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Summary

Riassunto

Questa tesi si sviluppa su due fronti: nella prima parte ci concentriamo sui metodi nu-
merici di approssimazione di problemi di controllo ottimo, in particolare sul Principio
della Programmazione Dinamica e sul Model Predictive Control (MPC), mentre nella
seconda parte presentiamo applicazioni delle tecniche di controllo in campo biologico, in
particolare ai modelli di evoluzione di popolazioni di cellule tumorali.
Nella prima parte della tesi consideriamo l’approssimazione di un problema di controllo
ottimo ad orizzonte infinito che combina un primo passo (basato sul Model Predictive
Control) allo scopo di ottenere rapidamente una traiettoria sub-ottima approssimata, e
un secondo passo in cui viene risolta l’equazione di Bellman in un intorno della traiettoria
di riferimento. È ben noto che la soluzione globale attraverso l’equazione di Bellman può
essere piuttosto costosa poichè occorre risolvere il problema in un dominio contenente
tutte le possibili condizioni iniziali per la dinamica. Occorre inoltre imporre (e scegliere)
delle opportune condizioni al bordo per risolvere tale equazione. La caratteristica prin-
cipale del MPC è quella di calcolare un controllo feedback approssimato per la dinamica
a partire da una condizione iniziale risolvendo una sequenza di problemi di controllo
ottimo ad orizzonte finito. Sembra pertanto naturale risolvere innanzitutto il problema
per una condizione iniziale ottenuta applicando l’MPC, e poi calcolare la funzione valore
in un intorno di tale traiettoria, riducendo di molto le dimensioni del dominio in cui
l’equazione di Bellman è risolta e di conseguenza la complessità di calcolo. Il secondo
passo risulta essere necessario se si vuole ottenere una soluzione stabile, dal momento
che possiamo utilizzare tutte le informazioni vicine alle traiettoria di riferimento e non
solo quelle su di essa.
Il secondo argomento trattato in questa tesi riguarda il controllo dell’evoluzione di un
fronte descritto attraverso il metodo level set. Più nel dettaglio, consideriamo un pro-
blema di controllo ottimo in cui la dinamica è data dalla propagazione di un grafo mo-
nodimensionale controllato dalla velocità in direzione normale al fronte. Avendo fissato
un target corrispondente ad una configurazione finale del fronte desiderata, l’obiettivo
è quello di raggiungere tale target minimizzando un opportuno funzionale di costo. È
noto che risolvere il problema di controllo ottimo attraverso l’approccio della Program-
mazione Dinamica soffre della cos̀ı detta “curse of dimensionality”, risultando pertanto
impossibile applicare tale metodo alla versione semi-discreta del nostro sistema. Nono-
stante questa forte limitazione, siamo riusciti comunque ad applicare la programmazione
dinamica grazie a una riduzione di ordine dell’equazione level-set basata sulla Proper Or-
thogonal Decomposition (POD). Questa tecnica permette di ottenere un nuovo sistema
di dimensioni notevolmente ridotte che riesce ugualmente a descrivere la dinamica in



2

modo soddisfacente. Grazie alla soluzione dell’equazione di Hamilton-Jacobi Bellman
con un’approssimazione POD, abbiamo potuto calcolare una legge feedback e la corri-
spondente traiettoria ottima per il problema non lineare che descrive la propagazione
del fronte.
La seconda parte della tesi è dedicata all’applicazione dei metodi di controllo ottimo in
campo biologico. Abbiamo proposto un modello che descrive l’evoluzione di una popola-
zione di cellule tumorali attraverso un’equazione alle derivate parziali. In tale modello è
presente una funzione che modellizza il tasso di proliferazione delle cellule, una funzione
che modellizza il tasso di morte dovuto alla competizione tra le cellule ed una funzione
che modellizza il tasso di morte dovuto alla presenza del farmaco; infine la presenza di
un coefficiente di diffusione ci permette di modellizzare il tasso di mutazione delle cellule.
Abbiamo quindi messo in luce e analizzato le caratteristiche biologiche e matematiche
del modello e formulato e risolto numericamente un problema di controllo ottimo: fissata
una finestra temporale di 60 giorni, l’obiettivo è quello di ridurre la densità del tumore
senza far aumentare troppo la resistenza. Il funzionale costo è costituito quindi da due
termini moltiplicati da due coefficienti. Al variare di tali coefficienti, abbiamo analizzato
e discusso i risultati delle simulazioni.

Résumé

Cette thèse se développe sur deux fronts : dans la première partie, nous nous concentrons
sur les méthodes numériques des problèmes de contrôle optimal, en particulier sur le
Principe de la Programmation Dynamique et sur le Model Predictive Control (MPC).
Dans la deuxième partie, nous présentons des applications de techniques de controôle en
biologie, en particulier pour les modèles d’évolution des populations de cellules tumorales.

Dans la première partie de la thèse, nous considérons l’approximation d’un problème
de contrôle optimal avec horizon infini, qui combine une première étape, basée sur MPC
permettant d’obtenir rapidement une bonne approximation de la trajectoire optimal, et
une seconde étape, dans la quelle l’équation de Bellman est résolue dans un voisinage
de la trajectoire de référence. Il est bien connu que l’approximation de la solution ob-
tenue par l’équation de Bellman peut être assez coûteuse, parce que on doit résoudre
le problème dans un domaine qui contient toutes les conditions initiales possibles de la
dynamique. Nous devons aussi imposer (et sélectionner) des conditions aux bords appro-
priées pour résoudre cette équation. La caractéristique principale du MPC est de calculer
un contrôle feedback approximatif pour la dynamique à partir d’une condition initiale
en résolvant une séquence de problèmes de contrôle optimal à horizon fini. Il semble
donc naturel de résoudre d’abord le problème pour une condition initiale obtenue avec
MPC et calculer ensuite la fonction valeur dans un voisinage de cette trajectoire. De
cette façon, on peux réduire une grande partie de la taille du domaine dans lequel on
résout l’équation de Bellman et donc diminuer la complexité du calcul. La deuxième
étape semble être nécessaire, si on veut obtenir une solution stable, puisque on peut
utiliser toutes les informations voisines à la trajectoire de référence et non seulement les



3

informations sur la trajectoire.
Le deuxième sujet abordé dans cette thèse est le contrôle des méthodes Level Set. Plus
en détail, on considère un problème de contrôle optimal, dans lequel la dynamique est
donnée par la propagation d’un graphe à une dimension, contrôlé par la vitesse nor-
male. Un état finale est fixé, correspondant à une configuration finale du front sou-
haité, l’objectif étant de le rejoindre en minimisant une fonction cout̂ appropriée. Le
but est de résoudre le problème de contrôle optimal avec la Programmation Dynamique,
mais il est connu que cette méthode souffre de la soi-disant ”curse of dimensionality”.
C’est donc impossible de l’appliquer à la version semi-discrète de notre système. Malgré
cette importante limitation, on arrive à utiliser la programmation dynamique grâce
à une réduction d’ordre de l’équation utilisant la Proper Orthogonal Decomposition
(POD). Cette technique permet d’obtenir un nouvel système de dimension significative-
ment réduite, qui décrit la dynamique de manière satisfaisante. Grâce à la solution de
l’équation de Hamilton-Jacobi Bellman avec POD, nous pouvons calculer une loi feed-
back et la trajectoire optimale correspondante pour la résolution d’un problème non
linéaire de propagation du front.
La deuxième partie de la thèse est dédiée à l’application des méthodes de contrôle en
biologie. On présente un modèle décrit par une équation aux dérivées partielles qui
modélise l’évolution d’une population de cellules tumorales. On analyse d’abord les ca-
ractéristiques biologiques et mathématiques du modèle. Par la suite, on formule et résout
numériquement un problème de contrôle optimal concernant ce modèle, où le contrôle
représente la quantité du médicament administrée. En fixant une fenêtre temporelle de
60 jours, l’objectif est de réduire la densité de la tumeur sans trop augmenter la résistance
des cellules au médicament. La fonctionnelle cout̂ est composée par deux termes pondérés
par des coefficients, qu’on fait varier dans les simulations pour mieux comprendre leur
rôle. Enfin, on présente et analyse les résultats obtenus.
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1. Introduction

The theory of control analyzes the properties of controlled systems, i.e. dynamical sy-
stems on which we can act through a control. The aim is to bring the system from an
initial state to a certain final state satisfying some criteria. There are many systems
which can be considered: differential systems, discrete systems, systems with noise, etc.
Their origins are very different: mechanics, electricity, electronics, biology, chemistry,
economics, etc. The goal can be to stabilize the system so that it is insensitive to certain
disturbances (stabilization), or to determine the optimal solutions for some optimization
criteria (optimal control). From a mathematical point of view, a controlled system is
a dynamical system depending on a term called control. Controls are functions or pa-
rameters usually subject to constraints. The theory of control is a continuation of the
variational calculus and historically it is deeply related with the classical mechanics,
in particular to the variational principles of mechanics (Fermat’s principle, Huygens’
principle, Euler-Lagrange equations. . .). In this thesis, we deal with the numerical so-
lution of optimal control problems, which is a challenging problem for many industrial
applications, e.g. robotics, aeronautics, electrical and aerospace engineering, but also in
biology and the medical field. An interesting application concerns modeling evolutionary
dynamics of tumor cells. In that case, the aim is to find an optimal dosing schedule for
patients in order to eradicate the tumor or to limit its growth.
To summarize, the ultimate goal of an optimal control problem is to compute an optimal
control and the corresponding optimal trajectory for the controlled system. A classical
infinite horizon optimal control problem can be described as follows:

inf
u∈U

Jx(u(·)) :=

∫ ∞
0

L(y(s), u(s), s)e−λsds

subject to ẏ(s) = f(y(s), u(s), s), y(0) = x

(1.1)

Here y is the state trajectory, x the initial condition, u denotes the control, U is the
control space and λ > 0 is the discount factor. The solution for the problem (1.1) is a
pair (y∗, u∗), where u∗ minimizes the cost functional Jx(u(·)) and y∗ is the corresponding
trajectory. One way to obtain the optimal pair is based on the Pontryagin’s Maximum
Principle (see [106]). It is worth to mention that the characterization via the Pontryagin
principle gives only necessary conditions for the optimal trajectory and optimal open-
loop control. Although from a numerical point of view the control system can be solved
via shooting methods (see [85] for details) applied to the associated two point boundary
value problem, in real applications a good initial guess for the adjoint equation is par-
ticularly difficult and often requires a long and tedious trial-and-error procedure to be
found. Another way to solve optimal control problems and obtain open-loop controls is
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using a direct method. It consists in discretizing directly the optimal control problem,
leading to a nonlinear optimization problem, which can be solved by different algorithms
(such as gradient methods, line search methods...) as shown in the book by Kelley [68]
and by Nocedal and Wright [92]. An alternative way to solve optimal control problems
was introduced by Bellman [16] which leads to deal with the value function v(x) defined
as follows:

v(x) = inf
u∈U

Jx(u(·)).

It is well known that the Bellman’s Dynamic Programming (DP) produces optimal
controls in feedback form, which are more appealing in terms of robustness since they
depend on the state variable. However, the synthesis of feedback controls requires the
previous knowledge of the value function that is the major bottleneck for the application
of DP. In fact, under suitable assumptions of regularity on the data, the value function
is characterized as the unique viscosity solution of a nonlinear Hamilton-Jacobi-Bellman
(HJB) equation [15]:

λv(x) + max
u∈U
{−f(x, u) ·Dv(x)− L(x, u)} = 0, for x ∈ Rd . (1.2)

Due to the complexity to find an analitycal solution of the HJB equation, several ap-
proximation schemes have been proposed for this class of equations, based on finite
difference [37], semi-Lagrangian [28, 43, 45] and finite volume methods [70]. These algo-
rithms compute the solution iterating on the value space and looking for a fixed point
of the equation. They converge to the value function, but the convergence is slow (see
[44] for error estimates on Semi-Lagrangian schemes). A possible approach, which has
a rather long history, is based on the iteration in the space of controls (or policies) for
the solution of HJB equations. The Policy Iteration (PI) method, known as Howard’s
algorithm [65], has been investigated by Kalaba [67] and Pollatschek and Avi-Itzhak
[105], who proved that it corresponds to the Newton method applied to the functional
equation of dynamic programming. Later, Puterman and Brumelle [107] have given suf-
ficient conditions for the rate of convergence to be either superlinear or quadratic. More
recent contributions on the policy iteration method can be found in Santos and Rust
[111] and Bokanowski et al. [18]. Results on its numerical implementation and diverse hy-
brid algorithm have been reported in Capuzzo-Dolcetta and Falcone [27], Gonzáles and
Sagastizábal [59] and Grüne [56]. We mention also that an acceleration method based
on the set of subsolutions has been studied in Falcone [43]. Finally Alla et al., [5] have
presented and accelerated algorithm for the solution of static Hamilton-Jacobi-Bellman
equations related to optimal control problems. In particular, they use a classic policy ite-
ration procedure giving a smart initial guess given by the solution of the value iteration
scheme on a coarse mesh. More in general, dealing with domain decomposition methods
for HJB equations, we should also mention approaches based on domain decomposition
algorithms as in Falcone et al. [46] and more recently by Cacace et al. [23], on geometric
considerations as in Botkin et al. [19].
This thesis deals also with front propagation problem described by the level set equation.
The level set methods are widley used in applications such as image denoising, optimal
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path planning, computing the shortest geodesic paths, optimal design. There are three
main advantages of this approach: change of topology are naturally handled and surfa-
ces automatically merge and separate; geometric quantities, like the surface normal and
curvature, are easy to compute; the extension to three and even higher dimensions is
conceptually straightforward.
It is well known that the level set method introduced by Osher and Sethian [94] for
the study of a front evolution, produces a first order evolutive equation in the case of a
normal velocity c, which only depends on space and time, i.e.

Φt(x, t) + c(x, t)|∇Φ(x, t)| = 0 (1.3)

whereas it yelds a second order equation when the velocity also depends on the geometric
properties of the front, typically its curvature (see the monograph [95, 115]). The front
at time t is represented by the 0−level set of the function Φ(x, t). The techniques used
to approximate these problems are based on finite difference schemes, semi-Lagrangian
schemes and, more recently, finite element schemes. It should also be mentioned that
classical approximation methods require the computation of an approximate solution on
every node of the grid at every iteration and are generally considered rather expansive.
Starting with [114, 122], new methods have been proposed in order to reduce the compu-
tational effort and obtain the solution in a finite number of steps, such as Fast Marching
methods [116]. This approach has shown to be very effective for level set equations rela-
ted to front propagation problems, i.e. eikonal-type of equations. At every iteration, the
scheme is applied only on a subset of nodes (localization), that are close to the front,
the so-called narrow band. The remaining part of the grid is divided into two parts: the
“accepted region”, where the solution has been already computed, and the “far” region,
where the solution will be computed in the following iterations. At every iteration, one
node is accepted and moved from the narrow band to the accepted region; the narrow
band is then updated adding the first neighbors of that node (which before were in the
far region). For eikonal-type of equations, these methods converge in finite number of
iterations to the correct viscosity solution and have a very low complexity (typically
O(N ln(N)), where N is the cardinality of the grid). More recently, Cristiani et al. [38]
introduce and analyze a fast version of the semi-lagrangian algorithm for front propaga-
tion. They use a local definition of the approximate solution typical of semi-Lagrangian
schemes and redefine the set of “neighboring nodes” necessary for the Fast Marching
schemes. They show that the new algorithm converges to the viscosity solution of the
problem and that its complexity is O(N lnNnb) (where Nnb is the number of nodes in
the narrow band). In last years, several efforts have been made to extend these methods
to more complex problems where the front propagation is anisotropic [117] and/or to
more general HJB equations as in [10]. However, their implementation is rather delicate
and their convergence to the correct viscosity solution for general HJB equations is still
an open problem; we refer to [24] for an extensive discussion and several examples of
these limitations. Most of the methods applied for solving the HJB equation suffer from
the so called curse of dimensionality. This is due to the fact that the dimension of the
partial differential equation characterizing the value function increases as the dimension
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of the space state does. This is a major computational challenge which limits the practi-
cal implementation of numerical algorithms for optimal control design based on viscosity
solutions of HJB equations.
In recent years, new tools have been developed to deal with optimal control problems
for partial differential equations; the origin dates back to the monograph by J.L. Lions
[80] and several books on infinite dimensional optimal control problems have appeared
since then (see e.g. [63, 76, 77, 121]). In particular, new techniques emerged to reduce
the number of dimensions in the description of dynamical systems or, more in gene-
ral, of the solution of the problem to optimize. These methods are called reduced-order
methods and include for example the Proper Orthogonal Decomposition method (POD,
see [64, 118, 123]), the reduced basis approximation (see [99]) and Balance Truncation
method [12]. The general idea behind these methods is that, when the solutions are
sufficiently regular, one can represent them via Galerkin expansion so that the number
of variables involved in this discretization will be strongly reduced. In some cases, as
for the heat equation, even 1 basis function will suffice to have a rather accurate POD
representation of the solution (see [72]). Following these considerations it is reasonable
to follow a different approach based on DP and HJB equations. In this approach we will
first develop a basis functions representation of the solution along a reference trajectory
and then use this basis to set-up a control problem in the new space of coordinates.
The corresponding HJB equation will just need (hopefully) 3− 5 variables to represent
the state of the system. This approach has been introduced and studied starting from
the seminal papers [73, 74] and has shown to be rather effective for the optimal control
of parabolic and advection-diffusion equations [2]. In the above cases the solution of
the dynamics is typically regular and the asymptotic behavior is easy to predict. More
recently, a technique based on spectral elements has been applied to optimal control
problems for the wave equation (see [71]).
As said, in many control problems it is desired to design a stabilizing feedback control,
but finding analytically the closed loop solution is often unfeasible, even for the un-
constrained case, since it involves the solution of the corresponding HJB equations. An
alternative way to find control in feedback form are the methods known as Model Pre-
dictive Control (MPC), Moving Horizon Control or Receding Horizon Control (see the
books [58, 110]). They are based on the following idea: the repeated solution of an open-
loop optimal control problem for a given state. The first part of the resulting open-loop
input signal is implemented and the whole process is repeated. In general, one distinguish
between linear and Nonlinear Model Predictive Control (NMPC). Linear MPC refers to
a family of MPC schemes in which linear models are used to predict the system dynamics
and considers linear constraints on the states and inputs. Note that even if the system
is linear, the closed loop dynamics are nonlinear due to the presence of constraints. NM-
PC refers to MPC schemes that are based on nonlinear models and/or consider a non
quadratic cost-functional and general nonlinear constraints. Although linear MPC has
become a technique widley used in industry, in many applications linear model are not
sufficient to describe the process dynamics in a satisfactory way and nonlinear models
must be applied (see [9, 48] for an introduction to NMPC). In Model Predictive Control,
a crucial role is played by the prediction horizon, for instance the Quasi Infinite hori-
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zon NMPC allows an efficient formulation of NMPC while guaranteeing stability and
the performances of the closed-loop as shown in [8, 49] under appropriate assumptions.
Since the computational complexity of MPC schemes grows rapidly with the length of
the optimization horizon, estimates for minimal stabilizing horizons are crucial to ensu-
re stability. Stability and suboptimality analysis for NMPC schemes without stabilizing
constraints is presented in Chapter 6 of the book by Grüne and Panneck [58], where
they prove conditions to get asymptotic stability with minimal horizon. Note that the
stabilization of the problem and the computation of the minimal horizon involve the
Relaxed Dynamic Programming Principle (see [57, 98]). This approach allows estimates
of the horizon based on controllability properties of the system.
This thesis deals also with applications in the biological field, in particular in cancer
treatment. In general mathematical modelling approaches have become rather popular
in cancer research. The complexity of cancer is well suited to quantitative approaches
as it provides challenges and opportunities for new developments. In turn, mathema-
tical modelling contributes to cancer research by helping to elucidate mechanisms and
by providing quantitative predictions that can be validated. The recent expansion of
quantitative models addresses many questions regarding tumour initiation, progression
and metastases as well as intra-tumour heterogeneity, treatment responses and resistan-
ce. Mathematical models can complement experimental and clinical studies, but also
challenge current paradigms, redefine our understanding of mechanisms driving tumori-
genesis and shape future research in cancer biology. In fact, mathematical models have
proved useful for deriving a detailed understanding of mechanisms and processes in can-
cer ([11, 17]) and have been used to propose new experiments, suggest different treatment
modalities and alter risk prognosis. The power of mathematical modelling lies in its abi-
lity to reveal previously unknown or counterintuitive physical principles that might have
been overlooked or missed by a qualitative approach to biology. As such, mathemati-
cal modelling can test theories on quantitative grounds. At its best, modelling provides
indispensable contributions to cancer research, making investigations quantitative and
predictive, and hypotheses falsifiable. Furthermore, it is also interesting try to control
the evolution of the tumor. The literature deals not only with cancer modeling, but it
also focuses on the question of cancer treatment protocols and how to optimize them. We
adress the interested reader to the book [52], Part III for an overview on cancer modeling
and Part IV on cancer treatment. The aim of this kind of research is not necessarily to
eradicate cancer, but to circumvent it, since it is more realistic try to contain the cancer
within admissible limits for long-term survival of patients with a good quality of life. An
important issue is the following: it has been observed that emergence of resistance to
cytotoxic drugs in cancer cell populations is common in most cancers [112] and is one of
the major pitfalls ecountered in oncology as it induces tumor recurrence in spite of the-
rapy and limits life expectancy. In fact, although technological progress in molecular cell
biology has resulted in large amounts of data documenting cancer progression, our un-
derstanding of the principles that underpin the development of resistance to anti-cancer
agents and the emergence of phenotypic heterogeneity in neoplastic cell populations is
filled with gaps and unresolved questions. For this reason, mathematical modelling can
help to address some of these gaps in our knowledge by capturing, in abstract terms, the
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crucial assumptions that underlie given hypotheses, and by offering alternative means
of understanding experimental results that are currently available. In this perspective,
in [75] Lorenzi et al. try to contribute to a systematic identification of the way in which
the phenotypic distribution, the level of intrapopulation heterogeneity and the size of
cancer cell populations depend on the rate of random epimutations, the strength of na-
tural selection, the intensity of the competition for resources, and the stress exerted by
cytotoxic agents. In [32] the interested reader can find a complete review on that topic.
Moreover Chisolm et al., focusing on intra-tumor heterogeneity, present mathematical
models used to predict drug resistance in cancer and optimal control methods that can
circumvent it in combined therapeutic strategies.

