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Chapter 1

General Introduction to
Handwriting Recognition

1.1 Introduction

1.1.1 definition

With speech, cursive handwriting is still today the most natural way for hu-
man’s communication and information exchanging. However, the digital age
is asking for digital assistants capable to automatically translate or transcribe
texts in different languages, spoken or written on different media such as pa-
per or electronic ink. Automatic Handwriting recognition comes as a response
to such a need.

Handwriting recognition is the task of transforming images of handwritten
texts, into their ASCII or Unicode transcriptions, generally for further treat-
ments such as text processing, translation, classification, indexing or archiving.
Handwritten texts can be obtained from a real time capturing device while the
user is writing (on-line), or from an off-line capturing process, once the in-
formation has been written on paper. In the on-line (dynamic) handwriting
recognition case, one can use specific devices such as a digital pen which pro-
vides dynamically the recognition system with several informations such as
pen position over writing time, pen displacement velocity, inclination, pres-
sure and so on. Regarding off-line handwriting recognition, one can only ex-
ploit the handwriting in the form of a scanned document image. Thus, relevant
handwritten text description features have to be extracted using specific image
processing algorithms. Generally, the transcription process exploits the pixel
values only, which makes the off-line handwriting recognition systems less ac-
curate than the on-line ones. Printed or typewritten text recognition fall into
the off-line recognition problem and are known as Optical Character Recog-
nition (OCR). But the regularity of typewritten texts make their recognition
easier than for cursive handwriting.

The main task of an off-line continuous handwriting recognition system is
to obtain the transcriptions of characters and words in forms of human lan-
guage sentences from an acquired document image. This implies a process-
ing chain that starts by an appropriate text localization process when com-
plex two-dimensional spatial layouts are present. Once text regions have been
localized, text line images can be extracted using text localization algorithm.
Then text line image pass thought a feature descriptor such as HoG (Histogram



2 Chapter 1. General Introduction to Handwriting Recognition

of Oriented Gradient) descriptor in order to represent the text line image via
a suitable numerical description vectors (feature vectors). These feature vec-
tors represent the raw materials of the recognition engine. Given a text line
description vectors, the recognition engine proposes the most likely transcrip-
tion for the given text line descriptions with the guidance of a lexicon and a
language model. Figure 1.1, shows three examples of document images writ-
ten in French, German and Arabic languages which are taken from the French
Rimes, German READ and Arabic OpenHaRT2013 data sets.

a. b.

c.

FIGURE 1.1: Examples of handwritten document taken from Ara-
bic OpenHaRT13, Germanic READ & French Rimes data sets

1.1.2 History

The history of OCR systems started at the dawn of computer technology and
evolved gradually in three ages during the past and current century. First age
extended from 1915 to 1980, it is characterized by the advent of character recog-
nition methodologies such as template matching that was used for recognizing
machine-printed texts or well-separated handwritten symbols, for examples
ZIP codes ( Arica and Yarman-Vural, 2001; Bluche, 2015). In 1915, Emmanuel
Goldberg filed a patent for his machine controller which controlled in real time
a machine via on-line recognition of digits written by the human operator. For
this, an electrical sensor pen was used to trace the written digits on a tablet
surface (the patent of the sensor pen dated to 1888). The current principle of
OCR systems was first proposed by Gustav Tauschek in 1929. Basically, the
idea was to find the best matching between the character shape and a set of
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metallic templates. By setting a photo-sensor behind the metallic templates
which represented the set of the alphabetic characters, the printed character
which totally obscures the light from the photo-sensor is identified to be the
associated metallic template character class (Tang, Lee, and Suen, 1996). After
the birth of the first computers in 1940, some modern versions of handwrit-
ing recognition systems appeared (Bledsoe and Browning, 1959; Mantas, 1986;
Govindan and Shivaprasad, 1990). The basic idea was standing on some low-
level image processing techniques applied on binary image in order to extract
a set of feature vectors which represent the inputs of the recognition engine.
At this age, recognition engines based on statistical classifiers were introduced
(Suen, Berthod, and Mori, 1980; Mori, Yamamoto, and Yasuda, 1984; El-Sheikh
and Guindi, 1988)

The second age represents the period between 1980 and 1990. It is charac-
terized by the rapid and wide development of handwriting recognition method-
ologies thanks to the advent of more powerful computer hardware and data
capturing devices. In addition to statistical classification methods, structural
methods (see section 1.4.3.3) are introduced in many character recognition ap-
plications. The applications were limited to two fields; the recognition of ad-
dresses for automatic mail sorting and delivery (Kimura, Shridhar, and Chen,
1993; Srihari, 2000; El-Yacoubi, Gilloux, and Bertille, 2002; Bluche, 2015), and
the bank cheque reading systems (Le Cun, Bottou, and Bengio, 1997; Guillevic
and Suen, 1998; Gorski et al., 1999; Paquet and Lecourtier, 1993).

The third and current age extends from 1990 till nowadays. This age is the
age of the big achievements in handwriting recognition research field. New
methods and technologies were proposed by efficiently combining pattern recog-
nition techniques with artificial intelligence methodologies such as neural net-
works (NNs), hidden Markov models (HMM), fuzzy set reasoning, and natu-
ral language processing (Arica and Yarman-Vural, 2001).

Nowadays applications of handwriting recognition tend to process less
constrained documents layouts with very large vocabularies, for example, the
transcription of handwritten mail (Grosicki et al., 2009), information extrac-
tion (Chatelain, Heutte, and Paquet, 2006), ancient document text recognition
(Romero, Andreu, and Vidal, 2011; Sánchez et al., 2013)

1.1.3 Challenges

Handwriting recognition methods evolved gradually over years in order to
tackle different types of recognition problems with divers degrees of complex-
ity. The simplest task is to recognize in isolation, a character or an alphanu-
meric symbol regardless of its role in the word or the sentence it belongs to. In
this case, the segmentation problem is supposed to be solved prior to the recog-
nition step. Nowadays, handwriting recognition targets the recognition of cur-
sive and unrestricted continuous handwriting where words or sub-word’s por-
tions are written in a single stroke by connecting adjacent characters. In this
case, the handwriting recognition uses implicit or explicit character segmen-
tation methods. Handwriting recognition represents a challenging problem
because of the writing styles (the calligraphy) diversity and the variability of
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FIGURE 1.2: Character "r" writing style diversity according to its
position in the word, text example taken from the IAM database

the image capturing conditions such as illumination, contrast and resolution.
One can write same character with different shapes according to its position in
the words (begin, middle & end). Furthermore, a writer can write two different
characters using one single stroke with no care about the separation between
the two characters (Bluche, 2015).

Figure 1.2, illustrate the different shapes of the Latin character "r" according
to its position in the word. In fact, it is difficult to recognize the character "r" in
total isolation without looking to its neighboring characters and its semantic
context.

Before delving into the handwriting recognition processing techniques, the
text in the document image should be localized in rectangular zones, and must
be distinguished from other residual graphical components within the same
document, see (Mao, Rosenfeld, and Kanungo, 2003) for a survey and more de-
tails about document analyses. Then text lines should be extracted from the lo-
calized text region. Regarding to Ghosh et al. (Ghosh, Dube, and Shivaprasad,
2010) the organized contests for text line extraction, this task is assumed as
a challenging task. The major problem behind this task is the localization of
the inflected (curvature) or maybe broken and overlapped text lines where the
inter-space between the text lines are not tractable along the text zone width.
For more details about the state of art of text line extraction techniques see
chapter 4.

In fact, humans recognize a text trough a top level global view of the whole
text document, which makes them able to recognize characters and words in
their context. Similarly, computer vision try to mimic this ability by using a
hierarchical structure in order to take account of contextual information above
handwriting optical models during handwriting recognition.

The challenge behind a handwriting recognition system is the ability of the
system to recognize the entire texts block regardless to the handwriting style,
writing conditions and the text block image capturing condition.

1.2 handwriting processing chain

The handwriting processing chain consists of three main stages:

1. pre-processing stage: includes all the necessary faults correcting pro-
cesses such as text localisation, line detection, image denoising, image
inclination and slant correction.
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2. Recognition stage: consists of matching text line extracted features to a
set of character labels by using the couple of mathematical representa-
tions called optical models and language model.

3. Post-recognition stage: aims to enhance the recognition rate by correcting
the sequence of characters produced in the recognition stage by using
more sophisticated language models.

It is necessary to apply a set of processes to enhance the document image by
correcting the introduced defects during the capturing process. Such defects
include:-

a. Poor image resolution.
b. Noisy image.
c. Illumination variations due to clarity faults.
d. Image inclination and slant.
e. Black boarders of image.

In between the pre-processing stage and the recognition stage of the hand-
writing there is an intermediate process called feature extraction process. Fea-
ture extraction process is the operation by which the segmented part of text
(line, word or character) can be described by certain significant measures called
descriptors. Every descriptor represents one dimension of the feature space,
the extracted features represent the input of the classification operation. Selec-
tion of a relevant feature extraction method is probably the single most impor-
tant factor in achieving high recognition performance with much better accu-
racy in handwriting recognition systems (Sahu and Kubde, 2013).

In the recent years, we have seen the emergence of deep neural networks.
The strength of these new architectures of networks lies in its ability to learn
representation of features from the raw input data (pixels) directly, thus allow-
ing to proceed without the need to define a feature space.

The recognition stage gives as an output a sequence of characters (class
labels) which are most likely the handwritten text on the document image.
The recognition process consists of a search procedure which maps the op-
tical models (which can be either characters, sub-words or words) with the
observed sequences of features. The idea is to decode the character hypothe-
ses space in order to find the best mapping path represented by the maximum
likelihood between the optical models and the observed features, taking into
account some lexicon and language constraints.

There are two types of recognition errors: non-word errors and real word
errors. A non-word error is a word that is recognized by the recognition en-
gine; however, it does not correspond to any entry in the language vocabulary
for example, when "how is your day" is recognized by the recognition engine
as "Huw is your day" it is said to be a non-word error because "Huw" is not
defined in the English language. In contrast, a real-word error is a word that is
recognized by the recognition system and does correspond to an entry in the
language vocabulary, but it is grammatically incorrect with respect to the sen-
tence in which it has occurred, for example, "How is your day" is recognized by
the OCR system "How is you day" the "you is considered as a real-word error
(Bassil and Alwani, 2012). At the post-recognition stage, the recognition errors
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can be corrected by using two linguistic information sources: dictionaries and
language models.

1.3 Problem formulation

In order to automatically retrieve the handwritten text from an image, several
methodologies of patterns recognition have been introduced in the literature
standing on certain artificial intelligence technologies. The core function of
such technologies is to represent the image properties by probabilistic models
that represent the optical models, constrained by natural language grammar
represented by the language model. Through a learning process, the optical
models are optimized on a set of annotated examples in order to achieve the
best possible character or word sequence transcription. On the other hand the
language model has to be representative of the text in the document image to
be recognized in order to get better performance.

Handwriting recognition can be achieved using one or two pass decoding
algorithms which are based on Bay’s rule. By decoding, we seek to retrieve
the optimal sequence of words Ŵ that maximizes the a posteriori probability
P (W |S) among all possible sentences W (see equation 1.1. Two important pa-
rameters guide the decoding algorithm: they are the language model scaling
parameter γ and the word insertion penalty parameter β that controls the in-
sertion of too frequent short words. These two parameters need to be opti-
mized for optimum coupling of the optical models with the considered lan-
guage model, because these two models are estimated independently from
each other during training.

By introducing the coupling hyper-parameters within the Bay’s formula,
we obtain the general formulation of the handwriting recognition problem as
stated by equation 1.1.

Ŵ = argmaxwP (W |X) ≈ argmaxwP (X|W )P (W )γβlength(W ) (1.1)

In this formula, X represents the sequence of observations (features) extracted
from the image and P (X|W ) represents the likelihood that the features X are
generated by the sentence W , it is deduced from the optical model. P (W ) is
the prior probability of the sentenceW , it is deduced from the language model.

From this general formula, we note that language model contribution has
the same effect as the optical model contribution during the recognition. The
effect of language model contribution on the handwriting recognition process
represent the core study of this thesis.

1.3.1 Optical models

An optical model can be an optical template such as the primitive models that
were used during the early studies of OCR, or a statistical model such as a Hid-
den Markov model (HMM) or a Recurrent Neural Networks (RNN) or struc-
tural model that can model the variation of patterns after a specific learning
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process. The OCR recognition problem is presented as a supervised classifi-
cation or categorization task, where the classes are pre-defined by the system
designer. According to the literature, Optical models can be classified into
word, sub-word (BenZeghiba, Louradour, and Kermorvant, 2015), character
and sub-character (Bluche, 2015) optical models.

The goal of using word optical models is to recognize a word directly as
a whole, without relying on a segmentation or an explicit representation of
the parts (Bluche, 2015). Simple representation of the word is extracted from
the image and matched against a lexicon as presented in (Madhvanath and
Govindaraju, 1996; Madhvanath and Krpasundar, 1997) and applied for the
check amount recognition task. The disadvantage of the word optical model
is the limitation of the vocabulary size because the number of optical models
grows linearly with the number of words in the vocabulary. Despite, the lim-
ited size of training vocabulary cannot guarantee to provide enough example
per model, so that they can not properly generalise to unseen examples. There-
fore word optical models are limited to small vocabulary applications such as
bank chicks.

To our knowledge, there was no attempts of using sub-word units as op-
tical models in the literature. However in speech recognition, may be used
as accoustic models in placeof the full word model. Usually sub-word models
like demi-syllables, syllables, phonemes, or allophones are used instead of full-
word models (Mousa and Ney, 2014). The advantage of using sub-word units
is that they reduce the model complexity, which allows a reliable parameter
estimation. Since the set of sub-words is shared among all words, the search
vocabulary does not need to be equal to the training vocabulary. The acoustic
model of any new words that is not present in the pronunciation dictionary
can be assembled from the corresponding sequence of sub-word units.

Usually, the modern Large Vocabulary Continuous Speech Recognition (L
VCSR) systems use the so-called context-dependent phoneme models which
are models of phonemes with some left and right context. For example, a tri-
phone is a phoneme joined with its predecessor and successor. In fact, char-
acters in the written language meets phonemes in the spoken language. The
contextual modelling of the language characters can be viewed as a sub-word
optical model, that because each character optical model is considered to be
conditionally related to its neighbouring characters. The authors of (Ahmad
and Fink, 2016) proposed a class-based contextual modelling for handwriting
Arabic text recognition based on HMM optical modelling.

The character optical models are used by almost all Large vocabulary con-
tinuous handwriting recognition systems. The advantage of using character
optical models is their reduced number of classes compared to the sub-word
and word optical models. Thus a moderate number of training examples is
sufficient to efficiently train the character optical models. Using the embedded
training techniques, there is no need to segment the text image into characters
for training the optical models. Conventionally, the optical models represent
the characters set of the language of interest.

For the sub-character optical models, the image is divided into sub-regions
corresponding to at most one character (Bluche, 2015). The idea is to find all
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possible image segmentations which is often derived from the character cur-
vatures heuristically. A survey of character segmentation techniques was pre-
sented by (Casey and Lecolinet, 1996). We will discuss in more details the
theoretical bases of the HMM and NN optical models in chapter 2.

1.3.2 language models

Sometimes the recognition engine decide for the recognition of a sequence of
tokens (words) which may be grammatically or semantically incorrect. Many
techniques from the natural language processing field have been developed
for checking the validity of a sentence of words. A set of grammar rules can
be applied on a dataset of tokenized text in order to constrain the search space
on a grammatically valid paths. For example, (Zimmermann, Chappelier, and
Bunke, 2006) re-scored a list of sentence hypotheses by using a probabilistic
context-free grammar.

Generally speaking, language modelling for handwriting recognition usu-
ally consists in giving a score to different word sequence alternatives (Bluche,
2015). The common language modelling approach used for handwriting recog-
nition (e.g. Rosenfeld, 2000 & Marti and Bunke, 2001) is the statistical ap-
proach. It consists of n-gram language models or connectionist language mod-
els based on neural network. This type of approaches estimates the a priori
probability of observing a word sequence W from a large amount of training
text samples (Bluche, 2015).

The perplexity measure is used to measure the capability of a language
model to predict a given corpus. It is derived from the entropy of the proba-
bility model and can be expressed as the following:

PPL = 2
−1
Nw

∑Nw
k=1 log2P (wk|wk−1,...) (1.2)

where Nw is the number of words in the text. Language models with smaller
perplexities are generally better at predicting a word given the history. How-
ever, better perplexity does not mean better recognition performance accord-
ing to (Klakow and Peters, 2002). A state of the art of language modelling will
be presented in chapter 3.

1.3.3 System vocabulary

When the recognition system introduces words optical models as well as lan-
guage models, a predefined lexicon is already embedded in the recognition
engine, and limited to the set of words modelled (Bluche, 2015). However for
large vocabulary it is necessary to introduce optical character models. The rep-
resentation of words by their character sequences in a dictionary reduces the
size of the search space and help to alleviate the recognition ambiguities.

Indeed, the recognizable words are limited only to the dictionary words
and the chance to encounter out of vocabulary words (OOV) during the recog-
nition increases when dictionary size is small. The OOV represents the ratio of
non-covered words by the lexicon dictionary and thus the language model on
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an evaluation data set. On the other hand, as the dictionary size increases, the
search space grows accordingly which leads to higher recognition complexity.
Furthermore, the competition between words increases proportionally to the
dictionary size. Consequently, the selection of the smallest possible vocabulary
achieving the highest coverage rate on unknown dataset is a real challenge.

The dictionary can be organized in such ways to enhance the recognition
speed. The simplest way consists in computing scores for each word in the
dictionary independently and decide for the word with the highest score. This
solution is not satisfactory because the complexity increases linearly with the
vocabulary size while many words share the same characters at same posi-
tions. Therefore, another way to organize a vocabulary is called prefix tree. In
this way, the vocabulary is organised as a tree, and the root is considered to
be the beginning character of a word. Each branch indicates another character
of the word and the terminal nodes contains the word made of the charac-
ters along the path. By this way the shared prefix characters will be examined
only once. More interested readers about the large vocabulary reduction and
organization techniques can see (Koerich, Sabourin, and Suen, 2003).

Finite-state Transducer (FSTs) (Mohri, 1997) is another interesting and effi-
cient way for representing vocabulary. It consists of a directed graph with a
set of states, transitions, initial and final states. The transitions from one state
to another are labeled with an input symbol from an input alphabet, and an
output symbol from an output alphabet. When a sequence of input symbols
is provided, the FST follows the successive transitions for each symbol, and
emits the corresponding output symbol. A valid sequence allows to reach a
final state with such sequence of transitions.

Vocabulary representation using FST defines the input alphabet as the set
of characters, and the output alphabet matches the vocabulary. The compact
structure of the vocabulary FST is similar to the prefix tree vocabulary rep-
resentation. FST representation has the advantage of its ability to integrate
the language model within the search graph. FST representations of language
models are popular in speech recognition (Mohri, Pereira, and Riley, 2002)
and are applied to handwriting recognition (e.g. in Toselli et al., 2004) and in
several recognition toolkits such as Kaldi (Povey et al., 2011) or RWTH-OCR
(Dreuw et al., 2012).

1.4 Handwriting recognition systems

In the literature, various structures have been proposed to perform handwrit-
ing recognition (Plötz and Fink, 2009). According to their lexical structure, the
recognition systems can be classified into three main categories:-

1.4.1 Closed vocabulary systems

The first category includes the closed vocabulary systems that are optimized
for the recognition of words in a limited and static vocabulary. This kind of
system is used for specific applications such as bank checks reading (Gorski
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et al., 1999). In this case the optical models may be word models. These ap-
proaches are often mentioned as global or holistic recognition.

1.4.2 Dynamic vocabulary systems

The second category includes dynamic vocabulary systems that are able to rec-
ognize words never seen by the system during training. In this category, the
optical models are character models, and the approach is often referred as an-
alytical recognition approaches that are guided by the knowledge of a lexicon
(lexicon driven) and constrained by a language model during the recognition
phase. With this capability, these systems are used for general purpose appli-
cations, such as recognition of historical documents, for example (Pantke et al.,
2013) but they can not deal with unknown words (OOV) which words that do
not appear in the vocabulary of the system.

1.4.3 Open vocabulary systems

The third category of approaches includes systems without vocabulary (lexi-
con free) that perform recognition in lines of text by recognizing sequences of
characters. To improve their performance, these systems may use character se-
quences models in the form of n-gram statistical models (Plötz and Fink, 2009)
by considering the space between words as a character (Brakensiek, Rottland,
and Rigoll, 2002). The advantage of these systems is their ability to recognize
any sequence of characters, including out of vocabulary words (OOV) such as
named entities. Hence, they have the disadvantage of being less efficient than
previous models in the absence of the sentence level modelling. Kozielski &
al. (Kozielski et al., 2014b) have explored the use of character language models
(for English and Arabic) using 10-gram character models estimated using the
Witten-Bell method. They compared this lexicon free approach with a lexicon
based approach associated with a 3-gram language model of words estimated
using the modified Kneser-Ney estimation method. They have also combined
the two models (characters and words) by using two approaches. The first one
by building a global interpolated model of the two models, the second one by
using a combination of back-off models. The results show the effectiveness of
the combination of the two language models using interpolation.

1.5 Metrics

The error rates (ER) commonly used for the evaluation of continuous text
recognition are the word error rate (WER) and character error rate (CER). Both
are calculated based on the number of substitutions, insertions and deletions
of words, respectively characters, and the number of words or characters in
the reference text using the following equation:

ER =
#substitutions+ #insertions+ #deletions

#enforcements
(1.3)
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This ER can be deduced from the Levenstein edit distance (Levenshtein, 1966),
which is the minimum edit distance between two strings (recognition hypothe-
ses and ground-truth) and can be retrieved efficiently with a dynamic pro-
gramming algorithm (Bluche, 2015).

Note that although it is generally expressed in percentage, it may goes be-
yond 100% because of the potential insertions. In this thesis, the reported
WERs are computed with the SClite (Fiscus, 1998) and Kaldi (Povey et al.,
2011) implementation. Similarly, we can consider an even finer measure of
the quality of the output sequence in terms of characters, which penalizes less
words with a few wrong characters and is less dependent on the distribution
of word lengths: the Character Error Rate (CER). It is computed like the WER,
with characters instead of words. The white space character should be taken
into account in this measure, since this symbol is important to separate words.

1.6 conclusion

In this chapter, we have introduced the general problem of off-line handwrit-
ing recognition, including the related history, processing chain and systems.
We introduced the general formula of handwriting recognition systems and
related hyper-parameters which require an optimisation stage in order to get
the optimal coupling of the optical model with the language model.

The main goal of this thesis has been to develop improved language mod-
elling approaches for performing efficient large vocabulary unconstrained and
continuous handwriting recognition for French and English handwritten lan-
guages.

The work of this thesis has been focused in two major directions: the first
is to investigate the use of language dependent (syllables) and language inde-
pendent (multigrams) types of sub-lexical units during the creation of the lan-
guage models (LMs), the second is to investigate the enhancement of the hand-
writing recognition performance by unifying the recoginition system compo-
nents: the optical and language models. The use of sub-lexical units has lead to
a significant increase in the overall lexical coverage indicated by a considerable
reduction in the out-of-vocabulary (OOV) rates measured on the test datasets.
This has introduced one step towards the solution of data sparsity and the poor
lexical coverage problems. As a result, significant improvements in the recog-
nition performance have been achieved compared to the traditional full-word
based language model. The unification of the recognition systems produce
a generalized recognition whose performance outperform the performance of
its parents for similar language such as the French and English languages. Ex-
periments have been conducted on the French RIMES and the English IAM
handwriting datasets.

This thesis consists of two main parts; theoretical part and experimenta-
tion part. on the one hand, theoretical part includes the first three chapters
which covers the state of the arts and the bibliographical and literature re-
views. The experimentation part include the last three chapters which discuss
the architecture of the developed recognition systems and the contributions of
the sub-lexical units based models to the handwriting recognition.
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In chapter two, we present a state of the art of the handwriting optical mod-
els stating the theoretical architecture and the related training algorithms for
each of Hidden Markov Models and Neural Network based optical models.
We conclude this chapter with a comparative overview of the available toolk-
its used for training and decoding the optical models.

A state of the art on the language modelling approaches and techniques
are presented in chapter three including language grammars and statistical
language models. In addition to an overview of spoken and written language
building blocks, we discuss different aspects related to n-gram and conection-
nist language model training and smoothing techniques.

The developed recognition processing chain of two different recognition
systems is described in chapter four. The processing chain illustrates the dif-
ferent architectures of optical models (HMM or BLSTM-CTC) and the n-gram
language models of different lexicon types (words, syllables, multigrams and
characters) in addition to the decoding process. Some primary results are pre-
sented to justify some choices regarding the decoding and language modelling
approaches.

The contribution of the sub-lexical units of syllables and multigrams are
presented in chapter five. The utilised supervised and unsupervised word de-
composition into syllables and multigrams approaches are introduced justified
with some statistical analyses of the generated lexicons coverage rates on the
test datasets lexicons. State of the art recognition performance are obtained by
the multigrams language models on the RIMES and IAM test datasets.

In chapter six, we studied the possible ways to unify the French recognition
system with the English one. We studied the benefit of unifying sub-lexical
units of both languages as well as unifying the optical character models. We
observed that combining multigram sub-lexical units of both languages does
not degrade the recognition performance while at the same time maintaining
moderate complexity in the language model due the use of sub-lexical units.
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Chapter 2

Theoretical bases of handwriting
optical models

2.1 Introduction

Traditional handwriting recognition systems (Schambach, Rottland, and Alary,
2008) use discrete (Kaltenmeier et al., 1993) or continuous (Marti and Bunke,
2001) Hidden Markov Models (HMM) for modelling each building unit of the
language of interest with respect to the writing time frame on the writing di-
rection (Jonas, 2009). Conventionally, the HMM models represent the optical
models of the character set of the language of interest.

An HMM consists of a set of dependent states associated with one or more
Gaussian mixture density functions. The number of states in a sequential
HMM model defines its length. The number of states depends on the topology
of the HMM and the resolution used during the feature extraction process.
In the literature, the variable length models show an improved recognition
performance over the fixed length one because of their ability to adapt to the
variable length graphical representation of the characters. The Maximum Like-
lihood Estimation (MLE) algorithm is used to estimate the optimal number of
states per HMM character model (Zimmermann and Bunke, 2002).

For several years ago, neural networks have emerged in the handwriting
recognition field as a fast and reliable classification tool. Neural networks are
characterized by their simple processing units namely called neurons and their
intensive weighted interconnections. The weights of the interconnections be-
tween neurons are learned from training data. The neurons are organised into
hierarchically "stacked" layers which consist of initial or input layer, interme-
diate or hidden layer (these can be one or more stacked layers) and a final or
output layer.

The information processing flows from the input layer through intermedi-
ate layers towards the output layer which predicts the recognized characters or
words. The network layers are mutually interconnected from the input layer
towards to output layer to form multi-layer neural networks.

In the literature, neural network architectures are classified into two spe-
cific categories: feed-forward and recurrent networks. Recurrent neural net-
works have the advantage over feed-forward neural networks of their ability
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to deal with sequences over time. In spite of the different underlying princi-
ples, it can be shown that most of the neural networks architectures are equiva-
lent to statistical pattern recognition methods (Ripley, 1993; Arica and Yarman-
Vural, 2001).

Several types of NNs are used for handwriting recognition such as hand-
written digits recognition (LeCun et al., 1989) using Convolutional Neural
Network or handwritten sentence recognition using Bidirectional Long-short
term memory recurrent neural networks (Graves et al., 2006) (BLSTM-RNN)
or multi - dimensional long-short term memory recurrent neural networks
(MDLSM - RNN) (Bluche, 2015).

In this chapter, we present an overview of the theory of optical models
in two parts before concluding with a list of recent available platforms. The
Hidden Markov Model is the topic of the first part and the neural network
models are the topic of the second part.

2.2 Hidden Markov Models (HMM)

2.2.1 Introduction

Since several decades, Hidden Markov models are considered one of the most
efficient statistical tools for solving sequential pattern recognition problems,
such as spoken language processing, DNA sequence alignment, handwriting
recognition. The name of this model holds the family name of a Russian sci-
entist called Andrei Markov (1856-1922). Before delving deeper in the Hidden
Markov Models (HMM), let us recall the foundation of these models. These
models fall into the probability theory by addressing the description and mod-
elisation of stochastic process (random process). Briefly, stochastic process are
described by a collection of random variables (states) subject to change over
time. The Markov property has been introduced as one simplifying assump-
tion so as to describe the evolution over time by making the variables only
depend on some other random variables at the precedent time frame. Any
stochastic process that obeys the Markov property is often called a Markov
process. Such an hypothesis neglects the long term dependencies.

2.2.2 Discrete Hidden Markov models

Hidden Markov Models are generative stochastic models representing the gen-
eration of an observed sequence O = (o1, . . . , ot, . . . , oT ) from a hidden state
sequence Q = (q1, . . . , qt, . . . , qT )

The observation emission probability represents the possibility of gener-
ating a certain observation from a certain model state. This distribution ex-
plains the relation between the hidden states of the model and the observations
(model outputs).

In case of discrete observations (which are related to Discrete HMM), the
observation emission probabilities are represented by a N × M matrix (the
number of model states N cross of the number of distinct observation sym-
bols) known in the literature by B = (bj(vk) = P [ot = vk|qt = sj]) where sj
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represents the model state j and vk represents the distinct observation k. So
the observation emission probability bj(ot = vk) represents the probability of
generating the observation element ot = vk when the model state at time t is
qt = sj .

Briefly, a HMM can be characterized by the following parameters:

1. N , the number of states in the model.

2. M , the number of distinct observation symbols.

3. A set of observation symbols V = {vk, k = 1 . . .M}

4. A set of states S = {sj, j = 1 . . . N}

5. The state transition probability distribution A = {aij} having the follow-
ing properties:-

aij = P
(
qt = sj|qt−1 = si

)
1 ≤ i, j ≤ N (2.1)

aij ≥ 0∑N
i=1 aij = 1

6. The observation emission probability N × M matrix, in the literature
known by B =

(
bj(ot = vk)

)
when the model state is sj ,

bj(ot = vk) = P
(
ot = vk|qt = sj

)
1 ≤ j ≤ N
1 ≤ k ≤M

(2.2)

So the observation emission probability bj(ot = vk) represents the prob-
ability of generating the observation element ot equal to the observation
symbol vk when the model state is sj at time step t.

7. The initial state distribution π = {πi}, where

πi = P
(
q1 = si

)
1 ≤ i ≤ N (2.3)

The stochastic model is decomposed in two parts. First, the model assumes
Markov dependency between hidden states, which writes:

P (Q) =
∏
t

P (qt|qt−1) (2.4)

Second, the model assumes conditional independences of the observations
with respect to the hidden states, which writes:

P (O|Q) =
∏
t

P (ot|qt) (2.5)
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FIGURE 2.1: HMM Illustration

These two hypotheses allow writing the joint probability of the observation
and state sequence as follows:

P (O,Q) = P (O|Q)P (Q) (2.6)

=
∏
t

P (ot|qt)P (qt|qt−1) (2.7)

where P (q1|q0) = π(q1). The model can be represented through the temporal
graph shown in figure 2.1 where arrows indicates the conditional dependency
induced by the model. Finally, a HMM model λ can be characterized by the
three parameters λ = (A,B, π) which have the following representation:

π =

 π1
...
πN

 A =

 a11 . . . a1N
... . . . ...

aN1 . . . aNN

 B =

 b1(v1) · · · b1(vM)
... . . . ...

bN(v1) · · · bN(vM)


In the literature an observation are commonly represented by real values.

Practically, a quantization process can be introduced so as to assign a discrete
label to the continuous observation. Such assignment can be made by intro-
ducing a clustering stage such as K-means. This fall into the semi-continuous
Markov models. In fact, there is a risk of introducing quantization error with
such quantization process. Such risk can be eliminated by introducing the con-
tinuous HMM (see 2.2.6. below).

2.2.3 Hidden Markov model structures

In the main application areas of HMM-based modelling, the input data to be
processed exhibits a chronological or linear structure (Fink, 2014). Therefore,
it does not make sense for such applications to allow arbitrary state transitions
within a HMM. Based on this fact, we can distinguish five different topologies
of HMM which are most often used in the literature:
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1. linear HMM: stands on the idea that states are sequentially structured
one after another without feedback loop and one forward jump from a
model state to the next, in other word every state of the model can be
reached only from its previous neighbour state as seen in figure 2.2.

FIGURE 2.2: Linear HMM example with 3 discrete observation
symbols

2. Bakis HMM: Allows the state to transit linearly similarly as in linear
model but contains one additional forward jump from current state qt
to qt+2 as seen in figure 2.3.

FIGURE 2.3: Bakis model example with 3 discrete observation
symbols

3. Left to right HMM: Every possible forward jumps are allowed (no back-
ward transition) as seen in figure 2.4.

FIGURE 2.4: Left to right HMM example with 3 discrete observa-
tion symbols
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4. parallel left to right HMM: represents a special case of left to right HMM
where the middle states of the model has a side transition route to the
parallel row of states which give more flexibility for this model. Figure
2.5 illustrates this model.

FIGURE 2.5: Parallel Lift To Right HMM example with 3 discrete
observation symbols

5. Ergodic HMM: All state transition paths along the model states are al-
lowed as seen in figure 2.6 .

FIGURE 2.6: Ergodic HMM example with 3 discrete observation
symbols
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2.2.4 HMM design problems

We are considering the probability of producing a certain observation sequence
by a HMM. This probability is called the production probability P (O|λ) (Fink,
2014). It indicates the ability of a HMM to generate the given observation
sequence, thus it can be used as a basis for a classification decision (Fink,
2014). We are interested in determining which model can produce the ob-
servation with the highest probability or which is the most probable model
to produce the observation. When multiple HMM models are competing, the
winner HMM λj will be the model for which the posterior probability P (λj|O)
becomes the maximum (Fink, 2014):

P (λj|O) = max
i

P (O|λi)P (λi)

P (O)
(2.8)

When evaluating this expression, the probability P (O) of the data itself
represents a quantity irrelevant for the classification — or the maximization
of P (λi|O) — because it is independent of λi and, therefore, constant. Thus
for determining the optimal class, it is sufficient to consider the numerator of
equation 2.8 only:

λj = argmax
λi

P (λi|O) = argmax
λi

P (O|λi)P (λi)

P (O)
= argmax

λi
P (O|λi)P (λi) (2.9)

In general, one considers equally likely models and P (λi) can be omitted in
equation 2.9. Therefore, the classification decision depends only on the emis-
sion probability P (O|λi). In order to fit a HMM model to a real world applica-
tion we need to find solutions to three main problems, which are the following:

First problem: Probability Evaluation

For a sequence of observations given a specific HMM, how do we compute the
probability that the observed sequence was produced by that HMM model. In
other words, the question to be answered is: what is the probability P (O|λ) that
a particular sequence of observations O is produced by a particular model λ? When
multiple models are competing together, the target is to associate the model
with the highest probability to generate the observed data. Computing the
likelihood of the observation sequence allows to rank the models. Following
the definition of a HMM, we can compute the emission probability P (O|λ) by
summing the contribution of every state sequence Q and write:

P (O|λ) =
∑
Q

P (O,Q|λ) (2.10)

but for an observation of length T and a model with N hidden states, the
number of hidden state sequences Q is NT which makes this computation un-
tractable.
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For evaluating the production probability P (O|λ), we use two algorithms:
the forward algorithm or the backwards algorithm (do not confuse them with
the forward-backward algorithm) (Rabiner, 1989).

