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Abstract

Lorqu’une étoile a des compagnons planétaires, elle décrit un mouvement quasi épicyclöıdal
autour du centre de masse du système. Si l’orientation du plan de l’orbite le permet, un
observateur situé sur la Terre peut détecter la composante de ce mouvement sur la ligne de
visée grâce à l’effet Doppler. Il mesure ainsi la “vitesse radiale de l’étoile”. Si cette vitesse
présente des variations périodiques suffisamment claires, la présence de planètes peut être
inférée et leurs orbites contraintes.

Une des difficultés de l’analyse de telles mesures est qu’une combinaison de signaux de
plusieurs planètes et de divers bruits peut être confondue avec l’effet d’une planète en réalité
inexistante. Après avoir présenté les effets à prendre en compte pour analyser des données de
vitesses radiales, nous abordons ce problème. Pour limiter son occurrence, nous utilisons un
algorithme de poursuite de base modifié, dont on démontre l’efficacité sur des signaux réels
et simulés.

Nous abordons ensuite le problème de l’estimation des paramètres orbitaux pour un sys-
tème donné ainsi que leur distribution pour une population de planètes. On s’intéresse en
particulier à l’excentricité, dont on montre qu’elle est d’autant plus surestimée que le mod-
èle du signal est mauvais. Nous proposons des solutions pour une estimation robuste des
paramètres orbitaux.

When a star is orbited by planetary companions, it describes a nearly epicyclic motion
around the center of mass of the system. When the orientation of the orbital plane is appro-
priate, an observer on Earth can measure the velocity of the star along the line of sight by
Doppler effect. If this “radial velocity” presents clear enough periodic variations, the presence
of planets can be inferred and their orbit can be constrained.

Detection and estimation of orbits is made difficult by the photon noise, the unpredictable
variations of luminosity of the star as well as instrumental faults. In particular, signals from
several planets can add coherently with the noises and mimic the effect of a planet absent
from the system. After listing the relevant effects to make inference on exoplanets from radial
velocity data, we tackle this problem. To limit its rate of occurrence, we use a modified basis
pursuit algorithm, allowing to search for several signals simultaneously. The efficiency of the
method is demonstrated on real and simulated signals.

We then address the problem of orbital parameters estimation for a given system, as well
as the estimation of their distribution on a planet population. We look in detail at the
eccentricity, and show that its overestimation increases as the model moves away from the
correct one. We suggest methods for robust inference of orbital parameters.
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et qu’ils auraient une audience. Les remarques sur les articles, sur les exposés, le voyage en
Suisse, ont eu un rôle crucial dans le déroulement de cette thèse. Gwenaël, qui a toujours
pris le temps d’écouter mes idées, même quand elles n’étaient pas encore très claires, et de
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Les doctorants et stagiaires, Jessica Masseti, Alexandre Pousse, Adrien Leleu, Pierre
Auclair-Desrotour, Thibault Castan, Timothée Vaillant, Léo Bernus, Antoine Petit, San-
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Chapter 1

Introduction

Little details have special talents in creating big problems.

Mehmet Murat Ildan

1.1 First observations

In the middle of the XIXth century, Jacob (1855) interpreted abnormalities of the 70 Ophiuchi
star’s orbit as either non-universality of the law of gravitation, or a planet orbiting the
star. Unfortunately, both claims were wrong. Nearly a century after, one, possibly two,
Jupiter mass companions were reported around Barnard’s star (van de Kamp 1963, 1969),
also later dismissed. In 1988, a search for substellar companions lead Campbell et al. (1988)
to conjecture that 7 out of 15 stars that were observed could have a companion in the 1-9
Jupiter mass range, but remained cautious about the discoveries. A bona-fide detection was
finally made in 1989 with the discovery of an eccentric companion of HD114762 (Latham et al.
1989). This detection was done through radial velocity measurements, themselves possible
thanks to Doppler effect. As the star moves back and forth on the line of sight because
of its companion, the observer sees periodic shifts of the spectral lines of the star. Such
measurements yield the mass projected on the line of sight and thus a minimum mass. In
this case, m sin i was estimated to be 11MJ . The authors concluded that this object is likely
to be a brown dwarf, but also considered the possibility that it be a giant planet.

The next major discovery was obtained by timing of the millisecond pulsar PSR B1257+12
(Wolszczan & Frail 1992). Pulsars are neutron stars that rotate rapidly with a very steady
frequency. Since they emit radio waves in a fixed direction with respected to their attached
reference frame, an observer on Earth receives a periodic signal. If the pulsar moves in a non
uniform way, its motion translates to modifications of the reception time of the pulses. In
particular, if another body orbits a pulsar, one will see its reflex motion through the periodic
shifts of the signal received. With this technique two companions were detected. The precision
of the measurements even allowed to see the effect of mutual interaction between the planets.
The author leveraged this information to estimate the mass of the two planets, which were
4.3 ± 0.2 and 3.9 ± 0.2 terrestrial masses.

The field of exoplanetary sciences was truly kicked-off by the discovery of a giant planet
around 51 Pegasi, with a minimum mass approximately half of Jupiter’s and a period of

1



2 Chapter 1. Introduction

Figure 1.1: Masses of exoplanets as a function of their year of discovery (generated on exo-
planet.eu).

4.2308 days (Mayor & Queloz 1995). The fact that the planet was massive and close to its
host star was key in its detection, and was also very startling at the time as giant planets
were expected to be beyond the snow line. Since this discovery, there have been detections of
planets with smaller and smaller projected mass with the radial velocity technique, as shown
in figure 1.1.

Among those, 51 Peg b is not the only puzzling object. Other giants were found close to
their stars, but also systems with architectures possibly very different from the Solar System.
These discoveries are used to assess formation scenarios of planetary systems. Planets in the
so-called habitable zone are searched for, with the remote hope of finding life.

We would not want to make mistakes on the typology of planets in the universe in the first
place. But since the measurements taken have strong consequences on our understanding of
the physics of the planets, it is all the more important to analyse the measurements carefully.
First not to be mislead by spurious detections, and also not to miss subtle hints in the data
that could turn out to be crucial. The purpose of this thesis is to devise tools that could be
useful to extract information from radial velocity measurements. We will present mainly two
analyses, one for searching for candidate periodicities for planets (chapter 2) and one about
the robustness of the orbital parameter estimates, focusing on eccentricity (chapter 3). In the
present chapter, we will attempt to outline the aspects that should be taken into account in
the process of making a claim from the data. This includes the sources of signal we are aware
of, but also the inference process itself and the pros and cons of signal processing techniques.
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1.2 Radial velocity signals

In this section, we present radial velocity data and the various phenomena that shape it. A
recap chart summarizing the known sources of signal, typical amplitudes and time-scales is
provided at the end of this section in table 1.1. The effects we present are the object of a
wide literature, our presentation does not aim at entering into their details, but rather to
focus on their signature in the data.

1.2.1 Motion of a star with planetary companions

The effect we wish to detect is the star wobbling due to potential companions. Let us first
describe this motion in its simplest form. We consider a planetary system in its inertial frame,
whose origin is its barycentre, and the z-axis pointing to the observer. In figure 1.2, we show
two examples of the motion of a star, (left) and the corresponding radial velocities as function
of time (right). The upper panel shows a case of star orbited by a single planet. The middle
one shows the same quantities when three non coplanar planets orbit the star. We show on
the bottom panel the projection of this latter motion onto the plane x, y, which is what ideal
astrometric measurements would look like (without noise, star motion nor parallax).

The motion of the star represented is the sum of the motions obtained by considering the
two body problems { Star, planet k } for k = 1,2,3. This approximation exactly comes down
to neglecting the interactions between planets, which is valid in most cases, though there are
a few detected systems where the gravitational interactions can be seen. For instance, four
planets were detected in GJ 876 (Correia et al. 2010), and among those two giant planets in
2:1 mean motion resonance at 30 and 60 days which strongly interact. Remarkably, the outer
planet orbits at 124 days, such that the system is in a Laplace resonance (4:2:1) (Nelson et al.
2014). Starting from best fit values of the orbital elements, the numerical integration on 100
years integration yields a complicated motion of the planets, instead of steady ellipses (see
figure 1.3). The orbits of the giant planets are represented in red and blue. We will now stick
to the sum of Keplerian motions, which are good approximations in general, at least over the
time-scale of observations.

To be able to analyse the radial velocity measurements, we need a mathematical model
of the signal, which can be obtained from Newton laws of motion. Let us first consider a
planet J of mass m orbiting a star S of mass M , supposed to be known, as represented

figure 1.4. Denoting by −→r =
−→
SJ and µ = G(m+M), where G is the gravitational constant.

The equation of motion is (Newton 1687)

d2−→r
dt2

= −µ
−→r
‖−→r ‖3

, (1.1)

which is a second order differential equation on the three-dimensional space. From Cauchy-
Schwartz theorem, we need to specify a six dimensional vector (position and velocity) as initial
condition to obtain a uniquely defined solution. Here, the parameter µ is not considered as
an unknown given that it is well approximated by µ = GM which is only a function of the
stellar mass, the latter being considered as known. However, to reproduce observational data,
we do need an additional parameter because we only have access to the motion of the star

relative to the inertial frame whose position is given by
−→
GS = −(m/(m + M))−→r . It thus
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Figure 1.2: Idealized motion of the center of mass of a star orbited by planets (left) and
the projection of the velocity along the line of sight (right). The upper plots represent this
motion in the case of a single planet orbiting a star of 1 M� with mass 1 M⊕ at 1 AU and
eccentricity e = 0.1. The middle plots represent the same quantities with additional planets
of terrestrial mass at 0.2 and 1.3 AU, the bottom plot represents the projection of this motion
on the x, y plane.
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Figure 1.3: Simulated motion of planets whose
orbital elements are taken initially as best fit
values of GJ 876

Figure 1.4: Parametrization of the motion
of a planet J around a star S. Π is the
plane of the sky (courtesy of J. Laskar)

depends on the planet mass m, which means that a set of seven parameters θ completely
specify the motion of the star and the position of the planet at any time of measurement t.

As will be discussed later on, when searching for planets it is convenient to first look for
periodicity in the data. However, the initial conditions of the equation at an arbitrary time
and the mass of the planet do not make the periodicity appear. Instead of considering those,
we will use a representation of the planet motion with elliptical elements, more convenient
for our purposes. These are classically defined as

• m: mass

• e: eccentricity.

• i: inclination.

• ω: argument of periastron.

• Ω: right ascension at ascending node.

• P : period or equivalently the mean motion n = 2π/P .

• M0: mean anomaly at a reference time.

The angles i, ω and Ω are defined with respect to an inertial reference frame as shown
figure 1.4, which is taken as the one defined above : the z axis points to the observer, the
x and y directions are chosen so that x, y, z is a direct orthogonal basis. It is important to
specify the direction of x when dealing with astrometric measurements but it is unnecessary
for radial velocity analysis. The semi major axis a of the orbit is given by the third Kepler’s
law of motion n2a3 = G(m+M).

It is easy to show that when the orbital elements are defined as such, the velocity of the
star projected on the z axis is (Perryman 2011) (with a minus sine for consistency of the



6 Chapter 1. Introduction

definition of elliptical elements),

−ż(t, e,K, P, ω,M0) = K(cos (ω + ν(t, e, P, ω,M0)) + e cosω) (1.2)

cos ν =
cosE − e
1− cosE

(1.3)

sin ν =

√
1− e2 sinE

1− cosE
(1.4)

E − e sinE = M0 +
2π

P
t (1.5)

K =

(
2πG

P

) 1
3 m sin i

(m+M)
2
3

1√
1− e2

(1.6)

where t is the time, ν is the true anomaly. Unfortunately, the projection onto one of the axis
causes the disappearance of some information: Ω does not appear anymore. Equation 1.6,
from Cumming et al. (1999), shows that the inclination i and the mass of the planet m are
degenerated, only the projected mass m sin i is knowable. Overall, five parameters describe
the radial velocity of a star.

If several planets orbit the star, the radial velocity in the inertial reference frame attached
to the system is

ż(t) =

np∑

k=1

żk(t) (1.7)

where żk(t) denotes the velocity due to planet k. In that case, 5np parameters are needed to
represent the motion of the star.

Since the star moves across the galaxy, the direction pointing to the observer is not fixed.
The reference frame of the target rotates with respect to the observer and is therefore not
exactly inertial. When observing a circular planet of mean motion n1 and assuming the target
rotates around the Sun with mean motion n2 (which is a local approximation), it is easily
shown that the apparent mean motion of the planet is n1 + n2. Since n2 is extremely small
compared to n1, it can be safely neglected. Therefore an observer in an inertial reference
frame such as the Solar System Barycentric Reference frame observes ż(t) +V (t) where V (t)
is the radial component of the target reference frame and ż(t) is given by expression 1.2.

The main effect not taken into account so far is the motion of the Earth. The displacement
of its center of mass as well as the rotation contribute to the relative velocity of the star
and the observer. The removal of Earth motion components is achieved with planetary
ephemeredes such as Standish (1990) or Fienga et al. (2008). The associated corrections are
best explained when considering the actual measurements, which is the object of next section.

1.2.2 Doppler spectroscopy

The spectrum of a star in the visible domain contains absorption lines. These are short
intervals of wavelengths such that photons whose energy lies in this range are absorbed in
the upper parts of stars atmospheres. As a result, the observer does not receive light at those
wavelengths. The spectrum appears as a continuum of frequencies where some are missing
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(see figure 1.5). As the star moves, the wavelengths are shifted by Doppler effect and so are
the absorption lines, whose spacing is approximately conserved.

The absorption lines act as a comb that can be compared to reference wavelengths to derive
the shift of the spectrum. Since the instruments are not entirely stable, even if the star was
perfectly motionless there would be a drift of the spectrum, thus the reference wavelengths
must be calibrated. This is done with two techniques: with an iodine cell put on the path
of light, that imprints its absorption lines on the spectrum (e.g. Marcy et al. 1997) or by
a stable lamp, whose emission lines are used to calibrate the CCD detector (Baranne et al.
1996). For instance in the case of SOPHIE, the calibration is performed with a Thorium-
Argon lamp (Perruchot et al. 2008).

In the case of a calibrating lamp, the observed spectrum is correlated to a template which
is shifted in wavelength as shown figure 1.5. At each wavelength shift between the template
and the spectrum, the correlation is computed (represented by the total area in pink). The
correlation as a function of the wavelength shift is called the cross correlation function (CCF),
an example of which is given figure 1.5, bottom right, from Mayor & Queloz (1995). The
CCF is then fitted by a Gaussian function whose mean is the estimated velocity of the star.

The obtained wavelength, λobs, has some contributions from the motion of the Earth. To
isolate the contribution of the star, observers compute the wavelength that would have been
observed in the International Celestial Reference System (ICRS) which is an approximation
of inertial frame whose origin is the barycentre of the solar system (Rickman 2001). The
corrected wavelength λB is

λB = λobs
1 + 1

ck.vobs

1− Φobs
c2
− v2obs

2c2

(1.8)

where k is the vector pointing from the observer to the target in the ICRS, vobs is the velocity
of the observer, Φobs is the gravitational field he experiences. As said above, the velocity of
the observer is obtained from the Earth ephemeris (Standish 1990; Fienga et al. 2008). The
time of observation should also be corrected (Capitaine et al. 2003). The velocity of the star
along the line of sight k.v? is then obtained by equating λB with the expression of wavelength
of the light emitted and the velocity of the target in the ICRS

λB = λ0
1 + 1

ck.v?

1− Φ?
c2
− v2?

2c2

(1.9)

where Φ? is the gravitational field at its surface. Since we are interested in relative variations
over time the Φ? term can in general be dropped (Lovis & Fischer 2010). Note that as these
corrections do not depend on the wavelength, nothing is lost by applying them to the mean
wavelength computed via the CCF rather than to each wavelength individually.

Measuring a displacement of 1 m.s-1, for a spectrograph whose resolution is 100,000 requires
to detect displacement as small as 1/3000 of a line width, that is circa 1/1000 of a CCD
pixel (Lovis & Fischer 2010). To achieve such precision or better, which is routinely done by
HARPS for instance, thousands of lines are needed to average the noise out. Building such
instruments comes with technical challenges, whose effects on the signal are outlined next
section.
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Figure 1.5: Top: Solar spectrum from 392 nm to 692 nm (https://www.cfa.harvard.edu/
ssp/stars_planets/solarspectrum.html), bottom left: Correlation between a template
spectrum and an actual spectrum (from Melo (2001)) and an example of cross correlation
function (CCF) (Mayor & Queloz 1995)

1.2.3 Instrumental effects

A thorough presentation of the spectrograph used (échelle grating) is out of the scope of
this work. The presentation of instrumental considerations will focus on the impact on the
signal of the instrument properties. In other words we shall see to which extent the measured
spectra differ from ideal ones.

Like in any optical device, the photon noise is a source of uncertainty. Its effect can be
quantified using a Poisson process model for the arrival times of the photons. With this
modelling, one can express the average and standard deviation of the number of photons
received per wavelength (Pelat 2013). Let us denote by nt(λ) the true average number of
photon per unit time and per wavelength, and by ∆t the time during which the shutter is open
(the integration time). The number of photons received at wavelength λ will be on average
nt(λ)∆t and its standard deviation

√
nt(λ)∆t. This value is assimilable to the uncertainty

on the true light flux.

On top of this issue, if the spectrograph is not in a vacuum chamber, the variations of
pressure and temperature lead to a change of refraction index of the air which change the light

https://www.cfa.harvard.edu/ssp/stars_planets/solarspectrum.html
https://www.cfa.harvard.edu/ssp/stars_planets/solarspectrum.html
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Figure 1.6: Schematic of the SOPHIE optical fibers feeding the slit (left). Variation of the
estimation of radial velocity before and after introducing octogonal fibers. Figures from Per-
ruchot et al. (2011) (left) and Bouchy et al. (2013) (right)

Figure 1.7: Radial velocity of known stable targets as a function of time obtained with
SOPHIE (courtesy of F. Bouchy)

paths and induce some large deviations of the estimated velocity (100 m.s-1/K or m.s-1/mbar).
Changes of temperature lead to modifications of the relative positions of the optical devices
that might induce changes of optical properties such as the PSF and cause variations of the
estimated radial velocity up to hundred of meters. High precision instruments such as HARPS
are in a void chamber and in pressure and thermally regulated rooms. The estimation of
radial velocity depends on the position of the photocenter (that is the barycenter of the
entering light weighted by intensity) at the entrance of the slit. Such changes might result
from modifications of the seeing, atmospheric condition, telescope focus or guiding etc. As
the photocenter moves the spectral lines are shifted and the estimation of the radial velocity
varies. In the case of spectrographs whose slit is fed by an optical fibre, the amplitude of this
shift can be reduced by placing fibers with a non circular cross section. This is what has been
done for the spectrograph SOPHIE (Perryman 2011), where fibers with octagonal sections
have been introduced on the light path, as shown figure 1.6. Figure 1.6 (right) shows the
variation of the radial velocity as a function of the offset of the photocenter before and after
the change for both channels of the instrument (respectively in blue and red, the channels
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being HE and HR). The new device produces radial velocity (RV) which are sensitive to the
range of offset up to 5 m.s-1, as opposed to 25 before change.

The precision of the instrument must be stable on timescales greater than the orbital
periods to allow a detection. The calibration by iodine cells or Thorium-Argon mentioned
in the last sections cannot be perfect. Figure 1.7 shows the evolution through time of the
estimated radial velocity of targets that are known to be particularly stable. The period from
55700 to 55800 encompassed by the black accolade displays a drift as the Thorium-Argon
lamp gets older.

This figure shows other several interesting feature, especially two jumps highlighted in
green. Those happened respectively after the introduction of octagonal optical fibres and
after the mirror of the telescope has been re-aluminised. The monitoring of stable stars
allows to reduce the effects of such offsets which are hard to predict. The averaged measures
(red curve) is subtracted from other radial velocity measurements to improve the stability of
their distance to a stable reference.

Finally, let us mention that the variation of size and sensitivity of CCD pixels. Variations
of sizes between pixels distort the wavelength solution from calibration . Also, the read out
noise increases as the signal to noise ratio decreases, introducing some systematic effect.

Contamination

The spectrum measured by the spectrograph can contain information from a star in the
field of view indistinguishable from the target star (e.g. Cunha et al. 2013, and reference
therein). The measured spectrum can also contain signatures from the sunlight reflected by
the Moon (Bonomo et al. 2010), this is especially a problem when the star is close to the
Moon and the seeing is poor. Finally, the absorption lines of the atmosphere are not subject
to the Doppler effect that shifts the stellar spectrum and might vary in depth. This problem is
especially important for spectrographs operating in the infra-red region such as CARMENES
or Spirou where the atmospheric absorption spectral lines are more numerous.

In HARPS, the spectral regions where the atmosphere has the deepest lines are simply
neglected in the calculations (Mayor et al. 2003). As the performance of the instruments
improves, the errors induced by shallower lines becomes more important and other, more
sophisticated options are considered. Some are based on forward modelling of the absorp-
tion (e.g. Bailey et al. 2007; Seifahrt et al. 2010; Cotton et al. 2014; Cunha et al. 2014). In
another spirit, Artigau et al. (2014) has used a non parametric method to distinguish stellar
and atmospheric lines (Principal Component Analysis).

As an example, figure 1.8 shows the impact on simulated radial velocity time series of ig-
noring the spectral content in certain regions when the spectral lines are deep or shallow and
the ignored regions are determined by a threshold. When telluric lines are well identifiable,
thresholding the spectrum seems to be an acceptable technique, while this type of correc-
tion leaves systematic effects on the RV estimation for shallower lines that have amplitudes
comparable to stellar lines.

1.2.4 Stellar types

The precision of the radial velocity estimate depends on the morphology of the spectrum.
Since the estimation is obtained by averaging the displacements of the spectral lines, spectra
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Telluric  
Contamination: H2O 

O2 

Telluric lines are everywhere! Even in the optical. 
Spectra of water and oxygen absorption lines over Mauna Kea 
with precipitable water vapor 0.8mm & alt = 60°. Made with 
TERRASPEC (written by Chad Bender, available upon request). 

Solutions 

Sharon Xuesong Wang 
Jason T. Wright, Chad F. Bender 
xxw131@psu.edu 

Department of Astronomy & Astrophysics 
Center for Exoplanets and Habitable Worlds 
poster available at bit.ly/sharon_eprv 

Effects & 
Simulated spectra and extracted 
RVs for two example 2Å spectral 
chunks*, plots from left to right:  
micro telluric lines within the chunk 
(note depths!), extracted RVs for > 
700 observations with no telluric 
lines injected, with telluric injected, 
and with telluric injected but masking 
out the telluric-contaminated pixels 
when extracting RVs.  
 

x-axis is the barycentric correction 
velocity of the star. 
 

*Hence and large RMS! 

Technique: Precise RV with iodine cells as calibrators 
Data from:  Keck/HIRES, real data or simulated 
Telluric model by: TERRASPEC, which runs LBLRTM using HITRAN 

clean spectra telluric injected telluric masked 

chunk #1 

chunk #2 

masking threshold 

micro tellurics 

Masking? Flagging out the telluric-contaminated pixels 
(in both stellar observations and stellar template) would 
remove some of the aliasing signal (top plots). However, 
as demonstrated in the simulations above, a clean 
removal will depend on a deep masking threshold, which 
throws a way a lot of pixels and gives large RMS (this 
one already masks over 10% of the entire domain!). 
 
 
Modeling! The best we can do is to have a telluric-free 
stellar template (see recipe below) and fitting telluric 
models in the forward modeling code when extracting 
RVs. Our preliminary modeling (not varying telluric line 
depth) already shows promising results (even with a 
particular challenging stellar template of HD 185144 
taken on a humid night! Masking works badly here.) 

Take Away: To best remove the aliasing RV signal, clean telluric lines in stellar 
template, and incorporate telluric line models into the forward modeling code. 

Real data for RV standard star HD 185144 

chunk #1 

stellar template: 
before telluric removal 
after telluric removal 

micro tellurics 

Real data for RV standard star HD 185144 (a different stellar template) 

Recipe: How to clean your deconvolved stellar template  
 

Ingredients: high SNR stellar template spectra (taken with no iodine), bracketing telluric standard 
observations through nearby B star (optional but desirable), bracketing nearby B star spectra through 
iodine cell (to provide spectral PSF). 
Prepare: telluric model generator which can generate models under different atmospheric conditions 
(e.g. varying water vapor), tuned to your observatory. Your favorite deconvolution algorithm.  
Cook: 1. Fit the B star telluric standards to get atmosphere model. 2. Fit the B star + iodine spectra with 
iodine atlas + telluric model to get the correct PSF. 3. Deconvolve the stellar template spectra with PSF. 
4. Divide out telluric model from deconvolved stellar template (note: first solve for absolute stellar RV!). 

Figure 1.8: Spectra and extracted RVs for two example 2Å spectral chunks, plots from
left to right: micro telluric lines within the chunk (note depths), extracted RVs for > 700
observations with no telluric lines injected, with telluric injected, and with telluric injected but
masking out the telluric-contaminated pixels when extracting RVs. x-axis is the barycentric
correction velocity of the star. Figure and caption from Sharon Wang’s poster at the Extreme
Precision Radial Velocity meeting II, 2015, Yale University.

with numerous and stable lines provide more accurate estimates. More precisely, Connes
(1985) and Bouchy et al. (2001) compute the best error achievable on the radial velocity
taking into account photon noise and a Gaussian error on the flux of pixel i due to the faults
of the CCD defaults of standard deviation σD

1

σRV =
c

Q
√
F∆t

; Q =

√√√√√
n∑

i=1

λ2
i

(
∂A0
∂λ (λi)

)2

A0(λi) + σ2
D(i)/∆t

(1.10)

where F is the total incident flux (total number of received photons by time unit), ∆t is
the integration time and Q is the quality factor. A0(λ) is the theoretical average number of
photons per unit time received at wavelength λ normalized by the total flux, which therefore
depends only on the spectral type and λi is the wavelength corresponding to pixel i of the
CCD detector (or the center of pixel i). The quality factor contains the squared derivative
of the spectrum’s derivative. It means that the higher the slope at λ, the more information
is carried by the spectrum at this wavelength.

In practice, one wants to avoid too hot stars (Teff & 10, 000K), whose photosphere elements
are mostly ionized and therefore do not have lines in the visible spectrum. A fast rotation
tends to broaden lines, decreasing the value of the spectrum derivative and are not suitable
targets for highest precision measurements. Finally coldest stars (Teff . 3500K) tend to have
overlapping lines and lower flux, therefore lower signal to noise ratio. Precise measurements
are available for F5 to M5 stars, as well as the red giant and clump region of the HR
diagram (Lovis & Fischer 2010).

1To obtain the result, Connes (1985) invokes calculations from Connes 1984, which is not publicly available.
Appendix A discusses this calculation and makes it more explicit.
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Figure 1.9: Structure of a Sun-like star. Credit: NASA

1.2.5 Stellar noise

The HARPS and HARPS-N spectrographs (resp. Mayor et al. 2003; Cosentino et al. 2012)
can achieve a precision on radial velocity of 1 - 0.5 m.s-1 . This value is expected to be
improved to 0.1 m.s-1 by ESPRESSO in the near future. At this level of precision, the main
obstacle to detection and characterization of exoplanets is the stellar noise. Since the subject
is crucial, it will be treated in a little bit more detail.

(Extremely) simplified structure of a star

Giving a fair description of stellar structure is way beyond of the scope of this work. Interested
readers might refer to the classical textbooks (Phillips 1999; Prialnik 2000) for an introduction
to stellar physics. We will only define terms that are essential to understand the RV signatures
of stellar features.

A star might be roughly divided in concentric layers, as shown figure 1.9, that have different
properties. The core of the star, that concentrates most of its mass, is where hydrogen fusion
takes place and generates thermal energy. This one is transmitted outwards by radiative
transfer in the so-called radiative zone. After a random walk of ≈ 10 Myr, the photons reach
the upper part of the radiative zone. At this point, the transfer of heat is done through
convective transfer, hot gas rising up and colder gas rising down due to buoyancy. On top
of the convective zone is the photosphere, where light is emitted outwards and which can be
seen as the surface of the star. The uppermost layers are the chromosphere and finally the
corona, which is a plasma envelope that surrounds stars . In the case of the Sun, the ejection
of Coronal mass is known as Solar wind. Note that this description is invalid for coolest stars
(< 0.35 M�), where the convective zone can extend all the way to the center (Hansen &
Kawaler 1994).

The presence of a magnetic field in sunspots had been noted already by Hale (1908), and
its origin remains a subject of active research. In the case of the Sun, the physical process at
the origin of the magnetic field (the dynamo) is likely to be shearing forces at the interface of
the convective and radiative zone (the tachocline, Spiegel & Zahn 1992). The shearing forces
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Figure 1.10: Granules (left) and super granules (right) on the surface of the Sun (NASA,
https://solarscience.msfc.nasa.gov/feature1.shtml)

would be resulting from the interactions between the solid rotation of the core and radiative
zone, as well as the variable rotation rate as a function of radius in the convective zone.
This leads to expect different structures of magnetic fields in lower mass stars (Chabrier &
Küker 2006; Walder et al. 2012). For a discussion of the physical origin of the solar dynamo
see Charbonneau (2010). We will restrict ourselves to list the consequences of the magnetic
field on the observation.

Acoustic waves

Stars are crossed by pressure waves that arise from inhomogeneities in the convective zone,
whose study is termed Asteroseismology (e.g. Christensen-Dalsgaard 2014). Some of these
waves cause radial oscillations of the star that have an effect on the measurements, as shown
by Dumusque et al. (2011b). The typical time-scale of the p-modes oscillation is 5 to 15 min
and they produce RV variations up to a few m.s-1. Dumusque et al. (2011b) also shows that
this effect can be mitigated by choosing an integration time & 10 min in order to average it
out.

Granulation

In the convective zone, the hot gas rises up until it reaches the photosphere, cools down and
goes backwards in the direction of the star centre. This means that the gas whose velocity
is pointing to the observer is on average hotter than the descending one and results in an
overall blueshift of the surface. Figure 1.10 (left) shows a picture of the Sun’s surface taken
by the Swedish Vacuum Solar Telescope, where the color level scales the level of the light
flux. The surface exhibits cells of ≈ 1000 km that are brighter in the center, where the gas
emerges, and darker on the rim where gas goes down. These have a lifetime of approximately
20 min, after which other granulation cells appear.

https://solarscience.msfc.nasa.gov/feature1.shtml
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Convection cells of greater scales are present on the Sun. These phenomena are termed
supergranulation for cells of ≈ 40,000 - 50,000 km, which last for ≈ 1 day (Kueveler 1983;
Del Moro 2004) and mesogranulation for cells whose size and lifetime is in between (Deubner
& Fleck 1989; Roudier et al. 1998). The blueshift and redshift induced by supergranules is
represented figure 1.10 (right).

Before the characteristics of granulation were precisely known, Harvey (1985) suggested a
simple statistical model for granulation. The surface of the Sun is supposed to be a sum of
a great number of cells whose velocity behave like independent processes with exponential
autocovariance. These ones have a characteristic time τs and standard deviation σs that
depends on the scale of the granulation s. Averaging these processes, he obtains (without
providing calculation details) that the noise induced at scale s is modelled by a stochastic
process of power spectrum

Ps(ν) =
4σ2

sτs
1 + 2πντs

. (1.11)

Harvey also suggests the activity-induced noise can be modelled by such a process. This
model has been used, along with a model of p-modes frequency to fit the spectrum of five
stars densely sampled (Dumusque et al. 2011b).

Spots, faculae and plages

Sunspots are known to arise from magnetic fields at the surface of the sun that blocks convec-
tive flux. The corresponding regions of the photosphere are 600 to 1800 K cooler than their
neighbourhood, thus appear darker. By extension, any region on the surface of a star that is
cooler due to magnetic activity is called a starspot (Schrijver 2002). Strassmeier (2009) (and
reference therein) shows that, alike their solar analogs, the lifetime of starspots grows with
their initial size (Petrovay & van Driel-Gesztelyi 1997). But unlike sunspots, they might form
in stellar poles (Hussain 2002) and last longer (on average a year, up to 4.5 years (Strass-
meier & Hall 1994)). Furthermore, spots are associated with magnetic fields that inhibit
partly the convection, therefore the convective blueshift, resulting in a net redshift (Cavallini
et al. 1985).

Sunspots are surrounded by bright points called faculae which also come from magnetic
fields. These are ≈ 100 K hotter than the average on the photosphere, but this effect on
radial velocity is not dominant (Dumusque et al. 2014). Alike Spots, the associated magnetic
field limits convection, which reduces the blueshift (Lagrange et al. 2010). Those are tubes
tangent to the stellar surface and therefore they appear brighter on the limbs. Faculae are
associated with other structures situated in the chromosphere called plages, through processes
that are not completely understood (e.g Schrijver 2002). These have a spectral signature on
the Ca II K line, which allows to detect their presence, hence magnetic activity (Bruzek 1977).
Furthermore, plages introduce a small difference in flux and appear brighter and brighter in
contrast with their neighborhood as they approach limbs (Chapman et al. 2001).

The main effect of spots and faculae on radial velocity estimate is the following. When the
spot is on the half of the star moving towards the observer, there is a deficit of blue-shifted
light, therefore a global red shift. As it passes on the receding half the situation is inverted,
there is a global blueshift of the velocity. This periodic motion can mimic a planet signature
at the stellar rotation period or an harmonic and lead to false detections as noted by Queloz
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The CCF is not only useful to estimate the radial velocity. The various phenomena at
the surface of the star also affect its shape. For instance, the contribution of the center
of the convection cells, blue shifted, will be superimposed with the contribution from
their edges, red shifted. These contributions integrated on the stars are schematically
represented in the figure above (right). The observer measures the sum of the two,
which is broadened and asymmetric. The broadening and its variations are seen
by computing the full width at half maximum (in red, right figure). Queloz et al.
(2001) suggests to compute the asymmetry as follows. First, for each level of relative
intensity I , one computes the mid-point of the line joining the two CCF points at I
(round dot) . Then one computes the average of midpoints on the 10 - 40 and 60 - 90
% upper parts of the intensity range, which are represented by dark and light yellow
check-marks on the wavelength axis. The bisector span is the difference between these
two values, BIS = BIStop − BISbottom.
Other indicators can be derived from the CCF whose merits are investigated in San-
terne et al. (2015). They find that the so-called BiGauss (Nardetto et al. 2006) and
Wspan (Figueira et al. 2013) are most sensitive to line profile asymmetry. Note that thes
are most useful when using a box-shaped template to compute the CCD (Eggenberger
& Udry 2010).

Figure 1.11: Indicators derived from a spectrum

et al. (2001). Fortunately, differences between active and inactive stars can be seen on the
cross-correlation function (CCF) defined section 1.2.2.

The signatures of spots, faculae and plages has been investigated with numerical simulations
by Boisse et al. (2012) (SOAP software) and Dumusque et al. (2014) (SOAP 2.0). The star
surface is subdivided in cells, each of which have a CCF that depends on whether it is
occupied by a quiet photosphere, a spot or a plage (no mention is made of faculae), and the
velocity of the cell. The CCF is obtained as a weighted sum of the cells CCFs whose weights
are given by a limb-darkening model. The CCF models are obtained by using the HARPS
reduction pipeline with a solar spectrum of a spot and of a quiet photosphere. The CCF
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Figure 1.12: Simulation of SOAP 2.0 (from Dumusque et al. (2014)) Flux, radial velocity,
FWHM and bisector span as an equatorial spot or a plage moves across the stellar disk.
The different colors correspond to different instrument resolutions. R > 700,000 (blue, ≈
resolution of the Fourier Transform Spectrograph, FTS ), R = 115,000 (green, ≈ resolution
of HARPS), R = 55,000 (red, ≈ resolution of CORALIE)

of active regions serve as template for spots and plages, which are identical in that respect.
The difference lies in their temperature models, which affects their weight in the sum. They
compute also other indicators from the CCF (FWHM and BIS), whose definition is given in
figure 1.11. We reproduce a sample of their results figure 1.12, which is the variation of the
indicators mentioned as well as photometric flux for a single spot or plage on the equator as
it moves across the stellar disk. The good news is that indicators are correlated with the RV
variations induced by the active regions. Since RV variations should not have signatures in
activity indicators, activity indicators allow in principle to disentangle planets from activity.
This is not totally true as those are noisy and more complex than idealized cases. Secondly,
the spot pattern varies in time in a stochastic fashion as we shall see next section.

Long term activity

If the spots were motionless with respect to the surface of the star and of constant flux,
their signature RV would be a periodic signal at the star rotation period. This one would
be exactly defined by its Fourier coefficients. These are useful characterization of the spot
effects, but because of stochastic apparition and disappearance of spots the global effect is
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more complicated.

Figure 1.13 shows measurements of the area covered by spot as a function of time and
latitude (Hathaway 2010), as well as the total area covered by spots as a function of time.
The upper plot exhibits a clear pattern termed “butterfly”. The spots appear at ≈ 30− 35◦

at minimum activity and migrate downwards with a periodicity of eleven years. Magnetic
cycles are not observed only on the Sun. The monitoring of the CA II H & K lines of
1296 Sun-like stars (Th HK survey) revealed that 60% show periodic variations of 7 to 30
years (Baliunas et al. 1998), 25% showed variability without clear periodicity and 15% seemed
quiet. More recently Sanchis-Ojeda & Winn (2011) and Sanchis-Ojeda et al. (2011) showed
that one can recover spots location from their occultation by a planetary companion. In the
same spirit Llama et al. (2012) could reconstruct some butterfly-like diagrams from Kepler
observations. Furthermore, Lockwood et al. (2007) showed that on old stars, Ca II H & K are
correlated positively with chromospheric activity, which is a sign of an activity dominated
by faculae, while on younger star the correlation is negative, indicating a spot-dominated
activity. The line between those two behaviour is situated at logR′HK = −4.96.

Lovis et al. (2011a) showed that the variation of activity on these long time scales could
lead to radial velocity variations of 25 m.s-1 on the time scale of the cycle. However, the
very fact that these discoveries were possible shows that magnetic variability is a traceable
quantity. Furthermore, it was shown that individually, spots are correlated with FWHM
and BIS, and long-term magnetic activity is known to impact RV measurements insofar the
number of spots, faculae and plages vary in number, size and location across the star. Still,
if the variations of the number of spots is close enough to a planet signature we could be
mislead. In order to correct RV time series, we would like an indicator that informs us
closely on the contribution of activity to the radial velocity estimate. Dumusque et al. (2012)
further noted that the variation of logR′HK are correlated with radial velocity variation.
More recently, Haywood et al. (2016) observed the surface of the Sun, onto which spots can
be resolved simultaneously with HARPS observations of its light scattered on Vesta. It shows
in particular that the full-disc magnetic flux density might be a better indicator of activity.

Flares

Sudden ejection of coronal mass due to breaking of magnetic fields line, known as flares,
can produce variations of estimated radial velocity up to tens of meters per second Reiners
(2009). These are rare events, accompanied with an increase of brightness and have a clear
signature on the Hα line.

Gravitational redshift

As seen section 1.2.2, the wavelength of the light is red-shifted by the gravitational field of the
star. A change of radius of the star means a change of gravitational field on the photosphere,
therefore a fluctuation of the estimated radial velocity. Cegla et al. (2012) explored with
simulations the possibility of such variations. They found that the magnetic fields act as an
inhibitor of convection, by trapping and cooling down the gas going upwards. This results in a
decreased effective radius, whose fluctuations can cause a RV jitter of 0.3 to 4 cm/s. Secondly
starspots are known to be depleted compared to the average surface of the star (known as the
Wilson effect, Bray et al. 1965). The overall modification of the radius due to the appearance
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Figure 1.13: Area covered by Sunspots by latitudes of equal area as a function of time (top).
Area covered by sunspots averaged per day, as a function of time. From Hathaway (2010)

and disappearance of starspots should amount to ≈ 2 cm/s.

1.2.6 Pipeline

A measurement of radial velocity is the result of a computation starting with the number of
photons measured by CCD detectors and numbers from the calibration step of the instrument
information. Algorithms that automate this computation are called pipelines, and are critical
parts of the reliability of radial velocity measurements. It is beyond the scope of this work
to enter in the details of pipelines, we simply mention a few works for further reading. For
example, Zechmeister et al. (2014) proposes an optimal extraction method to obtain a one-
dimensional spectrum from a two-dimensional CCD array, as encountered in echelle-grating
spectrographs, see reference therein for other techniques. Bauer et al. (2015) outlines a
wavelength calibration technique for Fabry-Perot etalons. The HARPS pipeline is described
in Anglada-Escudé & Butler (2012).
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Table 1.1: Summary of known signal sources. Numbers for instrumental effects and barycen-
tric correction are taken from Lovis & Fischer (2010). Others are from Cunha et al. (2013)
(blending stars), Cegla et al. (2012) (Gravitational redshift), Reiners (2009) (flares), Du-
musque et al. (2011b) (p-modes, granulation), Dumusque et al. (2011a) and Dumusque et al.
(2014) (spots, faculae, plage), Baliunas et al. (1998); Lovis et al. (2011a) for activity cycles.

Effect Amplitude and
timescale

Correction (if avail-
able, or modelling)

Signal

Planet motion generate a reflex
motion of the star

1 cm/s to hundreds of
m.s-1

< 1 day to hundreds of
years

v(t) = V +∑np
i=1Ki(cos(ωi +

νi(t)) + ei cosωi) (see
equation 1.2)

Uncertainties

Barycentric correction: wave-
length an observer at the center of
ICRS would receive

0.01 (BEPOP) - 0.5
m.s-1

1 year and harmonics

Correction from plane-
tary ephemeris

Star blends: A background star
contaminates the spectrum

Depends on the differ-
ence in magnitude and
spectral type. On aver-
age 6 10 cm/s but can
reach 1 m.s-1 for ∆m 6
8
≈ Planet orbital period

Activity diagnos-
tics (Santerne et al.
2015)

Lunar & Telluric Contamina-
tion: the spectrum might be con-
taminated by lunar or telluric lines
as well as faint companions that add
up with the stellar spectrum and de-
form the CCF

Telluric lines: a year
Moon: bad sky trans-
parency, bad weather

Subtracting CCF of the
channel pointing at the
sky from the CCF of the
observations (Bonomo
et al. 2010)

Photon noise c
Q
√
F∆t

with Q qual-

ity factor depending on
the stellar type, F pho-
ton flux, ∆t integration
time

The number of pho-
tons received is counted
in real time to check
achievement of required
SNR.

Variation of the air refraction
index: change in temperatures and
pressure induce spectral line shifts

Temperature change:
100 m.s-1/K
Pressure change 100
m.s-1/mbar
observation night

Instruments in vacuum
chambers, put in ther-
mal and pressure regu-
lated room.

Thermal and mechanical ef-
fects: variations of temperatures
induce changes of instrument prop-
erties

up to hundreds of m.s-1
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Slit illumination variation: vari-
ations of the photocentre change the
response of the instrument

Photocenter shift in-
duce variations of 30
km/s/slit width for a
resolution of 100,000

Fibers of non circular
sections that scramble
the incident light.

Calibration imprecision: asso-
ciating a wavelength to a pixel is
done by calibration several times per
night but not perfectly

Variations of 1-2 m.s-1,
down to 30 cm/s, in
the long term (several
months) depending on
techniques

Improving stability of
calibration instrument
(easier said than done)

Detector faults: the variation of
properties pixel per pixel and read-
out noise create systematics

Increased relative noise
at low SNR
Possible periodic effect
if a deficient detector is
periodically reached

Improving CCD detec-
tor regularity and sta-
bility, check for sys-
tematic yearly or half-
yearly effect.

Instruments upgrades: change of
components might induce improved
precision but also offsets that are
hard to predict

up to several m.s-1, but
can be corrected

approximation from
stable star monitoring.

Granulation: convective motion in
the star’s atmosphere cause local
variation of the atmosphere radial
velocity

≈ 0.1 - 4 m.s-1

τ1 = 20 min, τ2 ≈ 40
min, τ3 ≈ 1 day

Stationary stochas-
tic process of
spectral density

P (ν) =
∑3

k=1
σ2
kτk

1+(2πντk)2

(discussed model).
Observation strat-
egy: taking several
observations per night

p-modes: The propagation of
acoustic waves in the star mantel
cause it to oscillate

≈ 0.1 - 4 m.s-1

5 - 15 minutes
& 10 min observations
to average out the ef-
fect.

Relativistic terms: gravitational
field Φ? and star velocity v? effects
on the received wavelength

≈ 0.06 cm/s
observation timespan

See eq 1.9

Spots: darker region of stellar sur-
face, inhibit convection, introduce
asymmetry of the light flux between
the approaching and receding parts
of the stellar disk

≈ 0.1 - 10 m.s-1

Stellar rotation period
and harmonics

Understanding via nu-
merical models and ob-
servations

Faculae/Plages: brighter region of
stellar surface, inhibit convection,
introduce asymmetry of the light
flux between the approaching and
receding parts of the stellar disk

≈ 0.1 - 10 m.s-1

Stellar rotation period
and harmonics

Partial correction via
FWHM, bisector span,
logR′HK
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Activity cycles: number of
starspots, plages and there location
vary stochastically during the
activity cycle

Up to 25 m.s-1

≈ 7 - 30 years
Modelled as stochastic
processes (so far Gaus-
sian processes)

Flares: Sudden ejection of coronal
mass

Several 10 m.s-1

≈ 20 mins flashes
Seen in e.g. Hα line

1.3 Inference

I learned from Popper what for me is the essence of scientific
investigation — how to be speculative and imaginative in the
creation of hypotheses, and then to challenge them with the
utmost rigor, both by utilizing all existing knowledge and by
mounting the most searching experimental attacks. In fact, I
learned from him even to rejoice in the refutation of a cherished
hypothesis, because that, too, is a scientific achievement and
because much has been learned by the refutation.

John Eccles

In the work already mentioned which I was working on at the
time, I referred to passages from this book more or less at
random, not in order to refute them — what business is it of
mine to refute! — but, as befits a positive mind, to replace the
improbable with the more probable and in some circumstances to
replace one error with another.

Friedrich Nietzsche, On the Genealogy of Morality

1.3.1 Context

As seen last section, a considerable amount of work has been done to build outstanding instru-
ments as well as to identify, model and possibly correct the components of the spectroscopic
signals. Furthermore, observation nights are expensive and time consuming. It is therefore
important to exploit as much as possible the data available and to try to optimize observation
strategies. Before presenting actual data analysis techniques, that rely on probability theory,
let us take a step back and think of what we are trying to do.

In this thesis, the main concern is to gain information from observations, which is often
referred to as inference. The difficulties of such a purpose are to a certain extent independent
of the type of observations and of the information to be extracted. In this chapter we present
some general considerations about inference that apply to the study of extrasolar planets.

We will take as a practical definition of inference the fact of characterizing the properties
of an object about which some information is missing. On the contrary, in the context of
deductive reasoning, one can specify hypotheses from which propositions are derived. When
dealing with experimental data, we only have partial and imprecise information. For instance,
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a noise model can be seen as partial information: we obviously do not know the exact noise
value at the moment of the measurement, but we know that it is going to behave roughly like
a Gaussian variable that has a certain variance σ. Furthermore, this model is imprecise, since
we know that the noise does not follow exactly this Gaussian law. Unlike a mathematician
who can choose the hypotheses he starts from, the experimenter cannot assume a certain law
for the noise and be perfectly right simultaneously.

Inferring properties of the real world has been a subject of intense debate among philoso-
phers that might now seem outdated thanks to the powerful statistical tools that have arisen
in the 20th century. However, it is not always clear whether the statistic we compute answers
the question that is being asked. A blind use of statistics can lead to spurious claims, as has
been the case in medicine (Ioannidis 2005) because of an unreflected and incorrect use of the
so-called p-values.

We will not dwell on the philosophical debate, but state what is the epistemological choice
made here — and underlying in most scientific research, — that is the Popperian response
to the problem of induction. Since it is not possible to build general cases from data, the
position adopted is to make clear hypotheses, then derive consequences on what should be
observed in the framework of deductive reasoning, and finally compare to experiments. If the
results disagree, at least one of the hypotheses should be rejected. If not, it will only be said
that data corroborates a hypothesis, keeping in mind that no refutation or corroboration is
definitive.

Trying to find hypotheses that agree with a data set can be compared with the resolution
of an equation f(x) = y, y being the data, f the model and x a parameter of the model.
This one can be seen as a vector equation, which encompasses agreement with data and with
other knowledge we might have. The set of solutions of the equation is similar to a set of
non-rejected hypotheses, those that reproduce with “good” accuracy the data and other prior
knowledge.

If we want to make a strong case for a particular hypothesis, this might be seen as proving
uniqueness of the solution. Also, when the space of solution/hypotheses is too hard to explore,
only an approximation of a subset of solutions will be available. Finally, it might turn out
that the space of possible solutions/hypotheses was initially too restrictive and the solution
lies outside, which is similar to situations that can be encountered in equation solving. With
this viewpoint, trying to select a model among those compatible with the data amounts to
introduce exterior sources of information, additional “equations” to constrain explanations,
for instance preference for simple models, as discussed in section 1.3.2. In the context of
exoplanet detection, to evaluate the plausibility of a planetary systems whose parameters are
estimated via a statistical analysis, one might consider other source of information such as
the type of the star or the stability of the estimated system.

Furthermore, let us stress that the “equations” putting constraints on our hypotheses de-
pend on the sequence of event that leads to a scientific claim. A hypothesis formulated
after seeing the data should not be treated as if it had been formulated beforehand. The
more hypotheses we explore, the more likely it is to find one that reproduces the data. If
the hypothesis found to be most consistent is assessed as if there was no prior search, its
likelihood will be greatly overestimated. Funny instances of this problems are available on
http://tylervigen.com/discover where one can discover correlations by exploring large
data sets. Figure 1.14 we show an example of a correlation between the number of doctorate

http://tylervigen.com/discover
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Figure 1.14: From http://www.tylervigen.com/spurious-correlations.

in civil engineering and the consumption of mozarella, both in the United states. The 95.86%
correlation coefficient is obviously due to the fact that a correlation is searched in a wide
database of curves. In RV data analysis, one can always reproduce the data more and more
closely as the number of planets in the model increases. To claim a detection, it must be
ensured that a good fit with a planetary model does not only arise from the fact that many
orbital configurations were considered.

A major problem remains: what criteria should be used to express a disagreement between
data and a model? The tools available rely heavily on probabilistic tools, presented next
section.

1.3.2 Uncertainty and probability

To put in practice the Popper method in a quantified way we need a mathematical concept
that embodies uncertainty. There are two traditions to model uncertainties: starting from
the frequency of an event and starting from requirements on inference rules compatible with
common sense. The following sections outline these two approaches.

The difference can be approached from a historiographical perspective. Our goal is not to
try to unveil what authors have meant by frequentist and Bayesian and to comment these
choices. In the following discussion we define what we intend by frequentist and Bayesian
based on what seems to be their common use and then discuss these notions so defined. This
discussion should be seen as a starting point from existing literature to discuss the more
general question: what is a useful measure of uncertainty? In simpler terms: how sure am I?

The point of view we ultimately defend is that the interpretation of probability (frequency,
subjective measure of certainty...) and what are the relevant numbers to make inference (shall
we use Bayes formula?) are two different matters. Secondly, that using Bayes formula has
the advantage of stating more clearly assumptions but that the computational burden makes
the computation slow to re-do with different assumptions. Methods not relying on the Bayes
formula are blind to the fact that the data might have been generated from a population, but
since these are faster, they are more practical to see the dependence of the result on a model
change.

http://www.tylervigen.com/spurious-correlations
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Frequency of an experimental result

Random variables In the first case, one considers the outcome of an experiment as a random
variable. That is a real valued function on a space Ω to RN , where N is assimilable to the
number of observations,

Y : Ω→ RN

ω → y.

For Y to be a random variable, one must add that Ω is a measurable space of total measure
equal to one, and Y is a measurable application (see for instance Rényi 2007). Let us first
assume that Y takes a finite number of values Y1....Yn. A classical interpretation of saying
that “Y follows the probability distribution p1, ..., pn is that if we were to do the exact same
experiment m times, the outcomes y1, ...yn would be such that the number of outcomes
#{y = Yi}/m tends to pi as m tends to infinity. So when the number of outcomes is finite,
the outcome of the experiment is Yi is considered as an event that happens on average every
1/pi times. This interpretation is termed frequentist, and was promoted for instance by
Ronald A. Fisher.

Let us note that so far we do not need a notion of randomness. We can think of a machine
that selects the outcome of the experiment so that if it was to be done m times, the frequency
of each Yi would tend to pi. The “machine” can proceed in a deterministic way — just as
a computer generates pseudo-random sequences — as long as the average properties are
satisfied and the experimenter does not know the selection process. The random variable is
then a convenient way to express a partial knowledge of the experiment outcome: we know
how often a situation will happen on average, but not exactly when.

In general, Y will depend on assumed physical properties gathered in a vector of parameters
θ through a function f(θ) and the uncertain part comes from a so-called additive noise,
random variable ε so that Y = f(θ) + ε. The goal is to put constraints on the value of
θ, which are the physical parameters of interest, based on observations y. To do so, one
can consider that θ,f and the distribution followed by ε, denoted by fε, are fixed, therefore
the distribution of Y is known. Consequently, it is possible to compute the probability of
obtaining the outcome y if it was generated via Y . The lower is this probability, the less
likely is the model. It means that θ, f or the distribution of ε is unlikely to be correct. If
no parameter θ is compatible with the observations, then probably f or fε are incorrect. In
this method, we are considering what are the random variables that could have generated y
not too rarely.

Non parametric interpretation The reference to parametrized models f(θ) tends to mask
an interesting interpretation of inference from random variables. What do we expect to
unveil with such a procedure? We are implicitly assuming that the data have been generated
according to a distribution fYt which plays the role of the unknown of our equation. We
are looking for probability distributions fY that could have generated the data and hope fYt
is among them. Since we cannot search among all the possible distributions, the search is
restricted to a certain space, which constitutes another assumption.

Considering that the data have been generated according to a probability distribution
means, in the frequentist interpretation, that the data are a particular realization of a more
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general class of events. It is however not always clear if it is possible express uncertainty this
way. For instance, should we allow ourselves to consider “the chance of meeting my colleague
Randy in the elevator this Monday morning” as the frequency of an event among a set of
possibilities? To do so, we need to see it as a particular occurrence of a wider class that
could be repeatable (meeting a colleague a Monday morning) or thinking of our world as a
particular one among others — which is not so intuitive.

Uncertainty on the model If we know the data we see or we expect to see is generated via
a certain probability distribution, if we delimit the space of probability distributions we look
for, then the uncertainty is quantified by the frequency of an event. However, we have an
uncertainty on whether the right framework was chosen to conceptualize the experiment,
and this uncertainty cannot be expressed in terms of frequency of an event2. This means
in practice that computed probabilities are not an absolute, perfect measure of uncertainty,
and we should not jump too fast to conclusions even from compelling numbers. There is
also a very fundamental uncertainty on whether it is correct to consider that the data were
generated by a random variable.

Section 1.3.1, it was said that it is different to make inferences before and after the data
has been taken. This discussion allows to make this claim precise. A scientist can conceive
an experiment whose outcomes are delimited and which can be repeated. In this case, the
uncertainty can be effectively seen as partial knowledge on the rate of occurrence of an
outcome. The computed probabilities will be helpful to make inferences. On the contrary,
when we are given data, we don’t know how it was produced. It is not clear what is the class
of events it belongs to and what repetitions of the experiment would mean. The uncertainty
is great, but difficult to quantify. Another way of looking at it is that as we acquire knowledge
on the data, we are in a different state of information, we add other constraints to possible
explanations. If we ignore that information, the risk of spurious claims might increase.

