
HAL Id: tel-01781353
https://theses.hal.science/tel-01781353v1

Submitted on 30 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Metrics for security activities assisted by argumentative
logic

Tarek Bouyahia

To cite this version:
Tarek Bouyahia. Metrics for security activities assisted by argumentative logic. Cryptography
and Security [cs.CR]. Ecole nationale supérieure Mines-Télécom Atlantique, 2017. English. �NNT :
2017IMTA0013�. �tel-01781353�

https://theses.hal.science/tel-01781353v1
https://hal.archives-ouvertes.fr

THÈSE / IMT Atlantique

sous le sceau de l’Université Bretagne Loire

pour obtenir le grade de

DOCTEUR DE IMT Atlantique

Mention : Informatique

École Doctorale Matisse

Présentée par

Tarek Bouyahia
Préparée au département Logique des Usages,

Sciences Sociales et de l'Information

Laboratoire Labsticc

Métriques pour le déclenchement

des évènements de sécurité

assistées par la logique

argumentative

Metrics for security activities

assisted by argumentative logic

Thèse soutenue le 29 mars 2017

devant le jury composé de :

Mohamed Mosbah
Professeur, Institut Polytechnique de Bordeaux / Président

Joaquin Garcia-Alfaro
Professeur, Université de Paris-Saclay – Evry / Rapporteur

Zonghua Zhang
Maître de conférences (HDR), IMT Lille Douai - Villeneuve - d’Ascq / Rapporteur

Fabien Autrel
Ingénieur de Recherche, IMT Atlantique / Examinateur

Frédéric Cuppens
Professeur, IMT Atlantique / Examinateur

Nora Cuppens
Directeur de Recherche, IMT Atlantique / Directrice de thèse

i

Abstract

The growth and diversity of services offered by modern systems make the task of secur-

ing these systems a complex exercise. On the one hand, the evolution of the number

of system services increases the risk of causing vulnerabilities. These vulnerabilities

can be exploited by malicious users to reach some intrusion objectives. On the other

hand, the most recent competitive systems are those that ensure a certain level of

performance and quality of service while maintaining the safety state. Thus, modern

security systems must consider the user requirements during the security process.

In addition, reacting in critical contexts against an attack after its execution can

not always mitigate the adverse effects of the attack. In these cases, security systems

should be in a phase ahead of the attacker in order to take necessary measures to

prevent him/her from reaching his/her intrusion objective.

To address those problems, we argue in this thesis that the reaction process must

follow a smart reasoning. This reasoning allows the system, according to a detected

attack, to preview the related attacks that may occur and to apply the best possible

countermeasures.

On the one hand, we propose an approach that generates potential attack scenarios

given a detected alert. Then, we focus on the generation process of an appropriate

set of countermeasures against attack scenarios generated among all system responses

defined for the system. A generated set of countermeasures is considered as appro-

priate in the proposed approach if it presents a coherent set (i.e., it does not contain

conflictual countermeasures) and it satisfies security administrator requirements (e.g.,

performance, availability). We argue in this thesis that the reaction process can be

seen as two agents arguing against each other. On one side the attacker chooses his

arguments as a set of actions to try to reach an intrusion objective, and on the other

side the agent defending the target chooses his arguments as a set of countermeasures

to block the attacker’s progress or mitigate the attack effects.

iv ABSTRACT

On the other hand, we propose an approach based on a recommender system us-

ing Multi-Criteria Decision Making (MCDM) method. This approach assists security

administrators while selecting countermeasures among the appropriate set of counter-

measures generated from the first approach. The assistance process is based on the

security administrator decisions historic. This approach permits also, to automatically

select appropriate system responses in critical cases where the security administrator

is unable to select them (e.g., outside working hours, lack of knowledge about the on-

going attack). Finally, our approaches are implemented and tested in the automotive

system use case to ensure that our approaches implementation successfully responded

to real-time constraints.

Résumé

L’accroissement et la diversification des services offerts par les systèmes informatiques

modernes rendent la tâche de sécuriser ces systèmes encore plus complexe. D’une part,

l’évolution du nombre de services système augmente le nombre des vulnérabilités. Ces

vulnérabilités peuvent être exploitées par des utilisateurs malveillants afin d’atteindre

certains objectifs d’intrusion. D’autre part, un système de sécurité moderne est consid-

éré comme étant un système compétitif s’il assure un certain niveau de performance et

de qualité de service tout en maintenant l’état de sécurité. Ainsi, les systèmes de sécu-

rité modernes doivent tenir compte des exigences de l’utilisateur au cours du processus

de sécurité.

En outre, la réaction dans des contextes critiques contre une attaque après son

exécution ne peut pas toujours remédier aux effets néfastes de l’attaque. Dans certains

cas, il est essentiel que le système de sécurité soit en avance de phase par rapport

à l’attaquant et de prendre les mesures nécessaires pour l’empêcher d’atteindre son

objectif d’intrusion.

Pour faire face à ces problèmes, nous soutenons dans cette thèse que le processus

de sécurité doit suivre un raisonnement intelligent qui permet au système, selon une

attaque détectée, de prévoir les attaques qui peuvent se produire par corrélation et

d’appliquer les meilleures contre-mesures possibles.

D’abord, nous proposons une approche qui génère des scénarios potentiels d’attaque

qui correspondent à une alerte détectée. Ensuite, nous nous concentrons sur le pro-

cessus de génération d’un ensemble approprié de contre-mesures contre les scénarios

d’attaque générés. Un ensemble généré des contre-mesures est considéré comme appro-

prié dans l’approche proposée s’il présente un ensemble cohérent (il ne contient pas des

contre-mesures conflictuelles) et il satisfait les exigences de l’administrateur de sécurité

(par exemple, la performance, la disponibilité). Nous soutenons dans cette thèse que

le processus de réaction peut être considéré comme un débat entre deux agents. D’un

côté, l’attaquant choisit ses arguments comme étant un ensemble d’actions pour essayer

d’atteindre un objectif d’intrusion, et de l’autre côté l’agent défendant la cible choisit

vi RÉSUMÉ

ses arguments comme étant un ensemble de contre-mesures pour bloquer la progression

de l’attaquant ou atténuer les effets de l’attaque.

D’autre part, nous proposons une approche basée sur un système de recomman-

dation en utilisant une méthode multicritère de la prise de décision MCDM (Multi

Criteria Decision Making). Cette approche assiste l’administrateur de sécurité lors de

la sélection des contre-mesures parmi l’ensemble approprié des contre-mesures générées

à partir de la première approche. Le processus d’assistance est basé sur l’historique

des décisions de l’administrateur de sécurité. Cette approche permet également de

sélectionner automatiquement des réponses appropriées du système dans les cas cri-

tiques où l’administrateur de sécurité est incapable de les sélectionner (par exemple,

en dehors des heures de travail, par manque de connaissances sur l’attaque en cours).

Enfin, notre approche est implémentée et testée dans le cadre des système automobiles

afin de vérifier si les approches proposées satisfont bien les contraintes de temps réel.

Acknowledgement

First and foremost, I would like to express all my gratitude to my parents for their

continuous support and encouragement. My undying gratitude goes to my wife, Asma,

for her love, understanding and support. I wish to thank all members of my family to

whom I dedicate this thesis.

I am forever grateful to my thesis supervisors, Professors Nora Cuppens-

Boulahia, Frédéric Cuppens and Dr Fabien Autrel for priceless advice, invaluable

guidance and for their support and encouragement during my Ph.D study and thesis

research.

I am thankful to the members of my supervisory committee, the reviewers Professor

Joaquin Garcia-Alfaro and Dr Zonghua Zhang for the time taken to review my

thesis and to give advice to improve its content. Thanks a lot to Professor Mohamed

Mosbah for being part of the jury. It is a great honor for me to have them evaluate

my thesis.

Finally, I would like to thank all my friends and colleagues in IMT Atlantique

with whom I passed pleasant moments for their encouragement and scientific support,

Anis, Mariem, Tarik, Reda, Said, Vivien, Patrick, Samiha, Eric, Khaoula,

Yanhuang, Edwin, Thomas, Simon, Xiaoshu. A special thank to Lyes, Nada

and Safaa who supported me so much. They have all been my family in France.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Organization of the dissertation . 4

2 Automated System Response against Intrusion: State of the Art 7

2.1 Introduction . 7

2.2 Intrusion Response System Definition 7

2.3 Automated Intrusion Response Systems (AIRSs) 8

2.3.1 Response Selection . 9

2.3.2 Adjustment Ability . 12

2.3.3 Response Execution . 12

2.3.4 Prediction Ability . 13

2.4 Attack Description Languages . 16

2.4.1 CAML . 16

2.4.2 ATiKi . 18

2.4.3 ADeLe . 19

2.4.4 LAMBDA . 21

2.5 Conclusion . 26

3 Introduction to the Argumentation Logic 29

x CONTENTS

3.1 Introduction . 29

3.2 Motivation . 29

3.3 Argumentation frameworks . 31

3.3.1 Abstract Argumentation Framework (AAF) 31

3.3.2 Preference-based Argumentation Framework (PAF) 35

3.3.3 Value-based Argumentation Framework (V AF) 36

3.4 Related Work . 39

3.4.1 Argumentation logic for firewall policy specification 39

3.4.2 Argumentation logic for access control 45

3.4.3 Argumentation logic for network security analysis 47

3.5 Conclusion . 49

4 Context-aware Response against Intrusion Detection 51

4.1 Introduction . 51

4.2 Modeling the intrusion processes . 52

4.2.1 Modeling the attacker . 52

4.2.2 Anticipating the attacker’s intentions 55

4.2.3 Intrusion Scenario . 55

4.2.4 Modeling countermeasures . 55

4.3 Argumented intrusion response against attacks 56

4.3.1 Constructing the set of arguments 57

4.3.2 Extending value-based argumentation frameworks 58

4.3.3 Managing contexts . 59

4.3.4 Argumented and context aware reaction mechanism 60

4.3.5 Avoiding unexpected side effects of countermeasures 62

4.3.6 Architecture . 65

4.4 Reaction process in an automotive context 68

4.4.1 Automotive system . 68

CONTENTS xi

4.4.2 Attack modeling . 70

4.4.3 Response model . 71

4.4.4 Rationales . 72

4.4.5 Intrusion response selection . 73

4.4.6 Performance evaluation . 76

4.5 Conclusion . 76

5 Multi-Criteria Recommender Tool for Supporting Intrusion Response

System 79

5.1 Introduction . 79

5.2 Related work . 80

5.3 Multi-Criteria Decision Making module 84

5.3.1 Learning module . 86

5.3.2 Recommending module . 86

5.3.3 Security administrator interface 87

5.4 MCDM module integration . 88

5.4.1 Prediction phase . 88

5.4.2 System response generation phase 89

5.4.3 Recommendation phase . 89

5.4.4 Matrix update phase . 91

5.5 Application to the automotive case of study 91

5.5.1 Deployment scenario . 91

5.5.2 Performance evaluation . 95

5.6 Conclusion . 96

6 Implementation and Evaluation 99

6.1 Introduction . 99

6.2 CRIM . 99

6.2.1 Features and architecture . 99

xii CONTENTS

6.2.2 Models . 101

6.3 Implementation . 103

6.3.1 Preferred extension generation 103

6.3.2 MCDM integration . 105

6.3.3 Learning file . 107

6.4 Evaluation . 108

6.5 Conclusion . 110

7 Conclusions and Perspectives 113

7.1 Contributions . 113

7.2 Perspectives . 114

7.2.1 Coordinated attack . 114

7.2.2 Extending the formal model . 115

7.2.3 The attacker’s point of view . 115

8 Résumé en français 117

8.1 Introduction . 117

8.2 Génération des scénarios d’attaques . 119

8.2.1 Génération des scénarios d’attaques 119

8.2.2 Systèmes d’argumentation à base de valeurs étendue 120

8.2.3 Génération des contre-mesures sensibles au contexte 120

8.3 Approche multicritère pour la prise de décision 122

8.4 Application sur les systèmes automobiles 123

8.5 Implémentation et évaluation . 125

8.5.1 CRIM . 125

8.5.2 Evaluation . 125

8.6 Conclusion . 126

A CRIM modules Source Code 129

CONTENTS xiii

A.1 Generation of attack scenarios . 129

A.2 Anti-correlation between models . 132

A.3 Attack relation between countermeasures 137

B Glossary 141

List of Publications 147

Bibliography 147

List of Figures 163

List of Tables 165

CHAPTER

1 Introduction

1.1 Motivation

Designing a secure system has always been a complex exercise. In practice, much of

the focus of designers and developers being on delivering a working system in the first

place; on the other hand, security concerns have long been considered only in retro-

spect, especially after serious flaws are discovered. Security experts are thus generally

confronted with an existing system, whose architecture might actually hamper the de-

ployment of security mechanisms that would prevent the occurrence of the attacks they

envision. From the embedded system viewpoint, enforcement of security requirements

becomes even more challenging and more critical. These challenges stem from the tight

relationship between architecture design and its functional, and non-functional require-

ments as well as their impact on one another. For instance, if the system architecture

design changes or evolves, these requirements should meet the new architecture de-

sign objectives and choose the best countermeasure that can be applied in this specific

context or situation. This is especially true in safety-critical systems such as automo-

tive systems [Bar-El 2009, Ruddle et al. 2010], where attacks may be devastating, but

where security functions overhead may also result in an absolutely useless system. In

such a context, designing a secure system has always been a complex exercise. Indeed,

security is a functionality that is difficult to specify and implement because it is not

modular: modifications to one part of an application may interact strongly with the

security properties of other parts of the same application.

On the other side, reacting in a critical context against an attack after his execution

can not always mitigate the attack damages. In these cases it is essential to anticipate

the attacker’s intentions and to take precautionary measures to prevent the attacker

from reaching his/her intrusion objective. For instance, we consider a single physical

server hosting a set of services such as an HTTP server, an SSH server and a database

server. An attacker can detect those services by scanning the open ports for example,

then try to fingerprint those services to check if a known vulnerable version is running.

2 CHAPTER 1. INTRODUCTION

From the detection point of view, detecting the port scanning and fingerprinting can be

used to formulate hypothesis on the future attacks the attacker may perform on those

services and select appropriate countermeasures against the inferred attack scenario.

However the attacker may decide to modify his/her intrusion objectives, because he/she

does not have the tools to attack the detected services for instance. In such case the

attacker may execute new attacks corresponding to a new intrusion objective. From

the detection point of view, this means that the reaction plan inferred from the first

attack is no longer valid and must be revised in the light of the newly detected attacks.

Moreover, an appropriate countermeasure should depend on the context in which

the system is operating. For instance, when considering a database server in the com-

pany private network, the availability criterion should be favored during work time

when employees are using the system database, but the performance criterion should

be preferred outside of working hours when database backups are created. In less crit-

ical situations, the system can afford to prioritize countermeasures that ensure certain

user requirements instead of taking strict measures that affect the service availabil-

ity for example. For mobile systems, such as those which are present in vehicles, the

environment in which they operate can evolve as they move and impact the reason-

ing process. We also claim that the security analysis should also play an important

role with respect to convincing the designer of increasingly complex embedded sys-

tems of the consistency and exhaustivity of his reasoning and selection of security

measures, at least with respect to the identified threats. The use of argumentative

logic [Dung 1995] driven reasoning engine can help in dynamic enforcement of security

mechanisms through the introduction of non-monotonic reasoning capabilities. This

non-monotonic logic provides a smart reasoning that allows to reason on the cost of

applying a countermeasure and to minimize the set of generated system responses given

a detected attack. These capabilities open up the door to the dynamic selection and

enforcement of security mechanisms performed statically only today.

1.2 Contributions

The challenges of modern security tools is to keep the system in a safe state while

satisfying the system different requirements (e.g., maintaining the best possible level

of performance and quality of service). Thus, we argue that the security process must

follow a smart reasoning that allows the system, according to a detected attack, to

prevent the related and potential attacks that may occur and to choose the best possible

set of countermeasures. To meet this objective, we propose the following contributions:

1.2. CONTRIBUTIONS 3

• Contribution 1. We introduce an approach [Bouyahia et al. 2014] for efficient

enforcement of security requirements, this approach is driven by argumentative

logic (AL). It describes a structured collaboration and interrelationship between

the system architecture design and security requirements to support the long-term

needs of the system. The purpose of security activities assisted by argumentative

logic is to bring into focus the key areas of concern, highlighting the decision

criteria and security context for each system aspect that has direct or indirect

value for a stakeholder.

• Contribution 2. In modern attacks, the attacker can execute several actions

in order to make the execution of other actions possible until reaching a cer-

tain intrusion objective. For this purpose, we provide an efficient method

[Bouyahia et al. 2015] allowing to instantiate actions hypothesis correlated to the

detected malicious action. Doing so, security administrator becomes aware about

the potential attacker’s intentions, which provide a better system reaction against

intrusion. Given an attack against a specific system, the best countermeasure

to apply depends on the context in which the system is operating. For exam-

ple, in the case of an automotive system, the fact that the vehicle is operating

downtown or on a freeway changes the impact an attack may have on the system.

Thus, the system must take into account the set of active contexts when gener-

ating system responses. For this purpose, we show how to improve the existing

argumentation framework by defining the Contextual Value-based Argumentation

Framework (CV AF) [Bouyahia et al. 2015] . CV AF presents a dynamic frame-

work that allows to consider the current set of active contexts while generating

system responses against intrusion.

• Contribution 3. We propose a content-based recommendation approach

[Bouyahia et al. 2016] using Multi-Criteria Decision Making (MCDM) for efficient

security administrator assistance when selecting the appropriate countermeasures,

given a specific attack scenario. To learn more about the security administrator

way of reacting, we propose a learning module which provides an idea about the

security administrator preferences and requirements according to his/her decisions

historic. This approach considers the different effects a countermeasure could have

on the system (e.g., performance, availability) as criteria to be considered when

selecting the appropriate system responses. This approach permits also, to au-

tomatically select appropriate countermeasures in critical cases where the system

security administrator is unable to select them by his/her self.

• Contribution 4. We apply our approaches on an automotive system as an example

of a case study to explore the issues that can meet complex systems during the reac-

4 CHAPTER 1. INTRODUCTION

tion process. This use case illustrates the potential need for dynamic enforcement

of security requirements to control the various security activities. We present some

experimental results concerning the execution costs of our implemented approach.

These results allow the evaluation of the approach in terms of performance and

time required for the system to react against different attack scenarios detected at

the same time. Based on these results, we show how our approach implementation

successfully responded to real-time constraints, since the responses of critical sys-

tems, such as automotive system, must be instantly provided especially in critical

contexts.

1.3 Organization of the dissertation

This dissertation is organized as follows:

Chapter 2 – System Response against Intrusion Detection: State of the

Art – we discuss in this chapter research investigations and technologies aiming to

assist system response against intrusion detection. It depicts the main results pub-

lished in the field of reaction against intrusion, focusing on the proposed automated

approaches.

Chapter 3 – Introduction to the Argumentation Logic – presents a general

introduction for Argumentation logic. It defines Argumentation logic frameworks while

highlighting works using this logic in the security field.

Chapter 4 – Context-aware System Response against Intrusion Detection

– introduces a novel approach which uses an argumentative logic framework to reason

and select the most appropriate countermeasures given an attack and its context. This

approach allows also to anticipate the attacker’s intentions.

Chapter 5 – Multi-Criteria Recommender Tool for Supporting Intrusion

Response System – proposes an approach based on content-based recommendation

for efficient security administrators assistance in the context of reaction against intru-

sion detection.

Chapter 6 – Implementation and Evaluation – presents some experimental

results concerning the execution costs of our implemented approaches. In this chapter,

we consider the automotive system as a case study to evaluate the implementation of

our approaches in an embedded system where real-time constraints must be satisfied.

1.3. ORGANIZATION OF THE DISSERTATION 5

Chapter 7 – Conclusions and Perspectives – this Chapter concludes the dis-

sertation by summarizing the contributions and presenting the perspectives for future

work.

CHAPTER

2 Automated System

Response against

Intrusion: State of the

Art

2.1 Introduction

Recent security concerns related to future computer systems make enforcement of se-

curity requirements one of the most critical phases when designing such systems. Tra-

ditionally, reasoning about the best intrusion response to apply has always been a part

of the security administrator responsibilities. In recent years, attackers changed their

way to infiltrate computer systems and use more sophisticated attacks to reach their

intrusion objectives. To cope with such modern attacks, Intrusion Response Systems

(IRSs) must provide modern techniques that can maintain monitored systems in safe

conditions while causing the minimum damage. In this chapter, we discuss the IRSs

architectures and functionalities. We specify their corresponding characteristics, de-

scriptions and existing approaches. Finally, we broach Attack Description Languages

and we discuss their benefits and drawbacks in the attack modeling field.

2.2 Intrusion Response System Definition

Existing Intrusion Response Systems (IRS) are mainly divided into three approaches

[Stakhanova et al. 2007b]: notification systems, manual response systems and auto-

matic response systems.

Notification systems represent the majority of IRS. They are systems that just inform

the security administrator about detected intrusions by generating reports and alarms

8 CHAPTER 2. AUTOMATED SYSTEM RESPONSE: RELATED WORK

like Snort [Roesch 1999]. These systems require that the security administrator has a

special knowledge about the various threats in order to select appropriate countermea-

sures.

Manual response systems are systems that notify the security administrator about on-

going detected intrusion and assist him/her while selecting system responses. These

systems provide response alternatives to the security administrator, these alternatives

are a preprogrammed set of responses corresponding to the reported attack.

Automatic response systems are systems that immediately provide a response to the

detected intrusion. These systems do not need a human interaction.

From the security administrator’s point of view, the main metric that differentiates

these three approaches is the delay between the intrusion detection and the system

response selection. In notification and manual system, this delay can be extended to

hours and days (i.e., in week-end and outside of working hours when no security ad-

ministrator is available). Even when an intrusion occurs during working hours, the

time required for the security administrator to reason about the best system responses

to apply provides a window of opportunity for the attackers, especially in notification

systems where no assistance is provided. The author in [Cohen 1999] presents a study

concerning the impact of reaction delay on the attack success rate. This study is based

on simulations and shows that for ten hours of delay between intrusion detection and

response, the attack success rate is 80%. This success rate increases to 95% when the

response delay is twenty hours. For thirty hours as response delay, the attacker never

fails to achieve his/her intrusion objective.

Now that we highlighted the importance of time delay between the intrusion detec-

tion and the system response on the efficiency of an IRS, we argue that Automated IRSs

are by far the most suitable approaches for designing an efficient Intrusion Response

System.

2.3 Automated Intrusion Response Systems

(AIRSs)

AIRSs are especially exploited when designing a critical secure system where responses

against intrusion must be provided in real-time. For instance, delayed system responses

against intrusions in automotive systems are not acceptable, especially in critical con-

texts.

Automated intrusion response systems can be classified according to four characteris-

tics as shown in Figure 2.1:

2.3. AUTOMATED INTRUSION RESPONSE SYSTEMS (AIRSS) 9

AIRs

Response Selection Adjustment Ability Response Execution Prediction ability

Static Dynamic Cost-sensitive Static Adaptive Burst Retroactive Proactive Reactive

Figure 2.1: Taxonomy of Automated Intrusion Response Systems

2.3.1 Response Selection

We can classify AIRSs into three types of response selection models:

Static model

In static models, alerts are assigned to predefined countermeasures. In

[Bruschi and Rosti 2001], the authors propose a Linux kernel module able to detect

attacks through signatures. This module analyzes system calls to recognize attacks

performed by the monitored host to block them. For instance, the module can de-

tect that a process is launched with a shellcode as parameter and decide to stop the

process. The authors observe that this type of automatic response is aggressive: a

legitimate user, unconscious that his/her host is infected can be blocked. The au-

thors in [Chen and Yang 2004] proposed a framework called Attack-Response Matrix

(ARM) whose role is to allow policies to dictate actions that must be taken given

a specific detected attack. This framework maps attack types to system responses.

Static mapping models are the majority of existing approaches. The main limitation

of such approaches is that the system responses are predictable, thus attackers can

consider system counter measures while planning their attack scenarios. In addition,

static model approaches do not take into account the different security administrator

requirements and the costs of selecting countermeasures.

Dynamic model

Response selection in dynamic models is based on multiple factors, including system

state (e.g., existing vulnerabilities, service implications), attack metrics (e.g., severity,

confidence, frequency) and administrator security requirements (e.g., security policy

10 CHAPTER 2. AUTOMATED SYSTEM RESPONSE: RELATED WORK

constraints, response goals). In other words, dynamic models are approaches where the

system response against an attack is not always the same and it depends on multiple

factors. In [Kiriansky et al. 2002], the authors propose a dynamic code analyzer driven

approach. They propose an interpreter whose role is to inspect the code to be executed

by the processor. If the inspected code is not considered as malicious, then it is

stored in a buffer including the checked and authorized code. Otherwise, the code

execution is then blocked. Reaction against intrusion in this approach is based on

blocking the attacks based on injecting malicious code. In [Ragsdale et al. 2000], the

authors propose an approach based on an agent architecture called Adaptive Agent

based Intrusion Response System (AAIRS). Once an alert is detected, the AAIRS

generates a response plan based on some factors (e.g.,response goal, attack type, attack

implication). Figure 2.2 presents the response decision-making model of the AAIRS

approach. The authors in [Porras and Neumann 1997] present an architecture called

Figure 2.2: Response decision-making model of AAIRS

Event Monitoring Enabling Responses to Anomalous Live Disturbances (EMERALD).

In EMERALD, countermeasures selection is based on attack evaluation to determine

its severity and its impact on the monitored system. A resolver part is included in

EMERALD architecture and whose role is to combine attack metrics (e.g., severity,

confidence, frequency) to formulate the monitor’s response policy.

The data used for the analyzes in EMERALD monitor are provided from event

streams derived from a variety of sources. These sources can be audit data, network

datagrams, SNMP traffic, application logs, and analysis results from other IDSs. Event

2.3. AUTOMATED INTRUSION RESPONSE SYSTEMS (AIRSS) 11

flows are inherently heterogeneous and must be formatted before the analyze phase.

The statistical component of the monitor (Profiler Engine) performs an analysis based

on the same approach as NIDES from an event stream [Anderson et al. 1994]. The

component performing a signature-based analysis (Signature Engine) uses a variant of

the P-Best expert system [Lindqvist and Porras 1999]. The analyzes results of both

systems as well as those of other analyzers interfaced to the monitor are subjected to

the resolver to be correlated. The resolver is the component of the monitor that is

responsible for implementing the response policy. The countermeasures are defined in

the response −methods field of a reaction model. The major weakness in this work

is that the authors do not provide description of the architecture capabilities and its

application. Proposed dynamic models such as EMERALD or the model proposed

in [White and Pooch 1996] do not focus on the damage caused by an intrusion. The

response selection process considers only the responses evaluation and its impact on

the monitored system.

Cost-sensitive model

Cost-sensitive model is a technique that attempts to balance intrusion damage and re-

sponse cost [Lee et al. 2002, Mu and Li 2010]. These models provide a risk assessment

component in order to measure intrusion damage. In [Balepin et al. 2003], the authors

used the SHIM architecture [Laboratories 2003] to detect Linux hosting machine pro-

cesses used to perform a specified attack. They propose to supervise all resources (e.g.,

files, connections) related to the malicious processes. Entities to supervise and counter-

measures available for each entity are specified by the user. Countermeasures against

malicious processes are automatically selected after evaluating the available counter-

measures cost and choosing the most appropriate one. For this purpose, the authors

propose a "gain matrix", which formulates the effects of selecting a specific response on

the system. This formulation is based on two metrics; the probability of the system to

be on a specific step from the attack scenario and the benefit from applying a system

response on a specific system state. We note that this work considers only the detection

of attacks executed on a single machine. The authors in [Soojin et al. 2006] propose an

approach basically depending on the probabilistic correlation. This approach considers

three main factors for system response against an intrusion detection: 1) operational

cost, costs concerning the IDS time process of events; 2) damage cost, costs concern-

ing the attack impact; 3) response cost, which refers to the cost of applying a system

response against a detected attack. The disadvantage of this solution is that it induces

a considerable traffic in the network. The authors in [Toth and Krügel 2002] propose

a cost-sensitive intrusion response approach that evaluates the response effect on the

12 CHAPTER 2. AUTOMATED SYSTEM RESPONSE: RELATED WORK

system using a dependency tree structure. This approach allows to select the response

which has the minimal negative effect on the system. However, the work presented in

[Toth and Krügel 2002] is not providing countermeasures that depend on the context

in which the system is operating.

2.3.2 Adjustment Ability

The adjustment of an AIRS is its ability to revise and to adjust system responses selec-

tion based on previous responses analysis. The majority of AIRSs are non-adaptive (or

static) system: response selection process remains the same during the attack detection.

Few are the approaches that use adaptive systems. The authors in [Foo et al. 2005]

propose an adapted approach called ADEPTS. This approach considers the response

history by evaluating responses selected in the past as success of failure in order to

improve the current responses selection. The AAIRS approach provides an adapted re-

sponse against a detected intrusion by prioritizing responses that have been successfully

applied over less successful responses. The adjustment ability is based on a learning

process that evaluates historic selected responses, so that the AIRS selects only the

succeeded countermeasures selected in the past. This learning is not automatically

performed, it requires human intervention to evaluate previous decisions taken.

2.3.3 Response Execution

The main limitation of previous approaches is the large number of countermeasures

to be selected especially when the corresponding attack scenario is constituted of a

large number of attack steps. The challenge in AIRSs is to select the optimal set of

candidate responses in real time. There are two types of AIRSs according to the type

of response execution [Shameli-Sendi et al. 2012]: burst and retroactive.

Burst

Burst approaches present AIRSs that do not consider a mechanism to measure the risk

index of the monitored host once the countermeasure has been applied. In this model,

monitored system can apply a large set of responses, given a detected intrusion, while

a subset of these responses may be enough to stop the attack. The major weakness

of burst approaches is the high cost in system performance and quality of service. In

other words, the only objective of such approaches is to mitigate the attack without

considering the nominal system functional behaviors (e.g., performance, availability).

2.3. AUTOMATED INTRUSION RESPONSE SYSTEMS (AIRSS) 13

For instance, when considering two responses against intrusion where the first is to

filter the suspect host and the second is to block all the connected hosts. The second

countermeasure causes availability loss and can be avoided when applying filtering

suspect host is enough to mitigate the attack.

Retroactive

Retroactive approaches provide a feedback mechanism that measures the coun-

termeasure effect based on the responses history. This approach was first pro-

posed in [Mu and Li 2010]. The authors presented a response measure decision-

making model that optimizes the generated responses set by avoiding unneces-

sary responses and reducing the risk of false positive response. Existing works

[Foo et al. 2005, Stakhanova et al. 2007b, Lee et al. 2002, Shameli-Sendi et al. 2013]

propose approaches that rely on heuristics to reduce the size of candidate responses

given a detected attack scenario. In order to limit the size of the system responses set,

ADEPTS considers only the countermeasures that are applicable in the sites where

the detected alert was generated. ADEPTS uses a graph of intrusion goals called

I − Graph. It provides a semi-automated method called PortableI − Graph (PIG)

that determine the possible path of spread of the intrusion, appropriate services where

to deploy the response, and appropriately choose the response. ADEPTS is not eval-

uating the candidate system responses according to the response effect on the overall

system. The proposed approach considers only the system response effect on the spe-

cific service where it is deployed. The authors in [Stakhanova et al. 2007b] presented a

retroactive AIRS based on a confidence level threshold; if the selected countermeasure

mitigates the attack, its success factor is increased by one, and it is decreased by one

on the contrary.

2.3.4 Prediction Ability

From the prediction ability point of view, AIRSs can be classified into two categories:

Reactive and Proactive.