Forward algorithm

The Forward Algorithm is a recursive algorithm for calculating the emission
probability for the observation sequence of increasing length t using the partial
and accumulative probability forward variable αt(i) of observing the partial
sequence (o1, . . . , ot) and ending with state qt = si. let us define:

αt(i) = P (o1, o2 . . . ot, qt = si|λ) (2.11)

We can observe that there are N different ways of arriving in state qt =
sj from state qt−1. They correspond to the N possible previous states qt−1 =
si ; i ∈ 1, . . . , N which leads to the recursion formula, taking account of the
HMM independent emission.

αt+1(j) = [
N∑
i=1

αt(i)aij]bj(ot+1) 1 ≤ t ≤ T − 1 (2.12)

Then we can derive the emission probability of O by

P (O|λ) =
N∑
i=1

αT (i) (2.13)

Backward algorithm

We can define the Backward variable βt(i) which represents the partial emis-
sion probability of the observation sequence from ot+1 to the last time step T ,
given the state at a time t is qt = si and the model λ.

βt(i) = P (ot+1, ot+2 . . . oT |qt = si, λ) (2.14)

For the same reasons as for computing the forward variable we write the
following recursion formula

βt(i) =
∑N

j=1 aijbj(ot+1)βt+1(j), t = T − 1, T − 2, . . . , 1

1 ≤ i ≤ N
(2.15)

and finally, we can compute the emission probability by

P (O|λ) =
N∑
j=1

β1(j)bj(o1) (2.16)

Obviously both Forward and Backward algorithms must give the same re-
sults for total probabilities P (O|λ) = P (o1, o2, . . . , oT |λ). The complexity of
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computing the emission probability has reduced to O(N2×T ) which is accept-
able in practical applications.

Second problem:computing the optimal state sequence (Decoding)

We try here to recover the hidden part (hidden model states) of a HMM by
finding the most likely hidden state sequence. The task, unlike the previous
one, asks about the joint probability of the entire sequence of hidden states that
generates a particular sequence of observations (Rabiner, 1989). This problem
is called decoding problem (Fink, 2014).

Decoding is predicting the hidden part of the model (the state sequence
Q) given the model parameters λ = (A,B, π) by choosing the optimal state
sequence Q which maximizes the emission probability P (O,Q|λ) for a given
observation sequence O. The optimal emission probability P ∗(O|λ) for gener-
ating the observation sequence O along an optimal state sequence Q∗ can be
determined by maximization over all individual state sequence Q (Fink, 2014).

P (O,Q∗|λ) = max
Q

P (O,Q|λ) (2.17)

Similarly as for computing the emission probability, the number of individual
state sequencesQ is too large to allow a direct computation of each probability,
and decide for the maximum one. Fortunately, the Viterbi algorithm can com-
pute the optimum state sequence by using dynamic programming principle
with a complexity of T ×N2.

Viterbi algorithm

To find the best state sequence Q = (q1, q2, . . . , qT ) which can approximately
generate the given observation sequenceO = (o1, o2, . . . , oT ) knowing the model
λ = (A,B, π) , let us define the probability of the best path ending at time t in
state qt = si.

δt(i) = max
q1,q2,...,qt−1

P (o1, o2, . . . , ot, q1, q2, . . . , qt−1, qt = si|λ) (2.18)

As the probability of a partial path is monotonically decreasing while t is in-
creasing, the optimal path is composed of the optimal partial path. therefore,
the dynamic programming optimisation policy can be applied, and we can
write.

δt+1(j) = max
i

(
δt(i)aijbj(ot+1)

)
(2.19)

The Viterbi algorithm can be achieved by the following steps:-

1- Initialization:

δ1(i) = πibi(o1) 1 ≤ i ≤ N

ϕ1(i) = 0

(2.20)
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2- Recursion:

δt+1(j) = maxi[δt(i)aij]bj(ot+1)
For1 ≤ t ≤ T 1 ≤ j ≤ N

ϕt+1(j) = argmaxi[δt(i)aij]
(2.21)

3- Termination:

P ∗(O|λ) = P (O,Q∗|λ) = max
1≤i≤N

δT (i) (2.22)

Q∗T = arg max
1≤i≤N

δT (i) (2.23)

4- Back-Tracking of the optimal state sequence path:

For all times t where t = T − 1, T − 2, . . . , 1

Q∗t = ϕt+1(Q∗t+1) (2.24)

The difference between the forward algorithm and the Viterbi algorithm is
that the forward algorithm takes the sum of all previous paths into the cur-
rent cell calculation while the Viterbi algorithm takes the max of the previous
paths into the current cell calculation, but they are very similar in nature and
complexity.

2.2.5 Third problem: Parameter Estimation (model training)

Here we want to optimize the model parameters so as to best describe a given
observation sequence or a set of observation sequences. The observation se-
quences used to adjust the model parameters are called training sequences.
The training problem is the crucial one for most applications of HMM. It allows
to adapt model parameters to create best models of real phenomena (Rabiner,
1989).

For most of applications of HMM, we seek to use the ideal model which
has approximately the same statistical properties as those of the data. To this
aim, we have to adapt or estimate a certain pre-selected model by an iterative
procedure that is called model training. Normally, the pre-selected model has
to be selected by an expert.

Given an observation sequence O or a set of such sequences, the model
learning task is to find the best set of model parameters (A,B, π) which can
generate approximately the same given observation sequence. No tractable al-
gorithm is known for solving this problem exactly, but a local maximum likeli-
hood can be derived efficiently using the Baum–Welch algorithm or the Viterbi
algorithm (Rabiner, 1989).

In Viterbi training algorithm, only the probability P (O,Q∗|λ) of the re-
spective optimal state sequence is considered (Fink, 2014). Instead of that, in
the Baum-Welch training algorithm the emission probability calculated over
all model states P (O|λ) is considered. In general, the parameter estimation
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method guarantee a monotonic increase of the modelling quality only (Fink,
2014):

Pλ̃ ≥ Pλ (2.25)

where λ̃ is the modified model version of the current HMM model λ.

Viterbi training Algorithm

For Viterbi Training method, the target is to choose the best scoring path of
state sequence Q∗ by which the observation sequence O can be generated.
Based on that, some iterative transformations on the pre-selected model pa-
rameters λ = (A,B, π) will optimize the model parameters to its optimal val-
ues, then we can get a trained model λ̂ which has approximately the same
statistical properties of the given observation sequence. The Viterbi training
algorithm can be summarized in the following few steps.

step 1: Initialization step.

Choose a suitable initial model λ = (π,A,B) (the pre-selected model by an
expert) with the initial estimates of πi for starting and aij for the transition
probabilities as well as the emission probabilities bj(ok).

step 2: segmentation step

Calculate the optimal state sequenceQ∗ which can generate the given observa-
tion sequence O given the model λ. We are looking to calculate the δt(i) which
maximizes the state score in order to determine the optimal state sequence Q∗.
Let Xt(i) be the state of the optimal state sequence which is obtained by the
Viterbi algorithm.

Xt(i) =

{
1 if Q∗t = i and Q∗t = argmaxQ P (Q,O|λ)
0 otherwise (2.26)

step 3: Parameters estimation step.

Once the optimal state sequence has been determined in step 2, the computa-
tion of updated estimates of λ̃ = (π̃, Ã, B̃) is the following:

ãij =

∑T−1
t=1 Xt(i)Xt+1(j)∑T−1

t=1 Xt(i)
(2.27)

b̃j(ok) =

∑
t:ot=ok

Xt(j)∑T
t=1Xt(j)

(2.28)

π̃i =

∑NS
NB=1X1(i)

Numberofsequences
(2.29)

where NS is the number of sequences, this step is called optimization step
(Fink, 2014)
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step 4: Termination step.

The termination criteria for this method is considered by determining a thresh-
old of improvement of the estimated probability P ∗(O|λ̃) Also a maximum
number of iterations can be fixed.

As a conclusion, Viterbi algorithm depends on the partial production prob-
ability P ∗(O|λ) which is calculated by taking into account only the optimal
state sequence Q∗ by which the highest state score δt(i) can be obtained.

Baum-Welch training Algorithm

The Baum–Welch algorithm is a special case of the expectation maximization
algorithm (EM). The methodology of this algorithm stands on the optimization
criterion of the total production probability P (O|λ) for which

P (O|λ̃) ≥ P (O|λ) (2.30)

The mechanism of this algorithm is represented in the following steps.

step 1: Initialization step

Choose randomly or by an expert initial parameter values for a HMM model
λ = (π,A,B).

step 2: expectation step (E)

1. Forward inference procedure: compute αt(i)

2. Backward inference procedure:compute βt(i):-

3. Deduce the posterior probability γ to be in state i at time t given the
observation sequence O is computed using α and β as follows:

γt(i) = P (qt = i|O, λ) =
αt(i)βt(i)

P (O|λ)
=

αt(i)βt(i)∑N
i=i αt(i)βt(i)

(2.31)

4. Computing ξt(i, j) the probability of being in state i at time t, and state j
at time t+ 1 which reflects the effect of the state transition probability.

ξt(i, j) = P (qt = i, qt+1 = j|O, λ) (2.32)

step 3: Maximisation step (M)

At this stage we compute the updated estimates of the model parameters λ̃(π̃, Ã, B̃)
by using the γt(i) and ξt(i, j) calculated in step 1 as the following:-

π̃i = γ1(i) (2.33)
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ãij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(2.34)

b̃j(ok) =

∑T−1
t=1;ot=vk

γt(i)∑T
t=1 γt(i)

(2.35)

step 4: Termination step.

the termination of this algorithm depends of a stoping criterion that measures
the achieved enhancement in the total production probability P (O|λ̃) at ev-
ery update of the model parameter. For example, we can choose a percentage
value ε = 0.01 as a threshold and compare the measured enhanced production
probability as a likelihood probability η, where η(λ) is the likelihood probabil-
ity calculated by the old model parameter estimates and η(λ̃) is the likelihood
probability for the updated model parameter estimates which can be expressed
as the following:

η(λ̃)− η(λ)

η(λ)
≤ ε (2.36)

The algorithm jumps to step 3 while the criterion is not satisfied. otherwise
terminate the procedure;

2.2.6 Continuous Hidden Markov model architecture

The continuous nature of the observation vector (symbol vk) introduced by
the nature of the raw observation (pixels values or more elaborate features ex-
tracted from the pixels) requires to introduce an appropriate calculation of the
observation emission probability bj(ot). The estimation procedure for the con-
tinuous HMM parameters π and A is the same as the discrete HMM ones, the
difference is in the estimation of the parameter B which describes the observa-
tion emission probabilities bj(ot).

The choice of a Gaussian mixture density function to represent the obser-
vation emission probability bj(ot) comes from its ability to approximate any
probability distribution function (Huang et al., 2001). Figure 2.7 shows a rep-
resentation of the observation via multivariate Gaussian density functions.

FIGURE 2.7: Representation of the observation by Gaussian den-
sity functions i.e Gaussian clusters
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For M Gaussian density functions, the model writes:

bj(ot) =
M∑
k=1

CjkN(ot, µjk, Ujk) =
M∑
k=1

Cjkbjk(ot) 1 < j < N (2.37)

M∑
k=1

Cjk = 1 1 < j < N

Cjk ≥ 0 1 ≤ j ≤ N , 1 ≤ k ≤M

where N(ot, µjk, Ujk) denotes a single Gaussian density function with mean
vector µ and covariance matrix U for the state j, M denotes the number of
mixture-components andCjk the weight for the kth mixture-component (Huang
et al., 2001).

The Gaussian density function with mean vector µj and covariance matrix
Uj is calculated as the following:

bjk(ot) = N(ot, µjk, Ujk) =
1√

(2π)n|Ujk|
e−1/2(ot − µjk)′U−1

jk (ot − µjk) (2.38)

Where n represents the dimension of the observation vector ot and the prime
in (ot − µjk)′ denotes vector transpose.

The estimation of those probabilities is based on the estimation of the pa-
rameters of the mixture Gaussian density functions Cjk, µjk and Ujk. When
the observation elements are assumed independent, the covariance matrix U
is reduced to a diagonal covariance (Huang et al., 2001).

In order to take into consideration the weight of each Gaussian mixture
component the calculation of the posterior probability γt(j, k) of being in state
j at time t with kth mixture component accounting for ot is as the following:

γt(j, k) =

[
αt(j)βt(j)∑N
i=1 αt(j)βt(j)

][
Cjkbjk(ot)∑M

m=1 Cjmbjm(ot)

]
(2.39)

The estimation formulas for the coefficient of the Gaussian mixture density
functions Cjk, µjk and Ujk can be summarized as the following:-

C̃jk =

∑T
t=1 γt(j, k)∑T

t=1

∑M
k=1 γt(j, k)

(2.40)

µ̃jk =

∑T
t=1 γt(j, k).ot∑T
t=1 γt(j, k)

(2.41)

Ũjk =

∑T
t=1 γt(j, k).(ot − µjk)(ot − µjk)′∑T

t=1 γt(j, k)
(2.42)
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Where γt(j, k) is the probability of being in the state j at time twith kth mixture
component accounting for ot.

2.3 Recurrent neural network (RNN)

2.3.1 introduction

In general, neural networks (NNs) are commonly used for building pattern
recognition system with very good performance. The scientific term "(Artifi-
cial) Neural Network" comes from the similarity of these models with the biolog-
ical neurons. One of the most useful and powerful features of neural networks
is their ability to learn and generalize from a set of training data.

Neural networks were introduced for the first time by Mc Culloch an Pitts
(McCulloch and Pitts, 1943). The Perceptron notion was introduced by Rosen-
blatt (Rosenblatt, 1958) and after years the Multi-Layer Perceptrons (MLP,
(Rumelhart, Hinton, and Williams, 1988) was introduced. Recurrent neural
networks are the most convenient neural network type for solving handwrit-
ing recognition problem thanks to their ability to process sequences (Graves
et al., 2006).

2.3.2 Perceptron as a building block

The basic building block of an artificial neural network is the artificial neuron
which is know by Perceptron. The artificial neuron consists of a processing unit
with weighted inputs and outputs. In fact, biological neurons receive signals

FIGURE 2.8: Biological (upper figure) versus artificial neuron
(lower figure)
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to be processed in their cell body via a set of dendrites and send processed
signals out to other neurons via an axon. Similarly, the artificial neuron has
a number of inputs and a processing unit, and one output that can be fed to
multiple other neighbouring neurons at the next processing stage (next layer)
as illustrated in figure 2.8.

The jth neuron with j ∈ {1, 2, . . . , n} of an artificial neural network of n
neurons consists of an activation function f(x) (also called transfer function)
which receives vector of inputs ini with i ∈ {1, 2, . . . ,m} (where m is the num-
ber of inputs) and outputs outj which represent the jth binary decision output
where outj ∈ {out1, out2, . . . , n}. By definition, the neuron which classifies
its input into two output categories is called Perception (Freund and Schapire,
1999). It can be formulated as the following

outj = f(
n∑
i=1

iniwij − θj) = step(w1jin1 + w2jin2 + . . .+ wnjinn − θj) (2.43)

where, wij ∈ {w1j, w2j, . . . , wnj} are the input vector weights and θj is the de-
cision threshold associated to the neuron j, where step(x) = 1 if ini > θ and 0
otherwise.

Training a single perceptron refers to determining the appropriate weights
and threshold that leads to produce the expected output once certain inputs are
given to the perceptron. It is useful to simplify the mathematics by treating the
neuron threshold as if it were just another input connection weight by either
assuming that −θ = w0 is the weight of the input in0 = 1 for the neuron j
(Bullinaria, 2004) or by representing the neuron j threshold by what is called
the bias bj . Thus we can rewrite equation 2.43 as the following:

outj = step

(
n∑
i=1

wijini + bj

)
= step

(
n∑
i=0

wijini

)
(2.44)

For practical reasons, a continuous and differentiable function is preferred
such as the hyperbolic tangent function (tanh), rectified linear unit (ReLU)
and sigmoid function. The common choice is the sigmoid function because of its
non-linearity and derivative nature.

σ(x) =
1

1 + e−x

dσ(x)

dx
= σ(x)× (1− σ(x))

The sigmoid function can never return a 0 or a 1 due to its asymptopic nature.
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FIGURE 2.9: Sigmoid Activation function

Although, a binary classification decision can be taken from the output of
the sigmoid such as:

outj =

{
0, if σ

(∑n
i=1wijini + bj

)
< 0.5

1, otherwise (2.45)

The thresholding of the sigmoid function output defines the binary classifier
decision boundary as a hyperplane according to the following equation:

bj + w1jin1 + . . .+ wnjinn = 0 (2.46)

An optimal perceptron is the one which can separate linearly the classification
problem space.

Practically, the bias b value shift the hyperplane left and right on the input
space and the weights W rotate it. In graphical terms the threshold translates
the hyperplane while the weights rotate it. This threshold also need to be up-
dated during the learning process as well as the inputs’ weights.

Perceptron Learning rule

Perceptron decision boundaries are hyperplanes, and we can think of learning
as the process of shifting around the hyperplanes until each training example
is classified correctly. The learning process starts with random initial weights
and adjust them in small number of steps until the required outputs are pro-
duced by using an iterative learning algorithm.

Let the network weights at time t be wij(t) , then the shifting process cor-
responds to moving them by a small amount ∆wij(t) so that at time t + 1 we
have weights as following:

wij(t+ 1) = wij(t) + ∆wij(t) (2.47)

Suppose the target output of the perceptron unit j is targj and the actual output
is outj = step(

∑
iniwij), where ini are the activations of the input. The shifting

amount ∆wij(t) can be calculated from the difference between the traget out-
put targj and the actual output outj of the perceptron unit j as the following
equation:

∆wij = η(targj − outj).ini (2.48)
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where η represents the learning rate or step size that determines how smoothly
we shift the decision boundaries. The weight update equation 2.47 is called
the Perceptron Learning Rule for which we consider three main cases:-

1. If outj = targj that leads to targj−outj = 0 so then no need to update the
weight wij .

2. If outj = 1 and targj = 0 that leads to targj−outj = −1 which means that∑n
i=0 iniwij is too large so then we need to decrease wij in case ini = 1 by

the learning rate value
wij = wij − η.ini (2.49)

3. If outj = 0 and targj = 1 that leads to targj − outj = 1 which means that∑n
i=0 iniwij is too small so then we need to increase wij in case ini = 1 by

the learning rate value
wij = wij + η.ini (2.50)

The weight changes ∆wij need to be applied repeatedly for each weight wij
in the network, and for each training example in the training set. One pass
through all the weights for the whole training set is called one epoch of training.
The training process converges to a solution, when all the network outputs
match the targets for all the training patterns so all ∆wij are zeros.

There are two important aspects of the network’s operation to consider; (i)
The network must learn decision boundaries from a set of training examples
until these training examples are classified correctly. (ii) After training, the
network must be able to generalize and correctly classify test examples that it
has never seen before. In fact, there is an important trade-off between learning
and generalization that arises quite generally (Bullinaria, 2004).

Learning by Error Minimisation

The general requirement for learning is an algorithm that adjusts the network
weights wij to minimise the difference between the actual outputs outj and the
desired outputs targj . The Error Function or Cost Function E is used for quan-
tifying this difference. One of theses quantification functions commonly used
for learning neural networks is the Sum Squared Error (SSE) function which
represents the total squared error summed over all the output units j and all
the training examples p.

ESSE(wij) =
1

2

∑
p

∑
j

(targjp − outjp)2 (2.51)

Another common used cost function for multiple class classification prob-
lem is called Cross Entropy cost function (ECE). If we have network output
outj representing the probability of class j, and targj is the binary target out-
put, the probability of observing the whole training data set is

∏
p

∏
j out

targj
j

and by minimizing the negative logarithm of this likelihood, the cost function
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becomes
ECE = −

∑
p

∑
j

targjp. log (outjp) (2.52)

By the training process we aim to minimize such error function. The network
training by minimizing the Sum Squared Error means that the derivative of
the error with respect to each network weight must be zero at the minimum

∂

∂wij

[
1

2

∑
p

∑
j

(
targjp − f(

∑
i

inipwij)

)2 ]
= 0 (2.53)

If we want to change given x value by ∆x to minimise a function f(x), what we
need to do depends on the gradient of f(x) at the current value of x according
to

∆x = xnew − xold = −η∂f
∂x

(2.54)

where η is a small positive constant specifying how much we change x, and
the derivative ∂f/∂x tells us which direction to go in. By iteration with equa-
tion 2.54, the function f(x) will keep descending towards its minimum.This
iterative procedure is known by gradient descent minimisation.

The idea is to apply a series of small updates to the weightswij ← wij+∆wij
until the cost E(wij) is “small enough”. For this we need to determine the
direction that the weight vector need to change to best reduce the cost function.
This can be achieved by knowing the effect of varying the weights wij on the
gradient of the cost function E. By adjusting repeatedly the weights by small
steps against the gradient, the cost function will move through a weight space
and descends along the gradients towards the minimum value.

2.3.3 Neural Networks Topologies

Multi-layer perceptron (MLP)

The multi-layer notion of the perceptrons has been inspired from the biolog-
ical neurons structures to form what is called multi-layer perceptron (MLP,
(Rumelhart, Hinton, and Williams, 1988)). In this analogy, the inputs ini are
received from other previous activated neurons outputs, that forms a neural
network which consists of layers of mutually connected neurons with different
connecting weights, starting form the input (first) layer through intermediate
layers towards the output (last) layer as illustrated in figure 2.10 .

Let W (l)
ij denotes the weights of each neuron j of layer l applied on each

input i which is the output of the neuron i of layer l − 1. Thus the output
(vector) of layer l namely out

(l)
j can be computed by the multiplication of the

vector of inputs in(l) with the weight matrix W (l) considering the bias as one
of the input weights and the element-wise application of a non-linear function
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FIGURE 2.10: Multi-layer perceptron (MLP) illustration

fl.
out

(l−1)
i = ini

out
(l)
j = fl

(∑
iW

(l)
ij .out

(l−1)
i

)
out

(l+1)
k = fl+1

(∑
jW

(l+1)
jk .out

(l)
j

)
...

(2.55)

The advantages of such organisation of layers is in the computation of the
layer output in a single feed-forward pass. The last layer neurons of the MLP
are linear binary classifiers sharing the same input features (Bluche, 2015).
Therefore, an MLP with several outputs is a multi-class classifier. (Bourlard
and Wellekens, 1990) interpreted the network outputs as posterior probabil-
ities. Posterior probabilities can be obtained by the application of a softmax
function instead of a sigmoid function at the output (last) layer. By denoting
h =

∑
iwijini as the activation of the neuron j (before the non-linear activation

function), and z its output, the softmax function can be defined for n neurons
with h1, . . . , hn activations as follows:

zi = softmax(hi) =
ehi∑n
k=1 e

hk
(2.56)

where the output zi is satisfying two conditions, (i) zi ∈ [0, 1], (ii)
∑n

i=1 zi = 1.
By this, a probability distribution over all classes is defined which allows to
decide for the class with the highest probability, i.e highest output.

With one single layer perceptron, it is not possible to deal with non-linearly
separable problems. However, Multi-Layer Perceptrons (MLPs) are able to
cope with non-linearly separable problems.
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Learning single layer perceptron

Single layer perceptron means that the network consists of one layer of per-
ceptrons for which we apply the learning process and one layer of inputs as
shown in figure 2.11.

FIGURE 2.11: Multi-layer perceptron (MLP) illustration

We assume that we want to train a single layer network by adjusting its
weights wij to minimise the SSE (2.51) by making a series of gradient descent
weight updates according to

∆wij = −η ∂E
∂wij

(2.57)

If the transfer function for the output neurons is f(x), and the activations of the
previous layer k of neurons are ini , then the outputs are outj = f(

∑
i iniwij) ,

and:

∆wij = −η ∂

∂wij

1

2

∑
p

∑
j

(
targjp − f(

∑
i

inipwij)

)2
 (2.58)

where p ∈ p1, p2, . . . , pN are the training pattern. For training Single Layer Per-
ceptrons, the delta rule of equation 2.58 and the perceptron learning rule have
exactly the same weight update equation obtained by two algorithms which
are theoretically different. The Perceptron Learning Rule was derived from
a consideration of how we should shift around the decision hyper-planes for
step function outputs, while the Delta Rule emerged from a gradient descent
minimisation of the Sum Squared Error for a linear output activation function
(Bullinaria, 2004). The Perceptron Learning Rule will converge to zero error and
no weight changes in a finite number of steps if the problem is linearly sepa-
rable, but otherwise the weights will keep oscillating. On the other hand, the
Delta Rule will (for sufficiently small η ) always converge to a set of weights
for which the error is a minimum, though the convergence to the precise tar-
get values will generally proceed at an ever decreasing rate proportional to the
output discrepancies deltaj = targj − outj (Bullinaria, 2004). The output error
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deltaj at the unit j represents the difference between the target output targj at
the unit j and the unit output outj .

Learning MLP network by Back-propagation

Learning Multi-layer Perceptron network is motivated by the same principle
as for single layer networks learning. The learning process aims to adjust the
network weights w(l)

ij of each layer l in order to minimize an output cost func-
tion such as Cross Entropy Error function ECE Unfortunately, the error at each
intermediate layer in not known which prevent from using the gradient de-
scent rule on each layer directly. This can be achieved by a series of gradient
descent weight updates.

∆w
(l)
ij = −η

∂E({w(l+1)
ij })

∂w
(l)
ij

(2.59)

The linear final outputs can be written:

out
(N)
j =

∑
i

out
(N−1)
i w

(N)
ij =

∑
i

f

(∑
k

inkw
(N−1)
ki

)
w

(N)
ij (2.60)

It is only the outputs out(N)
j of the final layer N (N ∈ {0, 1 . . . , n, . . . , N}) that

appear in the output error function ECE . Meanwhile, the final layer outputs
will depend on all predecessor layers of weights, and the learning algorithm
will adjust them all also, by backpropagation the error on each layer and up-
dating the parameters simultaneously on each layer.

When implementing the Back-Propagation algorithm it is convenient to de-
fine

delta
(N)
j = (targj − out(N)

j ) (2.61)

which is the output error. One the delta of the output layer N is computed
according to equation 2.61, then the delta is back-propagated to earlier layers
using

delta
(l)
j =

(∑
k

delta
(l+1)
k .w

(l+1)
jk

)
.f ′
(∑

i

out
(l−1)
i w

(l)
ij

)
(2.62)

Then each weight update equation can be written as:

∆w
(l)
hj = η

∑
p

delta
(l)
pj .out

(l−1)
ph (2.63)

∆w
(l)
hj = η

∑
p

[(∑
k

delta
(l)
pk .w

(l)
jk

)
.out

(l−1)
pj .

(
1− out(l−1)

pj

)]
.inph (2.64)

So the weight w(l)
hj between units h and j is changed in proportion to the

output of unit h and the delta of unit j. The weight changes at the earlier layer
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(l− 1) now take on the same form as the layer (l), but the “error” delta at each
unit j is back-propagated from (l) each of the output units k via the weights
w

(l)
jk .

Recurrent Neural Network (RNN)

The network contains at least one feed-back connection that makes its acti-
vation flow round in a loop over time as shown in figure 2.12. Thanks to

FIGURE 2.12: Recurrent neural network (RNN) illustration
Graves et al., 2006

this property, the network is able to achieve temporal processing tasks such
as handwriting recognition and learn sequences like in language modelling
tasks. Figure 2.13 shows a RNN being unrolled (or unfolded) into a full one
hidden layer network. By unrolling we simply mean that we write out the net-
work for the complete sequence. For example, if the sequence we care about
is a sentence of 3 events, the network would be unrolled into a 3-layer neural
network, one layer for each event.

FIGURE 2.13: Unrolled recurrent neural network (RNN) illustra-
tion

Let xt and ot be the input and output vectors of events associated with two
connection weights matrices U and V respectively. Furthermore, let denote
ht as the hidden state (the memory unit) of the network which depends on
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the previous hidden state ht−1 and the input event at the current step xt con-
sidering their associated weights W and U respectively. The hidden and out-
put unit activation functions fh and fo are used for controlling the recurrent
unit behaviour. Unlike a traditional deep neural network, which uses different
weights at each layer, the RNN network shares the same weights (U, V, W seen
in figure 2.13) across all time steps. This reflects the fact that we are performing
the same task at each time step, just with different inputs. This greatly reduces
the total number of weights we need to learn.

The behaviour of the recurrent network can be described as a dynamical
system by a pair of non-linear matrix equations:

ht = fh (U.xt + W.ht−1) (2.65)

ot = fo(V.ht) (2.66)

The function f usually is a non-linearity such as tanh or ReLU. Theoretically,
the state ht captures information about what happened in all the previous time
steps. The output at step ot is calculated solely based on the memory at time t.
As briefly mentioned above, it’s a bit more complicated in practice because ht
typically can’t capture information from too many time steps ago.

Recurrent Neural Networks unit (RNNs) are popular models that have
shown great and promising results in many sequence related tasks such as
handwriting recognition and language modelling. The idea behind the lan-
guage modelling using RNNs is to predict the next event on the line of events
with keeping in mind the event which comes before it. However, for hand-
writing recognition, the RNN is concerned by the identification of input events
with regards to its history in some form of memory. Bidirectional RNNs (BRNNs,

FIGURE 2.14: Recurrent neural network (bidirectional-rnn) illus-
tration

Schuster and Paliwal, 1997) are based on the idea that the output at time t may



2.3. Recurrent neural network (RNN) 37

not only depend on the previous elements in the sequence, but also future el-
ements. They are just two RNNs stacked on top of each other. The output is
then computed based on the hidden state of both RNNs. They compute the
forward hidden sequence

−→
h , the backward hidden sequence

←−
h and the out-

put sequence o by iterating the backward the forward layer from t = 1 to T ,
layer from t = T to 1 and updating the output layer as the following:

−→
h = fh(

−→
Uxt +

−→
W
−→
h t−1) (2.67)

←−
h = fh(

←−
Uxt +

←−
W
←−
h t−1)

ot = fo(
−→
V
−→
h t +

←−
V
←−
h t)

Figure 2.14 shows an illustration of the bidirectional RNN.
Multi-Directional RNNs (MDRNNs) was introduced by (Graves and Schmid-

huber, 2009). MDRNNs network is able to process an input image in four
directions with recurrent layers. (Mikolov et al., 2011b) present freely avail-
able open-source toolkit for training recurrent neural network based language
models. Simple recurrent neural networks was proposed by (Robinson, 1994)
for speech recognition and (Senior, 1994; Lee and Kim, 1995; Senior and Robin-
son, 1998) for handwriting recognition.

Learning RNNs using back-propagation through time algorithm BPTT

The Backpropagation through Time (BPTT) learning algorithm is a natural ex-
tension of standard backpropagation that performs gradient descent on a com-
plete unfolded network.

When a network training starts at time t0 and ends at time t1, the total cost
function is the sum over time of the standard error function E(t) at each time-
step is:

Etotal(t0, t1) =

t1∑
t=t0

E(t) (2.68)

Moreover, the total error must be summed over every sequence example in a
way similar to a multi-layer perceptron but by considering a shared layer over
time. Thus the name backpropagation through time of the training algorithm.

Vanishing Gradient issue

Training certain Artificial Neural Networks with gradient based methods (e.g
Back Propagation) encounters a difficult problem known by Vanishing Gradient
caused by stacking too many layers and also due to the activation function (e.g
sigmoid or tanh) which squeeze their input into a very small output range in a
very non-linear fashion. When stacking multiple layers, even a large change
in the input will produce a small change in the output - hence the gradient is
small. This means that large time dependencies cannot by processed by such
method; this explains why ANN have not been considered useful in sequence
modelling during time.
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CTC learning criterion

Graves et al., 2006 introduced the Connectionist Temporal Classification (CTC)
criterion basically for mapping an input sequence x to an output sequence of
labels L (ex. characters) within RNN network by using N-to-N predictions
with no need for further post-processing. The problem is that the standard
neural network objective functions are defined separately for each frame in
the training sequence; in other words, RNNs can only be trained to make a
series of independent label classifications. This means that the training data
must be pre-segmented, and that the network outputs must be post-processed
to give the final label sequence. (Graves et al., 2006).

The proposed method defines the network outputs to be the set of possi-
ble labels sequence introduced to get a better character representation, plus a
blank output (∅). By this way, a sequence of predictions is mapped to the target
sequence of labels by removing repeated labels and the blanks for example:

aa ∅ bb ∅ a ⇒ aba

Training a RNN network using CTC criterion aims to maximize the prob-
ability of the label sequence given the input sequence. Several prediction se-
quences yield the same label sequence (e.g.aabb, aaab, a∅bb, ...). To simplify the
analogy with the methods presented previously, let Qn(L) be the set of all la-
bels (prediction) mapping the groundtruth target sequence L.

p(L|x) =
∑

q∈Q|x|(L)

|x|∏
t=1

p(qt|L) (2.69)

This quantity can also be efficiently computed with a forward procedure in
a way similar to the HMM. The mapping defines the allowed transitions be-
tween labels: one can either continue to predict the same label, jump to the next
one if it is different, or jump to a blank. The forward and backward variables
are defined as follows, with L = l1, . . . , ln and L′ = l′1, . . . , l

′
n = ∅l1∅, . . . , ∅ln∅

αt(l
′
s) = p(q1:t ∈ Qt(L1:s/2, qt = l′s|x) (2.70)

βt(l
′
s) = p(qt+1:T ∈ QT−t(Ls/2+1:|L|), qt = l′s|x) (2.71)

and the recurrences are:

αt(l
′
s) = p(qt = l′s|x)

k∑
n=0

αt−1(ls−n) (2.72)

βt(l
′
s) =

k∑
n=0

p(qt+1 = l′s+n|x)βt+1(l′s+n) (2.73)
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where k = 1 when l′s = l′s−2 or l′s = l′s+2 for forward / backward variables,
and k=2 otherwise. The α and β variables allow to compute

p(L|x) =
∑

q∈Q|x|(L)

αt(q)βt(q) (2.74)

and the derivation of the cost− log p(L|x) leads to the following back-propagated
error:

∂E

∂atk
= ytk −

∑
s:µ(s)=k

αt(s)βt(s)∑
r αt(r)βt(r)

(2.75)

were ytk is the output of the neural network at time t for label k, and atk are
the activations before the softmax.

