Mariem, Tarik, Reda, Said, Vivien, Patrick, Samiha, Eric Anis

Khaoula

Edwin Yanhuang

Thomas

Xiaoshu. Simon

The growth and diversity of services offered by modern systems make the task of securing these systems a complex exercise. On the one hand, the evolution of the number of system services increases the risk of causing vulnerabilities. These vulnerabilities can be exploited by malicious users to reach some intrusion objectives. On the other hand, the most recent competitive systems are those that ensure a certain level of performance and quality of service while maintaining the safety state. Thus, modern security systems must consider the user requirements during the security process.

In addition, reacting in critical contexts against an attack after its execution can not always mitigate the adverse effects of the attack. In these cases, security systems should be in a phase ahead of the attacker in order to take necessary measures to prevent him/her from reaching his/her intrusion objective.

To address those problems, we argue in this thesis that the reaction process must follow a smart reasoning. This reasoning allows the system, according to a detected attack, to preview the related attacks that may occur and to apply the best possible countermeasures.

On the one hand, we propose an approach that generates potential attack scenarios given a detected alert. Then, we focus on the generation process of an appropriate set of countermeasures against attack scenarios generated among all system responses defined for the system. A generated set of countermeasures is considered as appropriate in the proposed approach if it presents a coherent set (i.e., it does not contain conflictual countermeasures) and it satisfies security administrator requirements (e.g., performance, availability). We argue in this thesis that the reaction process can be seen as two agents arguing against each other. On one side the attacker chooses his arguments as a set of actions to try to reach an intrusion objective, and on the other side the agent defending the target chooses his arguments as a set of countermeasures to block the attacker's progress or mitigate the attack effects.

Résumé

L'accroissement et la diversification des services offerts par les systèmes informatiques modernes rendent la tâche de sécuriser ces systèmes encore plus complexe. D'une part, l'évolution du nombre de services système augmente le nombre des vulnérabilités. Ces vulnérabilités peuvent être exploitées par des utilisateurs malveillants afin d'atteindre certains objectifs d'intrusion. D'autre part, un système de sécurité moderne est considéré comme étant un système compétitif s'il assure un certain niveau de performance et de qualité de service tout en maintenant l'état de sécurité. Ainsi, les systèmes de sécurité modernes doivent tenir compte des exigences de l'utilisateur au cours du processus de sécurité.

En outre, la réaction dans des contextes critiques contre une attaque après son exécution ne peut pas toujours remédier aux effets néfastes de l'attaque. Dans certains cas, il est essentiel que le système de sécurité soit en avance de phase par rapport à l'attaquant et de prendre les mesures nécessaires pour l'empêcher d'atteindre son objectif d'intrusion.

Pour faire face à ces problèmes, nous soutenons dans cette thèse que le processus de sécurité doit suivre un raisonnement intelligent qui permet au système, selon une attaque détectée, de prévoir les attaques qui peuvent se produire par corrélation et d'appliquer les meilleures contre-mesures possibles. D'abord, nous proposons une approche qui génère des scénarios potentiels d'attaque qui correspondent à une alerte détectée. Ensuite, nous nous concentrons sur le processus de génération d'un ensemble approprié de contre-mesures contre les scénarios d'attaque générés. Un ensemble généré des contre-mesures est considéré comme approprié dans l'approche proposée s'il présente un ensemble cohérent (il ne contient pas des contre-mesures conflictuelles) et il satisfait les exigences de l'administrateur de sécurité (par exemple, la performance, la disponibilité). Nous soutenons dans cette thèse que le processus de réaction peut être considéré comme un débat entre deux agents. D'un côté, l'attaquant choisit ses arguments comme étant un ensemble d'actions pour essayer d'atteindre un objectif d'intrusion, et de l'autre côté l'agent défendant la cible choisit vi RÉSUMÉ ses arguments comme étant un ensemble de contre-mesures pour bloquer la progression de l'attaquant ou atténuer les effets de l'attaque. D'autre part, nous proposons une approche basée sur un système de recommandation en utilisant une méthode multicritère de la prise de décision MCDM (Multi Criteria Decision Making). Cette approche assiste l'administrateur de sécurité lors de la sélection des contre-mesures parmi l'ensemble approprié des contre-mesures générées à partir de la première approche. Le processus d'assistance est basé sur l'historique des décisions de l'administrateur de sécurité. Cette approche permet également de sélectionner automatiquement des réponses appropriées du système dans les cas critiques où l'administrateur de sécurité est incapable de les sélectionner (par exemple, en dehors des heures de travail, par manque de connaissances sur l'attaque en cours). Enfin, notre approche est implémentée et testée dans le cadre des système automobiles afin de vérifier si les approches proposées satisfont bien les contraintes de temps réel.

CHAPTER 1 Introduction

Motivation

Designing a secure system has always been a complex exercise. In practice, much of the focus of designers and developers being on delivering a working system in the first place; on the other hand, security concerns have long been considered only in retrospect, especially after serious flaws are discovered. Security experts are thus generally confronted with an existing system, whose architecture might actually hamper the deployment of security mechanisms that would prevent the occurrence of the attacks they envision. From the embedded system viewpoint, enforcement of security requirements becomes even more challenging and more critical. These challenges stem from the tight relationship between architecture design and its functional, and non-functional requirements as well as their impact on one another. For instance, if the system architecture design changes or evolves, these requirements should meet the new architecture design objectives and choose the best countermeasure that can be applied in this specific context or situation. This is especially true in safety-critical systems such as automotive systems [Bar-El 2009[START_REF] Ruddle | [END_REF], where attacks may be devastating, but where security functions overhead may also result in an absolutely useless system. In such a context, designing a secure system has always been a complex exercise. Indeed, security is a functionality that is difficult to specify and implement because it is not modular: modifications to one part of an application may interact strongly with the security properties of other parts of the same application.

On the other side, reacting in a critical context against an attack after his execution can not always mitigate the attack damages. In these cases it is essential to anticipate the attacker's intentions and to take precautionary measures to prevent the attacker from reaching his/her intrusion objective. For instance, we consider a single physical server hosting a set of services such as an HTTP server, an SSH server and a database server. An attacker can detect those services by scanning the open ports for example, then try to fingerprint those services to check if a known vulnerable version is running.

From the detection point of view, detecting the port scanning and fingerprinting can be used to formulate hypothesis on the future attacks the attacker may perform on those services and select appropriate countermeasures against the inferred attack scenario. However the attacker may decide to modify his/her intrusion objectives, because he/she does not have the tools to attack the detected services for instance. In such case the attacker may execute new attacks corresponding to a new intrusion objective. From the detection point of view, this means that the reaction plan inferred from the first attack is no longer valid and must be revised in the light of the newly detected attacks.

Moreover, an appropriate countermeasure should depend on the context in which the system is operating. For instance, when considering a database server in the company private network, the availability criterion should be favored during work time when employees are using the system database, but the performance criterion should be preferred outside of working hours when database backups are created. In less critical situations, the system can afford to prioritize countermeasures that ensure certain user requirements instead of taking strict measures that affect the service availability for example. For mobile systems, such as those which are present in vehicles, the environment in which they operate can evolve as they move and impact the reasoning process. We also claim that the security analysis should also play an important role with respect to convincing the designer of increasingly complex embedded systems of the consistency and exhaustivity of his reasoning and selection of security measures, at least with respect to the identified threats. The use of argumentative logic [Dung 1995] driven reasoning engine can help in dynamic enforcement of security mechanisms through the introduction of non-monotonic reasoning capabilities. This non-monotonic logic provides a smart reasoning that allows to reason on the cost of applying a countermeasure and to minimize the set of generated system responses given a detected attack. These capabilities open up the door to the dynamic selection and enforcement of security mechanisms performed statically only today.

Contributions

The challenges of modern security tools is to keep the system in a safe state while satisfying the system different requirements (e.g., maintaining the best possible level of performance and quality of service). Thus, we argue that the security process must follow a smart reasoning that allows the system, according to a detected attack, to prevent the related and potential attacks that may occur and to choose the best possible set of countermeasures. To meet this objective, we propose the following contributions:

CONTRIBUTIONS

• Contribution 1. We introduce an approach [START_REF] Bouyahia | [END_REF] for efficient enforcement of security requirements, this approach is driven by argumentative logic (AL). It describes a structured collaboration and interrelationship between the system architecture design and security requirements to support the long-term needs of the system. The purpose of security activities assisted by argumentative logic is to bring into focus the key areas of concern, highlighting the decision criteria and security context for each system aspect that has direct or indirect value for a stakeholder.

• Contribution 2. In modern attacks, the attacker can execute several actions in order to make the execution of other actions possible until reaching a certain intrusion objective. For this purpose, we provide an efficient method [START_REF] Bouyahia | [END_REF] allowing to instantiate actions hypothesis correlated to the detected malicious action. Doing so, security administrator becomes aware about the potential attacker's intentions, which provide a better system reaction against intrusion. Given an attack against a specific system, the best countermeasure to apply depends on the context in which the system is operating. For example, in the case of an automotive system, the fact that the vehicle is operating downtown or on a freeway changes the impact an attack may have on the system. Thus, the system must take into account the set of active contexts when generating system responses. For this purpose, we show how to improve the existing argumentation framework by defining the Contextual Value-based Argumentation Framework (CV AF) [START_REF] Bouyahia | [END_REF] . CV AF presents a dynamic framework that allows to consider the current set of active contexts while generating system responses against intrusion.

• Contribution 3.

We propose a content-based recommendation approach [Bouyahia et al. 2016] using Multi-Criteria Decision Making (MCDM) for efficient security administrator assistance when selecting the appropriate countermeasures, given a specific attack scenario. To learn more about the security administrator way of reacting, we propose a learning module which provides an idea about the security administrator preferences and requirements according to his/her decisions historic. This approach considers the different effects a countermeasure could have on the system (e.g., performance, availability) as criteria to be considered when selecting the appropriate system responses. This approach permits also, to automatically select appropriate countermeasures in critical cases where the system security administrator is unable to select them by his/her self.

• Contribution 4. We apply our approaches on an automotive system as an example of a case study to explore the issues that can meet complex systems during the reac-CHAPTER 1. INTRODUCTION tion process. This use case illustrates the potential need for dynamic enforcement of security requirements to control the various security activities. We present some experimental results concerning the execution costs of our implemented approach. These results allow the evaluation of the approach in terms of performance and time required for the system to react against different attack scenarios detected at the same time. Based on these results, we show how our approach implementation successfully responded to real-time constraints, since the responses of critical systems, such as automotive system, must be instantly provided especially in critical contexts.

Organization of the dissertation

This dissertation is organized as follows:

Chapter 2 -System Response against Intrusion Detection: State of the Art -we discuss in this chapter research investigations and technologies aiming to assist system response against intrusion detection. It depicts the main results published in the field of reaction against intrusion, focusing on the proposed automated approaches.

Chapter 3 -Introduction to the Argumentation Logic -presents a general introduction for Argumentation logic. It defines Argumentation logic frameworks while highlighting works using this logic in the security field.

Chapter 4 -Context-aware System Response against Intrusion Detection -introduces a novel approach which uses an argumentative logic framework to reason and select the most appropriate countermeasures given an attack and its context. This approach allows also to anticipate the attacker's intentions.

Chapter 5 -Multi-Criteria Recommender Tool for Supporting Intrusion

Response System -proposes an approach based on content-based recommendation for efficient security administrators assistance in the context of reaction against intrusion detection.

Chapter 6 -Implementation and Evaluation -presents some experimental results concerning the execution costs of our implemented approaches. In this chapter, we consider the automotive system as a case study to evaluate the implementation of our approaches in an embedded system where real-time constraints must be satisfied.

Introduction

Recent security concerns related to future computer systems make enforcement of security requirements one of the most critical phases when designing such systems. Traditionally, reasoning about the best intrusion response to apply has always been a part of the security administrator responsibilities. In recent years, attackers changed their way to infiltrate computer systems and use more sophisticated attacks to reach their intrusion objectives. To cope with such modern attacks, Intrusion Response Systems (IRSs) must provide modern techniques that can maintain monitored systems in safe conditions while causing the minimum damage. In this chapter, we discuss the IRSs architectures and functionalities. We specify their corresponding characteristics, descriptions and existing approaches. Finally, we broach Attack Description Languages and we discuss their benefits and drawbacks in the attack modeling field.

Intrusion Response System Definition

Existing Intrusion Response Systems (IRS) are mainly divided into three approaches [Stakhanova et al. 2007b]: notification systems, manual response systems and automatic response systems. Notification systems represent the majority of IRS. They are systems that just inform the security administrator about detected intrusions by generating reports and alarms like Snort [Roesch 1999]. These systems require that the security administrator has a special knowledge about the various threats in order to select appropriate countermeasures. Manual response systems are systems that notify the security administrator about ongoing detected intrusion and assist him/her while selecting system responses. These systems provide response alternatives to the security administrator, these alternatives are a preprogrammed set of responses corresponding to the reported attack. Automatic response systems are systems that immediately provide a response to the detected intrusion. These systems do not need a human interaction. From the security administrator's point of view, the main metric that differentiates these three approaches is the delay between the intrusion detection and the system response selection. In notification and manual system, this delay can be extended to hours and days (i.e., in week-end and outside of working hours when no security administrator is available). Even when an intrusion occurs during working hours, the time required for the security administrator to reason about the best system responses to apply provides a window of opportunity for the attackers, especially in notification systems where no assistance is provided. The author in [Cohen 1999] presents a study concerning the impact of reaction delay on the attack success rate. This study is based on simulations and shows that for ten hours of delay between intrusion detection and response, the attack success rate is 80%. This success rate increases to 95% when the response delay is twenty hours. For thirty hours as response delay, the attacker never fails to achieve his/her intrusion objective. Now that we highlighted the importance of time delay between the intrusion detection and the system response on the efficiency of an IRS, we argue that Automated IRSs are by far the most suitable approaches for designing an efficient Intrusion Response System.

Automated Intrusion Response Systems (AIRSs)

AIRSs are especially exploited when designing a critical secure system where responses against intrusion must be provided in real-time. For instance, delayed system responses against intrusions in automotive systems are not acceptable, especially in critical contexts. Automated intrusion response systems can be classified according to four characteristics as shown in Figure 2.1:

Response Selection

We can classify AIRSs into three types of response selection models:

Static model

In static models, alerts are assigned to predefined countermeasures. In [START_REF] Bruschi | [END_REF], the authors propose a Linux kernel module able to detect attacks through signatures. This module analyzes system calls to recognize attacks performed by the monitored host to block them. For instance, the module can detect that a process is launched with a shellcode as parameter and decide to stop the process. The authors observe that this type of automatic response is aggressive: a legitimate user, unconscious that his/her host is infected can be blocked. The authors in [START_REF] Chen | [END_REF] proposed a framework called Attack-Response Matrix (ARM) whose role is to allow policies to dictate actions that must be taken given a specific detected attack. This framework maps attack types to system responses. Static mapping models are the majority of existing approaches. The main limitation of such approaches is that the system responses are predictable, thus attackers can consider system counter measures while planning their attack scenarios. In addition, static model approaches do not take into account the different security administrator requirements and the costs of selecting countermeasures.

Dynamic model

Response selection in dynamic models is based on multiple factors, including system state (e.g., existing vulnerabilities, service implications), attack metrics (e.g., severity, confidence, frequency) and administrator security requirements (e.g., security policy constraints, response goals). In other words, dynamic models are approaches where the system response against an attack is not always the same and it depends on multiple factors. In [Kiriansky et al. 2002], the authors propose a dynamic code analyzer driven approach. They propose an interpreter whose role is to inspect the code to be executed by the processor. If the inspected code is not considered as malicious, then it is stored in a buffer including the checked and authorized code. Otherwise, the code execution is then blocked. Reaction against intrusion in this approach is based on blocking the attacks based on injecting malicious code. In [START_REF] Ragsdale | [END_REF], the authors propose an approach based on an agent architecture called Adaptive Agent based Intrusion Response System (AAIRS). Once an alert is detected, the AAIRS generates a response plan based on some factors (e.g.,response goal, attack type, attack implication). Figure 2.2 presents the response decision-making model of the AAIRS approach. The authors in [Porras and Neumann 1997] present an architecture called In EMERALD, countermeasures selection is based on attack evaluation to determine its severity and its impact on the monitored system. A resolver part is included in EMERALD architecture and whose role is to combine attack metrics (e.g., severity, confidence, frequency) to formulate the monitor's response policy.

The data used for the analyzes in EMERALD monitor are provided from event streams derived from a variety of sources. These sources can be audit data, network datagrams, SNMP traffic, application logs, and analysis results from other IDSs. Event flows are inherently heterogeneous and must be formatted before the analyze phase. The statistical component of the monitor (Profiler Engine) performs an analysis based on the same approach as NIDES from an event stream [Anderson et al. 1994]. The component performing a signature-based analysis (Signature Engine) uses a variant of the P-Best expert system [START_REF] Lindqvist | [END_REF]. The analyzes results of both systems as well as those of other analyzers interfaced to the monitor are subjected to the resolver to be correlated. The resolver is the component of the monitor that is responsible for implementing the response policy. The countermeasures are defined in the responsemethods field of a reaction model. The major weakness in this work is that the authors do not provide description of the architecture capabilities and its application. Proposed dynamic models such as EMERALD or the model proposed in [START_REF] White | [END_REF] do not focus on the damage caused by an intrusion. The response selection process considers only the responses evaluation and its impact on the monitored system.

Cost-sensitive model

Cost-sensitive model is a technique that attempts to balance intrusion damage and response cost [Lee et al. 2002, Mu and[START_REF] Mu | [END_REF]. These models provide a risk assessment component in order to measure intrusion damage. In [START_REF] Balepin | Using specification-based intrusion detection for automated response[END_REF]], the authors used the SHIM architecture [START_REF] Laboratories | Secure execution environments/generic soft-ware wrappers for security and reliability[END_REF]] to detect Linux hosting machine processes used to perform a specified attack. They propose to supervise all resources (e.g., files, connections) related to the malicious processes. Entities to supervise and countermeasures available for each entity are specified by the user. Countermeasures against malicious processes are automatically selected after evaluating the available countermeasures cost and choosing the most appropriate one. For this purpose, the authors propose a "gain matrix", which formulates the effects of selecting a specific response on the system. This formulation is based on two metrics; the probability of the system to be on a specific step from the attack scenario and the benefit from applying a system response on a specific system state. We note that this work considers only the detection of attacks executed on a single machine. The authors in [START_REF] Soojin | Real-time analysis of intrusion detection alerts via correlation[END_REF] propose an approach basically depending on the probabilistic correlation. This approach considers three main factors for system response against an intrusion detection: 1) operational cost, costs concerning the IDS time process of events; 2) damage cost, costs concerning the attack impact; 3) response cost, which refers to the cost of applying a system response against a detected attack. The disadvantage of this solution is that it induces a considerable traffic in the network. The authors in [Toth and Krügel 2002] propose a cost-sensitive intrusion response approach that evaluates the response effect on the system using a dependency tree structure. This approach allows to select the response which has the minimal negative effect on the system. However, the work presented in [Toth and Krügel 2002] is not providing countermeasures that depend on the context in which the system is operating.

Adjustment Ability

The adjustment of an AIRS is its ability to revise and to adjust system responses selection based on previous responses analysis. The majority of AIRSs are non-adaptive (or static) system: response selection process remains the same during the attack detection. Few are the approaches that use adaptive systems. The authors in [START_REF] Foo | [END_REF] propose an adapted approach called ADEPTS. This approach considers the response history by evaluating responses selected in the past as success of failure in order to improve the current responses selection. The AAIRS approach provides an adapted response against a detected intrusion by prioritizing responses that have been successfully applied over less successful responses. The adjustment ability is based on a learning process that evaluates historic selected responses, so that the AIRS selects only the succeeded countermeasures selected in the past. This learning is not automatically performed, it requires human intervention to evaluate previous decisions taken.

Response Execution

The main limitation of previous approaches is the large number of countermeasures to be selected especially when the corresponding attack scenario is constituted of a large number of attack steps. The challenge in AIRSs is to select the optimal set of candidate responses in real time. There are two types of AIRSs according to the type of response execution [Shameli-Sendi et al. 2012]: burst and retroactive.

Burst

Burst approaches present AIRSs that do not consider a mechanism to measure the risk index of the monitored host once the countermeasure has been applied. In this model, monitored system can apply a large set of responses, given a detected intrusion, while a subset of these responses may be enough to stop the attack. The major weakness of burst approaches is the high cost in system performance and quality of service. In other words, the only objective of such approaches is to mitigate the attack without considering the nominal system functional behaviors (e.g., performance, availability).

