(u.TLk) + (1− ν) fD(u.TLk) (4.2)

Here, fR(u.TLk) = ∑
m∈u.TLk

rel(m,u) is the sum of the relevance scores in the top-k
list, where rel may be a scoring function such as (Equation 3.3) or (Equation 3.1).

fD(u.TLk) = 2
k−1D(u.TLk) measures the diversity score of the top-k list. The

homogeneity factor 2/(k − 1) in fD compensates the fact that fR sums k values,
while for fD we have k(k − 1)/2 values.

68

4.1 Data and processing models

4.1.4 Processing model

As described above, the top-k query result diversification problem is NP-hard in the
general case and approximate techniques are necessary for effective query processing.
In the case of streaming data, where new messages continuously arrive, the common
approach is to limit the updates of the top-k query results to include only the current
top-k elements, plus the new message.
In our case, for a given user u having the top-k result list u.TLk, when a new message
mnew arrives, the updated top-k list u.TL′k will be the subset of size k of u.TLk ∪
{mnew} that maximizes the relevance-diversity score DR defined in (Equation 4.2):

u.TL′k = argmaxS⊂u.TLk∪{mnew},|S|=kDR(S) (4.3)

In other words, when a new message mnew arrives, either u.TLk remains unchanged,
or mnew replaces in u.TLk one of the existing messages. In the latter case, if we note
mvic the replaced message (the “victim”), then u.TL′k = u.TLk ∪ {mnew} - {mvic}.
The condition for the top-k to be updated is:

DR(u.TL′k) > DR(u.TLk) (4.4)

Algorithm 4.1 describes this general approach, which raises two main efficiency is-
sues. The most important one is that the update is repeated for all the users in the
social network. Then, for each user the top-k update method is expensive, since it
requires k computations of the DR function. Our DA-SANTA algorithm proposes
solutions for both these efficiency problems.

Algorithm 4.1 Basic algorithm for updating u.TLk for all u ∈ U
On mnew publication
FORALL u ∈ U

mvic ← argmaxmvic∈u.T Lk
DR(u.TLk ∪ {mnew} − {mvic})

u.TL′
k ← u.TLk ∪ {mnew} − {mvic}

IFDR(u.TL′
k) > DR(u.TLk)

u.TLk ← u.TL′
k

ENDIF
ENDFOR

4.1.5 Problem statement

Given a social network S and a combined relevance-diversity scoring function DR
such as (Equation 4.2), design an efficient diversity-aware user (query) pruning

69

Chapter 4 Diversity-aware continuous top-k queries in social networks

algorithm, as well as an efficient top-k update method, handling the publication of a
new message in the social network.

In this perspective, we propose the processing model described by Algorithm 4.2,
where the getCandidates function represents the user pruning algorithm, while effi-
cient top-k update is realized by heuristically choosing a victim through the heuris-
tics function. Moreover, the DA-SANTA algorithm builds on top of an existing
algorithm (SANTA presented in the above chapter) for top-k continuous processing
with classical relevance-only scoring. An additional challenge is to efficiently adapt
an existing relevance-oriented approach to diversity-aware scoring.

Algorithm 4.2 Improved algorithm for updating u.TLk for all u ∈ U
On mnew publication
Candidates← getCandidates(U,mnew)
FORALL u ∈ Candidates

mvic ← heuristics(u.TLk,mnew)
u.TL′

k ← u.TLk ∪ {mnew} − {mvic}
IFDR(u.TL′

k) > DR(u.TLk)
u.TLk ← u.TL′

k

ENDIF
ENDFOR

4.2 The DA-SANTA algorithm

4.2.1 DA-SANTA scoring

We consider for DA-SANTA the diversity model presented in section 4.1 and the
processing approach presented in Algorithm 4.2. Then, for a new published message
mnew and a given user u, the heuristics function designatesmvic ∈ u.TLk as potential
victim. As shown in section 4.1, the condition for mnew to replace mvic in u.TLk is
DR(u.TL′k) > DR(u.TLk), where u.TL′k = u.TLk ∪ {mnew} - {mvic}.

We note u.Fk = u.TLk - {mvic} = u.TL′k - {mnew} the subset of k-1 results for u
that do not change when mnew replaces mvic. Then u.TLk = u.Fk ∪ {mvic} and
u.TL′k = u.Fk ∪ {mnew}. Given (Equation 4.2) and (Equation 4.1), we obtain:

DR(u.TLk) = ν (∑
m∈u.Fk

rel(m,u)+rel(mvic, u))+(1−ν) 2
k−1(∑

mi,mj∈u.Fk,i<j dist(mi,mj)+∑
m∈u.Fk

dist(mvic,m))

A similar expression is obtained for DR(u.TL′k), where mvic is replaced by mnew.
By dropping the common elements, condition DR(u.TL′k) > DR(u.TLk) becomes:

ν rel(mnew, u)+(1−ν) 2
k−1

∑
m∈u.Fk

dist(mnew,m) > ν rel(mvic, u)+(1−ν) 2
k−1

∑
m∈u.Fk

dist(mvic,m)

70

4.2 The DA-SANTA algorithm

We note Dm(X) = ∑
x∈X dist(m,x), the sum of distances from message m to mes-

sages in the set X, which could be interpreted as the diversity of X relative to
m.
We note dru(m,X) = ν rel(m,u) + (1 − ν) 2

k−1Dm(X), which may be seen as a
simplified relevance-diversity scoring function, combining the relevance of m for u
with the diversity of X relative to m.
Then the update condition DR(u.TL′k) > DR(u.TLk) becomes

dru(mnew, u.Fk) > dru(mvic, u.Fk) (4.5)

Note that evaluating condition (Equation 4.5) is significantly faster than for the
equivalent condition on DR.

4.2.2 Victim selection heuristics

We explore two heuristics for choosing the victim message in u.TLk:
1. Minimum relevance (MR), which selects the message with the smallest rele-

vance to u: mvic = argminm∈u.TLk
rel(m,u). In the context of a relevance-only

scoring function, this would correspond to the k-th element in the sorted top-k
list.

2. Minimum relevance-diversity (MRD), which introduces a part of diversity into
the heuristics. It selects the message with the smallest simplified relevance-
diversity dru: mvic = argminm∈u.TLk

dru(m,u.TLk − {m}).
Remark: For both heuristics, the choice of mvic is independent of mnew, so the
victim for the next mnew can be selected in advance, since its value is only based on
u.TLk. Consequently rel(mvic, u), Dmvic

(u.Fk) and dru(mvic, u.Fk) can be computed
in advance and may change after each update of u.TLk.

