
HAL Id: tel-01781354
https://theses.hal.science/tel-01781354

Submitted on 30 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Biometric recognition based on hand schape and
palmprint modalities

Nesrine Charfi

To cite this version:
Nesrine Charfi. Biometric recognition based on hand schape and palmprint modalities. Image
Processing [eess.IV]. Ecole nationale supérieure Mines-Télécom Atlantique, 2017. English. �NNT :
2017IMTA0003�. �tel-01781354�

https://theses.hal.science/tel-01781354
https://hal.archives-ouvertes.fr


THÈSE / IMT Atlantique 
sous le sceau de l’Université Bretagne Loire 

pour obtenir le grade de 

DOCTEUR DE IMT Atlantique 

Mention : Sciences et Technologies de l’Information 
et de la Communication 

École Doctorale Sicma 

Présentée par 

Nesrine Charfi 
Préparée dans le département Image et Traitement  

de l’Information 

 

 

Reconnaissance biométrique 

basée sur les modalités 

de la forme de la main et 

de l’empreinte palmaire 

 

Biometric recognition  based 

on hand schape and 

palmprint modalities 

Thèse soutenue le 23 janvier 2017 

devant le jury composé de : 
 

Ali Khenchaf 
Professeur, ENSTA Bretagne / président 

 
Jean-Paul Haton 
Professeur, Université Henri Poincaré Nancy 1 / rapporteur 

 
Kamel Hamrouni 
Professeur, Ecole National d'Ingénieurs de Tunis (Tunisie) / rapporteur 

 
Najoua Ben Amara 
Professeure, Ecole Nationale d'Ingénieurs de Sousse (Tunisie) / examinatrice 

 
Adel Alimi 
Professeur, Ecole National d'Ingénieurs de Sfax (Tunisie) / examinateur 

 
Basel Solaiman 
Professeur, IMT Atlantique / directeur de thèse 
 
Hanène Trichili 
Maître de Conférences, Université de Sfax (Tunisie) / invitée 





Remerciements
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Professeur à l’Université de Tunis El Manar, pour l’honneur qu’ils me font d’avoir
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Résumé

La biométrie est une alternative qui se base sur l’identification des personnes à

partir de leurs caractéristiques physiques (empreinte digitale, forme de la main,

empreinte palmaire) et/ou comportementales (voix, signature dynamique). La

biométrie tend à réaliser deux buts importants dans notre vie courante. Le premier

but est de réaliser la sécurité en éliminant le doute sur l’identité d’une personne et

le second but est de faciliter l’identification des individus. En effet, cette méthode

d’identification est de plus en plus préférée par rapport aux méthodes tradition-

nelles impliquant les mots de passe et les badges. Les travaux de recherche de cette

thèse s’inscrivent dans le cadre de la reconnaissance de personnes à l’aide de la

biométrie de la main. L’objectif principal est de concevoir un système biométrique

multimodal basé sur la fusion de la forme de la main et de l’empreinte palmaire.

La première partie de cette thèse propose un nouveau système uni-modal de

vérification de la forme de la main. En effet, ce système est basé d’une part,

sur la détection du meilleur ensemble des points-clés localisés sur le contour de

la main pour adopter la description SIFT (Scale Invariant Feature Transform).

D’autre part, un raffinement de correspondance, basé région et apparence de la

main est proposé, afin de raffiner autant que possible les points-clés faussement

matchés.

Tandis que la deuxième partie consiste à proposer un nouveau système d’identification

palmaire. En effet, la méthode de représentation parcimonieuse est adoptée afin de

décrire le trait biométrique de l’empreinte palmaire. Elle est basée sur l’extraction

de descripteurs SIFT de chacun des points-clés détectés.

Notre troisième partie concerne la proposition de différentes méthodes de fusion

multi-types de la multi modalité, comprenant la fusion multi-représentation, la

iii



Résumé iv

fusion multi-biométrique et la fusion multi-instance. En effet, la fusion multi-

représentation est basée sur la combinaison de descripteurs SIFT et les caractéristiques

géométriques de la main au niveau des scores, pour la vérification de la forme de la

main. La fusion multi-biométrique est basée sur la combinaison des deux modalités

biométriques à savoir la forme de la main et l’empreinte palmaire, au niveau des

caractéristiques et de la décision. Par contre, la fusion multi-instance est basée sur

la combinaison des empreintes palmaires droite et gauche, au niveau du rang. Ces

différentes méthodes de fusion ont prouvé leur efficacité en obtenant de meilleurs

taux de reconnaissance, qui sont compétitifs par rapport à d’autres approches

multimodales de la biométrie de la main.

Mots-clés: Biométrie, forme de la main, empreinte palmaire, multimodalité, fu-

sion.



Abstract

Biometry is a technology which is based on the personal identification using their

physical features (fingerprint, hand geometry, palmprint) and/or behavioral fea-

tures (voice, dynamic signature). Biometry aims to achieve two important goals

in our current life. The first one is to ensure security by eliminating doubt regard-

ing the identity of a person and the second one is to facilitate the identification

of individuals. Indeed, this method of identification is increasingly preferred over

traditional methods including passwords and badges. The research works of this

thesis talk about the personal recognition using hand biometrics. The main ob-

jective is to design a multimodal biometric system based on the fusion of hand

shape and palmprint modalities.

Our first part is to propose a new unimodal biometric system for hand shape ver-

ification. In fact, this system is based firstly, on the detection of the best set of

keypoints located on the contour of the hand for further SIFT (Scale Invariant

Feature Transform) description. On the other hand, a matching refinement based

hand region and appearance is proposed in order to refine as much as possible

false matched keypoints.

Our second part consists in the proposition of a new palmprint identification sys-

tem. In fact, the sparse representation method is adopted in order to describe the

palmprint biometric trait. It is based on the extraction on SIFT descriptors for

each detected keypoint.

Our third part concerns the proposition of multi-type fusion methods for mul-

timodality, including the multi-representation fusion, the multi-biometric fusion

and the multi-instance fusion. Indeed, the multi-representation fusion method

is based on the combination of SIFT descriptors and geometrical features of the

v
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hand, at score level. The multi-biometric fusion method is based on the fusion of

hand shape and palmprint modalities, at feature and decision levels. On the other

hand, the multi-instance fusion method is based on the combination of left and

right palmprints, at rank level.

These different methods of fusion have proven their effectiveness by achieving en-

couraging recognition rates that are competitive to other popular multimodal hand

biometric approaches.

Keywords: Biometry, hand shape, palmprint, multimodality, fusion.
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1.1 Context of the research and motivation

The security and safety of individuals, properties and information need to be guar-

anteed, and present actually one of the major concerns of our societies, especially

after the great spread of terrorism around the world. In fact, people willing to

cross boundaries must prove their identities using their passports. People willing

to cross buildings or academic institution must validate their access cards. Peo-

ple desiring access to banking services must log in using a login and a password.

Nevertheless, these traditional methods show great weaknesses for identity veri-

fication. Indeed, the identity of a person is directly related to that they possess

(such as passport, access card, etc.) or/and that they know (password, PIN codes,

etc.). Nonetheless, PIN codes and passwords may be forgotten or compromised

and access cards may be falsified or duplicated which lead to identity spoofing. In

1
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this respect, experts are looking for a technology which resolves these problems

by giving more convenience to persons and ensuring a highly secured access, by

relating the identity of a person to that they are and not to that they possess or

know. Biometry is the most suitable technology for identity verification and/or

person identification by employing their physiological features including biological,

morphological and behavioral characteristics. This technology makes identity data

theft more difficult and thus increases user confidence as the physical presence is

necessary during identification.

Historically speaking, biometry appeared in order to succeed the anthropometric

recognition. The oldest one was fingerprint analysis, used by the police for per-

sons identification. In the 19th century, a french criminologist invented a scientific

method named ”forensic anthropology” to identify criminals based on their physi-

ological measures. In fact, this use has never been abandoned and fingerprints are

still used for criminal identification. Nowadays, the increasing power of computers

may contribute to individual recognition thanks to complex computer algorithms

used in devices. Hence, biometry is actually a developing science which aims to

identify individuals through technological systems, using their biological charac-

teristics. It is no longer limited to fingerprints and criminal identification. Several

other modalities are used today namely iris, face, hand shape, gait etc. for access

control applications. The use of this technique is widespread around the world

and takes an important place in our daily life. In the coming years, biometry will

probably be one of the most employed techniques, firstly to identify or authenti-

cate individuals and secondly to control access for public spaces such as banking,

airports, hospitals, museums, railway and bus stations.

Previously, different unimodal biometric systems based on unique biometric modal-

ity have been developed. While unimodal biometric techniques promise to be very

efficient, however, we may not guarantee an excellent recognition rate. Indeed,

they present three main limitations, which are as follows: limitation in terms of

performances, limitation in terms of universality of use and limitation in terms

of fraud detection. The first limitation concerns performances of recognition due
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to possible variation of biometric modalities during their acquisition or also nat-

urally. For example, in the case of face biometrics, the face varies according to

expressions, lighting conditions and positions of capture. Indeed, it is not possible

to find two identical images corresponding to the same person. This variability of

biometric features may badly effect identity recognition performances. The second

limitation is ascribed to the non-universality of certain biometric modalities. This

means that a subject may not possess some modalities to be authenticated or may

not have sufficiently informative modality allowing their identity verification. For

instance, a mute person cannot use a voice biometric system or a disabled per-

son cannot use a gait biometric system. Therefore, some biometric systems are

inaccessible for these subjects, and they may be excluded if no other alternative

is offered. Regarding the third limitation, it relates to fraud detection. In fact,

fraud or identity theft is a problem that occurs quite often. Biometrics reduced

this problem (since it is easier to falsify a password or an identity paper than to

reproduce a hand or a face), but did not eradicate it. It is possible, for example,

to steal fingerprints (as they leave traces) or to reproduce them (using silicon).

All these limitations may be solved or removed by using several biometric modal-

ities called multimodal biometric systems. In this context, the works presented in

this thesis are located. Various multimodal approaches are proposed here, using

different multi-types fusion that are multi-representation, multi-biometrics and

multi-instance fusions for both identification and verification modes. These ap-

proaches are based essentially on hand shape and palmprint modalities. In fact,

our motivation to use these modalities is due to the popularity of hand biometric

trait. Compared to other biometric modalities, the hand presents the following

advantages:

• The hand acquisition devices are simple and inexpensive.

• The hand trait is more acceptable by the public compared to other modali-

ties.

• The hand information may be extracted using low resolution images.
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• Additional biometric modalities including palmprints and fingers may be

embedded in a developed hand shape biometric system.

1.2 Problem statement and objectives

The design of each biometric system should take into account five important and

related factors which are cost, accuracy, user acceptance and environment con-

straints, security and computation speed (figure 1.1). In fact, decreasing accuracy

may increase speed, decreasing user acceptance may improve accuracy and in-

creasing cost may ameliorate security.

To increase user acceptance, two biometric modalities are acquired simultaneously

from a single acquisition of the hand trait. Nevertheless, hand biometrics present

some problematics which may deal with respecting the mentioned objectives. In-

deed, previous hand biometric systems were based on the direct contact of the

hand trait with the system device of capture, which may decrease user acceptance.

For this reason, recent works have been focusing on contact-less and contact-free

acquisition systems making it more comfortable and hygienic by eliminating the

contact obligation. However, the liberty of presenting one’s hand provides several

variabilities such as scaling changes, hand orientation changes, positions variabil-

ity, illumination changes etc. Moreover, the cost of the acquisition device may be

expensive for the capture of high resolution images, especiallyfor palmprint bio-

metric trait. Thus, several works adopt low resolution images of the hand during

acquisition module. Research in this area is certainly interesting via the multiplic-

ity and diversity of these problems. In fact, hand biometric modality has received

much attention from research laboratories as well as industrial ones.

According to these problems and in order to ensure the design of our hand biomet-

ric system success, our objectives are focused on the proposition of a solution which

increases the accuracy and the speed of the person recognition process, decreases

the cost of the biometric system and increases the user acceptance. Hence, our
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solution is based on a contactless multimodal hand biometric system fusing vari-

ous parts of the hand modality, and satisfying the different objectives mentioned

above. Thus, two unimodal methods for hand shape verification and palmprint

identification have been, firstly, proposed. On the other hand, several multi-types

approaches have been developed including multi-representation, multi-biometric

and multi-instance, using the proposed unimodal methods to ensure higher secu-

rity. It should be noted that the proposed solution is not intended to real-time

applications.

Figure 1.1: Relationships between the different objectives of the design of a
biometric system [Kong 2009].

1.3 Contributions

In order to achieve the objectives detailed in the previous section, some contribu-

tions are suggested for verification and identification approaches based on hand

biometric modalities. The contributions of this thesis are summarized as follows:

• Localization of hand landmarks and SIFT description: [Charfi 2015b]

Our first contribution consists in the detection of landmark points localized

on the contour of the hand for further Scale Invariant Feature Transform
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(SIFT) description. In fact, the hand shape modality is represented by the

contour of the hand. Thus, unlike other biometric systems that employ SIFT

detector to localize keypoints on the biometric trait image (such as iris or

fingerprint), our aim is to localize independently keypoints localized on the

contour of the hand rather than keypoints detected using SIFT detector

method. A specific number of detected keypoints demonstrates that this

method may achieve better performances. In fact, to our knowledge, there

is no similar research work that has been proposed in the literature using

SIFT descriptors in the context of hand shape biometric recognition. This

method showed that SIFT features are robust and efficient for hand shape

recognition purpose [Charfi 2014].

• Matching refinement process based on shape and appearance of

the hand: [Charfi 2016c]

Standard algorithm of SIFT description presents a principal problem. In-

deed, the orientation histogram-based SIFT features are insufficient for the

discrimination of each keypoint because of the ignorance of the orientation

positions by histograms. To overcome this problem, a new approach based

SIFT contactless hand shape verification is proposed.

In fact, our contribution consists in refining matched SIFT keypoints using

two matching refinement levels. The first one is based on region refinement

in which matched keypoints belonging to different hand regions are consid-

ered as false matched and they have to be removed. The second one is based

on texture (or appearance) refinement method called Boundary Hand De-

scriptor (BHD) in which a patch centered in each point is extracted and

Gabor filters are employed for texture extraction. Experimental results in-

dicate that the proposed method is efficient and high verification rates may

be achieved.

• Fusion of hand shape and palmprint biometric modalities by inte-

grating fingers ROI for persons verification: [Charfi 2016c]
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This contribution concerns the integration of the finger surface features into

the fusion scheme of hand shape and palmprint modalities. Indeed, in our

fusion scheme, hand shape and palmprint modalities are fused at decision

level. In the case of similar decisions, the final decision is provided. Other-

wise, the five finger surfaces are segmented and their features are extracted in

order to confirm the identity of the claimed person. This method allows the

reduction of computational complexity while increasing performance rates.

• Hand shape descriptor based on sparse representation and fusion

scheme of hand shape and palmprint modalities for persons iden-

tification: [Charfi 2016a]

Unlike other biometric methods that extract SIFT descriptors and proceed

generally to SIFT matching so as to match testing and training images, our

identification method consists in representing sparsely SIFT patches cen-

tered on keypoints localized on the contour of the hand. Therefore, SIFT

descriptors are transformed to SIFT sparse representation as a descriptor of

both hand shape and palmprint modalities, in order to feed the classification

task. In addition, overall multimodal biometric systems adopt either a single

fusion level for recognition or several fusion levels to compare their results

and find the most efficient level. However, in our work, we propose a hybrid

multimodal fusion using two fusion levels : the feature fusion level and the

decision fusion level. In this hybrid multimodal fusion, we employ a cascade

scheme, so as to generate the final decision about the identity of the per-

son. To our knowledge, there are no works that include these proposals in

their biometric systems. Experiments show better performances compared

to popular multimodal methods existing in literature.

• Multi-instance fusion for palmprint identification : [Charfi 2016b]

This contribution concerns the palmprint identification area. It consists of

the fusion of left and right palmprints at rank level. In fact, after the classi-

fication step, the similarity distances (scores) are computed for each image

sample. These scores are considered as the belonging degree of each image
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to all classes (persons). However, ambiguity still exists between palmprints

of some classes which may result in a mis-classification. Hence, our purpose

is to transform these scores into probability measures. Afterwards, the am-

biguity difference is computed based on the ratio of probability measures of

the second most relevant class and the first most relevant class. The final

identity decision is provided according to the ambiguity ratio measured from

the two palmprint instances (left and right). If the ambiguity ratio measure

of the left palmprint is higher than the measure of the right one, the per-

son’s identity of the right palmprint is considered. Otherwise, the person’s

identity of the left palmprint is considered.

1.4 Outline

The thesis is structured as follows: Chapter 2 reports the general context of biom-

etry. Chapter 3 presents a survey of hand shape and palmprint modalities in which

the state of the art of these two modalities is detailed. Chapter 4 describes the

proposed persons verification based on hand shape modality. However, chapter 5

focuses on the proposed persons identification approach based on palmprint modal-

ity. Chapter 6 depicts the proposed hand multi-types fusion for hand shape and

palmprint modalities. Finally, the last chapter concludes the thesis and discusses

its most important results and contributions. Future works and perspectives are

also put forward.
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2.1 Introduction

Biometry is a growing technology which has become increasingly used in our daily

life. It aims to establish the identity of a person as reliable as possible using their

biological features in order to guarantee the safety of people in public places. In

this chapter, we introduce firstly, the identity of a biometric system, structure,

advantages and disadvantages of the different biometric modalities. Subsequently,

we define the multimodality notion. Eventually, we display the advantages as well

as the challenges of hand modality.

2.2 Identity verification of a biometric system

Identity is a philosophical notion related to the personality of each individual.

Indeed, person’s identity is defined as the distinctive characteristic which makes

a person unique among other individuals. A person is identified since their birth

with a name and some personal data such as date and place of birth, family, social

security number, . . . which are increasingly verified during their life. Each person

has to claim their identity in several opportunities (bank account, access local,

across frontiers, etc.). In the past, persons identification was a manual task, but

today it has become numeric and automatic task. Biometry is the most efficient

identification way since it relies increasingly on the identity of a person mainly in

terms of distinctive features (physical or behavioral).

2.2.1 Identity verification

Fraud has not ceased to increase in our society, which feels the need to control

every day. Security applications require user authentication. Until now, this

authentication has been done using identification ways relying on a thing that we

know or that we possess. Passwords or other codes correspond to things that we

know, whereas badges, cards or identity documents correspond to things that we
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possess. These two identification ways may be combined, as in the example of

the credit card which is based on the possession of the card and the knowledge of

the secret code to use it. However, these identification ways present a bundle of

disadvantages such as falsification, robbery, loss, etc.

Regarding identity documents, other problems may be tackled at deliverance. In

fact, an identity document may not only be lost or falsified but also exposed to

more serious frauds which consist in realizing original documents for false identity.

In this case, one person can have several identities which may cause a lack of

security especially if this person is a criminal. Indeed, it is difficult to know if

a person who is presented to obtain an identity document, has not already been

possessing documents with another identity. However, with biometric data, it

would be possible to verify if this person does not possess other identities by

comparing his biometric data to the set in database. An efficient way to resolve

these different issues presented by traditional authentication ways is biometry.

Indeed, biometry is the recognition of individuals by who they are rather than

what they know or what they possess.

2.2.2 Biometry

Biometry is the verification of individual identity based on his biological charac-

teristics which are classified into two categories. The first one is physical charac-

teristics which are most commonly used and rely on physical traits of individuals

such as iris, fingerprint, palmprint, face, etc., and the second kind is behavioral

characteristics which are less used and rely on individual actions or behaviors

such as walking, voice, dynamic signature, etc. These physical and behavioral

characteristics that allow persons identification are called biometric modalities.

Biometry tends to be used, nowadays, in biometric systems aiming at making

automatic recognition. In fact, the idea to characterize individuals based on their

physical traits is not new. It has already been used and developed in the 19th

century with the launching of the traditional technology of biometry which is the
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2.2.4 Properties of biometric modalities

Biometric authentication presents several advantages compared to traditional iden-

tification ways like passwords or cards because it establishes a strong link between

an individual and their identity. Principal properties of a biometric modality are

the following:

• Universality: The whole population should possess this modality (physical

or behavioral characteristic).

• Distinctiveness: Two different individuals must have different biometric

representations.

• Stability: To ensure individual authentication success, biometric modality

should be relatively stable over time and it also has to be stable regardless

conditions of acquisition (external conditions, emotional conditions of the

person, etc.).

• Collectability: The biometric modality must be acquired.

• Acceptance: The acceptance and the facility of usage are related to the

acquisition constraints of a biometric modality.

• Circumvention: The biometric modality must not be easily falsified.

• Performance: Biometric recognition should be accurate, fast and robust

with regards to operational and environmental changes.

All modalities do not possess all these properties, or may possess them with dif-

ferent degrees. Hence, there is no ideal or perfect modality. The trade-off between

presence and absence of some of these properties is required according to each

system needs, regarding the choice of biometric modality.
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2.2.5 Advantages and disadvantages of each biometric modal-

ity

A comparison between different biometric modalities according to the seven prop-

erties mentioned previously (universality, distinctiveness, stability, collectability,

acceptance, Circumvention, performance) is presented in table 2.1. The quality

degree accorded to each modality is classified into three classes: high, medium and

low referred to the following notations • • •, • • and •, respectively.

This table originating from [Jain 2004] indicates that behavioral biometric modal-

ities (keystroke, odor or signature) present low recognition performances unlike

intrusive data such as methods based on DNA or retina. However, data given

from palmprint or hand geometry present the advantage that they do not pos-

sess any low criterion compared to other modalities. Moreover, they are acquired

from a single biometric modality which is hand trait. These advantages justify the

choice of these modalities which are treated in this thesis.

2.2.6 Verification and identification

There are several kinds of applications which require users authentication. These

applications may be classified into two categories namely identity verification and

identification.

