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Ultimate load limit analysis of steel structures accounting for 

nonlinear behavior of connections 

Abstract 

This thesis deals with the ultimate load limit analysis of steel frame structures. The steel frame 

structure has a very ductile response and a large potential to dissipate energy, which is crucial in the 

case of earthquakes. The ductility in the response of the structure comes from the behavior of the 

material itself and the behavior of the semi-rigid structural connections. The semi-rigid connections 

between beams and columns can significantly influence the response of the structure, sometimes up 

to 30%. In this thesis, we propose a methodology for modeling steel frame structures with included 

connection behavior. The idea is to model the behavior of the structural connections by the beam 

elements positioned in the corners of the steel frame structure. Other members of the steel frame 

structure, steel beams, and columns, will be modeled with nonlinear beam elements.   

This research consists of two parts. The first part deals with the behavior of the structural steel 

connections. In the second part, we present the development of the nonlinear beam element capable 

of representing the ductile behavior of steel structural elements, beams and columns. 

In the first part of the thesis, we define constitutive parameters identification procedure for the 

coupled plasticity-damage model with eighteen unknowns. This constitutive model is very robust 

and capable of representing a wide range of problems. The identification procedure was used in the 

preparation of experimental tests for three different types of structural steel connections. The 

experimental tests have been performed for two load cases. In the first, the load was applied in one 

direction with both the loading and unloading cycles. From the experimental measurements, we 

have concluded that the response of the experimental structure can be represented by the plasticity 

model only because no significant change in the elastic response throughout the loading program 

was observed. Therefore, we have chosen an elastoplastic geometrically exact beam to describe 

connection behavior. The hardening response of the beam is governed by bilinear law, and the 

softening response is governed by nonlinear exponential law. The identification of the parameters 

has been successfully done with fifteen unknown parameters identified. 

The two types of the experimental structures were also exposed to the cyclic loading. Measured 

experimental data shows complex connection behavior that cannot be described by the plasticity 

model alone. Namely, after changing load direction stiffness of the connection decreases. This 

suggests that the damage model should be incorporated in the constitutive law for the connections 

behavior as well. Therefore, we propose a new coupled plasticity-damage model capable of 

representing the loss in the stiffness of the connection with the changing of the load direction. At 

the end of this part, we also give the constitutive parameters identification for the proposed model. 

The second part of the thesis deals with the theoretical formulation and numerical implementation 

of the elastoplastic geometrically exact beam. The hardening response of the beam includes 

interaction between stress resultant section forces (N, T and M), and the softening response of the 

beam, which is governed by the nonlinear law. This type of the beam element is capable of 

representing the ductile behavior of a steel frame structure, and it takes into account second order 

theory effects. 

Performed numerical simulations show that the proposed geometrically nonlinear beam element is 

very robust and is able to provide a more precise limit load analysis of steel frame structures. By 

using proposed methodology for modeling steel structures, we are able to obtain the real 

distribution of section forces, including their redistribution caused by forming of the hinges and the 

connections behavior. 
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Ultime analyse de limite de charge des structures en acier 

représentant comportement non linéaire des connexions 

Résumé 

Cette thèse traite l'ultime analyse des structures de châssis en acier,qui  s'utilise souvent comme la 

structure principale de support des batiments . La structure du cadre en acier est caracterisée par 

une  réponse très ductile et un grand potentiel pour dissiper l'énergie, ce qui est crucial pour la 

resistance par rapport aux tremblements de terre. La ductilité dans la réponse de la structure est la 

cause du comportement du matériau lui-même et du comportement des connexions entre les 

elements de la structure. Les connexions entre  les poutres et les poteaux peuvent influencer de 

manière significative la réponse de la structure du cadre en acier, parfois jusqu'à 30%.L'idée est de 

intégrer  le comportement des connexions par les elements de poutres qui seront situés dans les 

coins du cadre et la modélisation du reste  serra fait avec des elements de poutres  non-linéaires qui  

décrirons le comportement des poutres en acier.  

Cette recherche est composé de deux parties. La première partie est consacré au comportement des 

connexions structurelles,la deuxième partie présente  le développement de l'élément fini  du 

faisceau  non linéaire capable de représenter le comportement ductile d'un élément de la structure 

en acier. 

Dans la première partie de la thèse, nous définissons la procédure d'identification des paramètres 

constitutifs pour le modèle couplé de plasticité-dégâts avec dix-huit inconnus. Ce modèle 

constitutif est très robuste et capable de représenter une large gamme de problèmes. La procédure 

definis  a été utilisée dans la préparation de tests expérimentaux pour trois types de connexions en 

acier structuré. Les tests expérimentaux ont été effectués pour deux cas de charge. Pour la première, 

la charge a été appliquée dans un sens avec les cycles de chargement et de déchargement. À partir 

des mesures expérimentales, nous avons conclu que le modèle de plasticité peut bien représentée le 

comportement  de la connexion structurale. Paramètres constitutifs ont été déterminés à partir des 

résultats de l'expérimentation,on a utilisé une poutre géométriquement exacte avec la loi bilinéaires  

renforcement du materiale  et la loi linéaire pour le ramollissement. 

Également,on a  effectué des essais expérimentaux de deux types de raccords en acier en cas de 

chargement cyclique.Les données mesurées montrent que le modèle de la plasticité n'est pas assez 

bon  pour décrire le comportement de connexion pour ce type de charge. A savoir, en raison de 

changements du sense de l'apllication du chargement, les connexions  montrent moins de rigidité, 

qui peut être décrite avec un modèle constitutif de dommages. Pour cette raison, nous avons 

développé un nouveau modèle plasticité-dommages qui est capable d'inclure le phénomène 

mentionné ci-dessus. A la fin de cette section est faite l'identification des paramètres constitutifs. 

La deuxième partie de la thèse de doctorat est composé de formulations théoriques et la mise en 

oeuvre numérique des faisceaux  géométriquement exacte . La réponse de durcissement de la  

poutre comprend l'interaction entre les forces de la section résultant du stress (N, T et M), et la 

réponse de ramollissement est definit par la loi non linéaire. Ce type d'élément fini de poutre est 

capable de décrire le comportement ductile des structures en acier et inclure les effets du second 

ordre, qui sont très importantes pour l'analyse ultime des structures de cadre en acier. 

L'élément fini développé de poutre géométriquement exacte et les lois définies de liaison de 

comportement dans la construction en acier, offrant  la possibilité d'une analyse de haute qualité des 

structures en acier.En utilisant les models de poutre  proposé et  la méthodologie de modélisation 

des structures de châssis en acier, il est possible de déterminer une distribution réaliste des forces 

de section transversale , y compris la redistribution due à la formation de rotules plastiques.





iv 

Ultimate load limit analysis of steel structures accounting for nonlinear behavior of connections 

Konstitutivni zakon veze za analizu graničnih stanja čeličnih 

okvirnih konstrukcija  

Sažetak 

Ova doktorska disertacija se bavi graničnom analizom čeličnih okvirnih konstrukcija, koje se često 

koriste kao glavna nosiva konstrukcija objekata. Ove konstrukcije odlikuje veoma duktilan odgovor 

i veliki potencijal za disipaciju energije, što je krucijalno za seizmičku otpornost. Duktilnost ovih 

konstrukcija je posljedica karakteristika materijala (čelika) i popuštanja u vezama izmeĎu 

elemenata konstrukcije. Naime, veze izmeĎu greda i stubova imaju vežnu ulogu u ponašanju 

čelične okvirne konstrukcije, pa mogu promjeniti odgovor do 30% u odnosu na konstrukciju sa 

krutim vezama.  Ideja je da se ponašanje veza uključi preko grednih elemenata koji bi se posatvili u 

uglove okvira a ostatak konstrukcije može biti modeliran nelinearnim grednim elementima, koji 

opisuju ponašanje ostalih elemenata čelične konstrukcije, greda i stubova. 

Rad se praktično sastoji od dva dijela, prvi dio se bavi analizom ponašanja konstrukcijskih veza, a 

drugi razvojem konačnog elementa grede sposobnog da prezentira duktilno ponašanje elemenata 

konstrukcije. 

Prvi dio se sastoji od definisanja procedure za identifikaciju konstitutivnih parametara modela, gdje 

koristimo povezani model plastičnost-oštećenje, koji sadrži 18 nepoznatih parametara. Ovaj model 

je jako robustan i sposoban da prestavi širok dijapazon fenomena. Uspješno definisana procedura 

identifikacije je iskorištena kao priprema za eksperimentalno ispitivanje tri karakteristična tipa 

čeličnih veza. Experimentalno ispitivanje je sprovedeno za dva različita tipa opterećenja. U prvom 

slučaju, opterećenje je aplicirano u jednom pravcu kao ciklusi opterećenja i rasterećenja. 

Eksperimentalno izmjereni rezultatia ukazuju, da model plastičnosti može kvalitetno opisati 

ponašanje veza. Konstitutivni parametri modela grede su uspješno odreĎeni iz experimentalnih 

rezultata. U identifikaciji je korištena elasto-plastična geometrijski egzaktna greda sa bilinearnim 

zakonom ojačanja materijala i linearnim omekšanjem. Drugi tip opterećenja pri eksperimentalnom 

ispitivanju je ciklično opterećenje. Izvršeno eksperimentalno ispitivanje dva tipa čeličnih veza za 

ovaj tip opterećenja. Izmjereni podaci ukazuju da model plastičnosti nije dovoljno dobar da 

kvalitetno opiše ponašanje veza za ovaj tip opterećenja. Naime, usljed promjene pravaca djelovanja 

opterećenja, veze pokazuju smanjenu krutost, koja se može opisati sa konstitutivnim modelom 

oštećenja. Iz ovog razloga, razvijen je novi model povezane plastičnosti-oštećenja sposoban da 

uključi pomenuti fenomen. Na kraju ovog dijela je izvršena identifikacija konstitutivnih 

parametara. 

Drugi dio doktorske disertacije se sastoji od teoretske formulacije i numeričke implementacije 

geometrijski egzaktne grede sa uključenom interakcijom izmeĎu presječnih sila (M, N i T) u okviru 

ojačanja materijala, dok je omekšanje definisano nelinearnim zakonom. Ovaj tip grednog konačnog 

elementa je sposoban da opiše duktilno ponašanje čeličnih konstrukcija i uključi efekte teorije 

drugog reda, koji su vrlo važni za graničnu analizu čeličnih okvirnih konstrukcija.  

Razvijeni konačni element geometrijski egzaktne grede i definisani zakoni ponašanja veza u 

čeličnim konstrukcija, pružaju mogućnost kvalitetne granične analize čeličnih okvirnih 

konstrukcije. Primjenom predloženih grednih modela i metodologije modeliranja čeličnih okvirnih 

konstrukcija moguće je odrediti realnu raspodjelu presječnih sila uključujući njihovu redistribuciju 

usljed formiranja plastičnih zglobova, kao i ponašanje popustljivih veza izmeĎu elementa 

konstrukcije. 
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1.1.  Motivation 

The steel is one of the materials (next to concrete) most frequently used in the domain of Civil 

Engineering. The main interest of this research work is to master the ultimate behavior of the 

moment-resistant steel frame structures. The moment-resistant steel frames are frequently used as 

bearing structures in seismic regions. They have a very ductile response and a large potential to 

dissipate energy, which is crucial in the case of earthquakes. These characteristics result in the 

economical design of the structure and increase the resistance with respect to the seismic security. 

Structural connections between beams and columns play a crucial role in the response of a steel 

frame structure. They can significantly influence the response of the structure, sometimes up to 

30% (Imamovic & Mesic, 2014).  

The response of a moment-resistant frame structure depends on the connections behavior and steel 

structural elements behavior. Steel as a construction material has good mechanical properties, 

which result in smaller dimensions of the structural elements. Thin elements are sensitive to the 

local buckling and stability issues. On the other hand, steel is very ductile constructive material and 

thus is able to bear large deformations. Therefore, the large deformations should be combined with 

the nonlinear constitutive models of plasticity or damage when describing the behavior of a steel 

structural element. The nonlinear constitutive models should also be able to represent the forming 

of the hinges in the load-bearing structure which eventually leads to the development of the 

collapse mechanism. Development of the hinges depends on all stress resultant section forces. 

Because of that, all stress resultant section forces need to be combined in a yield criterion. The 

modern codes recommend certain rules about the reduction of plastic bending moment related to 

the value of axial force. These rules sometimes cause difficulties in practical applications. This 

work is focused on the development of the appropriate beam element, which can represent 

mentioned phenomena. 

The study of connections behavior is very complex because every type of connections has a 

different response. In this work, we focus on three types of the structural connections: end plate 

connection with extended plate, end plate connection without extension and moment resistant 

connection with angle profiles. These connection types are frequently used in steel frame structures 

because they are very practical for the montage of the structure. The behavior of these connection 

types is very complex. Eurocode 3 (EC3, 2005) gives a procedure for the determination of load 

bearing capacity and stiffness, but only for bending moment. Shear force and axial force are 

neglected. Many experimental tests show that proposed procedure has its disadvantages. The main 

disadvantage is in the conservative prediction of the load-bearing capacity of the connection. 

Numerical analysis of the connection behavior can be performed with many nonlinear FEM 

commercial programs, using 3D solid finite elements. The refined nonlinear model can predict the 

behavior of a connection, but those computations are often too costly and not practical when 

modeling the response of the whole structure. For this reason, we propose the usage of the beam 

element as a better choice with respect to computational efficiency and reduced costs. The 

constitutive parameters of the beam element can be determined from experimental tests. The main 

novelty of the proposed beam element for representing the connection behavior is its ability to 

represent bending, axial and shearing inelastic response, which includes the softening part of the 

response, until the complete failure is reached. 

Using proposed beam model capable of representing phenomena characteristic for steel member 

and beam elements in corners for representing connection behavior, we will be able to perform 

ultimate limit load analysis of a steel frame structure.   
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1.2.  Overview 

Many works about steel frame structures have been published. These works can be classified into 

two completely separated groups. The first group deals with connection behavior, while the second 

group develops FEM beam models. The research on the connection behavior has usually been 

focused on experimental tests or/and numerical simulations with refined FEM models, where 

authors often proposed analytical expressions for representing the connection behavior. On the 

other hand, many beam models that can be used for analysis of steel frame structures have been 

developed for a wide range of problems. However, appropriate numerical modeling of the 

connection behavior is still an issue. This section gives a short overview of the published works 

about beam models and connection behavior. 

 

 
a) beam model b) refined model 

  
c) Moment-curvature/rotation (beam model) d) Moment-curvature/rotation (refined model) 

Figure 1.1  Evaluation of beam material parameters by using results of refined analysis (Dujc et al., 2010) 

  
a) The failure mode of the representative part of the 

frame member as computed by the shell model. 

b) Bending moment versus rotation curves for the end 

cross-section 

Figure 1.2 Refined model   (Dujc et al., 2010) 

Because of the good mechanical properties of the steel, cross-sectional dimensions of the structural 

members can be smaller compared to the dimensions of the same member made from different 

material e.g. concrete. However, because of the smaller dimensions, structural members made of 

steel are more sensitive on stability issues. In the paper (Dujc et al., 2010), authors proposed 

elastoplastic Euler-Bernoulli beam model with embedded discontinuity, with the hardening and the 

softening part of the response included in the constitutive law of the beam. The global buckling of 
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structural members is taken into account through von Karman strain measure, which is an 

appropriate choice for moderate rotations. The local buckling is computed separately, on the 

refined FEM model in nonlinear commercial computer program ABAQUS, see Figure 1.1. The 

numerical simulation has been performed using finite shell element with geometrical nonlinearity, 

while constitutive behavior is defined by the plasticity. In Figure 1.2 refined FEM model and 

numerically obtained response for I steel profile are shown. The obtained response of the steel 

beam in pure bending results in local buckling of the flange of the I-beam. Several numerical 

simulations have been presented, all showing the good performance of the proposed beam element.    

In a structural steel design, we usually use compact cross-sections that are not susceptible to local 

buckling. The compact cross section beams are able to sustain large displacements and 

deformations. Geometrically exact beam finite element, capable of representing large 

displacements, has been presented in (Simo et al., 1984), where the constitutive model is defined as 

a viscoplasticity. The yield criterion is inspired by classic works (Neal, 1961; Drucker, 1956), 

where expression for interaction between section forces are explained and proposed. Several 

numerical simulations presented in the paper show good performance of the proposed beam model.   

Incompatible mode method in the framework of the large displacement has been presented in 

(Ibrahimbegovic & Frey, 1993b), where authors presented theoretical formulation and numerical 

implementation of the proposed model. They showed, that a multiplicative decomposition of the 

deformation gradient into the regular and the enhanced part can be transformed to additive 

decomposition of the displacement gradient. In the large displacements framework, the 

multiplicative decomposition of the deformation gradient needs to be employed. This leads to the 

complex procedure of deriving the constitutive equations. The transformation from the 

multiplicative decomposition of the deformation gradient to the additive decomposition of the 

displacement gradient is crucial for embedded discontinuity method (EDFEM), where displacement 

gradient is decomposed into regular and irregular parts. In the recent work (Pirmanšek et al., 2017), 

authors presented theoretical formulation and numerical simulation of the geometrically exact 

beam, which includes the both, hardening and softening part of the response. Several numerical 

simulations applied to concrete structures show good performance of the proposed model. The 

work (Kozar et al., 2017) presents material model for load rate sensitivity, which researches 

application of load rate sensitive models to different types of the dynamic loading.   

The influence of the connection behavior on the response of the steel frame can be included using 

beam model. Constitutive parameters of the beam model need to be identified from the connection 

response. The parameters identification of a nonlinear constitutive model can be very complex, 

sometimes impossible to determine. The parameters identification in general case is performed in 

two steps: i) defining an objective function based on experimental measurements; ii) minimizing 

this objective function in order to find values of constitutive parameters used in the model.  

To ensure the success of the minimization process, the choice of the objective function is critical. In 

general case, the objective function can be defined as the gap between the measured and the 

computed values of the response (displacement, stress, deformation, reaction force, etc.). 

Minimization of the objective function can be formally written as minimization under constraint.  

The weak form of equilibrium equations acts as the corresponding constraint because the weak 

form of equilibrium equations has to be satisfied at every time step. The constrained minimization 

of the objective function can be transferred into unconstrained minimization by using Lagrange 

multiplier method (Ibrahimbegovic et al., 2004). This type of minimization of the objective 

function is very complex for several unknowns. In work (Kucerova et al., 2009), authors proposed 

a methodology for parameters identification of the constitutive plasticity model. The proposed 
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methodology splits identification procedure into three phases: elastic, hardening and softening, see 

Figure 1.3. It also proposes that measured data needs to include both local and global 

measurements. The local measurement depends on one constitutive parameter, whereas the global 

depends on all constitutive parameters. The proposed objective function is explained in details.  

 
 Figure 1.3 Identification phases (Kucerova et al., 2009) 

Connection behavior is usually analyzed as an isolated problem. A group of authors (Faella et al., 

2000) has performed detailed experimental and numerical research on the connection behavior. 

They have studied the end plate connection with two bolts per row and the application of the 

component method. The component method splits connection into components, where the weakest 

component defines load-bearing capacity, and all components define rotational stiffness, see Figure 

1.4. Eurocode 3 procedure (EC3, 2005) is based on the component method. The research of the 

group of authors has been focused on the connection behavior under bending. The results of the 

research are the expressions for determining the load-bearing capacity and rotational spring 

stiffness of the end plate connection using the component method.  

 
Figure 1.4  Component method  

(EC3, 2005) 

Many works about the experimental and numerical research on the connection behavior have been 

published. In this section, we list only a few of them (Hu et al., 2012; Latour et al., 2014; Ribeiro et 

al., 2015; Imamovic & Mesic, 2014). In these works, the experimental tests have been performed, 

and many phenomena in connection response under monotonic or cyclic or impact load have been 

explained. In most of the cases, authors proposed an analytical model for representing connection 

response where the connection behavior was modeled with several parallels or serially connected 

springs. The behavior of every spring was defined by the certain constitutive model, and the 

softening part of the response was usually neglected. These works did not provide a methodology 

for taking into account the behavior of the connections on the response of a steel frame structure. 
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1.3.  Aims, scopes and methodology 

The main scientific goal of this thesis is to more accurately perform ultimate load limit analysis of 

the steel frame structures. The proposed enhancement of the limit load analysis can be split into 

two parts. In the first, which deals with connections behavior, a methodology for taking into 

account the influence of the connections behavior on the global response of a steel frame structure 

is proposed. In the second part, the improved beam model capable of representing the behavior of 

the steel elements is presented. Combining these two parts, we are able to perform improved limit 

analysis of a steel frame structure. The hypothesis in the first part of the thesis is that beam model 

can be used to represent connection behavior. In the focus of the first part of the thesis is the 

identification of the constitutive parameters. The identification procedure for the very general case 

is developed, including an arrangement of the measuring equipment. This procedure is used as a 

preparation for the experimental testing which is part of this research. Using developed procedure, 

constitutive parameters can be identified from experimental measurements. The beam model with 

identified constitutive parameters is used to model connections in a steel frame structure by placing 

them at the corners of the frame.  