What to think about exoplanets then? In the context of astronomy, the interpretation
of probability as a frequency does not seem in general to raise problems. We could not
estimate better the distribution of a certain property of stars than by knowing how many
stars have this property divided by the number of stars in the observable universe. Also,
as more measurements are taken, the number of times the error will lie in a certain interval
tends in general to a Gaussian probability distribution.

As said above, in the context of inference, assumptions have to be made to come back to the
framework of deductive reasoning. As long as the subtended population of events is made clear
and assumptions are stated, the analysis has a meaning. What remains unclear is whether
the computed probability helps us making correct claims. This problem has been tackled in
different ways, in particular by using another interpretation of probabilities presented in the
next section. We discuss the differences with the frequentist approach paragraph “Bayesian
vs Frequentist”.

2Unless it is itself seen as a frequency in a more general framework, itself embodied in an even more general
one. However to avoid infinite recursion an assumption has to be made at some point. The use of the Bayes
formula appears when embedding models within each other.
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Uncertain claims

The formalism of probability theory can be justified from another point of view, which traces
back to Laplace and also Keynes (1921). This one consists in extending the laws of Aris-
totelian logic, formalised by Boolean algebra, to situations where we do not have certain
knowledge. To be clear, we are considering propositions that are either true or false, but on
which we have incomplete information, and we evaluate our degree of belief that a statement
is true. This problem is different from evaluating the degree of truth of an imprecise propo-
sition. For instance, we want to know whether “a planet of mass superior to Jupiter orbits
star HDx” is correct or not, and we evaluate our belief this is the case. We are not concerned
with evaluating in which extent “planet HDxb orbiting star HDx is big” is true.

The major development of this approach came from Cox’s theorem (Cox 1946, 1961), later
popularised by Jaynes & Bretthorst (2003). Cox’s starting point is the question: what do
we expect from a quantity that evaluates the plausibility of a proposition A holding another
proposition B as correct? For our purpose, Cox (1946) argues that it seems reasonable to
impose several requirements to a quantified measure of plausibility. For the mathematical
definition of these requirements, we adopt (mostly) the conventions and presentation order
of Halpern (1999b).

1. The degree of plausibility of a proposition holding another proposition as true should be
represented by a real number. Implicitly, this means that we are considering a function
P and a set W such that for any two subsets U, V of W with U 6= ∅, P (V |U) is a real
number.

2. The plausibility of the negation of a any proposition V , denoted by V̄ , given U 6= ∅,
depends only on the plausibility of V given U . In other words, there exists a function
S : R→ R such that P (V̄ |U) = S(P (V |U)).

3. The plausibility of a conjunction of any events V and V ′, V ∩ V ′ such that U 6= ∅
depends only on the plausibility of V |U and of V ′|V ∩ U . In other words, there exists
a function F : R× R→ R that verifies P (V ∩ V ′|U) = F (P (V ′|V ∩ U), P (V |U)).

We are considering propositions are sets belonging to a wider set of all acceptable propositions
W , as is classic in Boolean algebra or probability theory. The propositions are identified with
the “set of situations” they cover. The condition U 6= ∅ means simply that the proposition U
we assume is not unrealisable. It would not make much sense to search for the plausibility
of V knowing U and Ū , or to be more concrete, the plausibility that we are going to arrive
on time given the train is late and the train is not late. The assumption that the plausibility
is a real number does not mean, at least at this point, that plausibilities are ordered on an
absolute scale. We could decide that a plausibility equal to two indicates a higher degree of
confidence than a plausibility equal to three.

The second hypothesis states that if we know the plausibility of an event, then plausibility
of its negation is fully determined. This means in particular that the plausibility of Ā|C does
not depend on A nor C but only on P (A|C). If the plausibility of arriving on time knowing
the train is late, and the plausibility of receiving a call from a cousin knowing she is in town
have the same value, then the plausibility of their respective negations will be the same. The
third proposition can be understood as compatible with usual logic. To decide whether V and
V ′ are true knowing U , we can start by proving that V |U is true, and with that knowledge,
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proving that V ′ is true or conversely. The fact that these two operations commute yields
that F should be associative, F (x, F (y, z)) = F (F (x, y), z) which is key in obtaining Cox’s
theorem from these assumptions, namely: P has to be isomorphic to a conditional probability
measure on W , i.e. there exists a bijective continuous function g : R → R such that g ◦ P
verifies

g ◦ P (W |W ) = 1 (1.12)

g ◦ P (V ′ ∪ V |U) = g ◦ P (V ′|U) + g ◦ P (V |U) for disjoints V, V ′ (1.13)

g ◦ P (V |U ∩ U ′)× g ◦ P (U |U ′) = g ◦ P (V ∩ U |U ′) (1.14)

as soon as U ′, U 6= 0. Unfortunately, as it is Cox’s proofs (Cox 1946, 1961) are incorrect. With
only these assumpions, Halpern (1999a) exhibits a counterexample when the set of possible
propositions W is finite. However, Paris (1994) showed that with additional hypotheses, the
proof can be made rigorous. These are, as stated in Halpern (1999b),

1. The range of P is [0, 1] (or any closed interval).

2. P (∅|U) = 0 and P (U |U) = 1 for U 6= ∅.

3. S is decreasing (see condition 2 above).

4. F is strictly increasing on both coordinates in (0, 1] and is continuous (see condition 3
above).

5. For all 0 6 α, β, γ 6 1 and ε > 0, there exists sets U4 ⊂ U3 ⊂ U2 ⊂ U1 such that
U3 6= 0 and each |P (U4|U3)− α|, |P (U3|U2)− β| and |P (U2|U1)− γ| is less than ε.

The first four assumptions do not seem so stringent. The assumptions 1 and 2 jointly mean
that the range of P cannot be infinite, there is a closed scale of certainty, starting from
0 for an impossible event and reaching one for a certain event. The assumptions 3 and 4
state respectively that the more plausible A, the less plausible its negation Ā and the more
plausible A|B ∩ C or B|C, the more plausible A ∩ B|C. The assumption number five is not
very appealing and hard to interpret as such, but one of its consequences is easier to grasp:
W must be infinite. Indeed, 5 implies that for all U 6= ∅, the values taken by P (V |U) should
be dense in [0, 1].

These results have cast some doubt on how compelling Cox’s arguments were regarding the
use of probability as privileged system of inference. To cut short to an abstract discussion
on the rules of inference (see for instance Horn 2003), let us point out that in astronomy we
are interested in physical quantities that vary continuously, therefore the infiniteness of W is
verified. We shall neither consider theories in which the degree of belief is represented by two
numbers (Shafer 1976; Dubois & Prade 2012), which are too far from common practice. Let
us conclude from this discussion that the formalism of probability theory seems attractive
even when considering rules of inference from an abstract point of view.

Bayesian vs Frequentist

Bayes formula In the following, we will encounter data analysis techniques that are stamped
“Bayesian” or “frequentist” and a choice will have to be made. To define the differences
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between the two approaches, let us first write Bayes theorem. This one gives the probability
of a hypothesis H knowing data y, that is respectively in the discrete and continuous cases,

Pr{H|y}︸ ︷︷ ︸
Posterior (probability)

=

Likelihood︷ ︸︸ ︷
Pr{y|H}

Prior (probability)︷ ︸︸ ︷
Pr{H}

Pr{y}︸ ︷︷ ︸
Normalizing constant

and (1.15)

p(θ|y)︸ ︷︷ ︸
Posterior (distribution)

=

Likelihood︷ ︸︸ ︷
p(y|θ)

Prior (distribution)︷︸︸︷
p(θ)

p(y)︸︷︷︸
Normalizing constant

. (1.16)

the braces indicate the name usually given to each term of the formula. We use the notation
p for all distributions, which is common use, but is an abuse of notation since these are
different functions. In general, one refers to “the prior” or “the posterior” to talk about
prior and posterior distributions or probability. If we have n hypotheses H0, ...Hn−1 that are
disjoint and such that

∑
Pr{Hk} = 1, or the continuous parameters θ describe a set Θ such

that
∫

Θ p(θ) dθ = 1, the formulae become

Pr{Hi|y} =
Pr{y|Hi}Pr{Hi}

n−1∑
k=0

Pr{y|Hk}Pr{Hk}
(1.17)

p(θ|y) =
p(y|θ)p(θ)∫

Θ p(y|θ)p(θ)dθ
. (1.18)

It is not always clear what is meant by frequentist and Bayesian. When these two terms are
opposed, it is — as far as we know — regarding one of the two following issues: should we
interpret probabilities as limit frequencies of events or measures of uncertainties in general?
Secondly, should we use the Bayes formula even if the prior is unknown? The methods that
are called frequentist (p-values, maximum likelihood,...) never make use of the prior. We will
thus call frequentist any analysis that does not use formula 1.17 nor 1.18, and restrict itself
to using Pr{y|H} or p(y|θ).

An example Let us leave aside the problem of the interpretation of probabilities for a moment
and focus on the use of the Bayes formula. To illustrate the differences between using the
Bayes formula or not, we consider a classical example of the Bayesian literature. Let us
suppose that a patient is tested for an illness, and denote by I and Ī the events “the patient
is ill” and “the patient is not ill”, respectively. We denote by T+ a positive test (which says
the patient is ill) and by T− a negative one. This test is not perfect, and the uncertainty on
its outcome is such that Pr{T+|I} = 0.95. When a patient is ill, the test will be positive in
95 cases out of 100. We further assume that the probability of the test to be positive when
the patient is not ill is Pr{T−|I} = 0.04. Note that there is no reason why we should have
Pr{T+|I}+ Pr{T−|I} = 1. For instance the device for the test could be broken and always
output T+ with probability 0.95 regardless of the state of the patient.
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From the physician and patient point of views, what matters is the probability of being ill
if the test is positive or negative. In the first case, formula 1.17 gives

Pr{I|T+} =
Pr{T+|I}Pr{I}

Pr{T+|I}Pr{I}+ Pr{T+|Ī}Pr{Ī}
=

1

1 + Pr{T+|Ī}Pr{Ī}
Pr{T+|I}Pr{I}

(1.19)

To compute this probability, we need another information, which is the probability of being ill
Pr{Ī}. If the disease is relatively rare, for instance Pr{Ī} = 0.01, we obtain that Pr{I|T+} ≈
0.19. Even though the test seemed reliable because of Pr{T+|I} = 0.95, due to the rarity of
the disease when the test is positive there is only one chance out of five that the patient is
actually ill.

Unkown prior This example shows that the underlying population (Pr{I}) might induce a
large difference between Pr{T+|I} and Pr{I|T+}. Now the problem is that in general, the
probability Pr{I} is unknown. A common practice in case of uncertainty would be to assign
Pr{I} = 1/2. In that case,

Pr{I|T+} =
Pr{T+|I}0.5

Pr{T+|I}0.5 + Pr{T+|Ī}0.5
=

1

1 + Pr{T+|Ī}
Pr{T+|I}

≈ 0.96. (1.20)

Then it seems likely again that the patient is ill if the test is positive. Note that

Pr{T+|Ī}
Pr{T+|I}

≈ 1/23 (1.21)

which also seems to favour to a convincing extent the hypothesis that the patient is ill.

Since the result depends on the prior, it might be tempting to just reject its use, and
stick to ratios of the type Pr{T+|Ī}/Pr{T+|I}. However, we just saw that this one is a
particular case of a Bayesian ratio, when the priors of alternative hypotheses are equal to
each other. More importantly, if the disease was indeed rare and concerning 1% of the
population, starting a treatment would be a wrong choice roughly four times out of five on
average. We believe that a good interpretation of the test example is that the test is simply
not precise enough to make a reliable inference. Secondly, that ideally, inference should not
be based on a single prior, but one should evaluate the sensitivity of the result to a change of
prior information. This indeed reflects better our state of knowledge when we simply do not
have a clear idea of the prior distribution. Just like the fact that the actual probability of the
patient is ill or not does not depend on the ignorance of the doctor, the fact that a planet
orbits a star or not does not depend on the prior choice. A way to tend to robustness is to
impose Pr{T+|Ī}/Pr{T+|I} ≈ 1/N where N is “very large”. It means that even if Pr{I} is
small the ratio (Pr{T+|Ī}Pr{Ī})/(Pr{T+|I}Pr{I}) is still in favour of I. We will encounter
similar ratios for the selection of model, more precisely equation (3.18), where N = 150 is a
common choice. The only way to obtain a better ratio is to take more measurements. From
a more theoretical perspective, Cox’s theorem tells how to update a state of belief when data
is available, but does not give guarantee on the direct usability of the posterior as an absolute
measure of uncertainty. In the notations of the previous sections, it states what to do when
a plausibility measure P is chosen, but not how to choose it.
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Probability interpretation Regarding the question of the probability interpretation, let us
note that in this example, we used the Bayes formula and still thought of the probability as
rate of occurrence of a certain event. This situation is similar to information theory (Shannon
1948), where the frequency of the letters of the English language is known, and the exact
posterior probability of the received signal is used to design the communication devices. The
posterior probability, defined as the probability that “b was the sent message knowing a is
the received message” is exactly the rate of occurrence of this event. One can loosely think
of the orbit parameters of a given system as a message that we are trying to decode with
measurements, and that has a certain distribution we wish to determine.

Now what if there are reliable records that the occurrence of the disease is actually 1%?
The physician might want to use an additional information, which is that if the patient was
sent to be tested, it is probably because other symptoms lead to a suspicion of illness I. If
one can think of the probability of a randomly chosen person in a population as a frequency, a
given person is ill or is not. Expressing a prior belief cannot be easily expressed as a frequency,
though the way priors are set might be inspired from frequencies, for instance “80% of the
patients the physicians saw that displayed a certain symptom S had I, this patient has S,
therefore one can put a 0.8 probability prior on its illness”.

Furthermore, if one was to think of a way to evaluate a method of diagnostic, the notion
of frequency comes naturally. For instance, a hospital director knows that each physician
will use several elements to take decisions such as its intuition, which cannot be expressed
in terms of frequencies. However, the director can assess whether ultimately, the decision
process as it is yields a satisfactory rate of healing. This is also true with a data analysis
method for the discovery of exoplanets. If a data analyst was to use a certain method with
priors set in a heuristic way, one could try that method on simulated data and evaluate
how reliable it is. That is exactly the principle of blind tests such as the radial velocity
challenge Dumusque (2016). To evaluate the performance of the method one counts how
many planets were correctly detected. The uncertainty on a claim are assimilable to stating
“how frequently” the method employed yielded a correct result. This applies to observation
strategies, the fact of stopping observations if a star displays no clear hints of signals after,
say, 50 measurements biases the population estimate.

We are not able to demonstrate that every reasonable measure of uncertainty comes down
to a measure of a frequency, however be it for the justification of a prior probability or the
evaluation of a method, it seems difficult to avoid the notion.s Intuitively, it seems like one
needs to consider a particular event as belonging to a wider class to consider that it might not
always happen. An analogy with Heisenberg’s uncertainty principle could be helpful: when
an event is completely specified (say, the probability of meeting my colleague Randy this
Monday morning at 8:01:36 etc.), the uncertainty on its frequency is infinite, since it cannot
be reproduced. On the other hand, when the class of events is very wide (the probability of
meeting someone you know without appointment in the next ten years) one can have a good
resolution on their rates of occurrence, but a poor one on the definition of these events.

Computations For hypothesis testing, the ideal solution would be to use Bayes formula
with all possible priors and all possible models. In that case, the tested hypotheses are not
any more the Hk as defined (1.17), but the family of Hk, extended to other models and
their prior probabilities Pr{Hk}. This method is fully compatible with the Popperian view
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outlined section 1.3.1. Obviously such a test is not possible because it would require an
infinite power of computation. Even for a single prior, when the parameters are continuous
the posterior (1.18) might be very lengthy to estimate (up to several days as we shall see
later), so changing the assumption on the likelihood might slow, yet very important to assess
the robustness of a result, since the likelihood contains the physical model of the process. In
the case of exoplanets, the models for stellar noise are known to be heuristic. Robustness to
a model change seems desirable to guarantee the planetary nature of a signal.

Conclusion From this discussion, we take the following points: the true prior does have an
impact on the probability that a hypothesis is true given the data. It is sound to test several
priors, the problem being that it might be infeasible computationally. In some cases, methods
that do not use priors could be useful because of their speed and they allow to quickly change
assumptions on the likelihood, which contains the physical model of the observations. In any
case, testing the whole process of inference seems sound.

Occam’s razor

This model fits better the data therefore it is true, even though it
could fit anything anyway.

Nobody

The search for acceptable hypotheses was compared to the resolution of an equation.
Instead of searching variables x that verify f(x) = y we search x such that the agree-
ment between the model and the data y is small, according to some measure of distance,
d(f(x),y) ≈ 0. More precisely, the equality is transformed to degrees of preferences: the
better the data are reproduced the better seems the explanation. We also use knowledge
that comes from past research, which is comparable to introduce other equations or degrees
of preference. For instance, the values of the orbital parameters estimated in multiplanetary
systems are checked to give stable systems (Hébrard et al. 2016).

Now among the hypotheses that are compatible with data, a common practise is to se-
lect the simplest in some sense. This principle is often referred to as “Occam’s razor”, that
cuts any bits of non essential information. This preference for simplicity is embedded more
or less explicitly in most model selection methods: Solomonoff’s theory of inductive infer-
ence (Solomonoff 1964a,b), Akaike’s information criterion (AIC, Akaike 1974), Schwarz’
Bayesian Information Criterion (BIC, Schwarz 1978), Rissanen’s Minimum Length Descrip-
tion (MDL, Rissanen 1978), Bayes factor (Kass & Raftery 1995)... Our purpose is to make
correct claims, why should we bother about the model complexity? We use the analogy with
equation resolution to discuss the use of the principle.

Let us consider different models fk with fk : Rk → Rn, 0 < k 6 n. In other words, the
functions fk have an increasing number of parameters. We further suppose that fk+1 =
fk + gk where gk is a function of one variable which vanishes at some discrete set of values,
and that all fk are continuous. Now suppose the “data” is y = fk0(θk0) for some k0, which
can be seen as a noiseless measurement. According to our definition of the fk, for any k > k0,
there will exist a θk such that y = fk(θk). However, for any k < k0, there exists a θk such
that y = fk(θk) only if θk0 is such that gk0(θk0) = 0, which happens on a discrete set of
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points among a continuous space. Now if θk0 is selected via any continuous random law,
gk0(θk0) = 0 almost surely never happens. In other words: the probability of selecting a
spuriously simple model is zero.

This example is best interpreted in geometrical terms. One can think of the models not
as functions but as manifolds, defined as the set of values taken by fk(θk) as θk describes
the domain of fk. Provided the functions are well behaved, the dimension of the manifold
grows with the number of parameters. If yk0 = fk0(θk0) is selected randomly on a manifold
of dimension k0,Mk0 , its number of parameters will be underestimated only if it falls on the
intersection of Mk0 and a manifold of lower dimensions, which has a null measure, thus the
event has a probability zero.

In the case of nested models (the next model contains the previous one as a particular
case), the choice of the simplest model guarantees that the parameters selected at least are in
the model. Furthermore, provided more complex models have non null probability, if a more
complex model was the true one and ours was spuriously simple it means that we would be
in a situation that has zero probability. Let us note that the reasoning holds for non nested
models, as long as they have increasing dimensions and null measure intersections. In the
real case, the measurements are noisy so that this statement is not rigorous anymore. The
probability of selecting a wrong model increases with the noise amplitude. What we showed
is the asymptotic behaviour as the noise tends to zero.

Let us note that for the purpose of this discussion we assumed that models are manifolds,
and that the data are not certainly in one of the manifolds. With these assumptions, Occam’s
razor is not a principle, but a consequence.

Implications for exoplanets

What should be concluded from the previous analysis for the study of exoplanets? We
highlight these points

• The situation of exoplanet detection is similar to information theory. The emitter has
a language whose distribution is the actual rate of occurrence of planets with certain
characteristics. Even though the receiver selects himself the star, his measurements are
assimilable to receiving a noisy signal from a subclass of possible symbols (from a par-
ticular type of star). Therefore there is not too much concern about the interpretation
of probabilities.

• In any case we have to make an assumption to estimate uncertainty: the ensemble of
distributions that are considered as candidates to reproduce the data. More funda-
mentally, it is assumed that it makes sense to quantify uncertainty by a frequency, or
by the hypotheses of Cox’s theorem. The uncertainty on whether these assumptions
are correct cannot be expressed in terms of probability, be it considered as a frequency
or as a measure of plausibility. We have to keep in mind that confidence or credible
sets of values rely on these assumptions. It is sound to compute these set with other
assumptions (other models, other priors) in order to evaluate the robustness of the
result.

• In general, we should not ignore an information we have. One should keep in mind
that the whole process of arriving to conclusions impacts the validity of inferences.
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In particular, the trust in conclusions should depend on whether the hypotheses were
formulated before or after seeing the data. The more we search, the more likely we are
to find something. There has to be some sort of increasingly stringent requirements on
detection claims as we try more hypotheses.

• As far as possible the methods should be tested on simulated cases. Data are generated
according to a probability law, then the process of target selection, model acquisition
up to final claim is modelled. This allows to quantify uncertainty as “if the data are
generated with probability distribution f and the analysis is done with a process P then
I will obtain a pattern of right and false claims C”. This is still not perfect, because it
will not take into account all the particular details of a given situation.

• Complete analysis are often impossible, most of the time we will be content to find a
model for the data that seems reasonable or which is better than another one. As-
sumptions can simplify the problems, the danger is then to “see what we expect to
see”.

1.3.3 Challenges of radial velocity data analysis

After these theoretical considerations on inference methods, let us come back to radial velocity
signals. In this section, we will show what are the key challenges of their analysis in cases
where everything is under control, that is all the signals are simulated. This will provide
useful guidelines to tackle real signals, where the uncertainty on the model will make the
analysis more complicated. If we neglect the gravitational interactions between planets, the
ideal observations at a time t look like

y(t,θ) = v? +

np∑

i=1

Ki(cos (ωi + ν(t, ei, Pi, ωi,M0,i)) + ei cosωi) (1.22)

where the subscript i designates planet i and np is the total number of planets. v? is the
velocity of the system barycenter. Now let us consider that we have taken N noisy measure-
ments at times t1, ...tN , that we consider as a vector with N components, y = (yk)k=1..N .
We further assume that the noise on our observations is Gaussian, independent and identi-
cally distributed of variance σ2. It means that the probability of observing y knowing θ (the
likelihood) is

f(y|θ) =
1

(2π)
N
2 σN

e
− 1

2σ2

N∑
k=1

(yk−y(tk,θ))2

(1.23)

This model means, in the frequentist interpretation, that the result of an experiment would
give y ∈ S, where S is a measurable set of RN (a set of possible observations) one in a∫
S f(y|θ)dy times. Note that if the noise had a covariance matrix V, equation (1.23) would

become,

f(y|θ) =
1

(2π)
N
2 |V|

e−
1
2

(y−y(t,θ))TV−1(y−y(t,θ)) . (1.24)
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Let us remind that the covariance matrix V of a random vector ε whose mean is zero is

Vkl = E{εkεl}. (1.25)

Be the analysis Bayesian or frequentist, we will need to compute f(y|θ) in as many θ
as possible. When the likelihood is given by equation (1.23), it is equivalent to compute
2σ2(− log f(y|θ) + N log

√
2πσ), which is a strictly decreasing function of the likelihood.

This one is equal to
∑N

k=1(yk − y(tk,θ))2, more compactly written as ‖y − y(t,θ)‖2, where
‖ · ‖ designates the Euclidian norm.

Basically, it means we want to know how far a given model is from the observation in
terms of the usual distance, but in N dimensions. In particular, the maximum likelihood
corresponds to the minimum distance. Is this one hard to find? First we can simplify the
problem by noticing that the parameters we use are not optimal. We can write the velocity
induced by a planet

K(cos(ω + ν(t, e, P, ω,M0)) = AU̇(t, k, h, P ) +BV̇ (t, k, h, P ) (1.26)

where U̇ and V̇ are the components of the ve-
locity in the orbital plane, which are the projec-

tions respectively onto
−→
I and

−→
J (see figure on

the left). The variables k and h are defined as
k = e cosω and h = e sinω. This parametriza-
tion has the advantage of having two parameters
on which the model depends linearly, A and B.
As a consequence, it is easy to find A? and B?

that minimize ‖y − y(t,θ)‖ via a linear least
square when k, h, P are fixed.

As V is also a linear parameter, this leaves three non linear parameters per planet. Ex-
ploring a parameter space of 3, 6 or 9 parameters might not seem like too problematic, but
unfortunately when searching frequencies, this task is lengthy due to the great number of
local minima.

Let us consider a single planet and make an experiment. We take the 28 measurement
dates of CoRoT-9 (Bonomo et al. 2017b) and generate a sinusoidal signal plus a Gaussian
noise of standard deviation 1 m.s-1. This is done in two cases: K = 1 m.s-1 and K = 3 m.s-1.
To visualise the minimization of χ2, we proceed as follows.

1.3.4 Single planet

We first consider only circular orbits, that is e = 0. For each period P , we fit a model
depending on linear coefficients a, b, c

yP (t, a, b, c) = a cos
2π

P
t+ b sin

2π

P
t+ c. (1.27)

on the data y, which is a linear least square problem. Let us denote by y?P the best fitting
sine model at period P . Instead of representing ‖y?P − y‖, we plot

GLS(P ) =
‖y‖2 − ‖y?P − y‖2

‖y‖2
, (1.28)
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which carries the same information but should be more familiar to the reader, since it is
exactly the definition of the Generalized Lomb-Scargle periodogram (GLS), or floating-mean
periodogram (Ferraz-Mello 1981; Cumming et al. 1999; Reegen 2007; Zechmeister & Kürster
2009a). Any local maximum of this figure corresponds to a local minimum of the distance
between the model and the data.

Figure 1.15 (top) displays several features that are common to noisy RV signals. First of
all, the tallest peak of the periodogram does not correspond to the true period (101.35, in
red), but to a signal near 1 day, spotted by the gray line on the left of the graph. Furthermore,
there is a peak near the true period, centred on 76.62 days, that is almost as tall as the one
corresponding to the true period.

Let us now move to Keplerian models. We denote by θ′ the orbital parameters that are
not eccentricity and periastron, these are A,B and P as defined in equation (1.26) plus a
constant offset v? as defined in equation (1.22). We compute χ2(e, ω) = minθ′ ‖y(θ) − y‖2
for a tight grid of values of e and ω, where the minimization is performed with a non-linear
Levenberg-Marquardt (Levenberg 1944; Marquardt 1963) algorithm. Such a grid of χ2 is
computed twice, with the period initialized at 101.35 and 76.62 days. The results are shown
in color code in figure 1.15, respectively bottom left and bottom right. A dark blue region
corresponds to lowest χ2 (best fits), and the light yellow corresponds to high χ2 (poorest
fits). Let us make two remarks: from e & 0.6, local minima start to appear. Furthermore,
the model giving the best fit is obtained for P = 76.62 with χ2 = 13.8. This corresponds to
a reduced χ2 of 0.62, which means there is a good agreement with that model. How can we
prevent this model from being validated?

One could argue that observations of a 1 m.s-1 signal with a 1 m.s-1 noise is already a limit
case. Indeed, a more careful analysis shows that the highest peak has a level of significance
of only 15 % (a peak at least as high is observed only in 15 % of the cases assuming the
signal is pure Gaussian noise). This level is not considered high enough to claim a confident
detection. The point was rather to express concerns on how good the fit is with a spurious
period and a spurious eccentricity. The experiment is now done with a signal with K = 3
m.s-1. Strong peaks are still present around one day and 77 days. This is best explained with
a concept called the spectral window. This one will be discussed in the next chapter so we
will not enter into the details to avoid redundancy. The difference between the 1.000724363

day peak and the correct one (in red) is hard to spot on the figure but the 100 days peak is
indeed the true period. Note that in both cases, the orbit was circular but the eccentricity
was clearly over-estimated. One of the main contributions of this thesis is to study the reason
behind this bias in detail (see chapter 3).

Very eccentric planets

Now what if the planet has the same semi-amplitude, but is very eccentric? A Keplerian
signal with e = 0.9 is simulated and the results are displayed figure 1.17. We see three signals
at short periods, whose normalized reduction in sum of square (equation (1.28)), is above
0.55 and is therefore significant with a false alarm probability of 5 %. On the contrary, the
true signal does not appear on the periodogram. This one is found when computing the χ2

3Such a high number of digits might be puzzling, but it originates from the fact that periodograms have a
constant resolution in frequency, not in periods. The smaller periods, the more digits are needed to obtain a
certain precision on the frequency.
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Figure 1.15: Top: periodogram of a signal of period 100 days, of amplitude K = 1 m.s-1,
evaluated on the 28 measurement times of CoRoT-9 Bonomo et al. (2017b). Bottom: maps
of the χ2 of the residuals for a Keplerian fit with a grid of (e, ω). For each value of (e, ω), the
minimization is performed with a local minimization algorithm (Levenberg-Marquardt type,
coded in matlab) over the orbital elements A,B and P as defined in equation (1.26) plus a
constant offset v? as defined in equation (1.22). The non linear fit is initialized with a period
at 101.35 days (bottom left) and 76.62 days (bottom right).

map at P = 100, where a minimum χ2 island appears at high eccentricity with χ2
min ≈ 35.

The examination of this map also shows that this island is centered on a local minimum. If a
non-linear least-square fit of a Keplerian model was initialized at the correct period, it would
converge to the true eccentricity. Unfortunately there was no obvious indication that it was
worth looking for a signal at this period.

False alarm probability (FAP)

We used above the expression “false alarm probability of 5 %” without defining it. Here it
means that if the data is pure white, independent noise with σ = 1 m.s-1 (our model), the
value of the maximum peak of the periodogram will be at least as high in 5 % of the cases.
False alarm probabilities can be defined in every experiment. It requires to choose a so called
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Figure 1.16: Periodogram of a signal of period 100 days, of amplitude K = 3 m.s-1, evaluated
on the 28 measurement times of CoRoT-9 Bonomo et al. (2017b). Bottom: maps of the
χ2 of the residuals for a Keplerian fit with a grid of (e, ω). For each value of (e, ω), the
minimization is performed with a local minimization algorithm (Levenberg-Marquardt type,
coded in matlab) over the orbital elements A,B and P as defined in equation (1.26) plus a
constant offset v? as defined in equation (1.22). The non linear fit is initialized with a period
at 100 days.

“test statistic” T , which is a function of the experiment outcome y. Now if we suppose that
the experiment outcome is a random variable Y that follows a certain law (for instance is
pure Gaussian noise), and denote that hypothesis H0, the distribution of T (Y |H0) can be
computed. For a given experiment outcome, the false alarm probability, or here p-value of
the statistic T evaluated in y, is

p(y, T ) = Pr{T (Y |H0) > T (y)|H0}. (1.29)

In other words, how frequently should the test give T at least as high as the one measured,
under the hypothesis that Y follows the distribution H0? Intuitively we expect that if the
value is below a certain value α, H0 can be rejected. One can show that the p-value is
uniformly distributed underH0, which implies Pr{p(y, T ) 6 α|H0} = α. In simpler terms, the
probability of rejecting H0 knowing H0 is true is α. It implies that the probability of rejecting
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Figure 1.17: Periodogram of a signal of period 100 days, of amplitude K = 3 m.s-1 and
eccentricity e = 0.9, evaluated on the 28 measurement times of CoRoT-9 Bonomo et al.
(2017b).
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Figure 1.18: left: Periodogram of two signals with respectively K = 5, 3, 2 m.s-1, P = 90, 20,
5 days and eccentricity e = 0 evaluated on the 28 measurement times of CoRoT-9 Bonomo
et al. (2017b). Noise is Gaussian and independent with σ = 1 m.s-1. Right: squared norm of
the residuals of the fit of two sines plus a constant.

H0 and H0 is true verifies Pr{(reject H0) ∩ (H0 is true)} = Pr{reject H0|H0}Pr{H0} 6
Pr{reject H0|H0} = α. In exoplanet searches, α = 0.1% is considered to be a strong evidence.

The efficiency of p-values as planet detection indicators is debatable, since they only allow
to control the rate of false rejection of knowing the signal is given by a certain model. The
fact that white noise can be rejected does not automatically mean that one can claim a planet
detection. The high periodogram peak might arise from another type of variation such as
under-estimated noise level, unseen companion at another period, non-Gaussian noise, etc.
As the confidence level improves these issue become less and less of a problem. When using
small values of α, p-values have proved to be useful for analyses of radial velocity signals.

Another problem of the p-value is that it only controls the rate of false positives, and not
the one of false negatives. Let us suppose there is only one alternative to H0, denoted by H1.
If H1 is rare (its probability is less than the p-value), then it means that on average, we will
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Figure 1.19: Periodogram of three signals with K = 3 m.s-1 and eccentricity e = 0, with
periods 90 and 20 days evaluated on the 28 measurement times of CoRoT-9 Bonomo et al.
(2017b). Noise is Gaussian and independent with σ = 1 m.s-1. Right: squared norm of the
residuals of the fit of two sines plus a constant. Bottom: also represents the squared norm of
the residuals of the fit of two sines plus a constant for a wider range of periods. The χ2 map
represented on the upper right figure is delimited by the plain black lines on the north-west
corner of the plot.

have more false discoveries than true discoveries. In the limit case where H1 never happens,
all discoveries are spurious. This problem was pointed out by Soric (1989) for medical studies,
and was already encountered in section 1.3.2 in the illness test example. Here also, if we ignore
the fact that the data belong to a certain population spurious inferences might be expected.
For a purely frequentist treatment of the specific issue of false discovery rate with p-value,
see Benjamini & Hochberg (1995). The presence of planets does not seem so rare that this
should be too major a cause for concern.

From a practical standpoint, the distribution of the test statistic — here the maximum of
the periodogram — is not easy to compute analytically. To estimate FAPs, it is common
practice to generate thousands of noise realization, either by generating them from a theo-
retical law or by shuffling residuals of the best fit model. For each realizations yk, the test
statistic T (yk) is computed. Then one simply counts the number of occurrences of T (yk)
above T (y), which divided by the number of samples gives an estimate of the FAP. This
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process, known as bootstrap (Efron 1979) is accurate but requires numerous computations,
and is therefore slow.

1.3.5 Multiplanetary case

These difficulties are severely worsened by the possibility of observing multiplanetary systems.
As we shall see next chapter, there is a non negligible risk of taking a combination of signals
from several planets as a single planet. To illustrate it, we generate two signals of circular
orbits with K = 3 m.s-1 at 90 and 20 days, still on the same array of time measurements
with random phases and independent Gaussian noise.

The periodogram of the data is displayed in figure 1.18 (top left). The two periods appear
relatively clearly and are significant. There are still unpleasant aliases around one day, and
the maximum of the periodogram is at P = 0.986216. We now fit two sines at a time plus a
constant and compute the χ2, that is the squared norm of the residuals. The frequencies of
the sines are taken on a regularly spaced grid. We find that the minimum is attained at the
correct periods, 89.5 and 20.01 days, localized by white bands in figure 1.18 (top right).

Now we do the same procedure on another signal. This one is simulated in the same way,
except that the amplitude of the 90 days period is increased to 5 m.s-1, and we add another
circular orbit with semi-amplitude K = 2 m.s-1 at P = 3 days. Figure 1.19 shows the
periodogram of the signal and reveals that the maximum is on neither of the true periods.
However, when searching for two signals simultaneously the minimum is again at correct
periods (87.7 and 20.01 days, χ2 = 80). Unfortunately, when doing the search on a wider
scale the global minimum arises at 123.2 and 2.3683 days, χ2 = 62, which is localized by
white bands in figure 1.19.

The black box represents the space that is delimited by figure 1.19 (top right). This is
a tiny fraction of the space of parameters explored to find the new global minimum. This
highlights an important issue: the more parameters are tried, the more likely we are to find
a spurious best fit. In that case, the measurements are not closely spaced enough to hope
for detections at ≈ 2 days. Since the RMS of the signal is too high for it to be pure noise,
what would have likely happened is that more measurements would have been taken before
claiming anything. Note that all examples taken here were not specifically designed to be
particularly pathological. The periods were drawn at random in logP then fixed, and the
problems shown in the chosen examples appeared after generating one to five realizations of
the noise.

Consequences on error estimations

Figure 1.19 (top right and bottom) exhibit numerous stripes, which all indicate local minima.
With additional assumptions discussed in chapter 2, the situation might be better. But even
in this case, it is not completely ensured that there is an exotic combination of frequencies
that give the best fit.

Besides, when calculating the error via posterior distributions, one has to sample param-
eters from the posterior distribution. In MCMC methods Metropolis et al. (1953); Hastings
(1970), it will be difficult for walkers to get out of a local minimum in period. In practice the
walkers do stay confined in the local minimum. This basically means that the computation
of the error via MCMC can be though of a conditional probability “knowing that the period
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Figure 1.20: Periodogram of a system with K = 3m/s on the measurement times of CoRoT-

9 (Bonomo et al. 2017b) with a matrix of elements σij = e−
|ti−tj |
τ , τ = 25 days.

is between P1 and P2”, where P1 and P2 are values that are too improbable to be crossed.
This effect results in underestimation of error bars.

Noises

On top of these issues, there are complicated noises which can bury signals or mimic them.
If the noise is Gaussian multivariate, such that its distribution is given by equation (1.24),
the periodogram we computed is not equivalent to the maximum likelihood over the linear
parameters of the model. A straightforward derivation shows that we should be taking

GLSW (P ) =
‖Wy‖2 − ‖W(y?P − y)‖2

‖Wy‖2
, (1.30)

instead of equation (1.28) where W = V−
1
2 . Figure 1.20 shows an example of what happens

when the noise is not taken into account (blue curve): the signal might be underestimated
and pass below the significance threshold. In the example presented, the difference is not
spectacular but assuming the residuals of the fit follow the same distribution as in the white
noise case (which is only approximately true, as shown in Appendix E) a 0.2 difference of
value of the periodogram here means a factor 10 difference of false alarm probability (0.21 to
0.02), which is non negligible.

In section 1.2.5, particular attention was given to various sources of stellar noise. How does
it look like? Figure 1.21 shows a signal simulated for the RV Fitting Challenge (Dumusque
2016; Dumusque et al. 2016), which is based on SOAP 2.0 (Dumusque et al. 2014) and our
current understanding of long term evolution of magnetic activity. Since we will enter more
into the details of this challenge later on, let us just record that they look extremely different.

Overall

In summary, we believe the key aspects of radial velocity data seem to be the following:
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time series.

• Exploring complicated phase spaces with many local minima, which are first due to the
search of several frequencies and complicated structures at high eccentricities. This is
increasingly difficult with the number of planets and the complexity of the noise model.

• Correctly taking into account the (incomplete) exploration of models in the error bars.
Also, how to decide how many planets should be reported, since different configurations
will fit acceptably the data set. This is related to the fundamental problem outlined in
section 1.3: the more we search, the more likely we are to find something that fits the
data spuriously.

• Identifying apt models for stellar noise and instrumental noises.

• Taking into account our uncertainty on models themselves to avoid spurious detections.

• Improving the mathematical understanding of the signal, in particular obtaining ana-
lytical formulae, to fasten up data fits and computations of error bars.

Note that this concerns individual radial velocity systems, the problem of correction of planets
population has not been discussed yet. Some aspects of the problem are discussed in chapter 3.

1.3.6 Existing analysis techniques

Overview

The processing of a given spectrum to obtain the time series of radial velocity or other indi-
cators, and the analysis of the resulting time series are in general treated separately. Articles
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addressing the problem of inference of planetary companions directly from the spectra are
starting to emerge, but are not yet applied to real cases. For instance, Davis et al. (2017)
applies principal component analysis to the spectra to unveil directions of variability, in the
same spirit as Artigau et al. (2014), who used it to separate telluric lines from stellar absorp-
tion lines. The online tool AGATHA (Feng et al. 2017) allows to compute the periodogram
on certain ranges of wavelength to unveil possible variations. Full exploitation of the spectral
content is also being explored via manifold learning (Stenning et al, in prep.). The idea
behind these techniques is that we expect the correlated noise due to the stellar variability,
the atmosphere or the instrument to have signatures that depend on the wavelength, while
the signature of the RV should not.

We will now focus on the time series analysis, which represents the vast majority of the
RV data analysis literature. Let us note that time series analysis techniques already use the
difference between the spectral signatures of stellar variability and planetary companions via
FWHM, BIS (see figure 1.11) or specific spectral lines such as the calcium II H & K (Vaughan
et al. 1978) or Hα (Pasquini & Pallavicini 1991; Montes et al. 1995). The radial velocity signal
induced by a companion has another property that can be leveraged to validate a planet: it
is stable over time. We expect the stellar variability not to keep the same frequency over long
periods of time.

Using the stability over wavelengths and time of the companion-induced RV variation
seems promising, since it is a step towards guaranteeing the “uniqueness” of the companion
hypothesis. It is likely that these idea will build upon previous analyses on radial velocity
signals, which we present in the following sections. We distinguish three types of works:
periodograms, Bayesian analysis and Gaussian processes. This distinction is made based on
what is put forward in the published analyses, but as we shall see the frontier is not so clear.

Periodograms

We already defined the generalised Lomb-Scargle periodogram in equation (1.28) and used it
in section 1.3.3 to show some of the challenges of radial velocity data analysis. Since it is a
widely used tool and is key in the claims of planet detection, we will spend a little more time
introducing it from a historical perspective. The term “periodogram” was initially introduced
by Schuster (1898). In his own words:

It is the object of this paper to introduce a little more scientific precision into the
treatment of problems which involve hidden periodicities, and to apply the theory
of probability in such a way that we may be able to assign a definite number for
the probability that the effects found by means of the usual methods are real, and
not due to accident.

Schuster was not the first author to try to unveil periodicities in time series. He was however
the first one to use probability theory to assess whether a periodicity was due to non-periodic
fluctuations. He gives the following definition of the periodogram. For a function y of time
and a frequency ω,

r(ω) =
2

T

{(∫ t1+T

t1

y(t) cosωt dt

)2

+

(∫ t1+T

t1

y(t) sinωt dt

)2
} 1

2

(1.31)

Which is followed by
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for different adjacent values of ω, the quantities r will fluctuate about some mean

value r′ so that the probability of r being greater than λr′ is e−
πλ2

4 .

In more modern terms, Schuster projects the time series y = (y(j∆t))j=1..N (discretized with
evenly spaced sample, the integrals become sums) on the vectors u(ω) = (cos(ωj∆t))j=1..N

and v(ω) = (sin(ωj∆t))j=1..N where N is the number of samples. Assuming y(t) is pure
white Gaussian noise, the scalar products of f and u(ω) and v(ω) both follow a Gaussian
distribution, therefore their modulus (1.31) follows a Rayleigh distribution.

After Schuster (1898), techniques have been refined to account for irregularly spaced
measurement. Lomb (1976) and Scargle (1982) extend the formula of the periodogram to
non evenly spaced measurements but the spirit is the same: the data is projected onto
the linear space generated by the vector u(ω),v(ω) to obtain a sinusoidal model yfit(ω) =
a(ω)u(ω)+ b(ω)v(ω). The distribution of P (ω) = ‖y‖2−‖y−yfit(ω)‖2 is computed in Lomb
(1976). The higher this quantity is, the closer to zero is the norm of the residuals, which
indicates a good fit between a certain period and a periodicity at ω. The major improvement
lies in the fact that not only the distribution of the P (ω) is computed under the assumption
that y is pure Gaussian noise, but also the distribution of the maximum of (P (ωk))k=1..N

where P (ωk) are independent random variables. Indeed, when one searches for periodicity, a
range of periods is explored. As argued section 1.3.1, the fact that one has searched in a wide
space must be taken into account. Even if the signal is pure noise, if all sinusoidal models
with periods ranging from zero to infinity are considered, there will always be models repro-
ducing the observations to arbitrary accuracy (the set {cosωt/‖ cosωt‖, ω ∈ R+} is dense on
the sphere for almost all t).

When the period is not uniformly sampled, it is not clear how many independent periods
in a certain range are in the signal, therefore one can use the bootstrap technique described
in section 1.3.4 to compute the false alarm probability. One generates M realizations of a
Gaussian noise numbered by k (or M random shufflings of the best fit residuals), computes the
periodogram for each of them and its maximum Pmax,k, and uses the empirical distribution
(Pmax,k)k=1..M as a proxy for the theoretical one. It is possible to fit a model to that empirical
distribution, especially to consider an“effective”number of independent frequencies calibrated
on test data sets as a function of the frequency span and the number of measurements (e.g.
Horne & Baliunas 1986; Cumming 2004).

These principles can be extended to comparisons between non purely sinusoidal models.
For instance Ferraz-Mello (1981) adds a constant to the sine model and Cumming et al.
(1999) computes the distribution of the amplitude of a periodogram peak under the Gaussian
independent noise hypothesis. For the same model, Zechmeister & Kürster (2009a) compiles
the approximations of the false alarm probability and analytical formula for this type of
periodogram. Baluev (2013b) considers the more general face of periodic function non-linearly
fitted. Cumming (2004), Gregory (2007a), Zechmeister & Kürster (2009b), O’Toole et al.
(2009) and Baluev (2015b) go further and use as a candidate function not a sine wave, but
a full Keplerian function, thus defining a “Keplerian periodogram”. The difference between
the approaches lies in the way the parameter space is explored, and the computation of the
statistical significance of a detection. Note that Gregory (2007b) has“Keplerian periodogram”
in the title, but it is a full Bayesian exploration of the parameter space, presented next
paragraph.

A Keplerian periodogram is computationally much more demanding than a classical one,
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since the model depends non-linearly not only on the period, but also on the eccentricity
and the argument of periastron. This computational burden becomes especially problematic
to compute false alarm probabilities. Analytical approximations are difficult to obtain and
performing bootstrap requires to recompute the periodogram on several hundreds or more of
randomly generated noise.

The analytical estimation of the false alarm probability as well as computational issues
have been tackled in a series of paper with increasingly complex models Baluev (2008, 2009,
2013,a,b, 2015b). These ones present two features: the periodogram always compares a model
H with a model H plus a candidate signal of parameters θ with p components which always
includes the frequency, and that we denote by K(θ). The periodogram can take the form

z0(θ) =
1

2
(χ2(K(θ))− χ2(H)) (1.32)

z1(θ) = (N − p)χ
2(K(θ))− χ2(H)

χ2(H)
(1.33)

and also others, that we do not present for the sake of brevity. The notation χ2(M) denotes
the χ2 of the residuals when model M is fitted on the data set. In the Keplerian model,
θ = (ω, e,$) where e,$ designate the eccentricity and longitude of periastron.

The analytical approximation of the FAP relies on considering the functions zi : ω → P (ω)
or zi : ω, e,$ → P (ω, e,$) respectively as a random process and a random field. Then
the Rice formula (Rice 1944) can be used to assess the probability that the random process
crosses certain values, more specifically the Davies bound (Davies 1977, 1987, 2002) can be
adapted to be applicable to the periodogram. The series of case considered by Baluev is best
summarized in figure 1.22

More recently, Mortier & Collier Cameron (2017) recomputes the periodogram each time
a point is added. If the amplitude increases approximately steadily, it is a sign of a planetary
companion. If a peak alternatively appears and disappears, it might indicate a variability
localized in time. Interestingly enough Schuster (1898) already considers computing the
integrals of equation (1.31) on [0, T ], [0, 2T ], [0, 3T ]... and checks if these increase more
rapidly than

√
kT . Mortier & Collier Cameron (2017) does not use the Generalised Lomb-

Scargle periodogram but the Bayesian Generalised Lomb-Scargle periodogram (Mortier et al.
2015), presented next section.

Bayesian analysis

As said in section 1.3.2, not using a prior probability has the disadvantage of disallowing to
ask the right question: the probability of the hypothesis knowing the data. Bayesian methods
were introduced in the field of exoplanets by Gregory (2005) and Ford (2005). They suggested
to compute the posterior distribution of the orbital elements

p(θ|y) =
p(y|θ)p(θ)∫

Θ p(y|θ)p(θ)dθ
(1.34)

where θ = (θ)k=1..p represents the orbital parameters, y is the vector of observations and
p(y|θ) is a Gaussian likelihood as in equation (1.24). One can then obtain the marginalized
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Figure 1.22: Classification of the works by Baluev as a function of two criterions, whether
there is a single candidate signal (one planet) or several (vertical axis) and whether the model
of the base model H is linear, non linear, or if both models H and K(θ) are fitted non-linearly.
The fact that the ellipses on the left hand side reach the “non linear” column means that the
theory of linear base models provides a good approximation when the model H is fitted non-
linearly for each candidate signal θ, but when this one is fitted non linearly as well, the theory
has to be modified (right column). The label “This work” refers to Baluev (2015b).

density for each parameter θk,

p(θk|y) =

∫

Θ′(θk)
p(θ′|y)dθ′ (1.35)

where Θ′(θk) is the set of all parameters θi, i = 1..p i 6= k and θk is fixed. From the
marginalized posterior density one can obtain credible intervals [αk, βk] for all parameters θk.
The interval is chosen so that the probability that θk is in [αk, βk] knowing y is γ, which does
not depend on k,

Pr{θk ∈ [αk, βk]|y} =

∫ βk

αk

p(θk|y)dθk = γ. (1.36)

We believe it is useful to consider this formula from a communication theory point of view.
Let us suppose that an emitter sends us messages θ with probability density p(θ). The
messages here are not in English or binary code, but in “orbital parameters”. The message
goes through a channel (the observation process) and gives the receiver information y, and
we know the conditional density p(y|θ). Formula (1.36) tells us that when y is observed, the
true kth component of the message θk is in [αk, βk] in γ × 100 % of the cases. The tighter
[αk, βk] and the higher γ, the more precise is the constraint. The confidence interval might
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be chosen to be centred on the posterior mode (i.e. maximum value) and regions of equal
probabilities on both sides, but other choices are possible (see Gregory 2005). 4

One can also compute credible regions for several parameters θ(1)...θ(l), l 6 p chosen among
the (θk)k=1..p. Denoting the marginalised distribution of those parameters by

p(θ(1), ..., θ(l)|y) =

∫

θ∈Θ′(θ(1),...,θ(l))
p(θ|y)dθ (1.37)

where Θ′(θ(1), ..., θ(l)) ⊂ Θ and the values of the parameters (θ(1), ..., θ(l)) are fixed. The
credible region R is such that

Pr{θ(1), ..., θ(l) ∈ R|y} =

∫

R
p((θ(1), ..., θ(l))|y)dθ(1)..dθ(l) = γ. (1.38)

To compute the posterior distribution (equation (1.34)), Ford (2005, 2006) use a Monte
Carlo Markov Chain (MCMC) algorithm (Metropolis et al. 1953; Hastings 1970). This type
of algorithms generates a sequence of pseudo-random numbers drawn from the posterior
distribution (1.34). One ends up with a long sequence of parameter vectors (θj)j=1..ns ,
ns being the total number of sample, which can reach several millions. The advantage of
MCMC methods is that to generate a θj sample, they do not necessitate to evaluate the whole
posterior distribution. This distribution has a complicated integral at the denominator which
is impractical to calculate. MCMC methods only necessitate to compute ratios of posterior
distributions, in which the integral cancels out. Stopping criterion are crucial yet difficult
points of the algorithms. To check that enough samples were generated to approximate
the posterior distribution, several chains of (θj)j=1..ns are run from different starting points.
There are more formal way to check for convergence, such as computing the Gelman & Rubin
(1992) test statistic.

The most widely used version of MCMC in the exoplanet community is EMCEE (Foreman-
Mackey et al. 2013), based on affine-invariant sampling (Goodman & Weare 2010). We
show here an example of its output on Proxima b dataset (Anglada-Escudé et al. 2016).
The EMCEE version has been coded in matlab (Grinsted 2015) with a Keplerian model
(y(θ) = AU̇ + BV̇ where U̇ , V̇ is the velocity of the star in the orbital plane), a mean,
trend and quadratic term. The results are plotted in figure 1.23. The plain green curves
are the marginalised distribution of each parameters (equation (1.39)) and the grey areas
are credible regions (equation (1.38)) for parameters taken two-by-two. To ensure that no
region of the parameter space is left over, we consider a grid of values of the argument of
periastron and eccentricity, minimize over all the other parameters and use the best fit values
as starting points. As one can see the period is constrained between 11.184 and 11.188 days.
Due to the fact that the local minima in periods are steep, the chain does not get out of the
local minimum with high probability. To be meaningful, posteriors given by MCMC must be
initialized at the correct periods. In this respect, this type of calculation is complementary to
a periodogram approach. The periodogram can itself be computed in a Bayesian framework.

4Note that this reasoning holds when the messages emitted and received are in discrete spaces. If we
think of the space of planetary parameters and possible observations as arbitrarily densely discretized, the
interpretation is unchanged. We believe it is possible to extend this interpretation in the continuous case as a
limit case (at least when the space of messages Θ is continuous) but did not investigate further the question.
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Figure 1.23: Example of MCMC analysis of Proxima b with EMCEE implemented by Grin-
sted (2015)

The Bayesian periodogram (Mortier et al. 2015) is the posterior density of a sinusoidal model
y(ω,A,B,C) = A cosωt+B sinωt+ C marginalized over A,B,C

p(ω|y) =

∫

A,B,C
p(ω|y)dAdBdC, (1.39)

for which an analytical expression is obtained. The “Keplerian periodogram” by Gregory
(2007a) consists in computing the posterior density of the orbital elements, but so to explore
all the parameter space by sampling the posterior via a technique called parallel temper-
ing (Gregory 2005). The term periodogram is here to be taken in the sense of throughout
exploration. It can be used to compute the evidence, as defined below.

Bayesian methods are also used to confirm planets. One computes the “evidence” also
called the marginal likelihood of a model with a number of planets np, that we denote by
Mnp , that corresponds to a parameter space Θnp , which are all the possible combinations
of orbital parameters of np planets plus the non-planetary effects modelled. The evidence of
Mnp is

p{y|Mnp} =

∫

θ∈Θnp

p(y,θ)dθ =

∫

θ∈Θnp

p(y|θ)p(θ)dθ (1.40)
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where p(y,θ) is the joint probability of y and θ. The denominator p(y) is absent because
evidences are used to compare models. A model with np + 1 planet is favoured

p{y|Mnp+1}
p{y|Mnp}

> B, (1.41)

The left-hand side term is sometimes called the“odds ratio”or“Bayes factor” (Kass & Raftery
1995). Evidence has been used in Gregory (2005); Tuomi & Kotiranta (2009); Tuomi (2011)
and dozens of other discovery papers. In the exoplanet community, the threshold for a
detection is in general B = 150. The ratio of posterior probability of the models

p{Mnp+1|y}
p{Mnp |y}

=
p{y|Mnp+1}
p{y|Mnp}

p{Mnp+1}
p{Mnp}

(1.42)

so the odds ratio (1.41) is a posterior ratio when the prior probability of the models are
assumed to be equal. Note that equation (1.41) is similar to the ratio (1.21) we encountered
in section 1.3.2, page 27, except that to obtain p{y|Mnp+1}, one has to use a prior on the
orbital elements. However, here again we might want to ensure that B is large to have np+ 1
planet detection robust against a rare occurrence np + 1 planet model (that is a small value
of p{Mnp+1}/p{Mnp}).

The main challenge of accurate evidence calculations is to explore wide parameter spaces
to compute the integrals. Testing the reliability of the different techniques has been a specific
discussion topic at the Extreme Precision Radial Velocity workshop in Penn State University,
August 2017 (EPRV III). Six simulated signals were generated, and different teams will
compute the evidence for models from 0 to three planets. The goal is to compare the different
algorithms (Nested Sampling, Importance sampling, fusion MCMC...) and present the results
in a forthcoming paper (Ford+ 2017).

