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The defining feature of eukaryotic cells is that they have membrane-bound organelles such as 

mitochondria and the Golgi apparatus (figure 1). The bigger organelle specific to eukaryotic 

cells is the nucleus, with a diameter of 10 to 20 µm. It has two major functions: it stores cell 

hereditary material (DNA), and it coordinates cell activities, which include growth, 

intermediary metabolism, protein synthesis, and cell division. Eukaryotes usually have a single 

nucleus, but a few cell types, such as mammalian red blood cells, have no nucleus, and a few 

others, as some muscle cells, have many nuclei1,2. 

 

 

Figure 1 : Scheme of a eukaryotic cell with its different components3. 

 

A nuclear envelope separates the cytoplasm from the nucleoplasm (figure 2). This envelope 

contains the outer nuclear membrane, the inner nuclear membrane and a lot of proteins that 

can be gathered into three groups. The first group contains the nuclear pore complexes, which 

are large protein complexes crossing the nuclear envelope.  They mediate the selective 

exchange of components, including RNA, ribosomal proteins, signaling molecules and lipids 

between the cytoplasm and the nucleus. The second group is composed of integral membrane 

proteins, as for example the LEM domain proteins Emerin, MAN1 and LAP2 (for Lamina-

Associated Protein 2)4. The last group corresponds to the nuclear lamina, which is a meshwork 

of lamin filaments underlying the nuclear envelope (figure 2). 
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Figure 2 : Architecture of the nuclear envelope 5. 

 

The nuclear envelope (NE) is the focus of an increasing number of studies because mutations 

in genes encoding NE proteins cause a panel of human diseases called nuclear envelopathies. 

A large number of NE-associated diseases are caused by inherited mutations in the gene LMNA 

coding for A-type lamins6. These laminopathies include Emery-Dreifuss muscular dystrophy, 

dilated cardiomyopathy with variable muscular dystrophy, Dunnigan-type familial partial 

lipodystrophy, Charcot-Marie-Tooth type 2 disease, mandibuloacral dysplasia, and the 

Hutchinson-Gilford progeria syndrome. Research on laminopathies and more generally on 

nuclear envelopathies has provided novel clues about nuclear envelope function.  
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I. NUCLEAR ENVELOPE: STRUCTURE 
 

Each component of the nuclear envelope (outer and inner nuclear membranes, nuclear pore 

complexes, membrane proteins and nuclear lamina) forms distinct domains but all are 

interconnected. The architecture of these domains is poorly characterized and their structural 

study remains nowadays challenging. 

 

1. THE NUCLEAR PORE COMPLEX  
 

a. Structure 
 

The vertebrate nuclear pore complex (NPC), which is one of the largest macromolecular 

complexes in the cell with an estimated molecular mass of 120 kDa, is embedded into the 

outer and the inner nuclear membranes and mediates macromolecular transport across the 

NE7. In mammalian cells, the number of nuclear pore complexes varies between 4000 and 

6000 and they appear like a ring of a 100 nm of diameter8.  

Several 3D structures of these nuclear pore complexes were recently reported. For example, 

the groups of O. Medalia at University of Zürich and M. Beck at EMBL Heidelberg solved the 

3D structure of a human nuclear pore complex, using cryo-electron tomography9 and 

molecular modeling combined with cross-linking mass spectrometry and cryo-electron 

tomography, respectively10. The group of A. Hoelz at Caltech obtained the 3D structure of the 

inner ring complex using X-ray crystallography and cryo-electron tomography11. 

The nuclear pore exhibits an octagonal cylindrical structure. More precisely, it is composed of 

two rings, cytoplasmic and nucleoplasmic, with 8 spokes to connect both rings, one central 

region, 16 filaments (8 cytoplasmic and 8 nucleoplasmic) and one terminal ring (figure 3). The 

8 nucleoplasmic filaments adopt a basket arrangement (the nuclear basket) stabilized by the 

presence of the terminal ring. 
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Figure 3 :  Model of nuclear pore complex substructures.  

The central channel exhibits eight-fold rotational symmetry and has eight cytoplasmic filaments as 
well as eight nuclear filaments protruding into the cytoplasm and nucleoplasm respectively. The 
nuclear filaments are bound via a ring, resulting in a basket structure 11. 

 

This protein complex comprises approximatively 50 to 100 proteins termed nucleoporins. All 

nucleoporins share basic structural components and can be classified in three classes12. The 

first group contains transmembrane -helix proteins, which mostly constitute the outside of 

NPC central region, whereas the second group, which contains β-propeller and α-solenoid 

folds, constitutes the inside of the NPC. The last group is composed of the FG-nucleoporins. 

The FG-nucleoporins contain a structured domain that serves as an NPC anchor point and a 

largely unstructured domain composed of phenylalanine and glycine repeat sequences that 

forms some kind of entropic barrier to diffusion. This group may contribute to the formation 

of the NPC inner central framework and peripheral structures. 

 

b. Nuclear import/export in cells 
 

Small molecules (less than 40kDa), ions and metabolites are able to diffuse freely inside the 

nucleus but it is not the case of proteins, various types of RNA and ribonucleoproteins (RNPs), 

which are actively translocated through the NPCs. These molecules can be thought of as 

cargoes13,14. 
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Concerning the import, the first step is the recognition of a specific sequence on the cargoes, 

the nuclear localization signal (NLS), which can be complex but is predominantly a stretch of 

basic residues. This NLS is recognized by importin-, which will, after binding to the NLS, 

become an adapter for importin- and then, the complex is translocated through the NPC into 

the nucleus, where importins are dissociated from the complex by Ran-GTP.  

Ran (RAs-related Nuclear protein) belongs to the family of small proteins G with a GTPase 

activity and is able to hydrolyze GTP in GDP when activated by a Ran GTPase activating 

protein13.  

Afterwards, importins can diffuse to the cytoplasm, where the GTP molecules are hydrolyzed 

into GDP, which leads to the release of α and β importins then available for a new protein-NLS 

import cycle (figure 4).  

The export complex is formed inside the nucleus based on the recognition of a nuclear export 

signal (typically a leucine rich sequence) by exportins, in the presence of Ran-GTP (figure 4). 

After passing through the nuclear pores, exportins release the cargo molecule due to 

activation of the Ran GTPase activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 : Import and export through the 
NPC13. 
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c. Nuclear lamina acts as anchor for NPCs 
 

An interaction between NPCs and the lamina was first proposed after the observation of 

filamentous structures associated with the baskets of NPCs in amphibian oocytes15,16. 

Afterwards, it was shown that NPCs are motionless after assembly, and, from the study of 

nuclear membrane disintegration using several detergents, it was proposed that lamina could 

be able to cradle the nuclear pores17. 

 

Recently, using a BioID approach, A-type lamin C (LaC) was find to be a specific partner of 

NPCs, more than A-type lamin A (LaA) or B-type lamin (LaB)18. Indeed, LaC interacts 

prominently compared to LaA or LaB with the Trp protein (Translocated promoter region 

protein), a component of the nuclear basket, and with protein Nup214, a FG-Nup of the NPCs. 

In more details, it was shown that interaction between NPCs and lamins is regulated by the 

status of the lamin post-IgFold tail and that A-type lamins may contribute directly to NPCs 

distribution. 

 

2. THE NUCLEAR LAMINA 
 

a. Expression and localization 
 

The nuclear lamina, a filamentous protein network underlying the inner nuclear membrane, 

has emerged as a critical player from basic cell biology to human health19. Lamin genes are 

found in all metazoa examined to date, but are absent in plants and unicellular organisms20. 

Three lamin genes are present in mammalian genomes21. On one hand, LMNB1 and LMNB2 

genes encode lamin B1 and B2 (B-type lamins), proteins expressed at all stages of 

development and essential for cell survival22,23. On the other hand, the LMNA gene encodes 

prelamin A and lamin C (A-type lamins), which are expressed later in organism development. 

In addition to these 4 major isoforms, 3 minor isoforms are also produced: AΔ10, C2 and 

B324,25. 
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A-type and B-type lamins show different behaviors and spatial distributions. To observe these 

different properties, the most evident is to focus on lamin behavior during mitosis.  At the 

onset of prophase, nuclear lamin is phosphorylated in order to be disassembled. A-type lamins 

are first phosphorylated by Cdk1 and become soluble whereas B-type lamins are 

phosphorylated by protein kinase C and stay associated to the nuclear envelope (likely due to 

the presence of the farnesyl moiety) as it is dispersed into the endoplasmic reticulum26–28. At 

this stage, both lamins are distributed throughout the cytoplasm. Afterwards, A and B-type 

lamins also show different temporal orders of re-assembly at the nuclear envelope. After 

lamin dephosphorylation by PP1A, B-type lamins bound to nuclear membranes accumulate 

around chromosomes29,30. Although A-type lamins are thought to bind chromatin at a later 

stage, after the major components of the NE including NPC are assembled30, live-cell imaging 

analyses allowed the visualization in early anaphase of a small pool of A-type lamins at specific 

chromosome regions, together with BAF, emerin and LAP2alpha, from where it extends at 

later stages29,31.  

 

b. Maturation 
 

Like for all proteins, the LMNA and LMNB1/2 transcription step takes place inside the nucleus. 

Then, the produced mRNA is exported to the cytoplasm where it is translated into lamin C, 

lamin B1, lamin B2 or prelamin A, the precursor form of lamin A, these 3 last lamins all 

containing a prenylation motif, the CaaX box (figure 5)28,32. Lamin C lacks a –CAAX sequence 

and its carboxyl terminus is not further modified after synthesis, whereas other lamins are 

modified in order to become mature. First maturation steps are common to lamins A, B1 and 

B2.  

 

Initiation of the -CaaX sequential processing consists of the addition of a farnesyl group onto 

the cysteine residue by a farnesyltransferase. This modification leads to the removal of the 

three terminal amino acids by an endopeptidase. The cleavage of the –aaX motif is done by 

different enzymes according to the lamin type. Concerning prelamin A, the Zinc 

metalloprotease ZMPSTE24 is used for this step whereas for lamins B1 and B2, it is a different 

protease, Rce1 (Ras-converting enzyme 1).  
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A final common step for all farnesylated lamins is the carboxymethylation of the terminal 

cysteine by the isoprenylcysteine carboxyl methyltransferase (Icmt). After this step, lamin B1 

and lamin B2 have reached their mature states. This is not the case of prelamin A, which 

possesses a second cleavage site for ZMPSTE24. This last step leads to the removal of 15 amino 

acids from the C-terminus of lamin A, including the farnesylated/carboxymethylated cysteine 

residue. The presence of a farnesyl residue attached to B-type lamins suggests that these 

lamins are more closely associated to the inner nuclear membrane than A-type lamins33. 

 

 

Figure 5 : The maturation process of lamins A, B1 and B2 28. The common C-terminal CAAX motif is 
composed of a cysteine (C), followed by two aliphatic amino acids (aa) and a random amino acid 

(X). Its farnesylation is the first step of the lamin maturation process.  

 

The prelamin A maturation is a complex process, and some genetic mutations driving to 

failures to generate mature lamin A are responsible for diseases. In particular, it was observed 

that a mutation modifying the second cleavage site for ZMPSTE24 (Leu647Arg)34 or mutations 

modifying the enzyme ZMPSTE24 cause progeroid syndromes in humans35,36.  
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A de novo dominant splice-donor site mutation within exon 11 (G608G) was observed in 

several patients37. It results in the synthesis of a mutant prelamin A, called progerin (figure 6). 

This protein is characterized by a deletion of 50 amino acids near the C-terminal tail of 

prelamin A, but its –CaaX motif is intact. The deletion eliminates the site for the second 

endoproteolytic cleavage by ZMPSTE24.  

The mutated protein can undergo farnesylation, endoproteolytic release of the –aaX, and 

carboxyl methylation but stays, at the end of the maturation process, in a farnesylated form. 

It remains associated with the nuclear membrane, eliciting nuclear blebbings and other 

nuclear abnormalities in cells, including disrupted lamin-heterochromatin interactions and 

alterations in gene transcription. All these defects cause a known syndrome, the Hutchinson–

Gilford progeria syndrome (HGPS), characterized by the rapid appearance of aging at the 

beginning of childhood37,38. Affected children look normal at birth and in early infancy, but 

then grow more slowly than other children and show different abnormalities as stiffness of 

joints, cardiovascular disease, atherosclerosis and loss of body fat and hair. 

 

 

Figure 6 : Biogenesis of lamin A in healthy humans as well as in patients with either a ZMPSTE24 deficiency or 
the silent mutation causing HPGS39. 
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c. Structure 
 

The structure of lamins is composed of three units that are common among intermediate 

filament proteins. These are a long central-helical rod domain of 40 kDa, an N-terminal (head) 

domain and a C-terminal (tail) domain (figure 7a)32,40. 

  

 

 

 

 

 

 

 

 

 

 

 

 

The central domain contains α-helical segments, called 1A, 1B, 2A and 2B, showing the heptad 

repeat periodicity of coiled-coil proteins, and connected by short linkers. A 3D structure of the 

coiled-coil 2B fragment corresponding to human lamin A was solved by crystallography41 

(figure 7, b). The amino-terminal head domain is variable in size but generally shorter than 40 

residues long. It is predicted as unstructured. The carboxy-terminal tail domain contains a NLS 

and a globular immunoglobulin-like domain (IgFold). In B-type lamins, this globular domain is 

followed by a CAAX box, whereas this box is absent in lamin C and is cleaved during maturation 

in lamin A. The 3D structure of the human A-type lamin Igfold was solved by NMR42 and 

crystallography43 (figure 7, c). It shows a compact β-sandwich formed by two β-sheets and 

nine β-strands connected by short loops. This Igfold is reported to mediate diverse protein-

protein and protein-ligand interactions. However no 3D structure of a complex involving this 

Igfold was reported until now. 

 

(a) 

Figure 7: Structural organization of 
nuclear lamins.  

(a) Architecture of major lamin 
variants. (b) X-ray structure of the 
human lamin A/C coiled-coil 2 
fragment (PDB code: 1X8Y)41. (c) NMR 
structure of the human lamin A/C 
IgFold domain (PDB code: 1IVT)42. 
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Then, first high resolution pictures of lamin filaments were recently obtained using cry-

electron tomography by the groups of W. Baumeister at Martinsried44 and the group of O. 

Medalia at University of Zürich45. The first group obtained images of vitrified interphase HeLa 

cells, and identified entangled, 4-nm-diameter filaments in a volume of 30 nm in thickness 

underlying the NE, which they assigned to lamins.  

The second group obtained images of vimentin-null mouse embryonic fibroblasts, which were 

treated as following: the plasma membrane and cytoplasmic content were removed by a short 

exposure to a mild detergent, and most of the chromatin was removed by treating the nuclei 

with nuclease. The lamin filaments were identified using gold-labelled antibodies against 

lamins. Thus this group reported the presence of ~3.5 nm thick lamin filaments forming a 

complex meshwork within a 14±2 nm thick layer at the nuclear periphery. Statistical analysis 

of these filaments indicated a length of 380±122 nm. In figure 9, I have shown 2 views of 

lamins presented in the paper of Medalia and coworkers, showing the filament network at the 

nuclear periphery (figure 8a) and a model of the lamin oligomer consistent with the 

cryoelectron tomography data (figure 8b). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

(a) Figure 8 : Lamin models as deduced 
from the analysis of cryo-electron 

tomography images.  

(a) The lamin network (rod domain in 
dark grey and Igfold in red), NPCs (in 
blue) and the lipid bilayers (in light grey) 
were modeled into a region of a cryo-
tomogram containing the lamin 
meshwork. (b) Averaging and 
classification of lamin filament images 
obtained in situ confirmed that lamin 
filaments are composed of at least two 
half-staggered head-to-tail polymers. 
Igfold domains are displayed in red 46. 
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Both A and B-type lamins are able to oligomerize at the nuclear envelope. As it is well 

described in figure 8b, lamins form dimers through their α-helical rod domain, oriented in a 

parallel manner, and these dimers form the basic building block of higher-order lamin 

assemblies. Indeed, each dimer can further associate with another dimer through head to tail 

interactions, to form a polymer. At least two polymers finally associate laterally in a staggered 

conformation to form a filament showing a diameter of about 3-4 nm45.  

A- and B-type lamin meshworks are similar in appearance, but are mostly separated from each 

other, with some points of colocalization due to interactions between lamins46. Recently, A 

and B-type lamins were visualized directly in cells using super resolution microscopy, in order 

to confirm and extend these previous data (figure 9)18. It was observed that lamins are 

assembled into structurally and functionally separated meshworks or microdomains, with no 

preferential alignment. 

 

 

Figure 9 : Endogenous lamins observed using super resolution microscopy (d-STORM analysis), based on 
conventional indirect immunofluorescence labeling employing primary antibodies against lamins A, C, and 

B118. 
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3. THE INNER NUCLEAR MEMBRANE PROTEINS 
 

The outer nuclear membrane (ONM) is continuous with the endoplasmic reticulum and has 

ribosomes bound to its cytoplasmic surface. However, the ONM contains specific proteins, 

which are not found in the endoplasmic reticulum membrane47. The inner nuclear membrane 

adheres to the nuclear lamina matrix and proteomic studies revealed that this membrane is 

enriched in at least 50 integral membrane proteins48. I will focus below on the most studied 

of these inner nuclear membrane proteins. 

 

a. LEM domain proteins 
 

Among the inner nuclear membrane proteins, a prominent family shares the ability to directly 

bind to the nuclear lamina and to tether the nuclear envelope to chromatin, through 

interactions with a conserved chromatin-associated protein named barrier-to-autointegration 

factor (BAF). This family is formed by the LAP2-emerin-MAN1 (LEM) domain proteins, which 

all exhibit a LEM domain, whose 3D structure is known49–52 (figure 10). This domain is 

composed of approximatively 40 amino acids, which form a three residue N-terminal helical 

turn (in blue) and two parallel -helices (in red and green) connected by a long extended loop 

(in yellow). 

 

 

Figure 10 : Emerin LEM domain 3D structure, as solved by NMR  (PDB 2ODC)52. 
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In mammals, LEM domain proteins can be categorized into three groups (figure 11)53. Group I 

is composed of proteins with an N-terminal LEM domain (or a LEM-like domain, i.e. a domain 

structurally homologous to the LEM domain)50,51,54, followed by a large and disordered region. 

Some of these proteins possess a single transmembrane domain at the C-terminus that 

anchors the protein to the inner nuclear membrane, whereas some are soluble nuclear 

proteins. In this group, we find proteins emerin and LAP2. The 3D structure of emerin LEM 

domain in complex with BAF was solved on the basis of NMR data52. This LEM domain binds 

to BAF with an affinity of 200-600 nM52,55. LAP2 can be expressed as six isoforms. Two of these 

isoforms, LAP2α and LAP2ζ, lack a transmembrane domain and localize in the nucleoplasm.  

All these isoforms possess an N-terminal LEM-like domain (residues 5-48) followed by a LEM 

domain (residues 109-153)50,52. Two-hybrid assays revealed that the LAP2 N-terminal region 

common to all isoforms was sufficient to bind BAF56. More precisely, region 67-195, but not 

region 1-67 nor region 138-373, was capable of BAF binding. As the LEM domain comprises 

residues 109 to 153, the linker between the LEM-like and the LEM domain together with the 

LEM domain seem sufficient for BAF binding. Cai et al.51 further confirmed using NMR that the 

LEM domain is the main LAP2 binding site for BAF. However they observed that the complex 

between LAP2 LEM and BAF has a short lifetime of about 1.5-2 ms. Finally, Huang et al.57 in 

the same team also confirmed later using NMR that the LEM domain of MAN1, another 

protein belonging to group I, binds to BAF.  

 

Group II is composed of proteins with an N-terminal LEM domain, followed by an unfolded 

nucleoplasmic region, two transmembrane domains and a carboxyl-terminal winged-helix 

MSC (for MAN1/Src1p/C-terminal motif) domain, that directly binds to DNA. Among proteins 

of this group, there are LEMD2 and MAN1, which possesses an additional C-terminal UHM 

(U2AF homology motif) domain58. The MSC domain of LEMD2 was recently shown to directly 

interact with the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), in order to recruit 

additional ESCRT-III proteins to holes in the nuclear membrane and thus contribute to seal the 

membrane holes59. The UHM domain of MAN1 is essential for binding to SMAD2/3, which are 

important actors of the TGF- pathway60. Finally, group III is composed of proteins that carry 

internal LEM domains and multiple ankyrin repeats. Representatives of this group include 

LEM3/Ankle1 and LEM4/Ankle2.   
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LEM3 shuttles between the cytoplasm and the nucleoplasm61 whereas LEM4 has a 

transmembrane domain and localizes either at the endoplasmic reticulum in human cells, or 

at the inner nuclear envelope in worms62. LEM4 is essential for BAF dephosphorylation at 

mitotic exit. It acts in part by inhibiting BAF’s mitotic kinase VRK-1 and by recruiting PP2A. It is 

required for PP2A to dephosphorylate BAF. 

 

The composition of the LEM domain protein family differs between organisms. In metazoa, at 

least one member from each group is present, whereas in yeast only group II proteins were 

identified53.  

 

 

Figure 11 : Human LEM domain protein family53. 

 

I inserted in the following pages of this thesis, the accepted version of a review on LEM 

proteins written for Methods in Enzymology and to which I contributed. 
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Abstract 

LAP2-emerin-MAN1 (LEM)-domain proteins are modular proteins characterized by the presence of a 

conserved motif of about 50 residues. Most LEM domain proteins localize at the inner nuclear 

membrane, but some are also found in the endoplasmic reticulum or nuclear interior. Their architecture 

has been analyzed by predicting the limits of their globular domains, determining the 3D structure of 

these domains and in a few cases calculating the 3D structure of specific domains bound to biological 

targets. The LEM domain adopts an -helical fold also found in SAP and HeH domains of prokaryotes 

and unicellular eukaryotes The LEM domain binds to BAF (barrier-to-autointegration factor; BANF1), 

which interacts with DNA and tethers chromatin to the nuclear envelope. LAP2 isoforms also share an 

N-terminal LEM-like domain, which binds DNA. The structure and function of other globular domains 

that distinguish LEM domain proteins from each other have been characterized, including the C-terminal 

dimerization domain of LAP2and C-terminal WH and UHM domains of MAN1. LEM domain 

proteins also have large intrinsically disordered regions that are involved in intra- and inter-molecular 

interactions and are highly regulated by posttranslational modifications in vivo.  

 

 

 

 

 

  



 

 
 

1. Introduction 

The nuclear envelope (NE) forms the boundary of the nuclear compartment in eukaryotic cells. 

The NE includes two nuclear membranes (inner and outer), nuclear pore complexes and the 

nuclear lamina. The inner nuclear membrane (INM) has numerous integral membrane proteins 

and closely contacts nuclear intermediate filament proteins, lamins, to form ‘nuclear lamina’ 

networks that line the membrane. It is poorly understood how these proteins are organized at 

the structural level: the nuclear periphery is densely packed with proteins and chromatin, and 

structural investigation of networks of INM proteins and lamins in situ remains challenging 

(Gruenbaum and Medalia, 2015). Current knowledge of the inner aspect of the NE is therefore 

based on the identification of direct or indirect interactions between integral INM proteins and 

their partners including lamins, chromatin and transcriptional regulators.  

The most extensively studied INM proteins and functional complexes involve LAP2-

emerin-MAN1 (LEM)-domain proteins. This protein family is characterized by a globular LEM 

domain, initially identified in Lamina-Associated Polypeptide 2 (LAP2), Emerin and MAN1 (Lin 

et al., 2000). LEM-domain proteins are often anchored at the INM by binding to lamins. 

However, INM anchoring is not a feature of all isoforms, and no consensus lamin binding motif 

has been identified in LEM-domain proteins. For example, the LAP2 gene is alternatively 

spliced to produce six protein isoforms; LAP2, ,  and  each have a transmembrane domain, 

whereas LAP2 and LAP2 do not (Berger et al., 1996; Furukawa et al., 1995). However the 

LAP2 isoform-specific region from amino acid 616 to amino acid 693 binds the tail domain of 

A-type lamins (Dechat et al., 2000). LAP2 is essential for solubilizing a small fraction of lamin 

A in the nucleoplasm (Naetar et al., 2008).  



 

 
 

Yeast two-hybrid experiments showed that LAP2, the largest INM-localized isoform, uses 

residues 298 to 373 to interact with lamins B1 and B2 (Furukawa et al., 1998). This lamin-

binding region is conserved in most LAP2 isoforms with a transmembrane domain.  

The LEM domains of LAP2, emerin and MAN1 directly bind to barrier-to-

autointegration factor (BAF) (Cai et al., 2001; Lee et al., 2001; Mansharamani and Wilson, 2005; 

Shumaker et al., 2001). BAF is highly conserved among multicellular eukaryotes (Cai et al., 

1998) and is essential in C. elegans (Zheng et al., 2000). BAF co-localizes with chromosomal DNA 

during both interphase and mitosis in Drosophila (Furukawa, 1999), but localizes dynamically 

at the NE, nucleoplasm and cytoplasm in C. elegans and mammalian cells (Jamin and Wiebe, 

2015). Through mechanisms that are not understood, BAF helps tether chromatin to the 

nuclear envelope (Asencio et al., 2012; Margalit et al., 2005) and functions as an epigenetic 

regulator (Montes de Oca et al., 2011). 

 

2. “Divide and conquer” approach to study LEM-domain proteins 

In mammals, three major types of LEM proteins can be distinguished based on their domain 

organization as shown in Figure 1 (Brachner and Foisner, 2011). Emerin and LAP2 are INM 

proteins characterized by one transmembrane segment (Figure 1A). They have an N-terminal 

nucleoplasmic LEM domain (shown for LAP2 in Figure 1A) and a large region predicted as 

unstructured, followed by the transmembrane segment and short lumenal domain. MAN1 and 

Lem2 are anchored at the INM by two transmembrane segments, with their N- and C-terminal 

regions exposed in the nucleoplasm (Figure 1E). Their LEM domains (Figure 1F) are each 

followed by a large region predicted to be unstructured (like emerin and LAP2), and their C-

terminal nucleoplasmic regions include either one (Lem2; not shown) or two globular domains 

(MAN1; shown in Figure 1G,H).  



 

 
 

Ankle1 and Ankle 2 (also called Lem3 and Lem4) are characterized by ankyrin repeats, which 

are common protein-protein interaction motifs mainly found in eukaryotes (Figure 1). Ankle 1 

has no transmembrane segment; it is an endonuclease that cleaves DNA and induces a DNA 

damage response (Brachner et al., 2012). Ankle 2 by contrast has an N-terminal 

transmembrane segment and localizes with the endoplasmic reticulum (Asencio et al., 2012). 

Ankle 2 is essential for postmitotic NE formation, and controls BAF phosphorylation by binding 

and coordinating the activities of kinase VRK-1 and phosphatase PP2A.   

Structural analysis of LEM domain proteins has been hindered by difficulty expressing 

and purifying these large modular proteins, especially when they have transmembrane 

domains. Therefore, a “divide-to-conquer” approach has been chosen by several groups, 

based on bioinformatics prediction of the limits of the folded regions. Using this approach, 

globular domains of LEM domain proteins were systematically produced, purified and 

structurally characterized. 

 



 

 
 

 

Figure 1. Schematic of LEM-domain protein architecture. Three families of LEM-domain 
proteins, illustrated by 6 human proteins. Hatched yellow regions are predicted as intrinsically 
disordered by Disopred3. Thin green boxes indicate transmembrane domains. Black dotted 
line indicates that LAP2 isoforms share residues 1-186 but have different C-terminal regions 

(after the line). (A) LEM-domain proteins with one transmembrane domain (emerin, LAP2) 

localize at the INM; alternatively-spliced isoform LAP2 has no transmembrane domain. The 

star in LAP2 indicates the Arg690Cys mutation linked to dilated cardiomyopathy. (B,C,D) 3D 
structures of the LEM-like domain in light orange (PDB code 1H9E), the LEM domain in strong 

orange (PDB code 1H9F) and LAP2specific dimerization domain in green (PDB code 2V0X). 
(E) INM-localized LEM-domain proteins with two transmembrane segments are Lem2 (not 
shown) and MAN1. The star in MAN1 indicates the UHM Ligand Motif Lys/Arg763-X-Trp765-
Gln766-X-X-Ala769-Phe770. (F,G,H) 3D models of MAN1 globular domains, calculated by 
homology for the LEM domain in orange, from NMR data for the WH domain in blue (PDB code 
2CH0; (Caputo et al., 2006)) and from NMR chemical shift data and molecular modeling for the 
UHM domain in red (Konde et al., 2010). (I) LEM-domain proteins with ankyrin repeats: Ankle1 
is soluble; Ankle2 is ER-localized. 
 

 

 

 



 

 
 

Structural analysis of LEM domain proteins has been hindered by difficulty expressing 

and purifying these large modular proteins, especially when they have transmembrane 

domains. Therefore, a “divide-to-conquer” approach has been chosen by several groups, 

based on bioinformatics prediction of the limits of the folded regions. Using this approach, 

globular domains of LEM domain proteins were systematically produced, purified and 

structurally characterized. 

 

2.1. The LEM domain common to LAP2, emerin and MAN1 

Biochemical characterization of the LEM domain started with the chemical synthesis of the 

LEM domains of human emerin (residues 2 to 54) and LAP2 (residues 103 to 159) and the LEM-

like domain of LAP2 (residues 2 to 56) (Laguri et al., 2001; Wolff et al., 2001). The LEM-like 

domain is a highly divergent version of the LEM domain. Whereas the identity between the 

LEM domains of emerin and LAP2 is 33%, the LEM and LEM-like domains of LAP2 are only 18% 

identical. Milligrams of each peptide were produced, purified by HPLC and dissolved in a 

sodium phosphate buffer (pH 6.3). They were first analyzed by analytic ultracentrifugation, 

which showed that all these peptides are monomeric at concentrations less than 50 M. The 

three peptides were then analyzed using proton Nuclear Magnetic Resonance (NMR; 500 and 

600 MHz spectrometers), at a concentration of about 1 mM at 298K, to calculate their three-

dimensional structures in solution.  

Superimposition of the resulting structures revealed that they all adopted the same fold, 

mainly composed of two large parallel alpha helices stabilized by intramolecular electrostatic 

interactions and hydrophobic contacts (Figure 2A). 

 

 



 

 
 

The N-terminal region of LAP2 containing both the LEM-like and LEM domains was also 

studied by NMR (Cai et al., 2001). A recombinant His6-tagged LAP2 fragment (residues 1 to 168) 

was produced in E. coli as a 15N and 13C labeled protein. It was purified by affinity and gel 

filtration chromatography in phosphate buffer pH 7.2. Multidimensional 1H, 15N, 13C NMR 

experiments were performed to solve its 3D structure. This fragment contained two 

structurally independent, non-interacting domains that are connected by a flexible linker and 

adopt the same -helical fold. NMR chemical shift mapping demonstrated that the LEM 

domain binds BAF, whereas the LEM-like domain binds DNA. These interactions involve similar 

regions of the LEM fold, specifically helix 1, the loop connecting the two large helices and the 

N-terminus of helix 2. The distinct binding properties of the LEM-like and LEM domains are 

determined by their surface residues in these locations: predominantly positively charged in 

the case of the LEM-like domain, and mainly hydrophobic for the LEM domain.  

There are few structural domains of less than 50 residues in the Protein Data Bank. A 

DALI search highlighted that the LEM and LEM-like domains are structurally highly related to 

the SAF-Acinus-PIAS (SAP) and the Helix-extended loop-Helix (HeH) motifs. For example, the 

emerin LEM structure can be superimposed onto the SAP structures of human nuclear protein 

Hcc-1 and yeast protein Tho1, and the HeH domain of E. coli transcriptional terminator protein 

Rho (Figure 2B). The SAP domain is a eukaryotic putative DNA-binding module found in 

chromatin-associated proteins that likely targets these proteins to specific chromosomal 

locations (Aravind and Koonin, 2000).  

 

 

 



 

 
 

 

Figure 2. The LEM domain fold. (A) Superimposition of the LEM structure of emerin (PDB 
2ODC in marine blue) with the LEM (PDB 1H9F in cyan; DALI rmsd 2.2 Å) and LEM-like (PDB 
1H9E in grey; DALI rmsd 3.0 Å) structures of LAP2. (B) Superimposition of the LEM fold with 
the bacterial HeH structure from the RNA binding domain of the transcription termination 

factor rho (PDB 1A62 in magenta; DALI rmsd 1.7 Å), the yeast SAP structure of the RNA binding 
protein Tho1 (PDB 4UZW; DALI rmsd 1.4 Å) and the human SAP structure of the 
ribonucleoprotein Hcc-1 (PDB 2DO1; DALI rmsd 2.2 Å). 
 
HeH domains from bacteria, bacteriophages and plants are known (or predicted) to bind 

nucleic acids, suggesting that this was the ancestral function of the HeH fold (Aravind and 

Koonin, 2001; Aravind et al., 2002). The SCOP database gathers all these domains into a 

category named “LEM/SAP Helix-extended loop-Helix (HeH) motif”. Brachner & Foisner 

showed in 2011 that orthologs of metazoan LEM-domain proteins in unicellular eukaryotes, 

which lack BAF, contain a SAP or HeH instead of a LEM motif, suggesting the LEM domain 

evolved from an ancestral SAP/HeH domain found in chromosome tethering proteins, 

concomitant with the emergence of BAF (Brachner and Foisner, 2011). 

 

 

 

 

 



 

 
 

2.2. The C-terminal domain specific to LAP2 

LAP2 contains an N-terminal region from amino acid 1 to amino acid 186 common to all LAP2 

isoforms (including LEM-like and LEM domains, see Figure 1A,B,C) and a specific C-terminal 

region from amino acid 187 to amino acid 693 responsible for many of its known functions 

(see Figure 1A,D). This last region is specifically involved in LAP2 retention in postmitotic 

nuclei and essential for A-type lamin binding (Dechat et al., 1998; Dechat et al., 2000; Vlcek et 

al., 1999). It is mutated at position 690 (Arg to Cys) in two brothers with dilated 

cardiomyopathy, but segregation of the disease-causing allele within the family is unclear 

(Taylor et al., 2005). LAP2 variant Arg690Cys is reported to be impaired in its ability to bind 

lamin A. To identify the molecular basis of the LAP2 / lamin A interaction, full-length murine 

LAP2 was digested by chymotrypsin and fragments were analyzed by mass spectrometry and 

N-terminal sequencing. A stable fragment was identified that comprised residues 459 to 693. 

This fragment was expressed in E. coli and purified by metal affinity chromatography followed 

by size exclusion chromatography. Its three-dimensional structure was determined by X-ray 

crystallography (Figure 1D; (Bradley et al., 2007)). The C-terminal region of LAP2 is an 

elongated -helical dimer. Each monomer exhibits six helices with the fourth and fifth 

arranged into a four-stranded coiled coil. No complex between this C-terminal dimerization 

domain and A-type lamin tails could be observed using chromatography, calorimetry or 

ultracentrifugation experiments. Only a solid-phase overlay assay suggested transient binding 

between the two molecules and pointed to six LAP2 residues involved in lamin recognition. 

The Arg690Cys substitution was introduced into the murine LAP2 fragment, but did not impair 

lamin binding in the solid-phase overlay assay. This illustrates the difficulty encountered in 

understanding the molecular basis of lamin recognition by LEM-domain proteins. 

 



 

 
 

2.3. The WH and UHM domains in MAN1 

MAN1 and LEM2 are LEM-domain proteins anchored in the INM by two transmembrane 

segments. They exhibit two nucleoplasmic regions: an N-terminal region including the LEM 

domain and a C-terminal region (see Figure 1E,F). This last region contains two globular 

domains in MAN1 (Figure 1G,H) and one globular domain in Lem2. Both globular domains in 

the C-terminal region of human MAN1 were analyzed by NMR to determine their three-

dimensional structure.  

A fragment comprising MAN1 C-terminal residues 655-775, which are shared with 

Lem2, was produced as a 15N, 13C labeled GST fusion protein and purified by affinity 

chromatography. The GST fragment was cleaved using thrombin and retained on an affinity 

column. The MAN1 fragment was eluted in the flow-through and then dialyzed to a 

concentration of about 0.5 mM in phosphate buffer (pH 6.0) containing 150 mM NaCl. It was 

analyzed by multidimensional 1H, 15N and 13C NMR, and the 3D structure of the region between 

residues 666 and 750 was solved from data acquired at 303K on 600 MHz and 900 MHz 

spectrometers (Caputo et al., 2006). The N-terminal half of this region is mainly α-helical, 

whereas the C-terminal half is composed of two large -strands arranged in a twisted anti-

parallel β-sheet (Figure 1G). The helices form a three-helix bundle. A three-stranded β-sheet 

is packed onto the three-helix bundle. The α/β interface is mainly hydrophobic. The DALI server 

clearly identified the MAN1 region from residue 666 to residue 750 as adopting a Winged Helix 

(WH) fold also found in several DNA binding domains belonging to transcription factors. The 

helix that contacts DNA in these transcription factors is positively charged in MAN1 and, 

consistently, the MAN1 fragment binds DNA (Caputo et al., 2006).  

 



 

 
 

The MAN1 fragment from amino acid 775 to amino acid 911 is not found in Lem2. A 

point mutation in this region abolishes the capacity of MAN1 to bind R-Smads and repress 

transcription of the R-Smad-mediated signaling pathway (Pan et al., 2005). Consistently Lem2 

is not capable of antagonizing R-Smad-mediated signaling activity (Brachner et al., 2005). The 

MAN1 fragment (residues 755 to 911) was produced as a 15N, 13C labelled His6-tagged protein 

to characterize its 3D structure by NMR (Konde et al., 2010). It was purified by affinity 

chromatography and gel filtration in a Tris buffer (pH 6.7) containing 150 mM NaCl. NMR 

analysis provided the secondary structure of the MAN1 fragment. However, conformational 

exchange precluded the determination of its 3D structure. Sequence alignment strongly 

suggested that residues 785 to 880 adopt a U2AF-Homology Motif (UHM) fold (Kielkopf et al., 

2004). NMR chemical shift data were consistent with this prediction. From NMR and 

bioinformatics analyses, it was possible to calculate a model for the UHM domain of MAN1 

(Figure 1H). Broad NMR signals suggesting conformational exchange were observed in the 

linker region between the WH and UHM domains (residues 755 to 785) as well as around the 

hydrophobic cavity of the UHM domain. UHM domains interact with peptides exhibiting a 

UHM Ligand Motif (ULM). This motif consists of a patch of positively charged amino acids 

followed by a conserved tryptophan residue (Kielkopf et al., 2004). In the MAN1 linker region, 

the motif Lys/Arg763-X-Trp765-Gln766-X-X-Ala769-Phe770 is highly conserved through metazoans 

(this motif is represented by a star in Figure 1E). When Trp765 and Gln766 are mutated to 

alanines, the radius of gyration of the MAN1 fragment significantly increases, as shown by 

Small Angle X-ray Scattering (SAXS), and the NMR signals of the residues of the UHM 

hydrophobic cavity are changed. From these data, a model of the MAN1 fragment was 

proposed in which Trp765 anchors the linker onto the UHM domain through a conserved 

intramolecular interaction.  



 

 
 

The biological significance of this interaction is currently unknown. However, mutating 

Trp765 and Gln766 to alanines significantly weakens the interaction between the MAN1 

fragment and the MH2 domain of Smad2.  

 

3. Analysis of predicted unstructured regions in LEM-domain proteins 

Large Intrinsically Disordered Regions (IDRs) have been identified in LEM-domain proteins, 

either between two globular domains or between a globular domain and a transmembrane 

segment (Figure 1A,E,I). The functional role of these regions is not yet understood. They might 

contain MoRFs, small (10-70 residues) fragments that undergo a disorder-to-order transition 

upon binding to their partners. However, no 3D structure of a LEM-domain protein IDR bound 

to its partner has been solved. They are largely post-translationally modified and 

phosphorylated in a cell-cycle dependent manner (Ellis et al., 1998; Hirano et al., 2009; Hirano 

et al., 2005; Yip et al., 2012). Phosphorylation of the emerin IDR is also triggered by the 

application of mechanical force on the nucleus (Guilluy et al., 2014). 

The IDR located between the WH and UHM domains of MAN1 (residues 750 to 785) 

has been studied while analyzing the three-dimensional structure of the whole C-terminal 

nucleoplasmic region of MAN1. This IDR binds to MAN1 UHM domain, thus regulating its 

recognition properties (Konde et al., 2010). Mutation of the IDR sequence Trp765-Gln766 

weakens both the intramolecular IDR-UHM interaction and the intermolecular MAN1-Smad2 

interaction (Figure 1E). This suggests that the IDR position onto the UHM is critical for Smad2 

recognition. Three residues were identified as phosphorylated in this IDR, namely Ser777, Ser781 

and Thr783 (http:// www.phosphosite.org/ proteinAction.do?id=7784). Ser777 and Thr783 are 

potential targets of Pro-directed kinases such as P38 (mitogen-activated protein kinase); Ser777 

is also a potential target of glycogen synthase kinase-3 (GSK-3(predictions: elm.eu.org).  



 

 
 

These kinases might regulate the intramolecular interaction between MAN1 IDR and 

UHM regions, and thus the binding properties of MAN1. Other larger IDRs have been described 

in emerin and MAN1 N-terminal nucleoplasmic regions. Production and purification of these 

regions should enable a biophysical study of their structural and binding properties, either 

before or after post-translational modification. 

 

3.1. Production and purification of predicted unstructured regions of emerin and MAN1 

3.1.1. Emerin nucleoplasmic region 

The emerin nucleoplasmic region contains a LEM domain and a large IDR (Figure 1A). We attempted to 

produce in E. coli and purify by chromatography the whole nucleoplasmic fragment of emerin from amino 

acid 1 to amino acid 221 and a smaller fragment from amino acid 1 to amino acid 187 (emerin 1-187), but 

only the latter was soluble in our conditions. We expressed it as a 8His-tag, followed by a TEV site and the 

emerin 1-187 sequence. The cDNA coding for this construct was optimized for E. coli, synthesized by 

Genscript and cloned into a pETM13-LIC vector (pETM13 expression vector modified in our laboratory for 

LIC cloning system). The emerin 1-187 sequence contains four positions with amino acid substitutions or 

deletions in patients with X-linked Emery-Dreifuss muscular dystrophy (EDMD; positions 54, 95-99, 133 and 

183). Studying the structural consequences of these mutations is of particular interest knowing that most 

cases of X-linked EDMD are caused by mutations leading to loss of emerin expression.   

 

 

 

 

 

 

 



 

 
 

Detailed protocol for emerin 1-187 production and purification: 

1. E. coli cells are grown at 310K in LB media (or M9 media for NMR samples). When the OD600 is between 

1 and 1.5, add 0.5 mM IPTG and induce expression overnight at 293K. 

2. Lyse cells by sonication in lysis buffer (50 mM Tris-HCl pH 7.5, 300 mM NaCl, 5% glycerol and 1% Triton 

X-100). 

3. As the protein is produced in inclusion bodies, the pellet is resuspended in Buffer A8 (50 mM Tris-HCl pH 

8, 150 mM NaCl, 20 mM imidazole, 8 M urea) and centrifuged 20 min at 20,000g at room temperature. 

4. Load the supernatant on a Ni-NTA column (GE Healthcare) equilibrated in Buffer A8. 

5. Wash the column with Buffer A8 and elute protein using 100% Buffer B8 (50 mM Tris-HCl pH 8, 150 mM 

NaCl, 1 M Imidazole, 8 M urea). 

6. Fractions containing emerin 1-187 are pooled and dialysed against 20 mM Tris-HCl pH 8, 30 mM NaCl at 

room temperature in three steps (one night and twice for two hours), and stored at 277K. 

 

3.1.2 The N-terminal nucleoplasmic region of MAN1 

The MAN1 nucleoplasmic region contains a LEM domain and a large IDR (Figure 1E). We first attempted to 

produce recombinant MAN1 (amino acid 1 to amino acid 471; MAN1 1-471) in E. coli as a 6His-tagged fusion 

protein, with a TEV site between the tag and the MAN1 sequence. However due to weak expression yield 

and the production of several truncated MAN1 peptides,  we optimized the cDNA sequence for expression 

in E. coli and the synthetic gene (ProteoGenix) was cloned into our pETM13-LIC vector. 

 

 

 

 

 

 



 

 
 

Detailed protocol for MAN1 1-471 production and purification: 

1. E. coli cells are grown at 310K in LB media (or M9 media for NMR samples) and induced 4 h at 310K, with 

0.5 mM IPTG when the OD600 is between 0.8 and 1. 

2. Lyse cells by sonication: 30 pulses of 1 sec each (power from 20 to 70%) separated by intervals of 1 sec 

in lysis buffer (50 mM Tris-HCl pH 7.5, 300 mM NaCl, 5% glycerol, 1% Triton X-100). 

3. Incubate cell lysates with benzonase for 20 min at room temperature and centrifuge 20 min at 20 000g.  

4. As the protein is soluble, load the supernatant on a Ni-NTA column (GE Healthcare) equilibrated in Buffer 

A (50 mM Tris-HCl pH 8, 150 mM NaCl, 20 mM Imidazole). 

5. Wash the column with Buffer A, and elute using a 20 min gradient from 0% to 100% Buffer B (50 mM Tris-

HCl pH 8, 150 mM NaCl, 1 M imidazole). 

6. Fractions containing MAN1 1-471 are pooled, concentrated by centrifugation using Vivapsin sample 

concentrators (GE Healthcare), injected on a gel filtration column (Superdex 200, Hi-load, 120 mL, GE 

Healthcare) equilibrated in a buffer containing 150 mM NaCl and 1 mM tris(2-carboxyethyl)phosphine.  

7. Store the purified MAN1 1-471 polypeptide at 277K. 

 

3.2. Association between globular and predicted unstructured regions in MAN1 

In the MAN1 C-terminal nucleoplasmic region, a ULM motif was detected in the linker region that interacts 

with the UHM domain (Konde et al., 2010). Similarly, within MAN1 residues 1-471 a conserved motif Arg190-

Arg191-Lys192-Pro193-His194-Ser195-Trp196-Trp197-Gly198 could play the role of a ULM motif. We therefore tested 

the entire purified N-terminal nucleoplasmic region of MAN1 for potential binding to the C-terminal 

nucleoplasmic region using 2D 1H, 15N NMR.  

 

 

 

 



 

 
 

We prepared two NMR samples: both contained 200 l 15N labeled MAN1 1-471 at 100 M in phosphate 

buffer (pH 6.7) with 150 mM NaCl; one tube also contained unlabeled MAN1 755-911 at 100 M. 2D 1H-15N 

HSQC spectra were acquired on both samples at 293K on a 600 MHz spectrometer. Superimposition of 

these two spectra revealed an interaction between the two MAN1 nucleoplasmic regions (unpublished 

results). Indeed, several MAN1 1-471 NMR signals decreased in intensity upon addition of MAN1 755-911. 

These signals were assigned to the MAN1 sequence Trp196-Trp197-Gly198 thus revealing that this motif 

behaves like a new ULM. We suggest that the two MAN1 ULM motifs, Trp196-Trp197-Gly198 and Trp765-Gln766, 

can compete with each other for binding to the UHM domain leading to regulation of MAN1-SMAD2/3 

complex formation.  

 

3.3. Self-association of emerin via predicted unstructured region 

A role for the emerin IDR in promoting self-association events was suggested by two studies. 

First, yeast 2-hybrid experiments revealed that a fragment comprising emerin residues 1-225 

binds to itself, suggesting C-terminally-truncated emerin could form homodimers and/or 

multimers (Sakaki et al., 2001). Second, in vitro GST-pulldown experiments using recombinant 

emerin residues 1-221, and co-immunoprecipitation of full-length emerin from HEK293T cell 

extracts, also strongly suggested that emerin could oligomerize both in vitro and in cells (Berk 

et al., 2014). To identify which emerin region was responsible for self-association, N-terminally 

His-tagged emerin fragment was bound to Ni2+-NTA agarose under denaturing conditions and 

the bead-bound polypeptide was incubated with purified GST-tagged emerin fragments in an 

appropriate binding buffer. After washing the beads, proteins were eluted using SDS-sample 

buffer and the binding reactions were resolved on gels. This experiment showed that GST-

tagged emerin 170-220 is sufficient to bind emerin 1-221, whereas emerin 1-160 does not bind.  

Further pull-down assays suggested that emerin 170-220 recognized both fragments 1-132 

and 170-220.  



 

 
 

In Hela cells co-expressing GFP-tagged and Flag-tagged emerin with different deletions, 

fragment 170-220 was also essential for emerin-emerin co-immunoprecipitation (Berk et al., 

2014). Thus self-association is due to sequences that are predicted to be unstructured within 

the emerin nucleoplasmic region. 

 

4. LEM-domain proteins with their partners 

LEM-domain proteins interact with lamins and with other INM proteins such as SUN1, SUN2, 

LAP1 and contribute to NE architecture (Haque et al., 2010; Patel et al., 2014; Shin et al., 2013). 

These interactions play critical roles in nuclear structure and chromatin organization. However, 

the difficulty in obtaining pure and functional fragments of LEM-domain proteins in their 

proper oligomerization and modification states makes it difficult to reconstitute in vitro 

biologically relevant complexes. Thus current knowledge is based on studies that focused on 

binding between specific functional domains and specific partners.  

 

4.1. 3D structure of the LEM-BAF complex 

The first LEM-domain complex successfully studied consisted of the LEM domain of emerin 

and the small (10 kDa) protein BAF. BAF is a centrosymmetric homodimer that binds DNA and 

thereby bridges two DNA molecules, thus contributing to DNA compaction (Cai et al., 1998). 

Various studies including NMR spectroscopy, X-ray crystallography and site-directed 

mutagenesis have shown that BAF is a -helical protein that recognizes DNA through a pair of 

helix-hairpin-helix (HhH) motifs (Bradley et al., 2005; Umland et al., 2000). BAF binding to 

emerin 1-187 can be observed in solution by NMR (unpublished results; Figure 3A). Clore and 

colleagues determined the three-dimensional structure of the complex between BAF and the 

LEM domain of emerin (Figure 3B; (Cai et al., 2007)).  



 

 
 

In this structure, one LEM domain interacts with two BAF monomers, as observed by NMR, 

light scattering and analytic centrifugation, with a dissociation constant of 0.6 M as shown 

by Isothermal Titration Calorimetry (ITC). However, further studies suggested that post-

translational modifications of emerin’s IDR also regulate BAF recognition (Berk et al., 2013; 

Tifft et al., 2009). Information obtained from the structure of the complex showed that BAF 

binding sites to the LEM domain and DNA do not overlap. Thus, BAF could bind simultaneously 

to emerin and DNA. However, additional experiments suggested that, in cells, expression of 

BAF variant Gly25Glu, with Gly25 being located at the interface between BAF and DNA, affected 

emerin localization during telophase (Haraguchi et al., 2001).  

 

Figure 3. The emerin-BAF interaction. (A) Superimposition of two NMR 1H-15N HSQC spectra 
revealing the interaction between emerin 1-187 and BAF: the red and black spectra were 
recorded on 15N labelled BAF alone and in complex with emerin, respectively (in 40 mM 
phosphate buffer pH 6.7, 150 mM NaCl, 1 mM tris(2-carboxyethyl)phosphine, 1 mM EDTA at 
293K on a 600 MHz spectrometer). Disappearance of 1H-15N signals indicates binding to the 
unlabelled partner. (B) 3D structure of the LEM-BAF complex: the emerin LEM-domain is blue, 
the BAF dimer is red (PDB code 2ODG). 
 

 

 

 

 

 



 

 
 

4.2. Interaction of the MAN1 WH domain with DNA 

The MAN1 residues 655-775 interact with a 211-base pair linear DNA molecule as observed by 

electrophoretic mobility shift assay (Caputo et al., 2006). The apparent affinity of the MAN1 

fragment for this DNA molecule is 50 nM. Mutations of positively charged residues of the helix 

predicted to contact DNA, abolish DNA binding. Thus, the recognition helix of the MAN1 WH 

domain is involved in the binding of the carboxyl-terminal region of MAN1 to DNA.  

 

4.3. MAN1 interactions with SMAD2/3 and PPM1A 

Three groups reported that the MAN1 C-terminal region physically interacts with R-Smad 

proteins to repress the transforming growth factor- (TGF-) signaling pathway (Hellemans et 

al., 2004; Lin et al., 2005; Pan et al., 2005). Mutations in the gene encoding MAN1 cause 

sclerosing bone dysplasias, which sometimes have associated skin abnormalities (Hellemans 

et al., 2004). Fibroblasts from affected individuals are haploinsufficient with respect to MAN1 

expression. These perturbations enhanced TGF- signaling, since downstream genes targeted 

by this pathway were upregulated (Hellemans et al., 2004).  

The MAN1 fragment from amino acid 755 to amino acid 911 recognizes the MH2 

domain of Smad2 with micromolar affinity. From biochemical, NMR and SAXS analyses, it was 

possible to calculate a model of the complex between this MAN1 fragment and the Smad2 

MH2 domain (Bourgeois et al., 2013). As predicted by this model, experiments in vitro showed 

that MAN1 binds to Smad2 alone, and to the activated Smad2-Smad4 complex. However, in 

cells, MAN1 does not bind Smad4-containing complexes. Overexpression of MAN1 leads to 

Smad2 dephosphorylation, thus hindering Smad2 binding to Smad4. In vitro, MAN1 binds 

directly to the phosphatase PPM1A, which catalyzes dephosphorylation of Smad2.  

These results suggest a mechanism through which the MAN1-specific C-terminal region 

inhibits TGF-β signaling (Bourgeois et al., 2013).  



 

 
 

They demonstrate that this MAN1 region recognizes different forms of Smad2 (monomers, 

homo and heterotrimers) and show that MAN1, by recruiting Smad2 to the nuclear envelope, 

facilitates its dephosphorylation by PPM1A and thus its inactivation. 

 

5. Concluding remarks 

LEM-domain proteins are involved in diverse cellular processes including DNA replication and 

cell cycle control, chromatin organization, nuclear assembly, regulation of gene expression and 

signaling pathways, as well as retroviral infection (Barton et al., 2015; Brachner and Foisner, 

2011; Li and Craigie, 2006). The INM LEM-domain proteins LAP2, emerin and MAN1 have been 

intensively studied using biophysical and cellular approaches. Their LEM domain directly 

recognizes the DNA binding protein BAF (Cai et al., 2001). However, these proteins are 

membrane proteins and their soluble regions are largely predicted as intrinsically disordered. 

LAP2 dimerizes through its C-terminal -helical domain (Bradley et al., 2007). Emerin also 

self-assembles into poorly characterized oligomers (Berk et al., 2014). It is thus difficult to 

identify their functional states in vitro and to reconstitute complexes between these proteins 

and their biological partners. First attempts to stabilize nuclear envelope complexes has 

recently led to the resolution of the X-ray structure of the KASH-SUN complex, located 

between the outer and inner nuclear membranes (Sosa et al., 2012). Moreover, development 

of mass spectrometry and NMR techniques now enables description of post-translational 

modification events in LEM-domain proteins, and their consequences on protein structure and 

binding properties.  

 

 

 



 

 
 

Integrative approaches, including structural characterization of protein subcomplexes based 

on a panel of biophysical techniques and development of new tools in biochemistry and 

imaging techniques for identification of protein-protein interfaces might ultimately provide a 

better view of inner NE architecture. 
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b. LBR 
 

LBR, for Lamin-B receptor, was first described in a publication from the Blobel laboratory, in 

198863,64. It is an inner nuclear membrane protein with two functions: its N-terminal 

nucleoplasmic region, which contains a TUDOR domain (figure 12a), interacts with both 

chromatin and the nuclear lamina, while its C-terminal multi-pass transmembrane domain is 

a C14 sterol reductase (figure 12b). Mutations in LBR are associated with rare human diseases, 

Pelger-Huët anomaly and Greenberg skeletal dysplasia, which cause harmless anomalies of 

blood cells to fatal developmental defects66–68.  The severity of these diseases depends on the 

nature of the specific mutation, and whether one or both copies of the gene are affected.  All 

these diseases are characterized by a defect in cholesterol synthesis due to loss of LBR-

associated sterol C14 reductase activity68. Several disease-associated LBR point mutations 

reduce sterol C14 reductase activity by decreasing the affinity of LBR for the reducing agent 

NADPH. Other mutations lead to LBR truncations. 