Long Short-Term Memory Units (LSTM)

In RNNs, the vanishing gradient issue prevents the neural network to learn long
time dependencies (Bluche, 2015; Hochreiter, 1991; Bengio, Simard, and Fras-
coni, 1994). The solution proposed by (Hochreiter and Schmidhuber, 1997) to
tackle this problem introduced a gating mechanism in form of a Long Short-
Term Memory unit neural network (LSTM). Unlike the recurrent unit which
simply computes a weighted sum of the input signal and applies a nonlin-
ear activation function, each LSTM unit maintains a memory Ct at each time
t. The temporal recurrent memory cell Ct is controlled by forget, input and
output gates which serve to flush, change or retrieve data from the memory
cell respectively. The gating mechanism is what allows LSTMs to explicitly
model long-term dependencies. By learning the parameters for its gates, the
network learns how its memory cells should behave. The gate consists of an
activation function (like, sigmoid) and a point wise multiplication operation
(Bluche, 2015). The gate outputs numbers between zero and one, deciding
either to let the whole information go when the output value is one or total
information blocking once the output value is zero.

FIGURE 2.15: LSTM functional illustration

Looking at figure 2.15, an LSTM unit is described by the following terms:-



40 Chapter 2. Theoretical bases of handwriting optical models

The Output Gate ot controls whether the LSTM unit emits its memory acti-
vation output ht.

ot = σ(Wo.[xt, ht−1] + bo)
ht = ot � tanh(Ct)

(2.76)

The forget gate ft controls by interruption, the participation of the previous
state forward to the next one.

ft = σ(Wf .[xt, ht−1] + bf ) (2.77)

The Input Gate it decide whether the current cell input C̃t has a contribu-
tion to the memory cell state at the next time slot Ct+1.

it = σ(Wi.[xt, ht−1] + bi) (2.78)

The next cell state Ct can be obtained by.

C̃t = tanh(Wc.[xt, ht − 1] + bc)

Ct = ft � Ct−1 + it � C̃t
(2.79)

Unlike the traditional recurrent unit which overwrites its content at each
time-step, an LSTM unit is able to decide whether to keep the existing mem-
ory state via the introduced gates. Intuitively, if the LSTM unit detects an im-
portant feature from an input sequence at early stage, it easily carries this in-
formation (the existence of the feature) over a long distance, hence, capturing
potential long-distance dependencies (Chung et al., 2014).

The LSTM unit is more powerful than the standard RNN’s one by the abil-
ity of learning simple grammars (Hochreiter and Schmidhuber, 1997; Gers
and Schmidhuber, 2001) and music composition (Eck and Schmidhuber, 2002).
LSTM-RNN’s was successfully used for phonemes and speech recognition by
(Graves and Schmidhuber, 2005; Graves, Mohamed, and Hinton, 2013).

FIGURE 2.16: BLSTM functional illustration
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For many sequence labeling tasks such as handwriting and speech recog-
nition tasks, it is beneficial to have access to both the past (left) and the future
(right) contexts with a Bi-directional LSTM network (BLSTM). However, the
LSTM’s hidden state ht takes information only from past and knows nothing
about the future. Recurrent layers of BLSTM neurons structured for working
on Bi-directions achieve the state of the art in the handwriting recognition with
best obtained results (Doetsch, Kozielski, and Ney, 2014; Graves and Schmid-
huber, 2009; Bluche et al., 2014). The basic idea is to present each sequence
forwards and backwards to two separate hidden states to capture past and fu-
ture information, respectively. Then the two hidden states are concatenated to
form the final output as illustrated in figure 2.16.

Convolutional Neural Networks CNN

Convolutional Neural Networks (CNN or ConvNets) has the same MLP struc-
ture with one essential structural difference (LeCun et al., 1989). The neurons
of the CNN neural network are not fully interconnected to each other from
one layer to the next. The traditional structure of the ConvNets consists of

FIGURE 2.17: ConvNets illustration example

four main operations as seen in figure 2.17:-

1. Convolution: aims to learn the input image features by preserving the
spatial relationship between pixels.

2. Non linearity (ReLU): ReLU is an element wise operation (applied per
pixel) and replaces all negative values in the feature map by zero.

3. Polling or Sub Sampling: Spatial Pooling (also called sub-sampling or down-
sampling) reduces the dimensionality of each feature map but retains the
most important information.

4. Classification (Fully connected layer): The Fully Connected layer is a tradi-
tional Multi Layer Perceptron that uses a softmax activation function in the
output layer.

The network learning process is similar to MLP network, it uses the back-
propagation gradient decent algorithm. Convolutional Neural Networks have
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a good reputation in computer vision application field because of their excel-
lent achievements with best performance results in various challenging tasks
such as object recognition (Szegedy et al., 2015), image segmentation (Fara-
bet et al., 2013), speech recognition (Abdel-Hamid et al., 2012). They are also
used for handwritten digits recognitions by (LeCun et al., 1989), then for whole
handwritten text (sentence) recognition by( LeCun et al., 1989; Bengio et al.,
1995; Le Cun, Bottou, and Bengio, 1997; Bluche, Ney, and Kermorvant, 2013a;
Bluche, Ney, and Kermorvant, 2013b).

2.3.4 Handwriting recognition platforms and toolkits

Several toolkits have been used for speech recognition or for handwriting recog-
nition. Some of these toolkits support implementation of Hidden Markov
model or neural network based HWR systems and provides sophisticated fa-
cilities for speech analysis, HMM training, testing and results analysis.

We present a non-exhaustive list of HMM based platforms and toolkits that
help to build HMM based HWR systems is the following:

1. HTK (Young and Young, 1993) consists of a set of library modules and
tools available in C source form. The software supports HMMs using
both continuous density mixture Gaussians and discrete distributions
and can be used to build complex HMM systems. initially, HTK is a
HMM toolkit but recently, it has the ability to deal with deep neurl net-
work architecture.

2. Juluis (Lee, Kawahara, and Shikano, 2001) is a high-performance, two-
pass LVCSR decoder written in C and context-dependent HMM decod-
ing (deal with HTK HMM formates).

3. Sphinx-4 (Walker et al., 2004) is a modular (written in Java) and plug-
gable framework that incorporates design patterns from existing sys-
tems, with sufficient flexibility to support emerging areas of research in-
terest.

4. RWTH Aachen University speech recognition toolkit (Rybach et al., 2009)
is written in C++ and consists of speaker adaptation, speaker adaptive
training, unsupervised training, a finite state automata library, and an
efficient tree search decoder components.

5. Kaldi (Povey et al., 2011) is an open-source toolkit for speech recognition
written in C++ and licensed under the Apache License v2.0. It provides
the tools to train HMM / NN optical models and intergrates Open-FST
library (Allauzen et al., 2007) for decoding with Finite State Transducers
techniques.

Common NN based platforms and toolkits used for building HWR are pre-
sented in the following list:-
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1. RETURNN (Doetsch et al., 2016) is extensible and easily configurable
neural network training software. It support training different recur-
rent neural network topologies on multiple GPUs. RETURNN stands
on Theano as an top of layer for the Theano library which represents
a bridge between research oriented software packages and application
driven machine learning software like Caffe (Jia et al., 2014). RETURNN
extends RASR (Wiesler et al., 2014) to support various recurrent neural
networks architectures in ASR systems.

2. Theano (Bastien et al., 2012) is a Python based framework that support
the automatic differentiation for symbolic mathematical tensor expres-
sions. Expressions modelling represents a computational dependency
graph which can be augmented by an automatic optimization procedure.
The abstract of each graph node can be defined for various types of hard-
ware like CPUs or GPUs. By these properties, Theano is particularly use-
ful for neural network training tasks.

3. Keras (Chollet, 2015) is a high-level data-driven machine learning frame-
work based on Theano similar to RETURNN, Lasagne (Lasagne, 2017)
and Blocks (Van Merriënboer et al., 2015). Recently, Keras starts to sup-
port TensorFlow in addition to Theano as back-end with minimal restric-
tions.

4. TensorFlow is the most recent open source machine learning package by
Google (Abadi et al., 2016). It is actively developed and comes already
with many predefined solutions such as LSTMs, end-to-end systems and
others. TensorFlow is similar to Theano as it also works with symbolic
computation graphs and automatic differentiation.

5. Torch (Collobert, Bengio, and Mariéthoz, 2002) have its own program-
ming language "Lua" and consists of many flexible and modular com-
ponents that were developed by the community. In contrast to Theano,
Torch does not use symbolic expressions and all calculations are done
explicitly.

6. EEESEN (Miao, Gowayyed, and Metze, 2015) is a speech recognition
toolkit which can be considered as an extension to Kaldi tool kit by adding
rudimentary support for LSTMs networks. We used this toolkit for im-
plementing our LSTM based handwriting recognition system.

There are some other notable NN-based frameworks which are written in C++
such as Caffe (Jia et al., 2014), some others are Python-based such as Neon
(Neon, 2017) and Brainstorm (Brainstorm, 2015). A comparison between Caffe,
Neon, Theano, and Torch was presented by (Bahrampour et al., 2015).
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2.4 conclusion

In this chapter we aimed to present an overview of the theoretical bases of the
optical models as one of two essential components for any handwriting recog-
nition system (the optical models and language models). An optical models
can by introduced either by HMM models or neural network model. Discrete,
continuous or semi-continuous HMM model can be used as an optical model,
which represent generative model for sequence of observations.

Nowadays, MLP , RNN and their extension, represent the mile-stone of
a wide range of state of the art handwriting recognition systems thanks to
their discriminative nature in decision making. Such optical models fall in
the category of discriminative optical models, as opposed to HMM.

For the HMM based optical models, training the optical models can be
achieved using the expectation maximization dynamic algorithms like Viterbi
and forward-backward algorithms. Meanwhile, neural networks optical mod-
els can be trained by using gradient descent algorithms such as back-propagation,
back-propagation through time and CTC learning algorithm. The RNN based
recognition system perform better than those base on HMM as mentioned by
the literature on the handwriting and speech recognition. tanh
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Chapter 3

State of the art of language
modelling

3.1 Introduction

Language modelling is the art of determining the probability of a sequence
of words (Joshua, 2001). Applications that deal with natural language data,
(Written or spoken) require a representation of the characteristics of the treated
language. For example, in case where the data are sentences, this representa-
tion gives the possible associations of words. One of the important language
representation is the language model which is able to capture language regu-
larities.

Spoken language and written language differ by their low level structures
(phonemes for spoken language and characters for written language) but they
follow the same concatenation rules for higher level structures (ex. when con-
structing sentences from "words").

Phonemes (ex. /@/) are the primary units of speech in a language. Conven-
tionally, the term ”phone” designates the acoustic realization of a phoneme.
Phonemes, are classified into two main categories: vowels and consonants.
Vowels are linguistically characterized with respect to the pitching position in
the oral cavity [front - back], [high - low]. Consonants are characterized by
constriction or obstruction of important pitching in the oral cavity. In English
40 phonemes are used to code the language, while 35 make up the French lan-
guage, and only 25 phonemes are sufficient for coding the Italian language.
One important thing to be considered here, is that vowels and consonants
phonemes in speech do not have corresponding written representation. There-
fore, the low level representation of spoken and written languages do not
match. Some language specific rules allow converting the spoken represen-
tation to the written representation of that language.

In this chapter, we first give an overview of the spoken and written lan-
guage building units which represent the bricks that must be defined before
building any language model. Then we present a comparison between struc-
tural modelling of the language (representation that stands on a set of rules
for the composition of sentences) and statistical language modelling that is
based on the frequency computations of word occurrences in a sentence. These
two approaches represent the two main approaches for natural language mod-
elling. Then, we focus more in depth on the statistical modelling approach of
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language, since it is more adapted to our problem, and we compare in particu-
lar different techniques of language modelling before finishing by introducing
some applications.

3.2 Language building units

According to the literature (Shaik et al., 2011; Xu et al., 1996), we can classify
the spoken / written language building units from the lexical point of view
into three main categories (see Tables 3.1): lexical units, sub-lexical units and
primary units. In the following sections we try to illustrate and explain this
taxonomi of the human spoken and written language.

language
units

lexical
units

sub-lexical
units

primary
units

Speech Words
morphemes

phonemesphonotic
syllables

graphones

Writing Words
morphemes

Charactersgraphemic
syllables

htop Hyphens based
Alphanumeric characters

TABLE 3.1: spoken & written language components

3.2.1 Primary units

Both spoken and written languages are based on unambiguous primary units
which are either phonemes of spoken languages or characters and alphanu-
meric symbols of written languages. Phonemes are represented ambiguously
using a phonetic alphabet (Alphabet Phonetique International (International-
Phonetic-Association, 1999) but written languages do not use this alphabet,
they use one of the many writing systems that have been introduced through
history.

The type of writing system used for a language is the most important fac-
tor for determining the nature of the language primary units. Writing systems
can be logographic, where a large number (often thousands) of individual lo-
gograms (symbols) represent words (Indurkhya and Damerau, 2010). A lo-
gogram or logograph is a written symbol that represents a word or a phrase.
Chinese characters and Japanese kanji alphabet are logograms; some Egyptian
hieroglyphs and some graphemes in cuneiform scripts are also logograms. In
contrast, writing systems can be syllabic, in which individual symbols repre-
sent syllables, or alphabetic, in which individual symbols (more or less) rep-
resent sounds; unlike logographic systems, syllabic and alphabetic systems
typically have fewer than 100 symbols.
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Syllabic alphabets, are writing systems in which the main element is the
syllable. Syllables are built up of consonants, each of which has an inherent
vowel. For example in Devangari writing system like "mAJ� l�V�k̂ d�vnAgrFc�
þyog�", diacritic symbols are used to change or mute the inherent vowel, and
separate vowel letters may be used when vowels occur at the beginning of a
syllable or on their own. The majority of the written languages use an alpha-
betic or syllabic system (Comrie, Matthews, and Polinsky, 1997). However,
in practice, no modern writing system employs symbols of only one kind, so
no natural language writing system can be classified as purely logographic,
syllabic, or alphabetic (Indurkhya and Damerau, 2010).

In writing, the alphanumeric characters and symbols such as punctuation
marks sometimes attach the beginnings or/and the ends of the meaningful
language words like in the French sentence "C’est intéressant," or in the English
sentence "I ’d like to jump!!". The punctuation characters (’), (,) and (!!) defines
the reading style of the handwriting. For example, the couple of characters
(’d) represents an appreviation to the sentence "I would", while the punctu-
ation character (’) does not make sense in a sentence if it was written alone.
However, there are some other alphanumeric characters that are considered as
a meaningful language word such as digits, mathematical symbols and ques-
tion marks. Thus, meaningful alphanumeric characters and symbols can be
considered as lexical, sub-lexical and primary building units the written lan-
guage.

3.2.2 Lexical units

For the spoken and written language, the word is the lexical unit of a language
that hold a significant meaning. Regarding to the writing systems, it is not
easy to determine what is meant by "word". Typically people initially think
of items in a sentence separated by silence or white spaces or certain types of
punctuation marks. In languages such as French, English, German or Arabic
such concepts can be applied. In languages such as Bengali, chines, Japanese
or Thai, there are no separation mark between words, because a sequence of
adjacent characters can represent multiple words.

The notion of word is very important for most of the evaluation protocols,
a word being defined as a sequence of characters sided by two white space for
writing or by silence for speech.

3.2.3 Sub-lexical units

Sub-lexical units are used in speech recognition as the acoustic model build-
ing blocks rather than phonemes ( Choueiter, 2009). Sub-word units are also
used for language modelling ( Shaik et al., 2011; Mousa et al., 2010; El-Desoky
et al., 2009). For highly inflected languages such as German (Shaik et al., 2011)
or Arabic (Märgner and El Abed, 2012), a large amount of words are derived
from the same root due to multiple factors such as inflection, derivation and
compounding. This morphological flexibility leads to high OOV rates and
large language model perplexity. For such languages, sub-word units allow
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modelling OOV with lower perplexity language models. The perplexity is de-
fined in information theory (Shannon, 1948) as a measurement of how well
a probability distribution or probability model predicts a sample. It is used
for comparing probability models such as language models. A low perplexity
indicates the probability distribution is good at predicting the sample.

One important issue of language modelling with sub-lexical units is the
proper choice of the sub-word units. According to Shaik (Shaik et al., 2011),
sub-word units are classified into three main types:- morpheme based sub-
word units, syllable based sub-word units and graphone based sub-words
units. While lexical units are defined with no ambiguity as the language words,
sub-lexical units have at least five main definitions based on two main decom-
position strategies:

Spoken language dependent word decomposition into sub-lexical units

The strategy of word decomposition into sub-lexical units relies on some spo-
ken language aspects such as word morphology and word pronunciation that
generate the following three types of sub-lexical units:-

1. Morpheme sub-lexical units: the decomposition of a word according
to its morphological structure produces sub-lexical semantic units called
morphemes which represent the prefix, root and suffix parts of the word
(ex. non-, perish, and -able as prefix, root and suffix respectively).

The morpheme is known as the smallest linguistic component of a word
that has a semantic meaning. A word can be decomposed into a se-
quence of morphemes by applying either supervised or unsupervised
approaches. Supervised approaches (Adda-Decker and Adda, 2000) use
a set of linguistic rules designed by an expert. Unsupervised approaches
are almost statistical based data driven approaches (Adda-Decker, 2003).
The proposed decompounding algorithm is corpus-based and language
independent in the sense of no linguistic knowledge is required, except-
ing a large text corpus. Word-specific decompounding rules are automat-
ically extracted based on the branching factor of successor characters.

Morphemes have been used by Shaik (Shaik et al., 2011) for speech recog-
nition and by Hamdani et al (Hamdani, Mousa, and Ney, 2013 for hand-
writing recognition. Hamdani & al. proposed an Arabic handwriting
recognition system based on HMM models using a mixed language model
of words and sub-word units. The vocabulary contains words and sub-
word units produced by a specific morphological decomposition method
of Arabic words which is based on the semantic decomposition of words
into roots, suffixes and prefixes (Creutz et al., 2007). The results show
the improvement provided by this system, notably to cope with OOV,
compared to a lexicon driven recognition system.

2. Phonetic syllable sub-lexial units: Syllables are sub-lexical units that are
based on a phonetic decomposition. They are sometimes defined physi-
ologically as a continuous unit of the spoken language which consists of
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a sound or a group of sounds uttered in one breath (Ryst, 2014; Brown,
2006) for example the french word (bibliothécaire) has the phonological
syllable representation (bi - bli - O - te - kEK).

Syllables are generally centered around the vowels in English (Huang et
al., 2001), French (Ryst, 2014) and German (Shaik et al., 2011). Acous-
tic models of syllables and syllable-like units are implemented with suc-
cess in (Choueiter, 2009; Ganapathiraju et al., 2001) and successful imple-
mentation of syllabic language models are presented in (Xu et al., 1996)
for Chinese, (Majewski, 2008) for Polish, (Schrumpf, Larson, and Eick-
eler, 2005) for English and German language (Shaik et al., 2011). Syl-
labic models based on hidden Markov model (HMM) are examined in
(Jones, Downey, and Mason, 1997) and compared with mono-phones
HMM based acoustic models using a bigram language model. A Hy-
brid syllable and phonetic based model was proposed by (Sethy, Ramab-
hadran, and Narayanan, 2003) and the system shows better performance
than systems that use only one of these two models.

The syllable plays an important role in the organization of speech and
language (Kozielski, Doetsch, and Ney, 2013; Ryst, 2014). The syllable
consists of one or more written letters representing a unit of speech called
phoneme. The segmentation of speech into syllables can be achieved
using acoustic units or phonological units (Ridouane, Meynadier, and
Fougeron, 2011), and syllables produced by these two models are not al-
ways compatible (Ryst, 2014). As illustrated in figure 3.1, most phoneti-
cians agree that a syllable is composed basically of a rhyme that is pre-
ceded by an onset (one or more consonants "C" optionally comes at the
beginning of the syllable). Inside a rhyme, the nucleus (usually a vowel
"V") is the constitutive element of the syllable. This is followed by a coda
(one or more consonants "C" at the end of the syllable) (Ryst, 2014). The
languages differ from each other with respect to topological parameters
as optionality of the onset and admissibility of the codas. For example,
the onsets are mandatory in German while the codas are prohibited in
Spanish (Bartlett, Kondrak, and Cherry, 2009). In French and English,
the nucleus is always considered as a vowel. Thus, counting the number
of syllables pronounced in a French or English, should be equivalent to
counting the number of pronounced vowels (Ryst, 2014). The phonetic
structure does not match the orthographic structure because of the sig-
nificant difference between the vowel phoneme and the vowel characters
as illustrated in figure 3.1

Considering written languages, and according to (Flipo, Gaulle, and Van-
cauwenberghe, 1994), in French the orthographic syllable differs from the
phonetic syllable because it retains all "e" silent placed between two con-
sonants or placed at the end of a word. Hyphenation rules separate the
double consonants even if they are pronounced as a single consonant.
For example, graphically there are three syllables in the French word pu-
re-té even if we pronounce it as [ pyr-te ] (two phonetic syllables). The
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FIGURE 3.1: Syllable phonetic components

authors of (Roekhaut, Brognaux, and Beaufort, 2012) have classified the
syllables in three different categories:

• A phonetic syllable is composed of a combination of phonemes that
are pronounced in a single breath.

• A graphemic syllable represents a faithful transposition of phonetic
syllabification in the spelling of the word.

• An orthographic syllable applies hyphenation rules that must be-
longs to writing.

It seems difficult to integrate these different views of specialists into a
recognition system, but in any case, only graphemic or orthographic syl-
lables provide a decomposition of writing that is likely to have an impact
on a recognition system.

The Syllable based n-gram language model shows through our experi-
ments good language modelling capacity with reduced language model
complexity as demonstrated in chapter 5, in addition to its ability to cover
a wide range of Out-Of-Vocabulary words. The syllable based n-gram
model suffer of losing word context with lower values of n-gram orders.
Generally, it represents a good compromise between the word based lan-
guage model and the character based language model for sufficiently
hight order n-gram language models.

3. Graphemic syllable sub-lexial units: derived from phonological sylla-
bles, graphemic syllables have been introduced for written languages.
The same example "bibliothécaire" has the following graphemic repre-
sentation (bi - bli - o - thé - caire) . Thus, the graphemic syllable always
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respects the boundaries of the phonetic syllable. The graphemic syllable
seems to occupy a prominent place in the learning process of the lan-
guage. Several researchers believe that it is one of the basic units from
which to build gradually the recognition of the words of the language
(Lecocq, 1991). A graphemic syllabic algorithm that relies on the strict
link between graphemes and phonemes of French was introduced by
(Roekhaut, Brognaux, and Beaufort, 2012). In this context, we introduced
a supervised syllabification algorithm (Swaileh and Paquet, 2016b) that
allow to decompose any French or English word into its syllable decom-
positions. This approach will be developed in chapter 5.

4. Hyphen based sub-lexical units:

The hyphen (−) is a punctuation mark used to join words and to separate
syllables of a single word. The use of hyphens is called hyphenation. In
writing, the hyphen is a single entity. In terms of character encoding and
display, this entity is represented by any of several characters and glyphs
(including hard hyphens, soft or optional hyphens, and nonbreaking hy-
phens), depending on the context of use. Hyphens are occasionally used
to denote syllabification, as in (syl-la-bi-fi-ca-tion).

There are a few hyphenation rules that will let one hyphenate almost all
English words properly as presented in (Beeton, 2010):

• Break words at morpheme boundaries (inter-face).

• Break words between doubled consonants (bat-tle).

• Never separate an English digraph (e.g., th, ch, sh, ph, gh, ng, qu)
when pronounced as a single unit (au-thor but out-house).

• Never break a word before a string of consonants that cannot begin
a word in English (jinx-ing and not jin-xing).

• Never break a word after a short vowel in an accented syllable (rap-
id but stu-pid).

The rules above leave more than one acceptable break between syllables,
use the Maximal Onset Principle: If there is a string of consonants be-
tween syllables, break this string as far to the left as you can (mon-strous).

Sometimes the rules conflict with each other. For example, ra-tio-nal gets
hyphenated after a short vowel in an accented syllable because ti acts as
a digraph indicating that the ’t’ should be pronounced ’sh’.

Sometimes it’s not clear what constitutes a morpheme boundary: why
ger-mi-nate and not germ-i-nate?

These rules are not mandatory and other rules can be used like the sim-
plest rule of Mikolove (Mikolov et al., 2012) which split words at vowels
and limit the minimum size of the sub-lexical units to 2 characters.
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Spoken language independent word decomposition into sub-lexical units

Some heuristic and probabilistic approaches are used to produce sub-lexical
units with no care about semantic or syntactic aspects of the language of inter-
est. These kind of decomposition into sub-lexical units approaches have been
used with success by Shaik (Shaik et al., 2011) for speech recognition based
on a grapheme-to-phoneme (G2P) conversion model as described in (Bisani
and Ney, 2008), Benzeghiba (BenZeghiba, Louradour, and Kermorvant, 2015)
for Arabic handwriting recognition using the definition of the Part-Of-Arabic
word (PAW) and Feild (Feild, Learned-Miller, and Smith, 2013) for text scene
recognition using a probabilistic context free grammar (PCFG) model.

1. Graphone sub-lexical units: One of speech sub-lexical units is the gra-
phone. The graphone units are derived from a grapheme-to-phoneme
(G2P) conversion model (Bisani and Ney, 2008). It is a combination of
the graphemic sub-word units with their context dependent pronuncia-
tion forming one joint unit (Shaik et al., 2011), in other words, it is the
joint character-phoneme sub-lexical unit (Wang, 2009) as illustrated in
figure 3.2.

FIGURE 3.2: Illustration of a sequence of graphones (Mousa and
Ney, 2014)

A model estimated over such units represents an implicit combination
of language model and pronunciation model in one joint probability dis-
tribution (Shaik et al., 2011). Graphones are mainly used for modelling
OOV. They can be derived directly from Grapheme-to-phoneme conver-
sion as illustrated in (Bisani and Ney, 2008), or by using fixed-length sub-
words units without any linguistic restrictions like in (Bisani and Ney,
2005). A combination of the three types of sub-lexical units was studied
in (Shaik et al., 2011) for German and a hybrid speech recognition system
has been implemented using a hybrid lexicon. In this system, the most
frequent words of the language are used normally as full-words without
decomposition into sub-word units. Less frequent in-vocabulary words
are decomposed into syllables. Finally, the OOV words are decomposed
into graphones.

2. Other spoken language independent decomposition into sub-lexical
units: In the literature, there are few researchers who are using sub-
lexical units in handwriting. Few of them used the Part-Of-Arabic word
(PAW) sub-lexical units in order to tackle the problem of recognition con-
fusion between inter-word and intra-words white space in Arabic hand-
writing recognition system as illustrated by BenZeghiba (BenZeghiba,
Louradour, and Kermorvant, 2015).
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BenZeghiba & al. (BenZeghiba, Louradour, and Kermorvant, 2015) pro-
posed a hybrid model for the Arabic language, which is designed ac-
cording to the observed frequency of words. The idea is to keep the
most frequent words as is (without decomposition), and to decompose
only the least frequent words into sub-word units or PAWs (Part of Ara-
bic Words). By taking advantage of the specific property of the Arabic
language and script, a PAW is a sequence of characters that can be con-
nected together. A character that cannot be connected with its following
neighbor defines the end of a PAW (AbdulKader, 2008). The advantage
of a hybrid word - PAW model lies in the trade off between its modeling
and generalization ability and its reduced size. The two models (hybrid
word / PAW) and PAW alone perform almost similarly on OOV words
but the hybrid system is less complex. Statistical models such as Proba-
bilistic Context Free Grammar (PCFG) and multigrams model are used
for decomposing words into sub-lexical units as illustrated by Feild & al.
(Feild, Learned-Miller, and Smith, 2013).

Regarding English language, Jacqueline & al. (Feild, Learned-Miller, and
Smith, 2013) proposed a probabilistic syllable model for scene text recog-
nition such as advertisements panels. They used a probabilistic context
free grammar (PCFG) that models each sub-lexical unit as a sequence
of characters generating a consonant or a vowel. The proposed model
shows good performance on OOV words such as proper nouns, under
the condition that these words should all be pronounceable in English.
The PCFG model was built by learning a set of parsing rules of charac-
ters using a syllabified dictionary. As a defect of this model, the method
does not use any information about successive syllables which leads to a
loss of context modelization of syllables.

The multigram definition can be considered as an extension to the n-
gram definition where the suffix "gram" can be defined as a language
unit of word, syllable, multigram or character. While the n-gram is de-
fined as the sequence of language units of fixed and limited size n, the
mulitgram can be defined as a sequence of language units with variable
length. Table 3.2 shows some examples of the n-grams and multigrams
of order n = (1, 2, 3, 4, 5) for the French word "Merci" and the english
word "Darling".

In the field of speech recognition and language processing, the choice
of sub-lexical units that structure the data stream affects massively the
efficiency of the recognition algorithms. On the one hand, sub-lexical
units may be determined by relying on some linguistic knowledge but
with the risk of being inadequate to the particular task at end, due to the
specificity of the data. On the other hand, it can be determined directly
from the data using machine-learning approaches.

Former works in speech recognition such as (Chou and Lookabaugh,
1994; Sagisaka and Iwahashi, 1995; Bacchiani et al., 1996; Ries, Buo, and
Wang, 1995) show the impact of determining the sub-lexical units from
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Lexicon
type

French
examples

English
examples

n-grams
of

characters

uni-gram M e r c i D a r l i n g
bi-gram Me, er, rc, ci Da, ar, rl, li, in, ng
tri-gram Mer, erc, rci Dar, arl, rli, lin, ing
4-gram Merc, erci Darl, arli, rlin, ling
5-gram Merci Darli, arlin, rling

Multigrams
decompositions

m2gram Me, r, ci d, ar, li, ng
m3gram Mer, ci dar, l, ing
m4gram Merc, i dar, ling
m5gram Merci dar, ling

TABLE 3.2: n-grams versus multigrams examples

the data directly, and yielded to the multigram model (Deligne and Bim-
bot, 1997). The multigram model was first presented in (Bimbot et al.,
1994) for language modelling by taking into account the variable length
dependencies of words in a sentence. Theoretical formulation and evalu-
ation of multigrams is presented in (Deligne and Bimbot, 1997; Deligne,
Yvon, and Bimbot, 1996). It assumes the language produces a stream
of words that flow off a memoryless source (Deligne and Bimbot, 1995).
The language words are not independent, and their dependencies are of
variable length. It can be opposed to the popular n-gram model (Jelinek,
1990) which assumes that the statistical dependencies between words are
of fixed length (n) along the whole flow of words (Deligne and Bimbot,
1995), thus assuming an n-order Markov models of word streams. In the
n-multigram model (Bimbot et al., 1994), a sentence is considered as the
concatenation of independent (zero order Markov source) sequences of
words of length k (with k ≤ n). Such concatenation of words (multi-
gram) is commonly known as phrase in the natural language processing
literature. Then, the likelihood of the sentence is computed as the prod-
uct of the individual phrases’s likelihood corresponding to each possible
segment (multigram) (Deligne and Bimbot, 1995).

More formally, the multigram model is defined as a stochastic genera-
tive model of variable length units (Deligne and Bimbot, 1997). These
units can be word phrases when considering language modelling, or
they can be character or phoneme sequences when considering hand-
writing or speech recognition. Let us assume that a lexical source pro-
duces a set of M sub-lexical units (multigrams) which are sequences of
length k characters (k ≤ n). While each data stream produced by the
source can be viewed as a sequence of T characters which are the pri-
mary units of the observation sequence O = (c1, c2, . . . , ct, . . . , cT ), it can
also be viewed as a sequence S = (m1,m2, . . . ,ml, . . . ,mL) of multigrams
of length L(L ≤ T ), each multi-gram ml being the concatenation of k
characters ml = (ct, . . . , ct+k−1). As depicted on figure 3.3 below, the
multi-gram decomposition corresponds to a particular segmentation of
the input character string.
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FIGURE 3.3: Multigram structure and an example of word de-
composition into multigrams

In the literature, this generative process of multigrams from the discrete
observation stream of characters has been modeled using variable length
Hidden Markov Models, assuming time independent multigrams (Deligne
and Bimbot, 1997). Then, the likelihood of a particular multigram decom-
position of the input string is computed as follows

P (O, S)
∆
= P (O|S)P (S) =

∏
l

P (ctct+1 . . . ct+k−1|ml)P (ml) (3.1)

or more precisely

P (O, S) =
∏
l

P (ctct+1 . . . ct+k−1|dl = k)P (dl) (3.2)

where dl is the character duration of multigram ml. The main interest of
such modelling is to allow finding the optimal decomposition into multi-
grams of a training corpus of text, thus providing an appealing approach
for the definition of sub-lexical units for any language without relying on
linguistic expertise for each dedicated language, the optimization pro-
cess being unsupervised. In Deligne and Bimbot, 1997 the authors have
applied the multigram model to derive sub-words phonetic units from
phonetic transcriptions of utterances using continuous observations se-
quences. They also applied the model to derive the graphemic structure
of text, considering discrete character observations. In their EM itera-
tive optimization process, they introduced a heuristic by selecting the
more frequent multigrams at each iteration, so as to optimize not only
the data likelihood but also the complexity of the model so as to get
better generalization capabilities of the model, following the Minimum
Description Length (MDL) principle. In Deligne and Sagisaka, 2000 the
same authors apply the multigram paradigm to language modelling (se-
quences of words) and they report lower perplexity for the multigram
model compared to the n-gram model.

3.2.4 Definitions

We present by the following, some essential definitions that help to identify
and evaluate the relationship between a training vocabulary / dataset and a
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test dataset.

• The word: standing on the standard handwriting recognition perfor-
mance evaluation protocol of the Word Error Rate (WER), a word is de-
fined as a sequence of characters sided by two white spaces. With defin-
ing the character "|" as the word delimiter character, we consider in
the following coloured sentence six different words The French sentence

above contains an example of an entity name words, abbreviation word
and a date word. These words represent real problem while training
the language model, that because they may have rare occurrences in the
language model training corpora. For Building robust language model,
the choice is to tokenize the training corpora and splitting the rare oc-
currence words into sequences of alphanumeric words and then use the
token building unit in place of the words for building the language mod-
els.