4.2.3 The DA-SANTA index

Like in the case of SANTA, we consider a monotonic objective function FDA for the
threshold-based strategy. FDA is issued from the top-k update condition (Equation 4.5)
and should be expressed in relation with the index dimensions.
Here FDA(mnew, u) = dru(mnew, u.Fk) − dru(mvic, u.Fk), so given (Equation 4.5),
mnew will enter u.TLk (by replacing mvic) iff FDA(mnew, u) > 0.
Given the definition of dru, we have:
FDA(mnew, u) = ν rel(mnew, u) + (1 − ν) 2

k−1Dmnew(u.Fk) − ν rel(mvic, u) − (1 −
ν) 2

k−1Dmvic
(u.Fk)

71

Chapter 4 Diversity-aware continuous top-k queries in social networks

Figure 4.1: SANTA and DA-SANTA index and data structures

We note µu=rel(mvic, u) the relevance of the victim for u and ηu=Dmvic
(u.Fk) the

diversity of u.Fk relative to mvic. As explained above about the victim selection
heuristics, µu and ηu are independent from mnew and can be computed in advance
and maintained after each top-k update. Then the condition formnew to enter u.TLk
becomes:

ν rel(mnew, u) + (1− ν) 2
k − 1Dmnew(u.Fk)− ν µu − (1− ν) 2

k − 1ηu > 0 (4.6)

Compared with SANTA, we find in (Equation 4.6) the term in rel(mnew, u) that
corresponds to scoring functions such as (Equation 3.1) or (Equation 3.3) - this is
indexed by the text and social indexes. We also have the term in µu, indexed by
the min-score index, with the difference that the indexed value is here -rel(mvic, u).
For the term in ηu, we add a new list η to the index (diversity index), organized like
µ but storing the values of -ηu in descending order.
Therefore, the DA-SANTA index (Figure 4.1) simply adds the η list to the SANTA
index structure, while the µ list contains -rel(mvic, u) instead of -minm∈u.TLk

(rel(m,u))
(the k-th score).
However, the term in Dmnew(u.Fk) in (Equation 4.6) cannot be indexed in a sim-
ilar way. Therefore, we consider an upperbound of FDA(mnew, u), by replacing
Dmnew(u.Fk) with k-1, given that Dmnew(u.Fk) sums k-1 distances ∈ [0, 1]. We
note this upperbound F+

DA:
F+
DA(mnew, u) = ν rel(mnew, u) + 2(1− ν)− ν µu − (1− ν) 2

k−1ηu

Since F+
DA is monotonic in the index entries, it can be used as an objective function

for the threshold strategy. For instance, with relevance function (Equation 3.1)
using cosine similarity, score(m,u) = a

∑
ti∈mwimwiu + b f(u, um) + c G(m), we

obtain the following objective function, where index dimensions are underlined:
F+
DA(mnew, u) = ν (a ∑

ti∈mnew
wimnewwiu + b f(u, umnew) + c G(mnew)) + 2(1− ν)−

ν µu − (1− ν) 2
k−1ηu

72

4.2 The DA-SANTA algorithm

DA-SANTA also manages a user table to keep information about each user in the
social network. The entry for user u in the table contains:

• u.TLk, the current top-k list for u;
• the necessary elements to compute rel(mnew, u): (i) u’s profile, as a list of

(term, weight) couples; (ii) the list of users u′ of interest for u, with the value
f(u, u′) > 0 for each one; (iii) the global importance of u in the social network,
necessary to compute G(mnew) in formula (??);
• mvic, necessary to compute u.Fk and Dmnew(u.Fk);
• drvic, the value of dru(mvic, u.Fk)

The first component contains the current query results, while the other ones are
necessary to evaluate condition (Equation 4.5) for a given mnew. Excepting for the
elements necessary to compute rel(mnew, u), all the other elements are updated when
u.TLk changes.

4.2.4 The case of time-dependent scoring

When relevance is computed with (Equation 3.3) and uses a time bonus, the relevance-
diversity score may become unbalanced because relevance values belong to [0,∞)
while distances used by the diversity belong to [0,1].
To avoid this phenomenon, we normalize the relevance score to the [0,1] interval, as
follows. At moment t, we divide by TB(t−to) the relevance of a messagem published
at moment tm ≤ t, i.e. relt(m,u) = tscore(m,u)/TB(t− to) = score(m,u) TB(tm−
to)/TB(t− to) ∈ [0,1].
This transforms the time factor into a time decay and makes the relevance variable in
time, but the particular form of relt allows handling it easily. Since for a new message
mnew its initial relevance is score(mnew, u) (the same as for the time-independent
case), nothing changes for that in the algorithm. The only impact is for the -
rel(mvic, u) values stored into the µ list, since they correspond to older messages.
The solution is to store into µu the relevance score with time bonus -tscore(mvic, u),
but to multiply by an extra factor of 1/TB(tmnew − to) the coefficient of the µ
dimension in the objective function when handling the new message mnew. This is
equivalent with considering the normalized score -reltmnew (mvic, u) for µu.

4.2.5 The algorithm

Algorithm 4.3 presents DA-SANTA, following the framework defined by Algorithm 4.2.
On publication of a new messagemnew, the getCandidates method returns only users
that have a chance to integrate mnew in their top-k. Each returned candidate is a
couple (user, upperbound) - we take advantage here of the capability of the index

73

Chapter 4 Diversity-aware continuous top-k queries in social networks

Algorithm 4.3 DA-SANTA algorithm
REQUIRE message mnew, index I, user table U
On mnew publication
FORALL c ∈ getCandidates(I,mnew)

ue← getUserEntry(U, c.user)
IF c.upperbound > ue.drvic

s← compute-dr(ue,mnew)
IF s > ue.drvic

ue.TLk ← ue.TLk ∪ {mnew} − {ue.mvic}
ue.mvic ← heuristics(ue.TLk) //MR or MRD
ue.drvic ← compute-dr(ue,mvic)
Update I.µ, I.η

ENDIF
ENDIF

ENDFOR

traversal method that can also estimate an upperbound for dru(mnew, u.Fk) (here u
is c.user), as described in getCandidates.
For each candidate, its entry ue in the user table is necessary to compute the real
value of dru(mnew, u.Fk). To avoid as much as possible this costly operation, we
filter out cases when the upperbound is not greater than dru(mvic, u.Fk) (stored in
ue.drvic). After computing the real score with the compute-dr function, if the update
condition (Equation 4.5) is fulfilled, we update the top-k list u.TLk, select the new
victim by using heuristics MR or MRD, and update dru(mvic, u.Fk).
Finally, we update the index lists µ and η, by moving only entries for u, following
the new value of -rel(mvic, u), respectively -Dmvic

(u.Fk).

Algorithm 4.4 getCandidates method
REQUIRE message mnew, index I
initTraversal(I,mnew); result← ∅; threshold← F+

DA(mnew)
WHILE threshold > 0

u← nextIndexUser(I)
result← result ∪ {(u, dr(mnew))}
threshold← F+

DA(mnew)
WHILE
RETURN result

Algorithm 4.4 describes the getCandidates method that traverses the index to prune
candidates. Given mnew, initTraversal selects the related lists from the index and
computes the coefficients of the objective function F+

DA(mnew, u). The index lists
traversal may follow any threshold algorithm strategy (e.g. TA[Fag02]) through the
call to nextIndexUser, which returns the next user (in some of the lists) not yet seen

74

4.3 Experimental evaluation

in the index (new candidate).