• Identity verification corresponds to verifying the claimed identity by compar-

ing the acquired biometric data with its corresponding biometric templates

stored in system database. In such system, a person who wants to be rec-

ognized claims an identity using a persons identification number or a smart

card and the system conducts a one-to-one comparison to finally determine

if the claim is true or false (by answering to this question: ”Does this bio-

metric data correspond really to Mr. Bob?”). Identity verification is an

important task which aims to avoid the use of the same identity by various

people [Wayman 2001].
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Table 2.1: Comparisons of biometric modalities according to seven properties:
Universality (U), Distinctiveness (D), Stability (S), Collectability (Co), Accep-
tance (A), Circumvention (Ci), Performance (P). • • •:high degree, • •:medium

degree and •:low degree.

Biometric modality U D S Co A Ci P

Face • • • • • • • • • • • • • •

Iris • • • • • • • • • • • • • • • •

Fingerprint • • • • • • • • • • • • • • • • •

Hand geometry • • • • • • • • • • • • • • •

Palmprint • • • • • • • • • • • • • • • • •

Keystroke • • • • • • • • • •

Odor • • • • • • • • • • • • • •

Retina • • • • • • • • • • • • • •

Signature • • • • • • • • • • • • •

Voice • • • • • • • • • • • • •

Hand vein • • • • • • • • • • • • •

DNA • • • • • • • • • • • • • • •

• Identification corresponds to the fact that the system recognizes a person

by searching all users templates stored in the database for matching. Thus,

the system conducts a one-to-many comparison to build person’s identity

(or fails if a person is not enrolled in the system database) without need

to claim their identity (by answering to this question: ”To which person do

these biometric data correspond?”). Identification is an important task for

negative recognition applications, where the system determines if the person

is who he/she denies to be. The aim of negative recognition is to avoid that

a single individual uses various identities [Wayman 2001]. Identification may

be used also in positive recognition for more convenience since the person

does not need to claim an identity. On the other hand, traditional recognition

methods (PINs, cards, etc.) may work correctly for positive recognition,

negative recognition may only be determined via biometrics.
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2.2.7 Structure of a biometric system

The structure of a biometric system consists of two different phases: enrollment

and authentication, as shown in figure 2.2.

Enrollment is common for both verification and identification modes. It is the

preliminary phase where the biometric data of a user is registered for the first

time in the system. During this phase, one or more biometric modalities are

captured and stored as templates in the database. This phase is very crucial

since it influences, later, the whole recognition process. In fact, the quality of

enrolled data is essential for ulterior identification phases because acquired data

are considered as references for the person. A set of samples should be captured

to take into account the variability of biometric modality of a person.

A biometric system is composed of 4 modules, some of them are common for enroll-

ment and authentication phases namely acquisition, features extraction, matching

and making decision. Acquisition and features extraction are two modules pre-

sented in enrollment and authentication phases. Features extraction is a data

representation (e.g. image or signal) as a vector that should be representative for

data and discriminant versus other data of other individuals. During enrollment

phase, features vector extracted from the biometric sample is called reference and

stored in database. During authentication phase, acquisition and features extrac-

tion modules allow to achieve a representation of biometric data to be tested later

in features space.

Matching module is used during authentication phase to compare the feature vec-

tor extracted for test with the reference feature vector. The decision module

consists in making a decision from output of matching module which generates

a similarity score between two feature vectors. For verification applications, the

matching is executed only once, between reference data and test data, and a deci-

sion of ”true” or ”false” is taken. For identification applications, the matching is

carried out between all references stored in database and the decision is the answer
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Figure 2.2: Structure of biometric systems

of the following question: ”Does this person exist in the database, and if so, who

is he/she?”

2.2.8 Evaluation of a biometric system

To evaluate the performance of a biometric system, three principal criteria have

to be already defined clearly:

1. False Rejection Rate or FRR: This rate represents the percentage of indi-

viduals expected to be recognized but they are nevertheless rejected by the

system.

2. False Acceptance Rate or FAR: This rate represents the percentage of in-

dividuals expected to be not recognized but they are nevertheless accepted

by the system.

3. Equal Error Rate or EER: This rate represents the optimal performance

measure and is computed depending on the first two criteria. It is achieved

when FAR=FRR, i.e. the best trade-off between false rejections and false

acceptances.

Figure 2.3 shows FAR and FRR diagram according to distributions of genuine and

imposter scores. The EER is represented in Figure 2.4.
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Figure 2.3: FAR and FRR diagram

Figure 2.4: ROC curve

There are two ways to measure the biometric system performance, according to

the mode (authentication or identification):

• If the system works in authentication mode, then theROC (ReceiverOperating

Characteristic) curve is used. This curve draws the false rejection rate de-

pending on the false acceptance rate. The more this curve fits the mark

shape the more the system is efficient with a high Recognition Rate (RR).

• In the case of identification mode, theCMC (CumulativeMatchCharacteristic)

curve is used. The CMC curve provides the percentage of recognized indi-

viduals according to a variable called rank, as shown in figure 2.5. A system

is said to recognize at the rank 1 when the nearest image is selected as the

recognition result, and a system is said to recognize at the rank 2 when it
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selects, among two images, the one that best matches the input image. Sub-

sequently, the more the rank is high the more the correspondent recognition

rate is related to a low security level.

Figure 2.5: Example of CMC curves for different face poses used to identify
a person based on his face [Buddharaju 2007]

2.3 Multimodality

Multimodality is defined as the use of several biometric systems. The principal

purpose to fuse various biometric systems is to reduce the limitations of unimodal

biometrics. Indeed, the combination of different biometric systems aims to enhance

recognition performances by increasing the quantity of discriminant data of each

person, and to reduce the risk of registration failure and the robustness to frauds.

2.3.1 Limitations of unimodal biometric systems

Biometry establishes a physical link between an individual and their identity and

permits, hence, a more reliable identification than traditional ways like cards or

keys. However, biometric systems have some limitations which prevent their use

for all current applications. The main limitation incorporates performance. De-

spite possible security risks of traditional identification ways (loss, robbery or
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falsification), they are 100% efficient in terms of recognition. If the password is

correct, the response of system is ”Right”, otherwise, the response is ”False”, so

the matching is 100% accurate.

However, biometric systems have not succeed so far to achieve this accurate recog-

nition because they are based on a similarity score which is a real number de-

scribing the similarity degree between two biometric data. Therefore, the decision

module is important for biometric system since a decision threshold has to be

determined and applied to similarity score. If the score is higher than threshold

value, the two samples are from the same individual and identity is well verified,

otherwise, the two samples are from different individuals and the person is rejected

(identity not verified). These variations in biometric data and the absence of an

accurate matching are due to several factors:

• Noise effect in sensed data due to the imperfect conditions of data acqui-

sition. Indeed, the captured biometric data could be noisy or distorted. In

biometric information, variations (such as bad illumination or noisy acquisi-

tion) might generate inaccurate matching in database i.e. an imposter might

be incorrectly accepted or an enrolled person could be incorrectly rejected.

• Non universality: although biometric traits are expected to exist among

each single individual of a given population, there are some exceptions, in

which an individual is not able to present their biometric trait because of

pathological conditions, or working environments characterized by manual

activities which may even erase fingerprint or palmprint data.

• Temporal variability and non uniqueness are also called intra-class

variability (modality variation for an individual) and inter-class variability

(variation between modalities of many individuals) may reduce the identifi-

cation accuracy of biometric systems. For example, in the case of identical

twins, the principal lines features of their palms may lead to inaccurate

matching due to incorrect data inducing a false rejection.
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• Spoof attacks: biometric systems are vulnerable to spoof attacks where the

biometric trait may be imitated or forged. For instance, rubber fingerprints

can be used for spoofing. In addition, less discriminative biometric traits are

also prone to such attacks.

2.3.2 Different multi-types

Multimodal biometric systems reduce limitations of unimodal biometric systems

by combining several systems. Five types of multimodal biometric system (figure

2.6) can be defined as follows:

• Multi-sensors: It consists in combining various sensors to acquire the same

modality. For example, both optical sensor and multispectral sensor may be

used for fingerprint acquisition.

• Multi-instances: It consists in combining several instances of the same bio-

metric. For example, the acquisition of several images of face with different

poses, expressions or illumination.

• Multi-representations: It consists in using several representations to treat

the same image acquired. For example, the case of hand biometric which

may be represented by its shape and its texture features.

• Multi-samples: It consists in combining various samples of the same modal-

ity. For example, two fingerprints of different fingers or two irises. In this

case, different references have to be acquired in registration phase, unlike

multi-instances which require a single reference.

• Multi-biometrics: It consists in fusing multiple biometric modalities such as

hand geometry and palmprint.

A multimodal system may also combine these different types, for instance the

fusion of face and prints of different fingers.

Each type of system has advantages and disadvantages and may overcome different
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Figure 2.6: Different types of multimodal biometric systems [Jain 2007].

problems. The first four systems combine data from one and same modality that

is not possible to resolve the problem of non-universality of some biometrics and

fraud resistance, unlike multi-biometric systems.

In fact, systems which combine several data of the same biometric modality can

improve recognition performances by reducing the effect of intra-class variability.

Nevertheless, they are not able to resolve efficiently all problems of unimodal

systems, and that is why researchers are more interested in their studies with

multi-biometric systems.

2.3.3 Architectures of multimodal systems

Multimodal systems combine several biometric systems and require, therefore, the

acquisition and processing of multiple data. The acquisition and processing may be

done either successively, thus, we talk about serial architecture, or simultaneously,

in this case we talk about architecture in parallel.

The architecture is mainly related to processing. In fact, biometric data acquisition

is generally sequential for practical reasons because it is difficult to acquire a

fingerprint and an iris image at the same time in good conditions. However,

there are some cases where acquisitions may be performed simultaneously when
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different data use the same captor, for example the sensors of multi-fingers may

acquire simultaneously several fingerprints.

Hence, the architecture is generally related to processing and particularly of the

decision phase. In fact, the difference between serial and parallel multimodal

systems consists in obtaining a similarity score after each acquisition (serial fusion)

or proceeding to all acquisitions before making decision (parallel fusion).

Figure 2.7: Architecture of fusion in parallel

The architecture in parallel type (figure 2.7) is the most used one because it

allows employing all available data and, thus, improves performances of the system.

However, acquisition and preprocessing of a large number of biometric data are

costly either in terms of time or materials, and also reduce the convenience of use.

Therefore, the serial architecture (figure 2.8) may be preferred in some applications

for example it may overcome the problem of some individuals who are not able to

present their fingerprint for authentication, thus, they can present their iris.

Figure 2.8: Architecture of fusion in series
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Fusion of several biometric systems may take place at in four different levels:

data level, extracted features level, matching score level and decision level (figure

2.9). These four levels may be classified into two subsets: pre-classification fusion

(before matching) and post-classification fusion (after matching).

2.3.4 Fusion levels

In the literature, different modalities may be fused in order to improve accuracies

of biometric systems. The fusion scheme may be performed in five different levels:

data level, features level, matching score level, rank level and decision level, as

detailed in figure 2.9. These five levels may be classified into two sub-categories

namely fusion before matching step and fusion after matching step.

Figure 2.9: Different fusion levels of biometric systems

2.3.4.1 Fusion before matching

Before matching step, the integration of information may be whether at sensor

level or at feature level, after feature extraction module.

• Fusion at sensor level

The fusion at sensor level is the first level of fusion. The aim of this fusion is
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to generate a new capture, with better quality than the sources captures, to

be treated before feature extraction. This technique is called image fusion

or pixel fusion in the image processing area. Such fusion is relatively rarely

used because it requires homogeneous data. Indeed, the fusion at sensor level

may be performed using various compatible captures of instances derived

from the same biometric trait, or several instances of the same biometric

trait detected from a single sensor. The data fusion is generally not possible

if the instances of the data are incompatible.

• Fusion at feature level

The fusion at feature level incorporates combining different feature vectors

(figure) which may be obtained either from different instances of the same

biometric trait or from different biomtric modalities.

The aim of such fusion is to obtain robust features in the case of homogeneous

data (i.e., derived from the same modality with the same feature extraction

method), or containing more information in the case of heterogeneous data

(i.e., from different modalities or with different feature extraction methods).

In the case of homogeneous data, the simplest way to fuse attributes is to

Figure 2.10: Flowchart of general fusion at feature level.

concatenate them. This supplies a vector of larger size, which contains more

information (as shown in figure 2.11). However, in the case of heterogeneous

data, a normalization step (data standardization) should be made before

vectors concatenation.
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Figure 2.11: Concatenation of attribute vectors.

To deal with high dimensionality of feature vectors obtained after fusion, it

is useful to reduce its dimension using a statistical analysis applied on the

concatenated vector or by the selection of the most relevant attributes. The

dimensionality reduction step involves additional cost and time.

2.3.4.2 Fusion after matching

The fusion after matching step is based principally on classifiers fusion. In fact,

this fusion type is the most studied one by researchers. Such a fusion may be

performed at score level, at rank level or at decision level.

• Fusion at score level

Fusion at score level is referred to as the combination of similarity scores

derived from different classifiers. This type of fusion is the most commonly

used one since it may be applied to all types of systems (contrary to the fusion

before matching), in a small dimension space (the size of the vector of scores

represents the number of sub-systems), using relatively simple and effective

methods and treating more information than decision fusion. Indeed, the

fusion at level score presents the best trade-off between information richness

and ease of implementation.

There are two approaches to combine scores obtained from different classi-

fiers. The first one embodies treating this as a classification problem which

searches to separate the two classes Genuine and Impostor in the N di-

mensional space of scores. The second one comprises treating the subject
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as a combination problem in which the scores are treated separately before

combination to achieve the final score.

In the classification approach, a feature vector is built using the matching

scores given by each classifier apart. This vector is, then, assigned to the

second classification level based on two classes: ”accepted” or ”rejected”.

It is noted that the scores obtained from different modalities may be non-

homogeneous (distance measure or similarity, different ranges of values, etc.)

Various classifiers may be used such as Neural Networks, Support Vector

Machines (SVM), decision trees, Bayesian networks, . . .

• Fusion at rank level

The fusion at rank level concerns the identification of a person among all

allowed persons. In fact, the identification process of each sub-system returns

the list of identity classes in descending order of confidence. It is noticed

that these rankings may be compared directly, even if they are provided from

different modalities. Accordingly, the normalization process of data is not

required, which facilitates the implementation of this type of fusion.

Ho et al. [Ho 1994] described three methods to combine the ranks provided

by the different classifiers. These methods includes the highest rank method,

the borda count method and the logistic regression (or weighted borda count)

method. The highest rank method assigns to each possible matching the

best (minimum) rank computed by the different classifiers. However, even if

only one sub-system classes properly the user to be identified, with a good

confidence index, the overall system should give this user a fairly high rank.

The borda count method is based on a weighted voting process, by the sum

of ranks assigned to each possible matching. The advantage of this method

compared to the highest rank method is the ability to consider variability

between ranks even with a large number of classifiers. However, the borda

count method assumes that classifiers are statistically independent and each

one of them provides good results, which makes the borda count method

vulnerable to the effect of weak classifiers.
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The logistic regression or weighted borda count method is a generalization of

borda count method which uses statistical knowledge about the performance

of sub-systems. Indeed, it assigns a different weight to each sub-system,

depending on its effectiveness. These weights are computed during a learning

phase, by a logistic regression. This method presents the advantage to take

into account the differences of efficiency between different sub-systems.

Other methods have been also presented for rank level fusion such as the

method of Saranli and Demirekler [Saranli 2001] that includes the three pre-

vious methods, and the method of Nandakumar et al. [] which is based on

the Bayesian approach.

• Fusion at decision level

It is the most abstract level of decision in a multi modality system. Indeed,

each system provides a binary decision in YES or NO form and the system of

decisions is to take a final decision according to a set of decisions. Generally,

the methods are based on votes such as ’OR’ and ’AND’ [Ross 2007]. The

first one consists of accepting the client if at least one sub-system recognized

the user. It is suitable for systems that can tolerate a low security. How-

ever, the second one consists to accept the client if and only if all systems

recognized the user [Ross 2007]. Thus, it is suitable only for high security

systems. The two previous methods are very simple, but rarely used. In-

deed, they degrade the performance of biometric multi-system in terms of

EER. The majority voting [Lam 1997] generates the final decision based on

the number of votes provided from each classifier. This method requires no

training phase, and no prior knowledge about the different sub-systems. On

the other hand, performances of sub-systems should be comparable. Oth-

erwise, a solution based on weighting the decision of each sub-system may

be employed by assigning a higher weight to the most reliable sub-systems

and this method is called weighted voting [Kuncheva 2004]. Other complex

methods, based on prior information regarding the performances of various

biometric sub-systems and presence of training phase, exist. For example,

we can cite methods based on Bayes theory [Xu 1992], the evidence theory
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of Dempster-Shafer [Xu 1992], the behavior knowledge space [Huang 1995],

etc. To conclude, all fusion methods at the decisions levels require less com-

putational complexity and less execution time, but use very little information

(0 or 1).

2.4 Why hand modality ?

The hand trait presents various advantages compared to other biometric modali-

ties. In fact, it is considered as attractive for the following reasons:

• The simplicity of hand acquisition with inexpensive devices [Kumar 2006a],

• The hand information may be extracted using low resolution images [Sidlauskas 1994],

• The hand trait is more acceptable by the public compared to other modalities

[Kukula 2006],

• The additional biometric modalities including palmprints and fingers may

be embedded in a developed hand shape biometric system [Kumar 2006a,

Yoruk 2006b].

2.4.1 Presentation of some biometric modalities of the hand

Several hand recognition systems, which describe the different parts of the hand

making the person’s identity, have been proposed. This section presents some

hand characteristics, namely hand shape, hand geometry, palmprint and fingers.

2.4.1.1 The hand Shape/geometry

The hand shape (or the silhouette of the hand, as presented in figure 2.12) has been

given little interest in the literature, in order to recognize individuals, in spite of

the important amount of research work proposed on shape matching in the field of
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Figure 2.12: Hand shape.

computer vision. Historically speaking, Jain and Duta [Jain 1999a] were the first

to analyze deformable shape and develop a method in which hand shapes are stored

and compared according to the mean alignment error. The main advantage of this

modality is that it is simple and easy to capture. Besides, it is not very sensitive

to the state of the hand, i.e., dirt and cuts will not prevent the functioning of the

system. However, it also presents defects which may make the system inaccurate.

In fact, different individuals may have almost similar hand shapes. Furthermore,

jewelry and accessories may represent a challenge for extracting the hand shape

information.

Hand geometry has also received much attention for hand biometrics. Also called

”hand measurements” in the literature, geometrical features present the princi-

pal features of the hand geometry which are adopted in the majority of hand

biometric systems. These features have the merit to be relatively invariant to

orientations of the fingers and the global hand positioning. Among these different

geometrical measurements, we may mention the size of the palm, the length of the

hand or fingers, the width and perimeters of hand and fingers, etc. [Guo 2012],

as displayed in figure 2.13. For example, Luque-Baena et al. [Luque-Baena 2013]

have extracted 403 geometrical features, including areas, perimeters, rectangu-

larity measure, compactness, aspect proportion, etc. In fact, this is the highest

number adopted in the literature in order to improve performances of the person

recognition system. Although geometrical features are easy to extract, they are

not sufficiently discriminating to be utilized for identification/verification tasks in

high security. Actually, the information of the hand shape is limited only to a sub-

set of features and the texture information cannot be employed. Therefore, some
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authors suggest the fusion of geometrical features with other hand characteristics

such as palmprint features [Kumar 2006a] or finger shapes [Oden 2003].

Figure 2.13: Hand geometry features.

2.4.1.2 The palmprint

The palmprint is one of the most commonly used biometric recognition techniques

especially for criminality. The palmprint presents the inner part of the hand (the

invisible part when the hand is closed) from the wrist to the finger roots (figure

2.14). It was defined in previous systems as the print of the palm by its pressure

on a given surface. In other words, it can be defined as palm template illustrating

the physical features of the skin pattern [Kumar 2009]. The usage of palmprint

features in the identification process was initially proposed by Shu and Zhang

[Shu 1998].

Figure 2.14: Palmprint region.

Palmprint modality may present different kinds of features that can be exploited

for the person recognition [Shu 1998, Panigrahy 2008]: (1) principal lines, (2)
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wrinkles or secondary creases and (3) ridges. All these features may characterize

a person since they are discriminant and stable over time. Concerning wrinckles

or secondary lines, they are thinner and more irregular than principal lines. Re-

garding ridges such as minutiae of fingerprints, they are very thin and regular. A

high resolution imaging is required for a good minutiae extraction [Lu 2003].

2.4.1.3 The fingers

The hand shape varies from one person to another due to the articulation of

fingers. Accordingly, some researchers have proposed to segment fingers from the

hand to separately model finger shapes (figure 2.15). Oden et al. [Oden 2003] have

proposed to model the shape of each person’s finger using implicit fourth degree

polynomial functions. Moreover, Keren invariants were extracted from the fitted

polynomials so as to be utilized as a feature invariant to affine transformations

[Keren 1994]. However, Ribaric and Fratric [Ribaric 2005] segmented the hand

into six sub-images describing the palm region and 5 finger surfaces. From these

sub-images, the most important features are extracted on the basis of Karhunen-

Loeve transform to acquire eigenfingers which are fused to eigenpalms. In another

work, Xiong et al. [Xiong 2005] identified multiple fingers aligned according to an

elliptical model, by Euclidean transformations.

Figure 2.15: Five finger surfaces.

2.4.2 Principal challenges of hand modality

The hand shape trait is a biometric modality designed for medium security appli-

cations. Therefore, it suffers from various challenges described as follows:
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1. Challenges based on environmental conditions

It concerns the background variation and lighting conditions changes (low/high

illumination). In fact, they are very substantial challenges for hand shape

and palmprint recognition systems. Some examples of environmental condi-

tion challenges are shown in figure 2.16.