In the second part, we present the improvements of the beam model in order to ensure the ability to 

represent the realistic behavior of the steel structural elements, beams and columns. These 

improvements include implementation of large displacements, second order theory effects, and 

interaction between the stress resultant section forces in the hardening part of the response. The 

softening part of the response is localized at the point.  

The proposed methodology for the ultimate load limit analysis of a steel frame structure takes into 

account influence of connections behavior on the global response of the structure. It also provides 

real distribution of section forces and can be used to predict the collapse of a steel frame structure. 

1.4.  Outline 

The outline of this thesis is as follow. In the second chapter, we present constitutive parameters 

identification procedure for the simplest 1D model of the truss bar with the constitutive behavior 

governed by coupled plasticity-damage model. In the third chapter, for a coupled plasticity-damage 

beam model of a structural connection, we present the constitutive parameters identification 

procedure containing eighteen unknown parameters. In the fourth chapter, we give a theoretical 

formulation and numerical implementation of the geometrically exact beam model with hardening 

and softening part of the response included in the constitutive law of the beam. In the hardening 

part of the response, interaction between stress resultant section forces is taken into account. The 

experimental tests of structural connections under monotonic load and identification of the 

unknown parameters are given in the fifth chapter. In this chapter, a modification of the beam 

model on the hardening response is presented. This modification relates to the use of bilinear 

hardening law with no interaction between stress resultant section forces. In the sixth chapter, 

experimental tests under cyclic loading and constitutive parameters identification procedure are 

given. Here, we also propose a further modification of the beam model. We propose the use of the 

coupled plasticity-damage model as an appropriate choice for the constitutive law of the beam 

under cyclic loading. The conclusion, which summarizes all the main findings of the thesis, and the 

suggestions for the future perspective of the study on this topic are given in the seventh chapter.  
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Chapter 2 

Identification of constitutive parameters for the 1D model 

 

 

 

 

Abstract : 

In this chapter, we present a methodology for the constitutive parameters identification of the 1D 

coupled plasticity-damage model with eight unknowns. Both models, plasticity and damage, are 

able to represent a same response during the loading process. This implies that the constitutive 

parameters are dependent on each other, and that different combinations of parameters represent 

same response.  The difference between models can be found in the unloading process. The focus 

of this chapter is the appropriate definition of the loading program and the objective function, that 

are able to overcome the dependency of parameters. 

In the first part of this chapter, we present governing equations of the 1D coupled plasticity-damage 

model. The second part deals with the constitutive parameters identification procedure. The 

conclusions are stated in the last section of the chapter. 
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2.1 Introduction 

In this chapter, we present a methodology for the constitutive parameters identification of the 1D 

coupled plasticity-damage model with eight unknowns. Both models, plasticity and damage, are 

able to represent a same response during the loading process. This implies that the constitutive 

parameters are dependent and that different combinations of parameters represent same response.  

The difference between models can be found in the unloading process. The focus of this chapter is 

the definition of the loading program and the objective function, that are able to overcome 

dependency of parameters. 

In the first part of this chapter, we present a theoretical formulation of the coupled plasticity-

damage model. In the second part, we present detailed identification procedure. The identification 

procedure is split into three phases. In the first phase, we identify two parameters related to 

elasticity. The second phase is the most complex, where we analyze two possible cases in the 

identification of four constitutive parameters. In the third phase, we identify remaining two 

parameters of the softening model.   

The objective function and loading program, the most important parts for the success of 

identification procedure, are defined for the 1D problem. 

2.2 Theoretical formulation of coupled plasticity-damage model  

In this section, we present main ingredients of the coupled plasticity-damage model in the 

framework of the thermodynamics. We show in particular that all these equations can be derived 

from three main ingredients: the additive decomposition of the total deformation, the strain energy, 

and yield/damage/softening criteria. 

Deformation can be split additively into elastic part 
e , plastic part 

p  and damage part 
d , which 

can be written as:  

 
e p d        (2.1) 

Total strain energy with the contribution of both plasticity and damage is written as 

(Ibrahimbegovic et al., 2008): 

 ( , , , , , ) ( ) ( , ) ( ) ( )p p d e e d d p p d du D D              (2.2) 

where following represent:  

    11
( ) ;

2

e e e e e E            - elastic part of the strain energy 

   
1

( , ) , ; ,
2

d d d d dD D D D            - damage part of the strain energy 

1
( )

2

p p p p pK     - isotropic hardening (plasticity) part of the strain energy 

1
( )

2

d d d d dK     - isotropic hardening (damage) part of the strain energy 

In last expressions, used notation represents: ,p d   are internal hardening variables for plasticity 

and damage; ,p dK K  are hardening moduli for plasticity and damage; ,D E  are damage and 
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Young‟s modulus;   is a stress; and   denotes complementary energy. The total dissipation 

produced by this coupled plasticity-damage model must remain non-negative. By appealing to the 

second principle of thermodynamics, this can be written as: 

0

p d

e d p d d

e d p p d

p d
D

D

    
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    

   
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   
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   

D D

D
      (2.3) 

In the last equation, we have two possible processes: elastic or plastic/damage. If we have an elastic 

process, then internal variables remain frozen in time: 0p  , 0p  , 0D   and 0d  , which 

implies that plastic and damage dissipations are equal to zero. For the elastic process we can obtain: 

10 0  ;  
e d

e dE D
 

   
 

 
      

 
D        (2.4) 

Hardening stress variables 
pq  and 

dq  can be defined according to: 

  ;    
p d

p p p d d d

p d
q K q K 

 

 
       

 
       (2.5) 

By assuming the last results to remain valid for the inelastic process, we can write an equation for 

dissipation: 

  0

p d

p d d
p p d

p d
D

D


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 
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D D

D        (2.6) 

To determine the internal variables for plastic/damage process, we need to maximize dissipation. If 

we use Lagrange multiplier method for constrained minimization, we can write: 
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     (2.7) 

Using Kuhn-Tucker optimality conditions, we can obtain the evolution equations of the internal  

variables: 
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The value of plastic/damage multipliers can be computed from the consistency conditions on the 

stress state requiring that its evolution remains in agreement with the given yield criteria. This 

reduces to requirement that the time derivative of the yield functions remain equal to zero: 

   

( )

 0 

p

p p p p

d

p

p p

p

p

p

q q

E

q
E



   



   



 








 

   



  

         (2.9) 

  

1

1

 0 

d

d d d d

d

d

d d

d

d

d

q q

D

q
D







   



   

 










   



  

      (2.10) 

The values of plastic and damage multipliers can be exploited in order to obtain the stress rate 

constitutive equations: 

   
1

1
;   

p d
ep ed

p d

EK D K
C C

E K D K




 

 
       (2.11) 

Using condition that in both constitutive models stresses have the same value, we can obtain a 

stress rate constitutive equation for coupled damage/plasticity model: 

1

1 1 1

p d
epd

p d p d p d

ED K K
C

ED K ED K EK K D K K



  


  
    (2.12) 

2.2.1 Softening response 

The presented plasticity-damage model can be further extended to the softening part of the 

response. The main differences are modifications in the strain field and the strain energy (including 

fracture energy): 

x

du
G

dx




             (2.13) 

    ( ) ( ) ( )x              (2.14) 

In (2.13)   presents the regular deformation part defined in (2.1) of the element, G  is a function 

which defines influence zone of the discontinuity, and 
x

    is corresponding localized strain 

representation by Dirac function positioned at x , whereas   is localized strain parameter. In 

(2.14)   is defined as the strain energy, and   represents the localized strain energy at the 

discontinuity. The final modification relates to the softening criterion:  

( , ) ( ( )) 0ut q t q           (2.15) 

where t is the traction at the discontinuity, 
sq K    is the softening stress variable. 
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If we use Lagrange multiplier method for a minimization with constraints, we can determine the 

maximum of dissipation and obtain internal variables for softening process: 

 ;          (2.16) 

 

2.3 Identification of the constitutive parameters   

We assume that experimental measures, such as tensile test, have been performed providing a set of 

points at the load-displacement curves. The coupled plasticity – damage model, presented before 

can be used for the identification of the constitutive parameters of the material. A least squares 

minimization problem is formulated in order to express that the actual constitutive parameters of 

the material minimize the gap between the values provided by measurements (displacements, strain 

or stresses values) and those obtained by the numerical simulation: 

    
2

exp

p p( ) ( )com

j j

j J

J n


 d u d u        (2.17) 

where dp are the model parameters that we seek to identify or similar, p( )com

ju d  and exp

ju are, 

respectively, computed and experimentally measured values of displacements/stresses/strains and n 

is weighting factor. The coupled plasticity – damage model is complex for identification because 

both plasticity and damage can represent same behavior during the loading process. However, the 

difference can be found in the unloading process. For that reason, the objective function in the 

hardening phase needs to contain information from the unloading process. 

The presented 1D coupled plasticity-damage model contains eight unknowns. The simultaneous 

identification of all unknowns is very complex. Because of that, we split identification process into 

three phases. The first phase contains two unknowns parameters of the elasticity: Young‟s modulus 

 E , and damage modulus ( D ) for the virgin material. These two parameters are practically one 

parameter if we employ the following relation:   

1
D

E
        (2.18) 

The second phase deals with constitutive parameters related to the hardening. This phase is the 

most complex. Here we need to identify four parameters: 
yN  - yield axial force; pK  - hardening 

modulus (plasticity); fN  - damage yield axial force; and dK  - hardening modulus (damage 

model). In this phase, the identification process can be split into two possible cases: the hardening 

phase in both models begins for close values of axial forces  y fN N  and hardening phase does 

not begin for close values of axial forces  y f y fN N or N N  .  

The first case imposes simultaneous identification of four parameters, whereas the second case 

allows the identification of parameters in a two-by-two manner. The last phase deals with the 

identification of two parameters related to the softening response: 
uN  - ultimate axial force; and 

sK - softening modulus. The loading program contains cycles of loading and unloading, as shown 

in Figure 2.1.  
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Figure 2.1  Loading program 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2  Flow chart of parameters identification 

2.3.1 Application example 

The tensile test is the simplest example for presenting the identification procedure of constitutive 

parameters. In our example we have chosen a simple model of truss bar with only one degree of 

freedom per node. The numerical simulation is taken as experimental measurements. The 

identification procedure is split in three phase (Figure 2.3.).   

False 

Coupled plasticity-damage: 

  
Plasticity:   

Damage:   

III phase:Parameters 

in the softening  
Softening:  

Modulus of elasticity: E 

E=1/D-1 

I phase:Parameters 

in the elasticity  

Constitutive parameters identification for 

1D coupled damage-plasticity model 

II phase: Parameters 
in the hardening  

IF  True 
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Figure 2.3  Response of the axial bar 

The objective function appropriate for all identification phases can be written as: 

       
3 3

2 2 2
exp exp e p

' '

1

x

1

3

1

com com com

p Pi Pi Pi Pi Pi Pi

i i i

J a F F b U U c U U
 

    d      (2.19) 

where: exp,com

Pi PiF F   are forces for different load level (Pi); exp,com

Pi PiU U  are displacements (Pi);  
exp

' ',com

Pi PiU U  are residual displacements (unloaded points Pi); and , ,a b c  are constants.  

The identification of the parameters is carried out with Matlab and research program FEAP. The 

first is used for the minimization of the objective function (2.19), and the second for the FEM 

computations. 

2.3.1.1 First phase – constitutive parameters in elasticity  

In the first phase, only one unknown parameter is to be identified. Three referent points at the 

response diagrams (Figure 2.4a) are proposed. The shape of the objective function is shown in the 

Figure 2.4b. We can see that the shape function is convex. Thus it has minimum and can be 

minimized. 

 
 

a) Loading program and measurements in the elasticity b) Shape of the objective function 

Figure 2.4  Loading program and shape of the objective function (Elasticity) 

2.3.1.2 Second phase – constitutive parameters in hardening 

The first case is the most complex for the identification, and it cannot be split into two parts. The 

damage yield axial force and the yield axial force in plasticity model have close values (Figure 2.5), 

and we need to identify all four parameters simultaneously. The identification of four parameters is 

possible with the same objective function. The efficiency and the accuracy of the minimization 

process depend on the first guess values. If we have good starting values,  we can obtain parameters 
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with acceptable values of errors. The shape of the objective function, which is in four dimensions, 

cannot be shown in the figure.  

 

 

 

 

 

 

 

 

 
  Figure 2.5  Loading program and results of measurements in the coupled plasticity-damage 

The second case is simpler for identification because we can first identify parameters for the 

plasticity, and then parameters for the damage model. Consider having the case where minimum 

three cycles occur with typical plasticity type of the response (unloading lines parallel with first 

loading line). The measured values should look like those in diagram shown in Figure 2.6  
 

 
 
 
 
 
 
 
 
 

Figure 2.6  Loading program and results of measurements in the coupled plasticity-damage 

The shapes of the objective function are shown in Figure 2.7. These shapes are convex, and both 

can easily be minimized.  

  
a) Plasticity: , p

yN K  b) Damage: , d

fN K  

  Figure 2.7  Shapes of the objective function for parameters in the second phase 

2.3.1.3 Third phase – constitutive parameters in softening 

The identification of the constitutive parameters in the softening part of the response can be 

performed using the same objective function. In the third identification phase, we have two 

unknown parameters which are not dependent on each other. This independence ensures 

simplification in the loading program because cycles of loading and unloading are no longer 
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needed. By entering in the softening part of the response, we impose displacement at the end of the 

testing spacemen and constantly measure reactive force in the load cell, such as is shown in Figure 

2.8.  

 

 

 

 

 

 

Figure 2.8  Loading program and expected results of measurements in the softening response 

 
Figure 2.9  Shape of the objective function in the third phase for unknowns: , s

uN K  

By taking three pairs of measured values (force and displacement), we provide identification 

procedure of unknown parameters in the softening response. The shape of the objective function for 

unknown parameters is shown in Figure 2.9. The shape of the surface is convex. Thus it has a 

minimum. 
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2.4 Concluding remarks  

In this chapter, we have proposed constitutive parameters identification procedure for the 1D truss 

bar. The constitutive model of the truss bar consists of coupled plasticity-damage in the hardening 

and the linear law in the softening.  The most important conclusions can be stated as follows:  

 Proposed methodology is able to identify all unknown parameters (eight) when these 

parameters are split into three phases: elasticity, hardening and softening.  

 The focus of this chapter was in the constitutive models and the choice of the objective 

function. In this chapter, we have shown that by using loading program, which contains both 

loading and unloading cycles, we can identify all unknown constitutive parameters. These 

cycles are needed in order to make a difference in the responses obtained for plasticity and 

damage models. Both models can describe the same behavior in the loading regime, and only 

in unloading, we can see the difference between them. 
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Chapter 3 

Plasticity-Damage Model Parameters Identification for 
Structural Connections 

 

 

 

 

 

 

 

Abstract 

  In this chapter, we present a methodology for parameters identification of constitutive model 

which is able to present behavior of a connection between two members in a steel structure. 

Such a constitutive model for frame connections can be cast in the most general form of the 

Timoshenko beam, which can present three failure modes. The first failure mode pertains to 

the bending in connection, which is defined as coupled plasticity-damage model with 

nonlinear softening. The second failure mode is seeking to capture the shearing of 

connection, which is defined as plasticity with linear hardening and nonlinear softening. The 

third failure mode pertains to the axial force failure in the members. The theoretical 

formulation of this Timoshenko beam model and its finite element implementation are 

presented in the second section. The parameter identification procedure that will allow us to 

define eighteen unknown parameters is given in Section 3.3. The proposed methodology 

splits identification into three phases, with all details presented in Section 3.4 through three 

different examples. We also present the experimental results. The conclusions are stated in 

the last part of the chapter. 
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3.1   Introduction 

In this chapter, we present a methodology for constitutive parameters identification of the model 

capable of representing the behavior of a connection between two members in a structure. 

Connections have a significant influence on the nonlinear behavior of frame structures, especially 

those built from the steel and the timber. There are many types of connection, and practically each 

of them has something specific. Thus, the best choice of adequate model for describing these 

phenomena is a very challenging task.  

The Timoshenko beam (Medic et al., 2013) provides the possibility for constructing the optimal 

model of this kind. There precisely, we use coupled plasticity-damage model (Ibrahimbegovic et 

al., 2008; Ayhan et al., 2013) with included softening part of the response (Ibrahimbegovic, 2009). 

Plasticity and damage models are defined with linear hardening while the softening response is 

defined as a nonlinear law. Transverse displacement or shearing of the connection is defined by 

plasticity model combined with hardening/softening response. The theoretical formulation of the 

link element which can describe this kind of the behavior for the bending and shearing is presented 

in the next section of the chapter.   

Each structural element of the frame structure is modeled with the Euler-Bernoulli beam (Dujc et 

al., 2010). The constitutive law is defined as plasticity with linear hardening and nonlinear 

softening models. This type of beam model is adequate for slender elements where length l of the 

elements versus high h ratio l/h >10. Rather, the main focus of this research pertains to the 

identification of model parameters for the connection between two members of a structure.  

The model parameters identification procedure can be split into three subsequent phases, following 

(Kucerova et al., 2009). In the first phase, we present identification of parameters governing the 

elasticity response, where we have three unknowns. The second phase deals with the identification 

of parameters for coupled plasticity-damage model. Two unknown parameters are active in Euler-

Bernoulli beam and six parameters in the connection. Identification of connection behavior can be 

split into the shearing and the bending. In the bending case there are two possible scenarios. First 

when parameters for plasticity and damage models take very close values, and the second when the 

values of parameters are not as close so that we can identify two by two parameters. 

The identification of these parameters in each phase is made using a combination of two computer 

programs: Matlab and FEAP (Taylor, 2008). FEAP is the finite element program which is used for 

FEM analysis task in the identification process. Matlab is used for computing the minimization of 

objective or cost function. Objective functions for different phases of identification are presented in 

the third section of this chapter. 

The outline of the chapter is as follows. In the next section, we present the main ingredients of the 

proposed link element for representing the behavior of connection regarding the Timoshenko beam 

(Bui et al., 2014). In the third section, we describe the global identification problem of a 

connection. The fourth section presents a proposition for the experimental setup, the loading 

program and all phases of identification in three different examples. In the fifth section, we also 

compare examples of identification against real experimental results (Gang Shi, 2007; Mesic, 

2003). 
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3.2   Theoretical formulation of the Timoshenko beam audits finite element 
implementation 

In this section, we present theoretical formulations for the link element regarding the Timoshenko 

beam. The link element is a slight modification of the Timoshenko beam defined in (Bui et al., 

2014; Nikolic & Ibrahimbegovic, 2015) with embedded discontinuity. The need for this 

modification can be found in physically admissible displacement/deformation of connections. 

Namely, for pure bending in the connection transverse displacement does not exist, practically only 

rotation exists. If we use Timoshenko or Euler-Bernoulli beam, this condition is not satisfied. The 

modification of the Timoshenko beam starts in (3.1), where we modify expression for the shear 

deformation. The Euler-Bernoulli beam with embedded discontinuity (Dujc et al., 2010) is used to 

represent bending behavior of members of the frame structure. The constitutive law is defined as 

plasticity with linear hardening for the continuous part, while the softening at the discontinuity is 

defined according to the nonlinear law.  

3.2.1.  Timoshenko modified beam element 

The theoretical formulation of the link element - modified Timoshenko beam can be first defined 

regarding its strong form of equilibrium equation. Here, we present the main ingredients of these 

models.  

3.2.1.1.  Strong form of equilibrium equations 

In Figure 3.1 we present different formulation of beam curvature measure in a given cross section.  