For instance, when considering two responses against intrusion where the first is to filter the suspect host and the second is to block all the connected hosts. The second countermeasure causes availability loss and can be avoided when applying filtering suspect host is enough to mitigate the attack.

Retroactive

Retroactive approaches provide a feedback mechanism that measures the countermeasure effect based on the responses history. This approach was first proposed in [START_REF] Mu | [END_REF]. The authors presented a response measure decisionmaking model that optimizes the generated responses set by avoiding unnecessary responses and reducing the risk of false positive response. Existing works [START_REF] Foo | [END_REF], Stakhanova et al. 2007b, Lee et al. 2002, Shameli-Sendi et al. 2013] propose approaches that rely on heuristics to reduce the size of candidate responses given a detected attack scenario. In order to limit the size of the system responses set, ADEPTS considers only the countermeasures that are applicable in the sites where the detected alert was generated. ADEPTS uses a graph of intrusion goals called I -Graph. It provides a semi-automated method called P ortableI -Graph (PIG) that determine the possible path of spread of the intrusion, appropriate services where to deploy the response, and appropriately choose the response. ADEPTS is not evaluating the candidate system responses according to the response effect on the overall system. The proposed approach considers only the system response effect on the specific service where it is deployed. The authors in [Stakhanova et al. 2007b] presented a retroactive AIRS based on a confidence level threshold; if the selected countermeasure mitigates the attack, its success factor is increased by one, and it is decreased by one on the contrary.

Prediction Ability

From the prediction ability point of view, AIRSs can be classified into two categories: Reactive and Proactive.

Reactive

In reactive approaches, system responses are applied only after an intrusion objective is achieved. Most existing AIRSs use this approach (e.g., [Papadaki and Furnell 2006], [START_REF] Strasburg | [END_REF]), although this approach is not useful in critical systems where high security is required. For instance, suppose that an attacker steals confidential and critical information. In this case, a reactive response is not useful since the confidential information has already been disclosed. In [START_REF] Anuar | [END_REF], the authors present the drawbacks of using reactive approach, which are the following:

• System responses are applied after an intrusion detection, so the system remains in a vulnerable state until the reactive response is applied.

• It is difficult to return the system to the safety state.

• The attacker has a delay between intrusion detection and system response, this delay provides a window of opportunity for the attacker to be exploited.

• From the monitored system point of view, it is easier to maintain system in safe condition than returning it from an unhealthy state to the normal conditions.

• Systems are exposed to an important risk of damage, since responses are applied after an incident is detected.

Proactive

Proactive response system allows to prevent a malicious action before it happens. Existing AIRSs use a prediction phase in the detection component. The authors in [Yu and Frincke 2007] proposed the Hidden Colored Petri-Net (HCPN). This approach can describe the relationship between the intrusion different steps, alerts and actions. HCPN associates system states with a confidence level. This approach is called "hidden" because actions are not observable by IDS but can be inferred through alerts generation. In [START_REF] Sendi | [END_REF], the authors proposed Alert Severity Modulating to anticipate the attacker's intentions. This approach is based on Hidden Markov Model (HMM) to extract interactions between attackers and targets. The main limitation of this approach is that it is not evaluating attack scenarios in term of risk and impact. The proposed approach does not consider as well the impact of applying a countermeasure given a detected attack scenario.

We previously showed approaches and architectures whose main role is to provide an automated system response against intrusion detection. A complete list of approaches and research studies on IRSs is given in Table 2.1. In light of the presented approaches, we argue that an ideal intrusion response system should satisfy the following features: Proactive, Adaptable, Cost-sensitive and Retroactive. We will now discuss the existing languages that model events detected on the system.

Attack Description Languages

IDSs are responsible for detecting the occurrence of certain events in the monitored system. These events correspond to actions performed by the attacker, these actions being part of its attack strategy. An alert corresponding to the detection of a certain action contains information on involved machines (i.e., the action source and targeted hosts), and provides the name of the associated action. The amount and type of information transported by the alert are directly dependent on the detection technique used. These information do not provide actions semantics; trying to reason on such information is therefore very difficult. In order to reason on a set of alerts and draw conclusions from these observations, it is necessary to model the detectable actions to associate a semantic alerts. In the following, we present existing attack description languages, and we show how they are used.

CAML

This language is developed and used in [START_REF] Cheung | [END_REF]] as part of Correlated Attack M odeling (CAM) project [START_REF] Cam | Correlated attack modeling (cam) project[END_REF]]. The purpose was to define a high level language so that it can be used by different correlation modules. CAML permits to model the steps of intrusion scenarios. An action is represented by a CAML module and its links with other modules are expressed by the specification of a pre-condition and a post-condition field. CAML language is accompanied by a predicates library representing vocabulary allowing to describe system properties according to an action model. A CAML module consists of three sections:

• activity: specifies events list to observe in order to instantiate an action model represented by a module. CAML events are based on the IDMEF format [Debar et al. 2007].

• pre-condition: defines the system state required for the execution of the action. This field defines, in addition, required conditions of other events already observed. For instance, as shown in Figure 2.3, the pre-condition field require that r1 must be observed before r2.

• post-condition: defines a list of predicates and events inferred once activity and pre-condition fields was satisfied. It is important to note that a CAML module does not correspond necessarily to an event detectable by an Intrusion Detection System (IDS). As shown in the example in Figure 2.3, we can see that the post-condition field is validated once both events r1 and r2 was observed in the good order. A correlation module using CAML as language of attacks description was implanted using the inference engine P-BEST [START_REF] Lindqvist | [END_REF] and by converting CAML models to P-BEST rules. Note that this conversion phase has to be manually performed. The implementation of this correlation engine revealed a combinatorial explosion problem in the P-BEST inference engine. This issue had not been highlighted in previous P-BEST engine applications because rules used in [START_REF] Lindqvist | [END_REF]] have a limited effect on its antecedents.

Translating CAML models into P-BEST rules generates P-BEST rules with complex antecedents. The authors did not define a syntax or a grammar for the language. We observe that this language is largely based on the IDMEF structure, which means that its use is restricted in architectures using only this alert format.

ATiKi

In [Steffan and Schumacher 2002], Steffan and Schumacher present an attack scenario discovery tool. They provide both a representation of scenarios by Petri networks and a modeling for actions constituting the scenarios. More precisely, they used the "Attack Net" modeling presented in [McDermott 2000] to model attack scenarios. ATiKi modeling consists of two main elements:

Brute-force guess password

Preconditions: [→ read access to /etc/passwd], [→ account with weak password] Postconditions: [→ knowledge of password] Contexts: [→ UNIX-like system], [→ Linux system]: most modern Linux systems use shadow passwords, so /etc/passwd does not contain password hashes. Description: A password can be guessed if it is included in a reasonably small search space, such as all combinations of lowercase letters or lists of English words or names. See [→ account with weak password] for more cases of weak passwords. If the hash value of the password is known, an attacker can do the password guessing off-line by generating a hash value for each candidate in the search space and comparing it with the known hash. • Conditions: It describes informally the system properties (e.g., Unlimited failed logins are allowed) and the attacker's capabilities (e.g., valid password is known) by logical predicates. A true/false label should be assignable to each predicate.

• Transitions: It describes action pre-condition and post-condition. The semantics of transition is that all of the pre-condition have to occur in order to enable the transition to the post-condition

Conditions and transitions are associated with Wiki pages [Wik] to provide a better navigation in attack graphs. A wiki page is an HTML page that can be modified through a browser providing a simplified syntax, so that users can participate in web site construction. Attacks graphs are automatically generated starting from hyperlinks situated in models pre-condition and post-condition. Figure 2.4.2 presents an ATiKi model transition corresponding to a guess weak password attack. We can see that correlation links between system properties conditions and the attacker are explicitly specified by using hyperlinks toward conditions. Contexts field in Figure 2.4.2 defines the context of the guess weak password action. This field facilitates the navigation in system Wiki pages. Once the set of transitions and conditions was defined, a search is done to determine the set of attacks graphs. Figure 2.5 presents an example of attack graph generated from a small set of transitions and conditions. This tool is intended to explore attacks graphs, but it is not intended to intrusion detection. However, although the authors do not mention it, it would be possible to use the generated graphs as a scenario models base for IDS. In addition, intrusion objectives cannot be modeled using Atiki modeling.

ADeLe

As part of MIRADOR project [START_REF] Cuppens | Managing alerts in a multi-intrusion detection environmen[END_REF]], the authors in [START_REF] Michel | Trusted Information: The New Decade Challenge, chapter ADeLe: An Attack Description Language for Knowledge-Based Intrusion Detection[END_REF] propose an Attack Description Language (ADeLe). The aim of this language is to specify a database of attacks to configure a set of IDS. ADeLe is a procedural language, we present in the following the structure of an ADeLe model. An ADeLe model consists of three parts:

-EXPLOIT: This part specifies required conditions to perform the attack, attack description (i.e., the attack code or its different steps) and the attack effects on the system. This part is composed of three parts: pre-condition, attack code, post-condition. There are no proposed languages expressing pre-condition and post-condition fields. The attack code field allows to specify the nature of the language used in the attack. It is thus possible to include a C++ function or to specify informally the attack and stating that this is a text. The language specification is used to provide a selection of the best interpreter or compiler when reading the file. -DETECTION: This part specifies how to detect the attack. A high level language is proposed to express the hash allowing to detect a low level event. This language permits also to express complex scenarios including know attacks. This part is composed of three sub parts:

-DETECT: This part specifies the alerts and events expected once the attack is performed. This part specifies also the time and contextual constraints between alerts/events. These specifications allow to define how alerts/events must be sequenced to detect a full attack scenario.

-CONFIRM: This part expresses elements that should be checked on the monitored system to confirm or deny the success of the attack. A set of functions is provided for this purpose. For instance, the function Unreachable_Machine(<IP_address>) returns the boolean value true if the specified machine is unavailable.

opening a connection) or could concern the user or the attacker itself (e.g., a knowledge acquisition or obtaining privileges reserved for the administrator)

-The scenario corresponding to the attack. An attack scenario can be composed of multiple actions.

From the detection point of view, a LAMBDA model specifies how to detect an attack. This description consists of three parts:

-The actions to be taken on the monitored system to detect the attack.

-How these detection actions must be combined to detect the attack.

-A set of verification measures to quantify the impact of the attack on the system.

LAMBDA is a modular language, which allows to describe an attack starting from other attack models. The modularity of a modeling language is an important aspect. Indeed, it facilitates the maintenance of an attack base and allows to describe attacks that can be used afterward in more complex scenarios. We present now the LAMBDA language structure as well as some LAMBDA model examples. The model adopted for the system representation is presented in Figure 2 This predicate can be used, for example, in an attack model where its execution requires that the targeted host uses the netBios service. In order to combine multiple predicates in an expression, the logical operators ∧, ∨ and ¬ are used in attack modeling. The effects of an attack does not always result in a change in the system state. The execution of an attack can allow the attacker to get information about the targeted system without violating security policy. A meta predicate knows is defined to represent this acquisition of knowledge by the attacker. For instance, the predicate knows(U ser, mountedpartition(Address, P artition)) specifies that U ser knows that the partition P artition of the host corresponding to the address Address is mounted. This predicate can be used for example in the post-condition of shwomount LAMBDA action.

-Transitions description, Language L2: In LAMBDA modeling, transitions are associated with events. Language L2 is based on two operators (∧ and =) and a set of attribute names. The set of considered attributes are action, actor, date.

In order to compare temporal information, L2 includes also the operators < and ≤. The transition associated with an event e can be formalized in L2 as follows:

action(e) = a ∧ actor(e) = u ∧ date(e) = [t1, t2].
-Events combination, Language L3: This language provides operators, allowing to combine events. Operators allowing to combine two events e1 and e2 are:

-e 1 ; e 2 : sequential composition of e 1 then e 2 .

-e 1 | e 2 : parallel execution of e 1 and e 2 .

-ē1 [t 1 , t 2]: absence of e 1 in the events flow between t 1 and t 2 .

-e 1 ? e 2 : represents the non-deterministic choice between e 1 and e 2 .

-e 1 & e 2 : synchronized execution of e 1 and e 2 .

The full description of an attack is modeled using these three languages. In a LAMBDA model, variables are represented by terms starting with a capital letter and constants by terms starting with a lowercase letter. We note that variables are used locally in a LAMBDA model. On the other hand, we cited the modularity of language: it is actually possible to reference an attack model as an action associated with an event, using the clause where. We present an example of attack modeled via LAMBDA. This attack consists of six steps and allows to exploit a bad configuration of security policy in order to access to a host partition. The attack's steps are modeled as follows:

1. rpcinfo -p Target-IP This command allows the attacker to know whether the portmapper service and the NFS daemon are started on the target host.

showmount -e Target-IP

The attacker obtains the list of exportable hard drive partitions.

showmount -a Target-IP

The attacker obtains the list of mount points.

finger @ Target-IP

The attacker obtains a host user ID and knows that the devil finger is started on the target host.

adduser -uid Userid Username

This step is performed on the attacker's host. He/she adds a user account on his/her host by specifying the parameters acquired through the previous steps.

mount -tTarget-partition \mnt

This step corresponds to the execution of action violating the security policy. In fact, the attacker obtains an illegal access to a mounted partition.

scenario: ((E 1 ; (E 2 &E 3))&E 4 &E 5); E 6 where action(E 1) =rpcinfo -p IP-cible ∧action(E 2) =showmount -e IP-cible ∧action(E 3) =showmount -a IP-cible ∧action(E 4) =finger @ IP-cible ∧action(E 5) =adduser -uidUserid Username ∧action(E 6) =mount -tTarget-partition \mnt ∧actor(E 1) = A ∧ actor(E 2) = A ∧actor(E 3) = A ∧ actor(E 4) = A ∧actor(E 5) = A ∧ actor(E 6) = A detection: ((F 1 ; (F 2 &F 3))&F 4); F 5 where action(F 1) = detect(E 1) ∧action(F 2) = detect(E 2) ∧action(F 3) = detect(E 3) ∧action(F 4) = detect(E 4) ∧action(F 5) = detect(E 6) ∧ date(F 5) = t verification: W 1 where action(W 1) = f oreign_mount() ∧ date(W 1) = t ′ ∧t ′ ≤ t Figure 2
.7: Model of the attack exploiting the NFS service.

The Figure 2.7 represents a LAMBDA modeling of the full attack. The first four steps are part of the acquiring knowledge phase about the targeted machine. We did not represent elementary attack models in Figure 2.7 but the overall scenario. Note that the detection field makes no mention of the step executed locally on the attacker machine. In fact, this step is not detectable. The detection and verif ication fields are intended to specify the operations required to detect and verify the success of the attack in the IDS. The separate specification of tasks to detect and verify the attack allows greater flexibility in specifying the attacks as these operations are largely dependent on the used platform. The verif ication field specifies a function that checks if someone tried to mount a partition from a foreign host to the monitored network. Whereas the detection field specifies the attacker hash. The logical information that contain the pre-condition and post-condition models fields allow to consider automatic generation of complex scenarios using elemental action models.

We will see in the following chapters that LAMBDA language was considered to specify the elementary actions, to take advantage from its modularity. LAMBDA well models complex scenarios and facilitates the update process of attack base. Once these actions are specified, it is possible to find logical links between these models in order to correlate alerts for instantiating these models (see chapter 4). This makes the proposed AIRS in a phase advance with respect to attackers.

Conclusion

This chapter introduced Attack Description Languages. We discussed the benefits and drawbacks of most important languages and we judged LAMBDA language as the most appropriate attack description language to our approach. This chapter introduced as well the Automated Intrusion Response Systems and their main features. We explored existing approaches and their limitations. We showed that Proactive property should be satisfied so that the AIRS could anticipate the attackers intentions. We saw that Cost-sensitive and Adaptive properties of an AIRS should be satisfied as well in order to ensure the best level of performance and quality of service and to maintain system in safe conditions while respecting the security administrator requirements. Finally, we showed that it is important to satisfy the Retroactive property in order to satisfy the real-time constraints by generating an optimal set of countermeasures. For this purpose, we present in this thesis an approach based on the argumentative logic. This non-monotonic logic provides a smart reasoning that allows to reason on the cost of applying a countermeasure and to minimize the set of generated system responses given CHAPTER 3 Introduction to the Argumentation Logic

Introduction

When a system reasons and interacts with external elements, it may face different inconsistencies (e.g., unreliable observations, conflict between information exchanged with other systems). Thus, a smart system should have a reasoning tool that allows to manage those inconsistencies. We believe intuitively that argumentation is an appropriate candidate, since humans use it as a way to reason and to cope with conflicts. Argumentation presents an adapted model for the cognitive process of an AIRS to manage interactions between countermeasures that will be considered as arguments in the rest of the thesis. In this chapter, we present a definition of Argumentation Logic (AL), then, we explore different argumentation frameworks and we discuss the advantages and drawbacks of each existing framework. Finally, we explore existing works and approaches related to the security field using AL.

Motivation

Classical deduction is a consequence relation (denoted ⊢) that links premises with proofs. The example presented below shows how to reach a conclusion from a finite number of premises:

John is 88 years old. John is a man. All men over 80 are old.

≥ 80

John is old.

CHAPTER 3. ARGUMENTATION LOGIC

Classical deduction ensures the monotonic property: if Θ is a consequence of Γ then it is also a consequence of each set containing Γ:

if Γ ⊢ Θ and Γ ⊂ ∆ then ∆ ⊢ Θ
In other words, adding a new premises to a set Γ has no effects on conclusion deduced from Γ. Thus, when we accept proof premises, we are forced to accept its conclusion.

Here we are talking about a closed universe and a monotonic logic. This logic is not adapted for intrusion detection context, since attacker actions modify the state of the system on which we reason.

Unlike classical logic, argumentation allows us to draw conclusions reserving the right to withdraw them in light of new information. We build and compare arguments that defend a conclusion as well as counter-arguments against the same conclusion. For instance, the following argument allows to reach the same conclusion of the example previously defined:

John is old because he is octogenarian Contrary to monotonic logic, arguments can be defeated by other counterarguments. Arguments are open to objections. Here we are talking about an open universe and a non-monotonic logic. An argument is accepted only when all its objections are defeated. We can distinguish different types of objections:

• Arguments that leave some implicit premises assuming that the audience accept it. For example, we presuppose that John is a man.

• Arguments that use vague, imprecise or open information. For example, no age threshold is mentioned.

• Arguments that admit objections in exceptional cases. For example, John is perhaps immortal.

• Arguments that can be introduced even when there are doubts about certain facts. For example, I am not sure that John is octogenarian.

This list is not exhaustive but it allows to distinguish between arguments and proofs.

To summarize, when information are incomplete, uncertain or unclear and when the universe is open, it is better to use an argumentation system to model the reasoning rather than a proof system. This is the case of an autonomous and social agent. In the next section, we present existing argumentation frameworks.

Argumentation frameworks

In this section, we first present the AAF proposed by Dung [Dung 1995]. This work has highly inspired all argumentation systems proposed in last two decades. Thereafter, we present two extensions of the AAF : The framework proposed by Amgound and Cayrol [Amgoud and[START_REF] Amgoud | [END_REF][START_REF] Amgoud | [END_REF] introduce the notion of preference and the framework proposed by [START_REF] Bench-Capon | Persuasion in practical argument using value-based argumentation frameworks[END_REF] introduce the notion of value.

Abstract Argumentation Framework (AAF)

Phan Minh Dung proposes in [Dung 1995] to model the human way of argumentation during problems solving. In this framework, arguments are abstracted into entities whose role is solely determined by their relation to other arguments. That is why we talk about an abstract argumentation framework. To illustrate this principle, Dung presents an example of argumentation between two persons I and A, whose countries are at war, about who is responsible for blocking negotiation in their region.

Example I: My government can not negotiate with your government because your government does not even recognize my government.

A: Your government does not recognize my government either.

The explicit content of I's utterance is that the failure of A's government to recognize I's government blocks the negotiation. This establishes the responsibility of A's government for blocking the negotiation by an implicit appeal to the following commonsense interpretation rule:

Responsibility attribution: If an actor performs an action which causes some state of affairs, then the actor is responsible for that state of affairs unless its action was justified.

A uses the same kind of reasoning to counter argue that I's government is also responsible for blocking the negotiation as I's government does not recognize A's government either. At this point, neither arguer can claim "victory" without hurting his own position. Consider the following continuation of the above arguments: I: But your government is a terrorist government.