1.1. Contributions of this thesis

Chapter 3 is based on the idea that it can be interesting to obtain a local version of the DP
method around a reference trajectory to improve a sub-optimal strategy. The reference
trajectory can be obtained via the Pontryagin principle (with open-loop controls), via
a Model Predictive Control approach (using feedback sub-optimal controls) or simply
via the already known engineering experience. The application of DP in an appropriate
neighborhood of the reference trajectory will not guarantee the global optimality of
the new feedback control, but could improve the result within the given constraints.
In this chapter, we focus our attention on the coupling between the MPC approach
and the DP method. Although this coupling can be applied to rather general nonlinear
control problems governed by ordinary differential equations, we present the main ideas
of this approach using the infinite horizon optimal control, which is associated to the
Hamilton-Jacobi-Bellman equation (1.2). For numerical purposes, the equation is solved
in a bounded domain Ω ⊂ Rd, so that also boundary conditions on ∂Ω are needed. A
rather standard choice when one does not have additional information on the solution
is to impose state constraints boundary conditions. It is clear that the domain Ω should
be large enough in order to contain as much information as possible. In general it is
computed without any information about the optimal trajectory. Here we construct the
domain Ω around a reference trajectory obtained by a fast solution obtained via MPC.
In Chapter 4 we study an optimal control problem dealing with the dynamics given by
the level set equation for front propagation problems, which have many applications in
combustion, gas dynamics, fluid dynamics and image processing. The front propagation
problem has solutions that are just Lipschitz continuous since singularities and topology
changes in the front can appear during the evolution. Its solution must be understood in
the viscosity sense. This clearly introduces some technical difficulties and makes it more
complicated to construct the model reduction approximation based on the snapshots.
We will use a model reduction based on POD to obtain a rather accurate approximation
for the level-set dynamics in one dimension. To set the chapter into perspective, we want
to mention that the problem of solving the controlled level-set equation in dimension
one has been studied in [39], where the authors apply iterative descent methods for the
optimization. Starting from the results obtained in [40] for the uncontrolled dynamics,
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they prove the existence of optimal controls under different assumptions on the speed
function (which in their case is a function of space). Concerning the solution of the
control problem, they give a proof in a specific setting (see [39] for all the details).
The difference here is that the control is a general function of space and time and not
necessarily piecewise constant (as in [39]). Moreover in this chapter we apply the DP
approach in order to obtain an approximate feedback control. The drawback is that
since we are in a general setting both for the control and the profile we want to reach,
there is not a theoretical result ensuring that the controllability problem has a solution.
Moreover, we mention that in paper [55] the level set method is coupled to a Reduced
Basis model in order to derive a rigorous approximation of the admissible region for a
system characterized by several parameters.
In Chapter 6, we describe the evolution of cancer cells population through a phenotype-
structured PDE. We present the main features of the model and perform an analysis
under different assumptions on the cytotoxic drugs. Finallym, we formulate an optimal
control problem associated with the PDE. With the aim of reducing the density of the
tumor without increasing the resistance too much, we introduce an appropriate cost
functional. Simulation results show the effectiveness of the proposed approach.

1.2. Organization

Tha Manuscript is divided in two parts:

Part I is more theoretical and is devoted to the numerical approximation of
optimal control problem via HJB and MPC.

Chapter 2 contains some well known results on the theory of viscosity solu-
tions and the optimal control problem. In Section 2.1 the general theory and
the main results on the viscosity solution are presented. In Section 2.2 we
introduce the optimal control problem, the dynamic programming principle,
the algorithm for approximating the value function and an accelerated tech-
nique to speed up the convergence. Finally in section 2.3 we explain the MPC
algorithm and the main results on the stability, in particular how to compute
the prediction horizon which ensures the stability of the method.

Chapter 3 is organized as follows: in Section 3.1 we present the main fea-
tures of the new algorithm in which we couple the MPC algorithm with the
approximation of the value function via the solution of the Bellman equation.
In Section 3.2 we present some numerical tests to show the efficency of the
proposed algorithm.

Chapter 4 is organized as follows: in Section 4.1 we present the front pro-
pagation problem with the associated optimal control problem, in Section 4.2
we give the main features of the DP approach and we explain how to deal
with the model order reduction of the level set equation. Finally, in Section
4.3 we present some numerical tests which show the efficiency of the proposed
method.
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Part II is more applied and related to the development of optimal control strategy
to a specific biological model.

Chapter 5 is a general overview on the tumor models studied in recent years.
In Section 5.1 we present some ODE model describing the evolution of the
tumor growth and we give some properties and general results. Then, we
introduce the therapy and its effect in the models. Starting from a general
therapy, we switch to the models where the therapy is a control variable.
We explain how the modelization of the tumor growth can become an op-
timal control problem. We introduce the target and the cost functional and
finally we present some models. Section 5.2 is devoted to the presentation of
PDE models. After a general introduction, we present models with natural
selection, with natural selection and phenotypic variations and with natural
selection, phenotypic variations and random epimutations. Finally we will ex-
plain why dealing with optimal control problem of PDE is such a challenging
problem.

Chapter 6 is organized as follows: in Section 6.1 we present the model with
the parameters and we give some biological motivations behind this study. In
Section 6.2 we perform an analysis of the model in the absence of drugs and
under the action of a constant cytotoxic drug. Then, we generalize the results
presented in [75] in the case where the cytotoxic drug is a generic function of
time. Finally, in Section 6.3 we present an optimal control problem and we
show the results obtained with the numerical simulations.

1.2.1. Original material for this thesis

Let us briefly mention the original contributions contained in this thesis.
Chapter 3 is based on [3], to appear in Conference Proceedings of IFIP 2015.
Chapter 4 is based on the proceeding [4] submitted to Conference Proceedings of Model
Reduction of Parametrized Systems III (MoRePas III).
Chapter 6 is based on the paper [42], in preparation.



Parte I.

Numerical Methods for Optimal
Control Problems



2. Overview on numerical methods for
optimal control problems

The aim of this chapter is to present two standard techniques, Dynamic Programming
approach and Model Predictive Control, used to obtain control in feedback form as they
constitute the building blocks for our new algorithm proposed in Chapter 3. Moreover,
the first method together with an accelerated technique which speed up the convergence
of the algorithm is applied in the simulation of Chapter 4.

2.1. Viscosity solutions

Before introducing the optimal control problem, we introduce the notion of viscosity
solution of the Hamilton-Jacobi equation. Let us consider the equation

H(x,w(x), Dw(x)) = 0, x ∈ Ω (2.1)

where Ω ⊂ Rn is an open domain and the Hamiltonian H : Rn × R × Rn → R is a
continuous real valued function defined on Ω×R×Rn. The concept of viscosity solution
allows to obtain important existence and uniqueness results for some equations of the
form (2.1). It is well known that this equation is in general not well-posed. It is possible to
show several examples in which no classical, e.g. C1(Ω), solution exists, but infinite weak
solutions exists. The simplest example is the following 1-dimensional eikonal equation
with a Dirichlet boundary condition{

|Dw(x)| = 1, x ∈ (−1, 1)
w(x) = 0, x = ±1

(2.2)

We can find infinite multiple solution (see Figure (2.1) ).

Figura 2.1.: Some solutions satisfying the equation (2.1)

From the necessity to choose an unique solution among all the possibles, the theory of
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viscosity solutions was developed. In fact, it gives a criteria to select the correct physical
solution. Let us recall the two definitions of viscosity solution:

Definition 2.1 A continuous function w is a viscosity solution of the (HJ) equation if
the follwing conditions are satisfied:

i) H(x,w(x), p) ≤ 0 for all x ∈ Rn, for all p ∈ D+w(x) (viscosity subsolution )

ii) H(x,w(x), q) ≥ 0 for all x ∈ Rn, for all q ∈ D−w(x) (viscosity supersolution)
where D−, D+ are super and sub-differential, i.e.

D+u(x) =

{
p ∈ Rn : lim sup

y→x

w(y)− w(x)− p · (y − x)

|y − x|
≤ 0

}

D−u(x) =

{
q ∈ Rn : lim inf

y→x

w(y)− w(x)− p · (y − x)

|y − x|
≥ 0

}
.

Definition 2.2 A continuous function w is a viscosity solution of the equation (2.1) if
the following conditions are satisfied:

i) for any test function ϕ ∈ C1(Ω), if x0 ∈ Ω is a local maximum point for w − ϕ,
then

H(x0, w(x0), Dϕ(x0)) ≤ 0 (viscosity subsolution)

ii) for any test function ϕ ∈ C1(Ω), if x0 ∈ Ω is a local minimum point for w − ϕ,
then

H(x0, w(x0), Dϕ(x0)) ≥ 0 (viscosity supersolution)

In addition, the viscosity solution w may be characterized as the uniform limit for ε→ 0
(that is limε→0+ w

ε = w) of the classical solution wε of the regularized problem

−ε∆wε +H(x,wε, Dwε) = 0, x ∈ Ω.

The terminology “viscosity” solutions comes from the term −ε∆w that corresponds to
the viscosity term in fluid dynamics. This method of vanishing viscosity was presented
in [36] by Crandall and Lions. The main issue is to prove the uniqueness of the viscosity
solution, this is done via a comparison principle.

Theorem 2.1 Let Ω be a bounded open subset of Rn. Assume that w1, w2 ∈ C(Ω) are
respectively a viscosity sub- and a supersolution for

w(x) +H(x,Dw(x)) = 0, x ∈ Ω (2.3)

and
w1 ≤ w2 on ∂Ω (2.4)

Assume also that H satisfies

|H(x, p)−H(y, p)| ≤ ω1(|x− y|(1 + |p|)), (2.5)
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for x, y ∈ Ω, p ∈ Rn, where ω1(·) is a modulus of continuity (i.e. ω : [0,+∞)→ [0,+∞)
is continuous non decreasing with ω(0)=0). Then, w1 ≤ w2 in Ω.

Theorem 2.2 Assume that w1, w2 ∈ C(Rn) ∩  L∞(Rn) are, respectively, viscosity sub
and supersolution of

w(x) +H(x,Dw(x)) = 0, x ∈ Rn (2.6)

Assume also that H satisfies (2.5) and

|H(x, p)−H(y, q)| ≤ ω2(|p− q|), for all x, p, q ∈ Rn, (2.7)

where ω2 is a modulus. Then w1 ≤ w2 in Rn.

Remark 2.1 Theorem 2.2 can be generalized to cover the case of a general unbounded
open set Ω ⊂ Rn. Moreover, the assumption w1, w2 ∈ C(Rn) ∩ L∞(Rn) can be replaced
by w1, w2 ∈ UC(Rn).

A comparison result can be formulated for the more general case

H(x,Dw(x)) = 0, x ∈ Ω (2.8)

only if we assume the convexity of H with respect to the p variable. This assumption is
crucial in many theoretical results.

Theorem 2.3 Let Ω be a bounded open subset of Rn. Assume that w1, w2 ∈ C(Ω) are,
respectively, viscosity sub- and supersolution of (2.8) with w1 ≤ w2 on ∂Ω. Assume also
that H satisfies (2.5) and the two following conditions:

1. p→ H(x, p) is convex on Rn for each x ∈ Ω;

2. there exists ϕ ∈ C(Ω)∩C1(Ω) such that ϕ ≤ w1 in Ω and supx∈Ω′ H(x,∇ϕ(x)) < 0,
for all Ω′ ⊂⊂ Ω.

Then w1 ≤ w2 in Ω.

2.1.1. The eikonal equation

The classical model problem for (2.8) is the eikonal equation of geometric optics

c(x)|DT (x)| = 1, x ∈ Ω (2.9)

Theorem 2.3 applies to the eikonal equation (2.9) whenever c(x) ∈ Lip(Ω) and it is
strictly positive. In fact, the second condition of theorem (2.3) is satisfied by taking
ϕ(x) ≡ minΩw1. It is easy to prove that the distance function from an arbitrary set
S ⊆ Rn, S 6= ∅ defined by

dS(x) = d(x, S) := inf
z∈S
|x− z| = min

z∈S
|x− z| (2.10)
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is continuous in Rn. Moreover, for smooth ∂S, it is smooth near ∂S and satisfies in the
classical sense the equation (2.9) in Rn \ S for c(x) = 1.
For a general set S, it can be shown that the function dS is the unique viscosity solution
of

|Dw(x)| = 1, x ∈ Rn \ S (2.11)

Remark 2.2 If we consider the eikonal equation in the form |Dw(x)| = f(x), where f
is a function vanishing at last in a single point in Ω, then the uniqueness result does not
hold. This situation is referred to as degenerate eikonal equation. It can be proved that in
this case many viscosity or even classical solution may appear. Consider for example the
equation |w′| = 2|x| for x ∈ (−1, 1) complemented by Dirichlet boundary condition w = 0
at x = ±1. It is easy to see that w1(x) = x2 − 1 and w2(x) = 1 − x2 are both classical
solutions. The case of degenerate eikonal equations was been archieved by Camilli and
Siconolfi [26] and numerically by Camilli and Grüne in [25]

2.2. Optimal control problem and Dynamic Programming
Approach

We will present the main features and results, more details can be found in the origi-
nal papers and in some monographs, e.g. in the classical books by Bellman [16], Howard
[65] and for a more recent setting in framework of viscosity solutions in [27], [14] and [44].

Let the dynamics be given by{
ẏ(t) = f(y(t), u(t))
y(0) = x

(2.12)

where y ∈ Rn is the state variable, u(t) is the control signal, u ∈ U ≡ {u : R+ →
U, measurable} and U is a compact subset of Rm. If f : Rn×U → Rn is continuous with
respect to (x, u) and Lipschitz continuous with respect to the state variable, i.e. there
exists a constant Cf > 0 such that

|f(y1, u)− f(y2, u)| ≤ Cf |y1 − y2| for all y1, y2 ∈ Rn, u ∈ U

the classical assumptions for the existence and uniqueness result for the Cauchy problem
(2.12) are satisfied. To be more precise, the Carathéodory theorem (see [14] or [51]) im-
plies that for any given control u(·) ∈ U , there exists a unique trajectory denotated by
yx(t;u(·)) satisfying (2.12) almost everywhere. Changing the control policy, the trajec-
tory will change and we will have a family of infinitely many solutions of the controlled
system (2.12) parametrized with respect to u.
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2.2.1. Infinite horizon problem

Let us first present the method for the classical infinite horizon problem. Let us introduce
the cost functional J : U → R which will be used to select the ’optimal trajectory’. For
infinite horizon problem the functional is

Jx(u(·)) =

∫ ∞
0

L(yx(s), u(s))e−λsds , (2.13)

where L is Lipschitz continuous in both arguments and λ > 0 is a given parameter. The
function L represents the running cost and λ ∈ R+ is the discount factor allowing to
compare the costs at different times rescaling with the costs at time 0. From the technical
point of view, the presence of the discount factor guarantees that the integral is finite
whenever L is bounded, i.e. ||L||∞ ≤ ML. The goal of optimal control theory is to find
an optimal pair (y∗, u∗) which minimizes the cost functional. The starting point of the
Dynamic Programming is to introduce an auxiliary function, the value function which,
in the case of infinite horizon problem, is defined as

v(x) = inf
u(·)∈U

Jx(u(·)) . (2.14)

Once we compute the value function, the optimal control is defined as

u∗(·) = arg min
u(·)∈U

Jx(u(·))

Proposition 2.1 (Dynamic programming principle) Under the assumption of
Caratheodory theorem for all x ∈ R and τ > 0 the value function satisfies:

v(x) = inf
u∈U

∫ τ

0

{
L(yx(s;u), u(s))e−λsds+ e−λτv(yx(τ ;u))

}
It is well known that passing to the limit in the Dynamic Programming Principle (DPP),
one can obtain a characterization of the value function in terms of the following first
order non linear Bellman equation

λv(x) + max
u∈U
{−f(x, u) ·Dv(x)− L(x, u)} = 0, for x ∈ Rn . (2.15)

Several approximation schemes on a fixed grid G have been proposed for (2.15). He-
re, we will use a semi-Lagrangian approximation based on a Discrete Time Dynamic
Programming Principle. This leads to

v∆t(x) = min
u∈U
{e−λ∆tv∆t (x+ ∆tf (x, u)) + ∆tL (x, u)} , (2.16)

where v∆t(x) converges to v(x) when ∆t→ 0. A natural way to solve (2.16) is to write
it in fixed point form (see [44] for more details) as in the following algorithm:
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Algorithm 1: Value Iteration for infinite horizon optimal control (VI)

Data: Mesh G, ∆t, initial guess V 0, tolerance ε.

while ||V k+1 − V k|| ≥ ε do
forall the xi ∈ G do

V k+1
i = min

u∈U
{e−λ∆tI

[
V k
]

(xi + ∆tf (xi, u)) + ∆tL (xi, u)} (2.17)

end
k = k + 1

end

Here V k
i represents the values at a node xi of the grid at the k-th iteration and I is

an interpolation operator acting on the values of the grid; without loss of generality, we
will assume that the numerical grid G is a regular equidistant array of points with mesh
spacing denoted by ∆x, and we consider a multilinear interpolation operator. Extensions
to nonuniform grids and high-order interpolants can be performed in a straightforward
manner.
Algorithm 1 is referred in the literature as the value iteration method because, starting
from an initial guess V 0, it modifies the values on the grid according to the nonlinear
rule (2.17). It is well-known that the convergence of the value iteration can be very slow,
since the contraction constant e−λ∆t is close to 1 when ∆t is close to 0. This means that
a higher accuracy will also require more iterations. For this reason, there is a need for
an acceleration technique in order to cut the link between accuracy and complexity of
the value iteration.