A possible drawback of the evidence is that it might be high for a model with an addi-
tional planet because there are many candidates, but none of them concentrates the posterior
probability. It must be ensured that not only the np + 1 model is likely, but that there is
a strong mode of the posterior, ensuring the planet is well located in the parameter space.
The question of whether having multiple candidates but none of them completely strongly
supported could arise was explicitly discussed with Thomas Loredo and James Jenkins at the
EPRV III. If Thomas Loredo did indeed see such situations in certain cases (not concerning
exoplanets), James Jenkins said that he observed unclear situations for B = 100 but not for
B = 150. Ensuring the uniqueness of a strong candidate is however a conceptual problem to
keep in mind.

The computation of credible intervals as well as evidence ratios relies on a certain model,
which is sometimes, following Jaynes & Bretthorst (2003), denoted by I in all the distributions
mentioned above. For instance, the prior is denoted by p(θ, I). In chapter 3, we show that
one of the effect of mismodelling on average to lead to an overestimation of eccentricities.

Gaussian processes/correlated noise

In section 1.2.5, we saw that the RV variation induced by the star, that we denote here by
y?(t), could be unpredictable, but present correlation. By this, we mean that the value y?(t)
and y?(t+τ) are not independent for τ in a certain time scale. Depending on the type of noise
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(due to p-modes, granulation, activity...) the time scale may vary. A natural way to model
such behaviour is to consider that y?(t), or more generally the stochastic part of the signal ε
is a multivariate Gaussian distribution with zero mean. It is then fully characterized by its
covariance matrix defined in equation (1.25), that we denote by V. The noise is in general
assumed stationary, which means there exists a function c such that for any two instants t, t′,

E{ε(t)ε(t′)} = c(|t− t′|).

Then the covariance matrix is

Vkl = c(|tl − tk|)

We can think of the noise ε(t) as a continuous stochastic process (a function which associates a
random variable to each real number t). If we impose that on any finite samples t = (ti)i=1..N

it follows a Gaussian distribution, then ε(t) is said to be a Gaussian process. In the terms
of Rasmussen & Williams (2005),

A Gaussian process is a collection of random variables, any finite number of
which have a joint Gaussian distribution.

Their use was first suggested in (Aigrain et al. 2011). Gaussian processes have attractive
properties which makes them a useful tool for non-parametric inference. In the RV com-
munity, the theoretical property of Gaussian processes, seen as continuous processes, is the
formula for the covariance function of a differentiated process. At least to the knowledge of
the author, the other uses of Gaussian processes amount to manipulating parametrized mul-
tivariate Gaussian noise. Using non independent Gaussian noise has been done for instance
in Baluev (2011), without reference to the term Gaussian process.

If one parametrizes the autocorrelation function by a vector η, this one can be concatenated
with orbital and non planetary effect parameters θ to obtain an extended set of parameters.
A popular form for the covariance matrix of the noise V is (Haywood et al. 2014, equation
4),

Vkl = η2
1 exp


−(tk − tl)2

2η2
2

−
2 sin2

(
π(tk−tl)

η3

)

η2
4


 . (1.43)

The idea behind this formula is to consider a pseudo-periodic correlation. The parameter η1

is the amplitude of the noise, η2 is a time-scale of correlation. We expect the features on the
stellar surface (spots, faculae...) to re-appear every stellar rotation period η3, and η4 scales
the amplitude of the periodic behaviour. If one wants to add a simpler red noise model to
account for granulation (with an exponential kernel for instance), under the hypothesis that
this noise is independent from the stellar activity the covariance matrices are simply summed.

The fact that η models the noise does not give it a status different from θ. The noise
parameters η can be straightforwardly included in the analysis presented in the previous
section. In figure 1.24, we show the same plot as in 1.23 but with more free parameters.
The data comes from two instruments, and we include in the model the offsets of these two
(“Mean HARPS” and “Mean Terra”). An additional variance σ2

Vkl = δklσ
2
k + σ2 (1.44)
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Figure 1.24: Example of MCMC analysis of Proxima b with EMCEE implemented by Grin-
sted (2015).

where σk is the nominal uncertainty on measurement k and δkl is the Kronecker symbol,
equal to one if and only if k = l. We choose a narrow prior on σ around 1 m.s-1 σ as in the
discovery paper (Anglada-Escudé et al. 2016). The posterior distribution of σ2 is labelled
“m14” in figure 1.24.

This example does not include non diagonal terms in the matrix. Such terms would ne-
cessitate a matrix inversion, whose complexity scales approximately as N3, to compute the
Likelihood at each sample of the EMCEE code. Faria et al. (2016) uses a diffusive nested
sampling algorithm (Brewer 2014). On the 177 public measurements of CoRoT-7, with the
covariance function (1.43) plus a free extra variance term (as σ in equation (1.44)). They
obtain 50,000 samples in four days 5. Mitigating the effect of correlated noise can be done in
the framework of residual periodograms, instead of random sampling. The procedure consists
in directly maximizing the likelihood with the Keplerian model plus the free noise parameters
at each trial frequency of the periodogram (Baluev 2011, 2013c). Estimating the noise from

5On an IntelR© Core
TM

i5-4460 CPU running at 3.20 GHz and 4 GB of RAM. An interesting feature is that
this algorithm treats the number of planet as a free parameter (it is trans-dimensional).
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the smoothed residual periodogram is also possible (same references). Another solution is
to keep only the diagonal terms of V and set Vij equal to zero elsewhere except on a few
minor diagonals closest to the main one. This allows to speed up the inversion and to fit a
noise parameter (moving average, Tuomi et al. 2013). Finally, one can “train” the Gaussian
process on another data set. For instance, Haywood et al. (2014) analyses CoRoT-7 in the
following way. They have a RV and a photometric time series. They consider the photo-
metric time series has a zero expectancy, noise parameters η and autocorrelation function
given by equation (1.43). They fix η3 as the estimated rotation period of the star and take
η? that maximizes the marginal likelihood of the photometric time series. Local maxima
are not expected to be a major issue (MacKay 1999). The covariance function of the radial
velocity is then estimated with the FF’ method (Aigrain et al. 2012). This one links the
photometric variation to the RV variation through a 1 spot model. The covariance for the
RV time series so obtained is held fix for the search of planetary companions. Let us finally
mention that Rajpaul et al. (2015) goes a step further and models simultaneously the RV,
BIS and logR′HK with a single Gaussian process G and its first order derivative Ġ.

∆RV = VcG(t) + VrĠ(t); (1.45)

logR′HK = LcG(t) (1.46)

BIS = BcG(t) +BrĠ(t) (1.47)

Using this modelling allows to constraint the parameters of the covariance function, which
is one of the challenges of the use of correlated Gaussian noise. Indeed, Gaussian processes
can easily absorb a great quantity of signal energy, to the point where planets can be eaten
out as well. Gaussian processes are appealing since they seem to provide an account for both
stochastic and physical behaviour.

1.4 Summary

In this chapter, our aim was to outline the elements that have to be taken into account when
finally reporting a planet and its orbital elements. Besides the fact that a good understand-
ing of the data and of the methodology is key for a reliable inference, it seemed particularly
important to us to identify areas of improvements. Indeed, this work had initially no precise
purpose but the analysis of data collected to detect and characterize exoplanets. The liter-
ature review was an important step to ensure not to reinvent the wheel and not to miss a
crucial aspect of the inference process that could endanger our analysis.

Our starting point issued from two questions that emerged during the participation to
the NEAT challenge (Anglada-Escude et al. 2014): how to circumvent aliasing and why
are eccentricities overestimated? The NEAT challenge consisted in analysing 200 simulated
data sets of 45 astrometric measurements to retrieve planets, the goal was to demonstrate
the capacity of the community to exploit the data from a potential GAIA successor. Our
first approach was an iterative process, where one would compute the periodogram, fit the
best candidate and perform the same analysis on the residuals. We found that it often
occurred that at some iteration, the tallest peak of the periodogram was spurious due to
an unfortunate combination of several planetary signals and the noise. We had the idea of
using `1 minimization methods, that allow to search for several signals simultaneously and
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yet avoid brute force approaches. Tailoring and these tools to our purposes and studying
their usefulness and reliability is the object of chapter 2, and of (Hara et al. 2017).

In the analysis of the NEAT challenge we encountered another interesting fact, which is
that the best fit eccentricities were in general over-estimated. Furthermore, when initializing a
non-linear fit of a Keplerian model at a spurious period, it often happened that the eccentricity
converged to one. We also found that there is a detection bias against high eccentricity planets
at a given semi-amplitude. The eccentricity estimation and detection bias has been studied
in more or less depth in Cumming (2004); Shen & Turner (2008); Zakamska et al. (2011);
Baluev (2015b). Our goal was to get a precise understanding of the origin of these biases,
and more generally of the behaviour of least square fit estimates. The analysis of this bias
is done chapter 3. We find that biases on projected mass and inclination (from astrometry)
have the same origin. We argue that bias is not so much of a problem in itself, since inference
on physical properties are done with interval estimates, be it for a given target star or on
eccentricity distributions. We also consider the problem of designing an observation strategy
to obtain guarantees on the resolution on the distribution of eccentricities.

This brings us to the third point we wish to highlight. We found that when the model
is incorrect, the eccentricity tends to be even more over-estimated. However, in that case,
the uncertainties are possibly underestimated. We then undertook to find ways to diminish
the impact of a wrong model and to diagnose when models are incorrect. The discussion in
section 1.3.2 is part of this goal, and aims at providing theoretical elements to consider when
reasoning under wrong models. This discussion, as well as the tools suggested in section 3.4
are part of a work in progress (Hara et al. 2018, in prep.).
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Chapter 2

Compressed Sensing/Sparse
Recovery and Radial Velocity data

Je ne cherche pas, je trouve.

Pablo Piclasso

The choice of a data analysis method includes a trade-off between accuracy and speed. In
the analysis of radial velocity techniques, provided the errors are appropriately computed,
improved robustness is obtained by several means: by searching directly for Keplerian signals
instead of purely sinusoidal ones, combining RV measurements with other ones (e.g. transits),
trying several noise models, possibly based on activity indicators derived from the spectra
and finally, searching for several planets at once. All these improvements take additional
computation time.

In any statistical analysis technique, the likelihood must be computed over the space of
parameters. So we will have to find the maximum of a function, or use it in an integral to
compute the posterior likelihood. In general, the time required to compute those quantities
evolves exponentially with the number of parameters, a problem sometimes called the “curse
of dimensionality”. Where does the exponential increase comes from? If we could just evaluate
the function but did not know anything about it, we would have to try every combination of
parameters on a grid as dense as possible to find the maximum or compute an integral. If this
was systematic, since every additional planet brings five parameters it would discourage us to
attempt to fit many at once. However, knowing something about the function can drastically
reduce research time. For instance, if the function is convex and the space of parameters is
convex as well, finding the minimum of the function is drastically simplified: Newton descents
will do.

What property of our problem could be used to speed up the search of signals? In full
generality, this question remains open. In this chapter, we will exploit the assumption that
the signal is sparse, which means that the number of planets is “much less” than the number
of measurements. In section 2.1 this claim is precised and put in the broad context of
sparse signals analysis. The goal of this section is to provide an overview of motivations and
theoretical aspects of sparse recovery, which might be unfamiliar to the exoplanet community.
In section 2.2 we present the core of this thesis, that is the application of this theory to radial
velocity measurements as done in Hara et al. (2017), which is reproduced in appendix G.
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Symbol description

〈a, b〉w Euclidian or Hermitian product respectively if a and b are real or
complex valued. 〈a, b〉w =

∑n
k=1wka

∗
kbk where the weights wk are

positive real numbers.

z∗ Conjugate of z ∈ C
‖a‖w ‖a‖w =

√
〈a,a〉w

‖x‖`0 `0-norm of vector x ∈ Cn: ‖x‖`0 is the number of non-zero com-
ponents of x

‖x‖`p , p > 0 `p-norm of vector x ∈ Cn: ‖x‖`1 =

(
n∑
k=1

|xk|p
) 1
p

x? = arg min
x∈E

F (x) Value of x ∈ E that minimizes the functional F : E → R+

xt True value of a variable x. In any case the subscript t holds for
“true”.

y Vector of observations.

A Dictionary: a m× n matrix, m < n with non vanishing columns

ak k-th column of A

V correlation matrix of the noise

W W = V−
1
2 (exists as V is symmetric)

Ω Discrete subset of R
kerA Null space of A, kerA = {h ∈ Rn,Ah = 0}

f(t), f : R→ R When f : R → R and t is a vector of M components, f(t) =
(f(tk))k=1..M is the vector made of evaluations of f on each tk. In
particular eiωt = (eiωtk)k=1..m.

p(x|y) Probability density of random variable X knowing the value of
random variable Y

Table 2.1: List of symbols

In section 2.3, possible improvements are discussed. Section 2.4 presents more in-depth
the Radial Velocity Challenge, for which the most recent version of the tool is particularly
efficient.

2.1 Sparsity, Compressed Sensing and `1 norms

2.1.1 Reformulation

The model for ideal radial velocity signals, given by Equation 1.20, is reproduced here

y(t,θ) = V +

np∑

i=1

Ki(cos (ωi + ν(t, ei, Pi, ωi,M0,i)) + ei cosωi).

When the orbits are circular, this becomes a simple sum of sines

y(t,θ) = V +

np∑

i=1

Bi cos
2π

Pi
t+ Ci sin

2π

Pi
t.
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The decomposition of the radial velocity signal as a sum of sinusoidal signals is in fact
more general than the circular case. Indeed, since Keplerian signals are periodic, they can
be expanded in Fourier series and even more generally, stable planetary systems can be
approximated by quasi-periodic series (Laskar 1988; Laskar et al. 1992; Laskar 1993, 2003).

We will now use the notations of Hara et al. (2017) and denote by ω = 2π/P the mean
motions and m the number of measurements. Let us denote by y(ti) the velocity evaluated
at different instants t = (tk)k=1..m, then




y(t1)
...

y(tm)


 =




1 cos(ω1t1) . . . cos(ωnpt1) sin(ω1t1) . . . sin(ωnpt1)
...

...
...

1 cos(ω1tm) . . . cos(ωnp
tm) sin(ω1tm) . . . sin(ωnp

tm)







V
B1

...
Bnp

C1

...
Cnp




.

(2.1)

When searching for the periodicities in the data, we obviously do not know where the
(ωi)i=1..np are. An upper bound can be put though, since planets should not be observed
below the Roche limit. The frequencies are to be searched in an interval [0, ωmax] which
we can first think of informally as a discrete grid Ω = (ωj)j=1..n arbitrarily dense such that
ω1 = 0, ωn = ωmax and ωj+1 = ωj + ∆ω. The situation we are in is rather that we have an
additive noise ε = (εi)i=1..m and an equation




y(t1)
...

y(tm)


 =




cos(ω1t1) . . . cos(ωnt1) sin(ω1t1) . . . sin(ωnt1)
...

...
cos(ω1tm) . . . cos(ωntm) sin(ω1tm) . . . sin(ωntm)







B1

...
Bn

C1

...
Cn




+




ε1
...
εm


 ,

(2.2)

a solution of which we wish to determine. This is an inverse problem, but since the matrix is
such that m < n, this equation is under-determined. Inversion might seem hopeless, but we
have a key information: there are only a few planets. We want the solution not to have more
than . 2np + h non null coefficients, where np is the number of planets (times two for one
sine and one cosine coefficient), and h is the number of additional harmonics. This one could
originate from stellar rotation or eccentricities. Overall, the number of non zero coefficients
we expect is . 20. In fact, equation (2.2) is a particular instance of a more generic problem

y = Ax+ ε

A is a m× n matrix and n� m

x has a few non-zero components (x is sparse )

(2.3)

The study of sparsity in a broad sense became a field of its own in ≈ 1990 (Donoho & Stark
1989; Mallat & Zhang 1993; Tibshirani 1994; Chen et al. 1995). Let us note that searching
for the simplest explanation in some sense is no new thing. One could argue that the choice
of a scientific explanation is always a compromise between its simplicity and its precision.



58 Chapter 2. Compressed Sensing/Sparse Recovery and Radial Velocity data

Moreover, sparse solutions where used as soon as Prony (1795). In the modern literature, the
matrix A is termed the “dictionary” and its columns are termed “atoms”. We are basically
searching for a linear combination of a few atoms of A that reproduces the data.

In this form, the problem is not precisely defined. A natural way to search for a sparse
solutions is to look for vectors with a few non-zero entries whose distance to the data is
bounded,

arg min
x∈Rn

‖x‖`0 s. t. ‖Ax− y‖`2 < ε (P`0,ε)

where ‖x‖`0 is the number of non zero elements of a vector x and is termed the `0 norm,
even though it is not a norm in a strict sense. Formula (P`0,ε) reads: among the set of vectors
x that satisfy ‖Ax − y‖`2 < ε, we search those that have the minimal number of non-zero
components. The notation arg min f(x) is an abbreviation for “argument that minimizes the
function f(x)” and s.t. stands for “subject to”. Table 2.1 summarizes the notations used. Let
us first examine the noiseless case, in which the problem becomes

arg min
x∈Rn

‖x‖`0 s. t. Ax = y. (P`0)

Let us denote by xt ∈ Rn the true coefficients of the signal, that is

y = Axt. (2.4)

Do we have any chance to recover xt by solving (P`0)? The success will depend on matrix
A, and more precisely on its spark, defined as the minimum number of linearly dependent
columns. Denoting by aj the j-th column of A, J a subset of indices and |J | the cardinal of
J , spark(A) = min{k, (aj)j∈J , |J | = k,∃(λj)j∈J ,

∑
j λjaj = 0}. Then one obtains (this is a

very slightly different formulation of theorem 1 in Kutyniok 2012)

Theorem 1. The following propositions are equivalent

(i) ∀xt ∈ Rn such that ‖xt‖`0 6 S, xt is the unique solution of (P`0) for y = Axt.

(ii) S < spark(A)
2 .

This theorem gives a condition which guarantees that the sparsest solution is the true
one, but it does not tell us if (P`0) is computationally tractable. Unfortunately, when no
hypotheses are made on the dictionary A, this is a NP-hard problem (Ge et al. 2011). As it
is, this reformulation does not allow to bypass the thorough exploration of S-sparse signals.

2.1.2 Greedy algorithms

The result of Ge et al. (2011) tells us that no fast algorithm will solve (P`0) for all dictionary
A. However the problem (2.4) is always solved in a specific context: the dictionary is known
and its specific properties can be used to speed up algorithms. Astronomers in particular
should not be too pessimistic, since there are cases where fast, iterative algorithms are able to
retrieve efficiently harmonics when those are not too numerous. After all, we are doing nothing
but fitting epicyclic motions to observations, just like Ptolemy. Although the interpretation
was wrong, the frequency retrieved by his analysis were at least not always spurious. The
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algorithms known to perform well — though not perfectly — are CLEAN (Roberts et al.
1987), frequency analysis (Laskar 1988, 1993, 2003) and CLEANest (Foster 1995).

In all these algorithms the dictionary is made of sine functions (complex or real) and they
function on the same principle: the frequency corresponding to the maximum correlation
is subtracted from the signal, then the search is performed on the residuals and so on. In
the case of frequency analysis and CLEANest, at each iteration, all the atoms found so far
are re-fitted, possibly in a non-linear way with re-adjustment of the frequencies, not only
the coefficients. In CLEAN, only the last element of the dictionary found is adjusted and
subtracted from the residuals.

Interestingly enough, these methods have a counterpart in the Statistical and Compressed
Sensing literatures. The principle of CLEAN is exactly the one of Matching Pursuit (Mallat
& Zhang 1993), CLEANest and frequency analysis are close to Orthogonal Matching Pur-
suit (Pati et al. 1993). These methods are known as“greedy algorithms” in the sparse recovery
literature. Beforehand, adding features step by step was known in the statistical literature
as forward stepwise regression (Efroymson 1960), and matching pursuit is a particular case
of projection pursuit (Huber 1985). The method used to find exoplanets in RV data has
the same structure: one computes the periodogram with a dictionary made of sinusoidal or
Keplerian functions, then the signal that fits data the best is subtracted from the data, and
a periodogram is computed on the residuals.

Unfortunately, all these methods share the same problem: at some iteration the vector
of the dictionary that has the maximum correlation with data might be spurious1. We met
such a case several times in section 1.3.3 : the tallest peak of the periodogram might be at a
spurious frequency around a period of one day or at a period which could pass as one of an
exoplanet. We are now going to try to understand why this happens.

The theory of compressed sensing gives conditions on the dictionary that guarantee success
of greedy algorithms. These ones are expressed via the notion of mutual coherence, which is
the maximum correlation between two columns of A,

Definition 1 (Mutual coherence (Donoho & Elad 2002)). The mutual coherence µ of a real
or complex matrix A is defined as

µ(A) = max
k,l∈{1..n},k 6=l

|〈ak,al〉|
‖ak‖`2‖al‖`2

. (2.5)

This quantity is in fact familiar to astronomers. When the dictionary is made of complex
sines, ak = eiωkt = (eiωkti)i=1..m, so the right hand side of the equation comes down to the
spectral window, which we denote by Sw.

|〈ak,al〉|
‖ak‖`2‖al‖`2

=
1

m

∣∣∣∣∣
m∑

i=1

ei(ωl−ωk)ti

∣∣∣∣∣ =: |Sw(ωl − ωk)|. (2.6)

It is a remarkable property of dictionaries made of complex exponentials that the correlation
is somewhat“stationary”, that is the correlation between the columns k and l of the dictionary
only depends on |k − l|.

1Although when all frequencies found at a given iteration are re-fitted, the problem is mitigated. Foster
(1995) shows an example where the first peak selected is wrong but at the end of the iteratios the estimated
amplitude at the corresponding frequency is much smaller than the one at the true frequencies.
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Figure 2.1: Spectral window of HD 10180

A sufficient condition of success of orthogonal matching pursuit can be expressed with the
mutual coherence (Donoho & Huo 2001; Tropp 2004)

Theorem 2. If xt ∈ Rn\{0} verifies

‖xt‖`0 <
1

2

(
1 +

1

µ(A)

)
(2.7)

then it is the unique solution of (P`0) with y = Axt and Orthogonal Matching Pursuit with
error threshold 0 recovers it.

It means that iterative searches will succeed if the columns of the dictionary are not too
correlated two by two. Unfortunately, equating the right hand side of the inequality to two
yields the condition µ(A) < 1/3. As soon as the mutual coherence is greater than this
threshold, we are not sure that the Orthogonal Matching Pursuit will be able to retrieve
correctly two components, even if there is no noise.

The condition of the theorem is never fulfilled for exoplanets searches in radial velocity.
Indeed, if we take two close frequencies on a dense grid, ωk and ωk+1, equation (2.6) gives
the correlation between the columns, Sw(ωk+1 − ωk), which tends to one as the grid gets
finer. In simpler terms, neighbouring frequencies on the grid give almost identical models.
Furthermore, due to the daily repetition of measurements and seasonality of observations,
spectral windows often have spikes & 0.8 and & 0.5 respectively at one day and one year. As
an example, we show the spectral window of HD 10180 measurements (Lovis et al. 2011b) in
figure 2.1, that has ten peaks above 0.3 despite its relatively high number of measurements
(190). Six of the eleven strongest aliases are packed around a period of 1 day, with a peak
reaching 0.94. Even when disregarding close frequencies, the condition of the theorem is not
fulfilled.

Since the condition is a sufficient one, its tightness can be questioned. Let us do a numerical
experiment. We take the measurements times of HD 10180, t = (tk)k=1..m and generate
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Figure 2.2: Percentage of failure to retrieve correct frequencies via Orthogonal Matching
Pursuit as a function of the number of measurements.
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∣∣∣
∑3

i=1 Sw(ωi + ω) + Sw(ωi − ω)
∣∣∣ for the

purple curve (see equation (2.6)).

signals of type

y =

np∑

k=1

ck eiωkt (2.8)

with frequencies ωk chosen randomly with uniform probability on the span 0 to 1.9π. First
we take np = 2, c1 = c2 = 1 and generate 1000 realizations of signal (without noise). On each
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onal matching pursuit.

of those, an orthogonal matching pursuit algorithm is performed. We compute the number
of failures to retrieve the correct frequencies divided by the number of simulations.

This method is performed for signals generated on the 50 first measurement dates of HD
10180, then the 55 first, 60 and so on, up to 190. The results are presented figure 2.2, where it
is clear that though the value of the maximum alias of the periodogram stays relatively steady,
the rate of failure decreases with the number of measurements. When failure is taken as a
non exact retrieval of frequencies, the blue curve is obtained. In practice, this is too stringent
a criterion, since the physical properties of planets will remain similar in a neighbourhood
of the frequencies. If we only take as a criterion that one of the two true frequencies is not
retrieved within 2π/Tobs,m, where Tobs,m is the observation timespan for m measurements,
the purple curve is obtained. 2π/Tobs,m is a typical scale of local minima in frequency, hence
its choice. Note that the smallest is the distance between subsequent frequencies on the grid
Ω, the greater will be the rate of failure of exact recovery for reasons which will become
clearer afterwards.

The method fails when at a certain iteration, the correlation of the residuals with a column
of the dictionary is higher than a correct one. Since there is no noise, failures appear only
because of correlations between columns. In the case of pure frequencies with no noise, the
signal is given by equation (2.8), so the correlation with a column of the dictionary eiωt is

|〈eiωt,y〉| =

∣∣∣∣∣

np∑

k=1

ck〈eiωt, eiωkt〉

∣∣∣∣∣ =

∣∣∣∣∣

np∑

k=1

ckSw(ωk − ω)

∣∣∣∣∣ (2.9)

It means in particular that the correlation with a vector that truly is in the signal, eiωjt is

|〈eiωjt,y〉| =

∣∣∣∣∣∣
cj +

np∑

k=1,k 6=j
ckSw(ωk − ωj)

∣∣∣∣∣∣
. (2.10)
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It might turn out that a frequency ω corresponds to an alias of several true signals, that is
|Sw(ωk−ω)| is high for several k. If the phases of Sw(ωk−ω) add coherently, one will observe
a high correlation |〈eiωt,y〉| that does not correspond to a true signal. Figure 2.3 shows
an example of such a situation. We consider the thirty first measurements of HD10180 and
generate signals with periods 30, 16.71 and 624 days, y1 = cos(2π/30t), y2 = cos(2π/16.71t),
y2 = − cos(2π/624t) and consider y = y1 + y2 + y3 . Note that cosx = (eix + e− ix)/2, so
that we are in the situation of equation (2.9). We represent |〈eiωt,yi〉| as a function of ω
for i = 1, 2, 3 in respectively blue, red and yellow. Also we plot in purple |〈eiωt,y〉|, which
is what any of the algorithm mentioned above would do at first iteration. Unfortunately,
the maximum occurs at a spurious frequency, the algorithm would fail from the very first
iteration. This example was designed to be pathological, but this situation does happen in a
non negligible fraction of cases (see next paragraph and section 2.3.2).

Furthermore, equation (2.10) shows that the Fourier transform at ωj is not exactly |cj |.
Other sources might had coherently and boost or cut off the signal at ωj . It might result in a
small shift in frequency of the maximum of correlation. Then even if the highest correlation
happens not at a completely spurious peak but close to a true frequency ωj , one does not
subtract exactly cj eiωjt but c̃j ei ω̃jt with some c̃j , ω̃j 6= cj , ωj . This distorts the residuals, the
error propagates and amplifies in subsequent iterations. We show figure 2.4 (left) how the
recovery failures evolve with the number of signals injected and the number of measurements.
It is clear that the precision worsens with the number of signals injected. We do another
experiment, which consists in injecting 4 random signals of frequency ω1, ω2, ω3, ω4. We
calculate ej = mini=1,2,3,4 |ω(j) − ωi| where ω(j) is the j-th frequency found by the iterative
process. We generate such four signals with uniform distribution in frequency 1200 times so
that we have four series of 1200 errors. For each of them we plot the experimental cumulative
distribution function, that is the fraction of signals that have an error below the level given
on the x axis. We do not plot the distributions of ej but of ejTobs/2π where Tobs is the
observation timespan. Based on figure 2.3, the local minima are separated by ≈ 0.02 rad/s,
that are ≈ 3×2π/Tobs. The representation adopted therefore allows to count in terms of“how
many local minima off” the estimate is. The conclusion is clear: as the iterations proceed,
the error on the retrieved frequency spreads out.

This discussion points out that aliasing can create spurious peaks and error propagates
with iteration of the algorithm. However, when looking at the numbers of figure 2.4 the
situation does not seem too concerning, for the four iterations the error on the frequency is
below 4 × 2π/Tobs. For a period of 10 days this means we will measure between 9.83 and
10.16 days, which is not too bad. There seem to be only ≈ 2% of the signals where the period
retrieved is completely off the track.

More realistic setting

Let us now try to quantify how frequently we should expect to run in the situation of figure 2.3.
To do so, we make simulations that have the following structure. Measurement times (ti)i=1..m

are taken from sets of observations. We then generate np sine signals (or circular planets) with
amplitudes (ak)k=1..np , uniform random phases (φk)k=1..np , random frequencies (ωk)k=1..np
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and a noise ε of covariance matrix V, that is

y(ti) =

np∑

k=1

ak cos (ωkti + φk) + εi. (2.11)

We generate N such signals, and for each of them we perform an iterative search. The
Generalized Lomb-Scargle periodogram (GLS) is computed, then the frequency corresponding
to the maximum is fitted non linearly along with a constant vector and subtracted. The GLS
is computed on the residuals, the frequency corresponding to the maximum is fitted with
the first frequency found plus a constant, and this model is subtracted. This is basically
algorithm orthogonal matching pursuit or frequency analysis with GLS instead of a Fourier
transform and a non-linear fit of all frequencies found at each iteration (the non linear fit
is included in the frequency analysis). The process is repeated until we find a maximum of
the periodogram that is below a certain false alarm probability threshold α, computed by
simulation.

At iteration j, the algorithm will select a frequency (ω̂j). We then compute dj =
mink=1..np |ω̂j − ωk|, that is the smallest distance between ω̂j and a true frequency. The
algorithm stops at iteration jf . If jf < np, we missed a signal. By convention, we then take
dj = −1 for j = jf + 1..np. If jf > np, spurious signals have been selected, and we pose
dj = −2.

We do such simulations with three levels of noise. In each case, there are three sine
functions with amplitudes 3.51, 2.66 and 2.2 m.s-1 evaluated on the 50 first measurements of
GJ 876 (Correia et al. 2010). The periods are generated uniformly in logP with a criterion
avoiding too close mean motions. The noise level taken are 0.1, 1 and 2 m.s-1. The cumulative
distribution function of the error on the mean motions in rad/day are shown respectively in
figures 2.5, 2.6 and 2.7.

The blue, red and yellow curves show the distribution of errors at iteration 1, 2 and 3
respectively. Their value at the x axis label“missed”indicates that the corresponding iteration
did not detect any signal (it was below the detection threshold). For instance in figure 2.7,
there are ≈ 30% of missed detections at the third iteration (yellow curve). The purple and
green curves represent the distributions of fourth and fifth iteration. Their value at the x
axis label “False” shows the proportion of cases where a signal was spuriously detected. In
figure 2.7, this amounts to ≈ 45% of false detections at fourth iteration.

2.1.3 `1 penalties

The numerical experiment done in previous section shows that without noise, with 50 mea-
surements and without looking to periods close to one day, still in 10% of the cases a spurious
peak was found. This will worsen with noise and as additional planets are added. As more
measurements are taken, the components of the signal get more and more decorrelated which
diminishes the probabilities of failure, but measurements are costly. Tackling this problem
was in fact the initial motivation of this work.

We would like a method that searches for several frequencies at a time, but as we saw in
section 1.3.3, the task is made complicated by the numerous local minima of the phase space
(see for instance figure 1.19).

A class of algorithm, based on `1 norm penalties on the vector to be recovered will be useful.
The basic idea is to replace the `0 norm by an `1 one in problem (P`0). From the computational
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Figure 2.5: Cumulative distribution function of an iterative method, high signal-to-noise
ratio.
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Figure 2.6: Cumulative distribution function of an iterative method, intermediate signal-to-
noise ratio.
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Figure 2.7: Cumulative distribution function of an iterative method, low signal-to-noise ratio.

point of view, the problem becomes a minimization of a convex function over a convex space
and becomes much more attractive. This idea was first proposed in Tibshirani (1994); Chen
et al. (1995) with different formulations equivalent in some sense, under respective names of
Least Absolute Shrinkage and Selection Operator (LASSO) and Basis Pursuit. The definition
of the latter is obtained by replacing the `0 norm by the `1 one in (P`0).

arg min
x∈Rn

‖x‖`1 s. t. Ax = y (P`1)

Changing the norm might seem artificial, but the geometry of the `1 norm indeed enhances
sparsity. To see that, let us consider a simple instance of the problem,

arg min
x∈R2

‖x‖`p s.t. 1 =
(
a b

)( x1

x2

)
.

The right hand side of the equation has an infinity of solutions that belong to the affine space
defined by 1 − ax1 − bx2 = 0. Among them, we select the one with the smallest `p norm.
Figure 2.8 shows the solution of this problem for p = 1 and p = 2 in two cases, (a, b) = (0.3, 1)
(left) and (a, b) = (1, 0.3) (right). The `1 norm selects one coefficient and sets the other to
zero (black markers) while the `2 norm selects two (red markers).

Let us think of the space generated by (0, 1), that is the ordinate axis, as the space where
the coefficients of the signals are supposed to be non zero. As long as the angle between
the green line and the abscissa is below 45◦, the `1 minimization will select a coefficient on
the ordinates. If this angle is more than 45◦, the situation is inverted, the coefficient on the
abscissa is selected (see figure 2.8, right). Generalizing this idea, it seems that as long as the
null space of A is “sufficiently far” from the space where the signal is supposed to be sparse,
minimizing the `1 norm will yield the correct coefficients.
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This intuition can be formalised through the notion of null space property (Cohen et al.
2009), whose definition is given below.

Definition 2. Let A be a m× n matrix. A has the null space property relative to a set T if
for all vector h ∈ ker A\{0}

‖hT ‖`1 6 1

2
‖h‖`1 (2.12)

or equivalently

‖hT ‖`1 6 ‖hT̄ ‖`1 (2.13)

where hT is the vector equal to h on indices of T and 0 elsewhere.

The following theorem gives a sufficient and necessary condition for uniqueness of the
solution, which we state as in Foucart & Rauhut (2013),

Theorem 3 (Cohen et al. (2009)). Given A a m× n matrix, every vector x ∈ Rn supported
on a set T is the unique solution of (P`1) with y = Ax if and only if A satisfies the null
space property relative to T .

Note that the same proposition holds if one replaces `1 by `q, 0 6 q 6 1 (Foucart et al.
2010). This theorem implies that if the true coefficients xt are in T and A satisfies the null
space property relative to the set of indices T , then (P`0) recovers the true coefficients. Note
that if A satisfies the null space property relative to all subsets of indices of cardinality k,
it means that any k-sparse vector is exactly recovered by (P`1). The proof is brief and gives
some geometric intuition, therefore we are going to reproduce it here.2

Let us denote by supp(x) the support of a vector x, that is the set of indices of its non-
zero components. The property “any element x whose support is in T is the unique solution
of (P`1)” can be stated as “ ∀x such that supp(x) ∈ T , Bx ∩Kx = {x}” where Bx is the `1
ball of radius ‖x‖`1 and Kx = {h,Ah = Ax}.

Proof. We prove each implication by contradiction. Let us first suppose that A does not
verify the null space property relative to T . Then there exists a vector h ∈ kerA such that
‖hT̄ ‖`1 6 ‖hT ‖`1 (see figure 2.9, left). Since Ah = 0, we have AhT = A(−hT̄ ). In other
words we have found another element than hT in BhT ∩KhT , we do not have exact recovery.

Conversely, let us suppose that for some x0 with supp(x0) ∈ T , Bx0 ∩ Kx0 contains an
element x′0 6= x0. Then we have Ax0 = Ax′0 therefore h := x0 − x′0 ∈ kerA and h 6= 0. (see
figure 2.9, right). We can write h = hT + hT̄ , and

‖hT̄ ‖`1 = ‖x′0‖`1 − ‖x0 − hT ‖`1 (2.14)

6 ‖x′0‖`1 − |‖x0‖`1 − ‖hT ‖`1 | (2.15)

6 ‖x′0‖`1 − ‖x0‖`1 + ‖hT ‖`1 (2.16)

By definition of Bx0 , since x′0 ∈ Bx0 , ‖x′0‖`1 6 ‖x0‖`1 and

‖hT̄ ‖`1 6 ‖hT ‖`1 (2.17)

A does not satisfy the null space property relative to T .

2Largely inspired by Dustin G. Mixon’s a particularly clear proof.
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Figure 2.9: Illustrations for the proof of theorem 3

The diagram used for the proof seems also to suggest that the `1 minimization will either
find the correct elements of the dictionary or fail completely. It has been shown that when
the columns of A are randomly distributed, `1 methods tend to fail below a certain number
of measurements and succeed otherwise with a sharp transition (Amelunxen et al. 2013).

The null space property gives some geometric intuition on the possibilities of success of `1
minimization. By modifying slightly the null space property definition, one can also obtain
guarantees on the stability of the recovery when noise corrupts the data set. Since these
are not going to be used, we refer the reader to chapter 4 of Foucart & Rauhut (2013).
Theoretical results on compressed sensing can be obtained in terms of how well conditioned
are the submatrices made of columns of A. We present this approach and how it can be used
in practice next section.
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Conditioning of submatrices/Restricted isometry constants

Let us go back to problem (P`0,ε), page 58. We have measurements y = Axt + e where e is
some noise and xt are the true coefficients. If there were no time constraints, we could select
any set of (non redundant) s indices T ∈ {1..n}s, the corresponding columns of A, whose
concatenation will be denoted by AT .

There exists x such that ‖ATx − y‖`2 6 ε if and only if min
x∈Rs

‖ATx − y‖`2 6 ε. Such a

quantity can be computed explicitly since it is a linear least square problem. Provided AT is
full rank,

min
x∈Rs

‖ATx− y‖`2 = y∗(I−AT (A∗TAT )−1A∗T )y (2.18)

arg min
x∈Rs

‖ATx− y‖`2 =: x̂T = (A∗TAT )−1A∗Ty (2.19)

where ∗ designates the matrix transposition and not T like in the rest of the text, to avoid
confusion with T , the subset of indices. In particular when the columns corresponding to the
true indices are selected,

x̂T = xt + (A∗TAT )−1A∗Te. (2.20)

To have any chance of recovering the coefficients of xt, the matrix A∗TAT should not be “too
close” to a non-invertible matrix. This intuitive idea can be made precise through the notion
of condition number. This one is defined as

Definition 3 (Condition number). The condition number of an invertible matrix M associ-
ated to the norm `p is defined as

Cp(M) = sup
u6=0,v 6=0

‖M−1u‖`p
‖u‖`p

‖v‖`p
‖M−1v‖`p

= ‖M−1‖p→p‖M‖p→p (2.21)

where

‖M‖p→p = sup
u 6=0

‖Mu‖`p
‖u‖`p

(2.22)

is the operator norm.

When p = 2, it is well known that

σmin 6 ‖A‖2→2 6 σmax (2.23)

where σmin and σmax are respectively the minimum and maximum singular values of A. These
ones are the square root of the eigenvalues of A∗A. As a consequence, C2(A) = σmax/σmin.
The smaller the condition number is, the better will be the precision on x.

To illustrate the importance of the condition number, let us consider the problem of the
stability of least square estimates. We consider a signal y = ATxt + e where e is a Gaussian
vector independent and identically distributed of variance σ2

e . The least square estimate of xt
is given by equation (2.20). The covariance matrix V of x̂ is equal to σ2

e(A
∗
TAT )−1. We take
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as a measurement of the dispersion of a vector the square root of the sum of the variances of
its components, so that

σy :=

√√√√
m∑

i=1

Var{ei} =
√
mσe (2.24)

σx̂ :=

√√√√
s∑

i=1

Var{x̂i} =
√

tr(V) = σe

√√√√
s∑

i=1

1

σ2
i

=
σy√
m

√√√√
s∑

i=1

1

σ2
i

(2.25)

Let us denote by A+
T := (A∗TAT )−1. Since (A+

T )∗A+
T = (A∗TAT )−1 we can apply (2.23) to

A+
T y = x̂, and get

1

σmax
‖y‖`2 6 ‖x̂‖`2 6 1

σmin
‖y‖`2 .

Dividing by σx̂ we obtain
√
m√∑m

i=1
σmax2

σ2
i

‖y‖`2
σy

6 ‖x̂‖`2
σx̂

6
√
m√∑m

i=1
σmin2

σ2
i

‖y‖`2
σy

,

therefore,
√
m

s

1

C2(AT )

‖y‖`2
σy

6 ‖x̂‖`2
σx̂

6
√
m

s
C2(AT )

‖y‖`2
σy

. (2.26)

Defining SNR(z) =
√
p
‖z‖`2
σz

the signal-to-noise ratio of a vector z with p components, equa-
tion (2.26) can be re-written

1

C2(AT )
SNR(y) 6 SNR(x̂) 6 C2(AT )SNR(y) (2.27)

The inverse of the condition number then determines how close to zero can be the signal to
noise ratio for a given estimate x̂. When the noise has a component in the direction of the
eigenvector corresponding to the singular value σmin, it is amplified in the estimation process
and might dominate the signal. The lower bound provides worst case scenario. On the other
hand a high condition number also provides best case scenario if it is in the direction of σmax,
it will be damped in the inversion.

A remarkable fact is that the conditioning of submatrices not only ensures stability with
respect to noise, but also uniqueness of the solution of (P`1) (see page 66), as we shall see
theorem 4. Before presenting a few results, let us define an analogous of the null space
property. We follow Foucart & Lai (2009) for the definition and notation, and name the
notion “Condition number bound” to avoid confusion with other metrics.

Definition 4 (Condition number bound). Let s be a positive integer, A a m × n real or
complex matrix, and αs, βs > 0 be respectively the superior and inferior bounds of α, β such
that

∀z ∈ Rn or Cn, ‖z‖`0 6 s, α‖z‖`2 6 ‖Az‖`2 6 β‖z‖`2 , (2.28)

the s-condition number bound of the matrix A is defined as γs = β2
s
α2
s
.
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Foucart & Lai (2009) considers the more general problem of `q minimization

arg min
x∈Rn

‖x‖`q s. t. Ax = y (P`q)

and show the following theorem,

Theorem 4 (Foucart & Lai (2009)). Given 0 < q 6 1, if for some t > s,

γ2t − 1 < 4(
√

2− 1)

(
t

s

) 1
q
− 1

2

(2.29)

then all s-sparse vector xt is exactly recovered by solving (P`q) with y = Axt.

Note that the smaller q is, the less stringent the requirement is. It means that `q minimiza-
tion should be a little bit more efficient. The problem is that for q < 1 the objective function
is not convex anymore. Another problem, common to all such results, is that when the dictio-
nary A is not drawn from random variables, the conditions are never met. Furthermore, for
s > 2, computing s-minimal condition numbers is very lengthy. What follows is an attempt
to remedy this problem by putting constraints on the true signal rather than on all s sparse
signals. In general situations, we do not know where the true signal is, therefore the result
might seem useless. However, there are situations where some planets are almost certainly in
the signal and one might want to check whether it is possible to detect an additional one, or
if it is absorbed in the fit of the other planets. The slight modification of theorem 4 motivates
the use of a somewhat generalized spectral window in that situation.

In the new hypotheses, we require information only on the mutual coherence defined in
equation (2.5) and on the condition number of the matrix made of the vectors truly in the
signal concatenated with another vector of the dictionary. We first define a notion analogous
to the null space property relative to S.

Definition 5 (Condition number bound relative to S). Let S be a subset of s indices of
{1..n}. Let be γS,1 = β2

S,1/ α
2
S,1 where βS,1 and αS,1 are the tightest constants such that for

any vector ak, kth column of A with k ∈ S̄, the concatenation of AS and ak, [AS ,ak] verifies

∀z ∈ Rn or Cn, ‖z‖`0 6 s+ 1, αS,1‖z‖`2 6 ‖[AS ,ak]z‖`2 6 βS,1‖z‖`2 . (2.30)

Then we can state

Theorem 5 (Foucart & Lai (2009), modified). Provided that

γS,1 < s1/q−1/24(
√

2− 1) + 1 (2.31)

and

β2
2 − α2

2 6 β2
S,1 − α2

S,1 (2.32)

then all vector xt with support in S is exactly recovered by solving (P`q) with y = Axt.
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The proof is given in appendix B. In fact, provided the columns of A are normalized in
`2 norm, β2

2 − α2
2 is twice the maximum of the spectral window, as shown below. Instead of

computing the condition numbers of all matrices of size 2t, t > s, we need the correlation
of columns two by two and the condition of the set of interest plus one vector. This is
incomparably faster to compute as soon as s > 2.

The notion of condition number is scarcely used directly on matrix AT . The theory has
been made mostly with the notion of restricted isometry constant (Candes & Tao 2005).
Since it is ubiquitous in Compressed Sensing literature, we give the definition below.

Definition 6 (Restricted isometry constant). For a m×n matrix A, the s-restricted isometry
constant is the smallest δs < 1 such that for any vector c with at most s non zero components,

(1− δs)‖c‖2`2 6 ‖Ac‖2`2 6 (1 + δs)‖c‖2`2 (2.33)

for all s-sparse vector. Or equivalently,

δs = max
T⊂{1..n},|T |=s

‖A∗TAT − I‖2→2 (2.34)

where I is the identity matrix of size s. When A satisfies an inequality such as (2.33) with
δs < 1, it is said to have verify the s-restricted isometry property.

It is easy to check that when the columns of A are normalized by their `2 norms and s = 2,
the restricted isometry constant is equal to the mutual coherence, that is δ2 = µ. We have
also (β2

2 − α2
2)/(β2

2 + α2
2) = ((1 + δ2)− (1− δ2))/2 = δ2 = µ. We have the following, though

trivial, important property (e.g. Foucart & Rauhut 2013)

µ = δ2 6 δ3 6 ... 6 δm (2.35)

The problem with the restricted isometry constant is that its value changes with the units
of A. We have shown that when s = 2, the way to multiply the columns of A by constants
that give the smallest δ2 is simply to normalize A columns in norm `2. The proof was not
included in this work, since it is not essential for our purposes. The case of s > 3 is more
complicated and no result was found, but it seems reasonable to conjecture that normalizing
columns of A gives the smallest δs for all s. Therefore we will systematically normalize the
columns of the dictionary in what follows.

To conclude, let us assume that the columns of A are normalized, defining δS,1 = (γS,1 −
1)/(γS,1 + 1) we have

Theorem 6 (Foucart & Lai 2009, adapted). Provided that

δS,1 <
1

1 +
√
s

2(
√

2−1)

≈ 1

1 + 0.207
√
s

(2.36)

and

|Sw(ω)| 6 δS,1 ∀ω ∈ Ω\{0} (2.37)

then all vector with support in S ⊂ Ω, |S| = s, is exactly recovered by solving (P`1).
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So if we want to ensure that four vectors with support in S will be exactly recovered, we
need to have a maximum of the spectral window and δS,1 lower than 0.29. This condition will
never be satisfied because of a fact mentioned earlier: close frequency have correlation almost
one. However, the study of practical cases suggested that the real problem is the spurious
adding of distant aliases (as in figure 2.3). The theorem above is an invitation to consider
the restricted isometry constant as a spectral window that can take in argument more than
two frequencies. Like most of the compressed sensing theoretical results, it can very scarcely
been shown to hold in real cases.

2.1.4 Noisy data

Theorem 5 was stated in this way to motivate the use of the conditioning of submatrices to
investigate possible correlations with the signals (as done in Hara et al. (2017), appendix D
which is reproduced in the Appendix G.10), just like the spectral window, whose information
is valuable regardless of the noise. This one has an important effect on sparse recovery, which
we now discuss. The privileged framework to consider noise is the problem termed Basis
Pursuit De-noising (BPDN, Chen et al. 1998), that is

x? = arg min
x∈Cn

‖x‖`1 s. t. ‖Ax− y‖`2 6 ε (BPε)

where xt is not necessarily exactly sparse, but is well approximated by a sparse vector (it
is said to be compressible). Numerous results on the stability if the recovery have been
obtained. They consist in

• Bounding the error on the reconstructed signal ‖Ax? −Axt‖`2 . These results are in
particular useful in the case of data de-noising.

• Bounding the error on the ‖x?−xt‖`2 or ‖x?−xt‖`1 , which is useful for inverse problems.

• Establishing conditions to have supp(x?) ⊂ supp(xt) where supp denotes the non zero
elements of a vector.

One of the most famous theorem of the Compressed Sensing theory is stated in terms of
restricted isometry property

Theorem 7. (Candès et al. 2006b) Suppose that xt is an arbitrary vector in Rn and let xt,s
be the truncated vector corresponding to the s largest values of xt (in absolute value). We
have measurements y = Axt + e with ‖e‖`2 6 ε. Under the hypothesis that δ3s + δ4s < 2, the
solution x? of the (BPε) minimisation obeys

‖x? − xt‖`2 6 C1,sε+ C2,s
‖xt − xt,s‖`2√

s
(2.38)

with C1,s ≈ 12.04 and C2,s ≈ 8.77 for δ4s = 1/5.

In other words, the error on the reconstructed vectors can be bounded by the noise level
and the error made by only selecting s coefficients of x. Other results have been obtained
in terms of mutual coherence by Donoho et al. (2006), and to the knowledge of the author,
the sharpest bounds so far can be found in Foucart (2010). Let us note that the solution
of (BPε) will always satisfy ‖Ax? − y‖`2 = ε unless ‖y‖`2 6 ε, i.e., x? = 0. In all non trivial
cases, the boundary will be reached.
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2.1.5 A note on vocabulary

So far the terms sparse recovery and compressed sensing have been used indifferently, which
seems to have become gradually the case in the literature. At its origin, compressed sensing
or compressive sampling was used in a stricter sense, which is the recovery of sparse signals
when matrix A has random columns Candes & Tao (2005); Donoho (2006). This concerns
situations where the experimenter has the possibility to obtain random measurements of a
vector zt ∈ Rn or Cn plus a noise e. The k-th observation is then yk = 〈Φk, zt〉+ ek. If it is
known that z has a sparse representation in some basis Ψ, n×n matrix, then denoting by Φ
the matrix whose rows are the Φk and we have k = 1..m measurements, then

y = ΦΨxt + e. (2.39)

The fact that Φks are drawn randomly causes the matrix ΦΨ to satisfy null space prop-
erties or restricted isometry properties with an overwhelming probability, provided enough
measurements are taken. One can show that under suitable conditions the sparse recovery
will succeed with high probability if the number of measurements satisfies a certain inequal-
ity. For instance if the matrix is drawn from Gaussian variables, recovery will succeed with
high probability if the number of measurement m satisfies m > 2Cs(1 + log(n/s)) for some
constant C (e.g. Foucart & Rauhut 2013, chap. 9, the example given is theorem 9.29). Ap-
plications of such methods are found in electronics (e.g. Mishali et al. 2008; Tropp et al.
2010), radar (e.g. Potter et al. 2010), MRI (e.g. Haldar et al. 2011), astronomy (Bobin et al.
2008)... As an example, it allows to sample time continuous signals with a rate much lower
than Nyquist frequency and still allow precise reconstruction of the signal.

In the terms of Donoho (2006), the original idea came from the fact that to store data,
much of its original information is thrown away. This happens when music is stored as MP3
or AAC, or images are represented by wavelets. The total number of wavelet coefficients
used is much lover than the precise WAV time series, or pixel by pixel representation. The
compressed sensing theory was an attempt to avoid throwing away most of the data, and
bridge the gap between the complexity of the sensing and the storage. Let us finally note
that the sensing can be viewed as a communication channel. The random sensing can be
viewed as a way to encode the symbols transmitted as far as possible from each others to
avoid error, as wished in communication theory (Shannon 1948). Connections between this
field and `1 minimization is done by Donoho (2005) for instance.

2.1.6 Continuous dictionaries

In this section we assumed that matrix A is of the form (2.2) where the frequencies are on
a grid Ω = (ωj)j=1..n, arbitrarily dense such that ω1 = 0, ωn = ωmax and ωj+1 = ωj + ∆ω.
However, the true frequencies of the planets are real numbers, and will therefore necessarily
fall between the grid elements.

Furthermore, we also stated that correlation between subsequent columns of A is deadly
to our ability to verify the hypotheses of theoretical results. Why not simply spacing out the
grid to reduce correlation? Anticipating on the next section, we observed that in practice,
loosing precision on the frequencies is worse than correlation of the dictionary.

There are theories for continuous dictionary in the sparse recovery literature but so far,
the theories we found could not directly be applied to the radial velocity measurements. The
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mathematical tool they use are significantly more advanced than the discrete case, and we
quickly gave up the purpose of extending them formally to fit our problem. However, we
took inspiration from a theoretical result of Tang et al. (2013a) to perform a smoothing of
the output of (BPε) described section 2.2.3. Our reasoning is presented below.

Chandrasekaran et al. (2012) suggests to use an“atomic norm”that extends (P`1) to infinite
dictionaries. Practical methods to solve the new minimization problem are designed in Candès
& Fernandez-Granda (2013) and Tang et al. (2013b). The atomic norm ‖y‖A, of y ∈ Rm
or Cm defined for a dictionary A is the smallest `1 norm of a combination of vectors of the
dictionary reproducing y:

‖y‖A = inf




∑

j

|xj |,y =
∑

j

xjaj(t)



 (2.40)

If the observations were not noisy, computing the atomic norm of y would be sufficient. As
this is obviously not the case, the following problem is considered.

u? = arg min
u∈Cm

‖u− y(t)‖2`2 + λ‖u‖A (2.41)

where λ is a positive real number fixed according to the noise. The coefficient λ can be
interpreted as a Lagrange multiplier, and this problem can be seen as maximizing a posterior
likelihood with a prior on u. The quantities we are interested in are the dictionary elements
a?j and the coefficients x? selected by the minimization, where u? =

∑S?

j=1 x
?
ja

?
j (t).

The problem of the algorithms of Candès & Fernandez-Granda (2013) and Tang et al.
(2013b) is that they rely on evenly sampled signals, with possibly missing measurements.
Since radial velocity signals are unevenly spaced, the time samples have to be seen as ap-
proximately located on a grid with many missing samples. This would require to manipulate
large matrices and we did not attempt to further investigate these algorithms.

However, Tang et al. (2013a) shows that when the function associating a column of the
dictionary a(ω) to ω is continuous (which is the case for us), as the maximum difference
between frequencies on the grid tends to zero, the solution of (BPε) tends to the one of (2.41).
Especially, corollary 1 of Tang et al. (2013a) states that the summed amplitudes of coefficients
of x? within a certain distance η0 from the actual peak in the signal tend to the appropriate
value. In the proof, they choose a tolerance ε (appearing in (BPε)) such that the balls of
width η0 centred around the true peaks have a null intersection. Thus, it seems reasonable
to select η as the largest interval within which the probability to distinguish frequencies is
low. Values such as ≈ 0.5π/Tobs to π/Tobs are robust in practice.

There is other algorithms and theories for spectral line estimation that accounts for the
continuous nature of the dictionary. Chen & Chi (2014) builds on the so-called structured
matrix completion but again, the algorithm requires the signal samples to be evenly spaced.
This is also the case for the theory developed for shift-invariant signals in Eldar (2009).