• The token: it defines the language units used for building a language
model that can be a word or a smaller language units than a word, such
as sub-lexical, characters or orthographic symboles (e.g. ?,!,$,@,”,...etc).
Looking at the sentence above, the token delimiter character "|" defines

twenty tokens that are derived from six words.

We need to deal with these two definition differently because we need to
quantify the ability of the training corpus to cover the test corpus in terms of
words and then we can study the relation between the training corpus cover-
age with the handwriting recognition performance measured by the Word Er-
ror Rate. We need also to quantify the ability of a language model of tokens to
cover the tokenized test corpus in order to study the effect of language model
missing words on the recognition performance, specially when the missing
words depend on the training corpus tokensiation strategy: lexical tokens, sub-
lexical tokens and primary tokens. Based on the word and token definitions,
we introduced two measures:

• The effective coverage rate (ECR): The proportion of words of the test
dataset that belongs to the training dataset as illustrated in figure 3.4. It
measures the lexical proximity between two datasets of texts.

• The Out-Of-Vocabulary (OOV): The proportion of tokens of the test dataset
that do not belong to the language model lexicon (figure 3.4). It evaluate
the capacity of the language model to cover the test dataset.

The lexicon represents the essential linguistic source of information on which
the language model training is based. Furthermore, the recognition systems
complexities are determined standing on their lexicon sizes. The lexicon and
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FIGURE 3.4: Illustration of the Effective Coverage Rate (ECR) ver-
sus the Out-Of-Vocabulary

language models building units (lexical, sub-lexical and primary units) define
their architecture type.

In the literature, the recognition systems are sometimes characterised by
their vocabulary type which can be classified in two vocabulary types. Closed
vocabulary systems and open vocabulary systems each of which can be small
or large in size. The small vocabularies are the vocabulary whose size is less
than 10k token and the large vocabulary is the one which include than 10k
token.

FIGURE 3.5: Illustration of the closed and open vocabularies

• closed vocabulary: in this case the vocabulary tokens are words of a spe-
cific lexicon. The language model that is trained with this vocabulary
can only identify the words of this lexicon, any other word is an Out-Of-
Vocabulary word.

This is convenient for small vocabulary recognition tasks which are re-
stricted to the recognition of a limited set of words with almost no OOV.
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• open vocabulary: this vocabulary language models is composed of to-
kens that are words and of some other tokens which represent a portion
of the OOVs. By these tokens some words that do not belong to the lex-
icon can be reconstructed, thus the effective coverage rate increases as
a result of the OOVs reduction. In figure (figure 3.5) the ECR in blue
colour represents the effective coverage rate obtained by the word tokens
of the language model and the green one represents the ratio of the recon-
structed words thanks to the other sub-words tokens. These tokens can
be produced by replacing the words with rare occurrence in the training
corpus by the OOV token (<unk>) or by their set of characters (the green
part of figure 3.5 represent the portion of the training lexicon which hold
the OOV tokens). In the literature, the recognition system that make use
of the open vocabulary show slight performance degradation in compar-
ison with the closed vocabulary based system performance.

In the following section, we give an overview on the natural language mod-
elling approaches and some of their applications in real world applications.

3.3 Why statistical language models for handwrit-
ing recognition?

Natural language modelling can be achieved with two main approaches: struc-
tural and statistical approaches. In this section, we present these two ap-
proaches and compare their advantages and disadvantages, to justify our choice
to work with the statistical approaches for the handwriting recognition.

In the structural approach, a language model is often defined as a set of
rules that build the language grammars. The set of such rules defines the pos-
sibilities of word association, according to their lexical categories (noun, verb,
adjective,.. etc), and makes it possible to model the structure of a given sen-
tence (Chomsky, 2002). Therefore, these rules determine the validity of a sen-
tence: if a sequence of rules can describe the sentence under examination then
the sentence will be accepted, otherwise it will rejected by the model.

In the statistical approach, the language is represented by the occurrence
frequencies of each possible sequence of words. For this purpose, a represen-
tative corpora (consists of blocks of texts about the domain of interest) are used
for training the language model by the statistical inference algorithm (Man-
ning and Schütze, 1999).

One of the advantages of statistical approaches is their independence from
the language experts, as the language models are learned automatically from
corpora. Modelling of the language following this approach is therefore de-
pendent on the data used and can also attribute a non-zero probability to syn-
tactically incorrect sentences which represent a drawback point for the statis-
tical language modelling approaches. One of the advantages of models based
on structural approach is their ability to express the grammatical nature of the
sentences. Nevertheless, one of the main difficulties of these methods remains
the conception of the grammars, which means the definition of rules. Indeed,
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they must be robust enough to take into account all the syntactic hypotheses
of a language.

It seems difficult for continuous handwriting recognition to develop a set
of rules that describes the possible writing sentences specially when such sen-
tences includes punctuation marks and written symbols associated with the
language meaningful words.

Due to the statistical nature of the language models constructed according
to the statistical approach, their integration into a recognition system is more
effective. Statistical language models have a great margin of flexibility in deci-
sion making while they depend on the associated probability of the language
sentences. This probability evaluates whether or not the sentence is correct,
in contrast to the structural approaches that associate a boolean decision of
accepting or rejecting the sentence.

However, there are language models that combine both structural and sta-
tistical approaches, such as Probabilistic-Context-Free-Grammars (PCFG) which
allow more flexible response by expressing the sentence validity in a proba-
bilistic way. The use of PCFG models is more appropriate for tasks whose
domain is limited in vocabulary (because of the structural approach nature),
such as address recognition (Srihari and Kuebert, 1997) or speech recognition
with a specific and limited vocabulary (Jurafsky et al., 1995).

In the case of large vocabulary domains, these structural language models
can be used in a second recognition pass to rearrange a list of sentences (Ha-
cioglu and Ward, 2001) or in combination with a statistical language model
(Zimmermann, Chappelier, and Bunke, 2006). In the latest cases, a statistical
model of the language is used jointly with the structural PCFG model.

Due to, the efficiency of integrating language models based on the statis-
tical approaches into the handwriting recognition system and the simplicity
of their learning procedures, we focused our work on the study of the statis-
tical language modelling approaches, specially the back-off n-gram language
modelling approach of the sub-lexical units.

3.4 Statistical language modelling

The goal of statistical language modelling is to predict the next word in textual
data given passed context; thus we are dealing with sequential data predic-
tion problem when constructing language models (Mikolov et al., 2010). We
first present a general overview of the statistical language modelling principle.
Then, we describe different measures to evaluate the language models quality.
Finally, we focus on different language models and techniques for combining
language models.

3.4.1 General principles

Statistical modelling of language aims to capture the regularities of a language
by statistical inference on very large training corpora of text, composed of a set
of topics in the language of interest (Manning and Schütze, 1999).
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A statistical language model makes it possible to evaluate the a priori prob-
ability of a sequence ofN wordsW = w1 . . . wN . This probability is equal to the
product of the probabilities of the words within its context as the following:

P (W ) =
N∏
i=1

P (wi|hi) (3.3)

Where P (wi|hi) is the occurrence probability of the word wi knowing that it
comes directly after the sequence of words hi = w1, . . . wi−1. These probabilities
P (wi|hi) constitute the parameters of the language model. The sequence of
words hi is called the history of the word wi. So for P (wi|hi) to be computed
for i = 1, a start-of-sentence marker < s > is added. We thus have h1 =< s >.
Moreover, an end-of-sentence marker < /s > is added and included in the
product of the probabilities of the words, then we can re-write equation 3.3 as
follow:

P (W ) =
N+1∏
i=1

P (wi|hi) (3.4)

where wN+1=</s>

3.4.2 Language model quality evaluation

The role of a language model is to estimate the a priori probability P (W ) of a
sequence of words W . Thus, as much as a word sequence W conform to the
language model, its probability will be higher. The simplest measure for eval-
uating the quality of a language model is by measuring the affected probability
upon a test data set T which is considered to be representative of the language
of interest and consists of a set of sentences (W1 . . .WN) whereN is the number
of sentences in T . From the probabilities P (wi|hi) given by the language model
LM , the probability of the sentences can be calculated using equation 3.4 and
the probability of the test dataset T is then given by:

P (T ) =
N∏
i=1

P (Wi) (3.5)

Thus, the language model assigning the highest probability to the test dataset
T will be considered as the best model. This probability comes from the rela-
tionship between prediction and compression, resulting from information the-
ory (Shannon, 1948): given a language model LM which assigns a probability
P (T ) to a test dataset T , a compression algorithm can be created to encode the
text to − log2(P (T )) bits. Thus, the cross entropy HLM of a language model
LM , on a test dataset T , is defined by:

HLM(T ) = − 1

|T |w
log2(P (T )) (3.6)

Where |T |w is the number of words in T The cross entropy evaluates how
different the language model is with the empirical distribution of the dataset.
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This value can be interpreted as the average number of bits needed to encode
each of the |T |w words of the test dataset, using the compression algorithm
associated with the model LM . Therefore, the best language model will be the
one which has the smallest cross entropy.

The Perplexity is a measure derived from cross entropy, which is in fact the
most used measure to evaluate the performance of a language model. The
perplexity PPLM of a language model LM on a test dataset S corresponds to
the reciprocal of the mean probability given to each of the words of the test
dataset T . It is related to the cross entropy by the equation:

PPLM = 2HLM (T ) (3.7)

This quantity accounts for the predictive power of the model LM . Thus,
PPLM(T ) = k means that the language model LM hesitates on average be-
tween k words. Thus, like cross entropy, the lower perplexity the best language
model.

In the context of handwriting recognition, it may also be advantageous to
measure the recognition rates obtained on a test set, using different language
models in a recognition system. In fact, we will rather evaluate the error rate
on words obtained on the test set, this indicator being well correlated with
perplexity (Klakow and Peters, 2002): the lower the error rate, the better per-
formance of the recognition system.

The main problem of equation 3.4 is the high number of different histori-
cal data, which leads to a very large number of probabilities to be estimated.
Moreover, most of these word histories appear so few times in the training
corpus which does not help in estimating their probability in a sufficiently re-
liable way. One solution to solve this problem is to group word histories into
equivalence classes called n-grams:

P (wi|hi) ≈ P (wi|Φ(hi)) (3.8)

While Φ(hi) associates a class of equivalence to each word history hi. An
n-gram is a contiguous sequence of n items from a given sequence of text or
speech. The items can be phonemes, syllables, letters, words or base pairs
according to the application. The n-grams typically are collected from a text or
speech corpus. When the items are words, n-grams may also be called shingles
(Broder et al., 1997). An n-gram of size 1 is referred to as a "unigram"; size 2
is a "bigram" (2-gram) (or, less commonly, a "digram"; size 3 is a "trigram" (3-
gram). Larger sizes are sometimes referred to by the value of n-gram.

Unit Sample
sequence

2-gram
sequence

character . . . to_be_or_
not_to_be. . .

. . . , to, o_, _b, be, e_, _o, or, r_,
_n, no, ot, t_, _t, to, o_, _b, be, . . .

word . . . to be or not to be . . . . . . , to be, be or, or not, not to, to be, . . .

TABLE 3.3: n-gram examples
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3.4.3 N-gram language models

N-gram language models are the most widely used language models (Man-
ning and Schütze, 1999). They are based on sequences of n words, the value n
is called the order of the n-gram model: the word histories that end with the
same n − 1 words are considered to be equivalent. The name of the "n-gram
models" comes from the domain of the Markov models of which these models
are instantiated. Thus, the n-gram language model can be seen as a Markov
model of order n− 1. From Equation 3.8 we obtain:

P (wi|Φ(hi)) = P (wi|wi−1
i−n+1) (3.9)

Where wi−1
i−n+1 = wi−n+1 . . . wi−1 is the word history reduced to n− 1 words

that are the predecessor of the word wi. The probabilities P (wi|wi−1
i−n+1) of the

equation 3.9 are generally estimated by the maximum likelihood estimation
(MLE) on the training set:

P (wi|wi−1
i−n+1) =

N(wi−1
i−n+1wi)∑

wj∈V N(wi−1
i−n+1wj)

(3.10)

Where N(.) is the number of occurrences of the word sequence of interest, in
the training corpus, and V the vocabulary.

Let’s take a practical application of a bigram language model on the follow-
ing text corpus:

<s> JOHN READ MOBY DICK </s>
<s> OPEND READ BOOK LIBRARY </s>
<s> MARY READ A DIFFERENT BOOK </s>
<s> SHE READ A BOOK BY CHER </s>

The probability of the sentence "JOHN READ A BOOK" according to equation
3.10 is the following, assuming n = 2.

p(<s> JOHN READ BOOK </s>)

= p(JOHN|<s>)p(READ|JOHN)p(BOOK|READ)p(</s>|BOOK)

=
N(<s> JOHN)∑

wN(<s> w)
.
N(JOHN READ)∑

wN(JOHN w)
.
N(READ BOOK)∑

wN(READ w)
.
N(BOOK </s>)∑
wN(BOOK w)

=
1

4

1

1

1

4

1

3
≈ 0.021

While the probability of another sentence like "CHER READ BOOK" will be
zero because the number of occurrence of the bigram CHER READ is equal
to zero. In practice, the commonly used order n of a n-gram language model
of words (lexical units) is generally equal to 2 (bi-gram model) or 3 (trigram
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model) or even 4 or 5 but rarely beyond since the performances of the language
model slightly improve for higher order (Goodman, 2001) while the number
of parameters to be estimated increases exponentially with n. Indeed, for a tri-
gram model with a vocabulary of 20000 words, the number of probabilities to
be estimated is 8.1012 = (20000)3. This limitation of the order n makes it diffi-
cult to take into account long dependencies of the language sentences. Another
limitation of this approach is that admissible n-grams from a linguistic point
of view may have zero probability if they do not appear in the training corpus.

3.4.4 Lack of data problem

Despite the reduction in the number of probabilities to be estimated, by re-
grouping the word histories in classes of equivalence (n-gram models), some
possible word sequences may not appear in the training corpus: their proba-
bility of occurrence will be estimated as zero while it should not. To tackle this
problem, one technical solution is to assign a non-zero probability to the se-
quences that do not appear in the learning corpus, using a smoothing model.
A general solution is based on the estimation of the conditional probability
P̂ (wi|wi−1

i−n+1) by combining two components: a discounting model and a re-
distribution model which represent together the smoothing model. The oc-
currence probabilities of the word sequences found in the training set are to
be discounted, then the discounted probability is redistributed among the n-
grams (equivalence classes) of null occurrences.

Discounting probabilities

The discounting model is used to deduct a small amount of the probabilities
allocated to the word sequences that are present in the training set. Two tech-
niques make it possible to extract this mass of probabilities.

Linear discounting consists in taking fraction of the probability of a n-gram,
according to its number of occurrences in the training set. The discounted
probability,P̂LeanDisc(wi|wi−1

i−n+1), of the n-gram wii−n+1 is expressed as the fol-
lowing:

P̂LeanDisc(wi|wi−1
i−n+1) =


N(wii−n+1)×r
N(wi−1

i−n+1)
if N(wii−n+1) > 0

0 otherwise
(3.11)

Where r is the discounting factor relative to the number of occurrences of
the n-gram (0 < r < 1). Then the mass of probabilities kept aside is given by:∑

N(wii−n+1)>0

PMLE(wi|wi−1
i−n+1)−

∑
N(wii−n+1)>0

P̂LeanDisc(wi|wi−1
i−n+1) = 1− r (3.12)

where N(wii−n+1) is the number of occurrences of the n-gram N(wii−n+1) in the
training set.

The Absolute Discounting consists in extracting a fixed value from the prob-
ability of n-gram, independently from its number of occurrences. The reduced
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probability PDecAbs is defined by:

P̂AbsDisc(wi|wi−1
i−n+1) =


N(wii−n+1)−D
N(wi−1

i−n+1)
if N(wii−n+1) > 0

0 otherwise
(3.13)

Then the mass of probabilities kept aside is given by:

∑
N(wii−n+1)>0

PMLE(wi|wi−1
i−n+1)−

∑
N(wii−n+1)>0

P̂AbsDisc(wi|wi−1
i−n+1) = (3.14)

|{wi−1
i−n+1 : N(wii−n+1)) > 0}| ×D

N(wi−1
i−n+1)

where |{wi−1
i−n+1 : N(wii−n+1) > 0}| is the number of distinct word histories

wi−1
i−n+1 preceding the word wi and D the fixed discounting factor on the n-

grams.

Probability re-distribution

Once the mass probability has been extracted from the present n-grams, it must
be then redistributed. This redistribution is usually done by affecting some
values to unseen n-gram.

The back-off model redistribute the precedent extracted mass of probabili-
ties over the absent n-grams only. The probability of the absent n-gram wii−n+1

defined by:

P̂Back−off (wi|wi−1
i−n+1) =

{
P̂Disc..(wi|wi−1

i−n+1) if N(wii−n+1) > 0

λ(wi−1
i−n+1)× P̂Back−off (wi|wi−1

i−n+2) otherwise
(3.15)

where P̂Disc.. is one of the discounting models P̂AbsDisc or P̂LeanDisc, λ(wi−1
i−n+1)

the back-off weights that depends of the words histories wi−1
i−n+1 and wi−1

i−n+2 the
lower order n-gram that corresponds to the n-gram wi−1

i−n+1. With the back-off
probability re-distribution approach, the probability of un-estimated tri-gram
is the estimated based on the correspondent bi-gram or uni-gram probability
if the bi-gram probability is absent.

Then the interpolation redistributes the extracted mass of probabilities P̂Int(wi|wi−1
i−n+1)

over all the n-grams, whether or not they have been estimated. The probability
of the n-gram wii−n+1

P̂Int(wi|wi−1
i−n+1) =


P̂Disc..(wi|wi−1

i−n+1) + λ(wi−1
i−n+1)× P̂Int(wi|wi−1

i−n+2) if N(wii−n+1) > 0

λ(wi−1
i−n+1)× P̂Int(wi|wi−1

i−n+2) otherwise
(3.16)

In the interpolation redistribution approach, and unlike the back-off approach,
the probability of a trigram, for example, represents the combination of the
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corresponding bigram and unigrm probability estimations if the probability of
the trigram is not estimated in the language model.

smoothing techniques

Whenever data sparsity is an issue, smoothing can improve performance, and
data sparsity is almost always an issue in statistical modelling. In the extreme
case where there is so much training data that all parameters can be accurately
trained without smoothing, one can almost always expand the model, by mov-
ing to a higher n-gram model, to achieve improved performance. With more
parameters data sparsity becomes an issue again, but with proper smoothing
the models are usually more accurate than the original one. Thus, no matter
how much data one has, smoothing can almost always improve performance,
and for a relatively small effort (Chen and Goodman, 1996).

We present a set of smoothing methods that consists of the combination of
the discounting model and the redistribution model.

Katz back-off

This model (Katz backing-off) relies on the estimation of Good-Turing (lin-
ear discounting model). The Good–Turing frequency estimation is a statistical
technique for estimating the probability of encountering an object of an unseen
species, given a set of past observations of objects from different species (one
can refer to( Good, 1953) for more details). This is based on the fact that an
n-gram appearing r times appears in fact r? times, where r? is defined by:

r? = (r + 1)
nr + 1

nr
(3.17)

where r is the number of the n-gram wii−n+1 occurrences and nr the number
of the n-grams appearing exactly r times in the training dataset. The used
redistribution model is of back-off type. The n-gram probability calculated
using this method is given by

P̂Katz(wi|wi−1
i−n+1) =

{
dr×r∑

wi∈V
N(wi−1

i−n+1wi)
if N(wii−n+1) > 0

γ(wi|wi−1
i−n+1)× P̂katz(wi|wi−1

i−n+2) otherwise
(3.18)

where dr represents the discounting ratio used for reducing the occurrence
number of the n-grams found in the training dataset and γ(wi|wi−1

i−n+1) repre-
sents the back-off weights calculated by:

γ(wi|wi−1
i−n+1) =

1−
∑

wi∈V :N(wi−1
i−n+1wi)>0 P̂katz(wi|w

i−1
i−n+1)∑

wi∈V :N(wi−1
i−n+1wi)=0 P̂katz(wi|w

i−1
i−n+2)

(3.19)

In fact, the n-gram that appear more than k times in the training data set are
considered as reliable and their occurrence number not to be modified. Katz
suggests to set the value of k to 5. The discounting ratio dr can be calculated as
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follow:

dr =

{
r?
r

if r ≤ 0

1 otherwise
(3.20)

Absolute Discounting back-off

This model is characterised by an absolute discounting model with a back-
off redistribution model. It calculates the n-gram probability by the following
equation:

P̂Abs(wi|wi−1
i−n+1) =


max{N(wii−n+1)−D,0}∑

wi∈V
N(wii−n+1wi)

if N(wii−n+1) > 0

γ(wi|wi−1
i−n+1)× P̂Abs(wi|wi−1

i−n+2) otherwise
(3.21)

where the back-off weights is computed by

γ(wi|wi−1
i−n+1) =

D∑
wi∈V N(wii−n+1wi)

N1+(wii−n+1•)

and N1+(wii−n+1•) = |{wi : N(wii−n+1) > 0}| is the number of words that follow
the word history wi−1

i−n+1 and occurred once or more, considering D a fixed
count whose value is estimated by:

D =
n1

n1 + 2n2

(3.22)

where n1 and n2 are the total number of n-grams that occurred once and twice
time respectively in the training dataset.

Modified Kneser-Ney interpolation

This successful method was proposed by (Chen and Goodman, 1996). It con-
sists of some modifications applied on the original Kneser-Ney smoothing
method (Kneser and Ney, 1995) that combines the absolute discounting model
and interpolation redistribution models.

Let us take an example of a bi-gram in which the word Francisco is very
frequent but it occurs after the word San in the training corpus most of the
time. The probability of the Francisco uni-gram is high and then the absolute
discount will assign a high probability to the word Francisco appearing after
any new word (different from San). Maybe, it is more reasonable not to give
it such high probability for each possible occurrence, whereas it systematically
follows the word San. In such case its probability is well modelled by the bi-
gram model.

For Kneser and Ney, the uni-gram probability should not be calculated pro-
portionally to the number of occurrences of a word but to the number of dif-
ferent words following it; the number of accounts assigned to each of the uni-
grams will be the number of words it follows simply. Therefore, the probability
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of a word is given by the following:

P̂KN(wi|wi−1
i−n+1) = γ(wi−1

i−n+1)× PMLE(wi|wi−1
i−n+1)

+(1− γ(wi−1
i−n+1))×

N1+(•wii−n+2)∑
wi∈V N1+(•wii−n+2wi)

where PMLE(wi−1
i−n+1) is the initial probability ofwii−n+1 andN1+(•wii−n+2wi) rep-

resents the number of words wi−n+1 where wii−n+1 appeared once or more time
in the training corpus. the back-off weight is calculated by

γ(wi−1
i−n+1) =

D∑
wi∈V N(wi−1

i−n+1wi)
N1+(wi−1

i−n+1•) (3.23)

The introduced modification to this method consists of using three discounting
parameters, D1, D2 and D3+, applied to the n-grams appearing one, two and
three times or more respectively. Thus, the parameter γ of equation 3.23 is
rewritten as:

γ(wi−1
i−n+1) =

D1 ×N1(wi−1
i−n+1•) +D2 ×N2(wi−1

i−n+1•) +D3+ ×N3+(wi−1
i−n+1•)∑

wi∈V N(wi−1
i−n+1wi)

(3.24)
where N1(wi−1

i−n+1•), N2(wi−1
i−n+1•) and N3+(wi−1

i−n+1•) are defined by the same
way for the occurrence frequencies of once, twice, three times or more respec-
tively. The optimum values of the parameters D1, D2 and D3+ are calculated
by the following equations:

D1 = 1− 2Y × n2

n1

D2 = 2− 3Y × n3

n2

D3+ = 3− 4Y × n4

n3

(3.25)

where Y = n1

n1+2n2
and n1, n2, n3 and n4 are the total number of n-grams ap-

pearing once, twice, three or four times in the training corpus.

3.4.5 Hybrid language models vs. language model combina-
tion

Language model combination has the interest of collecting the advantageous
specificities of each individual model and surpasses the best of them (Good-
man, 2001). The simplest way to combine two or more homogeneous language
models (defined on the same language units e.g. words, syllables or characters)
is known by the linear interpolation method. The produced language model
from the linear interpolation of K models is obtained by the weighted sum of
the K models as the following:

P̃LinInterpol(wi|Φ(hi)) =
K∑
k=1

λkPk(wi|Φ(hi)) (3.26)



68 Chapter 3. State of the art of language modelling

where λk is the weight of the language model MLk and 0 ≤ λk ≤ 1. The values
of these weights are a matter of optimization problem that leads to an optimal
interpolated language modelMLLinInterpol under the condition of

∑K
k=1 λk = 1.

The combination of language models that are built with different language
units type (for example, words+characters or words+sub-lexical units) pro-
duces a non-uniformed language model which is called hybrid language model.

3.4.6 Variable length dependencies language models

The order n of a n-gram model of words usually is less than 4 or 5, which does
not allow for long dependencies in sentences to be modelled. When the order
of n-gram model increases, the probability of meeting exactly each existing
word history decreases.

Based on this observation, skipping language model (Huang et al., 1993)
stands on ignoring certain word histories (grams) that might be defined in the
normal n-gram language model. These models are used generally in combi-
nation with n-gram language models in order to consider the short and the
long word context. One of the advantages of these language models is that
they take into account similar word histories but not strictly identical and reg-
ular context. However, the increment of the n-gram language model increases
the amount of the model parameters which represent a draw-back for these
models.

Another extension of the n-gram models is based on the variation of the
length of the word history by keeping only the long word histories whose rela-
tive information are present (Siu and Ostendorf, 2000). These models are called
poly-gram models. The n-grams probabilities of poly-gram model (Kuhn, Nie-
mann, and Schukat-Talamazzini, 1994) are estimated by interpolating the rel-
ative frequencies of all k-grams, while k ≤ n. By this interpolation procedure,
polygram model accounts for variable length dependencies of words, thus this
method represents an alternative way to count for variable-length dependen-
cies of language words sequences.

Their principle is thus to ensure a compromise between the relevance of
the language model (keeping the most informative histories) and its number
of parameters. The advantage of the poly-gram models is the reduction of the
number of their parameters, while maintaining similar performances.

There are other language models coping with variable length word his-
tory such as Permugram language model (Schukat-Talamazzini et al., 1995)
in which the considered word histories corresponds to a permutation of the
words of the current context. Another variable length word histories (variable
length dependencies) in which we are specifically interested is the multigram
language models (Deligne and Bimbot, 1995) in which the word histories are
considered as a sequence of groups of words, more details about these models
is presented in the next section.



3.4. Statistical language modelling 69

3.4.7 Multigrams language models

The multigram model provides a statistical tool to retrieve sequential variable-
length regularities within streams of data (Deligne and Bimbot, 1997). The
multigram model was first presented by (Bimbot et al., 1994) for language
modeling by taking into account variable-length dependencies of language
words sequences. Theoretical formulation and evaluation of multigrams is
presented in (Deligne and Bimbot, 1997; Deligne, Yvon, and Bimbot, 1996). It
assumes the language as a stream that flow off a memoryless source of variable
length sequence of words (Deligne and Bimbot, 1995). The language words are
not independent, and their dependencies are of variable length. Conversely,
the n-gram model (Jelinek, 1990) assumes that the statistical dependencies be-
tween words are of fixed length n along the whole sentence (Deligne and Bim-
bot, 1995).

In the m-multigram model (Bimbot et al., 1994), a sentence is considered
as the concatenation of independent variable-length sequences of words (up
to length m) commonly known as phrases and the likelihood of the sentence
is computed as the sum of the individual likelihood corresponding to each
possible segmentation (Deligne and Bimbot, 1995). The multigram model can
be characterized as a stochastic phrase-based model (Deligne and Sagisaka,
2000).

Let W = (w1, . . . , wt, . . . , wT ) denotes a sequence of T words, and let S
denote one possible segmentation of W into q sequences of words, formally,
S = (m1,m2, . . . ,ml, . . . ,mq) and ml = (wt, . . . , wt+k−1) where ml is the se-
quence of words of length k with k ≤ n and n is the maximum length of the
sequence of words ml. The n-multigram model (n-mgr) computes the joint
likelihood Pmgr(W,S) of the corpus W associated to segmentation S as the
product of the probabilities of the successive sequences of maximum length
n:

P (W,S) =

l=q∏
l=1

p(ml) (3.27)

Assuming that {S} represents the set of all possible segmentation of W into
sequences of words, the likelihood of W is :

Pmgr(W ) =
∑
S∈{S}

P (W,S) (3.28)

The model parses the sequence of words W according to the most likely seg-
mentation, thus yielding the approximation :

P ?
mgr(W ) = max

S∈{S}
P (W,L) (3.29)
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For example, let T = 4, n = 3 and W = abcd, considering the sub-sequence of
words boarders are the brackets :

P ?
3−mgr(abcd) = max



p([a]) p([bcd])
p([abc]) p([d])
p([ab]) p([cd])
P([ab]) p([c]) p([d])
p([a]) p([bc]) p([d])
p([a]) p([b]) p([cd])
p([a]) p([b]) p([c]) p([d])


(3.30)

Where P ?
3−mgr(abcd) is the likelyhood of the sequence of words abcd calculated

by multigram language model of order 3. In the other hand, n-gram language
model of order 3 calculates this probability as the following:

P3−gram(abcd) = p(a)p(b|a)p(c|ab)p(d|bc) (3.31)

3.4.8 Conctionest neural network language models

In recent years, neural networks language models (NNLMs) are becoming in-
creasingly popular for a wide range of tasks such as handwriting / speech
recognition & machine translation, due to their inherently strong sequence
modelling ability and generalization performance. For several decades, N-
grams language models have been dominating the area of statistical language
modelling. However, n-gram models suffers of data sparsity problem. Con-
trarily to conventional statistical N-gram LMs, the generalization ability of
NNs and the continuous space representation of words allow the NN LMs
to perform an implicit smoothing (Zamora-Martinez et al., 2014).

Feedforward Neural Network Based Language Model

The neural network language models was first introduced by (Bengio et al.,
2003). The NNLM are defined as statistical n-gram language model that use
the capability of the NN to estimate the probabilities that satisfies equation
(3.4). Thus its input is a fixed length sequence of n − 1 words where each of
the previous n − 1 words is encoded using 1-of-V coding, where V is the size
of the vocabulary. By this, every word in the vocabulary is associated with a
vector of length V where only one value that correspond to the index of the
given word is 1 while the other components are set to 0.

The orthogonal representation of words 1-of-V is projected linearly to a
lower dimensional space using a projection matrix P . The matrix P is shared
among all the word of the word history during the projection. A hidden layer
follows the projection layer which consists of non-linear activation functions
with a dimensionality of 100-300 units. The output layer follows, with a size
equal to the size of the full vocabulary. Figure 3.6 illustrate the NN language
model structure. The NNLM have the advantage over the n-gram language
models that the word history is no longer constrained to an exact sequence of
n− 1 words of history, but rather as a projection of the history into some lower
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FIGURE 3.6: The architecture of a NN LM after training, where
the first layer is substituted by a look-up table with the dis-
tributed encoding for each word ω ∈ Ω(Zamora-Martinez et al.,

2014)

dimensional space. As a result, the automatic clustering of the similar word
histories, reduces the number of parameters. The weak point of these models
is their very large computational complexity during training, which usually
prohibits to train these models on full training set using the full vocabulary
(Mikolov, 2012).

The applicability of neural network language models in unconstrained off-
line handwriting recognition has been studied by (Zamora-Martinez et al.,
2014). They also compared the performance of conventional n-gram language
models across of NNLMs on IAM handwriting database using two different
recognition engines under different vocabulary sizes.

Recurrent Neural Network Based Language Model

The difference between the feed forward neural network language model NNLM
and the recurrent neural network language model (RNNLM) architecture is in
the representation of the word history, in feed forward NNLM the word his-
tory is still limited to the several previous words, meanwhile in RNNLM an
effective representation of word history is learned from the data during train-
ing. The hidden layer of RNN represents all previous history and not just the
n − 1 previous words, thus the model can theoretically represent long context
patterns (Mikolov, 2012). In addition, RNNLM have the advantage over feed-
forward one of representing more advanced patterns in the sequential data
such as the patterns that rely on words that could have occurred at variable
position in the history, the recurrent model can remember some specific words
in the state of the hidden layer, while the feed-forward model would need
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to use parameters for each specific position of the word in the history, which
lead to an increased number of parameters that required equivalent increased
number of examples for training the given pattern.

The architecture of RNNLM consists of consecutive input , hidden and out-
put layers. The input layer consists of a vector w(t) that represents the current
word wt encoded as 1 of V where V is the vocabulary (thus the size of w(t) is
equal to the size of V ) and of vector s(t − 1) that represents output values in
the hidden layer from the previous time step. After the network is trained, the
output layer y(t) represents P (wt+1|wt, s(t− 1)).

Training the network can be achieved by stochastic gradient desent using
the backpropagartion through time (BPTT) algorithm (Hinton, Rumelhart, and
Williams, 1985). The network can be represented by its input, hidden and out-
put layers associated with their corresponding weight matrices. The matrices
U and W represent the weights between the input and the hidden layer, and
matrix V between the hidden and the output layer as shown in figure 3.7.

Output values in the layers are computed as follows:

sj(t) = f

(∑
i

wi(t)uji +
∑
l

sl(t− 1)wjl

)
(3.32)

yk(t) = g

(∑
j

sj(t)vkj

)
(3.33)

where g(z) and f(z) are sigmoid and activation function like softmax function.
The softmax function is used in the output layer to guarantee that all outputs
are greater than 0 and their sum is 1, thus:

f(z) =
1

1 + e−z
, g(zm) =

ezm∑
k e

zk
(3.34)

Alternatively, equation 3.33 and 3.33 can be rewritten in vector representation:

s(t) = f(Uw(t) + Ws(t− 1)) (3.35)
y(t) = g(Vs(t)) (3.36)

The network weight matrices are trained by using the stochastic gradient
descent calculated by an objective function such as the cross entropy criterion.
The gradient of an error vector in the output layer is then propagated to the
hidden layer and in case of BPTT backwards in time through the recurrent
connections. During training, the learning rate is controlled by observing the
enhancement rates on a validation dataset. For more details about the archi-
tecture and the training scheme of RNNLM. Yousfi et al. (Yousfi, Berrani, and
Garcia, 2017) use simple RNN models that are learned with a Maximum En-
tropy language model decoded jointly with a BLSTM-CTC optical models for
Arabic text recognition in videos. These models have reached an improvement
of almost 16 points in Word Recognition Rate (WRR) compared to baseline
BLSTM-CTC OCR system. RNNLMs are widely used in the speech recogni-
tion field as in (Mikolov et al., 2011a,Mikolov et al., 2012).
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FIGURE 3.7: Recurrent neural network unfolded as a deep feed-
forward network, here for 3 time steps back in time(Mikolov,

2012)

3.4.9 caching language models

One of the obvious disadvantage of n-gram language models is their limited
capacity to represent long term patterns. It has been empirically observed that
many words, especially the rare ones, have significantly higher chance of oc-
curring again if they did occur in the recent history (Mikolov, 2012). Cashing
language model (Jelinek et al., 1991) consider a cash component for the word
occurrences beside the training corpus for calculating its probabilities which
are estimated dynamically from the recent history (it usually represents few
hundreds of words) and interpolated with the main (static) n-gram model.