Reactive

In reactive approaches, system responses are applied only after an intrusion objective

is achieved. Most existing AIRSs use this approach (e.g., [Papadaki and Furnell 2006],

[Strasburg et al. 2009]), although this approach is not useful in critical systems where

14 CHAPTER 2. AUTOMATED SYSTEM RESPONSE: RELATED WORK

high security is required. For instance, suppose that an attacker steals confidential and

critical information. In this case, a reactive response is not useful since the confidential

information has already been disclosed. In [Anuar et al. 2010], the authors present the

drawbacks of using reactive approach, which are the following:

• System responses are applied after an intrusion detection, so the system remains

in a vulnerable state until the reactive response is applied.

• It is difficult to return the system to the safety state.

• The attacker has a delay between intrusion detection and system response, this

delay provides a window of opportunity for the attacker to be exploited.

• From the monitored system point of view, it is easier to maintain system in safe

condition than returning it from an unhealthy state to the normal conditions.

• Systems are exposed to an important risk of damage, since responses are applied

after an incident is detected.

Proactive

Proactive response system allows to prevent a malicious action before it happens.

Existing AIRSs use a prediction phase in the detection component. The authors in

[Yu and Frincke 2007] proposed the Hidden Colored Petri-Net (HCPN). This approach

can describe the relationship between the intrusion different steps, alerts and actions.

HCPN associates system states with a confidence level. This approach is called "hid-

den" because actions are not observable by IDS but can be inferred through alerts

generation. In [Sendi et al. 2012], the authors proposed Alert Severity Modulating to

anticipate the attacker’s intentions. This approach is based on Hidden Markov Model

(HMM) to extract interactions between attackers and targets. The main limitation of

this approach is that it is not evaluating attack scenarios in term of risk and impact.

The proposed approach does not consider as well the impact of applying a counter-

measure given a detected attack scenario.

We previously showed approaches and architectures whose main role is to provide an

automated system response against intrusion detection. A complete list of approaches

and research studies on IRSs is given in Table 2.1. In light of the presented approaches,

we argue that an ideal intrusion response system should satisfy the following features:

Proactive, Adaptable, Cost-sensitive and Retroactive. We will now discuss the existing

languages that model events detected on the system.

2.3. AUTOMATED INTRUSION RESPONSE SYSTEMS (AIRSS) 15

AIRS Response Selection Adjustment Ability Response Execution Prediction Ability

DC&A [Fisch 1996] Dynamic Non-adaptive Burst Reactive

CSM

[White and Pooch 1996]

Dynamic Non-adaptive Burst Reactive

EMERALD

[Porras and Neumann 1997]

Dynamic Non-adaptive Burst Reactive

BMSL-based response

[Bowen et al. 2000]

Static Non-adaptive Burst Reactive

SoSMART

[Musman and Flesher 2000]

Static Non-adaptive Burst Reactive

PH

[Somayaji and Forrest 2000]

Static Non-adaptive Burst Reactive

AAIRS

[Ragsdale et al. 2000]

Dynamic Adaptive Burst Reactive

SARA

[Lewandowski et al. 2001]

Dynamic Non-adaptive Burst Reactive

CITRA

[Schnackengerg et al. 2001]

Dynamic Non-adaptive Burst Reactive

TBAIR [Wang et al. 2001] Dynamic Non-adaptive Burst Reactive

Network IRS

[Toth and Krügel 2002]

Cost-sensitive Non-adaptive Burst Reactive

Lee’s IRS [Lee et al. 2002] Cost-sensitive Non-adaptive Burst Reactive

Tanachaiwiwat’s IRS

[Tanachaiwiwat et al. 2002]

Cost-sensitive Non-adaptive Burst Reactive

Specification-based IRS

[Balepin et al. 2003]

Cost-sensitive Non-adaptive Burst Reactive

ADEPTS [Foo et al. 2005] Cost-sensitive Adaptive Burst Proactive

FAIR

[Papadaki and Furnell 2006]

Cost-sensitive Non-adaptive Burst Reactive

Stakhanova’s IRS

[Stakhanova et al. 2007a]

Cost-sensitive Adaptive Burst Proactive

DIPS [Haslum et al. 2007] Cost-sensitive Non-adaptive Burst Proactive

Jahnke

[Jahnke et al. 2007]

Cost-sensitive Non-adaptive Burst Reactive

Strasburg’s IRS

[Strasburg et al. 2009]

Cost-sensitive Adaptive Burst Reactive

IRDM-HTN

[Mu and Li 2010]

Cost-sensitive Non-adaptive Retroactive Reactive

OrBAC

[Kanoun et al. 2010]

Cost-sensitive Adaptive Burst Proactive

Kheir’s IRS

[Kheir et al. 2010]

Cost-sensitive Non-adaptive Burst Proactive

Shameli’s IRS

[Shameli-Sendi et al. 2013]

Cost-sensitive Adaptive Retroactive/Burst Reactive

Table 2.1: Classification of existing AIRSs based on proposed taxonomy

16 CHAPTER 2. AUTOMATED SYSTEM RESPONSE: RELATED WORK

2.4 Attack Description Languages

IDSs are responsible for detecting the occurrence of certain events in the monitored

system. These events correspond to actions performed by the attacker, these actions

being part of its attack strategy. An alert corresponding to the detection of a certain

action contains information on involved machines (i.e., the action source and targeted

hosts), and provides the name of the associated action. The amount and type of

information transported by the alert are directly dependent on the detection technique

used. These information do not provide actions semantics; trying to reason on such

information is therefore very difficult. In order to reason on a set of alerts and draw

conclusions from these observations, it is necessary to model the detectable actions to

associate a semantic alerts. In the following, we present existing attack description

languages, and we show how they are used.

2.4.1 CAML

This language is developed and used in [Cheung et al. 2003] as part of Correlated

Attack Modeling (CAM) project [CAM 2003]. The purpose was to define a high level

language so that it can be used by different correlation modules. CAML permits to

model the steps of intrusion scenarios. An action is represented by a CAML module

and its links with other modules are expressed by the specification of a pre-condition

and a post-condition field. CAML language is accompanied by a predicates library

representing vocabulary allowing to describe system properties according to an action

model. A CAML module consists of three sections:

• activity: specifies events list to observe in order to instantiate an action model

represented by a module. CAML events are based on the IDMEF format

[Debar et al. 2007].

• pre-condition: defines the system state required for the execution of the action.

This field defines, in addition, required conditions of other events already observed.

For instance, as shown in Figure 2.3, the pre-condition field require that r1 must

be observed before r2.

• post-condition: defines a list of predicates and events inferred once activity and

pre-condition fields was satisfied.

Figure 2.3 presents a modeling of action that execute locally a code allowing the

attacker access to confidential information.

2.4. ATTACK DESCRIPTION LANGUAGES 17

module Remote-Exec-Access-Violation-2-Data-Theft

(

activity:

r1: Event(

Source(Node(Address(a: address)))

Target(Node(Address(b: address)))

Classification(origin == "vendor-specific"

name == "CAM-Remote-Exec"))

r2: Event(

Source(Node(Address(address == b)))

Target(Node(Address(c: address)))

Classification(origin == "vendor-specific"

name == "CAM-Access-Violation"))

pre:

StartsBefore(r1, r2)

post:

Event(

starttime == r1.starttime

endtime == r2.endtime

Source(Node(Address(address == a)))

Target(Node(Address(address == c)))

Classification(

origin == "vendor-specific"

name == "CAM-Data-Theft"))

)

Figure 2.3: CAML module: Remote execution and access violation to data theft

It is important to note that a CAML module does not correspond necessarily to an

event detectable by an Intrusion Detection System (IDS). As shown in the example

in Figure 2.3, we can see that the post-condition field is validated once both events

r1 and r2 was observed in the good order. A correlation module using CAML as

language of attacks description was implanted using the inference engine P-BEST

[Lindqvist and Porras 1999] and by converting CAML models to P-BEST rules. Note

that this conversion phase has to be manually performed. The implementation of this

correlation engine revealed a combinatorial explosion problem in the P-BEST inference

engine. This issue had not been highlighted in previous P-BEST engine applications be-

cause rules used in [Lindqvist and Porras 1999] have a limited effect on its antecedents.

18 CHAPTER 2. AUTOMATED SYSTEM RESPONSE: RELATED WORK

Translating CAML models into P-BEST rules generates P-BEST rules with complex

antecedents. The authors did not define a syntax or a grammar for the language. We

observe that this language is largely based on the IDMEF structure, which means that

its use is restricted in architectures using only this alert format.

2.4.2 ATiKi

In [Steffan and Schumacher 2002], Steffan and Schumacher present an attack scenario

discovery tool. They provide both a representation of scenarios by Petri networks and

a modeling for actions constituting the scenarios. More precisely, they used the "At-

tack Net" modeling presented in [McDermott 2000] to model attack scenarios. ATiKi

modeling consists of two main elements:

Brute-force guess password

Preconditions: [→ read access to /etc/passwd],

[→ account with weak password]

Postconditions: [→ knowledge of password]

Contexts: [→ UNIX-like system], [→ Linux sys-

tem]: most modern Linux systems use shadow

passwords, so /etc/passwd does not contain pass-

word hashes.

Description: A password can be guessed if it is

included in a reasonably small search space, such

as all combinations of lowercase letters or lists of

English words or names. See [→ account with

weak password] for more cases of weak passwords.

If the hash value of the password is known, an

attacker can do the password guessing off-line by

generating a hash value for each candidate in the

search space and comparing it with the known

hash.

Figure 2.4: Transition Brute-force guess password with pre- and postconditions and

context. [→ ...] denotes hyperlinks in the ATiki system.

• Conditions: It describes informally the system properties (e.g., Unlimited failed

logins are allowed) and the attacker’s capabilities (e.g., valid password is known)

by logical predicates. A true/false label should be assignable to each predicate.

2.4. ATTACK DESCRIPTION LANGUAGES 19

• Transitions: It describes action pre-condition and post-condition. The semantics

of transition is that all of the pre-condition have to occur in order to enable the

transition to the post-condition

Conditions and transitions are associated with Wiki pages [Wik] to provide a better

navigation in attack graphs. A wiki page is an HTML page that can be modified

through a browser providing a simplified syntax, so that users can participate in web

site construction. Attacks graphs are automatically generated starting from hyperlinks

situated in models pre-condition and post-condition. Figure 2.4.2 presents an ATiKi

model transition corresponding to a guess weak password attack. We can see that

correlation links between system properties conditions and the attacker are explicitly

specified by using hyperlinks toward conditions. Contexts field in Figure 2.4.2 defines

the context of the guess weak password action. This field facilitates the navigation in

system Wiki pages. Once the set of transitions and conditions was defined, a search is

done to determine the set of attacks graphs.

Figure 2.5 presents an example of attack graph generated from a small set of tran-

sitions and conditions. This tool is intended to explore attacks graphs, but it is not

intended to intrusion detection. However, although the authors do not mention it, it

would be possible to use the generated graphs as a scenario models base for IDS. In

addition, intrusion objectives cannot be modeled using Atiki modeling.

2.4.3 ADeLe

As part of MIRADOR project [Cuppens 2001], the authors in [Michel and Mé 2001]

propose an Attack Description Language (ADeLe). The aim of this language is to

specify a database of attacks to configure a set of IDS. ADeLe is a procedural language,

we present in the following the structure of an ADeLe model. An ADeLe model consists

of three parts:

– EXPLOIT: This part specifies required conditions to perform the attack, attack

description (i.e., the attack code or its different steps) and the attack effects on

the system. This part is composed of three parts: pre-condition, attack code,

post-condition. There are no proposed languages expressing pre-condition and

post-condition fields. The attack code field allows to specify the nature of the

language used in the attack. It is thus possible to include a C++ function or

to specify informally the attack and stating that this is a text. The language

specification is used to provide a selection of the best interpreter or compiler when

reading the file.

20 CHAPTER 2. AUTOMATED SYSTEM RESPONSE: RELATED WORK

C11: File has undefined extension

T6: Web-server does not know how to handle file

C10: Processing of file fails

T5: File is delivered unprocessed

C9: Web-server discloses file

C1: Application has permission to open server side file

T5: File is delivered unprocessed

T1: Exploit PHP file upload vulnerability

C3: Attacker can bypass input validation C5: Web application allows file upload

C2: Application opens attacker defined server side file

C6: Application shows file

T4: Get server-side file through HTTP request T2: Cause application to disclose server-side file

C4: Attacker can view server-side file C7: Server-side file contains plain-text password

C8: Attacker can get password

T3: View server-side file containing password

Figure 2.5: Example of Attack Graph discovered by Atiki system

– DETECTION: This part specifies how to detect the attack. A high level language

is proposed to express the hash allowing to detect a low level event. This language

permits also to express complex scenarios including know attacks. This part is

composed of three sub parts:

– DETECT: This part specifies the alerts and events expected once the attack

is performed. This part specifies also the time and contextual constraints

between alerts/events. These specifications allow to define how alerts/events

must be sequenced to detect a full attack scenario.

– CONFIRM: This part expresses elements that should be checked on the

monitored system to confirm or deny the success of the attack. A set

of functions is provided for this purpose. For instance, the function

Unreachable_Machine(<IP_address>) returns the boolean value true if the

specified machine is unavailable.

2.4. ATTACK DESCRIPTION LANGUAGES 21

– REPORT: This part specifies how generated alerts fields when detecting at-

tack modeled via ADeLe language.

– RESPONSE: This part specifies countermeasures to be executed given a

detected attack. Many functions are provided, for instance the function

Kill_Process(target_ip,user_name,process_id|"ALL") permits to stop a

process in a specific machine and the function Script_Exec(script_name) per-

mits to execute a script.

We argue that the RESPONSE field do not respond to modern system requirements,

since it proposes a simple countermeasure for each attack. However, for a given attack

there may be several responses, more or less effective and whose relevance may vary

depending on the context in which the system is operating or on the security adminis-

trator preferences and objectives. We judge important that the security system must

be able to provide multiple system responses to the security administrator, leaving

him the choice to select the most appropriate countermeasure. Since this language is

used to model entire scenarios, system users are obliged to update the whole scenarios

library each time a new elementary attack is introduced.

2.4.4 LAMBDA

The authors in [Cuppens and Ortalo 2000] present an attack description language.

This language is based on logic and uses a declarative approach. It was also devel-

oped as part of MIRADOR project. The aim of this language is to define attacks

independently from the technique used or the type of the targeted host. LAMBDA

permits to model malicious actions (i.e., actions that violates security policy) as well

as suspects actions (i.e., actions that do not violate the security policy but allow the

execution of a malicious action). A LAMBDA model describes the attack from different

point of views. We first give an informal description of a LAMBDA model, then we will

discuss the different languages used in this modeling. A LAMBDA model describes an

attack from two perspectives: the attacker perspective and the detection point of view.

From the perspective of the attacker the model specifies three components:

– A set of conditions that must be satisfied in the targeted system, so that the

attacker could perform his/her attack.

– The attack execution effects on the targeted system. These effects could be a

modification on the system state (e.g., performing a Deny Of Service (DOS),

22 CHAPTER 2. AUTOMATED SYSTEM RESPONSE: RELATED WORK

opening a connection) or could concern the user or the attacker itself (e.g., a

knowledge acquisition or obtaining privileges reserved for the administrator)

– The scenario corresponding to the attack. An attack scenario can be composed of

multiple actions.

From the detection point of view, a LAMBDA model specifies how to detect an attack.

This description consists of three parts:

– The actions to be taken on the monitored system to detect the attack.

– How these detection actions must be combined to detect the attack.

– A set of verification measures to quantify the impact of the attack on the system.

LAMBDA is a modular language, which allows to describe an attack starting from

other attack models. The modularity of a modeling language is an important aspect.

Indeed, it facilitates the maintenance of an attack base and allows to describe attacks

that can be used afterward in more complex scenarios. We present now the LAMBDA

language structure as well as some LAMBDA model examples. The model adopted

for the system representation is presented in Figure 2.6. The knowledge of the system

logical predicates logical predicates

System state before event execution System state after event execution

transition

event = object + attributes

Figure 2.6: Monitored system model

state is represented in first order logic using logical predicates. Three languages are

used in a LAMBDA model:

– State description, Language L1: This language is based on predicate logic. It al-

lows to describe the system state via the pre-condition and post-condition fields of

a given attack. For instance, the use_service(Address, netBios) predicate spec-

ifies that the host corresponding to Address variable uses the netBios service.

This predicate can be used, for example, in an attack model where its execution

requires that the targeted host uses the netBios service. In order to combine multi-

ple predicates in an expression, the logical operators ∧, ∨ and ¬ are used in attack

modeling. The effects of an attack does not always result in a change in the system

2.4. ATTACK DESCRIPTION LANGUAGES 23

state. The execution of an attack can allow the attacker to get information about

the targeted system without violating security policy. A meta predicate knows is

defined to represent this acquisition of knowledge by the attacker. For instance,

the predicate knows(User, mountedpartition(Address, Partition)) specifies that

User knows that the partition Partition of the host corresponding to the address

Address is mounted. This predicate can be used for example in the post-condition

of shwomount LAMBDA action.

– Transitions description, Language L2: In LAMBDA modeling, transitions are as-

sociated with events. Language L2 is based on two operators (∧ and =) and a

set of attribute names. The set of considered attributes are action, actor, date.

In order to compare temporal information, L2 includes also the operators < and

≤. The transition associated with an event e can be formalized in L2 as follows:

action(e) = a ∧ actor(e) = u ∧ date(e) = [t1, t2].

– Events combination, Language L3: This language provides operators, allowing to

combine events. Operators allowing to combine two events e1 and e2 are:

– e1 ; e2: sequential composition of e1 then e2.

– e1 | e2: parallel execution of e1 and e2.

– ē1[t1, t2]: absence of e1 in the events flow between t1 and t2.

– e1 ? e2: represents the non-deterministic choice between e1 and e2.

– e1 & e2: synchronized execution of e1 and e2.

The full description of an attack is modeled using these three languages. An attack

model described in LAMBDA is represented as follows:

attack: attack_name(arg1, arg2, ...)

pre: cond ∈ L1

post: cond ∈ L1

scenario: expr ∈ L3

where cond ∈ L2

detection: expr ∈ L3

where cond ∈ L2

verification: expr ∈ L3

where cond ∈ L2

24 CHAPTER 2. AUTOMATED SYSTEM RESPONSE: RELATED WORK

In a LAMBDA model, variables are represented by terms starting with a capital letter

and constants by terms starting with a lowercase letter. We note that variables are

used locally in a LAMBDA model. On the other hand, we cited the modularity of

language: it is actually possible to reference an attack model as an action associated

with an event, using the clause where. We present an example of attack modeled via

LAMBDA. This attack consists of six steps and allows to exploit a bad configuration

of security policy in order to access to a host partition. The attack’s steps are modeled

as follows:

1. rpcinfo -p Target-IP

This command allows the attacker to know whether the portmapper service and

the NFS daemon are started on the target host.

2. showmount -e Target-IP

The attacker obtains the list of exportable hard drive partitions.

3. showmount -a Target-IP

The attacker obtains the list of mount points.

4. finger @ Target-IP

The attacker obtains a host user ID and knows that the devil finger is started on

the target host.

5. adduser –uid Userid Username

This step is performed on the attacker’s host. He/she adds a user account on

his/her host by specifying the parameters acquired through the previous steps.

6. mount -tTarget-partition \mnt

This step corresponds to the execution of action violating the security policy. In

fact, the attacker obtains an illegal access to a mounted partition.

2.4. ATTACK DESCRIPTION LANGUAGES 25

attack: NFS_abuse(IP − cible)

pre: remote_access(A, H) ∧ ip_address(H, IP − cible)

∧use_service(H, portmapper) ∧ use_service(H, mountd)

∧exported_partition(H, P) ∧mounted_partition(H, P)

∧connected_user(U, H) ∧ userid(U, H, Userid)

∧use_service(H, fingerd) ∧ root_user(A, HA)

∧connected_user(A, HA) ∧ owner(Directory, U)

post: can_access(A, Directory)

scenario: ((E1; (E2&E3))&E4&E5); E6

where action(E1) =rpcinfo -p IP-cible

∧action(E2) =showmount -e IP-cible

∧action(E3) =showmount -a IP-cible

∧action(E4) =finger @ IP-cible

∧action(E5) =adduser –uidUserid Username

∧action(E6) =mount -tTarget-partition \mnt

∧actor(E1) = A ∧ actor(E2) = A

∧actor(E3) = A ∧ actor(E4) = A

∧actor(E5) = A ∧ actor(E6) = A

detection: ((F1; (F2&F3))&F4); F5

where action(F1) = detect(E1)

∧action(F2) = detect(E2)

∧action(F3) = detect(E3)

∧action(F4) = detect(E4)

∧action(F5) = detect(E6) ∧ date(F5) = t

verification: W1

where action(W1) = foreign_mount() ∧ date(W1) = t′

∧t′ ≤ t

Figure 2.7: Model of the attack exploiting the NFS service.

26 CHAPTER 2. AUTOMATED SYSTEM RESPONSE: RELATED WORK

The Figure 2.7 represents a LAMBDA modeling of the full attack. The first four

steps are part of the acquiring knowledge phase about the targeted machine. We did

not represent elementary attack models in Figure 2.7 but the overall scenario. Note

that the detection field makes no mention of the step executed locally on the attacker

machine. In fact, this step is not detectable. The detection and verification fields are

intended to specify the operations required to detect and verify the success of the attack

in the IDS. The separate specification of tasks to detect and verify the attack allows

greater flexibility in specifying the attacks as these operations are largely dependent on

the used platform. The verification field specifies a function that checks if someone

tried to mount a partition from a foreign host to the monitored network. Whereas the

detection field specifies the attacker hash. The logical information that contain the

pre-condition and post-condition models fields allow to consider automatic generation

of complex scenarios using elemental action models.

We will see in the following chapters that LAMBDA language was considered to

specify the elementary actions, to take advantage from its modularity. LAMBDA well

models complex scenarios and facilitates the update process of attack base. Once

these actions are specified, it is possible to find logical links between these models in

order to correlate alerts for instantiating these models (see chapter 4). This makes the

proposed AIRS in a phase advance with respect to attackers.

2.5 Conclusion

This chapter introduced Attack Description Languages. We discussed the benefits and

drawbacks of most important languages and we judged LAMBDA language as the most

appropriate attack description language to our approach. This chapter introduced as

well the Automated Intrusion Response Systems and their main features. We explored

existing approaches and their limitations. We showed that Proactive property should

be satisfied so that the AIRS could anticipate the attackers intentions. We saw that

Cost-sensitive and Adaptive properties of an AIRS should be satisfied as well in order

to ensure the best level of performance and quality of service and to maintain system

in safe conditions while respecting the security administrator requirements. Finally,

we showed that it is important to satisfy the Retroactive property in order to satisfy

the real-time constraints by generating an optimal set of countermeasures. For this

purpose, we present in this thesis an approach based on the argumentative logic. This

non-monotonic logic provides a smart reasoning that allows to reason on the cost of

applying a countermeasure and to minimize the set of generated system responses given

2.5. CONCLUSION 27

a detected attack. Next chapter presents a background to the argumentative logic, we

introduce basic notions that will be used in the rest of the thesis.

CHAPTER

3 Introduction to the

Argumentation Logic

3.1 Introduction

When a system reasons and interacts with external elements, it may face different

inconsistencies (e.g., unreliable observations, conflict between information exchanged

with other systems). Thus, a smart system should have a reasoning tool that allows

to manage those inconsistencies. We believe intuitively that argumentation is an ap-

propriate candidate, since humans use it as a way to reason and to cope with conflicts.

Argumentation presents an adapted model for the cognitive process of an AIRS to

manage interactions between countermeasures that will be considered as arguments in

the rest of the thesis. In this chapter, we present a definition of Argumentation Logic

(AL), then, we explore different argumentation frameworks and we discuss the advan-

tages and drawbacks of each existing framework. Finally, we explore existing works

and approaches related to the security field using AL.

3.2 Motivation

Classical deduction is a consequence relation (denoted ⊢) that links premises with

proofs. The example presented below shows how to reach a conclusion from a finite

number of premises:

John is 88 years old.

John is a man.

All men over 80 are old.

88 ≥ 80

John is old.

30 CHAPTER 3. ARGUMENTATION LOGIC

Classical deduction ensures the monotonic property: if Θ is a consequence of Γ then it

is also a consequence of each set containing Γ:

if Γ ⊢ Θ and Γ ⊂ ∆ then ∆ ⊢ Θ

In other words, adding a new premises to a set Γ has no effects on conclusion deduced

from Γ. Thus, when we accept proof premises, we are forced to accept its conclusion.

Here we are talking about a closed universe and a monotonic logic. This logic is not

adapted for intrusion detection context, since attacker actions modify the state of the

system on which we reason.

Unlike classical logic, argumentation allows us to draw conclusions reserving the

right to withdraw them in light of new information. We build and compare arguments

that defend a conclusion as well as counter-arguments against the same conclusion. For

instance, the following argument allows to reach the same conclusion of the example

previously defined:

John is old because he is octogenarian

Contrary to monotonic logic, arguments can be defeated by other counter-

arguments. Arguments are open to objections. Here we are talking about an open

universe and a non-monotonic logic. An argument is accepted only when all its objec-

tions are defeated. We can distinguish different types of objections:

• Arguments that leave some implicit premises assuming that the audience accept

it. For example, we presuppose that John is a man.

• Arguments that use vague, imprecise or open information. For example, no age

threshold is mentioned.

• Arguments that admit objections in exceptional cases. For example, John is per-

haps immortal.

• Arguments that can be introduced even when there are doubts about certain facts.

For example, I am not sure that John is octogenarian.

This list is not exhaustive but it allows to distinguish between arguments and proofs.

To summarize, when information are incomplete, uncertain or unclear and when the

universe is open, it is better to use an argumentation system to model the reasoning

rather than a proof system. This is the case of an autonomous and social agent. In

the next section, we present existing argumentation frameworks.

3.3. ARGUMENTATION FRAMEWORKS 31

3.3 Argumentation frameworks

In this section, we first present the AAF proposed by Dung [Dung 1995]. This work has

highly inspired all argumentation systems proposed in last two decades. Thereafter,

we present two extensions of the AAF : The framework proposed by Amgound and

Cayrol [Amgoud and Cayrol 1998, Amgoud and Cayrol 2002] introduce the notion of

preference and the framework proposed by Bench-Capon [Bench-Capon 2003] introduce

the notion of value.

3.3.1 Abstract Argumentation Framework (AAF)

Phan Minh Dung proposes in [Dung 1995] to model the human way of argumentation

during problems solving. In this framework, arguments are abstracted into entities

whose role is solely determined by their relation to other arguments. That is why we

talk about an abstract argumentation framework. To illustrate this principle, Dung

presents an example of argumentation between two persons I and A, whose countries

are at war, about who is responsible for blocking negotiation in their region.

Example

I: My government can not negotiate with your government because your government

does not even recognize my government.

A: Your government does not recognize my government either.

The explicit content of I’s utterance is that the failure of A’s government to rec-

ognize I’s government blocks the negotiation. This establishes the responsibility of

A’s government for blocking the negotiation by an implicit appeal to the following

commonsense interpretation rule:

Responsibility attribution: If an actor performs an action which causes some state of

affairs, then the actor is responsible for that state of affairs unless its action was

justified.

A uses the same kind of reasoning to counter argue that I’s government is also respon-

sible for blocking the negotiation as I’s government does not recognize A’s government

either. At this point, neither arguer can claim "victory" without hurting his own posi-

tion. Consider the following continuation of the above arguments:

I: But your government is a terrorist government.

32 CHAPTER 3. ARGUMENTATION LOGIC

This utterance justifies the failure of I’s government to recognize A’s government.

Thus the responsibility attribution rule cannot be applied to make I’s government

responsible for blocking the negotiation. So this represents an attack on A’s argument.

If the exchange stops here, then I clearly has the "last word", which means that he has

successfully argued that A’s government is responsible for blocking the negotiation.

Definition 1. An Abstract Argumentation Framework is a pair 〈AR, attacks〉 Where:

• AR is a finite set of arguments

• attacks a relationship over AR× AR.

attacks(A1, A2) means that A1 represents an attack on A2.

Similarly, we say that a set S of arguments attacks A, if A is attacked by an

argument from S. Argumentation systems according to AAF can be modeled using

oriented graphs where nodes present arguments and arcs the attack relationship. For

example, let AS = 〈AR, attacks〉 be an argumentation system defined as follows:

• P, Q, R, S ∈ AR

• attacks(S, Q) attacks(R, Q) attacks(Q, P)

AS argumentation system can be represented using oriented graph as shown in Figure

3.1. Arguments are represented by Letters and arcs represent the attacks relationship

between them.

P

Q

R S

Figure 3.1: AS system representation in oriented graph

The objective of AAF is to determine if an argument is acceptable. The semantics

of this framework assign a status to the arguments in a given set by the relationships

that link on one another. An argument is said to be acceptable if it can be supported

by other acceptable arguments despite the critics. The acceptability of an argument

depends on the arguments (respectively counter arguments) that defend it (respectively

attack it). It is in this perspective that the following definitions are introduced.

3.3. ARGUMENTATION FRAMEWORKS 33

Definition 2. Let AS = 〈AR, attacks〉 be an AAF , S ⊆ AR and P ∈ AR.

S is said to be conflict-free iff ∀P, Q ∈ S,¬attacks(P, Q).

Definition 3. Let AS = 〈AR, attacks〉 be an AAF , S ⊆ AR and P ∈ AR.

P is acceptable with respect to S iff ∀Q ∈ AR, attacks(Q, P) =⇒ attacks(S, Q)

Definition 4. Let AS = 〈AR, attacks〉 be an AAF , S ⊆ AR.

A conflict-free set of arguments S is admissible iff each argument in S is acceptable

with respect to S.

In classical logic, a theory has a unique extension (argument set) that is a fixed

point of the deduction operation. In non-monotonic logic, a theory can admit several

extensions. Argumentative logic is a non-monotonic reasoning model whose seman-

tics are defined by different extensions. For this purpose, three extension types are

considered: ground extension, preferred extension and stable extension.

To define the ground extension, we introduce the characteristic function of an AAF .

Definition 5. The characteristic function, denoted by FAF , of an argumentation

system AS = 〈AR, attacks〉 is defined as follows:

FAS : 2AR −→ 2AR

FAS(S) = {P ∈ AR | P is acceptable with respect to S }

Definition 6. Let AS = 〈AR, attacks〉 be an AAF . The grounded extension of AF ,

denoted by GEAS is the least fixed point of FAS.

AS1

P

Q

R S

AS2

P

Q

R S

Figure 3.2: AS1 and AS2 systems representations in oriented graph

An argumentation system has always a unique ground extension that can be empty.

For example, we consider two argumentation system (AS1) and (AS2) as shown in

Figure 3.2. Each of these argumentation systems has a unique ground extension:

GEAS1 = {R, S, P} and GEAS2 = {∅} respectively for AS1 and AS2.

To enrich the semantics of an argumentation system, we define a preferred extension

as the maximum admissible set.

34 CHAPTER 3. ARGUMENTATION LOGIC

Definition 7. A preferred extension of an argumentation framework AF is a max-

imal (with respect to set inclusion) admissible set of AF .

A preferred extension represents a consistent position that can defend itself against

any attack and that can not be extended without introducing conflicts. The argumen-

tation system AS2 presented in Figure 3.2 has a unique ground extension GEAS2 = {∅}

and two preferred extensions: prefAS2 = {P, R} and prefAS2 = {P, S} An argumen-

tation system does not necessarily have a unique preferred extension. We can then

distinguish several classes of acceptability. A rationality which accepts only arguments

that are in all preferred extensions is called skeptical. If it accepts the arguments that

are at least in one preferred extension, it is qualified as credulous.