 

 

 

 

 

 

 

 

 
 

 

 

LBR was initially characterized because of its ability to bind to the nuclear lamin B, and more 

precisely, its capacity to mediate interaction between chromatin and lamin B. However, it was 

shown that the TUDOR domain of LBR is not sufficient for binding to lamins69. It is able to bind 

to free histone H3. It also recognizes H4 dimethylated on lysine 20 and is essential for 

chromatin compaction70 (figure 13). A specific motif in the N-terminal nucleoplasmic region of 

LBR directly binds to the chromo-shadow domain of the chromatin-associated protein HP1 

which interacts with histones71,72 (figure 13).  

(a) (b) 

Figure 12 : Architecture of LBR. 

 (a) 3D structures of the TUDOR domain of LBR (PDB code: 2L8D) 70 (b) and the integral membrane 
region of a LBR homolog (PDB code: 4QUV) 71. 



 

26 
 

It was reported that LBR and lamin A/C are responsible for two different mechanisms that 

tether heterochromatin to the NE73. These two mechanisms are sequentially used during 

cellular differentiation and development. The absence of both LBR and lamin A/C leads to loss 

of peripheral heterochromatin and an inverted architecture with heterochromatin localizing 

to the nuclear interior.  

 

 

Figure 13 : Cartoon representation of LBR embedded within the nuclear envelope74.  

 

c. The LINC complex 
 

Nuclear positioning is essential for many cellular processes, as cell division, migration, 

differentiation and polarization. In eukaryotes, this process requires the activity of actin, 

microtubules and microtubule-dependent motors. However, several studies revealed that 

another complex is fundamental to provide a structural support to the nucleus: the LInker of 

Nucleoskeleton and Cytoskeleton complex (LINC complex). 

The LINC complex is conserved from yeast to human. It is a protein complex associated with 

the inner and outer membranes of the nucleus. It is composed of ONM-resident KASH-domain 

proteins (Klarsicht, ANC-1 and SYNE/Nesprin-1 and 2 Homology) and INM-resident SUN-

domain proteins (Sad1 and UNC-84)75,76. Defects in these LINC complex proteins are 

associated with a broad spectrum of muscle pathologies (e.g., Emery-Dreifuss muscular 

dystrophy and dilated cardiomyopathy) and neuronal disorders77–79. 
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KASH-domain proteins are membrane proteins that share several common features76. There 

are composed of large cytoplasmic domains extending into the cytoplasm and interacting with 

actin filaments, microtubules, intermediate filaments or centrosomes. They possess a single 

transmembrane helix at their N-terminus, followed by a short fragment of around 30 residues, 

containing a PPPX motif (X is a variable residue) and located in the perinuclear space. The 

transmembrane helix together with the luminal tail form the KASH domain, a characteristic 

signature of the family80. Six KASH proteins are known in humans. Four of them, called 

Nesprins (1-4), contain spectrin repeats in their cytoplasmic domains. Nesprin 1 and 2, in 

mammals, are actin-binding proteins and are characterized by the fact that they are very large, 

with extensive fibers that span the cytoplasm81–83.  Nesprin-3, a shorter molecule, binds to 

actin too, but through binding to a giant protein, plectin82. The last known Nesprin, Nesprin-

4, is found in lower abundance, only in a few cell types, and is a microtubule-binding protein83.  

Sad1/UNC-84 or SUN proteins were originally described in fission yeast (Sad1) and 

Caenorhabditis elegans (UNC-84)84,85. Afterwards, five mammalian family members (SUN1-5) 

have been identified86. Whereas SUN3, SUN4 (SPAG4), and SUN5 seem to be specifically 

expressed in testicles, SUN1 and SUN2 are ubiquitously expressed and can bind to all four 

Nesprins87,88. Sun proteins contain a variable nucleoplasmic region at their N-terminus, 

followed by a single transmembrane domain that spans the inner nuclear membrane and a 

region, localized into the perinuclear space, which comprises two coiled-coil repeats (CC1 and 

CC2) that are shown to be essential for trimerization and are also believed to act as rigid 

spacers to delineate the distance between the inner and the outer nuclear membranes80,89. 

Finally, the most highly conserved region between family members is the C-terminal SUN-

domain (figure 14, a)90.  

The 3D structure of a part of the LINC complex has recently been solved by X-ray 

crystallography90,91 (figure 14, b). This structure contains the SUN domain of SUN-2, which 

folds into a compact -sandwich. It exhibits at its N-terminus a helical extension (residues 525–

540) involved in the formation of a coiled-coil, followed by 20 residues (residue 567 to 587) 

that are assembled in order to form a flexible domain, called the KASH-lid92. Residues 593–

601 form a well-defined loop, which surrounds and coordinates a bound cation, and is 

structured by an intrachain disulfide bond formed between conserved cysteines at positions 

601 and 705.  
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It was shown that this SUN2 fragment forms a stable trimer and binds to the KASH domain of 

nesprin90,91. The SUN homotrimer serves as a platform to interact with three KASH peptides. 

The peptides are individually bound in three deep grooves, which are symmetrically 

distributed close to the trimeric interface of the SUN domain homotrimer (figure 14, c). It is 

interesting to observe that addition of KASH peptide does not induce large structural changes 

in the SUN domain. Indeed, when the structure of apo-SUN-2 is superimposed with KASH-

SUN-2 structure, only the region around the KASH-lid shows significant changes.  

 

Figure 14 : Structure of free and complexed SUN290.  

(A) Schemes of the domain organization for human SUN2 and Nesprin 2G. (B) The SUN domain 
homotrimer side and top views represented in cartoon (PDB: 3U NP). The three protomers of the 
SUN homotrimer are colored in cyan, light blue and pale green. (C) Top and side views of the SUN-
KASH complex. The three KASH domain peptides are colored in yellow, magenta and red.  
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Unexpectedly, when the two coiled-coil regions that are located before the SUN domain were 

studied separately, it was showed that, while the first coiled-coil is indeed trimeric, the second 

coiled-coil alone is monomeric93. The 3D structure of the coiled-coil 2 and SUN domain 

revealed that this coiled coil can fold into a three helix bundle and lock the SUN domain in a 

monomeric and inactive conformation (figure 15). Thus, structural changes within coiled-coil 

2 dictate the oligomeric state of SUN2 and thus regulate the formation of the LINC complex. 

 

 

Figure 15 : Structural insights into SUN-KASH complexes across the nuclear envelope93.  

In the monomeric form of the SUN2 protein, coiled-coil 2 forms a three-helix bundle that interacts 
with the SUN domain and lock it in an inactive state. SUN2 trimerization mediated by coiled -coil 1 
probably induces a conformational change within coiled -coil 2. This change releases helix 3 of 
coiled-coil 2 that is then able to trimerize, thus triggering the formation of three KASH binding 
sites on the SUN2 trimer.  
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II. NUCLEAR ENVELOPE: FUNCTIONS  
 

1. STRUCTURAL AND MECHANICAL PROPERTIES OF THE NUCLEUS 
 

The nuclear envelope provides sturdiness to the nucleus and this function may be more or less 

important depending on the tissue. Indeed, stiffness and strength of a tissue are related to 

the physical stress sensed in that tissue. For example, brain or fat tissues bear little stress, 

while adult bone tissue sustains high stress, which promotes bone growth and stiffening to 

match the stress94.  

In this part, I will first describe the implication of the nuclear lamina, the LINC complex, nuclear 

actin and emerin in the mechanical properties of the nucleus and in the cellular response to a 

mechanical stress. Then, I will present the implication of another protein, BAF, in nuclear 

shape maintenance through regulation of nuclear envelope and chromatin interaction. 

a. Lamin composition determines the nucleus stiffness 
 

Lamins contribute to nuclear stiffness95. In lamin-depleted Xenopus egg extracts, assembled 

nuclei are highly fragile96. Cells from mouse LMNA−/− were found to be mechanically weak97. 

Later, direct mechanical measurements on Xenopus oocyte nuclei confirmed that lamina acts 

as a stiff95. In addition, mass spectrometry analyses showed that elasticity of bulk tissue is 

strongly correlated to the composition of the nuclear lamina (figure 16). Indeed, the ratio of 

A-type lamin to B-type lamin is increasing with the stiffness of the tissue. This observation 

could explain the fact that only vertebrates possess A-types of lamins94. 

 

 

 

 

 

 

 

Figure 16 : Relationship between lamin 
composition and tissue rigidity.  

A logarithmic scale representation of the 
ratio of A-type lamin (in red) to B-type 
lamin (in blue) in tissues according to 
their rigidity96. 
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Moreover, lamins have been shown to be regulated during mechanical stress. Lamin 

implication in nucleus mechanical properties was first studied in nuclei with different lamina 

compositions, by micropipette aspiration experiments95,98. It was shown that B-type lamins 

contribute to the elastic response whereas A-type lamins contribute to the viscosity. 

Afterwards, lamins behavior during mechanical stress was studied in mesenchymal stem cells 

(MSCs) that were cultivated in a medium mimicking the extra cellular matrix of either brain or 

bone (figure 17). This experiment showed that in the nuclear envelope of cells grown on soft 

substrates, lamins are wrinkled and relaxed, whereas, on stiff substrates, lamins appear 

smooth. On stiff substrates, the rate of phosphorylation at four sites decreases. 

Phosphorylation of intermediate filament proteins modulates their solubility, conformation 

and organization. Lamins are known to be highly phosphorylated during mitosis, in order to 

be disassembled. We can do the hypothesis that decreasing phosphorylation leads to a 

diminution of A-type lamin solubility and an increase of lamin strengthening94. More than 

dephosphorylation, a partial unfolding of the Igfold domain could be triggered by a mechanical 

stress. In contrary, on soft substrates, A-type lamins are more extensively phosphorylated, 

more soluble and could be eventually degraded.  

 

Figure 17 : Impact of mechanical stress on the Igfold domain structure94.  

Nuclei of MSCs were cultured on soft and stiff substrates. Cysteine -shotgun MS was used to identify 
cysteines that are exposed by stress. Cys522 of A-type lamin Igfold was identified as a stress -
sensitive site. 
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Finally, migration of the cells in complex environments requires cellular deformability, which 

is limited by the cell nucleus. Indeed, lamins form a rigid shell underneath the inner nuclear 

membrane. To overcome this limitation, some migrating cells express a low level of lamins, 

whereas others secrete proteases to enlarge pores in the extracellular matrix99. It was recently 

shown that dendritic cells, when migrating through narrow channels, answer to nuclear 

rigidity by rapidly assembling a branched actin network around the nucleus in an Arp2/3 and 

Wave2 dependent manner100. This triggers local ruptures of the lamin A/C shell. If lamin A/C 

expression is suppressed, then this mechanism is no longer necessary. Formins, which are 

actin nucleating proteins generating unbranched actin filaments, also contribute to the 

formation of perinuclear actin filaments. In particular, FMN2 associates with and generates a 

perinuclear actin system that controls nuclear shape and positioning in cells migrating on 2D 

surfaces101. This actin-based cage protects the nucleus and its contents from damage when 

cells migrate through tiny spaces. It may prevent nuclear envelope rupture or facilitate nuclear 

envelope repair by either ESCRT III or lamin-dependent102 or –independent pathways.  

b. Interaction between the LINC complex and actin contributes to nucleus 
positioning 

 

Nuclear envelope proteins together with actin control the position of the nucleus in the cell, 

in order to regulate cell division, differentiation and again cell migration103. In particular, actin 

is an essential actor of the rearward movement of the nucleus to orient the centrosome and 

polarize cells for directed migration. Actin-dependent nuclear movement in fibroblasts and 

myoblasts involves a LINC complex composed of nesprin-2G and SUN2. The association of 

these proteins with dorsal actin cables results in their assembly into linear arrays termed 

transmembrane actin–associated nuclear (TAN) lines104. Interaction between actin and the 

outer nuclear envelope involves the CH domains of nesprin-2G. The formin family member 

FHOD1 provides a second site of interaction between the actin cable and nesprin-2G105. The 

KASH domain of nesprin-2G interacts with the SUN domain of SUN2 in the perinuclear space. 

Finally TAN lines are positioned because of association of SUN2 with A-type lamins106. Emerin 

is also found in TAN lines and may contribute to their anchoring.  
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c. Emerin mediates nuclear response to a mechanical stress 
 

Emerin, a protein which belongs to the group I of LEM-domain proteins, is implicated in the 

nucleus response to a mechanical stress, in particular through phosphorylation events, like 

lamins. Analysis of the role of nuclear envelope proteins in the nucleus response to a 

mechanical stress was done though application of a force on isolated nuclei via the LINC 

complex component Nesprin-1107. Magnetic tweezers were used to stimulate magnetic beads 

that were coated with anti Nesprin-1 antibodies. Successive pulses with a constant force were 

applied on the nucleus and bead displacement diminution was observed which means that 

application of a constant force leads to an increase of the nucleus resistance. 

Because induction of protein phosphorylation is one of the first events that appears when 

mechanical force is applied to cells, tyrosine phosphorylation of nuclear proteins from isolated 

nuclei subjected to force was observed. Several nuclear proteins were phosphorylated after 

mechanical stress, but one of these proteins was more strongly phosphorylated on its 

tyrosines: it is the emerin protein. More precisely, emerin phosphorylation on two tyrosines 

(Y74 and Y95) by the kinase Src was essential for the response of the nucleus to a mechanical 

stress (figure 18). When these tyrosine were mutated, the nucleus could not answer anymore 

to force application. However the molecular consequences of these tyrosine phosphorylations 

are still unknown. 

 

Figure 18 : Emerin is phosphorylated by Src on its tyrosines 74 and 95 in response to a mechanical 
stress107. 
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d. BAF mediates interaction between nuclear envelope and chromatin 
 

The small protein barrier-to-autointegration-factor (BAF) was identified in a yeast two-hybrid 

screen designed to find partners of the inner nuclear membrane protein LAP256. BAF is a highly 

conserved 89-amino acid protein that is localized in the cytoplasm and the nucleoplasm of 

metazoan cells108,109. It forms a dimer in solution. The 3D structure of this dimer was solved 

by NMR110 (PDB: 2EZX) and by X-ray crystallography111 (PDB: 2BZF) (figure 19). 

 

Figure 19 : Solution structure of BAF dimer, as solved by NMR (PDB: 2EZX)110.  

Ribbon diagram of the BAF dimer, with first and second helices of the DNA recognition helix-turn-helix motif 
in orange and red, respectively and other helices in blue for one subunit and green for the other. 

 

Each monomer of BAF is mainly composed of five helices (H1-5). The presence of one copy 

and one pseudo copy of a nonspecific DNA-binding motif (helix-hairpin-helix, HhH) was 

observed for each monomer. This motif is characterized by two helices connected by a short 

turn and is formed by helices H2 and H3 and helices H4 and H5. The 3D structure of the BAF 

dimer in interaction with a 7-bp-DNA was then solved by X-ray crystallography, at a resolution 

of 2.87 Å111. This structure shows that the interaction is mediated by both HhH motifs (figure 

20) and the N-terminal of the helix 1 (in yellow in figure 20). In the presence of a short DNA, 

each BAF monomer is able to bind to one DNA molecule, whereas it was shown before that 

BAF is able to form higher-order complexes in presence of longer DNA molecules112.  
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Figure 20 : Structure of the BAF dimer in interaction with a 7-bp-DNA, solved by X-ray 
crystallography (PDB: 2BZF)111.  

The HhH and pseudo HhH motifs are formed by helices H2 (in green) and helices H4 and H5 (in 
blue), respectively, with the connecting helix H3 (in orange) . In yellow is represented the 

interacting region of 1; black, DNA; N and C, protein termini.  

 

A first link between BAF function and chromatin was found several years ago by a group who 

did an assay to identify and purify the host factor conferring protection to the retroviral DNA 

against auto-integration113. More precisely, BAF was found as an essential actor for the 

biogenesis of MoMLV and HIV-1 retroviruses. For example, during biogenesis of MoMLV, BAF 

is recruited to cytoplasmic pre-integration complexes (PICs), in order to block autointegration 

of the viral DNA, whereas in absence of BAF, self-destruction of viral DNA is observed. BAF 

seems to protect DNA against integration by bridging DNA. 

The most important role of BAF is its capacity to interact with chromatin in order to regulate 

nuclear assembly and organization. Indeed, in vivo studies have demonstrated that depletion 

of BAF from C. elegans embryos112,114 or D. melanogaster larvae115 induce strong effects on 

chromosome condensation and segregation, notably the retention of mitotic chromatin 

modification during late anaphase and telophase. In addition, a direct effect of BAF on nuclear 

envelope assembly and function was observed. Indeed, depletion of BAF using short RNAi 

resulted in nuclear shape and size defects116 and moreover, this depletion compromised 

severely chromatin segregation. Furthermore, protein kinase VRK-1 phosphorylates BAF in 

vivo to regulate its localization and function116.  
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Phosphorylation of BAF not only abrogates its DNA binding activity by introducing negative 

charges on the DNA interacting surface, but reduces the binding to LEM domain proteins and 

leads to mislocalization from the newly formed NE117.  Co-expression of VRK1 and GFP-BAF 

greatly diminishes the association of BAF with the nuclear chromatin/matrix and leads to its 

dispersal throughout the cell.  

On the opposite, depletion of VRK-1 by RNAi for 13h causes strong accumulation of BAF on 

chromatin throughout mitosis, which clearly indicates that VRK-1 activity is required for BAF 

to dissociate from mitotic chromatin. In addition, an increase in chromatin association of BAF 

in anaphase was observed in absence of VRK-1 in embryo cells. Finally, more than dissociation 

from mitotic chromatin, depletion of VRK1 and the consequent reduction in BAF 

phosphorylation caused abnormalities in the nuclear envelope of interphase cells. One 

explanation could be that an increased fraction of unphosphorylated BAF could extend the 

duration of interactions between BAF and its DNA or protein partners which could be 

responsible for the distorted structure of the nuclear envelope118. 

Analysis of BAF localization during the cell cycle in HEK293 cells confirmed that during 

interphase, total BAF and phosphorylated BAF are present in both the cytoplasm and the 

nucleus119. In early telophase, phosphorylated BAF accumulates at the central region of 

chromosomes, and in late telophase, it already dispersed to the cytoplasm, while total BAF 

translocates to the periphery of chromosomes. Thus, unphosphorylated BAF is mainly 

localized at the periphery of chromosomes through telophase, where the new NE is formed. 

Emerin localizes to the central region of chromosomes in a BAF-dependent manner31. BAF 

phosphorylation controls the recruitment of emerin to the central region of telophase 

chromosomes, which is essential for new NE assembly. 
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In addition to its role in nuclear envelope association around chromosomes, BAF was recently 

found as a spindle factor for shaping a single nucleus instead of an ensemble of individualized 

mitotic chromosomes120. Indeed, a micronucleation phenotype was caused by a siRNA 

targeting BAF. Moreover, BAF mediated DNA cross-bridging in order to form a network at the 

chromatin surface and this increased the mechanical resistance of chromatin. Finally, they 

showed that this chromatin compaction could be reversed by addition of recombinant VRK1. 

In conclusion, as it is represented on the figure 21, BAF-mediated DNA cross-bridging allows 

formation of a compact and mechanically stiff chromatin surface that shapes a single nucleus 

and this BAF-DNA interaction is disrupt by BAF phosphorylation by VRK1 at the early stages of 

mitosis120. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 : Model of the BAF-DNA network 
forming at the surface of anaphase 

chromosomes prior to nuclear envelope 
reassembly.  

BAF, in blue, increases chromatin (in purple) 
surface stiffness and forces formation of a single 
nucleus. Nuclear envelope is labelled in 
green122. 
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2. GENE EXPRESSION 
 

Since several years, different studies focused on the organization of chromatin at the nuclear 

periphery (heterochromatin) (figure 22). Its nature and its role differ from those of chromatin 

located in the nuclear interior (euchromatin)121. Indeed, chromatin at the nuclear periphery is 

compact and transcriptionally silent. Inversely, internal chromatin is unpacked and 

transcriptionally active. The association of a promoter with the inner nuclear membrane (INM) 

is neither necessary nor sufficient for repression. So how does subnuclear localization 

influence gene expression? Recent work argues that the common denominator between 

genome organization and gene expression is the modification of histones and in some cases 

of histone variants122. 

 

 

Figure 22 : Organization of the chromatin at the nuclear periphery123.  

(a) Structure of euchromatin (EC), heterochromatin (HC) and nucleolus (NU) observed by 
electron microscopy (b) Schematic representation of the nucleus and of the nucleolus (with 
the pars granulosa (G) and pars fibrosa (F)).  

 

The nuclear envelope is a tethering point for chromatin124,125. Several nuclear envelope 

components are important for this function, as the mammalian nuclear pore complexes, 

composed of elements that can be separated in two groups, some which could activate gene 

expression whereas others could have a silencing function126,127 and the lamina, which is close 

to compact heterochromatin. 
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a. Nuclear pore complexes and transcription activation 
 

NPCs have been implicated in chromatin organization and gene regulation128,129. Studies in 

yeast revealed that Nups can associate with promoters of active genes130 and that the 

expression of inducible genes is increased by interactions with nuclear pores131. For example, 

in yeast, the nucleoporin Nup84 of pore complexes and its subcomplex components are able 

to activate transcription when they are fused to a DNA-binding domain132. In the absence of 

Nup84, transcriptional activation by most nucleoporins is impaired. 

However, a genome-wide study of Nup-chromatin association in human cells revealed a 

correlation between the binding sites of Nups and regions enriched in repressive histone 

modifications133, which exhibited characteristics of sequences known to associate with the 

nuclear periphery134. In higher eukaryotes, some nucleoporins have two separate pools: one 

activates genes in the nucleoplasm while the other in the peripheral NPC structures has a 

silencing function126,127. 

b. Lamins and gene silencing 
 

Nuclear periphery has been implicated in gene expression regulation. Molecular mapping of 

chromatin regions associated to the lamina identified large genomic regions called lamina-

associated domains (LADs)135. Such LADs are proposed to help organize chromosomes inside 

the nucleus and have been associated with gene repression.  Furthermore, localization of 

these LADs close to the nuclear lamina is facilitated by the presence of lamina-associated 

sequences (LAS), which contain the GAGA motif136. This repeated motif 

directs lamina association and is bound by the transcriptional repressor cKrox, in a complex 

with HDAC3 and Lap2β. Knockdown of cKrox or HDAC3 results in dissociation of LASs/LADs 

from the nuclear lamina.  

In both mammals and nematodes, chromatin associated with LADs is densely packed and 

enriched for repressive histone modifications, most notably H3K9me2/me3122,134,137. In 

nematodes, elimination of two histone methyltransferases, MET-2 and SET-25, compromised 

INM binding138. 
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In metazoans, LEM-domain proteins are found in regions enriched in repressive epigenetic 

marks and which contain all features that define LADs53. This suggests that LEM-domain 

proteins may contribute to LAD establishment or maintenance. In addition, proteins which 

promote the formation of repressed chromatin may contribute to LAD maintenance. Two 

LEM-domain proteins, emerin139 and LAP2140 are able to bind the histone deacetylase 

HDAC3, which allows the deacetylation of histone H4, in order to inhibit transcription activity. 

This confirms that LEM-domain proteins can maintain LADs by recruiting partners that 

contribute to repressed chromatin states. 

c. BAF and gene expression 
 

BAF's roles in transcriptional regulation are major open questions, and might involve 

interactions with a variety of players including transcription factors, chromatin modifiers and 

nuclear lamina components. A first example is BAF association with Sox2 in embryonic stem 

cells that could contribute to the formation or regulation of Sox2 complexes to maintain 

pluripotency141. Another example is found in the photoreceptor development and function 

field. Indeed, BAF was identified in a yeast two-hybrid screen that was designed to identify 

partners of the homeodomain transcription factor Crx, implicated in regulating the expression 

of photoreceptor and pineal genes142. BAF is able to repress the Crx-dependent reporter 

activity in vivo by directly interacting with Crx142. This study also shows that Crx is not the only 

transcription factor that can bind to BAF, but four other paired-like homeodomain proteins 

(Chx10, Pax-6, Otx1, and Otx2) also have the ability to interact with BAF in vitro. 
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3. GENOMIC INSTABILITY AND DNA DAMAGE RESPONSE 
 

Genomic instability is defined as a tendency of the genome to acquire mutations and 

epimutations as well as alterations in gene or chromosome dosage. The origin of this 

phenomenon is none other than failures in processes important for genome stability and 

replication143.  DNA damage is the result of constant attack of the genome by endogenous and 

exogenous agents. It can result from side products of our normal metabolic activities as free 

radicals and reactive oxygen (ROS) or reactive nitrogen species; it can also result from 

environmental factors such as UV radiation, X-rays and chemical compounds. Furthermore, 

DNA lesions might be due to deficiencies in DNA replication or loss of telomere function. The 

most deleterious kinds of lesions, which are DNA double-strand breaks, can be repaired by 

nonhomologous end-joining (NHEJ) or homologous recombination (HR). 

Several lines of evidence have linked laminopathies with increased genomic instability143. In 

particular, expression of several A-type lamin mutants has been associated with impairment 

in the ability of cells to properly repair DNA damage and maintain telomere homeostasis. 

Defects in DNA repair were first reported in the premature aging laminopathy HGPS and 

the Zmpste24−/− mouse model of progeria144.  Later studies indicated that accumulation of 

unrepairable DNA damage in laminopathies such as HGPS and Restrictive Dermopathy is in 

part due to elevated levels of ROS and greater sensitivity to oxidative stress145. A whole variety 

of molecular mechanisms have been proposed to contribute to the defects in DNA repair and 

the increased genomic instability in progeria.  

From the observation that progeria cells exhibit delayed recruitment of 53BP1 and RAD51 to 

γ-H2AX-labeled DNA repair foci after irradiation, the role of lamins in HR and NHEJ pathways 

was studied. The role of lamins in telomere maintenance was also examined. 
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a. A-type lamins and 53BP1 
 

P53-binding protein 1 (53BP1) is an important regulator of the cellular response to DNA 

double strand breaks (DSBs) that can bind to chromatin close to DSBs in order to carry out 

several functions146.  

In NHEJ processes, 53BP1 was shown to be important because it participates in the repair of 

short-range DNA DSBs by inhibiting end-resection and facilitating the recruitment of the NHEJ 

DNA repair machinery. 

A-type lamins are known to stabilize this protein and one of the mechanisms behind genomic 

instability in A-type lamins-deficient cells is the loss of the DNA repair factor 53BP1. This was 

observed in several studies and notably through experiments showing that depletion in A-type 

lamins by lentiviral transduction with shRNAs leads to decreased levels of the 53BP1 protein 

but not of its transcript levels143. 

A search for mechanisms by which A-type lamins affect DNA DSB repair revealed a role for 

cathepsin L (CTSL) in regulating 53BP1 protein stability143. CTSL is a cysteine protease 

ubiquitously expressed in tissues that was recently shown to be able to localize in the nucleus 

instead of its classical localization in the lysosomes. It was found that loss of A-type lamins 

induces transcriptional upregulation of CTSL or increased stability of its transcripts. Moreover, 

increase in CTSL is directly responsible for the decrease in 53BP1 protein levels so that A-type 

lamins seems to stabilize 53BP1 by inducing transcriptional downregulation of CTSL. 

In addition, in progeria cells, loss of components of the NuRD complex and decreased levels 

of the histone acetyltransferase Mof were observed and associated with impaired recruitment 

of DNA repair factors and increased basal DNA damage147,148. This decrease in Mof levels 

correlates with lower global levels of H4K16 acetylation, a histone mark associated with 

chromatin compaction, and decreased recruitment of DNA repair factors such as 53BP1. The 

importance of this H4K16 acetylation is demonstrated by the restoration of 53BP1 recruitment 

upon ectopic expression of Mof.  
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b. A-type lamins defects and alteration in telomere biology 
 

There is evidence in the literature that A-type lamins associate with telomeres, putatively via 

telomere-binding proteins. This association has been shown to be important for the proper 

distribution of telomeres within the 3D nuclear space. A study compared nuclear distribution 

of telomeres between wild-type mouse embryonic fibroblasts and fibroblasts devoid of A-type 

lamins, and showed a clear difference in telomere distribution between the two genotypes149.  

This confirmed that A-type lamins participate in the correct distribution of telomeres 

throughout the entire nuclear volume and that defects in these lamins lead to a nuclear 

decompartmentalization of telomeres. 

A second important feature is the maintenance of a heterochromatic structure for telomere 

length homeostasis and interestingly, A-type lamins participate in the maintenance of histone 

marks found at telomeric heterochromatin. Indeed, in mice fibroblasts expressing a lamin A 

mutant associated with HGPS (HGPS), a down-regulation of H3K9me3 and H3K27me3 and an 

up-regulation of H4K20me3 were observed150–152. These changes found in HGPS cells are 

different from changes observed in mouse fibroblasts expressing no lamin A.  

Indeed, in this second case, no change in H3K9me3 levels was observed whereas a significant 

decrease in H4K20me3 levels was noted. Altogether, these results confirm implication of A-

type lamins in the maintenance of histone marks149. 

Then, A-type lamin mutants exhibited a defective ability to process dysfunctional telomeres 

through the NHEJ pathway149. First, loss of 53BP1 function was recently associated with 

defective processing of dysfunctional telomeres by the NHEJ repair pathway153. Then, 

chromosome fusion percentages were evaluated in mouse fibroblasts, expressing or not A-

type lamins. Clearly, in presence of a dominant-negative mutant of the telomeric binding 

protein TRF2, which induces telomere dysfunction and chromosome end-to-end fusions, the 

number of fusions increased in mouse fibroblasts expressing no A-type lamins 149. Because of 

these two important observations, we can speculate that A-type lamins provide a platform for 

the association of 53BP1 to dysfunctional telomeres.  
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Finally, another study confirmed the implication of lamin A/C in dysfunctional telomeres 

processing. First, co-immunoprecipitation of endogenous TRF2 together with lamin A/C in 

IMR90s revealed an interaction between both proteins154. Then, the specificity of this 

interaction was confirm by pull-down assays using endogenous lamin A/C and GFP-TRF2 

(functional TRF2), GFP-TRF2ΔBΔM (non-functional TRF2) or wild-type GFP-TRF1, in IMR90s. 

Indeed, only interaction between lamin A/C and functional TRF2 (GFP-TRF2) was observed in 

these conditions. In addition, pull-down assays revealed that lamin A mutant that causes HGPS 

(GFP-progerin) could not interact with endogenous TRF2.  

TRF2 has been shown to bind interstitial telomeric sequences155, thus stabilizing  the 

telomeric t-loop; the impact of a decrease in lamin A/C levels or the  LMNA mutation  that 

causes HGPS (progerin) was observed. Both led to a reduction of interstitial t-

loop formation and to telomere loss.  

c. Nuclear envelope and mobility of DNA breaks 

  
A recent study also implicated components of the nuclear envelope, such as the LINC complex 

and associated microtubule motor proteins (Kinesins), in the mobility of dysfunctional 

telomeres as well as of DNA DSBs within the nucleus. In addition, 53BP1/LINC/microtubule-

dependent movement is important for NHEJ-based repair of dysfunctional telomeres and 

DSBs156. All together, these studies indicate that damaged DNA/chromatin exhibits increased 

mobility within the nucleus, and that this mobility is critical for its proper repair. The DNA 

repair factor 53BP1, LINC-microtubule connections, and the lamin network, all seem to play a 

role in these processes. Characterizing how these connections are established and regulated 

will be important for a mechanistic understanding of how nuclear architecture impacts 

genome stability. 

d. A-type lamins and replicative stress 
 

Lamin A/C is present at sites of early replication in normal human fibroblasts152,157. Lamin A/C-

depleted cells are unable to restart most replication forks after treatment with HU compared 

to cells with lamin A/C, indicating that lamin A/C is required for the resolution of stalled 

replication forks158.  This suggests that lamin A/C provides a platform for the resolution of 

stalled replication fork intermediates. 
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III. EMERIN, A NUCLEAR ENVELOPE PROTEIN 
 

1. EMERIN STRUCTURE 
 

Emerin is a type II integral INM protein of 254 amino acids (aa). Its gene was discovered in 

1994 because it is mutated in patients with X-linked EDMD159. Emerin shows ubiquitous 

localization with the highest expression in skeletal and cardiac muscles and is mainly present 

at the inner nuclear membrane160,161. Emerin possesses a single transmembrane (TM) domain 

(aa 223-243) for anchoring at the inner nuclear membrane and in addition, is composed of a 

small C-terminal domain in the luminal space (aa 244-254) and a large hydrophilic N-terminal 

region localized in the nucleoplasm (aa 1-222). This N-terminal region exhibits a small globular 

LEM domain and a large region predicted as unstructured. Structure of the LEM domain was 

solved by NMR49 and as all LEM-domain proteins (as presented in the introduction), it is 

composed of one three-residue N-terminal -helix and two large parallel -helices separated 

by a loop with conserved hydrophobic residues51. 

Most mutations that cause EDMD or other myopathies yield to premature stop codons, and 

truncated emerin is rapidly degraded in cells162. However a small number of mutations are 

missense or short in-frame deletions. Seven of these mutations were reported in patient cells, 

and an eighth mutation was recently identified in the group of Dr G. Bonne (Institut de 

Myologie, Paris). During my PhD, I focused my work on these eight mutations. Five of them 

affect residues of the predicted unstructured nucleoplasmic region (S54F, 95-99, Q133H, 

P183T, and P183H) and cause a classical EDMD phenotype163. Two missense mutations P22L 

and T43I (Bonne, personal communication) and the short in-frame deletion mutation K37164 

affect the LEM domain and are associated with isolated cardiac defects. 
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Recent studies provided biochemical and cellular evidences that emerin can interact with 

itself165. First, yeast 2-hybrid experiments revealed that region 1-225 of emerin binds to itself, 

indicating that C-terminus truncated emerin can form homodimers and/or multimers166. 

Second, in vitro GST-pulldown experiments using recombinant emerin fragment 1-221 and co-

immunoprecipitation of full-length emerin from HEK293T cell extracts also strongly suggested 

that emerin could oligomerize both in vitro and in cells165. A model was proposed to explain 

emerin intermolecular association data (figure 23)165.  

The R region (aa 187 to 220) could be involved in homotypic interactions (R to R) and 

heterotypic interactions between itself and the S region (aa 159 to 162), whereas the LEM 

domain (aa 1 to 47) could interact with the AR region (aa 170 to 220). Consequently, this model 

proposes two emerin “backbone” configurations depending on LEM domain positions. A down 

backbone configuration (figure 23. A), which corresponds to BAF- or chromatin-associated 

positions of the LEM domain, and an up backbone configuration (figure 23. B), which allows 

emerin self-association. 

 

 

Figure 23 : Model for emerin intermolecular association165.  

(A) Down backbone configuration and (B) up backbone configuration. 
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2. EMERIN INTERACTING PROTEINS 
 

Emerin interacts with several proteins essential for nuclear structure and chromatin 

organization. Best described emerin binding partners are A-type lamins and BAF. In addition, 

human emerin directly binds to at least 14 other proteins in vitro (figure 24)167. 

 

Figure 24 : Direct binding partners of emerin167. 

 

a. Emerin forms a ternary complex with BAF and A-type lamins 
 

All LEM-domain proteins localized at the INM are supposed to interact with A-type lamins but 

interestingly, no consensus lamin-binding motif has been identified in LEM-domain proteins. 

Several studies report the existence of an interaction between emerin and lamins and confirm 

that this interaction provides the structural backbone for proper nuclear localization and 

retention of emerin. A first observation of this interaction was done using 

immunofluorescence in Green Monkey Kidney cells: co-localization of emerin with A and B-

type lamins was revealed in interphase cells162. Afterwards, this interaction was confirmed by 

several co-immunoprecipitation experiments168,169. The fact that the emerin and A-type 

lamins directly interact was demonstrated using Biomolecular Interaction Analysis (BIA)170 and 

yeast two hybrid assays166. Finally, structural associations between emerin and lamins were 

investigated in four human cell lines. Absence of lamins A/C led to a mis-localization of 

endogenous and exogenous emerin in the endoplasmic reticulum. In addition, in cell lines 

which express lamin C, but not lamin A, both emerin and lamin C were mis-localized169.  
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Because of these results, a hypothesis could be that lamin A mediates association of lamin C 

with the lamina and then, lamin C stabilizes association of emerin with the inner nuclear 

membrane. 

Concerning molecular details of this interaction, only few data were reported. The region of 

lamin A responsible for emerin binding was delimitated using yeast two-hybrid 

experiments166.  It consists of the lamin A tail domain, and more precisely, the region between 

amino acids 384 to 566. On the other hand, the region of emerin responsible for its interaction 

with A and B-type of lamin tails was deduced from GST-pulldown experiments.  Two regions 

of emerin (residues 55-132 and 159-178) were found as necessary for lamin A and B1 tails 

binding and two regions of emerin (residues 1-132 and 159-220) were found to be sufficient 

for these bindings165.  

Emerin interacts with BAF through its LEM domain. The 3D structure of the complex between 

emerin LEM domain and BAF was solved using NMR and molecular modeling52 (figure 25). On 

one hand, the LEM domain of emerin and more in details, its helix α1, its subsequent loop, 

and the N-terminal end of its helix α2 (in green) can bind directly to the dimer of BAF. On the 

other hand, BAF dimer interacts with the LEM domain through the C-terminal end of helix α2, 

the hairpin turn and the helix α3 of its first monomer (in red) and through the hairpin turn 

between α2 and α3, the C-terminal end of α3, and the central portion of α4 of its second 

subunit (in blue). In addition, superimposition of the two known 3D structures of BAF dimer 

in interaction with either DNA or the LEM domain clearly revealed that BAF binding sites for 

both molecules do not overlap (figure 25). Thus, BAF can probably simultaneously bind to 

emerin and DNA.  

 



 

49 
 

 

Figure 25 : The BAF2 (in blue and red) - EmLEM (in green) interface (PDB: 2ODG) does not overlap the BAF2-

DNA2 (in grey) interface (PDB: 2BZF), as deduced from the superimposition of the 3D structures of BAF dimer 

bound to either emerin or DNA52. 

 

A direct interaction between emerin and BAF at the nuclear envelope of living cells was 

demonstrated by Fluorescence Resonance Energy Transfer (FRET)171. But interestingly, in the 

same study, Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Loss In 

Photobleaching (FLIP) experiments showed that, whereas BAF was highly mobile at the 

nuclear envelope, emerin was much less mobile. Thus, a “touch and go” model was proposed 

according to which BAF interacts frequently but transiently with emerin in interphase cells. 

It was proposed that emerin interacts with A-type lamins in order to provide structural support 

to the nucleus and with BAF in order to regulate gene expression. Recently, studies showed 

that the three proteins are able to interact together to form a ternary complex. First, 

autoradiography experiments using 150 nM 35S-lamin A, 250 nM 35S-BAF, or both proteins, 

which were incubated with immobilized emerin, showed that A-type lamins and BAF together 

form stable complexes with emerin55. Moreover, K. Wilson and co-workers published that 

binding of 35S-emerin to prelamin A tail-containing strips is enhanced fourfold by wild-type 

BAF172. Then, it was shown, in vitro and in HeLa cells, that phosphorylation of BAF on serine 4 

leads to mis-localization of emerin, which failed to be at the inner nuclear envelope. Binding 

of prelamin A tail to BAF was also significantly reduced in the case of BAF mutant S4E. In 

contrast, BAF S4E had no effect on emerin binding to lamin A172. 
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b. Structural binding partners 
 

In addition to lamins, emerin interacts with other proteins that provide structural support to 

the nucleus. First, emerin was report to directly interact with actin. Cytoplasmic actin was well 

studied during several years but afterwards actin was also found in the nucleus173. It was 

described as a component of chromatin remodeling complexes. It was also suggested as 

involved in nuclear architecture. Globular actin (G-actin) was shown to co-immunoprecipitate 

with emerin in myoblast extracts168. Another study demonstrated that emerin can form a 

complex with lamin A and actin, but only in differentiated muscle cells174.  This binding was 

strongly increased in the presence of an active serine-threonine phosphatase. Thus 

dephosphorylation is required to allow emerin-actin binding. Afterwards, it was demonstrated 

that emerin can also bind and stabilize filamentous actin (F-actin) by capping its pointed 

end175. Recently, emerin polypeptides bearing various mutations have been tested in vitro for 

binding to different emerin partners and interaction with actin was confirmed.  

It was shown that the LEM domain as well as the central region of emerin are implicated in 

this binding167. Finally, emerin is able to bind nuclear myosin I, in cells and directly in vitro176. 

Other important emerin partners are SUN-domain and Nesprin proteins. This group of 

proteins clearly plays a structural role in the nucleus because they form the LINC complex (first 

part of this introduction). Nesprin-1 binds to emerin in vitro, as shown by blot overlay177. 

Interestingly, this protein was found as binding also lamin A, suggesting that it might enhance 

a crosslink between emerin and A-type lamins at the nuclear envelope. More recently, 

another Nesprin isoform, Nesprin-2 was found to bind both emerin and lamin A/C tail178. 

Moreover, it was shown that absence of Nesprin-2 in cells leads to mis-localization of emerin. 

Finally, concerning SUN-domain proteins, it was demonstrated, by immunoprecipitation, that 

emerin binds to the nucleoplasmic domains of SUN1 (aa 223–302) and SUN2 (aa 1-174). 

Although a weak emerin interaction was also observed with the proximal end (residues 1–

208) of SUN1179. 
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c. Gene regulatory binding partners 
 

Supporting a role for emerin in gene expression, several gene regulatory proteins have been 

reported to interact with emerin. First, emerin associates directly with the histone deacetylase 

3 (HDAC3)139 and is able to enhance its enzymatic activity by 2.5 fold in vitro.  

Second, co-immunoprecipitation assays from HeLa cell nuclear extracts, and a microtiter well 

binding assay, demonstrated that three different regions of emerin (residues 34-83, 175-196 

and 207-217) interact with the protein germ cell less (GCL)55. GCL is a conserved protein that 

binds to the transcription factor E2F, which activates genes required for entry into S-phase 

and it was shown that emerin interacts with GCL in order to co-repress E2F. Interestingly, 

competition assays demonstrated that BAF and GCL compete for binding to emerin in vitro55. 

Adding to the list of gene regulatory binding emerin partners, a yeast-two-hybrid screening of 

a human heart cDNA library identified a nuclear splicing associated factor called YT521-B180. 

More in details, it was demonstrated that the C-terminus of YT521-B is sufficient to bind 

emerin in vitro and influence splice-site selection in vivo. On the other hand, it was shown that 

this protein binds emerin on the two regions flanking the lamin A binding domain, partially 

overlapping the BAF and lamin A binding regions. 

In a similar yeast-two-hybrid assay, the pro-apoptotic transcription repressor called Btf was 

identified as an emerin interacting protein181. On one hand, this interaction was shown to 

require emerin residue 45-83 and 175-217 and on the other hand, it does require residues 

377–646 of Btf. It is important to note that Btf can relocalize from the nuclear interior to the 

nuclear envelope during apoptosis induction, which suggests that emerin could be required 

to signal apoptosis within the nucleus.  

The latest indication of emerin implication in gene regulation involves -catenin and Lim-

domain-only-7 (Lmo7), two signaling transcription factors that shuttle between the cell 

surface and the nucleus. The first one, -catenin, is known to mediate Wnt signaling, and 

absence of emerin in cells seems to increase Wnt signaling, which suggests that emerin 

normally attenuates this pathway182. The second one, Lmo7, is a transcription factor that 

activates many genes including the emerin gene176. This suggests that Lmo7 binding to emerin 

protein can feedback-regulate emerin gene expression. 
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3. EMERIN POST-TRANSLATIONAL MODIFICATIONS 
 

Emerin plays several functions at the nuclear envelope through binding to a lot of different 

partners. These interactions are differentially regulated by post-translational modifications. 

Major modifications in cells are phosphorylations and for example, emerin can be 

phosphorylated on several sites, like serine and threonine residues including S49, S66, T67, 

S120, S163 and S175183–186. Then, five residues in human emerin were identified as undergoing 

cell cycle-dependent phosphorylation using a Xenopus egg mitotic cytosol model system184. In 

addition, emerin is hyperphosphorylated in four different forms in metaphase and early S-

phase cells163. Finally, during infection by Herpes simplex virus type 1, emerin is 

phosphorylated by several kinases187,188. 

a. Emerin phosphorylation 
 

Human emerin possesses at least 42 published sites of phosphorylation in vivo (25 serines, 4 

threonines and 13 tyrosines)167,189 (figure 26). It was reported that emerin is a major target of 

phosphorylation during mitosis and interphase, but the proteins and pathways that mediate 

phosphorylation on these sites, and the functional consequences of these modifications, 

remain poorly understood. 

 

Figure 26 : Emerin phosphorylation sites identified by mass spectrometry in cells167.  

Hexagons, O-GlcNAc sites; circles, phospho-Ser/Thr; squares, phospho-Tyr; white, asynchronous 
cultures; black, mitotic cultures and conditions; black with outline, sites identified in both 
asynchronous and mitotic cells. The double -underlined region has at least two O-GlcNAc sites and 
potentially other modifications that are uncharacterized due to the large size of the corresponding 
trypic peptide and poor recovery by mass spectrometry. 
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1) Tyrosine phosphorylation 
 

Several independent proteomic studies were achieved in order to identify tyrosine 

phosphorylation sites on emerin and 13 sites were found (figure 27). These sites are indicated 

with black dots on figure 27. All these sites found in human emerin are conserved in mouse 

and only six are conserved in Xenopus. In cells, tyrosine phosphorylation of emerin was 

validated by immunoprecipitation assays189. 

 

Figure 27 : Tyrosine phosphorylation sites of the emerin and amino acid sequences of emerin 
from human, mouse and Xenopus laevis190. 

 

At least two non-receptor Tyrosine kinases target emerin directly: Src and Abl. LC-MS/MS 

analysis revealed three major tyrosines that are phosphorylated by Src: Y59, Y74 and Y95190. 

Concerning Abl, one site was recovered and identified as Y167. 

Tyrosine phosphorylation might regulate emerin interactions with specific partners and in 

particular, it was found as important for emerin binding to BAF184,190. First, BAF interacts with 

the LEM domain of emerin, yet this domain has four tyrosines in human, with at least three 

that are phosphorylated by unknown kinases in vivo. In addition, five tyrosines were found as 

impacting the interaction between BAF and emerin: Y4, Y19, Y34 and Y41 and interestingly, 

Y161, which is not localized closed to the LEM domain. Substitutions that removed a single 

hydroxyl moiety decreased (Y19F, Y34F, Y161F) emerin binding to BAF in vitro and in cells190. 

Concerning Y4F substitution, it was shown to reduce emerin 1-176 binding to BAF in vitro, but 

conferred enhanced binding to BAF when expressed in cells as full-length GFP-emerin190.  
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2) Serine and threonine phosphorylation 
 

Concerning emerin phosphorylation on serines and threonines, several known modifiers were 

suggested as protein kinase A (PKA), GSK3, PKC and ERK2/MAPK. 

For example, ERK2 was shown to directly interact with emerin in vivo during lentiviral 

infection191 and this led to a hyperphosphorylation of emerin that caused an altered 

distribution of emerin at the inner nuclear envelope and a mislocalization of emerin to the 

outer nuclear membrane188.  

b. Emerin O-glycosylation 
 

Emerin is highly modified through serine, threonine and tyrosine phosphorylations but it also 

possesses all features characteristic of O-linked-Nacetylglucosamine-modified proteins by, 

which are the presence of large disordered regions containing a lot of serine and threonine 

residues. O-linked-Nacetylglucosamine is a single sugar modification of serine or threonine 

residues that is abundant, reversible and dynamic, and this modification can compete or 

augment phosphorylation to regulate signaling, transcription, mitosis, and stress responses. 

Immunoprecipitation assay with HeLa cells confirmed that emerin is O-GlcNAcylated in vivo167. 

Afterwards, different emerin polypeptides were O-GlcNAcylated in vitro, in order to identify 

which emerin residues are modified. At least two regions, comprising residues 1–70 and 170–

220, were targeted by the OGT enzyme in vitro. More in details, eight emerin residues were 

O-GlcNAcylated in vitro and five residues were identified: Ser53, Ser54, Ser87, Ser171 and 

Ser173. In cells, only serine 173 was identified as significantly O-GlCNAcylated. 

Thereafter, interaction between O-GlcNAcylated emerin and BAF was studied. Interestingly, it 

was shown that only modification on Ser173 could impact BAF binding to emerin and more in 

details, phosphorylation instead of O-GlcNAcylated at Ser173 reduced significantly BAF 

binding. This result could be explained by different mechanisms. First, a phosphorylation 

versus an O-GlcNAcylation at Ser173 could change emerin conformation. Another hypothesis 

is that modifications on Ser173 could impact binding to a third partner, which could impact 

binding between emerin and BAF afterwards.  
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IV. THE NUCLEAR ENVELOPE AND DISEASES 
 

Many human diseases, called envelopathies, are associated with NE protein defects. A large 

proportion of them are associated with mutations in lamin A/C and emerin. 

1. EMERY-DREIFUSS MUSCULAR DYSTROPHY (EDMD) 
 

EDMD is a group of genetic and degenerative diseases that primarily affects voluntary 

muscles. Its name comes from two physicians, Alan Emery and Fritz Dreifuss, who first 

described this disorder among a large Virginian family in 1966192. EDMD is characterized by 

contractures of major tendons, slowly progressive skeletal muscle wasting and weakness, and 

dilated cardiomyopathy with potentially lethal ventricular conduction system defects that can 

cause sudden cardiac arrest. 

Mutations in EMD (encoding emerin) and FHL1 (encoding FHL1) cause X-linked EDMD (XL-

EDMD), whereas mutations in LMNA (encoding lamin A and C) cause an autosomal 

dominant  (AD-EDMD) or autosomal recessive EDMD (AR-EDMD). For all forms of EDMD the 

diagnosis is based on clinical findings and family history. The diagnosis of X-linked EDMD also 

relies on failure to detect emerin or FHL1 protein in various tissues and molecular genetic 

testing of EMD or FHL1. The diagnosis of AD-EDMD and AR-EDMD relies on molecular genetic 

testing of LMNA193. 

a. X-Linked EDMD 
 

The first gene responsible for the X-linked form was identified in 1994159. It corresponds to 

the STA (or EMD) gene and mutations in this gene were found in several patients. Moreover, 

this gene was found as coding for the emerin protein. 

DNA extraction from peripheral blood lymphocytes was done to detect mutations on the 

emerin gene which cause X-linked EDMD. Almost 100 mutations were found in this STA gene 

and these are approximately composed of 39.5% of small deletions, 31% of non-sense 

mutations, 15.5% of mutations in splice sites, 4% of large deletion, 8.5% of missense mutations 

and 1.5% of mutations in the promoter.  
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Although, the majority of mutations results in complete loss of emerin, some mutations have 

been identified as reducing expression level and protein amount194.  

Interestingly, despite the different mutations in EDMD producing varying effects on emerin 

expression, the clinical phenotype of all the patients is similar.  

Several studies focused on the emerin mutants that are still present in cells. Five emerin 

variants were observed at the nuclear membrane: S54F, 95-99, Q133H and P183T/H. 

Interestingly, all the corresponding mutations are detected in the predicted unfolded part of 

emerin. The behavior of four of these mutants (S54F, 95-99 and P183H/T) was studied by 

transfection of GFP-mutants in C2C12 myoblasts168. All mutants displayed reduced targeting 

and retention at the nuclear envelope in comparison to wild-type emerin and this was 

particularly significant in the case of mutant 95-99. The observed immunofluorescence 

intensity decrease might correspond to a decrease in expression, in stability or to a wrong 

localization. 

Concerning mutation Q133H, it was shown to reduce the amount of emerin compared to 

control195 and study of the corresponding GFP-mutant in COS-7 cells showed a correct 

localization.  

Furthermore, emerin polypeptides bearing four of these mutations (S54F, 95-99, Q133H and 

P183H) were tested in vitro for binding to different partners: BAF, lamin A, GCL, Btf, YT521-b, 

Lmo7, HDAC3, F-actin and MAN1196 (figure 28).  On one hand, all tested mutants are still able 

to bind BAF. On the other hand, interaction between all emerin mutants and HDAC3 is 

disrupted. Interestingly, mutant 95-99 is the most functionally affected. Indeed, this mutant 

cannot bind anymore, in addition to HDAC3, A-type lamins, GCL, Btf, actin and MAN1. Like 

mutant 95-99, mutant Q133H cannot bind actin and MAN1 whereas mutant S54F cannot 

bind Btf. Finally, mutant P183H is the only one that cannot bind to Lmo7.  

Recently a new in frame EMD deletion was found: K37. This mutation affects the LEM domain 

and is associated with isolated cardiac defects in patients164.  



 

57 
 

 

Figure 28 : X-linked EDMD mutation impacts on emerin binding to its partners196.  
 

Scoring: normal binding (+), weakened binding (± and gray), and undetectable binding (black box). nt, not 
tested. 
 

b. Autosomal EDMD 
 

Although most cases of EDMD are X-linked, a rare autosomal dominant form (AD-EDMD) was 

also reported. The gene responsible for AD-EDMD was identified in 1999. It is localized on 

chromosome 1q11-q23 and corresponds to the LMNA gene, which encodes A-type lamins197.  

Unlike X-linked EDMD, the majority of mutations which cause AD-EDMD are missense 

mutations and lead to the production of an equimolar mixture between normal and mutated 

lamins198,199. 

Three mechanisms are possible to cause autosomal dominance. The first one is a mechanism 

in which the reduced level of functional lamin A/C is not sufficient for normal lamina function. 

The second proposed mechanism is that lamin A/C mutants play a deleterious function. The 

last one is that, knowing that lamins form dimers in order to form filaments, a functional 

multimer exists, which cannot tolerate a defective subunit. 
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2. OTHER LAMINOPATHIES 
 

More than EDMD, mutations in the LMNA gene have been shown to cause a large spectrum 

of diseases and the term of laminopathies has been adopted to describe them200–203. So far, 

at least eight different laminopathies have been associated to mutations in LMNA, including 

dilated cardiomyopathy with conduction defects (CMC), Limb-girdle muscular dystrophy type 

1B (LGMD), Dunnigan-type familial partial lipodystrophy (FPLD), Charcot-Marie-Tooth disease 

(CMT), mandibuloacral dysplasia (MD), restrictive dermopathy (RD) and Hutchinson-Gilford 

progeria syndrome (HGPS). A representative set of mutations causing these different 

pathologies, including AD-EDMD, is represented on figure 29199. 

 

Figure 29 : Distribution of lamin A mutations and their related laminopathies, observed after 
clinical diagnosis204,205 with A-EDMD in blue, DCM in green, LGMD1B in black, CMD in gold, FPLD2 

in red and CMT2B in purple.  

‘†’ indicates that the same amino acid change causes different laminopathies. *R133L also causes 
WRN, *S143F additionally results in HGPS, *R527H causes MAD too and *R644C also gives rise to a 
range of other disorders. °Patients carrying R527C develop either a severe form of MAD and/or 
progeria199. 
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a. Cardiomyopathy with conduction defects (DCM) 
 

Cardiomyopathies are characterized by cardiomyocyte dysfunction and tissue-wide 

remodeling of the myocardium leading to functional decline. LMNA was found as implicated 

in this kind of disease in 1999206, by Fatkin et al., and accounts for approximatively 6-8% of 

CMD cases in humans. The number of mutations causing CMD increased and at least eight 

mutations are known198 (figure 29). 

This kind of disease can occur as an isolated phenotype or more frequently in combination 

with a skeletal muscle dystrophy such as EDMD or Limb girdle muscular dystrophy207,208. 

b. Limb-girdle muscular dystrophy type 1B (LGMD-1B) 
 

LGMD-1B, like other muscular dystrophies, is primarily a disorder of voluntary muscles. 

Indeed, it affects mainly the proximal limb-girdle musculature209. This group of diseases 

comprises 15 different types inherited as both autosomal dominant and recessive forms. 

As it is represented on figure 29, LGMD1B mutations (black on figure 29) tend to cluster in 

both the Ig-like fold and coil 2. 

c. Dunnigan-type familial partial lipodystrophy (FPLD) 
 

Lipodystrophies are a group of diseases characterized by the absence or reduction of 

subcutaneous adipose tissue. Dunnigan-type FPLD is a rare autosomal dominant disease 

characterized by loss of subcutaneous adipose tissue from extremities and trunk and 

accumulation of fat in the head and neck areas210. 