Figure 2.16: Some examples of environmental challenges.

2. Challenges based on acquisition

Acquisition may cause noising due to pressure of users on glass plate or de-

formations ascribed to contactless acquisition devices. In fact, performances

of a biometric system are sensitive to samples quality and variations. Hence,

noisy samples may affect the accuracy of the system. Figure 2.17 demon-

strates some examples of acquisition challenges.

Figure 2.17: Some examples of acquisition challenges.

3. Challenges based on occlusions

The hand is an articulated object having many liberty degrees. Indeed,

the occlusions may include folded fingers, a closed fist, a closed palm not

parallel to the image plane. In addition, the hand size may change; position

and orientation affect the clarity of the regions of interest of the palmprint

or the finger regions. The presence of artifacts such as rings, bracelets, etc.

is also one of unavoidable difficulties in the case of a free use. Figure 2.18

reports some examples of occlusion challenges.
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Figure 2.18: Some examples of occlusion challenges.

4. Challenges based on execution time: biometric recognition systems grounded

on hand modality have to generate person’s decision as a low time as possible

to facilitate their use in real time applications.

The satisfaction of all these challenges, simultaneously, is difficult. Therefore, some

facilities may be made according to the intended use by imposing some restrictions

for users or environmental limits.

2.5 Conclusion

In this chapter, we have chiefly described the general context of biometry by

describing the different biometric modalities, the limitations of unimodal systems

and the advantages of multimodal biometrics. Subsequently, we have dealt with

the advantages and the challenges of hand biometric trait. The following chapter

will introduce a survey and an overview of different unimodal and multimodal

biometric recognition methods based on hand shape and palmprint modalities

that are presented in the literature.
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3.1 Introduction

Hand-shape modality is a physical biometric trait employed to characterize a per-

son using their hand silhouette or/and geometric features such as finger lengths

and widths, areas, perimeters, ratios, extracted from hand images. Compared to

other biometrical traits, the measurement of hand shape is simpler to achieve with

fast calculation. Historically speaking, hand geometry systems had longer imple-

mentation history than many other biometric modalities since they were firstly

proposed by Ernst in 1971 [Ernst 1971].

This chapter exhibits the different steps of a general hand biometric system as

well as an overview of hand shape modality, palmprint modality and multimodal

hand shape and palmprint approaches proposed in the literature.

3.2 Hand Shape Modality

A general model of hand recognition system is illustrated in Figure 3.1. To ensure

the persons verification, five steps are required including image acquisition, hand

detection, feature extraction, matching module and decision-making module. Each

step is described in the following subsections.

3.2.1 Hand image acquisition

The acquisition of hand images may be achieved by placing the hand in front

of a simple device such as a commercial scanner, a Webcam or a standard op-

tical camera with low/medium resolution. Most of the system devices furnish

their own illumination to have better quality of images with ambient lighting

[Kumar 2006a], or use the infrared light [Morales 2008] (figure 3.2) to solve the

segmentation problems of the hand in a real environment. The earlier stud-

ies of commercial systems [Sidlauskas 1988, Sidlauskas 1994] and research stud-

ies [Jain 1999a, Sanchez-Reillo 2000, Kumar 2006a, Golfarelli 1997, Jain 1999b]



Chapter 3. Hand shape and palmprint modalities: a survey 40

Figure 3.1: General hand recognition process.

integrated pins on the platform of the device to fix the placement of the hand.

Later on, several researchers indicated that these pins caused the deformation of

the hand shape and limited the hand placement, which can reduce user conve-

nience. Therefore, various devices have been proposed without any guidance and

any contact to freely acquire hand images [Xiong 2005, Guo 2012, Yoruk 2006b,

Adan 2008, Dutagaci 2006, Amayeh 2006, Morales 2008]. The most widely used

and public hand datasets are summarized in Table 3.1 and described as follows:

• IITD hand database: it is based on hand images collected from the stu-

dents and staff at IIT Delhi, New Delhi, India. IITD is a public contact-free

hand database [Kumar 2008, Kumar 2011a] which contains 1150 hand im-

ages. They are acquired using a digital CMOS camera from 235 subjects.

The images are acquired in different hand pose variations and collected in

an indoor environment employing a circular fluorescent illumination around

the camera lens. Five samples are captured from left hand at different times.

All images are in bitmap format with a resolution of 800 × 600. Moreover,

palmprint images are automatically cropped and normalized in 150 × 150

pixels.
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• GPDS150 hand database: It is a public database [Ferrer 2007] in which

hand images are collected from 150 users with 10 different acquisitions using

a desk scanner. These images have been captured from the right hand of

subjects. The placement of the hand is free over the acquisition surface; no

restrictions (templates or pegs) are imposed on users to acquire their hands.

The segmented palms as well as the contour of the hand with landmarks

(tips and valleys of the fingers) are also provided. All images are in jpeg

format, 120 dpi of resolution and 256 gray levels.

• Bosphorus hand database: It is created at the Bogazici University [Yoruk 2006b]

and intended for hand biometry research. Hand images are acquired from

more than 600 subjects varying from 20–50 years old, in different intra–class

pose variations. Six hand images per person in which three left hand images

and three right hand images are collected from each person at three different

sessions using an HP Scanjet 5300c scanner. All images are in bitmap format

with a resolution of 383 × 526.

• Biosecure multimodal biometric database: It has been developed in

order to integrate data related to several biometric modalities including face,

iris, hand, voice and signature. Concerning hand biometric modality, the

acquisition is performed using a Canon Eos camera from 750 subjects with

6 acquisitions for each subject. The resolution of images is of 2336 × 3504.

Some examples of acquisition devices are exhibited in figure 3.2.

Figure 3.2: Examples of hand acquisition devices [Morales 2008,
Kumar 2006a].
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Table 3.1: Some hand databases existing in the literature.

GPDS1 IITD hand DB2 Bosphorus hand BD 3 Biosecure4
Amayeh et al

[Amayeh 2009]

Guo et al

[Guo 2012]

Year 2005 2006 2006 2007 2009 2012
Number

of subjects
150 235 642 750 101 100

Number

of samples
10 5 6 6 10 60

Number

of images
1500 1175 3852 4500 1010 6000

Gray/Color Gray scale Gray scale Gray scale Color Gray scale Color
Resolution 1403×1021 800×600 382×525 2336×3504 480×640 640×480
Illumination Non controlled Semi controlled Non controlled Controlled Controlled Non controlled

Accessories N/A Rings
Rings, bracelets,

watches
Rings, bracelets N/A N/A

Devices Hp scanner Camera
Commercial
scanner

Canon Eos 30D
VGA resolution
CCD camera

Webcam +
infrared filter

Origin Spanish Indian Turkish French American Taiwanese

Examples

1www.gpds.ulpgc.es
2www4.comp.polyu.edu.hk/∼csajaykr/IITD/Database Palm.htm
3bosphorus.ee.boun.edu.tr/hand/Home.aspx
4biosecure.it−sudparis.eu
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3.2.2 Hand detection

Contour detection is a major key in object recognition field. Actually, a contour

represents, broadly, a border between adjacent areas in an image, having distinc-

tive brightness (or textures or colors). Indeed, edge detection techniques often

analyze the global image without taking into account the characteristics of its

different regions. Thus, the contours of the same image may be well detected in

some areas and poorly detected in others. To overcome this problem, it is neces-

sary to study some contour detection approaches and analyze their performances

[Missaoui 2005].

With regard to hand object detection, several methods have been proposed in the

literature and classified into skin color based methods and shape based methods.

However, the skin color may be exposed to some variations due to illumination

and background changes during acquisition. Therefore, we focus on hand detection

approaches founded on shape namely active contour based methods, active shape

model based methods and shape context based method.

3.2.2.1 Active contour

Active contour is a segmentation method proposed by Kass et al. [Kass 1988]

in 1988. It is based on contour detection in an image called active contours (or

snake). In fact, the principle of active contours is to evolve an initial curve towards

the object of interest. This curve is represented as a set of points in which the

number of points vary according to the desired accuracy (figure 3.3).

At the beginning, the contour is localized uniformly around the object of interest.

Thereafter, it will retract in order to follow the shapes as well as possible. Similarly,

an active contour may also dilate and try to fill the shape, thus, it will be located

inside. At each iteration, the algorithm will attempt to find the best position for

the contour in order to minimize derivatives according to the used constraints. The

algorithm stops when it is no possible to improve the position of the contour or

when the maximum number of iteration has bee reached. Accordingly, the concepts
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Figure 3.3: Evolution of active contour Γ(τ) toward the object of interest
[Lamard 2010].

of internal and external energies are used in order to characterize, respectively, the

contour shape and the position of the contour on the image by taking into account

the gradient lines.

These concepts are represented as the energy E given by the following equation:

Esnake(C) = Eint(C) + Eext(C) + Eimg(C) (3.1)

Where Eint is the internal energy related to the curve features such as height,

curvature, etc. and Eext is the external energy related to additional constraints

imposed by user in order to achieve the desired contour, such as minimum radius,

etc. However, Eimg represents the energy imposed by the image such as energy of

gradient, energy of intensity, etc. and C is the active contour curve. The purpose

of active contour is to minimize this energy Esnake until stabilization on minimum

local of its energy corresponding to the shape of the object of interest.

In hand recognition field, the work of D’Ornellas [D’Ornellas 2006] may be cited.

In fact, it has improved the snake technique in order to segment the hand for

biometric recognition using the hand shape. This improvement was based on

adding more nodes and the removal of redundant nodes in order to describe the

complexity of the extracted contour. The inserted and removed nodes are based on

the energy analysis of the active contour algorithm. The dynamic handling related

to the number of nodes allows a better capture and track of the hand geometry.
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3.2.2.2 Active Shape Model (ASM)

Active Shape Models (ASM) were originally introduced by Cootes and Taylor in

1992 [Cootes 1992], so as to locate deformable objects in medical images. They

have been then extended to hand segmentation, hand tracking, face segmentation,

etc. In fact, they are statistical shape models of an object which are iteratively

deformed to be adjusted to a copy of this object in a new image. Active shape

models are based on a statistical training from shapes set to achieve a model of

global variations. This global model is named Point Distribution Model (PDM)

which is deformed, in the image to be segmented, until fitting the object to be

detected. To build the ASM, an images database of the object of interest is pro-

vided with different possible variations. Each object is manually labeled by a

set of feature points or ”landmarks”. Hence, each shape will be represented as a

predefined number of points depending on the object complexity and the desired

level of description. Furthermore, the active models use an iterative algorithm for

translating, rotating and scaling point sets in order to align them. This alignment

eliminates laying variations and maintains only shape variations. Thereafter, ac-

tive models apply the Principal Component Analysis (PCA) on the set of aligned

shapes in order to find the mean position of points and the principal variation di-

rections. Once the training is performed, the shape contour to be segmented in the

new image is localized using an iterative algorithm [Cootes 1995]. Nevertheless,

the discrimination of this method depends highly on the training set representa-

tion. In addition, the manually labeling step is consuming and the initialization

phase affects its efficiency i.e. if the ASM is badly positioned upon initialization,

it will not converge to the object of interest. Therefore, the correct normalization

is required in order to ensure the convergence of this algorithm.

Regarding hand recognition field, the active shape models have been used by Yuan

and Barner [Yuan 2006] in the context of the hand gesture recognition. The pur-

pose of this approach is the classification of hand gestures via their shape contour.

The training of hand shape models is performed through a sequence of hand shapes

in which the contour is obtained. Indeed, the contour is represented as a vector
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formed by a fixed number of points. It is then classified and compared to the best

similar model using Euclidean distance. However, positioning, scaling and rotat-

ing are different among various extracted hand shapes. Therefore, an alignment

phase is applied to the shapes set using Procrustes analysis. After alignment, the

deviation within the shapes is represented and the principal component analysis

(PCA) is employed on this deviation in order to achieve the mean shape. Finally,

to localize the contour of the tested hand image, an iterative algorithm is used in

order to deform the mean shape. The convergence is reached after 92 iterations.

The classification phase is then performed using Support Vector Machines (SVM)

through the ASMs as prior information, for gesture classification. Experiments

have demonstrated good recognition rate compared to feature based approaches.

3.2.2.3 Active Appearance Model (AAM)

Active Appearance Model (AAM) represents an extension of active shape models

(ASM) introduced also by Cootes et al. [Cootes 1998]. They have the property

to consider, additionally, texture information as well as the shape. Furthermore,

each information inside the object region is taken into account rather than taking

only modeled edges. The AAMs are based, primarily, on the construction of shape

variation model as in ASMs and secondly on the construction of texture variation

model. Finally, these two models are concatenated in order to obtain a single

appearance model.

Using the active appearance model, Teng et al. [Teng 2005] suggested a method

for hand appearance identification based on AAM. In fact, to build the AAM, a

training data including N images is necessary, in which n feature points are manu-

ally labeled on the contour of the hand. With respect to testing data, the authors

employed Mahalanobis distance so as to classify hand appearance images for user

verification. Results obtained are promising and compared to other existing meth-

ods.

On the other hand, Gross et al. [Gross 2007] proposed a robust hand geometry

method for persons identification using active appearance model. Actually, the
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AAM is built in order to track the hands of persons. According to the landmark

points localized on the hand given from the fitted AAM (employed to update the

position of the model in each sample), the geometrical features of the hand are

extracted for persons identification. These features are then compared to the hand

database. Results obtained are promising with an identification accuracy in excess

of 90% using only five characteristics.

The study and application of these models bring out some inconveniences. As

active shape model, the discrimination power of this method is directly depending

on the representation of training set. In addition, the manually labeling task of

training set images is tedious and time consuming especially for high training sets,

which is necessary to construct the good model. Moreover, the annotation has

to be performed with the highest possible precision, by an expert for example.

Nevertheless, imprecision of feature point positions may not be excluded defini-

tively, which induces uncontrolled errors in the final model. On the other hand,

the dependence in initialization is another inconvenience. In fact, the position of

the object of interest should be known in advance. This problem may be partially

resolved by using a multi resolution method, but a preliminary localization step

is required for guaranteed results.

3.2.2.4 Hand segmentation

The aim of hand segmentation as other hand detection methods, is to extract the

hand region from background. Indeed, the segmentation of a two-object scene,

which consists of the hand and the background is not a difficult task. Nonetheless,

many factors may affect badly the segmentation accuracy such as artifacts due to

wristwatch or overlapping cuffs, rings, or creases around the boundaries because of

too much light or heavy pressing. Moreover, the tracking of the hand has to be very

accurate and appropriate, since the variations between hands of different persons

are usually thin. Thus, it is necessary to segment the hand shape accurately in

order to maintain the discrimination between subjects. To reach that, several

techniques for hand shape segmentation are employed by researchers. Indeed,
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constrained by fixed pegs, the authors in [Jain 1999a] employed the mean-shift

unsupervised segmentation method followed by a contour detection algorithm in

order to calculate the hand shape. On the other hand, constrained by other

circumstances during image acquisition, Amayeh et al. [Amayeh 2009] have firstly

fixed a threshold value for the extraction of silhouettes of hand and arm, and

secondly applied a morphological closing method in order to crop the arm region

and maintain only hand shape part.

Regarding peg-free and contact-free modes, some authors [Hu 2012, Kumar 2003,

Ferrer 2011] employed OTSU thresholding algorithm for segmentation and en-

couraging results were achieved. However, these works have not considered dif-

ferent factors like accessories (watches, bracelets and rings), or some artifacts of

dirty hands, which have a bed effect on segmentation performance using sim-

ply thresholding algorithms. To overcome this issue, researchers [Yoruk 2006b,

Dutagaci 2008] employed the K-means clustering method for RGB color images

and morphological correction methods followed by ring removal algorithm in order

to separate the hand from the background.

3.2.3 Hand feature extraction

3.2.3.1 Feature-based hand geometry

A set of characteristics describing the hand shape may be extracted from hand

images. Generally, the most widely used characteristics discriminating the shape

of the hand are geometrical measurements such as hand length, finger lengths

and widths, aspect ratio of the hand or fingers, surface, etc. To compute these

distances, some researchers have proposed to model the hand shape based on a set

of points located as a set of 2-D coordinates, including five tips and four valleys

of the hand. In the literature, the number of geometric characteristics has varied

mostly between 11 and 40 [Sanchez-Reillo 2000, Kang 2014, Yuan 2011], while

Luque-baena et al extracted 403 geometrical features from fingers and hand shape

separately [Luque-Baena 2013].
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3.2.3.2 Feature-based hand shape and texture

Some research works have defined other type of features in order to describe the

hand shape. In fact, various features are extracted from both shape information

and texture information [Yoruk 2006b], namely Independent Component Analysis

(ICA) features, Principal Component Analysis (PCA) features and Angular Radial

Transform (ART). These features show good performaces for hand biometrics. In

fact, ICA is a technique in which independant variables are statistically extracted

from a mixture of them. Yoruk et al. [Yoruk 2006b] applied ICA analysis tool

alternately on binary silhouette images in order to extract the prototype of shape

information and the appearance data forming shape and texture information. On

the other hand, PCA is a statistical technique which employs an orthogonal trans-

formation in order to convert a set of observations of correlated variables into a

set of values of linearly uncorrelated variables named principal components. For

hand biometrics [Yoruk 2006b], a set of landmark points localized on the contour

of the hand is represented as variables for PCA features extraction. ART features

have also been extracted to describe the edge of the hand, in the work of Yoruk et

al.[Yoruk 2006b]. Indeed, this transform is defined as the region-based shape de-

scriptor which describes the distribution of pixels in a region or an object. Hence,

the ART coefficients are represented as polar coordinates of the hand contour.

3.2.3.3 Feature-based hand contour

Hu et al. [Hu 2012] proposed a hand shape recognition method based on Coherent

Distance Shape Contexts (CDSC) which are grounded, in their turn, on Shape

Contexts (SC) and Inner-distance Shape Contexts (IDSC). These features (CDSC)

are extracted principally from fingers contour and present several advantages. In

fact, discriminative features from hand shape are captured, moreover, they can

overcome the problem of inexact matching between landmark points of the hand.

Thus, these descriptors are robust to hand poses and different deformations of

fingers.
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3.2.4 Matching module

The matching step incorporates the comparison of feature vectors extracted from a

claimed person to samples stored in the database on the one hand, and the compu-

tation of the matching score (or similarity score) on the other hand. This score can

be generally calculated using various metric distances such as Euclidean distance

[Sanchez-Reillo 2000, Amayeh 2006], Mahalanobis distance [Pavesic 2004], corre-

lation coefficient [Kumar 2006a, Park 2013], absolute distance (L1) [Yoruk 2006b]

or combining these different distances in the case of multimodal biometric systems

[Pavesic 2004].

The matching score is a measure of similarity between the hand image of a claimed

user and the samples stored in database. With respect to the shape of the hand,

different people may have similar hand shapes and this possibility increases espe-

cially with a large population. Therefore, different approaches have been suggested

in the literature to correctly envisage the identity of the person. For example,

researchers have proposed to train a set of classifiers using the support vector

machines (SVM) since this technique mostly provides better generalization per-

formance [Morales 2008, Goh 2012, Ferrer 2011]. The idea is to train a classifier

for each enrolled person by considering the set of feature vectors associated with

the input person as positive templates, and the other feature vectors as negative

templates. The matching score is produced using the trained classifier.

3.2.5 Decision-making module

According to the previously computed matching score, the final decision about the

identity of the person (identification) or the person who claims his/her identity

(verification) is made. In verification mode, a specific threshold value is chosen.

In fact, if the matching score is above the threshold value (hand images from the

same person), the person is accepted, otherwise he/she is rejected. The threshold

value is selected depending on some important rates i.e. the equivalence of False

Acceptance Rate (FAR) and False Rejection Rate (FRR), which provide the Equal
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Error Rate (EER). In identification mode, the input feature vector is affected by

the identity of the nearest template stored in database. If the distance is less than

the verification threshold, the claimed identity is considered as genuine, otherwise

it is considered as an impostor.

3.2.6 Discussion and overview of different hand shape ap-

proaches

A brief study of different hand shape approaches for person recognition is pre-

sented. Considering this study, various hand databases have been summarized in

section 3.2.1. We also displayed several methods for hand contour detection, such

as active contour, active shape model and active appearance model. These meth-

ods are robust to illumination changes, however, they are complex and require

much time, which is against the objectives of biometric systems. Moreover, they

are not robust to different hand orientation changes or to different occlusions. In

addition, these methods disclose other drawbacks such as the initialization of the

shape which has to be close to the searched object during the detection phase.

Therefore, other hand segmentation methods have been proposed in the literature

which are based on binarization, elimination of cavities and artifacts. These meth-

ods are simple, speedy and showed satisfying detection in the literature especially

for images with dark background.

This study also focused on feature extraction methods that are categorized into:

(1) feature-based hand geometry, (2) feature-based hand shape and texture and (3)

Feature-based hand contour. In fact, feature-based hand geometry treats geomet-

rical measurements of the hand which are based on lengths and widths of fingers,

the palm and the hand. These features are robust to rotation and translation,

however, they are not robust to scale or some distortions. Moreover, a huge num-

ber of measurements is required in order to discriminate features from a person

to another for satisfying results, and this may increase computational complexity.

On the other hand, feature-based hand shape and texture describe the silhouette
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and appearance information. In fact, they are based on PCA (Principal Compo-

nent Analysis), ICA (Independent Component Analysis) and ART (Axial Radial

Transform) features and demonstrate good performances for hand biometric sys-

tems [Yoruk 2006b]. Regarding feature-based hand contour, they depict the shape

of the hand by localizing landmark points on the hand. These methods are robust

to different hand deformations and poses, however, they may cause computational

complexity to compute all distances between all landmark points.

Table 3.2 summarizes the different unimodal hand shape and geometry approaches,

proposed in the literature. Indeed, concerning hand shape features, promising re-

sults have been obtained using shape coding and coherent distance shape contexts,

achieving CIR=99.92% and CIR=99.60%, respectively [Briceno 2011, Hu 2012].