The threshold is the maximal value that the objective function F+
DA may have, and

is evaluated by F+
DA(mnew) as being F+

DA(mnew, u) applied to the last visited value
in each index list. The monotony of F+

DA and of the index lists implies that for a
new candidate u, F+

DA(mnew, u) ≤ F+
DA(mnew). For the same reasons, we obtain an

upperbound for dru(mnew, u.Fk) through dr(mnew), computed like F+
DA(mnew) but

only on the part that corresponds to dru(mnew, u.Fk). Each new candidate and its
upperbound for dru are appended to the results list.

Also, the threshold decreases during index lists traversal, the traversal stops when
threshold ≤ 0.

Remark: The approximation of the objective function FDA with its upperbound
F+
DA means that the index traversal finishes later, so it prunes less candidates. How-

ever, as shown in section 3.3, social network messages naturally have a good content
diversity, since they contain few terms in a large dictionary. This means the dif-
ference between FDA and F+

DA is not important and has a reduced impact on the
efficiency of DA-SANTA, as shown in section 4.3.

Theorem 2. The DA-SANTA algorithm does not miss candidates that may be im-
pacted by a new message.

Proof. An user u not returned by getCandidates was not seen in the index before the
threshold become ≤ 0. Since the threshold is the maximum value F+

DA(mnew, u) may
have for an unseen u, we have F+

DA(mnew, u) ≤ threshold ≤ 0. But FDA(mnew, u) ≤
F+
DA(mnew, u), so FDA(mnew, u) ≤ 0. Since the necessary and sufficient condition for
u to be impacted by mnew is FDA(mnew, u) > 0, u is not impacted by mnew.

4.3 Experimental evaluation

4.3.1 Experimental setting

The social network. We extracted a subgraph from Twitter, with about |U | =
104000 users and |R| = 18 million direct links between them. The community was
built starting from about 200 accounts of known French politicians and journalists,
by adding part of their followers, more precisely those having a number of followees
within the community above a given threshold. This method resulted into a coherent
social network, with a good density of links. For the f function, we accounted also
user actions such as retweet, reply, mark as favorite. The value of f depends on the
existence of a direct link (u1, u2) and on the number of actions of u1 on the messages
of u2. Besides the 18 million direct links, we obtained almost 1 million extra non
zero values for f .

75

Chapter 4 Diversity-aware continuous top-k queries in social networks

Messages, terms and user profiles. For each user we extracted the last 200
tweets. The terms considered in tweets are the hashtags, but also common and
proper nouns, extracted with the TreeTagger1 tool. We only kept non-empty mes-
sages (with at least one term) during a given period, which results in about 500
000 messages. Each message contains only a few terms, between 1 and about 10 in
our corpus, with an average between 3 and 4 terms. A dictionary of about 187 000
terms was built with message terms employed by at least 5 users. For each user, the
profile contains all the dictionary terms that occur in his messages. The profile size
goes from 1 to around 1000 terms, with an average size of 125 terms. The weights
of the profile terms, based on the tf and idf values, are computed by considering
that all the messages of each user form a single document.
Relevance scoring. The relevance scoring function (Equation 3.3)(Equation 3.1)
uses the default coefficients considered in the Chapter 3 (a=0.5, b=0.375 and c=0.125),
which proved a good balance between the various components. For G(m) we use
the Klout2 score of the message emitter, which expresses the influence of users in
the main social networks, normalized to the [0, 1] interval. For the time bonus we
use a linear function TB(tm − to) = 1 + (tm − to)/Tb, where Tb is the period of time
after which an extra bonus equal to the initial score(m,u) is earned, with a default
value of 15 days.
Algorithms and measures. We consider the DA-SANTA algorithm with the two
victim selection heuristics, MR and MRD. For each case, we consider four combina-
tions of factors in the relevance scoring function: Text-Social-Time corresponds to
the complete function (Equation 3.3), Text-Social does not consider the time bonus
and corresponds to (Equation 3.1), Text-Time ignores the social components con-
sidering b=c=0, and Text only keeps the text relevance. These combinations allow
studying the influence of the various scoring components.
The other default values in the experiments are k=10 and ν=0.75.
We compare DA-SANTA with two other algorithms. Baseline corresponds to Algorithm 4.1,
which evaluates each new message with all the users (queries) and tests all the pos-
sible victims in the top-k list. Incremental [MSN11] uses the same approach as
Baseline, but optimizes the computation of the relevance-diversity scores by using
condition (Equation 4.5) with dru instead of (Equation 4.4) with DR.
Since we aim at measuring efficiency and effectiveness in a stable status, we consider
for all the algorithms an initialization phase that processes the first 300 000 messages,
followed by the measure phase on the remaining 200 000 messages. All the measures
(for time, relevance or diversity) represent an average over all the users and over
different moments during the measure phase.
Algorithms are programmed in Java and run on a multi-core computer, in parallel
with other jobs. Memory requirements for DA-SANTA are of about 1 GB for the
index and 0.5 GB for the user table.

1http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger
2https://klout.com

76

4.3 Experimental evaluation

(a) Variation of relevance (MR) (b) Variation of diversity (MR)

(c) Relevance, MRD vs MR (d) Diversity, MRD vs MR
Figure 4.2: Variation with ν of the achieved relevance and diversity, with MR and
MRD

4.3.2 Effectiveness of DA-SANTA

We measure the quality of the results in terms of relevance (fR(u.TLk)) and diver-
sity (fD(u.TLk)), depending of several parameters. The values of fR and fD are
normalized to [0, 1] by division by k.

Variation with ν.

The compromise between relevance and diversity has an impact on both of them. We
measure the achieved relevance and diversity, while varying the balance parameter
ν. Figure 4.2 represents this variation for each type of relevance scoring, and for
both victim selection heuristics, MR and MRD. Values for ν=1 correspond to the
case without diversity, while ν=0 is the other extreme case, where only diversity
counts.

Variation of relevance (Figure 4.2.a) with MR shows a monotonic decrease of the
achieved relevance in all the cases when ν decreases, to very low values when ν=0.
However, when social criteria are included into the relevance scoring, the decrease is
clearly much smoother. This can be explained by a better natural content-diversity
of messages when the relevance is not only based on content. Note also that relevance
scores are not comparable among the various scoring types, since the values are
computed with different components; for instance we cannot say that time-based
relevance is worse than in the corresponding cases without time, as it could appear

77

Chapter 4 Diversity-aware continuous top-k queries in social networks

(a) Variation of relevance (MR) (b) Variation of diversity (MR)

(c) Relevance, MRD vs MR (d) Diversity, MRD vs MR
Figure 4.3: Variation with k of relevance and diversity, with MR and MRD

from the figure.

Variation of diversity (Figure 4.2.b) with MR shows that diversity grows when ν
decreases, with a stabilization to high values around ν=0.6. Note that here, since
we use the same measure for diversity, the comparison between the different cases is
possible. For instance, we can see that relevance functions including more criteria
provide increased content diversity. Also, the social network criteria appear to have
a good influence on diversity, better than the time bonus.