2.2 Application to radial velocity data

2.2.1 Problem formulation

Among the minimization problems presented last section, the most natural to try out is (BPε)
(page 73). Indeed, unlike greedy algorithms, several coefficients are searched at once. Un-
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like (P`q) with q < 1, (page 71), (BPε) is a convex problem and is therefore expected to
be relatively fast to solve. Finally, the formulation accounts for possible noises, which are
unavoidable in real life. It can be shown that (BPε) is equivalent to two other formulations,
each of which leads to several algorithms as long as ε 6= 0. First the regularized Least-Square,

arg min
x∈Cn

‖Ax− y‖`2
2 + λ‖x‖`1 (QPλ)

proposed by Chen et al. (1998). Interestingly enough, this can be seen as searching the poste-
rior maximum of the spectrum with a Laplace prior and Gaussian ii.d. noise. Indeed, (QPλ)
is equivalent to

arg max
x∈Cn

1√
2π

m e
− 1

2
‖Ax−y‖2`2 e−

λ
2
‖x‖`1 (2.42)

(QPλ) is also equivalent to solving a least square problem restricted to a `1 ball of given
radius

arg min
x∈Cn

‖Ax− y‖`2
2 s. t. ‖x‖`1 6 τ (LSτ )

This formulation was introduced by Tibshirani (1994) under the name LASSO (Least Abso-
lute Shrinkage and Selection Operator), ubiquitous in statistical learning.

These methods yield the same result for an appropriate choice of ε, λ and τ . The equivalence
simply follows from the fact that (BPε) and (LSτ ) have a Lagrangian formulation of the
form (QPλ). Unfortunately, given one of them there is no mean to detemine the values of the
other scheme parameters that lead to the same solution. Since Basis Pursuit offers directly
a control on how far from the data we allow the solution to be, it was selected as a starting
point. In this section, we provide some background and some modifications of the algorithm
made in Hara et al. (2017).

2.2.2 A search for an efficient algorithm

There is a considerable literature on the ways to solve (BPε). Our method of selection con-
sisted basically in trying public codes in several situations, with simulated and real systems.
The decisive part was a blind test on five systems sent by Alexandre Correia (Aveiro Univer-
sidade), which were HD 69830 (Lovis et al. 2006), HD 40307, HD 10180 (Lovis et al. 2011b),
55 Cnc, GJ 876 (Correia et al. 2010). The analysis was done with several algorithms and
sent to A. Correia, who could confirm if the periods retrieved were correct.

Testing the method on real data sets first might be puzzling since it is unsure whether
the reported signals truly are in the data or not. However, these systems have a relatively
high number of high precision measurements and show high significance detection with sev-
eral techniques. In particular 55 Cnc and GJ 876 were studied in-depth in Baluev (2013a)
and Baluev (2015a). The method was tailored on these application to ensure it is efficient in
real cases. We test its reliability on simulated cases section 2.3.2.

The existing codes we have tested for analysing radial velocity data sets are: `1-magic (Can-
dès et al. 2006a), SparseLab (Donoho 2006), NESTA (Becker et al. 2011), CVX (Grant &
Boyd 2008), Spectral Compressive Sampling (Duarte & Baraniuk 2013) and SPGL1 (van den
Berg & Friedlander 2008). Since SparseLab is a collection of algorithms, we tested them even
though they are not intended for solving (BPε). We tested also CoSaMP (Needell & Tropp
2009) and the algorithm MUSIC (Schmidt 1986). SPGL1 gave the best results in general for
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Figure 2.10: Failure of `1-magic on the 214 points data set of GJ 876. Obtained with 2000
frequencies.

exoplanetary data and consequently is the one we selected (the code can be downloaded from
this link 3). We then made several modifications to improve the performance of the algorithm
for the radial velocity data analysis. We will not dwell on the details of the selection process,
which would require to present each algorithm and the adjustments that were made, but
highlight key reasons why the algorithms were not selected.

The first algorithm considered was `1-magic (Candès et al. 2006a). This one performed
well for small data sets but is unstable when considering more than ≈ 100 data points. We
re-coded the algorithm in the TRIP language (Gastineau & Laskar 2011). We found that the
results were slightly different from the matlab public version. A close inspection showed that
the two versions diverged because of a matrix inversion that occurs in a sub-routine, necessary
for a gradient descent. When the matrix A is large, the matrix to be inverted, denoted by B,
is ill-conditioned. This causes a numerical instability that amplifies with iterations. We show
an example of failure in figure 2.10. Matrix A has columns cosωk and sinωk for (ωk) = k∆ω,
∆ω = 2π/2000, k = 0..1999. We plot the amplitude of a(ωk)

2 + b(ωk)
2 as a function of ωk

where a(ωk) and b(ωk) are respectively the coefficients of cosωk and sinωk of the solution
of (BPε). The oscillations that are spaced with ≈ 0.8 rad/day are due to the numerical
instability. Other tuning were tried, but these were found unable to retrieve correctly the
frequencies in 55 Cnc and GJ 876.

The algorithms of SparseLab, MUSIC and Spectral Compressive Sampling yielded less clean
figures and were missing some of the periods even on simulated data. After trying several
configurations we simply dismissed those without further investigations. Let us note that the
performance of Spectral Compressive Sampling is surprising, since it relies on SPGL1.

NESTA and CVX were performing closely to SPGL1. The problem with the former is that
it relies on A to be expressed as an orthonormal basis A′, which is a square matrix. To
obtain a good resolution on time and frequency, the matrix A′ to set in input becomes large
when there are numerous measurements. In the case of 55 Cnc, that has 663 measurements
available, the frequency resolution was either too low, or the algorithm too long to converge.
Finally, CVX and SPGL1 performed closely, but the latter was faster.

3https://www.math.ucdavis.edu/∼mpf/spgl1/supplement.html

https://www.math.ucdavis.edu/~mpf/spgl1/supplement.html
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2.2.3 Tuning

Regardless of the algorithm chosen for solving (BPε), we have to make several choices. These
concern the form of the dictionary A, the tolerance ε, whether any processing is performed
on the raw data before setting it in input of the solver, or if post-processing on the output of
the solver must be made. We first searched for a matrix A of the form (2.2). We then have
to define the frequency grid Ω = (ωk)k=1..n.

Since there are many parameters to tune and they have interconnected effects, it is uneasy
to optimize jointly their choices. We basically made several adjustments until the tool was
found stable and efficient in all configurations in order to demonstrate its usefulness. A
thorough exploration of the parameters is yet to be done.

Dictionary elements

We have to determine whether (cosωkt, sinωkt) or (e− iωkt, eiωkt) should be taken as the
columns of A. Interestingly enough, (e− iωkt, eiωkt) is more robust. So far we could not
explain this feature, but made the choice to go along with it.

Figure 2.11 shows an example of the differences between the two options on HD 10180
data (Lovis et al. 2011b). To highlight the difference between the dictionary, we solve ba-
sis pursuit, which is (BPε) with ε = 0. When A is made of sines and cosines, we plot√
a(ωk)2 + b(ωk)2 where a(ωk) and b(ωk) are respectively the coefficients of cosωkt and

sinωkt, which gives figure 2.11.a. When the columns of A are complex, we plot as a function
ωk

A(ωk) =

√
[<(c(ωk) + d(ωk))]

2 + [=(c(ωk)− d(ωk))]
2 (2.43)

where c(ωk) and d(ωk) are respectively the coefficients of e− iωkt and eiωkt. The result is
plotted figure 2.11.b. Finally, figure 2.11.c, we plot the amplitudes of the best fit initialized
at the periods found significant in the discovery paper Lovis et al. (2011b).

The aspects of figures 2.11.a and b is similar, with a clear appearance of the five planets
with the highest amplitude (at 5.759, 16.35, 49.74, 122.7 and 2222 days). However, the
amplitudes are incorrect (up to ≈ 0.7 m.s-1 instead of ≈ 4.5 m.s-1). We also observe a forest
of peaks in the one-day region, which will be discussed later. Let us note that figure 2.11.b
is slightly cleaner at low amplitudes. In particular between one and ≈ 5 days, the “forest”
of peaks has a lower amplitude in the complex case. Secondly, it seems like even though in
both cases amplitudes are under-estimated, the pattern of relative amplitudes is closer in the
complex case.

Grid spacing and tolerance, first approach

The theory of `1 minimization offers guarantees of recovery if the columns are not too cor-
related. As a consequence, we tried to construct the grid so that the correlation is kept
low. We also tried random grids and evenly spaced ones in two configurations. First, with a
great number of frequency, such that the gap between neighbouring frequencies is very small.
Secondly, we explored the strategy of computing the solution of (BPε) with several coarse
grids to limit the correlation between the columns, and average out the solutions. It turned
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Figure 2.11: Basis pursuit solutions of SPGL1 for HD 10180. a) the columns of A are
cos(ωt), sin(ωt), ω ∈ Ω, b) the columns of A are eiωt, eiωt, ω ∈ Ω c) Published planets and
amplitudes of the best fit.
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out that a dense evenly spaced grid performs best, which is also the simplest solution. We
are left with the choice of the grid span [ωmin, ωmax] and the grid spacing ∆ω.

The problem of the grid spacing has already been tackled in the Compressed Sensing
literature. For instance, (Stoica & Babu 2012) suggests to choose the spacing such that the

matrix M(ω) = eiωt ei(ω+∆ω)tT has a practical rank equal to one for all ω ∈ Ω. The authors
do not choose the usual definition of rank since M(ω) is in general full rank in the strict
sense. However, “most” of its eigenvalues might be close to zero. The practical rank as
defined by Stoica & Babu (2012) is the number of eigenvalues of M(ω) that are greater than
λmax× 10−3, λmax being the maximum eigenvalue. On the other hand, Sahnoun et al. (2012)
suggests to select initially only one vector and add columns to A iteratively.

It was unclear to us whether these criteria help recovering the true frequencies, therefore
we adopted another rationale. The idea is to guarantee that the true coefficients xt are
an acceptable solutions, more precisely that they belong to the set {x, ‖y − Ax‖`2 < ε}
where y = Axt + e with a certain probability. To achieve this, the choices of ε and ∆ω are
interconnected.

Denoting by yt the signal we would obtain if there was no noise, the random variable
y − yt follows the distribution of the noise. If this distribution is Gaussian of covariance
matrix V and W = V−

1
2 then W(y − yt) is Gaussian with covariance matrix identity. As a

consequence, ‖W(y− yt)‖2`2 is distributed according to a χ2 law with m degrees of freedom,
where m is the number of measurements. The tolerance ε is selected so that the probability
of the true signal to be outside the constraint is α, that is Pr{‖W(y−yt)‖2`2 > ε2} < α, that
is

Fχ2
m

(ε2noise) = 1− α (2.44)

where Fχ2
m

is the cumulative distribution function (CDF) of a χ2 distribution with m degrees
of freedom.

We now want to ensure that there exists a vector x close to the true coefficients xt and ε
that verifies ‖W(Ax− y)‖2`2 < ε that has the same number of non-zero components. If this
condition is fulfilled, we ensure that there is a vector with the correct sparsity that is within
the bounds of the constraints. We select a positive real number εgrid and take a grid spacing
to ensure there exists x with same sparsity as xt such that

‖W(Ax− yt)‖`2 < εgrid. (2.45)

Thus, there exists x with same sparsity as xt

‖W(Ax− y)‖`2 < ‖W(Ax− yt)‖`2 + ‖W(yt − y)‖`2 < εgrid + εnoise := ε (2.46)

with probability at least 1− α.

We show in Hara et al. (2017), Appendix A, that for a grid spacing ∆ω, we find an
appropriate x that verifies

‖W(Ax− yt)‖2`2 6 4m‖W‖22→2 sin2 ∆ωT

4

p∑

j=1

|cj |2 (2.47)
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where ‖W‖2→2 is defined as in equation (2.34), and p, cj are such that yt =
∑p

j=1 cj eiωjt, T
is the observation timespan. We then select a grid spacing

∆ω 6 4

T
arcsin

εgrid

2

√
p∑
j=1
|cj |2

√
m∑
k=1

1
σ2
k

. (2.48)

Obviously we do not know the cj , so we used the approximation
√∑p

j=1 |cj |2 ≈ ‖y‖`2/
√
m

which comes from

‖y‖2`2 =

m∑

k=1

∣∣∣∣∣∣

p∑

j=1

cj eiωjtk

∣∣∣∣∣∣

2

= m

p∑

j=1

|cj |2 + 2<




m∑

k=1

p−1∑

j=1

p∑

i=j+1

cjci ei(ωj−ωi)tk


 (2.49)

and gives

εgrid = 2‖W‖2→2‖y‖`2 sin
∆ωT

4
(2.50)

We usually took εgrid 6 εnoise/3 and checked visually that the final figure was not too depen-
dent of the parameters by varying them and re-computing the plots.

Normalizing the input

We noticed that the number of iteration is not independent of the units of y and A, which is
an undesirable property. SPGL1 stops whenever the estimate of the output x? at iteration

k, xk, verifies
|‖Axk−y‖`2−ε|

max(1,‖Axk−y‖`2)
< tol. By default, tol=10−4.

To make the precision of the SPGL1 solver independent from the value of Wy, the weighted
observations Wy are normed by ‖Wy‖`2 , the columns of the matrix WA are also normed.
Denoting by y′ = 1

εWy/‖Wy‖`2 and A′ = 1
ε (Wak/‖Wak‖`2)k=1..n, where ak is the k-th

column of A. We set in input of the solver:

arg min
x∈Cn

‖x‖`1 s. t.
∥∥A′x− y′

∥∥
`2

6 1. (2.51)

Averaging the output

We now use SPGL1 in the basis pursuit de-noising mode ((BPε), ε > 0) on HD10180 data. The
output is used to compute the amplitude A(ωk) per period via formula (2.43). Figure 2.12.a
shows the result of the computation along with the periods and amplitudes of the published
planets. Figure 2.12.b shows the same plot but with enhanced scale on the y-axis. Though the
structure of the periods is globally appropriate, the amplitude of the peaks is under-estimated.
To circumvent that problem, we average the coefficients of neighbouring frequencies with the
following procedure.

Denoting by x? the solution to (BPε), and by x?(ω) the coefficient corresponding to fre-
quency ω (c and d in the notations of formula (BPε)), we compute for a certain η

ŷω(t) = ‖Wy‖`2
∑

ω′ ∈ Ω
ω − η 6 |ω′| 6 ω + η

x?(ω′)aω′(t)

‖Waω′(t)‖`2
(2.52)
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Figure 2.12: Basis pursuit denoising with SPGL1 (A has complex columns) a) Without
normalization of the input of the solver nor averaging. b) Same figure as a) with zoom on
the y axis c) “`1-periodogram” with weighting by matrix W, normalization of the input and
averaging of the solution.
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Figure 2.13: a) `1-periodograms of HD 10180 data set with mean subtracted, b) Generalized
Lomb-Scargle periodogram of the same data set. The red stems have the periods and ampli-
tude of published planets. For all the noise model considered for matrix W , σW = 0, σR = 1
m.s-1.

Where aω′(t) is the column of A corresponding to frequency ω′. The terms ‖Wy‖`2 and
1/‖Waω′(t)‖`2 appear because the columns of WA and the weighted observations Wy were
normalized. The vector ŷω(t), t = t1..tm is approximately a sine function, the new estimation
of the signal power is:

x](ω) = max
t1..tm

|ŷω(tk)|. (2.53)

Given the regular spacing of periodogram peaks, we can take a constant η equal to a fraction
of a typical peak width. We use η = 0.7π/Tobs where Tobs is the observation timespan, but
any value between 0.5π/Tobs and π/Tobs is acceptable.
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Besides providing better estimates of the main peaks amplitude, the process has also the
advantage of bringing up the smaller signals at 602 days. This is a general pattern: averaging
the output helps sorting out spurious peaks and true signals that have low amplitude.

Grid span

Now that the grid step ∆ω is set, we must select the grid span [ωmin, ωmax]. To include low
frequencies, the grid must contain 0. Since the dictionary would be redundant if we had
ωmin < 0 and ωmax > 0, we choose to consider grids of the form [0, ωmax].

The main issue comes from the nearly daily repetition of the measurements, which leads to
a strong correlation of a vector eiωt and ei(ω+ω0)t where ω0 ≈ 2π. If ωmax > ω0, we observe
aliases in the one day region. On the other hand, if ωmax < ω0 very short period planets such
as 55 Cnc e (0.73 days) remain unseen.

Since solving (BPε) takes only up to a few minutes, the workaround adopted is simply to
solve it twice, once with ωmax = 3π to check for short period companions and once with
ωmax = 1.9π, to avoid to introduce very correlated columns that yield spurious peaks.

To show the effect of the grid span, we compute the `1 periodogram as in figure 2.13.a but
on [0, 1.9π]. It obviously suppresses the aliases in the one day region and enhances the signal
at 602 days. The interpretation of such a feature is that the power of the signal at this period
was split between the ≈ 600 days coefficients and their aliases.

Discussion on the algorithm tuning

The reasonings above were first attempts to find an automatic procedure to define the param-
eters of the algorithm, which performed satisfactorily in general. We believe however that it
could be improved. Our procedure, as well as the one of Stoica & Babu (2012), does not take
into account all the parameters that have an influence on the performance of the algorithm.

One of the aspects we disregarded was the speed of the algorithm. The smaller the tolerance
(ε) and the denser the grid (∆ω), the lengthier the computation is. Imposing εgrid small in
comparison of εnoise leads to a small ∆ω, and since the total grid span is fixed, to grids with
several hundreds of thousands of frequencies and twice as much columns for A. Even in that
configuration, the algorithm takes only up to a few minutes to run, but this can be improved
to tens of seconds.

Secondly, we chose the tolerance to bound by a certain α the probability of the true signal
to be outside the constraint, or Pr{‖W(y − yt)‖2`2 > ε2} 6 α. However as discussed in
section 2.1.4, when the solution x? of (BPε) is non zero it always verifies ‖W(Ax?−y)‖ = ε.
As a consequence, the algorithm will always select x? that has the maximal allowed distance

to data, therefore minimal likelihood, which is proportional ∝ e
− 1

2
‖W(Ax?−yt)‖2`2 .

If the tolerance is reduced, to ensure the existence of a solution that has the correct `0 norm,
we should take a smaller grid step. However, simulations show that this is unnecessary in
general. We found the observation of Stoica & Babu (2012) valid in general, for an observation
timespan Tobs, taking ∆ω ≈ 2π/(10Tobs) is efficient in general. For HD 10180, this reduces
the number of frequency from 95,000 to 20,000.

Since we expect the noise not to be represented sparsely on our dictionary, choosing a small
tolerance should not affect our inferences in general. The representation of the noise will be
spread out onto many atoms, giving forests of peak as in figure 2.11.a and b.
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If we are to try several matrices W to search for correlated noise, then we should not choose
ε = 0. We showed in Hara et al. (2017), Appendix B (section G.8, page 209) that when the
noise is correlated of covariance matrix V and W ≈ V−1/2, low amplitude signals otherwise
buried in the noise can be brought up. It then makes sense to define ε not on a confidence
intervals, but so that the true xt is most likely to be in the region {x, ‖Ax − y‖`2 = ε}.
Thus, ε =

√
m− 2 seems to be a reasonable choice since it is the mode of the χ2 law, and it

therefore defines the region were it is most likely to find the true coefficients.

2.3 Developments

2.3.1 Example

Reducing the grid size allows us to include vectors in the dictionary that represent eccentric
orbits. On top of atoms of the form e− iωt and e− iωt we add e− i νe(t) and ei νe(t) where
νe(t) is a true anomaly computed as a fifth order expansion in eccentricity e. Such atoms
are included for a grid of a few eccentricity values (typically e = 0, 0.2, 0.4, 0.6). For a
full account of eccentricity, the atoms should also depend on the argument of periastron.
However, in practice, the inclusion of such atoms was found to improve the representation of
some systems. Figure 2.14 we plot the coefficients of all eccentric orbits in the case of HD
10180 with a frequency span of 1.9π. The amplitude of the 600 days signal is brought up and
other low-amplitude candidate signals appear.

These signals are not all as steady when the parameters of the algorithm are changed. For
instance, when the frequency grid is changed from 1.9π to 2π, we obtain figure 2.14, the
92 days signal vanishes. To interpret this, we use the notion of restricted isometry constant
defined in equation (2.33). We take a frequency ω and the best fit frequencies of the six planets
found so far, (ω1, ...ω6) and form the matrix M(ω) = [e− iω1t, eiω1t, ..., e− iω6t, eiω6t, e− iωt, eiωt].
We compute the eigenvalues of G(ω) = (WM(ω))∗(WM(ω)). Since G(ω) is symmetric pos-
itive definite, it has non negative eigenvalues (λi)i=1..14 of minimal and maximal values λmin

and λmax. We then compute δ(ω) = (1−λmax/λmin)/(1+λmax/λmin). We plot δ as a function
of period in figure 2.14.d.

This function goes to one each time ω = ωi since the matrix becomes degenerate and
λmax/λmin tends to infinity. It also displays a peak at 92 days, which indicates a strong
correlation between signals at this position and the existing. In figure 2.14.c we show another
example of algorithm tuning (ε = 2εnoise) where a peak at 1.206 days appears, this one
corresponds to a value of δ of 0.95. These examples, along with other ones we do not present
for the sake of brevity, show that plotting δ could be a useful indicator of where aliases could
be in cases with multiplanetary signals. We however acknowledge that the use of δ , though
motivated by theoretical result and analogy with the spectral window, is heuristic and should
be therefore used with care. In particular, it is insensitive to the amplitudes of the signals.
To take these into account, a useful indicator of where aliases could be is more simply the
(generalized) Lomb-Scargle periodogram itself. Figure 2.13.b indeed displays peaks at 92 and
1.206 days.

All these examples show that the estimation of low amplitude signals depend on the choice
of the grid and should be taken with care. From the theoretical point of view, Reeves &
Gastpar (2009) compute the optimal error rate of support recovery with information theory
tools. They show that it is asymptotically equal to a trivial thresholding (assimilable to a
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Figure 2.14: `1-periodogram of HD 10180 with eccentric dictionary elements.



2.3. DEVELOPMENTS 87

10
0

10
1

10
2

10
3

10
4

Period (days)

0

2

4

6

8

10

12
z

1

HD 10180, residual periodogram 6 planets + free frequency

a)

10
0

10
1

10
2

10
3

10
4

Period (days)

0

5

10

15

z
1

HD 10180, eccentric recursive periodogram 6 planets + free frequency

b)

10
0

10
1

10
2

10
3

10
4

Period (days)

0

5

10

15

20

25

z
1

HD 10180, fully eccentric recursive periodogram 6 planets + free frequency, additional variance

c)

Figure 2.15: `1-periodogram of HD 10180 with eccentric dictionary elements.
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Figure 2.16: GLS of the residuals after seven signals are removed.

less sophisticated version of orthogonal matching pursuit) respectively in the limit of 0 and
infinite signal to noise ratio (amplitude of the signal divided by noise)4. Therefore, we should
expect that the `1 minimization will not help us much to dig in low amplitude signals. The
`1 minimization will greatly increase our confidence in the high amplitude peaks, to dig in
the noise we can move to periodogram methods.

For the search of exoplanets, astronomers have developed tools that push one step further
the idea of orthogonal matching pursuit with the following principle. At each trial frequency
of the periodogram, the previously found signals are re-adjusted, not only when the maxi-
mal correlation between residuals and the dictionary is found. Let denote by ω1, ..., ωk the
frequencies that have been stored up to iteration k. At the trial frequency ω we can compute

z1(ω) = α
χ2
k+1 − χ2

k

χ2
k

(2.54)

where χ2
k and χ2

k+1 are the χ2 of residuals respectively when the models at period ω1, ..., ωk
and ω1, ..., ωk, ω are fitted, α is a constant that will be made explicit later on. Depending on
what is intended by “fitted”, different answers are obtained.

4 More precisely, Reeves & Gastpar (2009) consider signals of the form y = Axt + ε where ε is a Gaussian
independent noise. They suppose that the number non zero components of xt is known, that the support
is uniformly distributed over all support of size s and that the amplitudes of the coefficients is distributed
with an independent Gaussian law. The signal to noise ratio S is defined as the ratio of the variances of the
signal amplitude and of the noise ε. They consider a fraction of errors α on the indices of the support and
the optimal estimator that minimized the probability to have an error on the support > α, δopt(y;α, S) that
minimizes the probability that the error is above α. They consider the trivial thresholding support estimator
δTH(y), which consists in taking the s largest elements of ATy. They show the following theorem.

Theorem ((Reeves & Gastpar 2009)). Let A and y be fixed. If δTH(y) is unique, then there exists SA,y > 0
such that for all S < SA,y, we have δopt(y;α, S) = δTH

In other words, as long as the matric A has non degenerate rows, one can always find a signal to noise ratio
above SA,y above which the thresholding estimator and the optima one estimate exactly the same subset.
The first step of an iterative method is to find the maximum of a periodogram is assimilable to finding the
maximum correlation with a column of A (this is what is done in frequency analysis).
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The first form of the model we consider is

y(k+1)(t, ω) = A cos(ωt) +B sin(ωt) +

k∑

i=1

Ai cos(ωit) +Bi sin(ωit) + Mθ (2.55)

where M is a m × p matrix and θ is a p × 1 vector that account for non-planetary effects.
This might include a constant, a linear or quadratic trend, etc. When only the constants
A,B, (Ai, Bi)i=1..k are fitted, the false alarm probability has been computed by Baluev (2008)
under the hypothesis that ω1...ωk and M truly are in the data5. For α = m − 2k − p one
obtains the definition (2) of Baluev (2008).

We assess the statistical significance of the maximum of the periodogram in the following
manner. Let us denote by Zmax and zmax the maximum of the periodogram respectively
as a random variable under the hypothesis that the signal has k planets and the observed
value of the maximum. We compute the p-value Pr{Zmax > zmax|k planets} with formula (5)
of Baluev (2008).

We represent z1 as a function of frequency in figure 2.15.a on the HD10180 data sets were
the frequencies ω1...ω6 are initialized at the best fit frequencies of the six published planets.
We find a maximum of the periodogram at 6.51 days (11.85) and a close peak at 1.178 days.
These were already found in the discovery paper Lovis et al. (2011b). Using formula (5)
of Baluev (2008) we find a false alarm probability of ≈ 0.029, which is approximately twice
the value of 0.014 found in Lovis et al. (2011b). The discrepancy might be explained by the
fact that the formula we use is an upper bound of the false alarm probability. It might also
originate from the fact that 0.014 is obtained by simulations and depends on the choice of
the noise level. With the values set in Lovis et al. (2011b), the seven planet model yields a
reduced χ2 of 1.5>1, which indicates with high probability an under-estimated noise level.
As noted by Lovis et al. (2006), 6.51 and 1.178 are aliases of each other. To evaluate the
likelihood of both options, the stability of the system is explored in both cases. Only the
system with a planet at 1.178 days is found to be stable. Note that a signal at 10.68 days
also appear, which also the case on the `1 periodogram.

A slightly more sophisticated version assumes a model

y(k+1)(t, ω) = yKep(t, ω) +
k∑

i=1

yKep(t, ωi) + Mθ (2.56)

where yKep(t, ωi) indicates a Keplerian model initialized at a circular orbit at frequency ωi.
When yKep(t, ω) is restricted to a circular orbit, the periodogram so obtained is the recursive
periodogram suggested by Anglada-Escudé & Tuomi (2012). This one is plot figure 2.15.b.
Again, the signals at 6.51 and 1.178 days do appear. Interestingly enough, when zooming on
the latter, it is found that it is split in two and a peak at 1.182 appears.

This finding motivates us to do another analysis: we compute the recursive periodogram
but allow a Keplerian fit for the trial frequency. We plot the result in figure 2.15.c. A
period at 34.69 days stands out with an eccentricity of 0.7. When subtracting that signal
– which could be due to stellar rotation – and computing the periodogram of residuals (see
figure 2.16), the 1.1816 periodicity clearly stands out. The peak at 6.51 also splits and the

5In fact it has been computed in a more general setting: the comparison of a linear model and this linear
model plus a frequency.
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maximum now occurs at 6.39 days. Unfortunately, the amplitude of the peaks does not allow
to conclude on the nature of the signal.

The purpose of this analysis is first to introduce the use of the restricted isometry constant
as an indicator of the correlation between potential signal, secondly, to show an example of
an `1-periodogram with Keplerian atoms and finally, to demonstrate that interesting features
can be unveiled by a residual/recursive approach as a complement of the `1 minimization
method. A more in depth study with an appropriate Keplerian periodogram is left for future
work.

2.3.2 Statistical tests

To compare the performances of the `1 minimization with those of an iterative scheme, we
test both methods on simulated data sets. We consider the measurement times of GJ 876
and select the 50 or 100 first dates. We consider two noise levels: 10 cm/s and 2 m.s-1 (high
and low signal-to-noise ratio). Then we generate 2, or 4 planets in a circular orbit (i.e. sine
waves), all with semi-amplitude 3 m.s-1, uniformly distributed phases and periods distributed
uniformly in logP . This gives 2× 2× 2 = 8 simulation configurations, on each of which 100
systems are generated.

The methods are used in the following setting. In the iterative case, periods are searched
with the Generalized Lomb-Scargle periodogram (Zechmeister & Kürster 2009a). When a
frequency is found, all the frequencies found so far are re-fitted non-linearly with a sum of
sinusoidal model plus a constant. We compute equation (2.54) with χ2 of models with k and
k+1 planets. The false alarm probability is computed with the formula (5) of Baluev (2008).
When the maximum of the periodogram of the residuals corresponds to a non-significant
period, the algorithm stops. Since the periods are fitted non linearly, the FAP calculation
of Baluev (2013b) would have been more appropriate, but we stuck to the choice made
for Hara et al. (2017).

In the `1 minimization case, the k frequencies corresponding to the peaks ordered in de-
creasing amplitude are fitted non-linearly as well as the k + 1 ones. The k and k + 1 models
are compared with the same formula as the iterative method, until a non significant peak is
found. As a consequence, the only difference in the FAP assessment between the `1 minization
and the iterative method lies in the selected peaks.

The performance is evaluated as in section 2.1.2. At iteration j, the algorithm selects a
frequency (ω̂j). We then compute dj = mink=1..np |ω̂j − ωk|, that is the smallest distance
between ω̂j and a true frequency. The algorithm stops at iteration jf . If jf < np, we missed
a signal. By convention, we then take dj = −1 for j = jf + 1..np (label “Missed” on the x
axis). If jf > np, spurious signals have been selected, and we pose dj = −2 (label “False” on
the x axis). We plot the cumulative distribution function of errors of the frequencies retrieved
at each iteration. It is considered that the frequency retrieved are incorrect when a frequency
is more than 4× 2π/Tobs away from any of the true frequency, which is the measured width
of the periodogram peak. When two frequencies are further apart it means they are not in
the same local minimum. We indicate the 4× 2π/Tobs threshold with a dotted black line.

We do the experiment twice. First, the FAP threshold is set to one: we accept np frequencies
retrieved by the algorithms where np is the number of planets injected (2 or 4). With this
tuning, we see what are the output frequencies with the algorithms, regardless of the statistical
significance assessment. The cumulative distribution functions are shown in figures 2.17
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and 2.18. The procedure is then performed as described above with a FAP threshold equal
to 10−3, which is a common threshold for exoplanet detection. On each figure, we show a
zoom of the CDF close to 0. The iterative method is labelled OMP for“’Orthogonal Matching
Pursuit’. Note that the non-linear minimization step is not included in the original algorithm,
but since the spirit is very close we stick to this label.

Let us first consider figure 2.17: np selected frequencies retrieved when np are injected.
The signals have a 3 m.s-1 amplitude and the noise level is 0.1 m.s-1. The plots on the left
side are the result of the `1 minimization and on the right side of the iterative method. The
plots are ordered from top to bottom from easiest to most challenging setting (row 1: 100
measurements, 2 signals, row 2: 100 measurements, 4 signals, row 3: 50 measurements, 2
signals, row 4: 50 measurements, 4 signals).

On row one (figures 2.17.a and b), both algorithms perform well, retrieving the correct
frequencies except one error for the iterative method on first iteration. When doubling the
number of signals (figures 2.17.c and d), the differences of performance start appearing. The
`1 minimization method still has no mistakes, while ≈ 8% of frequencies obtained at first
iterations and ≈ 1− 3% of subsequent iterations are incorrect. When halving the number of
measurements (figures 2.17.e and f), the `1 minimization still performs well, with only one
frequency out of a hundred slightly off the error threshold. Finally, in figures 2.17.g we see
that in more complicated case, 50 measurements and 4 signals, the `1 method starts showing
some mistakes: ≈ 4% on the highest peak found ≈ 19% on third and fourth iteration. This
still outperforms the iterative method, which has an error rate from ≈ 25% to ≈ 45% percents
(first and fourth iteration respectively, see 2.17.h). Note that the error rate is higher as the
iteration proceed, which is inverted when the number of measurent is 50 (figure 2.17.d). This
suggests that when there are only 50 measurements, subtracting a spurious signal distorts
the residuals to a greater extent and modifies the spectral content of the signal, while when
there are more measurements when a spurious signal is fitted, the energy of a few true signals
is absorbed, but the remaining true peaks that are not correlated with the spurious signal
are not affected by the fitting process and are visible in the next iterations.

In the low signal to noise regime (figure 2.18), the differences in performance become less
clear. In both figures 2.18.a and b and figures 2.18.e and f, the error rate is less on the first
peak for the `1 minimization and higher on the second peak. The difference in performance
starts appearing when the number of signals is doubled (figures 2.18.c and d and figures 2.18.g
and h). In the 100 measurements case, the `1 method shows better performances on the three
first peaks selected and on all peaks for 50 measurements. The fact that the performance of
the two methods gets closer as the noise increases is compatible to the result of (Reeves &
Gastpar 2009), which was mentioned in the previous section page 88 (footnote).

Independenly of the method, there is a clear degradation of the performance between the
2 and 4 signal cases for 50 measurements. This invites to be suspicious about periodogram
peaks at high noise level. Even if the signal is statistically significant in the sense that
the white noise hypothesis can be rejected, the principal peak and subsequent ones can be
spurious. This is particularly visible in figure 2.17.h), where the noise standard deviation is
thirty times less than the amplitude of the signal.

We now move to the case where the FAP threshold is 10−3. Figures 2.19 and 2.20 represent
the same quantities as figures 2.17 and 2.18. Let us first note that there are only a very few
occurrences of “false” frequencies detected (when at least np+1 frequencies are retrieved).
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Furthermore, the errors are much less common than in the case where all the signals are
accepted, but this originate from the fact that much more signals are rejected. Even in the
high signal to noise ratio regime, for 50 measurements and 4 signals 2.19.g and h, almost
all signals are rejected but ≈ 20% and ≈ 30% of the first peaks (respectively in the `1
minimization and iteratve methods). We interpret this feature by the fact that the definition
of false alarm probability that we use to accept a planet at iteration k + 1 (equation (2.54))
is scaled by the χ2 of residuals with k planets. The more planets there are, the less relative
improvement there is in the fit when only one planet is fitted.

Note that figure 2.19.d is not very different from figure 2.17.d. When there are 100 measure-
ments, the signals are still significant with the metric (2.54), but the errors due to aliasing are
still present. In those cases, the `1 minimization outperforms iterative methods, as expected.

As a conclusion of these numerical experiments, we highlight the following points: `1
minimization exhibits better performances than iterative search in general. As the signal to
noise ratio decreases, the difference becomes less apparent, yet the `1 minimization still shows
slightly better results. When using a common FAP threshold for detection of exoplanets,
selection of spurious peaks can have statistical significance. The false alarm probability
definition seems also to lead to missed detections when there are many signals in the data. It
should be noted that false alarm probabilities based on combination of signals as in Baluev
(2013) and Baluev (2013a) may be more appropriate and will be considered in future work.

2.4 Return on the Radial Velocity Fitting Challenge

2.4.1 Presentation

The radial velocity fitting challenge was organized by Xavier Dumusque to test existing RV
data analysis methods on simulated data sets dominated by stellar activity. The simulated
systems were multiplanetary with planets of semi-amplitude . 5 m.s-1 and the activity was
simulated with SOAP 2.0 software (Dumusque et al. 2014), presented in section 1.2.5, along
with time series of the bisector span and logR′HK . Red noise with a correlation of a few days
was also added to the signal. The full method of data generation is presented in Dumusque
(2016).

Fifteen data sets were generated in various situations and submitted to eight teams who
tried to retrieve the correct signals and were ranked as function of the number of true positives
and false positives. In the following sections we present our first approach, which was not
very efficient, though we obtained one of the lowest rate of false positives. The new approach
is presented section 2.4.3.

2.4.2 First approach

Our first approach was to include in the dictionary columns supposed to represent the activity
of the star and some aiming at represent the planets. To obtain a representation of the planets,
we chose e−iωt and eiωt for ω lying in a certain grid (typically made of nω = 105 frequencies).
To represent the activity, we used frequency filters on the FWHM, bisector span and logR′HK .
The frequency filters were obtained by projecting onto orthogonal polynomials of the time,
higher degrees corresponding to higher frequencies. We considered the m vectors (tk)k=0..m−1

and separated them in c classes: C1 = (tk)k=0..j1 , C2 = (tk)k=j1+1..j2 and so on. We then
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Figure 2.17: Cumulative distribution functions of errors, FAP threshold = 1.
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Figure 2.18: Cumulative distribution functions of errors, FAP threshold = 1.
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Figure 2.19: Cumulative distribution functions of errors, FAP threshold = 10−3.
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Figure 2.20: Cumulative distribution functions of errors, FAP threshold = 10−3.
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projected the FWHM, bisector span and logR′HK onto those subspaces, obtaining 3c vectors
(aj)j=1..3c. In our study we chose c = 5, so the dictionary was made of n = 2nω + 3c entries.
In what follows, A denotes the m×n matrix whose columns are e−iωkt and eiωkt for k = 1..nω
and (aj)j=1..3c.

Figure 2.21 shows on the first system of the RV fitting challenge what the FWHM projected
on the Cj families of polynomials looks like. The FWHM time series is represented in black
on the top figure, along with its projection on polynomials of degrees 0 to 14. The middle
figure shows the FWHM projected on higher order polynomials. With the notation of the
previous paragraph, j1 = 14, j2 = 59, j3 = 149, j4 = 299 and j5 = 492, which is the total
number of measurements. One can see that the higher orders, the finer structures are seen.
We finally plot the Generalized Lomb-Scargle periodogram of each of the 5 filters. Their
signal is indeed localized in frequency.

In the version used for the RV Challenge, additional steps were also performed: the mini-
mization was applied to y(t) = FWHM(t) and y(t) = BIS(t), where BIS stands for bisector
span. We denote by FWHM(t) the vector of observations of FWHM and adopt the same con-
vention for BIS and logR′HK to avoid an overuse of bold fonts) In each case, the entries of the
dictionary corresponding to the signal considered were removed (respectively FWHM or bisec-
tor span), and the filtered time series of the radial velocity were put instead. In other words,
denoting by s1,..sc a signal s filtered respectively by the c class of polynomials C1, ...Cc, when
computing the `1-periodogram of the radial velocity time series one takes a dictionary made of
FWHM1(t), ...,FWHMc(t), BIS1(t), ...,BISc(t), logR′HK1(t), ..., logR′HKc(t) and e−iωkt and
eiωkt for k = 1..nω. When computing the `1-periodogram of the FWHM time series, the
dictionary was made of RV1(t), ...,RVc(t), BIS1(t), ...,BISc(t), logR′HK1(t), ..., logR′HKc(t)
and e−iωkt and eiωkt for k = 1..nω where RV stands for radial velocity.

This was thought to prevent us from finding peaks due to a difference of frequency of the
same activity signal measured by the radial velocity, FWHM, or bisector span. The result
of such an approach are represented in figure 2.22 for the system 2 of the radial velocity
fitting challenge. The planets to be found are represented by the red stems. The logR′HK
periodogram is scaled to fit on the figure with an arbitrary coefficient. The only peak that
appears clearly on the radial velocity `1-periodogram and not on the other `1-periodograms
is 3.77 days, which was then the only one reported.

2.4.3 Second approach

After the challenge, we kept on working on the method. We made a small change which
radically modified the aspect of the figures, whose efficiency could be evaluated as the result
became public. For instance, we could retrieve figure 2.23.b instead of figure 2.22. The first
change consisted in fitting the ancillary indicators: FWHM, Bisector span and logR′HK along
with a constant and a trend before running the SPGL1 solver. The second change was the
normalization and averaging operations presented section 2.2.3 and 2.2.3.

We checked that fitting a linear model with the ancillary indicators did not changed drasti-
cally the spectral content of the signal (appendix D of Hara et al. (2017), reproduced page 211)
and discussed the pros and cons of fitting a model itself noisy (the indicators).

The method so defined combined with a search with a residual periodogram at low ampli-
tude is extremely efficient. It retrieves planets with a semi-amplitude of ≈ 34 cm/s buried
in stellar activity of several meters per second. For instance for system 2, the signal at 20.16
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Figure 2.21: Filtered signals that were included in the dictionary in the old version of the
`1-periodogram, used for the Radial Velocity Fitting Challenge.

days appears on the periodogram and is statistically significant. Its K/N as defined in Du-
musque et al. (2016) is 2.26, that is for a semi-amplitude of the planet K, a radial velocity
root mean square RVrms and m measurements,

K/N =
K

RVrms
√
m
. (2.57)

No team found signals with SNR lower than 5 and most bona-fide detections were made
at K/N > 7.5. The `1-periodograms of the five first radial velocity signals are shown fig-
ure 2.23.a, b, c and 2.24.a, b. Even more remarkably, no red noise model was used to obtain
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Figure 2.22: Figures computed for the radial velocity challenge.

the figures.

It is tempting to then claim the superiority of the `1 minimization over other methods but
we believe that more care is needed for two reasons. First of all, the efficient method was
found after the results were made public. The other teams possibly modified their method
to retrieve small amplitudes as well. More importantly, it suggests that the modelling of the
activity used for the challenge is too well-behaved. The fact that a linear combination of the
ancillary indicators gives an extremely good account of the activity seems unrealistic. This
suggestion is also supported by the fact that Mikko Tuomi’s team, who performed best, is
the only one that fitted an activity model of the form aFWHM + bBIS + c logR′HK . Also
Phil Gregory used a term proportional to logR′HK in its model and obtained good results (he
analyzed only the first five systems). As a conclusion, either the problem of activity can be
efficiently mitigated with enough measurements, or the simulation of the activity by SOAP
2.0 is not completely realistic.

2.5 HD 169830

The method has been applied to four radial velocity signals in Hara et al. (2017). We here
treat one more case which illustrates an aspect treated more in-depth next chapter: the
sensitivity of the data analysis to error estimation. The system in question is HD169830,
around which two Jupiters are known to orbit (with best fit periods 225.62 and 2102 days).
The data set contains measurements from CORALIE and HARPS, which have very different
precisions.

The periodogram of the raw data is displayed i figure 2.25.a. It exhibits an odd structure
with short period oscillations modulated by larger ones. In fact, the larger peaks correspond
to ≈ 4× 2π/Tobs,HARPS, which means these are due to the spectral window of HARPS. Since
the nominal errors on the measurements of HARPS data are much smaller than CORALIE’s
but there might be an offset between the two data sets, spurious periods are created.

When an additional error is added in quatrature to the nominal one, that are σ′RV =√
σ2
RV + σ2, the fact that we have overly precise measurement but poor accuracy becomes less
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Figure 2.23: RV fitting challenge system 1, 2, 3 (respectively a), b), c))
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Figure 2.24: RV fitting challenge system 4, 5 (respectively a), b))

of a problem. We represent the periodogram for σ = 1 and 2 m.s-1 respectively figure 2.25.b
and c. HARPS data does not constrain the data as much as before and the long period
oscillations of the periodogram disappear, a strong peak at 225 days appears.

When computing the `1 periodogram with nominal error bars the two known periods clearly
appear (see figure 2.25.a). Fitting them along with the offsets of the data sets allows to have
an estimate of the offsets. When these are corrected and a 1 m.s-1 error is added in quadrature
to the nominal one, one obtains figure 2.25.b. A signal appears very clearly at 122.5 = 225/2
days, which indicates an eccentric orbit of the planet orbiting at 225 days, and clarifies what
signals are in the system.
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Figure 2.25: RV fitting challenge system 1, 2, 3 (respectively a), b), c))



2.6. DISCUSSION 103

10
1

10
2

10
3

10
4

Period (days)

0

10

20

30

40

50

60

S
e
m

i-
A

m
p
lit

u
d
e
 (

m
/s

)

HD 169830, barres d'erreur nominales

a)

10
1

10
2

10
3

10
4

Period (days)

0

10

20

30

40

50

60

70

80

S
e
m

i-
A

m
p
lit

u
d
e
 (

m
/s

)

HD 169830, barres d'erreur nominales + erreur 1 m/s en quadrature, offsets corrigés

b)

Figure 2.26: RV fitting challenge system 1, 2, 3 (respectively a), b), c))

2.6 Discussion

The goal of this chapter was to present theoretical and practical aspects that could not be
developed in Hara et al. (2017). On the theoretical sides, we highlighted the difficulty of
obtaining results that apply to continuous dictionaries. In the meantime, we consider the
columns of the dictionary A not like single entities, but group them when those represent
the same periodogram peak by summing up contributions of neighbouring frequencies. Mo-
tivated by a theoretical result we introduced the use of the restricted isometry constant as a
generalization of the spectral window to study correlation between signals, but more work is
yet to be done to link precisely this quantity to actual chances of success of sparse methods
on realistic models of radial velocity data.

On the practical side, we highlighted the difficulty of securing small signals in noisy data.
In particular the structure of the `1 periodogram might change depending on whether the grid
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includes or not frequencies of 1 cycle per day. Due to the daily repetition of measurements,
the correlation between a signal at frequency ω0 and its alias at ω0 + 2π is above 0.9 in
general and as expected from theoretical considerations, it lowers the chance of success of
sparse methods. To circumvent this issue, we argue that recursive/residual periodograms
are efficient ways to dig in the noise. The `1 minimization is useful to prevent from being
mislead by combinations of higher SNR signals that are strongly correlated. Furthermore,
`1 methods offer a point of comparison for residual periodograms at low amplitude signals.
One can check that the signals that appear on residual periodograms are not aliases of the
low-amplitude peaks that appear on the `1 periodogram.

In the era of parallel computing, the need for efficient algorithm decreases. A brutal
force search of two or three frequencies on a grid is manageable. Also, the algorithm FRE-
DEC (Baluev 2013a) has an efficient approach. A certain number N of candidate frequencies
are selected from the periodogram and all their 2N − 1 combinations are fitted non-linearly.
The algorithm allows the fitting of ≈ 25 frequencies and an analytical approximation of the
false alarm probability of such a procedure is available (Baluev 2013). These approaches could
prevent most situations where the aliasing misleads the analyst by enhancing spuriously the
power at certain frequencies.

Furthermore, the detection of planets is secured by computing the Bayesian posterior of
models with k planets. The posterior distribution of the orbital elements answers the “right
question”, which is the probability of the model knowing the data. As we discussed section 1.3,
as soon as we look at the data the properties of inference are changed. So why should
the analysis be biased by looking at other quantities, here the `1 periodogram or residual
periodograms?

We believe there is one fundamental reason why these might still be interesting tools,
which is that the model is not always correct. Brutal force search or Bayesian evidence does
not allow to “see” the data, and a trained observer knows how to recognize signatures of
outliers, wrong noise models, etc. that appears on certain figures. Besides the present work,
residual periodograms (Baluev 2008, 2009, 2013b; Anglada-Escudé & Tuomi 2012; Baluev
2013, 2015b) Other tools such as the stacked periodograms (Mortier & Collier Cameron
2017), that compute a series of periodograms by adding one measurement at a time or
AGATHA (Feng et al. 2017) that can compute RV from different part of the spectra and
on a moving timespan, allow to quickly look at the data from different angles. If finally
finding a signal with one of those method is not reliable to confirm a signal, since the more
hypotheses are explored, the more likely it is to find something, if a signal appears whatever
the way the data is being looked at, this reinforce confidence in it. Secondly, the codes to
compute the evidence are not (yet) perfectly stable, and cross-validating a result can improve
confidence in it. Finally, the search for candidate interesting signals, further confirmed by
additional information, is an important part of data analysis.

2.6.1 Other RV analyses with `1 minimization

Before moving to another topic, let us briefly present Hara et al. (2017) (see appendix G)
and highlight the parts that were not thoroughly discussed above. We refer to section “G.i”
as the section i of the article for i = 1..6. Sections “G.7” to “G.10” refer to the appendices of
the article (A to D).

In section G.1, we present some sparse recovery methods for spectral line estimation, and
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show that similar ideas emerged contemporaneously in the statistical and astronomical com-
munities. Section G.2 briefly presents the Basis Pursuit and Atomic norm De-Noising algo-
rithms. In section G.3, we describe the algorithm tuning. Both subjects were treated into
more depth respectively in sections 2.1.3 and 2.2. In section G.4, we analyse in detail four
systems: HD69830 (Lovis et al. 2006), HD10180 (Lovis et al. 2011b), 55 Cnc (Butler et al.
1997; Marcy et al. 2002; McArthur et al. 2004; Fischer et al. 2008; Endl et al. 2012) and GJ
876 (Marcy et al. 1998; Delfosse et al. 1998; Rivera et al. 2005; Rivera et al. 2010; Correia
et al. 2010). Note that the cited papers are the ones reporting measurements, previous data
analyses are considered in the article. Results are discussed in section G.5, in particular we
emphasize the role of aliases as threats to the quality of the recovery. We suggest to use
the spectral window to spot aliases, as classically done with the Lomb-Scargle periodogram.
Finally, conclusions are drawn in section G.6. Adding Keplerian atoms to the dictionary in
section 2.3 is a first step in one of the direction for future work outlined in that section.

In the appendices of the article, the following topics are addressed. In section G.7, we
compute the grid spacing as in 2.2.3, paragraph “Grid spacing and tolerance, first approach”.
Appendix B (section G.8) discusses the occurrence of spurious tallest peak of the periodogram
with the HD 69830 measurement times.

Let us highlight that appendices C and D (sections G.9 and G.10) treat subjects that are
not considered in detail in the present chapter. In appendix C (section G.9), we show that
using the appropriate weight matrix W can help bringing out small signals in correlated
noise. Perhaps more importantly, in appendix D (section G.10), we discuss the soundness
of fitting the ancillary measurements (FWHM, BIS, logR′HK) to the RV times series. The
content of these two appendices, along with the application to real data (section G.4) are
complementary to the present chapter.



106 Chapter 2. Compressed Sensing/Sparse Recovery and Radial Velocity data



Chapter 3

Bias and robustness of eccentricity
estimates

Not having all the information you need is never a satisfactory
excuse for not starting the analysis.

9th Akin’s law of Spacecraft Design

3.1 Notation

In this section we will need to use mean motions, usually denoted by n. In what follows, the
number of measurements will be denoted by N and the number of parameters of a model is
denoted by p.

3.2 Introduction

3.2.1 Content

It has been known for long that parameter estimates are in general biased when the model
is non linear. In the context of exoplanet searches, this applies in particular to inclination,
projected mass and eccentricity obtained respectively from astrometry, radial velocity and
both. Eccentricity is of particular interest because it is an informative indicator of the past of
the planetary system, and is also of greater complexity since it suffers detection bias on top
of an estimation one. Our aim is to improve the robustness of the inference of eccentricities,
and orbital parameters in general. We provide a geometric interpretation of the eccentricity
detection and estimation biases, which also explains biases on inclination and projected mass.
We then quantify analytically the amplitude of the biases. We pay particular attention to
mismodelling and show that not only the uncertainty increases as the assumed model moves
away from the real one, but also so does the bias, while uncertainties might be underestimated.
We then derive consequences on the analysis of individual systems as well as populations of
planets. The solution we advocate for individual systems is close to common practice, which
is to privilege interval estimates rather than point estimates, scaling the error so that the χ2

of the residuals equals one, to use the most complex model that seems reasonable, to check

107
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that the residuals are well-behaved and to envision worst-case scenarios. This solution is
discussed in the Bayesian and frequentist settings on simulated data sets as well as on the
CoRoT-9 data. We also suggest a few methods to correct the eccentricity distributions, and
to design observation strategies to ensure that the inferred distribution will have a certain
resolution.

3.2.2 Introduction

The nearly coplanar and circular orbits of the Solar system have long been an argument in
favour of Laplace and Kant’s theory of formation of planets in a disk (Swedenborg 1734;
Kant 1755; Laplace 1796). The first observations of exoplanets soon suggested that such
low eccentricities were rather the exception than the rule. The “eccentricity problem”, along
with the need to envision migration scenario for hot Jupiters, triggered several theoretical
studies which explored migration scenarios after the disk has dissipated. For instance Jurić
& Tremaine (2008) and Petrovich et al. (2014) (and reference therein) evaluate the likelihood
of formation scenarios of hot and warm Jupiters through their agreement with observed
distributions. Since high eccentricities allow to constrain the history of planetary systems,
it is key to estimate it as precisely as possible. However, it is known since Lucy & Sweeney
(1971) that eccentricities are over estimated.

This issue is known among the exoplanet community, and several works addressed it. The
amplitude of the bias has been examined through numerical simulations in Shen & Turner
(2008) and Zakamska et al. (2011). It was found to depend on the signal to noise ratio
as well as on the time span of the observations, and for the latter the phase coverage. In
addition, Zakamska et al. (2011) updated the Lucy & Sweeney (1971) null hypothesis test
to determine if the hypothesis of a null eccentricity can be rejected or not. Pont et al.
(2011), Husnoo et al. (2011) and Husnoo et al. (2012) used Bayesian Information Criterion to
confirm non-zero eccentricities. More recently, Bonomo et al. (2017b,a) used a Bayes factor
to determine if a non null eccentricity is significant or not with non informative prior. A
Bayesian test with a physically motivated prior on eccentricity was also devised by Lucy
(2013). For the correction of the eccentricity distributions, Hogg et al. (2010) searches for
the distribution that maximises a certain posterior likelihood, possibly parametrized by a
beta function as advocated by Kipping (2014). Furthermore, it has been noted by Cumming
(2004) that eccentricities & 0.6 are more difficult to detect.

In the works mentioned above, the amplitude of the bias and the robustness of the inference
is tackled. There are also some insights on the origin of the bias, for instance that since
eccentricity cannot be negative, the variation of the estimate due to noise can only result
in a strictly non zero eccentricity with probability one. Also, it is noted that the estimates
of k = e cosω and h = e sinω have a Gaussian distribution, therefore e =

√
k2 + h2 has a

Rice distribution and is biased upwards (Shen & Turner 2008). The initial motivation of the
present work was to build upon these results and understand precisely the properties of the
eccentricity estimates. More precisely, supposing the noise is Gaussian (possibly correlated),
we make the following contributions

• We devise several ways to visualise the geometry of Keplerian models in the space of ob-
servations, which is basically a five dimensional manifold embedded in a N dimensional
space, N being the number of observations.
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• With a model linearised in k and h one can compute a good analytical approximation
of the bias that generalizes the analysis of Lucy & Sweeney (1971) and sheds some light
on the observations of Shen & Turner (2008) and Zakamska et al. (2011).

• When the signal is modelled incorrectly (there is an unseen noise, unseen outlier, a
non-detected companion, the model is too complex...) the average bias is higher. The
uncertainties are in general underestimated if the model is too simplistic or obviously
when the noise is assumed to be too low.

From these observations we make recommendations and design tools to improve the robust-
ness of the analysis of orbital parameters.

• We suggest a simple weighting of the posterior distributions to assess dependence of
the result on the prior.

• We compute an analytical approximation of the distribution of the maximum likelihood
ratio to obtain a precise confidence interval on eccentricities.

• We show that normalizing to one the reduced χ2 of the residuals, which is common
practice, indeed allows in most cases to draw correct conclusions even if the additional
noise is non Gaussian. We also show in which (unlikely) situations this normalization
could lead to spurious results.

• The maximum likelihood highlights relative merits: it selects the best model in some
sense, but possibly among models that are all very bad. We suggest a method to analyse
the residuals of a fit to check whether a selected model is acceptable in an absolute sense.

• We provide a simple adaptation of Hogg et al. (2010) to take detection and estimation
bias in the corrections of distributions;

• We propose a method to design observation strategies as a function of the desired
accuracy of the population retrieval.