The ground extension is included in all preferred extensions. In addition, a preferred

extension can be empty. Thus, the stable extension was introduced and defined as

follows:

Definition 8. Let AS = 〈AR, attacks〉 be an AAF , S ⊆ AR and S is conflict-free.

S is a stable extension iff ∀P ∈ AR− S, attacks(S, P)

In other words, a conflict-free set S is called a stable extension iff S attacks each

argument which does not belong to S.

An argumentation system does not necessarily have a stable extension. However,

when it exists, it is not empty. For instance, we consider two argumentation system

(AS2) and (AS3) as shown in Figure 3.3. Both preferred extensions: prefAS2 = {P, R}

and prefAS2 = {P, S} are also stable extensions. AS3 do not has stable extension.

AS2

P

Q

R S

AS3

P

Q R

Figure 3.3: AS2 and AS3 systems representations in oriented graph

In addition, every stable extension is a preferred extension, but not vice versa. If

this condition is verified, we talk about a coherent argumentation system.

Definition 9. Let AS = 〈AR, attacks〉 be an AAF , AS is said to be coherent if each

preferred extension of AS is stable.

3.3. ARGUMENTATION FRAMEWORKS 35

Unlike a preferred extension, a stable extension is never empty but it does not always

exist. The notion of preferred extension is more interesting than ground extension since

it allows to introduce different interpretations: skepticism and credulity.

Theorem 1. Let AS = 〈AR, attacks〉 be an AAF , if the associated graph contains

no cycles then this system has a unique non-empty preferred extension which is also a

ground extension and stable extension.

In abstract frameworks, attacking arguments have the same force. When two argu-

ments attack each other, it is not possible to decide which one should be preferred. This

fact has been addressed in [Amgoud and Cayrol 1998] where the authors extend ARs

to define Preference-based Argumentation Framework (PAF) and Value-based Argu-

mentation Framework (V AF). The authors argue that in many contexts the soundness

of an argument is not the only consideration and that arguments have also a force.

3.3.2 Preference-based Argumentation Framework (PAF)

The authors in [Amgoud and Cayrol 1998, Amgoud and Cayrol 2002] extend the AAF .

They claim that the acceptability of an argument depends on the arguments (respec-

tively counter arguments) that defend it (respectively attack it) as well as on their

force. Thus, they introduce a preference relationship on the argumentation framework

(see Definition 1).

Definition 10. A preference-based argumentation framework is a triplet

〈AR, attacks, pref〉 Where:

• AR and attacks have the same definitions as in Definition 1

• pref is a preference relationship (i.e., pref is a strict order relationship in AR.

Arguments in PAF are linked by a preference relationship. In this way, an attack

from argument P against argument Q may fail if Q is preferred over P . That is why

the notion of defeat has been introduced.

Definition 11. Let PAS = 〈AR, attacks, pref〉 be a preference-based argumentation

system and P, Q ∈ AR. P defeats Q (denoted defeats(P, Q)) iff attacks(P, Q) ∧

¬pref(Q, P).

In other words, P defeats Q if Q is not preferred over P .

Similarly, we say that a set S of arguments defeats A, if A is defeated by an argument

from S. Therefore, Definition 2, Definition 3 and Definition 4 are modified as following:

36 CHAPTER 3. ARGUMENTATION LOGIC

Definition 12. Let PAS = 〈AR, attacks, pref〉 be an AAF , S ⊆ AR and P, Q ∈ AR.

• S is said to be conflict-free iff ∀P, Q ∈ S,¬defeats(P, Q).

• P is acceptable with respect to S iff ∀Q ∈ AR, defeats(Q, P) =⇒ defeats(S, Q)

• A conflict-free set of arguments S is admissible iff each argument in S is accept-

able (using PAF acceptability definition) with respect to S.

As presented in Definition 7, a preferred extension of an argumentation framework

PAF is a maximal (with respect to set inclusion) admissible set of PAF . We can

represent a PAF using oriented graph models. Arguments are represented by nodes and

arcs represent the defeat relationship between them (i.e., A→ B means that A defeats

B). The preference relationship being a strict order relationship, it is asymmetric and

transitive. Therefore, oriented graphs associated to PAF contain no cycle. According

to the Theorem 1, PAF systems have a unique non-empty preferred extension which is

also a ground extension and stable extension. For example, Figure 3.4 presents a PAF

system (AS4). In the left side, AS4 attacks relationships are represented using oriented

graph. Preference relationships between AS4 arguments are listed in the middle of the

figure. AS4 is represented in oriented graph model in the right side. prefAS4{P, R} is

a non-empty and unique preferred extension and it is as well a ground extension and

a stable extension.

P

Q R

P

Q R

pref(P,Q)

pref(Q,R)

Figure 3.4: AS4 PAF system representation in oriented graph

The extension of the AAF to a PAF provides the use of the notion of preference.

We can therefore model the choices made by an audience [Chaim and Lucie 1969].

However, this approach does not allow to consider several audiences simultaneously.

This is the purpose of the work presented in the next section.

3.3.3 Value-based Argumentation Framework (V AF)

Trevor Bench-Capon also extends [Bench-Capon 2003] the AAF proposed by Dung in

order to assign forces to arguments. The proposed argumentation framework allows

3.3. ARGUMENTATION FRAMEWORKS 37

to consider several audiences simultaneously via multiple acceptability classes which

enrich the semantics of the argumentation system. The proposed argumentation frame-

work includes a set of values and a set of audiences. Multiple arguments can promote

the same value.

Definition 13. A Value-based Argumentation Framework (V AF) is a 5-tuple

〈AR, attacks, V, val, P 〉 Where:

• AR and attacks have the same definition as in Definition 1

• V is a finite set of values

• val is a function which maps elements from AR to elements of V

• P is a set of audiences

An audience corresponds to the audience concept proposed in

[Chaim and Lucie 1969]. Audiences are differentiated from each other by prefer-

ences that they affect to values. There are potentially as many audiences as strict

order relationships on the set of values. We can associate an argumentation system to

each audience.

Definition 14. An audience-specific value-based argumentation framework is a 5-tuple

V AFa = 〈AR, attacks, V, val, V alprefa〉 Where:

• AR, attacks, V and val have the same definition as in Definition 13

• a is an audience, a ∈ P

• V alprefa is a transitive, irreflexive and asymmetric preference relationship,

V alprefa ⊆ V × V

Bench Capon redefines the notion of defeat (Definition 11) to include the concerned

audience.

Definition 15. Let V ASa = 〈AR, attacks, V, val, V alprefa〉 an audience-specific

value-based argumentation system and P, Q ∈ AR.

A defeats B for audience a iff atacks(P, Q) ∧ ¬V alprefa(Q, P)

Similarly, we say that a set S of arguments defeats A for an audience a, if A is

defeated by an argument from S. In other words, an argument Q is preferred over an

argument P if its value is greater than P value. We notice that the success of an attack

38 CHAPTER 3. ARGUMENTATION LOGIC

is guaranteed when arguments have the same value. When all arguments in a V AF

have the same value, the argumentation system can be seen as an AAF (Definition 1).

An argumentation system can be seen as a PAF (Definition 11), when each argument

from a V AF has a different value. Definition 12 was also adapted as follows:

Definition 16. Let V ASa = 〈AR, attacks, V, val, V alprefa〉 an audience-specific

value-based argumentation system, P, Q ∈ AR and S ⊆ AR.

• S is said to be conflict-free for audience a iff ∀P, Q ∈ S,¬defeatsa(P, Q).

• P is acceptable for audience a with respect to S iff ∀Q ∈ AR, defeatsa(Q, P) =⇒

defeatsa(S, Q)

• A conflict-free set of arguments S is admissible for audience a iff each argument

in S is acceptable (using V AF acceptability definition) with respect to S.

As presented in Definition 7, a preferred extension for audience a is the maximal ad-

missible set for audience a denoted preferreda. We can represent an audience-specific

value-based argumentation system using oriented graph. Arguments are represented

by nodes and arcs represent the defeat relationship (for audience a) between them (i.e.,

A → B means that A defeatsa B). The preference relationship being a strict order

relationship, it is asymmetric and transitive. Therefore, oriented graphs associated to

V AFa contain no cycle. According to the Theorem 1, V AFa systems have a unique

non-empty preferred extension which is also a ground extension and stable extension.

For example, Figure 3.5 presents a V AFa system (AS5). If the shadowed nodes

have a preferred value for audience a, then the preferred extension is prefAS5{S, Q}

which is by the way unique and non-empty and it is also a ground and stable extension.

Otherwise, the preferred extension is prefAS5{P, R} which is also a ground and stable

extension, unique and non-empty.

Bench Capon enriches the proposed argumentation framework by introducing the

notion of objective and subjective acceptance of an argument as well as the notion of

indefensible argument as follows: as follows:

Definition 17. Given a V AF , 〈AR, attacks, V, val, P 〉, an argument A ∈ AR is ob-

jectively acceptable iff ∀p ∈ P , A ∈ preferredp.

Definition 18. Given a V AF , 〈AR, attacks, V, val, P 〉, an argument A ∈ AR is sub-

jectively acceptable iff ∃p ∈ P , A ∈ preferredp.

Definition 19. Given a V AF , 〈AR, attacks, V, val, P 〉, an argument A ∈ AR is in-

defensible iff ∀p ∈ P , A /∈ preferredp.

3.4. RELATED WORK 39

P

Q

R

S

Figure 3.5: AS5 audience-specific value-based argumentation system representation in

oriented graph

3.4 Related Work

The application of argumentation in Cybersecurity related issues is not deeply in-

vestigated and it presents a new research field. A first preliminary work addressing

Cybersecurity issues using argumentation was proposed in [Rowe et al. 2012]. In this

paper, the authors suggest the use of argumentation to provide automated support for

security decisions and in reconfiguration problem, to diagnose the root cause of security

attack, and to set security policies.

3.4.1 Argumentation logic for firewall policy specification

Argumentation was applied to assist firewall configuration management in

[Bandara et al. 2006, Bandara et al. 2009, Applebaum et al. 2012].

Firewall is a tool that specifies which traffic types should be permitted or denied based

on IP addresses. This tool is configured through an ordered set of rules. The author in

[Wool 2004] presents a study concerning firewall configurations. This study shows that

the average of rules in firewall configuration is 144 rules and can reach thousand rules.

This large number of rules presents a constraint when specifying and maintaining

firewall configurations. In addition, configuring firewall is difficult a task since many

changes can be required during firewall configurations. Theses changes are made by

different security administrators. Thus, such changes can induce anomalies since rules

order is crucial when specifying firewall configurations. For instance, consider the

example presented in Figure 3.6. The acme.com’s security administrator specifies the

following high-level requirement: ”allow FTP connections from all hosts in the

coyote.com network except for the host called tricky.coyote.com”. This requirement

is implemented in this example by rule 5 and 6. However, if the security administrator

inverts these rules order, FTP connections from all hosts in coyote.com will be

3.4. RELATED WORK 41

authors propose the prefer predicate:

order(allow_http_fudd, block_any):

prefer(req(allow_http_fudd, allow, Pkt), req(block_any, block, Pkt)).

This predicate is used to ensure precedence relationship between these require-

ments to avoid the shadowing anomaly. The notion of attack between arguments is

introduced in this approach through the predicate complement:

complement(L1, L2) ← B

This predicate ensures that two conflictual rules (L1, L2) can not be part of the same

admissible extension under some conditions B. The complement predicate includes the

incompatibility between two opposite preference rules (i.e., prefer(rule1,rule2)

is always incompatible with prefer(rule2,rule1)). The complementarity between

rules allowing the traffic and others denying the same traffic is defined through

complement predicate as follows:

complement(action(allow,_), action(block,_)).

In [Bandara et al. 2009], the authors extend their previous work. The proposed

approach generates automatically firewall policies from higher-level requirements. The

extended approach supports generation of the low-level rules from high-level policies.

The framework presented by Applebaum in [Applebaum et al. 2012] differentiates

itself from these last two approaches through introducing the notion of rationales. The

authors take advantage from the Value-based Argumentation Framework by assigning

a rationale (value) to each argument (rule) in the policy. Applebaum proposes to

resolve conflictual situations in firewall policies by defining a potential ordering of the

rationales behind each argument (rule). The firewall can then resolve anomalies and

conflictual rules through this order of priorities. We consider the firewall policy example

in Table 3.1 proposed by the authors.

The proposed firewall policy contains anomalies. The authors present in Table 3.2 all

anomalies in the firewall policy example.

Argumentation is incorporated in this approach in order to avoid these anomalies.

The attacks relationship between arguments is used to define anomalies over rules. For

instance, rules 5 shadows rule 11, therefore rule 5 is said to be in attack relationship

42 CHAPTER 3. ARGUMENTATION LOGIC

order action protocol source IP port

1 allow * * 20

2 allow * * 80

3 block * 123.456.78.90 *

4 allow * * 21

5 block * * 53

6 allow TCP 123.456.78.11 23

7 block * 123.456.78.* *

8 allow UDP 123.456.78.11 5027

9 allow UDP * *

10 block * * 6969

11 allow * 75.75.75.75 53

12 block * * *

Table 3.1: An example firewall policy [Applebaum et al. 2012]

shadowing Correlation Generalization Redundancy

(5,11) (1,3) (1,7) (1,12) (2,12)

(7,8) (2,3) (2,7) (4,12) (6,7)

(3,4) (3,9) (6,12) (8,12)

(4,7) (5,9) (9,12) (11,12)

(7,9) (9,10)

Table 3.2: All anomalies in the firewall policy example. Each pair (x,y) is an anomaly

with rule 11. Table 3.3 summarizes all attack relationships between the firewall policy

rules.

To resolve conflicts in firewall policy, the authors use the V AF and introduce the notion

of "reasons". They propose to assign high-level reasons (values) to rules (arguments)

to determine which rules should be preferred given an anomaly caused by two con-

flictual rules. They propose the following high-level reasons: accessibility, prophylaxis,

legitimate/malicious sender, enable/disable a protocol, and enable/disable a program.

According to the proposed firewall policy example, the authors assign reasons to the

firewall rules as showed in Table 3.4

The security administrator specifies an ordering for these reasons according to his/her

preferences and requirements. For instance, the authors consider the reasons ordering

presented in Table 3.5.

Once the reasons ordering is established, the proposed approach provides recommen-

3.4. RELATED WORK 43

rule attacks

1 3, 7, 12

2 3, 7, 12

3 1, 2, 4, 9

4 3, 7, 12

5 9, 11

6 7, 12

7 1, 2, 4, 6, 8, 9

8 7, 12

9 3, 5, 7, 10, 12

10 9

11 5, 12

12 1, 2, 4, 6, 8, 9, 11

Table 3.3: All attack relationships within the example firewall policy

rule values attacks

1 enable protocol 3, 7, 12

2 enable protocol 3, 7, 12

3 malicious sender 1, 2, 4, 9

4 enable protocol 3, 7, 12

5 disable protocol 9, 11

6 legitimate sender, enable program 7, 12

7 malicious sender 1, 2, 4, 6, 8, 9

8 legitimate sender, enable program 7, 12

9 accessibility 3, 5, 7, 10, 12

10 disable protocol 9

11 legitimate sender, enable protocol 5, 12

12 prophylaxis 1, 2, 4, 6, 8, 9, 11

Table 3.4: Overlap of rules in example policy, the center column gives the reason behind

the rule

dations to the security administrator in order to assist him/her to deal with existing

anomalies. Based on the ordering in Table 3.5, a recommendation is generated for each

anomaly. Table 3.6 shows the different recommendations to avoid the firewall policy

anomalies and the justification of each recommendation.

The main limitation of this approach is that the security administrator defines a static

44 CHAPTER 3. ARGUMENTATION LOGIC

order value name

1 allow programs

2 block malicious senders

3 allow legitimate senders

4 block protocols

5 block programs

6 allow protocols

7 prophylaxis

8 accessibility

Table 3.5: Potential ordering of the ground-based values with lower order meaning

higher priority

rules in conflict anomaly name recommendation justification

(5,11) shadowing place 11 before 5 allow sender > block protocol

(7,8) shadowing place 8 before 7 allow program > block sender

(1,3),(1,7) correlation place 3,7 before 1 block sender > allow protocol

(2,3),(2,7) correlation place 3,7 before 2 block sender > allow protocol

(3,4) correlation ignore block sender > allow protocol

(3,9) correlation ignore block sender > accessibility

(4,7) correlation place 7 before 4 block sender > allow protocol

(5,9) correlation ignore block protocol > accessibility

(7,9) correlation ignore block sender > accessibility

(9,10) correlation place 10 before 9 block protocol > accessibility

(1,12),(2,12),(4,12) generalization ignore allow protocol > prophylaxis

(6,7) generalization ignore allow program > block sender

(6,12),(8,12) generalization ignore allow program > prophylaxis

(9,12) generalization remove 9 prophylaxis > accessibility

(11,12) generalization ignore allow sender > prophylaxis

Table 3.6: Anomalies and their corresponding recommendation based on the ordering

in Table 3.5

order of priorities for the reasons behind the firewall rules. However, administrators

can decide in specific cases to change the order of rationales priority. For instance, the

security administrator can decide to give "prophylaxis" reason a higher priority than

"allow protocols" in critical contexts. In such cases, firewall administrators are forced

to update the firewall configuration for each required change in priority order.

3.4. RELATED WORK 45

3.4.2 Argumentation logic for access control

There are very few proposed approaches [Boella et al. 2005, Dijkstra et al. 2005,

Doutre et al. 2007]dealing with access control management based on argumenta-

tion. In [Boella et al. 2005], the authors proposed an argument based approach

for access control. Classical access control tools are based on the identity of

the client through checking if the client profile complies with the security pol-

icy. However, the required credentials to access to a specific resource are not

always known to the client. Therefore, interactive access control was introduced in

[Koshutanski and Massacci 2004a, Koshutanski and Massacci 2004b], in which the

process of accessing a resource can be seen as an interaction between the client and

the resource owner. This process constitutes a negotiation about the credentials

required for accessing the required resource until reaching an agreement. Authors

defines the objective-policy description as a tuple 〈O, P, K〉 where O is a set of

conditional objectives, P a set of policy rules and K a set of integrity constraints. The

access control example presented in [Boella et al. 2005] illustrates these three types

of rules in an objective − policy description. The authors consider a digital library

case of study to explore how argumentation can be used for managing control access.

Requests submitted by clients concern getting access to an article or an mp3 file.

Authorization to get an electronic copy of an article is only given once the subscription

to the library has been payed with the client e-money. This authorization can as well

been given once the client shows a university employee pass. Once the client got the

paper, the system collects a survey as a questionnaire to be filled and send by the

client. Once the client got access to the requested mp3 file, the system improves its

bandwidth. The authors distinguish among credentials (C) and state variables (S) in

the logical language. The credentials and variables set corresponding to the example

are the following:

C = {es, sp, el, sr, em, ra, f, rm, ds, sm} and S = {a, al, cr, m, cs, ib}, where:

a : access article from digital library

al : authorized to access library ra : request article

es : subscribe to library with e-money cs : collect survey

sp : send university employee pass f : fill in questionnaire

cr : comply with digital rights rm : request mp3 file

el : pay library with e-money ib : improve bandwidth

sr : signed order by employer ds : decrease download speed

m : access mp3 file sm : share downloaded mp3 file

em : pay mp3 file with e-money

46 CHAPTER 3. ARGUMENTATION LOGIC

Consider the following objective-policy description:

O = {ra → a, a → cs, rm → m, m → ib}

P = {al ∧ cr → a, sp → al, es → al, sr → cr, el → cr, f → cs, em → m, sm → ib,

ds → ib}

K = {ra, rm, em → ¬es, em → ¬el}

The authors introduce the notion of goal set and candidate goal argument for a

goal set. A goal set is derived from the system objectives O and it represents the

security administrator goals and requirements. These notions are defined formally as

follows:

Definition 20. Let 〈O, P, K〉 be an objective-policy description.

• A goal set G is a set of literals.

• A candidate goal argument for goal set G, written c(G), is a finite linear tree

consisting of pairs of sets of literals with its unique leave (B, G) or any B, such

that for each node (B, H) there exists a conditional objective l1 ∧ ∧ ln → l ∈ O

such that:

(a) B = {l1, ..., ln} ⊆ Cl(K, U), where U is the union of all literals occurring in

the ancestors of (B, H).

(b) if (B, H) is the root, then H = {l}, otherwise H = {l} ∪H ′ when the unique

parent of (B, H) is (B′, H ′) for some B′.

• A goal argument for goal set G, written g(G), is a candidate goal argument

c(G) such that there is no set of goal sets {G1, ..., Gn} with each Gi 6= G and

G = G1∪ ...∪Gn. A maximal goal set is a goal set which has a goal argument and

which is maximal with respect to set inclusion.

• We say that two goal arguments conflict if they contain nodes 〈B1, H1〉 and

〈B2, H2〉 such that Cl(K ∪ B1 ∪ H1 ∪ B2 ∪ H2,∅) ⊢ ⊥ , where ⊥ stands for

any contradiction.

According to the example previously presented, the goals sets are {a}, {a, cs}, {m},

{m, ib}. We note that the set {a, cs, m, ib} is not a goal set, since it can be splitted in

{a, cs} and {m, ib}. The plan arguments generated for the example are represented in

Figure 3.7.

3.4. RELATED WORK 47

〈a, {al, cr}〉

〈al, {sp}〉 〈cr, {sr}〉

〈sp,∅〉 〈sr,∅〉

〈a, {al, cr}〉

〈al, {sp}〉 〈cr, {el}〉

〈sp,∅〉 〈el,∅〉

〈a, {al, cr}〉

〈al, {es}〉 〈cr, {el}〉

〈es,∅〉 〈el,∅〉

〈a, {al, cr}〉

〈al, {es}〉 〈cr, {sr}〉

〈es,∅〉 〈sr,∅〉

〈m, {em}〉

〈em,∅〉

t1 t2 t3 t4 t5

Figure 3.7: The plan arguments for the proposed example

The authors used Dung’s abstract framework to formalize the proposed argumenta-

tion theory. As seen in Section 3.3.1, an Abstract Argumentation Framework is a

pair 〈AR, attacks〉. In this approach, the authors consider the AR set as goal-plan

arguments, and the conflict relationship between goal arguments as the attacks rela-

tionship. We explored in this section the existing argumentation frameworks and we

showed the semantics provided by each framework. We use the argumentation in the

context of intrusion detection to take profit of the smart reasoning that provides this

non-monotonic logic.

3.4.3 Argumentation logic for network security analysis

More related to the topic of this thesis, the authors in [Martinelli and Santini 2014]

propose a preliminary argumentation approach for assisting security administrators

when selecting countermeasures against a specific detected attack. This approach takes

advantage of the Abstract Argumentation Framework. The authors consider a decision

system as a pair (D, F) where D is the set of security decisions and F is an AAF . The

authors distinguish between two kinds of arguments:

• epistemic arguments (Ae): arguments based only on beliefs

• practical arguments (Ap): arguments built from beliefs and preferences or goals

Given a specific decision d ∈ D, the authors define two subsets of practical arguments:

• arguments in favor of d and denoted Ff (d)

• arguments against d and denoted Fc(d)

The authors propose a way to prefer (<) a decision instead of another using unipolar

principle defined as follows:

48 CHAPTER 3. ARGUMENTATION LOGIC

Definition 21. Let DS = (D, F) be a decision system, where F is an AAF , and

Accstb(F) collects the sceptically accepted arguments of a framework F under the stable

semantics. Let d1, d2 ∈ D, then:

d1 < d2 ⇔| Ff (d1) ∩ Accstb(F) | >| Ff (d2) ∩ Accstb(F) |

In other words, this principle specifies the arguments in favor of and against a

decision and select the most supported decision.

The authors present the following example for adopting countermeasures:

Consider an AAF , Fworm = 〈{a, b, c, d, e, f, g}, {b 7→ a, c 7→ b, d 7→ b, e 7→ d, f 7→ a, g 7→

f}〉1 where:

a. A worm is attacking our web server.

b. Disabling Web traffic mitigates worms.

c. Web traffic can be blocked only if loss > 70%.

d. Traffic should not be blocked if the alarm is faulty.

e. Evidence shows that the alarm is reliable.

f. The antivirus has been recently updated.

g. Virus definitions are no longer maintained.

This AAF is represented in Figure 3.8 Two decisions are considered in this exam-

ple, D = {disable-port80, ¬disable-port80}. The first decision represents the ac-

tion of disabling traffic through port 80 whereas the second one represent the ac-

tion of not disabling it. Arguments b, c and d are directly related to decisions in D,

therefore Ap is {b, c, d}. We distinguish Ff (disable-port80) = {b} and Ff (¬disable-

port80) = {c, d}. The proposed example has only one stable extension which is

stb(Fworm) = {a, c, e, g} thus Acc(Fworm) = {a, c, e, g} (represented in gray in Fig-

ure 3.8. According to Definition 21, | Ff (disable-port80) ∩ Accstb(Fworm) |= 0 and

| Ff (¬disable-port80) ∩ Accstb(Fworm) |= 1. Consequently, ¬disable-port80 < disable-

port80, and the recommended countermeasure is to not disable traffic on port 80. The

main limitation of the proposed approach is that it does not consider the topology of

the network. The approach proposed by the authors in [Martinelli et al. 2015] takes

into account this limitation and it considers the dependencies between the network

different components when reasoning about the best countermeasure to recommend.

1The authors denote by (7→) the attack relationship between arguments

3.5. CONCLUSION 49

Figure 3.8: AAF representation: shadowed nodes represent arguments of the unique

stable extension

3.5 Conclusion

As mentioned in the previous chapter, an AIRS must have a reasoning model that man-

ages inconsistencies between countermeasures from its reaction policy and to reason

on information transmitted by IDSs. In this chapter we have shown that argumenta-

tion presents an adapted model to the process of an AIRS to manage the interactions

between internal arguments that presents the reaction policy and external arguments

that presents attack detection. This chapter introduced the Argumentation Logic and

its different frameworks. We showed the main advantages that provide each existing

framework as well as the issues that can meet security approaches based on argumenta-

tion logic. The next chapter presents an approach for monitoring systems that allows

the security administrator to choose the best intrusion response among all appropriate

intrusion response possibilities. This approach is driven by argumentative logic and it

considers the current context on which the system is operating. The purpose of this

approach is to give a dynamic aspect to the intrusion response process of attacked

systems that may operate while different contexts are active.

CHAPTER

4 Context-aware

Response against

Intrusion Detection

4.1 Introduction

Automatic response in an intrusion detection process is a difficult problem. Indeed

activating an inappropriate countermeasure for a given attack can have deleterious

effects on the targeted system. In some cases the countermeasure can be more harmful

than the attack it is targeted against. Moreover, given an attack against a specific

system, the best countermeasure to apply depends on the context in which the system

is operating. For example, in the case of an automotive system, the fact that the

vehicle is operating downtown or on a freeway changes the impact an attack may

have on the system. In this chapter, we present an approach for monitoring systems

that allows the security administrators to choose an intrusion response that satisfies

security administrator requirements and which considers the current context on which

the system is operating. This approach is driven by Argumentation Logic. The purpose

of this approach is to give a dynamic aspect to the intrusion response process of attacked

systems that may operate while different contexts are active. The security system will

be able to take the suitable decision, against a specific attack scenario, and which

ensure the system safety while satisfying the prioritized system requirements.

This chapter explains how we model the intrusion process and presents our approach

to construct the set of arguments set corresponding to an attack scenario. It defines a

new argumentation framework which is an extension of the Value-based Argumentation

Framework (VAF). We present deployment scenarios highlighting how our approach is

applied in the use case of automotive systems.

52 CHAPTER 4. CONTEXT-AWARE INTRUSION RESPONSE

4.2 Modeling the intrusion processes

The attacker is modeled as an agent who can choose from a set of actions a subset

to execute in order to reach one or several intrusion objectives. The set of actions

executed by an attacker can be organized in a scenario of correlated actions. Informally,

by correlated actions we mean that in an intrusion scenario, some action effects makes

other actions possible. From the attacked system point of view, given a set of observed

actions organized into an attack scenario, reacting against an ongoing attack consists

in selecting a set of countermeasures which modifies the system state to stop the attack

progression or mitigate its effects.

4.2.1 Modeling the attacker

We use the LAMBDA formalism [Cuppens and Ortalo 2000, Cuppens et al. 2006] to

model the intrusion process. In our context, we consider that several probes are dis-

tributed in the monitored system to generate events which corresponds to actions

executed by the agents acting on the system. Those agents can be legitimate users as

well as malicious agents. The probes can be intrusion detection users [Axelsson 2000]

or programs monitoring system logs for interesting events.

Actions

We generalize the notion of LAMBDA attack to the notion of LAMBDA action as some

of the actions an attacker execute do not have malicious effects on the attacked system,

i.e., their effects do not violate the security policy of the system. In our approach, a

LAMBDA action description is composed of the following elements:

Definition 22. LAMBDA action

name: the action name

pre-condition: defines the state of the system required for the execution of the action.

post-condition: defines the state of the system after the successful execution of the

action.

detection: is a description of the expected alert corresponding to the detection of the

attack.

The detection attribute may be empty as some actions cannot be detected by probes.

For example, the modification of a file in the file system may not be logged. Although

it is technically possible, for example on Linux systems using the audit infrastructure,

4.2. MODELING THE INTRUSION PROCESSES 53

logging such events for every component of a system may result in generating too

many events and flood the process responsible for reasoning on possible intrusions on

the system.

The pre-condition and post-condition are written using conjunctions of literals, a

literal being defined as follows:

• a constant is a string starting with a lower case character or a number

• a variable is a string starting with an upper case letter

• a term is either a constant, a variable or a functional symbol over a list of terms

• a literal is a predicate symbol over a list of terms expressing a boolean property

The detection attribute is written as a list of affectations of values to a subset of

the free variables in the pre-condition. An action model is instantiated, i.e., values are

assigned to the list of free variables in the pre-condition, when a new alert is generated.

Predefined function symbols corresponding to alert attributes are used to specify the

detection field. The alert contains the name of the LAMBDA model to instantiate if

such model exists.

Literals with specific semantics are defined. The literal not, of arity one, models

the negation. The literal knows of arity two models the fact that an agent has some

knowledge: knows(a, b) means that agent a knows that b is true. The set of LAMBDA

action models is called A.

Correlation between actions

An attacker may execute several actions to modify the system state in order to reach a

state where the security policy is violated. Some actions are executed in order to make

the execution of other actions possible. When the effects of an action are a subset of

the pre-conditions of another action, we say that the two actions are correlated. More

formally, the notion of correlation between two LAMBDA actions is defined as follows:

Definition 23. Let a and b be two LAMBDA descriptions of actions, post(a) is the

set of literals of the post-condition of a and pre(b) is the set of literals of pre-condition

of b.

Correlation: a and b are correlated if the following condition is satisfied:

∃Ea and Eb such that

• (Ea ∈ post(a) ∧Eb ∈ pre(b))or(not(Ea) ∈ post(a) ∧ not(Eb) ∈ pre(b))

54 CHAPTER 4. CONTEXT-AWARE INTRUSION RESPONSE

• Ea and Eb are unifiable through a most general unifier u

Given a set of LAMBDA action models, searching for such correlation links between

action models results in a set of correlation rules. A correlation rule is a triple {A, B, u},

which represents the fact that model A is correlated with model B through the most

general unifier u.