When using the MRD victim selection heuristics, measures are very close to those
for MR. We show only the comparison for the Text-Social-Time case, for relevance
(Figure 4.2.c) and diversity (Figure 4.2.d), the other scoring cases providing similar
conclusions. The most noticeable difference is for diversity, where, as expected, MRD
provides a better score, since it considers both relevance and diversity in selecting
the victim. However, the difference with MR is small.

In conclusion, a small contribution of diversity to the balance with relevance brings
a very good diversity to the results, without loosing much of the relevance. Values
of ν between 0.75 down to 0.5 are a very good compromise. The social relevance
criteria have the best impact on diversity. We also confirm the remark in Section
section 3.2 about the naturally high content diversity of social network messages,
which ensures to DA-SANTA a good efficiency despite the approximation of the
objective function FDA with its upperbound F+

DA.

Variation with k.

78

4.3 Experimental evaluation

We measure relevance and diversity, while varying k, the size of the result set,
between 10 to 50, values beyond that interval being unusual for top-k queries in
social networks. Figure 4.3 illustrates the impact of this variation on relevance and
diversity, for each type of relevance scoring, for MR and MRD.
Variation of relevance (Figure 4.3.a) with MR shows a slow monotonic decrease
of the achieved relevance in all the cases. This is natural, since the average rele-
vance decreases when considering more results. Diversity also decreases very slowly
with k (Figure 4.3.b); this is explained by the increased probability to have similar
messages in bigger result sets. The comparison with the MRD case shows a very
similar behavior with the MR case for both relevance (Figure 4.3.c) and diversity
(Figure 4.3.d).
In conclusion, relevance and diversity decrease with the size of the result, but the
impact of k remains very limited in all the cases.

4.3.3 Efficiency of DA-SANTA

We measure the execution time per message, for both victim selection heuristics, MR
and MRD. Since time-dependent scoring has a significant impact on the execution
time (because of the increased probability of new messages to be relevant and to
enter the top-k), we compare two scoring cases, without (Text-Social), and with
(Text-Social-Time) time bonus.
Variation with ν.We measure the execution time for five values of ν: 1, 0.75,
0.5, 0.25 and 0. Figure 4.4.a presents this variation for each combination of vic-
tim selection heuristics and scoring case. In all the cases, the execution time first
increases when ν decreases from 1 to around 0.75, then it decreases when ν con-
tinues to decrease. The initial increase is explained by the increasing role of the
diversity in the global score, provoking more and more updates to the top-k and to
the index. Around ν=0.75 the diversity becomes high enough and cannot increase
too much anymore; the value of the diversity part in the objective function F+

DA

becomes important enough to produce a quicker termination of the index traversal.
This produces less candidates, so a shorter execution time. In the extreme case of
ν=0, diversity is so high that it cannot be improved most of the time, so the number
of candidates is very low and the execution time close to 0.
In all the cases, MR is slightly faster than the MRD heuristics, but the difference
is small. Time-dependent scoring has a much higher impact on the execution time,
which is between 1.5 to 2.5 times longer with Text-Social-Time than with Text-
Social.
In conclusion, the execution time of DA-SANTA is low enough (milliseconds per
message) to be adapted to continuous top-k processing, even if the best quality of
results (ν between 0.75 and 0.5) corresponds to the highest execution time. In similar
condition, the relevance-only-based SANTA algorithm is one order of magnitude

79

Chapter 4 Diversity-aware continuous top-k queries in social networks

(a) Variation with ν (b) Variation with k
Figure 4.4: Execution time for DA-SANTA, with MR and MRD

faster, but compared with diversity-aware algorithms DA-SANTA is very efficient
(see below). Time-dependent scoring has a significant impact on the execution time,
but do not change the order of magnitude. The victim selection heuristics has less
importance here, compared to the other efficiency factors.

Variation with k. We measure the execution time for k between 10 to 50, for
the same combinations of victim selection heuristics and scoring type. Figure 4.4.b
indicates in all the cases a linear increase of the execution time, which remains
within acceptable limits.

4.3.4 Comparison with Baseline and Incremental

We compare relevance, diversity and the execution time for DA-SANTA, Baseline
and Incremental. Both Baseline and Incremental produce the same relevance and
diversity, by testing each time all the possible victims in the top-k. Their only
difference is in method of testing the relevance-diversity update condition, more
efficient for Incremental.

Relevance and diversity. By comparing DA-SANTA with Baseline/Incremental,
we evaluate the loss of relevance and diversity by applying a simpler victim selection
heuristics. Figure 4.5 illustrates this comparison. We consider both MR and MRD
heuristics and the various scoring cases. In all the cases, the differences are very
small, which proves the very good quality of results produced by DA-SANTA.

Execution time. We compare the execution time of Baseline and Incremental with
all the scoring type cases, as shown in Figure 4.6. In all the cases, Incremental is
about 3 times faster than Baseline, but unlike DA-SANTA, its execution time (about
1 second/message) is not appropriate for continuous processing of top-k queries at
a social network scale.

As a general conclusion, compared with Baseline and Incremental, DA-SANTA de-
livers a similar quality of results 2-3 orders of magnitude faster, with execution times
compatible with the continuous processing of top-k queries in large social networks.

80

4.4 Summary

(a) Relevance (b) Diversity
Figure 4.5: Comparison with Baseline/Incremental for relevance and diversity

Figure 4.6: Execution time for Baseline and Incremental

4.4 Summary

In this chapter, we have focused on the query results diversity in its continuous
version where the proposed solution continuously maintains diversified top-k result
lists over streams of messages. Adding results diversification to continuous pro-
cessing of top-k queries over information streams at a social network scale is a very
challenging task. First, the general diversification problem is computationally heavy
(NP-hard) and specific approximate methods are necessary, especially in the case
of continuously arriving data, while preserving the quality of the results. Next, the
constraint of continuous processing at the social network scale requires very efficient
algorithms. Finally, when trying to extend an existing relevance-only approach to
add diversity, one must face the model mismatch between top-k computation for
relevance, at the element level, and diversity, evaluated at the set level. In this
context, this Chapter comes with the following main contributions:
• A smooth integration of content-based diversity into the continuous top-k pro-

cessing model presented in Chapter 3, which deals with information streams
in a social network and uses a rich relevance function that includes content-,
time- and social network-based scoring criteria. The proposed model includes
heuristics for approximate diversification and a query indexing structure for
efficient processing of diversity-aware top-k queries at the social network scale.
• An algorithm, DA-SANTA (Diversity-Aware Social and Action Network Thresh-

old Algorithm), based on this model, providing efficient continuous process-
ing of relevance-diversity top-k queries over information streams. Excepting
[CC15] and complementary to it, to the best of our knowledge, this is the first

81

Chapter 4 Diversity-aware continuous top-k queries in social networks

diversity-aware algorithm for continuous top-k processing adapted to large-
scale social networks.
• A rich set of experiments over a real dataset extracted from Twitter, demon-

strating the effectiveness and the efficiency of DA-SANTA.