The chapter is organized as follows. In section 3.3 we first define precisely the problems
we are considering and our notations. Then we develop a geometrical view and some tools
to understand the origin of the bias. Finally we draw consequences on the reliability of the
estimates of the eccentricity of a planet and the distributions of eccentricities. In section 3.4,
we present the results listed above. These ones are applied to real cases in section 3.5. In
particular we confirm that CoRot-9b has a non null eccentricity, as claimed in Bonomo et al.
(2017b). We discuss the advantages and limits of our analyses in section 3.6. In order to
facilitate the reading, we use as few equations as possible in the core of the text, precise
statements as well as proofs and mathematical details are given in the appendices.

3.3 Origin of the eccentricity bias

3.3.1 Problem statement

In this section we state the problem under study mathematically. Let us consider a series of
N observations, modelled as a vector y = (y(tk))k=1..N , such that

y(t) = f(t,θ) + ε (3.1)



110 Chapter 3. Bias and robustness of eccentricity estimates

where t = (tk)k=1..N is the vector of measurement times, f is a deterministic model depending
on parameters θ ∈ Rp and ε is a random variable modelling the noise. We wish to determine
the model parameters θ. An estimator of θ is a function δ of y(t) whose output is wanted
to be close to θ in a sense chosen by the data analyst. Since ε is a random variable, y and
δ(y) are too. If the mathematical expectancy of δ(y), denoted by E{δ(y)} is not equal to θ,
the estimator is said to be biased and

bδ(θ) = E{δ(y)} − θ (3.2)

is called the bias of the estimator δ in θ. A common estimator is the maximum likelihood,
which reduces to the least-square estimator when the errors are Gaussian (Pelat 2013). If
(σk)k=1..N are the measurement uncertainties,

δLS(y) = arg min
θ∈Θ

N∑

k=1

(y(tk)− f(tk,θ))2

σ2
k

. (3.3)

When the model is linear the observations are modelled by y = Aθ+ ε where A is a matrix.
If A is known, as long as ε has zero mean and covariance matrix V = W−1 , the ordinary
least square estimate

δLS(y) = (ATWA)−1ATWy (3.4)

is unbiased. However, when the model is of the form y = f(θ) + ε where f is a non linear
function, the least square estimate can be biased. This has been noted for instance by Hurwicz
(1950) and discussed in Hartley (1964); Bates & Watts (1980); Cook & Witmer (1985); Firth
(1993).

We will be concerned with the Keplerian model, which is non linear. For clarity, we recall
the four constitutive equations of the model as they were given in section 1.3.3,

y(t, e,K, P, ω,M0) = K(cos (ω + ν(t, e, P, ω,M0)) + e cosω) (3.5)

cos ν =
cosE − e
1− cosE

(3.6)

sin ν =

√
1− e2 sinE

1− cosE
(3.7)

E − e sinE = M0 +
2π

P
t (3.8)

Where t, e,K, P, ω,M0 designate respectively the time, eccentricity, semi-amplitude, period,
argument of periastron and mean anomaly at t = 0. The sine and cosine of the true anomaly
can be computed from equation (3.6), (3.7) and the Kepler equation (3.8). In the above
notation, θ = (e,K, P, ω,M0).

Equation (3.3) defines an estimator, which in principle allows us to compute the distribu-
tion followed by the estimator value, given a certain prior on the underlying distribution of
θ. However, the definition of the maximum likelihood estimator is implicit, making such cal-
culations difficult in most cases. In this section we will show that the bias can be understood
by qualitative properties of the model and more precisely by its geometry.
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3.3.2 Notations

In this chapter we use the formalism of probability theory. To facilitate the reading, we define
the conventions taken to denote the usual operators. For a vector of parameters θ, we denote
by p(θ) its probability density, that is the function such that Pr{θ ∈ Θ} =

∫
Θ p(θ)dθ for

some measurable set Θ. The assertion “The random variable θ has a distribution p(θ)” is
denoted by θ ∼ p(θ). The probability of θ knowing an event ω is denoted by p(θ|ω) and its
mathematical expectancy is denoted by E{θ} =

∫
Θ θp(θ)dθ. The true value of a parameter

is denoted by the subscript t (here θt) and its maximum likelihood estimate is θ̂. We denote
a Keplerian model sampled at times t = (tk)k=1..N and of parameters θ (orbital parameters
plus possibly offset, trend...) by y(t,θ).

3.3.3 A geometrical interpretation

Set up

We consider the model y(t,θ) as the set of points M = {y(t,θ) ∈ RN ,θ ∈ Θ} where
Θ = {(e,K, P, ω,M0)} = [0, 1] × R+ × R+ × [0, 2π[×[0, 2π[ is the set of possible values of
the parameters. M is a manifold with boundaries in the space of observations. The least
square problem then consists in finding the element of this manifold that is closest to the
observations in the sense of the usual distance (or Euclidian norm). We denote byMe the set
of models that have an eccentricity e, all other parameters free (in other words we consider
a foliation of M). The eccentricity estimated is e if the model closest to the observation is
inMe. We have found several properties that account for detection and estimation biases of
eccentricities.

1. The relative positions of Me, e ∈ [0, 1] is such that there are “more models” with high
eccentricity.

2. The eccentricity does not parametrize uniformly the models.

3. The manifold Me has a shape that is more and more complicated as e grows. More
specifically, it explores more and more dimensions of the space of observations.

4. The above three properties have an effect on the bias regardless of the implementation
of the data analysis method. Besides, an imprecise numerical scheme can lead to even
more incorrect estimates.

The precise description of these properties is the object of the following paragraphs.

More models with high eccentricity

Let us first consider the case of low eccentricities, so that the Keplerian model (1.2) can be
approximated by its development at first order in eccentricity. The approximated model is

y(λ,K, P, e, ω) = K(cos(λ) + e cos(2λ− ω)) (3.9)

where λ = ω + M0 + nt = λ0 + 2πt/P is the mean longitude, λ0 being its value at t = 0.
Denoting by n = 2π/P the mean motion, the above expression can be re-written

y(t, A,B,C,D, n) = A cosnt+B sinnt+ C cos 2nt+D sin 2nt (3.10)
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Figure 3.1: Representation of the estima-
tion of

√
k2 + h2 when k and h are Gaus-

sian.
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For the sake of simplicity we here suppose that n is fixed at the value given by the pe-
riodogram. The result is extended to the case where it is a free parameter in appendix C.
With this assumption, in a matrix form, y = Mx. The estimate of x, denoted by x̂ verifies
x̂ = (MTWM)−1MTWy where W is the inverse of the noise covariance matrix. In this

approximation, the semi-amplitude estimate is K̂ =

√
Â2 + B̂2. We show in appendix C

that provided e is small enough (6 0.2) and the number of observation is sufficient, k̂ = Ĉ/K̂
and ĥ = −D̂/K̂ both follow a Gaussian law of same variance.

In Fig. 3.1, we represent schematically the situation. The pair kt, ht is represented by a
yellow star. Because of the noise, the values of k̂, ĥ are isotropically distributed around kt, ht.
The bold black line represents the 99% confidence region. When the estimate falls in the blue-
coloured region, the eccentricity is under-estimated. When it falls in the red-coloured region,
the eccentricity is over-estimated. Since there is a bigger volume of higher eccentricity model
Me in the vicinity of kt, ht, the eccentricity is on average over-estimated, which is exactly
saying it is biased upwards.

Since we made an approximation, one can wonder how accurate that explanation is. To
check that, we generate Keplerian signals of eccentricity 0.06, 0.5 and 0.9 and in each case
1000 noise realizations. The array of time t is the 30 first measurements of GJ 876 (Correia
et al. 2010). In both figures 3.3, the noise standard deviation is 1 m.s-1. The amplitude of
the true signal is respectively 3 and 1.5 m.s-1 (resp left and right). When K = 3 m.s-1, the
distributions of k̂, ĥ is fairly isotropic for et = 0.06 and et = 0.5. For e = 0.9 there seems to
be more complicated phenomenon at work. The distribution has no circular symmetry and
some estimates have ê = 1. In the lower signal to noise ratio setting, the distribution spreads
out. There is a slight deformation of the distribution at et = 0.5 towards h ≈ 0 and k ≈ 0.5.
The et = 0.9 case is even more complicated with several dozens of estimate completely off.

Before moving to other effects that bring partial explanations to the properties of estimates
of high eccentricity orbits, we can obtain an explicit expression of the bias at low eccentricity
with formula (3.10). We argue in appendix C that k̂ and ĥ have a standard deviation

σk = σh = σ
Kt

√
2

N−p+1 , where p is the number of adjusted parameters. Then ê =

√
k̂2 + ĥ2,

which is a modulus of a random two-dimensional vector, follows a Rice distribution. Denoting
by S = 1/σk the signal to noise ratio and et the true eccentricity, in the linear approximation
the bias reads

b(et, S) =
1

S

√
π

2
L1/2

(
S2e2

t

2

)
− et. (3.11)

where L1/2 is the Laguerre polynomial of order 1/2. The fact that k̂ and ĥ follow approxi-
mately a Gaussian distribution was noted in Ford (2005) and Shen & Turner (2008). In the
latter it is explicitely mentioned that the eccentricity then follows a Rice distribution. Our
discussion is fully compatible, and provides analytical expressions for the parameters of the
distribution. Equation (3.11) reduces to a very simple expression when et = 0. In that case,
the eccentricity follows a Rayleigh distribution as computed by Lucy & Sweeney (1971) and
the bias becomes

b(0, S) =

√
π

2

1

S
=

σ

Kt

√
π

N − p+ 1
. (3.12)
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This expression is identical to equation (18) of Lucy & Sweeney (1971) except that we ap-
proximated the effect of the correlation of matrix M on the signal to noise through the term
−p+ 1. 1

Formula (3.12) is useful to see a few trends: the bias is proportional to the uncertainty
on k and h, which is proportional to the inverse of Kt and

√
N − p+ 1. As a consequence,

the bias increases as the signal to noise ratio decreases, i.e. as σ increases or as Kt or N
decrease. This is fully compatible with the simulations of Shen & Turner (2008). We add
that increasing the number of fitted parameters, p, increases the bias (at least at low et).
We show examples in C where it is clear that adding the correction due to the number of
parameters does give a better approximation of the bias.

The situation is in fact more complex, and formula (3.11) should be used as a lower bound.
There are particular cases where the correlations between parameters increase drastically the
uncertainties on k and h and therefore the bias of low et. Depending on the period, the bias
can be as high as three times the value given by equation (3.11). Let us illustrate this with an
example. We take the 28 measurement times of CoRoT-9 (Bonomo et al. 2017b) and generate
a signal of a circular orbit with K/σ = 3.5. We then consider an array of equispaced mean
motions. At a given value of the mean motion, we generate realisations of noise, and for each
of them we compute an estimate of the eccentricity with the linearised model and the usual
Keplerian model. We take 4000 realisations for the linear model and 100 for the non-linear
one, due to computation time constraints. The 100 respectively 4000 values are averaged so to
obtain an estimation of the bias per period. We then compute the average bias over all periods
for both the linearised and full model. Fig. 3.4 shows the results of these computations, the
bias as a function of period is in blue and gray for the linearised and Keplerian model
respectively. The bias clearly depends on the period, reaching up to four times its average
value. Formula (3.12), whose value is represented in purple, approximates well the average
of the linear model (in red), but the bias of the Keplerian model (in black) is slightly greater.
Below, in light blue, we represent the condition number (see definition 3 page 69) of the
matrix M(P )TM(P ) as a function of the period P . We see a correlation with the peaks
of bias. This is easily interpreted: as the condition number increases, the inverse is more
and more ill-defined. The diagonal terms of the covariance matrix, which is M(P )TM(P ),
increase and so does the uncertainty on x and in turn e. When considering correlated noise,
the covariance matrix of the parameters is (M(P )TWM(P ))−1. It might turn out that the
conditioning of M(P )TWM(P ) is worse than M(P )TM(P ), yielding greater uncertainties
and increased bias.

1 Interestingly enough, eccentricities following a Rice distribution appear in another context, which is the
chaotic diffusion in the Solar System. Laskar (2008) integrates over 5 Gyr the secular equations of motion of
the Solar systems, as given in Laskar (1990). The integration is made for 1001 initial conditions, which are
obtained by small perturbations of k = e cos$ and h = e sin$ in the initial conditions used in Laskar (1986),
the other orbital parameters being unchanged. The integration step is 200 years, so one obtains 1001 series of
the orbital elements every 200 years. For each planet, the 1001 series of eccentricities are grouped by 250 Myr
time intervals. On each of these intervals, the experimental probability density functions of eccentricities are
computed. For the 4 inner planets and each 250 Myr interval, the densities so obtained are very well fitted
by a Rice distribution. The variance of these distributions provides an estimate of their spreading. For the 4
inner planets, the variances of the eccentricity distributions are found to increase linearly with time to a good
approximation, and thus quantify the diffusion of the eccentricities. Note that the eccentricities of the outer
planets have a very different CDF, which rules out the possibility that the good fit by a Rice distribution
comes from the choice of the initial values of k and h.
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From a geometrical point of view, M(P )TWM(P ) is the Fisher information matrix, which
is also the matrix of the metric induced by RN on M. If it is ill conditioned, it means that
there is a direction of the parameter space where an increase results in almost no change in
the models: different values of the parameter give almost the same models and are therefore
hard to distinguish from each other. The likelihood that the matrix becomes more ill defined
grows with the period, since the terms cosnt and sinnt become increasingly close to the
constant. Also, as the period of the planet Pt increases, n = 2π/Pt and 2n might end up in
the same local minimum of frequency and are therefore hard to disentangle. Furthermore, if
the phase coverage is poor, cosnt and sinnt are not very well separated, again the condition
becomes poorer. In the worst case, when measurement times are taken with a frequency n,
both cosnt and sinnt are constant vectors. This is compatible with the observations of Shen
& Turner (2008) and Zakamska et al. (2011), who noticed the increase of bias as the period
increases and as the phase coverage degrades. For more details on this issue, we refer the
reader to Appendix C.

One could also expect that since the model is in fact non-linear, the bias on the Keplerian
model is higher not only because of poor condition number, but also because of the curvature
of the Keplerian model. In fact, the bias does not automatically increase with the model
curvature and depends on the geometry of the model. This one seems to be responsible for
extra peaks of bias that are not spotted by the condition number, but are uneasy to predict
at a given period.

Finally, we make two remarks. First, we now see clearly why when a Keplerian fit is
initialized at a maximum of the periodogram, the eccentricity can go to one. Indeed, we are
in a case where “the observations fall outside the target”. In that case, the closest model
will have eccentricity one. Secondly, this analysis also applies to the projected mass m sin i
obtained via radial velocity measurements and the inclination obtained from astrometry.
Indeed, these ones play the role of the radius of the target: the space occupied by the models
that have a fixed m sin i or i is more and more voluminous as these parameters increase.

A non uniform parametrization

Another interesting fact is that the eccentricity does not parametrize uniformly the models.
To see that qualitatively, we take the same grid as in figure 3.1 but two subsequent nodes
are now spaced by the distance between their corresponding models. That is, if a node
is at (e, ω), the node (e + ∆e, ω) is represented at a distance ‖y(t, e + ∆e,K, P, ω,M0) −
y(t, e,K, P, ω,M0)‖. The resulting plot is shown in figure 3.2. One can see that a constant
increase in eccentricity does not represent equally spaced models: the more the eccentricity
increases, the wider is the gap between the corresponding models.

We now highlight two consequences of this property of the parametrization by eccentricity.
The first one is that this effect tends to make eccentricities biased downwards. Informally,
this is due to the fact that since the models are farther away as eccentricity grows, when the
true eccentricity is above a certain threshold the eccentricity is more often overestimated,
but the “mean distance” between overestimated eccentricity and true eccentricity is lower
than the “mean distance” between underestimated eccentricities and the true one. One can
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re-write the expectation of eccentricity knowing the true model to make this effect appear,

E{ê|yt} =

∫ 1

0
ê Pr(ê|yt)dê (3.13)

=

∫ 1

0
êdê

∫

Mê

dm

︸ ︷︷ ︸
size

∫

Ym
Pr(y|yt)dy

︸ ︷︷ ︸
Mean distance

. (3.14)

where Ym is the set of all observations y for which the maximum likelihood model is m. The
manifold M is foliated in submanifolds Mê. Informally, for each point m of Mê the right
hand side integral (with the“Mean distance” label) counts“how often”realizations of the noise
give a maximum likelihood model estimate m, assuming the true signal is yt and the noise
is Gaussian with a given covariance. There is a trade-off between the size of the manifold
Mê that gives a certain estimate ê of the eccentricity and on average, how far are the models
y ∈ Mê from the true signal yt, Ym. To illustrate this, we generate 200 000 systems with
eccentricity uniformly chosen between 0 and 1, uniform angles M0 and ω and K = 2 m.s-1.
The systems are simulated on the first 50 measurement dates of GJ 876 (Correia et al. 2010).
One sees in Fig. 3.5 that from et ≈ 0.82, the maximum likelihood estimate of the eccentricity
— which here is also the maximum a posteriori — is biased downwards. The downward bias
is amplified towards the edge of the model, at e = 1.
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This section illustrates that choosing a uniform prior on a parameter is not neutral. A
uniform prior on e does not translate to a uniform prior on the models. Due to the fact
that the Fisher information matrix is also a Euclidian metric when the noise is Gaussian,
Jeffreys’ prior Jeffreys (1946) can be seen as uniform on the models. Two set of models
with equal volumes have an equal prior probability. However, this prior is not necessarily
better. In our case, Jeffreys’ prior would be proportional to e close to e = 0 and would
penalize low eccentricity even more than the maximum likelihood. As a remark, one easily
sees that a uniform prior on e is not uniform in

√
1− e2 nor in e2, while these are acceptable

parametrizations.

Finally, Fig. 3.2 shows that high eccentricity models are several σ away from the null
eccentricity one. This corroborates the well known fact that high eccentricities are difficult
to detect when searching for circular orbits, with a Lomb-Scargle periodogram for instance.
The difficulty of detecting very eccentric signals with the Lomb-Scargle periodogram was
already mentioned in section 1.3.3. It therefore seems to make sense to use tools such as the
Keplerian periodogram (Gregory 2007b; O’Toole et al. 2009; Zechmeister & Kürster 2009b;
Baluev 2015b) to spot high eccentricity signals.

A complicated shape

The two previous sections are concerned respectively with the volume occupied by the set
of models that have a fixed eccentricity and how that volume grows with eccentricity. The
question of the shape of the set of models in RN when e is high has not yet been treated.
As we will see, it allows to better understand the difficulty of exploring the high eccentricity
domain. In particular, we will see that it is likely to find a local minimum in this region that
corresponds to nothing physical. Before detailing our analysis, let us consider the implication
on estimation of the model shape.

Finding the best fitting model with a Gaussian noise amounts to finding the closest model
to the observation in a geometrical sense. If the space described by the models with high
eccentricity is bigger in the sense of a greater volume, one could think that there is a greater
chance to find spurious planets in this region. However, it could turn out that though the
space is bigger, it is compacted and folded in such a way that the set of observations that are
closer to it is smaller than the set of observations closer to low eccentricity models, which is
less voluminous but better spread. It is not the case, but rather the opposite. Not only the
high eccentricity models occupy a wider space but they also are not confined to low dimension
spaces.

The set of models y(t, e,K, P, ω,M0) describe a 5-dimensional manifold in RN if there are
N observations (t ∈ RN ). Obviously, one cannot visualise directly the shape of a manifold at
least 5-dimensional in a N -dimensional space. To circumvent this limitation, we project the
models onto lower dimensional spaces. But first, we can already get rid of the semi amplitude
parameter K. Indeed, instead of searching the model y(t,θ) that minimizes the distance to
observations, we can search the model u(θ′) = y(t,θ)/‖y(t,θ)‖, where θ = (K,θ′), that
maximizes the correlation with the observations. Indeed,

θ′? = arg min
θ′∈Θ′

(
arg min

K∈R

N∑

k=1

(yk − y(tk,θ))2

)
= arg max

θ′∈Θ′

∣∣∣∣
〈
y(t,K,θ′)

‖y(t,K,θ′)‖
,y

〉∣∣∣∣ . (3.15)
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Here θ′ designates the vector of parameters without K. This remark allows us to limit our
analysis to a 4-dimensional manifold, namely the one described by u(θ′) as ω and M0 describe
[0, 2π], P and e respectively describe the positive real numbers and [0, 1]. We can further
reduce the dimension since we are in the estimation setting. In that case, a periodicity has
already been secured by a periodogram analysis so that we can assume that P is fixed. We
are left with three parameters, e, ω,M0. For the sake of simplicity, we fix M0 to 0, which is
equivalent to shift the time scale and does not impact the conclusion of the following analysis.

We now have a normalized model that depends on two parameters, u(e, ω), and we are
interested in the shapes in RN it draws as ω describes [0, 2π] for each e ∈ [0, 1]. It is proven in
Appendix C that for small e, one can think of the model space as concentric circles of radius e
all lying in a two dimensional space generated by the vectors cos(2nt) and sin(2nt). We test
if the manifolds U(e) = {u(e, ω), ω ∈ [0, 2π])} all lie in a two dimensional space by searching
for each e = 0..1 what is the m dimensional linear subspace of RN which best approximates
U(e). More precisely, given e and a linear space of dimension m, Sm , for each ω, we compute
the distance between u(e, ω) and its projection on Sm. This distance is integrated on ω, and
we obtain a measure of the total distance between U(e) and Sm. We then aim at finding the
space S?m that minimizes this total distance.

A solution to this problem is given by the Karhunen-Loève theorem and a discretization,
as detailed in Appendix D. Here we present our procedure. Its first step is to discretize the
values taken by ω, ω: ωk = 2πk/q, k = 0 : q − 1 for some integer q. Then, the models at a
given eccentricity are concatenated so to form a n× q matrix, Mq = [u(e, ω0), ...,u(e, ωq)]

2.
One can then perform a singular value decomposition,

Mq = PSVT (3.16)

where P and V are orthonormal matrices and S is a diagonal matrix whose entries are called
singular values, and are the eigenvalues of MqM

T
q . The subspace S?m is generated by the

vectors corresponding to the m greatest singular values.
If the models of given eccentricity U(e) lie in a subspace of dimension 2, the diagonal of

the matrix S should have only two non null values (see equation (3.16)). The value of the
diagonal elements is also informative: a non-null singular value indicates that a dimension
is explored by the model but the smaller it is, the lower is the component of U(e) along the
corresponding direction.

Let us apply this methodology to an example. We consider the 138 measurement times
of GJ3998 (Affer et al. 2016). We fix a period of 20 days and M0 = 0. We then take
ωk = 2πk/q, k = 0 : q−1 ; q = 1000 and apply the procedure to U(e) for e = 0.1, 0.2...0.9 and
e = 0.999. The singular values are then ordered and plotted Fig. 3.6 (left). We see that as the
eccentricity grows, the number of explored dimensions grows, indicating that the model shape
is more and more complicated. Another way of visualizing this complexity is to concatenate
normalized models u(ej , ωk) for ωk previously defined and ej = emaxj/q, j = 0 : q−1 q = 100
with emax = 0.6. We then obtain a set of principal directions, of which we extract the three
corresponding to the highest singular values: x, y, z. We then plot the coordinates of the
vectors of U(e) on x, y, z (see Fig. 3.6, right). We see that the projection up to e ≈ 0.8 is
regular, but at higher eccentricity it becomes much more erratic.

2The same reasoning applies to a matrix M′2q that would concatenate U̇ and V̇ , as defined in equation (1.26).
Doing so would isolate the non-linear behaviour.
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Finally, we can apply the same procedure but here on a discretization of the values of
the eccentricity, the argument of periastron being fixed. Again, we concatenate the vectors,
compute the singular values and represent them in Fig. 3.7. This shows that most of the
variation is contained in a three-dimensional space, with small components on two additional
dimensions. We therefore can represent accurately the set of models by plotting the coordi-
nates of the vectors of ω = 0, e varying from 0 to 1 on the three principal components (see
Fig. 3.8). The models corresponding to e = 0, 0.1, ..., 0.9, 0.999 are highlighted with markers.
Again we see that from e ≈ 0.8, the models explore another dimension and as seen in the
previous section, e does not parametrize uniformly the models.

For the sake of brevity we will not present other examples but just mention that we ob-
served very similar features on other measurement times. The complexity of the model shape
increases with eccentricity and especially for e & 0.8. This is fully compatible with the ob-
servation of Baluev (2015b): the number of local minima increases significantly when one
searches for high eccentricities. We represent the correlation of Keplerian models with e and
ω varying (30 measurement) with a generated white noise Fig. 3.9. It shows that for high
eccentricities there are numerous maxima of correlations, corresponding to minima of χ2.
Interestingly enough, it looks very much like a time-frequency representation, e playing here
a role similar to the time-scale. Indeed, when e grows, the signal is non-zero on smaller and



3.3. ORIGIN OF THE ECCENTRICITY BIAS 121

smaller support, just like a wavelet of more and more precise time localisation. The argument
of periastron cannot be seen as a frequency though, but rather as a phase.

Numerical effects

On top of the biases generated by geometrical features, an incorrect implementation of the
numerical schemes can worsen the situation. We here give three examples concerning the
estimation of eccentricity from radial velocity data, some of which were noted in previous
works: an increased bias due to an error in the MCMC implementation, the possible failure
of the Kepler equation solver at high eccentricities, and the fact that eccentricity might be
spuriously stuck to zero.

Indeed, as noted by Eastman et al. (2013), there is a specific error in the implementation
of the Metropolis-Hastings algorithm that worsens the bias when the true eccentricity is zero
and when the parameter space is parametrized by (e, ω) instead of (k, h). Such an algorithm
is based on Markov chains that explore the parameter space, sometimes called walkers that
give a sequence of parameters (θk)k=1.., whose distribution approximates a certain posterior
distribution. The generation of the sequence proceeds as follow: from θk, θ̃k+1 is generated
according to a proposition distribution. Depending on whether θ̃k+1 is more likely than θk,
it will be accepted with a certain probability. The error consists in not assigning θk+1 ← θk
if θ̃k+1 is rejected. Close to zero eccentricity, there will be a higher rejection rate due to
proposals that verify e < 0, and the density of parameters in this region will decrease. This
problem comes from the fact that the model has a parameter boundary (which is not a
boundary in the geometrical sense). The same remark can be done on the boundary e = 1, to
see that the incorrect implementation increases the downward bias in that region. A possible
workaround to avoid the numerical effect near zero is to use k and h instead of e and ω to
parametrize the model. Near e = 1, the boundary comes from the model geometry, therefore
the numerical effect cannot be avoided by a re-parametrization.

There is another potential threat in the latter region: the validity of the Kepler solver.
Indeed, some numerical schemes aiming at solving Kepler equations lead to spurious results
at high eccentricity. If this is the case, there are some signals that cannot be fitted simply
because they cannot be generated.

Our last example is well-known to observers: sometimes, when fitting a Keplerian curve
initialized at a certain period, the eccentricity is stuck to zero. This situation is for instance
encountered in Brown (2017). Our analysis of the geometry of the models shows that there
is no discontinuity of the model manifold at e = 0. Informally, the “target” (Fig. 3.2) has
an edge in e = 1 but is continuous at e = 0, only the parametrization has a singularity.
Therefore, we should not have an eccentricity exactly null after a local minimization unless
there is a numerical problem. Indeed in the examples we could find of this phenomenon, the
eccentricity is equal to zero at every step of the minimization, so that the outputs are equal
to the inputs. The reason of this behaviour is that the Newton steps computed by the solver
are too wide, so that the next step is systematically rejected. The weight of that step is
reduced iteratively, still without success, until it falls below the threshold that is supposed to
indicate convergence. This happens in particular when adding a trend to the model without
translating the times of measurements from BJD to zero.
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Figure 3.10: Eccentricity estimates for different realizations of modelling errors

3.3.4 Conclusion for individual systems

The description of the bias done in previous sections clarifies some features of the inference on
eccentricities. First, let us note that the bias increases with the noise amplitude. For instance,
when the true eccentricity is zero, the bias is inversely proportional to the signal-to-noise ra-
tio (see equation (3.12)). A similar result was known since Lucy & Sweeney (1971), but we
add that any additional noise or model misspecification can worsen the bias. First, as the
noise variance grows the bias gets higher approximately proportionally to the noise standard
deviation in equation (3.12)). Secondly, as the model complexity increases, the uncertainty
on the parameter increases and so does the bias. This can be seen in formula (3.12), as the
number of parameters p grows the bias increases. Finally, when the model is too simplistic,
since there are “more” models with high eccentricity, there are more chances that the maxi-
mum likelihood model has a higher eccentricity — though in some cases, too simple a model
might decrease the bias at some values of et.

To illustrate this, we generate 100 systems with two planets plus white and red noise (model
Mt). For each realization we find the least square eccentricity with models (Mk)k=1..7 that
are wrong for different reasons ((1) wrong noise model, (2) models too complex ...). For
each subclass of wrong models we adjust some of their parameters randomly (for instance
the period of an unseen planet) and compute the mean eccentricity retrieved on the 100
trials. Figure 3.10 shows the result of the experiment and reveals that eccentricities are
over-estimated on average when the model is incorrect. We can sum up the situation for
low eccentricities by: the more uncertain, the higher the bias. In the uncertainty we include
standard noise but also the uncertainty on the model, that is the error we do by picking a
wrong model for the data.

The fact that the bias is stronger than we might think is especially problematic if the error
bars are incorrect or misleading. If the noise is not fitted, for example one only considers
the nominal uncertainties of the observations, then the error bars will be under-estimated.
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If the noise is fitted with a realistic model, then the error bars will be more appropriate but
still subject to caution since they depend on assumptions, such as analytical approximations,
absence of prior distributions for confidence intervals, or the prior distribution in Bayesian
analysis. In the latter case, if one computes credible intervals centred on the a posteriori
maximum, since this maximum is biased, one would have a systematic tendency to exclude
e = 0 from this interval. This does not mean that the interval is incorrect, but that other
intervals containing e = 0 might also have a high probability.

In summary, there is a systematic effect (the bias of eccentricity) that is underestimated,
and on which the uncertainty is also underestimated. In section 3.4 we consider several
options to address this issue.

3.3.5 Conclusion for population analysis

The fact that eccentricity is biased at low and high eccentricity has another consequence: the
distribution of best fit (or maximum likelihood) eccentricity is unreliable in itself. To illustrate
it, we generate 200,000 systems with an eccentricity distribution D1, we initialize a non-linear
least-square fit at the correct period and draw the distribution of estimated eccentricity D2.
Figure 3.11 (left) represents the result of such an experiment with D1 being uniform. The
angles ω and M0 are chosen uniformly over [0, 2π], K = 2 m.s-1 and P = 10 days are fixed,
the measurement dates are the 50 first measurements of GJ 876 (Correia et al. 2010), the
noise standard deviation is 1 m.s-1. We do the same experiment but inject systems whose
eccentricity is null with a 30% chance and follows an exponential law otherwise (see Fig. 3.12,
left). In both cases, we plot the density of the two-dimensional variable (e measured, true e).
For each interval of measured eccentricities, we compute the mean, median and mode of the
distribution of true eccentricities (Fig. 3.11 and 3.12, right).

The first striking feature is that the true and measured distributions are different. In the
case of Fig. 3.12.a, there is a clear deficit of measured eccentricities close to zero. Now if we
do the same simulation but increase the noise by a factor two we obtain a distribution that is
farther away from the true one. The purple curve results from fitting Keplerian curves to pure
noise. This one is fully consistent with our geometrical analysis: since the space occupied
by high eccentricity models grows with eccentricity, a vector whose direction is uniformly
chosen (which is the case of Gaussian noise) should on average be closer to a high eccentricity
model. Approximately 40% of the fits have an eccentricity stuck to one. This is also easily
understandable geometrically. Indeed, the model has an edge at e = 1, just like a target as
we noted in section 3.3.3. If due to noise, an observation is so far from the considered models
that it falls “outside the target”, the closest model will always be on its edge. The fraction of
models outside the edge is smaller in our first simulations but is non null. This sheds some
light on a situation well known to observers, sometimes when fitting the eccentricity this one
goes to one. The suspicion that the result is spurious is justified, this is probably due to
noise.

There is another interesting feature revealed by Fig. 3.11 and Fig. 3.12 (right). When
finding an eccentricity close to 0 - 0.3 in a case of non negligible noise, one could be tempted
to test systematically if the zero eccentricity can be rejected by a null hypothesis test and if
not, fix the eccentricity to 0, as done in Lucy & Sweeney (1971) and Zakamska et al. (2011).
The accuracy of this procedure depends on the true distribution of eccentricity. If there is
indeed a significant number of true eccentricities close to 0, then Fig. 3.12 (right) shows that



124 Chapter 3. Bias and robustness of eccentricity estimates

0 0.2 0.4 0.6 0.8 1

Eccentricity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
ili

ty

Cumulative distribution of LS eccentricity

with flat true distribution

True distribution

Estimated eccentricity distribution

Density of excentricity found by least square

with a flat prior on input eccentricities

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Measured eccentricity

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0  

T
ru

e
 e

c
c
e

n
tr

ic
it
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

×10
-5

Experimental mean

Experimental median

Experimental max

Figure 3.11: Left: Cumulative distribution function of the input distribution (blue) and re-
trieved distribution (red). Right: distribution of the eccentricity measured and the input
eccentricity (in color code). The curves represent the mean, median, and mode of the distri-
bution of true eccentricity given the measured eccentricity.
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Figure 3.12: Left: Cumulative distribution function of the input distribution (blue) and re-
trieved distribution for different level of noise. (red: 1m/s, yellow: 2 m.s-1, purple: the input
signals are pure independent Gaussian noise realizations). Right: distribution of the eccen-
tricity measured and the input eccentricity (in color code). The curves represent the mean,
median, and mode of the distribution of true eccentricity given the measured eccentricity.
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Figure 3.13: Left: Cumulative distribution function of the input distribution (blue) and
retrieved distribution for different level of noise taking into account the detection bias. Right:
distribution of the eccentricity measured and the input eccentricity (in color code). The
curves represent the mean, median, and mode of the distribution of true eccentricity given
the measured eccentricity.

when the measured eccentricity is between 0 and ≈ 0.37, the most likely situation is that
et = 0 (purple curve). However, for the same range of measured eccentricities, the median
and mean true eccentricities reach values as high as 0.25 (red and blue curves). This issue is
worse in the case of a flat true distribution: even when the fitted eccentricity is close to 0, on
average the true eccentricity is ≈ 0.13 and the median is ≈ 0.1. Obviously a flat distribution
is very unlikely to actually happen but these examples show conceptually that accepting a
zero eccentricity if it cannot be rejected is not optimal. The problem of isolating the case
e = 0 prevents us from seeing the possible subtleties of the eccentricity distributions and by
forcing to look at a specific case, it might lead us to indeed see what we want (or expect) to
see. Some more accurate alternatives are outlined in section 3.4.3.

The simulations made so far do not take into account the detection bias. To evaluate
the effect of a more realistic situation, we do the same experiment as above but with a
small modification. Once the signal is generated, a periodogram is computed between 0
and 1.9 cycles per day and if a peak is higher than the 1% FAP threshold, a Keplerian
fit is initialized at the corresponding frequency and the best fit eccentricity is reported.
An important difference with previous simulations is that 40% of the signals generated are
pure noise. Figure 3.13 (left) shows the cumulative distribution function of the best fit
eccentricities. This one has a slope greater than one between ≈ 0.05 and 0.6 which indicates
an overestimated density in that region, and underestimated density elsewhere. In figure 3.13
(right) we add a line labelled“no signal”which accounts for the case where the signal is absent.
An extra column is also added to account for non detections. Globally, the effect of detection
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bias is to shrink the distribution between 0.1 and 0.7, since very low eccentricities are detected
but overestimated and high eccentricities are under-detected and not fairly represented in the
estimated distribution. Though realistic, the detection criterion we adopt is not optimal. A
Keplerian periodogram (Cumming 2004; Zechmeister & Kürster 2009a; Baluev 2015b) would
be more efficient.

The present discussion considers planets that all have the same semi-amplitude. Shen &
Turner (2008) consider planets of equal masses. In that case, the semi-amplitude of the
signal is stronger for high eccentric orbits, since K ∝ m sin i√

1−e2 . The increase in semi-amplitude

reduces the detection bias and increases the signal-to-noise, reducing the estimation bias.
They find that in the constant mass case, the bias is much less of a problem when estimating
distributions. We simply point out that they assume that the observations are uniformly
distributed over two periods, which is likely an overly optimistic assumptions. Uniformly
distributed measurements are in fact extremely efficient measurements, the daily repetition
should lower the detection efficiency. A comprehensive simulation of the measurement process
might show that stars with highly eccentric planets are given up after a few measurements if
they are sampled far from their periastron passages. Such a simulation is beyond the scope
of this work. Our point on a global correction of distributions instead of assigning e = 0 or
e = ê is still valid.

3.4 Improving the inference robustness

3.4.1 Prospects

Now that some cause for concern has been raised, several approaches can be taken to improve
the situation:

• Having criteria to ensure that there are enough measurements to exclude a spurious
eccentricity taking into account possible modelling errors.

• Studying past observations: Spotting already observed systems whose eccentricity might
be very ill constrained.

• Trying to obtain better estimates on each system, by choosing another estimator than
the maximum likelihood, or using bias correction methods such as the Jacknife (Que-
nouille 1949).

• Trying to correct the eccentricity distributions, but not systems one by one.

• Defining observation strategies based on requirements on population retrieval.

• Improving models, especially stellar noise models, so they have the correct amount of
complexity.

The latest item being a subject in its own, it will not be considered here. Regarding
the other options, one must bear in mind that obtaining orbital elements that are useful
for drawing scientific conclusions is not uniquely a problem of minimizing bias. In general,
decreasing the bias of an estimator increases its variance, and a trade-off is to be found
(see Lehmann & Casella (1998) chapter 2 for example). One could minimize the squared
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bias plus the variance, that is the mean squared error but this metric depends on the prior
distribution of the parameter, which is unknown. Secondly, this metric is reasonable but not
universal, one could privilege minimizing the absolute mean error E{|ê − e|} or any other
risk. However, the estimators minimizing a given risk are not always easy to express or to
compute.

A notion of risk that seems relevant for our purposes could be stated informally as: “is the
scientific conclusion drawn from the observations correct?”. Most statistical methods address
this issue, but here we will design specific methods for orbits estimation. The conclusions
of such fits concern mostly formation and dynamics. We would not want an utterly wrong
estimate that would lead us on to the wrong migration path for a particular system, nor having
claims on populations based on observational features that are due to statistical biases.

At this point it seems reasonable to try to de-bias observations. However, we must keep in
mind that the properties of any correction methods are established within a certain model,
and that model is never completely true. Secondly, the correction methods are based on as-
sumptions that might lead us to“see what we want to see”in the data, and miss out interesting
features. For instance, Lucy & Sweeney (1971) and Zakamska et al. (2011) systematically set
to zero the eccentricities that are not significant.

Thus, our general philosophy is not to try at all cost to reduce the error on the point
estimates, but to devise tools that can help to draw robust conclusions from the data. More
precisely, we advocate to use interval estimates. We also suggest a method to design obser-
vations based on requirements on the population retrieval. The next sections are devoted to
detailing these options and when relevant applying them to known data sets.

3.4.2 Individual systems

Using hypothesis rejection instead of point estimates

When analysing a given system, one often wants to determine if a planet is in the habitable
zone, what are the possible formation scenarios etc. In both cases, the claims will be different
if the eccentricity of a planet under scrutiny is below or above 0.1, and also different if it is
greater than 0.3, say. Let us know suppose that we have strong suspicion that the eccentricity
is between 0.1 and 0.3 which is our hypothesis H. As said in section 1.3.1 the methodology
we suggest follows the Popperian tradition, and aims at excluding all other explanation
for the signal: we want to quantify the confidence that the complementary hypothesis Hc
that eccentricity is anywhere but between 0.1 and 0.3 is incorrect. In the spirit of the
previous section, we first reason assuming the observation model is correct. As previously,
we distinguish two cases: testing this hypothesis assuming the model is true, and assessing
whether this claim is endangered by a model misspecification.

Before moving forward, let us consider a classical remark on the point estimates (e.g.
MacKay 2003). In the Bayesian framework one computes the posterior density of a vector of
parameters θ,

p(θ|y) =
p(y|θ)p(θ)

p(y)
. (3.17)

To estimate the eccentricity, one can compute the maximum of this posterior probability or
its expectancy. These two first options are point estimate which depend not only on the
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prior, but also on the parametrization of the prior. The median and the probability that the
parameters lie in a certain domain do not. For instance it means that if we parametrize the
model with e, or η =

√
1− e2, the posterior maximum and expectancy will give two orbital

solutions. On the contrary the probability that e lies in [e1, e2] is equal to the probability
that η lies in [

√
1− e2

2,
√

1− e2
1].

Bayesian methodology

From an abstract point of view, we are in the following situation: we have a model that
can include a parameter or not (eccentricity). We wish to determine if this one should be
included in the model and if yes, what is the range of values it can reach. We will denote
the parameter by e ∈ I but this applies to any other one. The first problem is classically
addressed by computing the ratio of posterior likelihoods as

R =
Pr{e 6= 0|y}
Pr{e = 0|y}

=
Pr{y|e 6= 0}
Pr{y|e = 0}

Pr{e 6= 0}
Pr{e = 0}

(3.18)

where Pr{y|e 6= 0} =
∫
θ∈Θ p(y|θ)p(θ)dθ. If this ratio is superior to a certain value, then

one favours e 6= 0 over e = 0. As the number of samples N tends to infinity, this ratio is
equivalent to the Bayesian Information Criterion (BIC, Schwarz 1978). Furthermore, one can
compute a credible set, that is an ensemble of e, denoted by C such that

Pr{e ∈ C|y} =

∫

C
p(e|y)de =

∫
C p(y|e)p(e)de∫
I p(y|e)p(e)de

= α (3.19)

where α ∈ [0, 1] is a probability. The set C is in general taken as an interval but this need
not be the case. Let us note that this approach is also a ratio of posterior likelihood as in
Eq (3.18). If e = 0 is given a non null probability, then the prior probability takes the form
p(e) = p′(0)δ(0) + p′(e) where δ is the Dirac function. The probability that e lies outside C
is 1 − α, so computing a credible interval might be seen as evaluating the probability that
e lies elsewhere than in the interval under consideration and possibly reject this hypothesis
above a certain α. If 0 is in the rejected set, circular orbits are rejected.

The robustness of these approaches are endangered by two sources of uncertainty: the
prior and the model. Indeed, for different choices of these, one might obtain different values
of the quantities (3.18) and (3.19), and therefore take different decisions about the data. For
instance, it might turn out that when the model is given more degrees of freedom to fit the
star activity, then a credible interval might broaden and include zero.

The most straightforward way to explore the dependency of the Bayes factor on the prior
is to recompute it with another prior distribution. However, this might be lengthy. MCMC
analysis takes typically 20 minutes and full Bayes factor calcultion up to several days, as
pointed out in section 1.3.6. An estimate of the dependency can be obtained with the so-
called Laplace formula, given in equation 14 of Kass & Raftery (1995). We here propose an
alternative, which consists in multiplying the prior by a constant on a subset of its domain
of definition, and to scale it elsewhere. In so doing, the output of the posterior sampler
can be used straightforwardly without doing any sampling. This can be used for instance
to enhance the prior at low eccentricities, and evaluate how credible intervals of eccentricity
evolves. More precisely, we proceed as follows.
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We consider a measurable subset D of [0, 1]. For instance an interval [0, e0] for some
arbitrary e0 ∈ (0, 1]. We define a new prior p′ such that for e ∈ D, p′(e) = xp(e). To ensure
that

∫ 1
0 p
′(e)de = 1, we take x ∈ [0, (1 − a)/a] and p′(e) = (1 − ax)/(1 − a)p(e) for e ∈ D̄,

where D̄ is D complementary set in [0, 1] and a =
∫
D p(e). We now want to compute the

probability that e ∈ C for a prior distribution p′. This one is given by replacing p by p′ in
equation (3.19), giving

Pr{e ∈ C|y} =

∫

C
p′(e|y)de =

x
∫
C∩D p(y|e)p(e)de+ 1−ax

1−a
∫
C∩D̄ p(y|e)p(e)de

x
∫
D p(y|e)p(e)de+ 1−ax

1−a
∫
D̄ p(y|e)p(e)de

(3.20)

Where p′(e|y) is the posterior distribution when the prior is p′(e) and p(y|e) is the likelihood
marginalized on all parameters but eccentricity. When x = 0, all the prior probability goes
to the complementary of D and Pr{e ∈ D|y} goes to 0. If x = (1 − a)/a, e is certainly in
D therefore Pr{e ∈ D|y} = 1. The advantage of this calculation is that the integrals can be
computed from the posterior samples. The reasoning can be extended straightforwardly to
credible regions D and C in the parameter space, and to prior region subdivisions in D1...Dq

with disjoint (Di)i=1..q whose union is the whole parameter space. Since the integrals to be
evaluated from posterior samples are random variables, it must be ensured that they have a
controlled uncertainty. When breaking the posterior in many domains D1...Dq, the procedure
we outline may become unreliable. Further investigation is left for future work.

The uncertainty on the model including the likelihood can be computed via the Bayes
model averaging technique, wich consists in computing

Pr{e ∈ C|y} =
M∑

k=1

Pr{e ∈ C|y,Mk}Pr{Mk} (3.21)

for a family of M candidate models (Mk)k=1..M which were assigned a probability. Several
techniques are available for Bayesian variable selection (see for instance Hoeting et al. 1999;
O’Hara & Sillanpää 2009).

Our aim here is not to enter in the details of these methods, but to outline solutions
for assessing the dependency of a Bayesian inference on the prior. Bayesian model averaging
could be overly complicated in the case of orbital fits. We will motivate a simpler approach for
handling uncertainties in paragraphs “Minimizing the impact of model errors” and “Detecting
model errors”. This one consists in selecting among the “reasonable” model the most complex
one, scaling the errors to obtain a χ2 equal to one, then checking that the residuals behave
roughly as Gaussian independent variables.

Frequentist methodologies

Testing if the eccentricity is 0 can also be performed in a frequentist framework. This one
has the advantage to limit the use of a priori assumptions, but does not allow to ask the
correct question. We will see though that correctly calibrated, confidence intervals are useful
tools to make inferences on eccentricities.

So far, (Lucy & Sweeney 1971) and Husnoo et al. (2012) respectively used p-values and
Bayesian Information Criterion (BIC) to test the hypothesis that eccentricity is non zero.
More precisely, Lucy & Sweeney (1971) compute the probability distribution of the eccentric-
ity estimate under the hypothesis that the eccentricity is null and find a Rayleigh distribution
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whose variance depends on the signal-to-noise ratio (which we also obtain as a special case
of our analysis section 3.3.3 with p = 0). For a given measured eccentricity ê, they measure
the probability that the Rayleigh distribution is higher than ê and report an eccentric orbit
if this probability is lower than a certain threshold.

Husnoo et al. (2012) computes

BIC(M) = χ2
min(M) + k lnN + ln(2π|V|) (3.22)

where χ2
min is the minimum χ2 obtained when minimising the distance between the data and

model M, k is the number of degrees of freedom of M (three for a sine model and five for a
Keplerian one) and |V| is the determinant of the correlation matrix. The orbit is said to be
eccentric if BIC(Mecc) > BIC(Mcirc) where Mecc and Mcirc are respectively eccentric and
circular models.

Though reasonable, these techniques can be improved. First, they both consider the al-
ternative e is zero or non-zero, and do not allow to test if a given value of eccentricity is
compatible with the data or not. Secondly, the analytical approximation of the eccentricity
distribution is not always accurate. Indeed, Fig. 3.4 shows that the mean value of estimated
eccentricity can be several times superior to the analytical approximation. Finally, as we
saw in section 3.3.3, it does not seem fair to penalize equally all parameters, including the
eccentricity in the model is far from adding a linear parameter. The Bayesian information
criterion (3.22) gives equal weight to all parameters, only their number k appears. This ap-
proximation is valid in the limit of a large number of observations, condition which is not
always fulfilled.

Our aim is to overcome as much as possible these limitations. It turns out that the
procedure to construct confidence intervals outlined in Casella & Berger (2001), chapter
9, will allow us to test the hypothesis that the true eccentricity is equal to a certain value
e for all e. While it is based on analytical computations, it does not suffer from the same
drawbacks as the p-values test. The idea is to reject the hypothesis that eccentricity is equal
to e if all models with eccentricity e have a likelihood lower than a fraction of the maximum
likelihood. The following criterion is computed in Appendix F. We reject the hypothesis that
the eccentricity has a certain value e with a confidence level α if

LR :=

max
θ∈Θe

f(y|θ)

max
θ∈Θ

f(y|θ)
6 1
√

2π
N |V |

e−
1
2
β (3.23)

β = F−1
χ2
ν

(1− α) (3.24)

ν = 2 + 2S′2
e2

1 + e2
− πe

1 + e2
L 1

2

(
−S

′2

2

)
L 1

2

(
−e

2S′2

2

)
. (3.25)

where Θe is the set of parameters that have all eccentricity e, f(y|θ) is the likelihood,
F−1
χ2
ν

is the inverse cumulative distribution function of a χ2 law with ν degrees of freedom ,

S′ = (σ/Kt)
√

2/N and L 1
2

is the Laguerre polynomial of order 1/2. The quantity (3.23) is

simply the ratio of the maximum likelihood obtained by restriction to the models with fixed
eccentricity divided by the maximum likelihood on all models. The condition states that if
all models that have eccentricity e have too low a likelihood, then e is rejected. The following
equations give the value of that threshold, which is obtained by calculating the law followed
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by the random variable LR under the hypothesis that the true eccentricity is e (LR|(et = e)).
It is in fact easier to compute the law followed by the logarithm of LR, to obtain a χ2 law
whose degree depends on a definition of the signal to noise ratio S and on the eccentricity
under study, but is always smaller than 2. Our computations, detailed in Appendix F, also
make use of simplifying assumptions, but these are checked to give satisfactory results on
simulated signals.

One of the problems of that expression is that it depends on the true value of the semi
amplitude, Kt, which is unknown. There are two ways to circumvent this issue: either
by assuming that ν = 2 for all e, which is the maximum value ν can take, of Kt, or by
approximating Kt by the semi amplitude of a circular orbit fitted at the period of the signal.
The first option can be used to obtain conservative intervals to ensure that e is non zero.
The second one will give a more realistic criterion to reject an eccentricity if no extra care is
needed. Let us note that ν = 2 is obtained for e = 0. This has a simple interpretation: the
model can be approximated by a linear one in k = e cosω and h = e sinω. When e = 0, both
k and h are set to zero, which blocks two degrees of freedom. Denoting by ye the model with
fixed eccentricity e that has maximum likelihood and y? the model with maximum likelihood,
all parameters free,

0.5 ln(LR) = ‖W(y − ye)‖2 − ‖W(y − y?)‖2. (3.26)

behaves then as a χ2 law with two degrees of freedom.
To offer a point of comparison of the confidence interval computed equation (3.25), we test

two other metrics. First, we simply consider

F =
N − p
ν

‖W(y − ye)‖2 − ‖W(y − y?)‖2

‖W(y − y?)‖2
(3.27)

which is basically equation (3.26), normalized by ‖W(y − y?)‖2 so that it depends less on
the noise level assumption. The quantity (3.27) is assumed to follow a F distribution with ν
and N − p degrees of freedom.

Secondly, we generalize the test suggested by Lucy & Sweeney. Let us denote by e? the
estimate of eccentricity obtained by maximum likelihood when all parameters are free. For
eccentricity e, we fit a Keplerian model that has an eccentricity fixed at e. We then compute
the probability

Pr{|ê− e| > |e? − e||e,V, ê ∼ Rice(e, η2)} (3.28)

that is the probability that an eccentricity estimated by maximum likelihood ê is at least as
far from its assumed value e than the distance between e and the best fit actually observed,
assuming the noise model is Gaussian with known covariance matrix V. We also assume
that e follows a Rice distribution as in section 3.3.3. A Rice distribution can be seen as the
modulus of a vector with two independent Gaussian variables that have the same variance,
X ∼ G(a, η2) and Y ∼ G(b, η2) where k and h are the means of these variables. To specify
the distribution, we need therefore two scalars: the variance of both random variables η2)
and the modulus of the mean of these two variables, r =

√
a2 + b2. Here a = k and b = h,

so r = e. Then η2 is the variance of the estimates of k or h, which under the hypotheses of
section 3.3.3 have the same variance η2 = (σ2

RV/K
2
e )(π/(N − p)). Then the quantity (3.28)
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can easily be evaluated by the cumulative distribution function of the Rice distribution, which
is a Marcum Q-function.

Computing (3.26), (3.27) or (3.28) necessitates to compute the minimum distance between
the observations and a model with fixed eccentricity. To do so, we exploit the fact that
Keplerian models are partly linear, y(t,θ) = AẊ(P, e, ω) + BẎ (P, e, ω) + C where Ẋ and
Ẏ are the components of the velocity on the orbital plane. For each couple e, ω, we can
minimize ‖y−y(t,θ)‖ on A,B,C and P , which are respectively three linear parameters and
one non-linear parameter. Such a problem is fast to solve with, for instance, a Levenberg-
Marquardt algorithm (Levenberg 1944; Marquardt 1963). If the period is already known
(which is supposed here), obtaining an array of χ2 on a fine grid of e and ω (60 values each)
takes only up to one minute. Let us finally note that the idea of restricting the global χ2

minimization to a grid of non linear parameters is not new (Hartkopf et al. 1989; Lucy 2014).
There are even further resemblances with Lucy & Sweeney (1971), however they use a degree
of freedom ν = 1 for all parameters, which is correct only if the model is linear in all the
parameters or approximately linear in the vicinity of the best fit and unimodal.

The formula (3.24) and (3.25) have been derived with simplifying assumptions. To test
and compare them to other options, we proceed as follows:

1. Generate a population of exoplanets according to a certain prior density on the orbital
elements p(K, e, P,M0, ω). The measurement times are taken from existing data sets.
The noise generated according to a Gaussian density of covariance matrix V .

2. For each system, we compute the set of eccentricity that are not rejected, we check that
the true eccentricity belongs to this set and compute the measure of its complement in
[0, 1], that is the measure of the set of rejected eccentricities.

3. The results are summarized in two plots. First, the fraction of cases where the true
eccentricity is not in the acceptable interval as a function of α. Second, the curve drawn
when α goes from 0 to 1 by a point whose ordinate is measure of the complement of
the set of acceptable eccentricity and whose abscissa is the fraction of cases where the
true eccentricity is not in the acceptable interval.

Such tests were carried out with the following inputs: the measurement times are those of
CoRoT-9 (Bonomo et al. 2017b). The angles ω and M0 are chosen uniformly, e follows an
uniform distribution. In Fig. 3.14 we plot the result of the experiment for a period fixed at
95 days the semi amplitude is fixed to K = 3.5σ where σ is the RMS of the errors. These
are the parameters of the detected Jupiter in the system. In Fig. 3.15, we let the period vary
uniformly in logP and compute the same quantities.

The left plot of Fig. 3.14 and. 3.15 is labelled “ROC - like” curve as a reference to receiver-
operator characteristic. These curves represent the fraction of false positives as a function of
the false negatives for binary tests. In our continuous case, these are interpreted as follows.
For a given rate of true eccentricity rejected (false negatives), the y axis gives the precision
on the estimate. The more eccentricities are rejected, the more precise the estimate. The
closer such a curve is to the upper left corner the better: regardless of the value of α, the
fraction of true e rejected is zero (no false negatives) and almost all other eccentricities are
rejected: the estimation is very precise.