2.2.2. Minimum time problem

For sake of clarity, the above framework has been presented for the infinite horizon
optimal control problem. However, similar ideas can be extended to other classical control
problems with small changes. Let us present how to deal with the minimum time problem.
In the minimum time problem one has to drive the controlled dynamical system (2.12)
from its initial state to a given target T . Let us assume that the target is a compact subset
of Rn with non empty interior and piecewise smooth boundary. The major difficulty
dealing with this problem is that the time of arrival to the target starting from the point
x

tx(u(·)) :=

{
inf
u∈U
{t ∈ R+ : y(t, u(·)) ∈ T } if y(t, u(t)) ∈ T for some t,

+∞ otherwise,
(2.18)

can be infinite at some points. As a consequence, the minimum time function defined as

T (x) = inf
u∈U

tx(u(·)) (2.19)

is not defined everywhere if some controllability assumptions are not introduced. In
general, this is a free boundary problem where one has to determine at the same time,
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the couple (T,Ω), i.e. the minimum time function and its domain.

Definition 2.3 The reachable set is R := {x ∈ Rn : T (x) < +∞} i.e., it is the set of
starting points from which it is possible to reach the target.

We remark that the reachable set depends on the target, the dynamics and on the set
of admissible controls and it is not a datum in our problem.

Proposition 2.2 For all x ∈ R, 0 ≤ t < T (x), so that x /∈ T , the value function
satisfies

T (x) = inf
u(·)∈U

{t+ T (y(t;u(·)))}. (2.20)

Let us derive formally the Hamilton-Jacobi-Bellman equation associated to the minimum
time problem from the DPP. We rewrite the equation (2.20)

T (x)− inf
u(·)∈U

T (y(t;u(·))) = t

and divide by t > 0

sup
u(·)∈U

{
T (x)− T (y(t;u(·)))

t

}
= 1 for all t < T (x).

We want to pass the limit as t→ 0+. Assume that T is differentiable at x and limt→0+

commutes with supu(·) . Then, if ẏ(0;u(·)) exists,

sup
u(·)∈U

{−Dt(x) · ẏ(0;u(·))} = 1

so that, if u(0) = u0, we get

max
u0∈U
{−DT (x) · f(x, u0)} = 1. (2.21)

We remark that in the equation (2.21) the maximum is taken over U and not on the set
of measurable controls U .

Proposition 2.3 If R \ T is open and T ∈ C(R \ T ), then T is a viscosity solution of

max
u∈U
{−f(x, u) · ∇T (x)} − 1 = 0 x ∈ R \ T . (2.22)

Natural boundary conditions associated to the equation (2.21) are{
T (x) = 0 x ∈ ∂T
limx→∂R T (x) = +∞ (2.23)
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In order to achieve uniqueness of the viscosity solution of equation (2.22) is useful an
exponential transformation named Kruzkhov transform

v(x) ≡
{

1− exp(−T (x)) for T (x) < +∞
1 for T (x) = +∞ (2.24)

Formally it easy to check that if T is a solution of (2.22) then v is a solution of

v(x) + max
u∈U
{−f(x, u) ·Dv(x)} = 1 (2.25)

The transformation has many advantages:

1. The equation for v has the form (2.3), so that we can apply the uniqueness result
already developed in this chapter.

2. v takes value in [0, 1] whereas T is generally unbounded (for example if f vanishes
in some points) and this helps in the numerical approximation.

3. The domain in which the equation has to be solved is no more unknown.

4. It is always possible to reconstruct T and R from v by relations

T (x) = − ln(1− v(x)), R = x : v(x) < 1.

Proposition 2.4 v is the unique viscosity solution of{
v(x) + sup

u∈U
{−f(x, u) ·Dv(x)} = 1 in R\T

v(x) = 0 on ∂T .
(2.26)

Then, the application of the semi-Lagrangian method presented for the infinite horizon
optimal control problem together with a value iteration procedure, leads to following
iterative scheme:

Algorithm 2: Value Iteration for minimum time optimal control (VI)

Data: Mesh G, ∆t, initial guess V 0, tolerance ε.

while ||V k+1 − V k|| ≥ ε do
forall the xi ∈ G do

V k+1
i = min

u∈U
{e−∆tI

[
V k
]

(xi + ∆tf (xi, u)) + 1− e−∆t} (2.27)

end
k = k + 1

end

The numerical implementation is closed with the boundary conditions v(x) = 0 at ∂T
(and inside the target as well), and with v(x) = 1 at other points outside the compu-
tational domain (we refer the reader to [13] for more details on the approximation of
minimum time problems).
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2.2.3. Accelerated policy iteration algorithm

As we mentioned, there are some techniques for speed-up the convergence of the algori-
thms presented above. A more efficient formulation of the (VI) algorithm is the so-called
policy iteration algorithm (PI), which starting from an initial guess u0

i of the control at
every node, performs the following iterative procedure:

[V k]i = e−λ∆tI1[V k](xi + ∆tf(xi, u
k
i )) + hL(xi, u

k
i )

[uk+1]i = argmin
u∈U

{e−λ∆tI1[V k](xi + ∆tf(xi, u)) + ∆tL(xi, u)},

where we first have to solve a linear system, since we freeze the control, in order to
find the value function corresponding to the given control and then update the control.
We iterate until convergence to the value function. The PI algorithm has a quadratic
convergence provided a good initial guess is given and its convergence is only local (as
for the Newton method), so there is a need for good initialization. In order to provide a
smart initial guess for the algorithm, it was proposed in [5] an acceleration mechanism
based on a (VI) solution on a coarse grid, which is used to generate an initial guess
for (PI) on the fine grid (see Algorithm 3). The proposed coupling aims at efficiency
and robustness. We remark that in Chapter 4 we adopt the Accelerated Policy Iteration
method (shortly API) for the approximation of the HJB equation.

Algorithm 3: Accelerated Policy Iteration (API)

Data: Coarse mesh Gc, ∆tc, fine mesh Gf and ∆tf , initial coarse guess V 0
c ,

coarse-mesh tolerance εc, fine-mesh tolerance εf .

begin
Coarse-mesh value iteration step: perform Algorithm 1
Input: Gc,∆tc, V

0
c , εc

Output: V ∗c
begin

forall the xi ∈ Gf do

V 0
f (xi) = I1[V ∗c ](xi)

U0
f (xi) = argminu∈U{e−λ∆tI1[V 0

f ](xi + f(xi, u)) + ∆tL(x, u)}
end
Fine-mesh policy iteration step: perform Algorithm 3
Input: Gf ,∆tf , V

0
f , U

0
f , εf

Output: V ∗f
end

2.3. The NMPC approximation

Nonlinear model predictive control (NMPC) is an optimization based method for the
feedback control of nonlinear systems. It consists in solving iteratively a finite horizon
open loop optimal control problem subject to system dynamics and constraints involving
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states and controls.
Let us consider the controlled system:{

ẏ(t) = f(y(t), u(t))

y(0) = y0
(2.28)

where y ∈ Y ⊆ Rn and u ∈ U are the set of admissible control already defined in the
previous section. We want to select a control u ∈ U such that the associated trajectory
defined as y[u,t0,y0] follows a given desired state y as good as possible. This problem
is known as tracking problem and if y = 0 holds, a stabilization problem. The aim is
to find control in feedback form, i.e. we want to determine a mapping µ : Y → U
with u(t) = µ(y(tn)) for t ∈ [tn, tn + 1]. We want to solve the following infinite horizon
problem:

min
u∈U

=

∫ ∞
t0

L(y[u,t0,y0], u(t))dt

with a quadratic running cost:

L(y, u) = (‖y − y‖2 + γ‖u‖2)

Note that, here, we are not dealing with a discount factor. The standard MPC is often
presented in without it. Let us denote µ : Y → U the feedback law we want to find, if
we insert µ in (2.28), we obtain the closed loop system:{

ẏ(t) = f(y(t), µ(y(t))) for t ∈ (tn, tn+1] and n = 0, 1, ...

y(0) = y0
(2.29)

The infinite horizon problem is computationally unfeasible, therefore we fix an horizon
length N and we solve a sequence of finite horizon problems. In order to formulate
the algorithm, we need to introduce the finite horizon quadratic cost functional in the
following way; we set y0 ∈ Y , u ∈ U

JNy0 (u(·)) =

∫ tN0

t0

L(y[u,t0,y0], u(t))e−λtdt

where N is a natural number, tN0 = t0 +N∆t is the final time, N∆t denotes the length
of the prediction horizon for the chosen time step ∆t > 0. We also define the set of
admissible control:

U N := {u ∈ UN |u ∈ U}

with UN ⊆ RN , with N ∈ N fixed. The method works as follows: in each iteration over
n we store the optimal control on the first time interval [tn, tn+1] and the associated
optimal trajectory of the sampling time. Then, we initialize a new finite horizon optimal
control problem whose initial condition is given by the optimal trajectory y[µN (y0),t0,y0]

at [t0 + ∆t] using the optimal control u(t) = µN (y0) and we iterate this process.
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Algorithm 4: NMPC Algorithm

1: Data: fix a time step ∆t > 0, a finite horizon N ∈ N, a weighted parameter λ > 0
2: for n = 0, 1, 2, . . . do
3: Measure the current state y(tn) ∈ Y of the system at tn = n∆t.
4: Set t0 = tn = n∆t, y0 := y(tn) and compute the open-loop solution of

min JNy0 (u) s.t. u ∈ U N (2.30)

We denote the obtained optimal control by u∗n
5: Define the NMPC feedback value µN (y(tn)) := u∗n(tn),
6: Compute the associated state yn = y[un,t0,y0] by solving (2.30) in the next

sampling period [t0, t0 + ∆t]
7: end for

In general, one can obtain a better feedback approximation increasing the prediction
horizon, but this will of course make the CPU time grow. Typically, one is interested
in short prediction horizons (or even horizon of minimal length), which can guarantee
stabilization properties of the MPC scheme. The problem is that when the horizon N
is too short we will loose these properties (see [58] Example 6.26). In the following, we
will recall estimates on the minimum value for N ensuring asympotitic stability based
on the relaxed dynamic programming principle. The interested reader can find all the
details and proofs in [58] and the references therein.

Dynamic Programming and Asymptotic stability

First of all, let us introduce the value function for an infinite horizon optimal control
problem:

v∞(y0) := inf
u(·)∈U

J∞y0 (u).

Let N ∈ N be chosen. For any k ∈ {0, ..., N} the value function v satisfies the dynamic
programming principle:

v(y0) = inf
u∈U k(t0)

{∫ t0+k∆t

t0

L(y[u,t0,y0])(t), u(t))dt

}
+ v(y[u,t0,y0](t0 + k∆t)).

In the same way we define the value function for the finite horizon problem in the
following way:

vN (y0) = inf
u(·)∈U N

JNy0 (u).

The value function vN satisfies the DPP for the finite horizon problem for t0 + k∆t,
0 < k < N :

vN (y0) = = inf
u∈U k(t0)

{∫ t0+k∆t

t0

L(y[u,t0,y0](t), u(t))dt+ vN (y[u,t0,y0](t0 + k∆t))

}
.
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To introduce the concept of asymptotic stability of an equilibrium, we have to define
a special class of functions:

Definition 2.4 We define the following classes of comparison functions:

K :=
{
α : R+

0 → R+
0 |α is continuous, strictly increasing and β(0) = 0

}
,

K∞ :=
{
α : R+

0 → R+
0 |α ∈ K, α unbounded

}
,

L :=
{
α : R+

0 → R+
0 |α is continuous, strictly decreasing, limt→∞ α(t) = 0

}
,

KL :=
{
β : R+

0 × R+
0 → R+

0 |β is continuous, β(·, t) ∈ K, β(r, ·) ∈ L
}

Definition 2.5 Let u be the solution of (2.29) and y∗ an equilibrium for (2.29), i.e. it
states f(y∗, µ(y∗)) = 0. Then, we say that y∗ is locally asymptotically stable if there
exists a constant η > 0 and a function β ∈ KL such that the inequality

‖y[µ(·),t0,y0](t)− y∗‖ ≤ β(‖y0 − y∗‖, t) (2.31)

holds for y0 ∈ Y satisfying
‖y0 − y∗‖ < η

and t ≥ t0. In (2.31) we denote by y[µ(·),t0,y0] the solution to (2.29).

Thanks to the DPP and the comparison functions in Definition 2.4, we are able to
prove the following result (see [58]):

Proposition 2.5 We consider the prediction horizon N ∈ N and the feedback mapping
µN computed by means of the Algorithm 1. Let us assume there exists an αN ∈ (0, 1]
such that for all (t0, y0) ∈ R+

0 × Y the relaxed DPP inequality holds:

vN (y0) ≥ vN (t0 + ∆t, y[µN (y0),t0,y0](t0 + ∆t)) + αL(y0, µ
N (y0)) (2.32)

Moreover, we have for all (t0, y0) ∈ R+
0 × Y :

αv(y0) ≤ αJNy0 (µN (y0)) ≤ vN (y0) ≤ v(y0), (2.33)

where y[µN (y0),t0,y0] solves the closed-loop dynamics (2.29) with µ = µN . If, moreover,
there exists an equilibrium y∗ ∈ Y and α2, α3 ∈ K∞ such that the inequalities

L∗(y0) = min
u∈U

L(y0, u) ≥ α1(‖y0 − y∗‖),

α2(‖y0 − y∗‖) ≥ vN (y0)

holds for all (t0, y0) ∈ R+
0 × Y , then y∗ is a globally asymptotically stable equilibrium

for (2.29) with the feedback map µ = µN and value function vN .

We now present a result which tells how to choose the prediction horizon in order to
guarantee the stabilization of the problem. The computation of the constant α in (2.32)
plays a crucial role. We first require the following controllability property of the system:
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Definition 2.6 We call the system (2.28) exponentially controllable with respect to the
runninc cost L, if for each (t0, y0) ∈ R+

0 ×H there exists constants C ≥ 0 and σ ∈ [0, 1)
and an admissible control u ∈ U such that

L(y[u,t0,y0](t), u(t)) ≤ Cσt−t0L∗(y0) a.e. t ≥ t0. (2.34)

Thanks to this definition, we can compute α in (2.32) as suggested by the following
theorem:

Theorem 2.4 Assume that the system (2.28) and L satisfy the controllability contition
(2.34) and let the optimization horizon N be given. Then, the suboptimality degree αN

from (2.32) is given by:

αN := α = 1−
(γN − 1)

∏N
i=2(γi − 1)∏N

i=2 γi −
∏N
i=2(γi − 1)

(2.35)

with γi = C
1− σi

1− σ
.

As a consequence of Theorem 2.4, the closed loop system is asymptotically stable and
the sub-optimality estimate (2.33) holds whenever α is positive. The minimal horizon
that guarantees stability is the smallest N ∈ N with αN > 0.



3. Coupling MPC and DP methods in
optimal control problems.

In this chapter we study the approximation of optimal control problems via the solu-
tion of a Hamilton-Jacobi equation in a tube around a reference trajectory obtained by
solving a Model Predictive Control problem. The coupling between the two methods is
introduced to improve the initial local solution and to reduce the computational comple-
xity of the Dynamic Programming algorithm. We present some features of the method
and show the results obtained via this technique showing that it can produce an im-
provement with respect to the two uncoupled methods. The main results on Dynamic
Programming and Model Predictive Control are summarized in Chapter 2, so in the
following we will start presenting the novelty of the coupling of the two methods.

3.1. Coupling MPC with Bellman Equation

The idea behind the coupling is to combine the advantages from both methods. The
Dynamic Programming approach is global and gives an information on the value function
in a domain, provided we solve the Bellman equation. It gives the feedback synthesis in
the whole domain. Model Predictive control is local and gives an approximate feedback
control just for a single initial condition. Clearly MPC is faster, but does not give the
same amount of information.
In many real situations, we need a control to improve the solution around a reference
trajectory, yx(·), starting at x so we can reduce the domain to a neighborhood of yx(·).
Now, let us assume that we are interested in the approximation of feedbacks for an
optimal control problem given the initial condition x. First of all we have to select a
(possibly small) domain where we are going to compute the approximate value function
and to this end we need to compute a first guess that we will use as reference trajectory.

MPC can provide quickly a reasonable reference trajectory yx(·) := yMPC(·), but this
trajectory is not guaranteed to be globally optimal (or have the required stabilization
properties). In our approach, we can choose a rather short prediction horizon in order
to have a fast approximation of the initial guess. This will not give the final feedback
synthesis, but will be just used to build the domain Ωρ, where we are going to apply the
DP approach. It is clear that MPC may provide inaccurate solutions if N is too short,
but its rough information about the trajectory yMPC will be later compensated by the
knowledge of the value function obtained by solving the Bellman equation. We construct
a domain Ωρ as a tube of radius ρ around yMPC defining

Ωρ := {x ∈ Ω : dist(x, yMPC) ≤ ρ} (3.1)
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This tube can be actually computed via the eikonal equation, i.e., solving the Dirichlet
problem

|∇v(x)| = 1, x ∈ RN\T , with v(x) = 0, x ∈ T , (3.2)

where the target is T := {yMPC(t), t ∈ [0, T ]}. We just want to mention that for this
problem several fast methods are available (e.g. Fast Marching [115] and Fast Sweeping
[125] ) so this step can be solved very efficiently. The interested reader can find in [47]
many details on numerical approximation of the weak solutions to the eikonal equation.

By solving the eikonal equation (3.2) (in the viscosity sense), we obtain the distance
function from the target. Then, we choose a radius ρ > 0 in order to build the tube Ωρ.
In this way the domain of the HJB is not built by scratch but taking into account some
information on the controlled system. To localize the solution in the tube we impose sta-
te constraints boundary conditions on ∂Ωρ, penalizing in the scheme (2.17) the points
outside the domain. It is clear that a larger ρ will allow for a better approximation of
the value function, but at the same time, enlarging ρ we will lose the localization around
the trajectory, increasing the number of nodes (and the CPU time). Finally, we compute
the optimal feedback from the value function computed and the corresponding optimal
trajectories in Ωρ. The algorithm is summarized below:

Algorithm 5: Localized DP algorithm (LDP)

1: Start: Initialization
2: Step 1: Solve MPC and compute yMPC

x starting at x
3: Step 2: Compute the distance from yMPC

x via the Eikonal equation
4: Step 3: Select the tube Ωρ of radius ρ centered at yMPC

x

5: Step 4: Compute the constrained value function vtube in Ωρ via HJB
6: Step 5: Compute the optimal feedbacks and trajectory using vtube

7: End

3.2. Numerical tests

In this section we present some numerical tests both for the infinite horizon problem and
the minimum time problem to illustrate the performances of the proposed algorithm.
However, the localization procedure can be applied to more general optimal control
problems.
All the numerical simulations have been realized on a MacBook Pro with 1 CPU Intel
Core i5 2.4 GHz and 8GB RAM. The codes used for the simulations are written in
Matlab.