However, in these works, experiments were performed on a high number of sam-

ples for each subject (10 samples). On the other hand, hand geometry approaches

have also been proposed, by calculating the geometrical features of the hand. In

fact, the computational complexity of hand geometry systems may be satisfying,

due to the simplicity of used techniques. Nevertheless, performances achieved are

less promising than hand shape approaches. For example, Yuan et al. [Yuan 2011]

extracted 11 geometric features of the hand for persons verification, using a pro-

prietary database which contains 1000 hand images. Experiments achieved a

RR=94.2%. However, Guo et al. [Guo 2012] obtained a CIR=96.23% by the

extraction of 34 geometrical features of the hand from 6000 hand images. On the

other hand, Luque-Baena et al. [Luque-Baena 2013] achieved an EER=4.51% us-

ing the IITD hand database and an EER=4.64% using the CASIA hand database.

Nevertheless, the authors extracted 403 geometrical features and adopted the Ge-

netic Algorithms methodology in order to select the most pertinent features, which

increase the time complexity of this approach.

Therefore, we have the idea, in our proposed work, to combine the hand shape

and geometry features as a multi-representation method.
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Table 3.2: Comparison of some hand shape/geometry biometric systems proposed in the literature.

Reference Biometric features Database
Number
of images

Characteristics
Performances

(%)

[Briceno 2011] Hand shape GPDS 1440 Shape coding CIRa=99.92

[Yuan 2011] Hand geometry proprietary 1000 11 Geometrical features RRb=94.2

[Hu 2012] Hand shape CASIIM 4000
Coherent Distance
Shape Contexts

CIR=99.60
EERc=0.9

[Guo 2012] Hand geometry Proprietary 6000 34 Geometrical features
CIR = 96.23
FAR=1.85

[Luque-Baena 2013] Hand geometry
-Casia DB
-IITD

-600
-822

403 Geometric features
-EER=4.64
-EER=4.51

[Boucetta 2013] Hand shape Casia database 500
Hu moments and
Legendre moments

RR=97.08

aCIR : Correct Identification Rate ; bRR : Recognition Rate ; cEER : Error Equal Rate ;
dFAR : False Acceptance Rate ; eFRR : False Rejection Rate ;
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3.3 Palmprint modality

Palmprint is the second physical biometric technology used in our recognition so-

lution so as to characterize a person. In fact, the palmprint represent the texture

part of the hand trait. It has the credit of simplicity of collection and user friendli-

ness as well as high recognition accuracy and reliability. However, some problems

may occur during acquisition. Actually, palmprint is usually acquired using a

touchless device. Since angle and position change during capture process, it is un-

avoidable to have some geometrical transformations such as rotation, translation,

scale changes or illumination variations, which would degrade the performance

and the robustness of a palmprint recognition system.

3.3.1 Characteristics of palmprint modality

The palmprint is presented by several characteristics which are classified into three

categories according to their scales: principal lines, wrinkles, ridges and minutiae

as shown in figure 3.4. It is noted that principal lines and wrinkles may be ex-

tracted from a resolution that is less than 100 dpi, whereas the ridges and minutiae

may be extracted from a resolution of 400 dpi [Jain 2009]. The advantage of these

characteristics is that they are unique and invariable over time.

Figure 3.4: Characteristics of palmprint modality

Principal lines are the most visible and clear ones which correspond to the flexion

creases of the hand. Three prominent creases may be observed in the majority

of palms named distal transverse crease, proximal transverse crease and radial
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transverse crease [Jain 2009]. Although principal lines are formed with the same

manner for all persons, there is a great variability of this line between persons

because of the effects of opening and closing of the hand.

The wrinkles of the palm are thinner and more irregular than principal lines which

make a random pattern allowing the increase of uniqueness of the palmprint. In

fact, the face of the palmprint contains a large number of wrinkles which are stable

over time [Dutagaci 2008].

The ridges are only located on the face of the palmprint and the sole of the

foot. The ridges of the palm are the thinnest and the most regular lines and they

resemble the wrinkles of fingerprints. The shapes of wrinkles differ from one person

to another, since they may be considered as a curve or as parallel lines disposed.

The minutiae are the points localized on the continuity change of the ridges. In

fact, they are the most commonly used features in fingerprint recognition thanks

to their reliability.

3.3.2 Palmprint image acquisition

As hand acquisition, palmprint acquisition may be performed by placing the palm

directly on the surface of the device forming a contact palmprint acquisition using

for example a commercial scanner, or in front of a simple device like a webcam

or a digital camera without direct contact making a contactless or a toucheless

palmprint acquisition device. The earlier research studies proposed to integrate

pegs to the platform of the acquisition device in order to fix the position of the

palm. However, other studies demonstrated later that the use of pegs may produce

the deformation of palms and limit the placement of the palm. For these reasons,

other devices have been designed without any direct contact nor guiding pegs

in order to acquire freely palmprint images. The most widely used and public

palmprint datasets are summarized in table 3.3 and described as follows:
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• PolyU palmprint database: It was elaborated in the University of Hong

Kong Polytechnic, in 2003, and intended for palmprint biometry research.

Palmprint images are acquired from 250 volunteers, comprising 195 males

and 55 females. The age range is from 20 to 60 years old. The samples were

collected in two distinct sessions. In each session, the subject was requested

to provide 6 images for every palm. Hence, 24 images of each illumination

from 2 palms were taken from each subject. In total, for one illumination,

the database includes 6000 images from 500 different palms.

• CASIA palmprint database: It was collected at Chinese Academy of Sciences’

Institute of Automation (CASIA), in 2008, containing 5,502 palmprint im-

ages acquired from 312 subjects. The palmprint images of both left and

right palms are collected for each subject. All the palmprint images are 8

bit gray-level. The device does not restrict pegs to limit positions and pos-

tures of palms. Subjects are only required to place their palm in front of

the device and put it on a uniform colored background. The illumination is

distributed evenly and the capture of images is performed utilizing a fixed

CMOS camera on the top of the acquisition device.

• IITK palmprint database: It is a public database acquired in Indian Institute

of Technology of Kanpur (IITK), in 2009, which contains 549 palmprint

images collected from 150 subjects. Each palmprint image has been captured

in gray level, in a resolution of 200 dots per inch (dpi) using a low cost flat

bed scanner. The user is independent to rotate their hand around ±35◦

symmetric to surface scanner device.

Some examples of acquisition devices are presented in figure 3.5.

5www4.comp.polyu.edu.hk/ biometrics/MultispectralPalmprint/MSP.htm
6biometrics.idealtest.org/dbDetailForUser.do?id=5
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Figure 3.5: Examples of palmprint acquisition devices [Zhang 2010].

Table 3.3: Some palmprint databases existing in the literature.

PolyU5 CASIA6 IITK

Year 2003 2008 2009

Number

of subjects
250 312 150

Number

of samples
24 16 3

Number

of images
6000 5502 549

Gray/Color Gray scale Gray scale Gray scale

Resolution 352×288 640×480 200 dpi

Illumination
Red, green, blue,

NIR band

Evently distributed

illumination
Non controlled

Devices CCD Camera CMOS camera Scanner

Origin Chinese Chinese Indian

Examples

3.3.3 Palmprint Region Of Interest (ROI) extraction

The extraction of ROI is a crucial step in palmprint recognition. Several works

have been proposed. Tiwari et al. [Tiwari 2013] detected chiefly finger tip and

valley coordinates based on local minima and maxima of the hand contour. Af-

terwards, the valley point V1, localized between ring and little fingers, and the

valley point V 2, localized between index and middle fingers, were linked with a

line. Subsequently, at these two points V1 and V2, two lines S1 and S2 were traced

at angles 45◦ and 60◦, respectively. The two midpoints N1 and N2 of the segments
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V1−S1 and V2−S2 were represented using the two points T1 and T2 which were the

intersection points of S1 and S2 with the hand contour. Finally, the line segment

T1−T2 was the side of the square region representing the palmprint ROI, as shown

in figure 3.6.

Figure 3.6: ROI extraction of Tiwari et al. [Tiwari 2013]: (a) hand image, (b)
ROI detection on hand contour, (c) extracted region square of palmprint ROI.

On the other hand, Hammami et al. [Hammami 2014] extracted the palmprint

ROI, regardless the distance between the acquisition device and the hand. In fact,

it is based on the localization of four valleys from the contour of the hand. These

valleys were detected using the radial distance technique. The palmprint ROI

extraction was performed as follows:

• The line between the valleys A and B was drawn.

• The mediator [OE] of the segment [AB] was drawn, in which [OE] =

1/2[AB].

• The segment passing through the point E, which is perpendicular to the

segment [OE].

• The intersection of this segment with the left and right borders of the hand,

forms the two landmarks F1 and F2. The width of the palm L was deter-

mined using the Euclidean distance between F1 and F2.

• The segment [OO1], which is perpendicular to the segment [AB], was traced

with [OO1] = 1/10L.
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Other researchers [Wu 2006] proposed to use filter to detect line directions (0◦,

45◦, 90◦ and 135◦) for principal lines and wrinkles extraction. Their structure is

represented as a code using Chain Code method and a similarity score is used, in

matching step, to compute the proportion of similar points between two palmprint

images. Promising performances are achieved on 400 images obtaining 0.84% of

EER. Wu et al. suggested previously to reduce time and complexity of the method.

Therefore, they developed a method allowing the classification of palmprint images

based on principal lines extraction using two steps. The first one consists in using

filter to detect line directions for the extraction of initial part of principal lines.

The second one consists in applying a recursive process to extract the whole lines

depending on the extracted part. Finally, the palmprints are classified into six

categories according to the number of principal lines as well as their intersections.

This method obtains an accuracy rate of 96.03% using 13800 images acquired

from 1380 persons and presents the merit of reducing time and complexity of

recognition, since the input palmprint is compared only to those of the same

category. However, the extraction of all principal lines is complex and requires too

much time.

On the other hand, Sirinivas and Gupta [Srinivas 2009] developed a palmprint

verification system based on SURF (Speeded Up Robust Features) descriptors.

Initially, the acquisition of hand images was captured using a low cost scanner.

Then, a preprocessing step is performed allowing the extraction of palmprint ROI.

Regarding the matching step, a sub-image matching process is proposed in order to

increase the speed of matching module. Indeed, the extracted palmprint image is

decomposed into sub-images and the descriptors of corresponding sub-images are

matched. The final number of matched points between the different sub-images

is computed and considered form final decision. Experimental results exhibits

promising performances for palmprint verification task.

Wu et al. [Wu 2015] proposed a palmprint verification method based on SIFT

(Scale Invariant Feature Transform) descriptors. In fact , a model is constructed by

approximating non-linearly deformed palm images with piecewise-linear deformed

stable regions. Therefore, the KPBG (KeyPoint based Block Growing) method
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is proposed. It is based on an iterative M-estimator sample consensus approach

using SIFT features. This approach is invented so as to calculate piecewise-linear

transformations for approximating the non-linear palmprint deformations, and the

stable regions which are conformed to linear transformations are considered using

block growing method. Matching scores are measured according to these stable

regions for final decision. Experimental results demonstrate the efficiency of this

method for palmprint verification field.

Recently, Luo et al. [Luo 2016] have presented a new LBP (Local Binary Pattern)

structure descriptor named Local Line Directional Patterns (LLDP) for palmprint

recognition. The purpose of this descriptor is to encode the structure of a local

neighborhood from the analyzed information of directional line, computed in 12

directions using the MFRAT (Modified Finite Radon Transform) and Gabor filters.

Experiments assessed on four databases reveal the robustness of this method and

report that this approach outperforms existing LPB descriptors.

3.3.4.2 Global approaches

It is based on extracting global information of palmprints rather than using specif-

ically principal lines or wrinkles features of palmprints.

Zuo et al. [Zuo 2010] proposed a compact representation for multiscale palm line

orientation features. Moreover, they investigated a new method named the Sparse

Multiscale Competitive Code (SMCC). In fact, this method defined primarily a

bank of filters relative to second Gaussian derivatives with different scales and

orientations. Afterwards, the sparse coding has been used in order to obtain an

efficient estimation of the multiscale orientation area. Finally, the competitive

code has been employed for encoding the dominant orientation. Experiments,

evaluated using two popular palmprint databases (PolyU and CASIA), indicated

that the SMCC method is efficient and offers higher verification rates compared

to other existing verification approaches, even using a smaller template size.
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Wang et al. [Wang 2012] proposed a global texture method for palmprint recog-

nition based on decomposition using 2D-Gabor Wavelets features. At first, palm-

print images are preprocessed and normalized in the position, orientation and

illumination. Then, the decomposition of these normalized images into various

directional and multiscale subband is performed using Gabor filters and each Ga-

bor subband, in turn, is decomposed into several series of binary images using

PCNN (pulse coupled neural network). Entropies of these binary images are com-

puted and considered as features. The identification phase is carried out using

SVM (support vector machine) classifier. Experiments reveal good performances

and prove the robustness of this method to variation of position, orientation and

illumination in comparison to other texture methods.

Guo et al. [Guo 2014] investigated a palmprint recognition method based on

HEBD (Horizontally Expanded Blanket Dimension). In fact, blanket dimension is

a method allowing the computation of the image surface dimension by employing

a blanket technique which captures texture features at different spatial resolu-

tions. The robustness of horizontally, vertically and multi-scale expanded blanket

dimensions were compared. Experimental results evaluated on PolyU and CA-

SIA palmprint databases show the efficiency of multi-scale HEBD. Indeed, a high

recognition rate is obtained with less execution time.

Recently, Hong et al. [Hong 2016] have developed a palmprint recognition system

based on fast Vese-Osher decomposition. This system proposed, firstly, a Gaus-

sian defocus degradation model (GDDM) in order to characterize and process the

blurred images of palmprints. Secondly, the structure and texture layers of blurred

images are made using the fast Vese-Osher decomposition model. According to

this, the structure layer (SL) proves its stability and robustness compared to tex-

ture layer. Hence, a new descriptor based on the WHOG-LSP (weighted histogram

of oriented gradient for locally selected pattern) is employed in order to extract dis-

criminant features from the SL of blurred images. Finally, the similarity measure

is computed using the normalized correlation coefficient. Experiments on PolyU

and IITD palmprint databases demonstrate the robustness and effectiveness of

this system.
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3.3.5 Overview of different palmprint approaches

Recent palmprint recognition approaches are presented and summarized in table

3.4. In fact, several works have been proposed in the literature for palmprint

identification and verification. For example, Ghandehari et al. [Ghandehari 2012]

suggested a palmprint identification and verification method based on local PHOG

(Pyramidal Histogram Oriented Gradients) features, extracted from each scale of

the palmprint. This allows the extraction of reliable lines with high contrast and

a high accuracy with CIR=99.85% is achieved. It can be seen from table 3.4 that

promising performances have been achieved especially for the PolyU palmprint

database (CIR=99.36 % [Jing 2013], IR=99.97% [Tiwari 2013], GAR=99.39% [Yue 2014],

EER=0.6% [Malik 2011]), containing a high number of palmprint images (7752 im-

ages). However, for other databases, namely CASIA palmprint database and IITD

hand database, palmprint recognition approaches achieved less performance rates

(GAR=96.40% [Yue 2014] for CASIA DB and IR=92% [Luo 2016] for IITD DB).

This may be caused depending on the environmental conditions (illumination, im-

ages resolution) during acquisition module of the different databases. In fact, the

images of CASIA database were acquired using a web camera which makes the

quality of images not as good as images of PolyU database. Moreover, CASIA and

IITD are contact-free palmprint databases in which there are no palm positions

restriction and no pegs limitation, during data acquisition.
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Table 3.4: Comparison of some palmprint biometric systems proposed in the literature.

Year Biometric features Database
Number of
images

Characteristics Performances (%)

[Malik 2011] Principal lines PolyU 600 Wavelets + PCAg -FAR=0.06
-FRR=0.06

[Ghandehari 2012] Principal lines PolyU 7752
Pyramid Histogram
Oriented Gradientsl

CIR=99.85%

[Chakraborty 2013] Texture information Proprietary 500
Dual tree complex wavelet
transform (DCTWT)g

Accuracy=98.35

[Jing 2013] Texture information
-PolyU
-MSP

-8000
-6000

Two-phase test samples
representation (TPTSR)l

-EER=0.64
-EER=0.335

[Tiwari 2013] Texture information
-IITK
-CASIA
-PolyU

-549
-5238
-7752

Local structure tensor and
force field transformationl

-IRa=100
-IR=99.89
-IR=99.97

Continued Next Page . . .

aIR : Identification Rate ; bGAR : Genuine Acceptance Rate;

l : Local approach; g : Global approach
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Reference Biometric features Database
Number of
images

Characteristics Performances (%)

[Yue 2014] Principal lines
-PolyU
-CASIA

-7752
-5237

Consistent orientation
pattern (COP) hashingl

-GARb=99.39
-GAR=96.40

[Guo 2014] Texture information
-PolyU
-CASIA

-7752
-5502

Multi-scale horizontally
expanded blanket dimension (HEBD)g

-EER=0.1
-EER=0.5

[Hong 2016] Texture information
-PolyU
-IITD

-7752
-1175

Fast Vese-Osher
decomposition modelg

-EER=0.107
-EER=0.92

[Luo 2016] Texture information

-PolyU
-IITK

-Cross-sensor
-IITD

-7752
-6000
-12000
-2596

Local line directional
patterns (LLDP)l

-IR=98.45
-IR=100
-IR=100
-IR=92



Chapter 3. Hand shape and palmprint modalities: a survey 66

3.4 Multimodal hand shape and palmprint bio-

metrics

3.4.1 Challenges of using multimodality

Despite the expected robustness of multimodal biometric systems, they are still

limited in terms of their time complexity. In fact, they generally require more time

for user registration, which harms some users and reduces their friendliness. Ulti-

mately, the accuracy of a multimodal system depends effectively on the used fusion

strategy. Indeed, the recognition rate can be lower than a monomodal system if

the adopted technique for combining the different sources is not appropriate.

3.4.2 Design of multimodal biometric systems

During the conception of a multimodal biometric system, it is necessary to take

into account some factors that impact the structure of a multimodal biometric

system which are described as follows:

• Cost: What is the trade-off between additional cost and performance im-

provement in a biometric system? In fact, cost depends on the number of

employed sensors, the time of biometric data acquisition, the requirements

of storage, the time of algorithm processing and the degree of convenience

perceived by the user.

• Biometric information sources: What are the different biometric informa-

tion sources to be used and what are the most relevant ones for a given

application?
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• The acquisition and the processing sequence: Should biometric modalities

be acquired simultaneously or in series? Moreover, should the acquired in-

formation be treated simultaneously or sequentially? Depending on the ap-

plication scenario, an acquisition and a suitable processing architecture have

to be selected.

• Information type: What type of information (features, matching score, de-

cision. . . ) have to be fused?

• Fusion method: What fusion scheme should be considered to combine the

information presented by multiple biometric sources? The choice of the

fusion level is the most important topic in the design of a multimodal system

and it has a considerable impact on the performance of the system. The

optimal method may be obtained by examining the performance gain at

different levels.

It may be noted that the majority of conception choices are based on cost–gain

analysis. Typically, there is a trade-off between the additional cost and perfor-

mance improvement in a multimodal biometric system.

3.4.3 Overview and discussion of hand shape and palm-

print fusion approaches

It is really difficult to establish a comparison between recently published different

methods. In fact, depending on each specific environment and application, various

factors should be taken into account in order to choose the most appropriate

one. Thus, principal characteristics of the recent multimodal approaches of hand

shape and palmprint modalities, appeared in different conferences and journals,

are summarized in table 3.5.

As it can be seen from table 3.5, the most widely used fusion levels in multi-

modal systems are feature level and score level. In fact, multi-biometric methods

have been proposed, fusing hand geometry and palmprint modalities [Prasad 2009,
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Wang 2009]. The fusion was performed at feature level and on RR≈97% was

achieved. On the other hand, Liliana et al. [Liliana 2012] fused hand shape and

palmprint modalities at feature level. Nevertheless, a rather weak performance was

achieved (IR=89%) for only 200 hand images. The multi-instance fusion of left

and right hand geometry or left and right palmprints has also been presented at

feature level [Asish 2015, Leng 2015]. These works offer promising performances

by achieving CIR=99.5% and IR=99.7% using, respectively, 603 and 2020 hand

images [Asish 2015, Leng 2015].

With respect to the fusion at score level, a multi-representation fusion method has

been proposed by Chen [Chen 2008], fusing two descriptors namely SIFT descrip-

tors and Symbolic Aggregate approXimation (SAX) descriptors extracted from

palmprint images. Experiments obtained an EER=0.37% using 7752 palmprint

images. On the other hand, Kang et al. [Kang 2014] proposed to fuse Fourier

descriptors and finger area function in order to describe the hand geometry. Ex-

periments using 1914 hand images revealed an EER=3.69%. However, Sharma

et al. [Sharma 2015] combined hand shape and geometry features at matching

score level. The evaluation of this method is performed using 500 and 1200 hand

image, obtaining EER=0.31% and EER=0.52%, respectively. In the case of multi-

instance fusion [Xu 2015], left and right palmprints are fused. The best perfor-

mance rate achieved an IR=99.64% using palmCode features with 3740 palmprint

images of PolyU palmprint database. Moreover, Orthogonal Line Ordinal Features

(OLOF) and SIFT descriptors were fused and an IR=99.57% was obtained using

IITD hand database [Xu 2015]. Ferrer et al. [Ferrer 2011] fused 15 geometrical

features from hand geometry and Gaussian filter from palmprint modality at score

level. Different databases were used in experiments, namely GPDS, IITD and a

proprietary database. In this respect, results showed promising performances ob-

taining an EER<1%.