Correlation between instantiated actions

An action model is instantiated by assigning values to the free variables in the pre-

condition. This is done by evaluating the detection field, but this may not be sufficient

to assign values to all variables. The rest of the free variables are instantiated through

unification with the system state, the system state being represented by a conjunction

of literals with no free variables. More formally, an action model instance is a couple

composed of the instantiated model and a finite substitution σ. The instance number

i of action model A, denoted Ai, is Ai = {A, σ}. An instantiated action A1 instance of

model A and an instantiated action B1 instance of model B are correlated iff A and B

are correlated and if the corresponding unifier is satisfied. Correlated actions, models

or instances, can be represented as graphs [Benferhat et al. 2003]. The set of action

instances is denoted Ai.

Intrusion objectives

An intrusion objective represents a state in which the system security policy is violated.

An intrusion objective model description is composed of the following elements:

Definition 24. LAMBDA intrusion objective

name: the objective name

condition: defines the state of the system in which the system security policy is vio-

lated

The condition is a conjunction of literals representing a violation of the security

policy. Actions can be correlated with intrusion objectives using the same principle

as in Definition 23 by replacing the pre(b) set of literals by the intrusion objective

condition.

4.2. MODELING THE INTRUSION PROCESSES 55

4.2.2 Anticipating the attacker’s intentions

Anticipating the intentions of the attacker consists in generating sequences of virtual

action instances, i.e., actions not instantiated from alerts, so that the set of action

instances created from alerts unified with the set of virtual action instances is correlated

with an intrusion objective. The generation of such virtual actions is described in

[Benferhat et al. 2003].

4.2.3 Intrusion Scenario

An intrusion scenario is defined as a set of action instances correlated with an intrusion

objective as defined in [Benferhat et al. 2003]. The set of scenarios constructed from

the set of action instances is denoted S. We define the hyp : S → Ai function which

returns the set of hypothesis in a scenario.

4.2.4 Modeling countermeasures

Countermeasures are actions which are executed to mitigate the effects of an attack

or prevent the execution of other attacks. More generally, they are actions which

have a negative effect on the execution of other actions. More formally, we model a

countermeasure the same way an action is modeled except that its detection field is

empty. A countermeasure is not instantiated from an alert, values are assigned to its

free variables by examining the effects it must have on the system state in order to

mitigate the effects of an attack or prevent the execution of other attacks. The notion

of anti-correlation formalizes the notion of negative effect.

Anti-correlation between actions

The notion of anti-correlation between two LAMBDA actions is defined as follows:

Definition 25. Let a and b be two LAMBDA descriptions of actions, post(a) is the

set of literals of the post-condition of a and pre(b) is the set of literals of pre-condition

of b.

Anti-correlation: a and b are anti-correlated if the following condition is satisfied:

∃Ea and Eb such that

• (Ea ∈ post(a) ∧not(Eb) ∈ pre(b))or(not(Ea) ∈ post(a) ∧ Eb ∈ pre(b))

• Ea and Eb are unifiable through a most general unifier u

56 CHAPTER 4. CONTEXT-AWARE INTRUSION RESPONSE

Given a set of LAMBDA action models, searching for such anti-correlation links

between action models results in a set of anti-correlation rules. An anti-correlation

rule is a triple {A, B, u}, which represents the fact that model A is anti-correlated with

model B through the most general unifier u.

We also define the notion of anti-correlation between an action and an intrusion

objective by replacing the pre(b) set of literals by the intrusion objective condition in

definition 25. We introduce the anticor binary relationship to express that two action

models or action instances are anti-correlated. If A and B are anti-correlated, then

(A, B) ∈ anticor, which can also be represented by the fact that anticor(A, B) is true.

Instantiating countermeasures

Given a scenario of instantiated actions correlated to an intrusion objective, we can

create a set of countermeasures instances anti-correlated with either virtual actions

or virtual intrusion objectives. Since a countermeasure is not instantiated from an

alert, the free variables in its precondition and postcondition are instantiated using the

unifier in the anti-correlation rule used to select the countermeasure.

4.3 Argumented intrusion response against attacks

Argumentation Frameworks (AFs) have been applied successfully to formalize non

monotonic reasoning among other forms of reasoning. In the context of intrusion

detection, the process of reacting against attacks can be seen as a form of non mono-

tonic reasoning. Actually, given a set of detected attacks, it is possible to reason on the

state of the system, described as in section 4.2.1, to choose countermeasures to apply

among a set of possible system responses [Cuppens et al. 2006, Samarji et al. 2013].

As shown in the attack example presented in section 4.1, the set of countermeasures

selected for an attack can evolve as new attacks are observed or if the system state

evolves. In the context of intrusion detection, we believe that the process of reasoning

on the observed attacks against a system to select the most adapted countermeasure

for a given attack can be modeled as an argumentation process using a V AF .

We claim that modeling the attack and reaction processes using the semi-explicit

correlation approach can be seen as two agents arguing against each other. On one

side the attacker chooses his arguments, a set of actions, to try to reach an intrusion

objective, and on the other side the agent defending the target chooses his arguments,

a set of countermeasures, to block the attacker’s progress or mitigate the attack effects.

4.3. ARGUMENTED INTRUSION RESPONSE AGAINST ATTACKS 57

We argue that the anti-correlation relationship between two LAMBDA model instances

can be seen as an attack relationship over arguments.

Since we model the argumentation process using a V AF , a force, called here ra-

tionale, is associated with every action model. We add an extra element to an action

model, the rationale attribute. This attribute models the reason motivating the execu-

tion of an action. From the attacker’s point of view, this reason is related to the success

of the attack. For example, the reason associated with the action of fingerprinting an

operating system is to find vulnerabilities. From the point of view of the agent defend-

ing the system, the reason associated with the execution of a countermeasure is related

to restoring some properties of the system. For example, adding a filtering rule to a

firewall to block a host which connected to a server containing sensitive information is

associated with the confidentiality reason.

4.3.1 Constructing the set of arguments

The set of LAMBDA models Λ is the union of the LAMBDA action models set, A and

the LAMBDA intrusion objective models set, O, i.e., Λ = A ∪ O. We denote by Ai

and Oi respectively the sets of action instances and intrusion objective instances. Then

Λi = Ai ∪ Oi is the set of all LAMBDA model instances. We denote by L the logic

of predicates which is used to express the pre-condition, post-condition and system

state condition of the action, reaction and intrusion objective models. The function

model : Λi → Λ returns the LAMBDA model corresponding to a LAMBDA model

instance. For an intrusion objective, the function cond : Λ → L returns its system

state condition.

Given an intrusion scenario S, constructed as specified in section 4.2.3, and the set

of countermeasures C computed for S, we build the set of arguments used to reason as

the union of the two sets:

Definition 26. Argument set: the set AR(S) of arguments corresponding to

an intrusion scenario S contains all the LAMBDA model instances of S plus all

the LAMBDA countermeasures instances anti-correlated with the hypothesis of S:

AR(S) = S ∪ {cm | ∀h ∈ hyp(S), (anticor(post(cm), pre(h)) ∨ anticor(post(cm),

cond(h))) ∧ model(cm) ∈ (A ∪ O)}

Now that we know how to build the set of arguments corresponding to an intrusion

scenario, we define the attack relationship attacks between arguments:

58 CHAPTER 4. CONTEXT-AWARE INTRUSION RESPONSE

Definition 27. Attack relationship: let S be an intrusion scenario and AR(S)

the corresponding set of arguments. Let a1 ∈ AR(S), a2 ∈ AR(S) be two arguments.

attacks(a1, a2) is true iff anticor(post(a1), pre(a2)) ∨ anticor(post(a1), cond(a2))

Actually, in our model the effects of a countermeasure are characterized by its

effects on the system through the specification of its post-condition, but it does not

represent the reason why a countermeasure should be chosen. For instance, some

countermeasures may enhance the performance of an attacked system to the detriment

of the availability of some services. If for some reason the performance of the system

should be favored over the availability of the services it provides, then we can choose

the countermeasure associated to the favorite reason.

According to this modeling, we think that V AFs are well-suited for our problematic

since they allow to associate a value to each argument. However, in our case, the order

relationship over the rationales associated with each argument is highly dependent on

the context in which an attack is detected. In the next section we extend V AFs to

take into account the contextual aspect of our reasoning.

4.3.2 Extending value-based argumentation frameworks

Due to the dynamic nature of information systems, we argue that using a static pref-

erence relation valpref is not adapted. We extend the definition of V AF to that of a

Contextual V AF .

Definition 28. A Contextual Value-based Argumentation Framework, denoted CV AF ,

is a 6-tuple 〈AR, attacks, V, val, C, ContPref〉 where:

• AR, attacks, V and val have the same definition as in V AFs (see Definition 13)

• C is a set of contexts. A context is either active or inactive. At a given time

multiple contexts can be active

• ContPref is a transitive, irreflexive and asymmetric preference relation on V ×V

which depends on the set of active contexts in C

Here a context represents a subset of the system state. More formally, the hold(S, C)

relationship is used to represent that some context C is active for some agent S. This

relationship is inferred from the system state through derivation rules. For a context

c, such derivation rule is defined as follows :
n
∧

j=1
Pj → holds(S, c)

4.3. ARGUMENTED INTRUSION RESPONSE AGAINST ATTACKS 59

where Pj is an n-ary predicate. Such derivation rule is called a context definition.

For example the following context definition expresses that if an agent is on holidays,

the cholidays context is active for this agent:

on_holidays(S)→ holds(S, cholidays)

In this model we do not explicit the activation condition for each context in C,

we consider that this set is extracted from a contextual security policy specification,

such as an OrBAC [Cuppens and Cuppens-Boulahia 2008] policy for example. The

ContPref relation is not defined for every possible combination of active contexts.

A default order relation is defined and other definitions are specified for some active

context combinations. If no definition is given for some combination of active contexts,

then the default order relation applies. ContPref has the same definition as the

valpref used in VAF except that it allows to generate the preference between the

arguments forces depending on the current context configuration. To define exceptions

in priority order for a subject (s) when a combination of (n) contexts is active, the

system user defines the necessary updated preferences as following:

n
∧

j=1
holds(s, cj)→ ContPref(v1, v2) ∧ ... ∧ ContPref(vm−1, vm)

Where cj ∈ C and v1, v2...vm−1, vm ∈ V . We consider in this chapter that the

elements of V are rationales that describe the application effect of the countermeasure

on the system state.

4.3.3 Managing contexts

In our approach, values from the V set are interpreted as properties of the system which

are favored by the associated arguments. These properties may be desirable in some

context and should be avoided in some other context. For example, the availability

property of some server may be desirable if the context Chigh_traffic is active for this

server, where Chigh_traffic abstracts the fact that some server is under high network

load.

The favor(C, V) relationship expresses the fact that property V is desirable for

context C. Conversely, the avoid(C, V) relationship expresses the fact that property

V is not desirable for context C.

Those relationships should be used by expert to express for each context which

values from the V set are desirable or should be avoided.

60 CHAPTER 4. CONTEXT-AWARE INTRUSION RESPONSE

The following derivation rules are used to derive which values are desirable or un-

wanted for an agent for which some contexts are active:

holds(S, C) ∧ favor(C, V)→ wanted(S, C, V)

holds(S, C) ∧ avoid(C, V)→ unwanted(S, C, V)

For each value from V , we define two sets containing respectively the couples (s, c)

from the derived wanted and unwanted relationships:

∀v ∈ V, Wv = {(s, c) | wanted(s, c, v)}

∀v ∈ V, Uv = {(s, c) | unwanted(s, c, v)}

Wv contains the set of agents for which the same value v from V is a desirable

property for all the active contexts for those agents. Uv contains the set of agents for

which the same value v from V is not a desirable property for all the active contexts

for those agents.

From those sets, we can compute a score s for each value v from V :

∀v ∈ V, s(v) = Wv − Uv

This score is used to define an order relationship over the values in V . This order

is used to derive the contextualPref relationship:

∀v1 ∈ V, ∀v2 ∈ V, v1 6= v2, s(v1) > s(v2)→ contextualPref(v1, v2)

If two values from V have the same score, the default order relationship is used:

∀v1 ∈ V, ∀v2 ∈ V, v1 6= v2, s(v1) = s(v2) ∧ defaultContextualPref(v1, v2) →

contextualPref(v1, v2)

In the next section, we present how the system can take into account the context

change during the reaction process.

4.3.4 Argumented and context aware reaction mechanism

Given an intrusion scenario, from the point of view of the agent defending the sys-

tem under attack by another malicious agent, the reaction process consists in choosing

among the possible countermeasures the best subset according to his/her preferences,

those preferences being encoded in the ContPref relation. According to our approach,

this consists in using the attack relationship we have defined to build admissible sets

of arguments, each set representing a coherent set of candidate countermeasures. Note

that we only consider the argumentation process from the defending agent point of

view, we do not try to construct extensions corresponding to actions the attacker could

4.3. ARGUMENTED INTRUSION RESPONSE AGAINST ATTACKS 61

make. Taking into account a context change, the system recomputes the admissible ex-

tensions according to the updated ContPref relation. Building admissible extensions

ensures us that they do not contain conflictual countermeasures, which would make the

execution of the corresponding set of countermeasure impossible. The system operator

manages the detected attacks and chooses the reaction that suits the best the current

security state. The operator can choose the reaction among the stable extension of the

arguments set AR(S) corresponding to the considered scenario S which offers the set

of countermeasure that mitigate all the possible attacks that may occur on the system.

Preferred extensions are maximal sets of arguments (with respect to set inclusion) that

defend themselves against all attacks. The preferred extension of AR(S) is the max-

imal admissible set of arguments. According to the Theorem 1, CV AF systems have

a unique non-empty preferred extension which is also a ground extension and stable

extension, since the oriented graphs associated to the CV AF contain no cycle.

The process of countermeasures selection depends on the type of reasoning used by

the system operator: The credulous reasoning consists in the selection of countermea-

sures (arguments) appearing in at least one preferred extension, this offers the system

more intrusion response possibilities that may be defeated by other countermeasures.

Whereas the skeptic reasoning consists in selecting countermeasures from the grounded

extension which present the least (with respect to set inclusion) complete extension. In

this kind of reasoning, the selected countermeasure will not be defeated by any other

reaction model. We summarize our approach in Algorithm 1 and Algorithm 2 where we

show how the security system generates the arguments set corresponding to a detected

attack, and how it constructs the preferred extension.

Theorem 2. Given a set of n actions and m intrusions objectives and p reactions in

a an attack scenario, the complexity of the algorithm 1 is O((n + m)2 + p×n) in time.

Proof. According to algorithm 1, the loop from line 3 to line 13 costs O((n + m)2).

The nested loops from line 14 to line 20 costs O(p × n). Therefore, the overall time

complexity of algorithm 1 is O((n + m)2 + p× n).

Theorem 3. Given an argument set of n arguments, the complexity of the algorithm

2 is O(n3) in time.

Proof. According to algorithm 2, the nested loops from line 2 to line 8 costs O(n2). The

nested loops from line 9 to line 15 costs O(n×m) where m is the number of arguments

in the preferred extension. In the worst case the number of arguments in the preferred

extension is equal to the number of arguments in the argument set (i.e., the preferred

extension in this case is the argument set). Thus, we consider the complexity in time

62 CHAPTER 4. CONTEXT-AWARE INTRUSION RESPONSE

1: current_action← detected_action

2: S ← current_action ; intrusion_objective_found← false

3: do

4: for all model ∈ A ∪O do

5: if correlated(current_action, model) == true then

6: if model ∈ O then

7: S ← S ∪ {model} ; intrusion_objective_found← true

8: else

9: S ← S ∪ {model} ; current_action← model

10: end if

11: end if

12: end for

13: while(intrusion_objective_found == false)

14: for all action ∈ S do

15: for all reaction ∈ A do

16: if anticorrelated(action, reaction) == true then

17: C ← C ∪ {reaction}

18: end if

19: end for

20: end for

21: AR ← C ∪ S

22: GenerateArgumentsSet(detected_action)← AR

Algorithm 1: GenerateArgumentsSet(detected_action)

of this nested loops as O(n2). Therefore, these two nested loops cost O(n2). Finally,

the main loop from line 1 to line 19 will be executed in the worst case n times since

the argument set will be decremented in the worst case by one argument according to

line 16. Therefore, the overall time complexity of algorithm 2 is O(n3).

4.3.5 Avoiding unexpected side effects of countermeasures

Now that we have built an exhaustive list of coherent and appropriate countermeasures,

we focus on this section on how to avoid generating countermeasures having unexpected

side effects. For this purpose, we propose the following V AF defined as follows:

〈Prefext, side_effects_attack, V, val, valpref〉

Where side_effects_attack is defined as follows:

4.3. ARGUMENTED INTRUSION RESPONSE AGAINST ATTACKS 63

1: do

2: for all argument1 ∈ AR do

3: for all argument2 ∈ AR do

4: if ¬defeats(argument2, argument1) then

5: PreferredExt← PreferredExt ∪ {argument1}

6: end if

7: end for

8: end for

9: for all argument1 ∈ AR do

10: for all argument2 ∈ PreferredExt do

11: if defeats(argument2, argument1) then

12: R ← R∪ {argument1}

13: end if

14: end for

15: end for

16: AR′ ← AR/(PreferredExt ∪R)

17: attacks′ ← attacks/((PreferredExt×R) ∪ (R×AR) ∪ (AR×R))

18: return PreferredExt ∪ ConstructPreferredExtension(AR′, attacks′)

19: while(PreferredExt! = ∅)

Algorithm 2: ConstructPreferredExtension(AR,attacks)

Definition 29. Attack relationship: let IS be an intrusion scenario and

Prefext(IS) the corresponding preferred set. Let r1 ∈ Prefext(IS), a1, a2 ∈ AR(IS)

be two arguments. side_effects_attack(r, a2) is true iff:

anticor(post(r1), pre(a1)) ∧ cor(post(r1), pre(a2))

In other words, two arguments Arg1 = 〈Cm1, a1, Rj〉 and Arg2 = 〈Cm1, a2, Rk〉 are

attacking each other if a countermeasure Cm1 generated among the preferred extension

(from the previous Section) against an attack a1 can help an attacker in another attack

scenario to meet his/her intrusion objective by making the execution of action a2

possible. In our approach, we consider that a countermeasure having side effects can

be proposed to the security administrator only when the attack scenario that it is

targeted against is more risky than the attack scenario that it can help (i.e., the attack

scenario having the lower risk value is defeated by the other one).

The generated preferred extension according to the V AF presented in this section

presents the final countermeasures list to be proposed to the security administrator

and which satisfy the following conditions (i) no conflicts between parallel responses,

64 CHAPTER 4. CONTEXT-AWARE INTRUSION RESPONSE

and (ii) no unexpected side effects of responses on the system. We consider in this

section, the use case presented in [Samarji et al. 2015].

Use case

We consider two simultaneous threats led by two attack entities (A1 and A2) as shown

in the generated intrusion scenario of Figure 4.1. In the initial system state, A1 has

already infected machine M1 and actively scanned user U. In parallel, A2 has already

infected machine M2 which belongs with M1 to the same Ethernet network (machines

are reachable via Switch12). It is predicted for A1 to crack the password of U’s

account and highjack it in order to do a toll fraud which induces economic losses to

U. Besides, a likely scenario for A2 is predicted starting by discovering M1 and then

poisoning it with ARP messages, in order to spoof its address later on and make calls

or inject packets as if they were sent by M1. We consider the response plan generated

against threat A1 and described below:

t1 : [[passCrack(A1, server, u), discovermacaddress(A2, M2, M1)];

t2 : [disconnect(M1)];

t3 : [install(SecurityPatch,M1), injectRTPpackets(A2, M2, M1)];

t4 : [connect(M1)]]

The above sequence, presented in the graph of Figure 4.2, designs a response

R3 against threat A1. R3 consists in patching the vulnerability of M1, and blocking

thereby A1. By launching R3, thus disconnecting M1, after that A2 discovers the ad-

dress of M1, A2 does no more need to perform ARP poisoning. Indeed, disconnecting

a machine is like inducing a denial of service on this machine. Consequently, A2 can

directly spoof the address of M1 and fulfill its attack objective. Consequently, R3 has

a side effect on the system, by increasing the risk of threat A2. This side effect is

generated since the following logical predicate returns true:

corr(connect(M1), Bot_infection(M1))

We consider in this experimentation that R3 is the only candidate system response

against A1. Two arguments are generated for this IS:

AR(IS) = {r1, r2}

68 CHAPTER 4. CONTEXT-AWARE INTRUSION RESPONSE

an input for the anti-correlation module whose role is to generate a consistent set

of countermeasures that prevent the intrusion scenario. Finally, the anti-correlation

module refers to the "context" part to update the priority order by extracting the

list of active contexts. This enables the reasoning module to generate the best set of

countermeasures (i.e., the set that best fits the phase and the user requirements).

In the next section, we show the deployment of our approach in an automotive

system using the credulous reasoning.

4.4 Reaction process in an automotive context

We apply our approach on an automotive system as an example of a case study to

explore the issues that can meet complex systems during the reaction process.

4.4.1 Automotive system

In order to give an example of potential need for dynamic enforcement of security

requirements to control different security activities, we consider the following abstract

example of the automotive on-board system. A modern automotive on-board network

interconnects a hundred of microcontrollers, termed Electronic Control Units (ECUs)

organized into application-specific domains bridge by gateways, as shown in Figure 4.4.

Each ECU is responsible for a basic functionality of the vehicle (e.g., Brake, direction,

GPS signal). Thus, ensuring the security for these components presents a vital need

for automotive systems.

Attacks have been shown to be quite feasible [Koscher et al. 2010] by bypassing

the filtering performed between domains or by brute-forcing ECU cryptography-based

protection mechanisms. Security vulnerabilities can be exploited to affect automotive

system different components (e.g., lock/unlock car wheel at speed, disable brakes, kill

engine, disable cylinders) [Koscher et al. 2010, Checkoway et al. 2011]. Such attacks

may in practice originate from the Internet connection increasingly available in vehicles

or even from the Bluetooth pairing of a compromised mobile phone to the vehicle on-

board network. Further attacks are anticipated in upcoming Car2X applications, which

will feature vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communications.

Many security attacks and vulnerabilities are due to the fact that either security pol-

icy is not well specified and enforced or system-wide security policies (dependencies

between different security policies) are too weak. Automotive on-board architectures

4.4. REACTION PROCESS IN AN AUTOMOTIVE CONTEXT 69

Figure 4.4: Automotive on-board network architecture [Project]

do not only rely on the simple enforcement of security rules, but also involve multi-

ple enforcement points, especially when the underlying platforms and infrastructures

are providing services themselves, like HSM, or middleware layers. For instance, the

security policy to be applied in a vehicle is the combination of an invariant policy for

the usage control of cryptographic credentials of Electronic Control Units (ECU), and

a flexible networking security policy. The credential usage control policy is enforced

by the HSM and possibly through the virtualization of the ECUs if applications on

the same ECU have to be segregated. In contrast, the networking security policy is

enforced by all network elements.

Moreover, the access control architecture must also allow enforcement of rules that

limit the traffic on the buses under consideration, based on trusted authentication or

other security mechanisms like traffic filtering or secure logging. However, as high-

lighted in the previous section, the enforcement of these different security mechanisms

depends on a specific event or situation. For instance, while communicating with ex-

ternal entities like vehicle-to-infrastructure, it is preferable to apply the traffic filtering

rules to limit the computation load on the HSM, which is responsible for the verifi-

cation of cryptographic operations. Applying such rules will eventually increase the

performance of on-board system. However, always applying such kind of rules is not

desirable, as the enforcement of rules requires that the vehicle is in a specific context

as well as a specific security event is active. To dynamically enforce these different

sets of security policies, we call these policies as reaction policies [Autrel et al. 2009].

In an on-board architecture, we need a system in which policy enforcement decisions

are based on specific arguments in order to attain more fine grained enforcement of

70 CHAPTER 4. CONTEXT-AWARE INTRUSION RESPONSE

security policies.

Three main contexts are considered in this approach:

• in_car: Context defined to activate or deactivate specific activity in the vehicle.

This context is defined to manage the vehicle different services (e.g., ESP, GPS

sensor, Engine control) by controlling the ECU arranged in the architecture specific

areas and connected by bridges as shown in Figure 4.4.

• V 2V : Context defined to manage communication within vehicles. In the V 2V

context, when two or more vehicles or roadside stations are in radio communication

range, they connect automatically and establish a network enabling the sharing

of position, speed, and direction data. Every vehicle is also a router and allows

sending messages to more distant vehicles and roadside stations.

• V 2I: Context defined to manage communication between vehicle and infrastruc-

ture. In V 2I, the infrastructure plays a coordination role by gathering global or

local information on traffic and road conditions and then suggesting or imposing

certain behaviors on a group of vehicles. One example is ramp metering, already

widely used, which requires limited sensors and actuators (measurements of traffic

density on a highway and traffic lights on ramps).

Extra contexts are considered as well, describing the environment on which the vehicle

may operate (e.g., highway, parking, rainy day, night).

4.4.2 Attack modeling

We consider in this section, that the automotive system detects a malicious action

(a1) consisting in cracking the wifi passkey modeled as follows:

name : wifi_passkey_crack(A, T)

pre : role(T, wifi_gateway) ∧ is_on(T)

post : network_access(A, T, wifi)

The system generates the attacks that may be performed by correlation to reach

a potential intrusion objective. In the following, we consider the “manipulation of

relayed message” as a potential intrusion objective (io1) that the attacker can achieve

through the “Message saturation" attack. Relayed messages are open to manipulation

in an ITS-S (Vehicle) en route. Received messages that are intended for relaying can

be withheld. An ITS-S is unable to determine quickly whether a received message is

valid and from a legitimate user and then acts on information received in the message.

4.4. REACTION PROCESS IN AN AUTOMOTIVE CONTEXT 71

This intrusion objective is modeled as follows:

name : manipulation_relayed_messages

condition : manipulate(A, T) ∧ saturated_server(T)

Thus the system considers the “message saturation” as an attack hypothesis

(h1) which consists in overflowing the ITS server with messages (Denial of Service

attack). We consider several implementations of this attack: through wifi connection,

Bluetooth connection or direct connection to the system bus. This attack is modeled

as follows:

name : message_saturation(A, T, M)

pre : network_access(A, T, M) ∧ role(T, its_server) ∧ is_on(T)

post : saturated_server(T)

Where the access type is held by the M variable. The role(T, its_server) means that

the entity T acts as an ITS server

4.4.3 Response model

Once the attack scenario is generated, the system selects anti-correlated models that

remedy the detected attack, the intrusion objective and all the attack hypothesis. For

instance, the system has two intrusion responses against the passkey crack attack in

the network: disable_wifi and filter_host. We model these two countermeasures as

the following:

name : disable_wifi(A, T)

pre : is_on(T) ∧ network_access(A, T, wifi) ∧ is_on(wifi)

post : not(network_access(A, T, wifi)) ∧ not(is_on(wifi))

rationale : precaution

The disable_wifi countermeasure is usually used when critical contexts are ac-

tive and when we cannot predict the level and the current impact of the detected

attack.

name : filter_host(A, T)

pre : is_on(T) ∧ network_access(A, T, wifi) ∧ is_on(wifi)

post : not(network_access(A, T, wifi))

rationale : availability

Once the filter_host countermeasure is applied, the attacker, identified by his/her IP

72 CHAPTER 4. CONTEXT-AWARE INTRUSION RESPONSE

address, cannot access the service. Here, we can identify a relation of anti-correlation

between these countermeasures (filter_host requires, in its preconditions, that wifi

must be on whereas disable_wifi turns the wifi off).

4.4.4 Rationales

We consider three main contexts in the automotive system:

• in_car: context defined to activate or deactivate specific activity in the vehicle

• V2V: context defined to manage communication within vehicles

• V2I: context defined to manage communication between vehicle and infrastructure

The rationales order is initially defined for the three main contexts. For instance, the

rationales order in the in_car context is defined as follows:

1.confidentiality, 2.performance, 3.availability, 4.integrity, 5.precaution.

This rationales order depends on the context on which we reason. For instance,

when communicating with external entities like vehicle to infrastructure (V 2I), it is

preferable to apply the traffic filtering rules to limit the computational load which

ensures precaution for the system. However, applying such kind of countermeasures

in the in_car context reduce the performance of the vehicle.

Functional experts in automotive systems define "performance" rationale as the

different parameters allowing the vehicle to execute correctly its multiple functions.

They define as well the rationale "precaution" as the capacity of the countermeasure

to mitigate the corresponding detected attack. In other words, "precaution" reflects

the severity level of countermeasures.

When reasoning in a specific main context, extra contexts can become active, which

may change the rationales order. For instance, in the in_car context and the vehicle

(a) is in highway context the “precaution" rationale becomes more prioritized than

“availability" and “integrity", because we become reasoning in a critical context. In a

formal way, this exception is defined as follows:

holds(a, highway) ∧ holds(a, in_car)→

ContPref(precaution, availability) ∧ ContPref(availability, integrity)

4.4. REACTION PROCESS IN AN AUTOMOTIVE CONTEXT 73

4.4.5 Intrusion response selection

In this section, we consider the scenario of attack described in Section 4.4.2 we denote

it s1. Once the system generates the attack scenario s1, it selects the appropriate

intrusion response for a1 and also for potential attacks that may be triggered in

coordination [Samarji et al. 2013] with it. The system generates the set of admissible

arguments (countermeasures) for the detected and potential attacks. Here, the

arguments set AR(s1) content is AR(s1) = {a1, h1, io1, r1, r2, r3, r4, r5, r6, r7, r8}.

Where:

r1 filter host: This countermeasure proposes to filter the suspect host and to isolate

it from the ITS infrastructure.

r2 disable wifi: This countermeasure blocks the wifi connection inside the con-

cerned vehicle to stop any suspected activities. It is a strict system response since it

causes a loss of system availability.

r3 reduce frequency: This countermeasure proposes to reduce the frequency of

the beacon and other safety-of-life messages from 10 Hz to a lower number to reduce

congestion. An alternative solution is to use adaptive frequency control where

messages would be sent at different frequencies depending upon the nature of the

message, the availability of 5.9 GHz bandwidth, and potentially other local conditions.

r4 add source identification: A source address added to a V 2V message must

be identifiable by the ITS receiving station and non-forgeable so that the receiving

station can trust that the source address has not been modified between the time of

message origination and the time the message was received.

r5 limit message traffic: An ITS-S is required to register (and authenticate)

to the ITS infrastructure either when it enters an administrative region or at each

roadside unit that comes into range if the roadside infrastructure is not extensive.

Once registered, the vehicle accepts and processes only messages received from the

ITS infrastructure while it is in radio range. When no roadside unit is in range then

the ITS-S will receive and process ITS messages from other vehicles.

r6 digitally sign each message: The recipient of a message can gain confidence

in the message’s origin, the permissions of the originator, and its integrity against

changes in transit if the message includes a digital signature or other form of cryp-

tographic checksum and the recipient has the means to check that the checksum is valid.

74 CHAPTER 4. CONTEXT-AWARE INTRUSION RESPONSE

r7 include a non_cryptoghraphic checksum: A simple approach to protecting

the contents of a transmitted ITS message is to include a checksum computed

from the original contents. The receiving ITS-S is then able to calculate the

checksum itself and compare it with the value included in the incoming message.

If the checksum values do not match, the received message can be rejected. A

simple longitudinal parity check would probably be insufficient for the purpose of

establishing the integrity of a received ITS message, but the more reliable Fletcher

or Adler algorithms would provide the necessary protection. These algorithms, un-

fortunately, require more processing resources in both the sending and receiving ITS-S.

r8 remove requirements for message relay: The propagation of ITS messages

to emulate a wide-area broadcast (particularly in an emergency situation) is achieved

by allowing an ITS-S (Vehicle) to re-broadcast any received message that has not

reached the edge of its relevance area. Removing this capability makes it impossible

for a message to be modified en route. This can only be achieved if the roadside

infrastructure is sufficient to receive the original message and to transmit it across the

whole of the relevance area.