Test 1: 2D Linear Dynamics Let us consider the following controlled dynamics:{
ẏ(t) = u(t) t ∈ [0, T ]
y(0) = x

(3.3)
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where u = (u1, u2) is the control, y : [0, T ] → R2 is the dynamic and x is the initial
condition. The cost functional we want to minimize is:

Jx(u) :=

∫ ∞
0

min{|y(t;u)− P |2, |y(t;u)−Q|2 − 2} e−λt dt (3.4)

where λ > 0 is the discount factor.
In this example, the running cost has two local minima in P and Q. We set P := (0, 0)
and Q := (2, 2) so that the value of the running cost is 0 at P and −2 at Q. Note
that we have included a discount factor λ, which guarantees the integrability of the cost
functional Jx(u) and the existence and uniqueness of the viscosity solution. The main
task of the discount factor is to penalize long prediction horizons. Since we want to make
a comparison, we introduce it also in the setting of MPC, although this is not a standard
choice. As we mentioned, MPC will just provide a first guess used to define the domain
where we solve the HJB equation.
In this test the chosen parameters are: u ∈ [−1, 1]2, ρ = 0.2, Ω = [−4, 6]2, ∆tMPC =
0.05 = ∆tHJB, ∆xHJB = 0.025, ∆τ = 0.01 (the time step to integrate the trajectories).
In particular, we focus on λ = 0.1 and λ = 1. The number of controls are 212 for the value
function and 32 for the trajectories. Note that the time step used in the HJB approach
for the approximation of the trajectory (∆τ) is smaller than the one used for MPC:
this is because MPC leads to have a rough and quick approximation of the solution.
In Figure 3.1, we show the results of MPC with λ = 0.1 on the left and λ = 1 on the
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Figura 3.1.: Test 1: MPC solver with λ = 0.1 (left) and λ = 1 (right)

right. As one can see, none of them is an accurate solution. In the first case, the solution
goes to the local minimum (0, 0) and is trapped there, whereas when we increase λ, the
optimal solution does not stop at the global minimum y2. On the other hand, these two
approximations help us to localize the behavior of the optimal solution in order to apply
the Bellman equation in a reference domain Ωρ.
In Figure 3.2, we show the contour lines of the value function in the whole interval Ω
for λ = 1 and the corresponding value function in Ωρ. Finally, the optimal trajectories
for λ = 1 are shown in Figure 3.3. In the right part of the figure we propose the optimal
solution obtained by the approximation of the value function in Ω whereas, on the left,
we can see the first approximation of the MPC solver (red line), the tube (purple lines)
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Figura 3.2.: Test 1: Contour lines of the value function in the tube Ωρ (left) and in Ω
(right).

and the optimal solution via Bellman equation (blu line). As we can see in the pictures,
the solutions provided from the DP approach in Ω and Ωρ are able to reach the global
desired minimum y2. In Table 3.3, we present the CPU time and the evaluation of the
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Figura 3.3.: Test 1: Optimal trajectory via MPC (red line) and via HJB (blu line) in the
tube (purple lines) (left), optimal trajectory via HJB in Ω (right).

λ = 1 MPC N=5 HJB in Ωρ HJB in Ω

CPU 16s 239s 638s

Jx(u) 5.41 5.33 5.3

Tabella 3.3.: A comparison of CPU time (seconds) and values of the cost functional.

cost functional for different tests. As far as the CPU time is concerned, in the fourth
column we show the global time needed to get the approximation of the value function
in the whole domain and the time to obtain the optimal trajectory, whereas the third
column shows the global time needed to compute all the steps of LDP algorithm: the
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trajectory obtained via MPC, the computation of the tube, the computation of the value
function in the reduced domain and the computation of the optimal trajectory. As we
expected, the value of the cost functional is lower when we compute the value function
in the whole domain (because Ωρ ⊂ Ω). It is important to note that the approximation
in Ωρ guarantees a reduction of the CPU time of the 62.5%.

Test 2: Infinite Horizon Problem for the Van der Pol dynamics. In this test we
consider the two-dimensional nonlinear system dynamics given by the Van Der Pol
oscillator: 

ẋ(t) = y(t)
ẏ(t) = (1− x(t)2)y(t)− x(t) + u(t)
x(0) = x0, y(0) = y0.

(3.5)

The cost functional we want to minimize with respect to u is:

Jx(u) :=

∫ ∞
0

(x2 + y2)e−λt dt. (3.6)

We are dealing with a standard tracking problem where the state we want to reach is
the origin. The chosen parameters are: λ = {0.1, 1}, u ∈ [−1, 1], ρ = 0.4, Ω = [−6, 6]2,
∆tMPC = 0.05 = ∆tHJB, ∆xHJB = 0.025, ∆τ = 0.01, x0 = −3, y0 = 2. We took 21
controls for the approximation of the value function and 3 for the optimal trajectory.
In Figure 3.4, we present the optimal trajectory: on the right, the one obtained solving
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Figura 3.4.: Test 2: Optimal trajectory via MPC (red line) and via HJB (blu line) in the
tube Ωρ (left) and in Ω (right) for λ = 0.1.

the HJB equation in the whole domain, on the left, the one obtained applying the LDP
algorithm.
In Table 3.4 we present the CPU time and the evaluation of the cost functional with
λ = 0.1 and λ = 1. In both case we can observe that the algorithm we propose is faster
than solving HJB in the whole domain and the cost functional provides a value that
improves the one obtained with the MPC algorithm.
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λ = 0.1 MPC N=10 HJB in Ωρ HJB in Ω

CPU 79s 155s 228s

Jx(u) 14.31 13.13 12.41

λ = 1 MPC N=10 HJB in Ωρ HJB in Ω

CPU 23s 49s 63s

Jx(u) 6.45 6.09 6.07

Tabella 3.4.: Test 2: A comparison of CPU time (seconds) and values of the cost
functional for λ = {0.1, 1}.

Test 3: Minimum Time Problem for the Van Der Pol dynamics We consider again
the dynamics given by (3.5). In this test we are dealing with a minimum time problem
where the target is a neighborhood of the origin. It is well-known that the minimum
time problem is tricky to solve via MPC. We try to improve its solution by adding a
running cost which penalizes the distance from the desired target. This will turn out to
be absolutely relevant for the MPC solver, and as a consequence in the algorithm we
propose. The cost functional we want to minimize is:

Jx(u) :=

∫ ∞
0

L(x(t), y(t), u(t))χT (t) dt (3.7)

with T = Bε(0), ε = 0.1, and the running cost is

L(x, y, u) = (x2 + y2)e−λt.

We remark that dealing with the standard minimum time problem means to consider
L(x, y, u) ≡ 1.
In Figure 3.5 we show, on the left, the uncontrolled solution of equation (3.5) with
initial condition x = 3, y = 2. As we can see the solution is not going to the origin but
it provides the so called limit cycles. Our aim is to steer the solution close to the origin.
However, the uncontrolled solution may suggest the interval where we could compute
the value function: Ω ≡ [−4, 4] × [−4, 4] and it gives the optimal trajectory shown on
the right of Figure 3.5 via Bellman’s equation without running cost.
We can see in Table 3.5 that this approach is not very efficient. As we can see in the
middle of Figure 3.5, the MPC solver is not able to steer the solution close to the origin.
So we can get just a rough idea of the controlled solution leading a smaller interval for
HJB and we also need to consider the origin in the interval. In Table 3.5, we show the
efficiency of the LDP method. The cost functionals evaluated from the solution of HJB
provide the same value and both are lower than the one obtained by MPC.
In Figure 3.6 we show the value function in the whole domain on the left and the reduced
value function on the right.
Then, we switch to the minimum time problem with running cost. The running cost
helps the MPC solver to penalize solutions far from the target. The parameters chosen
for the simulations are: U = [−1, 1], ρ = 0.4,Ω = [−6, 6]2, x = 3, y = 2,∆tMPC =
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Figura 3.5.: Test 3 (without running cost): Uncontrolled solution (left), optimal
trajectory via MPC (middle), optimal trajectory via HJB (right).

MPC N=5 HJB in Ωρ HJB in Ω

CPU 3.19s 11.82s 12.74s

Jx(u) 1.02 1 1

Tabella 3.5.: Test 3 (without running cost): A comparison of CPU time (seconds) and
values of the cost functional.
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Figura 3.6.: Test 3 (without running cost): Contour lines of the value function in a tube
(left), and in a full domain (right).



3.2 Numerical tests 32

0.05 = ∆tHJB,∆xHJB = 0.025,∆τ = 0.01, λ = {0.1, 1}. We took 21 controls for the
approximation of the value function and 3 for the optimal trajectory. In Figure 3.7, we
show the contour lines of the value function obtained solving the HJB equation in the
full domain and in a reduced domain with two different parameters λ.
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Figura 3.7.: Test 3 (with running cost): Contour lines of the value function in a tube
(left), and in a full domain (right), with λ = 0.1 (top), and λ = 1 (bottom)

In Figure 3.8, we present the optimal trajectories. We see how the MPC solver is able
to reach the target when we provide the running cost with an additional term that takes
into account the distance from the desired point. In Figure 3.2 we show the contour lines
of the distance function from the target, which is a crucial point of our algorithm.

Finally, in Table 3.9, we present the evaluation of the cost functional and CPU time.
In both cases λ = 0.1 and λ = 1, the approximation in the reduced domain is faster
than the approximation of HJB in the full domain. We want to emphasize that the MPC
solver, with a running cost, provides reasonable values of the cost functional, which is
definitely improved thanks to Bellman’s equation.
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MPC & HJB TRAJECTORY IN THE TUBE
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Figura 3.8.: Test 3 (with running cost): Left: Optimal trajectory via MPC (red) and via
HJB (blue) in a tube (purple) on the left, optimal trajectory via HJB in the
chosen full domain (right) with λ = 0.1(top) and λ = 1 (bottom)
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λ = 0.1 MPC N=20 HJB in Ωρ HJB in Ω

CPU 34s 58s 169s

Jx(u) 19.84 19.73 19.43

λ = 1 MPC N=20 HJB in Ωρ HJB in Ω

CPU 51s 67s 80s

Jx(u) 8.52 8.2 8.19

Tabella 3.9.: Test 3 (with running cost): CPU time and evaluation of the cost functional
with λ = 0.1 and λ = 1.

Test 4: Zermelo navigation problem We consider the minimum time problem for the
Zermelo dynamics, which is given by:{

ẋ(t) = 1 + Vb cos(u)
ẏ(t) = Vb sin(u)

(3.8)

where Vb ∈ R. As we discussed in the previous example, we add a running cost penali-
zing the distance from the target in order to help the MPC solver. Therefore, the cost
functional we want to minimize is:

Jx(u) :=

∫ ∞
0

L(x, y, u)χT (t) dt (3.9)

with T = Bε(0), ε = 0.2, running cost

L(x, y, u) = (x2 + y2)e−λt

In our simulations we fix λ = 0.1 and we focus our attention on two different values of
Vb, Vb = {0.6, 1.4}. The parameters chosen are: U = [−π, π], ρ = 0.4,Ω = [−2, 2]2, x0 −
1, y0 = −0.5,∆tMPC = 0.05 = ∆tHJB,∆xHJB = 0.04,∆τ = 0.01. We took 72 controls
for the approximation of the value function and the same for the optimal trajectory.
In Figure 3.10 we show the optimal trajectory obtained via HJB in the full domain as
well as the countour lines for two different choices of Vb.
In Figure 3.11 we show the trajectory obtained solving the HJB equation in a tube
built around the MPC trajectory (left). Note that the radius of the tube is quite big
(ρ = 0.4) as if we take a smaller ρ the target will not be in the tube; as a consequence,
the trajectory would never be able to reach it. In the middle we show the contour lines
of the value function in the reduced domain. On the right we can see the contour lines
obtained solving the eikonal equation where the target is the trajectory given by MPC
(this is an important step of our algorithm in order to build the tube).

Finally, we present the results of our simulation in the Table 3.11. Note that in both
cases (Vb = 0.6 and Vb = 1.4) the algorithm we propose is faster than solving HJB in
the full domain (it takes less than half of the time); concerning the evaluation of the
cost functional, the value we obtain applying the LDP algorithm is lower than the one
obtained with the MPC solver and it is close to the value obtained solving HJB in the
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Figura 3.10.: Test 4: optimal trajectory via HJB (top: left Vb = 0.6, right Vb = 1.4),
contour lines in the full domain (bottom, left Vb = 0.6, right Vb = 1.4 )
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full domain.

Vb = 0.6 MPC HJB in Ωρ HJB in Ω

CPU 1.36s 11.15s 24.47s

Jx(u) 0.35 0.34 0.34

Vb = 1.4 MPC HJB in Ωρ HJB in Ω

CPU 0.92s 6.39s 17.61s

Jx(u) 0.23 0.2 0.2

Tabella 3.11.: Test 5 CPU time and evaluation of the cost functional with λ = 0.1 and
Vb = {0.6, 1.4}



4. A HJB-POD approach to the control of
the level set equation

In this chapter we consider an optimal control problem where the dynamics is given
by the propagation of a one-dimensional graph controlled by its normal speed. A target
corresponding to the final configuration of the front is given and we want to minimize the
cost to reach the target. We want to solve this optimal control problem via the dynamic
programming approach, but it is well known that these methods suffer from the “curse
of dimensionality”, so that we can not apply the method to the semi-discrete version of
the dynamical system. However, this is made possible by a reduced-order model for the
level set equation based on Proper Orthogonal Decomposition. This results in a new low-
dimensional dynamical system that is sufficient to track the dynamics. By the numerical
solution of the Hamilton-Jacobi-Bellman equation related to the POD approximation,
we can compute the feedback law and the corresponding optimal trajectory for the
nonlinear front propagation problem. We discuss some numerical issues of this approach
and present numerical examples.

4.1. A front propagation problem with target

Let us first introduce our problem, the interested reader is referred to [95] for more
details on the topic. The dynamics will describe the front propagation of an interface via
the level-set equation in Rn. The typical situation is the following: an initial position for
the front Γ(0) = Γ0 (i.e., an initial surface in Rn) is given and the front evolves driven by
a force always directed in the normal direction to every point of the front. The velocity
in the normal direction will be denoted by VΓ and the scalar speed a(x, t) must keep
the same sign during the evolution (let us choose the positive sign to fix ideas). Note
that in the general case the speed can also depend on the position x and the time t,
although also the case of a piecewise constant speed is interesting (and we will use it in
the sequel). To summarize, we will have in general

VΓ = a(x, t), a : Rn × R+ → R+. (4.1)

The initial configuration of the front is

Γ(0) = Γ0 (4.2)

and Γ0 can be a single closed curve or the union of many finite closed curves without
intersections. The evolutive equation describes the propagation of the front Γ(t) in time.
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This problem can produce singularities for a single smooth curve Γ0 even in the particular
case of a constant speed. It is well known that a powerful method to track this evolution,
even when one has singularities and topology changes (e.g., when the front Γ(t) starting
from Γ0 can produce intersections at time t), is the level set method. In this case one
describes Γ(t) as the 0-level set of a continuous function solving the Cauchy problem{

Φt(x, t) + a(x, t)|∇Φ(x, t)| = 0 in Rn × R+

Φ(x, 0) = Φ0(x) in Rn (4.3)

where Φ0 is a representation function for Γ0 (i.e., a continuous function changing sign
across Γ0) and a(x, t) is assumed to be known. By solving (4.3), one can obtain Φ(x, t)
and recover the position of the front Γ(t) as

Γ(t) := {x ∈ Rn : Φ(x, t) = 0}. (4.4)

The Cauchy problem (4.3) has a unique viscosity solution under rather general assump-
tions (see [15]).
Since here we just want to describe our technique, we will consider the evolution of a
graph, i.e., the dimension will be n = 1 and we look for the front

Γ(t) := {(x, y(x, t))|x ∈ R} ⊂ R2.

In this particular case the dynamics will be given by{
yt = a(x, t)

√
1 + y2

x, (x, t) ∈ R× [0, T ],
y(x, 0) = y0(x), x ∈ R. (4.5)

Many numerical schemes have been proposed so far to solve the level set equation (4.5).
In particular we refer to [115] for monotone and consistent schemes based on finite
difference approximation and to [47] for semi-Lagrangian schemes. In the present work,
we will adopt an explicit finite difference scheme. We closely follow the scheme used in
[40]; we choose space and time steps, ∆x and ∆t respectively and let

xj = j∆x, j ∈ Z, tn = n∆t, 0 ≤ n ≤ N,

where N∆t = T . We denote by ynj the numerical approximation of y(xj , tn). We approxi-

mate the solution of equation (4.5) using the following up-wind scheme: let y0
j = y0(xj),

j ∈ Z and for n = 0, ..., N − 1

yn+1
j = ynj + ∆t a(xj , tn)

√
1 + max

{(
ynj−1 − ynj

∆x
,
ynj+1 − ynj

∆x

)}2

j ∈ Z.

Let us remark that we must work on a bounded interval Ω := (a, b) for numerical purpo-
ses. Then, the grid will have only a finite number of nodes a = x0 < x1 < . . . < xd = b
and, in order to give enough freedom to the front evolution, we impose homogeneous
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zero Neumann boundary conditions (see [115] for more details on the implementation).
Let us introduce the control problem for the front propagation. Now the speed function

a(x, t) will not be fixed, but will be our control function that we can vary in order to steer
the solution as close as possible to a particular desired configuration of the front, e.g.,
our target denoted by ȳ. In this framework, the speed a(x, t) will be denoted as u(x, t),
adopting the classical notation for control problems. In conclusion, we have a control
problem for a first order nonlinear partial differential equation of Hamilton-Jacobi type,
which can develop singularities during the evolution. This is known to be a difficult
problem for the lack of regularity of the solution. Note that another important issue is
the reachability of the target: we are not aware of any theoretical result which ensure
us that the target is reachable in finite time, so it is natural to set the problem as an
infinite horizon problem. We will use the corresponding cost functional with a quadratic
running cost in order to penalize the distance from the target:

Jp(y0, u(t)) =

∫ ∞
0
‖y(x, t)− ȳ‖2pχȳ(x)e−λtdt, (4.6)

where y(x, t) is the solution of (4.5), ε is a positive parameter and

χȳ(x) =

{
1 if ‖y(x, t)− ȳ‖p > ε
0 otherwise.

(4.7)

Note that there is a strong dependence of the cost function from the initial condition
y0(x) and from the norm of the running cost p. In fact, we want to solve an infinite
horizon optimal control problem with a running cost which penalizes the distance in
Lp-norm (where p = 1, 2,∞) from our target which is a stripe of radius ε centered in
the profile we want to reach ȳ. For a given time t > 0 and Ω = [a, b] ⊂ R we define the
L∞-error as

||y(x, t)− ȳ||∞ := max
x∈Ω
|y(x, t)− ȳ|

and the Lp-error (p = 1, 2) as

||y(x, t)− ȳ||p :=

(∫
Ω
|y(x, t)− ȳ|pdx

) 1
p

.