The fusion at decision level is rarely used (as seen in table 3.5) since it treats less

information compared to other fusion levels. However, good performances may be

achieved at this level. For example, Asish et al. [Asish 2015] achieved promising
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performances (FAR=0.625%) by fusing left and right hands but using only 603

hand images.

3.5 Conclusion

In this chapter, we have presented a survey of hand shape and palmprint modali-

ties. Firstly, the different existing databases of hand shape and palmprint modali-

ties are summarized. Then, an overview of hand shape and palmprint approaches

are discussed and compared. On the other hand, the multimodality challenges

are described and the different hand shape and palmprint fusion approaches are

discussed.

The second part of this manuscript will cope with the different contributions pro-

posed in this thesis.
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Table 3.5: Comparison of some fusion approaches of hand shape and palmprint modalalities.

Reference Modality Multi-type Database
Number
of images

Features
Fusion
level

Performances
(%)

[Chen 2008] Palmprint
Multi-
representation

PolyU 7752 SIFT + SAX Score EER=0.37

[Adan 2008]
Left/Right
hand’s contours

Multi-instance Proprietary 5640
Geometric
features

Feature
-FAR=1.3
-FRR=1.3
-IR=97.6

[Prasad 2009]
Hand geometry
+ Palmprint

Multi-biometrics Proprietary 240
-Geometric
features

-Wavelet features
Feature RR=97.5

[Wang 2009]
Hand geometry
+ Palmprint

Multi-biometrics Proprietary 1560
-Contour features
-Wavelet features

Features
-FAR=0.35
-FRR=5.7

[Ferrer 2011]
Hand geometry
+ Palmprint

Multi-biometrics
-GPDS
-IITD

-Proprietary

-1500
-2340
-1000

-15 geometric features
-Gaussian filter

Score
-EER=0.01
-EER=0.79
-EER=0.17

[Liliana 2012]
Hand shape
+ Palmprint

Multi-biometrics Proprietary 200
-Chain code
-Std of each
block of ROI

Feature -IR=89

[Kang 2014]
Four fingers
geometry

Multi-
representation

Bosphorus 1914
-Fourier descriptors

-Finger area functions
Score EER=3.69

Continued Next Page . . .
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Reference Modality Multi-type Database
Number
of images

Features
Fusion
level

Performances
(%)

[Asish 2015]
Hand geometry
Left/Right

Multi-instance Bosphorus 603
26 geometrical

features
-Features
-Decision

-CIR=99.5
-FAR=0.625

[Sharma 2015]
Hand

shape/geometry
Multi-

representation

-Proprietary

-IITD

-500

-1200

-Distance and
orientation map
-7 geometrical

features

Score
-EER=0.31

-EER=0.52

[Leng 2015]
Palmprint
Left/Right

Multi-instance Proprietary 2020
Two-dimensional
discrete cosine
transform

Feature IR=99.7

[Xu 2015]
Palmprint
Left/Right

Multi-instance

-IITD
-

-PolyU
-
-

-3290
-3740

-PalmCode
-OLOF+SIFT
-PalmCode

-Ordinal code
-SIFT descriptors

Score

-IR=97.1
-IR=99.57
-IR=99.64
-IR=98.84
-IR=94.64
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4.1 Introduction

The current chapter presents the proposed hand verification approach. Figure

5.1 summarizes the various approach types adopted in our approach, for different

modules (represented by ) vs. other existing types.

This chapter introduces primarily the different methods and techniques used in

this approach. Thereafter, it details the proposed approach based SIFT matching

refinement algorithm for hand shape verification. Then, the experimental evalua-

tion is revealed. Finally, the achieved results are discussed and compared to other

popular hand shape approaches.

Figure 4.1: The position of the proposed hand shape verification method vs.
different approaches existing in the literature.
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4.2 Methods and techniques

This section presents the different techniques and methods used in the proposed

hand shape verification approach, including the Scale Invariant Feature Transform

(SIFT) and Gabor filters.

4.2.1 Scale Invariant Feature Transform (SIFT)

Scale Invariant Feature Transform (SIFT) is a feature extraction proposed by Lowe

[Lowe 1999] in 1999 to detect and describe keypoints in an image. It consists not

only of detecting but also characterizing (by values) to further recognize (match)

these keypoints in other images of the same scene. This algorithm has a great

success in different applications of computer vision field as well as other areas.

The main idea of SIFT algorithm is to find features which are invariant to several

transformations like rotation, scale changes, illumination and affine distortion.

SIFT algorithm may be explained in the following steps:

4.2.1.1 Scale space detection

After preprocessing step, the obtained hand image is convolving with a list of

Gaussian kernels in different scales to construct the Gaussian scale space through:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (4.1)

Where L(x,y,σ) represents the Gaussian kernel in scale σ, I(x,y) is the enhanced

hand image and G(x,y,σ) is a variable-scale function defined as:

G(x, y, σ) =
1

2πσ2
e−(x2 + y2)/2σ2 (4.2)
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4.2.1.2 Key point localization

Key point is localized using the Gaussian scale transform which is defined as the

difference of Gaussians (DoG). It is achieved by the subtraction of two neighbor

scales separated by the scale factor k [Lowe 2004], as expressed in (4.3).

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ)
(4.3)

Each sample point is compared to its eight neighbors in the current scale image

and nine neighbors in the previous and next scales. If it is maxima or minima of

DoG, this point is considered as key point candidate in that scale. The key point

candidates are, thus, filtered using a threshold to reject unstable ones that are

sensitive to noise. Therefore, only key points invariant to affine transformations

and insensitive to noise are given, in this step.

4.2.1.3 Key point description

The descriptor of a detected keypoint of a region of interest represents the orien-

tation histogram of gradients in the region (figure 4.2).

Figure 4.2: Keypoint description in different orientations (8 directions)
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The key point descriptor is made according to the gradient magnitude m(x,y) and

orientation θ(x,y) of each key point in a region. They are defined as:

m(x, y) =
»

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (4.4)

θ(x, y) = tan−1

Ç

L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

å

(4.5)

The orientation of one key point is gotten according to the orientation histogram

created with 36 orientations. The peak orientation is considered as the main

orientation of this key point. Axis has to be rotated according to the orientation

of the key point, in order to obtain rotation invariance. Then, the key point is

described with 16 sub-blocks (4×4) around and the gradient orientation histogram

is computed for each sub-block with eight orientations, which form the 4×4×8=128

values feature vector for each key point [Lowe 2004].

4.2.2 Gabor filters

Gabor filters have been well emerged in pattern analysis field [Meshgini 2013,

Shen 2007]. In fact, Gabor filter is a linear filter employed for edge detection.

Orientation and frequency representations of Gabor filters, which are similar to

those of the human visual system, have been considered notably suitable for texture

representation and distinction. A filter bank which consists of Gabor filters with

different scales and orientations is created. The advantage of Gabor filters consists

of their invariance to rotation, translation, scale and illumination. 2-D Gabor filter

is defined, in the spatial domain, as a Gaussian kernel function modulated by a

sinusoidal plane wave, as follows [Haghighat 2013]:

g(x, y) =
f 2

πγη
exp

Ç

−
x′2 + γ2y′2

2σ2

å

exp

Ç

j2πfx′ + φ

å

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

(4.6)
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where f and θ represent the frequency and the orientation, respectively. φ is the

phase offset, σ represents the standard deviation of the Gaussian envelope and γ

is the ratio of the spatial aspect that indicates the elliptical effect of the Gabor

function support.

4.3 The proposed Sift Matching Refinement based

Hand Shape Verification (SMRHSV)

In this section, the proposed verification approach based hand shape biometric

modality is described. The first problematic in hand recognition is to search

robust similarities between hands, even with possible deformations of the hand

image, such as lighting and scale changes or geometrical transformations like rota-

tion and translation, etc. The recent methods consist of describing efficiently each

image by one or several descriptors. Hence, the aim is to construct a descriptor

that should be invariant according to desired criteria (rotation, scale, etc.) for

hand shape recognition (based on hand contour). To achieve a robust and accu-

rate solution, the proposed hand shape verification method is composed of four

principal modules: (1) the preprocessing module, (2) the feature extraction and

matching module, (3) the matching refinement module and (4) the decision mod-

ule, as illustrated in figure 4.3.

4.3.1 Preprocessing module

4.3.1.1 Keypoints detection

In this section, our first contribution is given. Differently to existing methods, a

solution is defined to detect a set of hand shape keypoints. Indeed, the shape of

the hand is mainly represented by the contour of the hand. For this reason, the

first step is to find precisely the contour of the hand trait.
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Figure 4.3: The proposed hand shape verification method.

Some preprocessing steps were adopted to the hand images before performing key-

point detection, namely, segmentation of the hand, fingertips and valleys detection,

completion of the wrist and hand contour detection.

A. Segmentation of the hand

Image acquisition devices using digital camera or scanner produce mainly a two-

class image including hand texture (or appearance) in the foreground of the image

and a darker background. At first, the two-class Kmeans clustering technique is

used. In fact, the k-means method is a classification technique which divides a

set of data into k homogeneous classes. Subsequently, it may provide an effective

solution to image segmentation problem. Then, the morphological operators are

employed in order to fill in holes and eliminate isolated debris [Soille 2003]. Fi-

nally, size filtering is applied on the hand image connected components in order

to eliminate spurious components presented in the background. These steps ex-

tract and separate satisfactorily the hand from the background as shown in figure

4.4(b). The output of the hand segmentation is a binary image which corresponds

to the hand silhouette.
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where dni and dnj represent the Euclidean distances computed between the key-

points of two descriptors pn, qi and pn, qj and t represents a threshold chosen as

0.6 according to previous work [Morales 2011]. Figure 4.7 presents an example of

matched keypoints between two hand images.

Figure 4.7: False matches between two keypoints (red matches) localized in
different regions.

Nevertheless, several keypoints are falsely matched (as red lines seen in figure

4.7). In fact, the decision of this unimodal biometric system is made according

to the number of matched keypoints. Thus, false acceptances may be caused due

to false matches. For this reason, a matching refinement process is proposed in

order to refine as much as possible the number of matched keypoints between two

hand images. This process is composed of two levels: region based refinement and

Boundary Hand Descriptor (BHD) based refinement.

4.3.2.1 First level: matching based-region refinement

It consists of a refinement according to the regions of matched keypoints. In fact,

multiple pairs of keypoints are falsely matched. For example, a keypoint localized

in the index finger is matched to a keypoint localized in the palm region. These

matches are regarded as false ones and they have to be removed.

To cope with these problems, a matching refinement process is proposed in order

to refine as much as possible false keypoint matches detected. Therefore, as a first

step, the hand area is decomposed into six regions, including palm region, thumb

finger, index finger, middle finger, ring finger and little finger as shown in figure

4.8 (b). The decomposition was performed by detecting tips and valleys points of

the hand image, as described in section 4.3.1.1. Moreover, three auxiliary points of
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thumb, index and little fingers should be detected to separate correctly fingers and

palm regions as shown in figure 4.8 (a). The matching between keypoints localized

in different regions (palm region is matched with index finger region) have to be

removed. Hence, the number of the matched keypoints would be reduced and

refined compared to the initial feature matching algorithm.

Figure 4.8: (a) Detected hand landmark points (b) Hand divided into six
regions (the palm and the five fingers).

4.3.2.2 Second level: matching based-BHD refinement

After the first level of matching refinement, some mis-matched keypoints still exist.

Indeed, even several keypoints belong to the same region, they may not have the

same texture characteristics. Therefore, a second level is required to refine matched

keypoints having different textures. In fact, texture features are extracted from

each matched keypoint using a patch image forming the Boundary Hand Descriptor

(BHD). The BHD of a matched keypoint k(x, y) at (x, y) is defined as the local

hand boundary feature extracted from a square boundary image patch centered at

(x, y) as shown in figure 4.9. To represent the texture of this patch, forty Gabor

filters with five scales and eight orientations are employed [Haghighat 2013]. To

compare two feature vectors corresponding to two matched keypoints, a similarity

measure is computed. If this measure is lower than a certain threshold δ, then

these two points are considered as mis-matched and have to be removed.

The total number of correctly matched SIFT keypoints is regarded as the final

score in order to make a final decision of our SMRHSV system. The process of

this system is detailed in algorithm 1.
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Figure 4.9: Hand boundary patch definition.

Algorithm 1: Keypoint matching refinement process for hand shape recognition

Input:
1. Two matched hand images I1(x1, y1), I2(x2, y2)
2. Matched boundary keypoint set: K = {(n,m)l|l = {1, 2, . . . , N}} where
(n,m)l represents the lth pair of matched keypoints and N is the pairs number
of matched keypoints
Output:
K1: New set of matched keypoints after refinement
N1: Number of refined matched keypoints
1. Initialization: SFM = ∅ (FM: False Matched points)
2. Decompose input hands I1 and I2 into six regions Rj , j = {1, . . . , 6}
3. for t = 1 to N do

if keypointn and keypointm /∈ the same region Rj then
(a) Remove these two matched keypoints
(b) SFM = SFM + (n,m)t

(c) N = N − 1

4. for s = 1 to N do
(1) Compute BHDn, BHDm for keypoints n, m with (n,m)t ∈ SFM using eq.4.6
(2) Match BHDn, BHDm and compute the distance d

(3) if d > δ then
(a) Remove (n,m)t

(b) SFM = SFM + (n,m)t

(c) N = N − 1

5. K1 = K − SFM

6. N1 = N

4.4 Experimental evaluation

In this section, the experiments and results of the proposed method is described

and analyzed.
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4.4.1 Experimental corpus

The IITD Toucheless hand database, described in chapter 3, is used for experi-

ments. In fact, 1150 left hand images captured from 230 subjects are considered.

For persons verification process, the first three images are adopted for training

phase and the rest are adopted for testing phase. Some examples of hand images

are presented in figure 4.10.

Figure 4.10: Examples of IITD hand database.

4.4.2 Verification results

The verification mode consists of verifying the identity of the person who claims to

be using his physiological features. In order to assess performances of the proposed

biometric system, various rates should be computed including the false rejection

rate (FRR), the false acceptance rate (FAR) and the recognition (or verification)

rate (RR). The equal error rate (EER) is presented when FRR and FAR are

equal. In this work, hand shape modality is adopted in order to verify the identity

of the person. Unlike other biometric approaches that detect SIFT keypoints for

further SIFT description, our proposed verification approach localize 300 points

on the contour of the hand to extract, then, SIFT descriptors corresponding to

the localized keypoints. Compared to standard SIFT algorithm, the proposed

approach presents a lower EER = 5.45% (compared to EER = 5.86% for standard

SIFT algorithm), as shown in table 4.1.

A matching refinement process is also proposed in two levels based on the matching-

based region refinement and the matching-based BHD refinement. The proposed

SMRHSV method reveals better performances with EER = 3.85% compared to

Luque- Baena et al’s system which achieves EER = 4.51% as seen in table 4.2.
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Table 4.3: Execution time

Steps Average execution time (ms)

Preprocessing 750

SIFT Feature extraction 451

SIFT Feature matching 75

Region based-refinement 44

Texture based-refinement 412

Total 1732

the proposed approach is more efficient by reaching a recognition rate (RR) of

96.15% and an EER of 3.85% compared to the original SIFT matching method

(RR=93.98%). Our approach is also compared to other existing systems in terms

of EER. Indeed, as shown in Table 4.2, Ferrer et al. [Ferrer 2011] have extracted

geometrical features of the hand including 400 finger widths and obtained 5.28%

of EER using left hand images of IITD hand database. On the other hand, Luque-

Baena et al. [Luque-Baena 2013] have achieved 4.51% of EER by extracting 50

geometrical features from the hands of the same database.

4.4.3 Execution time performance

The proposed method is implemented using Matlab 2014a on a computer with

2.5 GHz, Intel core i3 CPU and 4GB RAM. Table 4.3 listed the execution time

relative to each step (regarding SIFT feature extraction and matching, the toolkit

developed by Vedaldi [Vedaldi ] is adopted). Our verification method requires 1.7s

of the total execution time without code optimization.

4.5 Discussion and comparison

As mentioned in chapter 3, pegs were used in some systems in order to specify

the placement of the hand [Jain 1999a, Sanchez-Reillo 2000]. Nevertheless, this
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technology may deform the shape of the hand and decrease users’ convenience for

the acquisition device. Therefore, other researchers suggested for users to touch the

same glass during acquisition which cause some artifacts because of the pressure

of users on the glass plate. However, some users do not accept to put their fingers

on the same glass plate for hygienic reasons.

Accordingly, in our work, we have taken these constraints into consideration by

capturing hand freely without direct contact and without any restriction on the

position and the orientation of the hand, neither the lighting changes. Further-

more, contrary to existing works in literature which use geometrical characteristics

of the hand as input to their recognition system, the proposed method finds its

uniqueness and originality to exploit points from the contour of the hand. These

points are inputted to the SIFT descriptor method for features extraction, unlike

other works [Ghoualmi 2015] which considered SIFT detector to detect keypoints

from an image. Moreover, in contrast to other existing methods that generate

the final decision about the identity of the person by computing the number of

matched SIFT keypoints, the proposed method suggests a refinement stage for

SIFT matching algorithm in order to refine and remove as much as possible false

matched points between two hand images.

4.6 Conclusion

The proposed hand shape verification method is described. Two contributions are

presented in the hand shape recognition field. The first one is based on the detec-

tion of keypoints localized on the contour of the hand for further SIFT description.

The second one is based on a two-stage matching refinement process.

The next chapter will put forward the proposed palmprint identification method.
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5.1 Introduction

Palmprint is the second physical biometric technology used in our recognition so-

lution in order to characterize a person. In fact, the palmprint represents the

texture part of the hand trait. It has the merit of simplicity of collection and user

friendliness as well as high recognition accuracy and reliability. However, some

problems may occur during acquisition. Indeed, palmprint is usually acquired us-

ing a touchless device. Because of the angle and position changes during capture

process, it is unavoidable to have some geometrical transformations such as ro-

tation, translation, scale changes or illumination variations, which would degrade

the performance and the robustness of a palmprint recognition system. To deal

with these problems, SIFT descriptors are extracted from palmprint images due

to their advantages of rotation, translation and scale changes invariance. SIFT

features are combined linearly using sparse representation method.

In this chapter, we firstly present a preview of the different used techniques in

section 5.2. Then, our palmprint identification method is detailed in section 5.3.

Finally, experiments and results are reported, in section 5.4, allowing the vali-

dation of the proposed method performances. Figure 5.1 summarizes the various

approach types adopted in our palmprint identification approach for different mod-

ules (represented by ) vs. other existing types.

5.2 Methods and techniques

5.2.1 Sparse representation (SR) concept

Recently, sparse representation (SR) approach has proven its effectiveness in solv-

ing different tasks in computer vision field. In fact, SR is able to reveal semantic

information of the image (or signal). The principle idea of SR consists of repre-

senting a signal y ∈ R
m as a linear combination of a small number of elements,
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5.2.1.1 Overcomplete dictionary

A dictionary Φ ∈ R
K×M is a set of elementary signals named atoms, given by:

Φ = {φk}k∈Ψ,Ψ = {1, ..., K} (5.1)

where the atoms φk are discrete signals with lengthM . In fact, a dictionary may be

categorized into overcomplete, complete or undercomplete, in terms of whether the

dictionary spans the space of signal or not. The ”complete dictionary” is defined

if the atoms span entirely the signal space making a basis. On the other hand, if

the number of atoms is higher than the signal space dimension (K >> M) and a

basis may be formed by a subset in the dictionary, it is called an ”overcomplete

dictionary”. In the other case, if the number of atoms is less than the signal

space dimension (K < M), the dictionary is called ”undercomplete dictionary”.

Indeed, overcomplete dictionaries are built by combining bases or using additional

basis functions to the complete dictionary. Overcomplete dictionaries have a good

ability to provide sparse representation of signals [Aharon 2006], they have, thus,

become a significant tool regarding signal processing area.

Thus, an input signal y ∈ R
K may be represented as a linear combination of the

elements selected from a dictionary Φ by satisfying:

y ≈ Φα =
K∑

k=1

αkΦφk (5.2)

where αk represents the coefficients of the signal and φ ∈ Ψ represents the index

relative to the atom Φ.

Nevertheless, this representation is not unique for overcomplete dictionaries, which

allows us to search the optimal combination solution for the required problem. The

aim, in the case of the sparse representation problem, is to search the most ro-

bust representation permitting the reconstruction of the signal using the minimum

reconstruction error.
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5.2.1.2 Sparse representation

The sparse representation problem may be expressed, in function of a signal y ∈

R
K , a dictionary Φ ∈ R

m×k containing k elements and a vector α ∈ R
k of the

representation coefficients of the input signal y, as follows:

min
α

‖α‖0s.t.‖y − Φα‖2 ≤ e (5.3)

where ‖α‖0 represents the l0 − norm of the vector α (i.e. counts the number

of nonzero elements in α) and e represents a permitted error reconstruction. Al-

though solving l0−norm is usually difficult (NP-hard problem), several algorithms

look for obtaining an approximate solution to this problem. In [Chen 2001], Chen

et al. suggested solving the sparse representation problem for overcomplete dic-

tionaries by utilizing a convex optimization method that searches to minimize the

l1 − norm as:

min
α

‖α‖1s.t.‖y − Φα‖2 ≤ e (5.4)

Nevertheless, convex optimization methods present the limitation to be expensive

in terms of computation in the case of solving of a very large system [Hameed 2012].

To solve, efficiently, the problem of l1 −minimization, Least Absolute Shrinkage

and Selection Operator (LASSO) method is invented by Tibshirani [Tibshirani 1994]

in which the aim is to find an estimation of α allowing the minimization of the

least square error subject to a l1 − norm, expressed as follows:

min
α

1

2
‖y − Φα‖22 + λ‖α‖1 (5.5)

where the parameter λ > 0 is intended to control the compromise between the

sparsity of α and the least square error. This optimization problem converges to

solve the l1 −minimisation problem when λ tends to zero.