The intrusion response (r1, r2) and (r2, r8) are attacking each other according

to the anti-correlation definition (r1 and r8 need that the wifi connection must be on

in their preconditions). r1 and r8 defeat r2 when the system is reasoning in in_car

context defined by default as shown in Figure 4.5 where defeated countermeasures are

presented in grey.

The system generates the preferred extension Prefext={r1, r3, r4, r5, r6, r7, r8}

which presents the maximal (with respect to set inclusion) admissible set of AR(s1).

The generation of the preferred extension depends on the current active contexts.

For instance, when reasoning in the highway context, the system updates the ra-

tional order as described in the previous section. Thus, the disable_wifi counter-

measure defeats filter_host and no_cryp_cheksum since the rationale of r2 which

is “precaution” becomes more prioritized than “performance” (the rationale behind

r1 and r8) as shown in the Figure 4.6. The updated preferred extension becomes

Prefext={r2, r3, r4, r5, r6, r7}.

4.4. REACTION PROCESS IN AN AUTOMOTIVE CONTEXT 75

Filter_host(r1) Disable_wifi(r2)

Red_freq(r3) Add_auth(r4)

Limit_traff(r5) Digit_sign(r6)

Rem_req(r7) No_cryp(r8)

Passkey_Crack

Message_Saturation

Manipulation_Message

Figure 4.5: System response against crack passkey attack in {in_car} context

Filter_host(r1) Disable_wifi(r2)

Red_freq(r3) Add_auth(r4)

Limit_traff(r5) Digit_sign(r6)

Rem_req(r7) No_cryp(r8)

Passkey_Crack

Message_Saturation

Manipulation_Message

Figure 4.6: System response against crack passkey attack in {in_car,high_way} con-

text

4.5. CONCLUSION 77

system the most appropriate to achieve this objective. We have proposed an approach

based on the argumentative logic and modeled via LAMBDA models which ensures

the automatic intrusion responses for security system. This approach considers the

different active contexts on which the system is operating. In this chapter, we showed

how to improve the existing argumentation framework. We proposed a new approach

that allows us to to take the suitable and dynamic decisions that maintain the system

in safe conditions while satisfying the prioritized system requirements. In the proposed

approach, the reasoning module refers to a rational order which is manually predefined

by the system expert. The next chapter will focus on the integration of a recommender

module to the current architecture. The main role of the recommender module is to

provide pertinent decisions among those proposed by the generated preferred extension.

Next chapter presents a more enhanced approach where the rational order could be

automatically established by referring to the user historic.

CHAPTER

5 Multi-Criteria

Recommender Tool for

Supporting Intrusion

Response System

5.1 Introduction

This chapter introduces an approach based on a recommender system for efficient se-

curity administrator’s assistance in the context of reaction against intrusion detection.

Recommender systems are tools for processing and organizing information in order to

give assistance to the system users. This assistance is provided by analyzing their own

preferences or the preferences of their community. The proposed methodology con-

siders the set of active contexts while analyzing the security administrator decisions

historic. It provides better recommendation depending on the contexts in which the

system is operating. We propose in this chapter an approach based on a recommender

system using Multi-Criteria Decision Making (MCDM) method for assisting system

security administrators while selecting the appropriate countermeasures against a spe-

cific attack scenario. This approach considers the different effects a countermeasure

could have on the system as criteria to be considered when selecting the appropriate

countermeasures. The objective of this approach is not to replace the security adminis-

trator during the countermeasures selection process, but rather to recommend system

responses based on the security administrator decisions historic. This approach per-

mits also, to automatically select appropriate countermeasures in critical cases where

the system security administrator is unable to select them.

This chapter introduces an MCDM approach for security administrator assistance.

It shows as well how to integrate the MCDM module into system response against

intrusion detection approach presented in the previous chapter. Finally, it presents

80 CHAPTER 5. MULTI-CRITERIA RECOMMENDER TOOL

deployment scenarios highlighting how our approach is applied in the use case of au-

tomotive systems.

5.2 Related work

The aim of this section is to address the recommendation problem from the MCDM per-

spective and to demonstrate the interest of applying MCDM methods to design multi-

criteria recommender systems. There are three basic approaches for recommender

systems: the content-based recommendation [Pazzani and Billsus 1997], collaborative

filtering [Resnick et al. 1994] and a hybrid approach [Balabanovic and Shoham 1997]

that combines collaborative and content-based methods. The collaborative filtering

approach consists in collecting evaluations about the different contents and generating

predictions for the user about a specific content by comparing them with the evalua-

tions done by users with similar tastes and preferences.

The Content-based approach focuses only on the user evaluations to generate recom-

mendations. This approach consists in analyzing the user evaluations historic to iden-

tify the user common features of interest. The work done in [Pazzani and Billsus 1997]

presents an approach that collects user evaluations of the interest of visited pages on the

World Wide Web. The authors show that a user profile can learn from this information

and use it to recommend other pages that may interest the user.

There exists several contributions showing recommender systems that en-

gage some MCDM methods as presented in [Manouselis and Costopoulou 2007,

Adomavicius et al. 2011]. The authors in [Montibeller and Franco 2010] propose a

framework to support strategic decision making in an organization. The proposed

framework employs Multi-Criteria Decision Analysis to support decision making in

strategy workshops. This framework takes into account the organization modern na-

ture which is less hierarchic and more participative with a more distributed knowledge

and decision taking. The approach proposed in [Montibeller and Franco 2010] consid-

ers the multiple objectives aspect that must satisfy the organization strategic deci-

sion. However, this framework presents a high level of uncertainty. In [Zeleny 1982],

Zeleny proposes to increase the decider confidence and to limit to the post-decision

regrets. Zeleny proves how pre-decision and post-decision steps are interdependent.

In [Chiprianov et al. 2013], the authors propose to model the MCDM process using

Model Driven Engineering approaches. The proposed approach offers a guidance for

the analyst and improves the communication between deciders and analysts. More

related to the security field, the authors in [Oglaza et al. 2014] propose a novel ap-

proach that combines an MCDM approach called KAPUER with classic access control

5.2. RELATED WORK 81

tools to assist users while writing high level permission rules. This approach includes

algorithms that converge after the first phase of initializing user preferences.

In this chapter, we propose a recommender system based on the content-based ap-

proach to assist the system security administrator in choosing the most appropriate

countermeasures according to his/her requirements, given a specific attack scenario.

Using a simple recommender system is not appropriate in the context of system re-

sponse against intrusion detection. It cannot take into account the multiple dimensions

of the impact that a countermeasure could have on the system state. The recommended

tool proposed in this work apply MCDM methods to consider the multiple criteria

nature of countermeasures. There exists several MCDM methods for calculating alter-

natives scores:

Technique for Order Preferences by Similarity to Ideal Solutions (TOPSIS)

[Hwang et al. 1993]

In this method two artificial alternatives are defined:

• Ideal alternative: alternative having the best level for all attributes considered.

• Worst alternative: alternative having the worst attribute values.

TOPSIS selects the alternative that is the closest to the ideal solution and farthest

from negative ideal alternative. TOPSIS assumes that we have m alternatives and n

criteria and we have the score of each option with respect to each criterion. Let xij

score of option i with respect to criterion j We have a matrix X = (xij), m×n matrix.

Let J be the set of benefit criteria (more is better). Let J ′ be the set of negative

criteria (less is better). First, we construct a normalized decision matrix. This step

transforms various attribute dimensions into non-dimensional attributes, which allows

comparisons across criteria. Normalized scores are calculated as follows:

rij = xij
√

m
∑

i=1

x2

ij

, i = 1, .., m ; j = 1, .., n

Then, we construct the weighted normalized decision matrix. Assume we have a set of

weights for each criteria wj for j = 1, .., n. We multiply each column of the normalized

decision matrix by its associated weight. An element of the new matrix is: vij = wj×rij.

After that, we determine the ideal and worst solutions as follows:

Ideal solution: Ai = v1∗, .., vn∗, where vj∗ = {max(vij) if j ∈ J ; min(vij) if j ∈ J ′}

Worst solution: Aw = v′
1, .., v′

n, where v′
j = {min(vij) if j ∈ J ; max(vij) if j ∈ J ′}

In the next step, we calculate the distance djw between the target alternative j and

the worst solution Aw, as well as the distance dji between the target alternative j and

82 CHAPTER 5. MULTI-CRITERIA RECOMMENDER TOOL

the ideal solution Ai. Then, we calculate relative closeness to the ideal solution S as

follows:

S = djw

djw+dji
Finally, we select the Alternative with S closest to 1.

ELECTRE [Bouyssou and Roy 1993]

The ELECTRE methods are based on the following four preference situations concern-

ing the comparison of two decisions:

• I (Indifference): it corresponds to a situation where there are clear and positive

reasons that justify an equivalence between the two actions (it leads to a reflexive

and symmetric binary relation).

• P (Strict Preference): it corresponds to a situation where there are clear and

positive reasons in favor of one (identified) of the two actions (it leads to a non-

reflexive and asymmetric binary relation).

• Q (Weak Preference): it corresponds to a situation where there are clear and

positive reasons that invalidate strict preference in favor of one (identified) of the

two actions, but they are insufficient to deduce either the strict preference in favor

of the other action or indifference between both actions, thereby not allowing

either of the two preceding situations to be distinguished as appropriate (it leads

to a non-reflexive and asymmetric binary relation).

• R (Incomparability): it corresponds to an absence of clear and positive reasons

that would justify any of the three preceding relations (it leads to a non-reflexive

and symmetric binary relation).

There are two main parts of an ELECTRE application: first, the construction of one or

several outranking relations, which aims at comparing in a comprehensive way each pair

of decisions; second, an exploitation procedure that elaborates on the recommendations

obtained in the first phase. The nature of the recommendation depends on the problem

being addressed: choosing, ranking or sorting. Usually the Electre Methods are used

to discard some alternatives to the problem, which are unacceptable. After that we

can use another MCDM to select the best one. Criteria in ELECTRE methods have

two distinct sets of parameters: the importance coefficients and the veto thresholds.

5.2. RELATED WORK 83

AHP [Saaty]

AHP uses a hierarchical structure and pairwise comparisons. An AHP hierarchy has

at least three levels:

• The main objective of the problem at the top.

• Multiple criteria that define alternatives in the middle (m).

• Competing alternatives at the bottom (n).

In AHP method, criteria weighting must be determined using (m∗ (m−1))/2 pairwise

comparisons. Alternatives scoring using m ∗ ((n ∗ (n − 1))/2) pairwise comparisons

between alternatives for each criteria. After completing pairwise comparisons, AHP is

just the hierarchical application of SAW method.

SAW [Afshari et al. 2010]

Alternatives scores are calculated using SAW method as follows:

Definition 30. Simple Additive Weighting (SAW) method

∀i ∈ {1, N}, Si =
M
∑

j=1
wj × rij

Where:

Si is the overall score of the ith alternative,

rij is the rating of the ith alternative for the jth criterion,

wj is the weight (importance) of the jth criterion,

N the number of alternatives and M the number of criteria.

Based on the literature reviewed [Aruldoss et al. 2013], the observed advantages

and disadvantages of the MCDM methods previously introduced are summarized in

Table 5.2.

84 CHAPTER 5. MULTI-CRITERIA RECOMMENDER TOOL

Method Advantages Disadvantages

TOPSIS Has a simple process; easy to use and

program; the number of steps remains

the same regardless of the number of

attributes.

Its use of Euclidean Distance

does not consider the correlation

of attributes; difficult to weight

and keep consistency of judg-

ment.

ELECTRE Takes uncertainty and vagueness into

account.

Its process and outcome can be

difficult to explain in layman’s

terms; outranking causes the

strengths and weaknesses of the

alternatives to not be directly

identified.

AHP Easy to use; scalable; hierarchy struc-

ture can easily adjust to fit many

sized problems; not data intensive.

Problems due to interdepen-

dence between criteria and alter-

natives; can lead to inconsisten-

cies between judgment and rank-

ing criteria; rank reversal.

SAW Ability to compensate among criteria;

intuitive to decision makers; calcula-

tion is simple does not require com-

plex computer programs.

Estimates revealed do not al-

ways reflect the real situation;

result obtained may not be logi-

cal.

Table 5.1: Summary of MCDM methods

5.3 Multi-Criteria Decision Making module

We designed an MCDM module to support security administrator during system re-

sponse against intrusion detection. The recommender system we designed follows an

iterative process as shown in Figure 5.1. This iterative process is triggered when the

system detects an intrusion and generates its preferred extension. The security adminis-

trator selects countermeasures among recommended ones generated from the preferred

extension. The system consults selected countermeasures evaluations according to a

predefined criteria list. The criteria list presents a list of nominal system functional

behavior (e.g., availability, integrity, performance). The evaluation consists in assign-

ing to each criterion a mention that describes the impact level the countermeasure

could have on the system state. The possible evaluations are (Very Low(0), Low(1),

86 CHAPTER 5. MULTI-CRITERIA RECOMMENDER TOOL

Different parts are involved in the Multi-Criteria Decision Making process such

as the learning module, the recommending module, and the security administrator

interface.

5.3.1 Learning module

We define the learning part as the different process allowing to give a visibility about the

security administrator way of reacting and the different parameters influencing his/her

decisions. This part is supplied by the security administrator decisions historic by

analyzing the score of different criteria. Each time the security administrator validates

a decision, the Context/Criteria matrix is updated with the selected countermeasure

values according to each criterion. The update process of the Context/Criteria matrix

according to n selected countermeasures is established as follows:

Definition 31. Let Mat be a Context/Criteria matrix, Mat is a matrix of integers, j ∈

card(criteria) and criteria(CMi, j) a function returning the jth criterion evaluation

corresponding to the CMi countermeasure.

Matupdated[contconfig][j] = Matcurrent[contconfig][j] +
n
∑

i=1
criteria(CMi, j)

Where contconfig represents the current combination of active contexts, and

criteria(CMi, j) ∈ [0, 4] as described in Section 5.3

5.3.2 Recommending module

The recommendation phase is based on the Context/Criteria matrix to determine the

decider favored criteria per context. The recommending module calculates the jth

coefficient criterion as follows:

Definition 32. Let Mat be a Context/Criteria matrix, n = card(criteria) and j ∈

{1..n}

coeff(j, contconfig) = Mat[contconfig][j]
n

∑

i=1

Mat[contconfig][i]

Where coeff(j, contconfig) ∈ [0, 1]

Coefficients are then used in the score assignment phase where candidate counter-

measures are evaluated based on their value per criterion and the criterion coefficient.

5.3. MULTI-CRITERIA DECISION MAKING MODULE 87

The sum of all coefficients must be 1. The score of each candidate countermeasure must

be calculated upon dynamic criteria coefficients to reflect a score compatible with the

importance the security administrator assigned to each criterion according to each set

of active contexts.

The score assignment presents the last phase of recommendation, which consists in

a dynamic assignment of score to each proposed countermeasure so that the system

can compare them and recommend the most relevant ones.

In this approach, we opted for SAW (Simple Additive Weighting) method which

evaluates alternatives based on two metrics: the performance value of the alternative

in term of a specific criterion, and the relative weight of importance of this criterion.

SAW method is applicable only when all alternatives are evaluated in the same

unit. Otherwise, other methods, such AHP for example, that allow to standardize

alternatives evaluations, should be applied. As presented in this section, possible

evaluations of all countermeasures are standardized (i.e., possible countermeasures

evaluations according to each criterion are: 1, 2, 3 and 4). Thus, SAW method is

applicable in our case of study. In addition, SAW is known as the simplest and the

fastest MCDM method. This will be helpful when designing system’s response against

intrusion detection since such systems must respond to real-time constraints especially

in critical contexts. The score of each proposed countermeasure is calculated using

the SAW method as follows:

Definition 33. Let CM be a countermeasure, n = card(criteria), j ∈ {1..n} and

criteria(CM, j) ∈ [0, 4]

Score(CM, contconfig) =
n
∑

j=1
(criteria(CM, j)× coeff(j, contconfig))

5.3.3 Security administrator interface

The aim of the recommending system is to assist security administrators and show

them the points that alone they are not able to see. As explained in Section 5.3.1, the

security administrator provides information that supply the learning module. Each

time the security administrator selects some countermeasures, he/she is asked to

validate his/her decision. The validation phase allows the learning module to consider

only the decisions that satisfy the security administrator, the learning module does

not consider the administrator regrettable countermeasures. Once the administrator

validates his/her decisions, the learning module updates the Context/Criteria matrix,

5.4. MCDM MODULE INTEGRATION 89

pose, the approach proposed in previous chapter consists on instantiating ac-

tions hypothesis correlated to the detected malicious action. We consider the

example where the system detects an action consisting on cracking the wifi

passkey. The system instantiates correlated attack hypothesis that the attacker

may execute. The system considers message_saturation as a correlated action.

Message_saturation is considered as a correlated action, since wifi_passkey_crack

postconditions are a subset of message_saturation preconditions. The system

generates as well manipulation_relayed_messages as a potential intrusion objec-

tive correlated to message_saturation. Manipulation_relayed_messages is then

considered as the intrusion objective that the attacker can achieve starting from

wifi_passkey_crack and through the message_saturation attack. According to the

example, an attack scenario {wifi_passkey_crack, message_saturation, manipula-

tion_relayed_messages} is to be considered in the responses generation phase and

not only the wifi_passkey_crack.

5.4.2 System response generation phase

In this phase, the Anti Correlation module selects countermeasures that are anti corre-

lated to the generated attack scenario. To avoid generating a response set containing

conflictual countermeasures, we proposed in the previous chapter an approach that

refers to a mono criterion evaluation to determine which countermeasure should be

selected. In this chapter, we propose a more enhanced approach by integrating the

MCDM module. This module allows a more adaptive evaluation between counter-

measures by comparing their scores. This allows an evaluation that covers all the

countermeasures impacts on the system, rather than considering the main effect of a

countermeasure on the system as the only criterion to be considered. MCDM module

intervenes in the proposed framework at two levels:

• It automatically updates the criteria order according to the set of active contexts

in the preferred extension generation phase.

• It generates the recommended countermeasures among the preferred extension.

5.4.3 Recommendation phase

Once a preferred extension is generated according to a specific attack scenario, all

generated countermeasures are subdivided into criteria evaluations. The recommender

system refers to the current Context/Criteria matrix to generate the criteria order and

90 CHAPTER 5. MULTI-CRITERIA RECOMMENDER TOOL

coefficients as described in Section 5.3. Then, the system calculates countermeasures

scores starting from countermeasures criteria evaluations and the criteria order and

coefficients as defined in Definition 33. Countermeasures having highest scores will be

recommended over the other system responses from the preferred extension. Security

administrators are asked to select countermeasures that satisfy their preferences and re-

quirements according to the current set of active contexts. This module is summarized

in Algorithm 3.

1: Sum_per_context = 0

2: for all criterion ∈ Criteria do

3: Sum_per_context← Sum_per_context + Mat[contconfig][criterion]

4: end for

5: for all criterion ∈ Criteria do

6: coeff(criterion, contconfig) ← Mat[contconfig][criterion] /

Sum_per_context

7: end for

8: for all argument ∈ PreferredExt do

9: Score(argument, contconfig) = 0

10: for all criterion ∈ Criteria do

11: Score(argument, contconfig) ← Score(argument, contconfig) +

criteria(argument, criterion) ×coeff(criterion, contconfig)

12: end for

13: end for

14: Recommended_Countermeasure_List← order(PreferredExt, contconfig)

15: return Recommended_Countermeasure_List

Algorithm 3:ConstructRecommendedList(PreferredExt,contconfig)

Theorem 4. Given a set of N generated countermeasures and M criteria, the com-

plexity of the algorithm 3 is O(N ×M + Nlog(N)) in time.

Proof. According to algorithm 3, the loop from line 2 to line 4 costs O(M). The second

loop (from line 5 to line 7) costs also O(M). The nested loops (from line 8 to line 13)

costs O(N×M). Finally, the execution of the function order (line 14)costs in the worst

case O(Nlog(N)), since it uses merge sort. Therefore, the overall time complexity of

algorithm 3 is O(N ×M + Nlog(N)).

5.5. APPLICATION TO THE AUTOMOTIVE CASE OF STUDY 91

5.4.4 Matrix update phase

The Context/Criteria matrix is updated when countermeasures are selected by the

security administrator and depending on the context in which the system is operating.

When the security administrator selects countermeasures from the preferred extension,

the Context/Criteria matrix is updated by adding selected countermeasures evalua-

tions according to each criterion to the matrix current scores. This phase provides

information concerning the security administrator preferences and requirements using

his/her personal decisions historic organized according to the different criteria. It

provides criteria order according to each set of active contexts as well as the coefficient

of importance to give to each criterion. In this approach, the Context/Criteria matrix

supports the generation of preferred extension by updating the criteria order and

coefficients, which allows to apply the defeat notion between countermeasures by

comparing countermeasures scores.

The inputs of the overall architecture, as shown in Figure 5.2 are:

• System state: presented as a set of literals describing the current system state

• Alert: corresponds to an action detection

• Models: actions, intrusion objectives, countermeasures models

• Contexts: supplies the reasoning module and the MCDM module with the current

set of active contexts

The overall system main outputs are countermeasures selected by the security admin-

istrator.

5.5 Application to the automotive case of study

We show in this section, the deployment of our approach in the automotive system as

an example of a case study and we present the evaluation of the proposed approach.

5.5.1 Deployment scenario

We consider in this section, the attack scenario S presented in the previous chapter

and described below:

92 CHAPTER 5. MULTI-CRITERIA RECOMMENDER TOOL

• The automotive system detects a malicious action consisting in cracking the wifi

passkey Wifi_passkey_crack

• The system generates message_saturation as an attack hypothesis correlated to

Wifi_passkey_crack

• The system generates manipulation_relayed_messages as an intrusion objective

for the attacker

As an output of the reasoning module presented in the previous chapter, the system

generates a preferred extension that consists in a coherent set of candidate counter-

measures. The generation process of the preferred extension depends on the current

active contexts. The Figure 4.5 and Figure 4.6 presented in the previous chapter

show that the preferred extension corresponding to S scenario are Ex_pref{in_car}

and Ex_pref{in_car,high_way} respectively, for {in_car} and {in_car, high_way} con-

text.

Contexts Integrity Availability Confidentiality Performance Precaution

{in_car} 64 88 110 104 22

{in_car,

high_way}

81 72 127 112 103

{V 2V } 77 102 97 67 54

Table 5.2: Context/Criteria matrix

We consider the Context/Criteria matrix example presented in Table 5.2. Once

the security administrator selects and validates countermeasures, the Context/Cri-

teria matrix is updated by evaluations corresponding to each criterion. Values

in bold present the security administrator most preferred criterion according to

the different combination of active contexts. The recommending module generates

the criteria order and coefficients using Definition 32 in Section 5.3.2. Table 5.3

presents the criteria order and coefficients according to three contexts configurations

({in_car},{in_car,high_way},{V 2V }). This table is provided by the Context/Cri-

teria matrix. The criteria coefficients reflect the importance to be attached to each

criterion at the recommendation phase.

Once the system generates a preferred extension corresponding to a specific attack

scenario, the system refers to the criteria order and coefficients tables to calculate the

score of each proposed countermeasure. For instance, the preferred extension generated

in in_car context and corresponding to S, contains two countermeasures:

5.5. APPLICATION TO THE AUTOMOTIVE CASE OF STUDY 93

(a) {in_car} context

Order Criteria Coeff

1 Confidentiality 0.284

2 Performance 0.268

3 Availability 0.227

4 Integrity 0.165

5 Precaution 0.057

(b) {in_car, high_way} context

Order Criteria Coeff

1 Confidentiality 0.257

2 Performance 0.226

3 Precaution 0.208

4 Integrity 0.164

5 Availability 0.145

(c) {V 2V } context

Order Criteria Coeff

1 Availability 0.257

2 Confidentiality 0.244

3 Integrity 0.194

4 Performance 0.169

5 Precaution 0.136

Table 5.3: Criteria order and coefficients provided by the Context/Criteria matrix

depending on the active contexts

• Reduce_frequency

• Add_ source_ auth

(a) Reduce_frequency

Criteria Value

Integrity High (3)

Availability Very Low (0)

Confidentiality Medium (2)

Performance Very Low (0)

Precaution Very High (4)

(b) Add_source_auth

Criteria Value

Integrity High (3)

Availability High (3)

Confidentiality Medium (2)

Performance Medium (2)

Precaution Low (1)

Table 5.4: Examples of countermeasures values per criteria

In the following, we present the recommendation process for both countermeasures.

We denote by Rf and Asa respectively, Reduce_frequency and Add_ source_ auth

countermeasure. Evaluations done by functional experts corresponding to both coun-

termeasures are presented in Table 5.4.

To determine which countermeasures should be recommended, the system calculates

the score of each countermeasure using the Definition 33 in Section 5.3.2. For instance,

94 CHAPTER 5. MULTI-CRITERIA RECOMMENDER TOOL

Goal:

Criteria:

(coefficients)

Alternatives:

(scores)

Recommend best

countermeasures

Integrity

(0.165)

Availability

(0.227)

Confidentiality

(0.284)

Performance

(0.268)

Precaution

(0.057)

Reduce_frequency

(1.291)

Add_source_auth

(2.337)

Figure 5.3: Score assignment using SAW method for reduce_frequency and

add_source_authentification coutnermeasures in {in_car} context

the score attribution of Reduce_frequency and Add_source_auth is calculated as

follows:

Score(Rf, in_car) = criteria(Rf, Integrity)× Coeff(Integrity, in_car)

+criteria(Rf, Confidentilaity)× Coeff(Confidentilaity, in_car)

+criteria(Rf, Precaution)× Coeff(Precaution, in_car)

Score(Rf, in_car) = 3× 0.165 + 2× 0.284 + 4× 0.057

Score(Rf, in_car) = 1.291

The Add_source_auth score in in_car context is calculated with the same formula

as Reduce_frequency, we obtain Score(Asa, in_car) = 2.337.

Thus, Add_source_auth countermeasure will be recommended over

Reduce_frequency countermeasure. Figure 5.3 summarizes the score assignment

process for both countermeasures. The shadowed node represents the recommended

countermeasure. The main goal of our approach being to assist the decider rather

than replacing him, the user can select the recommended countermeasures as well as

other proposed countermeasures from the preferred extension.

Once the decider selects a countermeasure (i.e., the recommended countermeasure

or another proposed one), the system updates the Context/Criteria matrix as presented

5.5. APPLICATION TO THE AUTOMOTIVE CASE OF STUDY 95

in Table 5.5 (when the decider selects Add_source_auth countermeasure) and calcu-

lates the new criteria coefficients per contexts. This constitutes the learning phase of

the recommendation process.

Contexts Integrity Availability Confidentiality Performance Precaution

{in_car} 67 91 112 106 23

{in_car,

high_way}

81 72 127 112 103

{V 2V } 77 102 97 67 54

Table 5.5: Updated Context/Criteria matrix

Figure 5.4: System response selection: Execution time per number of detected alerts

5.5.2 Performance evaluation

The Figure 5.4 shows the system response selection costs per number of detected at-

tacks. The measure confirms that a o(N ×M + Nlog(N))) complexity is achieved,

where N is the number of generated countermeasures and M is the number of criteria.

According to the experimental results, we consider that the proposed approach can

96 CHAPTER 5. MULTI-CRITERIA RECOMMENDER TOOL

Figure 5.5: System response selection: Execution time per number of models number

according to three different model numbers

process 1959 alerts in real-time (i.e., the system can generate preferred extension and

automatically select system responses for 1959 alerts in real-time).

We note that all results provided in this chapter consider 15 loaded models (i.e., models

include actions, intrusion objectives and countermeasures). Real-time constraints are

satisfied with this approach when considering a reasonable number of models. Figure

5.5 shows the execution costs per number of detected alerts for three different model

numbers. The measure confirms that a o(n3) complexity is achieved.

5.6 Conclusion

In order to assist security administrators when selecting countermeasures, it is neces-

sary to have a recommender system that analyzes the security administrator decisions

historic to determine his/her different preferences and requirements. We consider the

content-based approach the most appropriate to achieve this objective. The content-

based approach considers the user decisions historic and analyses them to provide ap-

propriate recommendations. In this work, we proposed an approach based on content-

based recommendation for efficient security administrator assistance when selecting the

appropriate countermeasures, given a specific attack scenario. This approach considers

the set of active contexts in different steps of generation system response as well as in

5.6. CONCLUSION 97

the recommendation phase. We opted for a SAW method for its low computational

costs. Indeed, we showed that the complexity in time of the proposed algorithm is

polynomial. Thus, our approach provides recommendations of system responses in

real-time for a reasonable number of criteria and countermeasures included in the gen-

erated preferred extension. We can notice that the proposed approach does not provide

the same results after a finite number of executions. Once a countermeasure is applied

and validated by the security administrator, the Context/Criteria matrix is updated

by the selected countermeasure evaluations. This update induces a change in criteria

coefficients and may as well change the criteria order, which may provide different

results in next executions.

In the following chapter, we will focus on the evaluation of the approach efficiency

by testing different scenarios and checking if this approach is applicable in the context

of real-time system constraints.

CHAPTER

6 Implementation and

Evaluation

6.1 Introduction

This chapter presents the implementation of modules presented in chapter 4 and chap-

ter 5. We integrate to CRIM [Autrel and Cuppens 2006] these modules to ensure auto-

matic system responses selection against intrusion detection. We start in this chapter

by presenting CRIM tool and its main features. We consider also in this chapter the

automotive system as a case of study for our approach. We show how the preferred

extension generation module and the MCDM module are integrated into CRIM tool.

Furthermore, we present some experimental results to show the efficiency and the per-

formance of our approach.

6.2 CRIM

CRIM is an intrusion detection tool that allows several Intrusion Detection Modules

(IDMs) to cooperate in order to provide an accurate alert. CRIM is implemented in

C++ using the Qt library [Qt] for graphics.

6.2.1 Features and architecture

We briefly describe in this section the main features provided by CRIM. These features

are described as follows:

• Alerts management: this function manages alerts generated by the different IDMs

in a relational database.

6.3. IMPLEMENTATION 103

• Precaution: Very High (4)

Alerts

IDMEF (Intrusion Detection Message Exchange Format) is the only alert format sup-

ported by CRIM. This alert format was developed as part of the IETF (Internet Engi-

neering Task Force) workshop. The IDMEF as been designed as a format for reporting

information related to the observation of a suspicious event. IDMEF transports data

between IDS and an alerts management console for example. It can be used for dia-

logue between two alerts processing modules. Considering the cooperative intrusions

detection context, IDMEF designs an architecture where an IDS can be easily removed

or added and where new alert processing modules can be easily introduced as well.

The IDMEF model is object oriented so it can be extended through defining new sub

classes or creating new aggregation relationships with new classes. Once the model

is extended, an application that was able to handle instantiated alerts from the non-

extended model will be able to handle extended alerts model without considering new

data. The IDMEF model is specified by XML DTD (Document Type Definition). The

IDMEF is used to transmit the alerts generated from IDS. It is also used to transmit

fusion alerts resulting from the aggregation of multiple alerts. Finally, IDMEF is also

used in CRIM to model attack scenario alerts and alerts that require applying coun-

termeasures. Figure 6.5 shows an example of an IDMEF alert modeled in XML file.