It can be written:   

 

         - Euler-Bernoulli beam

   - Timoshenko beam

         - Link element - modified T. beam

dv

dx

dv

dx

dv

dx



 





 



         (3.1) 

where γ is shear deformation of the beam cross section. 

 

 
 

 

 
 

 

 

 

Figure  3.1 Deformation of beams 

The equilibrium equations at the infinitesimal beam: 
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 Figure 3.2 Equilibrium at the infinitesimal beam 
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The relation between internal forces and deformations when restricted to linear elasticity: 
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By using equations (3.1), (3.2), (3.3)  and (3.4) we can obtain the strong form of the equilibrium 

equations:  

Timoshenko beam:  
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Link element:  
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3.2.1.2. Weak form of equilibrium equations 

The corresponding weak form of the equilibrium equation can be written in the standard form for 

both beam models (Bui et al., 2014): 

 
0 0

  

( , , ; ) 0
l l

p d T T T

External force

G dx dx    ε w σ ε f w F w               (3.7) 

where  , ,
T

M T Nσ  is a vector of stress resultant forces, , , N   ε     is a vector of virtual 

deformations,  , ,
T

m q nf  is a vector of the external distributed load,  , ,w uw     is a 

generalized virtual displacement and , ,
T

ext ext extM T N   F  is a vector of the external concentrated end 

forces.  
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The generalized displacements are split into regular part and jump point introducing the generalized 

displacement at the discontinuity: 

  

( , ) ( )
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u u α       (3.8) 

where α  is a vector of generalized displacement jumps at the point x , ( )xH x  is the Heaviside 

function and ( , )x tu  is a vector of regular displacements in the beam. 

 

3.2.1.3. Constitutive equations for bending  

In this section, we present constitutive models for bending strains, both the continuous part and the 

discontinuity. The continuous part is defined with coupled plasticity-damage model, with linear 

hardening and nonlinear softening. The main ingredients of the coupled plasticity - damage model 

(Ibrahimbegovic et al., 2008) are:  

 Additive decomposition of the regular curvature field of the beam: 

 
e p d         (3.9) 

 Helmholtz free energy: 
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where E is the elasticity modulus, , ,p d s    are internal hardening variables for: plasticity,  

damage and softening, respectively, M
 
is an bending moment in the integration point, ,d pK K

 
are hardening moduli for the damage and the plasticity models, sK  is softening modulus, and 

I is moment of the inertia. 

 The total dissipation produced by this coupled plasticity-damage model must remain non-

negative. That can be written by appealing to the second principle of thermodynamics: 

1
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 

D DD

D =   (3.11) 

where   is complementary energy, see (Ibrahimbegovic, 2009). 

 Yield functions for plasticity and damage: 
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where My > 0 denotes the yield stress, Mf > 0 denotes the damage stress at the beginning of the 

fracture process zone initiation.  

 The principle of maximum plastic dissipation states that among all the variables  ,  pM q that 

satisfy the yield criterion  ,  p pM q the ones we choose are those that maximize plastic 

dissipation. That can be written as a constrained minimization problem: 

  
,

min max ( , , ) ( , ) ( , )p p

p p p p p p p p

M q
L M q M q M q


 
 

     D     (3.13) 

where the plastic multiplier 0p   plays the role of Lagrange multiplier. The corresponding 

Kuhn-Tucker optimality condition is a constraint for this minimization problem, that can 

provide the evolution equations for internal variables along with the loading/unloading 

conditions: 
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The correct value of plasticity multiplier 
p can be computed from the plastic consistency 

condition on stress state (bending moment): 
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 The principle of maximum damage dissipation states that among all the variables ( , )dM q  
that 

satisfy the yield criterion  ,d dM q ,we have to select those that maximize damage dissipation.  

That can be written as a constrained minimization problem: 

  
,

min max ( , , ) ( , ) ( , )d d

d d d d d d d d

M q
L M q M q M q


 
 

     D    (3.16) 

where the damage multiplier 0d   
plays the role of Lagrange multiplier. By appealing to the 

Kuhn-Tucker optimality conditions, from the last result, we can provide the evolution 

equations for internal variables along with the loading/unloading conditions: 
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The damage consistency conditions can finally provide the correct value for damage 

multiplier d :  
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 By enforcing the condition that bending moment has the same value in both constitutive 

models, we can obtain a bending moment rate constitutive equation for coupled 

damage/plasticity model and define the corresponding elastoplastic-damage tangent modulus: 

   
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The remaining model ingredients define the softening response. In particular, we have: 

 Yield criterion for the plasticity at the discontinuity can be written as: 

    ( , ) 0
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s s

M M Mt q t t q          (3.21) 

where Mt   is bending traction, 
uMt  is ultimate bending traction and ( )s sq   is softening stress 

like variable at the discontinuity, which depends on internal softening variable s
 . 

 The principle of maximum plastic dissipation at discontinuity states that among all admissible 

variables ( , )s

Mt q that satisfy the yield criterion  ,s s

Mt q  the ones we choose are those that 

maximize softening dissipation. That can be written as a constrained minimization problem: 
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where 0s  plays the role of Lagrange multiplier, s s s

Mt q   D  is a dissipation of the 

energy in the softening process. By using Kuhn-Tucker loading/unloading condition, the last 

result can provide the evolution equations for softening internal variables: 
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    (3.23) 

For softening process at the discontinuity and elasticity process in the regular part of the beam, 

we can write an expression for the final stress resultant value: 

   ( ), ,e i
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L
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3.2.1.4.  Constitutive equations for the shear response  

The constitutive law for the shear response of connection is defined as the plasticity with linear 

hardening and nonlinear softening. Main ingredients for such a plasticity model are: 

 Additive decomposition of shear strain into elastic and plastic: 

 
e p

s s s      (3.25) 

 Helmholtz free energy: 

  

   

     

, ,s

1 1 1
, ,  ;

2 2 2

 , , , , , , ;

e p

e p e e p p s s s

s s s s s v s s s p s s s s s s

e p s e p s

s s s s s s s s s v s x

GA K K

 

              

              

     (3.26) 

where G is the shear modulus, 
vA  is shear area of the cross-section, ,p s   

are
 
internal 

hardening and softening variables, ,s pK
 
is the hardening modulus and 

,s sK is the softening 

modulus.  

 The plastic dissipation produced by this model must remain non-negative. That can be written 

as: 
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 Yield functions for the shear response: 
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where Vy > 0 denotes the yield shear force. 

 The principle of the maximum plastic dissipation which states that among all the variables

 , p

sV q that satisfy the yield criteria  ,p p

sV q we ought to choose those that maximize the 

plastic dissipation. That can be written as a constrained minimization problem: 
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where 
p  plays the role of Lagrange multiplier. By using the Kuhn-Tucker optimality 

conditions, the last result can provide the evolution equations for internal variables along with 

the loading/unloading conditions: 
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    (3.30) 

 The correct value of plastic multiplier can be computed from the consistency condition, which 

imposes the plastic admissibility of stress: 
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The remaining model ingredients define the softening response: 

 The yield criterion for plasticity at the discontinuity can then be written: 
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where 
Vt  is the shearing traction, 

yVt  is the yield shearing traction and  s s

sq   is the softening 

shear stress variable at the discontinuity x . 

 The principle of the maximum plastic dissipation at the discontinuity states that among all the 

variables ( , )s

V st q that satisfy the yield criterion  ,s s

s V st q  we choose those that maximize the 

plastic dissipation. That can be written as a constrained minimization problem: 
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where s  
plays the role of Lagrange multiplier, s s s

V v st q   D  is a dissipation of the energy 

in the softening process. By using the Kuhn-Tucker optimality conditions, the last result can 

provide the evolution equations for internal variables along with the loading/unloading 

conditions: 
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    (3.34) 

 

3.2.1.5. Finite element implementation 

The finite element formulation is practically the same as the formulation for the Timoshenko beam 

(Bui et al., 2014). In this section, we present only the difference between these two elements. 

The finite element implementation of the model is based on the incompatible mode method 

(Ibrahimbegovic & Wilson, 1991). The use of such a technique ensures that the enrichment with a 

generalized displacement jump remains local, with no additional degrees of freedom required at the 

global level. We consider the standard two-node Timoshenko beam and modified beam finite 

element interpolations, with linear polynomials as shape functions: 

      1 21 / /;e e
x x L xN N x L    (3.35) 

The standard interpolation of displacements at the continuous part can be written: 
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where ua , va , ψa are nodal values of generalized displacements and  aN x  is the interpolation 

function for node “a”. 

Thus, the corresponding interpolation of strain regular field for the modified Timoshenko beam can 

be written as: 
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We note that the choice we made herein is different from the standard interpolation of strain 

Timoshenko beam, recall that the latter can be written: 
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where: 
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This different interpolation of the strains we choose herein produces uncoupling between transverse 

displacement and bending moment. Details of the finite element formulation and the computational 

procedure were presented in (Bui et al., 2014).  



29                                                        Parameters identification for structural connections 

Ultimate load limit analysis of steel structures accounting for nonlinear behavior of connections 

3.3    Identification procedure for model parameters 

In the case of connection testing, the global response of a specimen can be represented regarding a 

load-displacement F-u diagram. Any such curve can be related to three-phases of the connection 

response: elastic, hardening and softening part (Figure 3.3). Model for the hardening behavior of 

the connection is defined as the coupled plasticity-damage while the softening response is governed 

by the nonlinear law. For the most general case, in the elastic phase, we need to identify four 

parameters, whereas in the hardening phase eight and the softening phase another six parameters. 

The identification in a general case is performed in two steps: i) definition of an objective function 

based on some experimental measurements; ii) minimization of this objective function in order to 

find values of constitutive parameters used in the model.  

The choice of objective function is a crucial step in ensuring the success of the minimization. In a 

general case, the objective function can be defined as the gap between measured and computed 

response values (displacement, stress, deformation, reaction force, etc.): 

    
2

exp

p p( ) ( )com

j j

j J

J n


 d u d u       (3.41) 

where dp are the model parameters that we seek to identify or similar, p( )com

ju d  and 
exp

ju are, 

respectively, computed and experimentally measured values of displacements/stresses/strains and n 

is a weighting factor. The coupled plasticity – damage model is complex for the identification 

because the both plasticity and damage can represent the same behavior during the loading process. 

However, we can find a difference in the unloading process. For that reason, the objective function 

in the hardening phase needs to contain information from the unloading process. 

 

Figure  3.3  Curve force F – displacement U 

The minimization of the objective function can formally be written as minimization under 

constraint:  
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where the weak form of equilibrium equations ( ; ) 0G w σ   is the corresponding constraint. 

Namely, the weak form of equilibrium equations has to be satisfied at every moment. The 

constrained minimization of the objective function can be transferred into an unconstrained 

minimization by using Lagrange multiplier method (Ibrahimbegovic et al., 2004): 

p
( ; ) 0
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p

p
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d d σ


       (3.43) 

where λ are Lagrange multipliers inserted into the weak form of equilibrium equations instead of 

the virtual displacement. This type of minimization of the objective function is very complex for 

eighteen unknowns. 

F 

Elasticity 

Coupled damage-plasticity 

Softening 

U 

Unloading 



Identification procedure 30    

Ultimate load limit analysis of steel structures accounting for nonlinear behavior of connections 

Such an unconstrained minimization of the objective function is split in several phases, in every 

phases number of unknowns decreases to maximal of four parameters.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  3.4  Flow chart of parameters identification 
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flowchart in Figure 3.4. The process is split into three phases, with every phase further splits into 

few cases. For every case, local and global measurements are required. 

Local measurements depend only on one constitutive model, while the global ones depend on all 

models. This objective function is defined in a detail for different cases of the identification, in the 

first example, where experimental results are replaced by those obtained from FEM model. 

Unconstrained minimization methods included in Matlab are used to solve the identification 

problem. In particular, we use four methods: BFGS (Broyden–Fletcher–Goldfarb–Shanno method), 

DFP (Davidon–Fletcher–Powell method), Trust Region and Steepest Descent. The comparisons 

between these methods are presented in the examples that follow. 

The objective function for the parameters identification of the connection in a general case can be 

written as: 

 

         

       

3 3 3
2 2 2 2

exp exp exp exp

, ,

1 1 1 1

2 2 2 2
exp exp exp exp

' ' ' '

3

3 2

1 1 1 1

3

x

3

e

1

3

       

       

com com com com

p Pi Pi Pi Pi S Pi S Pi Pi Pi

com com com com

Pi Pi Pi Pi Pi Pi Pi Pi

com

Pi Pi

J a F F b U U b U U c

c d e e

g

   

  

    

    









 

   

   



d  

       

  
2

p

  (3.44) 
where are: exp,com

Pi PiF F  - forces for a different load level (Pi); 
exp,com

Pi PiU U  - displacements (Pi) ;  
exp

, ,,com

S Pi S PiU U  - shear displacements (Pi); 
exp

' ',com

Pi PiU U  - residual displacements (unloaded point Pi');   
exp,com

Pi Pi   - rotations of the connection (Pi); 
exp

' ',com

Pi Pi   - residual rotations (unloaded point Pi'); 
exp exp exp

1 1 and com com com

Pi Pi Pi Pi Pi Pi             - gradients of rotation between two different load (Pi) ; 
exp,com

Pi Pi   - curvatures of the section (Pi); 
exp

' ',com

Pi Pi   - residual curvatures of the section (unloaded 

point Pi'); 
exp exp exp

1 1and  com com com

Pi Pi Pi Pi Pi Pi             - gradients of curvature between two different 

load (Pi); a, b, c, d, e, g  - constants. 

3.4   Numerical examples 

In this chapter, we present three numerical examples in order to illustrate the performance of the 

proposed identification procedure. The first example serves to illustrate all cases of the identification 

procedure, where the corresponding experimental results are obtained from the refined FEM model. 

The remaining two examples provide the illustration of the identification procedure of model 

parameters for real experimental results of the steel connection and the timber connection. Moreover, 

the examples serve to illustrate that proposed identification procedure applies to parameters 

identifications in steel and timber structures, the cases of the large practical interest. 

3.4.1. Steel structure connection with complete set of failure modes 

In this example, we present a methodology for the parameters identification which describes the 

nonlinear behavior of both the connection and structural members. We need to obtain eighteen 

unknowns in total. The measurement values in this example were computed on a more refined mesh 

of beam elements. We practically can test all phases of the proposed identification procedure.  
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3.4.1.1. Experimental setup and FEM model 

In Figure 3.5, experimental setup for testing of  the connection between two orthogonal steel beams 

and corresponding FEM model, is shown. The horizontal beam is chosen as a much stronger than 

the vertical beam, so that should ensure the linear elastic behavior of the horizontal beam during the 

test. The equipment for displacements and deformations measurements is arranged, so that gives us 

sufficient information for the identification of the mechanical properties. The results can be 

classified as local and global measurements. The global measurements depend on all model 

parameters, while the local measurements depend on only one model parameter. 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
(a) Experimental setup (b) FEM model 

Figure 3.5 Experimental setup and FEM model 

In particular, the measuring equipment illustrated in Figure 3.5 consists of: LVDT (Linear variable 

displacement transducer) 1 and 2 measure global displacements of the vertical beam at nodes 3         

( exp

3,PiU ) and 5 ( exp

5,PiU ); LVDT 3 and 4 measure relative vertical displacement between the horizontal 

and the vertical beams, which is later used for a calculation of the connection rotation: 
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LVDT 5, which measures relative horizontal displacement ( exp exp

2, S,Pi PiU U ) between horizontal and 

vertical beams, measures transverse (shearing) displacement of connection. Strain gauges measure 

the deformation at the vertical beam which is later used for calculation of the section curvature near 

to the connection, assuming the vertical beam is not loaded with axial force: 
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All the measurements can be taken continuously during the test. 

The FEM model is composed of six beam elements. The element number 1 is used for modeling the 

connection as described in Section 3.2.1., while all other elements (2,3,4,5,6) are chosen as the 

Euler-Bernoulli beams. 
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3.4.1.2. Phase I - Elastic parameters identification (Econ,Gcon, E) 

In this phase, we need to identify three parameters governing the elastic response: Econ is the 

stiffness of the connection for the bending, Gcon is the stiffness of the connection for the shear 

response and E is the Young‟s modulus for steel beams.  

Young‟s modulus E for steel beam can be obtained using the standard material tests. Alternatively, 

the modulus E can be identified from the local measurement of strain gauges, separately of the 

other measurements. The shearing stiffness of the connection (Gcon) can be obtained from the local 

measurement of LVDT 5. The bending stiffness of the connection (Econ) can be identified from the 

local measurement  of the connection rotation. 

The loading program for this phase is presented in Figure 3.6. At the time (points: a',b',c'), we 

measure a residual (plastic) displacement, if these measurements are equal to zero then plasticity is 

not activated yet. 

 

Figure 3.6   Loading program and measurements in the elasticity 

By using only measurements of the rotation, we can identify the elastic stiffness (for virgin 

material) of the connection. The identification problem can be reduced to one unknown if we 

employ expression, which defines a dependency between elastic and damage stiffness of the 

connection: 
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        (3.47) 

where ,e d

con conE D  are stiffness coefficients of the linear-elastic and the damage model.  

In the elastic phase, the objective function for the parameters identification related to bending of the 

the connection can be written as: 
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The shearing stiffness of the connection can be obtained from local measurements of LDVT5, 

where we measure a relative displacement between the horizontal and the vertical beam, which is 

triggered by sliding of the connection. The objective function for this identification case can be 

written as: 
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Young‟s modulus of the steel beam can be obtained from the local measurements of the strain 

gauges. The objective function is now defined as: 
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At the end of this phase we can control results of the identification using a combination of local and 

global measurements and identify all parameters simultaneously. A universal objective function can 

be written as:
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    (3.51) 

where c and d are constants defining the weights of global and local displacement measurements.  
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Figure 3.7  Objective functions 

3.4.1.3. Phase II of identification procedure for coupled plasticity-damage model 
constitutive parameters  

In this phase, we need to identify eight parameters: con

yM  - bending moment of the plastic yielding 

of the connection; 
,

con

b hK - plastic hardening modulus for the bending of the connection; 
con

fM - bending 

moment of the damage yielding of the connection; con

dK - damage hardening modulus for the 

bending of the connection; Vcon

y - shearing force of the plastic yielding of the connection;    
,

c o n

s hK - 

plastic hardening modulus for the shear response of the connection; 
beam

yM - bending moment of the 

plastic yielding of the beam; beam

hK - plastic hardening modulus for bending of the beam. For 

identification procedure, these parameters can be divided into three groups: the beam parameters (

,beam beam

y hM K ), shearing in the connection ( ,V ,con con

y s hK ) and bending in the connection (

,, , ,con con con con

y b h f dM K M K ). 

3.4.1.3.1. Plasticity model for the beam failure 

The model parameters of a plasticity related to the beam failure can be obtained from the local 

measurements by the strain gauges. The strain gauges provide the measurements throughout the 

loading program. When the plasticity is activated, we need to have values of a deformation for three 

loading-unloading cycles.  

The identification can be completed successfully with this kind of measurements. The objective 

function for this identification case can be written as: 
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Figure 3.8  Loading program and results of measuring in the hardening response 
 

The objective function is shown in Figure 3.9a, where we can see that the function is convex, which 

allows to obtain its minimum easily. The minimization of the objective function was done using 

different methods: BFGS, DFP, Trust Region and Steepest Descent. Comparison of efficiency of 

these methods is presented in Table 3.1: 

Table 3.1 Efficiency of different methods for minimization of   ,beam beam

h y
J K M  

Applied method for 
minimization 

Number of 
Time of computation 

Max. error of the 
Identification [%] Iterations Evolutions 

BFGS 11 21 50 s 0,00 

DFP 45 57 95 s 0,00 

Trust Region 22 23 125 s 0,00 

Steepest Descent 5 48 108 s 12,55 

3.4.1.3.2. Plasticity model for shearing of the connection 

 
Parameters of the plasticity model for the shear response of the connection can be identified from 

local measurement LVDT 5. In this part we use the analogy in the loading program presented 

previously in this chapter. More precisely, the loading program and expected results of 

measurements look the same as presented. The chosen objective function can be written as: 
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Table 3.2 The efficiency of different methods for minimization of  , 
con

y hs
J F K

 Applied Method for 

Minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 13 19 34 s 0,10 

DFP 16 45 75 s 3,35 

Trust Region 171 171 780 s 0,59 

Steepest Descent 37 150 380 s 0,04 

The shape of this objective function is shown in Figure 3.9b. This function is convex and has a 

minimum. Results of comparison of different methods for minimization of this function are 
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presented in Table 3.2. 
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Figure 3.9  Shapes of Objective Functions 

3.4.1.3.3. Coupled plasticity-damage model for the bending of the connection 

Parameters of the coupled-plasticity model for the bending of the connection can be obtained from 

all measurements. This task is the most complex, where we need to exploit measurements at the both 

global and local levels, as well as previously identified values ( ,V , , ,con con beam beam

y s h y hK M K ). Here we can 

have two different cases. In the first case, the value of the damage moment is significantly larger 

than a yielding moment in the plasticity. In the second case, both bending moments have close 

values. 