A first mutation was identified, R482Q211 and afterwards, five other mutations were found. As 

it is shown on figure 29, at least half of the known mutations that cause this pathology are 

localized in the lamin tail region147. 

d. Charcot-Marie-Tooth disease (CMT) 
 

Charcot-Marie-Tooth diseases form a heterogeneous group of hereditary motor and sensory 

neuropathies. This group can be classify in two subgroups: the first one is composed of 

demyelinating type diseases (type 1) and the second one of axonal type diseases (type 2)38. 
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Mutations in the LMNA gene are associated with axonal CMT. The first mutation was 

discovered in three consanguineous Algerian families. Genome analysis identified a missense 

mutation causing an R298C substitution. 

e. Progeroid syndromes (PS) 
 

Mutations in lamins cause muscle diseases, adipose tissue diseases and neuropathies, as 

shown in Figure 29. They also cause accelerated aging syndromes also called progeroid 

syndromes, as presented in the following paragraphs. 

1) Hutchinson-Gilford progeria syndrome (HGPS) 
 

Hutchinson-Gilford progeria (HGPS) is a rare genetic disorder that causes an average age of 

death at 13.4 years due to coronary artery disease37. It characterized by abnormalities in skin, 

bone, fat tissue, hair and blood vessels. The most common HGPS mutation is located at codon 

608 and like I already explained in the first part of this introduction, it is a silent mutation 

G608G. However, this mutation induces a cryptic splicing donor site that generates a 150-

nucleotide deletion in the mRNA sequence. In consequence, the resulting prelamin A bears a 

50-amino acid in-frame deletion and lacks the proteolytic cleavage site for ZMPSTE24, which 

is essential  for C-terminal farnesyl group release37,212. The incompletely processed prelamin 

A is commonly called progerin. In cells, progerin accumulation correlates with nuclei that 

exhibit altered size and shape with nuclear envelope interruptions. In addition, the presence 

of progerin induces a loss of heterochromatin and H3K9 trimethylation, whereas H4K20 

trimethylation level increases151,152,213,214. Progerin also impairs the response to oxidative 

stress through, for example, NRF2 (Nuclear Factor (erythroid-derived 2)-like 2) transcription 

factor sequestration, which leads to an accumulation of ROS (reactive oxygen species) and an 

impairment of the DNA damage response. 

Because of its farnesylation, progerin enhances some interactions that might depend on its 

farnesyl moiety. For example, it was shown that farnesylated prelamin A interacts with NARF 

(Nuclear Prelamin A Recognition Factor)215 and SUN1 proteins216 whereas interaction with 

HP1 is disrupted217. 
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Because it was demonstrated in vivo that BAF could interact with different prelamin A 

forms218, and because accumulation of BAF in the nucleus of HGPS cells was observed, it was 

proposed that some chromatin defects could be triggered by the progerin-BAF interaction. To 

confirm this hypothesis, a recent study demonstrated first that progerin could bind BAF in 

HEK293 cells. Indeed, after expression of FLAG-tagged progerin in HEK293 cells, recruitment 

of endogenous BAF at the nuclear rim was observed219. In addition, co-immunoprecipitation 

studies confirmed that progerin is able to bind BAF WT.  

Interestingly, in this same study, it was shown that BAF is necessary to mediate both prelamin 

A and progerin effects on nuclear distribution of LAP2-alpha and HP1, which are proteins 

involved in chromatin-related processes (figure 30). These observations could explain how the 

progerin-BAF interaction plays a role on chromatin organization: accumulation of progerin 

induces BAF translocation from the cytoplasm to the nuclear lamina where both proteins 

interact and this could help progerin to interact with DNA organizing proteins to modify 

chromatin organization through BAF. 

 

 

Figure 30 : Speculative cartoon of the mechanism involving prelamin A-BAF interaction in 
chromatin organization changes associated to prelamin A accumulation219. 
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Another protein was found as interacting with progerin and could contribute to the 

development of the senescence phenotype of HGPS and aged cells. Indeed, different 

techniques as proteomic studies, exploiting RNA interference technology to target the 

mutated pre-spliced or mature LMNA mRNAs220 or two-hybrid approaches using a cDNA 

library to search for progerin-interactive partner proteins221, have identified lamins A/C as 

progerin-binding partners222. More in details, a direct interaction was found between progerin 

and A-type lamins whereas no interaction was detected with B-type lamins.  

Interestingly, an ELISA assay in which His-tagged lamin A middle region (His-LMNA-M; from 

residues 301 to 564) was fixed in a 96-well plate and incubated with GST-fused recombinant 

lamin A C terminal region (GST-LMNA) or with progerin C-terminal region (GST-progerin) 

clearly revealed that progerin–lamin A binding affinity is more than 2-fold stronger than that 

of lamin A–lamin A binding (figure 31). 

 

Figure 31 : ELISA results showing His-LMNA-M/ GST-LMNA and His-LMNA-M/GST-progerin interactions222.  

 

This result is in agreement with the HGPS cell phenotype in which A-type lamins form an 

irregular fiber arrangement222. Indeed, stronger affinity of progerin for lamin A could induce a 

tighter but irregular bundle formation compared to intermediate filaments formed by 

interaction between several lamin A/C proteins.  
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Another hypothesis is that interaction between progerin and lamin A may induce nuclear 

deformation, because it was shown that progerin alone did not induce nuclear deformation in 

lamin A/C-deficient cells whereas co-transfection with lamin A/C could induce it222.  

All these results are consistently leading to the hypothesis that the strong affinity of progerin 

for lamin A/C could contribute to nuclear lamina alteration in HGPS cells. 

2) Atypical progeroid syndromes (APS) 
 

Besides HGPS, several atypical progeria syndromes (APS) caused by LMNA gene mutations 

have been described, such as atypical Restrictive Dermopathy (the most severe), Werner 

syndrome and mandibuloacral dysplasia. Some mutations causing atypical progeroid 

syndromes were identified. First, heterozygous mutations localized in lamin A/C C-terminus 

like T623S223 were found. Secondly, some mutations were identified in the coiled-coils 1A and 

1B of lamin A/C, which are required for the polymerization of the nuclear lamins into higher 

order structures. Indeed, concerning coiled-coil 1A, the heterozygous mutants A57P224 and 

both E55K and E55G225 were observed. Similarly, several heterozygous LMNA mutations in the 

coiled-coil 1B were identified as R133L226, L140R224, S143F227 and E145K37. Finally, a large 

number of mutations were found in the globular domain of lamin A/C, the Igfold: 

heterozygous mutations as R527C228 and T528M associated to M540T229 or homozygous 

mutations like R435C230, R471C203, R527C231, R527H232–235, A529T236, A529V237 and K542N238.  

All these mutations are reported on figure 32. 

 

Figure 32 : Localization of Igfold residues that are mutated in APS (PDB: 1IFR43). 
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a) Restrictive dermopathy (RD) 

Restrictive dermopathy is the most severe of these progeroid syndromes and was first 

described by Witt et al. in 1986239. It is a rare lethal genetic disorder that causes congenital 

tautness of the skin with characteristics of facial features (small mouth, small pinched nose, 

and micrognathia), bone mineralization defects including thin, dysplastic clavicles, and 

pulmonary hypoplasia240. 

A first group screened LMNA coding sequence and exon-intron boundaries in nine children 

affected by RD and did the same for the endoprotease ZMPSTE24 of seven patients. As I 

already mentioned, this enzyme is essential for post-translational processing of prelamin A 

and allows a correct maturation of lamin A to be inserted into nuclear lamina. In one case, 

they identified the most common heterozygous mutation responsible of HGPS (G608G) and in 

another case, they identified a novel splicing mutation specifically affecting lamin A. Both 

mutations were leading to the production and accumulation of truncated prelamin A. 

Concerning ZMPSTE24, they found a unique heterozygous insertion leading to the creation of 

a premature termination codon240.  

Then, the same group did another analysis on ten patients affected by RD and found three 

novel null mutations in ZMPSTE24 and in all cases, a complete absence of both ZMPSTE24 and 

mature lamin A was observed36. 

Another study analyzed genomic DNA extracted from peripheral blood lymphocytes of a 2-

year girl affected by RD. This analyze revealed the presence of a homozygous mutation, 

R435C230. Thereafter, presence of this mutation R435C was recovered in other patients241. 

b) Werner syndrome 
 

The Werner syndrome is characterized by scleroderma-like skin changes, short stature, 

thinning of the hair, diabetes mellitus, soft tissue calcification and premature atherosclerosis. 

It was first described as a progeroid syndrome caused by mutations in the WRN gene, which 

codes for a DNA helicase but afterwards, it was shown that some features of this disorder are 

also present in laminopathies caused by mutations in LMNA. In addition, it was found that 

individuals with atypical Werner syndrome with mutations in LMNA had a more severe 

phenotype than those affected by the disorder due to mutated WRN. 
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Three LMNA missense mutations, localized in lamin A/C coiled-coil domain 1, were identified: 

A57P, R133L and L140R. Immunofluorescence studies on patient fibroblasts were done and 

revealed that these mutants cause abnormal nuclear shape and apparition of chromatin in the 

cytoplasm224. 

c) Mandibuloacral dysplasia (MAD) 
 

Mandibuloacral dysplasia is a rare autosomal recessive disorder characterized by postnatal 

growth retardation, skeletal malformations, craniofacial anomalies, joint contractures and 

types A and B patterns of lipodystrophy. Owing to its slowly progressive course, the syndrome 

was observed in adults, and pediatric case reports are scarce232. 

A homozygous mutation, R471C, was identified in a 7-year girl and it was report that this 

mutation causes a severe early MAD combined with progeroid features203.  

Another homozygous mutation, R527C, was found as causing severe MAD during infancy231. 

Then, this mutation was identified in the LMNA gene of two children who were suffering from 

atypical HGPS242. 

Furthermore, one study analyzed five consanguineous Italian families, containing patients 

affected by typical MAD and after sequencing of the LMNA gene, identified a homozygous 

missense mutation, R527H232. Patient cells showed nuclei with abnormal lamin A/C 

distribution and abnormal nuclear shape. Several studies supported the implication of this 

mutation in MAD233–235. 

Finally, two homozygous missense LMNA mutations A529V237 and A529T236 were identified. 

A529V was found in a male and a female patients with MAD237 and mutation analysis of a 56-

year-old Japanese woman with MAD and type A lipodystrophy revealed the second one, 

A529T236. 

 

 

 

 



 

66 
 

3) Nestor Guillermo Progeria Syndrome (NGPS) 
 

Recently, two unrelated patients who exhibited Hutchinson-Gilford Progeria syndrome-like 

phenotypes were described243. These patients did not present all symptoms of HGPS 

syndromes. For example, they did not show signs of ischemia or atherosclerosis and these 

patients were much older than the average life span of progeroid patients. 

The new syndrome was called Nestor Guillermo Progeria Syndrome (NGPS) and after genome 

sequencing, a homozygous mutation in the BAF gene was discovered. This mutation, A12T, 

does not disrupt the dimerization of the protein in vitro but affects BAF protein level219,244. 

Indeed, BAF was detectable in NGPS nuclei but hardly visible in the cytoplasm. Finally, this 

mutant also affects nuclear morphology. 

Unlike in other progeroid syndromes, in NGPS cells, prelamin A processing is normal. But a 

recent study demonstrated that A12T mutation affects the ability of prelamin A to modify 

chromatin organization219. To prove this, an electron microscopy study was performed on 

HEK293 cells expressing FLAG-tagged proteins in combination with BAF. Normal chromatin 

organization was observed in cells expressing WT A-type lamins (LA-WT) in combination with 

WT BAF, whereas when WT A-type lamins were co-expressed with BAF A12T, chromatin 

architecture was affected (figure 33). Indeed, peripheral heterochromatin did not adhere 

anymore to the nuclear lamina. Interestingly, co-expression of prelamin A (LA-C661M) with 

WT BAF induced a specific recruitment of the heterochromatin with impressive beads-on-a-

string appearance whereas in presence of BAF A12T, this beads-on-a-string appearance was 

not visible anymore, but only some heterochromatin clustering was observed. 
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Figure 33 : Electron microscopy evaluation of the impact of prelamin A and BAF mutations on chromatin 
organization219. 

 

This observation led to new hypotheses concerning the role of BAF interaction with A-type 

lamins. Indeed, the authors showed that in NGPS, BAF mutation compromises prelamin A-BAF 

interaction but also impairs prelamin A-mediated H3K9m3 intranuclear recruitment; it could 

perturb the epigenetic function of BAF, affecting its ability to interact with histone H3 or 

involved in histone H3 modification. In HGPS, the persistence of BAF-progerin binding could 

impair different BAF interactions or slow down the dynamics of BAF protein complexes. 
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V. HYPOTHESIS AND THESIS OBJECTIVES 
 

The nuclear envelope is composed of a double lipid bilayer, corresponding to the inner and 

outer nuclear membranes, and a large number of proteins. It contributes to the shape and the 

position of the nucleus, to the cell structure and mobility, to the organization of the genome 

and to the regulation of signaling pathways. Mutations in genes coding for nuclear envelope 

proteins, like mutations in the lamin genes, cause a large number of human diseases, called 

envelopathies.  Structural information that describes the 3D arrangement of these proteins at 

the nuclear envelope is lacking, and this hampers the description of their normal and 

pathogenic functional mechanisms. 

The LBSR (Structural Biology Laboratory and Radiobiology) works since several years on this 

structural characterization of protein complexes that are mutated in human diseases. The aim 

of my thesis was to characterize the interaction between lamin A/C and emerin, in order to 

obtain molecular details about the complex in vitro, and to understand the impact of disease-

causing mutations on this interaction in vitro and in cells. 

To achieve this goal, we decided to first describe the structure of emerin. During the beginning 

of my thesis, Isaline Herrada, a PhD student in the lab, showed that emerin fragment 1 to 187 

oligomerizes in vitro. Simultaneously, the group of K. Wilson in Baltimore published that 

emerin could interact with itself through several regions in vitro and in cells165. Moreover 

Guilluy et al.107 published that emerin is phosphorylated by Src during a mechanical stress on 

tyrosines 74 and 95, and this is a critical event to trigger the mechanical response of the 

nucleus107. Therefore we decided to study the impact of oligomerization and phosphorylation 

on emerin binding to lamin A/C.  

In this manuscript I will report: 

(1) the structural characterization of emerin (partly performed in collaboration with Dr 

Isaline Herrada). 

(2) the structural description of two different complexes involving emerin and lamin. 

(3) the impact of disease-causing mutations on these interactions, as observed in vitro but 

also in cells (collab. with Dr Brigitte Buendia, Univ. Paris Diderot). 

(4) the role of phosphorylation by Src on emerin structure and binding properties. 
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I. STRUCTURE OF THE INNER NUCLEAR ENVELOPE 
PROTEIN EMERIN 

 

The function of emerin at the nuclear envelope depends on its oligomerization state, 3D 

arrangement and modifications. At the beginning of my PhD, I worked together with another 

PhD student, Dr Isaline Herrada, in order to describe the oligomerization states of emerin 

fragment 1 to 187, also called EmN. This work was triggered by two observations:  

- Emerin nucleoplasmic region binds to lamin A tail. Indeed, emerin nucleoplasmic 

region (residues 1 to 225) binds to lamin A/C (residues 1 to 566) as well as the tail 

region of lamin A (residues 385 to 664) as observed by yeast 2-hybrid 

experiments166 and this interaction is impaired by mutations in emerin region 70 

to 178 as seen by blot overlay assays245. However we did not observe any binding 

between monomeric EmN and lamin A tail by NMR.  

 

- Emerin oligomerizes. Indeed, emerin nucleoplasmic region (residues 1 to 225) 

interacts with itself as observed by yeast 2-hybrid experiments166. Later during my 

PhD it was also reported that emerin self-associates in vitro and in cells165. 

Our hypothesis was that oligomerization of emerin could regulate lamin A tail binding. I have 

here inserted the 2 papers in which we describe the oligomerization of EmN from a biophysical 

point of view. Then I describe additional data that I obtained on the phosphorylation of EmN 

by a set of kinases involved in cell cycle regulation and mechanotransduction. 

 

1. STRUCTURAL CHARACTERIZATION OF EMERIN NUCLEOPLASMIC REGION 
 

The structure of emerin nucleoplasmic region (residues 1 to 221) was analyzed by solution 

NMR (figure 34). The LEM domain presents a 1H-15N spectrum typical of a  fold49. The 

narrow distribution of the peaks present on the 1H-15N spectra of fragments 67-170, 67-187 

and 67-221 suggested that these fragments are unstructured. Assignment of the NMR signals 

of fragment 67-170 confirmed that this fragment is intrinsically disordered (see in Appendix 

1: Samson et al., Biomol NMR Assign 2016). Thus emerin nucleoplasmic region is composed of 

a small globular LEM domain and a large disordered fragment. 
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 In the papers inserted below, I focus on the description of the oligomeric states of 

emerin. The whole nucleoplasmic region of emerin, from residue 1 to residue 221, was 

systematically aggregating during the dialysis against a urea-free buffer. Therefore I studied 

oligomerization of both EmN (from residue 1 to residue 187) and EmC221 (from residue 67 to 

residue 221). I first characterized EmN oligomers because EmN contains the region proposed 

to bind to lamin A/C. 

The first paper reports that EmN can self-assemble into long curvilinear filaments. 

These oligomers were observed by negative-staining Transmission Electron Microscopy (EM) 

thanks to the facilities of Dr Maïté Paternostre in our laboratory in Saclay and Dr Dmytro 

Puchkov at the FMP Berlin. Emerin-emerin proximities in cells were consistently detected by 

in situ Proximity Ligation Assays (collab. with Dr Brigitte Buendia, Uni Paris Diderot). Defects 

in self-assembly and cellular distribution were observed for several emerin variants causing 

Emery-Dreifuss Muscular Dystrophy. In particular, for variant del95-99, both a lack of self-

assembly in vitro and a decrease in emerin-emerin and emerin-lamin A/C proximities in cells 

were observed. These first results were consistent with our first hypothesis that emerin self-

assembly is essential for emerin function and in particular for lamin recognition. 

Figure 34 : Architecture of emerin and 
superimposition of the 1H-15N spectra of 

fragments 1-49, 67-170, 67-187 and 67-221 of 
emerin, recorded in 20mM phosphate buffer 

pH 6.5, 30mM NaCl, at 700 MHz and 303K. 
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Abstract 

More than 100 genetic mutations causing X-linked Emery-Dreifuss muscular dystrophy have been identified 

in the gene encoding the integral inner nuclear membrane protein emerin. Most mutations are nonsense 

or frameshift mutations that lead to the absence of emerin in cells. Only very few cases are due to missense 

or short in-frame deletions. Molecular mechanisms explaining the corresponding emerin variants loss of 

function are particularly difficult to identify because of the mostly intrinsically disordered state of emerin 

nucleoplasmic region. We now demonstrate that this EmN region can be produced as a disordered 

monomer, as revealed by Nuclear Magnetic Resonance, but rapidly self-assembles in vitro. Increases in 

concentration and temperature favor the formation of long curvilinear filaments with diameters of 

approximately 10 nm, as observed by electron microscopy. Assembly of these filaments can be followed by 

fluorescence through Thioflavin-T binding and by Fourier-transform Infrared spectrometry through 

formation of -structures. Analysis of the assembly properties of five EmN variants reveals that del95-99 

and Q133H impact filament assembly capacities. In cells, these variants are located at the nuclear envelope 

but the corresponding quantities of emerin-emerin and emerin-lamin proximities are decreased compared 

to wild-type protein. Furthermore, variant P183H favors EmN aggregation in vitro and variant P183T 

provokes emerin accumulation in cytoplasmic foci in cells. Substitution of residue Pro183 might 

systematically favor oligomerization, leading to emerin aggregation and mislocalization in cells. Our results 

suggest that emerin self-assembly is necessary for its proper function and that loss of either the protein 

itself or its ability to self-assemble causes muscular dystrophy.  



 

 
 

Introduction 

In the metazoan nucleus, the genome is surrounded by the nuclear envelope, containing a double 

lipid membrane and a large number of proteins. A filamentous protein meshwork called the nuclear lamina 

lines the inner nuclear membrane. It is primarily composed of intermediate filament proteins called A-type 

(lamin A/C) and B-type lamins. It is anchored to the nuclear membrane by an extensive array of inner 

nuclear membrane proteins. Lamins and inner nuclear membrane proteins contribute to the architecture 

of the nuclear envelope. Emerin is one of these inner nuclear membrane proteins. Its gene was discovered 

in 1994 because it is mutated in patients with an X-linked Emery-Dreifuss muscular dystrophy (EDMD; 1). Its 

mRNA shows ubiquitous tissue distribution with the highest expression in skeletal and cardiac muscles. In 

1996, availability of anti-emerin antibodies enabled localization of the protein at the nuclear membrane 2, 

3. More precisely, emerin is anchored at the inner nuclear membrane via its hydrophobic C-terminal domain 

from amino acid 223 to amino acid 243 4. The fragment of emerin from amino acid 117 to 170 is sufficient 

for nuclear accumulation but only the fragment from amino acid 3 to 170 is capable of targeting an integral 

membrane protein to the inner nuclear membrane 5. In the heart and cultured cardiomyocytes, emerin 

might additionally be associated with intercalated discs 6. Thus, it could play a ubiquitous role in association 

of the nuclear membrane with the lamins and a tissue-specific role in heart in membrane anchorage to the 

cytoskeleton. 

Emerin interacts with several proteins essential for cytoplasmic and nuclear structure and 

chromatin organization. Binding partners include lamin A/C, B-type lamins, actin, BAF and lamina-

associated polypeptide 1 7-11. Emerin interaction with lamin A/C was revealed by several teams and is 

supported by the fact that a large number of mutations in lamin A/C also cause EDMD 12. Emerin generally 

colocalizes with lamins, being mainly at the nuclear periphery in interphase 13. Furthermore, lamin A is 

essential for anchorage of emerin to the inner nuclear membrane 14. However, emerin and lamins do not 

remain colocalized during mitosis, demonstrating that their interaction is regulated in a cell cycle-

dependent manner. Emerin also binds the integral inner nuclear membrane protein lamina-associated 

polypeptide 1, which similarly associates with lamins and causes muscular dystrophy and cardiomyopathy 

when deleted from striated muscle 11. Emerin and lamin A/C further bind actin at the late stages of myotube 

differentiation and in mature muscle and these interactions are regulated by phosphorylation 15. Wilson 

and co-workers proposed that emerin region between residues 1 and 221 caps the pointed end of actin 

filaments 16. Lammerding and co-workers showed that emerin regulates the activity of the 

mechanosensitive transcription factor megakaryoblastic leukemia 1, a myocardin family member that is 

pivotal in cardiac development and function, through modulation of nuclear and cytoskeletal actin 

polymerization 17.  Furthermore, emerin organizes actin flow for centrosome orientation and nuclear 

movement in migrating cells 18. Emerin is also tyrosine phosphorylated after force is applied on isolated 

nuclei and this event mediates the nuclear mechanical response to tension 19.  



 

 
 

As emerin-deficient mouse embryo fibroblasts have apparently normal nuclear mechanics but impaired 

expression of mechanosensitive genes in response to strain, it has been suggested that disease-causing loss 

of function mutations do not act by increasing nuclear fragility but through altered transcriptional 

regulation20. Interaction of emerin with the DNA-bridging protein BAF is important for nuclear membrane 

targeting to chromatin and chromatin decondensation during nuclear assembly 21 and is regulated through 

mitotic phosphorylation 22, 23.  

Most mutations in the gene encoding emerin in patients with X-linked EDMD are nonsense or out-

of-frame mutations that lead to the absence of emerin in patient cells 24. Only very few EDMD cases are 

due to missense or short in-frame deletions. Attempts to describe the impact of these mutations on emerin 

structure and binding properties have been hampered by difficulties in obtaining pure and soluble 

fragments of the emerin nucleoplasmic region from amino acid 1 to 221 25. The three-dimensional structure 

of the emerin N-terminal LEM domain, from amino acid 1 to 45, has been solved 26 and a model of its 

structure in complex with a BAF dimer has been proposed 27. However, it was demonstrated in HeLa cells 

that the LEM domain and distal tyrosines (a.a. 59, 74, 95, 161) contribute to BAF binding 28. The region of 

emerin from amino acid 46 to 221 is predicted mainly intrinsically disordered 29. It contains the lamin and 

actin binding regions of emerin. It also comprises four positions (a.a 54, 95-99, 133, 183) whose substitution 

or deletion do not hinder emerin expression but cause EDMD 7, 30-32. The structural consequences of these 

changes in the protein are yet unknown. They could preclude specific emerin modification events or locally 

modify the three dimensional structure and conformational plasticity of the protein. They could also affect 

assembly of protein complexes involving emerin, either by altering emerin oligomerization and/or hindering 

partner recognition. 

We now present a combined biochemical and cellular analysis of the nucleoplasmic region of 

emerin, describing its self-assembly properties and providing novel data on the architecture of emerin 

oligomers. Wilson and co-workers recently proposed that residues 187-220, at the C-terminus of the 

nucleoplasmic region, are essential for emerin intermolecular association both in vitro and at the nuclear 

envelope 29. We further show that emerin fragment EmN, from residue 1 to residue 187, forms filaments in 

vitro, and that two variants with alterations in this fragment modify the organization of emerin at the 

nuclear envelope. From the comparison between results obtained in vitro and in cells on the full-length 

emerin protein, we discuss mechanisms that may lead to self-assembly defect and loss of function of emerin 

variants with amino acid substitutions or a small deletion associated to X-linked EDMD. 

 

 

 

 

 

 



 

 
 

Results and Discussion 

The region of emerin from amino acid 1 to 187 is able to self-associate either through disulfide bridge 

formation or via hydrophobic interactions – We produced two recombinant fragments of emerin in 

Escherichia coli: the whole nucleoplasmic region preceding the transmembrane domain from amino acid 1 

to 221 (EmN0) and a smaller nucleoplasmic fragment from amino acid 1 to 187 (EmN) (Figure 1A,B). 

Bioinformatics analysis using the Disopred3 webserver predicted that, outside of the LEM domain, these 

fragments, which include amino acid substitutions and deletions in expressed disease-associated emerin 

variants, are essentially intrinsically disordered (Figure 1C). However, three regions show a tendency for 

local order (Metadisorder score lower than 0.7); they comprise residues 74 to 106, residues 159 to 186 and 

residues 203 to 208, respectively. The two first regions are rich in conserved hydrophobic residues (red 

squared in Suppl. Figure 1). One of these regions contains the residues deleted in the EDMD-associated 

variant del95-99 (blue squared in Suppl. Figure 1). The capacities of these regions to locally adopt preferred 

3D structures are currently unknown.  

As EmN0 and EmN are mainly present in inclusion bodies when expressed in bacterial cells, we 

purified these fragments by affinity chromatography in 8 M urea. The two fragments were then refolded 

when dialyzed in Tris 50 mM (pH 6.8), NaCl 150 mM. EmN0 was essentially only obtained as aggregates in 

all tested conditions (including pH from 5.0 to 9.0 and NaCl concentrations from 30 to 500 mM), as 

previously observed 25. Therefore, we decided to use the more soluble EmN for the rest of our study. 

Analysis of the NMR 1H - 15N HSQC spectrum of refolded EmN showed that this emerin fragment is only 

partially structured. Indeed, about 50 HSQC signals show non-random coil 1H chemical shift and/or 

correspond to positive 1H -> 15N nOe values (Figure 1D). Most of these signals can be assigned to the emerin 

LEM domain based on previous 1H chemical shift assignments (BMRB entry 5074). The remaining HSQC 

signals have a 1H chemical shift comprised between 7.8 and 8.4 ppm (Figure 1D). Such low dispersion of the 

backbone 1H resonances suggests that they correspond to EmN unstructured residues. Moreover, analysis 

of the NMR 1H -> 15N nOe experiment shows that the corresponding 1H-15N correlations are absent from 

the saturated experiment spectrum when compared to the 1H - 15N HSQC spectrum, which confirmed that 

these EmN residues are highly flexible in solution (Figure 1D).  

We next tested the impact of the refolding buffer on emerin solubility and oligomerization by 

analytical ultracentrifugation (Figure 2A). In Tris 20 mM (pH 8.0), EmN at 20 M exists mainly as two 

different species in solution, as observed in sedimentation velocity experiments. These species are 

characterized by sedimentation coefficients of 2.2 and 3.3 S, as well as form factors f/f0 of 1.52 and 1.58, 

respectively. They correspond to elongated monomeric and dimeric EmN, as confirmed by sedimentation 

equilibrium experiments (Suppl. Figure 2). Non-reducing SDS-PAGE analysis of the EmN samples in the 

presence of increasing -mercaptoethanol concentrations showed that the unique cysteine of EmN 

(Cys147) is responsible for dimerization through disulfide bridge formation (Figure 2B).  



 

 
 

Increasing the salt concentration close to physiological ionic strength favored the formation of 

larger molecular mass oligomers and/or aggregates of emerin (Table in Figure 2A) that were too large to be 

observed by NMR. The presence of these large species at high salt concentration suggested that 

hydrophobic interactions play a role in emerin self-assembly and/or aggregation. Similar experiments 

carried out after dialysis at lower pHs (5.0 and 6.8), and thus closer to the isoelectric point (5.0) of EmN, led 

to a massive precipitation of the samples (data not shown). This further illustrated that increasing the 

weight of hydrophobic interactions compared to electrostatic interactions favored emerin self-assembly 

and/or aggregation. Finally gel filtration experiments were performed in Tris 20 mM (pH 8.0) at two 

different protein concentrations (40 and 80 M, corresponding to 1 and 3 mg/ml, respectively). Increasing 

EmN concentration led to the formation of high molecular oligomers in these conditions (Figure 2C). 

 We concluded that EmN was capable of forming different oligomers at physiological ionic strength 

and that addition of reducing agent and/or salt regulated EmN oligomerization / aggregation state. As the 

nucleus is characterized by a relatively reducing environment 33 and as the emerin unique cysteine is not 

conserved between species (residue 147; Suppl. Figure 1), the biological relevance of the disulfide-mediated 

dimer seemed limited. We choose to control EmN oligomeric state by adding a reducing agent (10 mM -

mercaptoethanol) to the urea buffer and analyze EmN after an overnight dialysis in Tris 20 mM (pH 8.0), 

NaCl 30 mM. In these reducing and low salt conditions, EmN is initially mainly monomeric (Suppl. Figure 3). 

Moreover, it forms high molecular weight oligomers / aggregates with time, as revealed for example by 

following using NMR a sample of EmN at 600 M in Tris 20 mM (pH 7.2), NaCl 30 mM, 50 mM -

mercaptoethanol: the EmN NMR signals disappeared within a few days at 10C because of the formation 

of species too large to be observed by NMR.  

EmN forms filaments rich in -structure in vitro – We studied oligomerization of EmN over time using 

negative staining electron microscopy (EM). After dialysis, the protein sample was split into four aliquots 

which were concentrated to either 80 or 400 M, and either kept at room temperature or heated at 338K 

during 1 hour; all aliquots were finally kept at room temperature during 3 days.  Observation of these 

aliquots using EM (Figure 3) revealed that at 293K EmN forms either amorphous aggregates and few 

irregular filament-like structures (80 M; Figure 3A) or spherical particles of a diameter of about 10 nm as 

well as filament-like structures (400 M; Figure 3B). After heating the sample at 338K for 1 hour, EmN forms 

spherical particles as well as short filaments already at 80 M (Figure 3C). At high concentration (400 M) 

heating promotes the formation of long and curvilinear filaments with diameters of about 10 nm (Figure 

3D). These data show that increase in both the temperature (293 to 338K) and the concentration (80 and 

400 M) favors the in vitro formation of long and well-separated filaments. In order to test the impact of 

oxidation on filament assembly, either H2O2 or -mercaptoethanol was added to the EmN sample just 

before heating during 1 hour at 338K.  



 

 
 

EM analyses showed that only amorphous aggregates form in the presence of H2O2 (Figure 3E). Thus, 

although oxidative conditions favor dimer formation (as shown in Figure 2B), they inhibit filament assembly. 

Instead, reducing conditions allow filament assembly (Figure 3F).  

We monitored first structural events associated to oligomerization of EmN by the fluorescent dye 

thioflavin T (ThT). This benzothiol dye has been used for decades in the diagnosis of protein-misfolding 

diseases and in kinetic studies of self-assembly. It interacts with-sheet structures, in particular by docking 

onto surfaces formed by a single tyrosine ladder 34. This interaction is revealed by a significant increase in 

fluorescence intensity at 480 nm. We observed a ten-fold increase in fluorescence intensity at 480 nm when 

EmN at 300 M is incubated during either 1 hour at 338K or 3 hours at 310K (Figure 4A). This suggested 

that EmN with time forms species characterized by the presence of amyloid-like -structure. Furthermore, 

the emerin samples were characterized by ATR-FTIR spectroscopy. The amide I spectral region (1600 – 1700 

cm-1) is informative about the stretching mode vibrations of the backbone carbonyl groups and is affected 

by the secondary structure of the polypeptide chain. In the spectrum of monomeric emerin, amide I 

vibrations evolved at 1650 cm-1 (black in Figure 4B), which suggested the presence of random coil-like 

structure. After incubation during 1 hour at 338K, an extra shoulder at 1615 cm-1 (green in Figure 4B) was 

observed, which revealed formation of β-sheet structure related to emerin peptide self-assembly. Analysis 

using SDS-PAGE revealed that incubation during 4 hours at 338K led to the formation of high molecular 

weight oligomers unable to enter the gel (Figure 4C). The presence of these oligomers yielded to a 

substantial decrease in total protein staining. EM images of EmN incubated during 4 hours at 338K 

confirmed that these oligomers were either spherical particles or filaments with a diameter of about 10 nm 

(Figure 4D). Similar analyses carried out after incubation at 310K showed that after 4 hours the EmN sample 

can still be observed by SDS-PAGE (Figure 4C) and that well-structured filaments can only be observed after 

several days (Figure 4D).  

Thus both formation of -structure and assembly of filaments were facilitated when increasing the 

temperature from 310 to 338K. However, we also observed the EmN filaments after incubation at 310K. 

 

EmN variants del95-99 and Q133H occurring in EDMD are impaired in their capacity to self-assemble – 

We produced five EmN variants, corresponding to emerin variants that occur in EDMD: S54F, del95-99 (the 

deleted sequence being YEESY), Q133H, P183T and P183H. These variants are similarly mainly monomeric 

after dialysis (Suppl. Figure 3). We further tested their capacity to self-assemble.  

Following EmN self-assembly kinetics at pH 8.0 and 310K using ThT revealed that variants S54F and 

P183T behave as wild-type EmN (Figure 5A). In contrast, Q133H showed a reduced ability to form -rich 

structures and del95-99 did not form any type of -rich assembly within 1 day.  

 



 

 
 

Further analysis of del95-99 after incubation during 4 hours at 338K showed that even in these conditions, 

the variant could be observed on SDS-PAGE gel, whereas the wild-type EmN was already assembled into 

high molecular weight oligomers (Figure 5B). Observation by negative staining EM of the different variants 

after incubation at a concentration higher than 300 M and a temperature of 338K during 1 hour confirmed 

that, if del95-99 was unable to form filaments in these conditions (data not shown), Q133H and P183T self-

assembled into filaments (Figure 6). Filaments obtained from variant P183T were indistinguishable from 

wild-type filaments, whereas filaments formed by Q133H at a similar time point were systematically shorter 

and less regular. In the case of P183H, the self-assembly kinetics was not significantly different from that 

measured for wild-type EmN. However, after 1 day, further self-assembly or aggregation systematically led 

to a decrease in detectable fluorescent signal. Such event was also observed in the case of wild-type EmN 

and variants S54F and P183T but only after several days. When wild-type EmN and the variants were 

dialyzed against a buffer at pH 6.8, closer to EmN isoelectric point (5.0), most of them could not be 

concentrated to 300 M because of aggregation. Only Q133H and del95-99 could yield this concentration. 

Characterization of their capacity to form -structure after 1 day using the ThT assay showed that, at pH 

6.8, Q133H had an improved capacity to self-assemble as compared to pH 8.0, whereas del95-99 still did 

not form filament-like structures (Suppl. Figure 4). Thus, lowering the pH from 8.0 to 6.8 favored either 

aggregation or self-assembly, but did not change the relative capacities of the variants to self-assemble. 

Altogether, these experiments suggest that P183H has the strongest capacity to self-assemble or aggregate, 

whereas Q133H and then del95-99 have the lowest capacities to form filament-like structures.  

Proximity ligation assays suggest the presence of emerin oligomers in cells and reveal the impact of 

EDMD-associated variants on emerin-emerin and emerin-lamin proximities at the nuclear periphery – We 

carried out experiments in HeLa cells in order to detect intermolecular emerin-emerin and emerin-lamin 

proximities. Cells were first transfected with plasmids coding for both wild-type green fluorescent protein 

(GFP)-full length emerin and FLAG-full length emerin (Figure 7A). GFP-FLAG proximities were then assessed 

using proximity ligation assays (PLA; Figure 7B). These experiments revealed emerin-emerin proximities 

mostly located in the nucleus, and particularly enriched at the nuclear periphery. Additional proximities 

were observed in the cytoplasm that could correspond to emerin located in the endoplasmic reticulum. The 

effects of three emerin variants with different filament assembly properties in vitro, del95-99, Q133H and 

P183T, were then tested on emerin architecture in cells. Cells were transfected with a couple of plasmids 

coding for GFP and FLAG fusions of each variant (Figure 7A).  

Although HeLa cells express a pool of endogenous wild-type emerin, the design of our PLA assay allowed 

quantification of emerin-emerin proximity events occurring only between ectopic GFP and FLAG-tagged 

emerins. Quantification of PLA signals within the nuclear compartment demonstrated that variants del95-

99 and Q133H created less emerin-emerin proximities than wild-type emerin at the nuclear periphery of 

transfected cells (Figure 7C). Variant P183T uniquely accumulated into foci in the endoplasmic reticulum. 



 

 
 

Depending on the experiment and due to variability in the fraction of this variant to localize in the inner 

nuclear membrane, the amount of emerin-emerin proximities visualized by PLA was not reproducible. 

Cells were also transfected with only one plasmid encoding GFP-emerin (Figure 8A). In these cells, 

proximities between GFP-emerin and endogenous lamin A/C were observed at the intranuclear periphery 

(Figure 8B). We further measured the proximities between the emerin del95-99, Q133H, P183T and lamin 

A/C by PLA. Variants del95-99 and Q133H were significantly less frequently close to lamin A/C in HeLa cells 

(Figure 8C). In the case of emerin P183T, which is not correctly targeted to the nuclear envelope, the 

amount of emerin-lamin A/C proximities visualized by PLA was not reproducible. However, intense PLA 

signals could be observed at the nuclear envelope suggesting that variant P183T is still capable of interacting 

with lamin A/C. 

A specific role for proline 183 in regulating emerin oligomerization – Proline is a residue playing an 

important structural role in IDRs by hindering their folding into aggregation prone structures. Mutation of 

this residue is frequently described as favoring the formation of amyloid-like structures. In the case of EmN, 

amino acid substitutions P183T and P183H do not significantly modify EmN filament assembly properties in 

vitro at pH 8.0. The molecular impact of these mutations is limited to a lower solubility of variant P183H at 

pH 8.0. However, we show in HeLa cells and in the context of the whole emerin protein that GFP-emerin 

P183T shows a significant tendency to form cytoplasmic foci close to the nuclear membrane. Ellis et al. 

(1999) previously demonstrated that in patient cells, emerin variants P183T and P183H were no longer 

confined to the nuclear fraction, but were also distributed in other membranous fractions, with the majority 

being associated with “heavier” membrane fractions (lysosomes, plasma membrane, mitochondria), most 

particularly in the case of P183H 31. Wilson and co-workers demonstrated that deletion of the region from 

amino acid 168 to 186 favored assembly of emerin oligomers stabilized by intermolecular interactions 

involving the region from amino acid 187 to 220 in vitro and in cells 29. They showed that it caused a 

relocalization of emerin into perinuclear aggregates. These data suggest that the region from amino acid 

168 to 186 and in particular Pro183 limits oligomerization through the region from amino acid 187 to 220 

in full-length emerin. We propose that emerin can form two types of intermolecular interactions in the 

reducing environment of the nucleus, one resulting from EmN self-assembly and the other resulting from 

dimerization of the region from amino acid 187 to 220. In this frame, Pro183 would play a critical role in 

regulating emerin self-assembly, not by directly influencing EmN filament formation, but by limiting the 

formation of oligomers stabilized by self-assembly of the region from amino acid 187 to 220 in cells. Variants 

P183T and P183H would consistently show a stronger tendency to form dimers through region from amino 

acid 187 to 220, which would lead to aggregation and mislocalization in the cytoplasm. 

 

 



 

 
 

Relationship between emerin oligomeric state and lamin binding capacity – Binding of emerin to lamin A, 

which has been described using several techniques including yeast 2-hybrid assays and co-

immunoprecipitation experiments, involves the fragment from amino acid 70 to 164 of emerin 35. Within 

this region, deletion del95-99 caused emerin to be present but significantly less associated to membranes 

and to the nuclear lamina components in patient cells 30, and hindered binding to lamin A in vitro as judged 

by blot overlay assays 10. From our results, we now propose a model in which loss of function of emerin 

variant del95-99 (weaker lamin A/C binding by PLA) relies on its defective organization at the nuclear 

envelope (weaker emerin-emerin associations by PLA) and is related to its self-assembly defects (absence 

of oligomerization in vitro). For variant Q133H, no qualitative or quantitative differences in nuclear targeting 

were observed between mutant and normal emerin and quantitative BIAcore analysis showed no 

significant change in lamin A binding to emerin when the mutation was present 32. However, our results 

showed that the amount of emerin–lamin A/C proximities is decreased, suggesting that emerin self-

assembly defects impact lamin recognition in cells. It is also possible that emerin self-assembly defects 

affects its interaction with other binding proteins, such as lamina-associated polypeptide 1.  

Variants P83T and P183H present a mutation outside of the lamin A/C binding region of emerin. In 

contrast to mutations del95-99 and Q133H, we observed that mutation P183T does not prevent binding to 

lamin A/C (as judged by PLA). Based on an in vitro blot overlay assay [10], Lee et al. proposed that variant 

P183H has an even increased lamin binding capacity as compared to wild-type emerin. We could not see 

such a clear effect for variant P183T in our cell assay. We propose that the observed mistargeting of P183T 

emerin within cytoplasmic aggregates might be favored upon specific stimuli in the muscular tissue and 

consequently impact (in an indirect fashion) the formation of lamin A/C-emerin complexes at the nuclear 

envelope. Further work is needed to determine to what extent amino acid substitutions P183T and P183H 

affect lamin A/C binding in various cellular contexts and to determine whether this can be related to the 

proposed increased dimerization capacity through region 170-220 of that variant (see above).  

Conclusion – Our study provides a first structural description of the region from amino acid 1 to amino acid 

187 of emerin and reveals the structural consequences of several mutations that occur in EDMD on the self-

assembly capacity of this EmN fragment in vitro and the amount of emerin-emerin proximities in cells. Full-

length emerin self-associates either through the EmN fragment, as shown in this study, or through the 

region between residues 187 and 220, as shown by others 29. Oxydation of EmN hinders its self-assembly 

into high molecular weight oligomers. Mutations at positions 95-99 and 133 affect EmN self-assembly and 

impact emerin binding to lamin A/C in cells, whereas mutations of Pro183 affect emerin self-assembly 

probably mainly through the region between residues 187 and 220 and impact emerin localization in cells. 

Virtually all of the known EDMD-causing mutations lead to an absence of emerin in cells, suggesting that 

S54F, del95-99, Q133T, P183T and P183H are loss-of-function mutations.  



 

 
 

Defects in oligomerization properties essential for emerin localization and function might explain the 

decreased functional capacities of the variants del95-99, Q133T, P183T and P183H. Variant S54F does not 

impact EmN self-assembly in vitro, and it is still correctly localized in cells 36. However, Ser54 is either 

phosphorylated or O-GlcNAc-modified in wild-type emerin and mutation of Ser54 into phenylalanine 

impairs posttranslational modifications at several other positions in full-length emerin 36. As the emerin 

regions proposed to mediate EmN self-assembly are hotspots for phosphorylation and O-GlcNAcylation in 

cells, we suggest that S54F might interfere with emerin-emerin interactions by perturbing the modification 

state of emerin in vivo. Overall our results suggest that emerin self-assembly is necessary for its proper 

function and that loss of either the protein itself or its ability to self-assemble causes muscular dystrophy. 

Methods 

Protein expression and purification - Human wild-type emerin fragments from amino acid 1 to amino acid 

187 (EmN) and from amino acid 1 to amino acid 221 (EmN0) were expressed using a pETM13 vector as N-

terminal octa-histidine fusions in Escherichia coli BL21 DE3 Star (Novagen). The emerin cDNAs were 

optimized for expression in Escherichia coli (GenScript). Mutations encoding emerin variants S54F, Q133H, 

95-99, P183H and P183T were inserted in the EmN cDNA using a standard QuikChange Site-Directed 

Mutagenesis kit (Stratagene). The EmGCN4 protein was also expressed using pETM13. Its cDNA was 

obtained by synthetizing an optimized sequence coding for the N-terminal octa-histidine tagged EmN, a 

TEV cleavage site and a GCN4-derived peptide of 33 amino acids that efficiently dimerizes 37. Bacteria were 

cultured in 15N-labelled minimum medium, induced at an optical density of 1 with 0.1 mM isopropyl β-D-1-

thiogalactopyranoside, grown overnight at 20 °C and lysed in 50 mM Tris-HCl (pH 8.0), 300 mM NaCl, 40 mM 

imidazole, 5% glycerol, 1% Triton X-100 and 1 mM phenylmethanesulfonylfluoride. After centrifugation at 

20,000g for 20 min at 4 °C, the pellet was resuspended in buffer C8 (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 

40 mM imidazole, 8 M urea). A second centrifugation step was performed at 20,000g for 20 min at 4 °C. The 

soluble extract was then filtered and loaded onto a Ni-NTA column (GE-Healthcare) equilibrated with buffer 

C8. Proteins were eluted directly with buffer E8 (50 mM Tris-HCl pH 8, 150 mM NaCl, 1 M imidazole, 8 M 

urea). Proteins were refolded by dialysis in the desired buffer. The final yield was typically 10 mg purified 

protein per litre of bacterial culture. We verified that purification either from the bacterial soluble fraction 

or from inclusion bodies yielded a protein with the same conformation by recording NMR 1H - 15N HSQC 

spectra on both preparations. These two NMR spectra were superimposable (data not shown), which 

validates the use of a protocol including denaturation and refolding steps to obtain a pure, soluble and 

concentrated preparation. Oligomerization studies were performed using proteins that were reduced after 

affinity purification in urea by adding 10 mM -mercaptoethanol and refolded in a buffer containing 30 mM 

NaCl and 10 mM dithiothreitol (DTT) to observe oligomer formation from a monomeric preparation. 



 

 
 

NMR spectroscopy - NMR experiments were performed on a 700 MHz Bruker Avance spectrometer 

equipped with a cryogenic probe. Two-dimensional 1H – 15N correlation spectra were acquired using a HSQC 

pulse sequence at 293K, on 3 mm diameter NMR sample tube containing 100 µM uniformly 15N-labelled 

EmN in 50mM Tris (pH 6.8), 150 mM NaCl, 10 mM DTT and 90 %:10 %, H2O:D2O.  

Analytical ultracentrifugation - 360 L protein samples at a concentration of 20 to 30 M were dialyzed 

against 20 mM Tris (pH 8.0) and 0 to 150 mM NaCl. They were subjected to sedimentation velocity runs at 

293K and 45,000 rpm (147,280 g) on a XLA70 analytical ultracentrifuge (Beckman Coulter, Palo Alto, USA) 

using a An-60Ti rotor. Optical density scans recorded every 5 min at 280 nm were analyzed using the Sedfit 

software 38 to determine the sedimentation coefficients. The EmN sample was also subjected to a 

sedimentation equilibrium experiment in 50 mM Tris (pH 8.0) at two successive speeds (11,500 and 13,800 

rpm / 9619 and 13851 g) and 293K. Data analysis was performed on the scans acquired on the equilibrated 

system using the Sedphat software 38 to determine the molecular masses of the species.  

Analytical gel filtration – The proteins were first dialysed in the gel-filtration buffer (20 mM Tris-HCl pH 8.0, 

30 mM NaCl) before being diluted to 1 mg/ml and loaded onto the column. Analytical gel-filtration 

experiments were carried out at 277K on a Superdex 75 10/30 column (GE Healthcare). 

EM – To follow large oligomer assembly, EmN, its variants or EmGCN4 in buffer E8 and 10 mM -

mercaptoethanol were dialyzed against 20 mM Tris (pH 8.0), 30 mM NaCl, 10 mM DTT. They were then 

incubated at 20, 37 or 338K. Samples were taken at regular time points and observed by negative-staining 

transmission electron microscopy. For experiments at 20 and 338K, His-tagged wild-type EmN was used. 

For experiments at 310K, the His-Tag from the wild-type and mutated EmN constructs was cleaved using 

Tobacco Etch Virus (TEV) protease (see below), and proteins without Tag were incubated in 8 M urea and 

redialyzed against 20 mM Tris (pH 8.0), 30 mM NaCl, 10 mM DTT. For EM experiments, about 2-5 l of the 

sample solution was deposited on a carbon-coated formvar copper grid. After 30 s, the sample droplet was 

blotted with filter paper. It was placed in contact with 10 l of water and then uranyl acetate 0.5%. Samples 

were imaged using a JEOL MET 1,400 (120 keV) or a Tecnai G2 (200 keV) transmission electron microscope 

at 10,000x to 30,000x magnification. 

Thioflavin kinetics – For these experiments, the His-tag of the wild-type and mutated EmN constructs was 

cleaved using Tobacco Etch Virus (TEV) protease during 2 h at room temperature. EmN mixed to the His-

tagged TEV was then incubated with Ni-NTA beads during 1 h in buffer C0 (50 mM Tris-HCl pH 8.0, 150 mM 

NaCl, 40 mM imidazole). It was collected by washing with C0, incubated in 8 M urea and redialyzed in 20 

mM Tris (pH 8.0), 30 mM NaCl, 10 mM DTT. Filament assembly was followed with time by incubating EmN 

at the targeted concentration and temperature and by regularly taking protein aliquots to be analyzed by 

fluorescence. These aliquots were diluted in a thioflavin (ThT) containing buffer so as to obtain 20 M 

protein and 2,5M ThT in 20 mM Tris (pH 8.0), 30 mM NaCl, 10mM -mercaptoethanol.  



 

 
 

The fluorescence measurements were carried out in a 60 l cuvette at 293K using a fluorimeter JASCO ADP-

303T. ThT fluorescence was monitored by excitation wavelength of 450 nm. Fluorescence emission was 

read at 480 nm.  

 

Attenuated total reflection – Fourier-transform infrared (ATR-FTIR) spectrometry – ATR-FTIR spectra were 

recorded at 4 cm−1 resolution with a Bruker IFS 66 spectrophotometer equipped with a 45° N ZnSe 

attenuated total reflection attachment. For the FTIR experiments, EmN samples were concentrated to 800 

M. The concentrator flow-through was used as the reference buffer sample for measuring buffer signal. 

FTIR spectra of the EmN sample and its corresponding buffer solution were initially recorded just after 

concentration. Thereafter the EmN sample was incubated during 1 hour at 338K and additional spectra of 

both protein and buffer samples were recorded. Spectra of both protein and buffer samples were recorded 

with an average of 30 scans. The buffer spectra were subsequently subtracted from the protein spectra.  

 

Transfection - HeLa cells were obtained from American Type Culture Collection and cultured in Minimum 

Essential Medium containing Glutamax (Gibco), 1% non-essential amino acids and 10% fetal bovine serum. 

HeLa cells were transfected using XtremeGene 9 (Roche). After 24 h, cells were processed for 

immunoblotting, immunofluorescence or Proximity ligation assay.  

 

Immunoblotting - Whole cell protein extracts were suspended in Laemmli sample buffer, separated by SDS-

PAGE and transferred to nitrocellulose membranes. Membranes were blocked for 1.5 h in TBS (10 mM Tris, 

pH 8.0, 150 mM NaCl, 0.05% Tween-20) containing 5% dry milk, incubated with mouse anti-emerin antibody 

(Leica; 1:300) and rabbit anti-lamin A/C (see 39; 1:5000) for 1 h in TBS with 1% milk, washed 4 times and 

incubated with HRP-conjugated secondary antibodies. After 4 washes in TBS, proteins were detected by 

enhanced chemiluminescence.  

 

Immunofluorescence microscopy - Cells were fixed with 3% paraformaldehyde for 12 min at room 

temperature, permeabilized with phosphate-buffered saline containing 0.5 % Triton for 5 min at room 

temperature and quenched with 2% bovine serum albumin diluted in phosphate-buffered saline containing 

0.1% Triton X-1-00. Primary antibodies were rabbit anti-lamin A/C (1:500; 40), rabbit anti-FLAG (Sigma, 

1:150) and mouse anti-GFP (Roche, 1 :150). Fluorescent labeled secondary antibodies (donkey anti-mouse 

Cy2 1:60 and donkey anti-rabbit Cy3 1:200) were from Jackson ImmunoResearch. DNA was stained with 

Hoechst 33258 (1 µg/ml).  

 

 

 

 



 

 
 

Proximity ligation assay (PLA) - PLA was used to detect GFP-emerin - lamin A/C interactions and GFP-emerin 

– FLAG-emerin interactions based on proximity (< 40 nm) of two secondary antibodies directed against 

these proteins. After cell fixation, cell permeabilisation and quenching (as above), pairs of primary 

antibodies, mouse anti-GFP 1:150 and rabbit anti-lamin A/C 1:500 or mouse anti-GFP 1:150 and rabbit anti-

FLAG 1:150, were added to HeLa cells expressing GFP-emerin either alone or together with FLAG-emerin, 

respectively, for 30 min at room temperature. Next, Duolink PLA probe anti-rabbit plus, Duolink PLA probe 

anti-mouse minus and Duolink detection reagents orange (detected with a Cy3 filter) were used according 

to manufacturer’s instructions (Olink, Bioscience). Confocal microscopy image acquisition was performed 

using a LSM 700 Laser scanning microscope (Zeiss). Quantitative analysis of PLA signals was done on images 

using Image J. Data were then analyzed by comparing median values for integrated densities of signals (Cy3) 

per nucleus, and statistical analysis were performed using Kruskall-Wallis tests.  
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Figure legends: 

 

Figure 1. Emerin region from residue 1 to residue 187 (EmN) is predicted and observed to be mainly 

unstructured in solution. (A) Schematic representation of emerin. The two structured domains are 

represented in orange for the LEM domain (LEM 1-45) and in green for the transmembrane domain (TM 

223-243). (B) Emerin fragments expressed for this study. (C) Metadisorder profile of emerin 41: apart from 

the two structured domains (LEM and TM) that have a disorder probability lower than 0.5, most of the 

other residues are predicted as disordered. Nevertheless, three regions, between residues 74 to 106, 

residues 159 to 186 and residues 203 to 208, show intermediate scores between 0.5 and 0.7. The red dots 

mark positions mutated in EDMD causing missense or micro-deletion variants. (D) 2D NMR 1H-15N spectra 

recorded on a EmN sample at 100μM in 50mM Tris-HCl pH6.7, 150mM NaCl, 10 mM DTT at 293K and 700 

MHz. Superposition of the 1H-15N HSQC spectrum in black (each peak corresponds to one residue; peaks 

corresponding to poorly structured residues have a 1H chemical shift comprised between 7.8 and 8.4 ppm) 

and the saturated 1H →15N nOe spectrum in orange (positive peaks corresponding to structured residues) 

and blue (negative peaks corresponding to fully disordered residues). Residues with intermediate dynamical 

behavior have nOe values close to zero and thus are not visible on the saturated 1H to 15N nOe spectrum. 