Let us also observe that the characteristic function (4.7) makes the costs vanish whenever
we enter a neighborhood of the target. The reachability of the target is an interesting
open problem which we will not address even in the numerical examples the neighborhood
is always reachable.
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4.2. An HJB-POD method for the control of the level-set
equation

Since the main features of the dynamic programming principle are presented in Chapter
2, here we just recall the main features of Proper Orthogonal Decomposition (POD)
and we explain the coupling of the two methods. The interested reader can found more
details in [73, 6].
We just mention that we are dealing with an optimal control problem of the form:

min
u∈U

J(y0, u(t)) :=

∞∫
0

L(y(s), u(s)) e−λs ds (4.8)

constrained by the nonlinear ordinary differential equation:{
ẏ(t) = f(y(t), u(t)), t > 0,
y(0) = y0

(4.9)

with system dynamics in Rn and a control signal u(t) ∈ U ≡ {u(·) measurable , u :
[0, T ] → U}, where U is a compact subset of Rm; we assume λ > 0, while L(·, ·) and
f(·, ·) are Lipschitz-continuous, bounded functions. We address the reader to the Chapter
2 for all the details on the discretization and the numerical approximation. Finally, let
us observe that our optimal control problem fits into the general framework if we define
in (4.8) and (4.9), respectively:

L(y(t), u(t)) := ‖y(t)− ȳ‖2pχȳ

f(ynj , u) := u(xi, t)

√
1 + max

{(
ynj−1 − ynj

∆x
,
ynj+1 − ynj

∆x

)}2

4.2.1. POD approximation of the control problem

In this section, we explain the POD method for the approximate solution of the optimal
control problem. The approach is based on projecting the nonlinear dynamics onto a low
dimensional manifold utilizing projectors which contain information of the dynamics. A
common approach in this framework is based on the snapshot form of POD proposed in
[118], which works as follows.
The snapshots are computed by the numerical approximation of (4.9) for y(ti) ∈ Rn for
given time instances and a reference control. Its choice turns out to be very important
in order to build accurate surrogate model and may provide basis functions which are
not able to capture the desired dynamics.
We define the POD ansatz of order ` for the state y as

y(t) ≈ ȳ +
∑̀
i=1

y`i (t)ψi . (4.10)
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where ȳ ∈ Rn is our target. We define the snapshot matrix Y = [y(t0)− ȳ, . . . , y(tn)− ȳ]
and determine its singular value decomposition Y = WΣV . The POD basis functions
Ψ = {ψi}`i=1 of rank ` are the first ` columns of the matrix W . The reduced optimal
control problem is obtained through replacing (4.9) by a dynamical system obtained from
a Galerkin approximation with basis functions {ψi}`i=1 and ansatz (4.10) for the state.
This leads to an `−dimensional system for the unknown coefficients {y`i}`i=1, namely

ẏ`(t) = ΨT f(Ψy`, u(t)), y`(0) = y`0. (4.11)

where y`0 = ΨT (y0 − ȳ) ∈ R`. The error of the Galerkin projection is governed by the
singular values associated to the truncated states of the singular value decomposition
(SVD).
The POD-Galerkin approximation leads to the optimization problem

inf
u∈U

J `
y`0

(u) :=

∫ ∞
0

L(y`(s), u(s))e−λs ds, (4.12)

where u ∈ U , y` solves the reduced dynamics (4.11) . The value function v`, defined for
the initial state y`0 ∈ R` is given by

v`(y`0) = inf
u∈U

J `
y`0

(u) .

Note that the resulting HJB equations are defined in R`, but for computational purpo-
ses we need to restrict our numerical domain to a bounded subset of R`. We refer the
interested reader to [2] for details on this issue.

4.3. Numerical tests

In this section we describe our numerical tests. The aim is to drive an initial front
profile to a desired final configuration that will be our target (no final time is given). We
compute the snapshots with an initial guess for the control inputs. We remark that it is
rather crucial to obtain snapshots simulating the desired trajectory. In the current work,
we could observe the sensitivity of the surrogate model with respect to the choice of the
initial input. However, we found very helpful to enrich the snapshot set with the desired
configuration ȳ. A study of basis generation in this framework may be found in [7]. To
apply model order reduction we assume that the control may be rewritten as follows:

u(x, t) :=
M∑
i=1

ui(t)bi(x) (4.13)

where ui : [0,+∞] → U are the control inputs, M is the finite number of control
functions used to reconstruct u(x, t) and the coefficients bi : Rn → R are the so-called
shape functions, which model the actions that we can apply to the system governed by
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the model. The dynamics is given by (4.5) and we performed the simulations choosing
different norms in the cost functional in (4.6).
To show the effectiveness of the method we compute the error in different norms between
the final configuration of the front and the given target. We define the error as follows:

Ep = ‖yf (x)− ȳ‖p, p = 1, 2,∞ (4.14)

where we denote yf (x) the final configuration of the front. All the numerical simulations
have been realized on a MacBook Pro with 1 CPU Intel Core i5 2.4 GHz and 8GB RAM.
The codes used for the simulations are written in Matlab.

4.3.1. Test 1: Constant final configuration

In this test we choose the initial profile y0(x) = 1+
cos(2π(1− x))

2
in (4.5) with x ∈ [0, 1].

We want to steer the front toward the target ȳ(x) = 2.5. We compute the snapsho-
ts with a finite difference explicit scheme with a space step ∆x = 0.05, time step
∆t = 0.01 and a given input u(x, t) = 0.42e−(x−0.5)2 . The shape functions in (4.13)
are b1(x) = y0(x), b2(x) = e−(x−0.5)2 and the control set is U = [−2, 2]. In this test the
chosen parameters for the value function are: ∆x = 0.1, ε = 0.01, λ = 1, ` = 5,∆τ = 0.01
(the time step to integrate the trajectories). The set U is discretized into 9 equidistant
elements for the value function and 21 for the trajectories.
In the left panel of Figure 4.1 we show the controlled evolution of the front. We can
observe that the final configuration of the front is in a neighborhood of the desired confi-
guration. In the right panel of Figure 4.1 we compare the controlled front’s configuration,
obtained with the L2−norm with the target and the uncontrolled front.
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Figura 4.1.: Test 1: evolution of the controlled front in the phase-plane with the target
(left), final controlled and uncontrolled front profile with the target (right)
with p = 2.
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Figure 4.2 shows the same comparison where the optimal configuration is computed with
L1 and L∞− norm. Although the classical choice for the norm in the cost functional is
p = 2, we obtain better results for p = 1. We also consider p =∞.
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Figura 4.2.: Test 1: Final controlled and uncontrolled front’s profile and target using the
norm p = 1 (left) and the norm p =∞ (right).

p = 1 p = 2 p =∞
Ep 0.0214 0.0584 0.0949

Jp(y0, u) 0.3326 0.3185 0.5832

Tabella 4.2.: Test 1: Error between final and desired configuration and evaluation of the
cost functional for ε = 0.01

In Table 4.2 we compute the quantity Ep to evaluate the distance between the control-
led final configuration and the desired one in different norms. We also evaluate the cost
functional with different choices of p. It turns out that the norm with p = 1 provides
the most accurate final configuration, whereas the norm p = 2 has lower value of the
cost functional. We note that the evaluation of the cost functional takes into account
the whole history of the trajectories and not just the final configuration.

4.3.2. Test 2: Constant initial configuration

In this test we choose a constant initial profile y0(x) ≡ 0 in (4.5) with x ∈ [−1, 1].
The target is ȳ(x) = 0.2 + e−(x−0.5)2 . We compute the snapshots with a finite difference
explicit scheme with a space step ∆x = 0.05, time step ∆t = 0.01 and velocity u(x, t) =
0.2 + e−(x−0.5)2 .
In this test the parameters for the value function are: ∆x = 0.1, ε = 0.01, λ = 1, U ≡
[0, 2], b(x) = 0.2+e−(x−0.5)2 , ` = 4,∆τ = 0.01 (the time step to integrate the trajectories).
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The number of controls are 11 for the value function and 21 for the trajectories.
In Figure 4.3 we show the evolution of the controlled front where the final profile is steered
close to the target. For the sake of completeness we also show the optimal control in
Figure 4.4.
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Figura 4.3.: Test 2: evolution of the front in the phase-plane with the target (left), final
controlled and uncontrolled front’s profile with the target (right) with p = 2.
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Figura 4.4.: Test 2: evolution of HJB-POD control in time u(t) (left), evolution of hjb-
pod control u(x, t) (right)

As explained in Test 1, we perform the simulations using different norms in the cost
functional (p = 1, 2,∞). Table 4.4 shows the distance between the controlled solution
and the desired configuration and the evaluation of the cost functional. Here, we can see
that the choice of p = 2 in the norm for the cost functional provides the most accurate
final configuration, whereas p =∞ provides a lower value for the cost functional.
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p = 1 p = 2 p =∞
Ep 0.0526 0.0439 0.0617

Jp(y0, u) 0.2561 0.2562 0.2218

Tabella 4.4.: Test 2: Error between final and desired configuration and evaluation of the
cost functional for ε = 0.01

4.4. Test 3: A non-regular target

Here we consider a final configuration which is not-regular. Let us define the target as:

ȳ(x) =

{
x x > 0
0 x ≤ 0.

The constant initial profile is y0(x) ≡ 0 in (4.5) with x ∈ [−1, 1]. We compute the
snapshots with a finite difference explicit scheme with a space step ∆x = 0.05, time step
∆t = 0.01 and velocity u(x, t) = 0χx≤0 + xχx>0.
In this test the parameters for the value function are: ∆x = 0.1, ε = 0.01, λ = 1, U ≡
[0, 3], b(x) = 0χx≤0 + xχx>0 (shape function), ` = 4 (POD basis’s rank) ∆τ = 0.01 (the
time step to integrate the trajectories). The number of controls are 21 for the value
function and for the trajectories. In Figure 4.5 we show the evolution of the controlled
front where the final profile is steered close to the target. We also show the optimal
control in Figure 4.6.
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Figura 4.5.: Test 3: evolution of the front in the phase-plane with the target (left), final
controlled and uncontrolled front’s profile with the target (right) with p = 2.

In Table 4.6, as we did for the previous tests, we show the distance between the
controlled solution and the desired configuration and the evaluation of the cost functional
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Figura 4.6.: Test 3: evolution of HJB-POD control in time u(t) (left), evolution of hjb-
pod control u(x, t) (right)

for different choices of the norm in the cost functional. Despite the non-regularity of the
target, we obtain satisfactory results. Here, we can see that the choice of p = 1 in the
norm for the cost functional provides the most accurate final configuration, whereas both
p = 1 and p = 2 provide a lower value for the cost functional.

p = 1 p = 2 p =∞
Ep 0.0367 0.0419 0.0699

Jp(y0, u) 0.0537 0.0537 0.1496

Tabella 4.6.: Error between final and desired configuration and evaluation of the cost
functional for ε = 0.01

4.4.1. Test 4: A discountinuous target

Here we consider a final configuration which is less regular than the one presented before,
since we have a jump. To this end, let us define

ȳ(x) := C1χ[a,x](x) + C2χ[x,b](x). (4.15)

The constant initial profile is y0(x) ≡ 0 in (4.5) with x ∈ [0, 1]. We compute the snapshots
with a finite difference explicit scheme with a space step ∆x = 0.05, time step ∆t = 0.01
and velocity u(x, t) = C1χ[0,x] + C2χ[x,1], with C1 = 0.5, C2 = 0.8.x = 0.5.
In this test the parameters for the value function are: ∆x = 0.1, ε = 0.01, λ = 1, U ≡
[0, 3], b1(x) = χ[0,x], b2 = χ[x,1] (shape functions), ` = 4 (POD basis’s rank) ∆τ = 0.01
(the time step to integrate the trajectories). The number of controls are 16 for the value
function and 31 for the trajectories.
In Figure 4.7 we show the evolution of the controlled front where the final profile is
steered close to the target with p = 2.
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Figura 4.7.: Test 4: evoultion of the front in the phase-plane with the target (left), final
controlled and uncontrolled front’s profile with the target (right) with p = 2.

Then, the results with p = 1,+∞ are displayed in Figure 4.8.
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Figura 4.8.: Test 4: Final controlled and uncontrolled front’s profile and target using the
norm p = 1 (left) and the norm p =∞ (right).

Finally, in Figure 4.9 we also show the optimal control.

An analysis of the distance between the controlled and desired configuration is pro-
vided in Table 4.9. In this example, we can see that the norm with p = 2 provides the
most accurate solution for the final configuration and the cost functional.
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Figura 4.9.: Test 4: evolution of hjb-pod control in time u(t) (left), evolution of hjb-pod
control u(x, t) (right).

p = 1 p = 2 p =∞
Ep 0.0256 0.011 0.0218

Jp(y0, u) 0.0382 0.0366 0.0568

Tabella 4.9.: Test 4: Error between final and desired configuration and evaluation of the
cost functional with ε = 0.01.

4.4.2. Test 5: Experiments with uniform noise

In this test we deal with the two dynamics considered in Test 1 and Test 2 and we add
noise to the optimal trajectory. Our goal is to show the efficiency of the feedback control,
which is able to steer the solution to the target under some perturbations of the system.
We remark that the value function in both cases is stored from the system without
perturbation, but the reconstruction of the feedback control is affected by uniform noise
η(x) between [−1, 1] in every sampling time instances. In both cases we can observe that
even under some disturbances, the feedback control is almost able to steer the solution
to the target. As we did for the previous cases we computed the error tables for the tests
with uniform noise (Table 4.10). If we compare the results obtained in this case with the
results of Table (4.2 4.4) we can observe that the error and the evaluation of the cost
functional are quite close despite the introduction of the noise.
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Figura 4.10.: Optimal HJB-POD state for Test 1 with |η(x)| ≤ 0.5% at every 10 time
step and for Test 2 with |η(x)| ≤ 1% in every time step.

p = 1 p = 2 p =∞
Ep 0.0374 0.1095 0.2425

Jp(y0, u) 0.3388 0.3296 0.5897

Tabella 4.10.: Test 5: Error between final and desired configuration with different norms
for Test 1 with noise |η(x)| ≤ 0.5% at every 10 time step.

p = 1 p = 2 p =∞
Ep 0.1078 0.0861 0.1559

Jp(y0, u) 0.2550 0.2578 0.2274

Tabella 4.10.: Test 5:Error between final and desired configuration and evaluation of the
cost functional with ε = 0.01 for Test 2 with noise |η(x)| ≤ 1% in every
time step.
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Optimal Control in Biology



5. Overview of mathematical models for
evolutionary dynamics in cancer cell
populations

The evolutionary dynamics of cancer cell populations and their interaction with thera-
peutic agents are complex biological processes, which can be described in mathematical
terms by means of different modelling approaches. The type of model depends on the
representation scale which is selected. At the microscopic scale, cells in the population
are seen as single individuals whose dynamics can be described in mathematical terms
through the algorithmic rules of individual-based (IB) models. On the contrary, at the
macroscopic scale, the cell population is seen as a whole and, in the absence of any spatial
structure, the dynamics of observable quantities can be described in terms of ordinary
differential equations (ODEs). Due to the very large number of biological elements at
play in cancer cell populations, dealing with single individuals, as at the microscopic
scale, can be mathematically unwieldy. On the other hand, the macroscopic description
hides a number of relevant cell properties. Such limitations can be overcome by observing
the dynamics of cell populations at the mesoscopic scale. At this scale, the state of the
whole population is characterized by a suitable function, or a set of functions, descri-
bing the distribution of cells over the microscopic states, and macroscopic quantities are
naturally recovered as successive moments of these functions. Models at the mesoscopic
scale are stated in terms of partial differential equations (PDEs), where even integral
terms can be included, which describe the evolution of this function, or these functions,
on the basis of microscopic interactions. In this chapter we will provide a short summary
of ODE models (Section 5.1) and PDE models (Section 5.2) that have been developed
in the last years to study the evolutionary dynamics of cancer cell populations.

5.1. ODE Models

The first models of tumor growth were developed to reproduce and explain experimen-
tally observed tumor growth curves and they are based on birth and death processes.
These kinds of phenomena are described by general Lotka-Volterra equations

d

dt
N(t) = N(t)

(
b(t)− d(t)

)
, N(0) = N0, (5.1)

where N(t) represents the total population density of cells, b(t) is the birth rate and d(t)
the death rate. Access to nutrients and space availability control cell proliferation and
death. For this reason, b and d are usually taken as nonlinear functions of N , leading to
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the equation
d

dt
N(t) = N(t)R

(
N(t)

)
(5.2)

where R is the mass growth rate. Indicating by r > 0 the intrinsic birth rate in condition
where nutrients and space are avalaible without limitations, R satisfies one of the two
following conditions:

R(0) = r > 0, R′(·) < 0, R(N)→ 0 as N →∞ (unlimited growth)

R(0) = r > 0, R′(·) < 0, R(K) = 0 for some K > 0 (maximal tumor size).

Several nonlinearities are proposed in the literature which satisfies one of these two
conditions. The most common ones are the logistic growth, where

R(N) = r

[
1−

(
N

K

)a]
, a > 0, K > 0

and the Gompertz law

R(N) = b ln

(
N

K

)
, 0 < N(0) < K. (5.3)

These models take into account the possibile limitation of growth due to a lack of space
resources, assuming that the instantaneous growth rate 1

N
dN
dt depends on the carrying

capacity of the environment K. Indipendently from the non-linearity appearing in R(·),
it can be proven that the solutions of (5.1) are always monotonic. With these types of
models, all cells are duplicating. This behavior is not realistic, since observations show
that most of the cells are in a quiescent state and only a part of them is in proliferative
state. Transitions between these two states depend on various environmental conditions
such as space availability and nutrients. Starting from this observation, we distinguish
between two states of cells: proliferative and quiescent. This leads to write the following
model:


Ṗ = F (P )− bP + cQ (proliferative cells)

Q̇ = bP − cQ− dQ (quiescent cells)

(5.4)

with, for instance, a logistic growth

F (P ) = rP

(
1−

(
P

K

)a)
. (5.5)

The size of the tumor is defined as

N(t) = P (t) +Q(t).
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The coefficients b > 0 and c > 0 represent the transfer from one compartment to another
and d ≥ 0 is the death rate of quiescent cells. We remark that the dynamics (5.4)
preserves positivity, i.e.,

P 0 > 0, Q0 > 0 =⇒ P (t) > 0, Q(t) > 0 ∀t > 0.

Moreover the dynamics (5.4) is a “monotonic operator”, which means

Ṗ (t = 0) > 0, Q̇(t = 0) > 0⇒ Ṗ (t) > 0, Q̇(t) > 0 ∀t > 0.

An important observation is about the linear stability of the two steady states. In fact,
for d small, the non-zero steady state is linearly stable, i.e.

P = p0K, p0 =

(
1− bd

r(c+ d)

) 1
a

Q =
b

c+ d
P . (5.6)

The steady state (0, 0) is linearly unstable if r > b.
An important mathematical result concerning the global stability for this kind of ODE

system is the following.