CHAPTER 3. ARGUMENTATION LOGIC

This utterance justifies the failure of I's government to recognize A's government. Thus the responsibility attribution rule cannot be applied to make I's government responsible for blocking the negotiation. So this represents an attack on A's argument. If the exchange stops here, then I clearly has the "last word", which means that he has successfully argued that A's government is responsible for blocking the negotiation. Definition 1. An Abstract Argumentation Framework is a pair AR, attacks Where:

• AR is a finite set of arguments • attacks a relationship over AR × AR. attacks(A 1 , A 2) means that A 1 represents an attack on A 2 .
Similarly, we say that a set S of arguments attacks A, if A is attacked by an argument from S. Argumentation systems according to AAF can be modeled using oriented graphs where nodes present arguments and arcs the attack relationship. For example, let AS = AR, attacks be an argumentation system defined as follows:

• P, Q, R, S ∈ AR • attacks(S, Q) attacks(R, Q) attacks(Q, P)
AS argumentation system can be represented using oriented graph as shown in The objective of AAF is to determine if an argument is acceptable. The semantics of this framework assign a status to the arguments in a given set by the relationships that link on one another. An argument is said to be acceptable if it can be supported by other acceptable arguments despite the critics. The acceptability of an argument depends on the arguments (respectively counter arguments) that defend it (respectively attack it). It is in this perspective that the following definitions are introduced. Definition 2. Let AS = AR, attacks be an AAF , S ⊆ AR and P ∈ AR. S is said to be conflict-free iff ∀P, Q ∈ S, ¬attacks(P, Q). Definition 3. Let AS = AR, attacks be an AAF , S ⊆ AR and P ∈ AR. P is acceptable with respect to S iff ∀Q ∈ AR, attacks(Q, P) =⇒ attacks(S, Q) Definition 4. Let AS = AR, attacks be an AAF , S ⊆ AR. A conflict-free set of arguments S is admissible iff each argument in S is acceptable with respect to S.

In classical logic, a theory has a unique extension (argument set) that is a fixed point of the deduction operation. In non-monotonic logic, a theory can admit several extensions. Argumentative logic is a non-monotonic reasoning model whose semantics are defined by different extensions. For this purpose, three extension types are considered: ground extension, preferred extension and stable extension.

To define the ground extension, we introduce the characteristic function of an AAF . Definition 5. The characteristic function, denoted by F AF , of an argumentation system AS = AR, attacks is defined as follows: An argumentation system has always a unique ground extension that can be empty. For example, we consider two argumentation system (AS1) and (AS2) as shown in Figure 3.2. Each of these argumentation systems has a unique ground extension: GE AS1 = {R, S, P } and GE AS2 = {∅} respectively for AS1 and AS2.

F AS : 2 AR -→ 2 AR F AS (S) = {P ∈ AR | P is
To enrich the semantics of an argumentation system, we define a preferred extension as the maximum admissible set.

Definition 7. A preferred extension of an argumentation framework AF is a maximal (with respect to set inclusion) admissible set of AF .

A preferred extension represents a consistent position that can defend itself against any attack and that can not be extended without introducing conflicts. The argumentation system AS2 presented in Figure 3.2 has a unique ground extension GE AS2 = {∅} and two preferred extensions: pref AS2 = {P, R} and pref AS2 = {P, S} An argumentation system does not necessarily have a unique preferred extension. We can then distinguish several classes of acceptability. A rationality which accepts only arguments that are in all preferred extensions is called skeptical. If it accepts the arguments that are at least in one preferred extension, it is qualified as credulous.

The ground extension is included in all preferred extensions. In addition, a preferred extension can be empty. Thus, the stable extension was introduced and defined as follows:

Definition 8. Let AS = AR, attacks be an AAF , S ⊆ AR and S is conflict-free.

S is a stable extension iff ∀P ∈ AR -S, attacks(S, P)

In other words, a conflict-free set S is called a stable extension iff S attacks each argument which does not belong to S.

An argumentation system does not necessarily have a stable extension. However, when it exists, it is not empty. For instance, we consider two argumentation system (AS2) and (AS3) as shown in Figure 3.3. Both preferred extensions: pref AS2 = {P, R} and pref AS2 = {P, S} are also stable extensions. AS3 do not has stable extension. In addition, every stable extension is a preferred extension, but not vice versa. If this condition is verified, we talk about a coherent argumentation system. Definition 9. Let AS = AR, attacks be an AAF , AS is said to be coherent if each preferred extension of AS is stable.

Unlike a preferred extension, a stable extension is never empty but it does not always exist. The notion of preferred extension is more interesting than ground extension since it allows to introduce different interpretations: skepticism and credulity.

Theorem 1. Let AS = AR, attacks be an AAF , if the associated graph contains no cycles then this system has a unique non-empty preferred extension which is also a ground extension and stable extension.

In abstract frameworks, attacking arguments have the same force. When two arguments attack each other, it is not possible to decide which one should be preferred. This fact has been addressed in [START_REF] Amgoud | [END_REF] where the authors extend ARs to define Preference-based Argumentation Framework (P AF) and Value-based Argumentation Framework (V AF). The authors argue that in many contexts the soundness of an argument is not the only consideration and that arguments have also a force.

Preference-based Argumentation Framework (P AF)

The authors in [Amgoud and[START_REF] Amgoud | [END_REF][START_REF] Amgoud | [END_REF] extend the AAF . They claim that the acceptability of an argument depends on the arguments (respectively counter arguments) that defend it (respectively attack it) as well as on their force. Thus, they introduce a preference relationship on the argumentation framework (see Definition 1).

Definition 10. A preference-based argumentation framework is a triplet AR, attacks, pref Where:

• AR and attacks have the same definitions as in Definition 1

• pref is a preference relationship (i.e., pref is a strict order relationship in AR.

Arguments in P AF are linked by a preference relationship. In this way, an attack from argument P against argument Q may fail if Q is preferred over P . That is why the notion of def eat has been introduced. Definition 11. Let P AS = AR, attacks, pref be a preference-based argumentation system and P, Q ∈ AR. P def eats Q (denoted def eats(P, Q)) iff attacks(P, Q) ∧ ¬pref (Q, P).

In other words, P defeats Q if Q is not preferred over P .

Similarly, we say that a set S of arguments defeats A, if A is defeated by an argument from S. Therefore, Definition 2, Definition 3 and Definition 4 are modified as following: Definition 12. Let P AS = AR, attacks, pref be an AAF , S ⊆ AR and P, Q ∈ AR.

• S is said to be conflict-free iff ∀P, Q ∈ S, ¬def eats(P, Q).

• P is acceptable with respect to S iff ∀Q ∈ AR, def eats(Q, P) =⇒ def eats(S, Q)

• A conflict-free set of arguments S is admissible iff each argument in S is acceptable (using P AF acceptability definition) with respect to S.

As presented in Definition 7, a preferred extension of an argumentation framework P AF is a maximal (with respect to set inclusion) admissible set of P AF . We can represent a P AF using oriented graph models. Arguments are represented by nodes and arcs represent the def eat relationship between them (i.e., A → B means that A defeats B). The preference relationship being a strict order relationship, it is asymmetric and transitive. Therefore, oriented graphs associated to P AF contain no cycle. According to the Theorem 1, P AF systems have a unique non-empty preferred extension which is also a ground extension and stable extension. For example, Figure 3.4 presents a P AF system (AS4). In the left side, AS4 attacks relationships are represented using oriented graph. Preference relationships between AS4 arguments are listed in the middle of the figure . AS4 is represented in oriented graph model in the right side. pref AS4 {P, R} is a non-empty and unique preferred extension and it is as well a ground extension and a stable extension.

P Q R P Q R pref(P,Q) pref(Q,R)
Figure 3.4: AS4 P AF system representation in oriented graph

The extension of the AAF to a P AF provides the use of the notion of preference. We can therefore model the choices made by an audience [START_REF] Chaim | The New Rhetoric[END_REF]. However, this approach does not allow to consider several audiences simultaneously. This is the purpose of the work presented in the next section.

Value-based Argumentation Framework (V AF)

Trevor Bench-Capon also extends [START_REF] Bench-Capon | Persuasion in practical argument using value-based argumentation frameworks[END_REF] the AAF proposed by Dung in order to assign forces to arguments. The proposed argumentation framework allows to consider several audiences simultaneously via multiple acceptability classes which enrich the semantics of the argumentation system. The proposed argumentation framework includes a set of values and a set of audiences. Multiple arguments can promote the same value.

Definition 13. A Value-based Argumentation Framework (V AF) is a 5-tuple AR, attacks, V, val, P Where:

• AR and attacks have the same definition as in Definition 1

• V is a finite set of values • val is a function which maps elements from AR to elements of V • P is a set of audiences
An audience corresponds to the audience concept proposed in [START_REF] Chaim | The New Rhetoric[END_REF]. Audiences are differentiated from each other by preferences that they affect to values. There are potentially as many audiences as strict order relationships on the set of values. We can associate an argumentation system to each audience.

Definition 14. An audience-specific value-based argumentation framework is a 5-tuple

V AF a = AR, attacks, V, val, V alpref a Where:

• AR, attacks, V and val have the same definition as in Definition 13

• a is an audience, a ∈ P • V alpref a is a transitive, irreflexive and asymmetric preference relationship,

V alpref a ⊆ V × V
Bench Capon redefines the notion of def eat (Definition 11) to include the concerned audience.

Definition 15. Let V AS a = AR, attacks, V, val, V alpref a an audience-specific value-based argumentation system and P, Q ∈ AR. A def eats B for audience a iff atacks(P, Q) ∧ ¬V alpref a (Q, P) Similarly, we say that a set S of arguments defeats A for an audience a, if A is defeated by an argument from S. In other words, an argument Q is preferred over an argument P if its value is greater than P value. We notice that the success of an attack CHAPTER 3. ARGUMENTATION LOGIC is guaranteed when arguments have the same value. When all arguments in a V AF have the same value, the argumentation system can be seen as an AAF (Definition 1). An argumentation system can be seen as a P AF (Definition 11), when each argument from a V AF has a different value. Definition 12 was also adapted as follows:

Definition 16. Let V AS a = AR, attacks, V, val, V alpref a an audience-specific value-based argumentation system, P, Q ∈ AR and S ⊆ AR.

• S is said to be conflict-free for audience a iff ∀P, Q ∈ S, ¬def eats a (P, Q).

• P is acceptable for audience a with respect to S iff ∀Q ∈ AR, def eats a (Q, P) =⇒ def eats a (S, Q)

• A conflict-free set of arguments S is admissible for audience a iff each argument in S is acceptable (using V AF acceptability definition) with respect to S.

As presented in Definition 7, a preferred extension for audience a is the maximal admissible set for audience a denoted pref erred a . We can represent an audience-specific value-based argumentation system using oriented graph. Arguments are represented by nodes and arcs represent the def eat relationship (for audience a) between them (i.e., A → B means that A def eats a B). The preference relationship being a strict order relationship, it is asymmetric and transitive. Therefore, oriented graphs associated to V AF a contain no cycle. According to the Theorem 1, V AF a systems have a unique non-empty preferred extension which is also a ground extension and stable extension.

For example, Figure 3.5 presents a V AF a system (AS5). If the shadowed nodes have a preferred value for audience a, then the preferred extension is pref AS5 {S, Q} which is by the way unique and non-empty and it is also a ground and stable extension. Otherwise, the preferred extension is pref AS5 {P, R} which is also a ground and stable extension, unique and non-empty.

Bench Capon enriches the proposed argumentation framework by introducing the notion of objective and subjective acceptance of an argument as well as the notion of indefensible argument as follows: as follows:

Definition 17. Given a V AF , AR, attacks, V, val, P , an argument A ∈ AR is objectively acceptable iff ∀p ∈ P , A ∈ pref erred p .

Related Work

The application of argumentation in Cybersecurity related issues is not deeply investigated and it presents a new research field. A first preliminary work addressing Cybersecurity issues using argumentation was proposed in [START_REF] Parter | [END_REF]. In this paper, the authors suggest the use of argumentation to provide automated support for security decisions and in reconfiguration problem, to diagnose the root cause of security attack, and to set security policies.

Argumentation logic for firewall policy specification

Argumentation was applied to assist firewall configuration management in [Bandara et al. 2006, Bandara et al. 2009, Applebaum et al. 2012].

Firewall is a tool that specifies which traffic types should be permitted or denied based on IP addresses. This tool is configured through an ordered set of rules. The author in [Wool 2004] presents a study concerning firewall configurations. This study shows that the average of rules in firewall configuration is 144 rules and can reach thousand rules. This large number of rules presents a constraint when specifying and maintaining firewall configurations. In addition, configuring firewall is difficult a task since many changes can be required during firewall configurations. Theses changes are made by different security administrators. Thus, such changes can induce anomalies since rules order is crucial when specifying firewall configurations. For instance, consider the example presented in Figure 3.6. The acme.com's security administrator specifies the following high-level requirement: "allow F T P connections f rom all hosts in the coyote.com network except f or the host called tricky.coyote.com". This requirement is implemented in this example by rule 5 and 6. However, if the security administrator inverts these rules order, FTP connections from all hosts in coyote.com will be authors propose the prefer predicate:

order(allow_http_fudd, block_any): prefer(req(allow_http_fudd, allow, Pkt), req(block_any, block, Pkt)).

This predicate is used to ensure precedence relationship between these requirements to avoid the shadowing anomaly. The notion of attack between arguments is introduced in this approach through the predicate complement:

complement(L 1 , L 2) ← B
This predicate ensures that two conflictual rules (L 1 , L 2) can not be part of the same admissible extension under some conditions B. The complement predicate includes the incompatibility between two opposite preference rules (i.e., prefer(rule1,rule2) is always incompatible with prefer(rule2,rule1)). The complementarity between rules allowing the traffic and others denying the same traffic is defined through complement predicate as follows:

complement(action(allow,_), action(block,_)).

In [Bandara et al. 2009], the authors extend their previous work. The proposed approach generates automatically firewall policies from higher-level requirements. The extended approach supports generation of the low-level rules from high-level policies.

The framework presented by Applebaum in [START_REF] Applebaum | [END_REF]] differentiates itself from these last two approaches through introducing the notion of rationales. The authors take advantage from the Value-based Argumentation Framework by assigning a rationale (value) to each argument (rule) in the policy. Applebaum proposes to resolve conflictual situations in firewall policies by defining a potential ordering of the rationales behind each argument (rule). The firewall can then resolve anomalies and conflictual rules through this order of priorities. We consider the firewall policy example in Table 3.1 proposed by the authors. The proposed firewall policy contains anomalies. The authors present in Table 3.2 all anomalies in the firewall policy example.

Argumentation is incorporated in this approach in order to avoid these anomalies. The attacks relationship between arguments is used to define anomalies over rules. For instance, rules 5 shadows rule 11, therefore rule 5 is said to be in attack relationship Table 3.2: All anomalies in the firewall policy example. Each pair (x,y) is an anomaly with rule 11. Table 3.3 summarizes all attack relationships between the firewall policy rules.

To resolve conflicts in firewall policy, the authors use the V AF and introduce the notion of "reasons". They propose to assign high-level reasons (values) to rules (arguments) to determine which rules should be preferred given an anomaly caused by two conflictual rules. They propose the following high-level reasons: accessibility, prophylaxis, legitimate/malicious sender, enable/disable a protocol, and enable/disable a program. According to the proposed firewall policy example, the authors assign reasons to the firewall rules as showed in Table 3.4

The security administrator specifies an ordering for these reasons according to his/her preferences and requirements. For instance, the authors consider the reasons ordering presented in Table 3.5.

Once the reasons ordering is established, the proposed approach provides recommen- (6,[START_REF] Shameli-Sendi | Intrusion response systems: Survey and taxonomy[END_REF], (8,[START_REF] Shameli-Sendi | Intrusion response systems: Survey and taxonomy[END_REF] generalization ignore allow program > prophylaxis (9,[START_REF] Shameli-Sendi | Intrusion response systems: Survey and taxonomy[END_REF] generalization remove 9 prophylaxis > accessibility (11,[START_REF] Shameli-Sendi | Intrusion response systems: Survey and taxonomy[END_REF] generalization ignore allow sender > prophylaxis Table 3.6: Anomalies and their corresponding recommendation based on the ordering in Table 3.5 order of priorities for the reasons behind the firewall rules. However, administrators can decide in specific cases to change the order of rationales priority. For instance, the security administrator can decide to give "prophylaxis" reason a higher priority than "allow protocols" in critical contexts. In such cases, firewall administrators are forced to update the firewall configuration for each required change in priority order.

Argumentation logic for access control

There are very few proposed approaches [Boella et al. 2005, Dijkstra et al. 2005, Doutre et al. 2007]dealing with access control management based on argumentation. In [Boella et al. 2005], the authors proposed an argument based approach for access control. Classical access control tools are based on the identity of the client through checking if the client profile complies with the security policy. However, the required credentials to access to a specific resource are not always known to the client. Therefore, interactive access control was introduced in [Koshutanski andMassacci 2004a, Koshutanski andMassacci 2004b], in which the process of accessing a resource can be seen as an interaction between the client and the resource owner. This process constitutes a negotiation about the credentials required for accessing the required resource until reaching an agreement. Authors defines the objective-policy description as a tuple O, P, K where O is a set of conditional objectives, P a set of policy rules and K a set of integrity constraints. The access control example presented in [Boella et al. 2005] illustrates these three types of rules in an objectivepolicy description. The authors consider a digital library case of study to explore how argumentation can be used for managing control access. Requests submitted by clients concern getting access to an article or an mp3 file. Authorization to get an electronic copy of an article is only given once the subscription to the library has been payed with the client e-money. This authorization can as well been given once the client shows a university employee pass. Once the client got the paper, the system collects a survey as a questionnaire to be filled and send by the client. Once the client got access to the requested mp3 file, the system improves its bandwidth. The authors distinguish among credentials (C) and state variables (S) in the logical language. The credentials and variables set corresponding to the example are the following:

C = {es,
O = {ra → a, a → cs, rm → m, m → ib} P = {al ∧ cr → a, sp → al, es → al, sr → cr, el → cr, f → cs, em → m, sm → ib, ds → ib} K = {ra, rm, em → ¬es, em → ¬el}
The authors introduce the notion of goal set and candidate goal argument for a goal set. A goal set is derived from the system objectives O and it represents the security administrator goals and requirements. These notions are defined formally as follows:

Definition 20. Let O, P, K be an objective-policy description.

• A goal set G is a set of literals.

• A candidate goal argument for goal set G, written c(G), is a finite linear tree consisting of pairs of sets of literals with its unique leave (B, G) or any B, such that for each node (B, H) there exists a conditional objective l 1 ∧ ∧ l n → l ∈ O such that:

(a) B = {l 1 , ..., l n } ⊆ Cl(K, U), where U is the union of all literals occurring in the ancestors of (B, H).

(b) if (B, H) is the root, then H = {l}, otherwise H = {l} ∪ H ′ when the unique parent of (B, H) is (B ′ , H ′) for some B ′ . • A goal argument for goal set G, written g(G), is a candidate goal argument c(G) such that there is no set of goal sets {G 1 , ..., G n } with each G i = G and G = G 1 ∪ ... ∪ G n .
A maximal goal set is a goal set which has a goal argument and which is maximal with respect to set inclusion.

• We say that two goal arguments conf lict if they contain nodes B 1 , H 1 and B 2 , H 2 such that Cl(K ∪ B1 ∪ H1 ∪ B2 ∪ H2, ∅) ⊢ ⊥ , where ⊥ stands for any contradiction.

According to the example previously presented, the goals sets are {a}, {a, cs}, {m}, {m, ib}. We note that the set {a, cs, m, ib} is not a goal set, since it can be splitted in {a, cs} and {m, ib}. The plan arguments generated for the example are represented in Figure 3.7. The authors used Dung's abstract framework to formalize the proposed argumentation theory. As seen in Section 3.3.1, an Abstract Argumentation Framework is a pair AR, attacks . In this approach, the authors consider the AR set as goal-plan arguments, and the conflict relationship between goal arguments as the attacks relationship. We explored in this section the existing argumentation frameworks and we showed the semantics provided by each framework. We use the argumentation in the context of intrusion detection to take profit of the smart reasoning that provides this non-monotonic logic.