The first case is simpler for the identification because we can first identify parameters for plasticity 

and then for the damage model. We consider having this case when minimum three cycles occur 

with a typical plasticity type response (the unloading lines parallel with the first loading line). The 

measured values should look like those in the diagram in Figure 3.10.  

The objective function for the identification of parameters of plasticity models for connection can be 

written as: 
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  (3.54) 

 
 
 
 
 
 
 
 
 

Figure 3.10  Loading program and results of measurements in the coupled plasticity-damage model 
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The shape of the objective function is shown in Figure 3.12a. This surface is convex, and it can 

easily be minimized. The minimization is performed by using four different methods. The 

comparison of the results is shown in Table 3.3. 

Table 3.3  Efficiency of different methods for minimization of  
,

,
con con

y h b
J M K

 Applied Method for 

Minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 12 27 53 s 0,00 

DFP 39 51 91 s 0,00 

Trust Region 71 72 402 s 1,33 

Steepest Descent 13 69 120 s 14,80 

Afterward, we start the identification of parameters for the damage model ( ,con con

f dM K ), where the 

previously identified parameters for the plasticity are kept. The identification problem is reduced to 

two parameters. The objective function is the same, while only load level is different therefore we 

use measured values from last three cycles (Figure 3.10). 

This objective function is convex, and we can see the shape in Figure 3.12b. The minimization is 

performed by using four methods. The efficiency of these methods is presented in Table 3.4. 

Table 3.4 Efficiency of different methods for minimization of  ,
con con

f d
J M K

 Applied Method for 

Minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 14 29 64 s 0,00 

DFP 50 66 137 s 0,00 

Trust Region 34 35 231 s 10,14 

Steepest Descent 9 48 87 s 20,75 

 
The second case is the most complex, where the identification cannot be split into two parts. The 

damage moment and the yielding moment have close values (Figure 3.11) and we need to identify 

four parameters simultaneously. The identification of four parameters is possible with the same 

objective function, where we use results of local and global measurements. The efficiency and the 

accuracy in the minimization process depend on first guess values. If we have good starting values 

we can obtain parameters with acceptable errors. Results of the minimization of the objective 

function for four unknowns with four different methods are presented in the Table 3.5. In this 

minimization, we used starting values, which are not close to the correct values. From these results, 

we can conclude that only BFGS method gives results with acceptable errors (2,79 < 3%).  

 

 

 

 

 

 

 

 

 
  Figure 3.11  Loading program and results of measurements in the coupled plasticity-damage response 
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To reduce these errors, we can make control identification two by two parameters. First, we can 

identify parameters for the plasticity model ( ,,con con

y h bM K  ), while damage parameters are taken as 

known. Afterword, parameters for the damage model ( d,,con con

f bM K  ) are unknown and for the plasticity 

known. In these two control identifications were determined practically same values of model 

parameters, but all methods for minimization gave us acceptable errors. 

Table 3.5 Efficiency of different methods for minimization of  
,

, , ,
con con con con

y h b f d
J M K M K  

Applied Method for 

Minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 25 54 161 s 2,79 

DFP 58 97 289 s 13,62 

Trust Region 81 82 1333 s 6,05 

Steepest Descent 22 96 290 s 9,25 

 

3.4.1.4. Phase III of identification procedure for softening model constitutive 
parameters  

In this phase, six parameters can be activated: 
con

uM  -  ultimate bending moment of the connection; 

,

con

f bG   - fracture energy for the bending of the connection; Vcon

u   - ultimate shearing force of the 

connection; 
,

con

f sG   - fracture energy for the shearing of the connection; 
beam

uM  - ultimate bending 

moment of the beam; beam

fG
 
- fracture energy of the beam. These parameters can be obtained for three 

cases: the failure due to the bending of the connection ( ,,con con

u f bM G ), the failure due to the shearing of 

the connection ( ,,con con

u f sV G ) and the failure in the steel beam ( ,,beam beam

u f bM G ).  

Only one failure mechanism can happen. The local measurements are able to indicate which one of 

the failure mechanisms is activated. The failure due to the bending the connection can be noted from 

local measurements LVDT 3 and 4, while the failure due to the shearing of the connection from 

LVDT 5. The identification can be done for each of these cases. 

 
 

 
 

(a) OF:  
,

,
con con

y h b
J M K  (b) OF:  ,

con con

f d
J M K  

Figure 3.12  Shapes of Objective Functions 
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3.4.1.4.1. First case – softening (failure) due to the bending of the connection  

The objective function for this case is a combination of local and global measurements. It can be 

written as:  

        
4 4 4

2 2 2
exp exp exp

, 5, 5, 5, 5, 5, 5,

1 1 1

,con con com com com

u f b Pi Pi Pi Pi Pi PiJ M G F F U U m           (3.55) 

The shape of this objective function is shown in Figure 3.13a. We can see that it is a convex 

function, and thus it has a minimum. The minimization was performed with four methods. Results of 

the identification procedure are presented in Table 3.6.  

 

  

(a) Objective function  ,,con con

u f bM GJ  (b) Objective function  ,s,con con

u fF GJ  

Figure 3.13   Shapes of Objective Functions 

 

Table 3.6 Efficiency of different methods for minimization of  ,,con con

u f bM GJ        
 

Applied Method for 

Minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 7 32 196 s 0,22 

DFP 6 35 217 s 0,75 

Trust Region 41 42 796 s 0,44 

Steepest Descent 28 75 497 s 0,45 

3.4.1.4.2. Second case – softening (failure) due to the shearing of the 
connection  

The objective function for this case is a combination of local and global measurements. It can be 

written as:  

        
4 4 4

2 2 2
exp exp exp

, 5, 5, 5, 5, 2, 2,

1 1 1

,con con com com com

u f s Pi Pi Pi Pi Pi PiJ F G F F U U U U          (3.56) 

The shape of this objective function is shown in Figure 3.13b. It is a convex function, and the 

minimization was done with four methods. In Table 3.7, we can see that only results obtained with 

BFGS method are with acceptable errors.  
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Table 3.7 Efficiency of different methods for the minimization of  ,s,con con

u fF GJ         

Applied Method for 

Minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 2 40 48 s 2,02 

DFP 5 34 75 s 3,70 

Trust Region 21 22 139 s 5,11 

Steepest Descent 3 30 80 s 3,31 

3.4.1.4.3. Third case – softening (failure) in the steel beam 

This failure mechanism is current if others have not been activated. In this case, we can use only 

global measurements for the identification of softening parameters of the steel beam. The local 

measurement of strain gauges is not useful because we do not know where the hinge will be 

located.   

      
4 4

2 2
exp exp

, 5, 5, 5, 5,

1 1

,beam beam com com

u f s Pi Pi Pi PiJ F G F F U U          (3.57) 

The shape of this objective function is shown in Figure 3.14. This function is convex, but with 

small irregularities. These irregularities can be reduced if we use more experimental results. In this 

case we used four reference points (load levels) and the identification procedure was successful.  

 
Figure 3.14  The objective function  ,b,beam beam

u fM GJ
 

 

Table 3.8 Efficiency of different methods for minimization of  ,b,beam beam

u fM GJ   

Applied Method for 

Minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 5 27 47 s 0,75 

DFP 7 35 68 s 0,70 

Trust Region 20 21 146 s 0,88 

Steepest Descent 5 31 61 s 0,95 
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3.4.2. Identification parameters of the steel connection in bending 

The presented identification methodology was applied to the experimental results found in the 

literature. The corresponding hysteresis curve (Gang Shi, 2007) was used for the approximation of 

a relation bending moment – rotation. For these experimental results, we have tested presented 

methodology. The hysteresis curve of the end plate connection and approximation of test results are 

shown in Figure. 3.15.  

 
Figure 3.15  Typical hysteresis curve and approximation of the test results (Gang Shi, 2007) 

The identification of the model parameters starts with the elastic phase, where we need to identify 

the bending stiffness in the elastic response. Namely, coupled plasticity-damage model is composed 

of two serially connected models, so that the bending stiffness can be calculated as: 

   

1

, 1

,

1

1

2

con con
j b

j b concon con

con con

E D
S

S EE D

E D








 

 
 

     (3.58) 

where 
1

,con conE D
  are stiffness of the linear-elastic and the damage model. This expression reduces 

identification to one parameter. 

The objective function for this case can be written: 

      
2

exp

1 1, com

con con P PJ E D         (3.59) 

The objective function (Figure 3.16a) is convex and parameters were identified successfully.         

In the second phase of the identification, we should identify constitutive parameters of the coupled 

plasticity-damage model. The procedure begins with the simultaneous identification of four 

unknown parameters.  

The objective function for the this case of identification can be written as :   

     

 

3 3
2 2

exp exp

, , ' '

1 1

3
2

exp

1

, , ,con con con con com com

h b y d b f Pi Pi Pi Pi

com

Pi Pi

J K M K M m m

n

      

  

 



  (3.60) 

The objective function is convex for all parameters and process was done successfully.  

The control of identified parameters was made in two split processes of the identification. In the 

Approximation 
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first, we identify two unknowns for plasticity model while damage parameters are fixed and known. 

In the second cases, we use an analogy where two damage parameters are unknown and plasticity 

known. The shapes of objective functions for both cases are presented in the Figure 3.16. 

   
(a) OF:  , con conJ E D  (b) OF:  , con con

d fJ K M  (c) OF:  , con con

h yJ K M  

Figure 3.16  Shapes of Objective Functions 

The proposed objective functions (Figures 3.16b and 3.16c) are convex. These control results are 

matched with results of the simultaneous identification for all parameters. 

Results of the identification are presented in Figure 3.19a where we can see very good matching 

between the experimental and the computed results. The computed results were obtained using 

FEM element model with identified constitutive parameters.  

3.4.3. Identification parameters of the connection in Timber structure 

In the second example, presented methodology is tested at the connection between two wooden 

elements. The hysteresis curve (Mesic, 2003) and approximation of experimental results are 

showed in  Figure 3.17. This hysteresis curve has been measured with large increment steps of the 

imposed displacement. In the middle of the curve we can see gap without unloading lines, but this 

enables to test the quality of the proposed methodology.  

  
Figure 3.17  Typical hysteresis curve and approximation of the test results 

The identification of models parameters begins with the elastic phase, same as in the last example.  

The objective function can be written as (Figure 3.18a): 

      
2

exp

1 1, com

con con P PJ E D          (3.61) 

In second phase of the identification for the coupled plasticity-damage model, we start with 

simultaneous identification of four parameters.  

  The objective function can be written as:  
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     

 

3 3
2 2

exp exp

, , ' '

1 1

3
2

exp

1

, , ,con con con con com com

h b y d b f Pi Pi Pi Pi

com

Pi Pi

J K M K M m m

n

      

  

 



  (3.62) 

The objective function is convex for all parameters and process of the identification is done 

successfully.  

Same as in the last example, a control of identified parameters can be performed in two split 

processes of the identification. In the first, we have identified two unknowns for the plasticity 

model while damage parameters were fixed and known. In this case, the objective function is good 

conditioned (Figure 3.18b). In the second case, the objective function is convex but poorly 

conditioned. However, with the good start values in the minimization, we can obtain good results. 

   
(a) OF:  , con conJ E D  (b) OF:

 
 , con con

h yJ K M   (c) OF:  , con con

d fJ K M  

Figure 3.18  Shapes of Objective function 

Results of the identification are presented in the Figure 3.19b, where we can see good matching 

between the experimental and the computed results. The computed results have been obtained by 

using FEM element model with identified constitutive parameters.  

  
(a) Steel connection  (b) Timber connection 

Figure 3.19  Matching results: experimental vs. computed  
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3.5   Concluding remarks 

We have proposed a methodology for the identification of constitutive parameters of the connection 

and the material. The constitutive model of connection contains coupled plasticity-damage in 

hardening and nonlinear law in the softening with different mechanisms of the failure. The 

hardening behavior is split to the bending and the shearing, but all combinations are included. The 

most important conclusions can be stated as follows:  

 The proposed methodology is able to identify all unknown parameters (eighteen) when these 

parameters are split in three phases: elastic, hardening and softening. In every phase, we use local 

and global measurements. 

 

 Successful identification is conditioned with enough measurements during the experimental test 

and adequate loading program. In this work, requirements for measurements (Figure 3.3) and 

loading program, were presented. The loading program contains cycles of loading-unloading, and 

in the hardening, we need to have minimum three cycles for every case. 

 

 The focus of this chapter was positioned at the behavior of the constitutive models and the choice 

of the objective function. In the chapter, we showed that using loading and unloading cycles we can 

obtain all unknown constitutive parameters. These cycles are needed to make a difference between 

plasticity and damage model.  The both models can describe same behavior in the loading regime, 

but in unloading, we can see the difference between them. 

 

 All cases of identification were presented in the Section 3.3. For an illustration of the complete 

procedure, we first used the academic example of an inverse analysis and all results of experiments 

were obtained by FEM model. Then, two practical examples were shown in Section 3.4, but only 

for partial measurements that pertain to the bending of connection, as the only results found in 

literature.  
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Chapter 4 

Nonlinear kinematics Reissner’s beam with combined 
hardening/softening elastoplasticity  

 
 
 
 
 
 
 
 

Abstract 

In this chapter, we present geometrically nonlinear beam finite element with embedded 

discontinuity which can represent elastoplastic constitutive behavior with both hardening and 

softening response. The constitutive equations are presented in rate form by using the 

multiplicative decomposition of deformation gradient. Formulation of elastoplastic response 

is presented in terms of stress resultants including the interaction between axial force, shear 

force and bending moment appropriate for metallic materials. The softening response is used 

to model the failure in connections, introducing displacement field discontinuity or a 

rotational hinge. The hinges or displacement discontinuity are presented in the framework of 

incompatible modes that can handle three different failure modes dealing with bending, 

shearing or axial deformation. With several numerical simulations, the FEM implementation 

is proven very robust for solving the problems of practical interest, such as push-over 

analysis.   
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4.1.   Introduction 

The model capable of predicting the complete failure (collapse) of a frame structure is very 

important in the limit load design. A typical application is push-over analysis used in earthquake 

engineering; a nonlinear static analysis of a building structure subjected to an equivalent static load 

that is pushing a structure towards the limit capacity. This type of the analysis was developed in 

work (Dujc et al., 2010) as incompatible modes in the small displacement framework. During push-

over analysis of a structure, there are hinges that develop, in a step-by-step manner, leading to the 

failing mechanism. In structural analysis those hinges can be included by using static condensation 

method (Medic et al., 2013). The incompatible mode method is more robust, while the static 

condensation method is more efficient. For improved prediction, it is necessary (Dujc et al., 2010) 

to include geometric nonlinearities of the second order, indicating the need for improvement. 

The truly large kinematics of steel frame structures combined with elastoplastic 

hardening/softening is the main novelty of this work. The ductile material like steel can handle 

large displacements and deformation of a structure during the limit load analysis. The geometrically 

exact beam with nonlinear kinematics and nonlinear constitutive behavior should be capable of 

following response of a structure to the complete failure (collapse). In this work, we propose 

elastoplastic beam element in geometrically nonlinear regime (Ibrahimbegovic & Frey, 1993a) that 

can handle softening response, which is included in the framework of incompatible modes. 

In the formulation of the proposed beam element we use, as the starting point, the previous works, 

(Ibrahimbegovic & Frey, 1993a) and (Simo et al., 1984). The proposed beam element includes 

nonlinear kinematics and nonlinear constitutive response. The constitutive behavior is defined as 

plasticity with linear hardening that includes interaction between axial force, shear force and 

bending moment. The evolution equations for internal variables are developed in rate form, 

imposing the need to employ a numerical time integration scheme, -here chosen as the backward 

Euler scheme. 

The main novelty concerns the beam model‟s ability to reach the ultimate capacity of a cross 

section, activating one of three failure modes, which represent non-linear softening response in 

either bending moment, shear or axial force. These failure modes are handled by field discontinuity 

as incompatible modes, see (Ibrahimbegovic & Frey, 1993b).  In this work, we presume that only 

one softening failure mechanism can be activated at the time. The outline of the chapter is as 

follows. 

In the next section, we present the main ingredients of the geometrically exact beam with the 

elastoplastic constitutive response. The interaction between axial force, shear force and bending 

moment is taken in the elastoplastic regime, while the axial response remains elastic. The second 

section presents corresponding kinematic enhancement in terms of “discontinuity” or “jump” in the 

displacement field or the rotational field depending upon the activated failure mode. The 

enhancement is included as an incompatible mode in the geometrically nonlinear framework. The 

third section deals the FEM implementation, while the fourth section presents the results of several 

numerical simulations. The last section contains the conclusions. 

 

4.2.   Reissner’s beam with nonlinear kinematics  

In this section, we give a detailed formulation of the two-dimensional beam in the framework of 

large displacement and large elastoplastic strains. The formulation of Reissner's beam (Reissner, 
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1972) kinematics equations employs rotated strain measure. The linearization of these strain 

measures reduces to strains of the Timoshenko beam (Ibrahimbegovic & Frey, 1993a) and (Nikolic 

et al., 2015). The plastic strains corresponding to stress resultant follow from yield criterion 

introducing the interaction between axial force, shear force and bending moment. The equations are 

expressed in rate form (Simo et al., 1984). The consistent linearization of the weak form of 

equilibrium equations provides tangent stiffness matrix, for both material and geometric part.  

Providing the beam element with the embedded discontinuity within the framework of a large 

displacement is needed for modeling softening phase. The later can concern the failure process in 

the connections, modeling the failure in bending, in shearing or in axial force separately. The 

multiplicative decomposition of the deformation gradient into regular and irregular parts 

corresponds to the additive decomposition of the rotated strain measure proposed by Reissner 

(Reissner, 1972). Moreover, the weak form of equilibrium equation has to be recast within the 

framework of incompatible modes (Ibrahimbegovic & Frey, 1993b) , which allows handling of the 

embedded discontinuity calculation at the element level.  

 

4.2.1. Geometrically nonlinear kinematics  

In the framework of large displacement gradient theory, the position vector in deformed 

configuration can be written as 

sin
:

cos

x u

y v

    
      

   
0

φ φ t


 


        (4.1) 

where x  and y  are coordinates in the reference configuration, u  and v  are displacement 

components in the global coordinate system,  is the coordinate along the normal to the beam axis 

in the reference configuration and   is the rotation. The corresponding form of the deformation 

gradient F   can be split into displacement part 
,u vF   and rotation part F  as: 

,

1 0 cos sin

:

0 sin cos

u v

du d

dx dx

dv d

dx dx
   

   
     

      
   
      

F I u F I ψ

F φ




  


  

        (4.2) 

The failure mode in connection can be represented by jump in displacement components u  , v  and 

in the rotation  , with the corresponding kinematic enhancement in terms of the “discontinuity”. 