Theorem 5.1 Assume d = 0. For P (0) ≥ 0, Q(0) ≥ 0 and (P (0), Q(0)) 6= (0, 0), the
solution of the system (5.4)-(5.5) satisfies

lim
t→∞

P (t) = K, lim
t→∞

Q(t) =
b

c
K.

The Gompertz law (5.3) for tumor growth has been extended in the angiogenesis fra-
mework by Hanfeldt et al. in [61]. They propose a two-variable model that includes a
variable “carrying capacity” depending on access to nutrient. They obtain the following
model: 

d

dt
N(t) = bN(t) ln

(
K(t)

N(t)

)
d

dt
K(t) = cN(t)− (dN(t)2/3)K(t)

(5.7)

where the term cN(t) takes into account the stimulation by VEGF (Vascular Endothelial
Growth Factors emitted by the necrotic cells) and the negative term takes into account
tumor surface vs tumor volume for the inhibition.
If we reduce the analysis to N > 0 and K > 0, the unique steady state is

N = K =

(
c

d

)3/2

Theorem 5.2 If N0 > 0 and K0 > 0, then for all times N(t) > 0 and K(t) > 0. and
(N(t),K(t))→ (N,K) as t→∞.
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The interested reader can find the proofs of the previous results in [101] and in the
reference therein.

5.1.1. ODE models with therapy

In this section we introduce the effects of the therapy in the model presented in the last
section, and we see how it acts on the evolution of the tumor. It is usual to consider that
the “effective concentration” of therapy c(t) that is infused in a tumor acts as a death
term. Using the equation (5.2), we can write

d

dt
N(t) = N(t)R

(
N(t)

)
− c(t)N(t), N(0) = N0 > 0. (5.8)

We define “bolus” a therapeutic protocol which consists in giving the highest possible
amount in a single dose and repeat injection in a periodic way

cbolus :=
∑
k≥0

δ(t− kT )CM ,

where CM is the maximum dose allowed, due to side effects on healthy tissues. If we
insert the bolus in our model, under suitable assumptions, we obtain the following

d

dt
N̄(t) = N̄(t)R(N̄(t)), N̄(0) = N0,

N(T+) = N(T−)e−CM

(5.9)

Theorem 5.3 Assume that R′(N) ≤ 0 in (5.8), then the bolus at time T (a certain
degradation/elimination time) is an optimal therapy.

Before introducing the therapy for the equation (5.4), we explain briefly which kind of
drugs we can administer to the patient. We make a distinction between cytotoxic and
cytostatic drugs, which acts differently on the cells. Cytotoxic drugs kill the proliferative
cells while cytostatic drugs just block proliferation. If we denote by ck and cb the con-
centration of cytotoxic and cytostatic drugs, a simple option for introducing the drug in
the model is the following:

Ṗ = F (P )− (b+ cb)P + cQ− ckP (proliferative cells)

Q̇ = (b+ cb)P − cQ− dQ (quiescent cells)

(5.10)

Choosing a = 1 to simplify the steady states (5.6), we observe that cytostatic drugs only
increase the value of b and decrease the proliferative compartment, but increasing the
number of quiescent cells. For d

r � 1, the total tumor size increases.
Cytotoxic drugs are always efficient because we find:

P̄ = K

(
1− ct

r
− bd

r(c+ d)

)
Q̄ =

b

c+ d
P̄ , N̄ = K

(
1− ct

r
− bd

r(c+ d)

)(
1 +

b

c+ d

)
.
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Finally, we remark that the ODE models assume large number of cells, the number
of tumor cells can decrease exponentially fast, but cannot vanish exactly. The interested
reader can find the proofs of the previous results in [101] and in the reference therein.

5.1.2. Optimal control for ODE models

After simulating the evolution of the disease and introducing the effects of treatment
in (5.10) another big challenge is to study the effects of the drugs in the model and
try to find the best way to administer the drugs minimizing an objective function.
Optimization of cancer treatments can be represented as an optimal control problem on
the controlled dynamical system. Before presenting some models, we will briefly discuss
how the effects of different types of treatment can be included and which is the cost
functional to minimize. Then, we will present examples of objective functions considered
in the literature on cancer treatment.

Possible therapies and drugs

The first distinction to be made is between the type of therapy: chemotherapy and im-
munotherapy. Immunotherapy is a treatment based on the stimulation of the ability
of the immune system to fight infection and disease. The therapy is thus any form of
treatment that uses the body’s natural abilities constituting the immune system to fight
infection and disease or protecting the body from some of the side effects of treatment.
On the other hand, chemotherapy is a category of cancer treatment that uses chemical
substances, especially one or more anti-cancer drugs (chemotherapeutic agents) that are
given as part of a standardized chemotherapy regimen. Focusing on the second kind of
therapy, we have already introduced the distinction between cytotoxic and cytostatic
drugs. Another important issue is how they enter in the dynamic of the tumor growth
and in which sense they affect the tumor growth. Once the drugs are introduced in the
system, their behavior can be modeled by a pharmacokinetics ODEs for their concentra-
tions. Sometimes their behavior can also be represented by spatial PDEs with boundary
conditions. In the framework of optimal control problems, there are also some constraints
that arise due to the administration of drugs:

• Toxicity constraints A crucial issue in cancer treatment is due to the fact that
drugs usually exert their effects not only on cancer cells, but also on healty cells.
Obviously a simple way to reduce the size of the tumor is to administer a high
dose of drug to the patient, who will consequently be exposed at high letal risk. To
overcome this problem the idea is to put some constraints on the amount of drugs
that can be delivered. We can set the upper bound on the maximum dose of drug
allowed per day or on the total amount of drugs, or even on both of them. The
drawback is that this kind of costraints does not take into account specificities of
the patient’s metabolism and response to the treatment. Often in chemotherapy
optimization protocols the bang-bang controls are very interesting. These kind of
controls are defined in a way that at each time we give either the minimum amount
of drugs allowed (i.e., zero) or the maximum.
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• Drug resistance Another big issue we have to deal with when we administer
drugs to the patient is the emergence of cells resistant to the treatment. A classi-
cal solution is to forbid too low drug concentrations that are supposed to create
environmental conditions favorable to the development of drug resistant cell popu-
lations without killing them. Assuming that there exists a resistant cell population
at the beginning of the treatment. Then, delivering high drug doses often pro-
duces the effect to kill all sensitive cells, giving a comparative fitness advantage
to resistant cells, that subsequently become very hard to eradicate. The following
strategy has been proposed at least in slowly developping cancers: trying to control
the tumor growth by killing just some cancer cells and letting enough of these drug
sensitive cancer cells to oppose by competition for space, the thriving resistant cells
that are supposed to be less fit.

Introduction of the target

An optimization problem consists in maximizing or minimizing a given real-valued ob-
jective function modeling the objective we want to reach. In the framework of cancer
treatment, the main purpose is to minimize the number of cancer cells. If we take into
account the number of cancer cells directly, the objective function is the value of the
coordinate of the state variable corresponding to the number of cancer cells at time T ,
where T can be fixed or controlled. We can also formulate the optimization problem as
the minimization of the asymptotic growth rate of the cancer cell population.

Many models are based on the Gompertz law (5.3). Murray [89, 90] considers a two
population Gompertz growth model with a loss term modeling the effect of the cytotoxic
drug. He considers both tumor and normal cells, and the drug acts with exactly the same
effectiveness on both normal and tumor cell populations. Murray’s aim is to minimize the
size of the tumor at the end of the treatment period maintaining a normal cell population
above a lower level as a limit of toxicity. What happens is that the optimal drug dose is
maximal at the beginning, so that the normal cell population is driven down to its lower
level, and then the drug level is chosen in order to mantain the normal cell population
there until the end of treatment. The number of tumor cells is always decreasing. In
[83], Martin develops an optimal control model of cancer chemotherapy, where the aim
is to reduce the size of the tumor after a fixed period of treatment has elapsed. Martin
imposes a constraint so that the tumour size must decrease at or faster than a specified
rate. What the author obtaines from the numerical simulations is that the best way of
reducing the size of the tumor after a fixed period, is to keep the rate of decrease of the
tumor size to a minimum initially and then give high-intensity treatment until the end
of the time.
Ledzewicz et al. give a big contribution in the field of optimal control of ODE cancer
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models. In [79], Ledzewicz et al. consider the following model:
Ṗ = −ξP ln

(
P

Q

)
− φPck

Q̇ = bQ2/3 − dQ4/3 − µQ− γcb − ηqck

(5.11)

where the coefficients φ, γ and η are non-negative constants that relate the dosages of
respective agents to their effectiveness and cb and ck represent, respectively, the doses
of anti-angiogenic drug and of cytotoxic drug. The optimal control problem considered
by Ledzewicz et al. consists in minimizing the tumor cell mass under constraints on the
amount of drug to be delivered. Mathematically, Ledzewicz et al. propose an optimal
control problem with free terminal time T and constraints that limit the quantities for
the agents to be given∫ T

0
cb(t)dt ≤ A and

∫ T

0
ck(t)dt ≤ B.

In [97], Panetta et al. propose the following model:{
Ṗ = (α− µ− η)P + βQ

Q̇ = µP − (β + γ)Q
(5.12)

where P represents the proliferative cell mass and Q the quiescent mass, the parameteres
are all constant positive and defined as follows: α is the proliferating growth rate, µ is the
transition rate from proliferating to resting, η is the natural decay of proliferating cells,
β is the transition rate from resting to proliferating, γ is the natural decay of resting
cells. Adding a drug-induced death term in the equation on cycling cells, Panetta et
al. investigated the effects on tumor growth of two kinds of periodic chemoterapies: a
pulsed one and a piecewise continuous one. Starting from this model, some authors have
determined optimal chemotherapy schedules [50, 78].
In [50], Fister et al. propose the following model:{

Ṗ = (α− η − µ− sc(t))P + βQ, P (0) = P0

Q̇ = µP − (γ + β)Q, Q(0) = Q0
(5.13)

where all the constants are the same defined for the previous model and s is the
effectiveness of the treatment. The cost functional to maximize is the following

J(c) =

∫ T

0

[
a(P +Q)− b

2
(1− c(t))2

]
dt, with a, b ∈ R+

The aim is to give as much drug as possible while not killing all healthy cells. Starting
from [50], Ledzewicz et al. add to the model a pharmacokinetic equation modeling the
time evolution of the drug’s concentration in the body/plasma. Ledzewicz et al. propose
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a bilinear system of the form

ċ = −(f + ug) + hu c(0) = 0,

where u is the drug dosage (u = 1 maximal dose and u = 0 denotes no treatment),
and f, g, h are positive constant parameters representing the dynamics for the drug
concentration c in the plasma. While Panetta et al. in [50] use a quadratic cost functional
to prove the existence and uniqueness of the control, Ledzewicz et al. [78], to be more
realistic from a modeling perspective, decide to use an objective cost that is linear in
the control:

J(c) = r1P (T ) + r2Q(T ) +

∫ T

0
[q1P (t) + q2Q(t) + bc(t)] dt,

with r1, r2, q1, q2 ∈ R+. They stress the fact that the choice of a quadratic control term
in the objective undermines the negative effects of the drug. In fact, for example half
of a dose is only measured as a quarter due to the prensence of the quadratic term
in the cost. Such an optimal solution will have the tendency to give partial doses of
the drug. Choosing a cost linear in the control does not provide such an incentive and
leads to a bang-bang control which means treatment protocols that alternate between
intervals when a full dose is given and intervals where no drugs are administered. In
this cost functional appears also a term that tries to keep the number of healty cells
high. Ledzewicz et al. also add a final term representing a weighted average of the total
bone marrow at the end of an assumed fixed therapy interval [0, T ], in such a way they
prevent that the bone marrow would be depleted too much towards the end of the
therapy interval. Since the aim of the chemotherapy is to kill cancer cells, they also want
to maximize the amount of drug given which acts against the maximization of bone
marrow cells.

5.2. PDE Models

During the last fifty years, partial differential equations for populations structured by
physiological traits have been extensively used to achieve a better understanding of a
wide range of ecological phenomena [100, 102]. These equations describe population dy-
namics in terms of the evolution of population densities across phenotypic spaces, and can
be derived from individual-based models through suitable asymptotic limits [30, 31, 33].
However, unlike IB models, which can be explored mainly through numerical simula-
tions only, PDEs for populations structured by physiological traits make it possible to
integrate numerical simulations with rigorous analysis, in order to achieve more robust
biological conclusions.
A growing body of evidence indicates that cancer progression at the cellular level is, in
essence, an evolutionary process [1, 41, 54, 69, 87, 93]. During cancer progression, no-
vel phenotypic variants emerge via heritable changes in gene expression. Subsequently,
phenotypic variants are subject to natural selection – they survive, reproduce, and die
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– under the action of the tumour microenvironment and anti-cancer agents. The scena-
rio is further complicated by cell-to-cell variability in gene expression, which gives rise
to phenotypic differences between cancer cells of the same population. This phenotypic
heterogeneity is a dynamic source of therapeutic resistance that needs to be accounted
for when investigating effective anti-cancer therapeutic protocols [84]. Novel phenotypic
variants in cancer cell populations originate mainly from mutations (i.e., genetic modifi-
cations). However, novel phenotypic variants can also emerge due to epimutations (i.e.,
heritable changes in gene expression that leave the sequence of bases in the DNA unal-
tered) [22, 53, 60, 91, 108]. For instance, recent experiments using fluorescent-activated
cell sorting have demonstrated that non-genetic instability mediated by fluctuating pro-
tein levels allows cancer cells to reversibly transition between different phenotypic sta-
tes [29, 103, 113]. Such non-genetic source of phenotypic variability has been increasingly
recognised as integral to the development of resistance to cytotoxic agents in cancer cell
populations [32, 66]. Moreover in the presence of the stress exerted by the drugs, cells
are led to “actively” modify their phenotype state through a stress induced phenotypic
variation in order to survive. For instance, in recent experiments on isogenetic cancer
cell lines, it was observed that exposure to high doses of anti-cancer drugs can induce
the emergence of a subpopulation of weakly-proliferative and drug-tolerant cells, that
displays markers associated with cancer stem cells. After a period of time, some of the
surviving cells were observed to change their phenotype to resume normal proliferation,
and eventually repopulate the sample.

5.2.1. Natural selection

First of all, we present a simple integro-differential model in which the effects of phe-
notypic variations are not included. We indicate with x ∈ Rd the cells phenotypic state
and with n(x, t) ≥ 0 the population density of cancer cells (i.e., the number of cells that
at time t are in the phenotypic state x), so that the total number of cells at time t is
computed as

ρ(t) =

∫
Rd

n(x, t) dx, (5.14)

while the average phenotypic state at time t is computed as

µ(t) =
1

ρ(t)

∫
Rd

x n(x, t) dx. (5.15)

The evolution of the cell population density n(x, t) is described by the following equation:

∂n

∂t
(x, t) = R (x, ρ(t), c(t))n(x, t)︸ ︷︷ ︸

natural selection

. (5.16)

Natural selection is driven by the function R
(
x, ρ(t), c(t)

)
, which represents the fitness

of cancer cells in the phenotypic state x at the time t, given the total number of cells
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ρ(t) and the concentration of cytotoxic drug c(t), and is defined as follows:

R
(
x, ρ(t), c(t)

)
:= p(x)− µρ(t)− k(x)c(t). (5.17)

Definition (5.17) relies on the idea that a higher total number of cells corresponds to less
avalaible resources. Therefore, we let cells inside the population die at rate µρ(t), where
the parameter µ > 0 models the rate of death due to intrapopulation competition. The
function p(x) stands for the net proliferation rate of cancer cells in the phenotypic state
x, while the function k(x) is the rate of death caused by the cytotoxic drug.

5.2.2. Natural selection and random phenotypic variations

To reduce biological complexity to its essence, we make the prima facie assumption that
random epimutations yield infinitesimally small phenotypic modifications. Therefore, we
model the effects of phenotypic variations through a diffusion operator. We consider the
following model:

∂n

∂t
(x, t) = R (x, ρ(t), c(t))n(x, t)︸ ︷︷ ︸

natural selection

+ β∆n(x, t)︸ ︷︷ ︸
random variations

. (5.18)

where the diffusion coefficient β > 0 stands for the rate of epimutation of cancer cells,
which is assumed to be constant. Focusing on a one-dimensional case and considering R
in the form (5.17), Lorenzi et al. [75] assume that the phenotypic state x = 1 corresponds
to the highest level of cytotoxic-drug resistance and let the function k be strictly convex
with minimum in x = 1. Furthermore, because the death rate of cancer cells will increase
as the concentration of the cytotoxic drug increases, the same authors assume that k is an
increasing function of c. On the other hand, under the assumption that the phenotypic
state x = 0 corresponds to the highest level of proliferative potential when there are
no cytotoxic drugs (i.e., when c(·) = 0), Lorenzi et al. let the function p be a strictly
concave function with maximum in x = 0. The convexity and concavity assumptions,
on p and k, respectively, lead naturally to smooth fitness landscapes which are close to
the approximate fitness landscapes inferred from experimental data through regression
techniques (see for instance, [96] and references therein). In the same paper the authors
demonstrate that higer doses of cytotoxic drugs reduce the size of cancer cell populations
at the cost of promoting the selection of more resistant phenotypic variants.

5.2.3. Natural selection, random and stressed induced phenotypic variations

In this section we present a class of models which takes into account also the effect of
stress induced variations through a drift term. Models belonging to this class read as:

∂n

∂t
(x, t) +∇ · [v(x, c(t))n(x, t)]︸ ︷︷ ︸

stress-induced variations

= R(x, ρ(t), c(t))n(x, t)︸ ︷︷ ︸
natural selection

+ β∆n(x, t)︸ ︷︷ ︸
random variations

. (5.19)
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where v represents the rate at which cells in the phenotypic state x undergo phenoty-
pic variations in response to the drug (i.e., v is the rate of stress induced phenotypic
variations). The dependence of v on the concentration of cytotoxic drugs c(t) accounts
for the fact that the rate of stress-induced phenotypic variations depends on the level of
stress exerted by the cells’ local environment. In fact, a higher concentration of drug will
exert more stress on the cell population, and will thus increase the rate of stress-induced
phenotypic variations. In [35], Chisholm et al. focus on a two-dimensional case and set
x = (x1, x2) with x1 being the normalized expression levels of the survival-potential and
x2 the proliferation-potential traits. The outcomes of the model suggest that selection,
random phenotypic variations, stress-induced variations and the interplay between these
mechanisms can push an actively proliferating cell population into a weakly-proliferative
phenotype, due to selection pressure and phenotypic fluctuations. Moreover, in the pa-
per the authors highlight how the transient appearance of the weakly proliferative and
drug-tolerant cells is related to the use of high-dose therapy.