The advantage of the cache model is its highly reduced perplexity com-
pared to the conventional n-gram models, that’s why this modelling approach
is very popular in the language modelling related papers (Mikolov, 2012). The
main drawback of such model is in the correlation between the perplexity im-
provements and word error rate reductions. Advanced versions of caching
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models like trigger models or LSA models have reported interesting WER re-
duction. Recently, these models are not widely in practice (Mikolov, 2012).

3.4.10 Maximum entropy language models

The maximum entropy language models ME (Berger, Pietra, and Pietra, 1996)
allow to incorporate many feature functions (for example, n-gram, n-class and
skip-gram) using triggers and word features to obtain highly improved per-
plexity, as well as significant word error rate reduction. The ME model is ex-
pressed as an exponential model with a form

P (w|h) =
e

(∑
i λifi(w,h)

)
Z(h)

(3.37)

wherew is a word in context h and Z(h) is used for normalizing the probability
distribution:

Z(h) =
∑
wi∈V

e

(∑
j λjfi(wi,h)

)
(3.38)

This model is reported to have a state-of-the-art performance on a broadcast
news speech recognition task, when applied to a very well tuned system that
is trained on large amounts of data and uses state of the art discriminatively
trained acoustic models. An alternative name of maximum entropy models
used by the machine learning community is logistic regression (Mikolov, 2012)
and Conditional Random Field (Sutton and McCallum, 2006).

3.4.11 Probabilistic Context free Grammar

A Probabilistic Context-Free Grammar (PCFG, Manning and Schütze, 1999) is
simply a Context-Free Grammar with probabilities assigned to the rules such
that the sum of all probabilities for all rules expanding the same non-terminal
is equal to one. Context-free grammar (CFG) is a certain type of formal gram-
mar: a set of production rules that describe all possible strings in a given for-
mal language. Production rules are simple replacements just like replacing A
by α or β. In context-free grammars, all rules are one-to-one, one-to-many, or
one-to-none. Rules can also be applied in reverse to check if a string is gram-
matically correct according to the grammar. The PCFG grammar is defined
by

• A set of terminals, related to the language words: {wk} where wk ∈ V
and V the language vocabulary.

• A set of non-terminals, related to grammatical objects: {Ni}.

• A starting symbol: N1.

• A set of derivation rules: {Ni → ζj} where ζj is a sequence of terminals
and non-terminals.
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• A set of probabilities evaluated automatically from a labelled corpus gov-
erned by rules such as

∀i,
∑
j

P (Ni → ζj) = 1 (3.39)

Every derivation of a phrase is associated with a probabilistic score that repre-
sents the product of the rules probability related to that derivation (phrase).

3.5 Language models application domains

Statistical Language Models estimate the distribution of various natural lan-
guage phenomena for the purpose of speech and handwriting recognition and
other language technologies. A First practical model was proposed in 1980
(Della Pietra et al., 1992), since then many attempts have been made to im-
prove the state of arts. Language models are commonly used in several do-
mains beside speech and handwriting recognition such as:

1. Spelling correction: In the field of text processing application language
models are used to correct spellings (Kukich, 1992). Two types of errors
can be distinguished, the first is the non lexical word, where the error in
writing a word that does not belong to the language words (for example
the word "bi y" in place of "bye"). These errors can be corrected by using
a lexicon and computing edit distance that can find the nearest word in
the lexicon. The second type of errors represents the miss-placed words
which are valid words but not coherent with the phrase structure (for
example, the French word "lange" in place of "langue". A language model
can correct such type of errors by detecting the incorrect word in the
sentence and correct it.

2. Language translation: The automatic translation of a sentence from a
source language to a target language corresponds to interfering two types
of models (Brown et al., 1990). One model expresses the source language
sentence ideas using the words of the destination language, the second
model regulate the output of the first model to be structured correctly
from the grammar point of view of the destination language.

3. Corpora labelling: One of the most recent tasks is the corpora labelling
task which consists of labelling each corpus word with its grammatical
class (Manning and Schütze, 1999). Almost, any word may belong to
multiple classes (for example the French word "souris" may be a noun
and verb), so a language model is necessary to reduce the ambiguity in
labelling words by taking into account their context.

4. Information searching: With the growing mass of information in the in-
ternet, searching of an information becomes an important field. In order
to respond effectively to the user query, the language model can be used
to incorporate the linguistic knowledge to the searching motors by using
some sort of interpretations of the user natural lingual structured query.
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5. Language detection: Human language has some words which are used
more than others. For example you can imagine that in a document the
word "the" will occur more frequently than the word "aardvark". More-
over there is always a small set of words which dominates most of the
language in terms of frequency of use. This is true both for words in a
particular language and also for words in a particular category. Thus
words which appear in a sporty document will be different from the
words that appear in a political document and words which are in the
English language will obviously be different from words which are in
the French language. In order to classify a sample document, n-gram
models can be used to detect the language in which a texts was written,
where one computes models for different languages and then compare a
test text to each model using the cross-entropy (actually, perplexity) be-
tween the text and the models. one classify the text into the language for
which the perplexity was minimal (Ramisch, 2008).

3.6 conclusion

In this chapter we have presented a set of natural language modelling ap-
proaches commonly applied for speech and handwriting recognition tasks.
However, most sophisticated modelling approaches found in the literature
enhance lightly the handwriting recognition systems performances compared
to the conventional statistical n-gram language models and this enhancement
comes with a valuable increment in the models complexities and / or calcula-
tion time and models storing volumes.

For our handwriting recognition systems, we looked for utilizing language
models that have lower complexities. For that our choice was to utilise the
conventional n-gram modelling approach for lexical, sub-lexical, and character
language units.
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Chapter 4

Design and evaluation of a
Handwritting recognition system

4.1 Introduction

In this chapter, we present the design of the different handwriting recognition
systems that have been tested all along this thesis. The first experimentations
have been carried out using the standard HMM optical models. Of course this
was a limitation regarding the state of the art performance obtained on the ref-
erence datasets, even if our primary objective was to study the contribution of
language models to the performance of the whole system. This is the reason
why we decided to introduce LSTM Neural Networks in the system in place of
the HMM stage. This chapter is intended to give a comprehensive, although
light, description of every stages required in the design of handwritten text
recognition systems. While chapter 2 and chapter 3 have been dedicated to
the fundamental aspects of optical and language models, here we concentrate
on describing how to integrate these models together, in order to build an op-
erational reading system that can take a full handwritten text image as input
and produce its transcription in electronic format at the output. Performance
evaluation as well as training of the various systems implemented have been
carried out using two popular datasets : the French RIMES dataset and the
English IAM dataset. They are described briefly in section 4.2 regarding their
optical as well as linguistic content in terms of number of writers, lexicon size
and coverage. The main components of a reading system are shown on figure
4.1.

One of the primary components of the system is the preprocessing stage
that is design to determine the target text line images locations in the doc-
ument image using some image processing or machine learning techniques.
Once the text line images have been extracted, some image correction such as
skew and slant correction algorithms can be applied for reducing the variabil-
ity in the data and possibly enhance the recognition performance. Section 4.3
is intended to describe this very important component of our whole reading
system. The second important component of a text recognizer is the optical
model of characters. In section 4.4 we will describe our implementations and
training of the two statistical optical models that have been tested during this
thesis: HMM and BLSTM-RNN optical models. Optical models provide like-
lihood scores denoted P (S|W ) of observing the image, or a representation of
the image denoted S, assuming a certain text transcription W . This section



78 Chapter 4. Design and evaluation of a Handwritting recognition system

FIGURE 4.1: General architecture of the reading systems studied

also includes a brief description of the features used as input of the optical
models. Section 4.5 is dedicated to the linguistic component of the system :
the language model, that is design to estimate the probability of a certain tran-
scription W , denoted by P (W ). All along this thesis we have studied the con-
tribution of this component and we will briefly present the practical aspects
and problems related to combining lexicons and language models and have
them optimized on the appropriate training datasets. Most of the discussion
will rely on the linguistic properties of the two datasets used for the evaluation
(RIMES and IMA datasets). Last but not least is the decoding component of the
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recognition system. During recognition, the two system components (optical
model and language model) are combined together to build a hypotheses lat-
tice called search space. The contribution of each model to the final recognition
result is governed by equation 4.1. The two essential coupling parameters are
the language model scale parameter γ and word insertion penalty β. These
two coupling parameters require careful optimization in order to obtain opti-
mal recognition performance. We will discuss these questions in section 4.6.
By the end of this presentation of each system component, we will give some
primary recognition results in section 4.7 and draw the main guidelines for our
contributions in the next chapter (Chapter 5).

Ŵ = argmax
w

P (S|W )P (W )γβLength(W ) (4.1)

4.2 Datasets and experimental protocols

The experiments have been carried out on publicly available databases, in or-
der to compare our work to other approaches and research groups (see Chap-
ter 5). The scope of the experiments is limited to the French RIMES and the
English IAM databases. In addition, we make use of some large and divers
corpora for training the language models in same cases. In the next section,
we describe the used datasets for training and evaluating the systems perfor-
mances.

4.2.1 Training and evaluation databases

A conventional practice in handwriting recognition is to divide the databases
into three different sets. The evaluation set (or test set) contains images never
seen during training, with which we evaluate our systems performances. Train-
ing algorithms have some parameters themselves (the hyper-parameters), that
should be set to train the systems. The development (or validation) set is an-
other test set, on which we can check the best choice of values for these hyper-
parameters.

RIMES dataset

The Rimes dataset (Grosicki and El-Abed, 2011) consists of images of hand-
written letters from simulated French mail. We followed the setup of the IC-
DAR 2011 competition. The available data are a training set of 1,500 para-
graphs (11333 text lines), manually extracted from the images, and an eval-
uation set of 100 paragraphs (748 text lines). We selected randomly 1333 of
the training set text lines as a validation set, and trained the systems on the
remaining 10000 text lines as illustrated in table 4.2.

IAM dataset

The IAM database (Marti and Bunke, 2002) consists of images of handwrit-
ten pages. They correspond to English texts extracted from the LOB corpus
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(Johansson, 1980), copied by different writers. The database is split into 747
images for training, 116 for validation, and 336 for evaluation. Note that this
division is not the one presented in the official publication or of the distribution
website 1. The database has been used by different researchers with different
setup. In table 4.1 we list three different setup of the IAM dataset introduced by
different groups. For our experiments we are using the setup used by (Bluche,
2015).

Dataset Setup # LINES
Training Validation Test

site, 2016 6161 900+940 1861
Zamora-Martinez et al., 2014 6161 920 2781

Bluche, 2015 6482 976 2915

TABLE 4.1: IAM dataset setups

Databases Handwriting
recognition system

Number of text line
examples per data set

training validation test
RIMES HMM based 10963 382 382

BLSTM-RNN based 9947 1333 778
IAM HMM based 11349 971 1033

BLSTM-RNN based 6482 976 2915

TABLE 4.2: RIMES and IAM database divisions used for train-
ing, validation and test the HMM based and BLSTM-RNN based

handwriting recognition systems

The HMM based and the BLSTM-RNN experiments have been carried out
on different divisions of RIMES and IAM dataset for training, validation and
test. Table 4.2 shows of the annotated text line examples of RIMES and IAM
databases used for training, validation and test the two proposed handwriting
recognition systems.

4.2.2 Language model training corpora

The language models have been learned following two different configura-
tions: the first configuration corresponds to using the training sets of texts of
each of the RIMES or IAM training datasets. This means that the associated
lexicon is limited to the vocabulary of the training sets. The second config-
uration corresponds to using large and divers text corpora such as Wikipedia
French web pages or the English LOB, Brown and Wellington corpora and then
evaluating these language models on the French RIMES and the English IAM
test datasets.

1http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
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French extended Wikipedia corpus

This corpus was collected from the Wikipedia French version pages 2 that in-
cludes diverse subjects. This corpus includes all the collected text data which
consists of 529, 299 passage of text, 702, 097 word and 84, 236, 612 character,
considering that a word is defined by a sequence of characters sided by two
white spaces characters.

French Wikipedia corpus

The corpora represents a portion (10%) of the French extended Wikipedia pages,
it consists of 52, 930 passage of text, 182, 735 words and 12, 921, 198 character.
By analysing the effective coverage of the whole and partial Wikipedia cor-
puses on the RIMES test dataset, we noticed that the difference in the effective
coverage rate reported for the 50, 000 most frequent words of the extended
Wikipedia corpus (83.28%) and for the 50, 000 most frequent words of the (par-
tial) Wikipedia corpus (82.71%) on the RIMES test data set is around 0.57%
which is not significant compared to the size of corpus lexicon size which in-
creases from 182, 735 word to 702, 097 word for the partial and the whole cor-
puses respectively. Therefore, we decided to carry out all our experiments with
this reduced size corpus.

English LOB corpora

The Lancaster-Oslo/Bergen Corpus (LOB Johansson, 1980) was compiled by
researchers at Lancaster, Oslo and Bergen universities. It consists of one mil-
lion words of British English texts from 1961. The texts for the corpus were
sampled from 15 different text categories. Each text is just over 2,000 words
long (longer texts have been cut at the first sentence boundary after 2,000
words) and the number of texts in each category varies.

English Brown corpus

The Brown Corpus (Francis and Kučera, 1979) was the first computer-readable
general corpus of texts prepared for linguistic research on modern English. It
was compiled by W. Nelson Francis and Henry Kučera at Brown University in
the 1960s and contains over 1 million words (500 samples of 2000+ words each)
of running text of edited English prose printed in the United States during the
calendar year 1961. There are six versions of the corpus available: the original
Form A, Form B from which punctuation codes have been omitted, the tagged
Form C, Bergen Forms I & II and the Brown MARC Form.

English Wellington corpus

The Wellington Corpus (Bauer, 1993) of Written New Zealand English (WWC)
consists of one million words of written New Zealand English collected from

2https://dumps.wikimedia.org



82 Chapter 4. Design and evaluation of a Handwritting recognition system

writings published in the years 1986 to 1990. The WWC has the same ba-
sic categories as the Brown Corpus of written American English (1961) and
the Lancaster-Oslo-Bergen corpus (LOB) of written British English (1961). The
WWC consists of 2,000 word of different topics. Text categories include press
material, religious texts, skills, trades and hobbies, popular lore, biography,
scholarly writing and fiction.

English extended Wikipedia corpus

The Wikipedia English version pages was collected from the same source of
the French one in order to build the English extended Wikipedia corpus. The
corpus consists of 540, 385 passage of text, 994, 545 word and 128, 558, 999 char-
acter.

English Wikipedia corpus

The corpora represents a portion (10%) of the English extended Wikipedia
pages, it consists of 53, 999 passage of text, 240, 659 words and 18, 193, 128
character. Again, the difference in the effective coverage rate reported for the
50, 000 most frequent words of the extended Wikipedia corpus (87.75%) and for
the 50, 000 most frequent words of the (partial) Wikipedia corpus (87.12%) on
the RIMES test data set is around 0.63% which is not significant compared to
the size of corpus lexicons size which increases from 240, 659 word to 994, 545
word.

Softwares and tools

The introduced handwriting recognition systems in this theses are implemented
and evaluated by using open source and free of charge toolkits so they are easy
to be replicated with no cost. We can categories the utilized softwares and tools
according to the systems tasks into four main categories: Optical model train-
ing toolkits, language model training toolkits, decoding tools and evaluation
tools. Table 4.3 illustrates each toolkits used jointly with the system task that
required it for the two systems considered:

Tasks/
toolkits

optical model
training tools

language model
training tools

decoding
tools

evaluation
tool

EESEN BLSTM-RNN
HTK HMM HMM

MITLM BLSTM-RNN
SRILM HMM & BLSTM-RNN
Kaldi

(open FST) BLSTM-RNN BLSTM-RNN

Sclite (NIST) HMM

TABLE 4.3: Resume of the toolkits used for each systems realiza-
tion task

One can refer to (Miao, Gowayyed, and Metze, 2015) for more details about
EESEN toolkit, (Young and Young, 1993) for HTK toolkit, (Povey et al., 2011)
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for Kaldi toolkit, (Stolcke, 2002) for SRILM toolkit and (Fiscus, 2015) for Sclite
scoring toolkit from National Institute of Standards and Technology (NIST).

4.3 Pre-processing

In their full denomination, pre-processing includes image enhancement prior
to image segmentation to get the image components localized, and allowing
each component to be passed to the recognition stage. During this thesis our
contribution has been focused on the detection of text lines in images of texts
blocks solely.

4.3.1 Related works

The difficulty of the line extraction task depends on the regularity of the hand-
writing: length and height of text lines, straightness of baselines... The lines
in handwritten documents are often irregular and have many defects which
makes the detection of text lines delimiters difficult. The most problematic
defects being the overlapping lines (mainly due to the occurrence of the as-
cenders and descenders), the touching characters across two consecutive lines
which require special treatment (proper cutouts and assignment to the proper
line) and the skew variability between lines and within the same line. There-
fore, line segmentation in unconstrained handwritten documents is a very
challenging task and is still an open research area. This is why, in the re-
cent years, many papers have been published, and several contests have been
organized during ICDAR2009 (Gatos, Stamatopoulos, and Louloudis, 2011),
ICDAR2013 (Stamatopoulos et al., 2013), ICFHR 2010 (Gatos, Stamatopoulos,
and Louloudis, 2010).

Three distinct approaches for line segmentation exist in the literature (Kat-
souros and Papavassiliou, 2011): - bottom-up approaches try to merge the base
units (mostly connected components) according to their spatial proximity to
form horizontal lines - top-down approaches first locate the limits of the dif-
ferent lines before assigning the base units to their respective lines – smearing
methods apply a blurring filter to the document image in order to reveal the
structure of the underlying lines through a "smearing" of the horizontal align-
ments of black pixels. Proposed filters are either anisotropic Gaussian filters
(Li et al., 2008; Bukhari, Shafait, and Breuel, 2009; Bukhari, Shafait, and Breuel,
2009) or ellipsoid filters (Shi, Setlur, and Govindaraju, 2009). To be effective,
the filters must be more elongated along the horizontal axis otherwise the blur-
ring may merge close lines.

4.3.2 Proposed method

Because of the great variability between writer’s styles and the different scripts
(latin, arabic, chinese, hindi...), existing methods do not generalize well to any
types of documents (Katsouros and Papavassiliou, 2011). Therefore, it seems
that the most robust methods will be those that do not use any a priori and
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are able to adapt to the characteristics of each document (Papavassiliou et al.,
2010). From the analysis of the results of international contests that have been
organized few years ago, we came to the conclusion that smearing methods
may have a great potential to generalize well to different scripts. Inspired
by (Shi, Setlur, and Govindaraju, 2009), we designed a generalized smearing
method that does not require any prior setting. An iterative approach is used
as depicted on figure 4.2 below, in which the algorithm parameters (filter size)
are adjusted at each iteration to detect new lines, with different size. Lines de-
tected at each iteration are added to the final line detection result. As a main
advantage, the method explores a wide range of potential line sizes and inte-
grates a detection criterion allowing to validate or reject the line hypothesis,
thus being robust with respect to the variability in size of the lines.

Input: text block image

Text lines masks
generation

Text lines masks
validation

update filters
height value

iteration
condi-
tion?

Text line localization

Assignement of
CCs to text lines

output: Text
lines images

yes

no

FIGURE 4.2: The proposed generalized smearing approach for
line detection.

The method is based on a generalized adaptive local connectivity map
(ALCM) generated by a set of steerable filters (Shi, Setlur, and Govindaraju,
2009) that process the image in different orientations. First the method locates
the text lines through their masks that are the result of the ALCM. The adap-
tive local connectivity map is defined as the result of the following filtering :

A(x, y) =

∫
R2

f(x, y)Gθo
FH,FW (x− t, y − s)dtds (4.2)

where

Gθ0
FH,FW (x, y) =

{
1 if(x, y) ∈ Eθo

FH,FW

0 otherwise
(4.3)
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and

Eθo
FH,FW =

{
(x, y)|

{
x < FH cos(θ − θo)
y < FW cos(θ − θo)

and 0 ≤ θ < 2π

}
(4.4)

Eθo is an ellipse with semi-minor axis FH,FW and rotated by the angle θo.
For effective performance, 11 filters with different directions are used in the
range [−20, 20] degrees, for each filter size. Filters elongation has been set to
a constant ratio of 5 with the following equation : FW = 5FH . The iterative
process starts with a large filter height parameter (FH) set to a fraction of the
estimated line height (ELH). At each iteration the filter height is decreased by
15%. The iteration process stops once the current (FH) is lower than a fraction
of ELH . Because the filtering process has no blurring significant effect on the
image below this value. On Figure 4.3 we can see the cumulated output of
the steerable filters obtained for different filter sizes (from left to right). The
potential line masks are obtained by binarizing these images as depicted in
figure 4.4. This result highlight the capacity of the method to detect thin as
well as thick lines where necessary in the image.

FIGURE 4.3: Steerable filters output for different values of the
filter height (large, medium, low) from left to right.

At this stage, a text line mask may represent a group of lines, a part of a
line or a single complete text line. Thus we need to check if the generated
masks are valid before adding them to the validated text line masks image.
Each connected component of the potential text line mask image is considered
a valid line mask if its maximum vertical thickness is lower than twice its most
frequent vertical thickness and lower than twice its average thickness. The
underlying idea is that a line mask has almost a constant height so that its
maximum, average and more frequent vertical thickness are relatively close
to each other. Once a CC is validated as a text line mask, we add it to the
final validated text lines masks image. The result of the validation process is
illustrated in Figure 4.5 below.

The validated text line masks image obtained should ideally content each
line of the document image by a single mask. However, when a text line of a
document image overlaps other text lines or has a sharp skew variation or a
very wide inter-word spaces, it may be decomposed into several masks, each
covering a portion of that text line. To improve the final masks image, we a



86 Chapter 4. Design and evaluation of a Handwritting recognition system

FIGURE 4.4: Potential line masks obtained for the corresponding
steerable filters of figure 4.3 above

FIGURE 4.5: Results of the validation process of text line masks
of figure 4.4 above

post-processing stage is applied which merges masks that appear to be hori-
zontally overlapping. Then, text lines boundaries are determined using line
masks positions. Finally the connected components are assigned to their re-
spective lines. The text line masks obtained by this process are used to deter-
mine the boundaries between the text lines of the document. For this purpose,
we compute an anisotropic distance transform (the distance along the hori-
zontal axis has half the weight of that of the vertical axis) of the mask image.
The resulting distance map allows to assign each pixel to its nearest mask and
to obtain the line delimiters and then the desired line images as depicted on
figure 4.6.

The line delimiters obtained are the default separators between lines of text
but there are some overlapping situations where a stroke may extend below
or above the delimiter, and we wish to affect the whole stroke to its proper
line rather than cutting the stroke in two parts and affect each part to two
different lines. Each connected component (CC) of the document image is
assign to its proper text line using the following assignment rule. There are
two possible situations: either a CC is totally included inside a line container
or it is localized in between two lines. In this later case, we have to determine
whether to assign CC to a single line or if CC must be splited. Let Hi be the
percentage of the height of CC that is included inside a line container Li. If Hi

is greater than a given threshold (which we empirically fix to 66%), then CC
is affected to Li. Otherwise, we split CC at the Line delimiter and assign each
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FIGURE 4.6: Text line mask, distance transform, line delimiters
detected (left to right)

part of CC to its respective line.

FIGURE 4.7: Connected components splitting according to the
boarders image

FIGURE 4.8: Connected components assign to their correspond-
ing text lines

Evaluation and results

The performance of the proposed method was evaluated on Arabic, Latin
and Bangla handwritten documents. The test datasets provided by ICDAR
2013 (containing 2,649 text lines), ICFHR 2010 (1,629 text lines), ICDAR 2009
(4,034 text lines) were used for evaluating the performance on Latin and Bangla
handwritten texts, while we extracted from the OpenHart 2010 training dataset
(provided by DARPA MADCAT) a subset of 10,445 text lines for testing the
performance on Arabic handwritten documents. All tests have been conducted
following the standard protocol defined by the ICDAR and ICFHR contests.
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ICDAR and ICFHR data sets are originally oriented towards text line segmen-
tation competitions, their documents do not include any non-text elements
such as scratches, vertical/horizontal lines and random noise. In addition, the
provided pixel-wise ground truth represents exactly the text lines delimiters
even in the case of overlapping lines.

In contrast, the DARPA MADCAT training dataset was originally design
for handwriting text recognition competition. Therefore, it includes many
kinds of non-text elements such as custom lines background, scratches, etc...
For the tests we selected the document images that do not contain custom lines
(such information is provided with the MADCAT dataset). However, the pro-
vided ground truth gives only the bounding box position of words and text
lines. This is insufficient for a precise segmentation of overlapping text lines.
In order to get more precise line delimiters, we have used the word bound-
ing boxes provided in the ground truth data so as to build a more precise line
localization ground truth. Combining the word bounding boxes with the inter-
words white spaces between bounding boxes allows to extract a more precise
line image, as depicted in figure 4.9 below.

FIGURE 4.9: MADDCAT line delimiter ground truth e) derived
from word delimiters ground truth b) c)

We can see that a small lower part of the line is still missing because it is not
included in the bounding box of the text line. Following the ICDAR evaluation
protocol, this could cause the rejection of a correctly detected text lines. The
obtained ground truth is still too imprecise for an exact evaluation of text line
segmentation. We should remember this limitation when comparing the line
segmentation performance of the method on several datasets.

Test and validation protocols

We developed the test application as described in (Stamatopoulos et al., 2013,Gatos,
Stamatopoulos, and Louloudis, 2010,Gatos, Stamatopoulos, and Louloudis,
2011). AMatchRate(i, j) table is used to store the intersection values of the ON
pixel sets of the result and the ground truth images. Let I denotes the set of all
image pixels, Gj denotes the set of all pixels inside the ground truth image,Ri

denotes the set of all pixels inside the result image and T (s) is a counting func-
tion for the elements of the set s. The matching results between the jth ground
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truth image and the ith result image is represented by theMatchRate(i, j) table
as shown from equation 4.5.

MatchRate(i, j) =
T (Gj ∩Ri ∩ I)

T ((Gj ∪Ri) ∩ I)
(4.5)

We validate a one-to-one match between images j and i only if the matching
score is equal to or above 95%.

The global performance of the method FM is evaluated as shown in equa-
tion 4.7, by computing the detection rate DR that reflects the ability of the
method to detect the text lines and the detection accuracy rate RA that reflects
the method detection accuracy. If N is the number of the ground truth ele-
ments and M is the number of elements in the result, and O2O is the number
of validated one-to-one matches, then we calculateDR andRA using equation
4.6.

DR =
O2O

N
, RA =

O2O

M
(4.6)

FM =
2 DR RA

DR +RA
(4.7)

Results

The test results of our method (that we called "LITIS") are shown in table 4.4.
Compared to methods that have the best performance on each contest data set,
our method has similar but slightly lower performance. We noticed that very
few errors are due to a bad detection of line borders. The majority of invalid
lines are due to a wrong CC split. There are two cases of wrong splits: ei-
ther the ascender or descender of a character across two overlapping text lines
was cut, or touching characters were segmented at the wrong position (Figure
4.10). Therefore, the weak point that affects the performance of our method
lies precisely in the assignment of the connected component when they belong
to more than one text line. As an advantage, the CUBS method is able to split
the touching characters by using a specific algorithm that decides for the best
cutting position (Shi, Setlur, and Govindaraju, 2009). The results obtained on
the Arabic MADCAT dataset show a significant difference in the segmentation
performance compared with the Latin script. Most of this difference comes
from the low quality ground truth, as discussed above. One can reasonably
suppose that the score obtained by our method on the MADCAT dataset is ac-
tually much closer to the scores obtained on other datasets. Nevertheless, to
the best of our knowledge, these results are the first attempt to evaluate Arabic
text line segmentation using the ICDAR competition protocol.

We searched for the optimal initial value of the filter’s height parameter for
each dataset by testing the various performance of the system for each value of
the filter’s height ranging between 0.5×MDH up to 1.5×MDH as reported in
table 4.4. Figure 4.11 shows two examples of the text line segmentation results
(different colour for each localised text line) applied on document images taken
from the READ handwriting recognition competition 2017.
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a. b. c.

FIGURE 4.10: Illustration of a touching characters split error. (a)
Two touching characters shown in green colour. (b) LITIS split-
ting decision level according to the lines delimiter found by the
method. (c) Red dotted line represents the correct splitting posi-

tion.

ICDAR
2013

ICFHR
2010

ICDAR
2009

MADCAT
2010

Optimal filter’s Height 0.8×MDH MDH MDH 1.5×MDH

LITIS 97.18 % 96.75 % 98.86 % 92.21 %

CUBS 97.45 % 97.63 % 99.53 % ——

Best ONE INMC
98.66% CUBS CUBS ——

TABLE 4.4: Method evaluation results

4.4 Optical models implementations

During this thesis we have implemented various configurations of character
optical models that have been combined with various language models. As
depicted in figure 4.12 two types of models have been developed. We started
our primary experiments with using the standard and popular generative Hid-
den Markov Models. But the current state of the art has led us to introduce
LSTM-RNN optical models. Both models take as input some predefine fea-
tures that describe 1 dimensional (1D) streams of real valued feature vectors.
The strength of recurrent neural networks lies in their capacity to learn their
own internal feature representation of the input data by the introduction of
hidden layers. As a consequence it is possible to introduce simple features
such as pixels values at the input of recurrent neural networks whereas hid-
den Markov Models will benefit of having some more elaborated features to
model the character classes. In the following subsections we first give a brief
overview of the used features descriptors, before giving some insights of the
design and optimization (training) of the optical models.
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a. b.

FIGURE 4.11: Illustration of smearing method resulting text line
segmentations applied for two images taken from READ 2017

handwriting competition training set

4.4.1 Feature descriptors

A- Simple pixel based features

Some pixel based features can be extracted very easily from the gray level input
images. The height of the input image is first normalized to a fixed height
(possible values range from 64 to 100 pixels height). The width of the image
is normalized accordingly, so as to keep constant the aspect ratio of the image
(width / height). Then the 256 gray level pixel values are normalized in the
range [−1, 1]. Finally, each column of pixels is the retained vector of feature.

B- HoG based features

More elaborated features can be extracted from the normalized input image.
After height normalization of the image, skew and slant correction is applied
on the binarized image in order to get the lines of text as much horizontal as
possible and with handwritten components with as much vertically oriented
as possible. The Histogram of oriented Gradient (HoG) is computed within a
sliding window of 8 pixels width, by considering 8 orientations of the gradient
in 8 sub-regions of the window. 64 real values features encode the HoG, while
8 geometrical feature descriptors are added. The horizontal sliding window
has a 2 pixels step size in the horizontal direction.

4.4.2 Design and training optical models

The two models that we have been designed in this thesis are characterized by
their generative and discriminative modelling ability respectively. Following
equation 4.1, the optical models provide the recognition system with the like-
lihood estimations P (S|W ) of the observed feature vectors S = (s1, s2, . . . , sT )
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FIGURE 4.12: overview of the various optical models imple-
mented in this thesis

towards a set of character classes. As presented in chapter 2, Hidden Markov
Models are generative models that are optimized using the expectation maxi-
mization (EM) algorithm. This algorithm uses the likelihood criterion as train-
ing criterion. The BLSTM-RNN optical models are trained using a discrim-
inative approach that uses the posterior probability P (W |S) as training cri-
terion and the Back-Propagation-Through-Time algorithm. In the following
paragraphs we give some more details about the optical models architectures
and their optimization procedure.

A- HMM model optimization

The internal structure of the HMM optical Models of characters is defined by a
variable number of hidden states organized sequentially from left to right, and
for each of them, a fixed size Gaussian mixture is also determined. We chose
to use mixtures with 20 Gaussians, which guarantee a description ability fairly
accurate for each frame of feature descriptors. Determining the number of
hidden states is an optimization problem. An overestimated number of hid-
den states leads to over-trained models. An underestimated number of states
leads to inadequate specialized models. This problem has been addressed in
(Zimmermann and Bunke, 2002; Ait-Mohand, Paquet, and Ragot, 2014). We
have been inspired by the proposed method in the first reference that is based
on the Bakis method in order to optimize the number of states of each character
model.

The principle of this method is as follows. Once a first training of one ini-
tial set of character models has been carried out with a fixed number of states
(5 states per model), we compute the average number of frames F per optical
model using a forced alignment decoding process of the corresponding models
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on the ground truth of each image. The number of states E of the correspond-
ing model is then defined as a fraction of F (E = α.F with α to be optimized).
The figure 4.13 and figure 4.14 show the histogram of the number of states
per HMM model for the RIMES and IAM character sets respectively. We can
observe that character model structures are very similar for the two datasets.

FIGURE 4.13: Number of states per HMM models of RIMES char-
acter set

FIGURE 4.14: Number of states per HMM models of IAM char-
acter set

A new training process (Baum-Welch) is performed with the new variable
length models that have been created, according to the parameter α. Then
a final decoding without ground truth (no forced alignment) on the training
dataset using the trained models is performed and the character error rate
(CER%) is computed. The operation is repeated for different values of α (in-
creasing values between 0.1 and 0.9). Finally we select the most accurate mod-
els based on a criterion combining the average CER and the misalignment rates
of the models on the training examples. Indeed, excessively long character
models tend to maximize the recognition rate but at the expense of misalign-
ments on shorter examples. Misalignment can happen when a small number of
frames are presented to a model with too many states during the training pro-
cess which lead to eliminate the training example (technically the training ex-
amples elimination is called "over pruning"). The best model has to achieve the
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minimum CER and the minimum misalignment rate (MAR%). This criterion
is tested at each iteration of the Baum-Welch training procedure. Training is
stopped after 30 iterations, with more iterations, we noticed that the best CER
is reported within the 30 iteration. We then obtain optimized optical models.
For the values of α listed in table 4.5, the selected the models which meet the
selection criterion that minimize the CER% with minimum MAR% where the
models that are trained with 0.75 and 0.65 values of α on RIMES and IAM test
databases respectively that realise 38.12% CER with 3.60% MAR on the RIMES
test dataset, however, 45.57% CER with 0.77% MAR on IAM test dataset.