82

5 Conclusion and Future Work

5.1 Thesis Summary

In this thesis, we deal with information streams processing, in particular, streams
coming from the social networks. Messages in such information streams arrive at in
a continuous manner, with high arrival rate. Users are interested in receiving new
content in real time, they can express their interest by keyword queries or through
an implicit query (user profile). However, the huge amount of messages certainly
overloads the users with a mix of interesting and non-interesting messages. Filtering
and ranking this content to allow users to be updated with only the most interesting
messages is the main objective of our work. The challenges in processing information
streams depend not only on the number of messages and queries, but also on the
form of the ranking function. We aim at continuously processing a large number of
queries defined on stream messages using a continuous top−k model. In this model,
the system continuously computes the k most relevant messages for each query.
The first challenge in this context is the adoption of a ranking function that includes
social network factors, to improve the relevance of the results in this context. While
most of the previous works in information streams use a simple scoring function,
including content based and time based factors, we have proposed a richer scoring
model including new social network context factors: user based and interaction based
factors. In the social network, relationships between users are a good indicator
to identify relevant content. Interaction with a message is a proof of its global
importance, but also of the interest for the message emitter. Considering such social
factors is important to improve the results quality, but it adds more complexity in
the continuous computation of top-k list.
The continuous computation of the top-k query in the context of the social network
is also a challenge. In addition to a large number of top-k queries, many events
in the social network could update the top-k sets. Ideally, the top-k sets should
be recomputed on each event in the social network (new message, new action, new
edge, user profile change, ...). In our system, we consider that new messages and
new actions have a strong impact on the top-k sets, and this needs to be processed
immediately. The other events with a lower impact on the top-k sets could be
processed periodically. To avoid processing new events with all the queries, we
indexe queries with inverted indexes and use threshold techniques (such as TA) to
prune queries that have no chance to update their top-k. The challenge here is to
be able to include the new social network criteria into the index. As a result, we

83

Chapter 5 Conclusion and Future Work

have proposed SANTA and SANTA+ algorithms for continuous top-k processing
of information streams, using a scoring function that includes the social network
factors, and able to handle both events.

Our index structure is simple, flexible, easy to extend to new dimensions, unlike that
of existing algorithms. They also face the problem of heavy index updates when
the top-k scores change since they generally include the value of the k − th score
(having frequent changes) into each index dimension. In addition, they consider
short queries, while social network environments come with implicit queries based
on user profiles (long queries). Since the number of updates grows with the size of
the query and with the number of dimensions (that increases when introducing social
network criteria), these techniques are not adapted to the social network context.
Unlike them, SANTA separates the k-th score from the other dimensions in the
index, thus minimizing impact of updates and facilitating the extension with new
social network dimensions.

Next, while existing algorithms for continuous top-k processing did not consider the
results diversification problem, we addressed this problem in our work. Our goal
is to provide both diverse and relevant messages in top-k sets. In this thesis, we
focused on the content-based diversification where we want to maximize the dis-
similarity between messages in the top-k list. The challenge is how to integrate
diversity into the continuous top-k model, while maintaining the efficiency of the
system. The computation of the dis-similarity between all messages in the top-k
is expensive. Instead, we propose heuristics to selected a single victim message to
be replaced (or not) with the new message. To this end, we have proposed the
DA-SANTA algorithm that is able to continuously maintain the k messages that
are both diverse and relevant for each query. The DA-SANTA algorithm follows
the filtering technique employed in the SANTA algorithm by evaluating the new
message with a limited number of queries.

This is the first work to our knowledge that introduces the continuous top-k model
in a highly dynamic environment, the social network, with a rich scoring function
and includes results diversification techniques. Our experimentation shows that the
proposed algorithms (SANTA, SANTA+ and DA-SANTA) are effective for a social
network with hundred of thousands of users and millions of messages. Our indexes
allow a simple and efficient parallelization of the proposed algorithms to scale out
to a greater social network.

However, some limitations are worth noting. Even though we have only processed
the new message and a new action in continuous mode, other events deserve to be
included in the continuous processing, such as changes to user profiles. Moreover, in
this work, we considered only one dimension of diversity, depending on the content.
Future work should explore other dimensions such as time or information sources.

84

5.2 Future Works

5.2 Future Works

A first line of continuing this work concerns the scoring function and the way various
social network factors are modeled within. For instance, in this thesis, we have
considered the feedback (user actions) only through the number of actions, in order
to assess the global importance of a message. However, user actions may be of several
types (liking, commenting, tagging, etc.) and each type characterizes differently
the published messages (commenting on a message is probably a more important
indicator than liking it). On the other hand, this query-independent component
is measured by considering the feedback in the global social network, but it may
be also interesting to consider the feedback in the local social network of the user
(“friends”). Therefore, this query-independent component may become a query-
dependent component in the scoring function.
As mentioned above, in this thesis we have considered a linear scoring function
with the multiplicative time bonus, but any monotonic function is compatible with
our algorithms. It would be interesting to test our algorithms with other forms of
monotonic scoring function. In addition, methods for the validation or learning of
the coefficients of the ranking function should also be included in our system.
Another line for the future work concerns the processing model. Future work should
focus on the continuous processing of other possible events in the social network.
We have considered that user profiles and relationships between users are static, but
in practice, they are not. User profiles are implicit queries that reflect the centers
of interest. In fact, user profiles are created based on user activities that change
over time. In our model, changes in user profiles results in an update in the text
index presented in Chapter 3. The current text index can accept modifications in
the user profiles as follows: adding a new term to the user profile leads to adding the
user to a new list in the index, deleting a term leads to removing the user from the
corresponding list and changing the term weights leads to changes to the order in the
lists. Similarly, the relationships between users in the social network are dynamic,
users create/delete connections daily. Such changes in the social graph result in an
update in the social index presented in Chapter 3.
Our processing model is not affected by these changes since it adopts the time
consistency setting as mentioned in subsection 3.1.4. However, the current version
of our indexes needs to be optimized to support such updates in an effective way.
As explained in above, top-k results are continuously maintained for all queries (user
profiles), but users generally are not connected “online” at all time. We are wasting
time in processing every individual event for “offline” users. We can benefit from
that point and save time by processing a group of events instead of an individual
event.
Another important direction is to explore other dimensions for the diversification
of results. In this work, we have only considered the textual dimension, but time,
information sources or location are promising criteria to be explored. It is interesting

85

Chapter 5 Conclusion and Future Work

to propose messages in the top-k sets that come from different sources of information,
occur in a different geographical area or are published in different time ranges. In
our work, the definition of diversity is based on a distance function that measures
the dissimilarity between the messages.
To be applied to a very large scale social network, our model should be adapted
to work in a parallel environment. As mentioned in Chapter 2, our data structure
allows a simple and efficient parallelization of the proposed algorithms. Our parallel
strategy is encouraging and should be validated in practice.

86

Bibliography

[AGHI09] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel
Ieong. Diversifying search results. In Proceedings of the Sec-
ond ACM International Conference on Web Search and Data Min-
ing, WSDM ’09, pages 5–14, New York, NY, USA, 2009. ACM,
http://doi.acm.org/10.1145/1498759.1498766.

[AK11] Albert Angel and Nick Koudas. Efficient diversity-aware search. In
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’11, pages 781–792, New York, NY,
USA, 2011. ACM, http://doi.acm.org/10.1145/1989323.1989405.