5.2.4. Mathematical formalization of natural selection in cancer cell
populations

In the mathematical framework of equation (5.16), the dynamics of cancer cells in the
limit of many generations can be characterized by rescaling the time line with respect
to a small parameter ε > 0 to obtain

ε
∂nε
∂t

(x, t) = R(x, ρε(t), cε(t))nε(x, t) (5.20)

and then studying the behaviour of the population density nε(x, t) in the limit ε → 0.
Under the same time rescaling, noting that

- phenotypic variations are less frequent than proliferation and death events

- stress-induced phenotypic variations occur on a timescale which is faster than that
of random phenotypic variations,

equations (5.18) and (5.19) can be rewritten, respectivelly, as

ε
∂nε
∂t

(x, t) = R(x, ρε(t), cε(t))nε(x, t) + ε2∆nε(x, t) (5.21)

and

ε
∂nε
∂t

(x, t) + ε∇x · (v(x)nε(x, t)) = R(x, ρε(t), cε(t))nε(x, t) + ε2∆nε(x, t). (5.22)

In the case in which the concentration of cytotoxic drug is kept constant over time, say
cε(t) ≡ C with C ≥ 0, under assumptions which are biologically relevant, the solutions
of the above equations are expected to concentrate as sums of weighted Dirac masses
[34, 82]. From a biological point of view, the positions of the Dirac masses (i.e., the
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concentration points) can be understood as the fittest phenotypic states within the
cancer cell population, whilst the weights identify the proportions of cells in these states.
Therefore, analysing the evolution of the concentration points and the related weights
is equivalent to describing evolutionary dynamics. The mathematical interest lies in the
fact that it is far from obvious how the concentration points and the weights evolve. This
problem can be solved by using a Hamilton-Jacobi approach [34, 82], that is, recasting the
original problem in terms of a constrained Hamilton-Jacobi equation that characterizes
the dynamics of the concentration points and the related weights.

5.2.5. Optimal control for PDE models

We have seen that in the field of optimal control theory for ODE models a lot of theory
is available and in many cases an analytical study can be done, also for most of the
biological models. Unfortunately, when we switch to the PDE case things are much more
complicated. In general, solving optimization problems subject to constraints given in
terms of partial differential equations with additional constraints on the controls and/or
states is one of the most challenging problem in the context of industrial, medical and
economical applications. In recent years, new tools have been developed to deal with
optimal control problems in high dimension (see for instance the book by Lions [80] or
by Hinze et al. [63]). Optimization problems with PDE-constraints are posed in infinite
dimensional spaces. Therefore, functional analytic techniques, function space theory, as
well as existence and uniqueness results for the underlying PDE are essential to study
the existence of optimal solutions and to derive optimality conditions. In particular in
[80] a detailed analysis of control systems governed by elliptic, parabolic and hyperbolic
PDEs can be found. The book of Hinze et al. [63] is mostly focused on the optimization
methods available.
The PDE model considered in the next chapter is much more complicated due to the
presence of the integral in the equation (leading to an integro-differential equation).
Therefore, in our case it is difficult to carry out a rigorous analysis and this is the reason
why we decided to focus on the numerical approach.



6. Optimal dosing schedules in cancer cell
populations

6.1. Methods

In this chapter we study evolutionary dynamics in a well-mixed population of cancer cells
that is structured by the expression level y ∈ R+ of a gene which is linked to both the
cellular levels of cytotoxic-drug resistance and proliferative potential – such as ALDH1,
CD44, CD117 or MDR1 [62, 86]. In the line of Pisco and Huang [104], we assume that
there is a level of expression yH which endows cells with the highest level of cytotoxic-
drug resistance, and a level of expression yL < yH conferring the highest proliferative
potential when there are no xenobiotic agents. In this framework, we characterise the
phenotypic state of each cell by means of the variable x ∈ R with

x =
y − yL

yH − yL
,

so that the state x = 1 corresponds to the highest level of cytotoxic-drug resistance,
while the state x = 0 corresponds to the highest level of proliferative potential in the
absence of xenobiotic agents.

Cells inside the population proliferate or die, compete for limited resources, and under-
go variation in phenotype due to random epimutation events. Furthermore, a cytotoxic
drug can be present, which acts by increasing the death rate of cancer cells. The function
n(x, t) ≥ 0 stands for the population density, so that the total number of cells at time t
is computed as

ρ(t) =

∫
R
n(x, t) dx, (6.1)

while the average phenotypic state and the related variance at time t are computed,
respectively, as

µ(t) =
1

ρ(t)

∫
R
x n(x, t) dx, σ2(t) =

1

ρ(t)

∫
R
x2 n(x, t) dx− µ(t)2. (6.2)

In this mathematical framework, the function σ2(t) provides a measure of the level of
intrapopulation heterogeneity at time t. Also, since the phenotypic state x = 0 corre-
sponds to the highest level of proliferative potential in the absence of xenobiotic agents
and the phenotypic state x = 1 corresponds to the highest level of cytotoxic-drug re-
sistance, we expect the value of µ(t) to be between 0 and 1. Hence, the function µ(t)
provides a measure of the average level of resistance to the cytotoxic drug at time t.
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Finally, we introduce the function c(t) ≥ 0 to model the instantaneous concentration of
cytotoxic drug.

6.1.1. The model

We describe the evolution of the cell population density n(x, t) by means of the following
phenotype-structured PDE

∂n

∂t
(x, t) = β

∂2n

∂x2
(x, t)︸ ︷︷ ︸

non-genetic
instability

+ R (x, ρ(t), c(t))n(x, t)︸ ︷︷ ︸
natural selection

, (6.3)

which we complete with the boundary conditions

n(x, ·)→ 0 and
∂qn

∂xq
(x, ·)→ 0 for all q ∈ N as |x| → ∞ (6.4)

and the initial condition

n(x, 0) ∈ L1 ∩ L∞(R), n(x, 0) > 0 a.e. on Ω ⊂ R. (6.5)

In the above equation, Ω is a compact subset of R. Eq. (6.3) relies on the assumptions
and the modelling strategies presented in the following subsections.

Mathematical modelling of non-genetic instability

To reduce biological complexity to its essence, we make the prima facie assumption that
random epimutations yield infinitesimally small phenotypic modifications. Therefore, we
model the effects of non-genetic instability through a diffusion operator. The diffusion
coefficient β > 0 in Eq.(6.3) stands for the rate of epimutation of cancer cells, which is
assumed to be constant.

Mathematical modelling of natural selection

Natural selection is driven here by the function R
(
x, ρ(t), c(t)

)
, which represents the

fitness of cancer cells in the phenotypic state x at the time t, given the total number of
cells ρ(t) and the concentration of cytotoxic drug c(t). In the following we make use of
the following definition:

R
(
x, ρ(t), c(t)

)
:= p(x)− dρ(t)− k(x, c(t)). (6.6)

Definition (6.6) relies on the idea that a higher total number of cells corresponds to less
available resources; therefore, we let cells inside the population die at rate dρ(t), where
the parameter d > 0 models the rate of death due to intrapopulation competition. The
function p(x) stands for the net proliferation rate of cancer cells in the phenotypic state
x, while the function k(x, c(t)) is the rate of death caused by the cytotoxic drug. Since
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the phenotypic state x = 1 corresponds to the highest level of cytotoxic-drug resistance,
we assume that the function k is strictly convex with minimum in x = 1. Furthermore,
because the death rate of cancer cells will increase as the concentration of the cytotoxic
drug increases, we assume that k is an increasing function of c. On the other hand, to
take into account the fact that the phenotypic state x = 0 corresponds to the highest
level of proliferative potential when there are no xenobiotic agents (i.e., when c(t) = 0),
we assume that p is a strictly concave function with maximum in x = 0. In this setting,
we follow the modelling strategies presented in [75, 81] and define the functions p and k
as:

p(x) := γ − η x2, k(x; c) := c(t) (x− 1)2. (6.7)

In the above definitions, the parameter γ > 0 corresponds to the maximum fitness
of cancer cells, and the non-linear selection gradient η > 0 provides a measure of the
strength of natural selection in the absence of xenobiotic agents.

6.1.2. Cost functional and optimal control problem

If we define tf as the final time of the anti-cancer treatment, achieving this goal is
equivalent, in the framework of our model, to find a control function c ∈ L∞(0, tf )
which minimize the following cost functional:

J :=
α1

tf

∫ tf

0

ρ(t)

K
dt+

α2

tf

∫ tf

0
µ(t) dt, α1, α2 ∈ [0, 1]. (6.8)

and it satisfies the constraints:

0 ≤ c(t) ≤ C1 and

∫ tf

0
c(t) dt ≤ C2 (6.9)

In the definition (6.8), the first term accounts for the normalised average number of
cancer cells inside the population during the time interval [0, tf ], whereas the second
term considers the related average level of resistance. The population size ρ(t) is divided
by the parameter K, which stands for the carrying capacity of the cell population in the
absence of xenobiotic agents and without epimutations (i.e., when c(·) = 0 and β = 0),
to have the same order of magnitude of µ(t) (as we expect the value of 0 ≤ µ(t) ≤ 1).
The weights α1 and α2 are used to identify different biological scenarios. For instance,
the choice α1 = 1 and α2 = 0 reproduces the case where, not being concerned at all
about the emergence of cytotoxic-drug resistance, we look for dosing schedules which
minimise the average size of the cancer cell population as much as possible.



6.1 Methods 66

6.1.3. Model parametrisation and setup of numerical simulations

We numerically solve the mathematical problem defined by completing equation (6.3)
with boundary conditions (6.4) and the following initial condition

n(x, 0) = n0(x) := a0e
−b0x2 with a0 s.t.

∫
Ω
n0(x) dx < K, (6.10)

where Ω ⊂ R. The above definition represents an initial population mainly composed of
cells in the phenotypic state x = 0. Numerical computations are performed in Matlab.
We select a uniform discretisation consisting of 500 points on the interval Ω ≡ [−5, 5]
as the computational domain. The method for calculating numerical solutions is based
on a time splitting scheme between the conservative part and the reaction term. As for
the conservative part, we approximate the diffusion term through a three-point explicit
scheme, while we use an implicit finite difference scheme for the reaction term.

Numerical scheme for equation (6.3)

We discretize the intervals Ω and [0, T ], respectively, with a constant space step dx and
time step dt {

xj = x0 + j dx j = 0, ...,M
ti = t0 + i dt i = 0, ..., N

(6.11)

where M is the number of nodes in the space grid, while N the number of nodes in
the time grid. We denote with nj(t) := n(xj , t) and Rj(ρ(t), c(t)) := R(xj , ρ(t), c(t)),
respectively, the solution and the natural selection term evaluated in the point xj at
time t. We obtain the following system of ODE (on the points 1, ...,M −1 since we know
the value of the solution on the boundary):

n′j(t) = β
nj−1(t)− 2nj(t) + nj+1(t)

dx2
+
[
Rj(ρ(t), c(t))

]
nj(t), j = 2, ...,M − 1.

We use the implicit Euler scheme, so denoting with nij = n(xj , ti) andRij := R(xj , ρ(ti), c(ti)),
we obtain for i = 0, ..., N − 1 the fully discrete scheme:

ni+1
j = nij + βλ

[
ni+1
j−1 − 2ni+1

j + ni+1
j+1

]
+ dt ni+1

j Ri+1
j with λ :=

dt

dx2
.

So, at each iteration we have to solve the following linear system:

−λβni+1
j−1 +

(
1 + 2λβ − dtRi+1

j

)
ni+1
j − λβni+1

j+1 = nij ,
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which written in matrix form becomes:
1 1 0 0 0 0

−βλ 1− dtRi+1
j + 2βλ −βλ 0 0 0

0
. . .

. . .
. . . 0 0

0 0 0 −βλ 1− dtRi+1
j + 2βλ −βλ

0 0 0 0 1 1




n0

n1
...

nM−1

nM

 =


0
ni1
...

niM−1

0

 .

For all simulations, we set the time step dt = 0.1. Concerning the solution of the ODE
system (6.33), we make the following choice for the initial conditions: we set the density
equal to the equilibrium value, r0 = (γ −

√
βη)/d, µ0 = 0 and f0 = η. We approximate

the system with an explicit Euler scheme with a time step such that it ensures numerical
stability to the scheme (i.e., dt = 0.01, 0.005 for different cases). We set the maximum
fitness γ = 0.66, so that the doubling time of cells in the highly proliferative state x = 0
is about 25 hours (cf. data in [119]). Furthermore, the in vitro experiments presented
in [103] on the phenotypic evolution of HL60 leukemic cells exposed to vincristine have
shown that, in absence of xenobiotic agents, highly cytotoxic-drug resistant cells take
approximatively 18 days to accomplish the repopulation of the equilibrium cell distribu-
tion observed without xenobiotic agents. Also, according to the same experiments, the
ratio between the proliferation rate of the cells with the highest level of cytotoxic-drug
resistance and the proliferation rate of the cells with the highest proliferative potential is
equal to 5. Therefore, we choose the non-linear selection gradient η and the rate epimu-
tation β to be such that, when c(·) = 0, it takes approximatively 18 days for an initial
population mainly composed of cells in the phenotypic state x = 1 to reconstitute the
equilibrium phenotypic distribution corresponding to c(·) = 0, with the value of η con-
strained by the condition p(x = 0)/p(x = 1) = 5. Moreover, in agreement with previous
reports [20, 21], we define the average rate of death due to intrapopulation competition
as d := γ/K, so that the equilibrium value of the total number of cells in the absence
of xenobiotic agents and without epimutation (i.e., when c(·) = 0 and β = 0) is equal
to the carrying capacity K = 108. Based on these considerations, we perform numerical
simulations using the parameter values listed in Table 6.0. Finally, the concentration of
cytotoxic drug is expressed in terms of the LCa – i.e., the constant value of c that is
required to reduce the equilibrium value of the total number of cells by a%.

Tabella 6.0.: Values of the parameters used to perform numerical simulations.

Parameter Biological meaning Value

γ Maximum fitness 0.66 per day
η Selection gradient 0.132 per day
d Rate of death due to intrapopulation competition 0.66× 10−8 per day
β Rate of epimutation 0.001 per day

Concerning the optimal control problem, we use a method based on the interior-
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point algorithm available within the fmincon routine of the Matlab Optimisation
Toolbox. We perform the simulation in a time window of 60 days and we divide the
interval [0, tf ] in sub-intervals Ti composed by 7 days. In each period we alternate four
days of therapy with three days of rest. This is done imposing an L∞ constraint on the
control variable: {

0 ≤ c(t) ≤ C1 at day 1, 2, 3, 4 of each Ti
c(t) = 0 elsewhere

(6.12)

Moreover we impose an L1-constraint on each interval, i.e.:∫
Ti

c(t) dt ≤ C2. (6.13)

In order to use a meaningful value for the constant C1 and C2, we compute the LC and
we set C1 = C2 = LCa. We tested the code for different choices of LC (from LC20 to
LC80). We remark that from a numerical point of view, it is natural to introduce an
upper bound, whereas the biological meaning of these constraints are the following: the
L∞-bound represents the maximum dose avaiable that we can administer to the patient,
while the L1-bound is the total amount of drugs allowed in each period.

6.2. Results and discussion

In this section we analyse the cell dynamics under the action of different infusion of
cytotoxic drug. In the first two sub-section we briefly present the results estabilished in
[75], while in the last sub-section we perform an analysis in the most general case.

6.2.1. Cell dynamics in the absence of cytotoxic drug

In the framework of our model, the total number of cells ρ(t), the average phenotypic
state µ(t) and the level of intrapopulation heterogeneity σ2(t) are computed according
to equations (6.1)-(6.2). Then, in the absence of xenobiotic agents (i.e., when c(·) = 0),
a complete characterisation of the cancer cell population at equilibrium is provided by
the following theorem:

Theorem 6.1 Let c(·) = 0, and denote by n(x) the equilibrium population density for
c(·) = 0. Then:

(i) if γ − (βη)1/2 ≤ 0,
ρ(t)→ 0, as t→∞; (6.14)

(ii) if γ − (βη)1/2 > 0,

ρ(t)→ ρ =
1

d

[
γ − (βη)1/2

]
, as t→∞ (6.15)
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and

n(x) = ρ
(η/β)1/4

(2π)1/2
exp
[
−1

2

( η
β

)1/2
x2
]
, (6.16)

so that

µ(t)→ µ = 0 and σ2(t)→ σ2 =

√
β

η
, as t→∞. (6.17)

Proof 6.1 When c(·) = 0, plugging definitions (6.6)-(6.7) into equation (6.3) we obtain

∂n

∂t
(x, t) = β

∂2n

∂x2
(x, t) +

[
γ − η x2 − d ρ(t)

]
n(x, t). (6.18)

The proof of Theorem 1 follows from a more general analysis developed in [33, 81], and
it uses the results established by the following two lemmas:

Lemma 6.1 If γ > (βη)1/2, the problem defined by completing (6.18) with (6.4)-(6.5)
admits a unique non-negative nontrivial equilibrium solution n(x) which is given by
(6.16).

Proof of Lemma 6.1. Consider the PDE problem
β n′′(x) +

[
γ − η x2 − d ρ

]
n(x) = 0, x ∈ R,

ρ =

∫
R
n(x) dx.

(6.19)

Writing

n(x) = Y (z), z =
(4η

β

)1/4
x,

we find that Y (z) satisfies the differential equation

Y ′′(z)−
(z2

4
+ a
)
Y (z) = 0, (6.20)

with

a =
d

2(βη)1/2

(
ρ− γ

d

)
.

It is known that equation (6.20) has solutions that are bounded for all z if and only if a =
−m− 1/2, where m is a non-negative integer [88, 120]. These bounded solutions are the
Gaussians exp(−z2/4) multiplied by polynomials of degree m, which form an orthogonal
set of functions, and so are everywhere non-negative if and only if m = 0. Therefore,
the existence of a nontrivial non-negative solution of the PDE problem (6.19) requires
a = −1/2. This implies that to have a nontrivial non-negative equilibrium solution the
condition

ρ =
1

d

[
γ − (βη)1/2

]
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must be satisfied. If this condition is met, for some A ∈ R+

n(x) = A exp
{
−1

2

( η
β

)1/2
x2
}
. (6.21)

The constant A can be evaluated in terms of ρ by integrating equation (6.21). We find
that

n(x) = ρ
(η/β)1/4

(2π)1/2
exp
{
−1

2

( η
β

)1/2
x2
}
,

and this concludes the proof of Lemma 6.1.

�

Lemma 6.2 The integral ρ(t) of the solution of the problem defined by completing (6.18)
with (6.4)-(6.5) has the following long-time behaviour:

lim
t→∞

ρ(t) =


1

d

[
γ − (βη)1/2

]
if γ > (ηβ)1/2,

0 if γ ≤ (ηβ)1/2.

(6.22)

Proof of Lemma 6.2. Following the method of proof that we presented in [33], it is
possible to prove that, for all non-negative initial conditions n(x, 0) such that
0 < ρ(0) <∞,

ρ(t) =
g(t)ρ(0)

g(0) + d ρ(0)
∫ t

0 g(τ) dτ
,

with the function g(t) satisfying

g(t) ∼ 2β

(2π)1/2

∫ ∞
0

exp
[
−z

2

4

(4η

β

)1/4
z
]
dz exp

{[
γ − (βη)1/2

]
t
}
, as t→∞.

In the limit t→∞:

- if γ < (βη)1/2, then g(t)→ 0 exponentially rapidly;

- if γ = (βη)1/2, then g(t) converges to a positive constant;

- if γ > (βη)1/2, then g(t)→∞ exponentially rapidly.

Therefore:

- if γ < (βη)1/2, then lim
t→∞

ρ(t) = 0;
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- if γ = (βη)1/2, then lim
t→∞

ρ(t) = 0;

- if γ > (βη)1/2, then lim
t→∞

ρ(t) =
1

d

[
γ − (βη)1/2

]
.

This concludes the proof of Lemma 6.2.

�

Taken together, Lemma 6.1 and Lemma 6.2 allow to reach the following conclusions:

(i) if c(·) = 0 and γ − (βη)1/2 ≤ 0, then

ρ(t)→ 0, as t→∞; (6.23)

(ii) if c(·) = 0 and γ − (βη)1/2 > 0, then

ρ(t)→ ρ =
1

d

[
γ − (βη)1/2

]
, as t→∞

and

n(x) = ρ
(η/β)1/4

(2π)1/2
exp
[
−1

2

( η
β

)1/2
x2
]
.