 

Figure 2. EmN can form dimers and higher molecular weight oligomers / aggregates in solution. (A) AUC 

sedimentation velocity results obtained on samples of EmN at 20μM in 20mM Tris-HCl pH8, in three 

different salt conditions (0mM, 30mM and 150mM NaCl). Three species are present in these conditions, 

which might correspond to an elongated monomer (sedimentation coefficient of 2.1S and frictional ratio of 

1.52), an elongated dimer (sedimentation coefficient of 3.2S and frictional ratio of 1.58) and high molecular 

weight oligomers and/or aggregates. (B) Non-reducing SDS-PAGE of EmN in 20 mM Tris (pH 8.0), 30 mM 

NaCl and different concentrations of -mercaptoethanol showing a disappearance of EmN dimers in 

presence of reducing agent. (C) Gel filtration profile obtained after dialysis of EmN: samples 1 (black full 

lines) and 2 (black dashed lines) were injected on the column at 1 and 3 mg/ml respectively. Clearly sample 

2 contains oligomers and/or aggregates that could not pass the column prefilter. Both samples also contain 

monomers (elution volume corresponding to 33 kDa, the protein being a 25 kDa elongated protein), dimers 

(elution volume corresponding to 66 kDa) and oligomers (elution at the void volume). 

 

Figure 3. EmN can form filaments in a concentration / temperature / reducing conditions dependent 

manner. (A-D) EM images acquired on a EmN sample concentrated at either 80 or 400 M in a low salt 

concentration buffer (20mM Tris-HCl [pH8.0], 30mM NaCl, 10mM β-mercaptoethanol) and not heated or 

heated during 1 hour at 65ºC. (E-F) EM images acquired on a EmN sample concentrated at 400 μM with 

either (E) 10 mM H2O2 or (F) 10 mM -mercaptoethanol and heated 1 hour at 65ºC in a low salt 

concentration buffer (20 mM Tris-HCl [pH8.0], 30 mM NaCl). All samples were observed by negative staining 

EM using uranyl acetate after 3 days at 293K. The black bars correspond to 200 nm. 

 

Figure 4. EmN filament assembly at either 37 or 338K is associated with an increase of β-structure. EmN 

self-assembly kinetics followed by  

 



 

 
 

(A) ThT fluorescence on a EmN sample at 300 M in 20 mM Tris-HCl (pH8.0), 30 mM NaCl, 10 mM β-

mercaptoethanol, heated at either 37ºC (orange) or 65ºC (green) during 4 hours, (B) ATR-FTIR on a EmN 

sample at 1.2 mM before (black) and after (green) heating during 1 hour at 65ºC, (C) SDS-PAGE on a EmN 

sample at 300 M (S and P correspond to Supernatant and Pellet, respectively; the arrow corresponds to 

the emerin monomer) and (D) EM on a EmN sample at 700 M (the black bar corresponds to 200 nm; 

negative staining was achieved using uranyl acetate). 

 

Figure 5. EmN EDMD-causing variants del95-99 and Q133H have impaired oligomerization capacities. (A) 

Fluorescence signals measured at 480 nm after addition of ThT. The wild-type and mutated EmN samples 

were concentrated up to 300 μM in 20mM Tris-HCl pH8, 30mM NaCl, 10mM β-mercaptoethanol and heated 

during 1 day at 37ºC. (B) SDS-PAGE of wild-type and del95-99 EmN after heating the samples at 338K during 

either 1 or 4 hours (S and P correspond to Supernatant and Pellet, respectively; the arrows correspond to 

the protein monomers). 

Figure 6. EmN variants Q133H and P183T form filaments after heating 1 hour at 338K. Filaments formed 

by Q133H were systematically shorter and less regular than filaments obtained from variant P183T and 

wild-type EmN at a similar time point. EM images were acquired on samples of wild-type EmN (left) and 

variants Q133H (center) and P183T (right), concentrated above 300 μM and heated during 1 hour at 338K. 

The black bars correspond to 100 nm. Negative staining was achieved using uranyl acetate.  

Figure 7.  Impact of emerin variants expressed in EDMD on nuclear emerin-emerin proximities as detected 

by PLA. (A) Whole cell protein extracts prepared from HeLa cells co-expressing either wild-type, del95-99, 

Q133H or P183T GFP and FLAG-emerins were analyzed by western blot using anti-emerin antibodies. The 

expression of endogenous A-type lamins revealed by anti-LA/C antibodies is also shown. (B) HeLa cells co-

expressing either wild-type (WT), del95-99, Q133H or P183T GFP and FLAG-tagged emerins were fixed, 

labeled with anti-GFP and anti-FLAG antibodies, and processed for PLA before analysis at the confocal 

microscope. The PLA signals are shown alone (upper row) and merged with DNA staining and GFP 

fluorescence (lower row). (C) Quantification of PLA signals per nucleus for cells as shown in B). Are shown 

the median values for the total signal intensity per nucleus for 3 independent experiments (EXP1, EXP2, EXP 

3; n = 150-330 nuclei per sample). Boxes show first and third quartiles (**p < 0.001, *p<0.05 with Kruskal 

and Wallis test).  

Figure 8. Impact of emerin variants expressed in EDMD on nuclear emerin-lamin A/C proximities as 

detected by PLA. (A) Whole cell protein extracts prepared from HeLa cells expressing either WT, del95-99, 

Q133H or P183T GFP-emerin were analyzed by western blot using anti emerin antibodies. Shown is also the 

expression of endogenous A-type lamins revealed by anti-LA/C antibodies. (B) HeLa cells overexpressing 

either WT or mutant del95-99, Q133H and P183T GFP-emerin were fixed, labeled with anti-GFP antibodies, 

and processed for PLA before analysis at the confocal microscope. The PLA signals are shown alone (upper 

row) and merged with DNA staining and GFP fluorescence (lower row). (C) Quantification of PLA signals per 

nucleus for cells as shown in (B). Are shown the median values for the total signal intensity per nucleus for 

3 independent experiments (EXP1, 2, 3; n = 180-340 nuclei per sample). Boxes show first and third quartiles 

(**p < 0.001, *p<0.05 with Kruskal and Wallis test).  

 



 

 
 

Figure 1 

 

 

Figure 2 

 

 

 

 

 



 

 
 

Figure 3 

 

 

Figure 4 

 

 



 

 
 

Figure 5 

 

 

Figure 6 

 

 

 

 

 



 

 
 

Figure 7 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Figure 8 

 

 

 

 

 

 

 

 

 

 



 

 
 

Supporting Information: alignment of emerin sequences (Suppl. Fig. 1), Analytical Ultra Centrifugation plots 

(Suppl. Fig. 2), gel filtration profiles of EmN and its mutants (Suppl. Fig. 3) and fluorescence emission spectra 

recorded in the presence of ThT on EmN mutants at pH 6.8 (Suppl. Fig. 4). 

Supplementary materials. 

Supplementary Figure 1. Alignment of emerin sequences from 17 different mammalian species. Each 

sequence is identified by its Genbank identifier code. The numbering in black above the sequences 

corresponds to human emerin. Positions mutated in EDMD causing missense or micro-deletion variants are 

squared in blue. 

Supplementary Figure 2. AUC sedimentation equilibrium analysis of EmN. This AUC plot was obtained on 

an EmN sample at 17.4µM centrifuged at either 9619 g (black) or 13851 g (orange). 

Supplementary Figure 3. Purification of an EmN sample in low salt and reducing conditions. Gel filtration 

of the EmN sample carried out immediately after dialysis shows that in these conditions EmN is mainly 

monomeric. (A) Schematic representation of EmN (Emerin 1-187) in blue and the dimeric construct 

EmGCN4 in red. This last construct possesses a C-terminal tag of 43 residues resulting from protein 

engineering and designed as to dimerize. (B) Gel filtration on EmN (blue), EmGCN4 (in red), and EmN EDMD-

causing mutants (black lines) in a low salt concentration buffer (20mM Tris-HCl (pH8.0), 30mM NaCl). The 

EmGCN4 construct is used as a control corresponding to the dimeric form of EmN. (C) AUC Sedimentation 

velocity results obtained on EmN (blue) and EmGCN4 (red) in 20mM Tris-HCl (pH8.0), 30mM NaCl. 

Supplementary Figure 4. Fluorescence emission spectra recorded after addition of ThT on samples of 

variants del95-99 (t=0 orange; t=24h brown) and Q133H (t=0 light green; t=24h dark green) incubated in 

20mM phosphate buffer (pH6.8), 30mM NaCl at 310K. The corresponding reducing SDS-PAGE gel is shown 

at the upper right of the figure. The supernatant (S) and pellet (P) fractions of the samples were deposited 

before and after incubation at 310K during 24 hours. Formation of high molecular weight oligomers yields 

to a decrease in total protein staining. 
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The second paper aims at describing the structural organization of EmN oligomers. I showed 

that emerin fragment from residue 1 to residue 132 is necessary and sufficient for self-

assembly. The LEM domain and the unstructured region of this fragment both contribute to 

the structural core of the filaments, as shown by solid-state NMR (collab. with Prof Adam 

Lange, FMP Berlin) and mass spectrometry (collab. with Dr Jean Armengaud, CEA Marcoule). 

However the poor quality of the solid-state NMR spectra, probably due to conformational 

heterogeneity present in the EmN filaments, impaired a more detailed description of the 3D 

structure of emerin oligomers. Destabilization of the LEM domain favors filament formation. 

This is in particular observed in the case of emerin variant delK37, which causes a muscular 

dystrophy with cardiac defects. Our results predicted that, if emerin self-assembly regulates 

lamin binding, variant delK37 should still bind to lamin A/C. This was confirmed using NMR. 

Finally another PhD student in the lab, Florian Celli, showed that EmC221 also self-assembles. 

This oligomerization process is so efficient that it was very difficult to obtain a sample of 

monomeric EmC221 for solution-state NMR. I will come back to the EmC221 oligomers later 

when discussing about the emerin – lamin interaction.
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Abstract 

 At the nuclear envelope, the inner nuclear membrane protein emerin contributes to the interface between 

the nucleoskeleton and the chromatin. Emerin is an essential actor of the nuclear response to a mechanical 

signal. Genetic defects in emerin cause Emery-Dreifuss muscular dystrophy. It was proposed that emerin 

oligomerization regulates nucleoskeleton binding and impaired oligomerization contributes to the loss of 

function of emerin disease-causing mutants. We here report the first structural characterization of emerin 

oligomers. We identified an N-terminal emerin region from amino acid 1 to amino acid 132 that is necessary 

and sufficient for formation of long curvilinear filaments. In emerin monomer, this region contains a 

globular LEM domain and a fragment that is intrinsically disordered. Solid-state Nuclear Magnetic 

Resonance analysis identifies the LEM -fragment as part of the oligomeric structural core.  However the 

LEM domain alone does not self-assemble into filaments. Additional residues forming a -structure are 

observed within the filaments that could correspond to the unstructured region in emerin monomer. We 

show that the delK37 mutation causing muscular dystrophy triggers LEM domain unfolding and increases 

emerin self-assembly rate. Similarly inserting a disulfide bridge that stabilizes the LEM folded state impairs 

emerin N-terminal region self-assembly whereas reducing this disulfide bridge triggers self-assembly. We 

conclude that the LEM domain, responsible for binding to the chromatin protein BAF, undergoes a 

conformational change during self-assembly of emerin N-terminal region. The consequences of these 

structural rearrangement and self-assembly events on emerin binding properties are discussed. 

 

Introduction 

The metazoan nuclear envelope is a highly regulated membrane barrier that separates the nucleus 

from the cytoplasm. It contains (i) a double lipid membrane, (ii) a large number of proteins anchored at 

either the outer nuclear membrane (as nesprins) or the inner nuclear membrane (as SUN1, SUN2 and 

emerin), and (iii) the intermediate filaments lamins forming the nuclear lamina that lines the inner nuclear 

membrane and interacts with inner nuclear membrane proteins. It critically contributes to the physical 

connection between the cytoskeleton and the nucleoskeleton. It determines the position of the nucleus, 

thus dividing the cytoplasm into forward and rear compartments whose internal pressure difference is a 

driving force for 3D cell migration [1]. It also senses and responds to mechanical forces either by modifying 

its protein composition or exhibiting post-translational modifications [2]. These events contribute to the 

tuning of cell cytoskeletal tension to tissue stiffness [3, 4] and to the increase in nuclear resistance in 

response to mechanical stress [5]. They initiate a signaling cascade and trigger the expression of 

mechanosensitive genes [5, 6]. The inner nuclear envelope also interacts with chromatin [7]. It directly binds 

to histones, histone modifiers and transcription regulators. Through these contacts it might regulate 

genome expression. 



 

 
 

An increasing number of mutations in nuclear envelope protein genes are being discovered that 

causes a wide range of human diseases as for example muscular dystrophies, cardiomyopathies, 

lipodystrophies, neuropathies and premature aging syndromes (for review [8, 9]). There is growing 

evidence that integrity of the nucleus [10-12] and mechanotransduction signaling [11, 13] are impaired in 

several of these envelopathies. The structural and functional impacts of disease-causing missense 

mutations or short in-frame deletions in the nuclear envelope protein genes were analyzed in order to get 

insights into the molecular mechanisms of nuclear envelope functions. A very large number of missense 

mutations were found in the LMNA gene coding for the nuclear intermediate filaments lamins A and C (also 

called lamin A/C or A-type lamins). These mutations impact either lamin conformation, self-assembly or 

binding properties [14, 15]. Six missense mutations or short in-frame deletions causing the X-linked form of 

Emery-Dreifuss Muscular Dystrophy (EDMD) were identified in the EMD gene encoding the inner nuclear 

membrane emerin [16]. Five of them (i.e., S54F, del95-99, Q133H, P183T and P183H) correspond to a 

classical EDMD phenotype [17]. However the short in-frame deletion mutation delK37, which affects the 

LEM domain, is associated with a disease essentially affecting the cardiac muscle [18].  

At the molecular level, the nuclear lamin A/C and the inner nuclear membrane protein emerin both 

interact with complexes formed by the outer nuclear membrane nesprins and the inner nuclear membrane 

SUN proteins, called the LINC complexes for LInker of Nucleoskeleton and Cytoskeleton [2, 19]. These 

interactions are key events of the nucleocytoskeletal coupling machinery and critically contribute to nuclear 

structure. However, very few studies have provided molecular details about complexes involving lamin, 

emerin and LINC. Recent X-ray crystallography studies have revealed that changes in SUN2 oligomeric states 

are associated with large structural rearrangements and regulate nesprin binding [20-23]. We and others 

showed that emerin self-associates in vitro and in cells and that defects in oligomerization were observed 

together with impaired lamin binding in the case of two mutants causing Emery-Dreifuss muscular 

dystrophy [24, 25]. However the molecular details of emerin conformational states and related binding 

properties are poorly understood. In this study, we focus on providing a molecular description of emerin 

oligomers, in order to propose mechanisms for emerin functional regulation through self-assembly. 

Emerin is anchored at the inner nuclear membrane via its hydrophobic C-terminal domain (Figure 

1A) [26, 27]. Its N-terminal nucleoplasmic region (residues 1 to 221) contains all six mutations described 

above. This region is responsible for emerin interaction with structural components of the nuclear envelope 

(SUN1, SUN2) and of the nucleoskeleton (lamins, actin), DNA binding proteins (barrier-to-autointegration 

factor (BAF), transcription factors) and signaling molecules (-catenin). Fragment from residue 170 to 

residue 220 is sufficient to bind other emerin molecules homotypically [24]. Additional contacts between 

this fragment and either the globular LEM domain (residues 1 to 45; see Figure 1A) or the fragment between 

residues 153 and 169 were reported. We have found that fragment from residue 1 to residue 187 also self-

associates in vitro and that residues 95 to 99 are important for self-association in vitro and in cells [25]. 



 

 
 

Here, we report a biophysical characterization of oligomers of fragment from residue 1 to residue 187 

(called EmN; see Figure 1A). We show that the globular LEM domain, comprising residues 1 to 45 of emerin, 

plays a critical role in EmN oligomerization, and that the small in frame deletion delK37 significantly favors 

emerin self-assembly. On these bases, oligomerization mechanisms and their functional consequences are 

discussed. 

Results 

The N-terminal LEM domain is the only globular domain observed in the different monomeric emerin 

fragments – We have previously proposed that the monomeric emerin fragment from residue 1 to residue 

187 (named EmN; see Figure 1A) is composed of a globular LEM domain, from residue 1 to residue 45 [28], 

and a large intrinsically disordered region, from residue 46 to residue 187 [25, 29]. EmN is also capable of 

oligomerizing into filaments rich in -structure. In order to identify the minimal region of EmN that still self-

associates into filaments, we produced three different recombinant fragments of EmN called EmN49, 

EmN132 and Em67C, corresponding to the LEM domain [28], the smallest N-terminal EmN fragment binding 

lamins [24] and the smallest C-terminal EmN fragment containing all residues whose mutation impairs lamin 

A binding [30], respectively (Figure 1A). Superimposition of the solution-state NMR 1H-15N HSQC spectra of 

fragments EmN49, EmN132 and EmN confirmed that the LEM domain fold of EmN49 [28, 31] is also present 

in monomeric EmN132 and EmN (Figure 1B). Significant differences are found between the chemical shifts 

of the 4 last residues of helix 3 in EmN132 or EmN as compared to EmN49. This is most probably due to 

edge effects related to the C-terminal extension in EmN132 and EmN, which is absent in EmN49. It may 

highlight a moderate difference in the stability of the helix 3 C-terminus. Analysis of the EmN132 NMR 

carbon signals consistently established that this fragment contains N-terminal helix 1 (3-6), helix 2 (8-

19), strand 1 (22-28, with a bulge at Pro25) and helix 3 (29-48) (Figures 1C,D). It also contains an 

additional helix 4 (96-102) that is, as helix 1, only transiently observed: the corresponding region exists 

both as a -helix and a disordered peptide. Our recent NMR analysis of the intrinsically disordered emerin 

fragment 67-170 also demonstrated -helical propensities between residue 98 and residue 101 [29]. 

The LEM domain and the intrinsically disordered region are both needed to form filaments – We tested 

the self-assembly capacities of EmN49, EmN132 and Em67C. Therefore, we incubated the different 

fragments at a fixed concentration of 600 M during one week at 293 K. We then observed the samples 

using negative staining electron microscopy. Figure 2A shows that long curvilinear filaments were detected 

for EmN, as reported earlier [25], but also for EmN132. No filaments could be identified for EmN49 and 

Em67C. Consistently, only EmN and EmN132 were capable of forming self-assembled particles interacting 

with thioflavin T, as detected by fluorescence on samples incubated at a concentration of 600 M at 310 K 

(Figure 2B).  



 

 
 

Thus both region 1 to 66, mostly restricted to the LEM domain, and region 50 to 132, which is intrinsically 

disordered, are necessary for filament assembly. This result is consistent with our previous study showing 

that residues from 95 to 99, in the intrinsically disordered region, are necessary for EmN self-assembly [25]. 

EDMD causing small in frame deletion delK37 impairs folding of the LEM domain – The emerin mutation 

delK37 was identified in a patient with an EDMD phenotype characterized by a strong cardiac dysfunction 

[18]. Whereas the previously reported missense mutations or small in frame deletions all corresponded to 

defects in emerin intrinsically disordered region, this mutation targets a LEM domain residue. We used this 

mutation in order to probe the role of the LEM domain in emerin self-assembly. Solution-state NMR 1D 1H 

spectrum analysis of EmN mutant delK37 showed that this protein is completely unfolded (Figure 3A). 

Superimposition of the solution-state NMR 2D 1H-15N HSQC spectra of fragments EmN, wild-type and 

mutated, revealed that the peaks corresponding to folded LEM residues (in orange on Figure 1B) are absent 

in the case of the mutated EmN (Figure 3B). The NMR signals corresponding to protons of side chains buried 

in the LEM hydrophobic core, which are probes for domain folding, are absent in the 1D 1H spectrum of the 

EmN mutant delK37 (Figures 3A,C). Thus, deletion of residue K37 in helix 3 impairs folding of the whole 

LEM domain. 

LEM domain unfolding is associated with faster self-assembly in the case of the delK37 mutant – In order 

to probe for the role of the LEM domain in EmN self-assembly, we incubated in parallel EmN wild-type and 

delK37 at a concentration of 600 M during one week at 293 K. Negative staining electron microscopy 

revealed that the mutant delK37 is also capable of forming filaments in vitro (Figure 4A). Comparison of the 

susceptibility to proteolysis by chymotrypsin of EmN wild-type and mutated as a function of their oligomeric 

states showed that both protein fragments are partially protected from degradation when they are self-

assembled (Figure 4B). Following protein self-assembly at 310 K and 300 M using thioflavin T as a probe, 

we demonstrated that the EmN mutant delK37 forms oligomers significantly faster than wild-type EmN, 

whereas the LEM domain delK37 alone does not form filaments (Figure 4C). To further probe the 

relationship between LEM domain folding and oligomerization kinetics, we introduced a disulfide bridge 

into the LEM domain of EmN132 (which contains no cysteine) by mutating Y4 and E35 into cysteines (Figure 

4D). The presence of this disulfide bridge impairs EmN132 self-assembly, whereas reducing this disulfide 

bond triggers filament formation, as shown by fluorescence (Figure 4E). Solution state 1H-15N HSQC spectra 

of EmN132 wild-type (green on Figure 4F) and Y4C/E35C (mauve) were recorded in the absence of DTT to 

verify that the oxidized mutant adopts a well-defined LEM-like 3D structure (well-dispersed cross-peaks of 

homogeneous linewidths on Figure 4F). Analysis of the spectrum of the Y4C/E35C mutant in the presence 

of 5 mM DTT showed that in these conditions the mutant exhibits conformational exchange (heterogeneous 

linewidths on Figure 4F). 



 

 
 

The LEM domain region contributes to the structural core of the EmN filaments – In order to identify 

residues forming the structural core of EmN132 and EmN filaments, we searched for residues protected 

from proteolysis by mass spectrometry. Therefore, we incubated filaments of these emerin fragments with 

either endoproteinase GluC or chymotrypsin during 4 hours at 310 K for a limited proteolysis. Degradation 

products were then resolved by SDS-PAGE and analyzed by means of high-resolution tandem mass 

spectrometry (Figure 5). First, two main bands with apparent molecular weights of 6 and 10 kDa are 

observed after proteolysis by endoproteinase GluC in the cases of both EmN132 and EmN. They all contain 

peptides with a LEM domain (boxed in yellow on Figure 5). The band at 6 kDa probably corresponds to the 

LEM region itself. The band at 10 kDa corresponds to: (i) the LEM region and part of the intrinsically 

disordered region from residue 48 to residue 103, in the case of EmN132; (ii) a mixed of peptides containing 

either the N-terminal LEM domain or the C-terminal peptide 158 to 187 in the case of EmN. Limited 

proteolysis by chymotrypsin led to a main degradation band with an apparent molecular weight of 9 kDa in 

the case of EmN132 and 10 kDa in the case of EmN. These bands again correspond to degradation products 

comprising the LEM region and an additional fragment: (i) fragment 47 to 74 in the case of EmN132; (ii) 

probably a slightly larger fragment in the case of EmN, even if only region 47 to 59 is detected by mass 

spectrometry. Thus an N-terminal region with an apparent molecular mass of about 10kDa is protected 

from proteolysis in self-assembled EmN132 and EmN with the LEM region being the most protected from 

cleavage by either endoproteinase GluC or chymotrypsin. 

The EmN filaments, either wild-type or delK37, share a common structural core rich in -structure 

comprising the LEM domain 1-strand - We finally characterized the filament structure of EmN, EmN132 

and EmN delK37 using solid-state NMR. Superimposing the 13C-13C proton-driven spin-diffusion spectra of 

EmN wild-type and delK37 showed that the correlation peaks overlap nicely (Figure 6A). However, the 

spectra are dominated by random coil signals which are relatively broad. In a double quantum - single 

quantum experiment (Figure 6B), double quantum coherence is generated from and later reconverted to 

single quantum coherence by means of SPC-5 [32] excitation and reconversion periods. During these 

recoupling periods, an effective dipolar double-quantum Hamiltonian is active, that will be scaled down in 

the presence of molecular motions. Thus only very rigid parts of the protein are visible in the resulting 

spectrum. Approximately 20 amino acids contribute to the double quantum – single quantum 13C-13C 

correlation spectrum of EmN filaments (Figure 6B): these residues form the filament core structure. They 

comprise three threonines, two serines, one proline, one alanine, one valine, one leucine and one 

isoleucine. EmN132 shows a very similar double quantum – single quantum 13C-13C correlation spectrum, 

with a clear isoleucine signal, and possesses only two isoleucines, both in the LEM domain region, precisely 

at positions 21 and 38. This first observation confirms that the LEM domain region is part of the filament 

structural core. Valine residues are found at positions 26 and 27 and proline residues at positions 22 and 

25 in this same LEM domain region.  



 

 
 

This suggests that the structural core comprises at least fragment 21 to 26, which corresponds to the 

strand1 of the LEM domain (Figure 1D). Analysis of the secondary chemical shifts of the isoleucine and 

valine 13C measured in the double quantum – single quantum spectrum predicts that these residues also 

adopt a -conformation in the filament (Figures 6B,C). Additionally secondary structure predictions for an 

alanine, two serines and two threonines indicate a -conformation in the filament. Only one alanine is 

present in the LEM domain region, at position 5 (Figure 6D).  Two serines are present at positions 8 and 29, 

and several threonines are present at positions 10, 13, 14, 30 and 43. These residues are all in -helices in 

monomeric EmN. So either a fragment of the LEM domain region switches from an - to a -conformation 

(as fragment 5 to 14 for example; see Figure 6D) or a fragment of the intrinsically disordered region folds 

into a -conformation during EmN self-assembly. Both processes could also take place simultaneously. 

Discussion 

Very few structural data are yet available on the architecture of the nuclear envelope. Inner 

nuclear membrane proteins exhibit large regions predicted to be intrinsically disordered that interact 

with the nuclear intermediate filaments called the lamins lining the inner nuclear membrane. However, 

the details of these intermolecular interactions and their mode of regulation through oligomerization 

and post-translational modifications are still unclear. At the nuclear envelope, LEM domain proteins 

share the ability to bind lamins and tether repressive chromatin at the nuclear periphery (for review, 

see [33]). Their LEM domain binds Barrier-to-Autointegration Factor (BAF), a metazoan DNA-binding 

protein [34, 35]. Here we focus on the inner nuclear envelope emerin, one of the most studied LEM-

domain proteins. The group of Prof K. Wilson was the first to reveal, from biochemical analyses 

performed in vitro and in cells, that emerin could indeed be assembled as oligomers anchored at the 

inner nuclear membrane [24]. They showed that several intra and/or intermolecular interactions could 

be observed within emerin molecules, and suggested that changes in emerin oligomeric state were 

responsible for regulating emerin binding properties at the inner nuclear envelope. In particular, the 

LEM domain could be found in a “DOWN” state in which it interacts with BAF at the chromatin, but 

also in a “UP” state in which it participates to emerin self-assembly and potentially partner recognition 

at the nuclear envelope. In this study, we demonstrate that the LEM domain can indeed be found in 

two different quaternary structures, either as a globular domain in a monomeric EmN fragment, or as 

part of the structural core of long curvilinear filaments formed by EmN. The molecular details of these 

LEM structures and their potential functional role are discussed in the following. 

 



 

 
 

The LEM domain plays a central role in EmN oligomerization – Our results reveal for the first time 

that emerin N-terminal region from residue 1 to residue 132 can self-assemble through interactions 

involving the LEM domain and part of the intrinsically disordered region 48 to 132. Region 21 to 26 

might be involved in emerin self-assembly, as strongly suggested by solid-state NMR spectroscopy. 

This region corresponds to the LEM domain strand1. Region 95-99 is also critical for emerin 

oligomerization: EDMD-causing small in frame deletion del95-99 in EmN impaired filament formation 

in our conditions [25]. It exhibits a serine residue (Ser98) and is close to a threonine-rich patch (Thr101, 

Thr102, Thr104), which correspond to amino acid types observed by solid-state NMR in the rigid part 

of the filaments.  

LEM domain unfolding favors EmN oligomerization – Analysis of the solution structure of EmN mutant 

delK37 revealed that this single amino acid deletion in helix 3 destroys the LEM domain fold. However, 

delK37 self-assembles faster than wild-type EmN and is capable of forming oligomers with a similar 

structural organization, as shown by negative-staining electron microscopy, limited proteolysis and solid-

state NMR. Figure 4B clearly shows that the first steps of self-assembly are significantly facilitated by 

deletion of K37, suggesting that structural rearrangement of the LEM domain is a rate-limiting step in 

filament assembly. Interactions between strand 1 and the rest of the LEM domain might have to be 

disrupted in order to enable intermolecular interactions with another emerin molecule. His23 is located in 

strand 1 and its side chain is directed towards helix 2. Protonation of this histidine under pH 6.5 might 

favor filament assembly. In our conditions, lowering the pH under 6.5 triggered EmN aggregation, thus 

preventing any EmN study under this pH. However, in the case of mutant Q133H, which self-assembles 

slower than wild-type EmN, going from pH 8.0 to pH 6.8 clearly favored self-assembly (Suppl. Figure 4 in 

[25]). 

Functional role of the self-assembled form of emerin – The best described LEM domain function is to 

interact with BAF in order to create a physical link between the nuclear envelope and the chromatin. All 

studied LEM-domain proteins bind BAF. The 3D structure of a complex between emerin LEM domain and a 

dimer of BAF was determined from solution-state NMR data [31]. The two main -helices (2 and 3) as 

well as the -strand (1) all directly contact BAF dimer, suggesting that the LEM fold is critical for BAF 

recognition. Thus the emerin mutant delK37 and the filaments of EmN, either wild-type or delK37, might 

also have lost part of their BAF binding capacity. On the opposite, mutant del95-99, which is defective in 

EmN self-assembly [25], might be more often in a conformation efficient for BAF binding.  

 

 



 

 
 

Emerin also binds lamin A/C, and this interaction is critical for emerin localization at the nuclear 

envelope. It was reported that region EmN132 is necessary and sufficient for binding to the tails of lamin 

A/C and lamin B1 [24]. We showed in this study that EmN132 is necessary and sufficient for filament 

formation. It was further reported that emerin mutant del95-99 does not bind lamin A/C as observed by 

blot overlay assays [30], and that in cells, proximities between this emerin mutant and lamin A/C are less 

frequently observed by Proximity Ligation assays [25]. We showed that EmN mutant del95-99 does not self-

associate in our conditions [25]. Finally, several LEM domain mutants, and in particular a mutant with 

alanines at positions 24, 25, 26 and 27 (in strand 1) as well as a mutant with alanines at positions 34, 35, 

36 and 37 (in helix 3), bind lamin A/C reproducibly better than wild-type emerin as observed by blot 

overlay assays [30]. Such large number of alanine substitutions in secondary structure elements probably 

destabilizes the LEM domain fold. As our results suggest that destabilization of the LEM fold favors EmN 

self-assembly, we propose that the alanine mutants have a less stable LEM domain, which favors emerin 

self-assembly and thus lamin A/C binding.  

Conclusion – It was recently proposed that LEM domain proteins self-associate in order to form a 3D 

complex network at the nuclear envelope. We propose a first analysis of the emerin self-association 

mechanisms, which reveals that LEM domain residues interact with residues from the intrinsically 

disordered region from amino acid 50 to amino acid 132 in order to oligomerize. Our analysis strongly 

suggests that the LEM domain strand 1 undergoes a structural rearrangement in order to contact 

fragments of other emerin molecules, either at the N-terminus of the LEM fold, or in the intrinsically 

disordered region, thus triggering emerin self-association into filaments. Further studies will be needed in 

order to understand if this self-assembly pathway also occurs in cells, and how it is influenced by emerin 

membrane anchoring, post-translational modifications and partner binding. However, as emerin is highly 

phosphorylated in cells, and in particular at positions 4, 8, 10 and 28 at the N-termini of helices 1, 2 and 

3, we can postulate that phosphorylation impacts the stability of the LEM domain and thus regulate 

emerin self-assembly. Moreover we propose that self-assembly regulates BAF and emerin binding. More 

generally, our results suggest that modification and oligomerization events modify the emerin interactome 

and regulate LEM domain protein network at the nuclear envelope. Deciphering these molecular 

mechanisms is now becoming an exciting question, directly relevant to human envelopathies. 

 

 

 

 



 

 
 

Materials and methods 

Protein Expression and Purification. 

Human wild-type emerin fragments from amino acid 1 to amino acid 187 (EmN) and from amino acid 67 to 

amino acid 187 (EmN67C) were expressed in Escherichia coli BL21 DE3 Star (Novagen) using a pETM13 

vector as N-terminal octa-histidine fusions. The emerin cDNAs were optimized in terms of codon usage for 

expression in Escherichia coli (Genscript). To encode emerin variants from amino acid 1 to amino acid 49 

(EmN49) or amino acid 132 (EmN132), stop codons were inserted into the EmN cDNA using a standard 

QuickChange Site-Directed Mutagenesis kit (Stratagene). Mutations delK37 and Y4C/E38C were inserted 

into the EmN, EmN49 cDNAs and the EmN132 cDNA, respectively, using the same Mutagenesis kit. Bacteria 

were cultured in rich medium or 15N-labeled minimum medium, induced at an optimal density of 1.0 with 

0.5 mM isopropyl -D-1-thiogalactopyranoside, grown overnight at 293 K, and lysed in 50 mM Tris-HCl (pH 

8.0), 300 mM NaCl, 40 mM imidazole, 5% glycerol, 1% Triton X-100, and 1 mM 

phenylmethanesulfonylfluoride. After centrifugation at 20 000 g for 20 min at 277 K, the pellet was 

resuspended in buffer C8 (50 mM Tris-HCl pH8.0, 150 mM NaCl, 20 mM imidazole, 8 M urea). A second 

centrifugation step was performed at 20 000 g for 20 min at 293 K. The soluble extract was then loaded 

onto Ni-NTA beads (GE-Healthcare) equilibrated with buffer C8. Proteins were eluted directly with buffer 

E8 (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 M imidazole, 8 M urea). Proteins were refolded by dialysis in 

buffer D (20mM Tris-HCl pH8.0, 30mM NaCl, 2mM DTT). After refolding, they were incubated with the TEV 

protease during 3 hours at room temperature and finally dialyzed into the desired buffer. The final yield 

was typically 10 mg of purified protein per liter of bacterial culture [25].  

Liquid-State NMR Spectroscopy. 

After purification and His-Tag cleavage, proteins were dialyzed against 20 mM sodium phosphate pH 6.5, 

30 mM NaCl, 5 mM DTT (20 mM Tris-HCl pH 7.5, 30-100mM NaCl, 5 mM DTT in Fig. 4F). NMR experiments 

were performed on 700 or 750 MHz Bruker Avance II spectrometers equipped with a cryogenic probe. 2D 

NMR 1H 15N correlation spectra were acquired using a HSQC pulse sequence at 303 K, on a 3-mm-diameter 

NMR sample tube containing 200 µM uniformly 15N-labeled EmN, EmN67C, EmN49, EmN132, EmN delK37 

or EmN132 Y4C/E35C. 3D 1H 15N 13C correlation spectra were acquired using 3D HNCACB, CBCA(CO)NH, 

HNCO, HN(CA)CO and HN(CO)(CA)NH pulse sequences at 303 K, on a 3-mm-diameter NMR sample tube 

containing 500-600 µM uniformly 15N13C-labeled EmN132. The data were processed using Topspin3.1 

(Bruker) and analyzed with CCPNMR [36]. 

Solid-State NMR Spectroscopy. 

After purification and His-Tag cleavage, proteins were dialyzed against 20 mM Tris-HCl pH 8, 30mM NaCl 

and 5mM DTT.  



 

 
 

Solid-state NMR experiments for the EmN and EmN132 constructs were recorded on a Bruker Avance III HD 

800 MHz spectrometer with 18.8 T external magnetic field or on a Bruker Avance III HD 700 MHz 

spectrometer with 16.4 T external magnetic field. All solid-state NMR experiments for the EmN delK37 

mutant were recorded on a Bruker Avance III HD 700 MHz spectrometer with 16.4 T external magnetic field. 

The sample temperature was determined using the water-proton signal referenced to DSS and kept at 283 

K. Double quantum – single quantum spectra were recorded with magic-angle spinning at 8 kHz and C-C 

correlation spectra with 11 kHz MAS rate. High-power 1H decoupling was performed during evolution and 

detection periods using SPINAL-64 [37] at a radio frequency strength of 83 kHz. All spectra were processed 

using Bruker TopSpin 3.2 and analyzed with CcpNmr [36]. 

Double quantum – single quantum C-C correlation spectra were recorded using SPC5 [32] 

excitation and reconversion periods of 0.5 ms. Maximum acquisition times for the direct dimension were 

10 ms and for the indirect dimension 1.2 ms. For the EmN and EmN132 samples the number of scans was 

set to 336 and it was set to 192 for the mutant delK37. C-C correlation spectra using proton-driven spin 

diffusion (PDSD) were recorded using 50 ms mixing time [38]. Maximum acquisition times were 15 ms for 

the direct and 10 ms for the indirect dimension. For the EmN and EmN132 samples the number of scans 

was set to 112 and it was set to 184 for the mutant delK37. Secondary structure classifications were based 

on the carbon chemical shifts as described by Wang et al. [39]. 

Electron microscopy. 

To observe self-assembled proteins, EmN, EmN49, EmN132, EmN67C and EmN delK37 were dialyzed 

against 20 mM Tris-HCl (pH 8.0), 30 mM NaCl and 5 mM DTT. They were concentrated up to 600 M and 

incubated at 293 K during 1 week. Specimens were prepared by negative staining with 2 % uranyl acetate 

on glow-discharged carbon-coated copper grids. Data collection was performed using a Tecnai Spirit 

transmission electron microscope (FEI) equipped with a LaB6 filament, operating at 100 kV. Images were 

recorded on a K2 Base camera (Gatan, 4kx4k) at 15,000 or 4,400 magnification (pixel size at specimen level 

– 0.25 & 0.83 nm, respectively). 

Thioflavin kinetics. 

After purification and His-Tag cleavage, proteins were dialyzed against 20mM Tris-HCl pH 8.0, 30 mM NaCl 

and 5 mM DTT. Oligomer assembly was followed with time by incubating proteins at 300 M and 310 K and 

by regularly taking protein aliquots to be analyzed by fluorescence. These aliquots were diluted in a 

thioflavin T (ThT) containing buffer so as to obtain 20 μM protein and 2.5 μM ThT in 20 mM Tris (pH 8.0), 

30 mM NaCl, and 5 mM DTT.  

The fluorescence measurements were carried out in a 60 µl cuvette at 293 K using a fluorimeter JASCO ADP-

303T. ThT fluorescence was monitored using an excitation wavelength of 440 nm and fluorescence emission 

was read at 480 nm. 



 

 
 

Limited Proteolysis. 

After purification and His-Tag cleavage, EmN, EmN132 and mutant delK37 were dialyzed against 20mM Tris-

HCl pH 8.0, 30 mM NaCl and 5 mM DTT. For experiments on monomers, proteins were concentrated up to 

125 M. Filament formation was performed by concentrating proteins until 600 M and heating the 

samples during 1 hour at 338 K (338K) [25]. Before proteolysis, filaments were diluted at 125 M and both 

monomers and filaments were incubated with Chymotrypsin or EndoproteinaseGluC (1:1000) during one 

hour at 310K. Protease reactions were stopped by the addition of 10 µl of Laemmli blue and sample heating 

during 5 min at 368 K (95°C). Degradation products were then resolved by SDS-PAGE and analyzed by means 

of high-resolution tandem mass spectrometry. 

Tandem Mass Spectrometry. 

For mapping fragments generated by limited proteolysis, excised polyacrylamide bands were first 

rinsed with MilliQ water, de-stained, and then subjected to in-gel protein reduction with DTT followed 

by protein alkylation with iodoacetamide, as described [40]. They were digested with either 

sequencing-grade Trypsin Gold and ProteaseMax surfactant (Promega) for 1h at 323 K or sequencing-

grade chymotrypsin for 1h at 298 K as previously reported [41]. Trifluoroacetic acid was added to the 

samples at 0.5% final concentration to stop the enzymatic reaction. The resulting peptides were 

identified by tandem mass spectrometry with an LTQ Orbitrap XL mass spectrometer (Thermo Fisher 

Scientific) coupled to an UltiMate 3000 nRSLC system (Dionex, ThermoFisher), under conditions similar 

to those previously described [42, 43]. Briefly, peptide mixtures (10 µL injection) were first desalted 

on-line in a reverse-phase Acclaim PepMap100 C18 μ-precolumn (5 μm, 100 Å, 300 μm inner diameter 

× 5 mm, LC Packings), and then were separated on a nanoscale Acclaim PepMap100 C18 capillary 

column (3 μm, 100 Å, 75 μm i.d. × 50 cm, LC Packings) using a 90-min gradient from 4 to 40% solvent B 

(CH3CN, 0.01% formic acid) with solvent A being H2O, 0.01% formic acid. The full-scan mass spectra of 

high mass accuracy were measured in the Orbitrap analyzer from m/z 300 to 1800 in data-dependent 

mode.   

The MS/MS scans in the linear ion trap were acquired on the seven most abundant precursor ions. 

MS/MS data processing was done as described previously [44] against the Swissprot_Human database 

comprising 20,192 protein sequences using the following parameters: semi-tryptic peptides with a 

maximum of two miss-cleavages; mass error tolerances set at 5 ppm for parent ions and at 0.5 Da for 

fragments; fixed modification for carbamidomethylated cysteine and variable modification for 

methionine oxidation. Peptides were filtered with a p-value threshold below 0.05 and a rank set at 1.  
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Legends 

  

 

Figure 1. A LEM domain with a  motif is present in the monomeric emerin fragments EmN49, 

EmN132 and EmN. (A) Emerin architecture and fragments studied by solution NMR. (B) 

Superimposition of the solution-state NMR 1H-15N HSQC spectra of EmN49 (the LEM domain, in orange; 

its 3D structure is boxed in the upper left corner of the figure (PDB references 1JEI and 2ODC)), EmN132 

(in green) and EmN (in black), recorded at pH 6.5, 303 K and 750 MHz. Peak overlap reveals that the 

LEM domain adopts the same 3D structure in the 3 fragments. (C) Analysis of the solution-state NMR 

13C signals of EmN132 (pH 6.5, 303 K, 750 MHz), confirming that its N-terminal domain exhibits 3 helices 

and 1 extended strand, and further showing that region 50 to 132 is essentially unstructured.  



 

 
 

Analysis of the NMR 13C signals of emerin fragment 67-170 consistently showed that this fragment is 

intrinsically disordered (Samson et al., 2016). (D) Sequence of the emerin fragment EmN. The 

secondary structure elements deduced from (C) are boxed in red. 

 

 

Figure 2. The LEM sequence and part of the unstructured region are necessary for emerin self-

assembly. (A) Negative staining EM images of emerin fragments EmN, EmN132, EmN49 and Em67C 

concentrated at 600 M and incubated at 293 K during one week. (B) ThT fluorescence as a function 

of the incubation time at 310 K, measured on emerin fragments concentrated at 300 M. Only EmN132 

and EmN form filaments. They self-assemble with similar kinetics. EmN49 and Em67C do not form 

filaments, as also observed by EM. 

 

 

 



 

 
 

 

Figure 3. The LEM domain of disease-causing mutant delK37 is unstructured. (A) Superimposition of 

the solution-state NMR 1D spectra of EmN (in black) and delK37 (in blue), recorded at pH 6.5, 303 K, 

750 MHz. Three signals corresponding to side-chain protons of buried residues Leu16, Tyr19 and Tyr41 

are marked in magenta. These signals are strongly shifted in the spectrum of delK37. (B) 

Superimposition of the solution-state NMR 2D 1H-15N HSQC spectra of EmN (in black) and delK37 (in 

blue), recorded at pH 6.5, 303 K, 750 MHz. Signals corresponding to the LEM domain (in orange on Fig. 

1B) are moved towards regions corresponding to random coil in the spectrum of delK37. (C) 

Representation of the 3D structure of EmN, with residue K37, lacking in the mutant, colored in blue, 

and residues Leu16, Tyr19 and Tyr41, exhibiting different chemical environments in the mutant, 

colored in magenta, as in (A).  

 

 

 

 

 

 



 

 
 

 

Figure 4. The EmN mutant delK37 self-assembles faster than wild-type EmN. (A) Negative staining EM 

images of emerin fragments EmN wild-type and delK37, before (t=0) and after (t=1 week) incubation 

during one week at 293 K and 600 M. White bars represent 100 nm. (B) SDS-PAGE gels of EmN wild-

type and delK37, corresponding to the samples observed in (A). The samples were deposited before 

and after incubation during one hour at 310 K with chymotrypsin 1:1000. Self-assembly protects both 

wild-type and mutated EmN from proteolysis. Degradation products migrate similarly in both cases, 

suggesting that the 3D structures of wild-type and mutated filaments are closely related. (C) ThT 

fluorescence as a function of the incubation time at 310 K, measured on EmN wild-type and delK37 

concentrated at 300 M. The mutant delK37 forms filaments faster than WT EmN. (D) 3D structure of 

the LEM domain with K37 in blue and the 2 residues Y4 and E35 mutated into cysteine in mutant 

EmN132 Y4C/E35C in red. (E) ThT fluorescence intensity as a function of time measured on EmN132 

wild-type (green), Y4C/E35C in the presence of 5 mM DTT (red) and Y4C/E35C in the absence of DTT 

(mauve), measured at 310 K and 300 M. The mutant forms filaments only in reducing conditions.  



 

 
 

(F) Superimposition of the solution-state NMR 2D 1H-15N HSQC spectra of EmN132 wild-type (green, 

Tris pH 7.5 100 mM NaCl),  Y4C/E35C in the presence of 5 mM DTT (red, Tris pH 7.5 30 mM NaCl) and 

Y4C/E35C in the absence of DTT (mauve, Tris pH 7.5 30 mM NaCl), recorded at 303 K, 700 MHz. 

Whereas in the absence of DTT the HSQC peaks are thin and well-dispersed, as for EmN132 wild-type, 

in the presence of DTT the HSQC peaks are only located in the central region of the spectrum and show 

heterogeneous linewidths. 

 

Figure 5. The filament structural core contains the LEM domain. SDS PAGE gel of emerin fragments 

EmN132 and EmN after 4 hours of incubation at 310 K with either endoproteinase Glu-C or 

chymotrypsin (1:1000). The bands squared in red were characterized by mass spectrometry and their 

peptide composition is summarized in the table below. As judged by spectral count significant amounts 

of peptides are indicated by + whereas low and no signal are indicated by -. Clearly, all samples contain 

at least part of the LEM region. Sample 4 contains a mixed of peptides comprising either the N-

terminus of the C-terminus of EmN, but further proteolysis (sample 5) shows that the LEM region is 

the most protected fragment of EmN. This experiment was performed in duplicate. 



 

 
 

 

 

Figure 6. The filament structural core is similar in EmN wild-type and delK37 and contains-structure. (A) 

Solid-state NMR 2D PDSD spectra recorded with a mixing time of 50 ms for EmN wild-type (black) and 

delK37 (blue); secondary structure classifications are indicated (α= alpha helical, β= beta sheet, RC = random 

coil). (B) Solid-state NMR double quantum - single quantum C-C correlation spectra for EmN wild-type 

(black) and delK37 (blue) and EmN132 (green), with the identified residue types indicated. (C) Secondary 

structure analysis for the assigned residues from the double quantum - single quantum C-C correlation 

spectrum of EmN as shown in (B). Depicted is the difference between 13C observed chemical shift and 

random coil reference [39]. Negative differences for C and positive differences for C indicate -sheet 

secondary structure; corresponding bars are colored in cyan. Bars indicating -helix secondary structure 

are colored in red. (D) Sequence of the LEM domain colored as a function of the secondary structure 

observed in solution (see Figures 1C,D), with helices displayed in red and -strands in cyan. Asterisks 

indicate residues identified in (C) and discussed in the text.  
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2. IMPACT OF EMERIN LEM DOMAIN MUTATIONS ON EMERIN SELF-
ASSEMBLY 

 

In the first article, we studied the impact of five mutants (S54F, 95-99, Q133H and P183T/H) 

that show a defect in emerin unstructured region and cause Emery-Dreifuss Muscular 

Dystrophy, on EmN self-assembly, and found that mutant 95-99 cannot form filaments 

anymore. In the second paper I presented, we worked with another mutant showing a defect 

in emerin LEM domain and known to cause cardiac defects, mutant K37. This mutant is 

particularly interesting because it exhibits a destabilized LEM domain and the EmN mutant 

K37 is able to form filaments faster than EmN WT.  

In parallel, we worked with two other mutants showing a defect in emerin LEM domain and 

associated to the same symptoms as K37: mutants P22L and T43I (G. Bonne, personal 

communication). I here report my results on the 3 mutants of the LEM domain, which will be 

published in another article. 

First, together with a PhD student in the lab, Nada Essawy, I studied the structure of EmN 

mutants (P22L and T43I) by NMR. After recording 15N-1H HSQC spectrum of each mutant 

(figure 35), we observed no chemical shift differences compared to the spectrum that we 

obtained for EmN WT, except for some peaks, corresponding to amino acids close to the 

mutated residues. We concluded that both mutations do not impact the structure of EmN 

monomers.  
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Figure 35 : Structure comparison between EmN monomer WT and mutants.  

Superimposition of 2D NMR 1H−15N spectra recorded on an EmN WT sample at 100µM (in black), 
an EmN P22L sample at 100µM (in orange) and an EmN T43I sample at 100µM (in purple), in 20mM 
Phosphate pH6.5, 30mM NaCl, 5mM DTT, at 303K and 750MHz (FMP Berlin).  

 

Second, I studied the self-assembly kinetics of the three mutated EmN fragments using 

thioflavin T fluorescence. As it is described in the second paper I presented, we used this 

technique because thioflavin T is a benzothiazole dye that increases in fluorescence upon 

binding to amyloid-like oligomers246,247. It gives a fluorescence signal at 480nm after excitation 

at 440nm, and this signal is significantly enhanced when thioflavin T is bound to these amyloid-

like structures, especially the “cross-β” structures, characterized by an extended β-

conformation with the strands running perpendicular to the long axis of the assembly of 

multiple β-sheets248. We first verified that thioflavin T fluorescence is not enhanced in the 

presence of EmN monomers, and we showed that it nicely increases during EmN self-

assembly4. In the case of the three mutants, I concentrated them up to 300µM and incubated 

each protein sample at 310K, during one day. I took a sample for fluorescence measurement 

at 480nm every hour during 4h and then the next day. For each measurement, I diluted my 

protein sample to 40µM in the kinetic buffer (20mM Tris-HCl pH8, 30mM NaCl) and added 

10µM of thioflavin T (figure 36).  
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Figure 36 : Self-assembly kinetics of EmN T43I, P22L and K37 mutants, compared to EmN WT, as 
followed by thioflavin T fluorescence.  

The fluorescence intensities at 480nm of EmN WT, T43I, P22L and K37 are represented in black, 
purple, orange and blue, respectively. Experiments were performed in 20mM Tris -HCl pH8, 30mM 
NaCl, at 310K. 

 

My results show that the three EmN mutants self-assemble faster than EmN WT. This was 

never observed for any of the five mutants showing a defect in the disordered part of EmN4. 

To confirm that these three mutants could form filaments, we used negative staining electron 

microscopy. In more details, we concentrated the three proteins up to 600µM and observed 

the samples after one day at room temperature by EM (figure 37). We confirmed that these 

three EmN mutants are able to form filaments, which look like EmN WT filaments.  

 

Figure 37 : Negative-staining EM pictures of the three EmN mutants. 

Pictures were obtained in the presence of 2% uranyl acetate, using a Tecnai Spirit transmission 
electron microscope (FEI) equipped with a LaB6 filament (Dr  Ana-Andreea Arteni, I2BC, Gif-sur-
Yvette). Filaments were obtained after incubation at 600µM, during one day, at room temperature. 

P22L, K37 and T43I images are framed in orange, blue and purple, respectively.  
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3. DESCRIPTION OF THE PHOSPHORYLATION OF EMN BY FUNCTIONALLY 
RELEVANT KINASES 

 

Emerin is heavily phosphorylated in cells. Forty-two phosphorylation sites were reported 

on emerin in vivo (25 serine, 4 threonine and 11 tyrosine)196. However, responsible kinases, 

phosphorylation kinetics and functional consequences on emerin oligomerization and 

interaction with partners remain poorly understood. For example, emerin phosphorylation by 

the Src kinase during a mechanical stress was observed on isolated nuclei107. However, the 

consequences of this phosphorylation process on emerin oligomerization and lamin binding is 

not known. As, after a mechanical stress, lamin A/C was shown to be recruited to the LINC 

complex in order to reinforce nuclear stiffness107, and because it was recently shown that 

application of a strain could increase emerin levels at the outer nuclear membrane without 

altering total emerin protein level249, I did the hypothesis that emerin phosphorylation by Src 

could disrupt emerin binding to the nuclear lamina. 

Here, first, I present the results I obtained by NMR and mass spectrometry, concerning 

emerin phosphorylation by Src in vitro. I tried to characterize which emerin residues are 

phosphorylated by Src kinase. Then, because Src phosphorylates emerin on residues 74 and 

95, and because we found that this region is important for filament formation, I choose to 

study impact of Src phosphorylation on emerin oligomerization. Finally, I observed emerin 

phosphorylation by two other kinases predicted as able to phosphorylate emerin (CK1 and 

CK2) and in cell extracts. 
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a. Characterization of emerin phosphorylation in vitro 
 

1) Emerin phosphorylation by Src kinase, in vitro 
 

The Src kinase phosphorylates emerin tyrosines 74 and 95 during application of a mechanical 

force on the nucleus; mutation of these two residues impair nuclear response to a mechanical 

stress107. I first identified which emerin residues are phosphorylated in vitro by Src, through 

two different techniques which are NMR and mass spectrometry.  

I also did some preliminary studies about the impact of Src phosphorylation on emerin 

oligomerization, following emerin self-assembly by fluorescence and electron microscopy. The 

final aim was to observe impact of Src phosphorylation on emerin binding to lamin A/C. 

First, I studied emerin modifications in the presence of Src kinase by mass spectroscopy (figure 

38). I worked with two emerin constructs: Emerin 1-187 (EmN) and 1-132 (EmN132). I mixed 

the emerin fragment with 10µl of Src kinase and 2mM ATP and incubated them during 12h at 

303K. Then I observed the phosphorylated sample by SDS-PAGE and sent the band 

corresponding to the phosphorylated emerin fragment to the group of Dr Jean Armengaud 

(CEA Marcoule), who analyzed it by MS/MS mass spectroscopy with an LTQ Orbitrap XL mass 

spectrometer (Thermo Fisher Scientific) coupled to an UltiMate 3000 nRSLC system (Dionex, 

ThermoFisher). This experiment revealed that only Tyr74 and Tyr95 are phosphorylated by Src 

at more than 20% in our conditions. Tyr161 was phosphorylated at about 15% and Tyr85, 

Tyr94, Tyr99 and Tyr105 were phosphorylated at about 5%. Tyrosine 74 and 95 are labelled in 

red in the emerin sequence from figure 38 and interestingly, it corresponds to both tyrosines 

found as phosphorylated during a mechanical stress. Other tyrosines are labelled in orange in 

the emerin sequence. 
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Figure 38 : SDS-PAGE gel of EmN and EmN132 phosphorylated by Src.  

Samples labelled with number 11 and 12 were then analyzed by mass spectroscopy in order to 
identify which residues are modified by the kinase. Tyrosines found as phosphorylated are labelled 
on the emerin sequence (more than 20% phosphorylated: at red, less than 15% phosphorylated: 
orange). 

 

To confirm the result obtained by mass spectrometry, I studied EmN phosphorylation kinetics 

by NMR. I recorded a 1H-15N HSQC spectrum on 15N labelled EmN in the presence of 5mM 

MgCl2 and 2mM ATP first, as a reference, and then I added 10µl of Src kinase in my NMR 

sample and recorded a spectrum every 2 hours (figure 39), using single tube. Several chemical 

shift modifications were observed during this kinetics. I had previously assigned the 

unphosphorylated EmN spectrum250. It was thus easy to follow the disappearance of the signal 

from the unphosphorylated tyrosine 95 (labelled on the figure 39), which is one of the 

tyrosines reported as modified by Src in the literature107 (and shown as phosphorylated by Src 

in our mass spectrometry experiments). Contrariwise, it was difficult to assign all EmN 

modified residues because of too much spectral overlaps and changes during the kinetics. All 

these chemical shift differences were due to amino acid modifications and to changes in 

chemical environment of neighboring residues. The assignment problem is well illustrated 

though the observation of the peaks corresponding to the glycine residues of the protein (First 

Zoom on the figure 39). Indeed, many chemical shift differences were observed in this peak 

area, because of the presence of modified tyrosines (labelled in red and orange on the emerin 

sequence) next to several glycines, labelled in green on the emerin sequence (figure 39, B). 