In spite of the simplification of l0 − norm optimization problem, the difficulty

of resolution still exists. Indeed, there are two possible issues: (i) finding the

most compact sparse representation for a given dictionary; (ii) finding the most
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appropriate dictionary corresponding to the class of signal to be processed. To

overcome the first issue, several sparse approximation methods have been devel-

oped in the literature, including the Matching Pursuit (MP) method [Bo 2013],

the Orthogonal Matching Pursuit (OMP) method [Pati 1993] and the feature sign

search method [Lee 2007]. The second issue consists in searching the appropriate

dictionary that is an important question for the sparse representation approach.

The choice of dictionary may be performed as follows:

• Either by constructing a predefined dictionary using mathematical functions

such as Gabor, wavelets, curvelets and contourlets [Si 2010].

• Or by constructing a learned dictionary formed according to a set of training

samples. This method does not employ generic mathematical functions and

seeks to extract more precisely the complex structures from the data. In

fact, learned dictionaries are suited to the class of the input signal to be

processed and prove their efficiency in many applications.

5.2.2 Support Vector Machines (SVM)

Support Vector Machines (SVM) are proposed to solve problems of pattern recog-

nition field [42]. In fact, this technique carries out pattern recognition in the case

of two classes by making a decision area given using some points of the training

data, named support vectors. Simultaneously, the decision area tends to indicate

the largest margin, presented between two classes. Hence, the decision area was

referred, in this case, to the optimal separating hyperplane and the nearest points

to this separating hyperplane were represented as the support vectors as illustrated

in figure 5.3. The optimal separating hyperplane is represented as the L line. As

shown in figure 5.3, points placed on the lines L1 and L2 are support vectors.

The SVM is defined generally by the following equation:

f(x) = sgn

Ç n∑

i=1

αiciK(x, xi) + s

å

(5.6)
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Figure 5.3: Separating hyperplane of the SVM.

where ci ∈ {−1, 1} is the class label of the trained xi points in which class ’1’

means genuine distribution and class ’-1’ means impostor distribution, n is the

total number of data points, coefficient αi may be obtained by solving a quadratic

problem, s is the bias and K represents the kernel function. In fact, basically four

kernel functions are reported as follow:

• Linear function: K(x, xi) = x ∗ xi,

• Polynomial function: K(x, xi) = [γ ∗ (x ∗ xi) + c]d

• Gaussian function: K(x, xi) = exp(−γ||x− xi||
2)

• Sigmoid function: K(x, xi) = tanh(ax ∗ xi + b)

where γ and c are controlled coefficients and d is the polynomial degree.

5.3 Proposed identification approach based palm-

print modality

5.3.1 Palmprint ROI extraction

In preprocessing step, it is important to localize the palmprint ROI containing

principal lines and creases for palmprint feature extraction. In this work, palmprint

ROI localization is performed according to the following steps:
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1. Detect the centroid point of the hand followed by an orientation alignment

according to the vertical axis passing through the centroid point.

2. Detect fingertips of the hand, as described in chapter 4, in order to make a

rotation depending on the middle fingertip point.

3. Detect finger valleys using the new rotation of palmprint image and a ref-

erence line is formed using the two valleys points V2 and V3 placed around

the middle finger intersecting the contour of the hand. The midpoint M1 is

then placed in the center between the point V2 and the contour intersection

point.

4. Repeat the third step for the second midpoint M2 localization using V3 and

V4 valleys (figure 5.4).

5. LinkM1 andM2 midpoints and extract the square representing the palmprint

ROI using M1 and M2 points.

Figure 5.4: Palmprint segmentation:(a) Grayscale original image; (b) Orien-
tation according to vertical axis; (c) Detection of midpoints M1 and M2; (d)

Detection of palmprint ROI; (e) Palmprint image extraction.

5.3.2 Feature extraction

This section presents the description of palmprint ROI which characterizes better

the palmprint. For this purpose, the texture information is taken into account to
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propose a feature vector relative to each palmprint image. Several methods allow

analyzing palmprint texture such as Wavelet transform, Fourier transform, Gabor

filters, etc. In our palmprint identification method, SIFT descriptors are adopted

due to their advantages of features invariance to geometrical transformations.

On the other hand, sparse representation (SR) is used to represent extracted SIFT

descriptors. Indeed, recently, SR approach has proven its effectiveness in solving

different tasks in computer vision field. In fact, SR is able to reveal semantic

information of an image. The principal idea of SR consists of representing a signal

y ∈ R
m as a linear combination of a small number of elements, named atoms, that

are selected from a dictionary D, as follows:

y ≈ Dα =
P∑

c=1

αc dc (5.7)

Where D = [d1, d2, . . . , dc](c∈{1,...,P}) ∈ R
m×P , α = [0, . . . , 0, αj,1, αj,2, . . . , αj,sc ] ∈

R
P represents the coefficient vector in which non zero elements are affiliated only

with the j-th class and P is the dimension of feature vectors which represent input

images. If the number of classes is large, α in that case will be sparse.

Given a multimodal M-class classification problem in which Z biometric modal-

ities are used. Consider each biometric modality is represented by si training

images relative to each biometric modality i = {1, . . . , Z} as T i = [ti1, t
i
2, . . . , t

i
M ].

The corresponding set of training with SIFT description X i = [xi
1, x

i
2, . . . , x

i
M ] =

[xi
j,1, x

i
j,2, . . . , x

i
j,sj

] ∈ R
sj×P represents the training set of the ith biometric trait,

where xj,s represents the feature vector corresponding to the s-th sample image of

the class j.

In multimodal biometrics problem, let a matrix of test samples Y of a biometric

modality i. Each sample Y i is represented by vb observations Y
i = [yi1, y

i
2, . . . , y

i
v] ∈

R
vb×P . The purpose is to determine to which class a test sample Y is belonging.

The learning of an overcomplete dictionary is performed from a number of SIFT de-

scriptors randomly selected as training set. The Lagrange dual technique [Lee 2007]

is employed to search the dictionary leading to the best possible representation of
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each sample of training set with strict sparsity constraints. Firstly, a sign search

algorithm is used in order to solve the problem of l1 regularized least square while

respecting the sparse vector α. Secondly, the Lagrange dual algorithm is employed

in order to solve the problem of l2 constrained least squares while respecting the

dictionary D. Thus, a good dictionary may be found by solving the following

optimization problem:

min
α

1

2
‖y −Dα‖22 + λ‖α‖1

subjectto‖dc‖2 ≤ 1, ∀c = {1, 2, 3, . . . , P}

(5.8)

Where the dictionary D contains 1024 atoms with a dimension of 128 (same size

of SIFT input) for each atom, so D ∈ R
128×1024, ‖α‖1 represents the l1 − norm of

α and ‖dc‖2 is the l2 − norm constraint of dc.

Hence, considering the SIFT description corresponding to an image Y i = [yi(1), y
i
(2), . . . , y

i
(q)],

a sparse feature representation is formed via eq. 5.8 as Ai = [αi
(1), α

i
(2), . . . α

i
(q)] ∈

R
1024×q. The obtained sparse vectors are then quantized and a histogram repre-

sentation is computed forming a SIFT sparse vector to each image.

5.3.3 Palmprint identification

SVM classification is extended to multi-class classification problems called multi-

class linear SVM classifier [Yang 2009], in which we are interested since we deal

with more than 100 classes. Considering a training data set {(up, vp)}
2
p=1, vp ∈ V=

{1, ..., M}, the aim of a linear SVM is to learn M linear functions {z⊤c u|c ∈ V },

for example, given a test data u, its predicted class label is defined as:

v = max
c∈V

z⊤c u (5.9)
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A one–versus–all method is taken to train M binary linear SVM allowing to solve

the following unconstraint convex optimization problem

min
zc

{J(zc) = ‖zc‖
2 + C

n∑

p=1

l(zc; v
c
p, up)} (5.10)

where vcp = 1 if vp = c, otherwise vcp = −1, and l(zc; v
c
p, up) represents a hinge loss

function.

The differential quadratic hinge loss is taken as:

l(zc; v
c
p, up) = [max(0, z⊤c u · vcp − 1)]2 (5.11)

so that the training may be made readily using simple methods of gradient-based

optimization.

5.4 Experimental evaluation

5.4.1 Proposed prototype

In our work, a new hand database has been built for experiment evaluation, in

order to verify performances on Tunisian hands. Moreover, left and right hands

have been acquired from the same person. In fact, the other hand databases

present some weaknesses of having a different number of persons for both hands,

preventing the matching between the left and right hands of the same person. In

addition, others acquired only the left hand etc. So, REST (REgim Sfax Tunisia)

hand database is proposed in order to solve these weaknesses. In fact, the acquisi-

tion is performed using a low cost digital Camera integrated in a Tablet (Samsung

Tab 3) device. The captured left and right hand images are in RGB and have a

size of 1536 * 1250 pixels, in low resolution of 72 dpi. The hands are placed in

a comfortable way without any contact nor restriction of pegs or template, and

the camera should be placed in front of the hand at approximately 50 cm in order

to capture, simultaneously, hand and palmprint modalities. However, users are
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asked to separate their fingers from each other and change angles between them,

during acquisition. The lighting of hand images has been naturally diffused due

to illumination variations inside the REGIM laboratory environment.

The images are collected from 150 subjects in the age group of 6-70 years, over

a period of four months. In order to ensure the success of the image acquisition

step, the subjects were just requested to place their hand entirely in front of a

uniform dark background. Figure 5.5 presents examples of captured hand images

of the proposed database.

Figure 5.5: Some examples REST hand database.

5.4.2 Experimental results

The proposed method is evaluated on three databases namely IITD hand database,

CASIA palmprint database and the proposed REST hand database. Table 5.1

presents the influence of SIFT sparse representation method compared to other

existing palmprint recognition methods in the literature, over the IITD hand

database. In fact, Sun et al. [Sun 2005] extracted ordinal measures from palm-

print images. The classification using hamming distance achieves CIR=85.58%.

However, Jia et al. [Jia 2008] extracted robust line orientation code. The com-

parison between palmprint images using pixel-to-area comparison method ob-

tains CIR=84.83%. On the other hand, Kumar and Shekhar’s palmprint system

[Kumar 2011b] is based on Gabor orientation features extracted from palmprint

images. The classification at rank-level was performed using weighted Borda count

method, achieving CIR=95%. Moreover, Luo et al. [Luo 2016] adopted local line

directional patterns (LLDP descriptors) as features of palmprint images. The

classification using Manhattan distance achieves CIR=92%. These studies are

considered for comparison with the proposed SSRPI system because the same
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database (IITD hand database) is employed for experiments evaluation. Conse-

quently, the influence of the proposed SIFT sparse representation is remarkable

from table 5.1 in terms of CIR by achieving better performances (CIR=96.73%)

than other popular palmprint approaches.

Table 5.1: Comparison of the CIRs of the proposed approach and other pop-
ular approaches over IITD hand DB

Reference Features Classifier CIR(%)

Sun et al.,
2005 [Sun 2005]

Ordinal measures
Hamming
distance

85.58

Jia et al.,
2008 [Jia 2008]

Robust Line
Orientation Code (RLOC)

Pixel-to-area
comparison

84.83

Kumar and Shekhar,
2010 [Kumar 2011b]

Gabor orientation
Weighted

Borda count
95.00

Luo et al.,
2016 [Luo 2016]

Local Line Directional
Patterns (LLDP descriptors)

Manhattan
distance

92.00

Proposed
SSRPI

SIFT sparse representation SVM 96.73

In order to yet demonstrate the effect of the proposed SSRPI method, we have

evaluated the proposed method using left and right palmprint of the proposed

REST hand database, containing 1500 images. In fact, five images for left palm-

print and five images for right palmprint are considered in our experiments. Table

5.2 reveals the CIR obtained over the proposed REST hand database for three

and four training images. It can be seen that right palmprints offer better per-

formances (CIR=93.33%) using 4 training images compared to left palmprints

(CIR=88.33%).

Table 5.2: Correct identification rates over REST hand database

Instance Train Test CIR (%)

Left palmprint 3 2 80.83

- 4 1 88.33

Right palmprint 3 2 90.13

- 4 1 93.33

To see the influence of left and right instances, the proposed SSRPI method is also

assessed using the public CASIA palmprint database, containing 2400 palmprint
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images. Experiments show better performances for left palmprints by achieving

CIR=98.88% compared to right palmprints which obtain CIR=96.52%, using only

two training images, as reported in table 5.3. Therefore, it is remarkable that left

and right palmprints have different texture information since different identifica-

tion rates are achieved. Moreover, the best reliability is not sufficiently observed

between left and right palmprints, since it depends on the evaluated database (in

the case of REST database, right palmprints achieve better performances, whereas,

in the case of CASIA database, left palmprints obtain better performances). This

will encourage us to fuse these two instances in order to increase the accuracy and

reliability of the proposed method, as will be described in the next chapter.

Table 5.3: Correct identification rates over CASIA palmprint database

Instance Train Test CIR (%)

Left palmprint 3 2 99.17

- 2 3 98.88

Right palmprint 3 2 97.70

- 2 3 96.52

It is necessary to compare the SSRPI method with popular palmprint methods

existing in the literature. Table 5.4 displays a comparison in terms of CIR over

the public CASIA palmprint database. In fact, Jia et al. [Jia 2008] have achieved

CIR=97.60% using RLOC features extracted from palmprint images. On the

other hand, Zuo et al. [Zuo 2010] extracted sparse multiscale competitive code

(SMCC) from palmprint images. This method employed, firstly, the sparse rep-

resentation in order to achieve the robust estimation of the local orientation of

palm lines. Secondly, it extends the competitive rule and encodes the calculated

sparse codes, which generates a compact representation of multiscale features. The

SMCC method achieved CIR=98.74% using 600 palms of left and right hands.

Recently, Yue et al. [Yue 2014] have presented an accurate and fast palmprint

identification system based on a consistent orientation pattern (COP) hashing

method. In fact, principal lines are represented as stable features in palmprint

images, so the orientation features should be more consistent compared to others.

Moreover, since principal lines are dark and thick, they may be represented by
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the orientation features with low filter responses. Indeed, the consistency analysis

is based on the selection of the more consistent orientation features, allowing a

fast identification process. Experiments achieved CIR=96.40% using the public

CASIA palmprint database.

On the other hand, Hammami et al. [Hammami 2014] proposed a persons identi-

fication approach using palmprint biometric modality. This approach was based

on the partition of the entire palmprint image into sub-regions. Then, the LBP

(Local Binary Pattern) operator has been employed in order to describe the tex-

ture information of each sub-region. Finally, a set of sub-regions has been selected

to consider only the most discriminating regions for identification. Experiments of

this approach obtained CIR=97.53% by extracting LBP features and CIR=96.33%

by extracting SIFT features, from the selected palmprint sub-regions, over CASIA

palmprint database.

Thus, it can be observed from table 5.4 the efficiency of the proposed SSRPI

method by achieving better identification rate (CIR=99.17%) than the other palm-

print approaches.

Table 5.4: Comparison of the CIRs between the proposed approach and other
popular palmprint approaches over CASIA palmprint DB

Reference Method CIR (%)

Jia et al., 2008

[Jia 2008]

Robust line competitive

code (RLOC)
97.60

Zuo et al., 2010

[Zuo 2010]

Sparse multi-scale competitive

code (SMCC)
98.74

Yue et al., 2013

[Yue 2014]

Consistent orientation pattern

(COP) hashing
96.40

Hammami et al., 2014 -LBP features 97.53

[Hammami 2014] -SIFT features 96.33

Proposed SSRPI SIFT Sparse representation 99.17
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Table 5.5: Execution time

Steps Execution time (ms)

Preprocessing 768

SIFT Feature extraction 534

Sparse representation 565

Identification 29

Total 1896

5.4.3 Execution time performance

The proposed method is implemented using Matlab 2014a on a computer with 2.5

GHz, Intel core i3 CPU and 4GB RAM. Table 5.5 listed the execution time relative

to each step. Hence, the proposed palmprint identification method requires 1.9s

of total execution time.

5.5 Conclusion

The proposed palmprint identification method is described. In this method, the

palmprint biometric trait is represented using SIFT sparse representation method.

This descriptor has proven its efficiency by achieving promising performances

which are competitor to existing palmprint recognition approaches.

The next chapter will display the different proposed hand multi-types fusion of

hand shape and palmprint biometric modalities.
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6.2 Multi-representation hand shape verification

method

In this section, we describe the proposed multi-representation hand shape veri-

fication method combining shape and geometry descriptors extracted from hand

modality, namely, SIFT descriptors and geometrical features (figure 6.3).

Figure 6.3: Flowchart of the proposed multi-representation mathod.

The preprocessing module is based on the segmentation of the hand and the de-

tection of finger tips and valleys as described in chapter 4.
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6.2.1 Feature extraction module

SIFT descriptors are extracted from hand shape modality, as described in chapter

4. It consists of detecting keypoints localized on the contour of the hand for

further SIFT description. The second type of features incorporates the geometrical

measurements of the hand including size of the palm, length and width of fingers,

etc. In fact, we investigate 15 geometrical distances of the hand, computed using

Euclidean distance according to the localized landmark points. These features

represent:

- 10 fingers deviations (2 deviations for each finger) which present the distance

between fingertip and two finger valleys.

- 5 distances computed from the center point of the hand to the five fingertips.

6.2.2 Matching score

An input image is represented as a set of features (a feature vector) and is then

compared with the claimant’s hand image stored in database for identity verifi-

cation. Therefore, a distance metric should be applied to compute the similarity

measure between the two feature vectors.

In our hand biometric system, two different descriptors are extracted from hand

images. Concerning geometrical features, the Euclidean distance is used to com-

pute the similarity measure between feature vectors. If the distance is higher than

a certain threshold value t, then these two vectors belong to different individuals;

otherwise, they are from the same individual.

On the other hand, with regards to SIFT features extracted from hand shape, the

cosine similarity measure between the input and the enrolled image [Lowe 2004]

is calculated. The number of matched points between images is considered as the

matching score. If the score is lower than a certain threshold value t1, these two

images are from different persons; otherwise, they are from the same person.

In order to provide a unique matching score, scores obtained from hand geometry

and hand shape matching modules have to be normalized before combination to
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make them in the same range of values. The normalization of scores is performed

using the min-max normalization method, expressed as follows:

sin =
sin −min(si)

max(si)−min(si)
(6.1)

Where max and min represent functions generating, respectively, the maximum

and the minimum value of the score si of the training set.

6.2.3 Information fusion method

Information fusion is presented as a promising strategy to improve the accuracy of

a biometric system. It may be applied at different levels including sensor, feature,

score and decision.

In this work, we propose to implement score level fusion based on weighted sum

rule method. In fact, the weighted sum rule method has been well studied by re-

searchers in the literature [Kang 2014] since it is the most straightforward fusion

method at matching score level. It is based on the computation of the similar-

ity measure between two hand images by fusing scores obtained from different

processes using different weights. So, the final score is computed as follows:

Sfusion = wa × SHG + wb × SHS (6.2)

Where wa and wb are the weights affected to hand geometry score and hand shape

score, respectively. The unit-sum constraint is satisfied, as wa + wb=1.

6.2.4 Experiments and results

The evaluation of the multi-representation method is performed using the Bogazici

University hand database [Yoruk 2006a]. Hand images are acquired using a com-

mercial scanner from 642 individuals with hands placed flat on the glass platen.

Three samples are captured from each hand at different times. The first two im-

ages for each subject were used for training and the rest were used for testing.
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Thus, a total of 1284 (642 × 2) genuine and 823044 (642 × 641 × 2) imposter

matching scores were provided using the test data.

To assess the performance of the proposed system, false acceptance rate (FAR)

and false rejection rate (FRR) are adopted based on scores obtained in matching

score module to generate the final decision of all the samples. Several sets of FRR

and FAR are achieved using different threshold values in order to plot the Receiver

Operating Characteristic (ROC) curve as illustrated in figure 6.4. The trade-off

between FAR and FRR represents the equal error rate (EER).

In our experiments, the fusion of hand shape and hand geometry is carried out.

Figure 6.4: ROC curve of FAR and FRR relative to matching score fusion
results.

The ROC curve for three different cases including hand shape alone, hand geom-

etry alone and fusion of hand shape and hand geometry using weighted sum rule

method at matching score level, are shown in Figure 6.5.

Figure 6.5: Comparative performance of hand geometry and hand shape fea-
tures using score level fusion.
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Table 6.1: Performance verification rates (%).

FAR FRR RR EER

Hand shape 2.56 4.67 95.25 4.05

Hand geometry 8.39 7.86 92.06 8.09

Hand shape + Hand geometry (simple

sum rule)
3.97 2.1 97.64 3.01

Hand shape + Hand geometry (Weighted

sum rule)
2.46 2.1 97.82 2.25

In this system, we adopted two fusion methods to compare verification results

namely simple sum rule and weighted sum rule methods. This comparison is

given in table 6.1. Regarding weighted sum rule method, the final score is obtained

using different weight sets. Experimentally, the optimal weights are achieved when

EER=2.25% (wa=0.32 and wb=0.68).

Table 6.2 shows a comparison of our system with other existent approaches in term

of EER. Indeed, Kang and Wu [Kang 2014] have achieved 3.69% of EER by fusing

Fourier descriptors and finger area functions extracted from fingers geometry that

are acquired from 638 subjects. However, Sharma et al. [Sharma 2015] have

obtained 0.52% of EER by combining hand shape (wavelet decomposition) and

hand geometry (7 geometric distances) using 240 subjects. Since our results are

achieved using a larger database containing 642 subjects, the performance obtained

from the proposed system (EER=2.25%) is competitive and encouraging results

are provided.
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Table 6.2: Performance comparison with different approaches in term of equal error rate (EER).