In the finite deformation framework, such a displacement discontinuity has to be introduced in 

deformed configuration (Ibrahimbegovic & Frey, 1993a). This splits displacement field into the 

regular part    and the „enhanced‟ part    representing the corresponding displacement or 

rotation „jump‟. By introducing 
x  as the Dirac function where the jump occurs, the additive 

decomposition of displacements and rotation gradient fields can be written as: 



49                                                                                                    Reissner’s beam model 

Ultimate load limit analysis of steel structures accounting for nonlinear behavior of connections 

   

          

          

          

, , ( )

, , ( )

, , ( )

a a x x

a a x x

a a x x

u u u
u x t u x t N x H x u t G x u u u

x x x

v v v
v x t v x t N x H x v t G x v v v

x x x

x t x t N x H x t G x
x x x

  
        

  

  
        

  

  
        

  

 

 

  
       

   (4.3) 

where ( )aN x   is interpolation function, ( )H x  is Heaviside function and ( )aG x  is the first 

derivative of the interpolation function ( )aN x . By using last result (4.3) we can write the 

deformation gradient for both the displacement and the rotation fields, in terms of the multiplicative 

decomposition of: 
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     (4.4) 

From the polar decomposition of the deformation gradient F , into rotation R  and stretch U , we 

define the rotated strain measure H  :  

cos sin
,  

sin cos

T
 

      
 

F = RU U R F R H U I
 

 
       (4.5) 

where I  is identity tensor. With the results (4.4)  and (4.5), we can obtain the corresponding 

additive decomposition of the stretch tensor: 
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where: 
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Finally, we can write the internal virtual work in an alternative form that is more in line with the 

corresponding 3D representations (Ibrahimbegovic & Frey, 1993a) 

ˆ ˆ
L A L A

dAdx dAdx     F P H T         (4.7) 
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where F̂  is variation of the deformation gradient, P  is first Piola-Kirchhoff stress. In last equation 

(4.7), we used the following result for Biot stress tensor T  and corresponding rotated strain 

measures H  and their variations Ĥ : 

11 11

21 21

T P

T P

   
    

   

T T
T = R P R         (4.8) 

 

4.2.2. Constitutive model and its rate form 

In the elastic regime the simplest set of constitutive equations for finite strain beam is chosen in 

terms of Biot stress resultants and rotated strain measure: 

eT C H          (4.9) 

where e
C  is the elastic modulus. In the plastic regime, we can split displacement and rotation 

gradients into elastic part  e  and plastic part  p : 
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
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    (4.10) 

Multiplicative decomposition of the deformation gradient corresponds to the additive 

decomposition of the stretch tensor U : 

   
,
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where: 
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The Helmholtz free energy can be defined as a quadratic form: 

, ,1 1
( , )

2 2
e p

e p e T e e p T h p      

Ψ Ξ

U ξ U C U ξ K ξ      (4.12) 

where 
e

U   is elastic part of the stretch tensor, p
ξ  is a vector of hardening variables and h

K  are 

corresponding hardening moduli. The yield criterion condition has to be satisfied:  
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( , ) 0T q         (4.13) 

where q  is a vector of internal hardening stress like variables. The second principle of 

thermodynamics states that the plastic dissipation must remain non-negative: 

0

0

pe

e p p
e p

e p

d d

d dt



  
    

 

Ξ ξ
T U TU

U ξ

DD

D =       (4.14) 

The principal of maximum plastic dissipation can be formulated (Hill, 1950) as the constrained 

minimization, where the constraint is yield function (4.13). This can further be recast as 

corresponding unconstrained minimization by using Lagrange multiplier method: 

,min max ( , , ) ( , ) ( , )p pL 
 

   T q γ
T q γ T q γ T qD      (4.15) 

where 
 
is the Lagrange multiplier. Regarding the Kuhn-Tucker optimality conditions, the result 

can be used to provide the evolution equations for internal variables in rate form along with the 

loading/unloading conditions: 

0

0

0,   0,   0

p
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p p p
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t t

  
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  
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U γ U γ
T T T

ξ ξ
γ γ

q q q

γ γ

      (4.16) 

The appropriate value of plastic multiplier γ  can be determined from the plastic consistency 

condition for the case of sustained plastic flow:  

 0 

e

e h



   



   

 



  T
γ

T T q q

C U

C K

       (4.17) 

By replacing the last result in stress rate equation, we can obtain the elastoplastic modulus 
ep

C  that 

should replace the elastic modulus 
e

C  in plastic regime: 

p p

e e

ep e

e h

C

 

   

 

   




  T T

T T q q

C C

C K

C

 

   
       (4.18) 

We note in passing that the elastoplastic tangent stiffness above remains the same in the discrete 

problem, obtained by using the backward Euler time integration scheme.  

In the softening regime the Helmholtz free energy can be written as a quadratic form in softening 

variables: 
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  1
;   ( ) ( ) ( )

2
s

s s s s

s x



       ξ ξ K ξ ξ         (4.19) 

where s
ξ  is a set of internal variables, representing the connection failure and 

s
K  is set of 

softening moduli. The yield function for softening is chosen as a multi-criteria form, related to, 

bending, shearing and axial force: 

   0 ( , ) 0i s

i i i it q              (4.20) 

where it  is traction force and 
s

iq  is stress-like variables, which are work-conjugated to the softening 

internal variables at the discontinuity for the corresponding failure mode. Among all admissible 

values of these variables, the principal of maximum dissipation pertinent to softening states will pick 

the ones that maximize softening dissipation. This can be solved as an unconstrained minimization 

problem, to provide the evolution equations for internal variables along with the loading/unloading 

conditions: 

3 3

1 1
0

0,   0,   0

s
s s

is s s

L  
      

  

    

 ξ γ ξ
q q q

γ γ

     (4.21) 

 

4.2.3. Stress resultant form 

By using the rotated strain measure H  , we obtain the only non-zero components, defined as 

   
11 21,  H K H          (4.22) 

The explicit form of generalized strains can be written as  
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11

x

x

K K

d d
K H

dx dx
    



   (4.23) 

The linearized strain measures (4.23) coincide with the strains of the Timoshenko beam 

(Ibrahimbegovic & Frey, 1993a). The equation (4.23) can be written in matrix compact form:  
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  (4.24) 

By using the same compact notation for the virtual strains (denoted with superposed  ̂ ), we can 

write the weak form of the equilibrium equation, see (Ibrahimbegovic & Frey, 1993a): 

     ˆˆ ˆˆ ˆ, : 0ext

L
G N V KM dx G     a a a     (4.25) 

In (4.25) above, N, V and M denote stress resultants, expressed regarding the Biot stress: 

  11 21 11, , ;   ;   ;  
T

A A A
N V M N T dA V T dA M T dA      σ     (4.26) 

The yield function, in the stress resultant form, is defined according to classic works (Simo et al., 

1984) and (Neal, 1961), except for a small modification to account for isotropic hardening 

 2 2 4( , ) 1 1 0

; ;V V NM

y y y

m n v v

V q N qM q
m v n

M V N
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 
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σ q

    (4.27) 

where m  is a non-dimensional bending moment; v  is a non-dimensional shear force; n   is a non-

dimensional axial force; , ,M V Nq q q  are internal hardening stress like variables; whereas ,y yM V  and 

yN  denote yield bending moment, yield shear force and yield axial force. The yield function for 

softening is chosen as a multi-criteria form, pertaining to, bending moment, shear and axial force: 
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( , ) 0
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y

M s s

M M M M M
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t q t t q
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        

    

     (4.28) 

where , ,M V Nt t t  are traction forces, , ,
y y yM V Nt t t  are the corresponding ultimate values where 

softening starts and , ,s s s

M V Nq q q  are stress-like variables work-conjugate to softening variables at the 

discontinuity. 

 

4.2.4. Consistent linearization of virtual work equations 

As shown in (4.7) (Ibrahimbegovic & Frey, 1993a), the virtual work equation can be expressed 

regarding different stress – strain energy-conjugated pairs. Any of them leads to a nonlinear 

problem, which requires an iterative solution procedure. With Newton‟s iterative method, we need 
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to perform consistent linearization at each iteration.  

4.2.4.1. Incompatible modes implementation 

The embedded discontinuity formulation that handles the softening is implemented in the 

framework of incompatible modes (Ibrahimbegovic & Frey, 1993b). Namely, we turn to Hu-

Washizu variational formulation, where the weak form is constructed for all three groups of 

equations: kinematics, constitutive and equilibrium equations. Namely, we choose the spaces of 

virtual displacements, virtual stress and virtual strain to write: 
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     (4.29) 

where virtual fields are denoted with superposed  ̂ ; Ĥ  - virtual rotated strain field; T̂  - virtual 

stress field and û  - virtual displacements field. Virtual rotated strain measure can be derived by 

taking the directional derivative of strain measure U  (4.11) and exploiting relation U H +I : 
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  (4.30) 

In the equation (4.30), the additive decomposition of the displacement gradient field produces an 

additive decomposition of the virtual strain measure Ĥ  . The virtual stress field can be expressed 

as: 

ˆˆˆ ep
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 
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 
T C H H        (4.31) 

By exploiting results (4.22)-(4.25) and (4.29)-(4.31) we can construct the weak form of equilibrium 

equations in terms of stress resultants: 
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   (4.32) 

The virtual strain measure Σ̂  can be derived by taking the directional derivative of the strain 

measures in (4.23),  which can be written explicitly as: 
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     (4.33) 

The virtual strains components (4.33) can be put in the matrix form as 
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  (4.34) 

The discrete form can be obtained at the later stage, given that the linearization and discretization 

commute. The weak form of the virtual work equation can be expressed as: 

ˆˆ ˆ: 0
L L

dx dx    
T

G(a,a) Σ σ a f       (4.35) 

where a  is a vector of real displacements, â  is a vector of virtual displacements; Σ̂  is a virtual 

strain measure; σ  is a vector of stress resultant forces and f  is a vector of external forces.  

The stress resultant forcesσ  for the elastoplastic response can be written as 

   ;   , ,ep ep ep ep

N V Mdiag C C C T
σ C Λ h(a) -n C      (4.36) 

where , ,ep ep ep

N V MC C C  are elastoplastic stiffness of the beam section for an axial force, shear force and 

bending moment. 

By enforcing the orthogonality condition (Ibrahimbegovic, 2009) for the element with incompatible 

modes, which results in elimination of the stress field and allows us to write the remaining set of 

equilibrium equations (4.32) as 
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In the last expression, the virtual strains are obtained explicitly by directional derivative 

computation: 



Theoretical formulation and numerical implementation 56    

Ultimate load limit analysis of steel structures accounting for nonlinear behavior of connections 

     
0

ˆ ˆ

ˆ ˆˆ /

ˆˆ ˆ ˆ   

x

x x

d d

d d

d d



  
  

   
T T

T T

ΣΣ

Σ Σ a +βa Σ a +βa

Λ Λ
Λ d(a) h(a) Λ d(a) h(a)







   
 

    (4.38) 

In order to provide the quadratic convergence of  Newton‟s method, we need to find the consistent 

tangent stiffness. The latter can be obtained by consistent linearization of the weak form in (4.37)1 

resulting with 
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where 
k

mD  and 
k

gD  are defined in (4.42), along with  
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4.3.   Finite element approximation 

We choose the simplest finite element approximation for the presented beam model with a 

plasticity that fits within the framework of incompatible modes method. We here provide some 

details of numerical implementation for a beam element with two nodes and three localized failure 
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modes. We allow for displacement discontinuity representation for bending moment, shear force 

and axial force, each with an additional parameter 
eα : 
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where  1,1    is natural coordinate at the parent element and ( )H

  is Heaviside function 

related to the point 0   . The two-node element interpolation is enhanced with the 

displacement discontinuity, placed in the center of this element. The corresponding approximation 

of displacements gradient can then be written as: 
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with 0   the Dirac delta function placed in the center of the element. This choice will ensure that 

the incompatible mode variation remains orthogonal to the constant stress in each element. 

By combining the results in (4.24), (4.43) and (4.44), we can construct strain field approximation. 

We typically use reduced numerical integration with a single point, 0  , in order to avoid locking 

phenomena (Ibrahimbegovic & Frey, 1993a):  



Theoretical formulation and numerical implementation 58    

Ultimate load limit analysis of steel structures accounting for nonlinear behavior of connections 

              

            

            

2 2

1 1

0

2 2

1 1

0

2 2

1 1

0, 0 (0) cos 0 (0)

         0 (0) sin 0 (0)

0, 0 (0) sin 0 (0)

h e e e e

a a u a aa a

e e e e

a a v a aa a

h e e e e

a a u a aa a

t B u t G t N t M t

B v t G t N t M t

t B u t G t N t M

 



 



 

 
      
 
 

 
     
 
 

     

 

 

 







  

  

    

            

   

       

0

2 2

1 1

0

2

1

2

1

         0 (0) cos 0 (0)

         0

0, 0 (0)

e e e e

a a v a aa a

a aa

h e e

a aa

t

B v t G t N t M t

N t

K t B t G t



 







 
 
 
 

 
     
 
 

 

  

 









  



 

  (4.45) 

We note that a pure bending deformation mode (Kirchoff‟s constraint), which imposes that both 

shear and membrane deformations are equal to zero (     0,h h       ), can be obtained if we 

have one point of integration and  ( ) 0e eM x t  . The stress field approximation can be obtained 

from the regular part of the strain rate in (4.45) with no contribution from the singular part, which 

represents softening plastic strain rate. We can write: 
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4.4. Numerical examples 

Several numerical examples are presented in this section to illustrate the performance of the 

proposed finite element formulation. All numerical computations are performed with a research 

version of the computer program FEAP (Taylor, 2008). 
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4.4.1. Straight cantilever under imposed end rotation 

In this example, we present three different types of a response for a cantilever beam under free-end 

bending load. The geometric properties of the cross section correspond to standard IPE 200 and 

material properties take values for steel class S235. The initially straight cantilever beam model is 

constructed with three different meshes of 2, 4 and 8 elements. Each analysis is performed under 

imposed end rotation   . The first analysis represents the linear elastic response (see Figure 

4.1), the second analysis represents the elastoplastic response that remains in hardening phase (see 

Figure 4.2), whereas the third analysis represents the elastoplastic response that goes into the 

softening phase, failure. The failure is localized in the middle of the cantilever, where one element 

is weakened (see Figure 4.3). Response diagrams show the mesh indifference of the proposed 

formulation. 

 
  

Figure 4.1  Linear elastic analysis: Deformed configuration and diagram     M kNcm rad  

 

  

Figure 4.2  Elastic-plastic analysis: Deformed configuration and diagram     M kNcm rad  

 

 
 

Figure 4.3  Ultimate limit analysis with included failure: Deformed configuration and response curve 

Bending moment M 

Bending moment M 

Bending moment M 
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For the chosen properties of the cantilever (Young‟s modulus: E=2∙104kN/cm2; Hardening 

modulus: K=0.05∙E; Moment of inertia: I=1940cm4; Area of the cross section: A=28.5cm2; Yield 

bending moment: My=3100kNcm), some of the results can be verified analytically. Namely, the 

elastic bending moment can be computed as Me=π∙EI/L=1218320kNcm and the elastoplastic 

bending moment as Mep=(π-Ky)∙EK/(E+K)L + Ky∙EI/L=9145,87kNcm. The comparison, these 

reference values versus numerical results computed with a different number of elements, is 

presented in Table 4.1.  

Table 4.1 Cantilever beam under imposed an end rotation   

No. of 
elements 

Bending moment 

Elastic analysis Elastoplastic anal. 

2 1218300 kNcm 9146kNcm 

4 1218300 kNcm 9146kNcm 

8 1218300 kNcm 9146kNcm 

16 1218300 kNcm 9146kNcm 

Exact 1218320 kNcm 9145,87kNcm 

 

4.4.2. Straight cantilever under imposed free-end vertical displacement  

This example presents two different failure modes under free-end vertical displacement. Namely, 

by imposing vertical displacement at the free end of a cantilever, we can trigger failure due to either 

bending moment or shearing force. The type of failure depends on chosen values for constitutive 

parameters. We first perform analysis (see Figure 4.4) where the ultimate bending Mu is reached 

before the ultimate shear force Vu (Mu=3800kNcm, Vu=75kN). We then modify the parameters 

(Mu=3800kNcm, Vu=65kN), see Figure 4.5, in the second analysis, in order to reach the ultimate 

shear force before the ultimate bending moment. In Table 4.2, we provide the results of studies for 

the typical rate of convergence. 

 
 
 
 

 
  

Figure 4.4  Failure in the bending: deformed configuration and response curves 
 

 
 
 
 

 
  

Figure 4.5  Failure in the shearing: deformed configuration and response curves 
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Table 4.2  Reduction in residual and energy norm in one increment (softening) 

No. of 
iterations 

Failure in the bending Failure in the shearing 

Residual Energy Residual Energy 

1 2.5451184E+03 2.89262392986E+00 2.5617356E+03 2.88022968875E+00 

2 1.2603427E-02 7.72176817049E-09 2.2358020E-01 2.94749460179E-08 

3 3.1269310E-10 5.37722363293E-25 5.5411964E-05 2.27071800263E-14 

4   1.0282664E-07 2.31118241048E-20 

 

4.4.3.   Push-over analysis of a symmetric frame 

In this example, we present the results of a push-over analysis of symmetric steel frame. The frame 

geometry is given in Figure 4.6. The material properties for all frame members are equal (Young‟s 

modulus: E=2∙104kN/cm2; Hardening modulus: K=0.05∙E; Moment of inertia: I=1940cm4; Area of 

the cross section: A=28.5cm2; Yield bending moment: My=3100kNcm; Ultimate bending moment: 

Mu=3100kNcm; Yield shear force: Vy=355kN; Ultimate shear force: Vu=400kN, Fracture 

energies: Gf,M=550 and Gf,V=450), except the fact that the cross-section properties of the columns 

are 10% stronger then cross-section properties of the beams.  

 
 
 
 
 
 
 
 
 
 
  

Figure 4.6 a) Frame geometry and loading              b) Deformed shape and bending moment distribution 
 

 
 
 
 
 
 
 
 
 
 
 
  

Figure 4.7  Locations of softening plastic hinges and load versus displacement ( 100
top

u cm  ) 

The elements which connect beams to columns are 10% weaker than cross-section properties of 

beams; these elements are chosen to simulate the behavior of connections in the global analysis of 
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the steel frame structure. The vertical load was applied to all beam members. This load is kept 

constant throughout pushover analysis in order to simulate the dead load effect. The lateral loading 

is applied regarding an imposed incremental displacement (
topu ) at the upper corner (point A, see 

Figure 4.6). In Figure 4.6b, we present the deformed configuration of the steel frame and the 

corresponding distribution of the bending moments. In Figure 4.7, we present the position of 

activated plastic hinges in the final stage of failure, along with the computed softening response in 

terms of the force – displacement diagram. In Figure 4.7b, the force denotes reaction in the corner 

A, where is imposed the displacement. 

4.4.4. Push-over analysis of a simple frame 

In this example, we present ability to capture different failure modes of the frame. We consider a 

simple steel frame presented in Figure 4.8, where the span is 5,0m and height is 3,0m. The mesh is 

composed of 48 elements where the length of each element is 0,25m. The material properties of all 

frame members are equal (Young‟s modulus: E=2∙104kN/cm2; Hardening modulus: K=0.05∙E; 

Moment of inertia: I=1940cm4; Area of cross section: A=28.5cm2; Yield bending moment: 

My=3100kNcm; Ultimate bending moment: Mu=3100kNcm; Yield shear force: Vy=355kN; 

Ultimate shear force: Vu=400kN, Fracture energies: Gf,M=550 and Gf,V=450), but elements which 

connect beams and columns are defined according to connection behavior see (Imamovic et al., 

2015).  

 
 
 
 
 
 

Figure 4.8  Frame geometry and loading 
 

  
a) Failure in the bending b) Failure in the shearing 

Figure 4.9  Deformed Configuration 

Two cases are considered, in the first, connections are defined properly. In the second case, right 

connection is defined with very low capacity regard to the shear force (Vu=30kN), which can be 

caused by poor construction during building. This construction error is assumed in the right corner 

of the steel frame. Deformed configurations of the frame for both cases are presented in Figure 4.9. 
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The results of the analysis for both cases are shown in Figure 4.10, showing a significant reduction 

in a frame limit load that can be brought by construction errors. Figure 4.10b shows this reduction 

of the limit load, caused by construction errors during building. 

 
Figure 4.10  Response of the frame 

 

4.5. Concluding remarks 

The presented geometrically non-linear planar beam model provides the main novelty with its 

ability to account for both bending and shear failure. The proposed constitutive model contains 

both coupled plasticity with isotropic hardening and nonlinear law for softening with three different 

failure mechanisms. The hardening response providing the interaction between bending moment, 

shear force, and axial force can be calibrated against damage of beams or columns in a steel frame. 

The softening response can be activated to model the failure mode in the connections with different 

failure mechanisms. Which of mechanisms will be activated depends on interplay and stress 

redistribution during the limit load analysis. 

By using the proposed beam element, we can perform ultimate limit analysis of any frame planar 

steel structure, including the second order effects as well as different failure mechanisms. The 

geometrically nonlinear analysis allows the ultimate limit analysis with large displacement without 

any need for correction of the proposed property (Dujc et al., 2010). This advantage is significant in 

a steel frame structure because of a large ductility of steel. 