This establishes the claims of Theorem 6.1.

6.2.2. Cell dynamics under the action of constant cytotoxic drug

In the case where the drug concentration is c(·) = C a complete characterisation of the
cancer cell population at equilibrium is provided by the following theorem:

Theorem 6.2 Let c(·) = C > 0 define

γc := γ − η C

η + C
, ηc := η + C, (6.24)

and denote by nc(x) the equilibrium population density for c(·) = C. Then:

(i) if γc − (βηc)
1/2 ≤ 0,

ρ(t)→ 0, as t→∞; (6.25)
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(ii) if γc − (βηc)
1/2 > 0,

ρ(t)→ ρc =
1

d

[
γc − (βηc)

1/2
]
, as t→∞ (6.26)

and

nc(x) = ρc
(ηc/β)1/4

(2π)1/2
exp
{
−1

2

(ηc
β

)1/2[
x− xc

]2}
, (6.27)

with

xc :=
C

η + C
, (6.28)

so that

µ(t)→ µc = xc and σ2(t)→ σ2
c =

√
β

ηc
, as t→∞. (6.29)

The proof of Theorem 6.2 follows the method of proof of Theorem 6.1.

Proof 6.2 When c(·) = C > 0, plugging definitions (6.6)-(6.7) into equation (6.3) we
obtain

∂n

∂t
(x, t) = β

∂2n

∂x2
(x, t) +

[
γ − η x2 − d ρ(t)− C (x− 1)2

]
n(x, t).

Defining

γc := γ − η C

η + C
, ηc := η + C and xc :=

C

η + C
,

we can rewrite the above equation as

∂n

∂t
(x, t) = β

∂2n

∂x2
(x, t) +

[
γc − ηc (x− xc)2 − d ρ(t)

]
n(x, t). (6.30)

Since x ∈ R, there is no loss of generality in translating coordinates so that xc = 0.
Hence, to adapt the method of proof of Theorem 6.1 to prove Theorem 6.2 is purely
technical. For this reason, we do not give further details.

6.2.3. Cell dynamics under the action of time dependent cytotoxic drug

We consider the general case in which the cytotoxic drug c(t) is a generic function of
time. Substituting the definitions (6.6) and (6.7) into equation (6.3) and defining

γc(t) := γ − η c(t)

η + c(t)
, ηc(t) := η + c(t) and ϕc(t) :=

c(t)

η + c(t)
,

we can rewrite equation (6.3) as

∂n

∂t
(x, t) =

[
γc(t)− ηc(t) (x− ϕc(t))2 − d ρ(t)

]
n(x, t) + β

∂2n

∂x2
(x, t). (6.31)
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In this setting, a characterisation of the phenotypic evolution of the cancer cell population
is provided by the following proposition, whose proof relies on a suitable generalisation
of the method of proof that has been used in a recent paper [81]:

Proposition 6.1 The problem defined by equations (6.3), (6.4), (6.5) admits solutions
of the form

n(x, t) =
%(t)√

2π

(f(t)

β

)1/4
exp
{
−1

2

(f(t)

β

)1/2[
x− µ(t)

]2}
, (6.32)

where ρ(t), µ(t) and f(t) satisfies the following system of ODEs

f ′(t) = 4[βf(t)]1/2
[
ηc(t)− f(t)

]
,

µ′(t) = 2
[ β

f(t)

]1/2
ηc(t)

[
ϕc(t)− µ(t)

]
,

ρ′(t)

ρ(t)
= Q(t)− dρ(t),

Q(t) := γc(t)− ηc(t)
[
ϕc(t)− µ(t)

]2
− ηc(t)

[ β

f(t)

]1/2
.

(6.33)

Proof 6.3 We introduce the following trial solution:

N (x, t) =
%(t)√
π

(f(t)

4β

)1/4
exp
{
−
(f(t)

4β

)1/2[
x− µ(t)

]2}
, (6.34)

with

ρ(t) =

∫
R
N (x, t) dx and µ(t) =

1

ρ(t)

∫
R
x N (x, t) dx.

Since

log[N ] = log[%(t)] +
1

4
log
[f(t)

4β

]
−
(f(t)

4β

)1/2[
x− µ(t)

]2
+ constant,

it follows that

1

N
∂N
∂t

=
%′i(t)

%(t)
+

1

4

f ′(t)

f(t)
− 1

4

f ′(t)√
βf(t)

[x− µ(t)
]2 − (f(t)

β

)1/2[
x− µ(t)

]
µ′(t)

1

N
∂N
∂x

= −
(f(t)

β

)1/2[
x− µ(t)

]
,

1

N
∂2N
∂x2

= −
(f(t)

β

)1/2
+
f(t)

β

[
x− µ(t)

]2
.
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Hence, substituting N (x, t) to Eq. (6.31) as a trial solution, we require the following
equation to hold as an identity:

%′(t)

%(t)
+

1

4

f ′(t)

f(t)
− 1

4

f ′(t)√
βf(t)

[x− µ(t)
]2 − (f(t)

β

)1/2[
x− µ(t)

]
µ′(t) =

β
{
−
(f(t)

β

)1/2
+
f(t)

β

[
x− µi(t)

]2}
+ γc(t)− ηc(t)

[
x− ϕc(t)]2 − d%(t).

If we expand both sides in powers of x, then the coefficients of the terms in x2, x1 and
x0, respectively, give us three differential equations:

f ′(t) = 4ηc(t)
[
βf(t)

]1/2 − 4β1/2
[
f(t)

]3/2
µ′(t) = 2ηc

[ β

f(t)

]1/2
ϕc(t)−

1

2

f ′(t)

f(t)
µ(t)− 2[βf(t)]1/2µ(t)

= 2
[ β

f(t)

]1/2
ηc(t)

[
ϕc(t)− µ(t)

]
ρ′(t)

ρ(t)
= Q(t)− dρ(t)

(6.35)

The results of Proposition 6.1 are illustrated by the plots of Figure (6.1) and Figure
(6.2).

6.3. Optimal dosing schedules

In this section we present the results of numerical simulations obtained by minimizing the
cost functional (6.8) under the constraints on the control variable given by (6.12), (6.13).
We want to study the reaction of the tumor cells to different protocols in a fixed time
window of 60 days (approximately two months of treatment). We remark that with the
choice of the constraints on the control variable made there are two possible “extreme”
strategies: giving to the patient the maximum dose allowed concentrated in one day, or
spread the amount of drugs during the whole period. In the following, we will analyze
how the optimal protocol changes if in the cost functional we give more importance to
a term with the respect to the other (i.e. we tested different values of α1 and α2). In a
therapy it is reasonable to alternate periods in which we administer a certain amount
of drugs with periods of rest. For this reason in our simluations we alternate 4 days of
therapy with 3 days of rest (as we point out in the previous section each period Ti is
composed of 7 days); we start giving the therapy on day 1, 8, 15, 22, 29, 36, 43, 50, 57. In
the figures below we show the results of our tests. We remark that we do not observe any
meaningful change in the shape of the control varying the values of the LC from LC40
to LC80 in (6.12),(6.13). So, in the following, we present the results obtained choosing
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Figura 6.1.: Top row: dosing schedule (left); dynamics of the corresponding total number
of cells ρ(t) (middle); dynamics of the corresponding average phenotypic
state µ(t) (right). The red line correspond to the exact solution obtained
solving numerically the system (6.33), while the blu dashed line refers to
the numerical solution of the PDE (6.3). Bottom line: evolution of the cells
population n(t, x) in space and time numerically solving the PDE (6.3)
(left), the same plot, but solving numerically the system of ODEs (6.33),
distribution of the population density at the last day (right). The red line is
the exact solution computed solving the system (6.33), while the blu dashed
line refers to the numerical solution of the PDE (6.3).
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Figura 6.2.: Top row: dosing schedule (left); dynamics of the corresponding total number
of cells ρ(t) (middle); dynamics of the corresponding average phenotypic
state µ(t) (right). The red line correspond to the exact solution obtained
solving numerically the system (6.33), while the blu dashed line refers to
the numerical solution of the PDE (6.3). Bottom line: evolution of the cells
population n(t, x) in space and time numerically solving the PDE (6.3)
(left), the same plot, but solving numerically the system of ODEs (6.33),
distribution of the population density at the last day (right). The red line is
the exact solution computed solving the system (6.33), while the blu dashed
line refers to the numerical solution of the PDE (6.3).
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C1 = C2 = LC80 in (6.12),(6.13). We remark that in the simulations we consider a small
diffusion term (β = 10−3).
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Figura 6.3.: Sample dynamics of the optimal dosing schedule (left), normalized total
number of cells, with the corresponding average in time (middle) and phe-
notypic state with the corresponding average in time (right) for α1 = 1
and α2 = 0. The values of the constant C1 and C2 in equations (6.9) corre-
spond to the LC80 dose. The results are obtained solving the optimal control
problem associated to the ODE system (6.33).
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Figura 6.4.: Sample dynamics of the optimal dosing schedule (left), normalized total
number of cells, with the corresponding average in time (middle) and phe-
notypic state with the corresponding average in time (right) for α1 = 0
and α2 = 1. The values of the constant C1 and C2 in equations (6.9) corre-
spond to the LC80 dose. The results are obtained solving the optimal control
problem associated to the ODE system (6.33).

Firstly, we consider the case where we want penalize only the density and we do
not care at all about what happens to the resistance, which means taking α1 = 1 and
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Figura 6.5.: Sample dynamics of the optimal dosing schedule (left), normalized total
number of cells, with the corresponding average in time (middle) and phe-
notypic state with the corresponding average in time (right) for α1 = 1
and α2 = 1. The values of the constant C1 and C2 in equations (6.9) corre-
spond to the LC80 dose. The results are obtained solving the optimal control
problem associated to the ODE system (6.33).

α2 = 0. Looking at the control (Figure 6.3 left panel) we observe that we saturate the
L1 bound in each interval, but the L∞ one just in the first day; the best strategy is to
spread the treatment in 4 days instead of giving all the drugs in one day. Concerning the
corresponding density (Figure 6.3 middle panel) we observe a significant decay in the
first day, which corresponds to the peak of the control, followed by an increase. Looking
at the average density, which is the quantity we are minimizing, is one-half of the one
we had at the beginning. As we expected, the corresponding resistance (Figure 6.3 right
panel) starts increasing from the beginning and remains high (close to 1) for the whole
period. We observe that we have a second peak in the control in the last time interval,
but this does not lead to a significant decay of the density. This is due to the fact that
the resistance plays an opposite role and it affects the efficiency of the drug.
If we look at the opposite scenario, taking α1 = 0 and α2 = 1, the best strategy is not
giving drugs at all (left panel Figure 6.4). This is reasonable since we do not want to
increase the resistance and we do not have a term in the cost that penalize the increase
of the density. As a consequence, the resistance remains equal to zero, while the density
remains constant at the equilibrium level ρ̄ (central and right panel of Figure 6.4). The
last case we consider is the one where we give the same weight to the two terms in the
integral, α1 = α2 = 1. In this case we want minimize both the density and the average
resistance. The optimal strategy is waiting until the last interval and then giving some
control (left panel Figure 6.5). As a consequence, the density is high for a long period
and at the end it decreases drastically (central panel Figure 6.5). Looking at the average
density, we observe that the value is lower than the one we had at the beginning. The
corresponding resistance remains low almost until the end and then it increases; we
remark that, even if the value of the resistance at the end is high, the average resistance



6.3 Optimal dosing schedules 79

is low (magenta line in right panel Figure 6.5). With this choice of parameters we have
a good compromise: we have a reduction of the average density of 10.92% and we have
an increase of the average resistance of 7.39%. These simulations have been done solving
the optimal control problem associated to the system of ODEs (6.33). We remark that
we obtain the same results solving the optimal control problem for the PDE (6.3) with
a huge difference in the CPU time. In fact when we solve the ODEs system, we have a
reduction of the CPU time of 98, 87%. This results is reasonable, since solving a system
of three ODEs is faster and less expensive than solving an optimal control problem for
a PDE. In fact, what we do in the second case is the following: we discretize the PDE in
time and we obtain an high dimensional system of semidiscrete ODEs, then we use the
same numerical optimization technique of the first case.
It is worth to present also the case where we consider a low concentration of cytotoxic
drug as upper bound; we present the results with the LC20 (we obtain the same results
for the LC30). When we consider α1 = 0, α3 = 1, the results are the same that in all
cases: for not increasing the resistance, it is better not to give drugs at all. Concerning
the case where we penalize both density and resistance, i.e., α1 = α2 = 1, we observe
that the optimal strategy is to administer therapy in the last two periods (Figure 6.6 left
panel). We remark also that the control saturates the L1-bound in both periods. The
interesting case is α1 = 1, α2 = 0: the optimal therapy is the same in all the periods:
we have 9 peaks (left panel Figure 6.7) and again we saturate the L1 bound in each
period. Since the total amount of drug we are allowed to inject to the patient is low, it
is not surprising that we have an average reduction of density of 4.84%. We also observe
that the peaks in the control leads to an oscillatory behaviour in the density (Figure 6.7
central panel).
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Figura 6.6.: Sample dynamics of the optimal dosing schedule (left), normalized total
number of cells, with the corresponding average in time (middle) and phe-
notypic state with the corresponding average in time (right) for α1 = 1
and α2 = 1. The values of the constant C1 and C2 in equations (6.9) corre-
spond to the LC20 dose. The results are obtained solving the optimal control
problem associated to the ODE system (6.33).
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Figura 6.7.: Sample dynamics of the optimal dosing schedule (left), normalized total
number of cells, with the corresponding average in time (middle) and phe-
notypic state with the corresponding average in time (right) for α1 = 1
and α2 = 0. The values of the constant C1 and C2 in equations (6.9) corre-
spond to the LC20 dose. The results are obtained solving the optimal control
problem associated to the ODE system (6.33).

The difference of the optimal protocol in the case of the LC20 and LC80 for the case
with α1 = 1, α2 = 0, it can be explained as follows: when we have a low concentration
of drugs is better to administer to the patient all in one day. On the other side, in the
second case, since we have a huge quantity of drug, it is better to spread it in the interval,
in order to have a sudden decrease of the density and to mantain it at a lower level as
well.

Finally, in the last test (Figure (6.8)) we removed the days of rest from the therapy
and we put an L1-bound on periods of 7 days. We observe that the optimal strategy
is to “spread” the therapy over the whole interval instead of giving peaks of maximum
therapy. We have a substantial reduction of the density, since the average value is less
than half we had at the beginning. On the other side it is natural that the resistance
starts increasing from the beginning and remains high for the whole interval.
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Figura 6.8.: Sample dynamics of the optimal dosing schedule (left), normalized total
number of cells, with the corresponding average in time (middle) and phe-
notypic state with the corresponding average in time (right) for α1 = 1 and
α2 = 0. The value of the constant C1 in equation (6.9) correspond to the
LC80 dose. The results are obtained solving the optimal control problem
associated to the ODE system (6.33).



7. Conclusions and future directions

In Chapter 3 we have proposed a local version of the dynamic programming approach
for the solution of the infinite horizon problem, showing that the coupling between MPC
and DP methods can produce accurate results. The coupling improves the original guess
obtained by the MPC method and allows to save memory allocations and CPU time with
respect to the global solution computed via Hamilton-Jacobi equations. There are two
future developments: on one side, it could be interesting investigating the role played
by the discount factor λ in MPC (e.g. economic MPC), since the theory of MPC is
developped for quadratic cost functional without discount factor. Moreover, from the
simulation made, it is clear that in most of the cases when we have a discount factor,
especially when λ = 1, the MPC solver does not converge to the optimal solution. On
the other side, we do not use a particular criteria to choose the radius of the tube ρ (i.e.
the restricted domain built around a reference trajectory in which we solve the Bellman
equation). This choice can be made rigourous using some a-posteriori error estimates on
the control obtained via MPC (e.g. using the result in [124]).
Moreover, in Chapter 4 we have proposed a HJB-POD approach for the control of a
nonlinear hyperbolic problem that typically has weak solutions in the viscosity sense.
This problem is more difficult with respect to other evolutive problems, such as parabolic
equations, where the regularity of the initial condition is preserved or even improved.
Therefore, it is not trivial that POD model order reduction with a few number of basis
functions provide a satisfactory approximation of the model. Indeed, numerical simula-
tions show that if we represent the front with a POD-basis with rank 4 or 5 we obtain
satisfactory results.
Furthermore, we have investigated different norms in the cost functional, motivated by
the lack of general theory particularly for nonlinear dynamics. It turns out that the best
approximation is obtained using the standard L2 norm in most of the cases.
The computation of the basis functions remains an open question that definitely deserves
further investigation. We will try to extend the results in [6] to build theoretical results
in a future work.
Finally, in Chapter 6 we have proposed a model dealing with the optimal control of an
evolutionary dynamics of cancer cells population. We have presented the model and we
have given a complete characterisation of the cancer cell population at the equilibrium
in two particular cases: in the absence of cytotoxic drugs and under the action of con-
stant cytotoxic drugs. For the most general case, with a general time-dependent drug we
have shown that the solution can be expressed by means of three functions which are
the solutions of an ODE system. Finally we have investigated numerically the optimal
dosing protocol for different weights in the cost functional where we have penalized both
the density and the emergence of resistant cells.
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[15] G. Barles, Solutions de visocité des equations de Hamilton-Jacobi. Springer, Berlin,
1994.

[16] R. Bellman, Dynamic Programming. Princeton University Press, Princeton, NJ,
1957.

[17] H.M. Byrne, Dissecting cancer through mathematics: from the cell to the animal
model. Nat. Rev. Cancer 10, 221-230 (2010).

[18] O. Bokanowski, S. Maroso, H. Zidani, Some convergence results for Howard’s
algorithm, SIAM Journal on Numerical Analysis 47, 3001–3026 (2009).

[19] N.D. Botkin, K. Hoffman, V. Turova, Stable numerical schemes for solving Hamilton
Jacobi Bellman Isaacs equations, SIAM J. of Scientific Computing, 33, 992-1007
(2011).

[20] I. Bozic. B. Allen, MA Nowak, Dynamics of targeted cancer therapy, Trends Mol
Med. 18(6) (2012).

[21] I. Bozic, J. Reiter, B. Allen, T. Antal, K. Chatterjee, P. Shah, YS Moon, A. Yaqubie,
N. Kelly, DT Le, EJ Lipson, PB Chapman, LA Diaz, B. Vogelstein, MA Nowak
Evolutionary dynamics of cancer in response to targeted combination therapy, eLife
2 (2013).

[22] A. Brock, H. Chang, S. Huang, Non genetic heterogeneity–a mutation-independent
driving force for the somatic evolution of tumours, Nat. Rev. Genet. 10(5), 336-42
(2009).

[23] S. Cacace, E. Cristiani, M. Falcone, A. Picarelli, A patchy dynamic programming
scheme for a class of Hamilton-Jacobi-Bellman equations, SIAM J. of Scientific
Computing, 34, 2625-2649 (2012).

[24] S. Cacace, E. Cristiani, M. Falcone, Can local single pass methods solve any statio-
nary Hamilton-Jacobi-Bellman equations?, SIAM J. Sci. Comput., 36, A570-A587,
(2014).
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