[BCH+03] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Sof-
fer, and Jason Zien. Efficient query evaluation using a two-
level retrieval process. In CIKM ’03, pages 426–434, 2003,
http://doi.acm.org/10.1145/956863.956944.

[BGL+12] Michael Busch, Krishna Gade, Brian Larson, Patrick Lok, Samuel
Luckenbill, and Jimmy Lin. Earlybird: Real-time search at twitter. In
Proceedings of the 2012 IEEE 28th International Conference on Data
Engineering, ICDE ’12, pages 1360–1369, Washington, DC, USA, 2012.
IEEE Computer Society, http://dx.doi.org/10.1109/ICDE.2012.149.

[BKL06] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for
nearest neighbor. In Proceedings of the 23rd International Conference
on Machine Learning, ICML ’06, pages 97–104, New York, NY, USA,
2006. ACM, http://doi.acm.org/10.1145/1143844.1143857.

[BM96] Timothy A. H. Bell and Alistair Moffat. The design of a high perfor-
mance information filtering system. In Proceedings of the 19th Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’96, pages 12–20, New York, NY,
USA, 1996. ACM, http://doi.acm.org/10.1145/243199.243203.

[BOPY07] Christian Böhm, Beng Chin Ooi, Claudia Plant, and Ying Yan. Ef-
ficiently processing continuous k-nn queries on data streams. In Pro-
ceedings of the 23rd International Conference on Data Engineering,
ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007,
pages 156–165, 2007, http://dx.doi.org/10.1109/ICDE.2007.367861.

[CACH14] Shiwen Cheng, Anastasios Arvanitis, Marek Chrobak, and Vagelis

87

Bibliography

Hristidis. Multi-query diversification in microblogging posts. In EDBT,
pages 133–144, 2014.

[Cal96] Jamie Callan. Document filtering with inference networks. In SIGIR
’96, pages 262–269, 1996, http://doi.acm.org/10.1145/243199.243273.

[CC15] Lisi Chen and Gao Cong. Diversity-aware top-k publish/subscribe
for text stream. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data, SIG-
MOD ’15, pages 347–362, New York, NY, USA, 2015. ACM,
http://doi.acm.org/10.1145/2723372.2749451.

[CCZ+12] Kailong Chen, Tianqi Chen, Guoqing Zheng, Ou Jin, Enpeng
Yao, and Yong Yu. Collaborative personalized tweet recommen-
dation. In Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
SIGIR ’12, pages 661–670, New York, NY, USA, 2012. ACM,
http://doi.acm.org/10.1145/2348283.2348372.

[CG98] Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-
based reranking for reordering documents and producing summaries.
In Proceedings of the 21st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval,
SIGIR ’98, pages 335–336, New York, NY, USA, 1998. ACM,
http://doi.acm.org/10.1145/290941.291025.

[CKC+08] Charles L.A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga
Vechtomova, Azin Ashkan, Stefan Büttcher, and Ian MacKinnon.
Novelty and diversity in information retrieval evaluation. In Pro-
ceedings of the 31st Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SI-
GIR ’08, pages 659–666, New York, NY, USA, 2008. ACM,
http://doi.acm.org/10.1145/1390334.1390446.

[CLOW11] Chun Chen, Feng Li, Beng Chin Ooi, and Sai Wu. Ti: An efficient
indexing mechanism for real-time search on tweets. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’11, pages 649–660, New York, NY, USA, 2011. ACM,
http://doi.acm.org/10.1145/1989323.1989391.

[CNC11] Jilin Chen, Rowan Nairn, and Ed Chi. Speak little and well: Rec-
ommending conversations in online social streams. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI ’11, pages 217–226, New York, NY, USA, 2011. ACM,
http://doi.acm.org/10.1145/1978942.1978974.

[CNN+10] Jilin Chen, Rowan Nairn, Les Nelson, Michael Bernstein, and Ed Chi.
Short and tweet: Experiments on recommending content from infor-
mation streams. In Proceedings of the SIGCHI Conference on Human

88

Bibliography

Factors in Computing Systems, CHI ’10, pages 1185–1194, New York,
NY, USA, 2010. ACM, http://doi.acm.org/10.1145/1753326.1753503.

[CNPK05] Paul Alexandru Chirita, Wolfgang Nejdl, Raluca Paiu, and Chris-
tian Kohlschütter. Using odp metadata to personalize search. In
Proceedings of the 28th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval,
SIGIR ’05, pages 178–185, New York, NY, USA, 2005. ACM,
http://doi.acm.org/10.1145/1076034.1076067.

[CSSX09] Graham Cormode, Vladislav Shkapenyuk, Divesh Srivastava, and
Bojian Xu. Forward decay: A practical time decay model
for streaming systems. In Proceedings of the 2009 IEEE In-
ternational Conference on Data Engineering, ICDE ’09, pages
138–149, Washington, DC, USA, 2009. IEEE Computer Society,
http://dx.doi.org/10.1109/ICDE.2009.65.

[CZG+09] David Carmel, Naama Zwerdling, Ido Guy, Shila Ofek-Koifman, Na-
dav Har’el, Inbal Ronen, Erel Uziel, Sivan Yogev, and Sergey Chernov.
Personalized social search based on the user’s social network. In Pro-
ceedings of the 18th ACM Conference on Information and Knowledge
Management, CIKM ’09, pages 1227–1236, New York, NY, USA, 2009.
ACM, http://doi.acm.org/10.1145/1645953.1646109.

[DFMGL12] Gianmarco De Francisci Morales, Aristides Gionis, and Claudio Luc-
chese. From chatter to headlines: Harnessing the real-time web
for personalized news recommendation. In Proceedings of the Fifth
ACM International Conference on Web Search and Data Mining,
WSDM ’12, pages 153–162, New York, NY, USA, 2012. ACM,
http://doi.acm.org/10.1145/2124295.2124315.

[DFZN10] Elena Demidova, Peter Fankhauser, Xuan Zhou, and Wolfgang
Nejdl. Divq: Diversification for keyword search over structured
databases. In Proceedings of the 33rd International ACM SIGIR
Conference on Research and Development in Information Retrieval,
SIGIR ’10, pages 331–338, New York, NY, USA, 2010. ACM,
http://doi.acm.org/10.1145/1835449.1835506.

[Dij59] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numer. Math., 1(1): 269–271, December 1959,
http://dx.doi.org/10.1007/BF01386390.

[DP09] Marina Drosou and Evaggelia Pitoura. Diversity over continuous data.
IEEE Data Eng. Bull., 32(4): 49–56, 2009.

[DP12] Marina Drosou and Evaggelia Pitoura. Dynamic diversification of con-
tinuous data. In Proceedings of the 15th International Conference on
Extending Database Technology, EDBT ’12, pages 216–227, New York,
NY, USA, 2012. ACM, http://doi.acm.org/10.1145/2247596.2247623.

89

Bibliography

[Fag02] Ronald Fagin. Combining fuzzy information: An
overview. SIGMOD Rec., 31(2): 109–118, June 2002,
http://doi.acm.org/10.1145/565117.565143.