Reference Features Algorithms
Population

size
EER (%)

Yoruk et al.
[Yoruk 2006a]

Hand contours (Bogazici db)
Modify Hausdorff Distance
and ICA

458 ≈ 2

Luque-Baena et al.
[Luque-Baena 2013]

Hand geometry (IITD db) GA-LDA 100 4.51

Sharma et al.
[Sharma 2015]

Hand shape + geometry
(IITD db)

7 geometric distances
and wavelet decomposition

240 0.52

Kang and Wu
[Kang 2014]

Four fingers geometry
features (Bogazici db)

Fourier descriptors
and finger area functions

638 3.69

Proposed
Hand shape + geometry
(Bogazici db)

SIFT descriptors and
15 geometrical features

642 2.25
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6.3 Multi-biometric hand recognition method

6.3.1 Hand shape and palmprint fusion for persons verifi-

cation

A fusion of hand shape and palmprint biometric system for persons verification is

proposed. The hand shape verification method described in chapter 4 is consid-

ered. While palmprint verification method is detailed in this section as well as the

proposed fusion process.

6.3.1.1 The proposed Sift Matching Refinement based PalmPrint Ver-

ification (SMRPPV)

The unimodal Palmprint verification system contains four principal stages namely

the preprocessing, the feature extraction and matching, the SIFT matched key-

points refinement and the decision stage. The proposed SMRPPV is illustrated in

figure 6.6.

Figure 6.6: The proposed SMRPPV system

After preprocessing step and palmprint ROI extraction, the standard SIFT method,

detailed in section 4.2.1, is employed for keypoints detection and description in

order to depict the local texture of palmprint biometric trait. Nevertheless, the
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matching of keypoints between two palmprint images and the decision of persons

verification according to the number of matched keypoints is not a good way to

discriminate a person from another. Consequently, as for hand shape verification

method, we adopt a SIFT matching refinement process in order to describe dis-

tinguishable palmprint features based on texture features. In fact, these features

are extracted from matched points using a patch image forming the Gabor Palm-

print Feature (GPF). The GPF of a keypoint k(x, y) at (x, y) is presented as the

feature vector of the square patch image centered at (x, y), based on Gabor filters

described in section 4.2.2. The matching between two square patch images p1 and

p2 of two matched keypoints is performed using Euclidean distance method. This

distance is represented as d. If d is less than a certain threshold δ1, these keypoints

are truly matched. Otherwise, they are falsely matched and should be removed.

The distance formula is as follows:

d =
»

(p1 − p2)2 (6.3)

The total number of SIFT keypoints properly matched is considered as the final

score in order to make final decision of our SMRPPV system.

Algorithm 2: Keypoint matching refinement process for palmprint recognition

Input:
1. Two matched palmprint images P1(x1, y1), P2(x2, y2)
2. Matched keypoints set: M = {(i, q)l|l = {1, 2, . . . , nb}} where (i, q)l represents
the lth pair of matched keypoints and nb is the pairs number of matched
keypoints
Output:
K2: New set of matched keypoints after refinement
N2: Number of refined matched keypoints
1. Initialization: Bfm = ∅ (fm: false matched points)
2. for s = 1 to nb do

(1) Compute GPFi, GPFq for keypoints i, q with (i, q)t ∈ Bfm using eq.4.6
(2) Match GPFi, GPFq and compute the distance d1
(3) if d1 > δ1 then

(a) Remove (i, q)t

(b) Bfm = Bfm + (i, q)t

(c) nb = nb− 1

3. K2 = M −Bfm

4. N2 = nb
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6.3.1.2 Information fusion and decision

In this section, the fusion process of hand shape and palmprint biometric traits at

matching score level for person’s identity verification is presented. In fact, match-

ing scores are obtained from the different modalities. Regarding SIFT features

extracted from hand images, they are matched with the enrolled template based

on Euclidean distance and even the case of palmprint SIFT features. Thus, after

matching refinement steps adopted for hand shape and palmprint biometric sys-

tems, the two scores obtained from these two systems are inputted to the training

phase of the binary SVM classifier, described in section 5.2.2, in order to generate

the final decision about the identity of the person. Indeed, the research of palm-

prints and hand shapes verification operates concretely with small samples. For

this reason, we employ Support Vector Machines (SVM) for identity verification

due to its great performances in various learning problems. If classes provided

from the hand shape verification method (SMRHSV) and the palmprint verifica-

tion (SMRPPV) method are different, fingers texture are thus extracted from the

hand image in order to generate the final decision. The general fusion process is

shown in figure 6.7.

A. Fingers segmentation The segmentation of fingers Regions of Interest (ROI)

requires the decomposition of each finger apart. In fact, finger tips and valleys have

to be located to extract the finger from the hand. Hence, the method described

in [Yoruk 2006b] is used in order to seek minima and maxima of contour to find

extremities of the hand silhouette. Thus, five maxima (fingertips) and four minima

(finger valleys) are detected. Moreover, three additional points are located in

thumb, index and little extremities (symetric points of thumb, index and little

finger valley points) which intersect contour to draw the reference line of each

finger as demonstrated in figure 6.8.

B. Feature extraction and fusion process Gabor filters are extracted from

each finger surface. A matching process between test images and enrolled images

(of persons generated from hand shape and palmprint systems) is carried out and

five scores are produced using Euclidean distance. Furthermore, the five scores
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In this work, hand shape, palmprint and fingers modalities are adopted in order

to verify the identity of the person.

Concerning palmprint biometric modality, original SIFT method is used to ex-

tract SIFT descriptors. A refinement process is also adopted after the matching

step in order to refine as much as possible false matched keypoints between two

palmprints. This refinement process is carried out according to texture features

around matched keypoints. The proposed SMRPPV system presents an EER =

4.31% which is promising compared to results of SIFT algorithm without refine-

ment (EER = 5.43%) and the system of Kumar and Shekhar which achieved an

EER = 5.02% as shown in table 6.3.

Table 6.3: Comparison of verification results of palmprint systems.

Methods EER (%)

SIFT algorithm without refinement 5.43

Gabor orientation features [Kumar 2011a] 5.02

Proposed SMRPPV system 4.31

The proposed multimodal system works essentially by fusing hand shape and palm-

print modalities. The fingers surfaces are embedded only if decisions produced

from hand shape and palmprint are different. Therefore, two scores are obtained

and fused using different fusion methods including max rule, product rule, sum

rule and SVM classifier in order to make the final decision. Two-thirds the IITD

hand DB is used for training and one-third is used for testing. Experiment results

demonstrated that the highest recognition rate is obtained using SVM classifier,

as shown in table 6.4.

Table 6.5 reports performance verification rates relative to unimodal systems, bi-

modal system and multimodal system. In fact, the proposed bimodal system fusing

hand shape and palmprint modalities present an EER=1.31% and a RR=98.63%.

On the other hand, the proposed multimodal system fusing hand shape, palmprint

and fingers modalities present an EER=0.19% and an RR=99.82%.
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Table 6.4: Performance verification rates with different fusion methods of
hand shape and palmprint modalities.

Method of fusion
FAR

(%)

FRR

(%)

RR

(%)

EER

(%)

Max rule (without refinement) 2.01 2.82 97.17 2.87

Max rule (after refinement) 1.63 2.60 97.39 2.23

Product rule (without refinement) 3.19 3.26 96.73 3.22

Product rule (after refinement) 2.92 2.82 97.17 2.87

Sum rule (without refinement) 3.65 2.16 97.24 2.90

Sum rule (after refinement) 2.76 1.73 98.26 2.24

SVM classifier (without refinement) 1.83 1.47 98.38 1.65

SVM classifier (after refinement) 1.34 1.28 98.63 1.31

Table 6.5: Performance verification rates.

FAR (%) FRR (%) RR (%) EER (%)

Hand shape 4.42 3.44 96.15 3.93

Palmprint 4.36 4.56 95.26 4.31

Hand shape +

Palmprint
1.34 1.28 98.63 1.31

Hand shape + Fingers

+ Palmprint
0.16 0.02 99.82 0.19

A comparison of our system with other existing approaches as well as our previous

approaches, in terms of EER, is outlined in table 6.6. All the methods cited in

this table used the IITD hand DB as in the proposed approach. Indeed, Kong

and Zhang [Kong 2004] have achieved 3.41% of EER using compcode features

of palmprint traits. However, Charfi et al [Charfi 2014] have obtained 1.80% of

EER by combining hand shape and palmprint features. On the other hand, our

previous work [Charfi 2015a] combines hand shape, palmprint and fingers, at the

same time, and an EER=1.95% is achieved. Thus, the proposed system presents

the merit of reducing the complexity of the algorithm by inputting fingers only if

the bimodal system generate an uncertain decision.
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Table 6.6: Performance comparison with different approaches in term of equal
error rate (EER) using IITD hand database.

Features Algorithms EER (%)

Hand shape + Palmprint + Fingers

features

SIFT features and

Gabor features
1.95

Hand shape + Palmprint

features
SIFT features 1.80

Matching refinement

of Hand shape +

Palmprint + Fingers fusion

Matching refined

SIFT descriptors and

Gabor features

0.19

6.3.2 Hand shape and palmprint fusion for persons iden-

tification

6.3.2.1 Information fusion

The proposed fusion scheme is presented in this section. Several kinds of multi-

modal biometric systems are developed in literature [Kumar 2006a, Prasad 2009,

Ferrer 2011] which are based on a combination of hand geometry and palmprint

images, at feature, score or decision level, for person recognition. Unlike other

works that adopt either a single fusion level or various fusion levels independently,

our fusion scheme is grounded on a cascade architecture with hybrid fusion. In

fact, the feature level fusion and decision level fusion are employed to combine

hand shape and palmprint modalities. Each unimodal system generates one de-

cision about the identity of the corresponding person, after classification task.

Hence, the hand shape unimodal system provides a feature vector VHS and a de-

cision DHS and the palmprint unimodal system provides a feature vector VPP and

a decision DPP . If DHS and DPP are similar, then the final decision (identity) is

generated. Otherwise, the feature level fusion is performed by the concatenation

of the feature vectors VHS and VPP to form the feature vector VFF for the fused
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Figure 6.9: Block diagram of the proposed identification system.

hand representation as follows:

VFF = [VHS VPP ] (6.4)

It is noted that the normalization step is not needed since VHS and VPP present

the same type of features.

The combined feature vector VFF is classified and compared to fuse feature vectors

of training images, using SVM classifier. This classification generated a decision

DFF about the identity of the person, as shown in figure 6.10. The obtained

decisions DHS, DPP and DFF are then fused using majority voting in order to

generate the final decision. If DHS, DPP and DFF are different, the k-Nearest

Neighbor (k-NN) classifier is employed to classify the feature fusion vector VFF

compared to training images corresponding to the three decisions DHS, DPP and



Chapter 6. Proposed hand multi-types fusion for multimodality 123

DFF . In fact, k-NN classifier consists in finding the k closest examples to the new

example, according to a similarity measure. In our work, the 1-NN classifier is

adopted in order to generate a single class concerning the identity of the person. On

the other hand, the similarity measure is computed using the Euclidean distance

expressed as follows:

distt =
»

(VFF − VTRt)2 (6.5)

where VTR represents the combined training feature vectors of decisions DHS, DPP

and DFF , and t={1,. . . , T} is the number of training feature vectors.

The proposed fusion process is detailed in algorithm 3. The credit of the proposed

fusion process is the gain of execution time, since it is not necessary to go through

all steps if the two biometric modalities provide the same person’s identity from

the beginning.

Figure 6.10: Architecture of the proposed fusion scheme.
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Algorithm 3: The proposed fusion process

Input:
1. Feature vector VHS relative to hand shape modality
2. Feature vector VPP relative to palmprint modality
3. Training feature vectors of hand shape and palmprint modalities VFFi

Output:
C: Class (person’s identity) corresponding to the test hand image
1. C = ∅
2. DHS = Classify VHS by SVM classifier
3. DPP = Classify VPP by SVM classifier
4. if DHS = DPP then

C = DHS

else
DFF = classify VFF by SVM classifier
if (DHS = DFF ) OR (DPP = DFF ) then

C = DFF

else
for t = 1 : T do

Matching between test feature vector VFF and VTRt using the
Euclidean distance measure (distt)

C = 1-Nearest Neighbor (distt)

5. Return class C

6.3.2.2 Experiments and results

The evaluation of this system is performed using the Bogazici University hand

database [Yoruk 2006a], containing 1845 images, and the IITD Toucheless hand

database [Kumar 2008], [Kumar 2011a], containing 1150 images.

The hand identification experiments, based on hand and palmprint images, were

carried out on two different population sizes selected from each database, consist-

ing of 100 and 230 subjects for IITD hand database and 200 and 615 subjects for

Bosphorus hand database. This choice is justified by the fact that these popu-

lation sizes were among the most employed in the literature. Moreover, various

population sizes help us to observe the identification performance with the in-

creasing number of subjects. In addition, different number of training images help

us to see the effect of persuasiveness of the proposed system with small number

of training images. Therefore, we evaluated the proposed system using 3 and 4
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training images for IITD hand database and 2 training images for Bosphorus hand

database.

Our first experiment concerns the number of detected keypoints for hand shape

modality, selected with higher rate of identification. This identification rate is

measured as the rate of testing samples successfully classified. It represents the

number of correct identified samples divided by the global number of samples,

which consists of results after identification phase. These results are represented

by the Correct Identification Rate (CIR) used as evaluation criterion. Thus, the

proposed unimodal SIFT-based Sparse Representation for hand shape Identifica-

tion (SSRHSI) system is based chiefly on trying different number of keypooints

including 150, 200 and 300 keypoints localized on the contour of the hand. The

rationale of the choice of these numbers of keypoints is that redundant points in

the contour are removed, so we aim to reduce as much as possible the number of

keypoints to decrease the computational complexity of the feature extraction step.

On the other hand, the choice of a small number of keypoints like 50 or 100 may

reduce information concerning the shape of the hand, which yields lower accura-

cies. Table 6.7 exhibits results of varying the number of keypoints compared to

standard SIFT keypoints, over IITD hand database. This table reveals that 300

keypoints offer higher identification rates for different population sizes (100 and

180 subjects) and different number of training images (3 and 4 images) than 150,

200 and standard SIFT keypoints, which justify our selection of 300 keypoints.

This number was also considered for hand images of Bosphorus hand database,

and better results are obtained compared to standard SIFT keypoint detection

especially for 615 subjects using 2 training images, as shown in table 6.8.

In our SSRHSI system, SIFT descriptors are extracted from the selected 300 key-

points and sparse representation is employed in order to combine linearly SIFT

descriptors to form one feature vector for each hand image. In our experiments,

each hand image is resized to a 256×256 image. For each image, SIFT descriptors

are extracted for each 16× 16 patches which were sampled on a grid with 8 pixels

of step size. Therefore, each patch is centered by the considered keypoint. The

dictionary is learned from random SIFT patches and its size is defined to be 1024.



Chapter 6. Proposed hand multi-types fusion for multimodality 126

Table 6.7: Correct identification rates, CIR (%) of the different keypoints
detection for various population size of IITD hand database

Method
Number of
keypoints

Train
(%)

Test
(%)

CIR (%)
100 230

Proposed system using
-

60 40 73.16 79.20
standard SIFT keypoints
detector

80 20 80.33 85.21

150
60 40 89.66 91.85

Proposed system using 80 20 94.33 94.71
proposed keypoints

200
60 40 93.33 96.33

detector 80 20 96.33 96.52

300
60 40 95.16 96.15
80 20 97.33 97.82

Table 6.8: Comparison of hand shape CIR (%) between different detected
keypoints using Bosphorus hand DB

Population size
Method 200 615

Proposed system using standard SIFT keypoints detector 81 76.15
Proposed system using proposed keypoints detector 80.66 83.17

In fact, experimentally, we tried two sizes: 512 and 1024. The performance of

size 1024 increases compared to 512 by obtaining 96.15% for 1024 size and 95.24%

for 512 size. Higher size of dictionary (for example 2048) will increase the dimen-

sion of feature vector especially after feature fusion of hand shape and palmprint

modalities. For this reason, the dictionary is fixed to 1024. Once the dictionary is

learned, the sparse representation feature is efficiently formed for each image. The

identification phase is performed using Linear SVM classifier. Table 6.9 reports the

influence of SIFT sparse representation method compared to other existing hand

shape recognition methods in literature, over the IITD hand database. In this

respect, Ferrer et al. [Ferrer 2011] extracted 400 finger widths. The classification

using Least SVM achieves a CIR=94.72%. On the other hand, Luque-Baena et

al. [Luque-Baena 2013] extracted 403 geometrical features from the whole hand.

These features were then selected using Genetic algorithms method. The classifi-

cation using SVM classifier achieves a CIR=86.60% evaluated on 230 subjects of

IITD hand database. The proposed SSRHI system is also compared to our previ-

ous system, in which SIFT descriptors were extracted from hand images and the
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cosine similarity method was adopted for the matching step. The CIR=94.14%

is obtained using our previous system. These works are considered for compar-

ison because their experiments were evaluated using the same database adopted

in the proposed work. Thus, it can be seen from table 6.9 that the proposed

SIFT sparse representation proves its efficiency since it offers better performances

(CIR=96.16%) than other descriptors.

Table 6.9: Comparison of hand shape biometric system performance vs. an
existing system in the literature using IITD hand DB

Reference Features Classifier CIR(%)

Ferrer et al., 2013 [Ferrer 2011] 400 finger widths
Least

Square SVM
94.72

Luque-Baena et al.,
2013 [Luque-Baena 2013]

Geometrical features SVM 86.60

Charfi et al. [Charfi 2014] SIFT descriptors
Cosine

similarity
94.14

Proposed SSRHI
SIFT + sparse
representation

SVM 96.15

Our second experiment concerns the proposed fusion scheme of our SIFT Sparse

Representation for Hand Shape and Palmprint identification (SSRHSPI) system.

Table 6.10 reveals performance results of the fusion at representation level as well

as the cascade fusion at feature and decision levels, over IITD hand database. The

fusion at representation level achieves a CIR=98.33% for 100 subjects and 99.27%

for 230 subjects, using 3 training images. However, the cascade fusion achieves a

CIR=99.5% for 100 subjects and CIR=99.57% for 230 subjects. Thus, it can be

seen from table 6.10 that the performance of the proposed system is increased or

maintained with increasing the number of subjects, which proves the robustness

of the proposed identification system.

On the other hand, table 6.11 reports results obtained by the fusion at represen-

tation level and the cascade fusion at feature and decision levels, over Bosphorus

hand database. In fact, the CIR is slightly reduced with increasing the number

of subjects by obtaining CIR of 98.16% for 200 subjects and 96.04% for 615 sub-

jects, for fusion at representation level. Regarding the cascade fusion, CIR is also

slightly decreased by achieving 98.5% for 200 subjects and 97.61% for 615 subjects.
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Table 6.10: CIR (%) of the proposed system using IITD hand DB

Population size
Modality 100 230

Hand shape 95.16 96.15
Palmprint 96.66 96.73
Hand shape + Palmprint based on fusion at feature level 98.33 99.27
Hand shape + Palmprint based on cascade fusion at feature
level and decision level

99.50 99.57

This reduction is intuitively explained by the effect that the difference between

population sizes is large (415 subjects) and the number of training images is small

(2 training images).

Table 6.11: CIR (%) of the proposed system using Bosphorus hand DB

Population size
Modality 200 615

Hand shape 82.44 80.12
Palmprint 97.5 94.95
Hand shape + Palmprint based on fusion at feature level 98.16 96.04
Hand shape + Palmprint based on cascade fusion at feature
and decision levels

98.50 97.61

Figure 6.11 shows the evolution of CIR with increasing subject numbers of the

IITD hand DB using the proposed SSRHPI system.

Figure 6.11: Correct Identification Rate (CIR) in terms of different numbers
of subjects of IITD hand database.
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The proposed system is compared to other existing multimodal hand biometrics

fusing hand shape/geometry and palmprint modalities. Yoruk et al. [Yoruk 2006a]

proposed a biometric system fusing hand shape and texture using Independent

Component Analysis (ICA) features. A CIR of 97.21% is achieved for 458 sub-

jects of Bosphorus hand database, with 2 samples of training images. On the other

hand, Kumar and Zhang [Kumar 2006b] developed a bimodal biometric system

combining geometrical features of the hand and discrete cosine transform (DCT)

coefficients of the palmprint trait. The fusion is performed at feature level and

achieves a CIR=98% for 100 subjects of UST (University of Science and Technol-

ogy) hand database. Choras and Choras [Choras 2007] also presented a bimodal

biometric system fusing the curvature analysis features of hand geometry and

Zernike moments features of palmprint modality, at matching score level. Exper-

iments evaluated on 100 subjects using a proprietary database obtain a CIR =

91.33% for three samples for each subject. However, Wang et al. [Wang 2009]

extracted contour features of the hand shape and wavelet features from palmprint

biometric trait. The fusion at feature level is based on the concatenation, after

normalization step, of the two feature vectors of hand shape and palmprint modal-

ities. The evaluation on 260 subjects of a proprietary hand database demonstrates

a CIR=96.98% using 6 images for each person. Ferrer et al. [Ferrer 2011] proposed

a bimodal biometric system fusing hand geometry and palmprint modalities. They

performed fusion at feature level by the concatenation of feature vectors generated

from geometrical features of the hand and Gaussian filter features of the palmprint.

Experiments, assessed on the IITD hand database containing 240 subjects with 10

samples for each subject, revealed the efficiency of this system by achieving a CIR

= 99.21%. Compared to the system of Ferrer et al. [Ferrer 2011] which uses the

same database, our proposed system presents higher CIR=99.57% for 230 subjects

and using only 5 samples for each subject. On the other hand, compared to the

system of Yoruk et al. [Yoruk 2006a] which also employed the same database, our

proposed system proves its efficiency by achieving better CIR=97.61% for 615 sub-

jects against CIR=97.21% for 458 subjects. Our proposed system is also compared
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to our previous work which extracted SIFT descriptors from hand shape and palm-

print modalities and the matching step was employed to compare between training

and testing images. The fusion at matching score level achieves a CIR=97.82%

for IITD hand database and CIR=95.46% for Bosphorus hand database. The

proposed system SSRHSPI presents better performance for these two databases

compared to our previous work. Hence, it can be seen from table 6.12 the in-

fluence of SIFT sparse representation features, extracted from hand shape and

palmprint modalities as well as the effect of the proposed fusion scheme, which

combine feature and decision levels, compared to other analogous approaches.