6.3 Implementation

6.3.1 Preferred extension generation

We implemented a module in CRIM [Autrel and Cuppens 2006] that integrates the

notion of rationales in countermeasures. When detecting a hostile action, this module

generates the possible scenarios which can be performed by an attacker until he/she

reaches his/her intrusion objective. CRIM calculates and generates the largest set

(preferred extension) which contains the largest number of coherent countermeasures

able to avoid the generated scenario. The generation process of the preferred exten-

sion is based on the recursive Algorithm 2 presented in Chapter 4. We show in this

section, how CRIM generates preferred extensions according to intrusion detection by

considering that for a given detected alert the attacker might have several intrusion

objectives. For instance, we consider the scenario presented in the previous chapters

110 CHAPTER 6. IMPLEMENTATION AND EVALUATION

Figure 6.12: Preferred extension generation: Execution time per percentage of real

alerts from the detected alerts

affected whatever the number of false alerts detected. The overall AIRS complexity is

o(P 3 + N ×M + Nlog(N))) where P is the number of models (i.e., actions, intrusion

objectives and countermeasures), N is the number of countermeasures generated in the

preferred extension and M is the number of criteria. According to the experimental

results, the proposed approach does not satisfy real-time constraints when considering

more than 350 models. The proposed approach can process many alerts detected

simultaneously in real-time when considering a reasonable number of loaded models.

6.5 Conclusion

The current implementation of the approach successfully responded to real-time con-

straints, since the responses of critical systems, such as automotive system, must be

instantly provided especially in critical contexts. We presented some experimental re-

sults concerning the execution costs of our implemented approach. These results allow

the evaluation of the approach in terms of performance and time required for the system

to response against different attack scenarios detected at the same time. We showed

that the proposed approach can process 1959 alerts in real-time. By implementing our

approach, we successfully protect critical systems and infrastructures by generating

6.5. CONCLUSION 111

potential attack scenarios and selecting the countermeasures that satisfy the security

administrator preferences and requirements.

CHAPTER

7 Conclusions and

Perspectives

In this chapter, we present an overview on how the different thesis objectives outlined

in the first chapter have been followed. Afterwards, we show how our approaches can

be improved and open up the door to a new research focuses.

7.1 Contributions

Our main objective in this thesis was to provide a tool that keeps the system in a safe

state while maintaining the best possible level of performance and quality of service.

We present in this section different contributions proposed to meet this objective.

Our first contribution is introduced in Chapter 4 where we proposed an approach

[Bouyahia et al. 2014] for an efficient enforcement of security requirements. This ap-

proach is based on AL and it describes a collaboration between the system archi-

tecture design and security requirements to support the long-term needs of the sys-

tem. In [Bouyahia et al. 2015], we proposed a more enhanced approach that allows

to instantiate actions hypothesis correlated to the detected malicious action. This

provides a better system reaction against intrusion by providing the security admin-

istrator a better view about the potential attacker’s intentions. Moreover, we showed

in [Bouyahia et al. 2015] how the system takes into account the set of active contexts

when generating system responses. For this purpose, We showed how to improve the

existing argumentation framework by defining the Contextual Value-based Argumenta-

tion Framework (CVAF) which presents a dynamic framework that consider the current

set of active contexts while generating system responses against intrusion.

Second, we presented in Chapter 5 a content-based recommendation approach

[Bouyahia et al. 2016] using MCDM method which provides an efficient security ad-

ministrator assistance when selecting the appropriate countermeasures, given a specific

114 CHAPTER 7. CONCLUSIONS AND PERSPECTIVES

attack scenario. This approach considers the attack scenario generated from the first

approach as well as the corresponding preferred extension in order to assist security ad-

ministrators to select countermeasures satisfying the prioritized system requirements.

For this purpose, we proposed a learning module which allows to learn more about the

security administrator way of reacting and have an idea about the security administra-

tor preferences and requirements according to his/her decisions historic. The proposed

approach considers the countermeasures impact on the nominal system functional be-

haviors (e.g., integrity, performance) as criteria to be considered when selecting system

responses. Moreover, the learning module permits to automatically select appropriate

system responses in critical cases where no security administrator is available to select

them by his/her self (e.g., outside working hours).

We applied our approaches on an automotive system as an example of a case study

to explore the capability of the proposed approaches to provide system responses for

complex system architecture. We did some experimentation concerning the execu-

tion costs in time of the implemented approaches. The obtained results show that

our approaches implementation successfully respond to real-time constraints, since the

responses of critical systems such as automotive system must be instantly provided

especially in critical contexts.

7.2 Perspectives

We give in this section some future research directions that could be investigated as a

continuation of the results presented in this thesis:

7.2.1 Coordinated attack

The proposed approaches do not consider a possible cooperation between different de-

tected attacks. From the security system point of view, two detected alerts correspond-

ing to different attacker addresses are always considered as two individual attackers.

Whereas, several attacker sources may cooperate in order to meet a common intrusion

objective. A more enhanced approach can be proposed by considering the coordinated

attacks [Samarji et al. 2015] in the response generation process. A Simultaneous At-

tack Graphs (SAG) can be an input to our Intrusion Response System. A SAG is a

graph that contains the most risky attack scenarios hypothesis given a detected alert.

7.2. PERSPECTIVES 115

7.2.2 Extending the formal model

We defined five nominal system functional behaviors: Availability, confidentiality, per-

formance, integrity and precaution. Whereas, other security and functional require-

ments such as traceability and privacy might be requested by security functional ex-

perts. Thus, our formal model can be extended to allow security administrator to

specify new security and functional requirements. Moreover, the given criteria are

limited to high-level security properties, a more enhanced approach can be proposed

by considering more detailed and low-level criteria. All attack scenarios generated by

the correlation module are treated by the anti correlation module in the same way.

However, many parameters can be considered to prioritize some attack scenarios over

other ones such as the scenario difficulty level, time required and likelihood. One pos-

sible perspective is to consider theses parameters while generating system responses

given multiple generated attack scenarios. Finally, the proposed approaches consider

only countermeasures impact on the system (e.g., ensuring precaution, ensuring avail-

ability). A possible perspective is to consider the countermeasure applying costs in

time, i.e., a more enhanced approach can consider countermeasures restore time as an

argument to be considered during reasoning process.

7.2.3 The attacker’s point of view

We think that it would be interesting as a perspective to try to plan more precisely the

attacker future actions by applying the same approach of defense. This would make it

possible to build preferred extensions from the attacker’s point of view. An attacker

chooses the actions in order to reach some goal. A reason representing the negative

effects on the security properties of the attacked system can be associated with each

action. For example, when an attacker is scanning a target to find its open ports, it is

not an attack on itself, but it provides the attacker information to plan his next steps.

The reason associated with such an action could be target discovery for example. If

we consider a denial of service attack implemented through the action consisting in

flooding a target with UDP packets, the associated reason could be availability loss.

CHAPTER

8 Résumé en français

8.1 Introduction

Le défi des outils de sécurité modernes est de garder le système dans un état de sécurité

tout en maintenant le meilleur niveau possible de performance et de qualité de service.

Ainsi, nous soutenons que le processus de sécurité doit suivre un raisonnement dy-

namique et intelligent qui permet au système lors de la détection d’une action malveil-

lante, de prévoir les potentielles actions qui peuvent se produire en corrélation et de

générer le meilleur ensemble possible de contre-mesures. Pour atteindre cet objectif,

nous proposons les contributions suivantes :

• Nous introduisons une approche [Bouyahia et al. 2014] pour une application ef-

ficace des exigences de sécurité, cette approche est supportée par la logique ar-

gumentative. Elle décrit une collaboration structurée entre l’architecture du sys-

tème et des exigences de sécurité pour répondre aux besoins du système durant

son fonctionnement. Le but des activités de sécurité assistées par une logique

argumentative est de mettre en évidence les critères de décision de contexte pour

assurer le maintien du système en condition de sécurité.

• Dans les attaques modernes, l’attaquant peut exécuter plusieurs actions afin de

rendre l’exécution d’autres actions possibles jusqu’à atteindre un certain objectif

d’intrusion. Pour cela, nous proposons une méthode efficace [Bouyahia et al. 2015]

permettant d’instancier les hypothèses d’actions corrélées à l’action malveillante

détectée. Cela permet à l’administrateur de sécurité de se rendre compte des

intentions potentielles de l’attaquant, ce qui offre une meilleure réaction du système

contre les intrusions.

• Compte tenu d’une attaque contre un système donné, la meilleure contre-mesure

à appliquer dépend du contexte dans lequel le système est entrain d’opérer. Par

exemple, dans le cas des systèmes automobiles, le fait que le véhicule circule au

centre ville ou sur une autoroute change l’impact qu’une attaque peut avoir sur

118 CHAPTER 8. Résumé en français

le système. Ainsi, le système doit prendre en compte l’ensemble des contextes

actifs lors de la génération des contre-mesures contre une attaque détectée. Pour

cela, nous montrons comment adapter les systèmes d’argumentation existantes en

définissant le système d’argumentation contextuelle à base des valeurs (CVAF)

[Bouyahia et al. 2015].

• Nous proposons une approche de recommandation basée sur le contenu

[Bouyahia et al. 2016] en utilisant les méthodes de prise de décision multicritères

(MCDM) pour une meilleure assistance de l’administrateur de sécurité lors de

la sélection des contre-mesures appropriées, compte tenu d’un scénario d’attaque

spécifique. Pour en savoir plus sur la façon dont l’administrateur de sécurité

réagit, nous proposons un module d’apprentissage qui permet de former une idée

sur les préférences de l’administrateur de sécurité et ses exigences en fonction

de son historique de décisions. Les préférences dans notre approche sont consid-

érées comme étant les critères ayant le score le plus élevé selon une combinaison

spécifique de contextes actifs. Cette approche considère les différents impacts

qu’une contre-mesure pourrait avoir sur le système (par exemple, la performance,

la disponibilité) comme étant des critères à prendre en considération lors de la

sélection des réponses appropriées du système. Cette approche permet également

de sélectionner automatiquement des contre-mesures appropriées dans les cas cri-

tiques où l’administrateur de sécurité du système n’est pas en mesure de prendre

des décisions.

• Nous appliquons nos approches sur les systèmes automobiles comme exemple de

cas d’étude pour explorer les difficultés que peuvent rencontrer les systèmes com-

plexes au cours du processus de la réaction. Ce cas d’étude illustre le besoin

potentiel d’une application dynamique des exigences de sécurité pour contrôler

les diverses activités de sécurité. Nous présentons des résultats expérimentaux

concernant les coûts d’exécution de nos approches implémentées. Ces résultats

permettent l’évaluation de l’approche en termes de performance et de temps de

réaction requis du système contre les différents scénarios d’attaque détectés simul-

tanément. En se basant sur ces résultats, nous montrons comment notre implé-

mentation satisfait les contraintes de temps réel, car les réponses des systèmes

critiques, tels que le système automobile, doivent être immédiatement fournies en

particulier dans les contextes critiques.

8.2. GÉNÉRATION DES SCÉNARIOS D’ATTAQUES 119

8.2 Génération des scénarios d’attaques et des

contre-mesures sensibles au contexte

Le but principale de cette approche est de générer un ensemble cohérent de contre-

mesures pour chaque alerte détectée. L’ensemble généré doit satisfaire les exigences de

l’administrateur de sécurité et doit aussi tenir en compte des contextes actifs lors de

la détection de l’alerte. Nous estimons dans cette approche que le système de sécurité

doit être toujours en avance de phase par rapport à l’attaquant. Pour ce faire, nous

générons les scénarios potentiels d’attaque qui correspondent à une alerte détectée.

8.2.1 Génération des scénarios d’attaques

Dans notre approche, nous considérons que plusieurs sondes sont distribuées dans le

système contrôlé pour générer des événements qui correspond à des actions exécutées

par les agents agissants sur le système. Ces agents peuvent être des utilisateurs

légitimes ainsi que des agents malveillants. Les sondes peuvent être des utilisateurs

de détection d’intrusion ou les fichiers logs des programmes de surveillance. A chaque

fois que les sondes de détections détectent une alerte, le module de corrélation génère

et instancie des hypothèses d’actions corrélées à l’action qui correspond à l’alerte

détectée. Ce module explore tous les objectifs d’intrusion possibles que l’attaquant

peut y parvenir. On a opté pour la modélisation des modèles de sécurité (actions,

objectifs d’intrusion et contre-mesures) via le langage LAMBDA [Cuppens et al. 2006].

Nous définissions une action LAMBDA comme suit:

LAMBDA action

name: le nom de l’action

pre-condition: définie l’ensemble de conditions devant être satisfaites sur le système

visé par l’action pour qu’elle puisse être réalisée

post-condition: définie Les effets de l’exécution de l’attaque sur le système visé.

detection: définie l’alerte associée à la détection de l’action.

Un attaquant peut exécuter plusieurs actions pour modifier l’état du système

afin d’atteindre un état où la politique de sécurité est violée. Certaines actions

peuvent être exécutées par l’attaquant afin de rendre l’exécution d’autres actions

possibles. Lorsque les effets (post-condition) d’une action sont un sous-ensemble des

pré-conditions d’une autre action, on considère que les deux actions sont corrélées.

Un scénario d’attaque est définie dans notre approche comme étant :

120 CHAPTER 8. Résumé en français

• l’action qui correspond à l’alerte détectée,

• les possibles hypothèses d’actions et

• un potentiel objectif d’intrusion

8.2.2 Systèmes d’argumentation à base de valeurs étendue

Bench Capon définit un système d’argumentation à base de valeurs [Bench-Capon 2003]

comme suit :

V AF = 〈AR, attacks, V, val, V alprefa〉

• AR est l’ensemble des arguments et attacks est une relation binaire entre AR×AR.

• V est un ensemble fini de valeurs.

• val est une fonction qui mappe les éléments de AR avec les éléments de V

• V alpref est une relation de préférence entre les valeurs de V .

En raison de la nature dynamique des systèmes d’information, nous soutenons que

l’utilisation d’une relation de préférence statique V alpref n’est pas adaptée. Nous

étendons la définition de V AF à celle d’un système d’argumentation contextuel CV AF

définit comme suit :

CV AF = 〈AR, attacks, V, val, C, ContPref〉

• AR, attacks, V and val ont la même définition que celle d’un V AFs

• C est un ensemble de contextes. A un moment donné plusieurs contextes peuvent

être actifs.

• ContPref est une relation de préférence transitive, irreflexive et asymétrique dans

V × V et qui dépend de l’ensemble de contextes actifs dans C

8.2.3 Génération des contre-mesures sensibles au contexte

Les contre-mesures sont des actions qui sont exécutées pour remédier aux effets d’une

attaque ou pour bloquer l’exécution d’autres attaques. Plus généralement, ce sont des

8.2. GÉNÉRATION DES SCÉNARIOS D’ATTAQUES 121

actions qui ont un effet négatif sur l’exécution d’autres actions. Plus formellement,

nous modélisons une contre-mesure de la même manière qu’une action est modélisée

à l’exception que son champ de détection est remplacé par le champ "rationale". Ce

champ permet de définir les raisons qui motivent l’exécution de l’action. En fait, nous

représentons la raison pour laquelle une contre-mesure doit être choisi. Par exemple,

certaines contre-mesures peuvent améliorer la performance du système attaqué au

détriment de la disponibilité de certains services. Si pour une raison quelconque

la performance du système devrait être favorisée par rapport à la disponibilité des

services qu’il fournit, alors nous pouvons choisir la contremesure associée au motif

favori. Les contre-mesure ne s’instancient pas à partir d’une alerte, les valeurs

sont affectées à ses variables libres en examinant les effets qu’elle doit avoir sur

l’état du système, afin d’atténuer les effets d’une attaque ou d’empêcher l’exécution

d’autres attaques. La notion d’anti-corrélation formalise cette notion d’effet négatif,

Formellement elle est définie comme suit:

Anti-correlation: Soient a et b deux modèles LAMBDA d’actions, il sont

anti-corrélées si la condition suivante est vérifiée :

∃Ea et Eb tel que

• (Ea ∈ post(a) ∧not(Eb) ∈ pre(b))or(not(Ea) ∈ post(a) ∧ Eb ∈ pre(b))

• Ea et Eb sont unifiables à travers un unificateur plus général u

Tel que post(a) est l’ensemble des prédicats du champ post-condition de a et pre(b)

est l’ensemble des prédicats du champ pré-condition de b.

Compte tenu d’un scénario d’intrusion S, construit comme spécifié dans la Sec-

tion 8.2.1, et l’ensemble des contre-mesures C calculées pour S, nous construisons

l’ensemble des arguments AR(S) utilisé pour la phase de raisonnement comme étant

l’union de ces deux ensembles.

Maintenant que nous avons montré comment construire l’ensemble des arguments

correspondant à un scénario d’intrusion, nous définissons la relation d’attaque entre

ces arguments :

Relation d’attaque: Soit S un scénario d’intrusion et AR(S) l’ensemble des

arguments correspondant. Soit a1 ∈ AR(S), a2 ∈ AR(S) deux arguments.

attacks(a1, a2) est vrai ssi anticor(post(a1), pre(a2)) ∨ anticor(post(a1), cond(a2))

Dans notre approche, nous ne faisons pas explicitement la condition d’activation

pour chaque contexte dans C, nous considérons que cet ensemble est extrait d’une

122 CHAPTER 8. Résumé en français

spécification de politique de sécurité contextuelle, comme une politique OrBAC

[Cuppens and Cuppens-Boulahia 2008] par exemple. ContPref a la même définition

que celle utilisé dans valpref VAF sauf qu’il permet de générer la préférence entre les

forces (valeurs) des arguments en fonction de la configuration des contextes actifs.

Compte tenu d’un scénario d’intrusion, du point de vue de l’agent défendant le

système attaqué par un autre agent malveillant, le processus de la réaction con-

siste à choisir parmi les contre-mesures possibles le meilleur sous-ensemble selon ses

préférences. Ces préférences étant codées par la relation ContPref . Selon notre ap-

proche, cela consiste à utiliser la relation d’attaque que nous avons défini pour con-

struire des ensembles admissibles d’arguments (extensions préférées), chaque ensemble

représentant un ensemble cohérent de contre-mesures.

8.3 Une approche multicritère pour assister la prise

de décision par l’administrateur de sécurité

Pour éviter de générer des contre-mesures conflictuelles, nous avons proposé dans la

section précédente une approche qui procède à une évaluation monocritère pour déter-

miner quelle contre-mesure doit être sélectionnée. Dans cette section, nous proposons

une approche plus renforcée qui intègre un module d’aide à la décision (MCDM). Ce

module permet une évaluation plus adaptative entre les contre-mesures en comparant

leurs scores. Ceci permet une évaluation qui couvre tous les impacts des contre-mesures

sur le système, plutôt que de considérer l’effet principal d’une contre-mesure sur le

système comme étant le seul critère à prendre en considération. Le module MCDM

intervient dans l’approche proposée sur deux niveaux:

• Il met à jour automatiquement l’ordre des critères selon l’ensemble des contextes

actifs dans la phase de génération d’extension préférée.

• Il génère les contre-mesures recommandées à partir de l’extension préférée.

Nous distinguons trois parties principales dans le système de recommandation pro-

posée dans cette approche :

• Module d’apprentissage : Nous définissons la partie d’apprentissage comme étant

le processus permettant de donner une visibilité sur la façon dont l’administrateur

de sécurité réagit et les différents paramètres influençant ses décisions. Cette

partie est alimentée par l’historique des décisions de l’administrateur de sécurité

8.4. APPLICATION SUR LES SYSTÈMES AUTOMOBILES 123

en analysant le score de différents critères. A chaque fois que l’administrateur

de sécurité valide une décision, la matrice d’apprentissage est automatiquement

mise à jour avec les valeurs de contre-mesures sélectionnées en fonction de chaque

critère.

• Module de recommandation : Ce module calcule le coefficient de chaque critère

en se basant sur son score par rapport à la somme totale des critères par contexte.

Ces coefficients sont utilisés pour calculer le score des différents contre-mesures

au moment de la recommandation. Le score de chaque contre-mesure doit être

calculée en se basant sur les coefficients dynamiques des critères pour refléter un

score compatible avec l’importance qu’accorde l’administrateur de sécurité pour

chaque critère en fonction de chaque ensemble de contextes actifs. Nous utilisons

dans notre approche la méthode de décision multicritère SAW [Afshari et al. 2010]

pour le calcul des scores des contre-mesures. SAW est connu comme étant la méth-

ode MCDM la plus simple et la plus rapide. Cela sera utile lors de la conception

d’un système de réaction contre la détection d’intrusion, car ces systèmes doivent

satisfaire les contraintes de temps réel en particulier dans des contextes critiques.

• L’interface de l’administrateur de sécurité : Le but du système de recommanda-

tion proposé est non seulement de remplacer les administrateurs de sécurité et de

prendre des décisions à leur place, mais aussi de les assister et leur montrer les

points que eux seuls ils ne sont pas en mesure de les voir. L’administrateur de

sécurité fournit les informations qui alimentent le module d’apprentissage. Chaque

fois que l’administrateur de sécurité sélectionne certaines contre-mesures, il/elle

est invité(e) à valider sa décision. La phase de validation permet au module

d’apprentissage de considérer que les décisions qui satisfont l’administrateur de

sécurité, le module d’apprentissage ne considère pas les choix regrettables des

contre-mesures. Une fois que l’administrateur valide ses décisions, le module

d’apprentissage met à jour la matrice Contexte/Critères pour qu’elle prend en

compte les nouvelles décisions.

8.4 Application sur les systèmes automobiles

Afin de donner un exemple pratique sur le besoin potentiel d’une application dynamique

des exigences de sécurité pour contrôler les différents activités de sécurité, nous consid-

érons l’exemple du système automobile. Un système moderne d’automobile à bord relie

une centaine de microcontrôleurs, appelés unités de commande électronique (ECU) or-

ganisés en domaines spécifiques de l’architecture et reliés par des passerelles, comme

8.5. IMPLÉMENTATION ET ÉVALUATION 125

permet d’améliorer la performance du système automobile. Cependant, toujours appli-

quer ce genre de règles n’est pas souhaitable, car l’application des règles doit dépendre

du contexte dans le quel le système est entrain d’opérer.

8.5 Implémentation et évaluation

Cette section présente l’implémentation des modules présentés dans les sections précé-

dentes. Nous intégrons à CRIM[Autrel and Cuppens 2006] ces modules pour assurer la

sélection automatique des contre-mesures du système contre la détection d’intrusion.

8.5.1 CRIM

CRIM est un outil de détection d’intrusion qui permet plusieurs modules de détec-

tion d’intrusion (MDIs) de coopérer afin de fournir une alerte précise. Les IDMs en

CRIM sont basés sur une approche hybride qui combine l’approche comportementale

[Anderson 1980] et l’approche fondée sur les scénarios d’attaque. Spécifier plusieurs

MDIs en collaboration permet ainsi de réduire la génération des fausses alertes posi-

tives et négatives. L’architecture de CRIM adaptée à notre approche est représentée

par la Figure 8.2. Nous avons implémenté un module qui intègre la notion de "rai-

son" dans la modélisation des contre-mesures. Ce module permet, lors de la détection

d’une action hostile de générer les scénarios d’actions possibles que l’attaquant peut

enchaîner jusqu’à ce qu’il atteint un certain objectif d’intrusion. Ce simulateur per-

met de calculer et de générer l’extension préférée qui contient le plus grand nombre de

contre-mesures cohérentes capables de remédier au scénario généré.

8.5.2 Evaluation

Génération des extensions préférées

Selon les résultats expérimentaux, nous constatons que le système peut charger et

traiter 2138 alertes en une seconde. Nous estimons qu’une seconde est un intervalle

de temps raisonnable pour le traitement des alertes car le module de réaction est

considéré en avance de phase par rapport à l’attaquant vu qu’il anticipe les intentions

de l’attaquant. Ainsi, nous considérons que le module de réaction que nous avons

implémenté peut traiter 2138 des alertes en temps réel.

8.6. CONCLUSION 127

compte des différents contextes actifs durant lesquels le système peut opérer. Dans

ce travail, nous avons montré comment améliorer les systèmes d’argumentation exis-

tants. Nous avons proposé aussi une nouvelle approche qui assiste l’administrateur de

sécurité pour sélectionner des contre-mesures appropriées et dynamiques qui maintien-

nent le système dans des conditions de sécurité, tout en satisfaisant les exigences de

l’administrateur de sécurité.

Les travaux de recherches menées dans cette thèse peuvent être étendues dans

plusieurs directions. Notre modèle formel peut être étendu pour permettre à

l’administrateur de sécurité de spécifier des nouvelles exigences de sécurité (par ex-

emple, la traçabilité). L’approche proposée dans cette thèse ne considère pas une

éventuelle coopération entre les différents attaques détectées. Du point de vue du sys-

tème de sécurité, deux alertes détectées correspondantes à deux adresses d’attaquants

différentes sont considérées dans notre approche comme deux attaques individuelles.

Alors que plusieurs attaquants peuvent coopérer afin d’atteindre un objectif d’intrusion

commun. Une approche plus renforcée peut être proposée en considérant les attaques

coordonnées [Samarji et al. 2015] dans le processus de génération des contre-mesures.

APPENDIX

A CRIM modules

Source Code

A.1 Generation of attack scenarios

1 #include " crim_core . h "

#include "mainwindow . h "

#include <sstream>

4

//

. . .

7 //

void CCrimCore : : ComputeCorrelationRules ()

10 {

messageOutputInter face−>OutputMessage ("Computing␣ c o r r e l a t i o n ␣ r u l e s . . . ") ;

// Clear r u l e s

13 Clea rCor r e l a t i onRu l e s () ;

// f i r s t compute d i r e c t c o r r e l a t i o n r u l e s between a c t i o n s

16 // we i t e r a t e through the loaded ac t ion models

vec to r < CActionModel ∗ >:: i t e r a t o r f i r s t , second , end ;

f i r s t = act ionModels . begin () ;

19 end = act ionModels . end () ;

while (f i r s t != end)

22 {

second = act ionModels . begin () ;

modelA = ∗ f i r s t ;

25

while (second != end)

{

28 modelB = ∗ second ;

// avoid check ing f o r c o r r e l a t i o n between

31 // a model and i t s e l f

i f ((∗ f i r s t)−>GetName () == (∗ second)−>GetName ())

{

34 second++;

continue ;

}

37

// g e t the pre−cond i t ion and post−cond i t ion

130 APPENDIX A. CODE.

vec to r < CFirstOrderPred icate ∗ > post , pre ;

40 vec to r < CFirstOrderPred icate ∗ >:: i t e r a t o r ca , cb , ea , eb ;

post = (∗ f i r s t)−>GetPostCondition () ;

pre = (∗ second)−>GetPreCondition () ;

43 ea = post . end () ;

eb = pre . end () ;

46 for (ca = post . begin () ; ca !=ea ; ca++)

{

for (cb = pre . begin () ; cb !=eb ; cb++)

49 CheckExpress ionsForCorre lat ion (∗ ca , ∗cb) ;

}

second++;

52 }

f i r s t ++;

}

55

// compute d i r e c t c o r r e l a t i o n r u l e s between a c t i o n s and o b j e c t i v e s

// we i t e r a t e through the loaded ac t ion models

58 vec to r < CIntrus ionObject iveModel ∗ >:: i t e r a t o r currObj , endObj ;

endObj = objec t iveMode l s . end () ;

f i r s t = act ionModels . begin () ;

61

while (f i r s t != end)

{

64 currObj = objec t iveMode l s . begin () ;

modelA = ∗ f i r s t ;

67 while (currObj != endObj)

{

modelB = ∗ currObj ;

70

// g e t the pre−cond i t ion and system s t a t e cond i t i on

vec to r < CFirstOrderPred icate ∗ > post , cond ;

73 vec to r < CFirstOrderPred icate ∗ >:: i t e r a t o r ca , cb , ea , eb ;

post = (∗ f i r s t)−>GetPostCondition () ;

cond = (∗ currObj)−>GetPreCondition () ;

76 ea = post . end () ;

eb = cond . end () ;

79 for (ca = post . begin () ; ca !=ea ; ca++)

{

for (cb = cond . begin () ; cb !=eb ; cb++)

82 CheckExpress ionsForCorre lat ion (∗ ca , ∗cb) ;

}

currObj++;

85 }

f i r s t ++;

}

88

// compute d i r e c t c o r r e l a t i o n r u l e s between a c t i o n s and domain r u l e s

// and between domain r u l e s and a c t i o n s

91 // we i t e r a t e through the loaded ac t ion models and domain r u l e s

vec to r < CDomainRuleModel ∗ >:: i t e r a t o r currRule , endRule ;

endRule = domainRuleModels . end () ;

94

f i r s t = act ionModels . begin () ;

while (f i r s t != end)

A.1. GENERATION OF ATTACK SCENARIOS 131

97 {

currRule = domainRuleModels . begin () ;

100 while (currRule != endRule)

{

vec to r < CFirstOrderPred icate ∗ > post , pre ;

103 vec to r < CFirstOrderPred icate ∗ >:: i t e r a t o r ca , cb , ea , eb ;

// c o r r e l a t i o n check between ac t ion and r u l e

106 modelA = ∗ f i r s t ;

modelB = ∗ currRule ;

// g e t the pre−cond i t ion and post−cond i t ion

109 post = (∗ f i r s t)−>GetPostCondition () ;

pre = (∗ currRule)−>GetPreCondition () ;

ea = post . end () ;

112 eb = pre . end () ;

for (ca = post . begin () ; ca !=ea ; ca++)

115 {

for (cb = pre . begin () ; cb !=eb ; cb++)

CheckExpress ionsForCorre lat ion (∗ ca , ∗cb) ;

118 }

// c o r r e l a t i o n check between r u l e and ac t ion

121 modelA = ∗ currRule ;

modelB = ∗ f i r s t ;

// g e t the pre−cond i t ion and post−cond i t ion

124 post = (∗ currRule)−>GetPostCondition () ;

pre = (∗ f i r s t)−>GetPreCondition () ;

ea = post . end () ;

127 eb = pre . end () ;

for (ca = post . begin () ; ca !=ea ; ca++)

130 {

for (cb = pre . begin () ; cb !=eb ; cb++)

CheckExpress ionsForCorre lat ion (∗ ca , ∗cb) ;

133 }

currRule++;

}

136 f i r s t ++;

}

139 // compute d i r e c t c o r r e l a t i o n r u l e s between domain r u l e s and o b j e c t i v e s

// we i t e r a t e through the loaded domain r u l e s and o b j e c t i v e s

currRule = domainRuleModels . begin () ;

142

while (currRule != endRule)

{

145 currObj = objec t iveMode l s . begin () ;

modelA = ∗ currRule ;

148 while (currObj != endObj)

{

modelB = ∗ currObj ;

151

// g e t the post−cond i t ion and system s t a t e cond i t i on

vec to r < CFirstOrderPred icate ∗ > post , cond ;

154 vec to r < CFirstOrderPred icate ∗ >:: i t e r a t o r ca , cb , ea , eb ;

132 APPENDIX A. CODE.

post = (∗ currRule)−>GetPostCondition () ;

cond = (∗ currObj)−>GetPreCondition () ;

157 ea = post . end () ;

eb = cond . end () ;

160 for (ca = post . begin () ; ca !=ea ; ca++)

{

for (cb = cond . begin () ; cb !=eb ; cb++)

163 CheckExpress ionsForCorre lat ion (∗ ca , ∗cb) ;

}

currObj++;

166 }

currRule++;

}

169

// compute d i r e c t c o r r e l a t i o n r u l e s between domain r u l e s

// we i t e r a t e through the loaded domain r u l e s

172 vec to r < CDomainRuleModel ∗ >:: i t e r a t o r currRuleRight ;

currRule = domainRuleModels . begin () ;

175 while (currRule != endRule)

{

currRuleRight = domainRuleModels . begin () ;

178 modelA = ∗ currRule ;

while (currRuleRight != endRule)

181 {

modelB = ∗ currRuleRight ;

184 // g e t the pre−cond i t ion and post−cond i t ion

vec to r < CFirstOrderPred icate ∗ > post , pre ;

vec to r < CFirstOrderPred icate ∗ >:: i t e r a t o r ca , cb , ea , eb ;