[FLN01] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation
algorithms for middleware. In Proceedings of the Twentieth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’01, pages 102–113, New York, NY, USA, 2001. ACM,
http://doi.acm.org/10.1145/375551.375567.

[GCK+10] Liang Gou, Hung-Hsuan Chen, Jung-Hyun Kim, Xiaolong
Zhang, and C. Lee Giles. Sndocrank: document rank-
ing based on social networks. In Michael Rappa, Paul
Jones, Juliana Freire, and Soumen Chakrabarti, editors,
WWW, pages 1103–1104. ACM, 2010, http://dblp.uni-
trier.de/db/conf/www/www2010.html#GouCKZG10.

[GÖ03] L. Golab and M. T. Özsu. Issues in Data Stream Management. SIG-
MOD Record, 32(2): 5–14, 2003.

[GS09] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for
result diversification. In Proceedings of the 18th International Confer-
ence on World Wide Web, WWW ’09, pages 381–390, New York, NY,
USA, 2009. ACM, http://doi.acm.org/10.1145/1526709.1526761.

[HKC+12] Zeinab Hmedeh, Harris Kourdounakis, Vassilis Christophides, Cedric
du Mouza, Michel Scholl, and Nicolas Travers. Subscription indexes
for web syndication systems. In EDBT ’12, pages 312–323, 2012,
http://doi.acm.org/10.1145/2247596.2247634.

[HMA10] Parisa Haghani, Sebastian Michel, and Karl Aberer. The
gist of everything new: Personalized top-k processing over
web 2.0 streams. In CIKM ’10, pages 489–498, 2010,
http://doi.acm.org/10.1145/1871437.1871502.

[HMA12] Parisa Haghani, Sebastian Michel, and Karl Aberer. Efficient monitor-
ing of personalized hot news over web 2.0 streams. Comput. Sci., 27(1):
81–92, February 2012, http://dx.doi.org/10.1007/s00450-011-0178-9.

[HRT97] Refael Hassin, Shlomi Rubinstein, and Arie Tamir. Approximation
algorithms for maximum dispersion. Oper. Res. Lett., 21(3): 133–137,
October 1997, http://dx.doi.org/10.1016/S0167-6377(97)00034-5.

[JGP+05] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke,
and Geri Gay. Accurately interpreting clickthrough data as implicit
feedback. In Proceedings of the 28th Annual International ACM SI-
GIR Conference on Research and Development in Information Re-
trieval, SIGIR ’05, pages 154–161, New York, NY, USA, 2005. ACM,
http://doi.acm.org/10.1145/1076034.1076063.

90

Bibliography

[JW03] Glen Jeh and Jennifer Widom. Scaling personalized web search.
In Proceedings of the 12th International Conference on World Wide
Web, WWW ’03, pages 271–279, New York, NY, USA, 2003. ACM,
http://doi.acm.org/10.1145/775152.775191.

[JWR00] K. Sparck Jones, S. Walker, and S. E. Robertson. A probabilistic
model of information retrieval: Development and comparative ex-
periments. Inf. Process. Manage., 36(6): 779–808, November 2000,
http://dx.doi.org/10.1016/S0306-4573(00)00015-7.

[KOSP11] Pavan Kapanipathi, Fabrizio Orlandi, Amit P Sheth, and Alexandre
Passant. Personalized filtering of the twitter stream. 2011.

[KS12] Ali Khodaei and Cyrus Shahabi. Social-textual search and ranking.
In Intl Workshop on Crowdsourcing Web Search, Lyon, France, April
17, 2012, pages 3–8, 2012, http://ceur-ws.org/Vol-842/crowdsearch-
khodaei.pdf.

[KSJ09] Ioannis Konstas, Vassilios Stathopoulos, and Joemon M. Jose. On so-
cial networks and collaborative recommendation. In Proceedings of the
32Nd International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’09, pages 195–202, New York,
NY, USA, 2009. ACM, http://doi.acm.org/10.1145/1571941.1571977.

[LSC09] Ziyang Liu, Peng Sun, and Yi Chen. Structured search result dif-
ferentiation. Proc. VLDB Endow., 2(1): 313–324, August 2009,
http://dx.doi.org/10.14778/1687627.1687663.

[LTG09] Kun Liu, Evimaria Terzi, and Tyrone Grandison. Highlighting diverse
concepts in documents. In Proceedings of the 2009 SIAM International
Conference on Data Mining, pages 545–556. SIAM, 2009.

[MBP06] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Pa-
padias. Continuous monitoring of top-k queries over slid-
ing windows. In SIGMOD ’06, pages 635–646, 2006,
http://doi.acm.org/10.1145/1142473.1142544.

[MC13] Silviu Maniu and Bogdan Cautis. Network-aware search in social tag-
ging applications: Instance optimality versus efficiency. In Proceedings
of the 22Nd ACM International Conference on Information & Knowl-
edge Management, CIKM ’13, pages 939–948, New York, NY, USA,
2013. ACM, http://doi.acm.org/10.1145/2505515.2505760.

[MGD06] Alan Mislove, Krishna P Gummadi, and Peter Druschel. Exploiting
social networks for internet search. In 5th Workshop on Hot Topics in
Networks (HotNets06). Citeseer, page 79, 2006.

[MP11] Kyriakos Mouratidis and HweeHwa Pang. Efficient evalua-
tion of continuous text search queries. IEEE Trans. on
Knowl. and Data Eng., 23(10): 1469–1482, October 2011,
http://dx.doi.org/10.1109/TKDE.2011.125.

91

Bibliography

[MSN11] Enrico Minack, Wolf Siberski, and Wolfgang Nejdl. Incremen-
tal diversification for very large sets: A streaming-based ap-
proach. In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
SIGIR ’11, pages 585–594, New York, NY, USA, 2011. ACM,
http://doi.acm.org/10.1145/2009916.2009996.

[PGC+10] Tim Paek, Michael Gamon, Scott Counts, David Maxwell Chickering,
and Aman Dhesi. Predicting the importance of newsfeed posts and
social network friends. In AAAI, volume 10, pages 1419–1424, 2010.

[PvA08] Krešimir Pripužić, Ivana Podnar Žarko, and Karl Aberer. Top-
k/w publish/subscribe: Finding k most relevant publications in
sliding time window w. In DEBS ’08, pages 127–138, 2008,
http://doi.acm.org/10.1145/1385989.1386006.

[RBS10] Davood Rafiei, Krishna Bharat, and Anand Shukla. Diversifying web
search results. In Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, pages 781–790, New York, NY, USA,
2010. ACM, http://doi.acm.org/10.1145/1772690.1772770.

[RCCT14] Weixiong Rao, Lei Chen, Shudong Chen, and Sasu Tarkoma. Evalu-
ating continuous top-k queries over document streams. World Wide
Web, 17(1): 59–83, January 2014, http://dx.doi.org/10.1007/s11280-
012-0191-3.

[SB88] Gerard Salton and Christopher Buckley. Term-weighting approaches
in automatic text retrieval. Inf. Process. Manage., 24(5): 513–523,
August 1988, http://dx.doi.org/10.1016/0306-4573(88)90021-0.