The peak corresponding to residue E96 (Second Zoom on the figure 39) also totally shifts from 

its initial position after Src phosphorylation, probably due to phosphorylation of Y95. 
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Figure 39 : EmN phosphorylation kinetics, in the presence of Src.  

(A) Superimposition of 2D NMR 1H−15N spectra, recorded every two hours on a EmN sample at 

100µM in 20mM Phosphate pH7, 30mM NaCl, 10mM -mercaptoethanol, 2mM ATP, 5mM MgCl2 
and 10µl of Src kinase, at 303K and 750MHz (FMP Berlin). (B) Emerin sequence with tyrosines 
identified as more than 20% phosphorylated by mass spectroscopy labelled in red, tyrosines less 
than 15% phosphorylated labelled in orange, glycines next to modified tyrosines labelled in green 
and the glutamate next to tyrosine 95 labelled in bl ue. 

 

To override this problem, I studied EmN132 modifications as I did for EmN (figure 40), by NMR. 

As in the EmN study, several modifications appeared over time during the kinetics. Then, I 

produced a double labelled sample of EmN1-132 that I phosphorylated by Src kinase during 

12h at 303K in order to record subsequently 3D NMR experiments to try to assign the 

phosphorylated sample.  Because of too much signal superimpositions due to a lot of changes 

after phosphorylation and because the protein aggregated in phosphorylation conditions, it 

was not possible to assign all signals corresponding to amino acids affected by Src 

phosphorylation.  

A 

B 
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Only both tyrosines found as more than 20% phosphorylated by mass spectroscopy, Tyr74 and 

Tyr95 were assigned in their phosphorylated states. To continue on this phosphorylation study 

by NMR and to succeed in protein signal NMR assignment, we need to produce EmN mutants, 

in which each tyrosine, one per one, is mutated. 

 

Figure 40 : Superimposition of 2D NMR 1H−15N spectra recorded, every two hours, on an EmN132 

sample at 100µM in 20mM Phosphate pH7, 30mM NaCl, 10mM -mercaptoethanol, 2mM ATP, 
5mM MgCl2 and 10µl of Src kinase, at 303K and 750MHz (FMP Berlin).  

 

After trying to identify which amino acids are modified by Src, we did preliminary studies on 

the impact of Src phosphorylation on EmN oligomerization. We studied this by SDS-PAGE, EM 

and thioflavin T fluorescence. Results obtained using thioflavin T fluorescence experiments 

are not presented here because they were complicate to reproduce and interpret. One 

question here in particular is: can thioflavin T bind to phosphorylated filaments, given that it 

is reported as preferentially interacting with tyrosine rich cross surfaces (see for example 

Biancalana and Koide248)? I studied EmN oligomerization in the presence of Src using SDS-

PAGE, because I observed that EmN filaments could not enter the SDS-PAGE gels in the 

absence of -mercaptoethanol and heating.  



 

81 
 

I first dialyzed the EmN sample in 20mM Tris-HCl pH8, 30mM NaCl and 10mM -

mercaptoethanol, and after concentrating EmN to 600µM, I prepared three different samples: 

one with EmN, 5mM MgCl2 and 2mM ATP, one with EmN, MgCl2, ATP and 10µl of Src kinase 

and one containing just the concentrated EmN. Afterwards, I heated each sample during one 

hour at 338K and I prepared SDS-PAGE samples of the supernatant and the pellet, after 10 

minutes of centrifugation at 12000 g, for each condition, before and after heating at 338K 

(figure 41, A). 

 

 

Figure 41 : Src phosphorylation impact on EmN filament assembly, as observed by SDS -PAGE and 
EM.  

(A) Picture of SDS-PAGE gels obtained with EmN samples, phosphorylated or not by Src, in the 
presence or absence of MgCl2 and ATP, before and after heating samples during one hour at 338K. 
(B) Picture obtained by negative staining EM using 0.5% of uranyl acetate on an EmN sample heated 
during one hour at 338K, phosphorylated or not during 15h by Src, using a JEOL MET 14 00 (120KeV) 
(Dmytro Puchkov, FMP Berlin).  

 

I observed the disappearance of EmN on SDS-PAGE gels only in one condition, i.e. EmN in the 

presence of MgCl2 and ATP after one hour of heating. In the presence of Src, it was only the 

solubility of the protein sample that was different before and after heating. This experiment 

suggested that phosphorylation by Src impairs EmN filament assembly. 

A B 
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To confirm this, I observed the impact of Src phosphorylation using electron microscopy 

(figure 41, B). First, I dialyzed EmN in 20mM phosphate pH7 and 30mM NaCl and I 

concentrated it until 250µM.  

Then, I splitted the EmN sample in two and added 5mM MgCl2 and 2mM ATP to both of them. 

I added the Src kinase in one of the two samples and incubated both samples at 303K during 

15h. Afterwards, samples were dialyzed against buffer with 20mM Tris-HCl pH8 and 30mM 

NaCl, concentrated until 600µM and put at 338K during one hour before being placed at room 

temperature during three days. Finally, both samples were observed by electron microscopy 

(figure 41, B). We observed the presence of filaments in our non-phosphorylated sample 

whereas aggregates were observed in the phosphorylated sample. This experiment also 

suggested that Src phosphorylation inhibits EmN filament formation or decreases the filament 

self-assembly rate. To confirm this, I have to repeat all these experiments. Secondly, I would 

like to try another protocol to phosphorylate EmN. Indeed, because we have to be in specific 

conditions to phosphorylate a protein, depending on the kinase, I would like to phosphorylate 

EmN before cleavage of its tag, in order to purify again EmN after phosphorylation and to see 

impact of this phosphorylation on filament assembly without the presence of kinase additives. 

2) Emerin phosphorylation by CK1 kinase, in vitro 
 

Analysis of emerin sequence using KinasePhos2251 revealed that different serines are 

predicted as phosphorylated by the CK1 kinase, but two with a better confidence index: 

Ser120 (SVM score = 0.886429) and Ser123 (SVM score = 0.871596). These two serine are 

phosphorylated in vivo196. Therefore I studied by NMR phosphorylation of the EmN132 

construct by CK1 (Appendix 2, figure 100). After 12h of phosphorylation, no clear chemical 

shift differences were observed between the unphosphorylated emerin 1-132 spectrum (in 

black) and the spectrum obtained after 12h of phosphorylation (in red). I concluded that CK1 

could not phosphorylate EmN132 in our conditions. 
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3) Emerin phosphorylation by CK2 kinase, in vitro 
 

With the help of the KinasPhos2 software, I found that 6 serines are predicted as 

phosphorylated by CK2: Ser8, 123, 141, 142, 143 and 175. All these serines are phosphorylated 

in vivo196. I studied by NMR phosphorylation of EmN132 by CK2 (Appendix 2, figure 101).  

After superimposition of the non-phosphorylated emerin spectrum (in black) and the 

spectrum of emerin that was phosphorylated during 12h by CK2 (in green), only some minimal 

chemical shift differences were observed, so I concluded that CK2 does not seem to 

phosphorylate EmN132 in our conditions. 

4) Characterization of EmN132 modifications in cell extracts 
 

I did one preliminary study of EmN132 modifications in cell extracts. In more details, I 

produced our 15N labelled EmN132 construct with a Histidine Tag at the N-terminus. Then, I 

concentrated the protein up to 200µM and incubated it in 293T cell extracts (10mg/ml) in the 

presence of 10mM ATP, 2mM MgCl2, 2mM DTT and protease and phosphatase inhibitors. 

Finally, the protein was purified again by affinity chromatography and concentrated in 20mM 

Phosphate buffer pH6.5 and 30mM NaCl. NMR 1H−15N HSQC spectra were recorded on the 

EmN132 sample before (figure 42, in green) and after (figure 42, in black) addition of cell 

extracts. 

Different changes were observed between the two conditions. For example, it was easy to 

assign peaks corresponding to Tyr4 and Tyr41 (labelled in blue) as well as surrounding residues 

(labelled in green) and to observe that peaks corresponding to these residues were shifted, 

suggesting that these LEM domain tyrosines (or their neighboring residues) were 

phosphorylated in cell extracts. 
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Figure 42 : Superimposition of 2D NMR 1H−15N spectra recorded on a non-phosphorylated 
EmN132 sample (in black) or an EmN132 sample phosphorylated by 293T cell extracts (in green) 

at 100µM in 20mM Phosphate pH6.5, 30mM NaCl, 10mM -mercaptoethanol, 2mM ATP and 5mM 
MgCl2, at 303K and 700MHz (CEA Saclay). 
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II. Emerin-lamin interactions 
 

Lamins are known to be essential for nuclear functions. On the one hand, as cytoplasmic 

intermediate filaments, nuclear lamins play structural functions by forming a nucleoskeletal 

scaffold to provide physical stability to the nucleus, to define nuclear shape and to position 

nuclear pore complexes15,16. On the other hand, lamins are found as interacting with 

chromatin-associated proteins, which means that lamins are implicated in higher order 

chromatin organization252. Lamins are proposed to be involved in epigenetic control 

mechanisms and may also take part in DNA replication.  

Since several years, a lot of studies have been initiated in order to understand how lamins 

interact with their partners at the molecular level. However, when I arrived at the lab, nothing 

was known at this level. In particular, an interaction between A-type lamins and emerin was 

confirmed by several techniques but the molecular details of this functionally critical 

interaction were not known. Co-immunoprecipitation assays demonstrated that an 

interaction, direct or indirect, exists between lamin A and emerin166. Then, surface plasmon 

experiments showed that this interaction is direct170. In addition, yeast two hybrid166 and blot 

overlays245 assays confirm these results. Finally, only binding regions on both sides were 

characterized: the C-terminal tail of lamins, and more particular region 384-664 which 

contains the globular Igfold domain, was reported to bind to emerin and mutations in emerin 

region  between residues 70 to 164 were reported to impair the interaction between A-type 

lamins and emerin.  

Our collaborators, the team of Dr Brigitte Buendia from Diderot University in Paris, observed, 

using the technique of Proximity Ligation Assay (PLA) that GFP-emerin and endogenous A-type 

lamins were close, i.e. separated by less than 30-40 nm, in HeLa cells (figure 43). 

In my laboratory, the study of a direct interaction between EmN and the lamin A tail from 

amino acid 389 to 646 had been performed in vitro by the previous PhD student, Isaline 

Herrada. She did not observe a direct interaction between these two protein fragments by 

NMR and ITC. 
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Figure 43 : Localization of emerin-lamin complexes in cells.  

HeLa cells overexpressing WT GFP-emerin were fixed, labeled with anti -GFP and anti-LA/C 
antibodies and processed for PLA before analysis using a confocal microscope. The PLA signals are 
displayed either merged with DNA staining and GFP fluorescenc e (on the left) or alone (on the 
right). 

 

At the beginning of my thesis, I tried again to observe a direct interaction between EmN and 

the tail of the lamin A/C. To test this interaction, different constructs of the lamin A/C tail were 

available in our laboratory. I worked with a construct obtained thanks to a collaboration with 

the laboratory of Prof. Howard J. Worman from Columbia University. It was a GST-tagged 

construct, with a thrombin cleavage site and coding only for the globular domain of the lamin 

A/C, from amino acid 411 to 566. We called this construct Igfold. Production and purification 

of this protein fragment were efficient (the final yield was typically 10 mg of purified protein 

per liter of bacterial culture) and it was important to add some reducing agents in the sample 

because of the presence of a solvent-exposed cysteine (Cys522).   

 

First, I recorded the 1H-15N HSQC spectrum of the Igfold alone, which was 15N labeled during 

bacterial expression, and then the 1H-15N HSQC spectrum of the 15N labeled Igfold in presence 

of one equivalent of non-labeled EmN monomer (figure 44). After superimposition of both 

spectra, no difference was detected. We concluded that the Igfold does not directly interact 

with EmN, in our conditions. 
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Figure 44 : Study of the EmN monomer/Igfold interaction, by NMR.  

Superimposition of 2D NMR 1H−15N spectra recorded on an Igfold sample at 100µM alone (in grey) 
or in presence of 100µM of EmN monomer (in red), in 20mM Tris -HCl pH8, 30mM NaCl, at 303K and 
700MHz (CEA Saclay). 

 

1. A FIRST MODEL OF THE INTERACTION BETWEEN THE NUCLEOSKELETON 
AND THE CHROMATIN 

 

Because we did not observe a direct interaction between emerin and the lamin A/C Igfold, we 

thought that this interaction could be mediated by a third partner. As both proteins were 

shown as interacting with the BAF protein independently, we decided to look at the formation 

of a ternary complex between emerin, BAF and the globular domain of the A-type lamin 

(Igfold). The formation of this complex was already suggested by several studies55,253,254. 

a. Interaction between emerin and BAF 
 

Interaction between emerin and BAF was already well characterized and the 3D structure 

between the LEM domain of emerin and BAF was solved (Cf. Introduction). In more details, it 

was shown that the LEM domain of emerin was able to bind a dimer of BAF. 

First, I tried to reproduce this interaction in vitro, by NMR, ITC and size exclusion 

chromatography. I worked with two emerin fragments: EmN and the LEM domain alone 

(fragment EmN49 comprising residues 1 to 49). Contrary to EmN, EmN49 was soluble in 

bacteria and during purification.  
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Concerning the BAF protein, because of a lot of oligomerization problems during purification 

and because BAF protein possesses 4 cysteines, which are not completely conserved between 

species, we chose to work at the end with a new BAF construct, with all cysteines being 

replaced by alanines. We called this construct BAFCtoA. As for EmN, BAFCtoA production was 

efficient but the protein was produced in inclusion bodies, requiring a purification in urea. 

After a first purification step, using a nickel column, the protein was renatured by dialysis. 

Then, BAFCtoA was injected onto a gel filtration column in order to observe its oligomerization 

states (figure 45, A). BAF is a protein of 10kDa and just after purification, BAFCtoA formed a 

dimer (one peak was observed at 11.8ml, which corresponds to a protein of 25kDa, on a Gel 

Filtration Superdex 75 10/300 GL), but we observed that the number of BAFCtoA oligomers 

increased with time. The dimeric protein was observed on a SDS-PAGE gel and corresponded 

to a protein of 10kDa (figure 45, B).  
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Figure 45 : BAFCtoA purification.  

(A) Size exclusion chromatography using a GF Superdex 75 10/300 GL, equilibrated with 20mM Tris-HCl pH8 
and 100mM NaCl. (B) SDS-PAGE gel obtained after size exclusion chromatography. 
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After protein production, I first tried to observe an interaction between the BAFCtoA dimer and 

EmN by NMR. To do so, I labeled each protein (BAFCtoA and EmN) with 15N separately and 

recorded a 1H-15N HSQC spectrum of each protein alone and with its non-labeled partner 

(figure 46). I observed a decrease of the signal intensity due to addition of the partner in both 

cases, which was characteristic of an interaction between both proteins. I thus confirmed that 

BAFCtoA and EmN interact in vitro and therefore, I obtained a first proof that mutation of BAF 

cysteines into alanines and refolding by dialysis for both proteins (BAFCtoA and EmN) did not 

impair the interaction. So, I estimated that using these purification protocols, I produced 

functional proteins. 

 

 

Figure 46 : Study of BAFCtoA /EmN monomer interaction, by NMR.  

(A) Superimposition of 2D NMR 1H−15N spectra recorded on a BAFCtoA sample at 100µM alone (in 
green) or in presence of 100µM of EmN (in black), in 20mM Phosphate pH6.5, 150mM NaCl, at 293K 
and 700MHz (CEA Saclay). (B) Superimposition of 2D NMR 1H−15N spectra recorded on a EmN 
sample at 100µM alone (in black) or in presence of 100µM of BAF CtoA (in green), in 20mM Tris-HCl 
pH7.5, 100mM NaCl, at 303K and 600MHz (CEA Saclay).  

 

To confirm the affinity and stoichiometry of the interaction reported by the group of Dr Marius 

Clore, I studied this interaction by ITC (figure 47).  Like this other group, I found a dissociation 

constant of around 0.5µM, a favorable enthalpic contribution to the binding free energy of 

about 4 kcal/mol and a defavorable entropic energy of about 10 cal/mol.K52. This result 

confirmed that mutation of BAF cysteines into alanines did not change its affinity for emerin.  

 

A B 
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However, surprisingly, my stoichiometry was different from 2 as found by Clore and co-

workers. Indeed, I found that one emerin could interact with 3 to 4 BAF, depending on the 

experiment. But this can be explained by the fact that BAF forms oligomers, so part of my BAF 

protein was not able to interact, which distorted the stoichiometry.  

 

Figure 47 : Characterization of the EmN/BAF interaction by ITC.  

Successive injections of 10µl of EmN concentrated at 200µM in a BAF sample concentrated at 40µM. 

Both proteins were dialyzed against the same buffer (20mM Tris -HCl pH8, 100mM NaCl, 10mM -
mercaptoethanol, protease inhibitors Roche). The experiment was done  three times, at 288K, on a 
VP-ITC and we found in average a Kd of 0.75µM. All ITC values are listed in appendix 2 (Table 5). 

 

b. Interaction between the globular domain of lamin A/C and BAF 
 

Interaction between BAF and the globular domain of lamin A/C (Igfold) was suggested by 

different studies but no direct interaction was previously described. I tried to observe this 

interaction by NMR, ITC and size exclusion chromatography. I worked with our lamin fragment 

called Igfold (from residues 411 to 566) and the same BAFCtoA already produced to analyze its 

interaction with EmN.  

First, I studied this interaction by NMR. I produced the 15N labeled Igfold and added non-

labeled BAFCtoA and I produced the 15N labeled BAFCtoA and added non-labeled Igfold domain 

(figure 48). I observed a decrease of intensity after addition of the partner in both cases. 

N = 0.25 

Kd = 0.75 ± 0.17 µM 

H = -4007 ± 916 cal/mol 

S = -14 ± 3 cal/mol.K 
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Figure 48 : Study of BAFCtoA /Igfold interaction by NMR.  

(A) Superimposition of 2D NMR 1H−15N spectra recorded on a BAFCtoA sample at 115µM alone (in 
green) or in presence of 115µM of Igfold (in grey), in 20mM Phosphate pH6.5, 150mM NaCl, at 293K 
and 600MHz (CEA Saclay). (B) Superimposition of 2D NMR 1H−15N spectra recorded on a Igfold 
sample at 150µM alone (in grey) or in presence of 150µM of BAF CtoA (in green), in 20mM Phosphate 
pH7, 100mM NaCl, at 303K and 600MHz (CEA Saclay).  

 

To identify which part of the Igfold was implicated in this interaction, I produced a 15N/13C 

labeled Igfold sample and assign its NMR signals (on the basis of the published Igfold 

assignment)42. Therefore, I recorded and analyzed 3D HNCO, HNCACO, CBCACONH and 

HNCACB spectra. Afterwards, I quantified intensity differences for each 1H-15N HSQC peak 

corresponding to the Igfold 411-566 amino acids, before and after addition of one BAF 

equivalent. In more details, I did the following calculation for each peak:  

Intensity Ratio =  
Peak Intensity on the Igfold spectrum after addition of one BAF equivalent

Peak Intensity on the Igfold alone spectrum
 

In addition, I calculated an average of the error to substrate it for each peak. To do this, I 

measured the average intensity of 10 dots belonging to the background noise (BNA). I did the 

following calculations for each peak: 

Maximum ratio value =  
Peak intensity on the Igfold spectrum after addition of one BAF equivalent−BNA 

Peak intensity on the Igfold alone spectrum+BNA
 

Minimum ratio value =  
Peak intensity on the Igfold spectrum after addition of one BAF equivalent+BNA 

Peak intensity on the Igfold alone spectrum−BNA
 

 

A B 
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With these calculations, I obtained the ratio of intensity between peaks corresponding to the 

same amino acid in the free and bound protein states and I identified peaks showing more 

than 50% and 70% of intensity decrease (in orange and red, respectively). Finally, I localized 

the residues corresponding to these peaks on the known Igfold 3D structure obtained by X-

ray crystallography (PDB: 1IFR) using the same color labelling (figure 49, B). 

 

 

Figure 49 : Intensity ratio measurement after addition of one BAF CtoA equivalent onto the 15N 
labeled Igfold.  

(A) Ratio as a function of the sequence. Bars corresponding to peaks losing more than 50% and 70% 
of intensity after BAFCtoA addition are labeled in orange and red, respectively. (B) Three -
dimensional-structure of the Igfold domain (PDB: 1IFR) with residues colored as a function of (A).  
Residue labelled correspond to residues that are mutated in progeroid syndromes.  

 

 

 

A 

B 
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Interestingly, 1H-15N HSQC peaks which were the most impacted by BAFCtoA addition (in red) 

corresponded to several residues that are mutated in progeroid syndromes: R435, M540, 

K542 and R471. Thus, our NMR data demonstrate that BAF can directly interact with the 

globular domain of lamin A/C in vitro and suggest that mutations of the Igfold that cause 

progeroid syndrome impair this interaction. 

I used ITC to measure the affinity and stoichiometry of the Igfold / BAFCtoA interaction (figure 

50). I found that the Igfold of lamin A/C can interact with BAFCtoA with a micro molar affinity, 

(Kd = 3.2µM +/- 1.2µM at 288K, as calculated from 5 independent experiments). Concerning 

the stoichiometry, I found a number of sites between 0.21 and 0.43 (0.32 in average) as a 

function of the experiment. This again suggests that the Igfold binds to a BAFCtoA dimer and 

that all the purified BAFCtoA protein is not active.  

 

Figure 50 : Characterization of the Igfold/ BAFCtoA interaction by ITC.  

Successive injections of 10µl of Igfold concentrated at 270µM in a BAFCtoA sample concentrated at 
22.5µM. Both proteins were dialyzed against the same buffer (20mM Tris -HCl pH8, 150mM NaCl, 

10mM -mercaptoethanol, protease inhibitors Roche). The experiment was done five times, at 
288K on a VP-ITC and we found in average a Kd of 3µM. All ITC values are listed in appendix 2 
(Table 5). 

 

 

 

 

 

Kd = 3 ± 1.3 µM 
N = 0.35 

H = - 11393 ± 2487 cal/mol 

S = -13.5 ± 9.3 cal/mol.K 
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Because B-type lamins also possess an Igfold domain, I asked if the C-terminal domain of lamin 

B1 could also interact with BAF. Thus, I produced the lamin B1 fragment from amino acid 409 

to 586 of lamin B1 (LB1) and I tested its interaction with BAFCtoA by NMR. LB1 was 15N labeled 

(figure 51, black) and I added non-labeled BAFCtoA (figure 51, green). 

 

 

Figure 51 : Study of BAFCtoA /LB1 interaction by NMR.  

Superimposition of 2D NMR 1H−15N spectra recorded on a LB1 sample at 200µM alone (in grey) or 
in presence of 200µM of BAFCtoA (in green), in 20mM Phosphate pH7, 150mM NaCl, at 293K and 
600MHz (CEA Saclay). 

 

No intensity change or no chemical shift difference was observed after BAFCtoA addition, so we 

concluded that LB1 cannot interact with BAFCtoA, in vitro, in our conditions (which are the same 

as the conditions in which BAFCtoA can interact with lamin A/C Igfold). This result is consistent 

with a study that showed that in cells, in presence of BAF RNAi, A-type lamins and emerin 

signals at the nuclear envelope were significantly weaker whereas the nuclear envelope 

localization of lamin B1 was unchanged253. 
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c. Existence of a ternary complex bridging nuclear membrane, 
nucleoskeleton and chromatin 

 

The existence of a ternary complex involving lamin A/C, BAF and emerin was postulated in 

cells55. I tried to observe the existence of this complex in vitro. To do this, I used size exclusion 

chromatography (figure 52) and I tested if the three protein fragments that I produced, Igfold, 

EmN and BAFCtoA, could co-elute.  In parallel, I performed this experiment with LB1. 

 

Figure 52 : Identification of a ternary complex between emerin, BAF and lamin A/C  by size 
exclusion chromatography.  

Each gel corresponds to the result of one size exclusion chromatography. Proteins were injected in 
a volume of 500µl and the GF column Superdex 75 10/300 GL was equilibrated in a buffer containing 
20mM Tris-HCl pH8 and 30mM NaCl. Bands revealing an interaction are boxed with different colors.  
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Different conclusions were drawn from this study. First, we confirmed that interaction 

between lamin Igfold and BAFCtoA is specific to lamin A/C, because an interaction was observed 

between lamin A/C Igfold and BAFCtoA (boxed in red), whereas no interaction was observed 

between LB1 and BAFCtoA. Furthermore, no direct interaction was observed between the Igfold 

of lamin A/C and emerin monomers. This result confirmed what we had already observed by 

NMR. Then, interaction between BAFCtoA and EmN was confirmed once again (boxed in green) 

and the most important was the observation of a ternary complex between 

EmN/BAFCtoA/Igfold (boxed in blue). Indeed, after injection of the three proteins pooled 

together at a concentration of 150µM, a predominant pic was observed that corresponded to 

a complex of approximatively 60kDa, which is in accordance with the weight of a complex 

between a dimer of BAFCtoA (20kDa) in interaction with one EmN (25kDa) and one Igfold 

(15kDa).  

After observation of a ternary complex formation between BAFCtoA, EmN and Igfold by gel 

filtration, we wanted to confirm that this ternary complex exists in solution and that this 

complex was composed of two BAF, one Igfold and one EmN, as it was supposed by ITC results. 

For this reason, we analyzed our complexes by analytical ultracentrifugation. In addition, 

because BAF was shown to interact with EmN49 and not with another part of emerin, we 

decided to look at the presence of EmN49 only and not EmN, in the ternary complex. Analysis 

was done by Dr Christophe Velours (CNRS, LEBS, Gif-sur-Yvette), using an analytical 

ultracentrifuge XL470 (Beckman Coulter, Palo Alto, USA) and an An-50Ti rotor.  I produced 

several samples: BAFCtoA samples at 32, 57 and 86µM, Igfold samples at 17, 26 and 40µM, a 

BAFCtoA/Igfold sample, with a 2/1 ratio and an EmN49/BAFCtoA/Igfold sample, with a 1/2/1 

ratio. All proteins were first dialyzed in the same buffer: 50mM Tris-HCl pH8, 100mM NaCl. 

Then, sedimentation velocity experiments were performed on these different samples, with 

an optical path of 1.2cm, at 42000 rpm (128 297g), at 293K. Both complex samples were 

observed at an OD of 0.5, 0.8 and 1.2. Absorbance and interference were measured at 280nm, 

every 8 minutes. 400µl of sample were used for each experiment and 410µl of our dialysis 

buffer was used as a reference. At the end, results were analyzed using the Sedfit software255. 

Because the same results were obtained for the different protein concentrations, I will only 

present results obtained with 32µM of BAFCtoA, 17µM of Igfold and both complexes (Igfold/ 

BAFCtoA and LEM/ BAFCtoA/Igfold) at an OD of 1.2 (figure 53, Table A).  
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After analyzing the figures 53 and table A, we observed that the BAFCtoA/Igfold sample contains 

a majority of trimers (2.8S) in solution, which could correspond to 2 BAFCtoA and one Igfold. In 

more details, resulting trimers possessed an elongated shape with an f/f0 value of 1.4. 

Unfortunately, analysis of the EmN49/BAFCtoA/Igfold complex did not give more information 

than analysis of the BAFCtoA/Igfold complex, because no real modifications were observed 

after addition of EmN49. Indeed, same species that the one observed for the BAFCtoA/Igfold 

sample were observed, with majority of trimers. 

Regarding the results obtained for the BAFCtoA/Igfold sample by analytical ultracentrifugation, 

we concluded that only one ternary complex seems to exist in solution and is composed, at 

least, of two BAFCtoA and one Igfold. 

 

 

Figure 53 : Analytical ultracentrifugation results obtained using absorbance at 280nm, with a 
XL470 ultracentrifuge (Beckman Coulter, Palo Alto, USA) and an An -50Ti rotor.  

(a) Sedimentation velocity profile of a BAFCtoA sample, in 50mM Tris-HCl pH8, 100mM NaCl, injected 
at 32µM, at 293K. (b) Sedimentation velocity profile of an Igfold sample, in 50mM Tris -HCl pH8, 
100mM NaCl, injected at 17µM, at 293K. (c) Sedimentation velocity profile of a BAF CtoA/Igfold 
sample, in 50mM Tris-HCl pH8, 100mM NaCl, injected at an OD o f 1.2, at 293K. (d) Sedimentation 
velocity profile of an EmN49/BAFCtoA/Igfold sample, in 50mM Tris-HCl pH8, 100mM NaCl, injected 
at an OD of 1.2, at 293K. Each corresponding species are indicated by arrows; in red are represented 
the majority species. 

a. 

b. 

c. 

d. 
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Table 1 : Analytical ultracentrifugation results obtained using absorbance at 280nm, for four 
different protein samples (BAFCtoA, Igfold, BAFCtoA/Igfold and EmN49/BAFCtoA/Igfold).  

Percentage values correspond to the total of absorb ance. In red is represented the percentage of  
the majority species for each sample; ( -) no species detected. 

 

In parallel, we tried to obtain the structure of the ternary complex, using crystallography. To 

achieve this goal, after size exclusion chromatography, I pooled fractions corresponding to the 

complex peak (fractions 2 to 4 on the figure 52) and I concentrated this sample until 3mg/ml. 

Then, I conserved the concentrated sample during one week at 277K. I sent one part of my 

complex sample to the European crystallogenesis facility in Grenoble (HTX laboratory), in 

order to screen a lot of conditions to get first crystals. Six different primary crystallogenesis 

sets, used for initial screening, were tested on my complex sample, at 277K (Classics Suite and 

PEGs-I from Qiagen/Nextal, JCSG+ and PACT premier from Molecular Dimensions, Salt Grid 

from Hampton Research and Wizard I&II from Rigaku Reagents). After one week, I obtained 

microcrystals in two conditions (0.2M NH4Cl and 16% of PEG3.350 pH8; 0.1M MgCL2 and 16% 

of PEG3.350 pH8; 0.2M of NH4SO4, 20% of PEG3.350) and crystals in one condition (100mM 

of Bis-Tris phosphate pH5.5).  

I tried to obtain similar crystals of this sample, in our laboratory, using the hanging-drop during 

vapor diffusion step. I prepared one crystallization screen with buffers related to conditions 

which gave microcrystals (listed on the table B) and one related to condition in which I got 

crystals (listed on the table C). After doing a crystallization screen at 277K, I got crystals in 

three different conditions.  

http://www.qiagen.com/products/protein/crystallization/compositiontables/pdf/1054292_ps_xtal_classics-suite.pdf
http://www.qiagen.com/products/protein/crystallization/compositiontables/pdf/1054307_ps_xtal_pegs-suite.pdf
http://www1.qiagen.com/
http://www.moleculardimensions.com/applications/upload/MD1-37%20JCSG%20plus.pdf
http://www.moleculardimensions.com/applications/upload/MD1-29%20PACT%20premier%20v2.pdf
http://www.moleculardimensions.com/
https://htxlab.embl.fr/images/screens_xtal/Salt-Grid_hampton.csv
http://www.hamptonresearch.com/
http://www.moleculardimensions.com/applications/upload/MD15-W1-T_Wizard1and2.pdf
http://www.rigakureagents.com/
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The first condition contained 0.2M NH4Cl and 14% of PEG3.350 (condition 1), the second 

condition contained 0.1M MgCL2 and 20% of PEG3.350 (condition 2) and the last condition, 

which was relatively different, contained 0.2M of NH4SO4, 23% of PEG3.350 and 100mM of 

Bis-Tris phosphate pH5,5 (condition 3). A picture of crystals obtained with the last condition 

is inserted below (figure 54). 

 

Figure 54 : Picture of crystals obtained from the purified EmN/BAF/Igfold sample, at 277K, using 
condition 3. 

 

 

Table 2 : Crystallization screen designed from conditions which led to microcrystals formation in 
HTX laboratory.  

Conditions for which we got microcrystals are surrounded by a red rectangle.  
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Table 3 : Crystallization screen designed from conditions which led to crystals formation in HTX laboratory. 

The condition for which we got crystals is surrounded by a red rectangle. 

 

After shooting with X-ray on these crystals, on the PROXIMA1 beamline of synchrotron Soleil 

(with the help of Dr Virginie Ropars), we obtained a good diffraction pattern for crystals 

obtained from condition 3, with a resolution of 2.1 Angstrom (Å). By using two servers, Molrep 

and Phenix, and starting from structures already available for each component of the complex, 

I solved the 3D structure of the ternary complex. As starting structures, I used the X-ray 

structure of the Igfold of the lamin A/C (PDB: 1IFR), the NMR structure of the LEM domain 

(PDB: 2ODC) and the NMR structure of the BAF dimer in interaction with the LEM of emerin 

(PDB: 2ODG). Interestingly, in our crystals, only the LEM domain of emerin was present, which 

means that after one week at 277K, all the unfolded nucleoplasmic part of emerin was 

degraded in my size exclusion chromatography sample and only the LEM domain, which is the 

important region for binding to BAF, was conserved.  

One ternary complex was present per asymmetric unit of the crystal (figure 55). I analyzed 

interfaces in my model, using the software PISA256, and found an interface of 594 Å2 between 

the LEM domain and BAF and an interface of 465 Å2 between BAF and the Igfold domain. 
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Figure 55 : X-ray crystallography structure of the ternary complex formed between the LEM 
domain of the emerin (EmN49), the BAFCtoA dimer and the Igfold domain.  

(A) 3D structure of the ternary complex with the LEM (EmN49) in orange, BAFCtoA dimer in green and the Igfold 
in grey. (B) Data collection and refinement statistics. 

 

Concerning the interface between BAFCtoA and the Igfold, my X-ray structure shows, 

consistently with my NMR results, that the -sheet of the Igfold implicated in the interaction 

is the same as the one exhibiting the majority of mutations leading to progeroid syndromes. 

A 

B 
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Concerning the interface between BAFCtoA and EmN49, we superimposed our X-ray structure 

with the structure obtained by NMR by the group of Dr Marius Clore, in Bethesda (figure 56) 

and first, we measured the rmsd values between each corresponding chain (named on the 

figure 56) of the complex, taken alone. We found a rmsd value of 1.3 Å between chain C and 

G (which correspond to the LEM domain), a rmsd value of 1.42 Å between chain A and D (which 

correspond to the first monomer of BAF) and a rmsd value of 0.9 Å between chain B and E 

(which correspond to the second monomer of BAF). Then, the rmsd value was measured 

between the two BAF chains of the complex with the LEM domain fixed and we found a value 

of 1.3 Å. On the contrary, the rmsd value was measured between the two LEM domains, with 

the two BAF chains fixed and we found a value of 2.75 Å.  This result showed that the 

interaction is significantly tighter in the crystal structure. We concluded that the presence of 

the Igfold in the complex did not change the structure of the LEM domain in interaction with 

BAF (and that the 3D structure of BAFCtoA was highly similar to that of wild-type BAF). 

 

Figure 56 : Superimposition of our 3D structure of EmN49 in interaction with the dimer of 
BAFCtoA, obtained by X-ray crystallography, with the 3D structure of the same complex obtained 

by NMR, by the group of Dr Marius Clore in 2007 (PDB: 20DG)52. 

 

Finally, we superimposed the 3D structure of our ternary complex with the 3D structure that 

was already solved by X-ray crystallography between BAF and DNA (Cf. Introduction) (figure 

57). Our model suggests that BAF is able to simultaneously bind to lamin A/C, emerin and DNA 

and provides a first model of the interaction between the nucleoskeleton and DNA. 
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Figure 57 : A first model of the interaction between the nucleoskeleton and the chromatin.  

This model results from the superimposition of our X-ray structure with that of BAF in interaction with DNA 
(PDB: 2BZF). The BAF dimer binds to two DNA molecules but I represented here only one DNA for simplicity. 

 

To conclude this part, as it was shown in the literature, I confirmed the presence of an 

interaction between BAF and the LEM domain of emerin and between BAF and the Igfold 

domain of lamin A/C. Moreover, I demonstrated that this second interaction is specific to 

lamin A/C, because no interaction was observed, through two different techniques, between 

BAFCtoA and LB1. Finally, I revealed the existence of a ternary complex between EmN49, Igfold 

and BAFCtoA dimer and I solved the 3D structure of this complex.  

d. Several mutants associated with progeroid syndromes disrupt the 
interaction between lamin A/C and BAF 

 

We produced a set of Igfold mutants associated with progeroid syndromes. These mutants 

are listed in table D: homozygous mutant R435C causes a restrictive dermopathy230, 

homozygous mutant K542N238 causes HGPS, homozygous mutants R471C203 and R527H233 are 

associated with HGPS and/or a severe form of mandibuloacral dysplasia and homozygous 

mutants A529T236 and A529V257 cause mandibuloacral dysplasia. Localization of the mutated 

residues is represented on figure 58. Mutants were cloned with a mutagenesis kit (Stratagene 

QuikChange) based on our WT Igfold 411-566 expression vector by Ambre Petitalot in the lab. 
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Production and purification of each mutant was performed using the same protocol as for the 

WT Igfold 411-566.  

 

 

 

 

Figure 58 : Localization of the different Igfold residues mutated in progeroid syndromes (in 
green) (PDB: 1IFR)43. 

 

 

 

 

 

 

Igfold Mutants Diseases Publications 

R435C Restrictive Dermopathy Madej-Pilarczyk A et al., 2009 
 

K542N 
 

HGPS 
 

M Plasilova et al., 2004 
 

 

R471C 

 

HGPS and/or a severe form of 

Mandibuloacral Dysplasia 

 

Birgit Zirn et al., 2008 

 

R527H 

 

HGPS and/or a severe form of 

Mandibuloacral Dysplasia 

 

Novelli G et al., 2002 

A529T Mandibuloacral Dysplasia Kosho T et al., 2007 

A529V Mandibuloacral Dysplasia Garg A et al., 2005 

Table 4 : Igfold mutants causing different, more or less severe, progeroid syndromes and their 
associated disease and publication.  

R435 

R471 

K542 
R527 

A529 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Agarwal%20AK%5BAuthor%5D&cauthor=true&cauthor_uid=18796515
https://www.ncbi.nlm.nih.gov/pubmed/?term=Garg%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15998779
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First, we checked by NMR if the five mutants R435C, K542N, R471C, R527H and A529V are 

well-folded. After recording 1H-15N HSQC spectrum of these mutants, we confirmed that they 

are well-folded (figure 59), because we obtained a well-dispersed spectrum for each of them 

as for the Igfold WT.  

Then, we compared the stability of the Igfold WT with that of the five mutated Igfold (R435C, 

K542N, R471C, A529V and A529T) based on a Fluorescence-based Thermal Shift Assay 

performed by the group of Dr Eric Jacquet (ICSN, Gif-sur-Yvette). 

 

Figure 59 : Folding study of different Igfold mutant causing progeroid syndrome, by NMR.  

1H-15N HSQC spectra recorded on Igfold WT sample at 200µM (in dark grey), on Igfold A529V sample at 200µM 
(in blue), on Igfold R527H sample at 200µM (in purple), on Igfold R471C sample at 200µM (in green), on Igfold 
K542N sample at 200µM (in orange) and on Igfold R435C sample at 200µM (in red). All proteins were dialyzed 
in 20mM Tris-HCl pH8, 30mM NaCl, 2mM DTT and spectra were recorded at 303K and 700MHz spectrometer 
(CEA Saclay).   

 

First, the group of Dr Eric Jacquet compared the stability of the Igfold WT in several buffers, in 

order to observe the stability difference between pH6 and 8.5 (figure 60). Interestingly, they 

found that Igfold WT shows a first unfolding event around 323K at a pH between 7 and 8.5. 
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Figure 60 : Stability test of Igfold WT in different buffers.  

(A) Profiles of denaturation curves. (B) Derivatives of denaturation curves. Denaturation tests were done, 
according to the temperature, in different buffers: Tris-HCl pH8 and NaCl 100mM (in red), Hepes 50mM pH7 
and NaCl 100mM (in green), MES 50mM pH6 and NaCl 100mM (in pink), NaKP 50mM pH7.5 and NaCl 100mM 
(in blue) and Tris-HCl pH8.5 and NaCl 100mM (in black). 

 

Then, the stability of the Igfold WT was compared to the stability of the 5 mutated Igfold 

causing progeroid syndromes (R435C, K542N, R471C, A529T and A529V) (figure 61). Stability 

was studied in buffer A, composed of 50mM Mes pH6 and 100mM NaCl and 10µl of each 

protein were used for the different measurements and diluted two times with buffer A, 

according to the experiment (figure 61). The tested mutants related to progeroid diseases do 

not show a large modification of their thermal stability. Indeed, only R471C shows a 4 degree 

decrease of its thermal stability relatively to WT Igfold. 

Knowing that my mutants are well folded and stable, I could go further and observe the impact 

of the different mutations on the formation of a complex between the dimer of BAFCtoA and 

Igfold. First, I used the technique of ITC and worked with the same 5 mutants (R435C, K542N, 

R471C, R527H and A529V) (figure 62). I measured the affinity and stoichiometry of the Igfold 

mutants / BAFCtoA interactions.  

A B 
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In conditions in which one Igfold WT can interact with a dimer of BAFCtoA with a micro molar 

affinity (Kd = 2µM, see Table 6 in Appendix 2), we observed that two mutants (R471C and 

A529V, in blue on the figure 62) were still able to bind a dimer of BAFCtoA, but with a lower 

affinity (and a decreased heat signal). Then, no affinity could be measured for two mutants 

(K542N and R527H, in purple on the figure 62) and no binding could be detected for one 

mutant (R435C, in red on the figure 62). Interestingly, the most pathogenic mutations are 

those which have the strongest impact on the interaction with BAFCtoA.  

B 

A 
Figure 61 : Stability study of Igfold WT and 

mutants, using a fluorescence-based thermal 
shift assay.  

(A) Graphical representation of Igfold WT and 
mutant thermal stability in buffer A (50mM 
Mes pH6, 100mM NaCl). (B) Table of Tm and 
standard error values obtained for the 
different Igfold WT and mutants in buffer A. 
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Figure 62 : Characterization of the impact of 5 Igfold mutants on the interaction with BAFCtoA,  by 
ITC. 

(A) Results of ITC experiments. For each experiments, successive injections of 10µl of Igfold concentrated at 
120µM in a BAFCtoA sample concentrated at 20µM. Both proteins were dialyzed against the same buffer (20mM 

Tris-HCl pH8, 150mM NaCl, 10mM -mercaptoethanol, protease inhibitors Roche). Each experiment was done 
two times, at 283K, on a VP-ITC. (B) Igfold structure (PDB: 1IVT)42 with mutants which decreased affinity of the 
interaction represented in blue and mutants which strongly impact the interaction represented in red. All ITC 
values are listed in appendix 2 (Table 6). 

 

To confirm these results, we used size-exclusion chromatography and observed which of these 

five mutants could still bind to BAFCtoA (figure 63). A decrease of the affinity was observed with 

four mutants (K542N, R471C, R527H and A529V, in blue on the figure 63) and no binding was 

observed with the last mutant (R435C, in red on the figure 63).  

We concluded that, in vitro, the more severe is the syndrome induced by the mutant, the 

more decreased is the affinity of the interaction between the mutated Igfold and BAFCtoA. 
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Figure 63 : Observation of the impact of 5 Igfold mutants on the interaction with BAF CtoA, by size 
exclusion chromatography. 

Each gel corresponds to the result of one size exclusion chromatography. Proteins were injected in a volume 
of 500µl and GF column Superdex 75 10/300 GL was equilibrated in a buffer containing 20mM Tris-HCl pH8 
and 150mM NaCl. Igfold WT is represented in dark grey and BAF in green. Mutants which decreased affinity of 
the interaction are represented in blue and mutant which strongly impact the interaction is represented in 
red. 

 

In parallel, we expressed and purified a lamin A/C fragment corresponding to the tail of the 

mutant progerin, which causes a well-studied form of dominant HGPS. This mutant progerin, 

as it was explained in the introduction, is due to a mutation that triggers an alternative splicing 

event leading to a deletion of 50 residues including the proteolytic cleavage site important for 

lamin A/C maturation. We expressed a large fragment from amino acid 389 to amino acid 614, 

corresponding to the whole progerin tail.  

To simplify, I will call this fragment IgfoldProgerin. My idea was to determine if the presence 

of region 567 to 614 (absent in the Igfold fragment) was impairing BAF binding.  

Purification of IgfoldProgerin was performed as described for lamin A/C Igfold. Then I studied 

the interaction between IgfoldProgerin and the dimer of BAFCtoA. I produced a 15N labeled 

BAFCtoA protein and added the same equivalent of non-labeled IgfoldProgerin and on the other 

hand, I produced a 15N IgfoldProgerin and added the same equivalent of non-labeled BAFCtoA 

dimer (figure 64). 
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Figure 64 : Study of BAFCtoA /IgfoldProgerin interaction, by NMR. 

(A) Superimposition of 2D NMR 1H−15N spectra recorded on a BAFCtoA sample at 100µM alone (in green) or in 
presence of 100µM of IgfoldProgerin (in navy), in 20mM Phosphate pH6.5, 150mM NaCl, 1mM DTT, at 283K 
and 600MHz (CEA Saclay). (B) Superimposition of 2D NMR 1H−15N spectra recorded on a IgfoldProgerin sample 
at 75µM alone (in navy) or in presence of 150µM of BAFCtoA (in green), in 20mM Phosphate pH6.5, 150mM 
NaCl, 1mM DTT, at 283K and 600MHz (CEA Saclay). 

 

In both cases, I observed an decrease of intensity for several peaks. Based on my Igfold 

assignment, I did the same analysis as for the interaction between the 15N labeled Igfold 411-

566 and the BAFCtoA dimer and I observed which NMR signals were the most impacted by the 

interaction with BAFCtoA.  

I compared the amino acids found at the interaction surface in both cases (figure 65). I found 

the same interaction surface than the one obtained in presence of Igfold alone.  
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Figure 65 : Intensity ratio measurement after addition of one BAF CtoA equivalent onto the 15N 
labeled IgfoldProgerin. 

(A) Ratio as a function of the sequence. Bars corresponding to peaks losing more than 50% and 70% of intensity 
after BAFCtoA addition are labeled in orange and red, respectively. (B) Three-dimensional-structure of the Igfold 
domain (PDB: 1IFR) with residues colored as a function of (A). 

 

To measure the affinity between IgfoldProgerin and BAFCtoA, I studied this interaction by ITC 

(figure 66). Concerning the stoichiometry, like for other ITC studies with BAFCtoA, I did not 

found a number of sites of 0.5, but of 0.22, certainly because of some inactive BAFCtoA in our 

protein sample. Concerning the affinity, I found the same range of values as found for the 

interaction between BAFCtoA and Igfold. On the other side, a compensation between enthalpic 

and entropic distribution was observed after comparison of both experiments (Interaction 

between BAF and Igfold or BAF and IgfoldProgerin).  
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Indeed, an enthalpic contribution to the binding free energy of about 11000 cal/mol and an 

entropic energy of about 13 cal/mol.K was found in presence of the Igfold whereas an 

enthalpic contribution of about 16000 cal/mol and an entropic energy of about 31 cal/mol.K 

was found in presence of the IgfoldProgerin, which suggests that additional contacts exist in 

the case of IgfoldProgerin. 

 

Figure 66 : Characterization of IgfoldProgerin/ BAFCtoA interaction by ITC. 

(A) Successive injections of 10µl of IgfoldProgerin concentrated at 120µM in a BAFCtoA sample concentrated at 
24µM. A Kd of 2.7 µM was found in average. (B) Successive injections of 10µl of Igfold concentrated at 270µMin 
a BAFCtoA sample concentrated at 22.5µM. A Kd of 3.0 µM was found in average. All proteins were dialyzed 

against the same buffer (20mM Tris-HCl pH8, 150mM NaCl, 10mM -mercaptoethanol, protease inhibitors 
Roche). Experiments were done at 288K, on a VP-ITC. All ITC values are listed in appendix 2 (Table 5). 

 

e. Mutants of the emerin LEM domain associated to cardiac disease still 
binds to BAF 

 

Because the emerin LEM domain is necessary for emerin interaction with BAF, we 

hypothesized that mutations in the LEM domain, and especially K37 that impacts the LEM 

3D structure, impair binding of EmN to BAF.  

To study this, I teamed up with Nada Essawy, a PhD student in the lab, and we first used NMR 

and size exclusion chromatography to determine the impact of the  mutations on the EmN 

affinity for BAF. 

A B 
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For the NMR experiments, we produced 15N labeled BAFCtoA protein and non-labeled emerin 

mutants. Then, I recorded an 1H-15N HSQC spectrum of BAFCtoA alone (in green, on figure 67) 

and spectra of BAFCtoA in contact with each LEM domain mutant, added in a 1:1 ratio (figure 

67, A for P22L, B for K37 and C for T43I). For the three mutants, I observed that the majority 

of the peaks, which correspond to the amino acids of BAFCtoA, lost a significant fraction of their 

intensity. We concluded that these three mutants seem to interact with BAFCtoA. I was 

surprised that mutant K37 could still interact, because as it was explained in the first part of 

my thesis results, this mutant possesses a destabilized LEM domain. Thus, we did two new 

hypotheses: first, this mutant could still interact but with a lower affinity than EmN WT, or this 

mutant could still interact by forming a new complex structure compared to EmN WT in 

interaction with BAFCtoA. 

 

(A) Superimposition of 2D NMR 1H−15N spectra recorded on a BAFCtoA sample at 150µM alone (in green) or in 
presence of 150µM of P22L (in orange), in 20mM Phosphate pH6.5, 30mM NaCl, at 303K and 700MHz (CEA 
Saclay). (B) Superimposition of 2D NMR 1H−15N spectra recorded on a BAFCtoA sample at 150µM alone (in green) 

or in presence of 150µM of K37 (in blue), in 20mM Phosphate pH6.5, 30mM NaCl, at 303K and 700MHz (CEA 
Saclay). (C) Superimposition of 2D NMR 1H−15N spectra recorded on a BAFCtoA sample at 150µM alone (in green) 
or in presence of 150µM of T43I (in purple), in 20mM Phosphate pH6.5, 30mM NaCl, at 303K and 700MHz (CEA 
Saclay). 

 

We confirmed our NMR results using size exclusion chromatography. Figure 68 shows that the 

three EmN mutants still coelute with BAFCtoA, demonstrating that indeed these mutants 

interact with BAFCtoA.  

 

 

A B C 

Figure 67 : Study of BAFCtoA/EmN LEM domain mutant interaction, by NMR. 
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Figure 68 : Observation of the impact of 3 emerin LEM domain mutations on the interaction with 
BAF, by size exclusion chromatography.  

Each gel corresponds to the result of one size exclusion chromatography. Proteins were injected in a volume 
of 500µl and the GF column Superdex 75 10/300 GL was equilibrated in a buffer containing 20mM Tris-HCl pH8 
and 30mM NaCl.  

 

To see if these different mutations have an impact on the 3D structure of the EmN/ 

BAFCtoA/Igfold complex, we did the same size exclusion chromatography experiment as 

presented in figure 68, but adding the Igfold to the EmN/BAFCtoA complex, and we kept the 

elution fractions corresponding to the ternary complex formed by the EmN mutant, BAFCtoA 

and the Igfold, in order to concentrate them and try to obtain crystals.  

We tried to crystallize the different complexes using conditions in which we obtained crystals 

with the WT complex. Thus, we obtained crystals of the T43I/BAF/Igfold complex and the 

P22L/BAFCtoA/Igfold complex. After shooting with X-ray on these crystals, on the PROXIMA1 

beamline of synchrotron Soleil (with the help of Virginie Ropars), we obtained a good 

diffraction pattern for the complex containing T43I, corresponding to a resolution of 2.3Å, 

whereas we did not obtain any diffraction pattern for the complex containing P22L, because 

of twinned crystals.  
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Concerning the complex containing the mutation T43I, I solved its 3D structure, using two 

servers, Molrep and Phenix, and starting from the structure of the WT ternary complex that I 

obtained before. After superimposition of this structure with the one obtained with EmN WT, 

I found that mutation T43I did not affect the structure of the ternary complex. Indeed, as it is 

shown on figure 69, the 3D structure of the complex containing emerin WT is superimposable 

to the one containing emerin T43I and after superimposition of both complexes (EmN49 

WT/BAFCtoA/Igfold and EmN49 T43I/ BAFCtoA/Igfold), the rmsd value measured between the 

Calpha carbons of the 3 proteins was 0.55 Å. 

 

Figure 69 : X-ray crystallography structure of the ternary complex formed between the mutated 
T43I LEM domain of the emerin, the BAFCtoA dimer and the Igfold domain.  

(A) Superimposition of the X-ray crystallography structures of the ternary complexes formed between the LEM 
domain of emerin WT, BAF and lamin A/C Igfold and between the LEM domain of emerin T43I, BAF and lamin 
A/C Igfold. The resolution of the two complexes are 2.1Å and 2.3Å, respectively, and the rmsd measured 
between the Calpha carbons of the two complexes yields was 0.547Å. (B) Zoom on the superimposition of the 
BAFCtoA/LEM WT and BAFCtoA/LEM T43I complexes. 
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Concerning the ternary complexes containing mutants K37 and P22L, we choose to send a 

sample of these complexes to the European crystallogenesis facility in Grenoble (HTX 

laboratory), in order to screen a lot of conditions to get crystals. 

To conclude with this part of my thesis, I now propose a first interaction mechanism involving 

lamin A/C and emerin. Indeed, I found that this interaction could be mediated by a third 

partner, the BAF protein, which is a DNA-binding protein. From this conclusion and because I 

obtained the X-ray structure of this ternary complex, I am able to present a first structural 

model of the interaction between the inner nuclear membrane, the nucleoskeleton and DNA 

(figure 57). Moreover, I found that some mutants of the Igfold domain that cause progeroid 

syndromes have a decreased affinity for BAFCtoA in vitro. Ambre Petitalot in the lab also 

introduced the same mutations in a vector for expression in mammalian cells, and our 

collaborator Dr Brigitte Buendia at Univ. Paris Diderot will now observe in situ the proximities 

between mature lamin A and BAF as a function of the mutation.  

We also reasoned that in the classical dominant HGPS syndrome, aging is caused by an 

incorrect processing of lamin A. If the mechanism of this dominant disease is related to the 

mechanism of the recessive diseases caused by homozygous mutations in the lamin A/C Igfold 

domain, then the incorrect processing of lamin A might also cause a loss of Igfold-BAF 

interaction. We observed that the progerin tail is able to bind BAF with an affinity similar to 

that of the lamin A/C Igfold alone. In cells, the progerin C-terminus is farnesylated. Thus it 

would now be interesting to test what is the impact of progerin farnesylation on these 

interactions.  

Finally, we observed that mutants of the LEM domain of emerin, including one that exhibits a 

destabilized LEM domain, are capable of forming a ternary complex with BAF and the lamin 

A/C Igfold, as WT emerin (see for example figure 69 below). 
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2. THE LAMIN A/C IGFOLD DOMAIN DIRECTLY INTERACTS WITH SELF-
ASSEMBLED EMN 

 

We found that A-type lamins interact indirectly with EmN, in vitro, whereas several studies 

confirmed the existence of a direct interaction between both proteins166,170. Moreover, the 

team of Dr K. Wilson demonstrated that mutations in emerin region from amino acid 70 to 

amino acid 170 inhibit lamin binding245. We did not observe a direct interaction between the 

Igfold and EmN monomers and moreover, our indirect interaction does not involve region 70-

170 of emerin. We showed that EmN can form oligomers and filaments in vitro. For this 

reason, we chose to test the impact of emerin oligomerization on the interaction with the 

Igfold domain of lamin A/C.  

a. EmN oligomers bind to the globular domain of lamin A/C 
 

First, I studied this interaction by NMR. I produced a 15N labeled Igfold and recorded its 15N-

1H HSQC spectrum alone, at 303K. Then, I added different oligomeric forms of non-labeled 

EmN. To do this, I concentrated my emerin sample at 600µM, which was a sufficient 

concentration to obtain oligomers and filaments, and I stored the sample at 293K, with 5mM 

DTT. Finally, every day during one week, I recorded a spectrum of my 15N labeled Igfold sample 

in the presence of the same amount of EmN protein, taken from the EmN sample stored at 

293K (figure 70). In parallel, I observed each NMR sample by negative staining EM to see which 

oligomeric forms of emerin were present in the sample. 