α values [0,1]Databases Measures 0.55 0.65 0.75 0.85 0.95
CER % 49,64 39,05 38,12 39,1 40,37RIMES MAR% 0.34 1.17 3.60 8.40 17.43
CER % 53,47 45,57 49,9 50,87 47,76IAM MAR% 0.27 0.77 2.85 7.75 16.99

TABLE 4.5: Optical models alignment optimization for training
on RIMES and IAM databases

B- BLSTM architecture design

The internal structure of the BLSTM-RNN optical model of characters is de-
fined by a fixed number of neurons distributed and interconnected with each
other along a certain number of stacked BLSTM layers ending at the top layer
of the stack by a fully connected CTC layer. For the BLSTM-RNN based hand-
writing recognition system, we have design two optical model configurations
as illustrated in figure 4.12. Configuration (I) : consists of HoG features ex-
tracted from the binarized input images that are used for training a BLSTM-
RNN network composed of three layers, within each layer, there are 200 LSTM
units. Configuration (II) : consists of columns of pixels feature descriptors ex-
tracted from the Gray level colour of the input image. The BLSTM-RNN net-
work is characterized by four layers, each of which with 200 LSTM units.

During the training process the examples have been sorted according to
their number of frames in order to apply the principle of the curriculum learn-
ing algorithm (Bengio et al., 2009), by starting the optical models training with
first learning the short sequences and step by step go towards longer ones. For
the two system configurations, the training by backpropagation through time
of the neural network starts with a learning rate of 10−5 and continues with
no change for 100 epochs. Then the learning rate starts decaying by a ratio of
0.5 and checking the enhancements of the network performance on the valida-
tion set. The training process stops, if the performance enhancement between
two successive epochs is less than 0.0001. At every training epoch, the recogni-
tion performance of the optical models are reported and the best trained mod-
els are selected according to the character error rate (CER) on the validation
datasets. The recognition performance on RIMES dataset for the two optical
model configurations are illustrated in table 4.6, as well as for the English IAM
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dataset. Configuration (II) performs much better than configuration (I) with a
CER lower by 2.95% on the IAM dataset, and lower by 10.7% on the RIMES
dataset. As a conclusion of this section we can highlight the performance of

Datasets Optical models
configurations

Training
epoch # Learning

rates
CER% on validation

dataset

RIMES
configuration

(I) 200 5.72643e−07 11,97

configuration
(II) 137 6.04662e−08 9,03

IAM
configuration

(I) 153 2.1937e−10 22

configuration
(II) 120 2.16e−06 11,3

TABLE 4.6: Optical model performance measured by character
error rate CER during the training process on the training and

validation datasets for the two configurations (I & II)

recurrent neural networks compared to those of HMM. BLSTM RNN achieve
a 9.03% CER on the RIMES validation dataset and 11.3% on the IAM validation
dataset, whereas the HMM models obtain a 38.12% CER on RIMES and 45.57%
on the IAM dataset. Moreover, the BLSTM-CTC optical model with the pixel
values shows a significant improvement of 2% CER on the RIMES validation
dataset and 10.7% CER on the IAM validation dataset.

4.5 Language models and lexicons

The language model contribution to the final recognition likelihood score is
the a priori probability P (W ) of the sentence as given in equation 4.1. This
probability helps the recognition process to favour sequences of words that
are linguistically valid and the most probable. In between the optical model
hypotheses which provides sequence of characters’ hypotheses with their like-
lihood score, and the language model input which are sequences of lexicon
tokens, the recognition process has to integrate character concatenation rules
given by the recognition lexicon.

As shown on figure 4.15, the language component of the system must inte-
grate both the recognition lexicon and the language model. Following chapter
3, and as can be shown on this figure 4.15, closed vocabulary systems are de-
fined by a working lexicon of words which prevent them to recognize out of
vocabulary words (OOV), thus the systems will lack generalization capabili-
ties. One way to increase the lexicon generalization capabilities is to increase
the size of the working lexicon. However, large lexicons lead up to higher com-
plexity (and perplexity) language models with which the recognition task has
more difficulty due to the increased number of competing hypothesis which
may content the target to be recognized. Reversely, small lexicons with high
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FIGURE 4.15: Illustration of the linguistic knowledge system
components

OOV rates make the language models unable to guide effectively the recog-
nition process. Therefore, it is necessary to find a compromise between the
lexicon size and the Out-Of-Vocabulary rate when determining the language
model lexicon. One alternative is to introduce sub-lexical units in place of lex-
ical units. From the lexicon of word tokens, sub-lexical units can be derived in
different ways to provide syllables or multi-grams, and this will be the topic of
chapter 5.

Simple models using characters only have also emerged as one possible
way to deal with OOV words. The open vocabulary systems can reach a nearly
100% coverage rates of words of the test datasets and consequently we can ex-
pect them to have lower Word Error Rates than closed vocabulary systems.
This will however depend on the language model design and most impor-
tantly on the properties of the training corpus compared to those of the test
corpus. Whatever the strategy adopted (closed or open vocabulary) the archi-
tecture of the system is the same as shown on figure 4.15. First a token lexicon
of words, sub-words units, or characters is defined, then a statistical language
model is trained on some training data in the form of a n-gram or a recurrent
neural network language model based on the tokens that have been defined.

4.5.1 Lexicon properties

All along this thesis, the experimentations have been conducted on the two
reference datasets available: the French RIMES dataset, and the English IAM
dataset. It is worth mentioning here their respective properties in terms of
lexicon sizes, coverage rates, and introduce some additional external linguistic
resources that have demonstrated to be necessary to achieve state of the art
performance, as they allow reaching much higher lexicon coverage rate, and
improve the linguistic context generalization capability of the language model.
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A- Tokenisation

Beside meaningful language words (a word is a sequence of characters sided
by a white space character), plain text corpus may contain sequences of al-
phanumeric characters and symbols like bank account numbers, date or time
formats (such as 02/08/2000 or 10:30’PM’) which are counted as words accord-
ing to the definition of a word, and the Word Error Rate metric, contrary to the
spoken languages. Moreover, written languages include many punctuation
marks that have to be identified as they count as a word in the WER metric for
most of the competitions. At last we have to pay much attention on modelling
the inter word white space. Indeed, most of the written languages include a
blank separator between words that serve as an important visual word delim-
iter, whatever the word is a word of the working lexicon or an alphanumeric
expression, whereas the ASCII space character can serve as a natural word
delimiter when encoding texts in electronic format (and therefore space char-
acter is not introduced in most language models devoted to Natural Language
Processing (NLP) Technics, here it is highly necessary that our optical model
includes one class for the blank space (word delimiter). During decoding (see
section below) as the system combines the optical model with the language
model, it is necessary to integrate this optical model similarly to the integra-
tion of other special characters. As a consequence of integrating punctuation
marks and blank character classes we must notice that the order of n-gram lan-
guage models will be at least twice as the order of standard language models
used by NLP technics.

The tokenization process is introduced as a necessary pre-processing step
for preparing the training data according to the targeted type of language
model. During the experimentations, we have applied the following tokeniza-
tion process on the training text corpora, before training the language model.
The training text corpora are cleaned from any character not found in the
RIMES or the IAM datasets. Recall that the RIMES dataset contains 100 al-
phanumeric symbol classes and IAM dataset contains 80 alphanumeric sym-
bol only. Then, token separators are explicitly introduced in the training cor-
pus so as to allow training the language model with the desired lexicon entries
and the specific alphanumeric characters, including punctuation marks and
the white space character (word delimiters). By default our tokenizer includes
vocabulary word tokens, punctuation marks token, numeric characters and
symbols (excluding simple characters). When testing the sub-lexical language
models introduced in Chapter 5, the tokenization process will be modified so
as to decompose words into their sub-lexical units as well.

Some additional pre-processing steps have demonstrated to be effective
during the experimentations. Indeed, the text datasets are generally provided
with line breaks. By removing line breaks in the training corpus we aimed to
improve the performance of the language models by giving them the ability
of modelling long sequence dependencies of tokens (words, syllables, multi-
grams and characters). Experiments have demonstrated a decrease between
1% and 2% of the WER by removing line breaks from the training corpus
when using the Wikipedia+RIMES corpora. Finally, we should not forget that
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whereas we try to build the best suited language model to get the best open-
vocabulary recognition system by introducing a specific tokenization process
that allow training the desired model, the evaluation process is conducted
without no consideration about the internal representation of the language
model of the system. For the evaluation process, only the Word Error Rate is
computed, which evaluates the capacity of the system to recognize any word
(in lexicon or OOV) delimited between two white spaces, and by counting
punctuation marks.

B- Lexicon statistics

A first group of lexicons is derived from the vocabularies of the RIMES and
IAM datasets only. In table 4.7 we see that the lexicon of RIMES training and
validation datasets achieves a 93.7% effective coverage rate (ECR) on the test
dataset with a small lexicon size of 5867 word tokens. This demonstrates the
homogeneity of the RIMES datasets in terms of lexicon coverage. In table 4.8

Lexicon
type

ECR%
on

the test dataset

Lexicon
size (words)

Vocabulary
size (tokens)

RIMES
train 93.29 8107 5484

RIMES
valid 84.42 2354 1810

RIMES
train + valid 93.72 8760 5867

TABLE 4.7: RIMES dataset lexicon properties.

below, we see that the training and validation IAM datasets do not allow reach-
ing sufficiently high lexicon coverage rates on the IAM test dataset to allow
getting interesting recognition performance. This raises the important ques-
tion of choosing some external resources that could compensate for the lack of
available data in the training corpus. This is one of the most important differ-
ence between the two RIMES and IAM datasets.

Lexicon
type

ECR%
on

the test dataset

Lexicon
size (words)

Vocabulary
size (tokens)

IAM
train 75.45 9956 7414

IAM
valid 67.17 2992 2219

IAM
train + valid 78.92 11615 8291

TABLE 4.8: IAM dataset lexicon properties.
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It is only by using some additional external resources that we can expect
having high lexicon coverage rates of the IAM test datasets and then have
the recognition performance sufficiently high. This is observed in the recent
references (Voigtlaender, Doetsch, and Ney, 2016; Bluche, 2015; Bunke, Bengio,
and Vinciarelli, 2004) also, which have introduced the LOB corpus, the Brown
corpus, as well as the Wellington corpus as additional resources. This lead us
to consider a second group of lexicons which are derived from the training
dataset lexicons and by adding some external resources. The statistics of these
lexicons are presented in table 4.9 for the RIMES dataset, and in table 4.10 for
the IAM dataset. For the RIMES dataset, we considered a subset of the most
frequent words or the whole French Wikipedia resource. For the IAM dataset
we considered the English Wikipedia (or a subset of it) or the original resources
that have served to build the IAM dataset (the Lob, Brown and Wellington
corpora).

Lexicon
type

ECR%
on

the test dataset

Lexicon
size (words)

Vocabulary
size (tokens)

50K,French Wikipedia 82.71 50000 29096
50K,French Wikipedia ,+

RIMES train 94.27 50000 29111

French
Wikipedia 87.29 182735 88959

French Wikipedia,+
RIMES train 96.66 185860 90519

French extended Wikipedia 93.91 702097 285985
French extended Wikipedia,+

RIMES train 97.70 704191 287056

TABLE 4.9: External resources lexicon properties on the RIMES
test dataset.

Regarding the RIMES dataset, table 4.9 above shows that low coverage
rates of the test dataset are achieved by considering only the external resource
for whatever configuration (whole Wikipedia or most frequent words of it). In
the best case, a 87% coverage rate is achieved but with a lexicon of more than
88K word tokens. Whereas a 82% coverage rate is achieved with a lexicon size
of 29K word tokens. The coverage rate of the test dataset is only increased
by 0.5% by considering together the RIMES training dataset and the most fre-
quent words of the French Wikipedia. By extending the Wikipedia corpora,
an equivalent coverage rate (93.91%) to the RIMES training dataset (93.7%) is
obtained at the expense of using a large lexicon of 286k word tokens which is
not manageable by the recognition system.

Regarding the IAM dataset, we can observe from table 4.10 above that, the
English Wikipedia achieves a 90% coverage rate of the IAM test dataset but
with a lexicon of more than 240, 000 words ! The LOB corpus achieves a better
ECR of 92% but with a lexicon of 90, 000 words, which shows that this resource
is more adapted to the IAM dataset, as was expected. Brown and Wellington
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Lexicon
type

ECR%
on

the test dataset

Lexicon
size (words)

Vocabulary
size (tokens)

50K,English Wikipedia 84.6 50000 29473
50K,English Wikipedia,+

IAM train 84.84 50000 31308

English
Wikipedia 91.85 240659 103943

English
Wikipedia,+

IAM train
92.19 242928 104871

English extended Wikipedia 95.76 994545 311712
LOB

corpus 99.33 98716 87777

LOB corpus including
IAM train only 92.7 95526 87501

Brown corpus,+
IAM train 90.1 102775 51196

Brown
corpus 89.35 100236 51165

Wellington corpus,+
IAM train 91.47 98254 49234

Wellington
corpus 91.08 95781 48122

50K,LOB+Brown+Wellington 91.12 50000 29697
LOB+Brown+Wellington 95.13 199521 87501

TABLE 4.10: External resources lexicon properties on the IAM
test dataset.

corpora achieve very similar ECR. Finally, by considering the most frequent
50, 000 words of both LOB, Brown, and Wellington corpora, a 91.12% ECR is
achieved but with a lexicon of 29, 697 word tokens only; whereas a ECR of
95% is obtained when considering the whole three corpora of 199, 521 words.
An equivalent hight coverage rate is obtained by using the English extended
Wikipedia corpora (95.76%) with a lexicon of 994, 545 words which is not man-
ageable by the recognition system. From these lexicon statistics, we see that
the two popular datasets exhibit different properties in terms of lexicon cover-
age of their test dataset by their training datasets. As the lexicon coverage rate
achieved by the language model is the upper bound of the WER of the recogni-
tion system, improving the coverage rate of the language model is one neces-
sity for improving the WER, whatever the performance of the optical model,
this is particularly necessary for the experimentations that will be conducted
on the IAM dataset. A first strategy is to increase the lexicon size, but this is at
the expense of having a large language model of relatively high order. A sec-
ond strategy is to introduce sub-lexicon units in the language model. Chapter
5 will address this issue.
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4.5.2 Language model training

All along this thesis we have conducted most of our experimentations by in-
tegrating n-gram statistical language models. However, some primary exper-
iments have been conducted by using Recurrent Neural Networks Language
Models. In this section, we give some details about training these two models
and their first evaluation.

A- N-gram language models

During this thesis, we implemented various n-gram language models with
different toolkits. We started our primary experiments by combining HMM
optical models with n-gram LM models. At this time the language models
were estimated by the constant discounting smoothing method with using
the SRILM toolkit (Stolcke, 2002). Later on, when introducing the BLSTM-
RNN optical model, we used modified Kneyser-Ney smoothing provided by
the MIT language modelling toolkit (Hsu, 2009) for training n-gram language
models. Modified Kneyser-Ney smoothing achieved similar or better perfor-
mance compared to other estimation methods. We favoured the use of MITLM
toolkit because it offers the ability to tune the model (Kneyser-Ney) parame-
ters using the Limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) op-
timization algorithm using the validation datasets which consequently mini-
mizes the language model perplexity.

As mentioned in the previous section, due to the presence of white spaces
and punctuation marks, high order n-gram language models are required to
capture long distance dependencies. Remember that a n-gram of order n will
in fact account for modelling word dependencies of order n/2. For example,
n = 10 (which at first sight may appear a rather long history in the sentence) ac-
counts for the last 4 words back in the past only. A value which is not that large
in the field of statistical NLP. For validating the necessity of having high order
n-gram language models for handwriting recognition, we evaluated the contri-
bution of various n-gram language models of increasing order to the recogni-
tion performance of the system. This was repeated for various optical models
(HMM and RNN) and using word n-gram language models. Language mod-
els have been estimated from the RIMES train and Wikipedia + RIMES train
training corpus. Table 4.11 below report the performance of two systems.

Training
datasets n-gram 2 3 4 5 6 7 8 9

RIMES
train

HMM 22.7 17 17 16.8 16.9 16.9 17 17
BLSTM 21.7 17.01 17.27 16.99 16.81 16.42 16.47 16.36

Wikipedia+
RIMES train

HMM 36 29.8 29.6 29.5 29.3 — — —
BLSTM 22.88 16.74 16.68 15.72 16.06 15.49 15.45 15.76

TABLE 4.11: Influence of word language model order on the
RIMES dataset, using a closed lexicon of RIMES train and
Wikipedia + RIMES train tokens, and for two optical model

(WER%).
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Best recognition performance of the HMM based recognition system are re-
ported when using 6-gram language models. Whereas the BLSTM-RNN recog-
nition system achieved its best performance with 9-gram language models of
words. These results show that high order n-gram language models (in the
range 6 to 10) are to be preferred to low orders. Of course, there are some well
known drawback of using high order models, the most important one being
the complexity of the model and number of parameters. What we can notice
here looking at these results is that parameter estimations using smoothing
techniques such as modified Kneyser-Ney are robust to the data sparsity prob-
lems that can be encountered on too small training datasets.

Nevertheless, there are several problems with using n-gram language mod-
els, the most important one being probably the problem of context (or topic)
coverage. In fact, like the notion of lexicon coverage (Effective Coverage Rate),
we can never guarantee that a n-gram language model trained on a certain
corpus will generalize well on a specific test corpus. As we will see in the next
chapters, the linguistic context coverage is not limited to the lexicon coverage,
we expect that using a language models trained on a certain resource will help
recognizing words of another resource. Having generalizable language mod-
els require the models to be trained on sufficiently general and large resources.
Another limitation of statistical n-gram LM is that they don’t introduce some
more elaborated syntactical or grammatical knowledge. For example, n-gram
don’t use any notion of word classes or categories. Finally, a compromise be-
tween the n-gram order, the recognition performance, and the computing ca-
pacity of the machine in terms of time and memory space is to be determined
for real applications. Such considerations have been mostly out of the scope
of this study as our systems have been implemented on machines with huge
memory capacity (256 GB).

B- Recurrent neural network language models (RNNLM)

The advantage of the connectionist language models such as RNNLM over
the n-gram language models is their capacity to model the language variable
length dependencies of words. The primary experiments that we conducted
was using RNNLM during a second decoding pass (see next section “decod-
ing” below) dedicated to rescoring the sentence recognition hypotheses. Due
to lack of time, the primary experiments were only conducted using charac-
ter language models. 5-gram and 10-gram character language models were
used in the first decoding pass to generate the possible recognition hypothe-
ses and their associated weights represented by a token-lattice. The RNNLM
effective parameter is the number of units in the hidden layer of the neural net-
work. Three RNNLM language models have been trained on the Wikipedia +
RIMES training datasets with 50,100 and 1000 units in the hidden layer re-
spectively. The system with RNNLM at the second decoding pass overcomes
the n-gram models, as can be seen in table 4.12. It must be noticed however
that these experimentations have been carried out using a three layers BLSTM
with HOG features, which later on demonstrated to perform lower than other
architectures. Therefore these results are only provided to attest the capacity
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of RNNLM on language modeling task. However, as reported in the literature,
we also observed that training RNNLM language models is time consuming,
and requires multiple trials for choosing the proper number of hidden units in
the network (Yousfi, Berrani, and Garcia, 2017). This is also the reason why we
did not continue our experimentations in this direction further.

1st pass
decoding

Character
RNNLM Character

n-gram LM50
units

100
units

1000
units

5-gram 28.64 25.27 22.28 25.96
10-gram 22.06 18.67 18.31 18.92

TABLE 4.12: performance of a second pass character RNNLM on
the RIMES dataset compared to a traditional n-gram LM.

4.5.3 Decoding

Decoding is the process of combining the optical model character hypothe-
ses together in order to build admissible character sequences (i.e. words /
tokens) that belongs to the working lexicon and that are the most likely with
respect to the language model. Through the decoding step, we aim to deter-
mine the most probable word sequence W given the observed optical feature
sequence O using the information produced by the optical model and the lan-
guage model. Decoding is the optimization process depicted by equation 4.1
introduced at the early beginning of this chapter. It can be solved using Dy-
namic Programming. The time synchronous beam search Viterbi algorithm is
the traditional decoding algorithm used for achieving speech and handwrit-
ing recognition tasks. Ideally, a search algorithm should consider all possi-
ble hypotheses based on a unified probabilistic framework that integrates all
knowledge sources (optical and linguistic knowledge) (Xu et al., 1996).

When the explored search space becomes unmanageable, due to the in-
creasing size of the vocabulary or the language models (high order), the search
might be infeasible to implement or too long run. Then the solution is to re-
strict the search space to a sub-set of hypotheses using what is called a beam.
During Viterbi decoding at every time step, search paths that are unlikely to
succeed (less probable than the best path by a factor δ) are removed from the
list of hypotheses; thus the name Time Synchronous Beam Search ( beam search
parameter used for limiting the search space and beamlattice parameter which
influences speed of the lattice extraction). But this pruning strategy alone can-
not cope with the complexity involved by managing high order language mod-
els. In practice, time Synchronous Beam Search is generally implemented us-
ing a limited history of two words at most (a 3-gram language model). This
constitutes a first decoding pass during which optical models, lexicon entries
and a low order language model are combined following equation 4.1. Out-
puts of the first pass decoding is a word lattice (token lattice in general) that
contains the N-best hypotheses as depicted on figure 4.16. A word-lattice (or
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token-lattice) consists of the possible interconnected recognition hypotheses
weighted by the optical models and language model’s weights. A second de-
coding pass analyses the hypotheses network (word-lattice) using a n-gram
language model of higher order, which allows re-weighting the hypotheses.
Alternatively, some RNN LM can be used during the second decoding pass.

FIGURE 4.16: Example of a word lattice produced by the N-best
time synchronous Viterbi beam search algorithm. Each word oc-

cupies an explicit time interval.

Two important parameters guide this first decoding pass: they are the lan-
guage model scaling parameter γ and the word insertion penalty parameter
β that controls the insertion of too frequent short words. These two param-
eters need to be optimized for optimum coupling of the optical model with
the language model, because these two models are estimated independently
from each other during training. Both the HMM based and the BLSTM-CTC
based recognition systems have been implemented using a two pass decoding
algorithm. In practice, multipass search strategy using progressive knowledge
sources can generate better results than a search algorithm forced to use less
powerful models due to computation and memory constraints (Xu et al., 1996).
We now give some details about optimizing the coupling parameters of the
first decoding pass, before giving some more information on the algorithmic
implementations.

A- Parameter optimization algorithm

The language model and optical model coupling parameters have a direct ef-
fect on the recognition performance. With the HMM optical models, HTK’s
decoding toolkit was used. The HTK decoding toolkit uses the token passing
paradigm to find the best path and / or multiple alternative paths. In the latter
case, it generates a lattice containing the multiple hypotheses which can if re-
quired be converted to an N-best list. For the token passing algorithm, a token
represents a partial path through the recognition network extending from the
time 0 through to the time t of decoding.

The word insertion penalty is a fixed value added to each token when it
transits from the end of one word to the start of the next. The language model
scale parameter is the amount by which the language model probability is
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scaled before being added to each token as it transits from the end of one word
to the start of the next (Young and Young, 1993). During the first pass de-
coding, the HTK decoding toolkit make use of the optical model and language
model coupling parameter in addition to the beam search parameter and build
a token-lattice according to the equation 4.1. Then, during the second pass de-
coding, the produced token-lattice is rescored by tuning the language model
scale parameter using the same language model used in the first decoding pass
or with using higher order n-gram language model.

The simplified way proposed in the Kaldi toolkit for optimizing the cou-
pling of the two models is to introduce one single coupling parameter defined
by equation 4.8 below, in which the optical-scale parameter α stands for the in-
verse of the language model scale parameter γ; thus we can writer α = 1/γ.
By comparing equation 4.1 and 4.8. we can see that optimizing the inser-
tion penalty parameter is not possible in the standard first pass decoding with
Kaldi.

Ŵ = argmax
w

P (S|W )αP (W ) (4.8)

Thus, we developed our own optimization algorithm 1 within the Kaldi
framework aiming to optimize the language model parameter and the word
insertion penalty parameter during the second decoding pass as was possible
with the HTK toolkit (during the first decoding pass). The parameter optimiza-

Input: validation set examples, n-gram language models FSTs
Output: best language model order, best language model scale, best word insertion penalty
γ ← the best language model scale parameter;
β ← the best word insertion penalty parameter;
n− gram← the best n-gram language model initγ ← initial language model scale used for token-lattice

generation = 0.1 ;
beam← the beam search parameter used for limiting the search space = 16.0;
beamlattice← the beam used for reducing the token-lattice size = 10 ;
WIP ← a set of word insertion penalty values [-2,2] with a step value of 0.5 ;
/* token-lattice generation through 1st pass decoding */
forall n-gram models do

forall WIP do
forall validation set examples do

* Building a world lattice by decoding the validation set examples using the initial parameters
and the n-gram language model;

* Add insertion penalty value WIP to the generated token-lattice;
* Store penalized token-lattice at each value of WIP

end
end

end
/* token-lattice rescoring during 2nd pass decoding */
LMS ← a set of language model scales [0.1, 0.6] with a step value of 0.01 forall Penalized token-lattices do

forall LMS do
* Rescoring the token-lattice with the language model scale LMS. * Decoding the tokenl-attice

returning the best bath as the recognized text line. * Computing the word error rate WER over all
the validation set and getting the WER scores as a results.

end
end
/* Best parameter setting of n-gram language model, language model scale and

word insertion penalty */
γ, β, n− gram←min(of all WER scores) ; /* retrieving the best WER score which indicates
to the best parameters */

return γ, β, n− gram;

Algorithm 1: Coupling parameters optimization algorithm introduced in the
Kaldi toolkit.

tion algorithm is applied on the validation set and once the optimum values
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of the coupling parameter have been determined, we carry out the decoding
algorithm on the test dataset with using the optimum values of the coupling
parameters.

B- Decoding configurations / implementations

For the HMM based recognition system and during the first pass, we used a
bigram language model to produce a token-lattice using the initial optical and
language models parameters in addition to an important beam search parame-
ter to limit the space of search within a reasonable limits of decoding time with
regards to the recognition accuracy. In the second decoding pass, we re-scored
the generated word-lattice using a 6-gram language model of words, syllables
or characters according to the decoding scenario. HTK HVite decoding tool
was used for the first decoding pass and the word-lattice scoring was achieved
using lattice-score tool from SRILM during the second decoding pass.

First the character hypotheses are arranged in a lexical tree where the first
character of a word corresponds to the root of the lexical tree and the last one
corresponds to the leaf, this representation has the advantage to be compact
by sharing the common prefixes of the whole lexicon on a single branch of the
tree. One other advantage is that lexicon trees can be efficiently encoded using
a Finite State Transducer (FST).

We designed the BLSTM-RNN based recognition system, through the use
of Weighted Finite State Transducers (WFST) automaton of Kaldi toolkit. These
methods are recently applied in continuous handwriting recognition (Bluche,
Ney, and Kermorvant, 2014). By definition, a finite state transducer is a finite
automaton whose transiting states are labelled with a couple of input and out-
put symbols. A weighted finite state transducer adds a weight to each transi-
tion i.e. to each pair of input and output symbols. Weights represent probabili-
ties, penalties or any other quantitative values that accumulates over the trans-
ducer paths in order to compute the overall weight (cost) of mapping the input
symbol string to the output symbol string. Thus, a path through the transducer
encodes the matching between an input symbol sequence or string and an out-
put symbol sequence or string. The reader can refer to (Mohri, Pereira, and
Riley, 2008) for more details about the weighted finite state transducer theory
and algorithms.

By using the general framework of WFST it is possible to design a spe-
cific transducer for each component of the system : an optical model trans-
ducer, a lexicon transducer and finally a language model transducer. Then
it becomes easy to combine these three components into a single WFST that
will guide the first pass decoding. EESEN speech recognition implementation
(Miao, Gowayyed, and Metze, 2015) uses Kaldi’s toolkit (Povey et al., 2011)
and highly-optimized FST libraries such as OpenFST (Allauzen et al., 2007).
The WFST decoding stage considers the CTC labels, lexicons and language
models as separate weighted finite state transducers denoted by T , L and G
respectively. After compiling the three WFST individually, they are composed
gradually into a global compact search graph S by using two special WFST
operations known by Weighted determinization and minimization algorithms



4.5. Language models and lexicons 107

that optimize their time and space requirements. For more details about the de-
terminization and minimization algorithms one can return to (Mohri, Pereira,
and Riley, 2002). The overall order of the search graph generation FST opera-
tions is given by:

S = T ◦min(det(L ◦G)) (4.9)

where ◦, det and min denote composition, determinization and minimization
respectively.

Optical model transducer T : The first WFST component maps a sequence
of frame labels to a single character unit. The character WFST is designed to
subsume all the possible label sequences at the frame level that correspond to a
character. Therefore, this WFST allows occurrences of the blank label φ, as well
as any repetition of one specific character non-blank labels. For example, after
processing 5 frames, the RNN model may generate 3 possible label sequences
“AAAAA”, “φ φ A A φ”. The token WFST maps all these 3 sequences into a
singleton character unit “A”. We denote the token WFST by T .

FIGURE 4.17: An example of the token WFST which depicts
the phoneme "A". We allow the occurrences of the blank label

"<blank>" and the repetitions of the non-blank label "IH"

Lexicon transducerL: A lexicon WFST encodes the mapping from sequences
of character units to lexicon units. The input string is composed of characters,
while the output is a lexicon token with the necessary epsilon (nul output to-
ken). The lexicon WFST is denoted as L. Figure. 4.18 illustrates the structure.

FIGURE 4.18: The WFST for the lexicon entry "is i s". The "<eps>"
symbol means no inputs are consumed or no outputs are emitted.

Language model transducer G: A language model WFST encodes the per-
missible word sequences in a language/domain. The WFST shown in Figure.
4.19 represents a trivial language model which accepts two sentences "how are
you" and "how is it". The WFST input symbols are the word tokens, and the
outputs are the words with the arc weights are the language model probabil-
ities. With this WFST representation, CTC decoding in principle can leverage
any language models that can be converted into WFSTs.

During the decoding process higher order language models are used for
maintaining long distance dependency. For that, one need to take into account
the token dependency between the first token of a text line and its history of to-
ken defined by the last few tokens located in the previous text line. Therefore,
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FIGURE 4.19: A trivial example of the grammar (language model)
WFST. The arc weights are the probability of emitting the next
word when given the previous word. The node 0 is the start node,
and the double-circled node is the end node (Miao, Gowayyed,

and Metze, 2015)

FIGURE 4.20: Line by line versus paragraph by paragraph decod-
ing effect on the recognition performance in WER

we decided to adapt our decoding algorithms of the two system to decode
paragraph by paragraph rather than the traditional way of line by line de-
coding. Figure 4.20 shows that we gain around 2% of recognition performance
enhancement when using the paragraph by paragraph decoding strategy com-
pared with the recognition performance obtained by the line by line decoding
strategy. The primary recognition results illustrated in figure 4.20 was obtained
on RIMES test dataset by using the BLSTM-RNN based system with HoG fea-
tures and language models of words of order 2-gram upto 7-gram trained on
Wikepedia + RIMES training dataset.

4.5.4 Primary recognition results

The conventional language models of words are evaluated and primary results
is obtained by the handwriting recognition system making use of the HoG fea-
tures. With the HMM models we built a handwriting recognition system pro-
totype and studied the relation between the lexicons size and the OOV rate and
the consequence of the OOV rate on the recognition performance measured by
the Word Error Rate (WER%).

Figure 4.21 shows the performance achieved on the RIMES and IAM dataset
by HMM optical model, and using different lexicons. Notice that a 100% cover-
age rate is achieved with the RIMES/IAM dataset as the language model was
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(a.)

(b.)

FIGURE 4.21: Primary recognition results with HMM optical
models and language models of words; a. RIMES and French
wikipedia 6-gram LMs and lexicons tested on RIMES test dataset,
b. IAM and English Wikipedia 6-grams LMs and lexicons tested

on IAM test datasets

trained using both training and test datasets. The other experiments have been
conducted with the French Wikipedia corpora for training a set of language
models of words for which a set of lexicons (wiki 60k down to wiki 3k word)
was selected. The OOV rates reported on the RIMES test dataset increase pro-
portional to the the lexicon size and the same phenomena is observed on the
WER. This highlight the correlation between the lexicon size and the WER for
the closed vocabulary systems.

The same phenomena was observed on the IAM and English Wikepedia
language models of word tokens which are illustrated in the right side of fig-
ure 4.21. With the BLSTM-RNN based recognition system, we wanted to figure
out the relationship between the effective coverage rate, OOV rate, lexicon size
and the recognition performance in WER. The idea is to evaluate the recogni-
tion performance with language models of word tokens that are trained on the
whole RIMES/IAM corpora (training, validation and test) with lexicons which
cover effectively the test data set by 100%, 95%, 90%, 85%, 80% (ECR). The lexi-
con was arbitrary selected from the whole RIMES/IAM corpora to attend the
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a.

b.

FIGURE 4.22: Primary recognition results with BLSTM optical
models and language models of words; a. RIMES 9-gram LMs
and lexicons whose ECR rates are decreasing from 100% to 80%,
b. IAM 9-gram LMs and lexicons whose ECR rates are decreasing

from 100% to 80%

specified ECR rate. Recalling the definitions discussed in chapter 3, one have
to remember that the ECR rates are calculated at the word level (standing on
the definition of a word as a sequence of character sided by two white spaces)
and the OOV rates are calculated at token level which define the language
model building blocks.

Looking at figure 4.22 which illustrate the result obtained by the BLSTM
based recognition system on the RIMES and IAM test datasets, the extreme left
points of result of curve (a) and (b) which shows the recognition performance
with the ideal language model of word tokens which has no OOV% (100%
ECR). These results illustrate the behaviour of the ideal language models of
word tokens. By comparing the recognition performance of the HMM based
and the BLSTM based recognition systems on the RIMES and IAM test dataset
with the ideal language models of word tokens, the BLSTM based recognition
systems outperforms the HMM base ones by 15.86% and 23.24% WER respec-
tively. The next results on the right side of the ideal results of figure 4.22 illus-
trate the proportional relationship between the ECR rate, OOV rate, WER and
the lexicon size. While the ECR is decreasing, the OOV increase and the WER
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increase proportionally.
From these primary results, one can conclude that the recognition perfor-

mance (in WER) with the conventional language model of word tokens is af-
fected proportionally with the OOV rates. The OOV rates decrease by increas-
ing the lexicon size. However, this increases the recognition system complex-
ity and some times becomes unmanageable. Therefore, it is required to find
a compromise between the language model vocabulary size and the coverage
rate on the target dataset by that vocabulary. Our main contribution in this the-
ses is to introduce the use of the language models of sub-lexical units in place
of the conventional language model of words. The sub-lexical units represent
the intermediate modelling units used for language modelling by which one
can realize the intended compromise.