[SCK+08] Ralf Schenkel, Tom Crecelius, Mouna Kacimi, Sebastian Michel,
Thomas Neumann, Josiane X. Parreira, and Gerhard Weikum. Effi-
cient top-k querying over social-tagging networks. In SIGIR ’08, pages
523–530, 2008, http://doi.acm.org/10.1145/1390334.1390424.

[SCZ09] Aaron R Sun, Jiesi Cheng, and Daniel Dajun Zeng. A novel recommen-
dation framework for micro-blogging based on information diffusion.
2009.

[SGFJ13] Alexander Shraer, Maxim Gurevich, Marcus Fontoura, and Vanja
Josifovski. Top-k publish-subscribe for social annotation of
news. Proc. VLDB Endow., 6(6): 385–396, April 2013,
http://dx.doi.org/10.14778/2536336.2536340.

[TSZ06] Bin Tan, Xuehua Shen, and ChengXiang Zhai. Mining long-term
search history to improve search accuracy. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’06, pages 718–723, New York, NY, USA, 2006.
ACM, http://doi.acm.org/10.1145/1150402.1150493.

92

Bibliography

[VAC12] Nelly Vouzoukidou, Bernd Amann, and Vassilis Christophides.
Processing continuous text queries featuring non-homogeneous
scoring functions. In CIKM ’12, pages 1065–1074, 2012,
http://doi.acm.org/10.1145/2396761.2398404.

[vLGOvZ09] Reinier H. van Leuken, Lluis Garcia, Ximena Olivares, and Roelof
van Zwol. Visual diversification of image search results. In Pro-
ceedings of the 18th International Conference on World Wide Web,
WWW ’09, pages 341–350, New York, NY, USA, 2009. ACM,
http://doi.acm.org/10.1145/1526709.1526756.

[Vou15] Nelly Vouzoukidou. Continuous top-k queries over real-time web
streams. PhD thesis, University Pierre et Marie Curie, September
2015.

[VRB+11] Marcos R Vieira, Humberto L Razente, Maria CN Barioni, Marios
Hadjieleftheriou, Divesh Srivastava, Caetano Traina, and Vassilis J
Tsotras. On query result diversification. In Data Engineering (ICDE),
2011 IEEE 27th International Conference on, pages 1163–1174. IEEE,
2011.

[XXWL13] Xiaokui Xiao, Yabo Xu, Lingkun Wu, and Wenqing Lin.
Lsii: An indexing structure for exact real-time search on mi-
croblogs. In Proceedings of the 2013 IEEE International Con-
ference on Data Engineering (ICDE 2013), ICDE ’13, pages
482–493, Washington, DC, USA, 2013. IEEE Computer Society,
http://dx.doi.org/10.1109/ICDE.2013.6544849.

[YBLS08] Sihem Amer Yahia, Michael Benedikt, Laks V. S. Lakshmanan, and
Julia Stoyanovich. Efficient network aware search in collaborative
tagging sites. Proc. VLDB Endow., 1(1): 710–721, August 2008,
http://dx.doi.org/10.14778/1453856.1453934.

[YGM94a] Tak W. Yan and Hector Garcia-Molina. Index structures for infor-
mation filtering under the vector space model. In ICDE’94, pages
337–347, 1994, http://dl.acm.org/citation.cfm?id=645479.655112.

[YGM94b] Tak W Yan and Héctor García-Molina. Index structures for selective
dissemination of information under the boolean model. ACM Trans.
on Database Syst. (TODS), 19(2): 332–364, 1994.

[YGM99] Tak W. Yan and Hector Garcia-Molina. The sift information dissemi-
nation system. ACM Trans. Database Syst., 24(4): 529–565, December
1999, http://doi.acm.org/10.1145/331983.331992.

[YLAY09] Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. It takes
variety to make a world: Diversification in recommender sys-
tems. In Proceedings of the 12th International Conference on Ex-
tending Database Technology: Advances in Database Technology,

93

Bibliography

EDBT ’09, pages 368–378, New York, NY, USA, 2009. ACM,
http://doi.acm.org/10.1145/1516360.1516404.

[YLL10] Peifeng Yin, Wang-Chien Lee, and Ken C. K. Lee. On top-k social
web search. In CIKM, pages 1313–1316. ACM, 2010, http://dblp.uni-
trier.de/db/conf/cikm/cikm2010.html#YinLL10.

[ZC01] Yi Zhang and Jamie Callan. Maximum likelihood estimation
for filtering thresholds. In SIGIR ’01, pages 294–302, 2001,
http://doi.acm.org/10.1145/383952.384012.

[ZMKL05] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg
Lausen. Improving recommendation lists through topic diversifica-
tion. In Proceedings of the 14th International Conference on World
Wide Web, WWW ’05, pages 22–32, New York, NY, USA, 2005. ACM,
http://doi.acm.org/10.1145/1060745.1060754.

94

	Contents
	Abstract
	Abstract
	1 Introduction
	1.1 Information streams
	1.2 Processing models
	1.3 Diversification
	1.4 Thesis focus
	1.5 Thesis outline

	2 State of the art
	2.1 Continuous top-k queries for information streams
	2.1.1 Filtering text streams
	2.1.2 Top-k multicriteria algorithms
	2.1.3 Filtering social streams
	2.1.4 Web search with social network-aware personalization
	2.1.5 Processing top-k queries in a social network context
	2.1.6 Real-time search
	2.1.7 Continuous processing of top-k queries over text streams

	2.2 Diversity-Aware top-k query processing over information streams
	2.2.1 Query results diversification
	2.2.2 Diversification for top-k queries over streaming data
	2.2.3 Diversification in Publish/Subscribe system

	3 Continuous top-k queries in social networks
	3.1 Data and processing models
	3.1.1 Data model
	3.1.2 Scoring function
	3.1.3 Problem statement
	3.1.4 Processing model

	3.2 The SANTA algorithm
	3.2.1 Index and other data structures.
	3.2.2 Scoring function
	3.2.3 The algorithm
	3.2.4 SANTA+: improving action processing
	3.2.5 CF+: an extended version of COL-Filter

	3.3 Experimental evaluation
	3.4 Summary

	4 Diversity-aware continuous top-k queries in social networks
	4.1 Data and processing models
	4.1.1 Data model
	4.1.2 Relevance scoring function
	4.1.3 Diversity model
	4.1.4 Processing model
	4.1.5 Problem statement

	4.2 The DA-SANTA algorithm
	4.2.1 DA-SANTA scoring
	4.2.2 Victim selection heuristics
	4.2.3 The DA-SANTA index
	4.2.4 The case of time-dependent scoring
	4.2.5 The algorithm

	4.3 Experimental evaluation
	4.3.1 Experimental setting
	4.3.2 Effectiveness of DA-SANTA
	4.3.3 Efficiency of DA-SANTA
	4.3.4 Comparison with Baseline and Incremental

	4.4 Summary

	5 Conclusion and Future Work
	5.1 Thesis Summary
	5.2 Future Works

	Bibliography