The results for all numerical examples illustrate an excellent performance of the proposed beam 

element. 
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Chapter 5 

Experimental testing of structural steel connections and 
constitutive parameters identification 

 

 

 

 

 

Abstract 

The moment-resistant steel frames are frequently used as a load-bearing structure of buildings. 

Global response of a moment-resistant frame structure strongly depends on connections behavior, 

which can significantly influence the response and load-bearing capacity of a steel frame structure. 

The analysis of a steel frame with included joints behavior is the main focus of this work. In 

particular, we analyze the behavior of three connection types through experimental tests, and we 

propose numerical beam model capable of representing connection behavior. The experimental 

tests are performed for three different types of structural connections: end plate connection with an 

extended plate, end plate connection and moment resistant connection with angles. The proposed 

beam model is Reissner beam with the ability to capture both hardening and softening response, 

which has 17 constitutive parameters. The identification of those constitutive parameters requires 

an elaborate procedure, which we illustrate in this work. We also illustrate that the constitutive 

parameters successfully identification requires the well-designed experimental testing program. We 

finally illustrate that the steel structure connections are very important for correct prediction of the 

global response of steel frame structure. A detailed analysis is presented in several practical 

examples.  
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5.1.  Introduction 

The moment-resistant steel frame is frequently used as a bearing structure, especially in seismic 

regions. They provide a very ductile response and a large potential to dissipate energy, which is 

crucial in the case of earthquakes. These characteristics provide the economical design of the 

structure and increase resistance with respect to the seismic security. Structural connections 

between beams and columns play a crucial role in the response of a steel frame structure. They can 

significantly change the response of the structure, sometimes up to 30%.  

The analysis of a steel structure with connection behavior can be performed with many nonlinear 

FEM commercial programs, using 3D solid finite elements. The refined nonlinear model can 

predict the behavior of a joint, but those computations are often too costly and not practical for the 

design of the whole structure. For this reason, we propose the use of beam element as a better 

choice regarding computational efficiency and reduced costs. It is well known that geometrically 

nonlinear elastoplastic beam elements are able to represent the behavior of a steel structure 

including material nonlinearities and buckling (Imamovic et al., 2017; Dujc et al., 2010). We 

postulate that every connection in steel frame structure can be modeled with beam element. The 

geometrically nonlinear beam element with bilinear hardening and the linear softening response is 

used to represent connection behavior. For the steel members, a simpler beam element with linear 

hardening and softening is proposed. The constitutive parameters of the beam element are 

determined from the connection behavior of steel bulk material. The constitutive model, which we 

propose is much more refined than the bilinear plasticity model proposed in EC 3 (EC3, 2005), 

where after reaching an ultimate bending moment, the connection response corresponds to perfect 

plasticity model with a constant value that remains permanently. The EC 3 connection does not 

consider the shear response. The main novelty of the proposed beam model with the connection is 

to be able to capture bending and shearing inelastic response with both hardening and softening 

response until the complete failure is reached. 

The proposed Reissner beam model contains 17 constitutive parameters that need to be identified. 

The parameters identification represents a challenge, which can be raised by done using well-

designed experimental tests of a structural connection. In this chapter, experimental testing related 

to loading program and measurement equipment is designed according to (Imamovic et al., 2015). 

The loading program was defined as cycles of a loading/unloading. The measurements were split 

into the set of local and the set of global measurements. Such experimental testing gives us 

sufficient information for the identification of the seventeen constitutive parameters. Six 

experimental tests were performed for three different connection types: end plate connection with 

the extended plate, end plate connection and moment resistant connection with angles. The testing 

structures were designed so that the joint represents the weakest element of the structure. Every 

connection type is tested for two different bolt classes. This difference should change failure model 

of connection according to EC3 (EC3, 2005), but experimental testing does not confirm that.  

The outline of the chapter is as follows. In the next section, we describe the experimental testing 

methodology and present main experimental results. The third section gives a brief overview of the 

main ingredients of the proposed beam model and corresponding FEM implementation. The 

constitutive parameters identification of the proposed beam element is shown in the fourth section. 

In the fifth section, we present results of two numerical simulations of the steel frame structures 

with and without included connection behavior. The last section contains the conclusions. 
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5.2.  The experimental testing of structural connections 

Experimental tests on three types of moment-resistant connection have been conducted with the 

aim to identify constitutive parameters of the proposed beam model. The tested moment-resistant 

connection types are: end plate connection with the extended plate, end plate connection and 

moment resistant connection with angles. In the experimental structures, connection represents the 

weakest element where plastic deformations and failure are expected to occur. The vertical and the 

horizontal beams, chosen as IPE 200 and IPE 400, respectively, are deemed sufficiently strong to 

remain linear elastic throughout the loading program.  

In total, six experimental tests have been performed. Every connection type has been tested for two 

different bolt classes (10.9. and 8.8.). The experimental tests were performed at the Laboratory for 

materials and structures of the University of Sarajevo.  

According to EC3, the difference in bolt classes should result in different failure mechanisms. EC3 

predicts failure in the T-stub (Abidelah et al., 2014) for the higher class bolts, and the failure in 

bolts for the lower class bolts (EC3, 2005).  

5.2.1.  Experimental setup  

Figure 5.1 shows the experimental setup for testing connection between two orthogonal steel 

beams. The horizontal beam is chosen much stronger than the vertical beam, which should ensure 

the linear elastic behavior of the horizontal beam during the test. The equipment for displacements 

measurements are arranged so that sufficient information for identification of mechanical properties 

can be obtained. The experimental data can be classified as the local and the global measurements. 

The global measurements depend mainly on all model parameters, while the local measurements 

depend on only one model parameter. 

  

Figure 5.1  Experimental setup 

The Figure 5.1a illustrates the measuring equipment, where LVDT is an abbreviation for the 

“Linear variable displacement transducer”, which measures displacements. The LVDT 1 and 2 

measure horizontal displacements of the vertical beam ( exp

3,PiU ) and ( exp

5,PiU ), which can be classified as 

the global measurements. All other measurements are classified as local.  LVDT 3 and 4 measure 

relative vertical displacement between horizontal and vertical beams, which we use for calculating 

the rotation of the connection: 



Experimental testing 68    

Ultimate load limit analysis of steel structures accounting for nonlinear behavior of connections 

exp exp
exp 3 4

.vert beam

v v

h

 
          (5.1) 

LVDT 5 measures relative horizontal displacement ( exp exp

2, S,Pi PiU U ) between horizontal and vertical 

beams, which corresponds to transverse (shearing) displacement of the connection. The strain 

gauges measure deformation at the vertical beam, which we use for calculating the curvature of the 

section near to the connection: 
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exp exp 1 2;  ,

2 2 2

i
i i i

h h
y y

y

 
          

 

  
         (5.2) 

The force F is applied by using a hydraulic pump. The value of the force is measured with load cell 

placed between the hydraulic pump and the loading point, in the experimental structure. The 

measuring equipment is controlled with experimental device Spider 8 and monitored with software 

Catman 5.   

Table 5.1 Geometrical characteristics of experimental structures 

Joint Vertical beam Horizontal beam 
End plate 

dimension/Angles 
Bolts 

A1 IPE 200 – S275 IPE 400 – S275 ≠ 340x130x10 – S275 8M12-class 8.8. 

A2 IPE 200 – S275 IPE 400 – S275 ≠ 340x130x10 – S275 8M12-class 10.9. 

B1 IPE 200 – S275 IPE 400 – S275 ≠ 220x130x10 – S275 4M16-class 8.8. 

B2 IPE 200 – S275 IPE 400 – S275 ≠ 220x130x10 – S275 4M16-class 10.9. 

C1 IPE 240 – S275 IPE 400 – S275 L 100x100x10 – S235 17M12-class 8.8. 

C2 IPE 240 – S275 IPE 400 – S275 L 100x100x10 – S235 17M12-class 10.9. 

 

5.2.2. Experimental testing 

The experimental data have been collected during load application, with all results recorded during 

the complete loading program. Figure 5.2 shows loading program, which contains several cycles of 

loading and unloading. The benefits of this loading program are presented in (Imamovic et al., 

2015), where we elaborated that unloading points are important for the potential existence of 

connection damage. Namely, plasticity and damage models can represent the same behavior in the 

loading regime, but the unloading shows the difference between them. The same loading program 

has been used for all experimental testing, with only step size adjusted to the connection behavior.  

 
Figure 5.2  Loading program 
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5.2.2.1. End plate connection with extended end plate 

The end plate connection type with the extended plate is constructed from the plate 

(340x130x10mm) welded to the vertical beam and eight bolts (M12) connecting the plate to the 

horizontal beam. The bolts were preloaded with 50% of prestressing force according to EC3. Two 

experimental tests have been performed for this type of connection; the first is A1 (bolt class 8.8.) 

and the second is A2 (bolt class 10.9.).     

 
Figure 5.3  End plate connection with extended end plate 

 

   
Figure 5.4  Experimental results for connection A1 

 

   
Figure 5.5  Experimental results for connection A2 

 

   
Figure 5.6   Deformation of connection elements during experimental testing 

The testing results are shown in Figure 5.4 and Figure 5.5, where we can see that vertical beam 

remains in the elastic response. The relative horizontal displacement between vertical and 
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horizontal beams does not exist ( exp exp

2, S,Pi PiU U ). The unloading lines at diagrams are parallel to first 

loading line, which indicates that plasticity model can represent the behavior of the connection. The 

photographs in Figure 5.6 show deformation of connection elements during experimental testing.  

In both experimental structures (A1 and A2), failure has progressively occurred in the bolts, where 

the inner row of bolts broke before the outer row of bolts. 

 

5.2.2.2. End plate connection 

The end plate connection is constructed from the plate (220x130x10mm) welded to the vertical 

beam and four bolts (M16), connecting the plate to the horizontal beam. A total of two 

experimental tests have been conducted; the first is B1 (bolt class 8.8.) and the second is B2 (bolt 

class 10.9.).  

Figures 5.8 and 5.9 show testing results, where we can see that sliding displacement between 

vertical and horizontal beam exists. The strain gauges have not measured residual strains which 

indicate that vertical beam has remained in the linear elastic part of the response. The diagrams 

show that plasticity model can appropriately represent connection behavior because the subsequent 

loading/ unloading lines are parallel to the first loading line. 

 
Figure 5.7  End plate connection 

 

    
Figure 5.8 Experimental results for connection B1 

 

    
Figure 5.9  Experimental results for connection B2 

In both experimental structures (B1 and B2), failure has occurred in bolts, see Figure 4.10. In the 
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B1 test, both bolts in the tension zone broke at the same moment, while in the B2 experimental 

structure bolts gradually broke. Regarding the failure mechanism in the B1 test, where the brittle 

failure happened, we were not able to measure the softening response. 

   
Figure 5.10  Deformation of connection elements during the experimental testing 

 

5.2.2.3. Moment resistant connection with angles 

The moment resistant connection with angles is constructed from four hot rolled angle profiles 

(L100x100x10mm), where two angles on flanges provide the resistance to the bending moment and 

angles on the web ensure the shear resistance. A total of two experimental tests have been 

performed; the first is C1 (bolt class 8.8.) and the second is C2 (bolt class 10.9.). 

 
Figure 5.11  Moment resistant the connection with angles 

 

   
Figure 5.12  Experimental results for the connection C1 

Figures 5.12 and 5.13 present testing results, where we can see that vertical beam remains in the 

elastic response, while the measured sliding deformation between horizontal and vertical beam is 

very small and can be neglected. 

The deformations of connection elements during experimental testing are presented in Figure 4.14. 

In both experimental structures (C1 and C2), failure has occurred in bolts. The horizontal bolts in 

tension zone broke under shear stresses. In the C1 test, both bolts in the tension zone broke in the 
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same moment, while in the C2 test bolts broke one-by-one. Regarding the brittle failure mechanism 

in the C1 test, we were not able to measure the softening response. 

   
Figure 5.13  Experimental results for connection C2 

 

   
Figure 5.14 Deformation of connection elements during experimental testing 

 

5.3.  Finite element beam model: geometrically exact beam with bilinear hardening and 
nonlinear softening response 

The complex response of a steel frame structure with connections is quite a challenge to describe. 

In this work, we use the geometrically exact beam with bilinear hardening and linear softening 

response (Imamovic et al., 2017). This model is able to represent many phenomena observed 

during experimental testing, including the regime of large deformation (Wagner & Gruttmann, 

2002) of the tested structure. A brief description of the beam model is given as follows. The 

Helmholtz free energy can be defined as quadratic form: 
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where e
U  is elastic strain measure tensor, 

p

iξ  
are vectors of hardening variables and 

h

iK  are 

corresponding hardening moduli. The yield criterion that has to be satisfied in hardening regime:  

( , ) 0i T q           (5.4) 

where q  is a vector of internal hardening stress like variables. The second principle of 

thermodynamics states that the plastic dissipation must remain non-negative: 

1 2

1 1 2 2
1 2

1 2

0

0

p pe

p p p pe
e p p

e p p

d dd

d dt dt



   
      

  

Ξ ξ Ξ ξ
T U TU TU

U ξ ξ

D DD

D =       (5.5) 



73                                                                                    Experimental testing under cyclic load                                                                                                                    

Ultimate load limit analysis of steel structures accounting for nonlinear behavior of connections 

The principle of maximum plastic dissipation can be formulated (Hill, 1950; Ibrahimbegovic & 

Frey, 1993a) as the minimization problem with the constraint, with the latter being yield function 

(5.4). This can further be recast as corresponding unconstrained minimization by using the 

Lagrange multiplier method: 

,min max ( , , ) ( , ) ( , )i i

p pL 
 

   T q γ
T q γ T q γ T qD           (5.6) 

where i  
are Lagrange multipliers. The Kuhn-Tucker optimality conditions provide the evolution 

equations for internal variables in rate form along with the loading/unloading conditions: 
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The appropriate value of plastic multiplier γ  can be determined from the plastic consistency 

condition for the case of sustained plastic flow:  
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By replacing the last result in stress rate equation, we can obtain the elastoplastic modulus ep
C  that 

should replace the elastic modulus C  in plastic regime: 
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We note in passing that the elastoplastic tangent above remains the same in the discrete problem, 

obtained by using the backward Euler time integration scheme.  

In the softening regime the Helmholtz free energy can be written as a quadratic form in softening 

variables: 
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where s
ξ  is a set of internal variables representing the connection failure and 

s
K  is a set of 

softening moduli. The yield function for softening is chosen as a multi-criteria pertaining to  

bending, shearing and axial force: 

0 ( , ) 0i s

i i i it q             (5.11) 
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where it  is the traction force and 
s

iq  are stress-like variables work-conjugate to softening variables 

at the discontinuity for the corresponding failure mode. The principal of maximum dissipation (Hill, 

1950) that applies to softening states will pick the ones that maximize softening dissipation, among 

all admissible values of these variables. That can be solved as an unconstrained minimization 

problem, to provide the evolution equations for internal variables along with the loading/unloading 

conditions: 
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The beam kinematics equations can be written by using the rotated strain measure: H = U-I , 

where the only non-zero components are defined as: 

11 21,  H K H           (5.13) 

The explicit form of generalized strains can be written as  
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The linearized form of strain measures in (5.14) coinciding with the strains of the Timoshenko 

beam (Ibrahimbegovic & Frey, 1993a; Nikolic et al., 2015), which allow for the additive split into 

elastic and plastic components. The equation (5.14) can be written in compact matrix notation:  
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By using the same compact notation for the virtual strains (denoted with superposed  ̂ ), we can 

write the weak form of equilibrium equation, see (Ibrahimbegovic & Frey, 1993a): 

     ˆˆ ˆˆ ˆ, : 0ext

L
G N V KM dx G     a a a     (5.16) 
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In (5.16) above, N, V and M denote stress resultants regarding the Biot stress: 
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The yield function for softening is chosen as a multi-criteria form, pertaining respectively, to 

bending moment, shear and axial force: 
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where M  is a bending moment; V  is a shear force;  N  is an axial force;
 

, ,p p p

M V Nq q q  are internal 

hardening stress like variables; whereas ,y yM V  and 
yN  denote yield bending moment, shear force 

and axial force. The internal variable 
p

Mq  provides bilinear hardening related to bending moment, 

which can be written as: 
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where ,1

h

MK  and ,2

h

MK  are hardening moduli. The yield function for softening is also chosen as a 

multi-criteria form: 
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where , ,M V Nt t t  are traction forces, , ,
y y yM V Nt t t  are the corresponding ultimate values where 

softening starts and , ,s s s

M V Nq q q  are stress-like variables work-conjugate to softening variables at the 

discontinuity. 

5.4. Identification of the constitutive model parameters  

In the case of connection testing, the global response of a specimen can be represented with load-

displacement (F-u) diagram. Any such curve can be related to the three phases of the connection 

response: elastic, hardening and softening part (Figure 5.15). The used plasticity model, which 

represents connection behavior, contains the bilinear hardening and the linear softening response. 

For the most general case, we need to identify three parameters in the elastic phase, eight in the 

hardening phase and six unknown parameters in the softening phase. 

The identification in general case is performed in two steps: i) definition of an objective function 

based on some experimental measurements; ii) minimization of this objective function in order to 

find values of constitutive parameters used in the model.  
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The choice of the objective function is a crucial step to ensure the success of the minimization. In 

general case, the objective function can be defined as the gap between measured and computed 

response values (displacement, stress, deformation, reaction force, etc.): 
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where dp are the model parameters that we seek to identify, 
dv

dx
 and 

exp

ju are, respectively, 

computed and experimentally measured values of displacements/stresses/strains, and n is the 

weighting factor for different terms of objective function.  

 

 

 

 
 

 

 
 

 
Figure 5.15  General relation: force F – displacement U 

Minimization of the objective function can formally be written as minimization under constraint:  
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where the weak form of equilibrium equations ( , , ; ) 0p dG w      is the corresponding constraint. 

Namely, the weak form of equilibrium equations has to be satisfied at every time step. The 

constrained minimization of the objective function can be transferred into unconstrained 

minimization by using the Lagrange multiplier method (Ibrahimbegovic et al., 2004): 
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where λ are Lagrange multipliers inserted into the weak form of equilibrium equations instead of 

virtual displacements. This type of minimization of the objective function is very complex for 

seventeen unknown parameters. However, if we split an unconstrained minimization of the 

objective function into several phases, then we will decrease the number of unknown to maximal of 

two parameters in each phase (Kucerova et al., 2009).   

The general identification procedure of the connection model parameters is presented in the 

flowchart in Figure 5.16. The process is split into three phases, with every phase further split into 

few cases. The first phase seeks to identify the three constitutive parameters related to elastic 

response: 
in

jbS  - initial rotational stiffness, 
in

jsS  - initial shearing stiffness and 
in

jaS  - initial axial 

stiffness.  

The second phase deals with eight unknown parameters related to hardening plasticity: 
con

yV - yield 

shear force; 
p

jsS - hardening stiffness modulus with respect to shear force; 
con

yN - yield axial force; 

p

jaS - hardening stiffness modulus with respect to axial force; ,1

con

yM - first yield bending moment; ,1

p

jbS

- first hardening stiffness modulus with respect to bending moment; ,2

con

yM - second yield bending 
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moment; ,2

p

jbS - the second hardening stiffness modulus with respect to bending moment.  

The last phase deals with six softening constitutive parameters: con

uN  - ultimate axial force, 
s

jaS  - the 

softening modulus with respect to axial force, con

uV  - ultimate shear force, 
s

jsS  - softening stiffness 

modulus with respect to shear force, con

uM  - an ultimate bending moment and 
s

jbS  - softening 

modulus with respect to bending moment.  
 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

Figure 5.16  Flow chart of parameters identification 

The stiffnesses can be obtained from the identified constitutive parameters of the proposed beam, 

Bending in the conn.- Plasticity I:   

- Local and global measurements 

Bending in the conn.- Plasticity II:   

- Local and global measurements 

 

III phase:Parameters 

in the softening 

Shearing of the conn.: 
 

 - Local and global measurements 

Bending of the conn.:   

- Local and global measurements 

Axial response of the 

conn.:  

- Local and global 

measurements 

Shearing of the conn.:   

- Local measurements 

Bending of the conn.:   

- Local measurements 

Axial response of the  

connection:
 

 

- Local measurements 

I phase:Parameters 

in the elasticity 

Constitutive parameters identification 

for model of the connection 

Control of results:  

- Local and global measurem. 