Table 6.12: Comparison of performances between the proposed approach and
other existing approaches fusing hand shape and palmprint modalities

Reference Database
Users

(images)
Method

Fusion
level

CIR
(%)

Yoruk et al., 2006
[Yoruk 2006a]

Bosphorus 458 (3) ICA features Feature 97.21

Kumar and
Zhang, 2006
[Kumar 2006b]

UST 100 (10)
Geometric features
+DCT coefficients

Feature 98

Choras and
Choras, 2007
[Choras 2007]

Proprietary 100 (3)
Curvature analysis
+Zernike moments

Score 91.33

Wang et al.,
2009 [Wang 2009]

Proprietary 260 (6)
Contour features
+Wavelet features

Feature 96.98

Fererr et al.,
2011 [Ferrer 2011]

IITD 240 (10)
Geometric features
+Gaussian filter

Feature 99.21

Charfi et al.,
2014 [Charfi 2014]

IITD
Bosphorus

230 (5)
642 (3)

SIFT
descriptors

Score
97.82
95.46

Proposed
SSRHSPI

IITD

Bosphorus

100 (5)
230 (5)
200 (3)
615 (3)

SIFT sparse
representation

Feature
+

Decision

99.50
99.57
98.50
97.61

We have also evaluated our system in terms of execution time. The proposed

biometric system is implemented using Matlab 2014a on a computer with 2.5 GHz,
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Intel core i3 CPU and 4GB RAM. Table 6.13 lists the execution time relative to

each step and reveals that our identification system requires less than 2 seconds

from one hand image for persons identification.

Table 6.13: Execution time

Steps Average execution time (ms)

Preprocessing 750
Feature extraction 463
Sparse representation 667
Fusion 25
Identification 12

Total 1917

6.4 Multi-instance palmprint identification method

In this section, we present a toucheless palmprint identification method based

on multi-instance fusion, combining left and right palmprints. The developed

method adopts SIFT descriptors as local invariant features to extract palmprint

features, that are then sparsely represented using sparse representation method.

The fusion of left and right palmprints is performed at rank level using multi-class

SVM classifier and probability distribution, as illustrated in figure 6.12.

6.4.1 Fusion at rank level using probability distribution

The classification using SVM method provides scores relative to each class for

each image sample. These scores may be regarded as the belonging degree of each

image to all classes (or persons). Our purpose is to transform these scores into

probability measures. Thus, the problem may be formulated as follows: what is

the probability that the image i belongs to the person h?
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Figure 6.12: Flowchart of the proposed palmprint identification method.

6.4.1.1 Probability knowledge basis

To build the probability knowledge basis, scores extracted from SVM classification

method should be transformed into a probability measures.

Let Ω be the space of score values as Ω = {I1, I2, ..., Ij, ..., IJ} where Pj is the

individual number j represented by a palmprint image; and j ∈ [1...J ] where
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J is the number of individuals. In fact, for each image, the following steps are

considered:

• A descriptor sparsely represented is employed in order to provide a feature

vector.

• A classification is performed to the feature vector by generating weights or

scores of its belonging to a person, as follows: ω[si1, si2, ..., siN ]

• For each score siN , a probability distribution is estimated PiN(siN) where

i ∈ {1, 2, ..., J}; n ∈ 1, 2, ..., N ; and Ωin is the space definition of sin

These steps generate the probabiliy distributions of each score for J individuals.

6.4.1.2 Probability distributions of the scores

The probability distributions are estimated by defining a function which trans-

forms scores into probability measures. In our work, the triangular probability

distribution is applied for each score, as follows: [Guesmi 2013]

• Compute the deviation of the triangular distribution of each test image,

expressed as:

D =

Ã

m∑

i=1

(si − q)2 (6.6)

where m is the number of persons; si is the value of matching score relative

to each person i (i ∈ [1...m]) and q = (
∑m

i=1(si)/m).

• Establish the triangular probability distribution as follows:

� The coordinates of upper and lower limits (a and c) of the triangular

distribution are determined from the deviation and the peak location b

in which the probability measure is equal to 1.

(xi
a, y

i
a) = (si −D, 0) and (xi

a, y
i
a) = (si +D, 0)
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The final identity decision is provided according to the AmbiguityRatio measured

from the two palmprint instances (left and right). If the AmbiguityRatio measure

obtained from left palmprint is higher than the AmbiguityRatio measure obtained

from right palmprint, then the person’s identity of right palmprint is considered;

otherwise, the person’s identity of left palmprint is considered.

6.4.2 Experimental evaluation

To assess the performance of the proposed method, an identification experiment

is carried out over two databases namely the proposed REST database contain-

ing 1500 hand images and the public CASIA palmprint database containing 2400

palmprint images. Correct Identification Rate (CIR) is computed to evaluate per-

formance of the proposed method. Table 6.14 presents CIRs obtained using left

palmprints of REST hand database, for three and four training images achieving,

respectively, 80.83% and 88.33%. While right palmprints achieve CIR=90.13% us-

ing three training images and CIR=93.33% using four training images. The fusion

of left and right palmprints is performed at feature and rank level. Results show

that the proposed fusion at rank level using probability distribution achieves bet-

ter performances (CIR=97.09% using six training images and CIR=98.33% using

eight training images) at rank 1 than fusion at feature level (CIR=96.38% using

six training images and CIR=96.66% using eight training images). Figure 6.14

presents the CMC (Cumulative Match Characteristic) curves, which reveal that

a significant performance improvement is obtained by the proposed method over

each palmprint instance alone, using REST hand database, by reaching CIR=100%

at rank 5 for left and right fusion.

Other experiments are performed using CASIA palmprint database. Table 6.15

demonstrates CIRs of each instance alone as well as CIRs of their fusion at rank

and feature levels, using different numbers of training images. Results report that

fusion of the two palmprint instances reaches 100% of CIR at the two levels, using

six training images and four testing images. In the case of four training images

and six testing images, fusion at feature level presents a slight increase achieving
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Table 6.14: Correct identification rates over REST hand database

Instance Train Test CIR (%)

Left palmprint 3 2 80.83

- 4 1 88.33

Right palmprint 3 2 90.13

- 4 1 93.33

Left + Right palmprints at feature level 6 4 96.38

- 8 2 96.66

Left + Right palmprints at rank level 6 4 97.09

- 8 2 98.33

Figure 6.14: CMC curves of the proposed fusion method over REST hand
database.

CIR=99.94% compared to CIR=99.89% of fusion at rank level. Nevertheless,

fusion at rank level presents less computational cost than fusion at feature level,

since less information are treated.

Table 6.16 presents a comparison between the proposed method and recent existing

methods [Xu 2015, Leng 2015]. These two works have been chosen since they

combine left and right palmprints over toucheless databases, as in this paper. It

can be seen in table 6.16 that the proposed method is competitive by obtaining

CIR=99.94% at feature level fusion, for 240 subjects, compared to the method of

Leng et al. [Leng 2015], which achieves CIR=99.7% for 101 subjects at the same

fusion level. Moreover, it can be pointed out that the proposed fusion method

at rank level also presents better performances by achieving CIR=99.72% for 240

subjects and CIR=98.33% for 150 subjects, compared to the method of Xu et al.



Chapter 6. Proposed hand multi-types fusion for multimodality 137

Table 6.15: Correct identification rates over CASIA palmprint database

Instance Train Test CIR (%)

Left palmprint 3 2 98.88

- 2 3 98.88

Right palmprint 3 2 97.70

- 2 3 96.52

Left + Right palmprints at feature level 6 4 100

- 4 6 99.94

Left + Right palmprints at rank level 6 4 100

- 4 6 99.89

[Xu 2015] which obtains CIR=94.64% using SIFT descriptors for 187 subjects at

score level fusion, and CIR=99.57% by fusing OLOF and SIFT descriptors, for

235 subjects.

6.5 Summary and conclusion

In this chapter, different multi-types fusion for hand multimodality biometrics are

presented. At first, the multi-representation hand shape verification method is de-

veloped by extracting two descriptors from the hand shape modality, namely SIFT

descriptors and geometrical features. The fusion method is performed at matching

score level using weighted sum rule method. The proposed multi-representation

method presents some advantages. In fact, the computational complexity and the

execution time of this method are not high due to the computational simplicity of

the used techniques. Moreover, performances achieved are relatively promising by

fusing the two descriptors (RR=97.82%). However, using a single modality (hand

shape) may decrease the properties of distinctiveness and universality which are

required in a biometric system. To deal with these problems, the palmprint modal-

ity is embedded and a multi-biometric fusion method based on hand shape and

palmprint modalities is proposed to ameliorate verification performances. Indeed,

a matching refinement process based on region and appearance of the hand trait

is developed in order to remove as much as possible false matched keypoints for
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Table 6.16: Comparison of performances between different multi-instance palmprint methods over toucheless databases

Author, year Features Indiv. Fusion level CIR(%)

Leng et al., 2015 [Leng 2015]
Two-dimensional discrete

cosine transform (2DDCT)
101 Feature level 99.7

PalmCode 187 Matching score level 99.64

Xu et al., 2015 [Xu 2015] Ordinal code - - 98.84

SIFT descriptors - - 94.64

Collaborative Representation

based Classification (CRC)
- - 99.35

palmCode 235 Matching score level 97.1

OLOF +SIFT descriptors - - 99.57

Sparse Multiscale Competitive Code (SMCC) - - 99.57

240 Rank level 99.72

Proposed method SIFT + Sparse Representation - Feature level 99.94

150 Rank level 98.33

- Feature level 96.66
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each modality apart. The fusion is performed at decision level and finger surfaces

trait are integrated in the case of dissimilarity between hand shape and palmprint

modalities. Experiments show that this multi-biometric verfication method is ef-

ficient and offers high verification rates (RR=99.82%), which are competitive to

other popular multimodal approaches. Nevertheless, in the case of the identifi-

cation mode, more execution time is required, since a comparison with all train-

ing images stored in database is demanded. To overcome this problem, a multi-

biometric method for persons identification is proposed. In fact, SIFT descrip-

tors are extracted from each detected keypoint from hand shape and palmprint

modalities. Moreover, sparse representation based on extracted SIFT descriptors

is adopted in order to represent these two biometric modalities for further clas-

sification step. A cascade fusion scheme based on feature and decision levels is

proposed in order to provide the final decision about the identity of the person.

This method is evaluated using two public hand databases. Experiments show

promising identification rates (RR=99.57%), in less execution time, with a small

number of training images and large population size. To extend our proposed iden-

tification method, a multi-instance biometric system is proposed by combining left

and right palmprint features, based on SIFT sparse representation features. The

fusion scheme is performed at rank level using multi-class SVM classifier and prob-

ability distribution, to generate the final identity of the person. Moreover, this

system is evaluated using a new proposed toucheless hand database named REST

hand database and the public CASIA palmprint database. Experiments reveal

that the proposed identification method is efficient and promising identification

rates are achieved for REST hand database (IR=98.33%) and CASIA palmprint

database (IR=100%).

Table 6.17 presents a summary of comparisons between the different multi-type

systems proposed in this thesis.
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Table 6.17: Comparison between the different proposed multi-types

Multi-type Mode Modality Features Database
Fusion

level

Performances

(%)

Multi-representation

method
Verification Hand shape

-SIFT descriptors

-Geometrical features
Bosphorus DB Score RR=97.82

Multi-biometric

method
Verification

-Hand shape

-Palmprint

-Fingers

-SIFT descriptors

-SIFT descriptors

-Gabor filters

IITD DB Decision RR=99.82

Multi-biometric

method
Identification

-Hand shape

-Palmprint

SIFT sparse

representation

-IITD DB

-Bosphorus DB

Feature

+ Decision

-IR=99.57

-IR=97.61

Multi-instance

method
Identification

Palmprint

left/right

SIFT sparse

representation

-CASIA DB

-REST DB

-Rank

-Feature

-Rank

-Feature

-IR=99.72

-IR=99.94

-IR=98.33

-IR=96.66



Chapter 7

Conclusions and future work

Biometrics is an alternative that is based on the identification of persons rely-

ing on their physical characteristics (iris, fingerprint, hand shape, etc.) and / or

behavioral (voice, dynamic signature, walking, etc.). Biometrics seeks to achieve

two important goals in our life. The first goal is to achieve security by eliminating

doubt on the identity of a person. The second purpose is to facilitate the identi-

fication of individuals. Nowadays, this method of identification is preferred over

traditional methods involving passwords and badges for different reasons: (i) the

person identified must be physically present at the time of identification; (ii) the

biometric techniques eliminate the need to remember a password or carry a badge.

Biometric systems which are based on a single modality are called unimodal bio-

metric systems. Although some of these systems have achieved significant im-

provements in terms of reliability and accuracy, they suffer from some limitations

that prevent them from being used in the recent applications. These limitations

may take shape in several problems because of noisy data, intra-class variation,

inter-class similarities, fraud attacks, non-universality and other factors. To over-

come some of these limitations and increase the security level, the fusion of data

presented by different modalities may increase the identification accuracy of the

identity. This is called multimodal biometric systems.

141
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To invest in the multi-biometric field and to achieve a robust recognition solution,

we have focused, throughout this thesis, on new multimodal biometric methods in

the hand biometric field based on two biometric modalities which are hand shape

and palmprint traits. These two modalities have the merit of being acquired

simultaneously from the hand image.

In the first part, the general context of biometry is presented by describing the

properties of different biometric modalities, the structure of a general biometric

system and the concept of multimodality by summarizing the different architec-

tures of multimodal systems as well as fusion levels. In addition, we justified

the choice of hand modality treated in this thesis and the principal challenges re-

garding the hand biometric trait. On the other hand, an overview of hand shape

and palmprint modalities is put forward and different existing approaches are dis-

cussed. Moreover, multimodal hand shape and palmprint biometrics are described

and a comparison between different fusion approaches is outlined.

The second part of this thesis concerns the main contributions suggested in this

work. Our first contribution consists of the proposition of a new hand shape veri-

fication system. In fact, this system is based firstly on the detection of the best set

of keypoints localized in the contour of the hand for further SIFT description and

matching process. Secondly, a matching refinement-hand region and appearance

are proposed in order to refine as much as possible mismatched keypoints. Actu-

ally, our matching refinement process is based on two levels. The first one pertains

to the matching based-region refinement in which matched keypoints that are be-

longing to different hand regions are removed. The second one concerns matching

based-appearance refinement in which the two patches relative to the two matched

keypoints are represented by Gabor filters for similarity comparison. The two key-

points are removed if the similarity measure between their patches is lower than

a certain threshold. The proposed hand shape verification system has proven its

efficiency and robustness by achieving promising performances.

Our second contribution incorporates the proposition of a new palmprint identi-

fication system. Indeed, SIFT sparse representation method is adopted in order

to describe the palmprint biometric trait. It is based chiefly on the extraction
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of SIFT descriptors from each detected keypoints. Then, sparse representation

based on extracted SIFT descriptors is employed so as to represent palmprint fea-

tures. The proposed palmprint identification system has proven its efficiency by

obtaining promising performances that are competitor to other existing palmprint

recognition approaches.

Our third contribution copes with the proposed hand multi-types fusion methods

for multimodality, including multi-representation fusion, multi-biometric fusion

and multi-instance fusion. In fact, the multi-representation fusion is based on the

combination of SIFT descriptors and geometrical features of the hand at matching

score level, for hand shape verification. The multi-biometrics fusion is grounded

on the combination of two biometric modalities which are the hand shape and the

palmprint traits. The fusion is performed at two levels namely feature and decision

levels. However, the multi-instance fusion is based on the combination of left and

right palmprints and performed at rank level using probability distribution. These

different fusion methods have proven their efficiency and robustness for different

biometric systems by achieving promising performances which are competitive to

other existing multimodal hand fusion approaches.

In the literature, the fusion methods in hand biometric field have usually been per-

formed at feature or score level, in order to ameliorate recognition performances.

However, in our work, the fusion at feature and decision levels is combined so as

to generate the final identity of the person. Moreover, a fusion at rank level is

performed, combining left and right palmprints. Indeed, the fusion at rank level

was rarely used in the hand biometric field. For multimodal systems, the used

databases were usually acquired either with direct contact or in a particular envi-

ronment (indoor). Besides, the left and right hands are sometimes not appropriate

to the same person. Thus, our work has the credit to create a new real touche-

less hand database named ”REgim Sfax Tunisia hand database” composed of left

and right hands and palmprints captured in free positions, without any lighting

conditions or restriction of pegs.

The promising results achieved motivate us to enhance our works in these research

areas as future works. Actually, a falsification attempt may occur. Accordingly,
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an impostor may present to the acquisition device a picture of the hand of an

authentic person. To overcome this problem, our methodology can be extended to

3D hand images. On the other hand, this problem may be resolved by integrating

hand or palm veins which makes it difficult to display just a mere picture to

be identified. Moreover, the proposed multi-instance method may be extended by

fusing left and right hand shapes at rank level. Indeed, the probability distribution

method has proven its efficiency and robustness using left and right palmprints for

person identification.
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Résumé 

La biométrie est une alternative qui se base sur l'identification des 
personnes à partir de leurs caractéristiques physiques (empreinte 
digitale, forme de la main, empreinte palmaire) et/ou 
comportementales (voix, signature dynamique). La biométrie tend à 
réaliser deux buts importants dans notre vie courante. Le premier but 
est de réaliser la sécurité en éliminant le doute sur l'identité d'une 
personne et le second but est de faciliter l'identification des individus. 
En effet, cette méthode d'identification est de plus en plus préférée par 
rapport aux méthodes traditionnelles impliquant les mots de passe et 
les badges. Les travaux de recherche de cette thèse s’inscrivent dans 
le cadre de la reconnaissance de personnes à l’aide de la biométrie de 
la main. L’objectif  principal est de concevoir un système biométrique 
multimodal basé sur la fusion de la forme de la main et de l’empreinte 
palmaire. 

La première partie de cette thèse propose un nouveau système uni-
modal de vérification de la forme de la main. En effet, ce système est 
basé d’une part, sur la  détection du meilleur ensemble des points-clés 
localisés sur le contour de la main pour adopter la description SIFT 
(Scale Invariant Feature Transform). D'autre part, un raffinement de 
correspondance, basé région et apparence de la main est proposé, 
afin de raffiner autant que possible les points-clés faussement 
matchés. 

Tandis que la deuxième partie consiste à proposer un nouveau 
système d’identification palmaire. En effet, la méthode de 
représentation parcimonieuse est adoptée afin de décrire le trait 
biométrique de l'empreinte palmaire. Elle est basée sur l'extraction de 
descripteurs SIFT de chacun des points-clés détectés.  

Notre troisième partie concerne la proposition de différentes méthodes 
de fusion multi-types de la multi modalité, comprenant la fusion multi-
représentation, la fusion multi-biométrique et la fusion multi-instance. 
En effet, la fusion multi-représentation est basée sur la combinaison de 
descripteurs SIFT et les caractéristiques géométriques de la main au 
niveau des scores, pour la vérification de la forme de la main. La fusion 
multi-biométrique est basée sur la combinaison des deux modalités 
biométriques à savoir la forme de la main et l’empreinte palmaire, au 
niveau des caractéristiques et de la décision. Par contre, la fusion 
multi-instance est basée sur la combinaison des empreintes palmaires 
droite et gauche, au niveau du rang. 

Ces différentes méthodes de fusion ont prouvé leur efficacité en 
obtenant de meilleurs taux de reconnaissance, qui sont compétitifs par 
rapport à d'autres approches multimodales de la biométrie de la main. 

Mots-clés:  Biométrie, Forme de la main, Empreinte palmaire, 
Multimodalité, Fusion. 

 

 

 

Abstract 

Biometry is a technology which is based on the personal identification 
using their physical features (fingerprint, hand geometry, palmprint) 
and/or behavioral features (voice, dynamic signature). Biometry aims to 
achieve two important goals in our current life. The first one is to 
ensure security by eliminating doubt regarding the identity of a person 
and the second one is to facilitate the identification of individuals. 
Indeed, this method of identification is increasingly preferred over 
traditional methods including passwords and badges. The research 
works of this thesis talk about the personal recognition using hand 
biometrics. The main objective is to design a multimodal biometric 
system based on the fusion of hand shape and palmprint modalities. 

Our first part is to propose a new unimodal biometric system for hand 
shape verification. In fact, this system is based firstly, on the detection 
of the best set of keypoints located on the contour of the hand for 
further SIFT (Scale Invariant Feature Transform) description. On the 
other hand, a matching refinement based hand region and appearance 
is proposed in order to refine as much as possible false matched 
keypoints. 

Our second part consists in the proposition of a new palmprint 
identification system. In fact, the sparse representation method is 
adopted in order to describe the palmprint biometric trait. It is based on 
the extraction on SIFT descriptors for each detected keypoint. 

Our third part concerns the proposition of multi-type fusion methods for 
multimodality, including the multi-representation fusion, the multi-
biometric fusion and the multi-instance fusion. Indeed, the multi-
representation fusion method is based on the combination of SIFT 
descriptors and geometrical features of the hand, at score level. The 
multi-biometric fusion method is based on the fusion of hand shape 
and palmprint modalities, at feature and decision levels. On the other 
hand, the multi-instance fusion method is based on the combination of 
left and right palmprints, at rank level. 

These different methods of fusion have proven their effectiveness by 
achieving encouraging recognition rates that are competitive to other 
popular multimodal hand biometric approaches. 

Keywords : Biometry, Hand shape, Palmprint, Multimodality, Fusion. 
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