Argumentation logic for network security analysis

More related to the topic of this thesis, the authors in [Martinelli and Santini 2014] propose a preliminary argumentation approach for assisting security administrators when selecting countermeasures against a specific detected attack. This approach takes advantage of the Abstract Argumentation Framework. The authors consider a decision system as a pair (D, F) where D is the set of security decisions and F is an AAF . The authors distinguish between two kinds of arguments:

• The authors propose a way to prefer () a decision instead of another using unipolar principle defined as follows:

Definition 21. Let DS = (D, F) be a decision system, where F is an AAF , and Acc stb (F) collects the sceptically accepted arguments of a framework F under the stable semantics. Let d 1 , d 2 ∈ D, then:

d 1 d 2 ⇔| F f (d 1) ∩ Acc stb (F) | | F f (d 2) ∩ Acc stb (F) |
In other words, this principle specifies the arguments in favor of and against a decision and select the most supported decision. The authors present the following example for adopting countermeasures: Consider an AAF ,

F worm = {a, b, c, d, e, f, g}, {b → a, c → b, d → b, e → d, f → a, g → f }
F f (disable-port80) ∩ Acc stb (F worm) |= 0 and | F f (¬disable-port80) ∩ Acc stb (F worm) |= 1.
Consequently, ¬disable-port80 disable-port80, and the recommended countermeasure is to not disable traffic on port 80. The main limitation of the proposed approach is that it does not consider the topology of the network. The approach proposed by the authors in [Martinelli et al. 2015] takes into account this limitation and it considers the dependencies between the network different components when reasoning about the best countermeasure to recommend.

Conclusion

As mentioned in the previous chapter, an AIRS must have a reasoning model that manages inconsistencies between countermeasures from its reaction policy and to reason on information transmitted by IDSs. In this chapter we have shown that argumentation presents an adapted model to the process of an AIRS to manage the interactions between internal arguments that presents the reaction policy and external arguments that presents attack detection. This chapter introduced the Argumentation Logic and its different frameworks. We showed the main advantages that provide each existing framework as well as the issues that can meet security approaches based on argumentation logic. The next chapter presents an approach for monitoring systems that allows the security administrator to choose the best intrusion response among all appropriate intrusion response possibilities. This approach is driven by argumentative logic and it considers the current context on which the system is operating. The purpose of this approach is to give a dynamic aspect to the intrusion response process of attacked systems that may operate while different contexts are active.

CHAPTER 4 Context-aware

Response against Intrusion Detection

Introduction

Automatic response in an intrusion detection process is a difficult problem. Indeed activating an inappropriate countermeasure for a given attack can have deleterious effects on the targeted system. In some cases the countermeasure can be more harmful than the attack it is targeted against. Moreover, given an attack against a specific system, the best countermeasure to apply depends on the context in which the system is operating. For example, in the case of an automotive system, the fact that the vehicle is operating downtown or on a freeway changes the impact an attack may have on the system. In this chapter, we present an approach for monitoring systems that allows the security administrators to choose an intrusion response that satisfies security administrator requirements and which considers the current context on which the system is operating. This approach is driven by Argumentation Logic. The purpose of this approach is to give a dynamic aspect to the intrusion response process of attacked systems that may operate while different contexts are active. The security system will be able to take the suitable decision, against a specific attack scenario, and which ensure the system safety while satisfying the prioritized system requirements.

This chapter explains how we model the intrusion process and presents our approach to construct the set of arguments set corresponding to an attack scenario. It defines a new argumentation framework which is an extension of the Value-based Argumentation Framework (VAF). We present deployment scenarios highlighting how our approach is applied in the use case of automotive systems.

Modeling the intrusion processes

The attacker is modeled as an agent who can choose from a set of actions a subset to execute in order to reach one or several intrusion objectives. The set of actions executed by an attacker can be organized in a scenario of correlated actions. Informally, by correlated actions we mean that in an intrusion scenario, some action effects makes other actions possible. From the attacked system point of view, given a set of observed actions organized into an attack scenario, reacting against an ongoing attack consists in selecting a set of countermeasures which modifies the system state to stop the attack progression or mitigate its effects.

Modeling the attacker

We use the LAMBDA formalism [START_REF] Cuppens | [END_REF]Ortalo 2000, Cuppens et al. 2006] to model the intrusion process. In our context, we consider that several probes are distributed in the monitored system to generate events which corresponds to actions executed by the agents acting on the system. Those agents can be legitimate users as well as malicious agents. The probes can be intrusion detection users [START_REF] Axelsson | Intrusion detection systems: A survey and taxonomy[END_REF]] or programs monitoring system logs for interesting events.

Actions

We generalize the notion of LAMBDA attack to the notion of LAMBDA action as some of the actions an attacker execute do not have malicious effects on the attacked system, i.e., their effects do not violate the security policy of the system. In our approach, a LAMBDA action description is composed of the following elements: Definition 22. LAMBDA action name: the action name pre-condition: defines the state of the system required for the execution of the action. post-condition: defines the state of the system after the successful execution of the action. detection: is a description of the expected alert corresponding to the detection of the attack.

The detection attribute may be empty as some actions cannot be detected by probes. For example, the modification of a file in the file system may not be logged. Although it is technically possible, for example on Linux systems using the audit infrastructure,

MODELING THE INTRUSION PROCESSES

53

logging such events for every component of a system may result in generating too many events and flood the process responsible for reasoning on possible intrusions on the system.

The pre-condition and post-condition are written using conjunctions of literals, a literal being defined as follows:

• a constant is a string starting with a lower case character or a number • a variable is a string starting with an upper case letter • a term is either a constant, a variable or a functional symbol over a list of terms • a literal is a predicate symbol over a list of terms expressing a boolean property

The detection attribute is written as a list of affectations of values to a subset of the free variables in the pre-condition. An action model is instantiated, i.e., values are assigned to the list of free variables in the pre-condition, when a new alert is generated. Predefined function symbols corresponding to alert attributes are used to specify the detection field. The alert contains the name of the LAMBDA model to instantiate if such model exists.

Literals with specific semantics are defined. The literal not, of arity one, models the negation. The literal knows of arity two models the fact that an agent has some knowledge: knows(a, b) means that agent a knows that b is true. The set of LAMBDA action models is called A.

Correlation between actions

An attacker may execute several actions to modify the system state in order to reach a state where the security policy is violated. Some actions are executed in order to make the execution of other actions possible. When the effects of an action are a subset of the pre-conditions of another action, we say that the two actions are correlated. More formally, the notion of correlation between two LAMBDA actions is defined as follows: • E a and E b are unifiable through a most general unifier u Given a set of LAMBDA action models, searching for such correlation links between action models results in a set of correlation rules. A correlation rule is a triple {A, B, u}, which represents the fact that model A is correlated with model B through the most general unifier u.

Correlation between instantiated actions

An action model is instantiated by assigning values to the free variables in the precondition. This is done by evaluating the detection field, but this may not be sufficient to assign values to all variables. The rest of the free variables are instantiated through unification with the system state, the system state being represented by a conjunction of literals with no free variables. More formally, an action model instance is a couple composed of the instantiated model and a finite substitution σ. The instance number i of action model A, denoted A i , is A i = {A, σ}. An instantiated action A 1 instance of model A and an instantiated action B 1 instance of model B are correlated iff A and B are correlated and if the corresponding unifier is satisfied. Correlated actions, models or instances, can be represented as graphs [Benferhat et al. 2003]. The set of action instances is denoted A i .

Intrusion objectives

An intrusion objective represents a state in which the system security policy is violated. An intrusion objective model description is composed of the following elements: Definition 24. LAMBDA intrusion objective name: the objective name condition: defines the state of the system in which the system security policy is violated

The condition is a conjunction of literals representing a violation of the security policy. Actions can be correlated with intrusion objectives using the same principle as in Definition 23 by replacing the pre(b) set of literals by the intrusion objective condition.

Anticipating the attacker's intentions

Anticipating the intentions of the attacker consists in generating sequences of virtual action instances, i.e., actions not instantiated from alerts, so that the set of action instances created from alerts unified with the set of virtual action instances is correlated with an intrusion objective. The generation of such virtual actions is described in [Benferhat et al. 2003].

Intrusion Scenario

An intrusion scenario is defined as a set of action instances correlated with an intrusion objective as defined in [Benferhat et al. 2003]. The set of scenarios constructed from the set of action instances is denoted S. We define the hyp : S → A i function which returns the set of hypothesis in a scenario.

Modeling countermeasures

Countermeasures are actions which are executed to mitigate the effects of an attack or prevent the execution of other attacks. More generally, they are actions which have a negative effect on the execution of other actions. More formally, we model a countermeasure the same way an action is modeled except that its detection field is empty. A countermeasure is not instantiated from an alert, values are assigned to its free variables by examining the effects it must have on the system state in order to mitigate the effects of an attack or prevent the execution of other attacks. The notion of anti-correlation formalizes the notion of negative effect.

Anti-correlation between actions

The notion of anti-correlation between two LAMBDA actions is defined as follows: • E a and E b are unifiable through a most general unifier u Given a set of LAMBDA action models, searching for such anti-correlation links between action models results in a set of anti-correlation rules. An anti-correlation rule is a triple {A, B, u}, which represents the fact that model A is anti-correlated with model B through the most general unifier u.

We also define the notion of anti-correlation between an action and an intrusion objective by replacing the pre(b) set of literals by the intrusion objective condition in definition 25. We introduce the anticor binary relationship to express that two action models or action instances are anti-correlated. If A and B are anti-correlated, then (A, B) ∈ anticor, which can also be represented by the fact that anticor(A, B) is true.

Instantiating countermeasures

Given a scenario of instantiated actions correlated to an intrusion objective, we can create a set of countermeasures instances anti-correlated with either virtual actions or virtual intrusion objectives. Since a countermeasure is not instantiated from an alert, the free variables in its precondition and postcondition are instantiated using the unifier in the anti-correlation rule used to select the countermeasure.

Argumented intrusion response against attacks

Argumentation Frameworks (AFs) have been applied successfully to formalize non monotonic reasoning among other forms of reasoning. In the context of intrusion detection, the process of reacting against attacks can be seen as a form of non monotonic reasoning. Actually, given a set of detected attacks, it is possible to reason on the state of the system, described as in section 4.2.1, to choose countermeasures to apply among a set of possible system responses [START_REF] Cuppens | [END_REF], Samarji et al. 2013]. As shown in the attack example presented in section 4.1, the set of countermeasures selected for an attack can evolve as new attacks are observed or if the system state evolves. In the context of intrusion detection, we believe that the process of reasoning on the observed attacks against a system to select the most adapted countermeasure for a given attack can be modeled as an argumentation process using a V AF .

We claim that modeling the attack and reaction processes using the semi-explicit correlation approach can be seen as two agents arguing against each other. On one side the attacker chooses his arguments, a set of actions, to try to reach an intrusion objective, and on the other side the agent defending the target chooses his arguments, a set of countermeasures, to block the attacker's progress or mitigate the attack effects.

ARGUMENTED INTRUSION RESPONSE AGAINST ATTACKS

57

We argue that the anti-correlation relationship between two LAMBDA model instances can be seen as an attack relationship over arguments.

Since we model the argumentation process using a V AF , a force, called here rationale, is associated with every action model. We add an extra element to an action model, the rationale attribute. This attribute models the reason motivating the execution of an action. From the attacker's point of view, this reason is related to the success of the attack. For example, the reason associated with the action of fingerprinting an operating system is to find vulnerabilities. From the point of view of the agent defending the system, the reason associated with the execution of a countermeasure is related to restoring some properties of the system. For example, adding a filtering rule to a firewall to block a host which connected to a server containing sensitive information is associated with the conf identiality reason.

Constructing the set of arguments

The set of LAMBDA models Λ is the union of the LAMBDA action models set, A and the LAMBDA intrusion objective models set, O, i.e., Λ = A ∪ O. We denote by A i and O i respectively the sets of action instances and intrusion objective instances. Then Λ i = A i ∪ O i is the set of all LAMBDA model instances. We denote by L the logic of predicates which is used to express the pre-condition, post-condition and system state condition of the action, reaction and intrusion objective models. The function model : Λ i → Λ returns the LAMBDA model corresponding to a LAMBDA model instance. For an intrusion objective, the function cond : Λ → L returns its system state condition.

Given an intrusion scenario S, constructed as specified in section 4.2.3, and the set of countermeasures C computed for S, we build the set of arguments used to reason as the union of the two sets:

Definition 26. Argument set: the set AR(S) of arguments corresponding to an intrusion scenario S contains all the LAMBDA model instances of S plus all the LAMBDA countermeasures instances anti-correlated with the hypothesis of S: AR(S) = S ∪ {cm | ∀h ∈ hyp(S), (anticor(post(cm), pre(h)) ∨ anticor(post(cm), cond(h))) ∧ model(cm) ∈ (A ∪ O)}

Now that we know how to build the set of arguments corresponding to an intrusion scenario, we define the attack relationship attacks between arguments: Definition 27. Attack relationship: let S be an intrusion scenario and AR(S) the corresponding set of arguments. Let a 1 ∈ AR(S), a 2 ∈ AR(S) be two arguments. attacks(a 1 , a 2) is true iff anticor(post(a 1), pre(a 2)) ∨ anticor(post(a 1), cond(a 2))

Actually, in our model the effects of a countermeasure are characterized by its effects on the system through the specification of its post-condition, but it does not represent the reason why a countermeasure should be chosen. For instance, some countermeasures may enhance the performance of an attacked system to the detriment of the availability of some services. If for some reason the performance of the system should be favored over the availability of the services it provides, then we can choose the countermeasure associated to the favorite reason.

According to this modeling, we think that V AF s are well-suited for our problematic since they allow to associate a value to each argument. However, in our case, the order relationship over the rationales associated with each argument is highly dependent on the context in which an attack is detected. In the next section we extend V AF s to take into account the contextual aspect of our reasoning.

Extending value-based argumentation frameworks

Due to the dynamic nature of information systems, we argue that using a static preference relation valpref is not adapted. We extend the definition of V AF to that of a Contextual V AF . Here a context represents a subset of the system state. More formally, the hold(S, C) relationship is used to represent that some context C is active for some agent S. This relationship is inferred from the system state through derivation rules. For a context c, such derivation rule is defined as follows : (S, c) where P j is an n-ary predicate. Such derivation rule is called a context definition. For example the following context definition expresses that if an agent is on holidays, the c holidays context is active for this agent: on_holidays(S) → holds(S, c holidays)

n j=1 P j → holds
In this model we do not explicit the activation condition for each context in C, we consider that this set is extracted from a contextual security policy specification, such as an OrBAC [START_REF] Cuppens | Modeling contextual security policies[END_REF] policy for example. The ContP ref relation is not defined for every possible combination of active contexts. A default order relation is defined and other definitions are specified for some active context combinations. If no definition is given for some combination of active contexts, then the default order relation applies. ContP ref has the same definition as the valpref used in VAF except that it allows to generate the preference between the arguments forces depending on the current context configuration. To define exceptions in priority order for a subject (s) when a combination of (n) contexts is active, the system user defines the necessary updated preferences as following:

n j=1 holds(s, c j) → ContP ref (v 1 , v 2) ∧ ... ∧ ContP ref (v m-1 , v m)
Where c j ∈ C and v 1 , v 2 ...v m-1 , v m ∈ V . We consider in this chapter that the elements of V are rationales that describe the application effect of the countermeasure on the system state.

Managing contexts

In our approach, values from the V set are interpreted as properties of the system which are favored by the associated arguments. These properties may be desirable in some context and should be avoided in some other context. For example, the availability property of some server may be desirable if the context C high_traf f ic is active for this server, where C high_traf f ic abstracts the fact that some server is under high network load.

The f avor(C, V) relationship expresses the fact that property V is desirable for context C. Conversely, the avoid(C, V) relationship expresses the fact that property V is not desirable for context C.

Those relationships should be used by expert to express for each context which values from the V set are desirable or should be avoided.

The following derivation rules are used to derive which values are desirable or unwanted for an agent for which some contexts are active:

holds(S, C) ∧ f avor(C, V) → wanted(S, C, V) holds(S, C) ∧ avoid(C, V) → unwanted(S, C, V)
For each value from V , we define two sets containing respectively the couples (s, c) from the derived wanted and unwanted relationships:

∀v ∈ V, W v = {(s, c) | wanted(s, c, v)} ∀v ∈ V, U v = {(s, c) | unwanted(s, c, v)} W v
contains the set of agents for which the same value v from V is a desirable property for all the active contexts for those agents. U v contains the set of agents for which the same value v from V is not a desirable property for all the active contexts for those agents.

From those sets, we can compute a score s for each value v from V :

∀v ∈ V, s(v) = W v -U v
This score is used to define an order relationship over the values in V . This order is used to derive the contextualP ref relationship:

∀v 1 ∈ V, ∀v 2 ∈ V, v 1 = v 2 , s(v 1) > s(v 2) → contextualP ref (v 1 , v 2)
If two values from V have the same score, the default order relationship is used:

∀v 1 ∈ V, ∀v 2 ∈ V, v 1 = v 2 , s(v 1) = s(v 2) ∧ def aultContextualP ref (v 1 , v 2) → contextualP ref (v 1 , v 2)
In the next section, we present how the system can take into account the context change during the reaction process.

Argumented and context aware reaction mechanism

Given an intrusion scenario, from the point of view of the agent defending the system under attack by another malicious agent, the reaction process consists in choosing among the possible countermeasures the best subset according to his/her preferences, those preferences being encoded in the ContP ref relation. According to our approach, this consists in using the attack relationship we have defined to build admissible sets of arguments, each set representing a coherent set of candidate countermeasures. Note that we only consider the argumentation process from the defending agent point of view, we do not try to construct extensions corresponding to actions the attacker could make. Taking into account a context change, the system recomputes the admissible extensions according to the updated ContP ref relation. Building admissible extensions ensures us that they do not contain conflictual countermeasures, which would make the execution of the corresponding set of countermeasure impossible. The system operator manages the detected attacks and chooses the reaction that suits the best the current security state. The operator can choose the reaction among the stable extension of the arguments set AR(S) corresponding to the considered scenario S which offers the set of countermeasure that mitigate all the possible attacks that may occur on the system. Preferred extensions are maximal sets of arguments (with respect to set inclusion) that defend themselves against all attacks. The preferred extension of AR(S) is the maximal admissible set of arguments. According to the Theorem 1, CV AF systems have a unique non-empty preferred extension which is also a ground extension and stable extension, since the oriented graphs associated to the CV AF contain no cycle.

The process of countermeasures selection depends on the type of reasoning used by the system operator: The credulous reasoning consists in the selection of countermeasures (arguments) appearing in at least one preferred extension, this offers the system more intrusion response possibilities that may be defeated by other countermeasures. Whereas the skeptic reasoning consists in selecting countermeasures from the grounded extension which present the least (with respect to set inclusion) complete extension. In this kind of reasoning, the selected countermeasure will not be defeated by any other reaction model. We summarize our approach in Algorithm 1 and Algorithm 2 where we show how the security system generates the arguments set corresponding to a detected attack, and how it constructs the preferred extension.

Theorem 2. Given a set of n actions and m intrusions objectives and p reactions in a an attack scenario, the complexity of the algorithm 1 is

O((n + m) 2 + p × n) in time.
Proof. According to algorithm 1, the loop from line 3 to line 13 costs O((n + m) 2). The nested loops from line 14 to line 20 costs O(p × n). Therefore, the overall time complexity of algorithm 1 is O((n + m) 2 + p × n). Theorem 3. Given an argument set of n arguments, the complexity of the algorithm 2 is O(n 3) in time.

Proof. According to algorithm 2, the nested loops from line 2 to line 8 costs O(n 2). The nested loops from line 9 to line 15 costs O(n × m) where m is the number of arguments in the preferred extension. In the worst case the number of arguments in the preferred extension is equal to the number of arguments in the argument set (i.e., the preferred extension in this case is the argument set). Thus, we consider the complexity in time of this nested loops as O(n 2). Therefore, these two nested loops cost O(n 2). Finally, the main loop from line 1 to line 19 will be executed in the worst case n times since the argument set will be decremented in the worst case by one argument according to line 16. Therefore, the overall time complexity of algorithm 2 is O(n 3).

Avoiding unexpected side effects of countermeasures

Now that we have built an exhaustive list of coherent and appropriate countermeasures, we focus on this section on how to avoid generating countermeasures having unexpected side effects. For this purpose, we propose the following V AF defined as follows:

P ref ext , side_ef f ects_attack, V, val, valpref
Where side_ef f ects_attack is defined as follows:

1: do In other words, two arguments Arg 1 = Cm 1 , a 1 , R j and Arg 2 = Cm 1 , a 2 , R k are attacking each other if a countermeasure Cm 1 generated among the preferred extension (from the previous Section) against an attack a 1 can help an attacker in another attack scenario to meet his/her intrusion objective by making the execution of action a 2 possible. In our approach, we consider that a countermeasure having side effects can be proposed to the security administrator only when the attack scenario that it is targeted against is more risky than the attack scenario that it can help (i.e., the attack scenario having the lower risk value is defeated by the other one).