I reproduced this experiment three times, and every time, I observed no change in the 

spectrum of the Igfold in the presence of emerin before day 6. By EM, I also observed that 

before day 6, only spheres or aggregates are observed in the NMR sample, which could 

correspond to some emerin inactive oligomers (figure 70, A and B). Contrariwise, after day 6, 

I observed that the majority of the peaks, which correspond to the amino acids of the Igfold, 

lost a significant fraction of their intensity (figure 70, C). Interestingly, I observed the NMR 

sample by EM, and found the presence of emerin filaments.  
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At this point, I checked if the interaction observed by NMR was not due to an aggregation of 

the Igfold in the presence of emerin oligomers. Therefore, I centrifuged my NMR sample, 

obtained after interaction, during 10 minutes at 12000 g and observed if the Igfold was still 

soluble or not on a SDS-PAGE gel (figure 71).  

 

 

Figure 70 : Study of Igfold/EmN oligomers interaction.  

Proteins were dialyzed in 20mM Tris-HCl pH8, 30mM NaCl, 2mM DTT and spectra were recorded at a 
temperature of 303K on a 700MHz spectrometer.  (A) Superimposition of the 1H-15N HSQC spectra of 15N 
labeled Igfold at 250µM alone in grey, or in the presence of 250µM of emerin incubated at 600µM during 4h 
at 293K, in red. (B) Superimposition of the 1H-15N HSQC spectra of 15N labeled Igfold at 250µM alone in grey, 
or in the presence of 250µM of emerin incubated at 600µM during 24h at 293K, in red. (C) Superimposition of 
the 1H-15N HSQC spectra of 15N labeled Igfold at 250µM alone in grey, or in the presence of 250µM of emerin 
incubated at 600µM during 6 days at 293K, in red. EM pictures correspond to the NMR sample of each 
experiment. 

 

 

 

A 
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It was clearly visible on this SDS-PAGE gel that half of both proteins were still soluble whereas 

the other part was in the pellet. Even if we lost some Igfold because of some precipitation of 

the sample, the amount of Igfold that was insoluble was not sufficient to explain all the 

intensity decrease observed on the spectrum. We thus confirmed that the signal intensity 

diminution observed by NMR is due to an interaction with emerin oligomers and not to 

precipitation of the Igfold sample. 

 

Figure 71 : SDS-PAGE picture of the supernatant and the pellet obtained after centrifugation of 
the NMR sample corresponding to figure 69, C.  

 

I concluded that a direct interaction between the lamin A/C Igfold and EmN can be observed, 

but only after EmN self-assembly. I did not know at this moment if the Igfold interacted with 

globular emerin oligomers, or only with emerin filaments, and if this interaction favored 

emerin filament formation.  

To observe the impact of the Igfold on emerin self-assembly, we used thioflavin T 

fluorescence, like we did to follow filament formation (figure 72). Thus, I concentrated both 

EmN and Igfold proteins until 600µM and I incubated half of the EmN sample with the Igfold 

to obtain a final protein concentration of 300µM and I incubated the other part of my EmN 

sample with the kinetics buffer (20mM Tris-HCl pH8, 30mM NaCl) to be also at a final 

concentration of 300µM. Afterwards, I incubated both samples (EmN alone and in the 

presence of Igfold) at 310K and I took a fluorescence measurement at 480nm, after excitation 

at 440nm, every hour during 4h and then the day after. For each measurement, I diluted my 

protein sample to 40µM with the kinetics buffer and added 10µM of thioflavin T. I did this 

experiment once and I still need to reproduce it. 

 



 

120 
 

 

Figure 72 : Kinetics of EmN self-assembly in the absence (black) or presence (red) of the Igfold, as 
followed through thioflavin T fluorescence measurements.  

 

I observed a small increase in the self-assembly rate of EmN in the presence of the Igfold, 

which should now be confirmed. It is also not clear how the Igfold favors EmN self-assembly.  

To confirm that the interaction between EmN oligomers and the Igfold is specific, we decided 

to search for some Igfold mutants that cannot bind to the EmN oligomers. Because we did not 

know at all the surface of the Igfold binding to the EmN oligomers, Jinchao Yu, a PhD student 

in the team of Dr Raphaël Guérois, in our lab, used a server called Consurf258, to analyze a 

lamin multiple sequence alignment and identify a hot spot of best conserved residues, which 

could be implicated in lamin interactions with partners. He found a conserved patch on the 

Igfold surface, which contains an apolar core, and from this observation he proposed several 

mutants that could disrupt the Igfold/EmN interaction. He proposed mutants T496E, W498E, 

H506E, P508A, P509A and V513A. The mutated residues are represented on the X-ray 

structure of the Igfold (PDB: 1IFR) in figure 73. 
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Figure 73 : Localization of the different Igfold residues predicted as being important to interact 
with EmN oligomers (in red) (PDB: 1IFR).  

 

For the moment, four mutants were obtained using the QuikChange kit (Stratagene) by Ambre 

Petitalot in the lab. Together with Ambre, I managed to produce and purify these four 

mutants: T496E, H506E, P509A and V513A.  

 

First, we observed by NMR, recording 1H-15N HSQC spectrum of each mutant, that these four 

mutants are well-folded (figure 74) whereas using fluorescence-based Thermal Shift Assay, we 

observed that the thermal stability of the Igfold is largely decreased by some of these 

mutations (figure 75). Indeed, only H506E shows a WT-like stability and large decreases in 

stability (up to 18 degrees) are observed for the others. 
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1H-15N HSQC spectra recorded on an Igfold T496E sample at 200µM (A), on an Igfold H506E sample at 200µM 
(B), on an Igfold P509A sample at 200µM (C) and on an Igfold V513A sample at 200µM (D). All proteins were 
dialyzed in 20mM Tris-HCl pH8, 30mM NaCl, 2mM DTT and spectra were recorded at 303K and 700MHz 
spectrometer (CEA Saclay).   
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Figure 74 : NMR analysis of the different Igfold mutants. 
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(A) Graphical representation of Igfold WT and mutant thermal stabilities, in Buffer A (50mM Mes pH6, 100mM 
NaCl). (B) Table of Tm and standard error values obtained for different Igfold WT and mutants, in Buffer A. 
 
 

Then, I observed interaction of these 15N labeled mutants with EmN by NMR. For these 

experiments, the Igfold mutants were dialyzed in 20mM Tris-HCl pH8, 30mM NaCl, 2mM DTT 

and concentrated until 400µM. In parallel, we produced non-labeled EmN, dialyzed it in the 

same buffer and after concentration of the protein until 600µM, the EmN sample was 

incubated at 293K during one week in order to obtain EmN filaments. Then, we recorded HSQC 

spectra of each Igfold mutant at 200µM alone or in the presence of the same ratio of EmN 

oligomers (figure 76). After each NMR experiment, samples containing the Igfold and EmN 

oligomers were observed by EM, in order to confirm the presence of filaments. EM pictures 

were obtained thanks to Dr Ana Arteni (I2BC, Gif-sur-Yvette). 

A 

B 

Figure 75 : Thermal stability of Igfold WT and mutants, measured 
using a fluorescence-based thermal shift assay. 
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Figure 76 : NMR and EM interaction study between different Igfold mutants and EmN oligomers.  

Proteins were dialyzed in 20mM Tris-HCl pH8, 30mM NaCl, 2mM DTT and spectra were recorded at 303K and 
700MHz spectrometer (CEA Saclay).  (A) Superimposition of the 1H-15N HSQC spectra of 15N labeled T496E Igfold 
at 200µM alone in navy, or in the presence of 200µM of EmN oligomers, in red. (B) Superimposition of the 1H-
15N HSQC spectra of 15N labeled H506E Igfold at 200µM alone in navy, or in the presence of 200µM of EmN 
oligomers, in red. (C) Superimposition of the 1H-15N HSQC spectra of 15N labeled P509A Igfold at 200µM alone 
in navy, or in the presence of 200µM of EmN oligomers, in red. (D) Superimposition of the 1H-15N HSQC spectra 
of 15N labeled V513A Igfold at 200µM alone in navy, or in the presence of 200µM of EmN oligomers, in red. EM 
pictures correspond to the NMR sample of each experiment. 

 

We reproduced these NMR experiments two times at least and then, we measured intensity 

differences for every peak corresponding to the bound or unbound Igfold mutant and did an 

average for each experiment; then values corresponding to experiments involving the same 

Igfold mutant were again averaged (figure 77). We observed that T496E, P509A and V513A 

significantly impaired binding to EmN oligomers, whereas H506E completely abolished it.  
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Figure 77 : Intensity ratio between the NMR HSQC signals measured in the absence or presence of 
EmN oligomers on the different Igfold mutants.  

In light blue, the Igfold WT, in orange, Igfold H506E, in yellow, Igfold V513A, in dark blue, Igfold P509A and in 
green, Igfold T496E. “n” corresponds to the number of times the experiment was done. 

 

As the fragment from Val494 to Trp514 (containing our four mutated positions) is mostly 

apolar, this lamin-emerin interaction could be driven by the hydrophobic effect. In agreement 

with this observation, we did preliminary isothermal titration calorimetry experiments in 

order to obtain stoichiometry and affinity of this lamin-emerin interaction (figure 78) and we 

observed that at 288K, the binding energy is provided by a favorable entropic contribution 

(7.4  0.1 kcal mol -1) partially compensated by an unfavorable enthalpic contribution (0.3  

0.1 kcal mol -1). However, because we obtained a low heat signal, we did not conclude about 

the affinity and stoichiometry of this interaction. 
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Figure 78 : Characterization of EmN oligomers/Igfold interaction by ITC.  

Successive injections of 10µl of Igfold concentrated at 315µM in a EmN oligomer sample concentrated at 

31.5µM. Both proteins were dialyzed against the same buffer (20mM Tris-HCl pH8, 30mM NaCl, 10mM -
mercaptoethanol, protease inhibitors Roche). The experiment was done at 288K, on a VP-ITC. 

 

In parallel, we observed interactions of two 15N mutants causing progeroid syndromes (R435C, 

which abolishes the interaction with BAF and R471C, which decreases the affinity for BAF) 

with EmN by NMR, in order to observe whether the mutants localized on another part of the 

Igfold than the one we proposed to be the interaction surface, could destabilize the 

interaction with EmN too. We did exactly the same experiments as the one described for the 

four other mutants (figure 79).  

After intensity differences measurement, we observed that both mutants impaired binding to 

EmN oligomers, but because we only did the experiment once, we have to reproduce it to 

conclude. 
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Figure 79: NMR and EM interaction study between Igfold mutants causing progeroid syndromes and EmN 
oligomers. 

(A) On the left, superimposition of the 1H-15N HSQC spectra of 15N labeled R435C Igfold at 200µM 
alone in navy, or in the presence of 200µM of EmN oligomers, in red and on the right, 
superimposition of the 1H-15N HSQC spectra of 15N labeled R471C Igfold at 200µM alone in navy, or 
in the presence of 200µM of EmN oligomer s, in red. Proteins were dialyzed in 20mM Tris -HCl pH8, 
30mM NaCl, 2mM DTT and spectra were recorded at 303K and 700MHz spectrometer (CEA Saclay).   
EM pictures correspond to the NMR sample of each experiment. ( B) Intensity ratio between the 
NMR HSQC signals measured in the absence or presence of EmN oligomers on , Igfold WT (in light 
blue), R435C Igfold mutant (in grey) or on R471C Igfold mutant (in light green).“n” corresponds to 
the number of times the experiment was done.  
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b. The EmN / Igfold interaction is specific to the emerin 1-187 region and A-
type lamins 

 

In the first part of my results, I presented two mechanisms of emerin filament formation. 

Indeed, I showed that EmN, which comprises a LEM domain and a region that is intrinsically 

disordered, is able to form monomers and oligomers and these oligomers bind to the Igfold 

of lamin A/C. But another PhD student of the lab, Florian Celli, found that another part of 

emerin, emerin 67-221 (EmC221), which is entirely unstructured, is able to oligomerize 

immediately after purification. This oligomerization necessitates region 188-221, because 

fragment 67-187 does not oligomerize259. 

We decided to observe if the lamin A/C Igfold could also interact with the filaments formed 

by fragment 67-221 (EmC221). By NMR, we recorded 1H-15N HSQC spectra of the 15N labeled 

Igfold alone or in the presence of EmC221 oligomers.  

Whereas addition of EmN oligomers provoked the disappearance of most NMR signals, 

addition of EmC221 oligomers did not modify the Igfold 1H-15N HSQC spectrum (figure 80, A 

and C). We concluded that interaction between emerin oligomers and lamin A/C Igfold is 

specific to the EmN oligomers. 

In addition, because the surface identified by Jinchao Yu is also conserved in B-type lamins, 

we hypothesized that LB1 was able to bind to EmN oligomers, but no interaction was detected 

(figure 80, B and C) by NMR. We concluded that the detected emerin-lamin interaction is 

specific to A-type lamins. Other Igfold residues that are not conserved in B-type lamins 

probably also contribute to EmN oligomer binding. 

 

 

 

 

 

 



 

129 
 

 

 

 

Figure 80 : No binding was observed between EmC221 oligomers or LB1 and Igfold, by NMR.  

Superimposition of 2D NMR 1H−15N spectra recorded on a Igfold sample at 200µM alone (in grey) or in presence 

of 200µM of EmC221 (in dark green), in 20mM Tris-HCl pH8, 30mM NaCl, at 303K and 700MHz (CEA Saclay). 

(B) Superimposition of 2D NMR 1H−15N spectra recorded on a LB1 sample at 200µM alone (in middle green) or 

in presence of 200µM of EmN (in red), in 20mM Tris-HCl pH8, 30mM NaCl, at 303K and 700MHz (CEA Saclay). 

(C) Intensity ratio between the NMR HSQC signals measured in the absence or presence of EmN oligomers (in 

blue) or EmC221 (in dark green) on Igfold or of EmN oligomers on LB1 (in middle green). “n” corresponds to 

the number of times the experiment was done. 

 

Our results are consistent with the previously published results of the group of K. 

Wilson, who proposed that mutations around positions 70, 76, 95, 112, as well as 141 and 

164, decrease binding of emerin to lamin A/C165. In addition, we did not observe any significant 

binding of EmN to the lamin B1 tail, and they reported only a weak binding to lamin B1 tail165. 

Altogether, these results demonstrate that a hydrophobic surface present on the lamin A/C 

Igfold domain binds to self-assembled emerin fragment EmN. 

 

A 

B 

C 



 

130 
 

c. Two in-frame deletion mutants of EmN have two different impacts on the 
direct lamin/emerin interaction 

 

Because we found that two emerin mutations (K37 and 95-99) which cause two different 

types of diseases have a different impact on EmN filament assembly, we chose to study the 

impact of these mutations on the interaction of EmN with the Igfold of lamin A/C. As it is 

explained in the first part of my results, mutant K37 forms filaments faster than EmN WT, 

whereas mutant 95-99 cannot form filaments in vitro. 

I tested these interactions by NMR. To do so, I produced the 15N labeled Igfold  and recorded 

1H-15N HSQC spectra of this protein alone or in presence of K37 or 95-99 in conditions 

favoring oligomerization (one spectrum per day to observe evolution of mutant 

oligomerization) (figure 81). Concerning the mutant 95-99, after 6 days at 600µM and at 

293K, which were the same conditions in which WT EmN could interact, this mutant cannot 

bind to the Igfold, because after superimposition of the spectra of the Igfold alone or in 

presence of this concentrated mutant, no intensity or chemical shift difference was observed.  

Contrariwise, the mutant K37, which can form filaments faster than the emerin 1-187 WT, 

could interact with the Igfold.  
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Figure 81 : Study of Igfold/EmN K37 oligomers and Igfold/EmN 95-99 oligomers interaction. 

Proteins were dialyzed in a 20mM Tris-HCl pH8, 30mM NaCl, 2mM DTT and spectra were recorded at a 
temperature of 303K on a 700MHz spectrometer.  (A) Superimposition of the 1H-15N HSQC spectra of 15N 

labeled Igfold at 250µM alone in grey, or in the presence of 250µM of EmN K37 incubated at 600µM during 
6 days at 293K, in blue. (B) Superimposition of the 1H-15N HSQC spectra of 15N labeled Igfold at 250µM alone 

in grey, or in the presence of 250µM of EmN 95-99 incubated at 600µM during 6 days at 293K, in green. (C) 
EM picture of the NMR sample from experiment (A). 

 

Like I did for EmN WT, I checked if the interaction observed by NMR was not due to 

aggregation of the Igfold. Again, I centrifuged my NMR sample, obtained after interaction, 

during 10 minutes at 12000 g and observed if the Igfold was still soluble or not on a SDS-PAGE 

gel (figure 82). Interestingly, all proteins were still soluble after the experiment, so we 

confirmed that observed NMR peak intensity decrease was not due to aggregation of the 

sample. 
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Figure 82 : SDS-PAGE picture of the supernatant and the pellet obtained after centrifugation of 

the NMR samples containing the Igfold and (A) EmN K37 oligomers and (B) EmN 95-99 
monomers. 

 

Then, we studied these interactions in HeLa cells, thanks to our collaborators from Paris 

Diderot University (Dr Brigitte Buendia’s team), who did PLA assays to quantify the amount of 

closed proximities between GFP-emerin 95-99 mutant or FLAG-emerin K37 mutant and 

endogenous lamin A/C, in HeLa cells (figure 83). They confirmed that proximities between 

emerin 95-99 and lamin A/C were very much lower compared to the WT situation4, whereas 

for the mutant K37, proximities between both proteins were still visible in cells.  

 

Figure 83 : Analysis of the impact of the 95-99 and K37 mutations on Emerin/lamin A/C 
binding in cell.  

Localization and endogenous lamin proximity observed for GFP-emerin WT, GFP-95-99, Flag-emerin WT and 

Flag-emerin K37 (collaboration with Brigitte Buendia, Univ. Paris Diderot). Whereas 95-99 localization is 

similar to that of the WT, K37 forms nuclear foci in subpopulation of cells. On the other hand, less emerin-

lamin proximities are observed in the case of 95-99 when compared to WT emerin4; in the case of K37, 
quantification of the observed emerin-lamin proximities is currently being performed. 

A B 



 

133 
 

To conclude, I found a second interaction mechanism involving the lamin A/C Igfold and 

emerin. I demonstrated that EmN oligomerization is important for direct binding to lamin A/C 

and to confirm this hypothesis, I observed that one emerin mutant, which cause EDMD and 

which cannot form EmN oligomers, was unable to bind to the Igfold in vitro and in cells, 

whereas a mutant of the emerin LEM domain, which can form filament faster than WT EmN 

and causes a cardiac disease, is able to bind directly to the Igfold. In addition, we found that 

EmN oligomers interact specifically with the lamin A/C Igfold and not with the lamin B1 tail.  

In the same vein, we showed that this interaction is specific to EmN oligomers and that 

EmC221 oligomers could not bind to the Igfold. Finally, we observed that the surface of the 

Igfold domain, which directly contacts emerin oligomers, contains the parallel -sheet formed 

by strands 6 and 7, which was described as characteristic of the lamin Igfold structure. It is 

centered on lamin fragment from Val494 to Trp514 containing residues Thr496, P509, His506 

and Val513. Because this fragment is mostly apolar, we did the hypothesis that the lamin-

emerin interaction is driven by the hydrophobic effect. 
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III. Other interaction studies involving emerin 
 

1. INTERACTION WITH ANOTHER LEM DOMAIN PROTEIN: MAN1 

 
Emerin and MAN1 are two LEM domain proteins reported to play overlapping functional 

roles260. A direct interaction between the two LEM Domain proteins, MAN1 and Emerin, was 

observed by blot overlay and affinity purification from HeLa cell lysates261. More in details, 

they demonstrated that the N-terminal nucleoplasmic region of MAN1 interacts with emerin 

1-222, BAF, lamin A and lamin B1. They also demonstrated that the C-terminal nucleoplasmic 

region of MAN1 binds to BAF. This last interaction was shown to be mediated by DNA by 

others57. 

In 2012, Benjamin Bourgeois, a PhD student of the team, showed that, using a HisTag-1U2 

construct (from amino acid 755 to 911) corresponding to the C-terminal domain of MAN1, it 

was possible to purify endogenous emerin from 293T cells. Isaline Herrada, another PhD in 

the team, later tried to test in vitro this interaction but the 2 proteins systematically 

precipitated when they were mixed.  

As I had worked with different emerin constructs and had some experience in purifying these 

constructs in different oligomeric states, I decided to look at this interaction as a side project. 

Purification of 1U2 was already established by other students from our laboratory. This 

construct was cloned in a pET-M13 vector, with a histidine tag, so I purified it by nickel affinity 

chromatography in 50mM Tris-HCl pH7.5 and 150mM NaCl. After this first purification step, I 

used a heparin column in order to remove DNA and then I used a gel filtration step, in the 

buffer of my choice, to obtain a pure sample. 

First, I studied the interaction between monomeric EmN and 1U2 by NMR. I produced 15N 

labeled samples and after recording the NMR HSQC spectra of the free proteins, on one hand, 

I added non-labeled EmN onto 15N labeled 1U2 and on the other hand, I added non-labeled 

1U2 onto 15N labeled EmN (figure 84). After spectra superimposition, I observed chemical shift 

differences and peak intensity decreases due to the addition of the partner. I concluded that 

EmN interacts with 1U2.  



 

135 
 

After the NMR experiments, I also did a SDS-PAGE gel of our NMR samples centrifuged during 

5 minutes at 12000 g, in order to observe if the proteins were in the supernatant or in the 

pellet.  

As already observed by Isaline Herrada, half of the proteins were in the pellet. Also, in one of 

the samples, unlabeled 1U2 seemed degraded, and in the other, EmN seemed degraded. So I 

need to do these experiments again.  

 

 

Figure 84 : Study of EmN/1U2 interaction, by NMR. 

(A) Superimposition of 2D NMR 1H−15N spectra recorded on a EmN sample at 100µM alone (in dark) or in 
presence of 100µM of 1U2 (in purple), in 20mM Phosphate pH6.8, 30mM NaCl, 10mM EDTA, Roche inhibitors, 
at 303K and 700MHz (CEA Saclay). (B) Superimposition of 2D NMR 1H−15N spectra recorded on a 1U2 sample 
at 100µM alone (in purple) or in presence of 100µM of EmN (in dark), in 20mM Phosphate pH6.8, 30mM NaCl, 
10mM EDTA, Roche inhibitors, at 303K and 700MHz (CEA Saclay). SDS-PAGE gels corresponding to NMR 
samples (pellet and supernatant) are displayed under the NMR spectra. 
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To try to stabilize this complex, I tested the interaction between 1U2 and a smaller emerin 

construct, EmN132. By NMR, I looked at the interaction between 15N labeled 1U2 and 

monomeric EmN132 (figure 85). Like for EmN, chemical shift differences were observed after 

spectra superimposition, but half of the NMR sample was aggregated after experiment. 

 

 

Figure 85 : Study of EmN132/1U2 interaction, by NMR.  

(A) Superimposition of 2D NMR 1H−15N spectra recorded on a EmN132 sample at 100µM alone (in green) or in 
presence of 100µM of 1U2 (in purple), in 20mM Phosphate pH6.8, 30mM NaCl, 10mM EDTA, Roche inhibitors, 
at 303K and 700MHz (CEA Saclay). (B) SDS-PAGE gel picture of NMR sample after centrifugation (S = 
Supernatant, P = Pellet). 

 

To go further on this study, I calculated peak intensity ratio like I did for other interaction 

analyses and thanks to the 1U2 assignment already done in the laboratory, I found which 

amino acids were the most implicated in this interaction (figure 86, A). Moreover, thanks to a 

1U2 structure model obtained in my team58, I localized residues impacted by the interaction 

(figure 86, B). Finally, no clear interaction surface was observed on the 1U2 domain. Indeed, 

peaks found as affected by the interaction with EmN132 correspond to amino acids that are 

dispersed on the 1U2 structure.  
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Figure 86 : Intensity ratio measurement after addition of EmN132 equivalent onto the 15N labeled 
1U2. 

(A) Ratio as a function of the sequence. Bars corresponding to peaks losing more than 70% and 85% of intensity 
after EmN132 addition are labeled in orange and red, respectively. (B) Three-dimensional-structure of the 1U2 
domain with residues colored as a function of (A). 

 

We did not conclude about this interaction. My results suggest that binding between EmN132 

and the 1U2 domain of MAN1 exists in vitro, but we have to find a way to stabilize this 

complex. An idea would be to use a fragment of our emerin protein which does not form 

oligomers or filaments as the mutant EmN 95-99 or the LEM domain alone.  
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2. INTERACTION WITH MYOSIN 1B (IN COLLABORATION WITH THE TEAM OF 
DR A. HOUDUSSE, INSTITUT CURIE) 

 

First evidence of the presence of myosin in the nucleus was reported in 1980s by a group who 

demonstrated that myosin, like actin, was involved in nucleoplasmic transport262. Then, 

ultrastructural studies were performed to confirm localization of myosin in the nucleus. In 

particular, 4 different myosins are in the nucleus: nuclear myosin I263, myosin VI264, myosin 

16b265 and myosin Va266.  

Proteomic studies revealed that emerin binds to nuclear myosin I267 and we decided to work 

on this interaction through a collaboration with the group of Dr Anne Houdusse, from Curie 

Institute, who was working on the structure of myosin 1B and 1C tails.  

We searched for a direct interaction between different fragments of our emerin (1-187, 1-

132, 1-49 and 67-187) and 3 fragments of their myosin tails (M1b01, M1b04 and M1c01), 

associated with calmodulin, in vitro. The different myosin fragments are represented on figure 

87 and for each experiment, the group of Dr Anne Houdusse provided them to us.  

 

Figure 87 : Scheme of the different myosin fragments provided by the team of Dr Anne Houdusse. 



 

139 
 

To observe if a direct interaction exists between emerin and one of the myosin tails, we used 

NMR. I first produced 15N labeled EmN in order to add the three non labelled myosin 

constructs one by one (figure 88). After spectra superimposition, I observed an intensity signal 

decrease for several EmN peaks in the presence of M1b01 and M1b04, whereas no change 

was observed with M1c01. I concluded that M1b tail constructs, but not the M1c tail construct, 

directly bind to EmN.  

 

 

Figure 88 : Study of the interaction between EmN and 3 myosin 1 fragments.  

(A) Superimposition of 2D NMR 1H−15N spectra recorded on a EmN sample at 100µM alone (in dark) or in 
presence of 100µM of M1b01 (in pink), in 50mM Tris-HCl pH7.5, 100mM NaCl, 5mM EGTA, 0.2mM DTT, at 293K 
and 700MHz (CEA Saclay). (B) Superimposition of 2D NMR 1H−15N spectra recorded on a EmN sample at 100µM 
alone (in dark) or in presence of 100µM of M1b04 (in orange), in 50mM Tris-HCl pH7.5, 100mM NaCl, 5mM 
EGTA, 0.2mM DTT, at 293K and 700MHz (CEA Saclay). (C) Superimposition of 2D NMR 1H−15N spectra recorded 
on a EmN sample at 100µM alone (in dark) or in presence of 100µM of M1c01 (in coral), in 50mM Tris-HCl 
pH7.5, 100mM NaCl, 5mM EGTA, 0.2mM DTT, at 293K and 700MHz (CEA Saclay). 
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To find which region of EmN was important for interaction with M1b tails, I assigned several 

peaks on the emerin spectrum and calculated, like I did for the interaction between emerin 

and Igfold, the intensity ratio after addition of one equivalent of M1b01 (figure 89). I did not 

assign all the emerin spectrum because our published emerin assignment was not done at the 

same pH and temperature, so it was difficult to find all the corresponding peaks and I could 

not reassign the spectrum without a new 15N, 13C labeled sample, notably for the unfolded 

region. After this study, I observed that the region that could be the most important for this 

interaction was the LEM domain of emerin and I localized residues corresponding to peaks 

that had lost more than 50% of their initial intensity on the known LEM domain structure 

solved by NMR (PDB: 2ODC).  

 

 

 

Figure 89 : Intensity ratio measurement after addition of one M1b01 equivalent onto 15N EmN. 

(A) Ratio as a function of the sequence. Bars corresponding to peaks losing more than 50% of intensity after 
M1b01 addition are labelled in pink. (B) Three-dimensional structure of the emerin LEM domain (PDB: 2ODC) 
with residues colored as in (A). 
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During the interaction analysis by NMR, another important information was observed. Indeed, 

I discovered that after 12h of contact between EmN and M1b01 or M1b04, the peak intensities 

on the interaction spectra continued to decrease (figure 90, A and B).  This effect was really 

visible for the interaction with M1b01: indeed, after 12h, most peaks had totally disappeared. 

We have different hypotheses from this observation. A first hypothesis was that there was a 

precipitation of our NMR sample. A second hypothesis was that this intensity diminution after 

several hours could be due to an oligomerization of emerin induced by the interaction with 

M1b tails. Our last hypothesis was that this diminution could be due to an oligomerization of 

myosin1b which eventually carried the emerin.  

To exclude our first hypothesis, I did a SDS-PAGE gel with the supernatant and the pellet of 

my NMR sample after a centrifugation of 10 minutes at 12000 g (figure 90, C). For M1b01, all 

the proteins were still in the supernatant after 12h of interaction, so protein precipitation was 

not the explanation for the signal decrease. Contrariwise, for M1b04, half of the sample was 

in the pellet and the diminution of peak intensity was not so important so we cannot exclude 

this hypothesis. 

After these different results, I choose to study more in details this interaction through two 

different approaches. First, I wanted to confirm that the LEM domain was the binding site for 

the interaction with M1b tails and to study this, I used different emerin constructs containing 

or not the LEM domain and observed the impact on the interaction. In a second part, I studied 

emerin oligomerization in the presence of M1b01, using emerin constructs forming or not 

oligomers and using several techniques.  
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Figure 90 : Study EmN/M1b tails interaction, by NMR.  

(A) Superimposition of 2D NMR 1H−15N spectra recorded on a EmN sample at 100µM alone (in dark) or in 
presence of 100µM of M1b01 during 12h (in pink), in 50mM Tris-HCl pH7.5, 100mM NaCl, 5mM EGTA, 0.2mM 
DTT, at 293K and 700MHz (CEA Saclay). (B) Superimposition of 2D NMR 1H−15N spectra recorded on a EmN 
sample at 100µM alone (in dark) or in presence of 100µM of M1b04 during 12h (in orange), in 50mM Tris-HCl 
pH7.5, 100mM NaCl, 5mM EGTA, 0.2mM DTT, at 293K and 700MHz. (C) SDS-PAGE gels of both NMR samples 
after 10 minutes of centrifugation. 

 

a. Characterization of the emerin region important for M1b tail binding 
 

First, to confirm that the LEM domain was necessary for this interaction, we produced the 15N 

emerin 67-187 fragment (EmC187), which did not contain the globular domain, and added 

non labelled M1b01 or M1b04 (figure 91). After spectra superimposition of emerin protein 

alone or in presence of myosin, no difference was observed. We concluded that the unfolded 

region of EmN cannot bind M1b01 or M1b04 and that the LEM domain of emerin is necessary 

to mediate the interaction with M1b tails.  
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Figure 91 : Study EmC187/M1b tails, by NMR. 

(A) Superimposition of 2D NMR 1H−15N spectra recorded on a EmC187 sample at 100µM alone (in blue) or in 
presence of 100µM of M1b01 (in pink), in 50mM Tris-HCl pH7.5, 100mM NaCl, 5mM EGTA, 0.2mM DTT, at 293K 
and 700MHz (CEA Saclay). (B) Superimposition of 2D NMR 1H−15N spectra recorded on a EmC187 sample at 
100µM alone (in blue) or in presence of 100µM of M1b04 (in orange), in 50mM Tris-HCl pH7.5, 100mM NaCl, 
5mM EGTA, 0.2mM DTT, at 293K and 700MHz (CEA Saclay). 

 

To confirm my result, I produced the LEM domain of emerin (EmN49) and tested its interaction 

with M1b01 by NMR (figure 92, A). After having observed an intensity decrease following 

addition of M1b01, I quantified this decrease (figure 92, B): it yielded more than 50% for the 

majority of the peaks corresponding to residues of the LEM domain. I concluded that it was 

not possible to identify the binding site on the LEM domain; however it was clear that the LEM 

domain was necessary and sufficient for binding to M1b01. 

Our collaborators tried to characterize this interaction between the LEM domain and M1b01 

in fusion with YFP by Microscale Thermophoresis (MST) (figure 93). They confirmed that this 

interaction exists but obtained just an estimation of the affinity. Indeed, the LEM interacted 

through a weak affinity (Kd > 10µM) with M1b01. 
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Figure 92 : Study of EmN49/M1b01 interaction, by NMR. 

(A) Superimposition of 2D NMR 1H−15N spectra recorded on a EmN49 sample at 100µM alone (in orange) or in 
presence of 100µM of M1b01 (in pink), in 50mM Tris-HCl pH7.5, 100mM NaCl, 5mM EGTA, 0.2mM DTT, at 293K 
and 700MHz (CEA Saclay). (B) Intensity ratio measurement after addition of one M1b01 equivalent onto 15N 
EmN49. 

 

Figure 93 : Characterization of the interaction between EmN49 and M1b01, by MST.  

Proteins were dialyzed in 50mM Tris-HCl pH7.5, 100mM NaCl, 5mM EGTA, 0.2mM DTT. MST experiments were 
carried with 0.05% Tween. Proteins were both concentrated at 100nM. 
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b. Study of protein oligomerization during interaction between EmN and 
M1b tails 

 

To study this particularity of the interaction, first, we used size exclusion chromatography to 

observe the complex between EmN and M1b01 after 1 or 12 hours of incubation. To do this, 

we prepared four different samples: one containing EmN alone at 100µM, one with M1b01 

alone at 100µM, one with both proteins at 100µM, in contact during 1h and the last one, with 

both proteins at 100µM, in contact during 12h (figure 94). Interestingly, we observed a 

displacement of the emerin elution peak from its initial position, to the same position as 

M1b01 after 1h of contact between both proteins, and the amount of displaced emerin 

seemed to increase over time.  

 

Figure 94 : Observation of the interaction between EmN and M1b01 after 1 or 12h of contact, by size 
exclusion chromatography. 

Each gel corresponds to the result of one size exclusion chromatography. Proteins were injected in a volume 
of 500µl on a column GF Superdex 200 10/300GL, equilibrated in a buffer containing 50mM Tris-HCl pH7.5, 
100mM NaCl, 5mM EGTA, 0.2mM DTT.  

 

To understand this, first we observed interaction of M1b tails with an emerin construct that 

can form oligomers and filaments, EmN132, and with an EmN mutant that cannot form 

filaments, mutant 95-99. Both emerin constructs were able to interact (figure 95). This result 

was in accordance with our other results, which showed that the presence of the LEM domain 

is sufficient for binding.  
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Concerning the oligomerization question, it was interesting to observe that after 1h, signal 

intensity decrease was the same for both emerin constructs, whereas after 12h of interaction, 

the signal decreased dramatically in presence of EmN132 but did not change in presence of 

EmN 95-99. We hypothesized that the presence of M1b01 could induce emerin 

oligomerization. 

 

 

Figure 95 : Study of EmN132 and EmN 95-99 interaction with M1b01, by NMR. 

On the left, spectrums were recorded after 1h of interaction and on the right, after 12h. (A) Superimposition 
of 2D NMR 1H−15N spectra recorded on a EmN132 sample at 100µM alone (in light green) or in presence of 
100µM of M1b01 (in pink), in 50mM Tris-HCl pH7.5, 100mM NaCl, 5mM EGTA, 0.2mM DTT, at 293K and 

700MHz (CEA Saclay). (B) Superimposition of 2D NMR 1H−15N spectra recorded on a 95-99 sample at 100µM 
alone (in dark green) or in presence of 100µM of M1b01 (in pink), in 50mM Tris-HCl pH7.5, 100mM NaCl, 5mM 
EGTA, 0.2mM DTT, at 293K and 700MHz (CEA Saclay). 

 

To study the impact of M1b01 on emerin oligomer formation, I followed the self-assembly 

kinetics of EmN WT alone or in the presence of M1b01, through thioflavin T fluorescence 

measurement (figure 96). For this experiment, both proteins were dialyzed in the kinetics 

buffer (50mM Tris-HCl pH7.5, 100mM NaCl, 5mM EGTA, 0.2mM DTT), and then EmN was 

concentrated up to 600µM and M1b01 was concentrated up to 200µM. 
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I prepared two samples: one with emerin alone at 300µM and one with emerin at the same 

concentration, in the presence of 100µM of M1b01. Samples were heated during one day at 

310K and I took a fluorescence measurement at 480nm, after excitation at 440nm, every hour 

during 4h and the next day. For each measurement, we diluted the protein sample to 40µM 

in the kinetics buffer and added 10µM of thioflavin T. 

Interestingly, we observed that in presence of M1b01, EmN seemed to form oligomers faster 

than in absence of this partner.   

 

Figure 96 : Kinetics of emerin self-assembly in the absence (black) or presence (pink) of M1b01, 
as followed by thioflavin T fluorescence.  

 

To confirm our hypothesis, we observed, thanks to a collaboration with the group of Dr Jean 

Lepault, the impact of M1b01 on emerin oligomerization by negative staining EM. We 

analyzed a sample of M1b01 alone concentrated at 100µM, of emerin 1-187 alone 

concentrated at 100µM and of both proteins, concentrated at 100µM (figure 97). 

We observed the presence of filaments in the EmN alone sample, and we found that M1b01 

alone also seemed to form oligomers. But when emerin was in the presence of M1b01, 

oligomers of this myosin seemed to be present but no emerin filaments were present 

anymore. We concluded that the most probable hypothesis was that M1b01 could form 

oligomers and these kinds of oligomers could bind to EmN overtime. 
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Figure 97 : Study of the interaction between emerin 1-187 and M1b01, observed by electron microscopy. 

We used ammonium acetate to labelled our sample, using the technique of negative staining. All proteins were 
dialyzed in the same buffer (50mM Tris-HCl pH7.5, 100mM NaCl, 5mM EGTA, 0.2mM DTT) and concentrated 
at 100µM. 0.6mg/ml of proteins were put on the grids.  

 

To conclude, we found an interaction between EmN and myosin, and more specifically, we 

found that the LEM domain of emerin could interact with the tested M1b tail constructs 

(M1b01 and M1b04). Then, we found that M1b01 alone seemed to form oligomers that could 

carry EmN overtime, but we need to confirm this result. Finally, we can hypothesize that an 

interaction between emerin and myosin is possible at the nuclear envelope and contributes 

to the formation of a complex with actin and the LINC complex during the nucleus response 

to a mechanical stress. 
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Proteins of the inner nuclear envelope have several essential functions in different cellular 

processes. Some of these proteins contribute to the nuclear shape and positioning; they play 

a role in the regulation of nuclear mechanical properties. Some contribute to genome 

organization and gene expression regulation. Finally, they may participate to the DNA damage 

response.  

During my thesis, I mainly focused on the role of three proteins, emerin, lamin A and BAF, first 

because those three were shown as implicated in the regulation of nuclear shape and 

mechanical resistance. Indeed, emerin is phosphorylated during a mechanical stress, in order 

to increase nucleus stiffness107. In response to a mechanical stress, lamin A is post-

translationally modified and exhibits a partial unfolding of its Igfold domain94. Lamin A/C 

deficiency is associated with both defective nuclear mechanics and impaired mechanically 

activated gene transcription95,97.  Finally, BAF interacts with chromatin in order to regulate 

nuclear assembly and organization116,268. In addition, the three proteins interact together at 

the inner nuclear envelope55,172. 

Despite of this, only few molecular details are known concerning these proteins and their 

functions. I chose to focus first on emerin structure, oligomerization and post-translational 

modifications in order to understand how this protein could play a role in the nucleus response 

to mechanical stress and to understand how its function is regulated in this situation. Then, I 

studied emerin interaction with lamin and BAF in order to understand how these interactions 

contribute to emerin function. 

I. Emerin nucleoplasmic region forms oligomers in vitro 
 

As a large number of other inner nuclear membrane proteins, emerin exhibits large regions 

predicted to be intrinsically disordered4. In addition, this protein possesses an N-terminal 

globular domain, the LEM domain, which connects emerin to a group of proteins possessing 

this LEM domain and sharing the ability to bind lamins and tether repressive chromatin at the 

nuclear periphery269. Finally, emerin LEM domain is known to interact with the DNA binding 

Barrier-to-Autointegration protein (BAF)52. 
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When I began my thesis, a proteome study focused on liver nuclear envelope had shown, using 

a semi-quantitative measurement of protein abundance by mass spectrometry that the 

emerin/A-type lamin ratio was about 0.03270. From this ratio, it can be estimated that there is 

about 50,000 emerin molecules per nucleus (which corresponds to an approximate 

concentration of 10-100 M). These molecules are concentrated at the inner nuclear 

membrane. They were reported to self-associate, in vitro and in cell, through different 

mechanisms165. Several intra and/or intermolecular interactions were observed within emerin 

molecules, suggesting that changes in emerin oligomeric states could be responsible for the 

regulation of emerin binding properties at the inner nuclear envelope. Two different 

configurations were proposed depending on emerin LEM domain interactions. A down 

configuration in which the LEM domain interacts with BAF and an up configuration, in which 

the LEM domain is implicated in emerin self-assembly. 

At the beginning of my thesis, I tried to characterize emerin structure in solution, working 

together with another PhD student, Dr Isaline Herrada. For this, we used different emerin 

constructs (1-49, 1-132, 67-170, 67-187, 67-221 and 1-187). After assignment of emerin 1-170 

NMR chemical shifts, we confirmed that emerin monomers are composed of only one globular 

part, the LEM domain, which is followed by a large disordered fragment250. Then, we showed 

that more than monomers, emerin 1-187 (EmN) and emerin 67-221 (EmC221) can form higher 

molecular weight oligomers in vitro.  

First, I only focused on EmN oligomers. By electron microscopy, Isaline and I observed that 

EmN forms some spherical particles and curvilinear filaments of 10nm of diameter. Then, 

using Fourier Transform Infra-Red spectroscopy and thioflavin T fluorescence, we observed 

that these filaments are composed of -structure 4.  To find which part of emerin was 

important for filament formation and to understand the role of the LEM domain in emerin 

self-assembly, we followed the oligomerization kinetics of different emerin constructs (see 

above) and found that EmN132 (1-132) was sufficient for oligomerization whereas EmC187 

(67-187) cannot form filaments anymore. In addition, using solid-state NMR as well as limited 

proteolysis and mass spectrometry, we demonstrated that the LEM domain, as it was 

suggested by the group of Dr K. Wilson, can be found either as a globular domain in a 

monomeric EmN fragment or as part of the structural core of long curvilinear filaments formed 

by EmN259.  
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It is interesting to observe that despite the amount of intrinsic disorder present outside of the 

LEM domain, a 10 kDa fragment is proteolytically protected. This could be due to an 

interaction between the LEM domain and a part of the unfolded region that forms a -sheet 

with the LEM region, thus creating the EmN filament core.  

Finally, we wondered if EmN oligomers are reversible. Indeed, we observed that dilution did 

not change our EmN oligomer structure in vitro, so our hypothesis is that maybe, in cell, their 

stability could be modified by the presence of the membrane or by post-translational 

modifications such as phosphorylations. 

Another important experiment could have been done. Because thioflavine fluorescence was 

a good method to study our oligomers in vitro, we thought that it could be interesting to 

observe if thioflavine could bind EmN oligomers in vivo. Our collaborator, Brigitte Buendia, 

from Diderot University, tried once to observe thioflavine fluorescence in vivo in presence of 

EmN oligomers, without success. But first, it could be due to a protocol problem because no 

positive controls were done or it could be due to transitory interactions between thioflavine 

and EmN oligomers. 

 NMR analysis of the EmN mutant K37 - this mutation causing cardiac defects - revealed first 

that the LEM domain of this mutant is destabilized and, interestingly, that this mutant forms 

oligomers faster than EmN WT.  

After confirmation that the resulting oligomers have a structural organization similar to that 

of EmN WT oligomers (using solid-state NMR, electron microscopy and limited proteolysis), 

we suggested that because the first step of emerin self-assembly is largely facilitated by 

deletion of K37, a rearrangement of the LEM domain structure is necessary for EmN oligomer 

assembly. 

In parallel, together with another PhD student from the Institut de Myologie (Paris), Nada 

Essawy, I worked with two other mutants showing a defect in emerin LEM domain and 

associated with the same symptoms as K37: mutants P22L and T43I (G. Bonne, personal 

communication). We observed, using thioflavin T fluorescence and negative staining EM, that 

these two mutants form, as K37, filaments faster than EmN WT, and that their filaments are 

structurally similar to that of EmN WT. Contrariwise to the mutant K37, these mutants 

exhibit a well folded LEM domain. We concluded that the kinetics rate increase observed for 

the three LEM domain mutants could be due to the fact that in these mutants the interaction 

between the LEM domain and the unfolded part of EmN is favored. 
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In addition, we studied self-assembly of 5 EmN mutants causing Emery-Dreifuss Muscular 

Dystrophy (S54F, Q133H, P183H/T and 95-99), using thioflavin T fluorescence and negative 

staining EM. In these cases, mutants self-assembled similarly or less than EmN WT.  Even if 

the mutant Q133H seemed to form oligomers slower than EmN WT, only EmN 95-99 could 

not form oligomers anymore, in vitro. Interestingly, deleted amino acids of this mutant are 

localized in a region predicted as partially folded by Disopred2.0 software and by NMR 

chemical shift analysis.  

Self-assembly of emerin WT and mutants was then studied in cells, using in situ Proximity 

Ligation Assay (PLA). Consistently with our in vitro results, emerin WT and two mutants (P183T 

and K37) were found to self-associate, whereas emerin 95-99 and Q133H created less 

emerin-emerin proximities than emerin WT at the nuclear periphery of transfected cells. 

Finally, together with another PhD student Florian Celli, I observed that another construct of 

emerin, which did not contain the LEM domain, EmC221 (67-221), could form oligomers in 

vitro. Based on thioflavin T fluorescence and EM studies, we found that EmC221 could form 

similar curvilinear filaments of 10nm of diameter as EmN, but with a faster self-assembly 

kinetics. Thus, two types of self-assembly mechanisms can be described for emerin. We could 

never purify the whole nucleoplasmic region of emerin, from aa 1 to aa 221, comprising both 

EmN and EmC221 fragments.  

This region systematically aggregated during the dialysis against a buffer without urea. Such 

aggregation process might be due to a bad timing of the different self-assembly interaction 

steps in the absence of membrane anchoring. 
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1. EMERIN OLIGOMERS DIRECTLY BIND LAMIN A/C 
 

Co-immunoprecipitation assays166, surface plasmon experiments170 and yeast two hybrid 

assays166 showed that a direct interaction exists between lamin A and emerin. 

Then, blot overlay assays revealing emerin binding to lamin A showed that mutations in 

emerin region from aa 70 to aa 170 inhibit lamin A binding245. On the opposite, mutations of 

LEM domain residues 24 to 27 into alanine seem to favor lamin A binding. A later report from 

the same group revealed that two emerin regions can independently bind to mature lamin A 

tail: regions 1-132 and 159-220, with fragments 119-132 and 159-169 being necessary for 

these interactions, respectively165.  

During my thesis, I studied this emerin-lamin interaction and found first, that emerin 

monomers could not bind directly to the lamin A/C tail. It was a very contradictory result 

compared to results obtained by other groups. Our first hypothesis was that the putative 

presence of emerin aggregates in the samples with a low concentration of urea at the end of 

the purifications reported in the litterature165,190 could favor a direct interaction with the 

nuclear lamina. A second hypothesis was that because one of these experiments used a GST-

emerin construct purified in urea165, the fusion protein was not well folded. Also, we tried to 

produce this kind of construct and it was not soluble in our conditions. Finally, our last 

hypothesis was that emerin forms oligomers that could bind lamin A/C. 

Finally, we confirmed that EmN oligomers can directly bind to the Igfold domain of lamin A/C. 

In more details, only EmN oligomers, and not EmC221 oligomers, were found to interact with 

the Igfold. The LEM domain is necessary for EmN self-assembly, which is essential for EmN 

binding to lamin A. Destabilization of the LEM domain through deletion of K37 favors EmN 

self-assembly. This is consistent with the observation of the group of K. Wilson that mutation 

of the hydrophobic core of the LEM domain (G24-P25-V26-V27 into AAAA) favors lamin A 

binding245. Altogether these data strongly suggest that destabilization of the LEM domain is 

necessary for EmN self-assembly and subsequent lamin A binding. We did not observe such 

emerin – lamin interaction in the case of laminB1 tail; K. Wilson and co-workers observed only 

a weak binding of emerin regions 1-132 and 159-220 to the lamin B1 tail165. I conclude that 

this interaction between emerin and lamins is specific to EmN oligomers and the Igfold of 

lamin A/C. 
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As EmN mutant K37 self-assembles faster than EmN WT, I hypothesized that it still binds to 

the Igfold of lamin A/C. This was confirmed in vitro by NMR. Concerning the two other LEM 

domain mutants P22L and T43I, Nada Essawy will now try to characterize their interaction 

with the Igfold of lamin A/C.  

Then, because EmN 95-99 does not self-assemble in our conditions, we thought that this 

mutant will not interact with lamin A/C in vitro and in cell. Concerning the in vitro part, we 

showed by NMR that this mutant cannot interact directly with the Igfold of laminA/C. Then, in 

cells, by PLA, while emerin WT and P183T were shown to be in closed proximities with lamin 

A/C, for variants Q133H and 95-99, the amount of emerin-lamin A/C proximities is 

decreased, suggesting that emerin self-assembly defects impact lamin recognition in cells4. 

In order to identify which part of the Igfold is involved in EmN oligomer binding, we decided 

to produce several 15N labelled mutated Igfolds and to observe the impact of addition of EmN 

oligomers on their 1H-15N HSQC spectrum. This idea was to find mutants that could not bind 

to EmN oligomers. We tested mutants that cause diseases (R435C and R471C) and mutants of 

the parallel -sheet region that is characteristic of the lamin fold (T496E, H506E, P509A and 

V513A)42. We observed by NMR, that R435C, R471C, T496E, P509A and V513A significantly 

impaired binding to EmN oligomers, whereas H506E completely abolished the binding.   

Altogether, my results demonstrate that a surface present on the lamin A/C Igfold domain 

binds to self-assembled emerin fragment EmN and not EmC221 and this lamin-emerin 

interaction seemed to be specific to the Igfold domain of lamin A/C. 

2. IMPACT OF PTM ON EMN SELF-ASSEMBLY 
 

Emerin was proposed to be phosphorylated by the Src kinase in response to a mechanical 

stress107. In more details, Src kinase phosphorylates emerin on tyrosines 74 and 95 and 

mutations of these two residues impair nuclear response during application of a mechanical 

force on the nucleus. In addition, lamin A/C is recruited to the LINC complex in order to 

reinforce nuclear stiffness. More recently, it was also proposed that application of a force on 

the nucleus increases emerin level at the outer nuclear membrane without altering emerin 

protein level249. 



 

156 
 

During the first year of my thesis, I confirmed in vitro, using NMR and mass spectrometry, that 

EmN is phosphorylated by Src on tyrosines 74 and 95. Interestingly, the emerin region 

phosphorylated by Src is important for EmN self-assembly.   Indeed, EmN 95-99 cannot form 

oligomers in our conditions. Moreover, this region is important for direct binding between 

emerin and lamin A/C.  

Indeed, mutation of D70-D72-Y74 into alanines as well as deletion 95-99 impair lamin A 

binding245. On the bases of these different observations, I expressed two opposite hypotheses: 

(1) Because the region containing tyrosine 95 is important for EmN self-assembly, because 

only EmN oligomers bind lamin A/C and because recently, a study suggested that 

during a mechanical stress, emerin level at the outer nuclear membrane increases, I 

hypothesized that phosphorylation of tyrosines 74 and 95 by Src could impair emerin 

oligomer assembly and thus disrupt emerin binding to lamin A/C. In these conditions, 

monomeric emerin could be displaced to the outer nuclear membrane in order to let 

lamin A/C free to interact with the LINC complex, and thus to reinforce nuclear 

stiffness.  

 

(2) I have a second hypothesis that does not take into account the fact that emerin level 

at the outer nuclear membrane increases during a mechanical stress (indeed this 

observation was reported only in one recent paper). Because EmN 95-99 cannot self-

assemble or interact with lamin A/C, and because emerin phosphorylation by Src was 

shown to be important for nuclear response during a mechanical stress, Src 

phosphorylation could favor emerin self-assembly in order to increase emerin-lamin 

binding at the inner nuclear envelope and thus allow interaction between this complex 

and the LINC complex in order to increase nuclear stiffness. 

To understand the impact of Src phosphorylation, I tried to observe the influence of these 

phosphorylations on EmN oligomer assembly, with the aim of subsequently studying their 

effect on lamin binding. 

First, I tried to follow EmN oligomerization kinetics using thioflavin T fluorescence on both a 

non-phosphorylated EmN sample and an EmN sample phosphorylated by Src. I did this 

experiment several times, but it was difficult to reproduce and interpret it.  
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This can be explained by two phenomena; first, because Src phosphorylations impact tyrosines 

and because it was reported that thioflavin T interacts preferentially with tyrosine-rich 

cross surfaces, we thought that maybe, phosphorylation on tyrosines could impact 

thioflavin T fluorescence in the presence of phosphorylated EmN. In this case, this technique 

is not adapted to follow impact of Src on filament assembly.  

But a second idea could be that our experimental conditions are not adapted. Indeed, to do 

this experiment, I used every time EmN samples that were in presence of MgCl2, ATP and then, 

with or without Src, during 12h at 303K and before following oligomer kinetics, I did not 

change the buffer nor re-purify protein samples. This means that during kinetics, other factors, 

such as the presence of MgCl2, could have an impact on oligomer assembly, or Src kinase 

present in the sample could sometimes still be active. For this reason, Nada Essawy, who will 

now work on this project, will try to reproduce this experiment, but will first phosphorylate 

EmN before cleavage of its tag, in order to re-purify each EmN sample, after the 

phosphorylation kinetics and before following self-assembly by thioflavin T fluorescence. 

I also tried to observe the impact of Src phosphorylation on EmN self-assembly using SDS-

PAGE and negative-staining EM. My first results suggested that Src phosphorylation impacts 

EmN oligomerization, because I observed the presence of filaments in my non-phosphorylated 

sample whereas aggregates were observed in the phosphorylated sample. This experiment 

has to be reproduced by Nada Essawy and again, re-purification of EmN after phosphorylation 

will be introduced in the protocol to avoid modifying the oligomerization kinetics because of 

the presence of additives related to the kinase in the buffer. 

My preliminary results are in favor of my first hypothesis; Src phosphorylation seems to impair 

filament assembly, which could disrupt emerin-lamin binding during a mechanical stress and 

favor emerin displacement from the inner nuclear envelope to the outer nuclear envelope, in 

order to allow lamin A/C interaction with the LINC complex and thus reinforce nuclear 

stiffness. 

To finish on emerin phosphorylation, I thought that in addition to their implication during a 

mechanical stress, phosphorylations could regulate emerin oligomerization and interactions 

also in a cell cycle context, like assembly or disassembly of the nuclear membrane during 

mitosis.  
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The LEM domain of emerin plays a critical role in EmN self-assembly. It is highly 

phosphorylated in cells (see https://www.phosphosite.org/proteinAction.action? 

id=2624&showAllSites=false) and protein sequence analysis of several emerin LEM domain 

from distinct animals (figure 98, A) shows that several of its serines, threonines and tyrosines 

are well conserved. 

 

 

 

Figure 98 : Emerin LEM domain phosphorylation sites.  