4.6 Conclusion

We introduced in this chapter the description of the main processing chain of
our recognition systems which are based on HMM and BLSTM-RNN models.
The main processing chain consists of the text line extraction, feature selection
and extraction, optical models, language models and decoding process. The
two systems differ from each other by their optical models types (HMM or
BLSTM-RNN).

The two recognition systems (optical and language models) were trained
and evaluated on the French RIMES and the English IAM datasets. Different
large and external databases was used for training French and English lan-
guage models with different lexicons size.

For the text line extraction process, we presented an iterative steerable fil-
ters based method. For the optical models training, we observed the recogn-
tion performance enhancement due to using the BLSTM-RNN optical models
in comparison to weak performance of the HMM optical models. The linguis-
tic knowledge representation was persented in form of lexicons and language
models of tokens (words, syllables, multigrams and characters). We defines
the effective coverage rate and the out-of-vocabulary rates measures to evalu-
ate the lexicons and language models capacity to cover the test datasets.

By experiments, it was evident that the recognition performance increased
by 1% approximately when using the language model that trained on the cor-
pus of text which include in addition to its text lines, one long text line that
represents the concatenation of whole corpus text lines. This can be explained
by the ability of the language model to capture long distance token dependen-
cies through the long concatenation text line. In the same context, the para-
graph by paragraph decoding strategy improves the recognition performance
by 2% approximately in comparison with the line by line decoding strategy.
Two language modelling methods are examined, n-gram modelling approach
for general use in all our experiments and RNN language modelling approach
in a special case of character based recognition system.
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Chapter 5

Handwriting recognition using
sub-lexical units

5.1 Introduction

The significant progress observed these last years in the speech and handwrit-
ing recognition field came from the advancement of deep learning techniques
and recurrent neural networks. But some open issues still remain which are
more oriented towards a better modelling of lexicons and languages. Whereas
the role of language models has been intensively studied in speech process-
ing, very few studies have been devoted to Handwriting recognition. More-
over, whereas speech and handwriting share the same properties in terms of
lexicons and languages, they exhibit very different low level properties when
looking at the phonetic structure of speech on the one hand, and the graphemic
structure of text on the other hand. Indeed, there is a discrepancy between the
way of coding a text and the way of coding its oral pronunciation depending
on the nature of the language. In chapter 3, we have shown the very differences
between oral languages and written languages regarding their primary units
(characters versus phonemes) and sub-lexical units (phonetic syllables versus
graphemic syllables). The speech recognition literature includes many studies
where sub-lexical units have been successfully introduced as a mean to cope
with Out Of Vocabulary (OOV) words. In comparison, to our knowledge, such
a strategy has not been studied in the field of handwriting recognition. We can
highlight the very few studies devoted to handwritten Arabic text recognition
using PAW sub-lexical units (BenZeghiba, Louradour, and Kermorvant, 2015)
or handwritten German text recognition, because German language allows the
composition of words with some smaller words in a way similar to agglutina-
tive languages (although German does not belong to agglutinative languages).
Thus, German lexicons should be of very large size in order to get high Effec-
tive Coverage Rates (ECR). Similar properties are observed for Italian language
as well.

Introducing sub-lexical units in a handwriting recognition system appears
an interesting, even necessary, strategy to overcome the problem of OOV. In
this chapter we investigate the use of sub-lexical units such as syllables and
multigrams for handwriting recognition. The experiments are conducted on
the French RIMES dataset, and on the English IAM dataset. A first necessary
step towards this goal is the design of some automatic lexicon decomposition
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algorithms able to provide the desired sub-lexical units. We propose two de-
composition algorithms. The first one is a supervised syllabification method
that exploits a linguistic datasets of word decomposition into syllables made
by experts to propose a decomposition into syllables for any given word using
a similarity measures. This method has the drawback of being dependent of
linguistic expertise which is available for very few languages and which does
not cover all language vocabularies. The idea of the second decomposition
method consists of using a Hidden Semi-Markovian Model (HSMM) which
learns the regularities of character sequences called multigrams from a lexicon
of words. N-multigram sub-lexical units (character sequences of at most N
characters) are finally using the Viterbi algorithm which provides the optimal
segmentation of the words of the training lexicon. The first approach has been
presented in (Swaileh and Paquet, 2016c, Swaileh, Lerouge, and Paquet, 2016)
while the second one will be presented in (Swaileh et al., 2017). This chapter
is organized as follows. Section 5.2 presents a supervised sub-lexical decom-
position approache into syllable, and section 5.3 is dedicated to unsupervised
decomposition into multigrams. In section 5.4 we present the experimental
results obtained using sub-lexical units for the recognition of French and En-
glish Handwritten texts. These models compare favorably against the stan-
dard word lexicon based approaches and the lexicon free approaches made of
character n-gram language models.

5.2 A supervised word decomposition methods into
syllables

The word decomposition into sub-lexical units (syllables or multigrams) is ex-
pressed in the literature by the syllabification process. Usually, the phonetic
syllables generation relies on linguistic and phonetic rules which form the ba-
sis of the orthographic syllables. The orthographic syllables can be obtained
from a database of syllables designed by language experts such as the French
Lexique3 database (New et al., 2004) and The Free English language Hyphen-
ation dictionary (EHD) (Hindson, 2016). The Lexique3 database provides the
orthographic syllabic decomposition of a lexicon of almost 142, 695 French
words into 9, 522 syllables only. It therefore constitutes a linguistic knowledge
base from which our French syllabic model is developed. The free English
language Hyphenation Dictionary contains 166, 280 words decomposed into
21, 991 syllables. Some examples of these two resources are provided on table
5.1.

However, despite their relatively large size, it quickly becomes out that
these linguistic resources by far do not cover the French or English vocabular-
ies. For example, Lexique3 covers only 69.83% of RIMES vocabulary. Similarly
EDH covers only 54.42% of the IAM vocabulary (see left side of figure 6.2).
Right side of figure 6.2 shows the effective coverage rate (ECR) of Lexique3
and of EHD on RIMES and IAM datasets respectively, when using the syllabic
decomposition. Although insufficient, we can see the increased coverage when
using a syllabic decomposition of the RIMES or IAM data set. Therefore, we
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Words Syllables

Lexique3
examples

connaître con naî tre
adhésion ad hé sion

norvégiennes nor vé gien nes
English

Hyphenation
Dectionary

abandonment a ban don ment
abiotrophy ab i ot ro phy

zymosthenic zy mos then ic

TABLE 5.1: Some examples of the Lexique3 and the English Hy-
phenation Dictionary.

have to find a general way for generating a syllabic decomposition of any cor-
pus and learning a syllable based language models on it. For this purpose, we
developed an automatic syllabification method (Swaileh and Paquet, 2016b)
and its source code is open source1.

FIGURE 5.1: ECR (%) of Lexique3 on RIMES (blue) and EHD on
IAM (red), for words (left) and syllables (right) decomposition.

The syllabification method exploits the lexical and phonetic similarities be-
tween the target word (to be decomposed into syllables) and the syllabified
words that belong to the dictionary. The method that we propose is based on
matching similar lexical and phonetic structures in order to provide a syllabic
decomposition of any unknown word. Let us assume a word lexicon L, the
nth word entry being represented by its sequence of characters mn associated
with its syllabic decomposition denoted sn, namely its sequence of syllables.
Formally we can write L = {(m1, s1), (m2, s2), . . . , (mn, sn), . . . , (ml, sl)}. For
any unknown word (not in L) represented by its character string m, we wish
to determine its syllable representation s. The first idea is to search for the clos-
est word mn in the dictionary. But two very similar words may have different
syllabic decomposition, especially if they differ by a vowel, which often marks
the presence of a syllable. To take this information into account, we introduce
an syllabic structure that represents the word by its consonants and vowels
string. For example, the word ”Bonjour” is encoded by its syllabic structure

1http://swaileh.github.io/Syllabifier
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ss = ”CV CCV V C”. Then we can define a similarity measure by combining
both representations according to equation 5.1, where Slex and Ssyl are respec-
tively two similarity measures on the lexical and the syllabic representations:

SG
(
(m, ss), (mi, ssi)

)
=
Slex(m,mi) + Ssyl(ss, ssi)

2
(5.1)

Table 5.2 shows an illustration for the similarity measures obtained on one
example. The similarity score between sequences of characters counts the av-
erage number of identical character pairs at the same positions between the
two sequences. When sequences have different size, the shorter one is com-
pleted by space characters, so the two sequences have an identical size. By this
way, we make the segmentation into syllables based on the prefix of the dic-
tionary word, possible errors may occur at word’s suffix that may be different
due to of the completion of the words by spaces. When the lexicon entry that is
most similar to the unknown word gets a similarity score exceeding a thresh-
old T , its syllabic representation serves as a model to decompose the unknown
word. The segmentation into syllables of the unknown word is made at the
same positions as in the model.

Lexical similarity Slex = 5/8
Query word b o n j o u r -
Nearest lexicon entry t o u j o u r s

- o - j o u r -
Syllabic similarity Ssyl = 6/8

Query word C V C C V V C -
Nearest lexicon entry C V V C V V C C

C V - C V V C -
Syllable decomposition

Query word b o n j o u r
Nearest lexicon entry t o u j o u r s

TABLE 5.2: Syllabification example on the query word ıbonjour

When the similarity score is below the threshold T , the decomposition into
characters is chosen as the syllabic decomposition by default. Reasonable val-
ues of T can be chosen between [0.5, 1]. Between these two extreme values,
the choice of an optimal value is crucial because when T = 1 the algorithm
systematically will divide the unknown word into characters, which is not the
goal. Conversely, when T = 0.5, the algorithm will systematically propose a
syllabification even if the word query has a structure different from the closest
word belonging to the lexicon. In this case there is a big chance to produce
an erroneous syllabification. Such an example is the entity names which does
not belong to the French or English spoken language. This margin of syllab-
ification by mistake must be quantified by an linguist expert. It is therefore
necessary to optimize the value of T to find the one that minimizes both the
number of words decomposed into characters and the number of erroneous
syllabification. A first possibility would be to optimize T by cross-validation
A second approach consists in optimizing T with respect to the performance
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of the recognition system. Figure 5.2 shows the evolution of the Word Error
Rate of the recognition system on the two RIMES and IAM datasets. We no-
tice a rather similar behaviour of the two systems with a turning point at cer-
tain value of T beyond which the recognition system loses its lexicon coverage
power and simultaneously achieves lower recognition performance.

FIGURE 5.2: WER (%) as a function of T on the RIMES dataset
(blue) and the IAM dataset (red), for an HMM based recognition

system with HoG features

We chose T = 0.6 for the RIMES dataset, and T = 0.7 for the IAM dataset.
In this situation only 0.25% of the words in the RIMES dataset are not syllabi-
fied. A close look at these errors shows that they correspond to out of French
vocabulary words, as for example the sequence ”SXNHBOO”. The same phe-
nomenon is observed on the IAM dataset, for example the word ”Lollobrigida”
is broken down into characters. by setting T = 0.7, only 0.37% of the words in
the IAM dataset are not syllabified, and decomposed into characters by error.
A complementary analysis of the supervised syllabification method is illus-
trated in figure 5.3 and figure 5.4. They represent the histograms of the num-
ber of words decomposed into n syllables for the RIMES and IAM lexicons, as
a function of the threshold T . It can be noted that the majority of words are
decomposed into 5 syllables at most on the RIMES dataset when T = 0.6. It
is also noted that, beyond 0.6, the number of words abnormally decomposed
into a large number of syllables increases, because the method favors the de-
composition of words into characters beyond this threshold value. The same
observations can be made on the IAM dataset from T = 0.7 (figure 5.5).

5.3 An unsupervised word decomposition into multi-
grams

During chapter 3 we have seen that multigrams are variable length sequences
of elementary units that compose an observation stream, as opposed to fixed
length n-gram (Deligne and Bimbot, 1995). They have been introduced first for
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FIGURE 5.3: Number of words of the RIMES vocabulary decom-
posed into n syllables as a function of T.

language modelling of phrases, but later the same authors have studied their
possible introduction as sub-lexical units for language modelling and speech
recognition (Deligne and Bimbot, 1997). If one consider the character to be
the primary units of a written language, then multigrams allow representing
words as the concatenation of variable length sequences of characters. To our
knowledge this study is the first application of multigram models to handwrit-
ing recognition. In the original paper the authors have proposed an unsuper-
vised training approach based on variable length Hidden Markov Models. In
the next paragraphs, based on Hidden semi Markov Models, we introduce the
formal definitions underlying the multigram paradigm.

5.3.1 Hidden Semi-Markov Model General definition

Formally, Hidden Semi-Markov Models (HSMM) are considered as one exten-
sion of the traditional Hidden Markov Models (HMM) where the duration of
each state is explicitly defined. Thus each state in the HSMM model can gener-
ate an observation sequence of duration d. Assuming a discrete-time Markov
model with a set of M Hidden states S = {s1, s2, . . . , sM}, a state sequence
of length T is denoted Q1:T = Q1 Q2 . . . Qt . . . QT , in which Qt is the state at
time t. Q[t1, t2] = sm accounts for state sm starting at time t1 and ending at
time t2 with a duration d = t2 − t1 + 1. Let O1:T = O1 O2 . . . Ot . . . OT de-
notes the observation sequence of length T in which Ot is the observation at
time t. The underlying unobservable (Hidden) state sequence that can gener-
ate the observation sequence O1:T can be any state segmentation path writing
Q[1:d1]Q[d1+1:d1+d2] . . . Q[d1+...+dn+1:T ] with

∑
l dl = T .

One generally assumes that hidden state sequences with their respective
duration are generated by a first order Markov source (Yu, 2010). Then the
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FIGURE 5.4: Number of words of the IAM vocabulary decom-
posed into n syllables as a function of T.

transition probability from one state to another writes:

a(i,d)(j,d′) = P (Q[t−d′+1,t] = j|Q[t−d′−d+1,t−d′] = i) (5.2)

with the following two properties :∑
j 6=i

∑
d′

a(i,d)(j,d′) = 1 (5.3)

a(i,d)(i,d′) = 0 (5.4)

From this definition, we can see that state and duration are dependent on
the previous state and duration. Then, beeing in state i with duration d, the
model generates the observation sequence O[t−d+1,t] with the following emis-
sion probability, assuming time independence of the observations:

b(i,d) = P (O[t−d+1,t]|Q[t−d+1,t] = i) (5.5)

The definition of the initial state distribution which represents the proba-
bility of the initial state and its duration writes:

π(j,d) = P (Q[1:d] = j) (5.6)

Hidden semi Markov Models are sometimes named segmental models, as
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the model explicitly accounts for state duration, thus it accounts for the seg-
mentation of the observation stream into consecutive segments of variable du-
ration (or variable length). Figure 5.5 illustrates the general structure of the un-
derlying segmentation of the observation sequence by a HSMM. Looking for

FIGURE 5.5: General structure of a Hidden semi-Markov model.

the best segmentation of the observation stream is achieved through a Viterbi
decoding process that search for the state sequence Q∗ that produces the high-
est data likelihood.

5.3.2 Generating multigrams with HSMM

In the literature (Deligne and Bimbot, 1995), multigrams have been first in-
troduced using a generative memoryless source emitting variable length se-
quences of symbols or words. The memoryless source hypothesis is equivalent
to assuming a zero order Markov source, while variable length observations
typically fall into the Hidden Semi Markov paradigm. With these hypotheses,
the data likelihood with respect to the model can be expressed by the following
equation:

P (O,Q) =
n∏
l=1

P (O[t−dl+1,t]|Q[t−dl+1,t])P (Q[t−dl+1,t])

where dl is the duration of multigram l in the sequence, and Ql stands for the
state of the hidden underlying segmentation process.

A multigram being a specific sequence of characters of length d, modelling
the segmentation of a character string into multigrams can be accomplished by
introducing hidden states, each one accounting for the emission of sub units
of length d. In other words, each state of the model sm is responsible for gen-
erating every multigram of length m. Such segmental model induces a 0/1
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duration probability of the hidden states i.e. P (Q[t−dl+1,t] = sm) = δ(m, dl). As
a consequence the model also simplifies since the equality s(m) = d holds for
every value of d, which lead to the following equations:

P (O,Q) =
∏
l

P (O[t−dl+1,t]|Q[t−dl+1,t])δ(length(sl), dl)

which finally writes:

P (O,Q) =
∏
l

P (O[t−dl+1,t]|dl) (5.7)

We see that variable length sequences of characters (multigram) can be rep-
resented by a zero order Hidden Discrete Semi Markov Source, with as much
hidden states as the maximum duration of a multigram considered. Training a
HSMM from textual data will allow to optimize a generative model to produce
the observed sequences of character according to their underlying multigram
structure, thus allowing to get an optimal multigram sublexical representation
of words, as we will see in the next paragraph.

5.3.3 Learning multigrams from data

The estimation of the HSMM parameters would normally require knowing
the segmentation of the observed character strings into their multigram de-
composition. Unfortunately this is exactly what we expect to determine from
the observation of the raw textual data. Therefore learning multigrams from
data has to be performed considering segmentation is missing. This problem
has received much attention in the literature and has been solved in an ele-
gant manner by the Expectation Maximization (EM) algorithm (Deligne and
Bimbot, 1997). This algorithm iterates the expectation step (E) during which
statistics about the missing data are gathered, followed by the Maximization
step (M) that estimates the parameters of the model according to the likeli-
hood maximization principle. In a way which is very similar to the estimation
of HMM parameters, the following Forward and Backward variables are first
computed using the current model parameters λ following the above defini-
tion:

αt(j, d) = αt(d)
∆
= P (Q[t−d+1:t] = d,O[1:t]|λ)

βt(j, d) = βt(d)
∆
= P (O[t+1:T ]|Q[t−d+1:t] = d, λ)

Assuming the zero order hypothesis the state transition probabilities can be
ignored, and the following recurrences hold and allow efficient computation
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of the two variables.

αt(d) =
∑
d′

αt−d(d
′)bd(O[t−d+1:t]) (5.8)

βt(d) =
∑
d′

bd′(O[t+1:t+d′])βt+d′(d
′) (5.9)

Once the Forward and Backward variables are determined, the following
statistics are computed as follows:

ηt(d)
∆
= P (Q[t−d+1:t] = d,O[1:T ]|λ) = αt(d)βt(d) (5.10)

ξt(d
′, d)

∆
= P (Qt = d′, Qt+1 = d,O1:T |λ)

ξt(d
′, d) = αt(d

′)bd(O[t+1:t+d])βt+d(d) (5.11)

γt(d)
∆
= P (Qt = d,O1:T |λ) =

∑
t

ητ (d)

P (O1:T ) =
∑
d

ηt(d) =
∑
d

αT (d) (5.12)

From these statistics, a new multigram HSMM model λ can be estimated
during the maximization step using the following formulas which are the spe-
cial multigram case of the general form of HSMM reestimation formulas Yu,
2010:

The initial transition probabilities estimation is:

π̂d =
ηd(d)∑
j ηj(j)

d = 1 . . . dmax (5.13)

The observation probabilities estimation is:

b̂d(vd,j) =

∑
t ηt(d)δ(O[t:t+d−1], vd,j)∑
t,i ηt(d)δ(O[t:t+d−1], vd,i)

(5.14)

where vd,j is the jth multigram of length d.
Finally, the global EM training algorithm of the model is depicted as follows

considering one single observation sequence:

• Start with an initial model λ̂ = λ0

• E step : Compute the auxiliary variables αt(d), βt(d), ηt(j, d) and ξt(i, j)

• M step : Estimate the new model λ̂ = {π̂d, b̂d(vd,j)}

• goto step E while P (O1:T ) increases

Training a HSMM with the EM algorithm does not require any segmenta-
tion information of the input stream into multigrams as the algorithm takes
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account every segmentation path in the Forward Backward variables. The al-
gorithm produces the optimal model λ̂ considering any possible sequence of
character (multigram) up to the length dmax. However, a certain amount of
these multigrams have very low probability, while some others do not occur
in the training data. The final step in training multigrams is to select the set of
the most important ones. This is done by introducing a segmentation criteria
so as to select the multigrams that take part in a segmentation path when seg-
menting the training data. We look for the most probable segmentation path
Q∗ for each training sample defined by:

Q∗ = argmax
Q

P (O1:T , Q1:T ) (5.15)

This problem is solved with the well known Viterbi algorithm by introducing
the partial optimal path up to time twith the probability δt(d) = P (O[1:t], Q[1:t]).
Since this quantity is monotonously decreasing, the following recursion holds:

δt(d) = max
d′

δt−d(d
′)b(O[t−d+1:t]) (5.16)

The best path is stored using the auxiliary variable ϕt(d) according to the fol-
lowing equation:

ϕt(d) = argmax
d′

δt−d(d
′)b(O[t−d+1:t]) (5.17)

By repeating this optimal segmentation procedure for each training sam-
ple we can detect the most frequent and necessary multigrams that serve in
the optimal decomposition of the training corpus. However, doing so, each
multigram contributes with a weight proportional to its likelihood b(O[t˘d+1:t)
to the score of the path, which tends to favour short multigrams and penalize
longer ones that have relatively lower likelihood, as the number of potential
multigrams increases exponentially with their length d. To remedy this phe-
nomenon we introduce a penalizing factor so as to favor multigram paths with
Minimum Description Length (MDL) over longer descriptions. This penaliz-
ing factor was chosen to be the inverse multigram length exponent, so as to
balance the exponential decay of multigram likelihood. Finally the optimal
decoding of multigrams obey the following equation:

δt(d) = max
d′

δt−d(d
′)b(O[t−d+1:t])

1/d (5.18)

Table 5.3 shows different examples of word decompositions for French and
English words using the supervised syllabification method which produce the
syllables in comparison with the multigram generation method which pro-
duce multigrams of two to five different orders. The order of the multigrame
indicates the maximum number of the characters in a multigram denoted by
2-multigram for the second order multigram and so on for 3-mulitgram, 4-
multigram and 5-multigram.

Table 5.4 shows the size of the lexicons for each type of sub-lexical unit, and
allows comparison with the word lexicon size.
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words syllables 2-multigram 3-multigram 4-multigram 5-multigram

FR
Merci Mer ci Me r ci Mer ci Merci Merci

indiqué in di qué in di qu é ind iqu é ind iqué ind iqué
Gambetta Gam bet ta Ga mb et ta Ga mb ett a Gamb etta Gam betta

EN
darling dar ling d ar li ng dar l ing dar ling dar ling

Incredible in cre di ble in cr ed ib le in cre di ble in cred ible in credi ble
Geoffrey Geof frey Ge of fr ey Ge off rey Geof frey Geo ffrey

TABLE 5.3: Syllabification results for French and English words
using the supervised syllabification method and the multigram

generation method

words syllables 2-multigram 3-multigram 4-multigram 5-multigram
RIMES
training 5.5k 2.9k 1.1k 3k 4.4k 5.2k

IAM
training 7.4k 4.6k 0.8k 2.9k 5.6k 6.9k

TABLE 5.4: Statistics of the various sub-lexical decompositions of
the RIMES and IMA vocabularies.

As a conclusion, in this section we have proposed two approach dedicated
to decompose a given lexicon into sub-lexical units. The supervised approach
relies on the linguistic expertise to decompose words into their syllabic rep-
resentation, it requires having such expertise beforehand for each language.
Multigram sub-lexical units have the advantage that they are determined with-
out the need for external expertise, by using a data driven optimization train-
ing algorithm only. The impact of these two approaches on a recognition sys-
tem will be examined in the next section.

5.4 Recognition systems evaluation

In this section, experimental results are presented with the BLSTM-RNN op-
tical model. This choice was made by considering the significant difference
between the HMM based optical model and the BLSTM-RNN. From these ob-
servations is was clear that only the experimentations made using the RNN
optical model can be compared to the state of the art reported in the litera-
ture. In the following sections, we report on the performance of the system
obtained using sub-lexical units, and compare them with closed vocabulary
systems made of word language models. Additionally, we also had a look at
the performance of character language model.

5.4.1 Experimental protocol

The BLSTM-CTC system was evaluated on the French RIMES and the En-
glish IAM datasets with small and large vocabulary language models of multi-
grams, and with using closed and open vocabulary configurations. We com-
pare multigrams models with language models of words or characters. All
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recognition tasks were achieved on paragraph level to include more context in
the language model as demonstrated in chapter figure 4.20.

A- Handwritten datasets

From the RIMES dataset, we randomly selected 1, 333 text lines from 882 para-
graphs of the training set for the system validation. the RIMES dataset training,
validation and test partitions are illustrated in table 5.5.

Database Set #Pages #Lines #of vocabulary
words

RIMES
Train 1350 9947 8.11k
Valid 150 1333 2.35k
Test 100 778 5.6k

TABLE 5.5: RIMES dataset partitions

The IAM dataset (Marti and Bunke, 2002) has been used by different re-
searchers with different setup. For our experiments we used the same subsets
as in (Bluche, 2015) and table 5.6 which is composed of a training set of 6, 482
lines, a validation set of 976 line, and a test set of 2, 915 lines.

Database Set #Pages #Lines #of vocabulary
words

IAM
Train 747 6,482 9.95k
Valid 116 976 2.99k
Test 336 2,915 6.2k

TABLE 5.6: IAM dataset partitions (following Bluche, 2015)

5.4.2 B- Language models datasets and training

Regarding the French language resources, the tokenized RIMES training cor-
pus vocabulary which contains 5.4k word tokens was used for training a closed
vocabulary system with small lexicon. From the tokenized French Wikipedia
corpus, we selected the 50k most frequent words before tokenization, which
generated a large lexicon of 29k word tokens achieving an effective coverage
rate 82.71%. We used this lexicon (29k word token) for training two groups of
large vocabulary language models : a closed vocabulary model by using the
word tokens and open vocabulary model by using multigrams, syllables and
characters.

Regarding the English language resources the IAM training dataset anno-
tations are used for training a small vocabulary language model of words with
a vocabulary of 7.3k word tokens. For training the large vocabulary language
models, we selected the vocabularies of the combination of LOB (excluding
the sentences that contain lines of the IAM test and validation sets), Brown and
Wellington corpora which makes vocabulary of 86.5k words after tokenization.
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During all the experimentations, the multigram segmentation algorithm
defined above was used to generate the training corpus of multigrams from
the tokenized corpus of text. Multigrams vocabularies are derived from their
corresponding small and large vocabularies of words that are used to train re-
spectively small and large vocabularies language models (LM) of words. The
modified Kneser-Ney discounting method was used. We denote a multigram
language models bym−K-multigram whereK ∈ 2, 3, 4, 5 represents the maxi-
mum number of characters per multigram, and wherem is the language model
order.

As illustrated on figure 5.6, best recognition performance are achieved with
9-gram language models (higher n-gram order) of words and multigrams and
by 10-gram language model of characters. As expected, the figure also shows
that low order language models perform better with words and long multi-
grams (5-multigram), whereas 2-multigram are the worst model in this case.
We see that as the language model order increases, the performance of the vari-
ous models come closer to each other. The models perform almost similarly for
orders 7 and higher. For all other experimentations, we chose to use 9-gram
language models however, as the Kneser-Ney discounting method prevents
from over-training the models. These results have been obtained on the RIMES
dataset with the language model trained on the RIMES training dataset only
(lexicon = 5, 4K word tokens). The optical model was a BLSTM model with
HoG features for this experiment.

FIGURE 5.6: Performance obtained on RIMES as a function of the
LM order and for various LM using Hidden Markov Models

As a prior experiment, we evaluated the contribution of the optical model
only to the recognition task. Table 5.7 below shows the Character Error Rate
(CER %) and the Word Error Rate (WER %) achieved by the optical model on
the two datasets.
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Test datasets
RIMES optical

model
IAM optical

model
CER WER CER WER

RIMES 12.32 38.88 – –
IAM – – 18.91 52.13

TABLE 5.7: BLSTM optical models performance only on the
RIMES and on the IAM dataset.

5.4.3 Recognition performance

A- Using the RIMES and IAM resources only

A first series of experiment was conducted using the resources provided by the
RIMES or IAM dataset only. These resources are used for training the optical
models and the language models as well. Table 5.8 provides the performance
of the various models, closed vocabulary word models and open vocabulary
sub-lexical unit based models. We can see that all these models perform almost
equally well with a small improvement with using sub-lexical units language
models. Even a simple character language model is better that a word model.
The syllable model seems to perform similarly to a multigram (MG) model.

Training
data sets Measure French language models

words 5-MG 4-MG 3-MG 2-MG characters syllabes

RIMES training
dataset

WER% 12.01 11.50 11.12 11.44 11.44 11.51 11.38
CER% 6.43 6.43 5.79 5.90 5.87 5.63 5.82
OOV% 3.10 1.61 1.16 0.53 0.16 0 0.63
ECR% 93.29 97.43 98.01 98.84 98.98 100 98.6

Lex 5.5k 5.2k 4.4k 3k 1.1k 100 2.9k

TABLE 5.8: Recognition performance of the various open and
closed vocabulary systems trained on the RIMES resources only,

(MG : multigram)

The same experiment was conducted on the IAM dataset. In table 5.9 below
we can see that there is a small increase by using sub-lexical units compared
word models. Sub-lexical units are to be preferred to the simple character mod-
els. Compared to the performance obtained on the RIMES dataset we see a
large difference on WER and CER which can be explained by the low ECR of
the training corpus on the test corpus. In other words, the linguistic training
resource provided by the IAM training dataset in not sufficient to match the
targeted test corpus. Some additional more general resources are needed. This
was the motivation for conducting the experiments that we present in the next
sub-section D below.

B- Using additional linguistic resources

This series of experiments was conducted to assess the capacity of sub-lexical
units based language models when trained or more general resources. No-
tice that this was a necessity for the IAM dataset, as the training IAM dataset
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Training
data sets Measure English language models

words 5-MG 4-MG 3-MG 2-MG characters syllabes

IAM training
dataset

WER% 31.88 29.13 28.8 28.59 28.18 30.6 28.63
CER% 15.21 13.09 12.86 12.71 12.54 19.49 12.60
OOV% 14.1 10.95 7.3 2.2 0.22 0 5.01
ECR% 75.45 84.18 88.59 92.97 99.42 100 91.1

Lex 7.4k 6.9k 5.6k 2.9k 0.8k 79 4.6

TABLE 5.9: Recognition performance of the various open and
closed vocabulary systems trained on the IAM resources only,

(MG : mulitgram)

achieves a moderate ECR on the test set of only 75.45%. On the contrary, by us-
ing one large external resource for training a French language model, we will
analyse the generalization capability of this resource, and reversely we will
have an estimation of the specificity of the RIMEs dataset in terms of language
coverage.

Training
data sets Measure French language models

words 5-MG 4-MG 3-MG 2-MG characters
Wikipedia+

RIMES training
dataset

(a)

WER% 18.68 13.88 12.29 12.37 10.78 13.47
CER% 9.49 6.82 6.33 6.17 5.90 7.07
OOV% 8.3 4.1 2.3 1.4 0.22 0
ECR% 82.71 93.73 96.37 97.32 99.48 0

Lex 29k 19.3k 13.8k 6.3k 1.4k 100
Wikipedia

dataset
(b)

WER% 20.45 16.22 15.94 15.15 15.11 20.82
CER% 10.62 8.30 9.10 8.33 9.25 10.10
OOV% 8.3 4.1 2.3 1.4 0.22 0
ECR% 82.71 93.73 96.37 97.32 99.48 0

Lex 29k 19.3k 13.8k 6.3k 1.4k 100

TABLE 5.10: RIMES recognition performance of the various open
and closed vocabulary systems trained on the French extended
linguistic resources made of RIME train and wikipedia, (MG :

mulitgram)

Table 5.10 shows that by augmenting the RIMES training corpus by the
French Wikipedia allows a small decrease of the WER (1%) compared to train-
ing the language models on the RIMES corpus alone. The 2-multigram model
performs a little much better than other sub-lexical units based language mod-
els. But when the language model are trained on the French Wikipedia only,
although the models achieve similar ECR than the previous models, the recog-
nition performance decrease by 5% at least for the best model, which again is
a 2-multigram. This highlights the fact that 2-multigram is a good sub-lexical
language model, but that ECR is only one indicator for having good language
models, as two training resources may share the same lexicon, but have dif-
ferent language models, as the words or sub-lexical units do not appear in the
same context. How to get better training corpus which should not only have
high ECR but also provides similar contexts as the test corpus? This appears
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to remain an open issue right now, or at least to be solved through trials and
errors.

Regarding the English IAM dataset, we observe similar properties as for
the RIMES dataset, but here there is a clear benefit of extending the language
model training corpus by the LOB + Brown + Willington corpora. Indeed, in
table 5.11 below, we see that adding theses resources allows reaching a 94.8%
ECR, whereas we had only 75% using the IAM training corpus alone. This
large improvement of the coverage rate has a clear effect on the recognition
rate where we get a nearly 14% WER which was initially around 30%, a rel-
ative improvement of more than 50%. This improvement is observed for ev-
ery language models either lexicon based or sub-lexicon units based language
models, except the character language model. Multi-gram language models
perform almost similarly for every of these experiments with high ECR rates.
However we should highlight the fact that short multigram models based on
1.1k multigrams perform almost similarly than word models that require large
vocabulary of 87.5k words dictionary (when looking at full size dictionaries).
It is worth noticing the significant complexity reduction of the multi-gram lan-
guage model compared to the equivalent word language model.

Training
data sets Measure English language models

words 5-MG 4-MG 3-MG 2-MG characters

LOB+BROWN
+Wellington

All vocabulary
(a)

WER% 13.66 13.47 14.41 14.1 14.93 17.62
CER% 7.63 7.40 7.96 7.67 8 9.09
OOV% 1.4 0.82 0.33 0.06 0 0
ECR% 94.82 98.35 99.46 99.55 99.99 100

Lex 87.5k 52.7k 37.5k 10.7k 1.7k 79
LOB+BROWN+

Wellington
50k most frequent

tokens
(b)

WER% 14.57 14.78 14.26 14.18 14.89 17.62
CER% 8.02 7.92 7.78 7.72 8.0 9.09
OOV% 2.06 3.35 1.32 0.18 0 0
ECR% 92.50 96.35 98.59 99.11 99.99 100

Lex 50k 30.4k 20.2k 7.7k 1.3k 79
LOB+BROWN

+Wellington
50k most frequent

words
(c)

WER% 16.06 14.98 14.78 14.33 14.75 17.62
CER% 8.73 8.02 8 7.78 8 9.09
OOV% 3.7 3.7 1.95 0.33 0.02 0
ECR% 91.5 94.58 96.96 98.51 99.95 100

Lex 29.7k 19.7k 13.7k 5.7k 1.1k 79

TABLE 5.11: IAM recognition performance of the various open
and closed vocabulary systems trained on the English extended
linguistic resources made of IAM train and LOB + Brown +

Wellington corpora, (MG : mulitgram)

As a conclusion, we can highlight the strength of sub-lexical units such as
multigram compared to the lexical units. They have the advantage to tackle the
OOV problem while operating with reduced lexicons of sub-units. Our recog-
nition system has a simple architecture than state of the art systems presented
in table 5.12 (the state of art system defined in (Voigtlaender, Doetsch, and Ney,
2016) is based on combination of word and character language models), and
achieves equivalent state of the art performance with a highly reduced lexicon
size.
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System RIMES-WER% IAM-WER%
Our system 10.78 (by m2gram) 13.47 (by m5gram)
Voigtlaender, Doetsch, and Ney, 2016 9.6 9.3
Bluche et al.Bluche, 2015 11.8 11.9
Doetsch et alDoetsch, Kozielski, and Ney, 2014 12.9 12.9
Pham et al.Pham et al., 2014 12.3 13.6
Zamora-Martínez et al. — 16.1

TABLE 5.12: Performance comparison of the proposed system
with results reported by other studies on the RIMES & IAM test

datasets.