The generated preferred extension according to the V AF presented in this section presents the final countermeasures list to be proposed to the security administrator and which satisfy the following conditions (i) no conflicts between parallel responses, an input for the anti-correlation module whose role is to generate a consistent set of countermeasures that prevent the intrusion scenario. Finally, the anti-correlation module refers to the "context" part to update the priority order by extracting the list of active contexts. This enables the reasoning module to generate the best set of countermeasures (i.e., the set that best fits the phase and the user requirements).

In the next section, we show the deployment of our approach in an automotive system using the credulous reasoning.

Reaction process in an automotive context

We apply our approach on an automotive system as an example of a case study to explore the issues that can meet complex systems during the reaction process.

Automotive system

In order to give an example of potential need for dynamic enforcement of security requirements to control different security activities, we consider the following abstract example of the automotive on-board system. A modern automotive on-board network interconnects a hundred of microcontrollers, termed Electronic Control Units (ECUs) organized into application-specific domains bridge by gateways, as shown in Figure 4.4. Each ECU is responsible for a basic functionality of the vehicle (e.g., Brake, direction, GPS signal). Thus, ensuring the security for these components presents a vital need for automotive systems.

Attacks have been shown to be quite feasible [START_REF] Koscher | [END_REF]] by bypassing the filtering performed between domains or by brute-forcing ECU cryptography-based protection mechanisms. Security vulnerabilities can be exploited to affect automotive system different components (e.g., lock/unlock car wheel at speed, disable brakes, kill engine, disable cylinders) [START_REF] Koscher | [END_REF], Checkoway et al. 2011]. Such attacks may in practice originate from the Internet connection increasingly available in vehicles or even from the Bluetooth pairing of a compromised mobile phone to the vehicle onboard network. Further attacks are anticipated in upcoming Car2X applications, which will feature vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communications. Many security attacks and vulnerabilities are due to the fact that either security policy is not well specified and enforced or system-wide security policies (dependencies between different security policies) are too weak. Automotive on-board architectures Figure 4.4: Automotive on-board network architecture [Project] do not only rely on the simple enforcement of security rules, but also involve multiple enforcement points, especially when the underlying platforms and infrastructures are providing services themselves, like HSM, or middleware layers. For instance, the security policy to be applied in a vehicle is the combination of an invariant policy for the usage control of cryptographic credentials of Electronic Control Units (ECU), and a flexible networking security policy. The credential usage control policy is enforced by the HSM and possibly through the virtualization of the ECUs if applications on the same ECU have to be segregated. In contrast, the networking security policy is enforced by all network elements. Moreover, the access control architecture must also allow enforcement of rules that limit the traffic on the buses under consideration, based on trusted authentication or other security mechanisms like traffic filtering or secure logging. However, as highlighted in the previous section, the enforcement of these different security mechanisms depends on a specific event or situation. For instance, while communicating with external entities like vehicle-to-infrastructure, it is preferable to apply the traffic filtering rules to limit the computation load on the HSM, which is responsible for the verification of cryptographic operations. Applying such rules will eventually increase the performance of on-board system. However, always applying such kind of rules is not desirable, as the enforcement of rules requires that the vehicle is in a specific context as well as a specific security event is active. To dynamically enforce these different sets of security policies, we call these policies as reaction policies [Autrel et al. 2009]. In an on-board architecture, we need a system in which policy enforcement decisions are based on specific arguments in order to attain more fine grained enforcement of CHAPTER 4. CONTEXT-AWARE INTRUSION RESPONSE security policies. Three main contexts are considered in this approach:

• in_car: Context defined to activate or deactivate specific activity in the vehicle.

This context is defined to manage the vehicle different services (e.g., ESP, GPS sensor, Engine control) by controlling the ECU arranged in the architecture specific areas and connected by bridges as shown in Figure 4.4.

• V 2V : Context defined to manage communication within vehicles. In the V 2V context, when two or more vehicles or roadside stations are in radio communication range, they connect automatically and establish a network enabling the sharing of position, speed, and direction data. Every vehicle is also a router and allows sending messages to more distant vehicles and roadside stations.

• V 2I: Context defined to manage communication between vehicle and infrastructure. In V 2I, the infrastructure plays a coordination role by gathering global or local information on traffic and road conditions and then suggesting or imposing certain behaviors on a group of vehicles. One example is ramp metering, already widely used, which requires limited sensors and actuators (measurements of traffic density on a highway and traffic lights on ramps).

Extra contexts are considered as well, describing the environment on which the vehicle may operate (e.g., highway, parking, rainy day, night).

Attack modeling

We consider in this section, that the automotive system detects a malicious action (a1) consisting in cracking the wifi passkey modeled as follows:

name : wif i_passkey_crack(A, T) pre : role(T, wif i_gateway) ∧ is_on(T) post :

network_access(A, T, wif i)

The system generates the attacks that may be performed by correlation to reach a potential intrusion objective. In the following, we consider the "manipulation of relayed message" as a potential intrusion objective (io1) that the attacker can achieve through the "Message saturation" attack. Relayed messages are open to manipulation in an ITS-S (Vehicle) en route. Received messages that are intended for relaying can be withheld. An ITS-S is unable to determine quickly whether a received message is valid and from a legitimate user and then acts on information received in the message.

This intrusion objective is modeled as follows:

name : manipulation_relayed_messages condition : manipulate(A, T) ∧ saturated_server(T) Thus the system considers the "message saturation" as an attack hypothesis (h1) which consists in overflowing the ITS server with messages (Denial of Service attack). We consider several implementations of this attack: through wifi connection, Bluetooth connection or direct connection to the system bus. This attack is modeled as follows:

name : message_saturation(A, T, M) pre : network_access(A, T, M) ∧ role(T, its_server) ∧ is_on(T) post : saturated_server(T)
Where the access type is held by the M variable. The role(T, its_server) means that the entity T acts as an ITS server

Response model

Once the attack scenario is generated, the system selects anti-correlated models that remedy the detected attack, the intrusion objective and all the attack hypothesis. For instance, the system has two intrusion responses against the passkey crack attack in the network: disable_wif i and f ilter_host. We model these two countermeasures as the following:

name : disable_wif i(A, T) pre : is_on(T) ∧ network_access(A, T, wif i) ∧ is_on(wif i) post : not(network_access(A, T, wif i)) ∧ not(

is_on(wif i)) rationale : precaution

The disable_wif i countermeasure is usually used when critical contexts are active and when we cannot predict the level and the current impact of the detected attack.

name : f ilter_host(A, T) pre : is_on(T) ∧ network_access(A, T, wif i) ∧ is_on(wif i) post : not(network_access(A, T, wif i)) rationale : availability

Once the f ilter_host countermeasure is applied, the attacker, identified by his/her IP address, cannot access the service. Here, we can identify a relation of anti-correlation between these countermeasures (f ilter_host requires, in its preconditions, that wifi must be on whereas disable_wif i turns the wifi off).

Rationales

We consider three main contexts in the automotive system:

• in_car: context defined to activate or deactivate specific activity in the vehicle • V2V: context defined to manage communication within vehicles • V2I: context defined to manage communication between vehicle and infrastructure The rationales order is initially defined for the three main contexts. For instance, the rationales order in the in_car context is defined as follows:

1.conf identiality, 2.perf ormance, 3.availability, 4.integrity, 5.precaution. This rationales order depends on the context on which we reason. For instance, when communicating with external entities like vehicle to infrastructure (V 2I), it is preferable to apply the traffic filtering rules to limit the computational load which ensures precaution for the system. However, applying such kind of countermeasures in the in_car context reduce the performance of the vehicle. Functional experts in automotive systems define "performance" rationale as the different parameters allowing the vehicle to execute correctly its multiple functions. They define as well the rationale "precaution" as the capacity of the countermeasure to mitigate the corresponding detected attack. In other words, "precaution" reflects the severity level of countermeasures. When reasoning in a specific main context, extra contexts can become active, which may change the rationales order. For instance, in the in_car context and the vehicle (a) is in highway context the "precaution" rationale becomes more prioritized than "availability" and "integrity", because we become reasoning in a critical context. In a formal way, this exception is defined as follows:

holds(a, highway) ∧ holds(a, in_car) → ContP ref (precaution, availability) ∧ ContP ref (availability, integrity)

Intrusion response selection

In this section, we consider the scenario of attack described in Section 4.4.2 we denote it s1. Once the system generates the attack scenario s1, it selects the appropriate intrusion response for a1 and also for potential attacks that may be triggered in coordination [START_REF] Samarji | [END_REF] with it. The system generates the set of admissible arguments (countermeasures) for the detected and potential attacks. Here, the arguments set AR(s1 h1, io1, r1, r2, r3, r4, r5, r6, r7, r8}. Where: r1 f ilter host: This countermeasure proposes to filter the suspect host and to isolate it from the ITS infrastructure.

) content is AR(s1) = {a1,
r2 disable wif i: This countermeasure blocks the wifi connection inside the concerned vehicle to stop any suspected activities. It is a strict system response since it causes a loss of system availability.

r3 reduce f requency: This countermeasure proposes to reduce the frequency of the beacon and other safety-of-life messages from 10 Hz to a lower number to reduce congestion. An alternative solution is to use adaptive frequency control where messages would be sent at different frequencies depending upon the nature of the message, the availability of 5.9 GHz bandwidth, and potentially other local conditions. r4 add source identif ication: A source address added to a V 2V message must be identifiable by the ITS receiving station and non-forgeable so that the receiving station can trust that the source address has not been modified between the time of message origination and the time the message was received.

r5 limit message traf f ic: An ITS-S is required to register (and authenticate) to the ITS infrastructure either when it enters an administrative region or at each roadside unit that comes into range if the roadside infrastructure is not extensive. Once registered, the vehicle accepts and processes only messages received from the ITS infrastructure while it is in radio range. When no roadside unit is in range then the ITS-S will receive and process ITS messages from other vehicles. r6 digitally sign each message: The recipient of a message can gain confidence in the message's origin, the permissions of the originator, and its integrity against changes in transit if the message includes a digital signature or other form of cryptographic checksum and the recipient has the means to check that the checksum is valid.

CHAPTER 4. CONTEXT-AWARE INTRUSION RESPONSE

r7 include a non_cryptoghraphic checksum: A simple approach to protecting the contents of a transmitted ITS message is to include a checksum computed from the original contents. The receiving ITS-S is then able to calculate the checksum itself and compare it with the value included in the incoming message. If the checksum values do not match, the received message can be rejected. A simple longitudinal parity check would probably be insufficient for the purpose of establishing the integrity of a received ITS message, but the more reliable Fletcher or Adler algorithms would provide the necessary protection. These algorithms, unfortunately, require more processing resources in both the sending and receiving ITS-S.

r8 remove requirements f or message relay: The propagation of ITS messages to emulate a wide-area broadcast (particularly in an emergency situation) is achieved by allowing an ITS-S (Vehicle) to re-broadcast any received message that has not reached the edge of its relevance area. Removing this capability makes it impossible for a message to be modified en route. This can only be achieved if the roadside infrastructure is sufficient to receive the original message and to transmit it across the whole of the relevance area.

The intrusion response (r1, r2) and (r2, r8) are attacking each other according to the anti-correlation definition (r1 and r8 need that the wifi connection must be on in their preconditions). r1 and r8 defeat r2 when the system is reasoning in in_car context defined by default as shown in Figure 4.5 where defeated countermeasures are presented in grey.

The system generates the preferred extension P ref ext ={r1, r3, r4, r5, r6, r7, r8} which presents the maximal (with respect to set inclusion) admissible set of AR(s1). The generation of the preferred extension depends on the current active contexts. For instance, when reasoning in the highway context, the system updates the rational order as described in the previous section. Thus, the disable_wif i countermeasure defeats f ilter_host and no_cryp_cheksum since the rationale of r2 which is "precaution" becomes more prioritized than "performance" (the rationale behind r1 and r8) as shown in the Figure 4.6. The updated preferred extension becomes P ref ext ={r2, r3, r4, r5, r6, r7}. system the most appropriate to achieve this objective. We have proposed an approach based on the argumentative logic and modeled via LAMBDA models which ensures the automatic intrusion responses for security system. This approach considers the different active contexts on which the system is operating. In this chapter, we showed how to improve the existing argumentation framework. We proposed a new approach that allows us to to take the suitable and dynamic decisions that maintain the system in safe conditions while satisfying the prioritized system requirements. In the proposed approach, the reasoning module refers to a rational order which is manually predefined by the system expert. The next chapter will focus on the integration of a recommender module to the current architecture. The main role of the recommender module is to provide pertinent decisions among those proposed by the generated preferred extension.

Next chapter presents a more enhanced approach where the rational order could be automatically established by referring to the user historic.

CHAPTER 5 Multi-Criteria

Recommender Tool for Supporting Intrusion Response System

Introduction

This chapter introduces an approach based on a recommender system for efficient security administrator's assistance in the context of reaction against intrusion detection. Recommender systems are tools for processing and organizing information in order to give assistance to the system users. This assistance is provided by analyzing their own preferences or the preferences of their community. The proposed methodology considers the set of active contexts while analyzing the security administrator decisions historic. It provides better recommendation depending on the contexts in which the system is operating. We propose in this chapter an approach based on a recommender system using Multi-Criteria Decision Making (MCDM) method for assisting system security administrators while selecting the appropriate countermeasures against a specific attack scenario. This approach considers the different effects a countermeasure could have on the system as criteria to be considered when selecting the appropriate countermeasures. The objective of this approach is not to replace the security administrator during the countermeasures selection process, but rather to recommend system responses based on the security administrator decisions historic. This approach permits also, to automatically select appropriate countermeasures in critical cases where the system security administrator is unable to select them.

This chapter introduces an MCDM approach for security administrator assistance. It shows as well how to integrate the MCDM module into system response against intrusion detection approach presented in the previous chapter. Finally, it presents CHAPTER 5. MULTI-CRITERIA RECOMMENDER TOOL deployment scenarios highlighting how our approach is applied in the use case of automotive systems.

Related work

The aim of this section is to address the recommendation problem from the MCDM perspective and to demonstrate the interest of applying MCDM methods to design multicriteria recommender systems. There are three basic approaches for recommender systems: the content-based recommendation [Pazzani and Billsus 1997], collaborative filtering [START_REF] Resnick | [END_REF]] and a hybrid approach [START_REF] Balabanovic | [END_REF] that combines collaborative and content-based methods. The collaborative filtering approach consists in collecting evaluations about the different contents and generating predictions for the user about a specific content by comparing them with the evaluations done by users with similar tastes and preferences. The Content-based approach focuses only on the user evaluations to generate recommendations. This approach consists in analyzing the user evaluations historic to identify the user common features of interest. The work done in [Pazzani and Billsus 1997] presents an approach that collects user evaluations of the interest of visited pages on the World Wide Web. The authors show that a user profile can learn from this information and use it to recommend other pages that may interest the user.

There exists several contributions showing recommender systems that engage some MCDM methods as presented in [START_REF] Manouselis | [END_REF]Costopoulou 2007, Adomavicius et al. 2011]. The authors in [START_REF] Montibeller | [END_REF] propose a framework to support strategic decision making in an organization. The proposed framework employs Multi-Criteria Decision Analysis to support decision making in strategy workshops. This framework takes into account the organization modern nature which is less hierarchic and more participative with a more distributed knowledge and decision taking. The approach proposed in [START_REF] Montibeller | [END_REF] considers the multiple objectives aspect that must satisfy the organization strategic decision. However, this framework presents a high level of uncertainty. In [Zeleny 1982], Zeleny proposes to increase the decider confidence and to limit to the post-decision regrets. Zeleny proves how pre-decision and post-decision steps are interdependent. In [START_REF] Chiprianov | [END_REF], the authors propose to model the MCDM process using Model Driven Engineering approaches. The proposed approach offers a guidance for the analyst and improves the communication between deciders and analysts. More related to the security field, the authors in [START_REF] Oglaza | [END_REF] propose a novel approach that combines an MCDM approach called KAPUER with classic access control tools to assist users while writing high level permission rules. This approach includes algorithms that converge after the first phase of initializing user preferences.

In this chapter, we propose a recommender system based on the content-based approach to assist the system security administrator in choosing the most appropriate countermeasures according to his/her requirements, given a specific attack scenario. Using a simple recommender system is not appropriate in the context of system response against intrusion detection. It cannot take into account the multiple dimensions of the impact that a countermeasure could have on the system state. The recommended tool proposed in this work apply MCDM methods to consider the multiple criteria nature of countermeasures. There exists several MCDM methods for calculating alternatives scores:

Technique for Order Preferences by Similarity to Ideal Solutions (TOPSIS) [START_REF] Hwang | [END_REF] In this method two artificial alternatives are defined:

• Ideal alternative: alternative having the best level for all attributes considered.

• Worst alternative: alternative having the worst attribute values.

TOPSIS selects the alternative that is the closest to the ideal solution and farthest from negative ideal alternative. TOPSIS assumes that we have m alternatives and n criteria and we have the score of each option with respect to each criterion. Let x ij score of option i with respect to criterion j We have a matrix X = (xij), m × n matrix. Let J be the set of benefit criteria (more is better). Let J ′ be the set of negative criteria (less is better). First, we construct a normalized decision matrix. This step transforms various attribute dimensions into non-dimensional attributes, which allows comparisons across criteria. Normalized scores are calculated as follows:

r ij = x ij m i=1 x 2 ij , i = 1, .., m ; j = 1, .., n
Then, we construct the weighted normalized decision matrix. Assume we have a set of weights for each criteria w j for j = 1, .., n. We multiply each column of the normalized decision matrix by its associated weight. An element of the new matrix is:

v ij = w j ×r ij .
After that, we determine the ideal and worst solutions as follows: Ideal solution:

A i = v 1 * , .., v n * , where v j * = {max(v ij) if j ∈ J ; min(v ij) if j ∈ J ′ } Worst solution: A w = v ′ 1 , .., v ′ n , where v ′ j = {min(v ij) if j ∈ J ; max(v ij) if j ∈ J ′ }
In the next step, we calculate the distance d jw between the target alternative j and the worst solution A w , as well as the distance d ji between the target alternative j and

AHP [Saaty]

AHP uses a hierarchical structure and pairwise comparisons. An AHP hierarchy has at least three levels:

• The main objective of the problem at the top.

• Multiple criteria that define alternatives in the middle (m).

• Competing alternatives at the bottom (n).

In AHP method, criteria weighting must be determined using (m * (m -1))/2 pairwise comparisons. Alternatives scoring using m * ((n * (n -1))/2) pairwise comparisons between alternatives for each criteria. After completing pairwise comparisons, AHP is just the hierarchical application of SAW method.

SAW [Afshari et al. 2010]

Alternatives scores are calculated using SAW method as follows:

Definition 30. Simple Additive Weighting (SAW) method ∀i ∈ {1, N }, S i = M j=1 w j × r ij
Where: S i is the overall score of the i th alternative, r ij is the rating of the i th alternative for the j th criterion, w j is the weight (importance) of the j th criterion, N the number of alternatives and M the number of criteria.

Based on the literature reviewed [Aruldoss et al. 2013], the observed advantages and disadvantages of the MCDM methods previously introduced are summarized in Table 5 Problems due to interdependence between criteria and alternatives; can lead to inconsistencies between judgment and ranking criteria; rank reversal. SAW Ability to compensate among criteria; intuitive to decision makers; calculation is simple does not require complex computer programs.

Estimates revealed do not always reflect the real situation; result obtained may not be logical.

Table 5.1: Summary of MCDM methods

Multi-Criteria Decision Making module

We designed an MCDM module to support security administrator during system response against intrusion detection. The recommender system we designed follows an iterative process as shown in Figure 5.1. This iterative process is triggered when the system detects an intrusion and generates its preferred extension. The security administrator selects countermeasures among recommended ones generated from the preferred extension. The system consults selected countermeasures evaluations according to a predefined criteria list. The criteria list presents a list of nominal system functional behavior (e.g., availability, integrity, performance). The evaluation consists in assigning to each criterion a mention that describes the impact level the countermeasure could have on the system state. The possible evaluations are (Very Low(0), Low(1), CHAPTER 5. MULTI-CRITERIA RECOMMENDER TOOL Different parts are involved in the Multi-Criteria Decision Making process such as the learning module, the recommending module, and the security administrator interface.

Learning module

We define the learning part as the different process allowing to give a visibility about the security administrator way of reacting and the different parameters influencing his/her decisions. This part is supplied by the security administrator decisions historic by analyzing the score of different criteria. Each time the security administrator validates a decision, the Context/Criteria matrix is updated with the selected countermeasure values according to each criterion. The update process of the Context/Criteria matrix according to n selected countermeasures is established as follows:

Definition 31. Let M at be a Context/Criteria matrix, M at is a matrix of integers, j ∈ card(criteria) and criteria(CM i , j) a function returning the j th criterion evaluation corresponding to the CM i countermeasure.