(A) The Phosphosite database reveals that Tyr4, Ser8, Thr10, Tyr19, Ser29, Tyr34, Tyr41 and Thr43 are 
phosphorylated in cells. (B) Emerin LEM domain 3D structure (PDB code: 2ODC) in orange, with conserved 
serines observed as phosphorylated represented in red. 

A 

B 

https://www.phosphosite.org/proteinAction.action?%20id=2624&showAllSites=false)
https://www.phosphosite.org/proteinAction.action?%20id=2624&showAllSites=false)
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In the case of emerin LEM domain, we were interested by Ser8 and Ser29, because 

they are conserved and phosphorylated in cells. Moreover, Ser8 is predicted to be 

phosphorylated by CK2; indeed, CK2 phosphorylates sites characterized by the motif S/T-X-X-

E. Both serines are located at the N-terminus of a large -helix (figure 98).  

 

Phosphoserine is the most stabilizing amino acid for -helices when located at the Ncap, N1, 

N2, and N3 positions, whereas it is destabilizing in the interior or at the C-terminus of the 

helix271. As LEM domain folding and EmN self-assembly are related, I hypothesized that 

phosphorylation of these serines might disfavor EmN self-assembly. 

 

To go further, we hypothesized that EmN phosphorylation by CK2 could lead to the 

stabilization of the LEM domain structure, which will be in disfavor of filament assembly. Then, 

if CK2 phosphorylation disfavors EmN filament assembly, this phosphorylation could impair 

lamin-emerin binding. 

During my thesis, I did preliminary studies of EmN phosphorylation by CK1 and CK2 as well as 

in cell extracts in vitro using NMR. No phosphorylation was observed in vitro with CK1 and 

CK2, in our conditions. We have to improve our phosphorylation conditions to go further into 

the study of the impact of phosphorylation by CK2 on emerin self-assembly and lamin binding. 

Concerning emerin phosphorylation in cell extracts, I confirmed by NMR that EmN132 is 

modified after addition of cell extracts (293T cell extracts) and more, that the LEM domain 

seemed highly modified after addition of cell extracts. To go further into this study, we can 

imagine to test different protocols of phosphorylation in cell extracts. Because emerin 

mutations cause myopathies, it would be interesting to observe emerin modifications in 

different cell types, notably in myoblasts. Then, we can imagine to observe emerin 

modifications during specific cell cycle phases or after a mechanical stress.  
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II. Nuclear envelope interactions that could be important 
for structure and mechanical properties of the nucleus 

 

1. A FIRST MODEL OF THE INTERACTION BETWEEN NUCLEAR ENVELOPE AND 
DNA 

 

An important part of my thesis was focused on the emerin-lamin interaction. Indeed, it was 

well established that both proteins were interacting directly in vitro and in cells and but no 

molecular details were known. As I already explained, we confirmed that a direct interaction 

exists between emerin oligomers and the Igfold of lamin A/C. In addition, it was reported that 

the two proteins could interact through a third one, BAF, in order to form a ternary 

complex175,253,254. Concerning the emerin-BAF interaction, the 3D structure of this complex 

was already solved by NMR52; it was shown that the LEM domain of emerin can bind a dimer 

of BAF.  

We decided to work on these interactions using several techniques such as NMR, ITC or gel 

filtration and we confirmed first that the LEM domain of emerin is able to bind BAF with a 

ratio 1:2. Then, we found that the Igfold of lamin A/C can bind a dimer of BAF too and more, 

we observed that the three proteins form a ternary complex. In addition, no interaction 

between the lamin B1 tail and BAF was observed, which demonstrated that the interaction 

between lamin and BAF is specific to the Igfold of lamin A/C. Finally, we obtained the X-ray 

structure of the ternary complex by crystallography and confirmed that the lamin A/C Igfold 

domain, in addition to directly interact with EmN oligomers, could also interact with the 

emerin LEM domain through a dimer of BAF. Our result are consistent with the observation 

by the group of K. Wilson that binding of 35S-emerin to prelamin A tail-containing strips was 

enhanced fourfold by wild-type BAF172. 

I superimposed our X-ray structure with the one already available for BAF in interaction with 

DNA (PDB code: 2BZF)111 in order to propose a first model of the interaction between the 

nuclear envelope and chromatin (figure 98). This model suggests that the BAF dimer is able to 

simultaneously bind to DNA, emerin and lamin A/C. In addition, it led me to another 

observation. Indeed, whereas BAF WT increases binding of 35S-emerin to prelamin A tail, BAF 

S4E has no effect on this binding172.  
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In addition, binding of BAF to the prelamin A tail is also significantly reduced in the case of BAF 

mutant S4E. And finally, in cells that overexpress BAF (that is phosphorylated by endogenous 

kinases) or BAF-S4E, but not BAF-S4A, emerin fails to localize at the nuclear envelope. Because 

of these different results. I observed the position of Ser4 on BAF to define its localization 

compared to the emerin and lamin binding surfaces (figure 99). Surprisingly, this serine did 

not localize on BAF binding surfaces to the emerin LEM domain or the Igfold of lamin A/C but 

on the BAF binding surface to DNA. Consistently, it was reported that phosphorylation of BAF 

Ser4 impairs BAF binding to DNA172. I now wonder why a phosphorylation that affects BAF 

binding to DNA can disrupt formation of our ternary complex. In addition, BAF interacts 

directly with histones H3 and H4 and more, three methyl marks (H3-K4-Me2, H3-K9-Me3, H3-

K79-Me2) are increased in BAF-overexpressing cells272,273. To go further into our structural 

analysis of the interaction between the nuclear envelope and DNA, it would be important to 

understand how our ternary complex lamin/BAF/emerin interacts with DNA and histones.  

 

 

Figure 99 : A first model of the interaction between nucleoskeleton and DNA at the inner nuclear 
envelope. 

To obtain this model, I superimposed my X-ray structure to the 3D structure of BAF in interaction with DNA 
(PDB: 2BZF). Here, only one DNA fragment is represented, whereas in the crystal, both BAF monomers interact 
with DNA. In red is represented BAF Ser4 that is phosphorylated during the cell cycle. 
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My structural study also revealed that the Igfold of lamin A/C interacts with BAF 

through a surface containing residues mutated in progeroid syndromes. During the last part 

of my thesis, working with Ambre Petitalot, we tried to characterize the impact of these Igfold 

mutants, which cause different progeroid syndromes (R435C, K542N, R471C, R527C and 

A529V) on BAF binding in vitro. In parallel, Dr Brigitte Buendia (Uni Paris Diderot) was working 

on the impact of these mutations in cells, using in situ Proximity Ligation Assays. We observed 

in vitro that four mutations (R471C, R527H and A529V and K542N) decreased the affinity of 

the BAF/Igfold interaction whereas one mutation (R435C) seemed to completely disrupt the 

interaction. In vivo, less proximities between BAF and each mature lamin A mutants (R435C, 

K542N, R527C and A529V) were observed compared to lamin A WT. 

To go further, in the well-studied progeria syndrome called Hutchinson-Gilford Progeria 

Syndrome (HGPS), because of a deletion of 50 amino acids in the C-terminal region of prelamin 

A, containing a critical site for maturation37,38 or because of a mutation in the ZMPSTE24 

enzyme, involved in lamin A maturation36,274, lamin A exhibits a maturation defect. The 

presence of a permanently farnesylated prelamin A mutant called progerin is then observed 

in cells. The lamin mutation causing progerin is heterozygous, which means that only part of 

the lamin A proteins possesses a maturation defect in HGPS, but this is sufficient to cause the 

accelerated aging disease. After my structural study, I thought that maybe a common 

mechanism exists between autosomal recessive progeroid syndromes due to a homozygous 

mutation in the BAF binding region and the autosomal dominant HPGS disease. First, I 

hypothesized that (1) the farnesylated prelamin A (progerin) could bind to BAF, which could 

induce a defect in mature lamin A binding to BAF. Consistent with this hypothesis, different 

prelamin A forms were shown to interact with BAF in vivo218. In addition, it was demonstrated 

that progerin could bind BAF in HEK293 cells219. Finally, it was shown that a mutation in 

ZMPSTE24 (which normally cleaves the farnesylated lamin C-terminus) favors BAF nuclear 

localization275. It was also shown that the presence of progerin induces a loss of 

heterochromatin and H3K9 trimethylation151,152,213,214, whereas BAF was shown to bind H3 in 

order to increase methyl marks272,273. We deduced that presence of progerin could impair, in 

addition to BAF-lamin A/C binding, BAF binding to histone H3.   

But a second hypothesis is possible. (2) Indeed, a defect in lamin-BAF interaction could induce 

a partial defect in prelamin A maturation that would provoke the accelerating aging syndrome. 
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Consistently with this idea, it was observed that prelamin A is accumulated in cells from a 

patient with mutation R527H causing mandibuloacral dysplasia275. 

During the end of my thesis, we did preliminary studies about the impact of lamin 

maturation defects on the BAF-lamin interaction. I produced two different prelamin A 

constructs (IgfoldProgerin [389-614] and ProgerinCter [567-614]) in order to test their ability 

to bind BAF in vitro, using ITC and NMR. First, I observed that the fragment IgfoldProgerin, 

corresponding to the lamin A tail in HGPS, could bind BAF with the same affinity and 

stoichiometry than the Igfold alone and more, the same binding surfaces were identified. 

Then, I tried to characterize the interaction between BAF and the C-terminus of the progerin 

alone (ProgerinCter), by NMR and ITC, but no clear and strong interaction was identified. 

These experiments have to be reproduced. In addition, both progerin peptides that I used 

were not farnesylated, so Florian Celli will try to co-express the two constructs of progerin 

with a farnesyltransferase, in order to understand the impact of farnesylation on progerin-

BAF binding and then, to observe if farnesylation induces a defect in BAF-histone binding. 

To conclude about emerin-lamin binding, I showed that the lamin A/C Igfold domain interacts 

with the inner nuclear membrane protein emerin through two mechanisms: it either binds 

directly to self-assemble EmN or it interacts with monomeric EmN through the chromatin-

associated protein BAF (figure 100). We hypothesized that both mechanisms could be 

regulated by post-translational modifications.  
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Figure 100 : Lamin A/C Igfold domain interacts with the inner nuclear membrane protein emerin 
through two mechanisms. 

 

2. EMERIN INTERACTS WITH MYOSIN1B 
 

During my thesis, I also did a collaboration with the group of Dr Anne Houdusse (Institut Curie, 

Paris), in order to observe if emerin could bind myosin 1 tail in vitro. Several results have 

prompted us to be interested in this possible interaction. First, nuclear myosin I was shown to 

be localized in the nucleus, by ultrastructural studies263. Then, proteomic studies revealed that 

emerin binds to nuclear myosin I267.  

We searched for a direct interaction between different constructs of our emerin (1-187, 1-

132, 1-49 and 67-187) and 3 constructs of their myosin tails (M1b01, M1b04 and M1c01), 

associated with calmodulin, in vitro. First, we found a direct interaction between emerin and 

myosin 1 tail, and more, we observed that this interaction was specific to myosin 1b; indeed, 

no interaction was observed between M1c01 and emerin. In addition, we found that the LEM 

domain was necessary and sufficient for binding to myosin 1b tail. Furthermore, we observed 

protein oligomerization during emerin binding to myosin1b. Two hypotheses were possible. 

(1) First, we thought that myosin 1b tail binding to emerin could favor emerin oligomerization. 

(2) Then, we supposed that instead of emerin, maybe myosin 1b tail could form oligomers that 

could carry emerin overtime.  
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After several in vitro studies, using thioflavin T fluorescence, NMR and electron microscopy, it 

seemed that the second hypothesis is the real one, but we have to confirm our results. 

Our hypothesis concerning the existence of an interaction between emerin and myosin at the 

nuclear envelope is that this complex could contribute to the formation of a higher molecular 

weight complex with actin in order to maintain the structural integrity of the nucleus. 

Consistent with our hypothesis, a very recent study demonstrated that emerin binds to non-

muscle myosin IIA at the outer nuclear membrane in order to increase F-actin polymerization 

at this site249. 
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MATERIAL AND METHODS 
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I. PLASMID CONSTRUCTS 
 

1. EMERIN NUCLEOPLASMIC FRAGMENTS 
 

All emerin fragments (1-187, 67-221, 67-187 and 1-49) were expressed as N-terminal octa-

histidine fusions with a TEV cleavage site between the tag and the emerin fragment. 

Expression vectors coding for these fragments were purchased from Genscript, who cloned 

an optimized emerin gene into a pETM-13 vector provided by the lab. All emerin mutant 

expression vectors (K37, P22L, T43I, S54F, Q133H, P183H, P183T and 95-99) were obtained 

by mutagenesis using the Quikchange (Agilent) kit from the WT emerin 1-187 expression 

vector. Only mutant Y4C-E35C was expressed by mutating the vector coding for WT emerin 1-

132.  

2. LAMIN A/C IGFOLD FRAGMENT (TAIL REGION COMMON TO LAMINS A AND 
C) 

 

The pGEX-4T vector coding for the Igfold of WT lamin A/C (411-566) was a gift from the lab of 

Prof Howard J. Worman (Department of Medicine, College of Physicians & Surgeons, Columbia 

University, New York). The resulting protein contained a GST tag, a thrombin cleavage site and 

a lamin A/C fragment from amino acid 411 to amino acid 566. All mutant expression vectors 

(A529V, A529T, K542N, M540T, T528M, R435C, R471C, T496E, W498E, P508A, P509A, H506E, 

V513A and R482W) were obtained by mutagenesis using the Quikchange (Agilent) kit from the 

WT expression vector. 

3. IGFOLDPROGERIN (PROGERIN TAIL) 
 

The tail region from progerin was also expressed using a pGEX-2T expression vector provided 

by the laboratory of Dr Brigitte Buendia from Université Paris Diderot. The resulting protein 

contained a GST tag, a thrombin cleavage site and the C-terminal progerin fragment from 

amino acid 389 to amino acid 614.  
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4. LAMINB1 TAIL 
 

The tail region of lamin B1 was also expressed using a pGEX-4T expression vector provided by 

the laboratory of Prof Howard J. Worman (Department of Medicine, College of Physicians & 

Surgeons, Columbia University, New York). The resulting protein contained a GST tag, a 

thrombin cleavage site and the C-terminal progerin fragment from amino acid 409 to amino 

acid 586.  

5. BAF 
 

BAFCtoA was expressed using a pET-M13 vector. The BAFCtoA gene was optimized for E. coli 

production (Genscript). The resulting protein contained an N-terminal octa-histidine tag, a TEV 

cleavage site and BAFCtoA. All BAF mutants (S4E, A12T and G47E) were expressed after 

mutagenesis with the Quikchange (Agilent) kit of the BAFCtoA expression vector. 

6. 1U2 
 

The 1U2 domain of Man1 was expressed using a pTEM10 vector, optimized for E. coli 

production (Genscript). The resulting protein contained an N-terminal octa-histidine tag, a TEV 

cleavage site and 1U2. 

7. MYOSIN 
 

The different myosin fragments were produced by the team of Dr Anne Houdusse (Institut 

Curie, Paris). 

 

II. BACTERIAL CULTURES 
 

1. IN RICH MEDIUM 
 

For all proteins, expression was performed in E. coli BL21 (DE3) Star. The starter culture was 

done at 310K overnight in LB medium containing antibiotics.  
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For Igfold, IgfoldProgerin, LaminB1 and 1U2 fragments, bacterial cultures were grown at 310K 

in LB medium with antibiotics, and after addition of the starter culture and induction at an OD 

of 0.8 with 0.5mM IPTG, cultures were grown at 293K overnight. For the ProgerinCter 

construct, bacterial cultures were induced at an OD of 0.8 with 0.5mM IPTG, and were grown 

at 310K during 4 hours. For the other fragments, bacterial cultures were induced at an OD of 

1, with 0.5mM IPTG, and grown at 293K overnight. 

Afterwards, cultures were centrifuged at 3500 rpm during 30 minutes and each pellet was 

resuspended in 20ml of Lysis buffer (50mM Tris-HCl pH 8, 300mM NaCl, 5% glycerol, 1% Triton 

TX-100 and 10mM PMSF) before being frozen at -80°C.   

 

2. IN MINIMAL MEDIUM 
 

This production protocol is used in two cases: to increase protein solubility and to label the 

protein with 15N or 13C for NMR experiments. 

 

The production protocol was the same as in rich medium, except that the LB medium was 

replaced by a minimal medium which is composed of: 

- 100ml M9 10X (60g Na2HPO4, 30g KH2PO4, 5g NaCl) 

- 2ml Trace Element 500X (EDTA 5 g /L 13.4mM, FeCl3-6H2O 0.83 g/L 3.1mM, ZnCl2 84 

mg/L 0.62mM, CuCl2-2H2O 13 mg/L 76µM, CoCl2-2H2O 10mg/L 42µM, H3BO3 10mg/L 

162µM, MnCl2-4H2O 1.6 mg/L 8.1 µM) 

- 1ml MgSO4 1M 

- 0.3ml CaCl2 1M 

- 1mM of Biotine 

- 1mM of Thiamine 

- 2g Glucose 

- 0.5g 15NH4CL 
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III. PROTEIN PURIFICATIONS 
 

1. EMERIN AND BAF PURIFICATION 
 

Both proteins were produced in inclusion bodies. Therefore, purification protocols for the 

different emerin and BAF fragments are almost the same. 

The first step of purification consisted of a lysis step. 

1) Lysis step 

- Pellet thawing. 

- Sonication in 3 cycles of 30 seconds, separated by 1 second, with a power of 70% and 

without any temperature constraint. 

- Centrifugation at 20 000 rpm during 20 minutes. 

- Pellet solubilization in buffer C8 (50mM Tris-HCl pH8, 150mM NaCl, 20mM Imidazole 

and 8M urea) during one hour at room temperature on a wheel. 

- Centrifugation at 20 000 rpm during 20 minutes. 

- Recovery of the supernatant (which contains urea). 

2) Purification 

After the lysis step, the soluble extract is loaded onto a Ni-NTA column (GE-Healthcare) 

equilibrated with buffer C8. After two hours of incubation at room temperature, the column 

is washed with buffer C8 and then, proteins are eluted with buffer E8 (50mM Tris-HCl pH8, 

150mM NaCl, 1M Imidazole and 8M urea). Proteins are then diluted at an OD of 1 for emerin 

fragments and an OD of 0.5 for BAF fragments, before being refolded by dialysis in D1 buffer 

(50mM Tris-HCl pH8, 30mM NaCl) for emerin fragments and buffer D2 for BAF fragments 

(50mM Tris-HCl pH8, 150mM NaCl), overnight.  

 

The next day, proteins are dialyzed twice during two hours in the same buffer as before. Then 

they are concentrated to obtain 20ml. After addition of 2mM DTT and one TEV aliquot at 

1mg/ml, proteins are incubated during 2h at room temperature in a falcon tube and deposited 

onto a Ni-NTA column. After column incubation during 30 minutes at room temperature, 

proteins are recovered in the flow-through and dialyzed in the selected buffer depending on 

the experiments. 
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2. IGFOLD PURIFICATION 
 

Every Igfold construct (WT, mutants and IgfoldProgerin) was soluble in bacteria. Like for all 

proteins, the first purification step consists of a lysis step. 

1) Lysis step 

- Pellet thawing. 

- Sonication in 3 cycles of 30 seconds, separated by 1 second, with a power of 70% and 

at 277K. 

- Incubation with 2µl of benzonase (Sigma) and 100mM MgCl2, during 20 minutes at 

room temperature. 

- Centrifugation at 20 000 rpm during 20 minutes. 

- Recovery of the supernatant. 

2) Purification 

Because of their GST-Tag, the Igfold fragments were purified on a GSTrap FF column (GE 

Healthcare). The column is first washed with buffer A (50mM Tris-HCl pH8, 150mM NaCl, 1mM 

DTT). Then, proteins are added onto on the column and incubated during 2h at 277K on a 

wheel. After incubation, the column is washed with buffer A, followed by buffer B (50mM Tris-

HCl pH8, 1M NaCl, 1mM DTT) to remove in particular DNA and again with buffer A. Finally, 

proteins are incubated in 10ml of buffer A and the thrombin protease is added overnight at 

277K. 

The next day, proteins are eluted in the flow-through, dialyzed in a selected buffer 

corresponding to further experiments and kept at 277K. 
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3. PROGERINCTER PURIFICATION 
 

In the case of this construct, the lysis step is performed using the protocol described for the 

Igfold construct. 

After the lysis step, the supernatant is loaded onto a GSTrap FF column (GE-Healthcare) 

equilibrated with buffer A. Then, proteins are incubated during 2h at 277K, on a wheel. After 

incubation, column is washed with buffer A, followed by buffer B (50mM Tris-HCl pH8, 1M 

NaCl, 1mM DTT) to remove DNA and again with buffer A. Afterwards, proteins are incubated 

in 10ml of buffer A and the TEV protease is added during 2h at 277K. Finally, proteins are 

recovered in the flow-through, dialyzed in a selected buffer corresponding to further 

experiments and kept at 277K. 

4. LAMINB1 AND 1U2 PURIFICATION 
 

In the case of these two constructs again, the lysis step is performed using the protocol 

described for the Igfold construct. 

After the lysis step, the supernatant is loaded onto a Ni-NTA column (GE-Healthcare) 

equilibrated with buffer A. Then, proteins are incubated during 2h at 277K, on a wheel. After 

incubation, column is washed with buffer A, followed by buffer B (50mM Tris-HCl pH8, 1M 

NaCl, 1mM DTT) to remove DNA and again with buffer A. Afterwards, proteins are eluted with 

buffer E (50mM Tris-HCl pH8, 150mM NaCl, 1M Imidazole and 1mM DTT) and dialyzed against 

buffer A 3 times during 2 hours. The next day, the TEV protease is added during 2h at room 

temperature in a falcon tube, and the protein sample is loaded onto a Ni-NTA column during 

30 minutes at room temperature. After column incubation, proteins are eluted in the flow-

through and dialyzed in the selected buffer depending on experiments. 
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IV. LIQUID NMR 
 

NMR experiments were performed on 600, 700 and 750 MHz Bruker Avance spectrometers, 

all equipped with a triple resonance cryogenic probe. Two-dimensional 1H-15N correlation 

spectra were acquired using a HSQC pulse sequence at a temperature of 283K to 303K, on a 

3-mm-diameter NMR sample tube, containing 80:20% H2O/D2O. All NMR data were processed 

using Topspin3.1 (Bruker) and analyzed with CCPNMR276.  

1. ASSIGNMENTS OF THE NMR SIGNALS 
 

a. Emerin 1-170 
 

We assigned the NMR signals of the emerin fragment from residues 1 to 170 using two 

approaches. We acquired three-dimensional 1H-15N-13C correlation spectra, using 3D HNCACB, 

CBCA(CO)NH, HNCO, HN(CA)CO and HN(CO)(CA)NH experiments (table 5) at 303 K, on a 5-

mm-diameter NMR sample tubes containing, on one hand, 500 µM uniformly 15N/13C-labeled 

Emerin67-170, in 20mM Tris-HCl pH8, 30mM NaCl, 5mM DTT and 80:20% H2O/D2O and on the 

other hand, 500 µM uniformly 15N/13C-labeled EmN132, in 20mM Tris-HCl pH 8, 30mM NaCl, 

5mM DTT and 80:20% H2O/D2O. 

 

Spectrum Dimensions Observed atoms 

HSQC 2D N-H 

HNCACB 3D N-H+Cα+Cβ+(Cα)-1+ (Cβ)-1 

CBCA(CO)NH 3D N-H+(Cα)-1+(Cβ)-1 

HNCO 3D N-H+C from liaison (C=O)-1 

HN(CA)CO 3D N-H + C from liaison C=O and (C=O)-1 

HN(CO)(CA)NH 3D N-H+(N-H)+1 

 

Table 5 : List of spectra used for emerin 67-170 and 1-132 backbone assignment. 
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Using our 3D experiment combination and using the emerin 67-170 sample, we success to 

assign 96% of 1H-15N pairs (95 out of 99), 99% of 13C (104 out of 105), 99% of 13C (98 out of 

99) and 98% of 13CO (103 out of 105) resonances of emerin 67-170 sequence. 

The chemical shift data have been deposited in the BioMagResBank (http://www.bmrb.wisc.edu) 

under the accession number 26654 for the emerin 67-170 fragment. And the assignment of 

this unstructured peptide is further described in Samson et al., Biomol NMR Assign. 2016 

(Appendix 1). 

b. Igfold  
 

For the assignment of the NMR signals of the lamin A/C Igfold fragment, three-dimensional 

1H-15N-13C correlation spectra were acquired using 3D HNCACB, CBCA(CO)NH, HNCO, 

HN(CA)CO and HN(CO)(CA)NH experiments at 303 K, on a 3-mm-diameter NMR sample tube 

containing 500 µM uniformly 15N/13C-labeled IgFold411-566, in 20mM sodium phosphate pH 

7, 30mM NaCl and 80:20% H2O/D2O. The assignment procedure took advantage of the already 

published assignment of lamin A/C fragment 428-547 at pH 6.3 and 303K (BMRB 5224)42. 

2. PHOSPHORYLATION KINETICS 
 

a. In vitro  
 

To study emerin phosphorylation kinetics, the protocol was the same, regardless the kinase. 

The only differences were the pH value of the NMR buffer and the temperature of the NMR 

spectra acquisition, which were chosen according to the kinase. Here are reported the 

conditions used for phosphorylation by the Src kinase: the first step was to produce 15N 

labelled emerin (1-187 or 1-132) and to dialyze it, at the end of purification, in the NMR buffer 

(20mM Phosphate pH7, 30mM NaCl, 10mM -mercaptoethanol, 2mM ATP and 5mM MgCl2). 

Then, emerin protein was concentrated until 200µM and the sample was stored at 277K. 

The first NMR step was to record a 1H-15N HSQC spectrum of the emerin protein alone, at 

200µM, in presence of all kinase additives (5mM MgCl2, 2mM ATP, 2mM DTT), at 303K. This 

spectrum served as a reference for the rest of the study.  

http://www.bmrb.wisc.edu/
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Afterwards, a certain amount of kinase (depending of its activity) was added to the reference 

NMR tube and the pH was adjusted again to 7.0. Finally, the phosphorylation kinetics was 

followed by acquisition of 1H-15N HSQC spectra every hour, at 303K. 

b. In cell extracts 
 

To study emerin phosphorylation kinetics in cell extracts, the first important condition was to 

purify the protein in two steps. First, emerin was purified in 8M urea and refolded by dialysis. 

Then, instead of cutting the His-Tag with the TEV protease, the protein was directly modified 

in cell extracts and repurified by affinity chromatography on an Ni-NTA column. 

To prepare cell extracts, the protocol was: 

- Extracts were obtained using 200µl of lysis buffer (50mM Tris-HCl pH7.5, 150mM NaCl, 

1% Triton X-100, 1mM EDTA, 1mM DTT, 10mM MgCl2), and protease inhibitors (we 

used SigmaFAST pastille) as well as phosphatase inhibitors (we used Phosphostop 

pastille from Roche) were added to these extracts.  

- Extracts were incubated during 15 minutes on ice. 

- They were centrifuged during one hour at 13000g. 

- The protein amount present in the cell extracts was quantified using a Bradford test. 

- The extracts were diluted to reach 15mg/ml. 

- 175µl of cell extracts concentrated at 15mg/ml were added in 25µl of protein 

concentrated at 600µM, which already contained 25µl of ATP 1M and 25µl of D2O. 

After addition of cell extracts to our protein, the sample was let at 303K during 4 hours. Then, 

as I already explained, the protein was purified again on a nickel column, equilibrated with the 

buffer of our choice, and after elution, the buffer was changed to remove imidazole. We 

choose to change the buffer during protein concentration. Then, an 1H-15N HSQC spectrum 

was recorded, and another one was recorded on the same His-Tag-emerin but that was no 

modified by cell extracts, in order to superimpose both spectra and observed changes due to 

modifications in the cell extracts. 
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V. SOLID STATE NMR 
 

After purification and His-Tag cleavage, proteins were dialyzed against 20mM Tris-HCl pH 8, 

30mM NaCl and 5mM DTT and concentrated up to 600µM to initiate self-assembly. Then, 

filaments were observed by EM before to realize solid-state NMR experiments. The solid-state 

experiments were performed by Max Zinke, Kitty Hendricks and Prof Adam Lange at FMP 

Berlin. In the case of EmN and EmN132, solid-state NMR experiments were recorded on a 

Bruker Avance III HD 800 MHz spectrometer (18.8 T external magnetic field) or on a Bruker 

Avance III HD 700 MHz spectrometer (16.4 T external magnetic field). All solid-state NMR 

experiments for EmN delK37 mutant were recorded on a Bruker Avance III HD 700 MHz 

spectrometer. Temperature was determined using the water-proton signal referenced to DSS 

and kept at 283 K. Double quantum – single quantum spectra were recorded with magic-angle 

spinning at 8 kHz and C-C correlation spectra with 11 kHz MAS rate. High-power 1H decoupling 

was performed during evolution and detection periods using SPINAL-64 at a radio frequency 

strength of 83 kHz. All spectra were processed using Bruker TopSpin 3.2 and analyzed with 

CcpNmr.  

 

VI. ELECTRON MICROSCOPY 
 

To observe self-assembled proteins, EmN, EmN49, EmN132, EmC221 and EmN delK37 were 

dialyzed against 20mM Tris-HCl pH 8.0, 30mM NaCl and 5mM DTT. They were concentrated 

up to 600 µM and incubated at 293 K during 1 week. Specimens were prepared by negative 

staining with 2 % uranyl acetate on glow-discharged carbon-coated copper grids. Data 

collection was performed using a Tecnai Spirit transmission electron microscope (FEI) 

equipped with a LaB6 filament, operating at 100 kV. Images were recorded on a K2 Base 

camera (Gatan, 4kx4k) at 15,000 or 4,400 magnification (pixel size at specimen level – 0.25 & 

0.83 nm, respectively), at I2BC, by Dr Ana Arteni. 
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VII. X-RAY CRYSTALLOGRAPHY 
  

 

1. CRYSTALLIZATION AND DATA COLLECTION 
 

The Emerin/BAF/Igfold complex was purified by gel filtration (Superdex 75, 10/300 GL) in 

50mM Tris-HCl pH8, 100mM NaCl and concentrated to 3mg/ml. Crystallization was initiated 

one week after the gel filtration and in these conditions, EmN was proteolysis and the final 

complex was composed of LEM/BAF/IgFold. For crystallization, 1 µL of the complex was mixed 

with 1 µl of the reservoir solution and equilibrated against a 500-µl reservoir by hanging drop 

at 277K. Crystals were grown in 25% (w/v) polyethylene glycol monomethyl ether (PEG) 

3.350, 20mM Bis-Tris pH5.5, 30mM NaCl and 0.2M NH4SO4. Crystals were transferred into 

a solution composed of 25% PEG 3.350, 20mM Bis-Tris pH5.5 and 0.2M NH4SO4, 

supplemented with 27% (V/V) ethylene glycol, before being flash-cooled in liquid nitrogen. 

 

2. STRUCTURE DETERMINATION AND DATA REFINEMENT 
 

The 3D structure of the complex was determined by molecular replacement using Molrep 

in CCP4277. The coordinates of BAF dimer with DNA (PDB entry 2BZF), the coordinates of 

laminA/C globular domain (PDB entry 1IFR) and the coordinates of the emerin LEM domain 

(PDB entry 2ODC) were used as template. The resulting model was rebuilt using PHENIX278, 

manual correction was performed with Coot279 according to |Fo| – |Fc| and 2|Fo| – |Fc|maps, 

and further refinement was carried out with phenix.refine. All structure figures were 

prepared with PyMOL (Schrödinger, LLC). 
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VIII. SELF-ASSEMBLY 
 

Self-assembly was initiated using proteins that were dialyzed in a buffer containing 50mM 

Tris-HCl pH8 and 30mM NaCl. After dialysis, proteins were concentrated until 600µM, 

reduced with 5mM DTT and left at room temperature during one week. 

 

IX. THIOFLAVIN KINETICS 
 

After purification and His-Tag cleavage, proteins were dialyzed against 20mM Tris-HCl pH 8.0, 

30mM NaCl and 5mM DTT and concentrated until 300µM. Oligomer assembly was followed 

with time by incubating proteins at 300 µM and 310 K and by regularly taking protein aliquots 

to be analyzed by fluorescence. These aliquots were diluted in a thioflavin T (ThT) containing 

buffer so as to obtain 20 μM protein and 2.5 μM ThT in 20mM Tris-HCl (pH 8.0), 30mM NaCl, 

and 5mM DTT. The fluorescence measurements were carried out in a 60 μl cuvette at 293 K 

using a fluorimeter JASCO ADP-303T. ThT fluorescence was monitored using an excitation 

wavelength of 440 nm and fluorescence emission was read at 480 nm. 

 

X. SIZE-EXCLUSION CHROMATOGRAPHY 
 

Size-exclusion chromatography experiments aiming at identifying interactions between 

emerin, BAF and lamin fragments (WT and mutants) were performed using a Superdex-75 

10/300 GL column (GE Healthcare) pre-equilibrated with buffer G (20mM Tris-HCl pH8, 30mM 

NaCl, 2mM DTT). 500µl of proteins concentrated at 150µM were injected for each experiment 

at a flow rate of 0.5ml/min at 277K. 
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XI. ISOTHERMAL TITRATION CALORIMETRY (ITC) 
 

ITC was performed using a high-precision VP-ITC calorimetry system. To characterize 

interactions between BAF dimer and the different lamin A/C fragments (Igfold WT and 

mutants, IgfoldProgerin), all proteins were dialyzed against 50mM Tris-HCl pH8, 150mM NaCl, 

10mM -mercaptoethanol and protease inhibitor (Roche). For each experiment using BAF, 

BAF dimer in the calorimetric cell at 288K was titrated with the lamin A/C fragment in the 

injection syringe.  

To characterize interactions between BAF dimer and EmN, proteins were dialyzed against 

50mM Tris-HCl pH8, 100mM NaCl, 10mM-mercaptoethanol and protease inhibitor (Roche). 

BAF dimer (40µM) in the calorimetric cell at 288K was titrated with EmN187 (at a 

concentration of 200µM in the injection syringe). 

Analysis of the data were performed using the Origin software provided with the instrument. 

 

XII. ANALYTICAL ULTRACENTRIFUGATION 
 

Sedimentation velocity experiments were realized by measuring the absorbance at 280nm, 

every 8 minutes, with an optical path of 1.2cm, at 42000 rpm (128 297g), at 293K. An analytical 

ultracentrifuge XL470 (Beckman Coulter, Palo Alto, USA) and an An-50Ti rotor were used. 

400µl of protein sample were useful for each experiment and 410µl of our dialysis buffer was 

used as reference.  Results were analyzed using Sedfit software255. 
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XIII. FLUORESCENCE-BASED THERMAL SHIFT ASSAY  
  

The thermal stability of LamIgF proteins was monitored by a fluorescence-based thermal shift 

assay performed with a QuantStudio 12K Flex instrument (LifeTechnologies). 10 µg of purified 

protein was mixed with the SYPRO Orange dye (diluted 800-fold from a 5000-fold stock 

solution, Invitrogen) in 50mM Tris pH 8.0, 150mM NaCl, 10% glycerol. Reactions were carried 

out in duplicate in a 96-well fast PCR plate at a final volume of 20 μl and each experiment was 

repeated at least twice independently. The samples were submitted to a denaturation kinetic 

from 283 to 368K at a rate of 276K/min and fluorescence of Sypro Orange dye was recorded 

in real time. The protein denaturation temperature (Td +/- s.e.m) was calculated using the 

Protein Thermal Shift software v1.3 (LifeTechnologies) as the maximum of the derivative of 

the resulting fluorescence curves. 
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Abstract 

Human emerin is an inner nuclear membrane protein involved in the response of the nucleus to a 

mechanical stress. It contributes to the physical connection between the cytoskeleton and the 

nucleoskeleton. It is also involved in chromatin organization. Its N-terminal region is nucleoplasmic and is 

characterized by the presence of a globular LEM domain from residue 1 to residue 43. The three-

dimensional structure of this LEM domain in complex with the chromatin BAF protein was solved from NMR 

data. It revealed an asymmetric mode of binding in which one LEM domain binds to two BAF molecules. 

Apart from the LEM domain, the nucleoplasmic region of emerin is predicted as intrinsically disordered, and 

the molecular details of its recognition properties are unknown. We here report the assignment of the 1H, 

15N and 13C NMR signals of the emerin region from residue 67 to residue 170 in 0 and 8 M urea. Chemical 

shift analysis confirms that this fragment is intrinsically disordered in both conditions. 
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Biological context  

Inner nuclear envelope proteins play an essential role in cell response to mechanical demands.  They 

regulate cell cytoskeletal tension as a function of tissue stiffness and activate mechano-regulated signaling 

pathways (Ho et al., 2013; Bertrand et al., 2014; Swift et al., 2014). In particular emerin, SUN1/2 and lamin 

A contribute to nuclear envelope assembly as well as to the nuclear response to a mechanical stress. 

However, these proteins contain large regions predicted to be intrinsically disordered regions (IDRs), which 

hinders their study by classical structural biology tools (Herrada et al., 2015, in press). There is a need today 

to describe the molecular events involved in nuclear envelope assembly and function, and to understand 

how IDRs contribute to these events.  

Human emerin is an inner nuclear membrane protein of 254 amino acids. It is mutated in patients 

with X-linked Emery-Dreifuss Muscular dystrophy (Bione et al., 1994). Disease-causing mutations generally 

lead to an absence of emerin. A small number of missense mutations found in the emerin predicted IDR 

lead to loss-of-function variants (Ellis et al., 1998). Emerin is anchored to the membrane through its C-

terminal -helix. Its N-terminal regions is nucleoplasmic. Emerin contributes to the physical connection 

between the cytoskeleton and the nucleoskeleton. In particular it binds to the inner nuclear membrane 

proteins SUN1/2 (Haque et al. 2006) and the nuclear filaments lamins (Clements et al. 2000). It is also 

involved in chromatin organization. It is present at the interface between the nuclear envelope and 

chromatin, and it directly interacts with the DNA binding protein BAF. The three-dimensional structures of 

emerin N-terminal LEM domain alone (residues 1 to 43; Wolff et al., 2001) and in complex with BAF (Cai et 

al., 2007) were solved from NMR data. Analysis of the LEM-BAF structure revealed an asymmetric mode of 

binding in which one LEM domain binds to two BAF molecules. Apart from this LEM domain, the 

nucleoplasmic region of emerin is predicted as intrinsically disordered, and the molecular details of its 

recognition properties are unknown. In order to understand the molecular bases of emerin binding 

properties and disease-causing defects, we undertook NMR studies of emerin nucleoplasmic region from 

residue 67 to residue 170, in both 0 and 8 M urea. We report here resonance assignments in these two 

conditions. 

 

 

 

 

 

 



 

 
 

Methods and experiments 

Protein expression and purification 

The human emerin fragment from residue 67 to residue 170 was expressed using a pETM13 vector as a N-

terminal octa-histidine fusion protein with a TEV site between the histidine tag and the emerin fragment in 

Escherichia coli BL21 DE3 Star (Novagen). The emerin fragment cDNA was optimized for expression in 

Escherichia coli (Genscript). Bacteria were grown in 15N and 13C labelled minimum medium and induced at 

an optical density of 1 with 0.5 mM isopropyl β-D-1-thiogalactopyranoside at 293K for 18 h. Cells were lysed 

in 50 mM Tris‐HCl, pH 8, 300 mM NaCl, 40 mM imidazole, 5% glycerol, 1% Triton X‐100 and 1 mM 

phenylmethanesulfonylfluoride. As the emerin fragment is produced in inclusion bodies, the pellet was 

resuspended in buffer A (20 mM Tris‐HCl (pH 8.0), 150 mM NaCl, 20 mM imidazole, 10 mM -

mercaptoethanol and 8 M urea) and centrifuged at 20,000g for 20 min. The protein was then purified on a 

Ni‐NTA column (GE‐Healthcare) equilibrated in buffer A and eluted directly with 100% of buffer B (buffer 

A + 1 M imidazole). After dialyzing the sample to remove imidazole and urea, the octa-histidine tag was 

removed by TEV cleavage and the purity of the sample was checked on SDS-PAGE. The sample was finally 

dialysed against either buffer D (20 mM sodium phosphate buffer (pH 6.5), 30 mM NaCl and 8 M urea, 

“Denatured sample” or DS) or buffer N (20 mM sodium phosphate buffer (pH 6.5), 30 mM NaCl and 0 M 

urea, “Native sample” or NS). NS and DS were concentrated up to 500-600 M for the NMR assignment 

experiments. 

 

NMR spectroscopy 

All NMR experiments were performed on a 5 mm diameter NMR sample tube containing 500-600 μM 

uniformly 15N and 13C labelled emerin fragment in 20 mM sodium phosphate buffer (pH 6.5), 30 mM NaCl, 

10 mM -mercaptoethanol or 5mM dithiothreitol, 90 %: 10 %, H2O: D2O and either 0 or 8 M urea. 4,4-

dimethyl-4-silapentane-1-sulfonic acid (DSS) was added for chemical shift referencing. Experiments were 

recorded at 303 K on a 750 MHz Bruker Avance spectrometer equipped with a triple resonance cryogenic 

probe. The data were processed using Topspin3.1 (Bruker) and analyzed with CCPNMR (Vranken et al. 

2005). 1H, 13C and 15N resonance frequencies were assigned using 3D HNCACB, CBCA(CO)NH, HNCO, 

HN(CA)CO and HN(CO)(CA)NH experiments. 

 

 

 



 

 
 

Extend of assignments and data deposition 

The sequence of the studied protein fragment and its 1H-15N 2D HSQC spectrum in 0M urea are shown in 

Figure 1. Using a combination of 3D experiments recorded on the NS sample, 96% of 1H-15N pairs (95 out of 

99), 99% of 13C  (104 out of 105) and 99% of 13C  (98 out of 99) and 98% of 13CO (103 out of 105) resonances 

were assigned for the emerin fragment in 0M urea. Almost all the backbone 1H, 13C, and 15N resonances 

were completely assigned except for residues G66, T67, Q133 and H166, probably because of broadening 

of their spectral signatures. The expressed fragment (sequence shown in Figure 1A) contains 6 glycine 

residues: the N-terminal G66 remaining after TEV cleavage (that is not present in the original emerin 

sequence), G69, G89, G106, G112 and G156. The 1H-15N HSQC signals of the 5 emerin glycines are clearly 

visible (Figure 1B). The expressed fragment also contains 6 proline residues: P77, P108, P113, P125, P153 

and P169. The main conformations of these prolines are trans, as deduced from their C chemical shift 

values, which are comprised between 31.9 and 32.2 ppm. However the 5 prolines P77, P108, P113, P125 

and P169 give rise to supplementary sets of weak signals corresponding to minor cis conformations 

characterized by proline C chemical shift values comprised between 32.9 and 34.8 ppm (Shen and Bax, J 

Bio NMR 2009). In the 2D 1H-15N HSQC spectrum, the signals due to proline cis conformations and the 

resulting different chemical environments in their vicinity are colored as a function of the proline in cis 

(Figure 1B). The limited chemical shift dispersion of the 1H-15N HSQC signals, particularly in the 1H 

dimension (between 7.6 and 8.7 ppm), indicates that the emerin fragment is not folded in the NMR 

experimental conditions (20 mM phosphate, 30 mM NaCl, pH 6.5). Comparison of experimental and 

calculated backbone 15N chemical shifts confirms that the emerin chemical shifts correspond to random 

coil (Figure 2A; Tamiola et al. 2010). Similarly, the difference between the secondary chemical shifts of C 

and C yields small values (generally under 1 ppm), which is consistent with intrinsic disorder (Figure 2B). 

In the case of the 8 M urea-denatured emerin fragment (sample DS), chemical shifts of 97% 1H–15N pairs 

(96 out of 99 non-proline residues, the 3 missing residues being D70, Q133 and H166), 100% 13C (105 out 

of 105) and 98% 13C (97 out of 99) were assigned (Figures 2 C,D).  

Here again, analysis of the differences between the C and C secondary chemical shifts confirms that the 

emerin fragment is disordered in 8 M urea (Figure 2D). 

The chemical shift data have been deposited in the BioMagResBank (http://www.bmrb.wisc.edu) under 

accession numbers 26654 for the emerin fragment in 0 M urea and 26655 for the same fragment in 8 M 

urea. 
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Legends  

Figure 1 

A. Amino acid sequence of the emerin fragment produced for this study, comprising an terminal glycine 

residue (shown in red) that results from the TEV-cleavage of the purification tag, and the emerin residues 

between 67 and 170. The colored residues are observed as two signals on the 1H-15N HSQC spectrum, the 

less intense signal corresponding to a proline cis-conformation. They are represented in green (residues 

around P77), blue (P108 and P113), yellow (P125) and light grey (P169). 

 

B. 2D 1H-15N HSQC spectrum of the emerin fragment in 0 M urea at pH 6.5 and 303 K. Assigned backbone 

amide resonances are labelled. The spectrum was acquired on a 750 MHz spectrometer equipped with a 

TCI cryoprobe. An enlarged view of the most crowded region of the spectrum is shown in the down-left 

corner. 

 

Figure 2  

A. Experimental 15N chemical shift values measured in 0 M urea plotted against the calculated 15N 

chemical shift values predicted for a random coil conformation by ncIDP (http://nmr.chem.rug.nl/ncIDP/). 

 

B. Plot of the difference between the secondary 13C chemical shifts of the C (noted as C) and the C 

(noted as C nuclei. Secondary chemical shifts Ci and Ci were obtained by subtracting the 

random coil chemical shifts (predicted by ncIDP) from the observed chemical shifts. Differences between 

the secondary chemical shift deviations C - C were plotted against the amino acid residue numbers, 

taking into account next neighbor effects. Thus C – C was calculated as: 

C- CCi-1 Ci Ci+1- (Ci-1 Ci Ci+1



C. Superposition of the 2D 1H-15N HSQC spectra of the emerin fragment recorded at pH 6.5 

and 303 K in buffers containing 0 (magenta), 5 (beige) and 8 M urea (purple). Zoom on 2 

glycine residues.  

 

D. Same as B) but deduced from the NMR analysis of the emerin fragment in 8 M urea. 
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Figure 101 : EmN132 phosphorylation kinetics, in the presence of  CK1, by NMR. 

EmN132 sample (in black) or an EmN132 sample phosphorylated by CK1 during 12h (in red) at 100µM in 20mM 

Phosphate pH7, 30mM NaCl, 10mM -mercaptoethanol, 2mM ATP, 5mM MgCl2, at 303K and 750MHz (FMP 
Berlin). 

 

 

Figure 102 : EmN132 phosphorylation kinetics, in the presence of  CK2, by NMR 

EmN132 sample (in black) or an EmN132 sample phosphorylated by CK2 during 12h (in green) at 100µM in 

20mM Phosphate pH7, 30mM NaCl, 10mM -mercaptoethanol, 2mM ATP, 5mM MgCl2, at 303K and 750MHz 
(FMP Berlin). 
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Table 6 : Table containing the mean and the standard deviation of all ITC experiments done at 
288K. 

N = number of data points, Ns = number of sites, Ka = the association rate constant, Kd = the dissociation rate 

constant, H = enthalpy and S = entropy. 

 

 

Table 7 : Table containing the mean and the standard deviation of all ITC experiments done at 
283K. 

N = number of data points, Ns = number of sites, Ka = the association rate constant, Kd = the 
dissociation rate constant, DH = enthalpy and DS = entropy.  
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Abstract 

Lamins are the main components of the nucleoskeleton. Whereas their 3D organization was 

recently described using cryoelectron tomography, no structural data highlights how they interact with 

their partners at the interface between the inner nuclear envelope and chromatin. A large number of 

mutations causing rare genetic disorders called laminopathies were identified in the C-terminal globular 

Igfold domain of lamins A and C. We here present a first structural description of the interaction between 

the lamin A/C immunoglobulin-like domain and a nuclear envelope protein. We reveal that this lamin A/C 

domain both directly binds self-assembled emerin and interacts with monomeric emerin LEM domain 

through the dimeric chromatin-associated Barrier-to-Autointegration Factor (BAF) protein. Mutations 

causing autosomal recessive progeroid syndromes specifically impair proper binding of lamin A/C domain 

to BAF, thus destabilizing the interface between lamin A/C and BAF in cells. Our results suggest that these 

mutations could perturb the BAF-mediated interaction between lamin A/C and chromatin, thus leading to 

a dysregulation of chromatin organization and gene expression. 

 

 

  



 

 
 

Laminopathies are rare genetic disorders caused by mutations in genes encoding lamins or by 

abnormalities in the processing of lamin A 1. They display a large variety of clinical symptoms including 

cardiomyopathy, muscular dystrophy, lipodystrophy, mandibuloacral dysplasia, restrictive dermopathy, 

peripheral neuropathy, and premature ageing. A major fraction of the disease-causing mutations comprises 

single point mutations with poorly understood functional implications. Most of them are distributed all 

along the LMNA gene coding for both prelamin A and lamin C. These two proteins are, together with lamins 

B1 and B2, essential components of the nucleoskeleton. They share an N-terminal region of 566 residues, 

and whereas lamin C only possesses 6 additional specific C-terminal residues, prelamin A presents 98 

additional residues, is farnesylated, carboxymethylated and then cleaved to become mature lamin A. 

Disease-causing mutations are observed in the large region common to lamins A and C (lamin A/C) as well 

as in the lamin A specific C-terminal region 2. At the cellular level, lamins A and C form filaments that are 

mainly present at the nuclear periphery but are also observed in the nucleoplasm 3,4. Laminopathies are 

characterized by nuclear morphological abnormalities and an altered pattern of heterochromatin 

distribution that is more severe in progeroid syndromes, including Hutchinson-Gilford progeria syndrome 

(HGPS), mandibuloacral dysplasia (MAD), atypical-Werner syndrome (WS) and restrictive dermopathy (RD) 

5,6. The lamin filament network interacts with chromatin at different stages of the cell cycle: in ana-

telophase, lamin A and C dimers are recruited at the core regions of sister chromosomes; in interphase 

cells, they relocalize both at the nuclear envelope and within the nucleoplasm, where lamins A and C 

provide anchor points for chromatin 7-10.  The complex molecular organization of the nuclear envelope, 

nucleoskeleton and their interface with chromatin was recently described using cryo-electron tomography 

11,12. Within the densely packed environment observed close to the nuclear envelope, only nuclear pores, 

lamin filaments and chromatin could be recognized. Lack of high resolution 3D structures for proteins 

anchored at the inner nuclear membrane as well as complexes between these proteins, the lamina and 

chromatin still precludes any further description of the nuclear periphery architecture and of the structural 

defects caused by mutations in the LMNA gene coding for lamins A and C. 

 



 

 
 

We set out to understand how the C-terminal immunoglobulin-like (Igfold) domain of lamin A/C 

interacts with the inner nuclear membrane protein emerin and the chromatin-associated protein Barrier-

to-Autointegration Factor (BAF). Indeed, a large number of disease-causing mutations were identified in 

this lamin Igfold domain 13,14. Mutations causing muscle diseases affect residues of the hydrophobic core, 

suggesting that destabilization of the lamin A/C Igfold domain is responsible for these diseases 14. Mutations 

causing either lipodystrophies or progeroid syndromes involve residues localized on two different solvent-

exposed sites of the lamin A/C Igfold domain, suggesting that these accessible regions are binding sites for 

unknown lamin partners and that disruption of these binding events cause the diseases 13-15. Lamin A/C 

binds to the inner nuclear membrane protein emerin, as shown by blot overlay, coimmunoprecipitation 

and yeast 2-hybrid assays 16-18. Moreover, the tail region of lamin A/C (residues 384 to 566, comprising the 

Igfold domain) is responsible for emerin binding 18,19. The central region of emerin (residues 70 to 178) is 

essential for lamin binding 16,19, and its N-terminal domain (residues 1 to 45, the LEM domain) interacts with 

BAF, as shown by a panel of techniques going from blot overlay and coimmunoprecipitation assays to X-ray 

crystallography analyses 16,20. 

The structural inter-dependence of lamins, emerin and BAF was revealed by downregulating either 

lamins A and C or BAF or the LEM domain proteins emerin and LEM2 in C. elegans embryos. If any one 

component was missing, the other two failed to co-assemble, with severe consequences for mitotic spindle 

assembly and positioning 21, mitotic chromosome segregation and postmitotic nuclear assembly 22,23. In 

vitro experiments revealed that human lamin A binds weakly (Kd of 1 M) but directly to BAF and that lamin 

A and BAF simultaneously bind to emerin 24. Moreover, BAF enhances binding of prelamin A tails to emerin 

25.  

We now present the 3D structure of a complex involving lamin A/C, emerin and BAF. We show that 

emerin oligomerization regulates direct lamin A/C binding. We discuss the role of these lamin-emerin 

interactions during the cell cycle. We further show that BAF assembly within these complexes is impaired 

by lamin mutations causing autosomal recessive progeroid syndromes, thus highlighting the essential 

functional role of interactions between nuclear envelope and chromatin-associated proteins in human cells. 



 

 
 

RESULTS 

The lamin A/C Igfold domain interacts with the self-assembled emerin fragment EmN 

 To determine how the lamin A/C tail interacts with emerin, we generated two fragments of the 

emerin nucleoplasmic region (Figure 1A). We tested binding between the tail region common to lamins A 

and C (LamIgF comprising aa 411 to aa 566) and these emerin fragments. As previously published, the whole 

emerin nucleoplasmic region from aa 1 to aa 221 is poorly soluble 26.  We thus produced two overlapping 

emerin peptides, which we called EmN 27 and EmC (Figure 1A). EmN (aa 1 to aa 187) comprises a LEM 

domain and a region that is intrinsically disordered 26,28. We previously showed that, in vitro, it can be 

observed either as a monomer or as an oligomer 27 (Figure 1B, left panel). EmC (aa 67 to aa 221) is entirely 

unstructured as observed by NMR (Suppl. Fig. 1A), and after purification immediately oligomerizes as 

observed by fluorescence (Suppl. Fig 1B) and negative-staining electron microscopy (Figure 1B, right panel). 

In order to identify an interaction between lamin A/C and emerin, we produced a 15N labeled LamIgF 

peptide, and mixed the labeled peptide with either monomeric EmN, oligomeric EmN or oligomeric EmC 

(Figure 1C). Nuclear Magnetic Resonance (NMR) analysis of these samples revealed that LamIgF only 

interacts with oligomeric EmN in these conditions. This interaction is specific to lamin A/C as NMR analysis 

of a sample containing 15N labeled lamin B1 tail and oligomeric EmN did not demonstrate any binding 

(Figure 1C, lower and right panel).  

 The Igfold domain of lamin A/C forms a ternary complex with the LEM domain of emerin and BAF 

The chromatin-associated protein BAF binds to both lamin A/C and emerin 29,30. We examined the 

role of BAF in mediating an interaction between LamIgF, EmN and BAF by Size-Exclusion Chromatography 

(SEC). Consistent with our previous NMR results, we observed that LamIgF and monomeric EmN did not co-

elute under the conditions used (Figure 2A). However, they co-eluted in the presence of BAF. Similarly, we 

tested the binding between the lamin B1 tail fragment, EmN and BAF. In this case, no binding could be 

observed between lamin B1 and BAF, precluding the formation of a ternary complex with EmN. NMR further 

confirmed that the lamin B1 tail fragment did not interact with BAF (Suppl. Fig. 2).  



 

 
 

Isothermal Titration Calorimetry (ITC) experiments showed that LamIgF and EmN bind to BAF with an 

affinity of 3.2 ± 1.2 M and 0.7 ± 0.2 M, respectively (Figure 2B; Suppl. Table 1). Crystal structure of the 

ternary complex was solved at 1.9 Å resolution (Figure 3A; Suppl. Table 2). One BAF dimer interacts on one 

side with the LEM domain of emerin (interface 1) and on the other side with the Igfold domain of lamin A/C 

(interface 2). The emerin fragment outside of the LEM domain is not visible in the electron density map. 

SDS-PAGE revealed that it was proteolyzed between protein purification and crystallization.  