187 post = (∗ currRule)−>GetPostCondition () ;

pre = (∗ currRuleRight)−>GetPreCondition () ;

ea = post . end () ;

190 eb = pre . end () ;

for (ca = post . begin () ; ca !=ea ; ca++)

193 {

for (cb = pre . begin () ; cb !=eb ; cb++)

CheckExpress ionsForCorre lat ion (∗ ca , ∗cb) ;

196 }

currRuleRight++;

}

199 currRule++;

}

A.2 Anti-correlation between countermeasures and

other models

1 #include " crim_core . h "

#include "mainwindow . h "

#include <sstream>

A.2. ANTI-CORRELATION BETWEEN MODELS 133

4

// now compute ant i−c o r r e l a t i o n r u l e s between r e a c t i o n models and other models

7 vec to r < CReactionModel ∗ >:: i t e r a t o r currReact ion , endReaction ;

endReaction = react ionMode l s . end () ;

10 // anti −c o r r e l a t i o n r u l e s between r e a c t i o n s

currReact ion = react ionMode l s . begin () ;

13 while (currReact ion != endReaction)

{

vec to r < CReactionModel ∗ > : : i t e r a t o r currReact ion2 ;

16

currReact ion2 = react ionMode l s . begin () ;

modelA = ∗ currReact ion ;

19

while (currReact ion2 != endReaction)

{

22 modelB = ∗ currReact ion2 ;

// g e t the reac t ion1 post−cond i t ion and reac t ion2 pre−cond i t ion

25 vec to r < CFirstOrderPred icate ∗ > post , pre ;

vec to r < CFirstOrderPred icate ∗ >:: i t e r a t o r ca , cb , ea , eb ;

post = (∗ currReact ion)−>GetPostCondition () ;

28 pre = (∗ currReact ion2)−>GetPreCondition () ;

ea = post . end () ;

eb = pre . end () ;

31 i f (modelA!=modelB)

{ for (ca = post . begin () ; ca !=ea ; ca++)

{

34 for (cb = pre . begin () ; cb !=eb ; cb++)

CheckExpress ionsForAnt iCorre lat ionReact ion (∗ ca , ∗cb) ;

}

37

}

currReact ion2++;

40 }

currReact ion++;

}

43

// anti −c o r r e l a t i o n r u l e s between r e a c t i o n s and a c t i o n s

currReact ion = react ionMode l s . begin () ;

46 while (currReact ion != endReaction)

{

f i r s t = act ionModels . begin () ;

49 modelA = ∗ currReact ion ;

while (f i r s t != end)

52 {

modelB = ∗ f i r s t ;

// g e t the r e a c t i o n post−cond i t ion and ac t ion pre−cond i t ion

55 vec to r < CFirstOrderPred icate ∗ > post , pre ;

vec to r < CFirstOrderPred icate ∗ >:: i t e r a t o r ca , cb , ea , eb ;

post = (∗ currReact ion)−>GetPostCondition () ;

58 pre = (∗ f i r s t)−>GetPreCondition () ;

ea = post . end () ;

eb = pre . end () ;

61

134 APPENDIX A. CODE.

for (ca = post . begin () ; ca !=ea ; ca++)

{

64 for (cb = pre . begin () ; cb !=eb ; cb++)

CheckExpress ionsForAnt iCorre lat ion (∗ ca , ∗cb) ;

67 }

f i r s t ++;

}

70 currReact ion++;

}

73 // anti −c o r r e l a t i o n r u l e s between r e a c t i o n s and o b j e c t i v e s

currReact ion = react ionMode l s . begin () ;

while (currReact ion != endReaction)

76 {

currObj = objec t iveMode l s . begin () ;

modelA = ∗ currReact ion ;

79

while (currObj != endObj)

{

82 modelB = ∗ currObj ;

// g e t the pre−cond i t ion and system s t a t e cond i t i on

85 vec to r < CFirstOrderPred icate ∗ > post , cond ;

vec to r < CFirstOrderPred icate ∗ >:: i t e r a t o r ca , cb , ea , eb ;

post = (∗ currReact ion)−>GetPostCondition () ;

88 cond = (∗ currObj)−>GetPreCondition () ;

ea = post . end () ;

eb = cond . end () ;

91

for (ca = post . begin () ; ca !=ea ; ca++)

{

94 for (cb = cond . begin () ; cb !=eb ; cb++)

CheckExpress ionsForAnt iCorre lat ion (∗ ca , ∗cb) ;

}

97 currObj++;

}

currReact ion++;

100 }

// anti −c o r r e l a t i o n r u l e s between r e a c t i o n s and r u l e s

103 currReact ion = react ionMode l s . begin () ;

while (currReact ion != endReaction)

{

106 currRule = domainRuleModels . begin () ;

modelA = ∗ currReact ion ;

109 while (currRule != endRule)

{

modelB = ∗ currRule ;

112

// g e t the r e a c t i o n post−cond i t ion and r u l e pre−cond i t ion

vec to r < CFirstOrderPred icate ∗ > post , pre ;

115 vec to r < CFirstOrderPred icate ∗ >:: i t e r a t o r ca , cb , ea , eb ;

post = (∗ currReact ion)−>GetPostCondition () ;

pre = (∗ currRule)−>GetPreCondition () ;

118 ea = post . end () ;

eb = pre . end () ;

A.2. ANTI-CORRELATION BETWEEN MODELS 135

121 for (ca = post . begin () ; ca !=ea ; ca++)

{

for (cb = pre . begin () ; cb !=eb ; cb++)

124 CheckExpress ionsForAnt iCorre lat ion (∗ ca , ∗cb) ;

}

currRule++;

127 }

currReact ion++;

}

130

s t r i ng s t r eam n1 , n2 ;

133 n1 << CLambdaModel : : GetCorrelationRulesNumber () ;

n2 << CLambdaModel : : GetAntiCorrelationRulesNumber () ;

messageOutputInter face−>OutputMessage (" done . \ n ") ;

136 messageOutputInter face−>OutputMessage (" Total ␣number␣ o f ␣ c o r r e l a t i o n ␣ r u l e s : "

+ n1 . s t r () + " \n") ;

messageOutputInter face−>OutputMessage (" Total ␣number␣ o f ␣ ant i−c o r r e l a t i o n ␣ r u l e s : "

139 + n2 . s t r () + " \n") ;

}

142 void CCrimCore : : CheckExpress ionsForCorre lat ion (CFirstOrderLogicExpress ionNode ∗ f i r s t ,

CFirstOrderLogicExpress ionNode ∗ second)

{

145 // check i f two e x p r e s s i o n s are p r e d i c a t e s

i f ((f i r s t −>GetType () != CFirstOrderLogicExpress ionNode : :NODE_PREDICATE) &&

(second−>GetType () != CFirstOrderLogicExpress ionNode : :NODE_PREDICATE))

148 return ;

CFirs tOrderPred icate ∗ predicateNode1 = (CFirstOrderPred icate ∗) f i r s t ;

151 CFirstOrderPred icate ∗ predicateNode2 = (CFirstOrderPred icate ∗) second ;

bool knows1 , knows2=fa l se ;

s t r i n g f i , s e=" " ;

154 s t r i n g va l1 = f i r s t −>GetValue () ;

s t r i n g va l2 = second−>GetValue () ;

// cout <<"Dans CheckExpressionsForCorre lat ion , f i r s t ="+va l1 +" e t second="

157 +val2<<endl ;

// s k i p s p e c i a l m o d a l i t i e s

160 i f (va l1 == " knows ")

{knows1=true ;

v ec to r <CFirstOrderLogicExpress ionNode∗> args = predicateNode1−>GetArguments () ;

163 f i r s t = args [1] ;

// cout <<" f i r s t args [0]="<< args [0]−> ToString()<<endl ;

f i=args [0]−>ToString () ;

166 // cout <<" f i r s t=knows : "<<(args [1])−> ToString()<<endl ;

}

169 i f (va l2 == " knows ")

{knows2=true ;

v ec to r <CFirstOrderLogicExpress ionNode∗> args = predicateNode2−>GetArguments () ;

172 second = args [1] ;

// cout <<"second args [0]="<< args [0]−> ToString()<<endl ;

se=args [0]−>ToString () ;

175 // cout <<"second=knows : "<<(args [1])−> ToString()<<endl ;

}

// check f o r negation , both p r e d i c a t e s must be negated or not

136 APPENDIX A. CODE.

178 i f ((va l1 == " not ") &&

(f i r s t −>GetType () == CFirstOrderLogicExpress ionNode : :NODE_PREDICATE) &&

(val2 == " not ") &&

181 (second−>GetType () == CFirstOrderLogicExpress ionNode : :NODE_PREDICATE))

{// cout <<"NOT case !"<< endl ;

predicateNode1 = (CFirstOrderPred icate ∗) f i r s t ;

184 predicateNode2 = (CFirstOrderPred icate ∗) second ;

vec to r < CFirstOrderLogicExpress ionNode ∗ > args ;

a rgs = predicateNode1−>GetArguments () ;

187 f i r s t = args . f r on t () ;

a rgs = predicateNode2−>GetArguments () ;

second = args . f r on t () ;

190 }

// check i f two e x p r e s s i o n s are p r e d i c a t e s

193 i f ((f i r s t −>GetType () != CFirstOrderLogicExpress ionNode : :NODE_PREDICATE) &&

(second−>GetType () != CFirstOrderLogicExpress ionNode : :NODE_PREDICATE))

return ;

196

predicateNode1 = (CFirstOrderPred icate ∗) f i r s t ;

predicateNode2 = (CFirstOrderPred icate ∗) second ;

199

va l1 = predicateNode1−>GetValue () ;

va l2 = predicateNode2−>GetValue () ;

202

i f (va l1 != val2) {

// cout <<"(va l1 != va l2) , va l1="<<val1 <<" , va l2="<<val2<<endl ;

205 return ; }

// r e s e t current r u l e

208 currentRule . Clear () ;

currentRule . Se tL ink ingPred i ca te (predicateNode1−>GetValue ()) ;

currentRule . S e tF i r s t (modelA) ;

211 currentRule . SetSecond (modelB) ;

currentRule . SetModelA (modelA−>GetName ()) ;

currentRule . SetModelB (modelB−>GetName ()) ;

214

// check i f the two e x p r e s s i o n s have the same

// number o f arguments

217 vec to r <CFirstOrderLogicExpress ionNode∗> args1 = predicateNode1−>GetArguments () ;

vec to r <CFirstOrderLogicExpress ionNode∗> args2 = predicateNode2−>GetArguments () ;

220 i f (args1 . s i z e () != args2 . s i z e ()) return ;

i f (knows1 && knows2)

{

223 // cout <<"check u n i f i c a t i o n avec 2 knows !"<< endl ;

// cout <<"pred1 : knows ("<< f i <<","<<val1 <<"(arguments)"<<endl ;

// cout <<"pred1 : knows ("<<se <<","<<val2 <<"(arguments)"<<endl ;

226 CFirstOrderLogicExpress ionNode ∗ k1=

new CFirstOrderLogicExpress ionNode (f i) ;

args1 . push_back (k1) ;

229 CFirstOrderLogicExpress ionNode ∗ k2=

new CFirstOrderLogicExpress ionNode (se) ;

args2 . push_back (k2) ;

232 }

// check the p r e d i c a t e s a t t r i b u t e s

// check f o r u n i f i c a t i o n

235 for (unsigned int i = 0 ; i < args1 . s i z e () ; i++)

A.3. ATTACK RELATION BETWEEN COUNTERMEASURES 137

{// cout <<"check u n i f i c a t i o n !"<< endl ;

i f (CheckUni f i cat ion (args1 [i] , a rgs2 [i]) == fa l se) return ;

238 }

// the two e x p r e s s i o n s can be un i f i ed ,

// add r u l e to both models

241 modelA−>AddCorrelat ionRuleRight (currentRule) ;

modelB−>AddCorre lat ionRuleLeft (currentRule) ;

cout<<"modeles ␣ l i e s ␣ : ␣ "<<modelA−>GetName()<<" ␣ et ␣ "<<modelB−>GetName()<<endl ;

244 }

A.3 Attack relation between countermeasures

#include " crim_core . h "

#include "mainwindow . h "

3 #include <sstream>

// check f o r ant i−c o r r e l a t i o n r e l a t i o n between r e a c t i o n s

6 void CCrimCore : : CheckExpress ionsForAnt iCorre lat ionReact ion (CFirstOrderLogicExpress ionNode

∗ f i r s t , CFirstOrderLogicExpress ionNode ∗ second)

{

9 // check i f two e x p r e s s i o n s are p r e d i c a t e s

i f ((f i r s t −>GetType () != CFirstOrderLogicExpress ionNode : :NODE_PREDICATE) &&

(second−>GetType () != CFirstOrderLogicExpress ionNode : :NODE_PREDICATE))

12 return ;

CFirs tOrderPred icate ∗ predicateNode1 = (CFirstOrderPred icate ∗) f i r s t ;

15 CFirstOrderPred icate ∗ predicateNode2 = (CFirstOrderPred icate ∗) second ;

s t r i n g va l1 = f i r s t −>GetValue () ;

18 s t r i n g va l2 = second−>GetValue () ;

// check f o r negation , one e xpres s ion must be the negat ion o f the o ther to

21 // be ant i −c o r r e l a t e d

i f (((va l1 == " not ") && (va l2 == " not ")) | |

((va l1 != " not ") && (va l2 != " not "))) return ;

24

// s k i p s p e c i a l m o d a l i t i e s

i f (va l1 == " not ")

27 {

vec to r <CFirstOrderLogicExpress ionNode ∗> args = predicateNode1−>GetArguments () ;

f i r s t = args . f r on t () ;

30 }

i f ((va l2 == " not "))

{

33 vec to r <CFirstOrderLogicExpress ionNode ∗> args = predicateNode2−>GetArguments () ;

second = args . f r on t () ;

}

36 i f (va l1 == " knows ")

{

vec to r <CFirstOrderLogicExpress ionNode ∗> args = predicateNode1−>GetArguments () ;

39 f i r s t = args [1] ;

}

i f (va l2 == " knows ")

42 {

138 APPENDIX A. CODE.

vec to r <CFirstOrderLogicExpress ionNode ∗> args = predicateNode2−>GetArguments () ;

second = args [1] ;

45 }

// check i f two e x p r e s s i o n s are p r e d i c a t e s

48 i f ((f i r s t −>GetType () != CFirstOrderLogicExpress ionNode : :NODE_PREDICATE) &&

(second−>GetType () != CFirstOrderLogicExpress ionNode : :NODE_PREDICATE)) return ;

51 predicateNode1 = (CFirstOrderPred icate ∗) f i r s t ;

predicateNode2 = (CFirstOrderPred icate ∗) second ;

54 va l1 = predicateNode1−>GetValue () ;

va l2 = predicateNode2−>GetValue () ;

57 i f (va l1 != val2) return ;

// r e s e t current r u l e

60 currentRule . Clear () ;

currentRule . Se tL ink ingPred i ca te (f i r s t −>GetValue ()) ;

currentRule . S e tF i r s t (modelA) ;

63 currentRule . SetSecond (modelB) ;

currentRule . SetModelA (modelA−>GetName ()) ;

currentRule . SetModelB (modelB−>GetName ()) ;

66

// check i f the two e x p r e s s i o n s have the same

// number o f arguments

69 vec to r <CFirstOrderLogicExpress ionNode ∗> args1 = predicateNode1−>GetArguments () ;

vec to r <CFirstOrderLogicExpress ionNode ∗> args2 = predicateNode2−>GetArguments () ;

72 i f (args1 . s i z e () != args2 . s i z e ()) return ;

// check the p r e d i c a t e s a t t r i b u t e s

75 // check f o r u n i f i c a t i o n

for (unsigned int i =0; i<args1 . s i z e () ; i++)

{ i f (CheckUni f i cat ion (args1 [i] , a rgs2 [i]) == fa l se) return ;

78 }

// the two e x p r e s s i o n s can be un i f i e d ,

// add r u l e to both models

81

modelA−>AddAntiCorrelat ionRuleRight (currentRule) ;

84 modelB−>AddAntiCorre lat ionRuleLeft (currentRule) ;

// check which countermeasure d e f e a t s the o ther one ,

87 // according to the r a t i o n a l e order

scoreA=0; scoreB=0;

90 for (int i =0; i <5 ; i++)

{ // f l o a t score1 ;

// f l o a t score2 ;

93 s t r i n g ch1=" " , ch2=" " , eva luat i on1=" " , eva luat i on2=" " , c o e f f s ;

eva lua t i on1=modelA−>GetRat iona leStr ing () . subs t r (1 0 , 1 3) . c_str () ;

eva luat i on2=modelB−>GetRat iona leStr ing () . subs t r (1 0 , 1 3) . c_str () ;

96 ch1=eva luat i on1 . subs t r (i ∗3 , 1) . c_str () ;

ch2=eva lua t i on2 . subs t r (i ∗3 , 1) . c_str () ;

c o e f f s= c o e f f [i] . subs t r (2 , 3) . c_str () ;

99

c o e f f i c i e n t= a t o i (c o e f f s . c_str ()) ∗ 0 . 0 0 1 ;

A.3. ATTACK RELATION BETWEEN COUNTERMEASURES 139

102 scoreA= scoreA + (a t o i (ch1 . c_str ()) ∗ c o e f f i c i e n t) ;

scoreB= scoreB + (a t o i (ch2 . c_str ()) ∗ c o e f f i c i e n t) ;

105 }

i f (scoreB<=scoreA) {modelB−>GotDefeated () ;

108 }

else {modelA−>GotDefeated () ;

}

111

}

APPENDIX

B Glossary

AAIRS. Adaptive Agent based Intrusion Response System.

AAF. Abstract Argumentation Framework.

ADeLe. Attack Description Language.

ADEPTS. Adaptive Intrusion Response using Attack Graphs in an E-Commerce

Environment.

AF. Argumentation Framework.

AHP. Analytic Hierarchy Process.

AI. Artificial Intelligence.

AIRS. Automated Intrusion Response System.

AL. Argumentation Logic.

ARM. Attack Response Matrix.

ATiKi. ATiki is a tool for a Web-based system that supports collection and

sharing of security-related knowledge.

Availability. The property of ensuring timely and reliable access to and use of

information.

BMSL. Behavioral Monitoring Specification Language.

142 APPENDIX B. GLOSSARY.

C++. It is a general-purpose programming language. It has imperative, object-

oriented and generic programming features, while also providing facilities for low-level

memory manipulation.

CAM. Correlated Attack Modeling.

CAML. Correlated Attack Modeling Language.

CITRA. Cooperative Intrusion Traceback and Response Architecture.

Confidentiality. The property that sensitive information is not disclosed to

unauthorized individuals, entities or processes. It includes means for protecting

personal privacy and proprietary information.

CRIM. Corrélation et Reconnaissance d’Intentions Malveillantes (Correlation

and Recognition of Malicious Intentions).

CSM. Cooperating Security Managers.

CVAF. Contextual Value-based Argumentation Framework.

DDoS. Distributed Denial of Service.

DIPS. Distributed Intrusion Prevention System.

DoS. Denial of Service.

DTD. Document Type Definition.

ECU. Electronic Control Unit.

ELECTRE. ELimination Et Choix Traduisant la REalité (ELimination and

Choice Expressing REality).

EMERALD. Event Monitoring Enabling Responses to Anomalous Live Disturbances.

FAIR. Flexible Automated Intelligent Responder.

143

FTP. File Transfer Protocol.

HCPN. Hidden Colored Petri-Net.

HMM. Hidden Markov Model.

HSM. Hardware Security Module.

HTML. Hypertext Markup Language.

HTTP. Hypertext Transfer Protocol.

IDM. Intrusion Detection Module.

IDMEF. Intrusion Detection Message Exchange Format.

IDS. Intrusion Detection System.

IETF. Internet Engineering Task Force.

Integrity. The property that sensitive data has not been modified or deleted

in an unauthorized and undetected manner while in storage, during processing or in

transit.

IRDM-HTN. Intrusion Response Decision-Making model based on Hierarchi-

cal Task Network planning..

IRS. Intrusion Response System.

ITS. Intelligent Transport System.

LAMBDA. LAnguage to Model a dataBase for Detection of Attacks.

LPP. Logic Programming with Priorities.

MCDM. Multi-Criteria Decision Making.

144 APPENDIX B. GLOSSARY.

MIRADOR. Mécanismes de détection d’Intrusion et de Réaction aux Attaques en

DOmaine militaiRe (Intrusion Detection Mechanisms and Attack Response in military

Field).

OrBAC. Organization-Based Access Control.

PAF. Preference-based Argumentation Framework.

P-BEST. Production-Based Expert System Toolset.

Performance. The property of taking countermeasures that ensure the best

quality of service.

PH. Process Homeostasis.

Precaution. The property of taking precautionary countermeasures to avoid

system damage in critical contexts.

Qt. It is a cross-platform application framework that is widely used for devel-

oping application software that can be run on various software and hardware platforms

with little or no change in the underlying codebase, while still being a native

application with the capabilities and speed thereof.

SARA. Survivable Autonomic Response Architecture.

SAW. Simple Additive Weighting.

SHIM. System Health and Intrusion Monitoring.

SoSMART. System or Security Managers Adaptive Response Tool.

SSH. Secure SHell.

TBAIR. Tracing-Based Active Intrusion Response.

TOPSIS. Technique for Order of Preference by Similarity to Ideal Solution.

V2I. Vehicle to Infrastructure.

145

V2V. Vehicle to Vehicle.

VAF. Value-based Argumentation Framework.

XML. eXtensible Markup Language.

List of Publications

International Conferences

• T. Bouyahia, M.S. Idrees, N. Cuppens-Boulahia, F.Cuppens and F.Autrel. Metric

for Security Activities Assisted by Argumentative Logic. In DPM/SETOP/QASA

2014, Volume 8872 of Lecture Notes in Computer Science., Springer (2014) 183-

197, Wroclaw, Poland, September 10-11,2014.

• T. Bouyahia, F. Autrel, N. Cuppens-Boulahia, and F. Cuppens. Context aware

intrusion response based on argumentation logic. In C.Lambrinoudakis and A.

Gabillon, editors, Risks and Security of Internet and Systems - 10th International

Conference, CRiSIS 2015, Mytilene, Lesbos Island, Greece, July 20-22, 2015, Re-

vised Selected Papers, volume 9572 of Lecture Notes in Computer Science, pages

91-106, 2015. Springer.

• T. Bouyahia, N. Cuppens-Boulahia, F. Cuppens, F. Autrel : Multi-criteria recom-

mender approach for supporting intrusion response system. In Foundations and

Practice of Security - 9th International Symposium, FPS 2016, Québec City, QC,

Canada, October 24-25, 2016, Revised Selected Papers. Volume 10128 of Lecture

Notes in Computer Science, Springer (2016) 51-67

Bibliography

[Wik] The simplest online database that could possibly work. http://wiki.org. 19

[CAM 2003] Correlated attack modeling (cam) project. 2003. 16

[Adomavicius et al. 2011] G. Adomavicius, N. Manouselis, and Y. Kwon.

Multi-criteria recommender systems. In Recommender Systems Handbook, pages

769–803. 2011. 80

[Afshari et al. 2010] A. Afshari, M. Mojahed, and R. M. Yusuff. Simple ad-

ditive weighting approach to personnel selection problem. International Journal of

Innovation, Management and Technology, 1(5):511, 2010. 83, 123

[Al-Shaer and Hamed 2003] E. S. Al-Shaer and H. H. Hamed. Firewall policy ad-

visor for anomaly discovery and rule editing. In G. S. Goldszmidt and J. Schönwälder,

editors, Integrated Network Management VII, Managing It All, IFIP/IEEE Eighth

International Symposium on Integrated Network Management (IM 2003), March 24-

28, 2003, Colorado Springs, USA, volume 246 of IFIP Conference Proceedings, pages

17–30, 2003. Kluwer. 40, 161

[Amgoud and Cayrol 1998] L. Amgoud and C. Cayrol. On the acceptability of

arguments in preference-based argumentation. In G. F. Cooper and S. Moral, edi-

tors, UAI ’98: Proceedings of the Fourteenth Conference on Uncertainty in Artificial

Intelligence, University of Wisconsin Business School, Madison, Wisconsin, USA,

July 24-26, 1998, pages 1–7, 1998. Morgan Kaufmann. 31, 35

[Amgoud and Cayrol 2002] L. Amgoud and C. Cayrol. A reasoning model based

on the production of acceptable arguments. Ann. Math. Artif. Intell., 34(1-3):197–

215, 2002. 31, 35

[Anderson et al. 1994] D. Anderson, T. Frivold, A. Tamaru, A. Valdes, and

update B. Release. Next generation intrusion detection expert system (nides),

software users manual. 1994. 11

http ://wiki.org.

150 BIBLIOGRAPHY

[Anderson 1980] Technical report, James P. Anderson Company, Fort Washington,

Pennsylvania. Computer security threat monitoring and surveillance. Technical

report, 1980. 125

[Anuar et al. 2010] N. B. Anuar, M. Papadaki, S. Furnell, and N. L. Clarke.

An investigation and survey of response options for intrusion response systems (irss).

In H. S. Venter, M. Coetzee, and M. Loock, editors, Information Security South

Africa Conference 2010, Sandton Convention Centre, Sandton, South Africa, August

2-4, 2010. Proceedings ISSA 2010, 2010. ISSA, Pretoria, South Africa. 14

[Applebaum et al. 2012] A. Applebaum, K. N. Levitt, J. Rowe, and S. Par-

sons. Arguing about firewall policy. In B. Verheij, S. Szeider, and S. Woltran, ed-

itors, Computational Models of Argument - Proceedings of COMMA 2012, Vienna,

Austria, September 10-12, 2012, volume 245 of Frontiers in Artificial Intelligence

and Applications, pages 91–102, 2012. IOS Press. 39, 41, 42, 165

[Aruldoss et al. 2013] M. Aruldoss, T. M. Lakshmi, and V. P. Venkatesan.

A survey on multi criteria decision making methods and its applications. American

Journal of Information Systems, 1(1):31–43, 2013. 83

[Autrel and Cuppens 2006] F. Autrel and F. Cuppens. Crim: un module de cor-

rélation d’alertes et de réaction aux attaques. Annales Des Télécommunications,

61(9-10):1172–1192, 2006. 99, 103, 125

[Autrel et al. 2009] F. Autrel, N. Cuppens-Boulahia, and F. Cuppens. Reac-

tion policy model based on dynamic organizations and threat context. In E. Gudes

and J. Vaidya, editors, DBSec, volume 5645 of Lecture Notes in Computer Science,

pages 49–64, 2009. Springer. 69

[Axelsson 2000] Intrusion detection systems: A survey and taxonomy. Technical re-

port, 2000. 52

[Balabanovic and Shoham 1997] M. Balabanovic and Y. Shoham. Content-based,

collaborative recommendation. Commun. ACM, 40(3):66–72, 1997. 80

[Balepin et al. 2003] I. Balepin, S. Maltsev, J. Rowe, and K. N. Levitt. Us-

ing specification-based intrusion detection for automated response. In G. Vigna, E.

Jonsson, and C. Krügel, editors, Recent Advances in Intrusion Detection, 6th In-

ternational Symposium, RAID 2003, Pittsburgh, PA, USA, September 8-10, 2003,

Proceedings, volume 2820 of Lecture Notes in Computer Science, pages 136–154,

2003. Springer. 11, 15

BIBLIOGRAPHY 151

[Bandara et al. 2006] A. K. Bandara, A. C. Kakas, E. C. Lupu, and A. Russo.

Using argumentation logic for firewall policy specification and analysis. In R. State,

van der S. Meer, D. O’Sullivan, and T. Pfeifer, editors, Large Scale Management of

Distributed Systems, 17th IFIP/IEEE International Workshop on Distributed Sys-

tems: Operations and Management, DSOM 2006, Dublin, Ireland, October 23-25,

2006, Proceedings, volume 4269 of Lecture Notes in Computer Science, pages 185–

196, 2006. Springer. 39, 40

[Bandara et al. 2009] A. K. Bandara, A. C. Kakas, E. C. Lupu, and A. Russo.

Using argumentation logic for firewall configuration management. In Integrated Net-

work Management, IM 2009. 11th IFIP/IEEE International Symposium on Inte-

grated Network Management, Hofstra University, Long Island, NY, USA, June 1-5,

2009, pages 180–187, 2009. IEEE. 39, 41

[Bar-El 2009] H. Bar-El. Intra-Vehicle Information Security Framework. In Proceed-

ings of the 7th escar Conference, Düsseldorf, Germany, 2009. 1

[Bench-Capon 2003] T. J. M. Bench-Capon. Persuasion in practical argument using

value-based argumentation frameworks. J. Log. Comput., 13(3):429–448, 2003. 31,

36, 120

[Benferhat et al. 2003] S. Benferhat, F. Autrel, and F. Cuppens. Enhanced

correlation in an intrusion detection process. In V. Gorodetsky, L. Popyack, and

V. Skormin, editors, Computer Network Security, volume 2776 of Lecture Notes in

Computer Science, pages 157–170. Springer Berlin Heidelberg, 2003. 54, 55

[Boella et al. 2005] G. Boella, J. Hulstijn, and van der L. W. N. Torre.

Argumentation for access control. In AI*IA, pages 86–97, 2005. 45

[Bouyahia et al. 2015] T. Bouyahia, F. Autrel, N. Cuppens-Boulahia, and F.

Cuppens. Context aware intrusion response based on argumentation logic. In C.

Lambrinoudakis and A. Gabillon, editors, Risks and Security of Internet and Systems

- 10th International Conference, CRiSIS 2015, Mytilene, Lesbos Island, Greece, July

20-22, 2015, Revised Selected Papers, volume 9572 of Lecture Notes in Computer

Science, pages 91–106, 2015. Springer. 3, 113, 117, 118

[Bouyahia et al. 2016] T. Bouyahia, N. Cuppens-Boulahia, F. Cuppens, and

F. Autrel. Multi-criteria recommender approach for supporting intrusion response

system. 2016. 3, 113, 118

[Bouyahia et al. 2014] T. Bouyahia, M. S. Idrees, N. Cuppens-Boulahia, F.

Cuppens, and F. Autrel. Metric for security activities assisted by argumentative

152 BIBLIOGRAPHY

logic. In DPM/SETOP/QASA 2014, volume 8872 of Lecture Notes in Computer

Science, pages 183–197, 2014. Springer. 3, 113, 117

[Bouyssou and Roy 1993] D. Bouyssou and B. Roy. Aide multicritere a la decision:

Methodes et cas. Economica, Paris, 1993. 82

[Bowen et al. 2000] T. Bowen, D. Chee, M. Segal, R. Sekar, T. Shanbhag,

and P. Uppuluri. Building survivable systems: an integrated approach based on

intrusion detection and damage containment. In DARPA Information Survivability

Conference and Exposition, 2000. DISCEX ’00. Proceedings, volume 2, pages 84–99

vol.2, 2000. 15

[Bruschi and Rosti 2001] D. Bruschi and E. Rosti. Angel: a tool to disarm com-

puter systems. In V. Raskin, S. J. Greenwald, B. Timmerman, and D. M. Kienzle,

editors, Proceedings of the New Security Paradigms Workshop 2001, Cloudcroft, New

Mexico, USA, September 10-13, 2001, pages 63–69, 2001. ACM. 9

[Chaim and Lucie 1969] P. Chaim and O.-T. Lucie. The New Rhetoric. University

of Notre Dame Press, Notre Dame, IN, 1969. 36, 37

[Checkoway et al. 2011] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,

H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T.