M at updated [contconf ig][j] = M at current [contconf ig][j] + n i=1 criteria(CM i , j)
Where contconf ig represents the current combination of active contexts, and criteria(CM i , j) ∈ [0, 4] as described in Section 5.3

Recommending module

The recommendation phase is based on the Context/Criteria matrix to determine the decider favored criteria per context. The recommending module calculates the j th coefficient criterion as follows:

Definition 32. Let M at be a Context/Criteria matrix, n = card(criteria) and j ∈ {1..n} coef f (j, contconf ig) = M at[contconf ig][j] n i=1 M at[contconf ig][i]
Where coef f (j, contconf ig) ∈ [0, 1] Coefficients are then used in the score assignment phase where candidate countermeasures are evaluated based on their value per criterion and the criterion coefficient.

MULTI-CRITERIA DECISION MAKING MODULE

87

The sum of all coefficients must be 1. The score of each candidate countermeasure must be calculated upon dynamic criteria coefficients to reflect a score compatible with the importance the security administrator assigned to each criterion according to each set of active contexts.

The score assignment presents the last phase of recommendation, which consists in a dynamic assignment of score to each proposed countermeasure so that the system can compare them and recommend the most relevant ones.

In this approach, we opted for SAW (Simple Additive Weighting) method which evaluates alternatives based on two metrics: the performance value of the alternative in term of a specific criterion, and the relative weight of importance of this criterion. SAW method is applicable only when all alternatives are evaluated in the same unit. Otherwise, other methods, such AHP for example, that allow to standardize alternatives evaluations, should be applied. As presented in this section, possible evaluations of all countermeasures are standardized (i.e., possible countermeasures evaluations according to each criterion are: 1, 2, 3 and 4). Thus, SAW method is applicable in our case of study. In addition, SAW is known as the simplest and the fastest MCDM method. This will be helpful when designing system's response against intrusion detection since such systems must respond to real-time constraints especially in critical contexts. The score of each proposed countermeasure is calculated using the SAW method as follows: Definition 33. Let CM be a countermeasure, n = card(criteria), j ∈ {1..n} and criteria(CM, j) ∈ [0, 4]

Score(CM, contconf ig) = n j=1 (criteria(CM, j) × coef f (j, contconf ig))

Security administrator interface

The aim of the recommending system is to assist security administrators and show them the points that alone they are not able to see. As explained in Section 5.3.1, the security administrator provides information that supply the learning module. Each time the security administrator selects some countermeasures, he/she is asked to validate his/her decision. The validation phase allows the learning module to consider only the decisions that satisfy the security administrator, the learning module does not consider the administrator regrettable countermeasures. Once the administrator validates his/her decisions, the learning module updates the Context/Criteria matrix,

MCDM MODULE INTEGRATION

89

pose, the approach proposed in previous chapter consists on instantiating actions hypothesis correlated to the detected malicious action. We consider the example where the system detects an action consisting on cracking the wifi passkey. The system instantiates correlated attack hypothesis that the attacker may execute. The system considers message_saturation as a correlated action. M essage_saturation is considered as a correlated action, since wif i_passkey_crack postconditions are a subset of message_saturation preconditions. The system generates as well manipulation_relayed_messages as a potential intrusion objective correlated to message_saturation. M anipulation_relayed_messages is then considered as the intrusion objective that the attacker can achieve starting from wif i_passkey_crack and through the message_saturation attack. According to the example, an attack scenario {wif i_passkey_crack, message_saturation, manipula-tion_relayed_messages} is to be considered in the responses generation phase and not only the wif i_passkey_crack.

System response generation phase

In this phase, the Anti Correlation module selects countermeasures that are anti correlated to the generated attack scenario. To avoid generating a response set containing conflictual countermeasures, we proposed in the previous chapter an approach that refers to a mono criterion evaluation to determine which countermeasure should be selected. In this chapter, we propose a more enhanced approach by integrating the MCDM module. This module allows a more adaptive evaluation between countermeasures by comparing their scores. This allows an evaluation that covers all the countermeasures impacts on the system, rather than considering the main effect of a countermeasure on the system as the only criterion to be considered. MCDM module intervenes in the proposed framework at two levels:

• It automatically updates the criteria order according to the set of active contexts in the preferred extension generation phase.

• It generates the recommended countermeasures among the preferred extension.

Recommendation phase

Once a preferred extension is generated according to a specific attack scenario, all generated countermeasures are subdivided into criteria evaluations. The recommender system refers to the current Context/Criteria matrix to generate the criteria order and coefficients as described in Section 5.3. Then, the system calculates countermeasures scores starting from countermeasures criteria evaluations and the criteria order and coefficients as defined in Definition 33. Countermeasures having highest scores will be recommended over the other system responses from the preferred extension. Security administrators are asked to select countermeasures that satisfy their preferences and requirements according to the current set of active contexts. This module is summarized in Algorithm 3.

1: Sum_per_context = 0 2: for all criterion ∈ Criteria do 3:

Sum_per_context ← Sum_per_context + M at[contconf ig][criterion]

Matrix update phase

The Context/Criteria matrix is updated when countermeasures are selected by the security administrator and depending on the context in which the system is operating.

When the security administrator selects countermeasures from the preferred extension, the Context/Criteria matrix is updated by adding selected countermeasures evaluations according to each criterion to the matrix current scores. This phase provides information concerning the security administrator preferences and requirements using his/her personal decisions historic organized according to the different criteria. It provides criteria order according to each set of active contexts as well as the coefficient of importance to give to each criterion. In this approach, the Context/Criteria matrix supports the generation of preferred extension by updating the criteria order and coefficients, which allows to apply the def eat notion between countermeasures by comparing countermeasures scores.

The inputs of the overall architecture, as shown in Figure 5.2 are:

• System state: presented as a set of literals describing the current system state

• Alert: corresponds to an action detection

• Models: actions, intrusion objectives, countermeasures models

• Contexts: supplies the reasoning module and the MCDM module with the current set of active contexts

The overall system main outputs are countermeasures selected by the security administrator.

Application to the automotive case of study

We show in this section, the deployment of our approach in the automotive system as an example of a case study and we present the evaluation of the proposed approach.

Deployment scenario

We consider in this section, the attack scenario S presented in the previous chapter and described below:

• The automotive system detects a malicious action consisting in cracking the wifi passkey W if i_passkey_crack

• The system generates message_saturation as an attack hypothesis correlated to W if i_passkey_crack

• The system generates manipulation_relayed_messages as an intrusion objective for the attacker As an output of the reasoning module presented in the previous chapter, the system generates a preferred extension that consists in a coherent set of candidate countermeasures. The generation process of the preferred extension depends on the current active contexts. The Figure 4.5 and Figure 4.6 We consider the Context/Criteria matrix example presented in Table 5.2. Once the security administrator selects and validates countermeasures, the Context/Criteria matrix is updated by evaluations corresponding to each criterion. Values in bold present the security administrator most preferred criterion according to the different combination of active contexts. The recommending module generates the criteria order and coefficients using Definition 32 in Section 5.3.2. Table 5.3 presents the criteria order and coefficients according to three contexts configurations ({in_car},{in_car,high_way},{V 2V }). This table is provided by the Context/Criteria matrix. The criteria coefficients reflect the importance to be attached to each criterion at the recommendation phase.

Once the system generates a preferred extension corresponding to a specific attack scenario, the system refers to the criteria order and coefficients tables to calculate the score of each proposed countermeasure. For instance, the preferred extension generated in in_car context and corresponding to S, contains two countermeasures: We note that all results provided in this chapter consider 15 loaded models (i.e., models include actions, intrusion objectives and countermeasures). Real-time constraints are satisfied with this approach when considering a reasonable number of models. Figure 5.5 shows the execution costs per number of detected alerts for three different model numbers. The measure confirms that a o(n 3) complexity is achieved.

Conclusion

In order to assist security administrators when selecting countermeasures, it is necessary to have a recommender system that analyzes the security administrator decisions historic to determine his/her different preferences and requirements. We consider the content-based approach the most appropriate to achieve this objective. The contentbased approach considers the user decisions historic and analyses them to provide appropriate recommendations. In this work, we proposed an approach based on contentbased recommendation for efficient security administrator assistance when selecting the appropriate countermeasures, given a specific attack scenario. This approach considers the set of active contexts in different steps of generation system response as well as in the recommendation phase. We opted for a SAW method for its low computational costs. Indeed, we showed that the complexity in time of the proposed algorithm is polynomial. Thus, our approach provides recommendations of system responses in real-time for a reasonable number of criteria and countermeasures included in the generated preferred extension. We can notice that the proposed approach does not provide the same results after a finite number of executions. Once a countermeasure is applied and validated by the security administrator, the Context/Criteria matrix is updated by the selected countermeasure evaluations. This update induces a change in criteria coefficients and may as well change the criteria order, which may provide different results in next executions.

In the following chapter, we will focus on the evaluation of the approach efficiency by testing different scenarios and checking if this approach is applicable in the context of real-time system constraints.

CHAPTER

6 Implementation and Evaluation

Introduction

This chapter presents the implementation of modules presented in chapter 4 and chapter 5. We integrate to CRIM [START_REF] Autrel | Crim: un module de corrélation d'alertes et de réaction aux attaques[END_REF]] these modules to ensure automatic system responses selection against intrusion detection. We start in this chapter by presenting CRIM tool and its main features. We consider also in this chapter the automotive system as a case of study for our approach. We show how the preferred extension generation module and the MCDM module are integrated into CRIM tool. Furthermore, we present some experimental results to show the efficiency and the performance of our approach.

CRIM

CRIM is an intrusion detection tool that allows several Intrusion Detection Modules (IDMs) to cooperate in order to provide an accurate alert. CRIM is implemented in C++ using the Qt library [Qt] for graphics.

Features and architecture

We briefly describe in this section the main features provided by CRIM. These features are described as follows:

• Alerts management: this function manages alerts generated by the different IDMs in a relational database.

IMPLEMENTATION

103

• Precaution: Very High (4)

Alerts

IDMEF (Intrusion Detection Message Exchange Format) is the only alert format supported by CRIM. This alert format was developed as part of the IETF (Internet Engineering Task Force) workshop. The IDMEF as been designed as a format for reporting information related to the observation of a suspicious event. IDMEF transports data between IDS and an alerts management console for example. It can be used for dialogue between two alerts processing modules. Considering the cooperative intrusions detection context, IDMEF designs an architecture where an IDS can be easily removed or added and where new alert processing modules can be easily introduced as well.

The IDMEF model is object oriented so it can be extended through defining new sub classes or creating new aggregation relationships with new classes. Once the model is extended, an application that was able to handle instantiated alerts from the nonextended model will be able to handle extended alerts model without considering new data. The IDMEF model is specified by XML DTD (Document Type Definition). The IDMEF is used to transmit the alerts generated from IDS. It is also used to transmit fusion alerts resulting from the aggregation of multiple alerts. Finally, IDMEF is also used in CRIM to model attack scenario alerts and alerts that require applying countermeasures. Figure 6.5 shows an example of an IDMEF alert modeled in XML file.

Implementation

Preferred extension generation

We implemented a module in CRIM [START_REF] Autrel | Crim: un module de corrélation d'alertes et de réaction aux attaques[END_REF]] that integrates the notion of rationales in countermeasures. When detecting a hostile action, this module generates the possible scenarios which can be performed by an attacker until he/she reaches his/her intrusion objective. CRIM calculates and generates the largest set (preferred extension) which contains the largest number of coherent countermeasures able to avoid the generated scenario. The generation process of the preferred extension is based on the recursive Algorithm 2 presented in Chapter 4. We show in this section, how CRIM generates preferred extensions according to intrusion detection by considering that for a given detected alert the attacker might have several intrusion objectives. For instance, we consider the scenario presented in the previous chapters where P is the number of models (i.e., actions, intrusion objectives and countermeasures), N is the number of countermeasures generated in the preferred extension and M is the number of criteria. According to the experimental results, the proposed approach does not satisfy real-time constraints when considering more than 350 models. The proposed approach can process many alerts detected simultaneously in real-time when considering a reasonable number of loaded models.

Conclusion

The current implementation of the approach successfully responded to real-time constraints, since the responses of critical systems, such as automotive system, must be instantly provided especially in critical contexts. We presented some experimental results concerning the execution costs of our implemented approach. These results allow the evaluation of the approach in terms of performance and time required for the system to response against different attack scenarios detected at the same time. We showed that the proposed approach can process 1959 alerts in real-time. By implementing our approach, we successfully protect critical systems and infrastructures by generating

Perspectives

In this chapter, we present an overview on how the different thesis objectives outlined in the first chapter have been followed. Afterwards, we show how our approaches can be improved and open up the door to a new research focuses.

Contributions

Our main objective in this thesis was to provide a tool that keeps the system in a safe state while maintaining the best possible level of performance and quality of service. We present in this section different contributions proposed to meet this objective.

Our first contribution is introduced in Chapter 4 where we proposed an approach [START_REF] Bouyahia | [END_REF] for an efficient enforcement of security requirements. This approach is based on AL and it describes a collaboration between the system architecture design and security requirements to support the long-term needs of the system. In [START_REF] Bouyahia | [END_REF], we proposed a more enhanced approach that allows to instantiate actions hypothesis correlated to the detected malicious action. This provides a better system reaction against intrusion by providing the security administrator a better view about the potential attacker's intentions. Moreover, we showed in [START_REF] Bouyahia | [END_REF] how the system takes into account the set of active contexts when generating system responses. For this purpose, We showed how to improve the existing argumentation framework by defining the Contextual Value-based Argumentation Framework (CVAF) which presents a dynamic framework that consider the current set of active contexts while generating system responses against intrusion.

Second, we presented in Chapter 5 a content-based recommendation approach [Bouyahia et al. 2016] using MCDM method which provides an efficient security administrator assistance when selecting the appropriate countermeasures, given a specific CHAPTER 7. CONCLUSIONS AND PERSPECTIVES attack scenario. This approach considers the attack scenario generated from the first approach as well as the corresponding preferred extension in order to assist security administrators to select countermeasures satisfying the prioritized system requirements. For this purpose, we proposed a learning module which allows to learn more about the security administrator way of reacting and have an idea about the security administrator preferences and requirements according to his/her decisions historic. The proposed approach considers the countermeasures impact on the nominal system functional behaviors (e.g., integrity, performance) as criteria to be considered when selecting system responses. Moreover, the learning module permits to automatically select appropriate system responses in critical cases where no security administrator is available to select them by his/her self (e.g., outside working hours).

We applied our approaches on an automotive system as an example of a case study to explore the capability of the proposed approaches to provide system responses for complex system architecture. We did some experimentation concerning the execution costs in time of the implemented approaches. The obtained results show that our approaches implementation successfully respond to real-time constraints, since the responses of critical systems such as automotive system must be instantly provided especially in critical contexts.

Perspectives

We give in this section some future research directions that could be investigated as a continuation of the results presented in this thesis:

Coordinated attack

The proposed approaches do not consider a possible cooperation between different detected attacks. From the security system point of view, two detected alerts corresponding to different attacker addresses are always considered as two individual attackers. Whereas, several attacker sources may cooperate in order to meet a common intrusion objective. A more enhanced approach can be proposed by considering the coordinated attacks [Samarji et al. 2015] in the response generation process. A Simultaneous Attack Graphs (SAG) can be an input to our Intrusion Response System. A SAG is a graph that contains the most risky attack scenarios hypothesis given a detected alert.

Extending the formal model

We defined five nominal system functional behaviors: Availability, confidentiality, performance, integrity and precaution. Whereas, other security and functional requirements such as traceability and privacy might be requested by security functional experts. Thus, our formal model can be extended to allow security administrator to specify new security and functional requirements. Moreover, the given criteria are limited to high-level security properties, a more enhanced approach can be proposed by considering more detailed and low-level criteria. All attack scenarios generated by the correlation module are treated by the anti correlation module in the same way. However, many parameters can be considered to prioritize some attack scenarios over other ones such as the scenario difficulty level, time required and likelihood. One possible perspective is to consider theses parameters while generating system responses given multiple generated attack scenarios. Finally, the proposed approaches consider only countermeasures impact on the system (e.g., ensuring precaution, ensuring availability). A possible perspective is to consider the countermeasure applying costs in time, i.e., a more enhanced approach can consider countermeasures restore time as an argument to be considered during reasoning process.

The attacker's point of view

We think that it would be interesting as a perspective to try to plan more precisely the attacker future actions by applying the same approach of defense. This would make it possible to build preferred extensions from the attacker's point of view. An attacker chooses the actions in order to reach some goal. A reason representing the negative effects on the security properties of the attacked system can be associated with each action. For example, when an attacker is scanning a target to find its open ports, it is not an attack on itself, but it provides the attacker information to plan his next steps. The reason associated with such an action could be target discovery for example. If we consider a denial of service attack implemented through the action consisting in flooding a target with UDP packets, the associated reason could be availability loss.

Introduction

Le défi des outils de sécurité modernes est de garder le système dans un état de sécurité tout en maintenant le meilleur niveau possible de performance et de qualité de service. Ainsi, nous soutenons que le processus de sécurité doit suivre un raisonnement dynamique et intelligent qui permet au système lors de la détection d'une action malveillante, de prévoir les potentielles actions qui peuvent se produire en corrélation et de générer le meilleur ensemble possible de contre-mesures. Pour atteindre cet objectif, nous proposons les contributions suivantes :

• Nous introduisons une approche [START_REF] Bouyahia | [END_REF]] pour une application efficace des exigences de sécurité, cette approche est supportée par la logique argumentative. Elle décrit une collaboration structurée entre l'architecture du système et des exigences de sécurité pour répondre aux besoins du système durant son fonctionnement. Le but des activités de sécurité assistées par une logique argumentative est de mettre en évidence les critères de décision de contexte pour assurer le maintien du système en condition de sécurité.

• Dans les attaques modernes, l'attaquant peut exécuter plusieurs actions afin de rendre l'exécution d'autres actions possibles jusqu'à atteindre un certain objectif d'intrusion. Pour cela, nous proposons une méthode efficace [START_REF] Bouyahia | [END_REF]] permettant d'instancier les hypothèses d'actions corrélées à l'action malveillante détectée. Cela permet à l'administrateur de sécurité de se rendre compte des intentions potentielles de l'attaquant, ce qui offre une meilleure réaction du système contre les intrusions.

Une approche multicritère pour assister la prise de décision par l'administrateur de sécurité

Pour éviter de générer des contre-mesures conflictuelles, nous avons proposé dans la section précédente une approche qui procède à une évaluation monocritère pour déterminer quelle contre-mesure doit être sélectionnée. Dans cette section, nous proposons une approche plus renforcée qui intègre un module d'aide à la décision (MCDM). Ce module permet une évaluation plus adaptative entre les contre-mesures en comparant leurs scores. Ceci permet une évaluation qui couvre tous les impacts des contre-mesures sur le système, plutôt que de considérer l'effet principal d'une contre-mesure sur le système comme étant le seul critère à prendre en considération. Le module MCDM intervient dans l'approche proposée sur deux niveaux:

• Il met à jour automatiquement l'ordre des critères selon l'ensemble des contextes actifs dans la phase de génération d'extension préférée.

• Il génère les contre-mesures recommandées à partir de l'extension préférée.

Nous distinguons trois parties principales dans le système de recommandation proposée dans cette approche :

• Module d'apprentissage : Nous définissons la partie d'apprentissage comme étant le processus permettant de donner une visibilité sur la façon dont l'administrateur de sécurité réagit et les différents paramètres influençant ses décisions. Cette partie est alimentée par l'historique des décisions de l'administrateur de sécurité 8.4. APPLICATION SUR LES SYSTÈMES AUTOMOBILES 123 en analysant le score de différents critères. A chaque fois que l'administrateur de sécurité valide une décision, la matrice d'apprentissage est automatiquement mise à jour avec les valeurs de contre-mesures sélectionnées en fonction de chaque critère.

• Module de recommandation : Ce module calcule le coefficient de chaque critère en se basant sur son score par rapport à la somme totale des critères par contexte.