Interestingly enough, the ROC curve (left) is very similar for all the metric considered with
a slight advantage for the F -ratio and the likelihood ratio tests (formula (3.26) and (3.27)),
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Figure 3.14: period fixed

which have a better precision (more eccentricities rejected) when the fraction of true e rejected
is low. We now need to set the level of true e rejected. As expected, the curve obtained
for ν = 2 gives an overestimated error rate for a given α. For the three other tests, the
correspondance seems appropriate. Overall, the F -ratio and the likelihood ratio tests seem
to perform best. In Fig. 3.15, the plots are unchanged and lead to the same conclusions.

The main advantage of the method is that the graphs are very similar when the population
set in input varies: it is weakly sensitive to the prior. Furthermore, we can set a parameter,
α that allows us to directly control the confidence intervals meaning. Let us mention that
we observed some peculiar behaviour of the estimates for some periods where the matrix
of the linearized model is ill-conditioned, that we wish to investigate into more depth in
future studies. In those cases, the hypotheses allowing to compute formula (3.25) are not
verified and Bayesian analysis or more sophisticated formula would be required. On the other
hand, it seems unlikely that someone would want to prove a non zero eccentricity of a planet
particularly poorly sampled.

Minimizing the impact of model errors: normalizing the χ2

When fitting orbits and noise models to radial velocity, one often encounters the situation
where the reduced χ2 of the data is greater than one. A common practice is to add a constant
error σ2 to the nominal ones, (σk)k=1..N in quadrature to obtain a reduced χ2

1

N − p
χ2 =

1

N − p

N∑

k=1

(yk − f(θ?, tk))
2

σ2
k + σ2

= 1 (3.29)

where θ? are the parameters giving the best fit. We refer to that procedure as “normalizing
the χ2”. The goal of this section is to show that this practice is efficient. More precisely, by
doing so, the decisions made from the interval estimates are in general correct. We will show
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different examples of spurious models where the normalization leads to statistical properties
similar to when the model is perfectly known.

The first experiment we carry is to generate a circular orbit (e = 0) of semi amplitude
3 m.s-1, period chosen uniformly in logP and phase also selected uniformly in [0, 2π]. The
nominal noise is 1 m.s-1. In addition, we generate several other signals: unseen white, red
noises, outliers, unseen companion or mixes of them. In each case, the χ2 is normalized.
Then, for each realization, we find the best fit eccentricity e? and compute numerically the
probability pe? to have an estimated eccentricity fitted at least as high as e?, knowing the
eccentricity is equal to 0. In summary, for each system generated, we obtain a p-value pe? ,
and we can decide that if it is less than 0.05, the null eccentricity is rejected. Since it is
a p-value test and the null hypothesis is true, the distributions of pe? should be uniform.
Fig. 3.16 shows that if there is no correction, this is far from true, there will be up to 65%
spurious rejection of e = 0. However, in all cases, when normalizing the χ2, the p-values are
distributed uniformly. Therefore the false alarm rate chosen is effectively observed.

Let us note however that normalizing the χ2 does not improve the accuracy of the least
square estimates. Fig. 3.17 shows that the distributions of estimated eccentricities with and
without corrections are similar.

The fact that too high a reduced χ2 leads to underestimated error bars is also true in the
Bayesian setting. To illustrate it, we took the 74 measurement dates of HD69830 (Lovis et al.
2006) and generated a circular orbit of semi amplitude 2 m.s-1 and period 31.56 days. We
then generated white noise with the measurements nominal uncertainties (whose average is
0.7 mm/s) plus a noise of 2 m.s-1. After checking that the detection was made with high
probability, the posterior densities of orbital elements were calculated with adjustment of the
noise level in two ways: with a narrow Gaussian prior on the extra noise variance centred
on 1 m.s-1 and with a free level initialized so that the normalized χ2 equals one. In both
cases we calculate the ratio of probability Pr{e > 0.05}/Pr{e < 0.05}. In the first case we
obtained 61.21, and in the second only 10.62. Even in Bayesian analysis, when the noise is
fitted, it must be ensured that the reduced χ2 of the residuals is not unrealistic, regardless of
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its origin.

Finally, let us briefly address the question: when does the χ2 scaling leads to spurious error
bars? We do not claim to list all possible cases, but will limit ourselves to one important one:
when the noise can be fitted by the model. To see that, let us first consider the simplest case.
Let us suppose we have observations y = Axt + ε where ε is an unknown vector and the
columns of A, denoted by ak, are orthonormal. Then the least square estimate of component
k of x is x̂k = aTk y = xt,k + aTk ε. A property of the Gaussian noise is that the law followed
by aT ε does not depend on a. It is Gaussian of mean 0 and variance σ2 if ε is identically and
independently distributed Gaussian variables. When scaling the error, we simply assume that
the noise, spread roughly equally over the vectors of the model, has an additional variance
σ′2 and we expect the error on parameter xk to behave Gaussianly with a variance σ2 + σ′2.
On the other hand, if the unknown noise turns out to be very correlated with one of the ak,
in the limit case where they are collinear, x̂k = xt,k + ‖ε‖. Also, in that case the residuals
will be unchanged, since ε has completely been absorbed in the fit. Between this limit case,
and ε being distributed uniformly in all directions there is a range of situation where the
residuals might undergo very small change, therefore very small scaling, but the error on one
of the parameters might high. Now if the columns of A are not orthonormal, the reasoning
is the same: we can end up with some of the noise absorbed in one parameter and unseen
in the residuals. The situation is in general even worse since the condition number of A will
in general be higher than one. In that case, we would not know that in fact the noise is
much higher than expected but was absorbed in the fit. Then even scaled, the errors are
under-estimated and small eccentricities are spuriously rejected. There is indeed a situation
where this might happen: when there is an inner orbital companion in a 2:1 mean motion
resonance. As Anglada-Escudé et al. (2010) noted, it can be hard to disentangle from an
eccentric orbit. To a lesser extent, all inner resonant planets might be a source of increased
eccentricity since Keplerian signals are periodic, therefore admit a Fourier expansion whose
coefficients might absorb signal at the multiples of the frequency of the planet.

In the non linear case, the dimension of the space the model explores might be greater
than in the linear one, as demonstrated section 3.3.3. It means that the fitting process would
absorb most of the noise energy and lead to spurious error bars. In case of doubt, it seems
good practice to try to fit only noise with the model evaluated at the measurement times
and initialized at the period of the planet candidate. If the squared norm of the residuals
are systematically lower than what would be expected from a linear least square fit, that is
N − p, it means that the parameters of a planet will be ill-constrained. This check is useful
even when doing a Bayesian analysis.

Detecting model errors: residual analysis

We have seen that normalizing the reduced χ2 improves the robustness of the conclusions.
However, though it is an efficient method, it hides a deeper problem. Indeed, if the reduced
χ2 is far too high to be a likely realization of a Gaussian noise it means that even the best fit
model is extremely unlikely. In other words, we selected the best option among models that
are all very bad. A good model y? of the data (y) should be such that obtaining y knowing
y? is not completely unlikely. Adapting the error so that the χ2 of the best fit residuals, χ?

ensures that Pr{χ2 > χ?|y?} is above a certain rejection rate. But this adaptation, besides
being ad hoc, guarantees only one property that a Gaussian residual should have. There are
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many other tests that can help us guaranteeing that the residual is consistent with the model
in an absolute sense. This problem is sometimes referred to as the goodness-of-fit problem,
and is in general not trivial Lehmann & Romano (2005). The use of Likelihood ratio or Bayes
factor is largely due to the difficulty to prove that a given model is absolutely consistent with
the data, and allows to chose models that are significantly better than other ones. But even if
one does not want to search for an absolute explanation of the signal, it is still interesting to
know if there is something that is not understood in the signal, possibly for future researches.

In summary, our goal is to ensure that there is at least one acceptable model of which
the data are a likely realization. There is a classical method to do it, the Kolmogorov-
Smirnov test Kolmogorov (1933); Lehmann & Romano (2005), which consist in computing
a test statistic which measures the probability that a data set is a realization of a parent
distribution. However, this test would be correctly used if the hypothetical parent distribution
is chosen independently of the fitting process. For the sake of speed we would like to test
models that are close to the best candidates, which are chosen after looking at the data. Also
this test measures the agreement between distributions in a binary manner and does not give
hints on the origin of a possible discrepancy. Instead, we will reason as follow: if the set of
model is appropriate to describe the data, then the residual of the best fit must verify certain
properties. If they do not, then we will reject the hypothesis that there is one acceptable
model that explains entirely the data set.

As in section 3.4.2, we will first examine the linear case and show that the results are still
helpful in the non linear setting. Let us suppose we have a linear model y = Aθ+ ε where A
is a N × p matrix and ε is a Gaussian noise of covariance matrix V =: W−1. Let us denote
by ŷ the least square fit model, and suppose the model (A,V) is known. Then the weighted
residual

rW := W1/2(y − ŷ) (3.30)

is a vector of N random variables that are approximately independent, Gaussian of null mean
and variance one. To obtain a weighted residual that is a vector of independent Gaussian
variables, let us define Q, the matrix such that J = QT (IN−W1/2AT (ATWA)−1ATW1/2)Q
is diagonal (it exists). Then the re-weighted residual r′QW = QTW1/2(y − ŷ) has p null
components. The N − p others are Gaussian variables of mean 0 and variance 1. In what
follows, we will denote by rQW the vector made of the N − p components of r′QW . These two
results are proven in Appendix E.

In practice, A and V are unknown, and we choose models A′ and V′. The two above
properties can be used to test if (A,V) = (A′,V′) because if so, then the weighted residuals
rW and rQW have a known law. There are numerous techniques to study correlations in time
series sampled at equispaced times, but for uneven samples, to our knowledge there are no
generic tools for such situations. We devised two tests adapted to our problem,

1. Plotting d(ti, tj) = rW (ti)− rW (tj) as a function of ti − tj for ti > tj . If rW is indeed
independent and Gaussian, d(ti, tj) should not depend on the time interval.

2. Ordering rQW by increasing values (r̃QW ) and plotting the vector z = (k/(N −
p))k=1..N−p as a function of r̃QW . In other words, we compute an experimental cumu-
lative distribution function (CDF). If our model is correct, then it should follow closely
the CDF of a Gaussian variable of mean zero and variance one. One can potentially
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test the hypothesis that rQW is a realization of such a law with a Kolmogorov-Smirnov
test or other metrics such as Anderson & Darling (1954), Shapiro & Wilk (1965), etc.

Let us now show how it can be used in practice. We take the 214 measurement times of
Proxima b Anglada-Escudé et al. (2016). A is made of six columns as defined in Appendix C
and fix xt. We then generate three series of a thousand realisation of y = Axt + ε. The
covariance matrix of the noise has a kernel e|∆t|/τ where ∆t is the duration between two
samples. The three series are generated with a noise time-scale τ = 0, 10 and 100 days. For
each of the 3×1000 signals generated, we compute the least square fit with the correct matrix
A, but with a weight matrix W equal to identity, so our model will be entirely correct only
in the first case. First, we pick randomly one realization among the 1000 available in each
series, and perform the first test whose result is plotted Fig. 3.18. One clearly see a pattern:
the higher the correlation, the smaller is the difference between residuals. Fig. 3.19 shows
the 1000 empirical CDFs in the three cases. The deviation from a normal distribution grows
with the correlation.

The plots 3.18 and 3.19 are useful indicators of remnant correlation in the residuals. How-
ever, they do not constitute metrics with known statistical properties. As said earlier, classical
goodness-of-fit tests provide such metrics. Here we test the Anderson-Darling metric, which
proceeds as follows: for each of the 3000 residuals obtained, we compute the Anderson-Darling
statistic of the couple: residual/normal distribution, as defined in Anderson & Darling (1954).
The higher the value of the statistic, the more unlikely it is that the residual follows an in-
dependent Gaussian distribution. We then obtain three series of a thousand numbers, whose
CDF are plotted Fig. 3.20. The blue curve corresponds to a correct model. If we set as a
condition that the null hypothesis (the model is correct) is rejected in 5% of the cases know-
ing it is true, it means that we will reject approximately 100 - 67 = 33% of the realizations
knowing that the model with τ = 100 days is correct, which is not a very satisfactory rate.
The visual inspection, though less quantifiable, seems more accurate.

Study of correlations in RV residuals has already been undertaken for instance by Baluev
(2011, 2013) with a smoothed residual periodogram (Baluev 2009). We leave the systematic
comparison and testing of statistics for future work.

Reducing bias

The method presented above seem to be useful tools for a sound scientific analysis, which we
believe is based on hypothesis rejection. However, it is also possible to use our understanding
of the bias to aim at reducing it. Section 3.3 showed that lower eccentricities models occupy
a smaller volume of the phase space than models with higher eccentricities, especially those
with e & 0.8. In some sense we would like to penalize the higher eccentricities as a function
of the volume occupied by the corresponding models.

This situation is very similar to model selection, where extra credit is given to simpler
models. Viewing the best estimate of a single parameter as model selection should help us
reducing the bias.

3.4.3 Populations

A way to correct a distribution is to consider its constitutive systems individually. For each
eccentricity estimate, the probability to have an eccentricity greater or equal to the measured
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one, knowing the true eccentricity is zero (Lucy & Sweeney 1971; Zakamska et al. 2011)
(this probability is often called a p-value). If this probability is below a certain threshold, the
eccentricity is considered to be zero. This procedure implies that all correction should concern
zero eccentricities, and its accuracy depends on the true proportion of zero eccentricities,
which is unknown. Figure 3.11 shows the distribution of true eccentricity as a function of
the estimated one for a flat true distribution. Paradoxically enough, when the estimated
eccentricity is between 0 and ≈ 0.2, one could think that on average the true eccentricity was
lower because of the bias but it is not the case. On average, the true eccentricity is greater
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than the one measured. Also, by having such a particular treatment of zero eccentricity the
risk of“seeing what we expect to see” is greater. Indeed, zero eccentricity is privileged because
orbits are expected to be circularised by tidal forces. One cannot in turn make strong claims
about the dynamics from a corrected distribution.

Two more sophisticated correction methods were suggested by Hogg et al. (2010). They
both rely on considering the prior distribution itself as the unknown, and see observed distri-
butions as the true one convolved with uncertainties. More precisely, the two options are the
following. First, one can consider that the observed eccentricity distribution, p(e) is a realiza-
tion of the true one pt(e) convolved with the uncertainties, that is each observed eccentricity
ê follows the distribution p,

ê ∼ p(ê) =

∫ 1

0
p(ê|e)pt(e)de. (3.31)

In practice, one would take a sequence of increasing eccentricities (ej)j=1..m and consider

Pr{ê ∈ [ej , ej+1]} =

m∑

k=0

Pr{ê ∈ [ej , ej+1]|et ∈ [ek, ek+1]}Pr{et ∈ [ek, ek+1]} . (3.32)

Now if we denote by p̂j := Pr{ê ∈ [ej , ej+1]}, Pjk = Pr{ê ∈ [ej , ej+1] |et ∈ [ek, ek+1]} and
pt,k := Pr{et ∈ [ek, ek+1]}, we have

p̂0
p̂1

...
p̂m

 =


P11 . . . P1m

...

Pm1 Pmm




pt,0
pt,1

...
pt,m

 (3.33)

This can be written in a more compact form, p̂ = Ppt. In the real setting, we would not
observe p̂ = (p̂j)j=0..m but some estimates of eccentricity from radial velocity measurements.
If we assume that each estimate of eccentricity is an independent realization of the random
variable ê, then the number of eccentricities that fall in the interval [ej , ej+1], denoted by
(nj)j=1..m, follows a multinomial law of parameters p̂j . One easily shows that the maximum
likelihood estimate of p̂j is p̂ML

j = nj/n where n = n1+...+nm. Since the maximum likelihood

does not depend on the parametrization, any vector p satisfying Pp = p̂ML
j is a maximum

likelihood estimate of pt. In general it will not be possible to invert P. The next section
defines constraints on observation strategies to ensure that P is somehow “well behaved”.

The method however ignores that different observations have different uncertainties. The
second option is to consider that the true distribution is parametrized by a vector of param-
eters α and to look for its value giving the posterior likelihood of the distribution L.

L(α) =

M∏

k=1

Lk(α) (3.34)

Lk(α) =

∫
p(yk|θk)p(θk|α)dθk (3.35)

p(θk|α) =
pα(e)p(θ̃k)

p0(e)
(3.36)
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where θk = [e, θ̃k] are the set of parameters of observation k (these are equation 7 in Hogg
et al. (2010)). Since the method relies on writing the Bayes formula several times (here
twice) on different levels (population, individual system), this one is called hierarchical Bayes
modelling. This has been applied more recently to the mass radius relationship of Kepler
data (Wolfgang et al. 2016). The first equation holds assuming that the observations are
independent from each others, and the third one subtends that the prior on eccentricity is
independent from the prior of the other parameters. The latter assumption is debatable,
since eccentricity is unlikely to be independent from the period of the orbit. Note that
when computing the posterior of the distribution, credible intervals can be computed like in
section 3.4.2. The maximum a posteriori distribution is here a point estimate, and is not the
most interesting quantity from the scientific point of view.

The two methods mentioned above do not take into account the selection effect on the
detection, and we saw in section 3.3.5 that the measured distribution depends non negligibly
on the detection efficiency. The two frameworks presented above can be adapted easily by
adding to the unknown distribution a parameter, the probability that there is no planet, and
to include non detection as an outcome. Let us see how that would change the analysis based
on equations (3.31) and (3.32).

If we include a possibility for non detection and that there is no planet, equation (3.32)
becomes

p(ê) =

∫ 1

0
p(ê|e)pt(e)de+ Pr{ê|NP}Pr{NP} (3.37)

Pr{ND} =

∫ 1

0
p(ND|e)pt(e)de+ Pr{ND|NP}Pr{NP} (3.38)

where ND and NP stand for “No Detection” and “No Planet”. These terms account for the
situation where nothing is detected, while a planet might be present, and when no plane-
tary signal is in the data but still we might have a false detection. We now approximate
equations (3.37) and (3.38) by a discrete version. Then equation (3.33) becomes

Pr{ê ∈ [ej , ej+1]} =

m∑

k=0

Pr{ê ∈ [ej , ej+1] |et ∈ [ek, ek+1]}Pr{et ∈ [ek, ek+1]} + Pr{ê|NP}Pr{NP}

(3.39)

Now if we denote by p̂j := Pr{ê ∈ [ej , ej+1]}, Pjk = Pr{ê ∈ [ej , ej+1] |et ∈ [ek, ek+1]} and
pt,k := Pr{et ∈ [ek, ek+1]}, we have

Pr{ND}
p̂0
p̂1

...
p̂m


=



Pr{ND|NP} Pr{ND|e0} . . . Pr{ND|em}
Pr{ê0|NP}
...

(Pkl)k,l=0..m

Pr{êm|NP}





Pr{NP}
pt,0
pt,1

...
pt,m


(3.40)

The same equation can be written more compactly in a matrix form,

p̂ = Lpt (3.41)

Note that if we were to represent L in color code, it would look like the transpose of Fig. 3.13.b.
In the limit of an infinite signal-to-noise ratio, the matrix tends to the identity. On the
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contrary, when the signal to noise ratio tends to zero, the probability of non detection reaches
its maximum and all the lines of rows of P tend to the distribution of eccentricity estimate
when the input is pure noise.

3.4.4 Observation strategies

The previous section is concerned with estimating the true distribution from existing mea-
surement. One can change the viewpoint and ask the following question: what are the
requirements on the observations to ensure that the distribution of an orbital element is close
to the true one? In that case, the unknown is the array of measurement times, or some of its
characteristics (number of measurements, timespan...), and we allow the measurement strat-
egy to depend on the star under study. We will now specialize to eccentricity distributions,
but the reasoning can be applied to any parameter.

Our problem is to retrieve the true distribution of eccentricity, denoted by pt(e), of a certain
type of planets (that have a certain range of mass, semi-major axis or type of the host star
etc...). Let us consider a sequence of eccentricities (ei)i=1..m and suppose that ni eccentricities
were measured in the bin [ei, ei+1] and n0 observations lead to no detections. If we denote by
p̂i the probability Pr{ê ∈ [ei, ei+1]}, p̂0 the probability of detecting nothing, then the vector
n = (ni)i=0..m follows the multinomial law

Pr{n1, ...nm} =
n!

n0!..nm!
p̂0
n0 ...p̂m

nm , (3.42)

n being defined as n = n0 + ...nm. As a consequence, from equation (3.41), the likelihood
function of the true eccentricity parameters is

L(n|pt) = Pr{n1, ...nk} =
n!

n0!..nm!
(L0pt)

n0 ...(Lmpt)
nm (3.43)

where Li designates the i-th row of matrix L. Assuming that p(ê|et) is a Rice distribution of
parameters et and 1/S, as in section C, then we can compute the matrix L. Then, by perform-
ing a principal component analysis (PCA) (or equivalently a singular value decomposition)
of L we find the components of the eccentricity distribution that can be resolved. Fig. 3.21
and 3.23 show the matrix constructed as (3.40) in color code for respectively S = 6.6 and
S = 66. In the second case the matrix is very close to the identity, so that all the components
of et can be resolved.

The PCA consists in writing L = USV′ where U and V are orthonormal matrices and
S is a diagonal matrix. One can think of the columns of V as a basis of vectors whose
linear combinations will be used to represent the true distribution. However, it is in general
impossible to constrain all the components of the true distribution expressed in basis V. As
the signal to noise ratio decreases, the number of non zero elements of S decreases. If d
elements of S are non-zero, ordered in decreasing order along the diagonal, it means that the
components of the true distribution along the last m − d columns of V cannot be resolved.
Interestingly enough, the columns of V are behaving like frequencies. Fig. 3.22 and 3.24
represent the behaviour of the five first columns of V and the corresponding elements of S.
As the order of the principal component increases, the resolution on the true eccentricity
becomes finer. In conclusion, by constructing the matrix L and performing the PCA, the
signal to noise ratio and detection power and false alarms might be tuned to obtain a certain
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resolution on the eccentricity distribution. The SNR is S =
√

2/(N − p+ 1)σ/K, where N
is the number of observations, σ the RMS error, K is the semi-amplitude. One might either
pick a minimum semi amplitude and design the whole strategy accordingly, or possibly stop
if the planet is found to have a K large enough in the course of the observations.

The other parameter to be tuned is the number of systems to observe. This can be done
approximately by first rewriting the likelihood as a function of the coefficient in the basis
generated by the d first columns of V′. Then one computes the likelihood Hessian, whose
inverse is asymptotically equal to the covariance matrix of the maximum likelihood estimate.
This Hessian can then be evaluated at different points.

3.5 Application to real cases

3.5.1 Outline

Section 3.3 was devoted to understanding the origin of the detection and estimation biases on
the orbital eccentricity. We found that in some sense the geometry of the model is responsible
for the estimation bias, the fact that some eccentricities go to one when fitted, and the diffi-
culty of detecting very eccentric planets. We also found that modelling errors not only lead to
underestimated uncertainties, but also increased bias in eccentricity. This bias on individual
systems translates to population estimates, which are worsen by the bias against detection of
high eccentricities. In section 3.4, we advocated the use of interval estimations rather than
point estimate, since they are closer to the process of rejecting hypotheses. We showed that
adding an error so that the reduced χ2 is one is an efficient technique to correctly estimate
uncertainties in both Bayesian and frequentist approaches. We also suggested methods to
check the consistency of the model based on the analysis of residuals. In this section, we will
use the tools developed to analyse data, focusing on single system analysis.

3.5.2 Example: analysis of CoRoT-9 RV data

Past analyses

The photometry data from the space mission CoRoT allowed to discover a transiting warm
Jupiter of period 95.3 days, a = 0.41 AU and mass 0.84 ± 0.07 Mjup (Deeg et al. 2010).
The data was re-analysed by Southworth (2011) who found similar values and error bars.
In Bonomo et al. (2017b), the analysis of the system is done with two more transits measure-
ments (18 June 2010, Spitzer, and 4 July 2011 simultaneously with CoRoT and Spitzer) and
28 HARPS measurements spanning from September 2008 to August 2013. One of the goals
of the paper was to test whether a zero eccentricity is compatible with the data. If not, it
means the planet might have undergone secular chaos or planet-planet scattering.

To do so, they analyse jointly the transit and radial velocity data sets. Orbital elements are
sampled from their posterior distribution with a differential evolution Monte-Carlo Markov
chain algorithm (DE-MCMC Eastman et al. 2013). Then the Bayes factor as defined equa-
tion (3.18) is computed and they find 124.8, which is a strong support for the eccentric
scenario.
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Figure 3.21: Representation of the dis-
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Rice(et, 1/S) where S is the signal-to-noise
ratio, S = 6.6.
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Re-analysing RV data

We first use the frequentist method 3.4.2 and compute for each eccentricity the likelihood
ratio as defined in Eq. (3.23) and the associated probability. Let us recall that this consists
in computing the sum of squared residuals of a model that has a fixed eccentricity e and
the best fit model. One can then compute the probability to obtain a difference at least as
great under the hypothesis that e is the true eccentricity. The lower is that probability, the
more unlikely is the hypothesis et = e. We fit a Keplerian model plus a constant and obtain
the FAP per eccentricity shown in Fig. 3.25 (left). If the FAP is lower than 0.05 then the
corresponding eccentricity is rejected. This threshold means that the likelihood ratio would
be as extreme as it is in 5% of the cases, assuming the correct eccentricity is the one under
study. We find a minimum non rejected eccentricity of 0.08, which is consistent with the
findings of Bonomo et al. (2017b).

To check this result, we plot the residuals of the fit rW as defined in eq. (3.30) of section 3.4.2
as a function of the time interval between subsequent ones, that is rW,i − rW,j as a function
of ti − tj for all i > j. We obtain Fig. 3.25 (right).

Now to finish, let us consider in that case what scenario could have lead to a spurious
claim. Since the residuals of the best fit have a reduced χ2 lower than one, what could have
happened is that the model is in fact capable of fitting anything, and the errors are under
estimated. As advocated section 3.4.2 we compute the average squared sum of residuals when
fitting the model to noise only, and find 23.3, which is close to what we would expect from a
linear fit, N −p = 28−6 = 22. The other possibility is that there was another source of noise
η whose components are such that yt + η is still an acceptable model. Let us consider the
possibility of an inner resonant planet in 2:1 mean motion resonance. When adjusting a two
circular planet + constant model, considering nominal uncertainties, the χ2 of the residuals
is 16.05 versus 19.88 for a Keplerian model. It basically means that the two scenarios cannot
be distinguished with radial velocity alone and without physical considerations. Some of the
photometric data used in Bonomo et al. (2017a) for the joint analysis of photometry and
radial velocity were not publicly available, we did not carry out the same analysis as Bonomo
et al. (2017a) for the resonant model.

3.6 Discussion

Our initial goal was to give a consistent picture of the behaviour of eccentricity estimation. We
give a justification for the fact that eccentricity estimates follow a Rice distribution, which
was noted by Shen & Turner (2008) and the analytical approximation in the case et = 0
obtained by Lucy & Sweeney (1971). The formula was adapted to be more realistic and take
into account the number of parameters fitted. We also show that the validity of the formula
depends on the condition number of the Fisher information matrix. The notion of condition
number also explains the behaviour noted by Zakamska et al. (2011): bias increases with the
period and as the phase coverage becomes poorer. We see that the analytic Lucy-Sweeney
test might be misleading when the Fisher information is poorly conditioned. This enjoins to
use simulated systems to compute e-values, that are Pr{e > ê|et = 0}, where ê is the best fit
eccentricity.

We show that in the case e & 0.8 region, eccentricity does not parametrize the models
uniformly, which explains the downward bias on high eccentricity, along with the facts that
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Figure 3.25: False alarm probabilities of eccentricity based on CoRoT-9 HARPS data (left).
Difference between residuals as a function of the time interval between them.

some estimates are stuck at one because of the model boundary. The complicated shape of
the model in this high eccentricity region accounts for the numerous local minima and the fact
that high eccentricity models might spuriously be compatible with the data. The geometry
of this region also explains the detection bias on high eccentricities. Since high eccentricity
models are “far” from circular ones, they might be unseen on periodograms and due to the
complicated shape, there might be local minima that are not accessible when initializing a
Keplerian fit at e = 0.

This analysis leads us to formulate two propositions, verified by simulations. First, when
the model is incorrect, the bias on eccentricity is higher on average. When the model is too
simplistic, since there are “more” high eccentric models, the chance that the best fit appears
on a high eccentricity increases. When the model is overly complicated, the condition number
of the Fisher information matrix increases, so does the uncertainty, which is proportional to
the bias at low eccentricity. Secondly, we show that one should not correct the distributions
by setting eccentricities to zero whenever it is an option compatible with the data set, since
it biases the estimate of the distribution and prevents from spotting unexpected effects.

The fact that eccentricity is biased upwards is not a problem in itself, since point estimates
do not really have a scientific meaning. We are rather searching for all the models that are
compatible with the data, that are confidence or credible region estimates. The fact that
eccentricities are overestimated might become a problem when using such estimates if error
bars are underestimated, since the eccentricities will over-confidently be locked at high values.

We then consider two options: Bayes ratio or credible intervals based on posterior dis-
tributions and confidence intervals based on a maximum likelihood ratio. In the Bayesian
case, the inference depends on the prior, therefore we advise to test several of them whenever
possible. We also propose a formula to re-calculate the posterior distribution of eccentricity
when the prior is enhanced on a certain region. The distribution of the likelihood ratio is
approximated analytically and we generalize the Lucy-Sweeney test. This is shown to behave
as expected on numerical simulations.

Since our conclusion depends on the validity of the model, it is desirable to have a manner
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to check that a given model is reasonable. We show that in many cases, forcing the model
to have a reduced χ2 equal to one is surprisingly robust. We discuss in which case this
correction is not sufficient. To push the analysis further one might check that the residuals
are compatible with the assumed model. Some solutions are considered, but we stress that
there are many possibilities of goodness-of-fit tests yet to be explored.

We wish to emphasize this latter point. Regardless of the sophistication of the analysis, it
is important to check that the residuals are likely. For instance, in Lovis et al. (2011b), after
fitting six planets, a final reduced χ2 of 1.7 is found. This might not seem too far from one,
but in fact for 190 measurement points and 31 parameters fitted, the probability of obtaining
a reduced χ2 of 1.7 or above is less than 10−16.
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Chapter 4

Conclusion

Do what you can, with what you have, where you are.

Theodore Roosevelt

4.1 Condition number

We first tackled the problem of spurious peaks of the periodogram, then underwent to un-
derstand the eccentricity bias and what an honest account of uncertainties would be. The
reader might have noticed that the notion of condition number, and more generally of the
eigenvalues of the Fisher information matrix, kept appearing (see definition 3, page 69), be
it for the stability of the basis pursuit algorithm (theorem 4), the amplitude of the bias on
eccentricity in section 3.3.3 or the resolution on the eccentricity distribution for a given ob-
servation strategy (section 3.4.4). Bringing out this notion was not our initial purpose but we
found — like many other data analysts (e.g. Demoment et al. 2001) — that it is an extremely
powerful notion to quantify the stability of an inverse problem. The eigenvalues of the Fisher
information matrix indicate which directions in the parameter space are well constrained and
which ones are ill-constrained. This ubiquity motivated us in particular to try to use the
restricted isometry constant (definition 6, page 72) as a generalization of the spectral window
section 2.3.

Interestingly enough, in the radial velocity literature, analytical results on the false alarm
probability of a detection have also been obtained via computations of the metric averaged
in some complicated sense (Baluev 2015b). The metric describes the behaviour of the model
in the vicinity of certain points. We believe that exploiting the “shape” of the model is an
interesting trail for future theoretical work.

4.2 Method for data analysis

In this thesis we have tackled the problems of detection of exoplanets, the estimation of
their orbital parameters, and of attaching uncertainties to those. These problems amount to
select a family of hypotheses that are compatible with the data. Based on the theoretical
considerations of section 1.3 and on practical experience with the data, we wish to propose a
general method for data analysis that could be termed “closed-loop inference”. This term is
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chosen in reference to automated systems that update the control as a function of the error
between the command and the measured state of the system. Closed-loop control is opposed
to open-loop, where the command is sent to the system only once and no further adjustments
are made, an instance of which are ballistic missiles. We do not claim originality here, many
aspects of the following analysis are already implemented in existing techniques. Our goal is
simply to clarify the guidelines for future work.

Our problem is to make a claim based on a certain amount of information. Here information
is to be understood in a wide sense. For the discovery of an exoplanet, the type of the
telescope, the sequence of decisions that took place to observe a certain star and the time
series of observations are considered as part of the information we possess. Some of the
aspects are hard to model statistically, but these should not be ignored.

The data itself (here the time series of observation) is supposed to have been generated
by a certain random variable (or plausibility distribution, in a more general sense) and we
wish to determine which one. We first define a family of hypotheses, where a hypothesis is
either one or a collection of random variables. For instance, a hypothesis can be “3 planets
with orbital parameters θ and a Gaussian independent noise with standard deviation σk at
measurement time tk”. The hypothesis “there are three planets and a Gaussian noise” is the
set of all configurations with three planets plus any Gaussian noise, correlated or not.

We now have a family of hypothesis. To claim that a subset of them is a correct account
of the data we must somehow prove existence and uniqueness. The uniqueness means that
the probability of the subset of hypotheses is much higher than other alternatives. Existence
means that the family of hypothesis can account for the data, there is a reasonable chance
that the data has been generated from this family. It might mean that there is at least one
hypothesis that correctly reproduces the data, or that there are so many hypotheses that
even though none of them makes the data likely, the combined chance of occurrence of the
data from this family is not “too low” in a sense to be made precise. When the alternatives
are globally unsatisfying, it means that the set of alternatives has to be extended.

The point we would like to stress is that most of the ways to check existence of the solution
are under exploited. When using a maximum likelihood estimator, posterior or not, posterior
distributions or normalized confidence intervals, we are choosing among a set of alternatives
that are potentially very bad. Running the analysis “open-loop”, such situations are unseen.
We stress that whenever possible, the models should not only be compared to each other. It
must be checked that they are compatible with the data in an absolute sense.

A convenient way to do so is to check the residuals of the fit. Indeed, assuming that the true
data has been generated by one of the hypothesis, one can compute the distribution followed
by the residuals of the maximum likelihood. For instance, when the model y = f(θ) + ε
is linear and the noise ε is Gaussian, y = Aθ + ε, appropriately scaled, the residuals of
the least square fit must be distributed independently with Gaussian profiles. In the radial
velocity literature, the residuals are often checked visually, but since there are many sources of
correlated signal with unknown structure, studying the residuals (distribution of amplitudes,
correlations...) in a systematic way could prove useful. We suggested some steps in that
direction chapter 3, but many options are left to explore.

Ultimately, the usefulness of the methods presented in this thesis can only be evaluated in
practical situations. We look forward to applying our methods to practical cases.
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Hara, N., Boué, G., & Laskar, J. 2018, in prep.
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Lovis, C., Ségransan, D., Mayor, M., et al. 2011b, A&A, 528, A112

Lucy, L. B. 2013, A&A, 551, A47

Lucy, L. B. 2014, A&A, 565, A37

Lucy, L. B. & Sweeney, M. A. 1971, AJ, 76, 544

MacKay, D. J. C. 1999, Neural Computation, 11, 1035

MacKay, D. J. C. 2003, Information Theory, Inference, and Learning Algorithms (Cam-
bridge University Press), available from http://www.inference.phy.cam.ac.uk/mackay/

itila/

Mallat, S. & Zhang, Z. 1993, Trans. Sig. Proc., 41, 3397

Marcy, G. W., Butler, R. P., Fischer, D. A., et al. 2002, ApJ, 581, 1375

Marcy, G. W., Butler, R. P., Vogt, S. S., Fischer, D., & Lissauer, J. J. 1998, ApJL, 505, L147

Marcy, G. W., Butler, R. P., Williams, E., et al. 1997, ApJ, 481, 926

http://www.inference.phy.cam.ac.uk/mackay/itila/
http://www.inference.phy.cam.ac.uk/mackay/itila/


BIBLIOGRAPHY 159

Marquardt, D. W. 1963, SIAM Journal on Applied Mathematics, 11, 431

Mayor, M., Pepe, F., Queloz, D., et al. 2003, The Messenger, 114, 20

Mayor, M. & Queloz, D. 1995, Nature, 378, 355

McArthur, B. E., Endl, M., Cochran, W. D., et al. 2004, ApJL, 614, L81

Melo. 2001, 2001

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. 1953, The
Journal of Chemical Physics, 21, 1087

Mishali, M., Eldar, Y. C., & Tropp, J. A. 2008, in Electrical and Electronics Engineers in
Israel, 2008. IEEEI 2008. IEEE 25th Convention of, 290–294

Montes, D., Fernandez-Figueroa, M. J., de Castro, E., & Cornide, M. 1995, A&A, 294, 165

Mortier, A. & Collier Cameron, A. 2017, A&A, 601, A110

Mortier, A., Faria, J. P., Correia, C. M., Santerne, A., & Santos, N. C. 2015, A&A, 573, A101

Nardetto, N., Mourard, D., Kervella, P., et al. 2006, A&A, 453, 309

Needell, D. & Tropp, J. 2009, Applied and Computational Harmonic Analysis, 26, 301

Nelson, B. E., Ford, E. B., Wright, J. T., et al. 2014, MNRAS, 441, 442

Newton, I. 1687, Philosophiae naturalis principia mathematica (Jussu Societatis Regiæ ac
Typis Josephi Streater)
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Appendix A

A note on optimum weight

The goal of Bouchy et al. (2001) is to compute the fundamental noise limit on the radial
velocity estimated from a spectrum. It follows a computation of (Connes 1985) that proceeds
this way.

The Doppler shift δV is given in a non relativistic setting as

δV

c
=
δλ

λ
(A.1)

where δλ is the shift in frequency. One considers then an ideal noiseless spectrum A0, nor-
malized, that corresponds to a reference velocity. Now let us consider a measured spectrum
A also normalized, noisy, as an array whose i-th value is the power measured by a CCD pixel
centred on λi. Then the shift in wavelength and velocity δλ(i) respectively δV (i) estimated
from the pixel i verifies

A(i)−A0(λi) = A(λi − δλ(i))−A0(λi) ≈ −
∂A0

∂λ
(λi)δλ(i) = −∂A0

∂λ
(λi)

λiδV (i)

c
. (A.2)

We use notations A(i) -and A0(λi) since A is measured on the CCD and A0 is a theoretical
spectrum. Then

δV (i)

c
= − A(i)−A0(λi)

λ(i)(∂A0(λi))/∂λ
. (A.3)

The estimate of the Doppler velocity is now supposed to be a weighted sum of individual
estimates as given in the equation above,

δV

c
=

∑ δV (i)
c W (i)∑
W (i)

.

It is then claimed that the optimal weighting is given by

W (i) =
1

(
δVRMS(i)

c

)2 .

In Connes (1985), at this point, it is mentioned that the full calculation is available in Connes
(1984), but which is unpublished and unavailable. Though not precisely defined, it seems clear
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that in this context optimality means that the RV estimate is as precise as possible, since
one wants to find the lowest error possible.

We just wish to make a simple point: P. Connes probably meant that δV (i) are considered
as independent random variables of known variances, and he wished to minimize the variance
of their sum δV

c . Considering a weighted sum means that the expectancy remains the same
as the mean of the arithmetic mean of the δV (i) and is therefore unbiased. At least with
those two assumptions on what the claim is, it is correct. To see that, let us remark that,
denoting by εi = δV (i)/c the random variables and σ2

i their variances. As long as the εi are
independent,

Var

{
n∑

i=1

wiεi

}
=

n∑

i=1

w2
i σ

2
i (A.4)

We then wish to solve

arg min
w1...wn

n∑

i=1

w2
i σ

2
i s.t.

n∑

i=1

wi = 1. (A.5)

The Lagrangian function associated to that minimization problem is

L(w, λ) =

n∑

i=1

w2
i σ

2
i + λ

(
n∑

i=1

wi − 1

)
. (A.6)

Differentiating with respect to w and λ yields

∀i, 2wiσ
2
i + λ = 0 (A.7)
n∑

i=1

wi = 1 (A.8)

multiplying the first equations by 1/σ2
i and summing up yields λ = −2/

∑ 1
σ2
i
. We then

obtain the weights wi as desired

∀i, wi =

1
σ2
i

n∑
i=1

1
σ2
i

=

1(
δVRMS(i)

c

)2

n∑
i=1

1(
δVRMS(i)

c

)2

=
W (i)
n∑
i=1

W (i)

(A.9)

As a concluding remark, A0(λ) is defined as the mean number of photon per unit time of the
theoretical spectrum. Denoting by N(i) = n(i) + nD(i) the number of photons counted at
pixel i during the integration time ∆t, where n is the number of photons from the slit and
nD the error due to the detector, we have A(i) = N(i)/∆t and

σ2
i Var

{
δV

c
(i)

}
=

σ2
D

(∆t)2
+ A0(λi)

∆t

λ2
i
∂A0
∂λ (λi)

(A.10)
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where σ2
D(i) = Var{nD(i)}. Given that Var{

∑
iwiε1} =

∑
i σ

2
i /σ

4
i /(
∑

i 1/σ2
i )

2 = 1/(
∑

i 1/σ2
i )

we obtain the formula (1.10). Note that we express the formula in terms of flux and integra-
tion time instead of counted electrons as Bouchy et al. (2001). The reason behind this choice
is that formula (1.10) emerges from the computation of a variance. As a consequence the
mean quantities have to appear. The number of electrons received is, from a statistical point
of view, an estimator of the mean of the Poisson process (the flux F ) times the integration
time.
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Appendix B

Proof of theorem 5

Let us consider the following minimization problem

arg min
x∈Rn

‖x‖`q s. t. Ax = y. (P`q)

We wish to prove the following theorem.

Theorem (Foucart & Lai (2009), modified). Provided that

γS,1 < s1/q−1/24(
√

2− 1) + 1 (B.1)

and

β2
2 − α2

2 6 β2
S,1 − α2

S,1 (B.2)

then all vector xt with support in S is exactly recovered by solving (P`q) with y = Axt.

where

Definition (Condition number bound relative to S). Let S be a subset of s indices of {1..n}.
Let be γS,1 = β2

S,1/ α
2
S,1 where βS,1 and αS,1 are the tightest constants such that for any vector

ak, kth column of A with k ∈ S̄, the concatenation of AS and ak, [AS ,ak] verifies

∀z ∈ Rn or Cn, ‖z‖`0 6 s+ 1, αS,1‖z‖`2 6 ‖[AS ,ak]z‖`2 6 βS,1‖z‖`2 (B.3)

The following demonstration is very similar to the demonstration of step 1 of Theorem 2.1
in Foucart & Lai (2009). The change consists in obtaining a recovery condition not for all
signals with s non zero components, but only the signals that has non zero components in a
set of indices S. This leads to a weaker result in some sense, but also to weaker conditions
for exact recovery that can be hoped to be checked in practice. In the proof, with the paper
notation, we take t = 1 instead of t > s. We only prove the noiseless case, which necessitates
only to prove one part of the theorem. Finally we use our hypothesis equation (B.13).

Proof. Let us consider a vector v ∈ kerA. We will prove that under the conditions of the
theorem, ‖vS‖`1 < ‖vS̄‖`1 . In other words A satisfies the `q null space property relative to
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S, which ensures uniqueness of the solution of (P`q) for vectors with components in S. Let
us note vk, k = 1..n− |S| the components of v in S̄ ordered by decreasing value. We have

‖vS‖2 + ‖v1‖2 = ‖vS + v1‖2 6 1

α2
S,1

‖A(vS + v1)‖2 (B.4)

=
1

α2
S,1

〈A(v − v2 − ...),A(vS + v1)〉 (B.5)

=
1

α2
S,1

〈Av,A(vS + v1)〉+
1

α2
S,1

∑

k>2

[〈A(−vk),AvS〉+ 〈A(−vk),Av1〉]

(B.6)

=
1

α2
S,1

∑

k>2

[〈A(−vk),AvS〉+ 〈A(−vk),Av1〉] (B.7)

The last equality coming from Av = 0. Let us denote by uk = −vk/‖vk‖ and uS = vS/‖vS‖.
Then

〈A(−vk),AvS〉
‖vk‖‖vS‖

= 〈Auk,AuS〉 =
1

4

(
‖A(uk + uS)‖2 − ‖A(uk − uS)‖2

)
(B.8)

6 1

4

(
β2
S,1‖uk + uS‖2 − α2

S,1‖uk − uS‖2
)

=
1

2
(β2
S,1 − α2

S,1).

(B.9)

Since uk and uS are orthogonal, therefore ‖uk +uS‖2 = ‖uk‖2 + ‖uS‖2 = 2. Similarly, since
vk and v1 have only one non zero component,

〈A(−vk),Av1〉
‖vk‖‖v1‖

= 〈Auk,−Au1〉 =
1

4

(
‖A(uk − u1)‖2 − ‖A(uk + u1)‖2

)
(B.10)

6 1

4

(
β2

2‖uk − u1‖2 − α2
2‖uk + u1‖2

)
=

1

2
(β2

2 − α2
2).

(B.11)

Combining the two inequalities above yields

〈A(−vk),AvS〉+ 〈A(−vk),Av1〉 6
‖vk‖

2

(
(β2
S,1 − α2

S,1)‖vS‖+ (β2
2 − α2

2)‖v1‖
)

(B.12)

Now using our hypothesis β2
S,1 − α2

S,1 > β2
2 − α2

2,

〈A(−vk),AvS〉+ 〈A(−vk),Av1〉 6
β2
S,1 − α2

S,1

2
‖vk‖(‖vS‖+ ‖v1‖) (B.13)

We then have

‖vS‖2 + ‖v1‖2 6


γS,1 − 1

2

∑

k>2

‖vk‖


 (‖vS‖+ ‖v1‖) (B.14)



169

Let us denote by d =
γS,1−1

2 et Σ =
∑
k>2

|vk|. The above inequality can be re-written

(
‖vS‖ −

dΣ

2

)2

+

(
‖v1‖ −

dΣ

2

)2

6 d2Σ2

2
(B.15)

from which we deduce

‖vS‖ 6
1 +
√

2

2
dΣ (B.16)

Moreover, Σ =
∑
k>2

‖vk‖ 6
∑
k>1

‖vk‖ =
∑
k>1

|vk| = ‖vS̄‖`1 . Using Hölder inequality,

‖vS‖`1 6 s1/2−1/q‖vS‖ 6
1 +
√

2

2
d‖vS̄‖`1 6 1 +

√
2

2
d‖vS̄‖`q . (B.17)

As a consequence, ‖vS‖`q < ‖vS̄‖`q as soon as γS,1 < s1/q−1/24(
√

2 − 1) + 1. In case q = 1,

the condition becomes γS,1 <
1√
s
4(
√

2− 1) + 1.
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Appendix C

Formulas

C.1 First order approximation

In this section, we developp the Keplerian model to first order in eccentricity to obtain an
analytical expression of the bias. Within this approximation, the distribution of the least
square fit knowing that e = 0 is given in Lucy & Sweeney (1971). This section extends
their formula to small e, and takes into account the number of fitted parameters. First, we
develop (1.2) to order one in e, obtaining

y(λ,K, P, e, ω) = K(cos(λ) + e cos(2λ− ω)) (C.1)

where λ = nt+ ω = λ0 + 2πt/P is the mean longitude, λ0 being its value at t = 0. Denoting
by n = 2π/P the mean motion, the above expression can be re-written

y(1)(t, A,B,C,D, n) = A cosnt+B sinnt+ C cos 2nt+D sin 2nt (C.2)

where A = K cosλ0, B = −K sinλ0, C = Ke cos(2λ0 − ω), D = −Ke sin(2λ0 − ω). When
other parameters are fitted, the uncertainties on A,B,C,D increases as well. To quantify
this effect, we consider the problem of fitting the period and a constant.

y(2)(t, A,B,C,D,E, F ) = A cosnt+B sinnt+ C cos 2nt+D sin 2nt+ E
∂y

∂n
(t) + F. (C.3)

which in a matrix form gives

y(2)(t, A,B,C,D,E, F ) = M(P )x. (C.4)

Let us assume that the observations are y(t) = M(P )xt + ε, where ε is a Gaussian noise,
independent and identically distributed with variance σ2. The least square estimate of x is
x̂ = (MTM)−1MTy, and the estimate of eccentricity is

ê =

√
Ĉ2 + D̂2

Â2 + B̂2
=

√
Ĉ2 + D̂2

Kt

(√
Â2 + B̂2

Kt

)−1

, (C.5)

where Kt is the true semi-amplitude. By change of random variable we can obtain the
law followed by ê. If we assume that N is large enough then the columns of M(P ) are
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approximately orthogonal, the components of x̂ are independent Gaussian variables. Since
the modulus of a sum of independent Gaussian variables follows a Rice distribution,

U ≡

√
Ĉ2 + D̂2

Kt
∼ g(u) = S2u e−

S2

2
(u2+e2t ) I0(S2eu) (C.6)

W ≡

√
Â2 + B̂2

Kt
∼ h(w) = S2w e−

S2

2
(w2+1) I0(S2w) (C.7)

where I0 is a modified Bessel function of first kind, S = Kt/σ is the signal to noise ratio,
where σ is the standard deviation of Â, B̂, Ĉ and D̂. If K is sufficiently large, W is close to
1 and g(u) gives a good approximation of the law followed by the eccentricity fitted. Within
this approximation, one can obtain analytical formula for the bias b of the eccentricity that
only depends on the true eccentricity and the signal to noise ratio,

b(et, S, n) =
1

S

√
π

2
L1/2

(
S2e2

t

2

)
− et. (C.8)

where L1/2 is the Laguerre polynomial of order 1/2. In case Kt is small, one must use the
formula for the law followed by the quotient of two random variables:

ê =
U

W
∼ f(e) =

∫ +∞

−∞
g(u)h(ue)|u|du (C.9)

but no simple analytical expression was found.
When fitting model (C.4) to y(t), the estimate θ̂ will have a covariance matrix Σ−1 where

Σ = σ2(M(P )TM(P )) (this is a classical statistical result, see for example Pelat (2013)).
The variances of the components of x̂ are given by the diagonal elements of Σ−1. Their
approximate calculation is the object of the next section. For a deeper analysis, one can
study the behaviour of the error on average or for each n, which is done section C.2.

C.1.1 Average error

First we consider the estimation of the error on A,B,C,D when averaging over the mean
motion n. At little cost, we will generalize our claim to the fitting of model (C.3) plus
fitting other linearised Keplerian model. This approximately corresponds to fitting a multi-
planetary system starting closely from the correct local minimum of χ2. Again, the model can
be written as a linear one, y = Mx but where M has p = 6+5k columns, k being the number
of additional planets. To facilitate the discussion, we will normalize the columns of M. To
have an expression of the model of the form (C.4), we have multiply the kth component of θ
by the norm of the kth column of M . The variances of these new model parameters are still
given by the diagonal elements of σ2Σ−1 where Σ = (MTM), but now Σ has only ones on
its diagonal.

Calculating precisely the uncertainty on A,B,C,D averaged over n and the phase of the
signal as a function of the instant of observations t is complex since it requires the inversion
of σ which is a 6 + 5k× 6 + 5k matrix. We will instead use an approximation that grasps the
effect we want to estimate: how the uncertainty worsens as more parameters are added to the
model. We will consider that the elements of M are drawn from independent Gaussian laws
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that have a variance 1/N . To avoid confusion with the true model, the so defined random
matrix is denoted by M̃ and its covariance matrix by Σ̃.

This approximation seems to be rough at first but will turn out to be surprisingly accurate
as a lower bound in practice. We will list a few arguments that make it a reasonable guess:

• The variances of the entries were chosen such that the expectancy of a squared norm
of a column is one, which is the value of Σ diagonal elements.

• The columns are cosines and sines, which are approximately orthogonal, and in the
Gaussian case decorrelation implies independence. Furthermore, the average of the
spectral window is equal to the expected value of a correlation between two random
Gaussian variables.

• The normed vectors cos νt and sin νt are approximately distributed uniformly on the
sphere of RN when ν is distributed uniformly between 0 and 2π/Tobs.

The expected value of the variance of any parameter is the expected value of any diagonal
element of Σ−1, since all the columns of M̃ follow the same law. To tackle that problem, we
rewrite Σ̃ as

Σ̃ = σ2

(
Σ11 ΣT

1

Σ1 Σc

)

Where Σ11 is Σ̃ element at first row and first column and Σ1 is a column vector with N − 1
entries. We now have

E{Σ̃−1
11 } =

1

σ2
E
{

1

Σ11 −ΣT
1 Σ−1

c Σ1

}

By Jensen inequality (Jensen 1906), since x→ 1/x is convex,

E{Σ̃−1
11 } 6

1

σ2

1

E
{
Σ11 −ΣT

1 Σ−1
c Σ1

} .

Now since for two independent variables X and Y , E{XY } = E{X}E{Y },

ΣT
1 Σ−1

c Σ1 =

p∑

k=2

E{Σ2
1k}E{Σ−1

c,kk} 6
p∑

k=2

E{Σ2
1k} = 1− p− 1

N

As by construction E {Σ11} = 1, we finally obtain

E{Σ̃−1
11 } 6

1

σ2

1

1− p−1
N

where the inequality follows again from Jensen’s inequality applied to matrix inversion. Fi-
nally, the standard deviation on I = A,B,C,D is

σI > σ

√
1

1− p−1
N

(C.10)
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With the approximation ‖ cos νt‖ ≈ ‖ sin νt‖ ≈
√
N/2, the errors on k = C/

√
A2 +B2 and

k = D/
√
A2 +B2 then verify

σk &
σ

Kt

√
2

N
σI =

σ

Kt

√
2

N − p+ 1
=: 1/S. (C.11)

As k and h approximately follow a Gaussian law, e =
√
k2 + h2 follows a Rice distribution,

whose mean is given by

E{ê} =
1

S

√
π

2
L1/2

(
S2e2

t

2

)
. (C.12)

E{ê|et = 0} =
σ

Kt

√
π

N − p+ 1
(C.13)

L1/2 being the Laguerre polynomial of degree 1/2. The relevance of formula (C.12) is checked
on numerical examples next section. As we shall see, the lower bound is tight when p does
not exceeds ≈ N/2.

Let us finally stress that formula (C.12) approximates the bias averaged on the mean
motion, that is the frequency of the orbit, not the period. Averaging on the period would
give more weight to the bias at low frequencies, which is high, and would therefore lead to a
greater average value of the bias.

C.2 Error per period

The formula (C.12) shows what happens on average for all periods. However, in some cases
the model M(t) can have a behaviour that is very different from the asymptotic expressions
for large N . We made some attempts to approximate the behaviour of the error as a function
of n, and we found unlikely that a formula would sum up relevant information. It seems best
to directly compute the diagonal elements of Σ−1 to obtain the variances of A,B,C,D and to
compute numerically the mean fitted eccentricity via formula (C.5), where A,B,C,D follow
Gaussian laws.

For the sake of completeness, let us note that the diagonal of Σ(n)−1 will drastically differ
from one if Σ(n) differs much from identity. Interestingly enough, it is possible to express
Σ(n) as a function of the spectral window W and its derivative,

W (n) =
1

N

N∑

k=1

eintk (C.14)

W ′(n) =
i

N

N∑

k=1

tk eintk . (C.15)

We choose the origin of time such that y(t) = K cosnt and make the approximation

‖ cosnt‖ = ‖ sinnt‖ = ‖ cos 2nt‖ = ‖ sin 2nt‖ =

√
N

2
(C.16)

‖t cosnt‖ =

√
‖t‖ −NR(W ′′(2n))

2
≈ ‖t‖√

2
(C.17)
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Figure C.1: Effect of the period of the signal on the bias when et = 0

where R(z) denotes the real part of complex number z, Σ reads

Σ(t) =



1 I(W (2n)) R(W (n) +W (3n)) I(W (n) +W (3n))
‖t‖1+NI(W ′(2n))√

N‖t‖ 2R(W (n))

I(W (2n)) 1 I(−W (n) +W (3n)) R(W (n)−W (3n)) −
√

N
‖t‖R(W (2n)) 2I(W (n))

R(W (n) +W (3n)) I(−W (n) +W (3n)) 1 I(W (4n))
√

N
‖t‖ I(W

′(n) +W ′(3n)) 2R(W (2n))

I(W (n) +W (3n)) R(W (n)−W (3n)) I(W (4n)) 1 −
√

N
‖t‖R(W ′(n) +W ′(3n)) 2I(W (2n))

‖t‖1+NI(W ′(2n))√
N‖t‖ −

√
N

‖t‖R(W (2n))
√

N
‖t‖ I(W

′(n) +W ′(3n)) −
√

N
‖t‖R(W ′(n) +W ′(3n)) 1

√
2N

‖t‖ I(W
′(n))

2R(W (n)) 2I(W (n)) 2R(W (2n)) 2I(W (2n)) 2
√

2N
‖t‖ I(W

′(n)) 1


.