Kohno. Comprehensive experimental analyses of automotive attack surfaces. In

20th USENIX Security Symposium, San Francisco, CA, USA, August 8-12, 2011,

Proceedings, 2011. USENIX Association. 68, 124

[Chen and Yang 2004] Y. Chen and Y. Yang. Policy management for network-

based intrusion detection and prevention. In Managing Next Generation Convergence

Networks and Services, IEEE/IFIP Network Operations and Management Sympo-

sium, NOMS 2004, Seoul, Korea, 19-23 April 2004, Proceedings, pages 219–232,

2004. IEEE. 9

[Cheung et al. 2003] S. Cheung, U. Lindqvist, and M. W. Fong. Modeling mul-

tistep cyber attacks for scenario recognition. In 3rd DARPA Information Survivabil-

ity Conference and Exposition (DISCEX-III 2003), 22-24 April 2003, Washington,

DC, USA, pages 284–292, 2003. IEEE Computer Society. 16

[Chiprianov et al. 2013] V. Chiprianov, P. Meyer, and J. Simonin. Towards a

model-based multiple criteria decision aid process. 2013. 80

[Cohen 1999] F. Cohen. Simulating cyber attacks, defences, and consequences. Com-

puters & Security, 18(6):479–518, 1999. 8

BIBLIOGRAPHY 153

[Cuppens 2001] F. Cuppens. Managing alerts in a multi-intrusion detection environ-

men. In 17th Annual Computer Security Applications Conference (ACSAC 2001),

11-14 December 2001, New Orleans, Louisiana, USA, pages 22–31, 2001. IEEE Com-

puter Society. 19

[Cuppens et al. 2006] F. Cuppens, F. Autrel, Y. Bouzida, J. García, S. Gom-

bault, and T. Sans. Anti-correlation as a criterion to select appropriate counter-

measures in an intrusion detection framework. Annales des Télécommunications,

61(1-2):197–217, 2006. 52, 56, 119

[Cuppens and Cuppens-Boulahia 2008] F. Cuppens and N. Cuppens-Boulahia.

Modeling contextual security policies. Int. J. Inf. Sec., 7(4):285–305, 2008. 59, 122

[Cuppens and Ortalo 2000] F. Cuppens and R. Ortalo. LAMBDA: A language to

model a database for detection of attacks. In H. Debar, L. Mé, and S. F. Wu, editors,

Recent Advances in Intrusion Detection, Third International Workshop, RAID 2000,

Toulouse, France, October 2-4, 2000, Proceedings, volume 1907 of Lecture Notes in

Computer Science, pages 197–216, 2000. Springer. 21, 52

[Debar et al. 2007] H. Debar, D. A. Curry, and B. S. Feinstein. The intrusion

detection message exchange format (idmef). 2007. 16

[Dijkstra et al. 2005] P. Dijkstra, F. Bex, H. Prakken, and de K.

Vey Mestdagh. Towards a multi-agent system for regulated information exchange

in crime investigations. Artif. Intell. Law, 13(1):133–151, 2005. 45

[Dimopoulos and Kakas 1995] Y. Dimopoulos and A. C. Kakas. Logic program-

ming without negation as failure. In J. W. Lloyd, editor, Logic Programming, Pro-

ceedings of the 1995 International Symposium, Portland, Oregon, USA, December

4-7, 1995, pages 369–383, 1995. MIT Press. 40

[Doutre et al. 2007] S. Doutre, P. McBurney, L. Perrussel, and J.

Thévenin. Arguing for gaining access to information. In E. H. Durfee, M. Yokoo,

M. N. Huhns, and O. Shehory, editors, 6th International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS 2007), Honolulu, Hawaii, USA,

May 14-18, 2007, page 20, 2007. IFAAMAS. 45

[Dung 1995] P. M. Dung. On the acceptability of arguments and its fundamental

role in nonmonotonic reasoning, logic programming and n-person games. Artificial

Intelligence, 77(2):321 – 357, 1995. 2, 31

[Fisch 1996] E. A. Fisch. A taxonomy and implementation of automated responses

to intrusive behaviour. Ph.D thesis, Texas A&M University, 1996. 15

154 BIBLIOGRAPHY

[Foo et al. 2005] B. Foo, Y. Wu, Y. Mao, S. Bagchi, and E. H. Spafford.

ADEPTS: adaptive intrusion response using attack graphs in an e-commerce envi-

ronment. In 2005 International Conference on Dependable Systems and Networks

(DSN 2005), 28 June - 1 July 2005, Yokohama, Japan, Proceedings, pages 508–517,

2005. IEEE Computer Society. 12, 13, 15

[Haslum et al. 2007] K. Haslum, A. Abraham, and S. J. Knapskog. DIPS: A

framework for distributed intrusion prediction and prevention using hidden markov

models and online fuzzy risk assessment. In N. Zhang and A. Abraham, editors,

Proceedings of the Third International Symposium on Information Assurance and

Security, IAS 2007, August 29-31, 2007, Manchester, United Kingdom, pages 183–

190, 2007. IEEE Computer Society. 15

[Hwang et al. 1993] C. Hwang, Y. Lai, and T. Liu. A new approach for multiple

objective decision making. Computers & OR, 20(8):889–899, 1993. 81

[Jahnke et al. 2007] M. Jahnke, C. Thul, and P. Martini. Graph based met-

rics for intrusion response measures in computer networks. In 32nd Annual IEEE

Conference on Local Computer Networks (LCN 2007), 15-18 October 2007, Clon-

tarf Castle, Dublin, Ireland, Proceedings, pages 1035–1042, 2007. IEEE Computer

Society. 15

[Kakas et al. 1994] A. C. Kakas, P. Mancarella, and P. M. Dung. The accept-

ability semantics for logic programs. In P. V. Hentenryck, editor, Logic Programming,

Proceedings of the Eleventh International Conference on Logic Programming, Santa

Marherita Ligure, Italy, June 13-18, 1994, pages 504–519, 1994. MIT Press. 40

[Kanoun et al. 2010] W. Kanoun, N. Cuppens-Boulahia, F. Cuppens, and S.

Dubus. Risk-aware framework for activating and deactivating policy-based response.

In Y. Xiang, P. Samarati, J. Hu, W. Zhou, and A. Sadeghi, editors, Fourth Interna-

tional Conference on Network and System Security, NSS 2010, Melbourne, Victoria,

Australia, September 1-3, 2010, pages 207–215, 2010. IEEE Computer Society. 15

[Kheir et al. 2010] N. Kheir, N. Cuppens-Boulahia, F. Cuppens, and H. De-

bar. A service dependency model for cost-sensitive intrusion response. In D.

Gritzalis, B. Preneel, and M. Theoharidou, editors, Computer Security - ESORICS

2010, 15th European Symposium on Research in Computer Security, Athens, Greece,

September 20-22, 2010. Proceedings, volume 6345 of Lecture Notes in Computer Sci-

ence, pages 626–642, 2010. Springer. 15

[Kiriansky et al. 2002] V. Kiriansky, D. Bruening, and S. P. Amarasinghe.

Secure execution via program shepherding. In D. Boneh, editor, Proceedings of the

BIBLIOGRAPHY 155

11th USENIX Security Symposium, San Francisco, CA, USA, August 5-9, 2002,

pages 191–206, 2002. USENIX. 10

[Koscher et al. 2010] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T.

Kohno, S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H.

Shacham, and S. Savage. Experimental security analysis of a modern auto-

mobile. In Security and Privacy (SP), 2010 IEEE Symposium on, pages 447 –462,

May 2010. 68, 124

[Koshutanski and Massacci 2004a] H. Koshutanski and F. Massacci. An interac-

tive trust management and negotiation scheme. In T. Dimitrakos and F. Martinelli,

editors, Formal Aspects in Security and Trust: Second IFIP TC1 WG1.7 Workshop

on Formal Aspects in Security and Trust (FAST), an event of the 18th IFIP World

Computer Congress, August 22-27, 2004, Toulouse, France, volume 173 of IFIP,

pages 115–128, 2004. Springer. 45

[Koshutanski and Massacci 2004b] H. Koshutanski and F. Massacci. A system

for interactive authorization for business processes for web services. In N. Koch, P.

Fraternali, and M. Wirsing, editors, Web Engineering - 4th International Confer-

ence, ICWE 2004, Munich, Germany, July 26-30, 2004, Proceedings, volume 3140

of Lecture Notes in Computer Science, pages 521–525, 2004. Springer. 45

[Laboratories 2003] N. A. Laboratories. Secure execution environments/generic

soft- ware wrappers for security and reliability. http://www.networkassociates.

com, 2003. 11

[Lee et al. 2002] W. Lee, W. Fan, M. Miller, S. J. Stolfo, and E. Zadok.

Toward cost-sensitive modeling for intrusion detection and response. Journal of

Computer Security, 10(1/2):5–22, 2002. 11, 13, 15

[Lewandowski et al. 2001] S. Lewandowski, D. Van Hook, G. O’Leary, J.

Haines, and L. Rossey. Sara: Survivable autonomic response architecture. In

DARPA Information Survivability Conference amp; Exposition II, 2001. DISCEX

’01. Proceedings, volume 1, pages 77–88 vol.1, 2001. 15

[Lindqvist and Porras 1999] U. Lindqvist and P. A. Porras. Detecting computer

and network misuse through the production-based expert system toolset (P-BEST).

In 1999 IEEE Symposium on Security and Privacy, Oakland, California, USA, May

9-12, 1999, pages 146–161, 1999. IEEE Computer Society. 11, 17

[Manouselis and Costopoulou 2007] N. Manouselis and C. Costopoulou. Anal-

ysis and classification of multi-criteria recommender systems. World Wide Web,

10(4):415–441, 2007. 80

http ://www.networkassociates.com
http ://www.networkassociates.com

156 BIBLIOGRAPHY

[Martinelli and Santini 2014] F. Martinelli and F. Santini. Debating cybersecu-

rity or securing a debate? - (position paper). In F. Cuppens, J. García-Alfaro, A. N.

Zincir-Heywood, and P. W. L. Fong, editors, Foundations and Practice of Security

- 7th International Symposium, FPS 2014, Montreal, QC, Canada, November 3-5,

2014. Revised Selected Papers, volume 8930 of Lecture Notes in Computer Science,

pages 239–246, 2014. Springer. 47

[Martinelli et al. 2015] F. Martinelli, F. Santini, and A. Yautsiukhin. Network

security supported by arguments. In Thirteenth Annual International Conference on

Privacy, Security and Trust (PST). IEEE, 2015. 48

[McDermott 2000] J. P. McDermott. Attack net penetration testing. In M. E.

Zurbo and S. J. Greenwald, editors, Proceedings of the 2000 Workshop on New

Security Paradigms, Ballycotton, Co. Cork, Ireland, September 18-21, 2000, pages

15–21, 2000. ACM. 18

[Michel and Mé 2001] C. Michel and L. Mé. Trusted Information: The New Decade

Challenge, chapter ADeLe: An Attack Description Language for Knowledge-Based

Intrusion Detection, pages 353–368. Springer US, Boston, MA, 2001. 19

[Montibeller and Franco 2010] G. Montibeller and A. Franco. Multi-criteria

decision analysis for strategic decision making. In Handbook of multicriteria analysis,

pages 25–48. Springer, 2010. 80

[Mu and Li 2010] C. Mu and Y. Li. An intrusion response decision-making model

based on hierarchical task network planning. Expert Syst. Appl., 37(3):2465–2472,

2010. 11, 13, 15

[Musman and Flesher 2000] S. Musman and P. Flesher. System or security man-

agers adaptive response tool. DARPA Information Survivability Conference and

Exposition,, 2:1056, 2000. 15

[Oglaza et al. 2014] A. Oglaza, R. Laborde, and P. Zaraté. Kapuer: un as-

sistant à l’écriture de politiques d’autorisation pour la protection de la vie privée.

Ingénierie des Systèmes d’Information, 19(6):91–115, 2014. 80

[Papadaki and Furnell 2006] M. Papadaki and S. Furnell. Achieving automated

intrusion response: a prototype implementation. Inf. Manag. Comput. Security,

14(3):235–251, 2006. 13, 15

[Pazzani and Billsus 1997] M. J. Pazzani and D. Billsus. Learning and revis-

ing user profiles: The identification of interesting web sites. Machine Learning,

27(3):313–331, 1997. 80

BIBLIOGRAPHY 157

[Porras and Neumann 1997] P. A. Porras and P. G. Neumann. EMERALD:

event monitoring enabling responses to anomalous live disturbances. In 1997 Na-

tional Information Systems Security Conference, oct 1997. 10, 15

[Project] E. Project. E-safety Vehicle InTrusion protected Applications. http:

//www.evita-project.org. 69, 162

[Qt] Qt. http://www.qt.io/. 99

[Ragsdale et al. 2000] D. Ragsdale, C. Carver, J. Humphries, and U. Pooch.

Adaptation techniques for intrusion detection and intrusion response systems. In

Systems, Man, and Cybernetics, 2000 IEEE International Conference on, volume 4,

pages 2344–2349 vol.4, 2000. 10, 15

[Resnick et al. 1994] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and

J. Riedl. Grouplens: An open architecture for collaborative filtering of netnews.

In CSCW ’94, Proceedings of the Conference on Computer Supported Cooperative

Work, Chapel Hill, NC, USA, October 22-26, 1994, pages 175–186, 1994. 80

[Roesch 1999] M. Roesch. Snort: Lightweight intrusion detection for networks. In

D. W. Parter, editor, Proceedings of the 13th Conference on Systems Administration

(LISA-99), Seattle, WA, November 7-12, 1999, pages 229–238, 1999. USENIX. 8

[Rowe et al. 2012] J. Rowe, K. N. Levitt, S. Parsons, E. Sklar, A. Apple-

baum, and S. Jalal. Argumentation logic to assist in security administration.

In R. Ford, M. E. Zurko, C. Herley, and T. Whalen, editors, The New Security

Paradigms Workshop, NSPW ’12, Bertinoro, Italy - September 18 - 21, 2012, pages

43–52, 2012. ACM. 39

[Ruddle et al. 2010] EVITA Project. Security Requirements for Automotive On-Board

Networks based on Dark-side Scenarios. Technical Report 2.3, 2010. 1

[Saaty] T. Saaty. The analytic hierarchy process, mcgraw-hill, new york, 1980. There

is no corresponding record for this reference. 83

[Samarji et al. 2013] L. Samarji, F. Cuppens, N. Cuppens-Boulahia, W. Ka-

noun, and S. Dubus. Situation calculus and graph based defensive modeling of

simultaneous attacks. In G. Wang, I. Ray, D. Feng, and M. Rajarajan, editors, Cy-

berspace Safety and Security, volume 8300 of Lecture Notes in Computer Science,

pages 132–150. Springer International Publishing, 2013. 56, 73

[Samarji et al. 2015] L. Samarji, N. Cuppens-Boulahia, F. Cuppens, S. Pa-

pillon, W. Kanoun, and S. Dubus. On the fly design and co-simulation of

http://www.evita-project.org
http://www.evita-project.org
http://www.qt.io/

158 BIBLIOGRAPHY

responses against simultaneous attacks. In G. Pernul, P. Y. A. Ryan, and E. R.

Weippl, editors, Computer Security - ESORICS 2015 - 20th European Symposium

on Research in Computer Security, Vienna, Austria, September 21-25, 2015, Pro-

ceedings, Part II, volume 9327 of Lecture Notes in Computer Science, pages 642–661,

2015. Springer. 64, 114, 127

[Schnackengerg et al. 2001] D. Schnackengerg, H. Holliday, R. Smith, K.

Djahandari, and D. Sterne. Cooperative intrusion traceback and response ar-

chitecture (citra). In DARPA Information Survivability Conference amp; Exposition

II, 2001. DISCEX ’01. Proceedings, volume 1, pages 56–68 vol.1, 2001. 15

[Sendi et al. 2012] A. S. Sendi, M. Dagenais, M. Jabbarifar, and M. Cou-

ture. Real time intrusion prediction based on optimized alerts with hidden markov

model. JNW, 7(2):311–321, 2012. 14

[Shameli-Sendi et al. 2012] A. Shameli-Sendi, N. Ezzati-Jivan, M. Jabbarifar,

and M. Dagenais. Intrusion response systems: Survey and taxonomy. Interna-

tional Journal of Computer Science and Network Security, 12(1):1–14, 2012. 12

[Shameli-Sendi et al. 2013] A. S. Shameli-Sendi, J. Desfossez, M. R. Dage-

nais, and M. Jabbarifar. A retroactive-burst framework for automated intrusion

response system. Journal Comp. Netw. and Communic., 2013:134760:1–134760:8,

2013. 13, 15

[Somayaji and Forrest 2000] A. Somayaji and S. Forrest. Automated response

using system-call delay. In S. M. Bellovin and G. Rose, editors, 9th USENIX Se-

curity Symposium, Denver, Colorado, USA, August 14-17, 2000, 2000. USENIX

Association. 15

[Soojin et al. 2006] Soojin, B. Chung, H. Kim, Y. Lee, C. Park, and H. Yoon.

Real-time analysis of intrusion detection alerts via correlation. Computers & Secu-

rity, 25(3):169–183, 2006. 11

[Stakhanova et al. 2007a] N. Stakhanova, S. Basu, and J. Wong. A cost-

sensitive model for preemptive intrusion response systems. In 21st International

Conference on Advanced Information Networking and Applications (AINA 2007),

May 21-23, 2007, Niagara Falls, Canada, pages 428–435, 2007. IEEE Computer

Society. 15

[Stakhanova et al. 2007b] N. Stakhanova, S. Basu, and J. Wong. A taxonomy

of intrusion response systems. IJICS, 1(1/2):169–184, 2007. 7, 13

BIBLIOGRAPHY 159

[Steffan and Schumacher 2002] J. Steffan and M. Schumacher. Collaborative

attack modeling. In G. B. Lamont, H. Haddad, G. A. Papadopoulos, and B. Panda,

editors, Proceedings of the 2002 ACM Symposium on Applied Computing (SAC),

March 10-14, 2002, Madrid, Spain, pages 253–259, 2002. ACM. 18

[Strasburg et al. 2009] C. Strasburg, N. Stakhanova, S. Basu, and J. S.

Wong. A framework for cost sensitive assessment of intrusion response selection.

In S. I. Ahamed, E. Bertino, C. K. Chang, V. Getov, L. Liu, H. Ming, and R.

Subramanyan, editors, Proceedings of the 33rd Annual IEEE International Com-

puter Software and Applications Conference, COMPSAC 2009, Seattle, Washington,

USA, July 20-24, 2009. Volume 1, pages 355–360, 2009. IEEE Computer Society.

13, 15

[Tanachaiwiwat et al. 2002] S. Tanachaiwiwat, K. Hwang, and Y. Chen. Adap-

tive intrusion response to minimize risk over multiple network attacks. ACM Trans

on Information and System Security, 2002. 15

[Toth and Krügel 2002] T. Toth and C. Krügel. Evaluating the impact of auto-

mated intrusion response mechanisms. In 18th Annual Computer Security Applica-

tions Conference (ACSAC 2002), 9-13 December 2002, Las Vegas, NV, USA, pages

301–310, 2002. IEEE Computer Society. 11, 12, 15

[Wang et al. 2001] X. Wang, D. S. Reeves, S. F. Wu, and J. Yuill. Sleepy wa-

termark tracing: An active network-based intrusion response framework. In M.

Dupuy and P. Paradinas, editors, Trusted Information: The New Decade Chal-

lenge, IFIP TC11 Sixteenth Annual Working Conference on Information Security

(IFIP/Sec’01), June 11-13, 2001, Paris, France, volume 193 of IFIP Conference

Proceedings, pages 369–384, 2001. Kluwer. 15

[White and Pooch 1996] G. B. White and U. W. Pooch. Cooperating secu-

rity managers: Distributed intrusion detection systems. Computers & Security,

15(5):441–450, 1996. 11, 15

[Wool 2004] A. Wool. A quantitative study of firewall configuration errors. IEEE

Computer, 37(6):62–67, 2004. 39

[Yu and Frincke 2007] D. Yu and D. A. Frincke. Improving the quality of alerts

and predicting intruder’s next goal with hidden colored petri-net. Computer Net-

works, 51(3):632–654, 2007. 14

[Zeleny 1982] M. Zeleny. Multiple Criteria Decision Making. McGraw-Hill, New

York, 1982. 80

List of Figures

2.1 Taxonomy of Automated Intrusion Response Systems 9

2.2 Response decision-making model of AAIRS 10

2.3 CAML module: Remote execution and access violation to data theft . . 17

2.4 Transition Brute-force guess password with pre- and postconditions and

context. [→ ...] denotes hyperlinks in the ATiki system. 18

2.5 Example of Attack Graph discovered by Atiki system 20

2.6 Monitored system model . 22

2.7 Model of the attack exploiting the NFS service. 25

3.1 AS system representation in oriented graph 32

3.2 AS1 and AS2 systems representations in oriented graph 33

3.3 AS2 and AS3 systems representations in oriented graph 34

3.4 AS4 PAF system representation in oriented graph 36

3.5 AS5 audience-specific value-based argumentation system representation

in oriented graph . 39

3.6 Example firewall configuration [Al-Shaer and Hamed 2003] 40

3.7 The plan arguments for the proposed example 47

3.8 AAF representation: shadowed nodes represent arguments of the unique

stable extension . 49

4.1 Intrusion Scenario : System threatened by two attack entities A1 and

A2. 65

162 LIST OF FIGURES

4.2 Response against A1, having side effects on A2. 66

4.3 Overall system architecture . 67

4.4 Automotive on-board network architecture [Project] 69

4.5 System response against crack passkey attack in {in_car} context . . . 75

4.6 System response against crack passkey attack in {in_car,high_way}

context . 75

4.7 Preferred extension generation: Execution time per number of detected

alerts . 76

5.1 Recommender system architecture . 85

5.2 Overall system architecture . 88

5.3 Score assignment using SAW method for reduce_frequency and

add_source_authentification coutnermeasures in {in_car} context . . 94

5.4 System response selection: Execution time per number of detected alerts 95

5.5 System response selection: Execution time per number of models num-

ber according to three different model numbers 96

6.1 CRIM architecture . 100

6.2 CRIM: Action model example . 101

6.3 CRIM: Intrusion objective model example 102

6.4 CRIM: Countermeasure model example 102

6.5 IDMEF alert example . 104

6.6 CRIM: Preferred extension according to WifiPasskeyCrack attack detec-

tion in in_car context . 105

6.7 CRIM: Preferred extension according to WifiPasskeyCrack attack detec-

tion in in_car and highway context 106

6.8 System response selection according to WifiPasskeyCrack attack detec-

tion in in_car and highway context 107

6.9 System response selection according to WifiPasskeyCrack attack detec-

tion in V 2I/I2V context . 108

LIST OF FIGURES 163

6.10 All existing countermeasures according to WifiPasskeyCrack attack de-

tection in V 2I/I2V context . 109

6.11 Learning file corresponding to in_car and high_way context 109

6.12 Preferred extension generation: Execution time per percentage of real

alerts from the detected alerts . 110

8.1 Architecture d’un système automobile 124

8.2 Architecture du CRIM . 126

List of Tables

2.1 Classification of existing AIRSs based on proposed taxonomy 15

3.1 An example firewall policy [Applebaum et al. 2012] 42

3.2 All anomalies in the firewall policy example. Each pair (x,y) is an anomaly 42

3.3 All attack relationships within the example firewall policy 43

3.4 Overlap of rules in example policy, the center column gives the reason

behind the rule . 43

3.5 Potential ordering of the ground-based values with lower order meaning

higher priority . 44

3.6 Anomalies and their corresponding recommendation based on the order-

ing in Table 3.5 . 44

5.1 Summary of MCDM methods . 84

5.2 Context/Criteria matrix . 92

5.3 Criteria order and coefficients provided by the Context/Criteria matrix

depending on the active contexts . 93

5.4 Examples of countermeasures values per criteria 93

5.5 Updated Context/Criteria matrix . 95

N° d’ordre : 2017IMTA0013

Résumé

L’accroissement et la diversification des services offerts par les

systèmes informatiques modernes rendent la tâche de sécuriser ces

systèmes encore plus complexe. D'une part, l’évolution du nombre de

services système accroît le nombre des vulnérabilités qui peuvent être

exploitées par des attaquants afin d’atteindre certains objectifs

d’intrusion. D'autre part, un système de sécurité moderne doit assurer

un certain niveau de performance et de qualité de service tout en

maintenant l’état de sécurité. Ainsi, les systèmes de sécurité modernes

doivent tenir compte des exigences de l’utilisateur au cours du

processus de sécurité.

En outre, la réaction dans des contextes critiques contre une attaque

après son exécution ne peut pas toujours remédier à ses effets

néfastes. Dans certains cas, il est essentiel que le système de sécurité

soit en avance de phase par rapport à l’attaquant et de prendre les

mesures nécessaires pour l’empêcher d’atteindre son objectif

d’intrusion.

Nous soutenons dans cette thèse que le processus de sécurité doit

suivre un raisonnement intelligent qui permet au système de prévoir les

attaques qui peuvent se produire par corrélation à une alerte détectée

et d’appliquer les meilleures contre-mesures possibles.

Nous proposons une approche qui génère des scénarios potentiels

d’attaque qui correspondent à une alerte détectée. Ensuite, nous nous

concentrons sur le processus de génération d’un ensemble approprié

de contre-mesures contre les scénarios d’attaque générés. Un

ensemble généré des contre-mesures est considéré comme approprié

dans l’approche proposée s’il présente un ensemble cohérent et il

satisfait les exigences de l’administrateur de sécurité (par exemple, la

disponibilité). Nous soutenons dans cette thèse que le processus de

réaction peut être considéré comme un débat entre deux agents. D'un

côté, l’attaquant choisit ses arguments comme étant un ensemble

d’actions pour essayer d’atteindre un objectif d’intrusion, et de l’autre

côté l’agent défendant la cible choisit ses arguments comme étant un

ensemble de contre-mesures pour bloquer la progression de

l’attaquant ou atténuer les effets de l’attaque.

D'autre part, nous proposons une approche basée sur une méthode

d'aide à la décision multicritère. Cette approche assiste l’administrateur

de sécurité lors de la sélection des contre-mesures parmi l’ensemble

approprié des contre-mesures générées à partir de la première

approche. Le processus d’assistance est basé sur l’historique des

décisions de l’administrateur de sécurité. Cette approche permet

également de sélectionner automatiquement des contre-mesures

appropriées lorsque l’administrateur de sécurité est dans l'incapacité

de les sélectionner (par exemple, en dehors des heures de travail, par

manque de connaissances sur l’attaque). Enfin, notre approche est

implémentée et testée dans le cadre des systèmes automobiles.

Mots-clés: Logique argumentative, Réponses à l'intrusion, Sélection

des contre-mesures, Multi-Criteria Decision Making, Systèmes

véhiculaire, AIRS, Langage de Description d'Attaque, Anti-corrélation.

Abstract

The growth and diversity of services offered by modern systems make

the task of securing these systems a complex exercise. On the one

hand, the evolution of the number of system services increases the risk

of causing vulnerabilities. These vulnerabilities can be exploited by

malicious users to reach some intrusion objectives. On the other hand,

the most recent competitive systems are those that ensure a certain

level of performance and quality of service while maintaining the safety

state. Thus, modern security systems must consider the user

requirements during the security process.

In addition, reacting in critical contexts against an attack after its

execution can not always mitigate the adverse effects of the attack. In

these cases, security systems should be in a phase ahead of the

attacker in order to take necessary measures to prevent him/her from

reaching his/her intrusion objective.

To address those problems, we argue in this thesis that the reaction

process must follow a smart reasoning. This reasoning allows the

system, according to a detected attack, to preview the related attacks

that may occur and to apply the best possible countermeasures.

On the one hand, we propose an approach that generates potential

attack scenarios given a detected alert. Then, we focus on the

generation process of an appropriate set of countermeasures against

attack scenarios generated among all system responses defined for

the system. A generated set of countermeasures is considered as

appropriate in the proposed approach if it presents a coherent set (i.e.,

it does not contain conflictual countermeasures) and it satisfies security

administrator requirements (e.g., performance, availability). We argue

in this thesis that the reaction process can be seen as two agents

arguing against each other. On one side the attacker chooses his

arguments as a set of actions to try to reach an intrusion objective, and

on the other side the agent defending the target chooses his

arguments as a set of countermeasures to block the attacker’s

progress or mitigate the attack effects.

On the other hand, we propose an approach based on a recommender

system using Multi-Criteria Decision Making (MCDM) method. This

approach assists security administrators while selecting

countermeasures among the appropriate set of countermeasures

generated from the first approach. The assistance process is based on

the security administrator decisions historic. This approach permits

also, to automatically select appropriate system responses in critical

cases where the security administrator is unable to select them (e.g.,

outside working hours, lack of knowledge about the ongoing attack).

Finally, our approaches are implemented and tested in the automotive

system use case to ensure that our approaches implementation

successfully responded to real-time constraints.

Keywords: Argumentative logic, Intrusion response, Countermeasures

selection, Multi-Criteria Decision Making, Automotive system, AIRS,

Attack description language, Anti-correlation.

	Introduction
	Motivation
	Contributions
	Organization of the dissertation

	Automated System Response against Intrusion: State of the Art
	Introduction
	Intrusion Response System Definition
	Automated Intrusion Response Systems (AIRSs)
	Response Selection
	Adjustment Ability
	Response Execution
	Prediction Ability

	Attack Description Languages
	CAML
	ATiKi
	ADeLe
	LAMBDA

	Conclusion

	Introduction to the Argumentation Logic
	Introduction
	Motivation
	Argumentation frameworks
	Abstract Argumentation Framework (AAF)
	Preference-based Argumentation Framework (PAF)
	Value-based Argumentation Framework (VAF)

	Related Work
	Argumentation logic for firewall policy specification
	Argumentation logic for access control
	Argumentation logic for network security analysis

	Conclusion

	Context-aware Response against Intrusion Detection
	Introduction
	Modeling the intrusion processes
	Modeling the attacker
	Anticipating the attacker's intentions
	Intrusion Scenario
	Modeling countermeasures

	Argumented intrusion response against attacks
	Constructing the set of arguments
	Extending value-based argumentation frameworks
	Managing contexts
	Argumented and context aware reaction mechanism
	Avoiding unexpected side effects of countermeasures
	Architecture

	Reaction process in an automotive context
	Automotive system
	Attack modeling
	Response model
	Rationales
	Intrusion response selection
	Performance evaluation

	Conclusion

	Multi-Criteria Recommender Tool for Supporting Intrusion Response System
	Introduction
	Related work
	Multi-Criteria Decision Making module
	Learning module
	Recommending module
	Security administrator interface

	MCDM module integration
	Prediction phase
	System response generation phase
	Recommendation phase
	Matrix update phase

	Application to the automotive case of study
	Deployment scenario
	Performance evaluation

	Conclusion

	Implementation and Evaluation
	Introduction
	CRIM
	Features and architecture
	Models

	Implementation
	Preferred extension generation
	MCDM integration
	Learning file

	Evaluation
	Conclusion

	Conclusions and Perspectives
	Contributions
	Perspectives
	Coordinated attack
	Extending the formal model
	The attacker's point of view

	Résumé en français
	Introduction
	Génération des scénarios d'attaques
	Génération des scénarios d'attaques
	Systèmes d'argumentation à base de valeurs étendue
	Génération des contre-mesures sensibles au contexte

	Approche multicritère pour la prise de décision
	Application sur les systèmes automobiles
	Implémentation et évaluation
	CRIM
	Evaluation

	Conclusion

	CRIM modules Source Code
	Generation of attack scenarios
	Anti-correlation between models
	Attack relation between countermeasures

	Glossary
	List of Publications
	Bibliography
	List of Figures
	List of Tables