Ces coefficients sont utilisés pour calculer le score des différents contre-mesures au moment de la recommandation. Le score de chaque contre-mesure doit être calculée en se basant sur les coefficients dynamiques des critères pour refléter un score compatible avec l'importance qu'accorde l'administrateur de sécurité pour chaque critère en fonction de chaque ensemble de contextes actifs. Nous utilisons dans notre approche la méthode de décision multicritère SAW [START_REF] Afshari | [END_REF] pour le calcul des scores des contre-mesures. SAW est connu comme étant la méthode MCDM la plus simple et la plus rapide. Cela sera utile lors de la conception d'un système de réaction contre la détection d'intrusion, car ces systèmes doivent satisfaire les contraintes de temps réel en particulier dans des contextes critiques.

• L'interface de l'administrateur de sécurité : Le but du système de recommandation proposé est non seulement de remplacer les administrateurs de sécurité et de prendre des décisions à leur place, mais aussi de les assister et leur montrer les points que eux seuls ils ne sont pas en mesure de les voir. L'administrateur de sécurité fournit les informations qui alimentent le module d'apprentissage. Chaque fois que l'administrateur de sécurité sélectionne certaines contre-mesures, il/elle est invité(e) à valider sa décision. La phase de validation permet au module d'apprentissage de considérer que les décisions qui satisfont l'administrateur de sécurité, le module d'apprentissage ne considère pas les choix regrettables des contre-mesures. Une fois que l'administrateur valide ses décisions, le module d'apprentissage met à jour la matrice Contexte/Critères pour qu'elle prend en compte les nouvelles décisions.

Application sur les systèmes automobiles

Afin de donner un exemple pratique sur le besoin potentiel d'une application dynamique des exigences de sécurité pour contrôler les différents activités de sécurité, nous considérons l'exemple du système automobile. Un système moderne d'automobile à bord relie une centaine de microcontrôleurs, appelés unités de commande électronique (ECU) organisés en domaines spécifiques de l'architecture et reliés par des passerelles, comme

Implémentation et évaluation

Cette section présente l'implémentation des modules présentés dans les sections précédentes. Nous intégrons à CRIM [START_REF] Autrel | Crim: un module de corrélation d'alertes et de réaction aux attaques[END_REF]] ces modules pour assurer la sélection automatique des contre-mesures du système contre la détection d'intrusion.

CRIM

CRIM est un outil de détection d'intrusion qui permet plusieurs modules de détection d'intrusion (MDIs) de coopérer afin de fournir une alerte précise. Les IDMs en CRIM sont basés sur une approche hybride qui combine l'approche comportementale [START_REF][END_REF]] et l'approche fondée sur les scénarios d'attaque. Spécifier plusieurs MDIs en collaboration permet ainsi de réduire la génération des fausses alertes positives et négatives. L'architecture de CRIM adaptée à notre approche est représentée par la Figure 8.2. Nous avons implémenté un module qui intègre la notion de "raison" dans la modélisation des contre-mesures. Ce module permet, lors de la détection d'une action hostile de générer les scénarios d'actions possibles que l'attaquant peut enchaîner jusqu'à ce qu'il atteint un certain objectif d'intrusion. Ce simulateur permet de calculer et de générer l'extension préférée qui contient le plus grand nombre de contre-mesures cohérentes capables de remédier au scénario généré.

Evaluation Génération des extensions préférées

Selon les résultats expérimentaux, nous constatons que le système peut charger et traiter 2138 alertes en une seconde. Nous estimons qu'une seconde est un intervalle de temps raisonnable pour le traitement des alertes car le module de réaction est considéré en avance de phase par rapport à l'attaquant vu qu'il anticipe les intentions de l'attaquant. Ainsi, nous considérons que le module de réaction que nous avons implémenté peut traiter 2138 des alertes en temps réel.

compte des différents contextes actifs durant lesquels le système peut opérer. Dans ce travail, nous avons montré comment améliorer les systèmes d'argumentation existants. Nous avons proposé aussi une nouvelle approche qui assiste l'administrateur de sécurité pour sélectionner des contre-mesures appropriées et dynamiques qui maintiennent le système dans des conditions de sécurité, tout en satisfaisant les exigences de l'administrateur de sécurité.

Les travaux de recherches menées dans cette thèse peuvent être étendues dans plusieurs directions. Notre modèle formel peut être étendu pour permettre à l'administrateur de sécurité de spécifier des nouvelles exigences de sécurité (par exemple, la traçabilité). L'approche proposée dans cette thèse ne considère pas une éventuelle coopération entre les différents attaques détectées. Du point de vue du système de sécurité, deux alertes détectées correspondantes à deux adresses d'attaquants différentes sont considérées dans notre approche comme deux attaques individuelles. Alors que plusieurs attaquants peuvent coopérer afin d'atteindre un objectif d'intrusion commun. Une approche plus renforcée peut être proposée en considérant les attaques coordonnées [Samarji et al. 2015] dans le processus de génération des contre-mesures. Integrity. The property that sensitive data has not been modified or deleted in an unauthorized and undetected manner while in storage, during processing or in transit.

IRDM-HTN. Intrusion Response

N° d'ordre : 2017IMTA0013

Résumé L'accroissement et la diversification des services offerts par les systèmes informatiques modernes rendent la tâche de sécuriser ces systèmes encore plus complexe. D'une part, l'évolution du nombre de services système accroît le nombre des vulnérabilités qui peuvent être exploitées par des attaquants afin d'atteindre certains objectifs d'intrusion. D'autre part, un système de sécurité moderne doit assurer un certain niveau de performance et de qualité de service tout en maintenant l'état de sécurité. Ainsi, les systèmes de sécurité modernes doivent tenir compte des exigences de l'utilisateur au cours du processus de sécurité.

En outre, la réaction dans des contextes critiques contre une attaque après son exécution ne peut pas toujours remédier à ses effets néfastes. Dans certains cas, il est essentiel que le système de sécurité soit en avance de phase par rapport à l'attaquant et de prendre les mesures nécessaires pour l'empêcher d'atteindre son objectif d'intrusion.

Nous soutenons dans cette thèse que le processus de sécurité doit suivre un raisonnement intelligent qui permet au système de prévoir les attaques qui peuvent se produire par corrélation à une alerte détectée et d'appliquer les meilleures contre-mesures possibles.

Nous proposons une approche qui génère des scénarios potentiels d'attaque qui correspondent à une alerte détectée. Ensuite, nous nous concentrons sur le processus de génération d'un ensemble approprié de contre-mesures contre les scénarios d'attaque générés. Un ensemble généré des contre-mesures est considéré comme approprié dans l'approche proposée s'il présente un ensemble cohérent et il satisfait les exigences de l'administrateur de sécurité (par exemple, la disponibilité). Nous soutenons dans cette thèse que le processus de réaction peut être considéré comme un débat entre deux agents. D'un côté, l'attaquant choisit ses arguments comme étant un ensemble d'actions pour essayer d'atteindre un objectif d'intrusion, et de l'autre côté l'agent défendant la cible choisit ses arguments comme étant un ensemble de contre-mesures pour bloquer la progression de l'attaquant ou atténuer les effets de l'attaque. D'autre part, nous proposons une approche basée sur une méthode d'aide à la décision multicritère. Cette approche assiste l'administrateur de sécurité lors de la sélection des contre-mesures parmi l'ensemble approprié des contre-mesures générées à partir de la première approche. Le processus d'assistance est basé sur l'historique des décisions de l'administrateur de sécurité. Cette approche permet également de sélectionner automatiquement des contre-mesures appropriées lorsque l'administrateur de sécurité est dans l'incapacité de les sélectionner (par exemple, en dehors des heures de travail, par manque de connaissances sur l'attaque). Enfin, notre approche est implémentée et testée dans le cadre des systèmes automobiles.

Mots

Abstract

The growth and diversity of services offered by modern systems make the task of securing these systems a complex exercise. On the one hand, the evolution of the number of system services increases the risk of causing vulnerabilities. These vulnerabilities can be exploited by malicious users to reach some intrusion objectives. On the other hand, the most recent competitive systems are those that ensure a certain level of performance and quality of service while maintaining the safety state. Thus, modern security systems must consider the user requirements during the security process.

In addition, reacting in critical contexts against an attack after its execution can not always mitigate the adverse effects of the attack. In these cases, security systems should be in a phase ahead of the attacker in order to take necessary measures to prevent him/her from reaching his/her intrusion objective.

To address those problems, we argue in this thesis that the reaction process must follow a smart reasoning. This reasoning allows the system, according to a detected attack, to preview the related attacks that may occur and to apply the best possible countermeasures.

On the one hand, we propose an approach that generates potential attack scenarios given a detected alert. Then, we focus on the generation process of an appropriate set of countermeasures against attack scenarios generated among all system responses defined for the system. A generated set of countermeasures is considered as appropriate in the proposed approach if it presents a coherent set (i.e., it does not contain conflictual countermeasures) and it satisfies security administrator requirements (e.g., performance, availability). We argue in this thesis that the reaction process can be seen as two agents arguing against each other. On one side the attacker chooses his arguments as a set of actions to try to reach an intrusion objective, and on the other side the agent defending the target chooses his arguments as a set of countermeasures to block the attacker's progress or mitigate the attack effects.

On the other hand, we propose an approach based on a recommender system using Multi-Criteria Decision Making (MCDM) method. This approach assists security administrators while selecting countermeasures among the appropriate set of countermeasures generated from the first approach. The assistance process is based on the security administrator decisions historic. This approach permits also, to automatically select appropriate system responses in critical cases where the security administrator is unable to select them (e.g., outside working hours, lack of knowledge about the ongoing attack). Finally, our approaches are implemented and tested in the automotive system use case to ensure that our approaches implementation successfully responded to real-time constraints.

Keywords: Argumentative logic, Intrusion response, Countermeasures selection, Multi-Criteria Decision Making, Automotive system, AIRS, Attack description language, Anti-correlation.

1. 3 . 5 Chapter 7 -

 357 ORGANIZATION OF THE DISSERTATION Conclusions and Perspectives -this Chapter concludes the dissertation by summarizing the contributions and presenting the perspectives for future work.

Figure 2 . 2 :

 22 Figure 2.2: Response decision-making model of AAIRS

Figure 2 .Figure 2 . 3 :

 223 Figure 2.3 presents a modeling of action that execute locally a code allowing the attacker access to confidential information.

Figure 2 . 4 :

 24 Figure 2.4: Transition Brute-force guess password with pre-and postconditions and context. [→ ...] denotes hyperlinks in the ATiki system.

Figure 2 . 5 :

 25 Figure 2.5: Example of Attack Graph discovered by Atiki system

Figure 3 .Figure 3 . 1 :

 331 Figure 3.1: AS system representation in oriented graph

Definition 6 .Figure 3 . 2 :

 632 Figure 3.2: AS1 and AS2 systems representations in oriented graph

Figure 3 . 3 :

 33 Figure 3.3: AS2 and AS3 systems representations in oriented graph

Definition 18 .Figure 3 . 5 :

 1835 Figure 3.5: AS5 audience-specific value-based argumentation system representation in oriented graph

Figure 3 . 7 :

 37 Figure 3.7: The plan arguments for the proposed example

 epistemic arguments (A e): arguments based only on beliefs • practical arguments (A p): arguments built from beliefs and preferences or goals Given a specific decision d ∈ D, the authors define two subsets of practical arguments: • arguments in favor of d and denoted F f (d) • arguments against d and denoted F c (d)

 1 where: a. A worm is attacking our web server. b. Disabling Web traffic mitigates worms. c. Web traffic can be blocked only if loss > 70%. d. Traffic should not be blocked if the alarm is faulty. e. Evidence shows that the alarm is reliable. f. The antivirus has been recently updated. g. Virus definitions are no longer maintained. This AAF is represented in Figure 3.8 Two decisions are considered in this example, D = {disable-port80, ¬disable-port80}. The first decision represents the action of disabling traffic through port 80 whereas the second one represent the action of not disabling it. Arguments b, c and d are directly related to decisions in D, therefore A p is {b, c, d}. We distinguish F f (disable-port80) = {b} and F f (¬disable-port80) = {c, d}. The proposed example has only one stable extension which is stb(F worm) = {a, c, e, g} thus Acc(F worm) = {a, c, e, g} (represented in gray in Figure 3.8. According to Definition 21, |

Figure 3 . 8 :

 38 Figure 3.8: AAF representation: shadowed nodes represent arguments of the unique stable extension

Definition 23 .

 23 Let a and b be two LAMBDA descriptions of actions, post(a) is the set of literals of the post-condition of a and pre(b) is the set of literals of pre-condition of b. Correlation: a and b are correlated if the following condition is satisfied: ∃E a and E b such that • (E a ∈ post(a) ∧E b ∈ pre(b))or(not(E a) ∈ post(a) ∧ not(E b) ∈ pre(b))

Definition 25 .

 25 Let a and b be two LAMBDA descriptions of actions, post(a) is the set of literals of the post-condition of a and pre(b) is the set of literals of pre-condition of b. Anti-correlation: a and b are anti-correlated if the following condition is satisfied: ∃E a and E b such that • (E a ∈ post(a) ∧not(E b) ∈ pre(b))or(not(E a) ∈ post(a) ∧ E b ∈ pre(b))

Definition 28 .

 28 A Contextual Value-based Argumentation Framework, denoted CV AF , is a 6-tuple AR, attacks, V, val, C, ContP ref where: • AR, attacks, V and val have the same definition as in V AF s (see Definition 13) • C is a set of contexts. A context is either active or inactive. At a given time multiple contexts can be active • ContP ref is a transitive, irreflexive and asymmetric preference relation on V × V which depends on the set of active contexts in C

CHAPTER 4 . 5 :

 45 CONTEXT-AWARE INTRUSION RESPONSE 1: current_action ← detected_action 2: S ← current_action ; intrusion_objective_f ound ← f alse 3: do 4: for all model ∈ A ∪ O do if correlated(current_action, model) == true then end for 13: while(intrusion_objective_f ound == f alse) 14: for all action ∈ S do

Filter_hostFigure 4 . 5 :Filter_hostFigure 4 . 6 :

 4546 Figure 4.5: System response against crack passkey attack in {in_car} context

4 .

 4 Given a set of N generated countermeasures and M criteria, the complexity of the algorithm 3 is O(N × M + N log(N)) in time. Proof. According to algorithm 3, the loop from line 2 to line 4 costs O(M). The second loop (from line 5 to line 7) costs also O(M). The nested loops (from line 8 to line 13) costs O(N ×M). Finally, the execution of the function order (line 14)costs in the worst case O(N log(N)), since it uses merge sort. Therefore, the overall time complexity of algorithm 3 is O(N × M + N log(N)).

Figure 5 . 4 : 5 . 5 . 2 Figure 5 . 5 :

 5455255 Figure 5.4: System response selection: Execution time per number of detected alerts

CHAPTER 6 .Figure 6 . 12 :

 6612 Figure 6.12: Preferred extension generation: Execution time per percentage of real alerts from the detected alerts

CHAPTER 8 .

 8 ∃E a et E b tel que • (E a ∈ post(a) ∧not(E b) ∈ pre(b))or(not(E a) ∈ post(a) ∧ E b ∈ pre(b)) • E a et E b sont unifiables à travers un unificateur plus général u Tel que post(a) est l'ensemble des prédicats du champ post-condition de a et pre(b) est l'ensemble des prédicats du champ pré-condition de b. Compte tenu d'un scénario d'intrusion S, construit comme spécifié dans la Section 8.2.1, et l'ensemble des contre-mesures C calculées pour S, nous construisons l'ensemble des arguments AR(S) utilisé pour la phase de raisonnement comme étant l'union de ces deux ensembles. Maintenant que nous avons montré comment construire l'ensemble des arguments correspondant à un scénario d'intrusion, nous définissons la relation d'attaque entre ces arguments : Relation d'attaque: Soit S un scénario d'intrusion et AR(S) l'ensemble des arguments correspondant. Soit a 1 ∈ AR(S), a 2 ∈ AR(S) deux arguments. attacks(a 1 , a 2) est vrai ssi anticor(post(a 1), pre(a 2)) ∨ anticor(post(a 1), cond(a 2)) Dans notre approche, nous ne faisons pas explicitement la condition d'activation pour chaque contexte dans C, nous considérons que cet ensemble est extrait d'une 122 Résumé en français spécification de politique de sécurité contextuelle, comme une politique OrBAC [Cuppens and Cuppens-Boulahia 2008] par exemple. ContP ref a la même définition que celle utilisé dans valpref VAF sauf qu'il permet de générer la préférence entre les forces (valeurs) des arguments en fonction de la configuration des contextes actifs. Compte tenu d'un scénario d'intrusion, du point de vue de l'agent défendant le système attaqué par un autre agent malveillant, le processus de la réaction consiste à choisir parmi les contre-mesures possibles le meilleur sous-ensemble selon ses préférences. Ces préférences étant codées par la relation ContP ref . Selon notre approche, cela consiste à utiliser la relation d'attaque que nous avons défini pour construire des ensembles admissibles d'arguments (extensions préférées), chaque ensemble représentant un ensemble cohérent de contre-mesures.

FTP.

 File Transfer Protocol. HCPN. Hidden Colored Petri-Net. HMM. Hidden Markov Model. HSM. Hardware Security Module. HTML. Hypertext Markup Language. HTTP. Hypertext Transfer Protocol. IDM. Intrusion Detection Module. IDMEF. Intrusion Detection Message Exchange Format. IDS. Intrusion Detection System. IETF. Internet Engineering Task Force.

 Decision-Making model based on Hierarchical Task Network planning.. IRS. Intrusion Response System. ITS. Intelligent Transport System. LAMBDA. LAnguage to Model a dataBase for Detection of Attacks. LPP. Logic Programming with Priorities. MCDM. Multi-Criteria Decision Making.

 -clés: Logique argumentative, Réponses à l'intrusion, Sélection des contre-mesures, Multi-Criteria Decision Making, Systèmes véhiculaire, AIRS, Langage de Description d'Attaque, Anti-corrélation.

Table 3

 3

	order	action	protocol	source IP	port
	1	allow	*	*	20
	2	allow	*	*	80
	3	block	*	123.456.78.90	*
	4	allow	*	*	21
	5	block	*	*	53
	6	allow	TCP	123.456.78.11	23
	7	block	*	123.456.78.*	*
	8	allow	UDP	123.456.78.11	5027
	9	allow	UDP	*	*
	10	block	*	*	6969
	11	allow	*	75.75.75.75	53
	12	block	*	*	*
	shadowing		Correlation	Generalization	Redundancy
	(5,11)		(1,3) (1,7)	(1,12) (2,12)	
	(7,8)		(2,3) (2,7)	(4,12) (6,7)	
			(3,4) (3,9)	(6,12) (8,12)	
			(4,7) (5,9)	(9,12) (11,12)	
			(7,9) (9,10)		

.1: An example firewall policy

[START_REF] Applebaum | [END_REF]

Table 3 .

 3

	rule	values	attacks
	1	enable protocol	3, 7, 12
	2	enable protocol	3, 7, 12
	3	malicious sender	1, 2, 4, 9
	4	enable protocol	3, 7, 12
	5	disable protocol	9, 11
	6	legitimate sender, enable program	7, 12
	7	malicious sender	1, 2, 4, 6, 8, 9
	8	legitimate sender, enable program	7, 12
	9	accessibility	3, 5, 7, 10, 12
	10	disable protocol	9
	11	legitimate sender, enable protocol	5, 12
	12	prophylaxis	1, 2, 4, 6, 8, 9, 11

3: All attack relationships within the example firewall policy

Table 3 .

 3 4: Overlap of rules in example policy, the center column gives the reason behind the rule dations to the security administrator in order to assist him/her to deal with existing anomalies. Based on the ordering in Table3.5, a recommendation is generated for each anomaly.

Table 3

 3

	order	value name
	1	allow programs
	2	block malicious senders
	3	allow legitimate senders
	4	block protocols
	5	block programs
	6	allow protocols
	7	prophylaxis
	8	accessibility

.

6

shows the different recommendations to avoid the firewall policy anomalies and the justification of each recommendation. The main limitation of this approach is that the security administrator defines a static

Table 3 .

 3 5: Potential ordering of the ground-based values with lower order meaning higher priority

	rules in conflict	anomaly name	recommendation	justification
	(5,11)	shadowing	place 11 before 5	allow sender > block protocol
	(7,8)	shadowing	place 8 before 7	allow program > block sender
	(1,3),(1,7)	correlation	place 3,7 before 1	block sender > allow protocol
	(2,3),(2,7)	correlation	place 3,7 before 2	block sender > allow protocol
	(3,4)	correlation	ignore	block sender > allow protocol
	(3,9)	correlation	ignore	block sender > accessibility
	(4,7)	correlation	place 7 before 4	block sender > allow protocol
	(5,9)	correlation	ignore	block protocol > accessibility
	(7,9)	correlation	ignore	block sender > accessibility
	(9,10)	correlation	place 10 before 9	block protocol > accessibility
	(1,12),(2,12),(4,12)	generalization	ignore	allow protocol > prophylaxis
	(6,7)	generalization	ignore	allow program > block sender

 sp, el, sr, em, ra, f, rm, ds, sm} and S = {a, al, cr, m, cs, ib}, where:

	Consider the following objective-policy description:
	a : access article from digital library	
	al : authorized to access library	ra : request article
	es : subscribe to library with e-money cs : collect survey
	sp : send university employee pass	f : fill in questionnaire
	cr : comply with digital rights	rm : request mp3 file
	el : pay library with e-money	ib : improve bandwidth
	sr : signed order by employer	ds : decrease download speed
	m : access mp3 file	sm : share downloaded mp3 file
	em : pay mp3 file with e-money	

 .2.