(C.18)

It means that specifically the value of W and W ′ at n, 2n, 3n, 4n are determinant to have a
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Figure C.2: Top: Eccentricity bias of the linear model as a function of the period. Bottom:
condition number of the Fisher information matrix as a function of period. The measurement
times are the first 40 measurements of GJ 876 (Correia et al. 2010).

good estimate of eccentricity.

To summarize our results, we plot the value of the bias per period in several situations.
At each period P , the bias corresponds to the mean eccentricity obtained when the a planet
injected in circular orbit at period p with K = 3 m.s-1 is fitted with the linearised model (the
noise is set to 1 m.s-1). In figures C.1 and C.2, the bias is computed on 1000 simulations with
the linearised model. Figure C.1, left and right respectively correspond to a period range of
0.6 to 10 days and 0.6 to 1000 days. The two top figures represent the bias for the fitting of
a single planet with the 30 first measurement times of HD10180. On the bottom figures, we
take the 100 first measurements and fit a model with 2 planets, plus one planet at the period
considered. The 2 planets account for the 4 peaks that reach e = 1 on Fig. C.1, bottom right.
Which occur when P = Pi or P = Pi/2, Pi being the periods of the two planets fitted.

The estimate of the bias amplitude provided by Lucy & Sweeney (1971) is represented
in yellow. The mean bias computed from the simulation is represented in red, and our
approximation (equation (C.13)) in purple. There is a good agreement between this latter
formula and the mean bias computed with the linear model. In both cases, one sees that
the bias increases at high period. We interpret this fact as the fact that the condition
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number increases as the model cos 2πt/P , sin 2πt/P becomes more and more correlated to
the constant as P to infinity. To clarify the role of the condition number, on Fig. C.2, we
plot the bias on eccentricity and the condition number of the linearised model as a function
of period. There is a strong correlation between a high condition number and a high bias.
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Appendix D

Optimal approximation by linear
subspaces

In the following, f represents the function u(e, .) : ω ∈ [0, 2π] 7→ u(e, ω) ∈ Rn, and I = [0, 2π].

Theorem 8. Let f : t ∈ I ⊂ R → Rn be a continuous function and A be the n × n
positive semi-definite matrix defined as A =

∫
I f(t)f(t)T dt. Let us denote PS : Rn → Rn the

projection onto a vector subspace S, and by Sd the set of subspaces of Rn of dimension d.
Then the subspace solution of

S?d = arg min
S∈Sd

∫

I
‖f(t)− PS(f(t))‖2 dt (D.1)

is generated by the d eigenvectors of A with the highest eigenvalues.

Proof. The above problem is equivalent to finding an orthonormal base of S?d ,

arg min
(ek)k=1..d∈Rn

∫

I

∥∥∥∥∥f(t)−
d∑

k=1

〈f(t), ek〉ek

∥∥∥∥∥

2

dt (D.2)

∀k, l ∈ {1..d}, k 6= l, 〈ek, el〉 = 0 (D.3)

∀k ∈ {1..d}, ‖ek‖ = 1 (D.4)

where 〈, 〉 denotes the usual Euclidian scalar product in Rn. Hereafter, for brevity, conditions
(3) and (4) are assumed to hold, but are not written anymore. Developping equation 2, due
to the orthonormality of the ek, we obtain

arg min
(ek)k=1..d∈Rn

∫

I
‖f(t)‖2 dt−

d∑

k=1

∫

I
〈f(t), ek〉2 dt. (D.5)

Since the norm of f(t) does not depend on the ek, our problem comes down to finding the
solution of the maximisation problem

arg max
(ek)k=1..d∈Rn

d∑

k=1

∫

I
〈f(t), ek〉2 dt. (D.6)
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Furthermore, for any two vectors (u,v) ∈ Rn, we have 〈u,v〉2 = 〈v,u〉〈u,v〉 = vTuuTv.
Thus, moving the constant vectors ek out of the integral, the problem can be written

arg max
(ek)k=1..d∈Rn

d∑

k=1

ek
T

(∫

I
f(t)f(t)T dt

)
ek (D.7)

We recognize the matrix A of the theorem. By construction, this is a positive semi-definite
matrix. We proceed by recurrence on d. For d = 1, a classical result of linear algebra is that
the solution is the eigenvector associated with the maximum eigenvalue of A. Let us suppose
that for d ≥ 2, the solution of Pd−1 are the d− 1 first normed eigenvectors of A, v1..vd−1.

Let us consider a subspace W of dimension d. We have

dim
(
W ∩ (Sd−1)⊥

)
= N − dim

(
W ∩ (Sd−1)⊥

)⊥

= N − dim
(
W⊥ + Sd−1

)

and

dim
(
W⊥ + Sd−1

)
6 dim

(
W⊥

)
+ dim (Sd−1) = N − d+ d− 1 = N − 1

Therefore

dim
(
W ∩ (Sd−1)⊥

)
> 1

It means that there there exists a vector of W which is orthogonal to Sd−1, which we can
choose so that it has unit norm, and that we denote by wd. By the incomplete basis theorem,
we there exists d−1 vectors wk ∈ W such that (wk)k=1..d forms a basis, which can be chosen
to be orthonormal. Then

|〈Awd,wd〉| 6 max
x∈(Sd−1)⊥,‖x‖=1

|〈Ax,x〉| 6 σ2
d = 〈Avd,vd〉 (D.8)

1 where σ2
d is the d-th eigenvalue of A in decreasing order and vd the associated eigenvector.

Secondly, by inductive hypothesis we have

d−1∑

k=1

|〈Awk,wk〉| 6
d−1∑

k=1

|〈Avk,vk〉| (D.9)

Summing respectively left hand sides and right hand sides of equations (D.8) and (D.9) we
obtain

d∑

k=1

|〈Awk,wk〉| 6
d∑

k=1

|〈Avk,vk〉| (D.10)

To conclude W = Sd is an acceptable choice and equation (D.10) ensures that it maximizes
equation (D.6). This achieves the induction step and the proof.

1Note that the absolute values can be dropped since A is positive.



Appendix E

Residual analysis

In this section we will compute the law followed by the residuals of a linear least-square fit.
Let us suppose that we have a model

y = Ax+ ε, ε ∼ G(0,V)

where y is a vector of N observations, modelled as a linear combination of the column of the
N × p matrix A, and ε is a Gaussian noise of covariance matrix V =: W−1. Assuming V
and A are known, the least square estimate of y is ŷ = A(ATWA)−1ATWy Therefore

W1/2(y − ŷ) = W1/2
(
Ax+ ε−A(ATWA)−1ATW(Ax+ ε)

)

= W1/2(IN −B)ε

=: rW

where IN is the identity matrix of size N and B := A(ATWA)−1ATW. The quantity rW ,
being a product of a matrix (W1/2(In −B)) with a Gaussian random variable of covariance
V has a covariance U

U = W1/2(IN −BT )V(IN −B)W1/2

= W1/2(V −BV −VBT + BVBT )W1/2

since W1/2VBT =W−1/2BTW1/2 = W1/2BVBTW1/2,

U = IN −W1/2BTW−1/2

= IN −C(CTC)−1CT

where C = W1/2A. This notation is convenient because it shows clearly that P = C(CTC)−1CT

is a projection matrix on the space generated by the columns of C. Finally

U = IN −P (E.1)

Is a projection on the space orthogonal to the one generated by C columns. Therefore, there
exists an orthonormal matrix Q such that

QTUQ = Jp
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where Jp is a diagonal matrix whose first p elements are zero and the others are equal to
one. Finally, let us remark that rQW := QTrW has a covariance matrix QTUQ = Jp, which
shows the claim of section 3.4.2, QTW1/2(y − ŷ) has p 0 components and the others are
Gaussian variables of mean 0 and variance 1.

Let us finally note that the covariance matrix U = IN − P of rW = W1/2(y − ŷ) will be
close to identity if there are many more observations than parameters. This explains why the
weighted residuals rW almost behaves like independent Gaussian variables and, for instance,
why plotting rW (ti)− rW (tj) as a function of ti − tj gives hints on the correlations.



Appendix F

Details on the frequentist
methodology

In this section, we outline the calculation of the confidence intervals for eccentricity. Such
an interval is constructed as a set of eccentricities that are not rejected by a hypothesis test.
We choose the likelihood ratio test:

e is rejected if R :=

max
θ∈Θe

f(y|θ)

max
θ∈Θ

f(y|θ)
6 β

where y denotes the actual observations, f(y|θ) denotes the likelihood, Θe is the set of
parameters with eccentricity e, and β is a constant which will be made explicit later. Our
aim is to compute the distribution of R under the assumption that the random variable giving
the observations is Y = yt + ε, ε being a Gaussian noise. We further assume the noise is
independent and identically distributed, the condition translates to

e is rejected if D := ‖y − y(θe)‖2 − ‖y − y?‖2 > −2σ2 lnβ (F.1)

where θe = arg min
θ∈Θe

‖y − y(θ)‖2, σ2 is the variance of the observations and y? is the global

minimum. We will now compute the law followed by D, so that we can select a β that
corresponds to a false alarm probability. Since D is defined implicitly, the calculation of its
distribution is difficult. We will make two simplifying assumptions that will allow us to obtain
an analytical expression. The expression will then be tested on real cases through numerical
simulations.

Let us first consider the linear approximation y = Mxt + ε where M is defined as in (C.3)
and (C.4). We further suppose that the columns of M are orthonormal. Since the columns
are originally of the form cosnt, sinnt, cos 2nt, sin 2nt, they must be multiplied by

√
2/N

and the amplitude of the signal is no Kt but Kt

√
N/2. We look for the solution θ̂e defined

as

θ̂e = arg min
x∈Rp

‖y −Mx‖ subject to

√
x2

3 + x2
4

x2
1 + x2

2

= e. (F.2)

Thanks to the Lagrange multipliers theorem, θ̂e satisfies the conditions

∂L

∂x
= 0,

∂L

∂λ
= 0, where (F.3)
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L(x, λ) =
1

2
‖y −Mx‖2 +

λ

2
xTEx (F.4)

with
E = diag

(
−e2,−e2, 1, 1, 0, . . . , 0

)
. (F.5)

The condition ∂L/∂x = 0 leads to

(
MTM + λE

)
x = MTy. (F.6)

Since the columns of M are orthonormal, MTM is the identity, thus

x1 =
u1

1− λe2
, x2 =

u2

1− λe2
, x3 =

u3

1 + λ
, x4 =

u4

1 + λ
, (F.7)

and xj = uj , ∀j ≥ 5, where we have defined ui = Mi
Ty, Mi being the i-th column of M.

The first four components of x are also constrained by ∂L/∂λ = 0. Let U = u2
1 + u2

2 and
V = u2

3 + u2
4. We get

−e2

(1− λe2)2
U +

1

(1 + λ)2
V = 0, (F.8)

or, equivalently,
e2(e2V − U)λ2 − 2e2(V + U)λ+ V − e2U = 0, (F.9)

whose solutions are

λ± =
e2(U + V )± e(1 + e2)

√
UV

e2(e2V − U)
. (F.10)

For the solution θ̂e to actually be a minimum of L, all its eigenvalues must be positive, i.e.,
λ must verify −1 < λ < 1/e2. Only λ− fulfils this criterion, thus

λ =
e2(U + V )− e(1 + e2)

√
UV

e2(e2V − U)
, (F.11)

and

x1 =
1 + e2

0

1 + e2
u1, x2 =

1 + e2
0

1 + e2
u2, x3 =

e2

e2
0

1 + e2
0

1 + e2
u3, x4 =

e2

e2
0

1 + e2
0

1 + e2
u4, (F.12)

with e4
0 = e2V/U . After a few calculation, we show that

D =
4∑

k=1

(uk − xk)2 =

(
e
√
u2

1 + u2
2 −

√
u2

3 + u2
4

)2

1 + e2
. (F.13)

Let x = e
√
u2

1 + u2
2/Kt and y =

√
u2

3 + u2
4/Kt. These two random variables follow Rice

distributions with parameters

νx = e

√
N

2
, σx =

eσ

Kt
, νy = e

√
N

2
, σy =

σ

Kt
. (F.14)

An expansion of the product term shows that D behaves approximately as a weighted sum
of variables following a χ2 distribution. We can then use the Welch-Satterthwaite approxi-
mation (Satterthwaite 1946; Welch 1947): D approximately follows a χ2 distribution whose
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number of degrees of freedom ν is given by E{D}. In the following, we denote by S′ = Kt
σ

√
N
2

the signal to noise ratio. The expected value of D is

E{D} =
K2
t

1 + e2

∫ ∞

0

∫ ∞

0
(x− y)2f(x|νx, σx)f(y|νy, σy) dxdy,

=
K2
t

1 + e2

[
2σ2

x + ν2
x + 2σ2

y + ν2
y − πσxσyL 1

2

(
− ν2

x

2σ2
x

)
L 1

2

(
−
ν2
y

2σ2
y

)]

=
K2
t

1 + e2

[
2
σ2

K2
t

(1 + e2) +Ne2 − eπ σ
2

K2
t

L 1
2

(
−S

′2

2

)
L 1

2

(
−e

2S′2

2

)]
.

(F.15)

With ν = E{D}/σ2, we get

ν = 2 + 2S′2
e2

1 + e2
− πe

1 + e2
L 1

2

(
−S

′2

2

)
L 1

2

(
−e

2S′2

2

)
. (F.16)

To obtain a confidence level α, then we need to take −2 lnβ = F−1
χ2
ν

(1 − α) where F−1
χ2
ν

is

the inverse cumulative distribution function of a χ2 distribution with ν degrees of freedom.
Conversely, it is possible to convert a measured D to a probability simply by computing
αe = 1− Fχ2

ν
(D). The hypothesis et = e is rejected if αe is below a certain threshold.

This formula was tested numerically. It is in very good agreements with the simulations
as soon as S′ is above ≈ 20. As it decreases, the average of estimated eccentricity increases
(which is exactly saying that the bias increases) therefore the approximation of low eccentric-
ities does not hold any more. The value of S′ can be evaluated keeping in mind that when
the linearised model at e = 0 is poorly conditioned, (matrix M, as defined equations (C.3)
and (C.4)), then the uncertainty on k and h is higher than given by the simple formula (C.11)
and the S′ analytical approximation is inoperative.
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Appendix G

Hara, Boué, Laskar & Correia 2017

This section contains the last version of Hara et al. (2017). We refer to section “G.i” as the
section i of the article for i = 1..6. Sections G.7 to G.10 refer to the appendices of the article
(A to D).
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ABSTRACT
We present a novel approach for analysing radial velocity data that combines two features:
all the planets are searched at once and the algorithm is fast. This is achieved by utilizing
compressed sensing techniques, which are modified to be compatible with the Gaussian process
framework. The resulting tool can be used like a Lomb–Scargle periodogram and has the same
aspect but with much fewer peaks due to aliasing. The method is applied to five systems with
published radial velocity data sets: HD 69830, HD 10180, 55 Cnc, GJ 876 and a simulated
very active star. The results are fully compatible with previous analysis, though obtained more
straightforwardly. We further show that 55 Cnc e and f could have been respectively detected
and suspected in early measurements from the Lick Observatory and Hobby–Eberly Telescope
available in 2004, and that frequencies due to dynamical interactions in GJ 876 can be seen.

Key words: methods: data analysis – techniques: radial velocities – planets and satellites:
detection.

1 IN T RO D U C T I O N

1.1 Overview

Determining the content of radial velocity data is a challenging task.
There might be several companions to the star, unpredictable instru-
mental effects as well as astrophysical jitter. Fitting separately the
different features of the model might distort the residual and pre-
vent one from finding small planets, as pointed out for instance by
Anglada-Escudé, López-Morales & Chambers (2010) and Tuomi
(2012). There might even be the cases where, due to aliasing and
noise, the tallest peak of the periodogram is a spurious one while
being statistically significant. To overcome those issues, recent ap-
proaches privilege the fitting of the whole model at once. In those
cases, the usual framework is the maximization of an a posteriori
probability distribution. In order to avoid being trapped in a sub-
optimal solution, random searches such as Monte Carlo Markov
chain methods or genetic algorithm are used (e.g. Gregory 2011;
Ségransan et al. 2011). The goal of this paper is to suggest an al-
ternative method using convex optimization, therefore offering a
unique minimum and faster algorithms.

To do so, we will not try to find directly the orbital parameters
of the planets but to unveil the true spectrum of the underlying
continuous signal, which is equivalent. The power spectrum is often
estimated with a Lomb–Scargle periodogram (Lomb 1976; Scargle
1982) or generalizations (Ferraz-Mello 1981; Cumming, Marcy &
Butler 1999; Zechmeister & Kürster 2009). However, as said above,
the estimation of the power spectrum with one frequency at a time
has severe drawbacks. To improve the estimate, we introduce a priori

� E-mail: nathan.hara@obspm.fr

information: the representation of exoplanetary signal in the Fourier
domain is sparse. In other words, the number of sine functions
needed to represent the signal is small compared to the number of
observations. The Keplerian models are not the only ones to verify
this assumption, stable planetary systems are quasi-periodic as well
(e.g. Laskar 1993). By doing so, the periodogram can be efficiently
cleaned (see Figs 1–5).

The field of signal processing devoted to the study of sparse sig-
nals is often referred to as ‘compressed sensing’ or ‘compressive
sampling’ (Candès, Romberg & Tao 2006b; Donoho 2006) – though
it is sometimes restricted to sampling strategies based on sparsity
of the signal. The related methods show very good performances
and are backed up by solid theoretical results. For instance, com-
pressed sensing techniques allow one to recover exactly a spectrum
while sampling it at a much lower rate than the Nyquist frequency
(Mishali, Eldar & Tropp 2008; Tropp et al. 2010). Its use was ad-
vocated to improve the scientific data transmission in space-based
astronomy (Bobin, Starck & Ottensamer 2008). Sparse recovery
techniques are also used in image processing (e.g. Starck, Elad &
Donoho 2005).

It seems relevant to add to that list a few techniques developed
by astronomers to retrieve harmonics in a signal. In the next sec-
tion, we show that even though the term ‘sparsity’ is not explicitly
used (except in Bourguignon, Carfantan & Böhm 2007), some of
the existing techniques have an equivalent in the compressed sens-
ing literature. After those remarks on our framework, the paper is
organized as follows: in Section 2, the theoretical background and
the associated algorithms are presented. Section 3 presents in de-
tail the procedure we developed for analysing radial velocity data.
This one is applied in Section 4 to simulated observations and four
real radial velocity data sets: HD 69830, HD 10180, 55 Cnc and
GJ 876 and to a simulated very active star. The performance of
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the method is discussed in Section 5, and conclusions are drawn
in Section 6.

1.2 Previous work

The goal of this paper is to devise a method to efficiently analyse
radial velocity data. As it builds upon the retrieval of harmonics,
the discussion will focus on spectral synthesis of unevenly sampled
data (see Kay & Marple 1981; Schwarzenberg-Czerny 1998; Babu
& Stoica 2010, for surveys).

First, let us consider the methods that are efficient to spot
one harmonic at a time. The first statistical analysis is given by
Schuster (1898). However, the statistical properties of Schuster’s
periodogram only hold when the measurements are equispaced in
time. When this is not the case, one can use Lomb–Scargle peri-
odogram (Lomb 1976; Scargle 1982) or its generalization consisting
in adding a constant to the model (Ferraz-Mello 1981; Cumming
et al. 1999; Reegen 2007; Zechmeister & Kürster 2009). More
recently, Mortier et al. (2015) derived a Bayesian periodogram as-
sociated with the maximum of an a posteriori distribution. Also,
Cumming (2004) and O’Toole et al. (2009) define the Keplerian
periodogram, which measures the χ2 of residuals after the fit of a
Keplerian curve. One can remark that ‘Keplerian’ vectors defined
by P, e, ω and M0 form a family of vectors in which the sparsity of
exoplanetary signals is enhanced.

These methods can be applied iteratively to retrieve several
harmonics. In the context of radial velocity data processing, one
searches for the peak of maximum power, then the correspond-
ing signal is subtracted and the search is performed again. This
procedure is very close to CLEAN (Roberts, Lehar & Dreher 1987),
which relies on the same principle of maximum correlation and
subtraction. One of the first general algorithm exploiting sparsity of
a signal in a given set of vectors (Matching Pursuit, Mallat & Zhang
1993) relies on the same iterative process. This method was for-
merly known as forward stepwise regression (e.g. Bellmann 1975).
To limit the effects of error propagation in the residuals, one can
use the orthogonal matching pursuit algorithm (Pati, Rezaiifar &
Krishnaprasad 1993; Tropp & Gilbert 2007). In that case, when
a harmonic is found to have maximum correlation with the resid-
uals, it is not directly subtracted. The next residual is computed
as the original signal minus the fit of all the frequencies found
so far. The CLEANest algorithm (Foster 1995) and frequency map
analysis (Laskar 1988; Laskar, Froeschlé & Celletti 1992; Laskar
1993; Laskar 2003), though developed earlier, are particular cases
of this algorithm. To analyse radial velocity data, Baluev (2009) and
Anglada-Escudé & Tuomi (2012) introduce what they call respec-
tively the ‘residual periodogram’ and the ‘recursive periodogram’,
which can be seen as pushing that logic one step further. The princi-
ple is to re-fit at each trial frequency the previous Keplerian signals
plus a sine at the considered frequency.

Besides the matching pursuit procedures, there are two other
popular algorithms in the compressed sensing literature: convex
relaxations (e.g. Tibshirani 1994; Chen, Donoho & Saunders 1998;
Starck et al. 2005) and iteratively re-weighted least squares (IRWLS;
e.g. Gorodnitsky & Rao 1997; Candès, Romberg & Tao 2006a;
Donoho 2006; Daubechies et al. 2010). In the context of astronomy,
Bourguignon et al. (2007) implement a convex relaxation method
using �1 norm weighting (see equation 2) to find periodicity in
unevenly sampled signals, and Babu et al. (2010) present an IRWLS
algorithm named IAA to analyse radial velocity.

The methods presented above are apparently very different, yet
they can be viewed as a way to bypass the brute force minimization
of

arg min
K,ω,φ

m∑

i=1

⎛
⎝ y(ti) −

k∑

j=1

Kj cos(ωj ti + φj )

⎞
⎠

2

, (1)

where y(t) is a vector made of m measurements, and x� =
arg min f (x) denotes the element such that f(x�) = min f(x) for
a function f. This problem is very similar to ‘best k-term approx-
imation’, and its link to compressed sensing has been studied in
Cohen, Dahmen & Devore (2009) in the noise-free case. Solv-
ing that problem is suggested by Baluev (2013b) under the name of
‘multifrequency periodograms’. However, finding that minimum by
discretizing the values of (Kj, ωj, φj)j = 1, . . . , k depends exponentially
on the number of parameters, and the multifrequency periodograms
could hardly handle more than three or four sines with conventional
methods. However, with parallel programming on GPUs one can
handle up to ≈25 frequencies depending on the number of mea-
surements (Baluev 2013a). Jenkins et al. (2014) explicitly mention
the above problem and suggest a tree-like algorithm to explore the
frequency space. They analyse GJ 876 with their procedure and find
six significant harmonics, which we confirm in Section 4.5.2.

Let us mention that searching for a few sources of periodicity in a
signal is not always done with the Fourier space. When the shape of
the repeating signal or the noise structure is not well known, other
tests might be more robust. A large part of those methods consists
in computing the autocorrelation function or folding the data at a
certain period and look for correlation. See Engelbrecht (2013) for a
survey or Zucker (2015, 2016) in the context of radial velocity mea-
surements. Finally, we point out that the use of the sparsity of the
signal is not specific to compressed sensing. The number of plan-
ets in a model is often selected via likelihood ratio tests. A model
with an additional planet must yield a significant improvement of
the evidence. In general, the model with k + 1 planets Mk+1 is
selected over a model with k planet if Pr{ y(t)|Mk+1}/Pr{ y(t)|Mk}
is greater than 150 (see Tuomi et al. 2014), y(t) being the observa-
tions. Indeed, adding more parameters to the model automatically
decreases the χ2 of the residuals. Putting a minimum improvement
of the χ2 acts against overly complicated models.

The discussion above points that searching planets one after an-
other is already in the compressed sensing paradigm: this iterative
procedure is close to the orthogonal matching pursuit algorithm.
Donoho, Elad & Temlyakov (2006) show that for a wide range of
signals, this algorithm is outperformed by �1 relaxation methods.
Does this claim still apply to radial velocity signals ? In this paper,
this question is not treated in full generality, but we show the interest
of �1 relaxation on several examples. To address that question more
directly, it is shown in Appendix C that in some cases, the tallest
peak of the periodogram is spurious but �1 minimization prevents
one from being misled.

2 M E T H O D S

2.1 Minimization problem

Techniques based on sparsity are thought to enforce the ‘Occam’s
razor’ principle: the simplest explanation is the best. To apply that
principle, we must have an idea of ‘how’ the signal is simple. In
the compressed sensing framework (or compressive sampling), this
is done by selecting a set of vectors A = (aj (t))j∈I such that the
signal to be analysed y(t) is represented by a linear combination of
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a few elements of A. Such a set is often called the ‘dictionary’ and
can be finite or not (the set of indices I can be finite or infinite). It
is here made of vectors a−ω(t) = e−iωt and aω(t) = eiωt , where t is
the array of measurement times.

Before going into the details, let us define some quantities.

(i) y(t) denotes the vector of observations at times t = t1, . . . , tm,
y(t) ∈ Rm for radial velocity data sets.

(ii) The �p norm of a complex or real vector x with n components
is defined as

‖x‖�p :=
(

n∑

k=1

|xk|p
)1/p

(2)

for p > 0. In particular, ‖x‖�1 is the sum of absolute values of the

vector components and ‖x‖�2 =
√

n∑
k=1

|xk|2 is the usual Euclidian

norm. When p = 0, ‖x‖�0 is the number of non-zero components
of x.

(iii) For a function f defined on a set E, arg min
x∈E

f (x) is the ele-

ment for which the minimum is attained, that is x� of E such that
f (x�) = min

x∈E
f (x). We denote by the superscript � the solution of

the minimization problem under consideration. In all the cases con-
sidered here except equations (1) and (3), the minimum is attained
as we consider convex functions on convex sets.

Let us consider combinations of S elements of the dictionary
(aj(t))j = 1, . . . , S and their corresponding amplitudes xj. To enhance
the sparsity of the representation, one can think of solving

arg min
aj (t)∈A

S∈C

S s.t.

∥∥∥∥∥∥

S∑

j=1

xj aj (t) − y(t)

∥∥∥∥∥∥
�2

� ε (3)

that is finding the smallest number of elements of A required to
approximate y(t) with a certain tolerance ε. This one is a priori a
combinatorial problem which seems unsolvable if A is infinite or
of an exponential complexity if the dictionary is finite. In the latter
case, A can be viewed as an m × n matrix A. In that case, on can
re-write equation (3) like

x� = arg min
x∈Cn

‖x‖�0 s.t. ‖Ax − y(t)‖�2
� ε. (4)

This problem is in general combinatorial (Ge, Jiang & Ye 2011),
therefore computationally intractable. Fortunately, when replacing
the �0 norm by the �1 norm,

x� = arg min
x∈Cn

‖x‖�1 s.t. ‖Ax − y(t)‖�2
� ε, (5)

the problem becomes convex and still enhances sparsity efficiently.
In the signal processing literature, this problem is referred to as
basis pursuit denoising (Chen et al. 1998), and is sometimes de-
noted by BPε . At this point, one can ask what is lost by considering
equation (5) instead of equation (3). Let us cite a few results –
among many: when y(t) is noise free, Donoho (2006) shows that
under certain hypotheses the solution to equation (5) is equal to
the solution of equation (3); more generally, denoting by yt = Axt

the true signal, such that y = yt + e, e being the error, there is
a theoretical bound on ‖Ax� − yt‖�2 (Candès et al. 2006b). One
can also obtain constraints on ‖x� − xt‖�2 or conditions to have
supp(x�) ⊂ supp(xt ), where supp(x) is the set of indices with x be-
ing non-zero (e.g. Donoho et al. 2006). In summary, there are results
guaranteeing the performance for denoising, compression and also
for inverse problems, the search for planets being a particular case
of the latter.

These results apply to a finite dictionary A, but the periods of
the planets could be anywhere: A is infinite for our purposes. We
will eventually go back to solving a modified version of the dis-
crete problem (5) and smooth its solution with a moving average.
Beforehand, we will present in the next section what seems to be
the most relevant theoretical background for our studies, ‘atomic
norm minimization’, in particular used in ‘super-resolution theory’
(Candès & Fernandez-Granda 2014). This one will give guidelines
to improve our procedure.

2.2 Atomic norm minimization

If A is infinite, the �1 norm cannot be used straightforwardly.
Chandrasekaran et al. (2010) suggest to use an ‘atomic norm’ that
extends equation (5) to infinite dictionaries. Practical methods to
solve the new minimization problem are designed in Candès &
Fernandez-Granda (2013) and Tang et al. (2013b). The atomic norm
‖ y‖A, of y ∈ Rm orCm defined for a dictionaryA, is the smallest �1

norm of a combination of vectors of the dictionary reproducing y:

‖ y‖A = inf

{∑

j

|xj |, y =
∑

j

xj aj (t)

}
. (6)

If the observations were not noisy, computing the atomic norm of y
would be sufficient. As this is obviously not the case, the following
problem is considered,

u� = arg min
u∈Cm

‖u − y(t)‖2
�2

+ λ‖u‖A, (7)

where λ is a positive real number fixed according to the noise.
This problem is often referred to as atomic norm denoising. The
coefficient λ can be interpreted as a Lagrange multiplier, and this
problem can be seen as maximizing a posterior likelihood with a
prior on u. The quantities we are interested in are the dictionary
elements a�

j and the coefficients x� selected by the minimization,

where u� = ∑S�

j=1 x�
j a�

j (t).

2.3 More complex noise models

If exoplanetary signals are arguably a sum of sines plus noise,
the noise variance is not constant. Even more, the noise might
not be independent nor Gaussian. Recent papers such as Tuomi
et al. (2013) and Rajpaul et al. (2015) stress that the detection
efficiency and robustness improve as the noise model becomes more
realistic. Aigrain et al. (2011) suggest to consider the RV time
series as Gaussian processes: the noise n(t) is then characterized
by its covariance matrix V which is such that Vkl = E{n(tk)n(tl)},
E being the mathematical expectancy. When the noise is stationary,
by definition there exists a covariance function R such that Vkl =
R(|tl − tk|); therefore, choosing V is equivalent to choosing R. This
approach is similar to Sulis, Mary & Bigot (2016), which normalizes
the periodogram by the power spectrum of the stationary part of the
stellar noise. The similarity comes from the fact that the power
spectrum of the noise is P (ω) = |F (R)|2, where F denotes the
Fourier transform.

Here, the noise is assumed to be Gaussian of covariance matrix
V. In that case, the logarithm of the likelihood is (e.g. Baluev 2011,
equation 21; Pelat 2013)

ln(L) = −m

2
ln(2π) − 1

2
det(V) − 1

2
( y − Ax)T V−1( y − Ax),

(8)
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where the subscript T denotes the matrix transpose. Assuming that
the matrix V is fixed, we wish to minimize (y − Ax)TV−1(y − Ax).
If V−1 admits a square root, then W is chosen such that W2 = V−1.
This is the case when V is symmetric positive definite, which is the
case for covariance matrices of stationary processes. Consequently,
‖W(Ax − y)‖2

�2
= ( y − Ax)T V−1( y − Ax) is always ensured for

Gaussian noises. We then obtain the minimization

arg min
u∈Cm

‖W(u − y(t))‖2
�2

+ λ‖u‖A. (9)

Handling problem (5) with correlated measurements and noise has
been investigated by Arildsen & Larsen (2014). However, to the
best of our knowledge, the formulation above is not mentioned in
the literature; thus, we will briefly discuss its features.

The ability of problem (5) to unveil the true non-zero coeffi-
cients of x improves as the so-called mutual coherence of ma-
trix A diminishes (Donoho et al. 2006). This one is defined as
the maximum correlation between two column vectors of A. We
here consider a weight matrix, but we can go back to the previ-
ous problem by noting that W(Ax − y) can be re-written as A′x
− y′, where A′ = WA and y′ = W y. If we now consider two
column vectors of A′, a′

1 = Wa1 and a′
2 = Wa2, their correlation

is a′T
1 a′

2 = a1W
T W a2 = a1V

−1a2. In other words, introducing a
matrix W only comes down to changing the scalar product. This
should not be surprising. The matched filter technique (Kay 1993)
proposes to detect a model x in a signal s = x + n, where n is a
noise of covariance matrix V if xV−1s ≤ γ , where γ is a threshold.
This means if the correlation is sufficient for a non-trivial scalar
product.

In the case of an independent Gaussian noise, its covariance
matrix V is diagonal and its elements are σ 2

k , where σ k is the mea-
surement error at time tk. W is defined as V−1/2 so is a diagonal
matrix of elements wkk = 1/σ k. Therefore, a′T

1 a′
2 = a1W

T Wa2 =∑n
k=1

a1(tk )a2(tk )
σ 2
k

. This is compatible with the behaviour we intu-

itively expect: the less precise is the measurement, the lesser the
correlation between the signals matter through the weighting by σ k.

Unfortunately, having a non-identically independent distributed
(i.i.d.) Gaussian noise model biases the estimates of the true sig-
nals as it acts as a frequency filter. Whether this bias prevents one
from having the benefits of a correct noise model is discussed in
Appendix B. We show that choosing an appropriate weight matrix
W indeed allows us to see signals that would be buried in the red
noise otherwise.

3 IM P L E M E N TAT I O N

3.1 Overview

As said above, stable planetary systems are quasi-periodic. This
means in particular that radial velocity measurements are well ap-
proximated by a linear combination of a few vectors e−iωt and
eiωt . The minimization problem (7) seems therefore well suited for
searching for exoplanets. This section is concerned with the nu-
merical resolution, and the numerous issues it raises: the numerical
scheme to be used, the choice of the algorithm parameters and the
evaluation of the confidence in a detection.

Solving equation (7) is done either by reformulating it as a
quadratic program (Candès & Fernandez-Granda 2013; Chen &
Chi 2014; Tang et al. 2013b) or by discretizing the dictionary
(Tang, Bhaskar & Recht 2013a). The first one necessitates to see
the sampling as a regularly spaced one with missing samples. As
the measurement times are far from being equispaced in the con-

sidered applications, the required time discretization results in large
matrices. Therefore, the second approach is used.

Let us pick a set of frequencies equispaced with interval �ω,
� = {ωk = k�ω, k = 0, . . . , n} and an m × 2n matrix A whose
columns are e−iωk t and eiωk t . In that case, equation (9) reduces to

arg min
x∈C2n

‖W(Ax − y)‖2
�2

+ λ‖x‖�1 , (10)

which is often referred to as the Least Absolute Shrinkage and
Selection Operator (LASSO) problem when W is the identity matrix.
As the parameter λ is not so easy to tune, an equivalent formulation
of discretized equation (9) is chosen,

x� = arg min
x∈C2n

‖x‖�1 s. t.

‖W(Ax − y)‖�2 � ε, (11, BPε,W)

where ε is a positive number. By ‘equivalent’, we mean there exists
a λε such that the solution of equation (10) is equal to the solution
of equation (11,BPε,W ) (Rockafellar 1970). As this problem will
often be referred to, we add to the equation number BPε, W in the
rest of the text, BP standing for basis pursuit. There are several
codes written to solve equation (5). The existing codes we have
tested for analysing radial velocity data sets are �1-magic (Candès
et al. 2006a), SparseLab (Donoho 2006), NESTA (Becker, Bobin
& Candès 2011), CVX (Grant & Boyd 2008), spectral compressive
sampling (Duarte & Baraniuk 2013) and SPGL1 (van den Berg
& Friedlander 2008). The latter gave the best results in general for
exoplanetary data and consequently is the one we selected (the code
can be downloaded from this link1).

The solution of equation (11,BPε,W ) offers an estimate for the
periods, but the efficiency of the method can be improved by using
a moving average on x�, to approximate better equation (9). Indeed,
if a sine of frequency ω0 and amplitude K is in the signal, corollary
1 (Tang et al. 2013a) shows that the solution of equation (5) x�

verifies

K ≈
∑

x�(ωk)
|ωk |∈[ω0−η,ω0+η]

(12)

rather than |x(ω0)| ≈ K. The coefficients x�(ωk) are added up for ωk

lying in a certain interval of length 2η (see Section 3.6).
Finally, the confidence in the detection must be estimated. Prob-

lem (11,BPε,W ) selects significant frequencies in the data, but the
estimates of their amplitude are biased due to the �1 norm min-
imization. To obtain unbiased amplitudes, we first check that the
peaks are not aliases of each other. Then the most significant peaks
are fitted until non-significant residuals are obtained (see Section
3.7.4).

In summary, the method follows a seven-step process.

(i) Pre-process the data: remove the mean in radial velocity data
or an estimate of the stellar noise.

(ii) Choose the discrete grid �, tolerance ε, weighting matrix W
and the width η of the interval over which the result of equation
(11,BPε,W ) is averaged.

(iii) Define the dictionary A and normalize the columns of WA.
(iv) Run the program solving the convex optimization (11,BPε,W )

to obtain x�.
(v) Denoting � = [ωmin, ωmax] for each frequency ω ∈ {ωmin +

η, . . . , ωmax − η}, sum up the amplitudes of x�(ω′) from ω′ ∈ [− ω

− η, −ω + η]∪[ω − η, ω + η] to obtain a smoothed figure x�.

1 https://www.math.ucdavis.edu/∼mpf/spgl1/supplement.html
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(vi) Plot x� as a function of the frequencies or the periods.
(vii) Evaluate the significance of the main peaks (Fig. 6).

Each of these steps is detailed in the following sections.

3.2 Optimization routine

Many solvers can handle problem (5); however, their precision and
speed vary. Among the solvers tested, SPGL1 (van den Berg &
Friedlander 2008) gives the best results in general. This one has sev-
eral user-defined parameters such as a stopping criterion that must

be tuned. For a given tolerance, this one is
|‖Ax− y‖�2 −ε|

max(1,‖Ax− y‖�2 ) < tol.

The default parameters seem acceptable, in particular tol = 10−4.

3.3 Dictionary A

To estimate the spectrum, a natural choice for the columns of matrix
A is (e−iωt , eiωt ). However, the data might not contain only planetary
signals. In the case of a binary star, a linear trend t and a quadratic
term t2 are added. If the star is active, the ancillary measurements
are also added.

The method described in Section 3 is applicable to a wider range
of dictionary. As the timespan of the observations is in general a
few years, the signal might be more sparsely represented either by
Poisson terms [(a0 + a1t + a2t2 + ···)cos (ωt + φ)] or Keplerian mo-
tions. In the latter case, column vectors would be of the form r

a
eiν(t),

where ν(t) is a vector of true anomalies depending on the period
P, eccentricity e and initial mean anomaly M0 (or any combination
of three variables that cover all possible orbits). Unfortunately, the
size of A increases exponentially with the number of parameters
describing the dictionary elements (here P, e, M0).

3.4 Pre-processing

Theoretical results in Tang et al. (2013a) guarantee that the solution
to equation (5) will be close to equation (7) as the discretization
gets finer, provided the dictionary is continuous. As linear trends
or stellar activity-related signals are not sine, removing these from
the data before solving equation (11,BPε,W ) is crucial. The mean,
a linear trend and estimates of the stellar noise can be fitted and
removed. We reckon this is contrary to the philosophy of fitting the
whole model at once. However, the vectors fitted are included again
in the dictionary which allows us to mitigate the distortions induced
by their removal.

Secondly, to make the precision of the SPGL1 solver inde-
pendent from the value of W y, the weighted observations W y
are normed by ‖W y‖�2 , and the columns of the matrix WA
are also normed. Denoting by y′ = 1

ε
W y/‖W y‖�2 and A′ =

1
ε
(WAk/‖WAk‖�2 )k=1,...,n, we set in input of the solver

arg min
x∈Cn

‖x‖�1 s.t.
∥∥A′x − y′∥∥

�2
� 1, (13)

to always be in the same kind of use of the solver and ensure
that the accuracy of the result does not depend on its units. Going
back to the correct units in the post-processing step is described in
Section 3.6.

3.5 Tuning

Choice of W. We have seen in Section 2.3 that the weight matrix
W is characterized by the covariance function R via Wkl = R(|tk −
tl|). Several forms for the covariance functions were suggested (e.g.

Rajpaul et al. 2015). Here we only consider exponential covariances,
which are

R(�t) = σ 2
Re− |�t |

τ , �t �= 0

R(0) = σ 2
W + σ 2

R, (14)

where the subscripts W and R stand respectively for white and red.
As the red and white noises are here supposed independent, the
covariance function of their sum is the sum of their covariance
functions. Therefore, the matrix W is such that its diagonal terms

are Vkk = σ 2
k + σ 2

W + σ 2
R and Vkl = σ 2

Re− |tk−tl |
τ for k �= l.

Choice of �. We have two parameters to choose: the grid span and
the grid spacing. For the first one, we take 1.5 cycles d−1 as a default
value but it is also advisable to re-do the analysis for 0.95 cycles
d−1, as discussed in the examples in Section 2. We ensure that if the
signal is made of sinusoids (a.k.a. it is quasi-periodic), there exists
at least one vector x verifying ‖W(Ax − y)‖�2 < ε that has the
correct �0 norm. Let us consider a signal made of p pure sinusoids

sampled at times t = (tk)k = 1, . . . , m, y(t) =
p∑

j=1
cj eiωj t . Assuming

that the frequencies on the grid are regularly spaced with step �ω,
this leads to the condition (see Appendix A for calculation details)

�ω � 4

T
arcsin

ε

2

√
p∑

j=1
|cj |2

√
m∑

k=1

1
σ 2
k

. (15)

Let us note that the values of cj are a priori unknown, so the term√∑p
j=1 |cj |2 has to be approximated. Supposing the signal is made

of sinusoids plus small noise,
√∑p

j=1 |cj |2 ≈ ‖ y‖�2/
√

m. Further-

more, it must be ensured that all possible significant frequencies are
in the signal.

The choice of the grid spacing can be based on other criteria:
Stoica & Babu (2012) suggest to choose a spacing such that the
‘practical rank of matrix Mkl = ei�ω(tk−tl ) is equal to one. This term
designates the number of singular values above a certain thresh-
old. Here the condition states that only one singular value is non-
negligible. Let us also mention that one can perform the reconstruc-
tion with different grids and average out the results. However, this
approach does not practically generate better results than using a
finer grid.

Choice of ε. The error is due to two sources: grid discretization
which gives an error εgrid and noise, which yields εnoise. Supposing
the noise is Gaussian, denoting by yt the underlying non-noisy
observations, ‖W( yt − y)‖2

�2
as a function of random variable y =

yt + n follows a χ2 distribution with m degrees of freedom. Denoting
its cumulative distribution function (CDF) by Fχ2

m
, the probability 1

− α that the true signal yt is in the set { y′, ‖W( y′ − y)‖2
�2

≤ εnoise}
is

Fχ2
m

(ε2
noise) = 1 − α. (16)

The bound εnoise is determined according to the equation above for
a small α. Once εnoise is chosen, rearranging equation (15) gives a
minimal value of εgrid that ensures that a signal with a correct �0

norm exists,

εgrid = 2

√√√√
p∑

j=1

|cj |2
√√√√

m∑

k=1

1

σ 2
k

sin
�ωTobs

4
. (17)

An alternative is to set ε to zero and let the algorithm find a
representation for the noise, which will not be sparse. In that case,
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one must obviously not perform the re-normalization of the columns
of WA by ε of Section 3.4. Below a certain amplitude, a ‘forest’ of
peaks would be seen on the �1-periodogram. This has the advantage
to give an estimation of the noise structure. However, this method
is more sensitive to the solver inner uncertainties and requires more
time; it was not retained for this work.

Choice of η. See the next section.

3.6 Post-processing

Once the solution to equation (11,BPε,W ) is computed, the spectrum
x� is filtered with a moving average. We expect from discretization
(9) that the frequencies might leak to close frequencies. Indeed,
the amplitude of the solution to equation (11,BPε,W ) might be un-
trustworthy. When the signal is made of several frequencies, the
solution might overestimate the one with the greatest amplitude,
and underestimate the others; this problem arises especially when
less than a hundred observations are available. To mitigate this ef-
fect, one can sum up the contribution of subsequent frequencies and
estimate the amplitude of the resulting signal. If x� is the solution to
equation (11,BPε,W ), denoting by x�(ω) the coefficient correspond-
ing to frequency ω, we compute

ŷω(t) = ‖W y‖�2

∑

ω′ ∈ �

ω − η � |ω′| � ω + η

x�(ω′)aω′ (t)
‖Waω′ (t)‖�2

, (18)

where aω′ (t) is the column of A corresponding to frequency ω′. The
terms ‖W y‖�2 and 1/‖Waω′ (t)‖�2 appear because the columns
of WA and the weighted observations Wy were normalized in
Section 3.4. The vector ŷω(t), t = t1, . . . , tm is approximately a
sine function; the new estimation of the signal power is

x�(ω) = max
t1..tm

|ŷω(tk)|. (19)

Other estimates are possible, such as the power of a sine at frequency
ω fitted on ŷ(ω). Though the choice of η is heuristic, corollary 1 of
Tang et al. (2013a) is used as a guideline. It indeed states that the
summed amplitudes of coefficients of x� within a certain distance
η0 from the actual peak in the signal tend to the appropriate value
as the discretization step tends to zero. In the proof, they choose ε

such that the balls of width η0 centred around the true peaks have a
null intersection. Thus, it seems reasonable to select η as the largest
interval within which the probability to distinguish frequencies is
low. Values such as ≈0.5π/Tobs to π/Tobs are robust in practice.

3.7 Significance and uncertainties

3.7.1 Detection threshold

It is simple to associate a ‘global’ false alarm probability (FAP)
to the �1-periodogram similar to the classical FAP of the Lomb–
Scargle periodogram (Scargle 1982, equation 14). Let us consider
the probability that ‘x = 0 is not a solution knowing the signal
is pure independent Gaussian noise’. Denoting this probability α̃,
following notations of Section 2.1, ε2 = Fχ2

−1(1 − α̃). As ε ≈
εnoise, the value of α̃ is close to the user-defined parameter α. In
the Lomb–Scargle case, the FAP obeys: ‘if the maximum of the
periodogram is z, then the FAP is β(z)’, where β is an increasing
function of z [often taken as β(z) = 1 − (1 − e−z)M , where M is a
parameter fitted with numerical simulations; Scargle 1982; Horne
& Baliunas 1986; Cumming 2004. Here the formulation is ‘if the

solution to equation (11,BPε,W ) is not zero, then a signal has been
detected with an FAP lower than or equal to α’.

3.7.2 Statistical significance of a peak

The discussion above points out similarities with the FAP defined
for periodograms. This one and the global FAP share in particular
that they only allow one to reject the hypothesis that the signal is
pure Gaussian noise of covariance matrix W. However, the problem
is rather to determine if a given peak indicates a true underlying
periodicity, and if this one is due to a planet.

In that scope, our goal is to test if the harmonics spotted by
the �1-periodogram are statistically significant. Ultimately, one can
use statistical hypothesis testing, which can be time consuming. To
quickly assess the significance of the peaks, two methods seem to
be efficient.

(i) Re-sampling: taking off randomly 10–20 per cent of the data
and re-computing the �1-periodogram. The peaks that show great
variability should not be trusted.

(ii) Using the formulae of the ‘residual/recursive periodograms’
(Cumming 2004; Baluev 2008, 2009, 2015a; Anglada-Escudé &
Tuomi 2012).

The first case is easy to code and has the advantage to implement
implicitly a time–frequency analysis. Indeed, we might expect from
stellar variability some wavelet-like contributions: a signal with a
certain frequency arises and then vanishes. The timespan of obser-
vation might be short enough so that feature is mistaken for a truly
sinusoidal component. By taking off some of the measurements, we
can see if the amplitude of a given frequency varies through time.
However, this method requires to re-compute the �1-periodogram
several times and might not be suited for systems with numerous
measurements.

3.7.3 Model

As the re-sampling approach is straightforward to code, we will now
focus on the recursive periodogram formulae. These ones should be
useful for readers more interested in speed than comprehensiveness.
In this section, the relevant signal models are defined. We consider
that the signal is of the form

fK

(
θ0,

(
θKj

)
j=1..np

)
= non-planetary (θ0) +

np∑

j=1

Keplerianj

(
θKj

)

(20)

or

fC

(
θ0,

(
θCj

)
j=1..np

)
= non-planetary (θ0) +

np∑

j=1

Circularj
(
θCj

)
.

(21)

That is a sum of a model accounting for non-planetary effects,
non-planetary(θ0), θ0 being a real vector with nθ components, and
a sum of Keplerian or circular curves depending on five resp. three
parameters, θKj = (kj, hj, Pj, Aj, Bj) and θCj = (Pj, Aj, Bj)

Keplerian(θK ) = AU̇ (k, h, P ) + BV̇ (k, h, P ) (22)

Circular (θC) = A cos

(
2πt

P

)
+ B sin

(
2πt

P

)
, (23)
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where k = ecos � , h = esin � , � = ω + � is the sum of the
argument of periastron and right ascension at ascending node, U,
V are the position on the orbital plane rotated by angle � . These
variables are chosen to avoid poor determination of the eccentricity
and time at periastron for low eccentricities.

We compare subsequently the χ2 of residuals of a model with np

and np + 1 planets. In practice, one selects the tallest peak of the
�1-periodogram, and uses this frequency to initialize a least-squares
fit of a circular or Keplerian orbit. Then the two tallest peaks are
selected and so on.

To clarify the meaning of the computed FAP, let us define the
recursive periodogram, depending on a frequency ω. We denote the
χ2 of the residuals by

χ2
K,C

(
θfit

0 , θfit
np

, ω
)

=
[

y − fK,C

(
θfit

0 , θfit
np

, ωfit
)]T

V−1
[

y − fK,C

(
θfit

0 , θfit
np

, ωfit
)]

(24)

χ2
K,C

(
θfit

0 , θfit
np

)

=
[
y − fK,C

(
θfit

0 , θfit
np

)]T

V−1
[

y − fK,C

(
θfit

0 , θfit
np

)]
. (25)

fK,C

(
θfit

0 , θfit
np

, ωfit
)

is the model fitted depending on the

non-planetary effects θ0, the (Keplerian or circular) θnp =
(θK,Cj )j=1,...,np parameters of np planets plus a circular or Kep-
lerian orbit initialized at frequency ω. V designates the covariance
matrix of the noise model (V−1 = W2 with the notations above).
This one is often assumed to be diagonal but this is not neces-
sary as all the properties of those periodograms come from the fact
that they are likelihood ratios. The model fit can be done linearly
(Baluev 2008) or non-linearly (Anglada-Escudé & Tuomi 2012).
By linear, we mean that among the five or three parameters defined
in equations (22) and (23), only (Aj )j=1,...,np+1 and (Bj )j=1,...,np+1

are fitted and the non-planetary effects are modelled linearly: there
exists a matrix φ such that non-planetary(θ0) = φθ0. In the second
option, the orbital elements of previously selected planets, the non-
planetary effects and the signal at the trial frequency are re-adjusted
non-linearly for each trial frequency.

3.7.4 FAP formulae for recursive periodograms

Recursive periodogram is a term that refers to a general concept for
comparing the residuals of a model with or without a signal at a
given frequency. Here we specialize the formulae we use. Denoting
by PC(ω) and PK(ω) in the circular resp. Keplerian case,

PC(ω) = N
χ2

C(np, ω) − χ2
C(np)

χ2
C(np)

(26)

PK (ω) = 1

2

(
χ2

K (np) − χ2
K (np, ω)

)
, (27)

where N = m − 2np − nθ . The circular case is expression ‘z1’ in
equation 2 of Baluev (2008), and the Keplerian one is expression ‘z’
in equation 4 of Baluev (2015a). In what follows, only the circular
case will be used.

The quantity we are interested in is the probability that a selected
peak is not a planet. We here use the FAP as a proxy for that

quantity:

FAP(Z) = Pr

{
max

ω∈[0,ωmax]
P (ω) > Z | non-planetary effects, np

}
,

(28)

where ωmax is the maximum frequency of the periodogram that has
been scanned. This FAP is the probability to obtain a peak at least as
high as Z while there are only non-planetary effects and np planets.
Baluev (2008) has computed tight bounds for that quantity in the
case of a circular model and a linear fit (corresponding to subscript
C), which we reproduce here:

FAP(z, ωmax) ≈ Wγ

(
2z

NH

) 1
2
(

1 − 2z

NH

) NH+1
2

, (29)

where NH is the number of degrees of freedom of the model without
the sine at frequency ω, γ = �(NH/2)/�((NH + 3/)2), � being

the Euler � function, and W = ωmax

√
( t̄2 − t̄2)/π, t being the array

of measurement times and t̄ is the mean value of t . We have also
tried the exact expression of the so-called Davies bound provided by
equations 8, B5 and B7 of Baluev (2008), but the results were very
similar to the simpler formula. In the case of Keplerian periodogram,
we used equation 21 and 24 from Baluev (2015a).

Again, we emphasize that the interest of the present method is to
select candidates for future observations or unveiling signals unseen
on periodograms. The FAP formulae used here do not guarantee the
planetary origin of a signal. For robust results, statistical hypothesis
testing (e.g. Dı́az et al. 2016) can be used.

4 R ESULTS

4.1 Algorithm tuning

For all the systems analysed in the following sections, the figures
called �1-periodogram represent x�(ω) as defined in equation (19)
plotted versus periods. The name �1-periodogram was chosen to
avoid the confusion with the generalized Lomb–Scargle (GLS) pe-
riodogram defined by Zechmeister & Kürster (2009). In each case,
the algorithm is tuned in the following way.

(i) The problem (11,BPε,W ) is solved with SPGL1 (van den Berg
& Friedlander 2008).

(ii) The solution of SPGL1 is averaged on an interval η =
2π/(3Tobs) according to Section 3.5.

(iii) The grid spacing is chosen according to equation (15).

The importance of the grid span and the tolerance ε will be discussed
in the examples.

The FAPs are computed according to the procedure described in
Section 3.7.4 and are represented in Fig. 6 with decreasing FAP.
The ticks in abscissa correspond to the period of the signals and the
flag to their semi-amplitude after a non-linear least-squares fit.

In the following, we will present our results for HD 69830, HD
10180, 55 Cnc, GJ 876 and a simulated very active star from the
RV Challenge (Dumusque et al. 2016). For each system, the GLS
periodogram is plotted along with the �1-periodogram.