II phase: Parameters 

in the hardening 

Shearing of the conn.:   

- Local measuremenets 

Axial response of the conn.:   

- Local measurements 



Parameters identification 78    

Ultimate load limit analysis of steel structures accounting for nonlinear behavior of connections 

as follows: 
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where ,E G  are Young's-like modulus and shear-like modulus, respectively; , ,
s

I A A are geometric 

characteristics of the cross section; ,1, ,h h h

M s aK K K  are hardening-like moduli; while L  is the length 

of the beam.      

For every case in the second and the third identification phase, local and global measurements are 

required. The local measurements depend mainly on one material parameter, while the global 

measurements depend on practically all parameters of constitutive models.  

The standard algorithms for unconstrained minimization included in Matlab are sufficient to solve 

the identification problems for each and every phase. The key step to facilitate this is a pertinent 

choice of the objective function for the parameters identification with the general format that can be 

written as (Imamovic et al., 2015): 
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  (5.25) 

where: exp,com

Pi PiF F
 

are forces for different load level (Pi); 
exp,com

Pi PiU U  are the corresponding 

displacements (Pi ) ;  exp

, ,,com

S Pi S PiU U  are shear displacements (Pi ); exp,com

Pi Pi   are rotations of the 

connection (Pi); 
exp exp exp

1 1 and com com com

Pi Pi Pi Pi Pi Pi             are gradients of rotation between two 

different load (Pi ) ; are curvatures of the section (Pi); 1

com com com

Pi Pi Pi      and 
exp exp exp

1Pi Pi Pi      are gradients of curvature between two different load (Pi ); while a, b, c, d, e, g  are 

constants. 

By respecting experimental testing described in the second section of the chapter, we are not able to 

identify parameters related to the axial force. However, we have exploited the design principle 

“strong columns - weak beams” in which the axial force behavior can be neglected. Some of the 

experimental measurements show that relative shear displacement between horizontal and vertical 

beams are too small. For these experimental tests, parameters related to shear force are not 

identified but assumed as rigid.   

 

5.4.1. Experimental tests:  A1 and A2 

The experimental equipment in tests A1 and A2  (Figures 5.4 and 5.5) has not measured relative 

shear displacement exp

3,PiU . This fact reduces identification problem to seven unknowns, where all 

parameters are related to rotational response. In the first elastic phase, we have only one unknown 

constitutive parameter. In the second phase, four constitutive parameters are unknown, and only 

two parameters are unknown in the last third phase. The identification procedure uses the same 

objective function (5.25) for every case. In Figures 5.17 and 5.18 are shown the shapes of the 

objective function for performed phases and cases of the identification. 

Results of the identification procedure are presented in Figure 5.19 where we can see good match 

between the experimental and the computed results. Computed results were obtained by using FEM 

exp,com

Pi Pi 
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model and identified constitutive parameters. Comparing the experimental response of the 

connection against the response predicted by EC3, we can see a fairly good match for elastic 

response but a significant difference in load-bearing capacities of the connections. Namely, we 

have measured values of load-bearing capacities that are almost 44% higher than the corresponding 

values provided by EC3.  
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Figure 5.17  Objective function shapes for eight unknowns related to bending – Experimental structure A1 
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Figure 5.18  Objective function shapes for eight unknowns related to bending – Experimental structure A2 

 

  
a) Experimental structure A1 b) Experimental structure A2 

Figure 5.19  Computed vs. experimental responses of the connections: A1 and A2 

Table 5.2  Values of the constitutive parameters for connection A1 

 in

jbS  
in

jsS  ,1

con

yM  ,1

p

jbS  ,2

con

yM  ,2

p

jbS  
con

uM  s

jbS  c
  

 [kNm/rad]
 

[kN/rad]
 

[kNm]
 

[kNm/rad] [kNm]
 

[kNm/rad] [kNm]
 

[kNm/rad] [rad] 

Experiment 8235,3 ∞ 32,0031 3362,99 50,12 137,1 54,0937 -1699,99 0,0679 

Eurocode 3 7506 - 26,25 2501,35 39,375 0 39,375 - 0,0165 

In Table 5.2 and Table 5.3, the values of identified constitutive parameters are shown and 

compared with the corresponding parameter values obtained by using the EC3 procedure.  

Table 5.3  Values of the constitutive parameters for connection A2 
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 in

jbS  
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jsS  ,1
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yM  ,1
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jbS  
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uM  s
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 [kNcm/rad]
 

[kN/rad]
 

[kNcm]
 

[kNcm/rad] [kNcm]
 

[kNcm/rad] [kNcm]
 

[kNcm/rad] [rad] 

Experiment 8191,65 ∞ 31,15 3699,8 55,15 173,47 59,45 -1250,0 0,0755 

Eurocode 3 7506 - 27,91 2501,35 41,87 0 41,87 - 0,01785 

 

5.4.2. Experimental tests: B1 and B2 

The experimental responses (Figures 5.8 and 5.9) of end plate connections (B1 and B2) show that 

shear displacement exists. Therefore, in this connection type, we have twelve unknowns, seven 

related to bending moment and five related to shear force. The number of unknowns can be reduced 

to ten if we recall the assumption that failure of connection can happen due to the bending moment, 

or due to the shear force. Experimental measurements show that failures in both tests (B1 and B2) 

have happened due to the bending moment. In Figures 5.20 and 5.21 shapes of the objective 

function (5.25) for the connections B1 and B2 are shown. In test B1 brittle failure happened where 

both bolts in tension zone broke at the same moment of time. Here, we are not able to identify the 

constitutive parameters related to the softening response since sudden drop occurs.  

    
a) Elasticity (bending):

 
in

jbS  

b) Plasticity(bending)  

- first hardening: 

,1 ,1,con p

y jbM S  

c) Plasticity(bending) 

- second hardening:
 

,2 ,2,con p

y jbM S
 

d) Plasticity: ,con p

y jsV S  

(shear force) 

Figure 5.20  Objective function shapes for ten unknowns – Experimental structure B1 
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c) Plasticity(bending)  

– second hardening: ,2 ,2,con p

y jbM S   

  
d) Softening(bending): ,con s

u jbM S  e)  Plasticity(shear force): ,con p

y jsV S  

Figure 5.21  Objective function shapes for ten unknowns – Experimental structure B2 

Results of the identification are presented in Figure 5.22, where we can see good matching between 

the experimental and the computed results. Computed results were obtained by using FEM model 

and identified constitutive parameters. Comparing the experimental responses of connections B1 

and B2 against the EC3 responses, we can see a significant difference. Namely, we have measured 
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almost 90% bigger load-bearing capacities of the connections than the corresponding capacities 

according to EC3. 

  
a) Experimental structure B1 b) Experimental structure B2 

Figure 5.22  Computed vs. experimental responses of the connections: B1 and B2 

The values of identified constitutive parameters are shown in Table 5.4 and Table 5.5. These values 

are compared with the corresponding parameters obtained using the EC3 procedure. The EC3 

procedure gives a very good prediction for the elastic response and bending of the connection.  

According to EC3, the elastic response of this joint type can be assumed for the load values lower 

than the 66% of the load-bearing capacity. Experimental testing confirms this hypothesis. 

Table 5.4   Values of the constitutive parameters for connection B1 
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[kNm/rad] [kN] [kN/m] [kNm]
 

[rad] 

Experimental 5398,05 ∞ 16,88 3317,11 37,62 161,0 33,03 16102 54,0937 0,1161 

Eurocode 3 3784 - 18,83 1260,24 28,25 0 - - 28,25 0,02384 

Table 5.5   Values of the constitutive parameters for connection B2 
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[kNm/rad] [kNm]
 

[kNm/rad] [kN] [kN/m] [kNm]
 

[kNm/rad] [rad] 

Experimental 5165,25 ∞ 16,47 2939,10 38,11 217,21 35,17 21721 54,40 -1043,67 0,1651 

Eurocode 3 3784 - 19,75 1260,24 29,625 0 - - 29,625 - 0,0251 

5.4.3. Experimental tests: C1 and C2 

5he experimental responses of moment-resistant connections with angles (C1 and C2) are shown in 

Figures 5.12 and 5.13. The relative shear displacement between horizontal and vertical beams is not 

measured. We can only identify seven unknown constitutive parameters related to bending 

moment. Shapes of the objective function for all analyzed cases of the identification are shown in 

Figures 5.23 and 5.24. 

The comparisons of computed results and experimental results are shown in Figure 5.25, where we 

can see good matching of these results. The computed results have been obtained using proposed 

FEM model and identified constitutive parameters. We have obtained connection responses by 

using commercial computer‟s program PowerConnect. Contrary to the first comparison, the EC3 

procedure underestimates stiffness and bearing capacity of this connection type. Practically, we 

have measured 155% bigger bearing capacity of the connections than EC3 predicts. 
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Figure 5.23  Objective function shapes for eight unknowns related to bending – Experimental structure C1 
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Figure 5.24  Objective function shapes for eight unknowns – Experimental structure C1 

  
c) Experimental structure C1 d) Experimental structure C2 

Figure 5.25  Computed vs. experimental responses of the connections: C1 and C2 

The identified constitutive parameter values are shown in Tables 5.6 and 5.7. By comparing these parameters with 

corresponding parameters obtained by EC3 procedure, we can notice significant differences. 

 Table 5.6    Values of the constitutive parameters for connection C1 
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[kNm/rad] [kNm]
 

[kNm/rad] [kNm]
 

[rad] 

Experimental 1527,45 ∞ 4,49 635,83 25,22 281,12 44,87 0,1893 

Eurocode 3 1118 - 12,08 372,77 18,125 0 18,125 0,02384 

Table 5.7    Values of the constitutive parameters for connection C2 
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Experimental 1638,86 ∞ 5,66 595,27 33,88 332,71 47,48 -452,95 0,1812 

Eurocode 3 1192 - 12,5 397,36 18,75 0 18,75 - 0,0502 
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5.5. Numerical examples 

Two numerical examples are presented in this section to illustrate the effects of connections 

behavior to the global steel frame structure response. The global response of the steel frame 

structure with included connection behavior is compared with the global response of the same steel 

frame structure without included connection behavior. The comparison quantifies the connection 

behavior influence on the global response of the structure. All numerical computations are 

performed with a research version of the computer program FEAP (Taylor, 2008). 

5.5.1. The ultimate analysis of a simple steel frame structure 

In this example, we analyze the influence of the connection behavior on the structure response. We 

consider a simple steel frame shown in Figure 5.26a, where the span is 5,0m and height is 3,0m. 

The mesh is composed of 48 beam elements where the length of each element is 0,25m. The 

material properties of all frame members are the same (Young‟s modulus: E=2∙104kN/cm2; 

hardening modulus: K=0.05∙E;). The geometric properties of the beam cross section corresponds to 

the I 200 (Moment of Inertia: I=1940cm4; Area of cross section: A=28.5cm2; Yield bending 

moment: My=4655kNcm; Ultimate bending moment: Mu=5280kNcm; Yield shear force: 

Vy=252kN; Ultimate shear force: Vu=378kN, Fracture energies: Gf,M=550 and Gf,V=450). The 

column properties are defined as profile I 300 (Moment of Inertia: I=11770cm4; Area of cross 

section: A=53,8cm2; Yield bending moment: My=13368kNcm; Ultimate bending moment: 

Mu=15080kNcm; Yield shear force: Vy=471kN; Ultimate shear force: Vu=707kN, Fracture 

energies: Gf,M=650 and Gf,V=550). Two numerical simulations have been performed. In the first 

simulation, elements which connect beams and columns are defined according to the behavior of 

the experimentally tested connection denoted with A1. The second analysis does not include 

connection behavior.   

The results of these two simulations are compared in Figure 5.26b, where we can see a significant 

effect of connections on the global response of the structure under vertical load. This effect is 

particularly evident at the level of ultimate forces, close to bearing capacity of the structure.   

 

 
 a) Frame structure geometry  b) Response of the frame structure  

Figure 5.26  The simple steel frame 
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5.5.2. Pushover analysis of symmetric steel frame 

In this example, we present the results of a push-over analysis of symmetric steel frame with and 

without included joints behavior. The frame geometry is given in Figure 5.27a. Material properties 

for all frame members are the same (Young‟s modulus: E=2∙104kN/cm2; hardening modulus: 

K=0.05∙E). The geometric properties of beams correspond to IPE 200 section; the columns are 

defined as IPE 300 section. In the first case, the constitutive parameters of elements which connect 

beams to columns are identified according to experimental test A1, whereas in the second case 

these elements are defined as IPE 200 section. The vertical load was applied to all beam members. 

This load is kept constant throughout the pushover analysis to simulate the dead load effect. The 

lateral loading is applied regarding imposed incremental displacement (
topu  ) at the left upper 

corner (point A, see Figure 5.27a).  

 
 

 

 
 

 
a) The frame structure geometry b) Deformed frame structure ( step-by-step) 

Figure 5.27  The symmetric steel frame 

The results of numerical simulations are shown in Figure 5.28. These results show a significant 

influence of the connections behavior on the global response of steel frame structure. This effect is 

very evident at the level close to the ultimate load. The connections behavior reduces load bearing 

capacity and changes the global response of the steel structure. Namely, at the lateral displacement 

of 1m, lateral resistance is reduced by 30% with respect to the structure without connections. 

Respecting these results, we can mark the importance of connection behavior in the steel structure 

design related to seismic load. 

 
Figure 5.28   Response of the symmetric frame structure 
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5.6. Concluding remarks 

In this chapter we have presented an experimental and numerical study of the moment-resistant 

connection behavior. A total of three connection types have been analyzed and six experimental 

tests have been performed. The connection behavior in structural response is included where we 

model every joint with beam element. The proposed beam element has seventeen unknown 

constitutive parameters. The identification methodology has been presented and unknown 

parameters, based on the results of the experimental tests, have been identified. We found that the 

proposed beam model with identified constitutive parameters can successfully represent connection 

behavior. The capability of the proposed beam model to represent connection behavior is shown 

with very good match between experimental and computed results. The set of the constitutive 

parameters of the proposed beam model can be obtained by using the EC3 procedure, which 

provides a good prediction of elastic response and bending, while the plastic response prediction is 

overly conservative, sometimes up to 40%. 

The influence of the connection behavior on the steel frame response is shown in two numerical 

simulations. The numerical results demonstrate the importance of the joints behavior on the steel 

frame structure response, where we can see a difference in results up to 30%. 
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Chapter 6 

Experimental testing of structural steel connections under 
cyclic loading  

 

 

 

 

 

Abstract 

The moment-resistant steel frames are frequently used as load-bearing structures of buildings in 

seismic regions. The earthquake induced inertial forces show cyclic loading pattern. Cyclic loading 

can significantly change the behavior of the connection in comparison with the monotonic loading. 

This chapter deals with the experimental testing of two types of structural connections under cyclic 

loading, and with the constitutive parameters identification. The experimental tests are performed 

for two different types of structural connections: end plate connection with an extended plate, and 

end plate connection. Measured data show the change in the behavior of connections in comparison 

with tests presented in the previous chapter. With the change in the direction of the applied load, 

the less stiff response of the structural connection has been measured. This phenomenon has a clear 

physical explanation, which is associated with the loss of the contact between elements of the 

connection. At the beam element level, this phenomenon can be represented by damage model. In 

this chapter, we present the theoretical formulation and the numerical implementation of the 

proposed beam model. The proposed beam model is Reissner beam with the ability to capture both 

hardening and softening part of the response, and with the constitutive model defined as the 

coupled plasticity-damage model. The proposed beam model has one constitutive parameter more 

than the beam model presented in the previous chapter. The identification of this parameter is 

presented in this chapter. The comparison of the measured and the computed response is given for 

several numerical simulations, where good matching between results is observed.  
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6.1.  Introduction 

The moment-resistant steel frames are frequently used as load-bearing structures of buildings in 

seismic regions. The earthquake induced inertial forces show cyclic loading pattern. Cyclic loading 

can significantly change the response of the structure in comparison with the monotonic loading. 

On the one hand, the response of the steel structure under cyclic loading is characterized by 

Baushinger effect. In a typical cycle with load reversal (from compression to tension or vice versa), 

the plasticity threshold value is reduced from the previous value. On the other hand, the behavior of 

the joint is very complex. The behavior of the joint depends on the type of the structural connection 

and, as experiments have confirmed, the type of the applied load. The behavior of the connection is 

not the same under the monotonic and the cyclic loading.  

The analysis of a structural connection can be performed with many nonlinear FEM commercial 

programs, using 3D solid finite elements (Imamovic & Mesic, 2014). This type of analysis can 

represent the response of a structural connection, with included buckling and contact issues. The 

quality of the predicted connection behavior, obtained by using refined FEM model, is confirmed 

with experimental tests in many scientific works (Faella et al., 2000; Gang Shi, 2007). The refined 

nonlinear model can predict the behavior of a joint, but those computations are often too costly and 

not practical for everyday usage. Modern code (EC3, 2005) proposes the representation of a 

connection behavior with nonlinear links, but the connection response under cyclic loading is not 

covered.  

This chapter deals with the experimental testing of two types of structural connections under cyclic 

loading, including the constitutive parameters identification. The experimental tests are performed 

for two different types of structural connections: end plate connection with an extended plate, and 

end plate connection. These tests were designed in a way that sufficient information for the 

identification of constitutive parameters can be obtained from experimental measurements 

(Imamovic et al., 2015). Experimental observations show the change in the behavior of connections 

in comparison with tests presented in the previous chapter. With the change in the direction of the 

applied load, the less stiff response of structural connections has been measured. This phenomenon 

has a clear physical explanation, which is associated with the loss of the contact between elements 

of the connection.  

6.2. The experimental testing of structural connections 

Experimental tests on two types of moment-resistant connection have been conducted with the aim 

to identify constitutive parameters of the proposed beam model. The tested moment-resistant 

connection types are: end plate connection with the extended plate, and end plate connection. In 

these experimental structures, connection represents the weakest element in which plastic 

deformations and failure are expected to occur. The experimental structures are the same in all as 

A1 and B1, which are presented in the previous chapter. The loading program has been changed 

with reversal loading cycles.  

The measuring equipment is arranged in the same way as presented in the previous chapter, but 

with one difference which concerns the measurement of the applied force. The applied force is 

measured from the values of the pressure in the hydraulic pump. The used hydraulic pump is strong 

and involves errors in measured force values. These errors are visible in Figures 6.3 and 6.6, where 

hysteresis curves that are not entirely smooth are shown. However, this does not affect significantly 
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the results of the identification procedure.  

All experimental data have been measured and recorded during the experimental testing. In Figure 

6.1, the loading program which contains several cycles of reversal loading is shown. The step size 

is adjusted to the connection behavior. The geometric characteristics of the experimental structures 

are shown in Table 6.1. In total, two experimental tests have been performed. The experimental 

tests were carried out at the Laboratory for materials and structures of the University of Sarajevo. 

 
Figure 6.1  Loading program 

Table 6.1 Geometrical characteristics of experimental structures 

Joint Vertical beam Horizontal beam 
End plate 

dimension/Angles 
Bolts 

Acyclic IPE 200 – S275 IPE 400 – S275 ≠ 340x130x10 – S275 8M12-class 8.8. 

Bcyclic IPE 200 – S275 IPE 400 – S275 ≠ 220x130x10 – S275 4M16-class 8.8. 

6.2.1. End plate connection with extended end plate (Acyclic) 

The end plate connection type with the extended plate is constructed from the plate 

(340x130x10mm) welded to the vertical beam and eight bolts (M12) connecting the plate to the 

horizontal beam, see Figure 6.2. The bolts (class 8.8.) were preloaded with 50% of prestressing 

force according to EC3.  

 

Figure 6.2    End plate connection with extended end plate 

The results of the testing are shown in Figure 6.3. The global response, which depends on the 

behavior of all elements in the connection and all constitutive parameters, is captured through 

global measurements. The rotation of structural connection is captured through local 

measurements, see Section 5.2.1. The diagram rotation – force at the top of the experimental 

structure is shown in Figure 6.3b. Strains in the vertical steel beam are measured with strain 

gauges, and are shown in the Figure 6.3c. The measurements obtained with strain gauges can be 
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also classified as local measurements. These measurements show that the response of the vertical 

beam remains linear elastic. The relative horizontal displacement between vertical and horizontal 

beam has not been observed during the testing ( exp exp

2, S,Pi PiU U ). 

   
a) Global response b) Rotational response of the 

connection 

c) Strains in the vertical steel 

beam  

Figure 6.3  Experimental results for connection Acyclic 

By comparing Figures 6.3a and 6.3b, we can observe that the main source of the nonlinear behavior 

of the experimental structure are elements of the connection. The deformation of elements of 

connection during the experimental testing is shown in photographs in Figure 6.4. The failure has 

progressively occurred in the bolts, where the inner row of bolts broke before the outer row of 

bolts. 