		CHAPTER 5. MULTI-CRITERIA RECOMMENDER TOOL
	Method	Advantages	Disadvantages
	TOPSIS	Has a simple process; easy to use and	Its use of Euclidean Distance
		program; the number of steps remains	does not consider the correlation
		the same regardless of the number of	of attributes; difficult to weight
		attributes.	and keep consistency of judg-
			ment.
	ELECTRE Takes uncertainty and vagueness into	Its process and outcome can be
		account.	difficult to explain in layman's
			terms; outranking causes the
			strengths and weaknesses of the
			alternatives to not be directly
			identified.
	AHP	Easy to use; scalable; hierarchy struc-	
		ture can easily adjust to fit many	
		sized problems; not data intensive.	

 presented in the previous chapter show that the preferred extension corresponding to S scenario are Ex_pref {in_car} and Ex_pref {in_car,high_way} respectively, for {in_car} and {in_car, high_way} context.

	Contexts	Integrity Availability Confidentiality Performance Precaution
	{in_car}	64	88	110	104	22
	{in_car,	81	72	127	112	103
	high_way}					
	{V 2V }	77	102	97	67	54
			Table 5.2: Context/Criteria matrix	

Table 5 .

 5 5 (when the decider selects Add_source_auth countermeasure) and calculates the new criteria coefficients per contexts. This constitutes the learning phase of the recommendation process.

		(a) {in_car} context		(b) {in_car, high_way} context
	Order Criteria	Coeff	Order Criteria	Coeff
	1	Confidentiality 0.284	1	Confidentiality 0.257
	2	Performance	0.268	2	Performance	0.226
	3	Availability	0.227	3	Precaution	0.208
	4	Integrity	0.165	4	Integrity	0.164
	5	Precaution	0.057	5		

Table 5 .

 5 5: Updated Context/Criteria matrix

Génération des scénarios d'attaques et des contre-mesures sensibles au contexte

 Ainsi, le système doit prendre en compte l'ensemble des contextes actifs lors de la génération des contre-mesures contre une attaque détectée. Pour cela, nous montrons comment adapter les systèmes d'argumentation existantes en définissant le système d'argumentation contextuelle à base des valeurs (CVAF)[START_REF] Bouyahia | [END_REF]].• Nous proposons une approche de recommandation basée sur le contenu[Bouyahia et al. 2016] en utilisant les méthodes de prise de décision multicritères (MCDM) pour une meilleure assistance de l'administrateur de sécurité lors de la sélection des contre-mesures appropriées, compte tenu d'un scénario d'attaque spécifique. Pour en savoir plus sur la façon dont l'administrateur de sécurité réagit, nous proposons un module d'apprentissage qui permet de former une idée sur les préférences de l'administrateur de sécurité et ses exigences en fonction de son historique de décisions. Les préférences dans notre approche sont considérées comme étant les critères ayant le score le plus élevé selon une combinaison spécifique de contextes actifs. Cette approche considère les différents impacts qu'une contre-mesure pourrait avoir sur le système (par exemple, la performance, la disponibilité) comme étant des critères à prendre en considération lors de la sélection des réponses appropriées du système. Cette approche permet également de sélectionner automatiquement des contre-mesures appropriées dans les cas critiques où l'administrateur de sécurité du système n'est pas en mesure de prendre des décisions.• Nous appliquons nos approches sur les systèmes automobiles comme exemple de cas d'étude pour explorer les difficultés que peuvent rencontrer les systèmes complexes au cours du processus de la réaction. Ce cas d'étude illustre le besoin potentiel d'une application dynamique des exigences de sécurité pour contrôler les diverses activités de sécurité. Nous présentons des résultats expérimentaux concernant les coûts d'exécution de nos approches implémentées. Ces résultats permettent l'évaluation de l'approche en termes de performance et de temps de réaction requis du système contre les différents scénarios d'attaque détectés simultanément. En se basant sur ces résultats, nous montrons comment notre implémentation satisfait les contraintes de temps réel, car les réponses des systèmes critiques, tels que le système automobile, doivent être immédiatement fournies en particulier dans les contextes critiques.Le but principale de cette approche est de générer un ensemble cohérent de contremesures pour chaque alerte détectée. L'ensemble généré doit satisfaire les exigences de l'administrateur de sécurité et doit aussi tenir en compte des contextes actifs lors de la détection de l'alerte. Nous estimons dans cette approche que le système de sécurité doit être toujours en avance de phase par rapport à l'attaquant. Pour ce faire, nous générons les scénarios potentiels d'attaque qui correspondent à une alerte détectée.Dans notre approche, nous considérons que plusieurs sondes sont distribuées dans le système contrôlé pour générer des événements qui correspond à des actions exécutées par les agents agissants sur le système. Ces agents peuvent être des utilisateurs légitimes ainsi que des agents malveillants. Les sondes peuvent être des utilisateurs de détection d'intrusion ou les fichiers logs des programmes de surveillance. A chaque fois que les sondes de détections détectent une alerte, le module de corrélation génère et instancie des hypothèses d'actions corrélées à l'action qui correspond à l'alerte détectée. Ce module explore tous les objectifs d'intrusion possibles que l'attaquant peut y parvenir. On a opté pour la modélisation des modèles de sécurité (actions, objectifs d'intrusion et contre-mesures) via le langage LAMBDA[START_REF] Cuppens | [END_REF]].Nous définissions une action LAMBDA comme suit:

	8.2. GÉNÉRATION DES SCÉNARIOS D'ATTAQUES	119
	• l'action qui correspond à l'alerte détectée, • les possibles hypothèses d'actions et • un potentiel objectif d'intrusion 8.2.2 Systèmes d'argumentation à base de valeurs étendue Bench Capon définit un système d'argumentation à base de valeurs [Bench-Capon 2003] 8.2 LAMBDA action comme suit :
	name: le nom de l'action	
	pre-condition: définie l'ensemble de conditions devant être satisfaites sur le système
	visé par l'action pour qu'elle puisse être réalisée • C est un ensemble de contextes. A un moment donné plusieurs contextes peuvent
	post-condition: définie Les effets de l'exécution de l'attaque sur le système visé. être actifs.	
	detection: définie l'alerte associée à la détection de l'action.	
	• ContP ref est une relation de préférence transitive, irreflexive et asymétrique dans
	Un attaquant peut exécuter plusieurs actions pour modifier l'état du système V × V et qui dépend de l'ensemble de contextes actifs dans C
	afin d'atteindre un état où la politique de sécurité est violée. Certaines actions
	peuvent être exécutées par l'attaquant afin de rendre l'exécution d'autres actions 8.2.

• Compte tenu d'une attaque contre un système donné, la meilleure contre-mesure à appliquer dépend du contexte dans lequel le système est entrain d'opérer. Par exemple, dans le cas des systèmes automobiles, le fait que le véhicule circule au centre ville ou sur une autoroute change l'impact qu'une attaque peut avoir sur le système. 8.2.1 Génération des scénarios d'attaques possibles. Lorsque les effets (post-condition) d'une action sont un sous-ensemble des pré-conditions d'une autre action, on considère que les deux actions sont corrélées. Un scénario d'attaque est définie dans notre approche comme étant : V AF = AR, attacks, V, val, V alpref a • AR est l'ensemble des arguments et attacks est une relation binaire entre AR×AR.

• V est un ensemble fini de valeurs.

• val est une fonction qui mappe les éléments de AR avec les éléments de V

• V alpref est une relation de préférence entre les valeurs de V .

En raison de la nature dynamique des systèmes d'information, nous soutenons que l'utilisation d'une relation de préférence statique V alpref n'est pas adaptée. Nous étendons la définition de V AF à celle d'un système d'argumentation contextuel CV AF définit comme suit : CV AF = AR, attacks, V, val, C, ContP ref • AR, attacks, V and val ont la même définition que celle d'un V AF s

3 Génération des contre-mesures sensibles au contexte

 Les contre-mesures sont des actions qui sont exécutées pour remédier aux effets d'une attaque ou pour bloquer l'exécution d'autres attaques. Plus généralement, ce sont des actions qui ont un effet négatif sur l'exécution d'autres actions. Plus formellement, nous modélisons une contre-mesure de la même manière qu'une action est modélisée à l'exception que son champ de détection est remplacé par le champ "rationale". Ce champ permet de définir les raisons qui motivent l'exécution de l'action. En fait, nous représentons la raison pour laquelle une contre-mesure doit être choisi. Par exemple, certaines contre-mesures peuvent améliorer la performance du système attaqué au détriment de la disponibilité de certains services. Si pour une raison quelconque la performance du système devrait être favorisée par rapport à la disponibilité des services qu'il fournit, alors nous pouvons choisir la contremesure associée au motif favori. Les contre-mesure ne s'instancient pas à partir d'une alerte, les valeurs sont affectées à ses variables libres en examinant les effets qu'elle doit avoir sur l'état du système, afin d'atténuer les effets d'une attaque ou d'empêcher l'exécution d'autres attaques. La notion d'anti-corrélation formalise cette notion d'effet négatif, Formellement elle est définie comme suit:

Anti-correlation: Soient a et b deux modèles LAMBDA d'actions, il sont anti-corrélées si la condition suivante est vérifiée :

 8.5. IMPLÉMENTATION ET ÉVALUATION 125 permet d'améliorer la performance du système automobile. Cependant, toujours appliquer ce genre de règles n'est pas souhaitable, car l'application des règles doit dépendre du contexte dans le quel le système est entrain d'opérer.

The authors denote by (→) the attack relationship between arguments

Acknowledgement

First and foremost, I would like to express all my gratitude to my parents for their continuous support and encouragement. My undying gratitude goes to my wife, Asma, for her love, understanding and support. I wish to thank all members of my family to whom I dedicate this thesis.

, Professors Nora Cuppens-Boulahia, Frédéric Cuppens and Dr Fabien Autrel for priceless advice, invaluable guidance and for their support and encouragement during my Ph.D study and thesis research.

Availability 0.145 (c) {V 2V } context Availability Very Low (0) Availability High (3) Availability (0.227)

CHAPTER 4. CONTEXT-AWARE INTRUSION RESPONSE and (ii) no unexpected side effects of responses on the system. We consider in this section, the use case presented in [Samarji et al. 2015].

Use case

We consider two simultaneous threats led by two attack entities (A1 and A2) as shown in the generated intrusion scenario of Figure 4.1. In the initial system state, A1 has already infected machine M1 and actively scanned user U. In parallel, A2 has already infected machine M2 which belongs with M1 to the same Ethernet network (machines are reachable via Switch12). It is predicted for A1 to crack the password of U's account and highjack it in order to do a toll fraud which induces economic losses to U. Besides, a likely scenario for A2 is predicted starting by discovering M1 and then poisoning it with ARP messages, in order to spoof its address later on and make calls or inject packets as if they were sent by M1. We consider the response plan generated against threat A1 and described below:

t1 : [[passCrack(A1,server,u), discovermacaddress(A2, M 2, M 1)]; t2 : [disconnect(M1)]; t3 : [install(SecurityPatch,M1), injectRT P packets(A2, M 2, M 1)]; t4 : [connect(M1)]]

The above sequence, presented in the graph of Figure 4.2, designs a response R3 against threat A1. R3 consists in patching the vulnerability of M1, and blocking thereby A1. By launching R3, thus disconnecting M1, after that A2 discovers the address of M1, A2 does no more need to perform ARP poisoning. Indeed, disconnecting a machine is like inducing a denial of service on this machine. Consequently, A2 can directly spoof the address of M1 and fulfill its attack objective. Consequently, R3 has a side effect on the system, by increasing the risk of threat A2. This side effect is generated since the following logical predicate returns true: corr(connect(M 1), Bot_inf ection(M 1))

We consider in this experimentation that R3 is the only candidate system response against A1. Two arguments are generated for this IS: AR(IS) = {r1, r2} CHAPTER 5. MULTI-CRITERIA RECOMMENDER TOOL the ideal solution A i . Then, we calculate relative closeness to the ideal solution S as follows: S = d jw d jw +d ji Finally, we select the Alternative with S closest to 1.

ELECTRE [Bouyssou and Roy 1993]

The ELECTRE methods are based on the following four preference situations concerning the comparison of two decisions:

• I (Indifference): it corresponds to a situation where there are clear and positive reasons that justify an equivalence between the two actions (it leads to a reflexive and symmetric binary relation).

• P (Strict Preference): it corresponds to a situation where there are clear and positive reasons in favor of one (identified) of the two actions (it leads to a nonreflexive and asymmetric binary relation).

• Q (Weak Preference): it corresponds to a situation where there are clear and positive reasons that invalidate strict preference in favor of one (identified) of the two actions, but they are insufficient to deduce either the strict preference in favor of the other action or indifference between both actions, thereby not allowing either of the two preceding situations to be distinguished as appropriate (it leads to a non-reflexive and asymmetric binary relation).

• R (Incomparability): it corresponds to an absence of clear and positive reasons that would justify any of the three preceding relations (it leads to a non-reflexive and symmetric binary relation).

There are two main parts of an ELECTRE application: first, the construction of one or several outranking relations, which aims at comparing in a comprehensive way each pair of decisions; second, an exploitation procedure that elaborates on the recommendations obtained in the first phase. In the following, we present the recommendation process for both countermeasures. We denote by Rf and Asa respectively, Reduce_f requency and Add_ source_ auth countermeasure. Evaluations done by functional experts corresponding to both countermeasures are presented in Table 5.4. To determine which countermeasures should be recommended, the system calculates the score of each countermeasure using the Definition 33 in Section 5.3.2. For instance, The Add_source_auth score in in_car context is calculated with the same formula as Reduce_f requency, we obtain Score(Asa, in_car) = 2.337. Thus, Add_source_auth countermeasure will be recommended over Reduce_f requency countermeasure. Figure 5.3 summarizes the score assignment process for both countermeasures. The shadowed node represents the recommended countermeasure. The main goal of our approach being to assist the decider rather than replacing him, the user can select the recommended countermeasures as well as other proposed countermeasures from the preferred extension.

Once the decider selects a countermeasure (i.e., the recommended countermeasure or another proposed one), the system updates the Context/Criteria matrix as presented 2) , v a l 1="<<v a l 1 <<" , v a l 2="<<v a l 2 <<e n d l ; return ; } // r e s e t c u r r e n t r u l e c u r r e n t R u l e . C l e a r () ; c u r r e n t R u l e . S e t L i n k i n g P r e d i c a t e (p r e d i c a t e N o d e 1 ->GetValue ()) ; c u r r e n t R u l e . S e t F i r s t (modelA) ; c u r r e n t R u l e . S e t S e c o n d (modelB) ; c u r r e n t R u l e . SetModelA (modelA->GetName ()) ; c u r r e n t R u l e . SetModelB (modelB->GetName ()) ;

e c t c o r r e l a t i o n r u l e s b e t w e e n a c t i o n s and o b j e c t i v e s // we i t e r a t e t h r o u g h t h e l o a d e d a c t i o n models

r e c t c o r r e l a t i o n r u l e s b e t w e e n a c t i o n s and domain r u l e s // and b e t w e e n domain r u l e s and a c t i o n s // we i t e r a t e t h r o u g h t h e l o a d e d a c t i o n models and domain r u l e s v e c t o r < CDomainRuleModel

/ compute d i r e c t c o r r e l a t i o n r u l e s b e t w e e n domain r u l e s and o b j e c t i v e s // we i t e r a t e t h r o u g h t h e l o a d e d domain r u l e s and o b j e c t i v e s

// c h e c k i f t h e two e x p r e s s i o n s have t h e same

push_back (k2) ; } // c h e c k t h e p r e d i c a t e s a t t r i b u t e s // c h e c k f o r u n i f i c a t i o n

f o r (unsigned i n t i = 0 ; i < a r g s 1 . s i z e () ; i ++)

A.3. ATTACK RELATION BETWEEN COUNTERMEASURES

{ // cout <<"c h e c k u n i f i c a t i o n !"<< e n d l ;

i f (C h e c k U n i f i c a t i o n (a r g s 1 [i] , a r g s 2 [i]) == f a l s e) return ; } // t h e two e x p r e s s i o n s can be u n i f i e d , // add r u l e t o b o t h models modelA->A d d C o r r e l a t i o n R u l e R i g h t (c u r r e n t R u l e) ; modelB->A d d C o r r e l a t i o n R u l e L e f t (c u r r e n t R u l e) ; cout<<" mo d eles ␣ l i e s ␣ : ␣ "<<modelA->GetName()<< " ␣ e t ␣ "<<modelB->GetName()<< e n d l ; }

A.3 Attack relation between countermeasures

#include " crim_core . h " #include " mainwindow . h " #include <s s t r e a m > s t r i n g v a l 1 = f i r s t ->GetValue () ; s t r i n g v a l 2 = second->GetValue () ;

// c h e c k f o r a n t i -c o r r e l a t i o n r e l a t i o n b e t w e e n r e a c t i o n s void

// c h e c k f o r n e g a t i o n , one e x p r e s s i o n must be t h e n e g a t i o n o f t h e o t h e r t o

// be a n t i -c o r r e l a t e d i f (((v a l 1 == " not ") && (v a l 2 == " not ")) | | ((v a l 1 != " not ") && (v a l 2 != " not "))) return ; // s k i p s p e c i a l m o d a l i t i e s i f (v a l 1 == " not " // r e s e t c u r r e n t r u l e c u r r e n t R u l e . C l e a r () ; c u r r e n t R u l e . S e t L i n k i n g P r e d i c a t e (f i r s t ->GetValue ()) ; c u r r e n t R u l e . S e t F i r s t (modelA) ; c u r r e n t R u l e . S e t S e c o n d (modelB) ; c u r r e n t R u l e . SetModelA (modelA->GetName ()) ; c u r r e n t R u l e . SetModelB (modelB->GetName ()) ;

// c h e c k i f t h e two e x p r e s s i o n s have t h e same

// c h e c k which c o u n t e r m e a s u r e d e f e a t s t h e o t h e r one , // a c c o r d i n g t o t h e r a t i o n a l e o r d e r

s c o r e A =0; s c o r e B =0; f o r (i n t i =0; i <5 ; i ++) { // f l o a t s c o r e 1 ; // f l o a t s c o r e 2 ; s t r i n g ch1=" " , ch2=" " , e v a l u a t i o n 1=" " , e v a l u a t i o n 2=" " , c o e f f s ; e v a l u a t i o n 1=modelA->G e t R a t i o n a l e S t r i n g () . s u b s t r (1 0 , 1 3) . c _ s t r () ; e v a l u a t i o n 2=modelB->G e t R a t i o n a l e S t r i n g () . s u b s t r (1 0 , 1 3) . c _ s t r () ; ch1=e v a l u a t i o n 1 . s u b s t r (i * 3 , 1) . c _ s t r () ; ch2=e v a l u a t i o n 2 .

ARM. Attack Response Matrix.

ATiKi. ATiki is a tool for a Web-based system that supports collection and sharing of security-related knowledge.

Availability. The property of ensuring timely and reliable access to and use of information.

BMSL. Behavioral Monitoring Specification Language.

C++. It is a general-purpose programming language. It has imperative, objectoriented and generic programming features, while also providing facilities for low-level memory manipulation.

CAM. Correlated Attack Modeling.

CAML. Correlated Attack Modeling Language.

CITRA. Cooperative Intrusion Traceback and Response Architecture.

Confidentiality. The property that sensitive information is not disclosed to unauthorized individuals, entities or processes. It includes means for protecting personal privacy and proprietary information. Performance. The property of taking countermeasures that ensure the best quality of service.

PH. Process Homeostasis.

Precaution. The property of taking precautionary countermeasures to avoid system damage in critical contexts.

Qt. It is a cross-platform application framework that is widely used for developing application software that can be run on various software and hardware platforms with little or no change in the underlying codebase, while still being a native application with the capabilities and speed thereof.

List of Publications

International Conferences

List of Figures