5.5 Conclusion

In this chapter, a set of sub-lexical units based language models recognition
approaches have been investigated in order to deal with the challenges related
to unconstrained continuous handwriting recognition. Experiments have been
conducted on the French RIMES and the English IAM handwriting datasets.
Different types of lexicons and language models have been investigated like
words, syllables, multigrams and characters language models. A novel ap-
proach was proposed for word decomposition into sub-lexical units such into
syllables and multigrams. To generate the syllabic model we stand on the Lex-
ique3 dataset that provides an orthographic syllable modelling for the French
language, and on the free English Hyphenation Dictionary (EDH), which pro-
poses the orthographic modelling of English words by syllables decomposi-
tion. By training a Hidden semi-Markovian Model (HSMM) on a large lexi-
con of words of the language of interest (French or English), we were able to
train a model that captures variable length dependencies between characters
in an unsupervised way. For decomposing any word into a sequence of multi-
grams, it is sufficient to decode the the words’ character sequence with the
HSMM using Viterbi decoding algorithm. The sub-lexical (syllable and multi-
grams) based language models offer many advantages over character models
and word models. The advantages of these models are twofold. On the one
hand, it is of limited complexity, since it works with a reduced lexicon of syl-
lables. It follows an n-gram model of syllables which is itself more compact,
so better parametrized, and therefore easier to optimize. On the other hand
it offers superior performance than a lexical model when working with out
of vocabulary words, while achieving similar performance when trained on
corpus with high ECR on the test corpus.
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Chapter 6

A Multi-lingual system based on
sub-lexical units

6.1 Introduction

For a few decades, most handwriting recognition systems were designed of
recognizing each language individually, even if they share the same set char-
acters such as French and English, or Arabic and Persian. Indeed, Languages
of the same origins often share their character sets and/or glyph shapes. For
example the Latin-root languages share at least 21 characters (Diringer, 1951),
and Arabic, Persian and 12 other languages share at least 28 characters (Märgner
and El Abed, 2012). Inspired from this fact, almost all multilingual or multi-
script recognition systems are designed to work with a unified character set
(Kessentini, Paquet, and Benhamadou, 2008,Moysset et al., 2014,Kozielski et
al., 2014b,Lee and Kim, 1997).

In this chapter we introduce sub-lexical unified models for French and En-
glish handwriting recognition as demonstrated in chapter 5. For one single
language a sub-lexical model exhibit a limited complexity in comparison to a
word model, while recognition performance decrease very slightly. This prop-
erty allows combining multiple languages in a unified sub-lexical model while
maintaining an acceptable complexity in terms of lexicon size and statistical n-
gram language models, maintaining equivalent recognition performance and
even enhanced performance in some cases. We also show that unification of
similar scripts in a single recognition system leads to better trained optical
character models, due to the benefit of sharing training datasets between the
languages, thus providing better performance of the unified system. This is ob-
served for any kind of model used (characters, syllables, multigrams, words)
on the experiments carried on the RIMES and IAM datasets.

This chapter has the following organisation: section 6.2 presents a litera-
ture review about the different approaches used for developing multilingual
recognition systems and related previous work. Section 6.3 describes the char-
acter sets, the optical models, the lexicons and the language models unifica-
tion methodologies that we have applied for realizing the unified French and
English system. Section 6.4 discusses the evaluation protocols and the experi-
mental results obtained by the unified recognition system using the specialised
and unified optical models with the association of language models of words,
syllables, multigrams and characters. Section 6.5 draws the perspectives of the
unified sub-lexical models within the conclusion.
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6.2 Brief literature overview

In the literature there are different possible approaches for developing multi-
lingual recognition systems that can be classified into two categories: selective
approaches and unified approaches.

6.2.1 Selective approach

The selective approach category includes two approaches. The first approach
applies different individual recognition systems, in a competitive way, for the
same samples and selects the one which provides the best confidence score.
The second approach first detects the language of the samples before selecting
an appropriate recognizer for the target language script detected (Lee and Kim,
1997). The comparison of the scores obtained by several recognizers, which
have different error ranges, and the pre-detection of the language, which is a
complex task, represent the major problems of these approaches. By exploiting
the multilingual MAURDOR dataset, (Moysset et al., 2014) proposed an En-
glish, French and Arabic multilingual recognition system and (Kozielski et al.,
2014a) proposed and English, French multilingual recognition system, which
belong to this category.

6.2.2 Unified approach

The unified approach category uses a single system for recognizing any lan-
guage, possibly using multiple scripts. Several multilingual or multiscript
recognition systems are proposed in the literature. In (Kessentini, Paquet,
and Benhamadou, 2008) the authors propose a multilingual system for Arabic
and Latin handwriting recognition. In (Malaviya, Leja, and Peters, 1996) the
authors propose a handwriting recognition system for intermixed language
scripts such as Latin, Devanagari, and Kanji. A unified network-based hand-
writing recognition system for Hangul and English language was proposed
by (Lee and Kim, 1997). These approaches have the advantage of having a
single system for all recognition tasks, avoiding the problems envisaged in
the selective approaches. The disadvantage of the unified approaches is the
proportional increase of the system’s complexity regarding to the number of
languages due to their direct effect on lexicon size, which affects the overall
system performance.

Almost all the proposed unified approaches are such that the unified multi-
lingual system have lower performance in comparison to the specialised mono-
lingual systems. This may be explained by the effect of the lexicon and the fast
expansion of the language model, due to the absence of alphabetical and/or
lexical shared units between the considered languages and scripts.
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6.2.3 Multilingual with neural networks

Ghoshal et al. (Ghoshal, Swietojanski, and Renals, 2013) have been inves-
tigated multilingual modelling using a hybrid system of Deep Neural Net-
work (DNN) and Hidden Markov Model (HMM) for achieving speech recog-
nition task. They carried out the experiment on the GlobalPhone corpus using
seven languages from three different language families: Germanic, Romance,
and Slavic. This work focused on the multilingual acoustic modeling, and
made use of the pronunciation dictionary and language model of GlobalPhone
(ready for use). This work concluded that the deep neural networks perform
a cascade of feature extraction, from lower-level to higher-level features, pro-
vides an explanation for the promised enhancement that comes from the train-
ing the hidden layers using data from multiple languages.

6.3 Multilingual unified recognition systems

The previous literature review has given us the motivation for designing a uni-
fied system, which has the great advantage to be easy to implement because,
only one single system must be designed and optimized. By combining the
strength of BLSTM used for the optical model, and the low complexity of sub-
lexical units, we expect to get a lightly and powerful recognizer. To this end,
this section describes the unified design approach that we conducted on the
French and English systems components. The unification process includes the
unification of the optical models, the lexicons and finally the language models,
as illustrated in figure 6.1.

FIGURE 6.1: The three unification stages in the design process of
a unified recognizer.

The benefit of using the sub-lexical units (syllables and multigrams) for
building multilingual handwriting recognition systems has been studied through
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two successive experiments. The first experiment aimed to examine the recog-
nition performance of a unified handwriting recognition system with HMM
optical models operated with language models of words, syllables and char-
acters. The system configuration was prepared to simulate an ideal case study
for which we considered language models with a null OOV rate (all language
models fully covered the test dataset).

The objective of this experiment was to highlight the competitive perfor-
mance of the syllable based model in comparison with the word and character
models. We will not spend much lines to discuss this first experiment. The
interested reader can refer to (Swaileh and Paquet, 2016a) to get more infor-
mation, but the most important conclusion to us was the fact that we observed
similar performance when running the unified system, to those of each special-
ized system. By the second experiment, we aimed to study the contribution of
the unified optical and language models to the recognition performance of the
unified handwriting recognition system which was based on state of the art
BLSTM-RNN. Moreover, the experimental setup was design by considering
different OOV rates of the unified lexicons and language models. In the fol-
lowing paragraphs we describe the properties of each unified model.

6.3.1 Character set unification

The RIMES dataset is composed of 100 character classes while the IAM dataset
contains only 79 character classes. 77 character (including the white space
character) classes are shared between the two datasets while in total the two
datasets contain 102 character classes. The whole character set of the English
IAM training dataset is included in the French RIMES training dataset except
two characters:"#" and "&". Of course, most of the additional character classes
in the RIMES dataset are accented character. By looking at the distribution

FIGURE 6.2: Statistics of the shared characters between the
French RIMES and the English IAM database

of characters over the two datasets, we can see in figure 6.2. that lower case
characters are more frequent in the RIMES training dataset that because it con-
tains 9947 sentence, 8107 word and 470, 317 character. On the other hand, IAM
training dataset consists of 6482 sentence, 9956 word and 287, 727 character.
The total number of characters in IAM training dataset represents 61.18% of
the RIMES training dataset total number of characters. We believe that this
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difference in character frequencies may improve the unified optical model by
having more training data for every classes.

6.3.2 Optical models unification

The unified French and English character set of the RIMES and IAM dataset are
modelled by a BLSTM-RNN. Training the unified BLSTM-CTC optical model
has been carried out by combining the RIMES and IAM training datasets. As
already presented in chapter 5, a curriculum learning like algorithm was intro-
duced by sorting the training examples according to their image width. Fur-
thermore, the French and English RIMES and IAM validation datasets have
been combined for controlling the training process. The training process starts
with a learning rate of 10−5 and ends with a value of 2.79e−07 after 108 train-
ing epochs. Figure 6.3 shows the evolution of the network performance (CER)
during the training epoch.

FIGURE 6.3: Evolution of the CER during the training epochs.

The unified optical model achieves a 8, 33% CER on the unified RIMES+IAM
validation dataset which should be compared to CER obtained when training
separately the network on the RIMES and on the IAM dataset. In this case
the CER was 8, 95% on the RIMES dataset and 10, 41% on the IAM validation
datasets. This phenomenon can be explained by the effect of having more
training data as illustrated in figure 6.2.

6.3.3 Lexicons unification

The third step in building the multilingual handwriting recognition system
is the unification of the French and English vocabularies (lexicons) and lan-
guage models which are used by the system during the recognition process.
Figure 6.4 shows the evolution of the various lexicons on the three datasets.
It highlights the small increase of the 2-multigram lexicon and of the syllable
lexicon when considering the unified corpus, while the word lexicon is the
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FIGURE 6.4: Size of the various lexicons on the RIMES, IAM, and
the unified datasets (from left to right).

most affected in size. Similarly, We see that higher order multigrams lexicons
are more affected in size when considering the unified corpus. This is a direct
combinatorial affect when looking at higher order multigrams.

FIGURE 6.5: ECR of the RIMES test dataset by the words, syl-
lables and multigrams of the three corpora(from left to right :

RIMES, IAM, RIMES+IAM.

For a better understanding of the effect of unifying the two datasets, the
effective coverage rates (ECR) of the words, syllables, and multigrams lexicons
(5-multigram, 4-multigram, 3-multigram, 2-multigram) on the RIMES datasets
is plotted on figure 6.5. We see that the unified lexicon has a very small effect
on the ECR of the RIMES dataset. Figure 6.6 gives the ECR of the IAM dataset
by the three corpora. We see that the unified lexicon improves the ECR for
the higher order multigrams and the word lexicons, whereas for low order
multigram the best ECR is obtained with a very small lexicon.
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FIGURE 6.6: ECR of the IAM test datasets by the words, syllables
and multigrams of the three corpora (from left to right : IAM,

RIMES, RIMES+IAM).

To explore the impact of unifying external French and English linguistic re-
sources on the same recognition task on RIMES and IAM test dataset, we uni-
fied the English LOB, Brown and Wellington corpora lexicons with the French
Wikipedia + RIMES training dataset lexicons. Let EN denotes the English lex-
icons and language models that make use of the LOB, Brown and Wellington
corpus and let FR denotes the French lexicons and language models that make
use of Wikipedia + RIMES corpora. We have to recall here that the EN lexicon
make use of all the corpus vocabulary while the FR lexicon make use only the
50k most frequent words (29k token) of the Wikipedia corpora. The lexicon
evolution on the FR, EN and the unified dataset is illustrated by figure 6.7.

FIGURE 6.7: Size of the various lexicons on the FR, EN, and the
unified datasets (from left to right).

In table 6.1 we report the ECR of the RIMES and IAM test dataset for the
various lexicons derived from the three corpora (RIMES, IAM, IAM+RIMES).
And we compare them to the ECR obtained with the specialized lexicons. We
observe that the unified lexicons have higher ECR of the RIMES and the IAM
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test datasets, for example the lexicon of word of IAM training dataset covers
the IAM test dataset by 75.45% with 7.4k word tokens, while the same unified
French and English lexicon of word covers the same test dataset by 80% with
12k word token.

Lexicon type ECR of RIMES
by RIMES

ECR of RIMES
by IAM+RIMES

ECR of IAM
by IAM

ECR of IAM
by IAM+RIMES

Lexicon size
of IAM+RIMES

words 93.29 96.23 75.45 80 12.5k
5-multigram 97.43 97.76 84.18 85.81 10.9k
4-multigram 98.01 98.53 88.59 89.9 8.5k
3-multigram 98.98 99.14 92.97 96.22 4.6k

syllables 98.84 99.14 91.1 94.5 6.7k
2-multigram 99.53 99.71 99.42 99.46 1.3k

TABLE 6.1: Comparing the ECR of RIMES and IAM achieved by
the specialized corpora alone, and by the unified corpus.

Similarly, in table 6.2 we report the ECR of the RIMES and IAM test dataset
for the lexicons derived from the FR, EN and FR+EN corpora. The same phe-
nomena is repeating with these lexicons, the FR lexicon covers the RIMES test
dataset by 82.27% with 29k word token while the unified FR+EN lexicon of
words covers the same test dataset by 89.97% with 116k word token.

Lexicon type ECR of RIMES
by FR

ECR of RIMES
by FR+EN

ECR of IAM
by EN

ECR of IAM
by FR+EN

Lexicon size
of FR+EN

words 82.27 89.97 95.13 98.6 116k
5-multigram 93.73 95.22 98.34 98.58 71.6k
4-multigram 96.37 98.2 99.46 99.68 50.5k
3-multigram 97.32 98.48 99.48 99.8 16.9k
2-multigram 99.48 99.82 100 100 3.1k

TABLE 6.2: Comparing the ECR of RIMES and IAM achieved by
the FR and EN corpora individually, and by the unified FR+EN

corpus.

6.3.4 Unified language models

The unified French and English vocabulary of the RIMES / IAM training cor-
pora of words, syllables, multigrams (2-multigram, 3-multigram, 4-multigram
and 5-multigram) and characters are used to train their corresponding (open
or closed) language model. The n-gram language models were trained with
the modified Kneser-Ney smoothing method supported by the MIT language
modelling toolkit. To consider the long distance dependencies while training
the language models, we trained 9-gram language models of words and multi-
grams (5-multigram, 4-multigram, 3-multigram and 2-multigram) in addition
to 10-gram language model of characters. Table 6.3 reports the perplexity val-
ues and OOV rates of these models and compares theme to the values obtained
with the specialized corpora.

We observed for the tables 6.3 and 6.4 that the OOV % rate reported for
the unified IAM+RIMES models on the RIMES and IAM test datasets are less
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Language
models

Unified IAM+RIMES models
perplexiy
on RIMES

perplexity
on IAM

perplexty on
IAM+RIMES

OOV %
on RIMES

OOV %
on IAM

OOV % on
IAM+RIMES

words 17.26 33.98 29.28 2.9 13.9 11.53
5-multigram 15.62 45.92 35.92 1.37 9.96 7.99
4-multigram 14.61 45.65 35.34 0.85 6.3 5.02
3-multigram 13.52 43.78 33.80 0.44 1.61 1.35

syllables 13.29 42.16 29.18 0.45 4.5 2.8
2-multigram 12.11 22.66 19.76 0.11 0.10 0.1

characters 11.96 13.55 13.17 0 0 0

TABLE 6.3: Unified language models perplexities and OOV rates,
for the specialized and unified corpus.

Language
models

Specialized
RIMES models

Specialized
IAM models

perplexity OOV % perplexity OOV %
words 13.52 3.10 27.6 14.1

5-multigram 11.84 1.61 35.52 10.95
4-multigram 11.16 1.16 37.29 7.3
3-multigram 10.18 0.53 35.90 2.2

syllables 10.86 0.63 33.94 5.01
2-multigram 9.21 0.16 20.03 0.22

characters 9.6 0 12.1 0

TABLE 6.4: Specialized language models perplexities and OOV
rates, for the specialized corpora.

than the ones reported for the specialized models on the same test datasets,
for example the unified language model of word OOV% rate is less than the
specialized one by 0.2% on the RIMES and IAM test datasets. On the other
hands, the perplexity of the unified models are greater than the specialized
ones, for example; the perplexity of the unified language model of words on
the RIMES test data set is 17.26 where the specialized model of words have a
perplexity of 13.52 on the same test dataset.

Language models Unified FR+EN models
perplexity
on RIMES

perplexity
on IAM

perplexity on
IAM+RIMES

OOV%
on RIMES

OOV%
on IAM

OOV% on
IAM+RIMES

words 32.15 43.78 41.12 7.9 1.15 2.5
5-multigram 33.04 41.54 39.53 3.14 0.75 1.3
4-multigram 30.36 35.42 34.25 0.93 0.29 0.4
3-multigram 26.47 28.09 27.73 0.68 0.03 0.18
2-multigram 22.62 21.94 22.09 0.06 0 0.01
Characters 18.82 19.04 18.98 0 0 0

TABLE 6.5: Unified FR+EN language models perplexities and
OOV rates, for the specialized (FR and EN) and unified (FR+EN)

corpus.

With the FR and EN unified lexicons we trained the large vocabulary lan-
guage models of words, muligrams and characters and their perplexities and
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Language
models

Specialized
FR models

Specialized
EN models

perplexity
on RIMES OOV % perplexity

on IAM OOV %

words 35.82 8.3 40.12 1.4
5-multigram 22.38 4.1 38.30 0.82
4-multigram 20.78 2.3 32.88 0.33
3-multigram 18.55 1.4 25.81 0.06
2-multigram 16.83 0.22 19.53 0
Characters 16.97 0 17.03 0

TABLE 6.6: Specialized language models perplexities and OOV
rates, for the specialized corpora.

OOV rates are reported in table 6.5. The FR and EN syllables lexicons are not
available for training the unified large vocabulary language models of sylla-
bles, that because the unsupervised decomposition approach (see chapter 5)
is time consuming. The specialized FR and EN language models perplexities
and OOV rates are listed in table 6.6. For the large vocabulary unified language
models one can observe through the tables 6.5 and 6.6 also the decrement in
their OOV rates compared with the OOV rates reported for the specialized
language models on the RIMES and IAM test datasets. Taking for example
the 4-multigram models; the FR specialized 4-multigram model reported 2.3%
OOV tokens on the RIMES test dataset while the unified FR+EN model of 4-
multigram reported 0.93% on the same test dataset. The decrement in the OOV
rates cab be explained by the compensation of the similar tokens between the
French and English languages where the token which can be missed in one lan-
guage training dataset can be learned from the other language training dataset.

6.4 Evaluation protocol and experimental results

The architecture of the BLSTM-RNN based unified recognition system allows
us to evaluate the system components (language model and optical model)
independently and together. For these experiments the optical model was
trained using 10k text line images from the RIMES training dataset (which
contains 11, 333 training example) combined with 6, 482 text line images that
represent the IAM training dataset. The recognition system parameters are
optimized using the unified RIMES+IAM dataset which consists of 1, 333 and
976 images of RIMES and IAM validation datasets respectively. The unified
system performance was evaluated on the RIMES and IAM test datasets indi-
vidually. We recall that the RIMES test dataset contains 778 text line images
and the IAM test dataset contains 2, 915 text line images.

During the evaluation, we are interested in quantifying the contribution
of each stage (optical model, and language model) to the performance of the
unified system, and to compare these contributions with the performance of
the specialized systems. Four experiments can be conducted in this purpose



6.4. Evaluation protocol and experimental results 141

as depicted on figure 6.8 below. The first setup (1=UU, in green) consists in
combining the unified optical model with the unified language models. The
second setup (2=US, in red) consists in combining the unified optical model
with the specialized language model. The third setup (3=SU, in orange) com-
bines the specialized optical model with the unified language model. Finally,
the fourth setup (4=SS, in blue) combines the specialized optical model with
the specialized language model. The four setups will be evaluated on the IAM
dataset and the RIMES dataset.

FIGURE 6.8: The four experimental setups for analyzing the re-
spective contributions of the unified optical models and the lan-

guage models.

For the specialized and unified optical models, we evaluated two differ-
ent groups of language models on the RIMES and IAM test datasets; the first
group contains the small vocabulary language models that are trained on the
RIMES, IAM and the unified IAM+RIMES training datasets. The second group
contains the large vocabulary language models which are trained with the FR,
EN and FR+EN lexicons on their corresponding FR (Wikipedia + RIMES), EN
(LOB, Brown and Wellington) corpora and the unified FR+EN training cor-
pora.

A preliminary result is provided by analyzing the raw performance of the
unified optical model alone. As reported in table 6.7 below, a slight improve-
ment of the performance around 2% WER and CER on the RIMES datasets is
observed, compared to the performance of the specialized optical model. A
3% improvement is observed on the IAM datasets, for both the WER and CER.
This is a direct effect of having more data for training the optical model which
share a lot of character classes, such improvement would not be possible for
languages that do not share so many character classes, for examples languages
written using different scripts.

Test datasets
RIMES optical

model
IAM optical

model
Unified optical

model
CER WER CER WER CER WER

RIMES 12.32 38.88 – – 10.02 36.3
IAM – – 18.91 52.13 15.26 44.41

TABLE 6.7: Specialized and unified optical model raw perfor-
mance (without language model).



142 Chapter 6. A Multi-lingual system based on sub-lexical units

We now provide the detailed analysis of the performance of the two unified
stages using the four setups depicted above and for the two test datasets.

6.4.1 Results on RIMES test dataset

FIGURE 6.9: WER (%) on the RIMES dataset using the four ex-
perimental setups : blue = SS, Orange = SU, Red = US, Green =

UU.

Figure 6.9 shows the performance obtained with the four configurations of
the system, as a function of the lexical units considered (words, multigrams,
and characters). A performance enhancement of around 1% of the WER is
reported for every system that integrates the unified optical model (Red and
Green curves). Improvement is observed for every language models, which
perform nearly equally and better than the word language model, and the
character language model. The contribution of the unified language model
appears rather moderate compared to the improvement brought by the optical
model. But most importantly, we can highlight the fact that unifying two lan-
guages in one single model does not affect the recognition performance. This
is observed for both optical models, either specialized or unified. These in-
teresting results must be analysed also by considering the lexicon size of the
sub-lexical units based language models which is rather small when consider-
ing character and 2-multigrams.

Similar to the experiments with small vocabulary language models, we car-
ried the experiments with the FR large vocabulary language models which
gave the results illustrated in figure 6.10. These experiments results present
different observations. Looking at the blue (SS) and orange (SU) curves we ob-
serve that unifying large vocabulary language models (FR+EN) does not affect
brutally the recognition performance even if their unified FR and EN lexicons
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are not of the same size; remember that the unified FR+EN lexicon of word
(116k word token) consists of 29k FR words and 87k EN words.

We observe for every configuration that the unified optical model oper-
ating with the specialized and unified 2-multigram model reaches the state
of the art results 9.85% WER. This can be explained by the capacity of the 2-
multigram model to model effectively with low OOV rate, the information
held on the unified FR+EN corpora with a very small lexicon size of 3.1k to-
kens. By comparing the OOV rate reported by the FR+EN unified large vo-
cabulary model (0.06% for lexicon of 3.1k token) and those reported by the
IAM+RIMES unified small vocabulary models (0.11% for lexicon of 1.3k) we
can justify the enhanced performance of the FR+EN unified large vocabulary
language model of 2-multigram (9.85% WER) over the IAM+RIMES small vo-
cabulary 2-mulitgram language model (10.08% WER). On the other hand, the
performance of the other unified models of words, multigrams and characters
overcomes the specialized ones.

However, we see that the word language model performs poorly for any
configuration. The word model trained on thes generic large resources do not
match the RIMES vocabulary where it was limited to the 50k most frequent
word of the French Wikipedia corpora resulting to high OOV rate.

FIGURE 6.10: WER (%) on the RIMES dataset using the four ex-
perimental setups : blue = SS, Orange = SU, Red = US, Green =

UU using very large FR+EN language models

6.4.2 Results on IAM test dataset

Similarly, considering the IAM dataset, figure 6.11 below reports the perfor-
mance of the four configurations of the system, as a function of the lexical units
considered (words, multigrams, and characters). Once again, the same behav-
ior on the IAM dataset than on the RIMES dataset is observed. The unified
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optical model increases the WER by 4% and the CER by 2% CER, compared to
the performance of the systems that integrate a specialized optical model. This
is observed for any of the small vocabulary language models with the best im-
provement observed for the sub-lexical units based systems and especially for
the 2-multigram language model. Once again the contribution of the language
model appear rather limited to the recognition performance, but considering
the two French and English languages there is no reason to believe that some
performance improvement should be gain by combining the two language.
In fact, we could expect that the language modelling task should become more
complex. These results clearly show that the unification of both language mod-
els in one single language model has nearly no effect on the performance. This
was also observed on the RIMES dataset. As a conclusion we can highlight
that combining the two models allows improving the performance of the opti-
cal model by the benefit of having more training samples per character classes,
while at the same time combining the sub-lexical units based language mod-
els does not degrade the performance while getting a very compact bi-lingual
language model, with a small lexicon size.

FIGURE 6.11: WER (%) on the IAM dataset using the four exper-
imental setups : blue = SS, Orange = SU, Red = US, Green = UU.

The large vocabulary FR, EN and the unified FR+EN language model was
evaluated for the four evaluation setups and the obtained results are illustrated
in figure 6.12. The results shows the best recognition performances are ob-
tained with the unified optical models with all language models. The special-
ized optical model that works with the unified FR+EN language models show
a slight performance degradation (as shown by the orange curve) compared
to the EN language models (blue curve) for all language models except the
4-multigram and the characters language models.

By recalling the lexicon size and the OOV rates reported for the large vocab-
ulary FR+EN unified languages model and the small vocabulary IAM+RIMES
language models listed in the tables 6.3, 6.4, 6.5 and 6.6, we observed that
the unified large vocabulary language models reports small OOV rates which
justify their state of the art recognition performance. For example: the uni-
fied FR+EN large vocabulary language model of word reported 1.15% OOV
words while the specialized EN language model of word reported 1.4% OOV
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words For this reason even the unified language model of words shows simi-
lar performance as the multigram ones with the advantage of the small unified
FR+EN lexicon size of multigram.

FIGURE 6.12: WER (%) on the IAM dataset using the four exper-
imental setups : blue = SS, Orange = SU, Red = US, Green = UU

using very large FR+EN language models

6.5 Conclusion

In this chapter we studied the unified French/English models of words, sylla-
bles, multigrams and characters for handwriting recognition. The sub-lexical
units based systems offer many advantages over the character model which
models badly the words, and over the word model which models only a lim-
ited number of words that are found in the vocabulary of the training corpus.
The evaluation of the unified (optical and language) models in different op-
erating setup with the specialized (optical and language) models offered us
a clear vision about the behavior of the unified models. The enhancement of
the unified optical model has the major contribution in enhancing the overall
recognition system performances as shown by the results above. The unified
language models have a slight enhancing contribution when they are operat-
ing with the unified optical models. Indeed, they show equivalent behavior
to the pure specialized (optical and language) models behavior when operat-
ing with the specialized optical models. But the more important contribution
of these results regarding the language models is to show that one single bi-
lingual language model composed of sub-lexical units does not degrade the
performance, thus allowing the design of lightly language models composed
of sub-lexical units of both languages that can be introduced in one single
recognition engine. As a general conclusion, these results show that sub-lexical
units are good units for both French and English languages and that they sup-
port to be mixed into one single recognition system.
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Conclusions and Perspectives

The main goal of this thesis was to develop improved language modelling
approaches for performing efficient large vocabulary unconstrained and con-
tinuous handwriting recognition of French and English handwritten docu-
ments. In the literature, large vocabulary handwriting recognition systems
are described based on two main components: an optical model and a lan-
guage model. The optical model matches the handwriting script observed in
an image as a numerical sequence of observations features (denoted by S) to
a sequence of characters which may represent a sequence of words (denoted
by W) by the computation of a likelihood function denoted by P(S|W). The
language model constrains the recognition hypotheses to be some admissi-
ble sequences of words by the language, by the computation of the a priori
probability P(W) of each hypothesis. In between the sequence of characters
produced by the optical model and the sequence of words examined by the
language model, the system’s vocabulary allows to constrain the character hy-
potheses to be some admissible words only. In practice, there is no vocabulary
which can cover all language words, including named entities and alphanu-
meric strings such as reference numbers or bank identification numbers. As a
consequence, the words which are not introduced in the system’s vocabulary
(Out-Of-Vocabulary words, OOV) can not be recognized by the system. This is
what is called a closed vocabulary recognition system. To improve the recogni-
tion performance one may try to increase the size of the system’s vocabulary,
so as to reduce the OOV rate. But this is only possible with the expense of
increasing the system’s complexity which leads to the degradation of the sys-
tem’s performance. Therefore, it is required to find a compromise between
the vocabulary size, the time complexity of the system, and the recognition
performance.

In the literature, there is two types of language model: closed vocabulary
language models and open vocabulary language models. The closed vocabu-
lary language models are trained on a fixed size vocabulary and any sequence
of words (W) that contains one or more OOVs are discarded from the estima-
tion of the language model. On the contrary, the open vocabulary language
models account for the OOV words by affecting them a certain amount of the
total probability thanks to the unknown class (<unk>), which introduces the
OOV words within the language model vocabulary and training corpus. Fur-
thermore, the OOVs can be represented in the language model vocabulary and
training corpus by their sequence of characters. Thus, the language model will
represent a hybrid language model of words and characters. But such mod-
elling approach is not convenient, because words and character classes are
competing each other, which increases the language model confusion. A free
lexicon recognition system can be used to tackle the OOV problem. This sys-
tem makes use of character classes only, with a high order language model to
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introduce sufficient context in the model. Doing this way, almost every possi-
ble character string is admissible, and there is almost no OOV. However, even
high order character language models perform poorly when working alone
because of their poor capacity to model the context of the language sentence.
Another effective way to tackle the OOV problem is to train separately two
language models: a word language model accounting for the most frequent
words in the training corpus, and a character language model. During the de-
coding procedure the two models are synchronously working where the lan-
guage model of character is introduced where the word language model has
decoded an OOV word.

Alternatively, in this thesis we introduced sub-lexical units made of sylla-
bles or multigrams in order to tackle the OOV problem. A complete process-
ing chain of handwriting processing and recognition was implemented from
line detection in the document image to line recognition using the proposed
open-vocabulary sub-lexical units based language model. An automatic iter-
ative text line segmentation smearing method was proposed with which we
enhanced the extraction of the text line images on different datasets, without
the need to tune any parameter. Two types of optical models have been imple-
mented. The first implementation consists of a classical HMM optical model
working with Histogram of Gradient (HoG) features. The second implemen-
tation consists of a state of the art BLSTM-RNN optical model which deals
with the pixel values directly. These systems have been trained and evalu-
ated on the French RIMES and the English IAM datasets. The efficiency of the
BLSTM-RNN optical model over the HMM one was noticeable by looking at
the Character Error Rate (CER) rates for the optical models alone. The system
vocabulary and language models were trained on the RIMES and IAM datasets
as well as on some additional external resources such as the French and En-
glish Wikipedia pages and the English LOB, Brown and Wellington datasets.
The results obtained with the BLSTM-RNN based recognition system are close
to the state of the art performance with the advantage of the system’s simple
architecture with a reduced complexity thanks to the use of sub lexical units.

Sub-lexical based language models have been investigated using multi-
grams and syllables. Two approaches have been used to provide word de-
composition into sub-lexical units: a supervised and an unsupervised word
decomposition approach. Small and large vocabularies have been employed
in the recognition systems in order to assess the actual potential of sub-lexical
based models compared to full-word models. This approach has led to a sig-
nificant increase in the overall lexical coverage, indicated by a considerable
reduction of the out-of-vocabulary (OOV) rates measured on the test datasets.
This has introduced a promising step towards the solution of dealing with
lexicon with low coverage rates. As a result, significant improvements of the
recognition performance have been achieved compared to the traditional full-
word based language models.

Motivated by the interesting recognition performance obtained with sub-
lexical units, we studied the possibilities of building a unified handwriting
recognition system for the French and English languages. The unification of
the individual (specialised) French and English recognition systems has been
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examined considering both the unification of the optical model and the uni-
fication of the language model. By the introduction of sub-lexical units, the
unified recognition system outperforms each individual specialized system.

As perspectives to the use of sub-lexical units in a handwriting recogni-
tion system we can mention the use of connectionist language models. Such
models can account for variable length dependencies of language units in the
language model. This would remove the constraint of using the fix length
dependency modelling introduced by the n-gram modelling approach. Also,
by introducing connectionist language models we may explore new system
architectures composed solely of RNN for both the optical stage and the lan-
guage stage. In this respect, we may take inspiration from the recent attention
models that have been proposed to achieve caption generation from images,
or translation tasks. Another perspective is to introduce sub-lexical units in
the optical model, which would allow to introduce some multigrams optical
model accounting for the most frequent co-occuring characters. This could be
done at the expense of increasing the number of classes in the optical model.
Finally, we may extend the unified modelling approache to include more lan-
guages, possibly with different scripts such as Hindi, or Arabic languages to
explore more in depth the advantages of using sub-lexical units for unifying
handwriting recognition systems.
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