   
Figure 6.4.   Deformation of connection elements during experimental testing 

6.2.2. End plate connection (Bcyclic) 

The end plate connection is constructed from the plate (220x130x10mm) welded to the vertical 

beam and four bolts (M16), connecting the plate to the horizontal beam, see Figure 6.5. The bolts 

(class 8.8.) have been preloaded with 50% of prestressing force according to EC3.  

 
Figure 6.5  End plate connection 

The results of the testing are shown in Figure 6.6. The global response of the experimental structure 
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and the rotational response of the connection are shown in Figure 6.6a and Figure 6.6b, 

respectively. Figure 6.6c shows measured strains in the vertical steel beam. The measured strains in 

vertical steel beam show that the response of the vertical beam remains linear elastic. All presented 

diagrams are with respect to the force measured at the top of the experimental structure. The 

relative horizontal displacement between vertical and horizontal beams has not been observed 

during the testing (
exp exp

2, S,Pi PiU U ).  

   
a) Global response b) Rotational response of the 

connection 

c) Strains in the vertical 

steel beam  

Figure 6.6    Experimental results for connection Bcyclic 

The deformation of elements of connection during the testing are shown in photographs in Figure 

6.4. We can conclude that large deformations have occurred in the elements. The failure has not 

occurred because the displacement limit of the hydraulic pump has been reached. 

   
Figure 6.7  Deformation of connection elements during experimental testing 

6.3. Finite element beam model: theoretical formulation and numerical 
implementation 

The complex measured responses of experimental structures under cyclic loading are quite a 

challenge to describe. The large deformations of the connection elements under cyclic loading 

cause the loss in the stiffness of the experimental structure. This phenomenon has a physical 

explanation. During the loading of the experimental structure, large deformations of the welded 

plate in the tension zone cause partial loss of the contact between the plate and horizontal beam, see 

Figure 6.8a. With the change in the direction of the applied load, the compression and tension 

zones will be inverted. The partially lost contact in compression zone causes the reduced stiffness 

of the connection, see Figure 6.8b. The stiffness will remain reduced until the full contact between 

the plate and horizontal beam is reached again. After the full contact has been reached, the 

connection will provide again the full stiffness. 
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a)   b)   
Figure 6.8   Deformation of the connection during a cyclic loading 

This phenomenon can be captured with contact and solid elements in refined FEM models. Solid 

elements are able to represent large deformations and the nonlinear constitutive behavior. However, 

the refined FEM models are too complex for everyday usage. For this reason, we propose the use of 

the beam element capable of representing the mentioned phenomenon. 

The idea is to use the coupled plasticity-damage model (Imamovic et al., 2015). The plasticity part 

governs the hardening and unloading phases, whereas the damage part provides the reduced 

stiffness of the connection after the change in the sign of the bending moment: from positive to 

negative or vice versa, see Figure 6.9. The damage model governs connection response until full 

contact between the plate and horizontal beam is reached. After the full contact has been reached, 

the plasticity model is again activated. The gap δ corresponds to the plastic deformation in bolts.  

 

 

 

 

 

 

 

 

Figure 6.9   Constitutive model 

In this section, we use the geometrically exact beam. The constitutive model of the beam consists 

of bilinear hardening and linear softening (Imamovic et al., 2017). The hardening model is defined 

as coupled plasticity-damage model. This model is capable of representing previously described 

phenomena which is commonly observed during experimental testing. A brief description of the 

beam‟s constitutive model is given next. The Helmholtz free energy can be defined in a quadratic 

form, and is split into two part. The first part concerns a positive bending moment 
( ) , and the 

second part concerns a negative bending moment 
( ) : 

Elastic response with 
reduced stiffness 

Plastic model + accumulating damage for opposite load direction  

Elastic response with 
reduced stiffness 

Plastic model + accumulating damage for opposite load direction  
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where: ,e d
U U  are elastic and damage strain measure tensors; ,p d

i iξ ξ
 
are vectors of hardening 

variables of the plastic and damage model, respectively; D  is the internal damage variable; 

,h d

iK K  are the corresponding hardening moduli of the plastic and damage model; and T
 
is Biot‟s 

stress tensor. Every symbol contains two symbols. The first corresponds to the positive 
( )( ) , and 

the second to the negative 
( )( )  bending moment. The yield criterion, defined as multi - criteria 

(plasticity and damage), can be completely different for the positive and the negative bending 

moment. However, in this work we have assumed that the response in the hardening regime is 

symmetric: 

( , ) 0

( , ) 0

p p
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d d

i i i

T q

T q
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where q  is the vector of internal hardening stress like variables. The second principle of 

thermodynamics states that the plastic dissipation must remain non-negative: 
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where   is complementary energy, see (Ibrahimbegovic, 2009). The principle of maximum plastic 

dissipation can be formulated (Hill, 1950; Ibrahimbegovic & Frey, 1993a) as the minimization 

problem with the constraint, with the latter being yield function (6.2). This can further be recast as a 

corresponding unconstrained minimization by using the Lagrange multiplier method: 

,min max ( , , ) ( , ) ( , )p p p p p p

i i

p pL 
 

   T q γ
T q γ T q γ T qD       (6.4) 
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where p

i  
are Lagrange multipliers of the plasticity. The Kuhn-Tucker optimality conditions 

provide the evolution equations for internal variables in rate form along with the loading/unloading 

conditions: 
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The appropriate value of plastic multiplier
p

γ  can be determined from the plastic consistency 

condition for the case of sustained plastic flow:  
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           (6.6) 

By replacing the last result in stress rate equation, we can obtain the elastoplastic modulus ep
C  that 

should replace the elastic modulus C  in the plastic regime: 
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The principle of maximum damage dissipation states that among all the variables ( , )d

i iT q  
that 

satisfy the damage yield criterion  ,  d d

i i iT q , we have to select those that maximize damage 

dissipation.  This can be written as a constrained minimization problem: 

  ,min max ( , , ) ( , ) ( , )d d d d d d

i i

d dL 
 

   T q γ
T q γ T q γ T qD      (6.8) 

where the damage multiplier 0d   
plays the role of Lagrange multiplier. By appealing to the 

Kuhn-Tucker optimality conditions,  from the last result, we can obtain the evolution equations for 

internal variables along with the loading/unloading conditions: 
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        (6.9) 

The appropriate value of the plastic multiplier
p

γ  can be determined from the damage consistency 

condition for the case of sustained damage flow:  
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By replacing the last result in the stress rate equation, we can obtain the damage modulus ed
C  that 

should replace the elastic modulus C  in the damage regime: 
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The equations (6.2)-(6.11) should be separately written for positive and negative value of the 

bending moment, but in order to save space, we have expressed them independent of the sign.  

We note in passing that the elastoplastic tangent above remains the same in the discrete problem, 

obtained by using the backward Euler time integration scheme.  

In the softening regime, for the both the positive and the negative value of the bending moment, the 

Helmholtz free energy can be written in a quadratic form in terms of softening variables: 
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where s
ξ  is a set of internal variables representing the connection failure and 

s
K  is a set of the 

softening moduli. The yield function for softening is chosen in a multi-criteria form pertaining to  

bending, shearing, and axial force: 
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where 
( ) ( ),i it t 

 are traction forces and 
,( ) ,( ),s s

i iq q 
 are stress-like variables work-conjugate to 

softening variables at the discontinuity for the corresponding failure mode. The principal of 

maximum dissipation (Hill, 1950) ,among all admissible values of these variables, will pick the 

ones that maximize the softening dissipation. This can be solved as an unconstrained minimization 

problem. The end result are the evolution equations for internal variables along with the 

loading/unloading conditions: 
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     (6.14) 

The last equation (6.14) can be separately written for the positive and the negative values of the 
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bending moment. 

The beam kinematics equations can be written by using the rotated strain measure: H = U-I , 

where the only non-zero components are defined as: 

11 21,  H K H           (6.15) 

The explicit form of generalized strains can be written as  
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By using the same notation for the virtual strains (denoted with superposed  ̂ ), we can write the 

weak form of equilibrium equation, see (Ibrahimbegovic & Frey, 1993a): 
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L
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In (5.16) above, N, V and M denote stress resultants regarding the Biot stress: 
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The yield function for the hardening is chosen in a multi-criteria form pertaining to the bending 

moment, shear and axial force, respectively: 
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     (6.19) 

where M is the bending moment; V  is the shear force;  ,1 ,1,con p

y jbM S  is the axial force;
 

, ,p p p

M V Nq q q  and 
d

Mq
 

are internal hardening stress like variables(
p  - plasticity; 

d - damage model); whereas ,y yM V  and 

,con s

u jbM S  denote yield the bending moment, shear force and axial force, while 
fM  denotes bending 

moment at the beginning of the damage flow.  In this work, we assume that the damage and the 

plastic flows begin at the same value of a bending moment. The internal variable p

Mq  provides 

bilinear hardening related to the bending moment, which can be written as: 
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where 
,1

h

MK  and in

jaS  are the hardening moduli. The equations (6.14)-(6.20) should be separately 

written for positive and negative value of the bending moment, but they are expressed in form 

independent on sign.  

The detailed FEM implementation is presented in previous chapters. At the end of this section, we 

present the computational procedure (Table 6.2) for a characteristic iteration. This procedure 

presents the local phase for computing the value of the bending moment. Other internal force can 

be computed in the same way. 

Table 6.2 Computational procedure for a characteristic iteration 
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6.4. Identification of the constitutive model parameters  

The identification of the constitutive model parameters is an extension of the identification 

procedure presented in the previous chapter, where we have presented the theoretical background 

and the implementation of the proposed methodology.  In this section, we practically use the same 

objective function and all other steps previously proposed in the identification procedure. The 

loading program is changed with the cyclic loading instead of the monotonic loading. The load is 

applied in terms of  imposed displacements.  

The structural connection Acyclic  and Bcyclic are in the focus of our interest, and they are completely 

the same as structural connections A1 and B1, which are presented in the previous chapter.  At the 

beginning of the identification process, we match the experimentally measured responses of 

structural connections with the numerically obtained responses. The numerical computations for the 

case of the monotonic loading, are performed with the beam model proposed in this chapter with 

the constitutive parameters of the beam identified in the previous chapter, see Figure 6.10.  

  
a) Acyclic connection b) Bcyclic connection 

Figure 6.10   Computed vs. experimental responses of the connections: Acyclic and Bcyclic 

From the results shown in Figure 6.10 we can conclude that good matching between the computed 

response and the contour of the hysteresis is obtained. This validates previously identified 

constitutive parameters. The experimental observation has inspired assumption that the damage is 

beginning at the same moment as the plasticity. This assumption reduces identification problem to 

only one unknown per each connection. 

The identification procedure can be performed in one phase, with the objective function defined in 

the previous chapter: 
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where: exp,com

Pi PiF F
 

are forces for different load level (Pi); 
exp,com

Pi PiU U  are the corresponding 

displacements (Pi ) ;  e x p
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S Pi S PiU U  are shear displacements (Pi ); 
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Pi Pi   are rotations of the 

connection (Pi); 
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exp exp exp

1Pi Pi Pi      are gradients of the curvature between two different load (Pi ); while a, b, c, d, e, g  

are constants. 

6.4.1. Experimental structure  Acyclic 

The measured response of the experimental structure Acyclic is shown in Figure 6.3. The structure 

Acyclic is completely the same as the experimental structure A1, which is presented in the previous 

chapter. The previously identified constitutive parameters are used for obtaining the numerical 

response of the structural connection under monotonic loading. The comparison of the computed 

and the measured response is shown Figure 6.10a, where a good matching between the results is 

observed. This reduces the number of unknowns to one parameter.  

Figure 6.11 shows a shape of the objective function (6.21). The shape of the objective function is 

convex which thus has a minimum. By using the identification procedure presented in previous 

chapters, we are able to determine the unknown parameter. 

 
Figure 6.11  The shape of the objective function 

Using the identified parameter, we have performed the numerical simulation of the experimental 

test Acyclic. The comparison of the computed and the measured response is shown in Figure 6.12. In 

Figure 6.12a the computed and the measured hysteresis are shown. One extracted cycle is shown in 

Figure 6.12b. Both of them indicate that proposed model is capable of representing the connection 

behavior, including many phenomena characteristic for this structural connection type. 

  
a) Hysteresis b) One cycle of the hysteresis 

Figure 6.12  Computed vs. measured response of the experimental structure Acyclic 
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6.4.2. Experimental structure  Bcyclic 

In Figure 6.6 the measured response of the experimental structure Bcyclic is shown. This structure is 

completely the same as the experimental structure B1, which is presented in the previous chapter. 

The constitutive parameters obtained for the experimental structure B1 have been used in the 

numerical simulation of the test Bcyclic. The computation has been performed for the monotonic 

loading.  The computed and measured responses of the experimental structure Bcyclic are shown in 

Figure 6.10b. A good matching between the responses is obtained which allows us to reduce the 

number of the unknown parameters to only one.  

In the identification procedure the objective function (6.21) has been used. Figure 6.13 shows the 

convex shape of the objective function for the unknown parameter which thus can be minimized.  

 
Figure 6.13  The shape of the objective function for the unknown parameter (Bcyclic) 

The numerical simulation of the cyclic experimental test Bcyclic, has been performed with the 

proposed beam element and identified parameters. Figure 6.14 shows a comparison of computed 

and measured responses of the experimental structure Bcyclic, under cyclic loading. The difference 

between responses is visible, but we can conclude that proposed beam model significantly 

improves the response prediction in comparison with the model of the plasticity or the damage. 

  
c) Hysteresis d) One cycle of the hysteresis 

Figure 6.14  Computed vs. measured response of the experimental structure Bcyclic 
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6.5. Concluding remarks  

In this chapter, we have presented an experimental and numerical study of the moment-resistant 

structural connection behavior under cyclic loading. A total of two experimental tests have been 

performed for two different types of the structural connection. The experimental observations have 

shown that the behavior of the structural connection is affected by the load type. During the tests 

with the change in the direction of the applied load, we have measured the less stiff response of 

structural connections. With the intention to include this phenomenon in a numerical prediction, we 

have proposed a modification of the beam model. The proposed beam model is geometrically exact 

beam with hardening and softening part of the response included. The hardening part of the 

response is described by coupled plasticity-damage model. The ability of the proposed beam model 

to represent the connection behavior is confirmed through several numerical simulations where 

good matching between measured and computed responses is observed. The computed response is 

obtained by using the set of parameters which were identified from experimental measurements. 

The identification procedure is briefly presented. 
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Chapter 7 

 Conclusions and perspectives  
 

7.1. Conclusions  

In this thesis we have presented the methodology for the ultimate limit load analysis of a steel 

frame structure with included structural connections behavior. The main idea is that the behavior of 

the connection can be included in the global response of the whole structure by placing beam 

elements in the corners of the steel frame structure. Other elements members of the steel frame 

structure can be modeled with nonlinear beam elements. 

The research has two parts with the same goal.  The first part deals with the behavior of structural 

connections, including many phenomena, which characterize them. The second proposes beam 

model, which is able to represent the behavior of steel elements, beams and columns. 

In the first part, we have done the research on the connection behavior and the possibility of 

representing it with the beam element. We have assumed that the connection response could be 

captured with the coupled plasticity-damage model in the pre-peak part of the response, and the 

nonlinear softening law with different mechanisms of the failure in the post-peak part of the 

response. The hardening behavior is split to the bending and the shearing, but all combinations are 

included. This model is capable of describing a wide range of problems. We have proposed a 

methodology for constitutive parameters identification procedure of the connection and the 

material. The most important conclusions can be stated as follows:  

 The proposed methodology is able to identify all unknown parameters (eighteen) when 

these parameters are split into three phases: elasticity, hardening and softening. In every 

phase, we use local and global measurements. 

 Successful identification is conditioned with sufficient experimental measurements during 

the test and adequate loading program. In this part we have presented requirements for 

measurements and loading program. The loading program contains cycles of loading-

unloading. In the hardening we need to have minimum three cycles for every case. 

 The focus was on the behavior of the constitutive models and on the choice of the objective 

function. We have showed that using loading and unloading cycles we can obtain all 

unknown constitutive parameters. These cycles are needed to make a difference between 

plasticity and damage model. Both models can describe the same behavior in the loading 

regime, and only in unloading we can see the difference between them. 

 All cases of identification were presented. For an illustration of the complete procedure, we 

first used the academic example of the inverse analysis and all experimental results were 

obtained from FEM model. This example has been used as a preparation for the 

experimental tests, which were performed later.  Then, two practical examples were shown, 

but only for partial measurements that correspond to bending of the connection. These are 

the only results found in the scientific papers.  
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At the same time, we were working on the development of the beam model, which is able to 

represent response of  a steel frame structure without connection behavior. The presented 

geometrically non-linear planar beam model provides the main novelty with its ability to account 

for both bending and shear failure. The proposed constitutive model contains both coupled 

plasticity with isotropic hardening and nonlinear law for softening with three different failure 

mechanisms. The hardening response, providing the interaction between bending moment, shear 

force, and axial force can be calibrated against damage of beams or columns in a steel frame. The 

softening response can be activated to model different failure mechanisms. Which of mechanisms 

will be activated depends on interplay and stress redistribution during the limit load analysis. 

By using the proposed beam element, we can perform ultimate limit analysis of any frame planar 

steel structure, including the second order effects as well as different failure mechanisms. The 

geometrically nonlinear analysis allows the ultimate limit analysis with large displacement, without 

any need for correction of the proposed property. This advantage is very important in a steel frame 

structure because of a large ductility of steel. 

The results for all numerical examples illustrate an excellent performance of the proposed beam 

element. 

In the continuation of the research on the connection behavior, we have presented an experimental 

and numerical study of the moment-resistant connection behavior. A total of three connection types 

have been analyzed and eight experimental tests have been performed. The connection behavior in 

structural response is included where we model every joint with beam element. In this part of the 

research, we have proposed two beam models appropriate for representation of connection behavior 

in a framework of the large displacement. We have firstly proposed beam element suitable for 

monotonic loading, while the second proposed beam model is appropriate for the cyclic loading. 

The proposed beam elements have seventeen and eighteen unknown constitutive parameters. The 

identification methodology, which was presented in first part of the thesis, has been used. The 

unknown parameters, based on the results of the experimental tests, have been identified. We found 

that the proposed beam model with identified constitutive parameters can successfully represent 

connection behavior. The capability of the proposed beam models for representing connection 

behavior is confirmed with a good matching between experimental and computed results. The set 

of the constitutive parameters of the firstly proposed beam model can be obtained by using the EC3 

procedure, which provides a good prediction of elastic response and bending, while the plastic 

response prediction is overly conservative, sometimes up to 40%. EC3 procedure for the prediction 

of a connection behavior does not provide prediction of the behavior of the structural steel 

connection under cyclic load. 

The influence of the connection behavior on the steel frame response is shown in two numerical 

simulations. The numerical results demonstrate the importance of the joints behavior in the steel 

frame structure response, where we can see a difference in results to up to 30%. 

By using proposed beam models and identification procedure, we are able to perform ultimate load 

limit analysis of a steel frame structure with included connection behavior, which provides real 

stress distribution. The proposed beam models also provide the capability to perform complete 

collapse analysis, where we can follow the development of the failure mechanism. 
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7.2.  Perspectives 

The presented research on connections behavior and novel numerical beam models have the 

potential for enhancements. The enhancements of the research could be realized through few 

stages: 

 The connection response strongly depends on human work during the building process, 

where errors can be expected. The probability studies of connections behavior in a frame 

steel structure have a great potential. 

 The proposed identification procedure and numerical beam models can also be used in 

studies on the behavior of other connection types.  

 The presented numerical model of the geometrically exact planar beam could be extended 

to the 3D beam model. 

 The enhancement of the proposed beam model could be realized as an extension to 

dynamic response framework, which is crucial for the real-time analysis of a steel frame 

structure under the seismic load.  
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