4.2 HD 69830

In Lovis et al. (2006), three Neptune-mass planets are reported
around HD 69830 based on 74 measurements of HARPS spanning
over 800 d. The precision of the measurements given in the raw
data set (from now on called nominal precision) is between 0.8 and

MNRAS 464, 1220–1246 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/464/1/1220/2280760/Radial-velocity-data-analysis-with-compressed
by Observatoire De Paris - Bibliotheque user
on 01 September 2017



RV data analysis with compressed sensing 1227

(a)

(b)

(c)

Figure 1. Generalized Lomb–Scargle periodogram and �1-periodogram of HD 69830 in blue, and published planets are represented by the red stems. The
frequency spans used for panels (b) and (c) are respectively 1.5 and 0.95 cycles d−1. The other signals mentioned in Section 1 are spotted by the blue arrows.
For all the noise model considered for matrix W, σW = 0, σR = 1 m s−1.
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Figure 2. GLS and �1-periodograms of HD 10180 data set with mean subtracted. The red stems have the periods and amplitude of published planets. The
other signals mentioned in Section 2 are spotted by the blue arrows. For all the noise model considered for matrix W, σW = 0, σR = 1 m s−1.

MNRAS 464, 1220–1246 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/464/1/1220/2280760/Radial-velocity-data-analysis-with-compressed
by Observatoire De Paris - Bibliotheque user
on 01 September 2017



RV data analysis with compressed sensing 1229

Figure 3. GLS and �1-periodograms of 55 Cnc data set with mean subtracted. The red stems have the periods and amplitude of published planets. The other
signals mentioned in Section 4.4 are indicated by the blue arrows.
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Figure 4. GLS and �1-periodograms of GJ 876 data set with means of Keck and HARPS measurement respectively subtracted. The red stems have the periods
and amplitude of published planets. The other signals mentioned in Section 4.5 are indicated by the blue arrows.
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Figure 5. Top: GLS of the RV Challenge system 1 (simulated signal). Top: GLS of raw data. Middle: GLS after fitting ancillary measurements. Bottom:
�1-periodogram after fitting ancillary measurements. True planets are represented by red lines.
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Figure 6. Peak amplitudes and associated FAPs for the four systems analysed.
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1.6 m s−1. The host star is a quiet K dwarf with a log R′
HK = −4.97

and an estimated projected rotational velocity of 1.1+0.5
−1.1 m s−1;

therefore, the star jitter should not amount to more than 1 m s−1

(Lovis et al. 2006).
Our method consists in solving the minimization problem

(11,BPε,W ) and averaging the solution as explained in Section 3.6.
The resulting array x�(ω) (see equation 19) is plotted versus fre-
quency, here giving Figs 1(b) and (c). The tallest peaks are then
fed to a Levenberg–Marquardt algorithm, and the FAPs of models
with an increasing number of planets are computed. We represent
the FAPs of the signals when fitted from the tallest peaks to the
lowest – disregarding aliases – Fig. 6(a). The FAP corresponding to
an FAP of 10−4 is represented by a dotted line.

The values of most of the algorithm parameters defined in Sec-
tion 3.5 are fixed in the previous section. In this example, the
method is performed for two grid spans: 0–1.5 and 0–0.95 cycles
d−1 (Figs 1b resp. c).

We first apply the method on a grid spanning between 0 and 1.5
cycles d−1. The weight matrix is diagonal, Wkk = 1/σ k (not 1/σ 2

k ),
where σ k is the error on measurement k. In Fig. 1(b), the peaks
of published planets appear, as opposed to the GLS periodogram
(Fig. 1a). However, there are still peaks around 1 d. The three main
peaks in that region have periods of 0.9921, 0.8966 and 1.1267.
The maximum of the spectral window occurs at ωM = 6.300 84 rad
d−1. Calculating 2π/(ω − ωM ) yields 194.06, 8.8877 and −8.6759,
respectively for ω = 2π/0.9921, 2π/0.8966 and 2π/1.1267, sug-
gesting that the short-period peaks are aliases of the true periods.

We now apply the method described in Section 3.7.4 to test the
significance of the signal, obtaining Fig. 6(a). Taking 8.667, 31.56
and 197 d gives a reduced χ2 of the Keplerian fit with three planets
plus a constant (16 parameters) of 1.19, yet the stellar jitter is not
included. As a consequence, finding other significant signals is
unlikely.

Looking only at Fig. 1(b), whether the signal at 197 d or its alias
at 0.9921 d is in the signal is unsure. We perform two fits with the
two first planets plus one of the candidates. The reduced χ2 with
0.9921 d is 1.2548, suggesting that the planet at 197 is indeed the
best candidate.

Now that there are arguments in favour of a white noise and
three planets, let us examine what happens when using a red noise
model. The frequency span is restricted to 0–0.95 cycles d−1 to
avoid spurious peaks (Fig. 1c). As said above, the star is expected
to have a jitter in the m s−1 range, so we take for the additional jitter
σ W = 0, σ R = 1 m s−1 and try several characteristic correlation time
lengths τ = 0, 3, 6, 10 or 20 d with definitions of equation (14).
In that case, as said in Section 2.3, the estimation of the power is
expected to be biased. Fig. 1(c) shows that the peaks at high and low
frequencies are respectively overestimated and underestimated. We
suggest the following explanation: the weighting matrix accounts
for red noise that has more power at low frequencies. Therefore,
the minimization of equation (5) has a tendency to ‘explain’ the
low frequencies by noise and put their corresponding energy in the
residuals.

When the signal is more complicated, there might be complex
effects due to the sampling resulting in a less simple bias. This issue
is not discussed in this work, but we stress that when using different
matrices W, the tolerance ε must be tightened to avoid being too
affected by the bias on the peak amplitudes.

To illustrate the advantages of our method, in Appendix C, we
generate signals with the same amplitude as the ones of the present
example but with periods and phases randomly selected. We show

that the maximum of the GLS periodogram does not correspond to
a planet in ≈7 per cent of the cases, while the maximum peak of the
�1-periodogram is spurious in less than 0.5 per cent of the cases.

4.3 HD 10180

Lovis et al. (2011) suggested that the system could contain up to
seven planets based on 190 HARPS measurements, whose nominal
error bars are between 0.4 and 1.3 m s−1. The star has an activity
index log R′

HK = −5 which lets suppose an inactive star with low
jitter. In Lovis et al. (2011), the presence of the planets at 5.79,
16.35, 49.74, 122.7, 600 and 2222 d is firmly stated. Let us mention
that there is a concern on whether a planet at 227 d could be in the
signal instead of 600 d, as they both appear on the periodogram of
the residuals and 1/227 − 1/600 + 1/365 ≤ 1/Tobs, where Tobs

is the total observation time. The possibility of the presence of a
seventh planet is also discussed. After the six previous signals are
removed with a Keplerian fit, the tallest peaks on the periodogram
of the residuals are at 6.51 and 1.178 d (Lovis et al. 2011). They are
such that 1/6.51 + 1/1.178 − 1 ≤ 1/Tobs, so one is probably the
alias of the other. The dynamical stability of a planet at 1.17 d is
discussed in Laskar, Boué & Correia (2012), and its ability to survive
is shown. However in our analysis, the statistical significance is too
low to claim that the planet is actually in the system.

We compute the �1-periodogram for a grid span of 0–1.5 and
0–0.95 cycles d−1, giving respectively Figs 2(b) and (c) (blue
curve). In Appendix B, we show that when W correctly accounts
for the red noise, signals might become apparent. Therefore, on
the latter we also test different weight matrices. As explained in
Appendix B and previous section, in that case we have to decrease
εnoise and here Fχ2

m
(ε2

noise) = 0.1 was taken, where Fχ2
m

is the CDF of
the χ2 distribution with m degrees of freedom, m being the number
of measurements, in accordance with the notations of Section 3.5.
We note that there is a signal appearing at 15.2 d and that there is
a small peak at 23 d, which is close to the stellar rotation period
estimate of 24 d (Lovis et al. 2011). Whether this is due to random
or not is not discussed here.

Alike the case of HD 69830, the aliases are overestimated when
the frequency span is 3 cycles d−1. In that case, the highest one at
0.9976 d corresponds to an alias of the 2222 d period. We will see
that in the two next systems the aliases are not as disturbing, which
is discussed in Section 5.2.

We now need to evaluate the significance of the peaks. The FAP
test is performed for the seven highest signals, which are the pub-
lished planets plus 0.177 d or 15.2 d. The latter appears for a non-
diagonal weight matrix W; therefore, when performing a Keplerian
fit, the χ2 we take is (y(t) − ŷ(t))T W 2(y(t) − ŷ(t)) with the same
W, that is σ W = 0, σ R = 1 m s−1 and τ =25 d [with notations of
equation (14)]. This analysis gives Figs 6(c) and (d). In both cases,
the signals are below the significance threshold. It is also not clear
which seventh signal to choose (Fig. 2c), but doing the analysis
with other candidates as 6.51, 23 or 67.5 d does not spot significant
signals either. Let us note that when choosing a non-diagonal W,
the FAPs of the 16.4 and 600 d planets respectively increase and
decrease. We suggest the following explanation: the noise model
is compatible with noises that have a greater amplitude at low fre-
quencies. As a consequence, the minimization has a tendency to
interpret low frequencies as noise and ‘trust’ higher frequencies.
Deciding if a signal is due to a low-frequency noise or a true planet
could be done by fitting the noise and the signal at the same time.
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4.4 55 Cancri

4.4.1 Data set analysis

Also known as ρ Cancri, Gl 324, BD +28◦1660 or HD 75732, 55
Cancri is a binary system. To date, five planets orbiting 55 Cancri A
(or HR 552) have been discovered. The first one, a 0.8 M j minimum
mass planet at 14.7 d was reported by Butler et al. (1997). Based
on the Hamilton spectrograph measurements, Marcy et al. (2002)
found a planet with a period of approximately 5800 d and a possible
Jupiter mass companion at 44.3 d. With the same observations
and additional ones from the Hobby–Eberly Telescope (HET) and
ELODIE, McArthur et al. (2004) suggested that a Neptune-mass
planet could be responsible for a 2.8 d period. Wisdom (2005) re-
analysed the same data set and found evidence for a Neptune-sized
planet at 261 d and suggested that the 2.8 period is spurious. This
was confirmed by Dawson & Fabrycky (2010), which showed that
the 2.8 d periodicity is an alias and the signal indeed comes from
a super-Earth orbiting at 0.7365 d. The transit of this planet was
then observed by Winn et al. (2011) and Demory et al. (2011), con-
firming the claim of Dawson & Fabrycky (2010). In the meantime,
using previous measurements and 115 additional ones, Fischer et al.
(2008) confirmed the presence of a planet at 261 d of minimum
mass M sin i = 45.7 M⊕. They also point out that in 2004 they
observed two weak signals at 260 and 470 d on the periodogram.
The constraints on the orbital parameters were improved by Endl
et al. (2012) based on 663 measurements: 250 from the Hamilton
spectrograph at Lick Observatory, 70 from Keck, 212 from HJST
and 131 of the high-resolution spectrograph (HET), giving planets
at 0.736 546 ±3 × 10−6, 14.651±10−4, 44.38 ±7 × 10−3,
261.2 ±0.4 and 4909 ±30 d. This is the set of measurements we
will work on in this section. Let us mention also that Baluev (2015b)
and Nelson et al. (2014) studied respectively 55 Cnc dynamics
and noise correlations including additional measurements (Fischer
et al. 2008).

Let us consider the set of 663 measurements from four instru-
ments used in Endl et al. (2012). The mean of each of the four data
set is subtracted and the method described in Section 2 is applied
straightforwardly. Here we only display the figure obtained for a
white noise model as it is essentially unchanged when correlated
noise is taken into account. Fig. 3(b) shows the �1-periodogram,
and Fig. 3(c) is the same figure with a smaller y-axis range. The
published signals appear without ambiguity. This is somewhat sur-
prising, as the data come from four different instruments and their
respective mean was subtracted. Such a treatment is rather crude, so
it shows that at least in that case the method is not too sensitive to
the differences of instrumental offsets. When those are fitted with
the planets found and corrected, a 365 d periodicity clearly appears
on the �1-periodogram.

The FAPs computed following the method outlined in
Section 3.7.4 are significant (see Fig. 6b). The sixth highest peak is
at 470 d, the FAP of which is too low to claim a detection. Inter-
estingly enough, a signal at this period was mentioned by Fischer
et al. (2008). We will see in the next section that this one is already
seen in 2004, and probably due to the different behaviour of the
instruments at Lick and HET. The presence of a signal at 2.8 and
260 d in early measurements is also discussed.

4.4.2 Measurements before 2004: no planet at 2.8 d nor 470 d but
visible 55 Cnc e and f

The 55 Cnc system has several features that are interesting to test
our method. There has been some false detections at 2.8 d, and

among candidate signals, one was confirmed (260 d) and one was
not (470 d). We now have at least 663 reliable measurements that
are very strongly in favour of five planets. As a consequence, the
method can be applied on a shortened real data set with specific
questions in mind, while being confident about what really is in the
system. We will see that the use of the �1-periodogram could have
helped detecting the true planets based on the 313 measurements
considered in McArthur et al. (2004). These ones are from Hamil-
ton spectrograph at the Lick Observatory, the HET and ELODIE
(Observatoire de Haute Provence). We also show that the signal at
0.7365 d (55 Cnc e) was detectable on the separate data sets from
Lick or from HET available in 2004.

Our method is first applied to the three data sets at once, the
means of which were subtracted, which gives the lighter blue curve
in Fig. 7(a). The true periods appear, although the 260 period is
very small and there are peaks at 470, 1314 and 2000 d (the other
features of the figure will be explained later). We then consider
the three data sets separately; the figure obtained is displayed in
Fig. 7(b). The fact that the �1-periodograms of each of the three
instruments span on different length is due to the fact that they do
not have the same observational span. As the moving average on the
result of SPGL1 is 2π/3Tobs, it is wider when the total observation
time Tobs is small. The 14.65 and long periods are seen for each
data set, but the 0.7365 and 44.34 d periodicities are not seen for
the ELODIE data set. Interestingly, HET �1-periodogram displays
a periodicity close to 260 d. However, one cannot claim a detection
at this period in HET data, as those only span on 180 d, any period
longer than the observation timespan is very poorly constrained.
Furthermore, the period at 2.8 d is not seen in any data set. The
closest one would be a peak at 2.62 d obtained with ELODIE data,
which was checked not to be significant. The 470 d periodicity
does not appear either. We show in the next paragraph that this is
likely due to the velocity offset between Lick-Hamilton and HET
data sets. Let us point that CLEAN (Roberts et al. 1987) or frequency
analysis (Laskar 1988; Laskar et al. 1992, see Fig. 8) also allows
us to retrieve the 0.7365 periodicity, which basically means that the
strongest peak of the residual was already this one in 2004.

To compute the significance, the method of Section 3.7.4 is ap-
plied to the Lick and HET data separately. The FAPs are com-
puted for circular models with an increasing number of planets
whose periods correspond to the subsequent tallest peaks of the
�1-periodogram. Here, as the data come from different instruments
we add to the model three vectors 1Lick(t), 1Elodie(t) and 1HET(t),
where 1I(t) = 1 if the measurement at time t is made by instrument
I, 1I(t) = 0 otherwise. In the case of Lick data, there is a peak of
6 m s−1 at 1.0701 d, but this one can be discarded as it is an alias of
the 14.65 d periodicity. In both HET and Hamilton data, the 0.7365
periodicity is significant (Figs 7c and d). Also, one sees a significant
long period in both cases (respectively 8617 and 5212 d). The HET
data set spans on 170 d, so in this case one can only guess that there
is a long-period signal. Finally, when combining the two data sets,
the 470, 2150 and 1314 d periodicities become insignificant.

The difference in zero-points of the three instruments has a sig-
nature on the �1-periodogram. Indeed, in problem (11,BPε,W ), the
signal is represented as a sum of sinusoids. The algorithm could
then attempt to ‘explain’ the bumps in velocity that occur when
passing from one instrument to the other by sines. The previous
analysis ensures the presence of four periodicities in the signal: at
≈14.65 d, 44.34, 5000 and 0.7365 d. The fit with these four periods
plus the vectors 1I(t) gives coefficients of the latter αLick, αElodie and
αHET. The vector αLick1Lick(t) + αElodie1Elodie(t) + αHET1HET(t) is
subtracted from the raw data. The �1-periodogram of the residuals
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Figure 7. �1-periodogram of 55 Cnc, using measurements from the Lick-Hamilton, ELODIE spectrograph (Observatoire de Haute Provence) and HET
telescope.
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(a)

(b)

Figure 8. (a) CLEAN spectrum of 55 Cnc with the data available in 2004. (b) Frequency analysis of the same data.

is computed, which gives the dark blue curve shown in Fig. 7(a).
The 2000 and 1314 periods disappear and the 470 d peak decreases.
Interestingly enough, the fifth tallest peak (except the 0.99 709 d
alias) becomes 260 d, which was suggested by Wisdom (2005) and
confirmed by Fischer et al. (2008) and Endl et al. (2012), but it
does not appear on the CLEAN spectrum nor the frequency analysis
(Figs 8a and b).

We now fit the model with five planets along with the 1I vectors
and trends for each instrument, which are vectors tI such that tI (t)
= t and 0 elsewhere if the measurement at time t is done by the
instrument I. The vector

∑
αk1Ik + βk tIk is subtracted from the

raw data, and we compute again the �1-periodogram (Fig. 7a, green
curve). This time, the 470 d periodicity disappears, suggesting –
though not proving – that it is due to a difference in behaviour
between the instruments. The fact that the 470 d signal disappears
just shows its presence depends on the models of the instruments.
The same analysis on Lick and HET data altogether shows the same
features at 470 d; therefore, we exclude the possibility that it is due
to the lesser precision of ELODIE.

The analysis by Wisdom (2005) does not use �1 minimization
to unveil the 260 d periodicity (55 Cnc f). We tried to reproduce
a similar analysis ‘by hand’ on the same data set, namely the one
of McArthur et al. (2004). The rationale is to determine if it was
easy to make 55 Cnc f appear with an analysis more conventional
than the �1-periodogram. Also, the short-period planet can be in-
jected at 0.7365 d, not ≈2.8 d as it was then. We found that the size
of the peak in the residuals at 260 d depends on the initialization
of the fits, both with classical and recursive periodograms. While
in most cases the 260 periodicity does appear in the residuals, it
sometimes coexists with peaks of similar amplitude. Interestingly
enough, an analysis of Lick-Hamilton and HET data sets by re-
cursive periodograms suggests that the periods estimated by HET
are shifted to longer ones with respect to Lick ones. We found that
adding the periods 14.8, 15 000 (1/14.65 − 1/14.8 ≈ 1/5000 −
1/15 000) to those of the four planets and a 2500 one (probably
due to a harmonic of the 5000 d periodicity) makes the 400 (seen
on the CLEAN spectrum in Fig. 8a) and 470 periodicity disappear,
and the 260 d peak appears very clearly. As the data come from
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an older generation of spectrographs, one could expect complicated
systematic errors. Again, this discussion focuses on the possibility
of seeing the 55 Cnc f in 2004; we do not raise the question of its
existence, well established by the subsequent measurements.

Finally, we perform the FAP test on the data from the three
instruments (see Fig. 7e). The model is made of Keplerians plus
the 1I vectors. The four significant signals in each data set are still
significant. The 260 d periodicity is significant as well. This analysis
shows that both the 0.7365 and 260 d periodicities were already
present in the data. Long periods might be due to instrumental
effects; therefore, the planetary origin of the 260 period could have
been subject to discussion. In contrast, it seems hard to explain
a steady 0.7365 d periodicity with a non-planetary effect. Let us
also note that our χ2 minimization algorithm and the one used by
Wisdom (2005) are different, the latter being more sophisticated,
which might account for discrepancies between our analyses.

4.5 GJ 876

4.5.1 Previous work

The GJ 876 host star is one of the first discovered multiplanetary
systems. First, two giant planets at 30 and 61 d were reported by
Marcy et al. (1998) and Delfosse et al. (1998). Subsequently, Rivera
et al. (2005) find a short-period Neptune at 1.94 d and a Uranus-mass
planet at 124 d (Rivera et al. 2010).

The giant planets are close to each other and in 2:1 resonance,
therefore we might expect visible dynamical effects. Indeed, Correia
et al. (2010), Baluev (2011) and Nelson et al. (2016) perform four-
body Newtonian fits which give a χ2 of the residuals smaller than a
Keplerian fit. The dynamical fits also allow one to have constraints
on the inclinations, therefore on the true masses of the planets.
Furthermore, Baluev (2011) shows that the maximum of a posterior
likelihood including a noise model as the one used here (equation
14) occurs at σ W = 1.31 m s−1, σ R = 1.8 m s−1 and τ = 3 d.

Jenkins et al. (2014) take a different approach and search for sine
functions in the signal. They claim that six significant sinusoidal
signals are in the data. The following discussion first confirms these
results. Secondly, we investigate the origins of the additional two
signals and find that they are likely to be due to the interactions
between the giant planets.

4.5.2 Six significant sines

Jenkins et al. (2014) analyse the GJ 876 data by aiming at solv-
ing the problem (1), which they call minimum mean squared error.
To do so, the phase space is explored with an iterative arborescent
method. They find the following periods: 61.03±3.81, 30.23±0.19,
15.04±0.04, 1.94±0.001, 10.01±0.02 and 124.69±90.04 d. To
compare our results with Jenkins et al. (2014), the significance of the
signals is tested with FAPs as previously. We use different weight
matrix models according to equation (14) and two grid spans: 1.5
and 0.95 cycles d−1 (see Figs 4b and c). In Fig. 4(c), we see that the
six tallest signals correspond to the periods we expect. Depending
on the noise model, the seventh tallest peak varies. We compute the
FAP test for 7.748, 1200 or 4200 d as candidate seventh planets,
respectively, with the W matrix yielding their greatest amplitude.
In Fig. 6(e), we display the result for 7.748 d but in other cases the
signals are not significant. Let us still point out that in the case of
τ = 6 d, initializing a 4200 d periodicity, after the non-linear fit we
obtain a 4862 d periodicity which has an FAP of 0.0007. This one
is close to the total observation timespan (4600 d). Therefore, it is
hard to determine what could be its cause.

Before discussing the origin of these signals, we wish to com-
ment on the behaviour of the �1-periodogram towards the 124 d
periodicity. Indeed, in the case of the 1.5 cycles d−1, this one has
the same order of magnitude as the tallest alias in the 1 d region
(at 0.9812 d, alias of the 61 d periodicity). Furthermore, the peak
becomes visible only for non-diagonal weight matrix W, while a
white noise model is sufficient to see it when using a shorter grid
(Fig. 4c). To understand this feature, we argue as follows. There
are three effects against finding the correct planets: the red noise
(Baluev 2011), the uncertainties on the two instrumental means and
the inner faults of our method. The persistence of aliases at 1 d
indeed shows that the recovery of the true signals is more difficult
when considering a grid � where some of the frequencies are very
correlated. We also computed the �1-periodogram when the mean of
each instrument is corrected after the orbital parameters fit, as done
in Section 4.4.2. In that case, the 124 d periodicity does appear and
the aliases are reduced. We suggest the following explanation: when
at least one of the three obstacles is correctly taken into account, the
method is sufficient. When the three are ignored, their joint effect
is deadly to our ability to recover the correct planets.

4.5.3 Signals at 10 and 15 d

Now that the six sines are seen in the signal, we show that the peaks
at 15.06 and 10.01 d are due to the dynamical interactions.

We perform the same four-body fit of GJ 876 with the same
method as Correia et al. (2010). This one includes 25 parameters:
the mass of the star, a velocity offset, the mass of the planets, for the
smallest planets: period, semi-amplitude, eccentricity, argument of
periastron and initial mean anomaly. For the giant planets at 30 and
61 d, the inclination is also a free parameter.

A planetary system with the orbital elements found by the least-
squares fit is simulated on 100 years for the two giant planets and the
four planets at once. The frequency analysis (Laskar 1988, 1993;
Laskar et al. 1992) is then performed on the resulting time series of
the star velocity along the x-axis. We find that 15.06 and 10.01 pe-
riods appear and are a combination of the fundamental frequencies.
Denoting by ωP the frequency of a planet of period P, we have ω15

= 3ω30 − 2ω60 and ω10 = 5ω30 − 4ω60, both in the two-planet and
four-planet cases. We also performed another test: if we adjust the
two giant planets with a dynamical fit, then the peaks at 15.06 and
10.01 d are not seen on the residuals. This agrees with the analysis of
Nelson et al. (2016), where they discuss the possibility that the sig-
nals at 10.01 and 15.06 d could be due to additional planets, and find
it unlikely. They compute the evidence ratio of Newtonian models
with four and five planets, Pr { y|5 planets} / Pr { y|4 planets}, and
find that it is not higher than the threshold we chose. The difference
between ω15 and the first harmonic of the planet gives an estimate
of the frequency of precession of the periastron of the inner orbit;
we find 2π(1/ω15 − 2/ω30)≈ 8.77 yr, which is consistent with the
estimate of Correia et al. (2010, g2 = 8.73 yr, table 4).

To obtain the expressions of ω15 and ω10, we used frequency anal-
ysis. This could be puzzling as the present work defines a method to
retrieve the frequencies in the signal. The rationale is that we do the
frequency analysis on a numerical integration; therefore, we have
tens of thousands of points available. Frequency analysis has been
used in that situation for years and is known to be fast and robust.
We double checked the results by computing the �1-periodogram
on a thousand points from the simulation (handling as many as the
frequency map analysis is too long for now); the periods at 15.06
and 10.01 do appear very clearly.
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4.6 Very active star (simulated signal)

The examples above concern rather quiet stars, where the noise
can be modelled by Gaussian time series. However, in some cases,
the stellar activity does not have a known Gaussian signature. The
method described here is not yet adapted to handle such situations.
In this section, we show that the problem can be circumvented,
provided there are enough measurements.

We exploit the fact that stellar noise can be correlated with the
bisector span (Queloz et al. 2001), the full width at half-maximum
(FWHM) and the log R′

HK . This correlation has been used for ex-
ample in Meunier, Lagrange & De Bondt (2012), which shows
that the detection threshold limit improves by an order of mag-
nitude by testing the correlation between the radial velocity and
ancillary measurements. They compute the correlation of the peri-
odograms of radial velocity measurements and bisector span, but
a correlation in the frequency domain is also visible in the time
domain, as the Fourier transform contains the same amount of in-
formation as the original time series. Here we take an approach
similar to Melo et al. (2007), Boisse et al. (2009) and Gregory
(2016) in so far as we use the ancillary measurements as proxies for
estimating the activity induced signal. Here, we simply fit and re-
move the three ancillary measurements from the data and then use
the method described above on the residuals. To compute the FAP,
we use a model of the form AFWHM + Bbisector + C log R′

HK +
Circ(k, h, P , D, E), Circ denoting a circular model as defined in
Section 3.7.3. The validity of this approach is discussed in Ap-
pendix D.

The data set used is taken from the RV Fitting Challenge
(Dumusque 2016; Dumusque et al. 2016). In this challenge, 15
systems were simulated with a red noise component taken from
observations of real stars plus activity simulated via SOAP 2 (Du-
musque, Boisse & Santos 2014). Here we consider the system num-
ber two of the challenge. The data set is made of 492 measurements,
and the mean precision is 0.67 cm s−1. The first step of the process-
ing is to fit a linear model made of the ancillary measurements, an
offset, a linear and a quadratic trend (six parameters). Secondly, we
compute the �1-periodogram for different weight matrices, which
gives Fig. 5(c). The GLS periodogram is also computed before and
after the fit of the six parameters for comparison (Figs 5a and b).

We find without ambiguity the three planets whose semi-
amplitude is above 1 m s−1, and also the 20.16 d periodicity. The
planet with the smallest amplitude does not appear clearly, but there
is a peak at 5.4 d which seems to be significant. In fact, the spectral
window is such that 5.4 d is an alias of 5.32 = 10.64/2 d, and corre-
sponds to the first harmonic due to eccentricity. This feature seems
to be due to an error in the noise model. When accounting for a red
noise effect, the relative amplitudes of 5.32 and 5.4 change in favour
of 5.32 d. This effect is also observed on the recursive periodograms
which are not represented here for the sake of brevity. One can see a
peak at 6.25 d which grows stronger as the characteristic correlation
time of the noise model increases. This coincides with the fourth
harmonic of the rotational period and is therefore not surprising.

5 D I SCUSSION

5.1 Summary

The present work was first devised to overcome the distortions in
the residual that arise when fitting planets one by one. It is compat-
ible with the assumption that the noise is Gaussian and correlated
through the weighting matrix W. One of the main advantages of

the method is that, as opposed to global χ2 minimization, the min-
imization problem (11,BPε,W ) is convex therefore quicker to solve.
On our workstation (Intel Xeon CPU E5-2698 v3 at 2.30 GHz),
it takes typically 30 s to 10 min to obtain (resp. for HD 69830,
74 measurements and 55 Cnc, 663 measurements). The speed here
depends mainly on three parameters: the number of observations
m, the number of columns of matrix A (see Section 3.3), n, and
the precision wanted in output, tol (see Section 3.2). The SPGL1
algorithm used to solve equation (11,BPε,W ) relies on a Newton
algorithm; therefore, its complexity is O(log (p)F(p)), where p =
10−tol is the number of significant digits desired and F(p) the cost
of evaluating the objective function to p digits accuracy. The most
expensive steps of the evaluation are a matrix vector product and
a projection on to a convex set (see van den Berg & Friedlander
2008), which have a respective complexity of O(mn) and a worst
case complexity of O(n log n). The post-processing operation also is
in O(mn). This overall should amount asymptotically to complexity
O(mn), similarly to the Lomb–Scargle periodogram. Its complexity
is in O(mn) if there are m measurements and n frequency scanned.
The constants are however different.

Furthermore, our method does not require the number of planets
as input parameter and offers a graphic representation of the infor-
mation content of the signal. However, the statistical properties of
the solution are not as easy to interpret as in the case of a global
least-squares minimization. Considering that the method presented
here is in its infancy, comparing its merits to other techniques is left
for future work. Here, we will only stress that the �1- and GLS pe-
riodogram are tools are of different levels, and we do not advocate
to give up the latter.

We will confine ourselves to addressing some internal issues of
our method. Ultimately, we would like to know if there is a way
to determine which peaks are to be associated with planets. As
the present paper is concerned with unveiling the periodicities in
the signal but not their origins, we will address a simpler question:
assuming that the signal is only made of sines plus a Gaussian noise,
are there risks to see spurious peaks on the �1-periodogram?

Unfortunately, the answer is yes, as we have seen in the previous
examples. The method is in particular sensitive to the aliases due
to the daily repetition of the measurements: spurious peaks are
especially present around 1 d periods. To shed some light on this
problem, the following questions will be briefly discussed in the
two next sections.

(i) Are spurious peaks to be expected from the theoretical prop-
erties of the method or from its implementation?

(ii) If they are to appear anyway on the �1-periodogram, is there
a way to spot them?

5.2 Mutual coherence

To test if the algorithm behaves appropriately, we reason as follows.
Considering a set of observational times t = t1, . . . , tm, a linear
combination of p pure sine signals y(tk) = a1cos (ω1tk + φ1) + ··· +
apcos (ωptk + φp) is generated with uniformly distributed phases φ

and various amplitudes. For any tolerance ε, the SPGL1 algorithm
must give a solution x� (see equation (11,BPε,W )) such that ‖x�‖�1 �
|a1| + · · · + |ap|, as obviously y(t) belongs to the set of signals u
verifying ‖u − y(t)‖�2 � ε. To test if SPGL1 gives the best solution,
we take the measurement dates of HD 69830 and generate three pure
cosine functions of one amplitude whose frequencies are in the grid.
They are fed to the SPGL1 solver for ε = 0.01 and W equal to the
identity matrix. The solution x� to equation (11,BPε,W ) must verify
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Table 1. Maximum amplitude of the spectral window in the 1 cycle d−1

and 1 cycle yr−1 for the examples considered here.

≈1 cycle d−1 ≈1 cycle yr−1

HD 69830 0.926 0.600
HD 10180 0.949 0.703
55 Cnc 0.822 0.557
GJ 876 0.732 46 0.501
RV Challenge 2 0.870 0.800

‖x�‖�1 < 3 as the original signal is not noisy. The test is performed
for a thousand set of three frequencies randomly selected on the grid.
We find that the average �1 norm of the solution is 3.26, suggesting
that the algorithm could be improved.

Secondly, in the discrete case (problem 5), there are theoretical
guarantees on the success of the recovery if the mutual coherence
of the dictionary is sufficiently small (Donoho 2006). This one is
defined as the maximal correlation between two columns aj and ak

of the dictionary A,

μ = max
k=1,...,n

j=1,...,n

j �=k

|〈ak, a j 〉|. (30)

In the case of a dictionary such that ak = eiωk t , taking the conven-
tion 〈ak, aj 〉 = a∗

k aj , where the superscript ∗ denotes the conjugate
transpose,

|〈ak, aj 〉| =
∣∣∣∣∣

m∑

l=1

e−i(ωk−ωj )tl

∣∣∣∣∣ (31)

that is the spectral window in ωk −ωj. As a consequence, the method
cannot resolve very close frequencies due to their high correlation.
More importantly, aliases are still a limitation – though not as much
as in iterative algorithms in general (Donoho et al. 2006), see also
Appendix C. This feature is responsible for the aliases that still
appear around 1 d, where there is generally a strong alias due to
the sampling constraints. The problem tends to get worse as the
maxima of the spectral window increase. Aliases are higher relative
to the true peaks for HD 69830, HD 10180 and the separate sets of
55 Cnc than GJ 876 (see Figs 1, 2, 3, 4, 7 and Table 1).

5.3 Spotting spurious peaks

We know that the theoretical obstacle for a good recovery is cor-
relation between the elements of the dictionary. If a frequency ω0

truly is in the signal, it is expected to cause significant amplitudes
at ω0 + ωk, where the ωk are maxima of the spectral window. So if
two peaks at frequencies ω1 and ω2 are seen on the �1-periodogram
and the spectral window has a strong local maximum close to ω1 −
ω2, one can suspect that one of the two peaks is spurious.

5.4 When to use the method?

We consider the general problem of finding the frequencies of a
signal made of several harmonics (the multitone problem). It seems
natural – though not mandatory – to try to find the global minimum
for a given number of sinusoids, and possibly additional parameters
such as the offset or a trend. We do not know a priori the number
of sinusoids in the signal. Ideally, we would like to solve the global
minimization (1) for any number of sines inferior to the number
of measurements and regarding their amplitudes, which seem to

be truly in the signal. The approach consisting in using grids has
a computational cost growing exponentially with the number of
frequency. Therefore, strategies must be found to estimate a reli-
able solution to this problem. The recursive periodogram (Anglada-
Escudé & Tuomi 2012), the treillis approach (Jenkins et al. 2014)
or the super-resolution methods (Candès & Fernandez-Granda
2014; Tang et al. 2013b) can be viewed as a way to approximate
equation (1) and selecting the relevant number of frequencies at the
same time. These have the advantage of not being bothered by the
�1 norm minimization, which biases downwards the amplitude of
the signal. Even more, the bias becomes more complicated when
using a correlated noise model.

The most interesting use of the �1-periodogram seems to be as a
complement to the classical periodogram: it gives a much clearer
idea of the number of spikes and their significance. If the peaks
spotted by the �1-periodogram yield a χ2 of the residuals consistent
with the noise assumptions as in HD 69830, then it is likely that
there are not many more signals. To check that there are not very
high correlations between signals, one can use the spectral window.
Furthermore, we have exhibited in Appendix C1 examples where
the main peak of the classical periodogram is spurious while �1

minimization (5) avoids selecting the first spurious peak. Such an
example was also presented in Bourguignon et al. (2007). Those
findings are consistent with the claims of Donoho et al. (2006): the �1

method is more reliable in general than orthogonal matching pursuit.
A failure of the �1-periodogram is also informative, as shown in
Fig. C2 of Appendix C1. If there still is a forest of peaks below a
certain amplitude, it might indicate that the signal is noisy, possibly
that noise is higher than expected or non-Gaussian. This means that
the set of observations requires a more careful analysis. To sum up,
the �1-periodogram can yield an estimation of the difficulty of the
system; in some cases, it is a shortcut to random searches and its
use decreases the chance of being misled by a spurious tallest peak.

6 C O N C L U S I O N

The aim of the present paper was to produce a tool for analysing
radial velocity that can be used as the periodogram but without
having to estimate the frequencies iteratively. To do so, we used
the theory of compressed sensing, adapted for handling correlated
noise, and went through the following steps.

(i) Selecting a family of normalized vectors where the signal is
represented by a small number of coefficients.

(ii) Approximating a solution to equation (9); for example, by
discretizing the dictionary, and ensuring that the grid spacing is con-
sistent with the noise power (see equation 15) then solving equation
(11,BPε,W ) with SPGL1 and take the average power. The intro-
duction of the weight matrix W accounts for correlated Gaussian
noises.

(iii) Estimating the detection significance, which we do by com-
puting subsequent FAPs of the models with an increasing number
of planets.

We showed that the published planets for each system could
be seen directly on the same graph, and that taking into account
the possible correlations in the noise could make a signal appear.
This was established in the case of radial velocity data but the
method could be adapted to other types of measurements, such as
astrometric observations.

The use of the basis pursuit/�1-periodogram we suggest is as fol-
lows. This method can be used as a first guess to see if the signal
is sparse or not; in that extent, it constitutes an evaluation of the
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difficulty of the system and possibly a shortcut to the solution. It
can bring attention to signal features that are hidden in the classical
periodogram, which can still be used for an analysis ‘by hand’. Sec-
ondly, for confirming the planetary nature of a system, we advocate
to use in a second time statistical hypothesis testing.

The perspective for future work is twofold. First, we saw that the
algorithm itself could be improved. Also, there might be significance
tests more robust than the FAP, and the effect of introducing a weight
matrix W must be studied into more depth. Secondly, let us recall
that our method uses a priori information, that is the sparsity of
the signal, but still does not handle all the information we have. To
improve the technique, we wish to broaden its field of application
by

(i) adapting the method for very eccentric orbits, through the
addition of Keplerian vectors to the dictionary for example;

(ii) using precise models of the noise, especially magnetic activ-
ity, granulation, p-modes. Possibly include an adaptive estimation
of the noise, especially one could extend the dictionary to wavelets;

(iii) handling several types of measurements at once (e.g. radial
velocity, astrometry and photometry).
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Laskar J., Froeschlé C., Celletti A., 1992, Physica D, 56, 253
Laskar J., Boué G., Correia A. C. M., 2012, A&A, 538, A105
Lomb N. R., 1976, Ap&SS, 39, 447
Lovis C. et al., 2006, Nature, 441, 305
Lovis C. et al., 2011, A&A, 528, A112
McArthur B. E. et al., 2004, ApJ, 614, L81
Mallat S. G., Zhang Z., 1993, IEEE Trans. Signal Process, 41, 3397.
Marcy G. W., Butler R. P., Vogt S. S., Fischer D., Lissauer J. J., 1998, ApJ,

505, L147
Marcy G. W., Butler R. P., Fischer D. A., Laughlin G., Vogt S. S., Henry

G. W., Pourbaix D., 2002, ApJ, 581, 1375
Melo C. et al., 2007, A&A, 467, 721
Meunier N., Lagrange A.-M., De Bondt K., 2012, A&A, 545, A87
Mishali M., Eldar Y., Tropp J., 2008, in IEEE 25th Convention of Electrical

and Electronics Engineers in Israel, IEEEI 2008. p. 290
Mortier A., Faria J. P., Correia C. M., Santerne A., Santos N. C., 2015, A&A,

573, A101
Nelson B. E., Ford E. B., Wright J. T., Fischer D. A., von Braun K., Howard

A. W., Payne M. J., Dindar S., 2014, MNRAS, 441, 442
Nelson B. E., Robertson P. M., Payne M. J., Pritchard S. M., Deck K. M.,

Ford E. B., Wright J. T., Isaacson H. T., 2016, MNRAS, 455, 2484
O’Toole S. J., Tinney C. G., Jones H. R. A., Butler R. P., Marcy G. W.,

Carter B., Bailey J., 2009, MNRAS, 392, 641
Pati Y. C., Rezaiifar R., Krishnaprasad P. S., 1993, in Proc. of the 27th

Asilomar Conference on Signals, Systems and Computers, p. 40
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APPENDIX A : MI N I M UM GR ID S PAC ING

Let us consider a signal made of p pure harmonics sampled at times

t = (tk)k = 1, . . . , m, y =
p∑

j=1
cj eiωj t . We denote by ω′

j and �ω two

real numbers such that for each j

�ω <
4

T
(A1)

|ωj − ω′
j | < �ω , (A2)

where T = tm − t1. For each tk and each j,

|cj ||eiωj tk − e
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So denoting y′ =
p∑

j=1
cj eiω′

j t ,

|yk − y ′
k| =
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j=1
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Without loss of generality, the origin of time is shifted to −T/2;
therefore,
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Finally, a condition for y′ to be an acceptable solution is

‖W(y − y′)‖2
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given (equation A3),
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x∈Cm
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. When the matrix W is diagonal, the

formula can be improved:

‖W( y − y′)‖2
�2

=
m∑

k=1

|yk − y ′
k|2

σ 2
k

� 4
m∑

k=1

1

σ 2
k

⎛
⎝

p∑

j=1

∣∣∣∣cj sin

(
ωj − ω′

j

2
tk

)∣∣∣∣

⎞
⎠

2

given (equation A3),

� 4 sin2 �ωT

4

p∑

j=1

|cj |2
m∑

k=1

1

σ 2
k

.

So εgrid can be chosen as
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And conversely given an ε, the grid spacing that ensures that there
exists a vector that has the correct �0 norm is

�ω = 4

T
arcsin

ε
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1
σ 2
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. (A5)

APPENDIX B: D I GGING IN RED N O ISE
W I T H N O N - D I AG O NA L W

B1 Short period buried in the noise

Our method uses the tools of compressed sensing, especially the
algorithms to minimize �1 norms with the constraint that the recon-
structed signal is not too far from the observations [see equation
(5)]. To the best of our knowledge, the case where the noise is
correlated has been considered only in Arildsen & Larsen (2014),
and is not specialized for Gaussian processes. Here, we introduce a
weight matrix and obtain problem (11,BPε,W ), reproduced here:

x� = arg min
x∈Cn

‖x‖�1 s. t. ‖W(Ax − y)‖�2 � ε. (BPε,W)
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Figure B1. Average �1-periodogram for 50 data sets generated with red noise of characteristics σW = 0, σR = 2 m s−1 and τ = 12 d according to model (14).
The curves correspond to the solutions of equation (11,BPε,W ) with different weight matrices W whose parameters are σW = 0, σR = 2 m s−1 and τ = 0, 6 or
12 d(respectively the blue, green and yellow curves).

To illustrate the interest of choosing an appropriate weight matrix,
we will show an example where acknowledging the red noise makes
a planet visible. Let us first consider a data set constructed as follows.

(i) The measurement times are those of HD 69830 (74 measure-
ments).

(ii) The true signal is y(t) = 1 cos( 2π
7.5 t) + 2 cos( 2π

40 t + 2) +
2 cos( 2π

120 t + 1) m s−1.
(iii) The noise is red, with parameters σ W = 0, σ R = 2 m s−1 and

τ = 12 d, where σW, σ R and τ are the parameters of the autocorre-
lation function R defined in equation (14) reproduced here:

R(�t) = σ 2
Re− |�t |

τ , �t �= 0

R(0) = σ 2
W + σ 2

R.

The noise defined above is such that its correlation with low fre-
quencies is higher than with high frequencies.

We test if changing the weight matrix could allow us to find
signals that would not be seen otherwise. To do so, 50 noise time
series (nk(t))k = 1, . . . , 50 are generated and the method is applied to
each yk(t) = y(t) + nk(t) for three different weight matrices, all other

parameters being fixed. In each case, they are defined according to
model (14) with σ W = 0, σ R = 2 m s−1 and τ = 0, 6 or 12 d. The grid
goes between 0 and 0.95 cycles d−1 and ε verifies Fχ2

m
(ε2

noise) = 0.1.
The resulting �1-periodograms are averaged (see Fig. B1b).

To compare with a classical approach, we also compute classical
periodograms for the same signals yk(t) and average them. For the
comparison to be fair, we fit the model parameters A, B, C in A cos ωt
+ B sin ωt + C to y(t) with the same weight matrices as the ones
used above. This gives Fig. B1(a). If the weight matrix is left diago-
nal, then the low-frequency terms dominate. Using the appropriate
noise model gradually reduces the spurious low frequencies.

We stress two features: as the noise model becomes accurate,
the short period becomes apparent, which justifies the trial of dif-
ferent noise matrices on real radial velocity data sets to see if a
peak appears. Secondly, when W is defined with an exponential
autocorrelation function, the estimation of the peaks becomes bi-
ased: some frequencies will have a tendency to be interpreted by
the algorithm as noise. The amplitude of the 120 d periodicity is
then underestimated. This bias could prevent us from finding small
amplitudes when using non-diagonal weight matrices. When the
number of frequency in the signal increases, the bias becomes more
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complicated. In order to mitigate this effect, we suggest to decrease
the value of ε when testing different noise model. Thus, the model
‘sticks’ to the observations, and if a periodicity truly is in the data,
the chance of it being too underestimated decreases. This is why, we
took εnoise such that Fχ2

m
(ε2

noise) = 0.1 and not Fχ2
m

(ε2
noise) = 0.999,

which would reject more signals in the residual.

B2 No automatic procedure so far

Here the improvement due to an appropriate handle of the noise is
seen by eye. One could wonder if a simple criterion could allow one
to chose an appropriate weight matrix automatically. In all cases
when the algorithm has converged, we have ‖W(Ax − y)‖�2 = ε

to a certain tolerance, or x = 0. Looking at the χ2 of the residuals
as usual is then not appropriate.

As in all cases the columns of matrix WA and the weighted
observations Wy are normalized. Therefore, the problem always
comes down to minimizing

x� = arg min
x∈Rn

‖x‖�1 s. t. ‖A′x − y′‖�2 � ε, (B1)

where A′ has normed columns and y′ is a unitary vector. It is then
tempting to see if there is a correlation between the �0 or �1 norm
of x� and the success of the method. Unfortunately, this is not the
case. Whether there is an automatic way to select the appropriate
weight matrix remains an open question.

APPENDIX C : SPU R IOU S TA LLE S T PEAK
O F T H E G L S P E R I O D O G R A M

In this section, we show examples where the initial highest peak
of the periodogram is spurious due to aliasing. We take the 74
measurement dates of HD 69830 and generate 500 systems with
three circular orbits with the following properties.

(i) The amplitudes are those of the three Neptunes of HD 69830
(2.2, 2.66 and 3.51 m s−1).

(ii) The periods P1, P2, P3, are selected uniformly in log P in the
range 1.2–2000 d.

(iii) The phases are uniformly distributed on [0, 2π].
(iv) The noise standard deviation is 0.6 m s−1.

We compute the number of times the maximum peaks of the GLS
and �1-periodogram are spurious. The criterion we take for failure
is when the frequency of the highest peak and any of the three true
frequencies are greater than the inverse of the total observation time,
that is |1/P1, 2, 3 − 1/Pmax| > 1/Tobs.

Fig. C1 shows the GLS periodogram and �1-periodogram of rep-
resentative cases where the highest peak of the GLS periodogram
is spurious. In these conditions, when searching for periods in the
1.2–2000 d with the periodogram, we find that the strongest peak is
spurious in 33 cases out of 500 simulations, while the tallest peak
of the �1-periodogram only was incorrect in two cases. In those, the
GLS periodogram was also failing.

An interesting feature of the cases where the �1-periodogram
fails is that one can see that the solution is not sparse. This is a very
useful property we observed empirically: we have not found any
occurrence of �1-periodogram that looks clean, with well-separated
clear peaks, where one of the peaks was completely spurious. We
display one of the two failures of the �1-periodogram in Fig. C2. First
of all neither the GLS nor the �1-periodogram leads the observer
completely astray. Secondly, we see that as opposed to the �1-
periodogram of the systems studied here, the figure is not clean,
which should invite the analyst to a certain suspicion.

A P P E N D I X D : FI T T I N G T H E A N C I L L A RY
MEASUREMENTS

In Section 4.6, we suggest to fit the activity indicators to the ra-
dial velocity time series. The present discussion wishes to give a
justification to this approach. The idea is to exploit the possible
correlations between radial velocity and ancillary measurements
when the star is active. For instance, on the first system of the RV
Fitting Challenge (Dumusque et al. 2016) where activity dominates
the signal, the radial velocity, FWHM, bisector span and log R′

HK

exhibit very similar features at low frequency (see Fig. D1).
Let us approximate the error made when fitting an ancillary in-

dicator. We consider the radial velocity signal y(t) = P(t) + a(t)
+ ε(t), where P(t) is due to a planetary companion, y(a) is a
deterministic signal due to activity and ε is a Gaussian noise of co-
variance matrix V. We also consider an ancillary measurement z(t)
= a(t) + ε′, where ε′(t) is another Gaussian noise of covariance
matrix V. If we fit z(t) to y(t), we obtain (dropping the t notation)

ydetrend = y − yfit = y − zT V−1y

zT V−1 z
z (D1)

ydetrend = y − (a + ε′)T V−1(P + a + ε)T

(a + ε′)T V−1(a + ε)
(a + ε′). (D2)

We assume that the noise is small compared to a, which allows us
to develop the denominator at first order in ε and ε′

yfit ≈ (a + ε′)T V−1(P + a + ε)

aT V−1a

×
(

1 − ε′T V−1a

aT V−1a
− εT V−1a

aT V−1a

)
(a + ε′).

After developing that expression at first order in ε and ε′, we com-
pute its mathematical expectancy taking into account only the zero-
order, ε2 and ε′2 coefficients. In the simple case where the noise is
i.i.d. of variance σ 2, we obtain

E{ yfit} ≈ σ 2

‖a‖2
P (D3)

+
(

1 + aT P

‖a‖2
�2

− 2σ 2

‖a‖2
�2

− ‖P‖�2σ
2

‖a‖3
�2

− aT Pσ 2

‖a‖4
�2

)
a. (D4)

We would like yfit to be as close to a as possible. This will
be better satisfied as the correlation aT P and the signal-to-noise
σ 2/‖a‖�2 decrease. The fact that a term aT P appears in the equation
above should not be surprising. The mutual coherence defined in
Section 5.2 grasps that the correlation between the parts of the
model is an obstacle to the recovery of the true signals.

For the RV Fitting Challenge, not only have we fitted one activity
indicator but several. We point out that this approach is consistent
with Rajpaul et al. (2015). Indeed, they consider that the activity-
induced variations of the measurements depend linearly on an un-
derlying zero-mean Gaussian process G(t) = F2(t) and its derivative
Ġ(t), where F(t) is the fraction of the sphere covered with spots.
The evolution of the indicators is modelled by formulae (14)–(16),
reproduced below,

�RV = VcG(t) + VrĠ(t), (D5)

log R′
HK = LcG(t), (D6)

BIS = BcG(t) + BrĠ(t), (D7)
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(a) (b)

(c) (d)

Figure C1. Peak amplitudes and associated FAPs for the four systems analysed.
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(a)

(b)

Figure C2. Failure of the GLS (a) and �1 (b) periodograms.

Figure D1. GLS periodogram of radial velocity and ancillary measure-
ments at low frequencies.

for some constants Vc, Vr, Lc, Bc, Br. This means that for a given
realization (g, g′) of (G(t), Ġ(t)), the subspace generated by the
log R′

HK and the bisector span BIS is the same as the space generated
by g, g′. So according to that model, projecting the radial velocity
on to (log R′

HK ,BIS) is equivalent to projecting on to (g, g′).
However, there is an uncertainty on the behaviour of the ancil-

lary measurements and additional noise. We have to decide if fitting
an uncertain model is better than working with the raw data. One
thing that could happen is that fitting the combination of the three
ancillary measurements would greatly change the spectral content
of the radial velocity time series by absorbing some frequencies,
potentially due to planets. To estimate this risk, we first compute
the term aT P/‖a‖2

�2
in equation (D4), assuming that the signal

y = P = eiωt is a pure harmonic of amplitude 1 m s−1. Here a des-
ignates the FWHM, bisector span or log R′

HK , respectively, shown
by the red, yellow and purple curves in Fig. D2. We also compute
the fraction of the energy of the signal before and after the fit of the
three ancillary measurements simultaneously, that is

Fraction(ω) = ( yω − yfit)
T V−1( yω − yfit)

yT
ωV

−1 yω

; (D8)

this one is represented by the blue curve in Fig. D2.
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Figure D2. Energy of a cosine function after the fit of the FWHM, bisector
span, log R′

HK and a constant.

For the system analysed in Section 4.6, only 15 per cent of the
energy is absorbed in general, with a maximum of 27 per cent at
a period of 2000 d. The peaks at 25 and 12.5 d correspond to the
rotation period of the star and its first harmonic, which are expected
to be correlated with the radial velocity and ancillary measurements.

This discussion does not intend to provide strong statistical ar-
guments, but rather to show that the spectral content should not be
too affected by fitting the FWHM, bisector span and log R′

HK .

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Résumé

Lorqu’une étoile a des compagnons
planétaires, elle décrit un mouvement
quasi épicycloïdal autour du centre de
masse du système. Si l’orientation du
plan de l’orbite le permet, un observa-
teur situé sur la Terre peut détecter la
composante de ce mouvement sur la
ligne de visée grâce à l’effet Doppler.
Il mesure ainsi la “vitesse radiale de
l’étoile”. Si cette vitesse présente
des variations périodiques suffisam-
ment claires, la présence de planètes
peut être inférée et leurs orbites con-
traintes.
Une des difficultés de l’analyse de
telles mesures est qu’une combinai-
son de signaux de plusieurs planètes
et de divers bruits peut être confon-
due avec l’effet d’une planète en réal-
ité inexistante. Après avoir présenté
les effets à prendre en compte pour
analyser des données de vitesses ra-
diales, nous abordons ce problème.
Pour limiter son occurrence, nous
utilisons un algorithme de poursuite
de base modifié, dont on démontre
l’efficacité sur des signaux réels et
simulés.
Nous abordons ensuite le problème
de l’estimation des paramètres or-
bitaux pour un système donné ainsi
que leur distribution pour une pop-
ulation de planètes. On s’intéresse
en particulier à l’excentricité, dont on
montre qu’elle est d’autant plus sures-
timée que le modèle du signal est
mauvais. Nous proposons des solu-
tions pour une estimation robuste des
paramètres orbitaux.

Mots Clés

Exoplanètes, vitesses radiales, In-
férence, Analyse de données, Acqui-
sition Comprimée, Excentricité, Biais,
Robustesse

Abstract

When a star is orbited by plane-
tary companions, it describes a nearly
epicyclic motion around the center of
mass of the system. When the orien-
tation of the orbital plane is appropri-
ate, an observer on Earth can mea-
sure the velocity of the star along the
line of sight by Doppler effect. If this
“radial velocity” presents clear enough
periodic variations, the presence of
planets can be inferred and their orbit
can be constrained.
Detection and estimation of orbits is
made difficult by the photon noise, the
unpredictable variations of luminosity
of the star as well as instrumental
faults. In particular, signals from sev-
eral planets can add coherently with
the noises and mimic the effect of a
planet absent from the system. After
listing the relevant effects to make in-
ference on exoplanets from radial ve-
locity data, we tackle this problem. To
limit its rate of occurrence, we use a
modified basis pursuit algorithm, al-
lowing to search for several signals si-
multaneously. The efficiency of the
method is demonstrated on real and
simulated signals.
We then address the problem of or-
bital parameters estimation for a given
system, as well as the estimation of
their distribution on a planet popula-
tion. We look in detail at the eccen-
tricity, and show that its overestimation
increases as the model moves away
from the correct one. We suggest
methods for robust inference of orbital
parameters.

Keywords

Exoplanets, Radial Velocity, Inference,
Data analysis, Sparsity, Compressed
Sensing, Eccentricity, Bias, Robust-
ness