Dimerization of BAF is essential for both lamin and emerin binding 

The 3D structure of the ternary complex highlights that BAF dimerization is essential for emerin 

and lamin A/C binding. First, BAF monomers 1 and 2 both interact with the LEM domain of emerin 

(interfaces of 395 Å2 and 211 Å2, respectively) (Figure 3B).  BAF monomer 1 loop Phe39), helix 3 

(Gln48, Val51, Leu52) and helix 4 (Leu58, Glu61, Trp62) contact a LEM surface comprising the -strand 

(Gly24, Pro25), loop  (Ser29, Thr30) and helix 2 (Leu33, Tyr34, Lys36, Lys37). BAF monomer 2 loop 

Arg37, Phe39) and helix 3 (Glu48) contact an overlapping LEM surface comprising helix 1 (Thr13), 

the -strand (Pro25) and loop Val27). A similar 3D structure between BAF dimer and emerin LEM 

domain was previously modeled based on NMR data (Figure 3C; PDB reference 2ODG 20). The surface buried 

at the LEM/BAF interface yields 510 Å2 in the NMR structure compared to 606 Å2 in the X-ray structure, 

showing that the interaction is significantly tighter in the crystal structure.  

Both BAF monomers also contribute to lamin A/C binding, through interfaces of 270 Å2 and 192 Å2, 

respectively (Figure 4A). BAF monomer 1 helix 1 (Val11, Ala12), loop  (Pro14) and helix 5 (Glu83, 

Ala87, Phe88) contact lamin A/C strand 1 (His433, Ala434, Arg435) and strand 9 (Met540, Lys542), 

whereas BAF monomer 2 helix 1 (Ala12), loop  (Pro14) and helix 5 (Ala87, Phe88) contact lamin 

A/C strand 1 (Arg435) and loop 89 (Glu537). It was reported that BAF mutant G47E lost its ability to 

bind to lamin A as well as prelamin A in cells 6. Gly47 is located at the center of the dimerization interface 

(in magenta on Figure 4A). Mutation G47E might destabilize the BAF dimer, therefore hindering BAF 

interaction with both emerin LEM domain and lamin A/C Igfold. 

 



 

 
 

The interface between lamin A/C and BAF involves residues mutated in progeroid syndromes 

By solving the 3D structure of a ternary complex formed by BAF, EmN and LamIgF, we revealed a 

yet undescribed interface between the BAF dimer and the lamin A/C Igfold domain. On the BAF side, Ala12, 

Pro14 and Phe88 of both monomers are more than 50% buried in the complex (Figure 4A). An Ala12 to Thr 

amino acid substitution occurs in patients with a Nestor-Guillermo progeria syndrome 31. Our 3D structure 

predicts that this substitution causes a defect in BAF/lamin binding. Consistently, in cells, it significantly 

decreases BAF binding to lamin A and prelamin A 6.  

On the lamin side, Arg435, Met540 and K542 are more than 50% buried at the lamin/BAF monomer 

2 interface (Figure 4A). Arg435 side-chain is hydrogen-bonded to Phe88 backbone oxygens of both BAF 

monomers, while Lys542 side-chain is bonded to BAF monomer 2 Asp86 backbone oxygen. These lamin 

residues are mutated in patients with severe autosomal recessive progeroid syndromes (RD and HGPS 15,32-

34). They belong to a hot spot for mutations causing progeroid diseases 15. In order to verify that in solution, 

this hot spot surface is contacting BAF, we followed the NMR 1H and 15N signals of LamIgF while adding BAF 

to the NMR sample. We observed that the intensities of the NMR signals corresponding to several residues 

of strand 1 (as Arg435), loop , strand 4 (as Arg471), loop 89 and strand 9 (as Met540 and Lys542) 

were significantly decreased (Figure 4B). This demonstrated that the -sheet formed by strands 1 and 9 

is indeed involved in BAF binding in solution. 

Lamin A/C Igfold mutations causing progeroid syndromes decrease binding affinity for BAF 

To identify the consequences of the LamIgF mutations causing progeroid diseases on the formation 

of the lamin-BAF complex, we produced a set of LamIgF peptides mutated on sites responsible for severe 

diseases. We focused our interest on 5 homozygous LamIgF mutations, R435C (strand 1) 32,33,35, R471C 

(strand 4) 36, R527H 37-40, A529V 41 (strand 8) and K542N (strand 9) 34, which were identified in patients 

with atypical progeroid syndromes. Two of these mutations cause syndromes generally appearing during 

early childhood as RD (R435C) and HGPS (K542N), characterized by severe premature aging features, 

whereas mutations R471C, R527H and A529V cause a disease generally appearing later, called MAD, 

characterized by growth retardation and skeletal abnormalities.  



 

 
 

In the case of R471C, the disease was particularly severe and the phenotype combined MAD, progeria, 

and rigid spine muscular dystrophy 36. We first verified that the protein variants are well folded and have a 

thermal stability close to that of WT LamIgF (i.e. ± 5° relatively to WT; Suppl. Fig. 3). We then measured 

their affinity for BAF by ITC (Figure 5A; Suppl. Table 1). Compared to WT LamIgF and to mutants R453W and 

R482W causing Emery-Dreifuss Muscular Dystrophy (EDMD) and Dunnigan-type Familial Partial 

Lipodystrophy (FPLD), respectively, mutant R435C showed a complete loss of detectable binding to BAF in 

our conditions. Mutants K542N and R527H bind BAF but the corresponding heat release is so weak that no 

affinity could be measured. R471C and A529V exhibit a 5-fold decreased affinity for BAF. We also tested the 

binding of LamIgF mutants to BAF by SEC (Figure 5B). We observed that mutants R453W and R482W 

coeluted together with BAF as WT LamIgF. However, mutant R435C did not induce any elution volume shift 

of BAF, and mutants R471C, A529V, R527H and K542N only weakly shifted BAF elution volume. We 

concluded that the 5 tested mutations causing atypical progeroid syndromes decrease the affinity of lamin 

A/C for BAF. Moreover, the binding defect seems to globally correlate with the disease severity (Figures 

5A,B). 

Finally, we transfected HeLa cells with plasmids coding for GFP-BAF and FLAG-mature lamin A (aa 

1 to aa 646) WT or variants and detected using an in situ Proximity Ligation Assay the proximities between 

BAF and lamin A in these cells. We thus tested the impact of mutations related to RD (R435C), HGPS (K542N) 

and MAD (R527H, A529V) on these proximities. FLAG-lamin variants were expressed at similar protein levels 

as FLAG-lamin WT; they localized both at the nuclear periphery and in the nucleoplasm (Figure 6A,B). We 

observed that all 4 lamin A mutations associated with atypical progeroid syndromes similarly reduced the 

frequency of the proximity events between BAF and lamin A (Figure 6C, D).  

 

 

 

 



 

 
 

DISCUSSION 

The mechanical roles of lamins and their functions in gene regulation are often viewed as 

independent activities, but recent findings suggest a highly cross-linked and interdependent regulation of 

these different functions 42-44. Lamins interact with inner nuclear membrane proteins to mediate 

mechanical signaling but also contact chromatin-associated proteins that contribute to gene transcription 

regulation. Most of these interactions depend on the lamin ability to assemble into higher-order structures 

45,46.  Therefore, lamin assembly has been studied intensively in vitro and the resulting filaments have been 

observed in cells 12. In contrast, little is known about the contacts of lamins with their partners in vivo. 

Lamins are extensively modified and interact with a large number of proteins 47,48, the inner nuclear 

membrane 49 and chromatin 50. Their tail region is responsible for association with partners. It contains a 

globular Igfold domain that is mutated in several laminopathies 14. Until this study, it was not known how 

this domain interacted with partners anchored at the inner nuclear membrane and established contacts 

with chromatin.   

The lamin A/C Igfold domain directly binds to self-assembled emerin but also recognizes monomeric 

emerin through BAF  

We showed that the lamin A/C Igfold domain interacts with the inner nuclear membrane protein 

emerin through two mechanisms: it either directly binds to self-assembled EmN or interacts with 

monomeric EmN through the chromatin-associated protein BAF. It was previously published that direct 

lamin A tail interaction with emerin is disrupted not by mutations in the LEM domain, but by mutations in 

emerin region from aa 70 to aa 164: mutations around positions 70, 76, 95, 112, as well as 141 and 164, 

decreased binding of lamin A to emerin 16,30. These results are consistent with our analysis. Indeed, LamIgF 

only binds directly to self-assembled emerin and the disordered region of emerin between aa 50 and aa 

132 is necessary for emerin self-assembly 27. Similarly, GST fusions of an emerin fragment from aa 1 to aa 

132 is sufficient to bind mature lamin A tails 19, and we showed that emerin aa 1 to aa 132 is sufficient for 

self-assembly 27.  Finally, the EDMD-associated emerin deletion mutation del95-99, which impairs EmN self-

assembly in vitro, causes a decrease of lamin A/C binding in cells 27.  



 

 
 

Altogether these results strongly suggest that emerin self-assembly regulates direct lamin A/C binding in 

cells. On the other hand, we showed that the monomeric LEM domain (emerin aa 1 to aa 45) interacts with 

the lamin A/C Igfold domain through a dimer of BAF, consistent with previous data showing that BAF 

enhanced binding of prelamin A tails to emerin 25.  

A defect at the interface between lamin A/C and the chromatin-associated BAF protein is observed in 

atypical progeroid syndromes  

By analyzing the 3D structure of our ternary complex comprising domains of lamin A/C, BAF and 

emerin, we noticed that one of the interfaces coincides with a hot spot of lamin A/C residues mutated in 

progeroid syndromes 15. We measured in vitro and in cells the impact of several homozygous mutations 

causing autosomal recessive progeroid syndromes and showed that these mutations disrupt the interaction 

between the lamin A/C Igfold and BAF. In HeLa cells, all tested mutations consistently reduced the 

frequency of the proximity events between lamin A and BAF. As endogeneous lamin A probably forms 

filaments together with the FLAG-tagged lamin A, a number of PLA events were expected due to 

interactions between endogeneous lamin A and BAF that create proximities between associated FLAG-

tagged lamin and BAF. Consistently, the mutations reduced the number of PLA signals to about 50% of the 

signals measured for WT lamin A and BAF. In vitro, a range of affinity decreases were observed. In particular, 

SEC experiments revealed that, in our conditions, LamIgF control mutants R453W and R482W bind BAF as 

WT LamIgF, mutants R471C, A529V, R527H and K542N weakly bind BAF, and mutant R435C did not bind 

BAF. ITC experiments provided only estimations for affinity decreases, due to the weak affinities of the 

mutants. However, an affinity decrease of about 5 fold could be calculated for mutants R471C and A529T, 

whereas essentially no binding could be detected for R527H, K542N and R435C. Interestingly, this affinity 

scale matches with the severity of the associated diseases: R471C and A529V cause MAD that generally 

appears during late childhood 36,41, whereas K542N causes a HGPS with an onset between 18 and 24 months 

34 and R435C causes the most severe disease, RD, which appears during the first months after birth 32,33,35; 

only mutant R527H, which causes a MAD 37-40 , also shows a strong BAF binding defect under the conditions 

we used. We conclude that a destabilization of the interface between lamin A/C and BAF might mediate 

the disease-mechanism in atypical progeroid syndromes due to homozygous mutations in LamIgF. 



 

 
 

Another progeroid syndrome called the Nestor-Guillermo Progeria Syndrome occurs in patients 

older than the average lifespan of progeroid patients. This syndrome is due to the homozygous BAF 

mutation A12T 31. The mutated protein is expressed and stable 51. In cells, it still co-immunoprecipitates 

with endogeneous emerin, lamin A and histone H3. Our preliminary data show that, in vitro, BAF mutant 

A12T consistently interacts with LamIgF, but with an affinity lower than BAF WT and BAF S4E (Suppl. Fig. 5). 

Immunoprecipitation experiments performed in co-transfected cells showed a reduced interaction 

between BAF mutant A12T and lamin A 6. BAF mutant A12T also exhibits a marked defect in double-

stranded DNA binding compared to WT BAF 51. Altogether, these data strongly suggest that the complex 

between BAF, lamin A/C, DNA and emerin is destabilized by the mutation A12T, highlighting the similarity 

between the mechanisms of autosomal recessive progeroid syndromes due to mutations in LamIgF and 

BAF. 

Complexes including lamin A/C and emerin are assembled at different stages of the cell cycle  

In cells, formation and localization of complexes including lamin A/C, BAF and emerin depend on 

the cell cycle, in accord with the disassembly/reformation of the nuclear envelope that delimits the 

interphase nuclear compartment. While in interphase cells, lamins assemble into polymers within the 

nuclei, they disassemble at mitosis, leading to cytoplasmic lamin A/C dimers.  At that stage, pools of lamin 

A/C and BAF form stable protein complexes with the LEM domain protein LAP2; these complexes 

contribute to microtubule spindle assembly and orientation 21. Interestingly, knocking down lamin A 

severely affects binding of LAP2 to GFP-BAF and knocking down BAF disrupts binding of LAP2 to GFP-

lamin A, suggesting that formation of a lamin A-BAF complex is essential for the recruitment of the LEM 

domain LAP2 protein. Later, in ana-telophase, first BAF, and then emerin and lamin A/C accumulate at the 

core region of chromosomes 52. On the BAF side, mutation G25E, at the interface with DNA, impairs 

localization of BAF at the core region of chromosomes, emerin localization during telophase and further 

lamin A accumulation at reforming nuclear envelopes. On the emerin side, the LEM domain is necessary 

and sufficient for the core localization of emerin. Superimposition of our 3D structure with that of a complex 

between BAF dimer and DNA (PDB reference 2BZF 53) revealed that the BAF dimer can simultaneously bind 

to emerin, lamin and DNA (Figure 7, left panel).  



 

 
 

We propose that BAF mediates the interaction between emerin and lamin A at the core region. The fact 

that emerin must interact with BAF at the core region of chromosomes before being assembled at the 

nuclear envelope 54,52 also suggests that post-translational modification events occur at the core that 

further enable emerin assembly at the nuclear envelope. 

In interphase cells, emerin binds to lamin A/C 30. Moreover, an emerin protein mutated in its LEM 

domain (residues 24-27 being changed into alanines), which does not interact with BAF 16, localizes normally 

at the nuclear envelope 54, consistent with its ability to directly bind lamin A/C in vitro 16. Emerin self-

assembles at the nuclear envelope 19,55. From our NMR results, we propose that emerin self-assembly 

creates a high concentration of binding sites for the lamin filaments at the nuclear periphery of cells (Figure 

7, right panel). During in vitro self-assembly, emerin exhibits a large LEM domain conformational change, 

strongly suggesting that self-assembled emerin does not bind BAF 26. Altogether, previous studies as well 

as our data support a model in which, in interphase cells, emerin exists in two conformations, a self-

assembled conformation that interacts with lamin A/C and a conformation in which the LEM domain is free 

to bind BAF 19,55. Whether trimeric emerin-BAF-lamin A/C complexes also form at the nuclear envelope of 

interphase cells remains an open question. 

A defective interaction between lamin A/C and BAF could impact chromatin organization of interphase 

cells 

Fluorescence resonance energy transfer experiments showed that YFP-emerin and CFP-BAF 

interact at the inner nuclear membrane of interphase HeLa cells 56. In this case, emerin is still relatively 

immobile, but BAF is dynamic and mobile: it binds to emerin frequently but transiently using a “touch-and-

go” mechanism. We also observed proximities between lamin A and BAF in interphase HeLa cells. These 

proximities detected in situ using a proximity assay are particularly enriched at the nuclear periphery (Suppl. 

Fig. 6). They are less frequent in cells expressing lamin A variants that are defective for BAF binding in vitro. 

Interestingly, defects of the nuclear envelope-chromatin interface were revealed using electron microscopy 

in the case of progeroid syndromes caused by lamin A or BAF mutations.  



 

 
 

A loss of nuclear peripheral heterochromatin was observed both in cells of patients with autosomal 

dominant HGPS due to a mutation G608G in prelamin A and in HEK293 cells overexpressing lamin A and 

BAF A12T 6,57,58,59. Moreover, lamin A and BAF were shown to directly bind histones and to influence histone 

epigenetic marks, as H3K9me3, H3K27me3, H3K4me2 and H3K79me2 60,61,62. We conclude that defect in 

the recruitment of BAF to the lamina via the immunoglobulin-like domain of lamin A/C could be responsible 

for abnormal heterochromatin distribution at the nuclear envelope of interphase cells. More work is 

needed to understand how the lamin-BAF complex interacts with DNA and histones, and how a defect in 

this complex compromises the interactions between lamina and chromatin at the nuclear periphery in 

autosomal recessive progeroid syndromes. 

In conclusion, the Igfold domain of lamin A/C can both directly interact with self-assembled emerin 

and bind to monomeric emerin through the chromatin-associated protein BAF. A defect in the interaction 

between lamin A/C and BAF might destabilize ternary complexes with emerin, thus leading to a less efficient 

targeting of emerin at the reforming nuclear envelope. However, diseases associated with mutations 

disrupting the lamin A/C-BAF interaction are much more severe than diseases associated with emerin loss 

of function. This strongly suggests that the impact of these lamin A/C and BAF mutations goes beyond LEM-

domain protein mislocalization and loss of function. We propose that the disease-causing mutations 

perturb the BAF-mediated interaction between lamin A/C and chromatin, thus leading to a dysregulation 

of chromatin organization and gene expression. 
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Methods. 

Protein Expression and Purification. 

Human WT emerin fragments from amino acid 1 to amino acid 187 (EmN), from amino acid 67 to 170 

(EmC170), from amino acid 67 to 187 (EmC187) and from amino acid 67 to amino acid 221 (EmC), human 

BAF with all cysteines mutated in alanine and human lamin B1 tail from amino acid 409 to amino acid 586 

(LB1) were expressed using a pETM13 vector as N-terminal octa-histidine fusions in Escherichia coli BL21 

DE3 Star (Novagen). The emerin and BAF cDNAs were optimized for expression in Escherichia coli 

(Genscript). Human wild-type lamin fragment from amino acid 411 to amino acid 566 (LamIgF) was 

expressed using a pGEX vector as an N-terminal GST fusion in Escherichia coli BL21 DE3 Star (Novagen). All 

LamIgF mutant expression vectors (R435C, R453W, R471C, R482W, R527H, A529V, and K542N) were 

obtained by mutagenesis using the Quikchange (Agilent) kit from the LamIgF expression vector. Bacteria 

were cultured in rich medium (lysogeny broth, LB) or 15N-labeled minimum medium, induced at an optimal 

density of 1 with 0.5mM isopropyl -D-1-thiogalactopyranoside, grown overnight at 293K, and lysed in 

50mM Tris-HCl pH 8.0, 300mM NaCl, 40mM imidazole, 5% glycerol, 1% Triton X-100, and 1mM 

phenylmethanesulfonylfluoride.  

For EmN, EmC170, EmC187, EmC and BAF, after sonication at room temperature and centrifugation at 

20 000 g, for 20 min, at 277K, the pellet was resuspended in buffer C8 (50mM Tris-HCl pH8.0, 150mM NaCl, 

20mM imidazole, 8M urea). A second centrifugation step was performed at 20 000 g, for 20 min, at 293K. 

The soluble extract was then loaded onto Ni-NTA beads (GE-Healthcare) equilibrated with buffer C8. 

Proteins were eluted directly with buffer E8 (50mM Tris-HCl pH 8.0, 150mM NaCl, 1M imidazole, 8M urea). 

Then, proteins were refolded by dialysis in buffer D1 (20mM Tris-HCl pH8.0, 30mM NaCl, 2mM DTT) for EmN, 

EmC170, EmC187 and EmC and buffer D2 (50mM Tris-HCl pH8.0, 150mM NaCl, 2mM DTT) for BAF. After 

refolding, they were incubated with the TEV protease during 3 h at room temperature and finally dialyzed 

into the selected buffer.  The final yield was typically 10 mg of purified protein per liter of bacterial culture 

27.  



 

 
 

Self-assembly was initiated using proteins that were dialyzed in a buffer containing 20mM Tris-HCl pH8 and 

30mM NaCl. After dialysis, proteins were concentrated until 600µM, reduced with 5mM DTT and stored at 

room temperature during one week. 

For LB1, after sonication at 277K, benzonase (SigmaAldrich) addition and centrifugation at 20 000 g, for 30 

min, at 277K, the soluble extract was loaded onto Ni-NTA beads (GE-Healthcare) equilibrated with buffer C 

(50mM Tris-HCl pH8.0, 150mM NaCl and 20mM imidazole). The protein was then eluted directly with buffer 

E (50mM Tris-HCl pH 8.0, 150mM NaCl and 1M imidazole) and dialyzed in buffer C. It was incubated with 

the TEV protease during 3h at room temperature, loaded again onto Ni-NTA beads and finally, after flow-

through recovery, dialyzed into the selected buffer. The final yield was typically 20 mg of purified protein 

per liter of bacterial culture.  

For LamIgF (WT and mutants), after sonication at 277K, benzonase (SigmaAldrich) addition and 

centrifugation at 20 000 g, for 30 min, at 277K, the soluble extract was loaded onto GST-beads (GE-

Healthcare) equilibrated with buffer T2 (50mM Tris-HCl pH7.5, 150mM NaCl, 2mM DTT). After 2h of 

incubation at 277K, GST-beads were washed with buffer T2 and 1M NaCl, and then thrombin was added 

and incubated with the beads overnight. The protein was recovered in the flow-through and finally dialyzed 

into the selected buffer. The final yield was typically 2 mg of purified protein per liter of bacterial culture.  

Liquid-State NMR Spectroscopy. 

NMR experiments were performed on a 700 MHz Bruker Avance spectrometer equipped with a triple 

resonance cryogenic probe. To study interaction between the lamin fragments and BAF, two-dimensional 

1H-15N HSQC spectra were acquired at 288 K, on a 3-mm-diameter NMR sample tube containing 100-200µM 

uniformly 15N-labeled lamin peptides and non-labeled BAF, in 20mM sodium phosphate pH 7, 100mM NaCl 

and 80:20% H2O/D2O. To study interaction between lamin fragments and EmN or EmC, two-dimensional 

1H-15N HSQC spectra were acquired at 303 K, on a 3-mm-diameter NMR sample tube containing 150 µM 

uniformly 15N-labeled lamin peptides and non-labeled EmN or EmC, in 20mM Tris-HCl pH8, 30mM NaCl and 

80:20% H2O/D2O. 



 

 
 

In order to reassign LamIgF NMR signals in our conditions, three-dimensional 1H-15N-13C correlation spectra 

were acquired using 3D HNCACB, CBCA(CO)NH, HNCO, HN(CA)CO and HN(CO)(CA)NH pulse sequences at 

303 K, on a 3-mm-diameter NMR sample tube containing 500 µM uniformly 15N/13C-labeled LamIgF, in 

20mM sodium phosphate pH 7, 30mM NaCl and 80:20% H2O/D2O. The data were processed using 

Topspin3.1 (Bruker) and analyzed using CCPNMR 63. 

Size-exclusion chromatography. 

Size-exclusion chromatography experiments aiming at identifying interactions between emerin, BAF and 

lamin fragments (LamIgF WT and mutants, LB1) were performed using a Superdex-75 10/300 GL column 

(GE Healthcare) pre-equilibrated with buffer G (20mM Tris-HCl pH8, 30mM NaCl, 2mM DTT). 500µl of 

proteins concentrated at 150µM were injected for each experiment at a flow rate of 0.5ml/min at 277K. 

Isothermal Titration Calorimetry. 

ITC was performed using a high-precision VP-ITC calorimetry system. To characterize interactions between 

the BAF dimer and LamIgF (WT and mutants), all proteins were dialyzed against 50mM Tris-HCl pH8, 150mM 

NaCl, 10mM -mercaptoethanol and protease inhibitors (Roche). BAF (20µM) in the calorimetric cell at 288 

K was titrated with LamIgF WT (at a concentration of 100 µM in the injection syringe) or BAF in the 

calorimetric cell at 283 K was titrated with LamIgF mutants (at a concentration of 100µM in the injection 

syringe). To characterize interactions between the BAF dimer and EmN, all proteins were dialyzed against 

50mM Tris-HCl pH8, 150mM NaCl, 10mM-mercaptoethanol and protease inhibitors (Roche). BAF (30µM) 

in the calorimetric cell at 288 K was titrated with EmN (at a concentration of 150µM in the injection syringe). 

Analyses of the data were performed using the Origin software provided with the instrument. 

 

 

 

 



 

 
 

Negative-staining Electron Microscopy. 

To observe self-assembled EmN and EmC proteins, with or without LamIgF WT or LB1, protein samples 

containing 2 % uranyl acetate were deposited on glow-discharged carbon-coated copper grids. Data 

collection was performed using a Tecnai Spirit transmission electron microscope (FEI) equipped with a LaB6 

filament, operating at 100 keV. Images were recorded using a K2 Base camera (Gatan, 4kx4k) at 15,000 

magnification (at the level of the microscope) with a pixel size of 0.25 nm at the specimen level. 

X-ray crystallography. 

Crystallization and data collection - The EmN-Baf-LamIgF complex was purified by gel filtration (Superdex 

75, 10/300 GL) in 50mM Tris-HCl pH8, 100mM NaCl and concentrated to 3mg/ml. Crystallization was 

initiated one week after the gel filtration and in these conditions, EmN was proteolyzed and the final 

complex was composed of LEM-BAF-LamIgF. For crystallization, 1 µL of the complex was mixed with 1 µl of 

the reservoir solution and equilibrated against a 500-µl reservoir by hanging drop at 277K. Crystals were 

grown in 25% (w/v) polyethylene glycol monomethyl ether (PEG) 3.350, 20mM Bis-Tris pH5.5, 30mM 

NaCl and 0.2M NH4SO4. They were flash-cooled in liquid nitrogen, using a cryo-protection solution of 

25% PEG 3.350, 20mM Bis-Tris pH5.5 and 0.2M NH4SO4, supplemented with 27% (V/V) ethylene glycol.  

Structure determination and refinement - The 3D structure of the complex was solved by molecular 

replacement using Molrep in CCP4 64. The coordinates of the BAF dimer with DNA (PDB entry 2BZF), the 

coordinates of lamin A/C globular domain (PDB entry 1IFR) and the coordinates of the emerin LEM domain 

(PDB entry 2ODC) were used as templates. The resulting model was rebuilt using PHENIX 65, manual 

correction was performed with Coot 66 according to |Fo| – |Fc| and 2|Fo| – |Fc|maps, and further 

refinement was carried out with phenix.refine. All structure figures were prepared using PyMOL 

(Schrödinger, LLC).  

 

 

 



 

 
 

Fluorescence-based thermal shift assay. 

The thermal stability of LamIgF proteins was monitored by a fluorescence-based thermal shift assay 

performed with a QuantStudio 12K Flex instrument (LifeTechnologies). 10 µg of purified protein was mixed 

with the SYPRO Orange dye (diluted 800-fold from a 5000-fold stock solution, Invitrogen) in 50mM Tris pH 

8.0, 150mM NaCl, 10% glycerol. Reactions were carried out in duplicate in a 96-well fast PCR plate at a final 

volume of 20 μl and each experiment was repeated at least twice independently. The samples were 

submitted to a denaturation kinetic from 10 to 95°C at a rate of 3°C/min and fluorescence of Sypro Orange 

dye was recorded in real time. The protein denaturation temperature (Td +/- s.e.m) was calculated using 

the Protein Thermal Shift software v1.3 (LifeTechnologies) as the maximum of the derivative of the resulting 

fluorescence curves. 

Proximity Ligation Assays. 

Transfection - HeLa cells were obtained from American Type Culture Collection and cultured in Minimum 

Essential Medium containing Glutamax (Gibco), 1% non-essential amino acids and 10% fetal bovine serum. 

HeLa cells were transfected using XtremeGene 9 (Roche). After 24 h, cells were processed for either 

immunoblotting, immunofluorescence or Proximity ligation assay.  

Immunoblotting - Whole cell protein extracts were suspended in Laemmli sample buffer, separated by SDS-

PAGE and transferred to nitrocellulose membranes. Membranes were blocked for 1.5 h in TBST (10 mM Tris 

pH 8.0, 150 mM NaCl, 0.05% Tween-20) containing 5% dry milk, incubated with mouse anti FLAG antibody 

(Sigma; 1:600) and rabbit anti-BAF (Santacruz, 1:200) for 1 h in TBST/1% milk, washed 4 times and incubated 

with HRP-conjugated secondary antibodies. After 4 washes in TBST, proteins were detected by enhanced 

chemiluminescence.  

 

 

 



 

 
 

Immunofluorescence microscopy - Cells were fixed with 3% paraformaldehyde for 12 min at R.T, 

permeabilized with phosphate buffered saline containing 0.5 % Triton for 5 min at R.T, and quenched with 

2% bovine serum albumin diluted in phosphate buffered saline containing 0.1% Triton. Primary antibodies 

were rabbit anti-FLAG (Sigma, 1:300) and mouse anti-GFP (Roche, 1:200). Fluorescent labeled secondary 

antibodies (donkey anti-mouse Cy2 1:60 and donkey anti-rabbit 594 1:200) were from Jackson 

ImmunoResearch. DNA was stained with Hoechst 33258 (1 µg/ml).  

Proximity ligation assay - PLA was used to detect interactions between GFP-BAF and FLAG-Lamin A, either 

WT or mutant (R435C, R527H, A529V, K542N), based on proximity (< 40 nm) of two secondary antibodies 

directed against these tagged proteins. After cell fixation, cell permeabilisation and quenching (as above), 

pairs of primary antibodies, rabbit anti-FLAG 1:300 and mouse anti-GFP 1:200, were added on HeLa cells 

expressing GFP-BAF together with FLAG-Lamin A, for 40 min at R.T. Next, Duolink PLA probe anti-rabbit 

plus, Duolink PLA probe anti-mouse minus and Duolink detection reagents orange (detected with a Cy3 

filter) were used according to manufacturer’s instructions (Olink, Bioscience). At last, cells were mounted 

in Duolink mounting medium with Dapi (Olink, Bioscience). Confocal microscopy image acquisition was 

performed using a LSM 700 Laser scanning microscope (Zeiss) at the imaging facility of the BFA institute. 

Quantitative analysis of PLA signals was done on images using Image J. Data were then analyzed by 

comparing median values for the total number of pixels showing a signal (Cy3) per nucleus. Data of the 

three independent experiments were normalized to 1 (100%) for cells expressing FLAG-lamin A WT. 

Statistical analysis were performed using Kruskall-Wallis tests.  

 

  



 

 
 

Legends 

Figure 1. The lamin A/C Igfold domain directly binds to emerin self-assembled nucleoplasmic region. (A) 

Architecture of the emerin protein, highlighting its LEM domain (in orange) and its transmembrane domain 

(in dark grey), as well as the 2 fragments of the nucleoplasmic region that could be obtained as soluble 

peptides (EmN and EmC). (B) Negative staining EM images of EmN and EmC fragments obtained after 

purification, concentration and incubation at 293K (white bar: 100 nm). EmN filaments were observed at 

600 M after 1 week 27, whereas EmC filaments were already visible at 300 M after 1 day. The fragment 

corresponding to the region common to EmN and EmC did not self-assemble in these conditions (Suppl. 

Figure 1B). (C) Superimposition of the solution-state NMR 1H-15N HSQC spectra of the lamin Igfold domain 

(lamin A/C in grey or lamin B1 in green) recorded in the absence or presence of emerin fragments EmN or 

EmC (EmN in red, EmC in purple; 1:1 ratio). The emerin fragments were EmN filaments (upper left and lower 

right views), EmN monomers (lower left view) and EmC filaments (upper right view). All these spectra were 

recorded at 303K on a 700 MHz spectrometer. 

Figure 2. The lamin A/C Igfold domain binds to emerin monomeric LEM domain through BAF. (A) 

Detection of a ternary complex including LamIgF, EmN and BAF by size exclusion chromatography using a 

Superdex 75 10/300GL column. Each gel corresponds to the elution of a different set of proteins, using the 

same column, the same protein concentrations and the same buffer: from the bottom EmN, LamIgF, BAF, 

Lamin B1 tail, BAF and lamin B1 tail, EmN and LamIgF, EmN and BAF, LamIgF and BAF and finally EmN, 

LamIgF and BAF. The bands corresponding to the different complexes are boxed: EmN and BAF in orange, 

LamIgF and BAF in green and the ternary complex in blue. (B) ITC titration of BAF onto LamIgF (upper panel) 

and BAF onto EmN (lower panel). 200 µM LamIgF or EmN were injected in a cell containing 40 µM of BAF 

at a temperature of 288K. The affinities deduced from the curves are 3.2 ± 1.2 M and 0.7 ± 0.2 M, 

respectively. The LamIgF / BAF interaction is enthalpy driven whereas the EmM/BAF interaction is both 

enthalpy and entropy driven (Suppl. Table 1). 

 



 

 
 

Figure 3. Three-dimensional structure of the complex between LamIgF, emerin LEM domain and BAF. (A) 

Cartoon representation of the complex, with emerin LEM domain (residues 3 to 44) in orange, BAF dimer 

in yellow-green and green (residues 4 to 89), and lamin A/C Igfold domain (residues 432 to 544) in grey. The 

interfaces corresponding to the emerin / BAF and BAF / lamin interactions are indicated by red circles and 

numbered as 1 and 2, respectively.  (B) Superimposition of the 3D structure of the BAF dimer bound to the 

emerin LEM domain, as determined in this work (same colors as in (A)), and as revealed using NMR by Clore 

and co-workers (PDB reference 2ODG 20; in cyan). (C) Zoom on the EmN/BAF interface, with residues more 

than 30% buried within the interface displayed in sticks. On the emerin side, the interface is mainly formed 

by residues Gly24 to Lys37 (labeled residues on loop 12 and helix 2). On the BAF side, it is mainly formed 

by helices 3 and 4 of one monomer and loop 23 and helix 3 of the other monomer. 

Figure 4. Lamin A/C Igfold domain binds BAF through a -sheet including residues mutated in recessive 

progeroid syndromes. (A) Cartoon representation of the complex between the lamin A/C Igfold domain 

and the BAF dimer (main chain colors as in Fig. 3). On the lamin side, the interface is mainly polar: it is 

formed by residues His433, Ala434, Arg435, Glu537, Met540 and Lys542 (in red sticks). On the BAF side, it 

is formed by residues from helix 1, loop 12 and helix 5 from both monomers. At the BAF monomer-

monomer interface, Gly47 is displayed in magenta. (B)  1H-15N HSQC spectrum of LamIgF in the absence 

(grey) and presence (green) of BAF (1:1 ratio). The labelled peaks exhibit a significant intensity decrease 

after addition of BAF. The peaks labelled in italics correspond to residues mutated in patients with progeroid 

diseases (R43532,33,35, R471C 36, M540 67,15, K542 34). 

Figure 5. Impact of mutants causing recessive progeroid syndromes on BAF binding depends on the 

disease severity. (A) ITC titration of BAF onto LamIgF, as measured at 283K. Whereas variants R453W and 

R482W show WT binding, variants A529V and R471C exhibit a significantly lower binding enthalpy and 

affinity as compared to LamIgF WT. No affinity could be measured for R527H and K542N and no binding 

could be detected for R435C. In the lower right panel, the spatial distribution of residues mutated in (A) is 

displayed on the lamin A/C Igfold structure (PDB reference 1IFR 13).  



 

 
 

The 2 residues mutated in control variants, causing muscle and adipose tissue diseases respectively, are 

colored in green, whereas the 5 residues mutated in variants with a lower affinity for BAF are colored in 

cyan, purple and red (for weak binding, no measurable affinity and no detected binding, respectively). (B) 

Size exclusion chromatography of LamIgF mutants mixed to BAF (Superdex 75 10/300GL). Each gel 

corresponds to the elution of a different set of proteins, using the same column, the same concentrations 

and the same buffer: from bottom BAF, BAF and R435C, BAF and K542N, BAF and R527H, BAF and R471C, 

BAF and A529V, BAF and R482W, BAF and R453W and BAF and WT LamIgF. The bands corresponding to the 

BAF-LamIgF complex are boxed in red. 

Figure 6. Mature lamin mutants with mutations causing recessive progeroid syndromes impair BAF 

binding in cells. (A) HeLa cells expressing GFP-BAF (WT) together with either WT, R435C, R527H, A529V or 

K542N FLAG-LAm were fixed, and processed for immunofluorescence using as primary antibodies, a mix of 

anti GFP and anti-FLAG antibodies. Observation was done at the confocal microscope. Are shown in the left 

panels, merges for GFP-BAF (green), FLAG-LAm (red) and DNA (blue), and in the right panels, the FLAG-LAm 

alone. Scale bar: 20 M. (B) Whole cell protein extracts prepared from HeLa cells control (ctrl) or expressing 

GFP-BAF (WT) together with either WT, R435C, R527H, A529V or K542N FLAG-LAm were analyzed by 

western blot using anti FLAG and anti BAF antibodies. (C) HeLa cells, expressing GFP-BAF (WT) together with 

either WT, R435C, R527H, A529V or K542N FLAG-LAm were fixed, labeled with a mix of anti GFP and anti-

FLAG antibodies and further processed for PLA before observation at the confocal microscope. The PLA 

signals (red) are shown merged with DNA (blue) and GFP-BAF (green) or alone (PLAssay). Signals for GFP-

BAF and DNA are shown alone in the two right panels, respectively. Scale bar: 15 M. (D) Quantification of 

PLA signals per nucleus as shown in C. The graph represents the mean values +/- stdevpa (n = 3 experiments; 

* p<0.05 with Kruskal and Wallis test).  

 

 

 



 

 
 

Figure 7. A first model of the interface between the LEM-domain proteins, the nucleoskeleton and the 

chromatin-associated protein BAF. (Left) The lamin A/C Igfold is able to recognize emerin through BAF. 

Superimposition of the X-ray structure of the LamIgF-LEM-BAF complex onto the X-ray structure of the BAF 

protein complexed to DNA (PDB reference 2BZF 53) suggests that BAF can simultaneously interact with 

lamin, emerin and DNA. The lamin-BAF interface is disrupted by mutations causing autosomal recessive 

progeroid syndromes, as symbolized by the red cross. (Right) In interphase cells, the lamin A/C Igfold 

domain recognizes self-assembled emerin at the nuclear envelope. It may also binds to monomeric emerin 

through BAF. The lamin A/C Igfold domain is able to recognize BAF and histones, thus creating an interface 

between the lamina and chromatin. This interface is disrupted by mutations causing autosomal recessive 

progeroid syndromes, as symbolized by the red cross.  
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Supplementary information 

Suppl. Fig. 1. Monomeric structure of fragments EmN49, EmC170, EmC187 and EmC, as observed by NMR. 

(A) Superimposition of the 1H-15N HSQC spectra of different emerin fragments is shown. This 

superimposition reveals that, whereas the EmN49 fragment, corresponding to the LEM domain (3D 

structure in the upper left corner; PDB reference 1ODG 68), is well folded, the 3 other fragments are entirely 

unstructured.  (B) ThT fluorescence as a function of the incubation time at 310 K, measured on 3 emerin 

fragments (EmN, Em67C and EmC) concentrated at 300µM (n=2; error bars correspond to standard 

deviations). Only EmN and EmC are able to self-assemble. Em67C does not form filaments. 

Suppl. Fig. 2. Structure of the LamIgF variants, as observed by NMR and fluorescence. (A) 1H-15N HSQC 

spectra were recorded at 303K on different LamIgF variants (LamIgF WT in dark grey, LamIgF R453W and 

R482W in green, LamIgF A529V, R471C and R527H in blue and LamIgF K542N and R435C in red). All proteins 

were concentrated to 200µM, dialyzed in 20mM Tris-HCl pH 8.0, 30mM NaCl, 2mM DTT and NMR spectra 

were recorded on a 700MHz spectrometer. (B) Thermal stability of the different LamIgF variants was 

measured using a fluorescence thermal shift assay in 50mM Tris pH 8.0, 150mM NaCl, 10% glycerol. Error 

bars correspond to the standard deviation calculated from at least 4 measurements. 

Suppl. Fig. 3. The lamin B1 tail domain does not bind to BAF, as observed by NMR. Addition of BAF onto 

the 15N labeled lamin B1 tail (residues 395 to 586) does not affect the 1H-15N HSQC spectrum of the lamin 

B1 tail. The spectra were recorded at 283K, on a 600MHz, in phosphate pH 6.5, 20mM, 150mM NaCl, 1mM 

DTT. 

Suppl. Fig. 4. Quantification of the PLA signals per nucleus (related to Figure 6C). Graphs represent the 

median values for the total signal expressed in number of pixels per nucleus for three independent 

experiments (Exp1, Exp2, Exp3; n= 105 to 230 nuclei per sample). Boxes show first and third quartiles (* 

p<0.005 with Kruskal and Wallis test).  

 



 

 
 

Suppl. Fig. 5. The WT LamIgF still binds to BAF A12T but with a lower affinity. Size exclusion 

chromatography experiments revealed an interaction between LamIgF and either BAF WT, BAF S4E or BAF 

A12T (Superdex 75 10/300GL). Each gel corresponds to the elution of a different set of proteins, using the 

same column, the same concentrations and the same buffer: from the bottom BAF A12T, LamIgF and BAF 

A12T, BAF S4E, LamIgF and BAF S4E, BAF WT, LamIgF, LamIgF and BAF WT. The bands corresponding to the 

ternary complex are boxed in red. Whereas BAF S4E binds as BAF WT to LamIgF, BAF A12T shows a weaker 

affinity for LamIgF. 

Suppl. Fig. 6. Lamin A – BAF proximities are enriched at the nuclear periphery of interphase HeLa cells. 

HeLa cells transfected to express FLAG-LAm together with GFP-BAF were fixed, labeled with a mix of anti-

GFP and anti-FLAG antibodies and further processed for PLA before observation at the confocal microscope. 

Are shown in the left panels the PLA signals (red) merged with GFP-BAF (green) and DNA (blue). Are shown 

in the right panels the PLA signals alone. Scale bar: 10 M.  

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Suppl. Fig. 1. 
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Suppl. Fig. 3. 
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Suppl. Table 1. Summary of Isothermal Titration Calorimetry results. (A) Table containing parameters 

deduced from all ITC experiments performed at 288K. (B) Table containing parameters deduced from 

all ITC experiments performed at 283K. N is the number of experiments, Ns the stoichiometry, Ka the 

association rate constant, Kd the dissociation rate constant, H the measured enthalpy and S the 

resulting entropy. 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Suppl. Table 2. Data collection and refinement statistics. 
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Ma thèse portait sur la caractérisation structurale et fonctionnelle de l’enveloppe nucléaire. 

Cette enveloppe est formée d’une bicouche lipidique (membranes nucléaire interne et 

externe) et de différentes protéines associées à ces membranes. Elle est impliquée dans: 

- la forme et la position du noyau 

- la structure et la mobilité cellulaire car elle est reliée au cytosquelette via le complexe 

LINC 

- l’organisation du génome, en interagissant avec la chromatine 

- la régulation de voies de signalisation en interagissant avec des facteurs de 

transcriptions et différentes enzymes. 

 

Des mutations au niveau des gènes codant pour les protéines de l’enveloppe nucléaire interne 

sont à l’origine d’un grand nombre de maladies humaines, appelées les envelopathies, 

incluant des dystrophies musculaires, des lipodystrophies et des syndromes de vieillissement 

prématuré. Toutefois, les données structurales sont rares pour ces protéines, entravant ainsi 

la description de leurs mécanismes fonctionnels normaux et pathogènes. Dans mon projet de 

thèse, nous avons proposé de caractériser structuralement le complexe émerine-lamine et 

d’observer les conséquences de 6 mutations pathogènes de l’émerine, à l’origine de la 

dystrophie d’Emery-Dreifuss. qui n’empèchent pas l’expression et la bonne localisation de la 

protéine (delK37, S54F, Q133H, del95-99, P183T, P183H). L'une des nouveautés de ce projet 

était de réussir à stabiliser des oligomères de l’émerine et de la lamine, afin de reconstituer le 

complexe fonctionnel impliqué dans l'architecture de l'enveloppe nucléaire. 

 

Lorsque j’ai débuté ma thèse, nous avions des preuves préliminaires que l’émerine dimérise 

in vitro, forme des oligomères in vitro et dans les cellules, et que cette oligomérisation a une 

influence sur la liaison de cette protéine à la lamine. Des publications récentes avaient 

également montré que l’émerine est phosphorylée par Src après l'application d'une force 

mécanique sur le noyau et que le complexe émerine-lamine est au centre de la réponse 

nucléaire face à une force mécanique (Ho et al, Nature 2013; Guilluy et al., Nat Cell Biol 2014).  
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Au cours de ma première année, j’ai caractérisé les oligomères formés par le fragment de 

l’émerine comprenant les résidus 1 à 187 (protocole de production déjà établi au laboratoire) 

à l’aide de différentes techniques telles que la microscopie électronique, la fluorescence et la 

spectroscopie infrarouge. J’ai observé que l’émerine 1-187 est capable de former des 

filaments in vitro et que ces filaments sont formés de feuillets . J’ai également mis au point 

un protocole robuste de production de ces filaments. J’ai caractérisé l’état oligomérique de 6 

mutants de l’émerine à l’origine de la dystrophie musculaire d’Emery-Dreifuss (S54F, del95-

99, Q133H, P183T et P183H). Pendant une deuxième partie de ma première année de thèse, 

j’ai également commencé une étude des conséquences structurales de la phosphorylation de 

l’émerine par la kinase Src (voir introduction) et en particulier l'analyse de l’impact de la 

phosphorylation sur la formation des filaments. Pour mener à bien ce projet, notre équipe 

s’est rendue pendant 9 mois (d’Avril à Décembre 2015) dans le laboratoire du Dr Phillip 

Selenko, au FMP de Berlin-Buch. 

Je me suis ensuite intéressée au mécanisme d’assemblage des filaments in vitro et j’ai 

déterminé quelles parties de l’émerine étaient indispensables à cet assemblage. Pour ce faire, 

la première approche fut de produire différentes parties de l’émerine et de tester leur 

capacité à former des filaments. J’ai d’abord produit les fragments 67-170 puis 67-187, afin de 

savoir si le domaine LEM était indispensable à la formation des filaments et j’ai pu constater 

que ces deux fragments ne formaient pas ce type d’oligomères. J’ai ensuite voulu savoir si les 

régions 1-146 puis 1-132 étaient suffisantes pour former des filaments. J’ai choisi ces régions 

car elles ne comportaient pas l’unique cystéine présente dans l’émerine (en position 147), 

sachant que nous avions prouvé auparavant que les filaments étaient formés à partir du 

monomère et non du dimère d’émerine, et car elles comportaient la région 95-99 qui semblait 

être importante pour la formation des filaments. J’ai pu observer la formation de nos 

oligomères dans les deux cas. J’ai également produit la région du domaine LEM 1-50 seule et 

observé l’absence de filaments. Donc la région minimale suffisante pour former des filaments 

est 1-132. Enfin, j’ai étudié la cinétique de formation d’un mutant du domaine LEM de 

l’émerine, le mutant delK37, et observé que ce dernier possède un domaine LEM destructuré 

et est capable de former des filaments plus rapidement que l’émerine 1-187 sauvage. 
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De manière consistente, j’ai fait la protéolyse ménagée des filaments d’émerine 1-187 

sauvage et delK37, et par spectrométrie de masse (collaboration avec l’équipe du Dr Jean 

Armengaud, CEA Marcoule), j’ai observé que les régions restantes après coupure par la 

chymotrypsine, la trypsine et l’endoprotéinase GluC correspondaient en majeur partie au 

domaine LEM, mais également à la région autour des résidus 95-99.  

Enfin nous avons étudié nos filaments à l’aide de la technique de la RMN du solide, à travers 

une collaboration avec l’équipe du Prof Adam Lange, au FMP de Berlin-Buch. Nous avons 

avons obtenu des premiers spectres des filaments de l’émerine 1-187 et des filaments de 

l’émerine 1-132. Ces spectres montrent que la région structurée est la même dans les deux 

types de filaments et comprend une vingtaine de résidus. Puis, nous avons également obtenu 

des spectres du mutant 1-187 delK37 de l’émerine et observé que les filaments formés par ce 

mutant étaient identiques à ceux de l’émerine 1-187 WT. Cette analyse par RMN du solide ne 

nous a pas permis d’identifier la structure 3D du cœur des filaments à cause de l’hétérogénéité 

conformationelle présente dans ces filaments, mais nous a permis de conclure, avec les 

données obtenues en spectrométrie de masse, que l’interaction entre le domaine LEM et la 

région autour des résidus 95-99 de l’émerine est à l’origine de la formation des filaments. 

La dernière grande partie de mon projet de thèse concernait l’analyse structurale des 

interactions entre l’émerine et ses partenaires. Dans un premier temps, nous nous sommes 

intéressés à l’interaction entre l’émerine et la lamine A, notamment son domaine Igfold 

(domaine globulaire de la lamine). Lorsque que je suis arrivée au laboratoire, plusieurs 

expériences avaient déjà été menées sur ce projet, mais l’interaction entre ces deux protéines, 

connue dans la littérature, n’avait été observée qu’une fois par RMN et n’avait pas été 

reproduite. Grâce aux différentes études menées pendant ces deux années, j’ai amélioré 

notre connaissance des déterminants de l'état oligomérique de l'émerine et j’ai pu montrer 

l'interaction par RMN, ITC et microscopie électronique, entre le monomère du domaine Igfold 

de la lamine A et les filaments d’émerine 1-187 sauvage et delK37.  
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Nous avons étudié d’autres interactions lors de ma deuxième année de thèse. Tout d’abord 

l’interaction entre l’émerine et la queue de la myosine 1B (M1BO1). Cette étude a été possible 

grâce à une collaboration avec le groupe du Dr Anne Houdusse, de l’institut Curie. Nous avons 

d’abord caractérisé l’interaction par résonance magnétique nucléaire (RMN), puis nous avons 

fait des études préliminaires par titration calorimétrique isotherme (ITC) et par 

thermophorèse à micro-échelle (MST). Après avoir observé que l’interaction de l’émerine 1-

187 WT avec M1BO1 semblait induire la formation des filaments d’émerine, nous avons fait 

des premières études par fluorescence, soit des cinétiques de formation de filaments à l’aide 

de la thioflavine et avons eu des premières confirmations de notre hypothèse.  

Nous avons aussi étudié le complexe LEM/BAF/IgFold. En effet, la liaison entre le domaine 

globulaire LEM de l’émerine et la protéine BAF avait déjà été bien caractérisée (Cai M et al., 

2007) et l’interaction entre l’IgFold de la lamine et la protéine BAF avait été plusieurs fois 

suggérée. Nous avons donc caractérisé et certifié l’interaction entre la protéine BAF et l’Igfold 

par RMN, ITC et Gel Filtration. Puis nous avons caractérisé l’interaction entre ces deux 

protéines et le domaine LEM de l’émerine, démontrant ainsi que les trois protéines peuvent 

former un complexe ternaire. Enfin nous avons cristallisé le complexe ternaire, obtenu des 

cristaux et une première structure de ce complexe, résolue à 2.8 Å. Finalement, nous avons 

étudié l’impact sur l’affinité entre l’Igfold et BAF de mutations causant des pathologies et 

impliquant des résidus se trouvant à l’interface IgFold/BAF. 

 



 

 
 

 

 
 

  Titre : Représentation en trois dimensions de l’interface entre l’enveloppe nucléaire et la chromatine 

  Mots clés : Interactions protéine-protéine, enveloppe nucléaire, Emery-Dreifuss Muscular Dystrophy 

Résumé: Le noyau est un organite caractéristique des cellules 

eucaryotes et les propriétés mécaniques de ce dernier jouent un 

rôle essentiel dans le comportement de la cellule, notamment sa 

motilité, sa polarité et sa survie. Le noyau est entouré par une 

enveloppe comprenant une membrane interne et une membrane 

externe, ainsi que de nombreuses protéines. Mes objectifs de thèse 

étaient de comprendre des mécanismes moléculaires déficients 

dans deux types de maladies génétiques causées par des mutations 

dans les lamines: la dystrophie musculaire d’Emery-Dreifuss et les 

syndromes de type progéroïde. 

Dans un premier temps, nous avons montré que l’émerine s’auto-

associe in vitro et en cellules (Herrada et al. ACS Chem. Biol. 2015). 

J’ai ensuite étudié la structure des oligomères d’émerine, 

déterminé le fragment protéique minimal nécessaire à la formation 

de ces oligomères et décrit l’impact de mutations de l’émerine, 

causant une dystrophie musculaire d’Emery-Dreifuss, sur son auto-

assemblage (Samson et al. Biomol NMR Assign. 2016 ; Samson et al. 

FEBS J. 2016).  

 

Puis, j’ai montré que seule cette forme auto-assemblée de 
l’émerine est capable d’interagir avec la lamine A et que la 
phosphorylation de l’émerine par la kinase Src, observée suite à un 
stress mécanique, régule cette interaction entre l’enveloppe 
nucléaire et le nucléosquelette.  
Pour finir, j’ai montré que la forme monomérique de l’émerine est 
capable de former un complexe ternaire avec BAF et la lamine A. 
Après avoir mesuré les affinités protéine-protéine au sein de ce 
complexe, identifié les fragments minimaux des différentes 
protéines permettant de former ce complexe et mis au point un 
protocole robuste de purification de ce complexe, j’ai pu obtenir 
des cristaux de ce complexe dans plusieurs conditions. Par la suite, 
nous avons pu résoudre la structure de ce complexe par 
remplacement moléculaire avec une résolution de 2 Å. Enfin, j'ai 
montré que les mutations dans les lamines de type A provoquant 
des syndromes de type progéroïde pouvaient altérer l'interaction 
avec BAF in vitro, et nos collaborateurs, l'équipe du Dr B. Buendia 
(Paris Diderot), ont montré que ces mêmes mutations induisaient 
une diminution significative de la proximité entre la lamine A et BAF 
dans les cellules HeLa.  
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Abstract: The nucleus is an organelle characteristic of 

eukaryotic cells and its mechanical properties play an essential role 

in the behavior of the cell, in particular its motility, polarity and 

survival. It is surrounded by an envelope comprising an inner 

membrane and an outer membrane, as well as a large number of 

proteins. These proteins are either anchored at the nuclear 

membrane, as emerin, or form a filament meshwork lining the inner 

nuclear membrane, as lamins. My thesis objectives were to 

understand molecular mechanisms deficient in two types of genetic 

diseases caused by mutations in inner nuclear envelope proteins: 

Emery-Dreifuss muscular dystrophy, associated to mutations in 

emerin and A-type lamins, and progeroid syndromes caused by 

mutations in A-type lamins. 

First, we showed that the emerin protein self-assembles in vitro and 

in cells (Herrada, Samson et al., ACS Chem. Biol., 2015). I then 

studied the structure of emerin oligomers, determined the minimal 

protein fragment necessary for the formation of these oligomers, 

identify residues forming the structural core of these oligomers by 

solid-state NMR in collaboration with the group of Prof A. Lange 

(FMP Berlin).  

 

And described the impact of emerin mutations causing Emery-
Dreifuss muscular dystrophy on emerin self-assembly (Samson et 
al., Biomol. NMR Assign. 2016, Samson et al., FEBS J. 2017). Then, I 
observed, mainly using solution-state NMR, that only the self-
assembled form of emerin is able to interact with A-type lamin tail, 
and that mutants causing Emery-Dreifuss muscular dystrophy and 
unable to self-assemble are also defective in A-type lamin binding. 
I also obtained preliminary data showing that phosphorylation of 
emerin by the Src kinase, observed after a mechanical stress in 
purified nuclei, regulates the interaction between self-assembled 
emerin and A-type lamins. Finally, I showed that the monomeric 
form of emerin is able to form a ternary complex with A-type lamin 
tail through the chromatin-associated protein Barrier-to-
Autointegration Factor (BAF). After having measured the protein-
protein affinities within this complex, identified the minimal protein 
fragments involved in the complex and developed a robust protocol 
for purification of this complex, I was able to obtain crystals under 
several conditions. Subsequently, I solved the 3D structure of this 
complex by molecular replacement at a resolution of 2 Å. Finally, I 
showed that mutations in A-type lamins causing autosomal 
recessive progeroid syndromes impair interaction with BAF in vitro, 
and our collaborators at Univ. Paris Diderot, the team of Dr B. 
Buendia, showed that these same mutations induce a significant 
decrease in the proximity between lamin A and BAF in HeLa cells.  
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