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Abstract  

 

This thesis analyzes a W-configuration Assemble-To-Order (ATO) system with random lead 

times, random arrival of demands, and lost sales, in continuous time. Our work contributes to 

the research stream of ATO systems by characterizing the optimal control policy of a 

W-configuration ATO system, which is a building block for more general systems. While the 

vast majority of the literature dealing with integrated production and inventory control tries to 

characterize the structure of the optimal policy over the entire state space, we used a novel 

approach that characterizes the structure of the optimal policy within a sub space which we 

identified as the recurrent region within which the state remains, in the long run. The 

advantage of such approach is that it allows us to identify a set of structural properties that are 

satisfied by the cost function (otherwise may not be satisfied outside this region). This 

approach greatly simplifies the analysis and can be applied to several similar integrated 

production and inventory control problems. In particular, within this region, the operator 

associated with the production decision, in the optimality equation, automatically satisfies the 

set of identified structural properties. This, in addition to greatly simplifying the proof of the 

structure of the optimal policy, avoids the challenge of having the cost function not satisfying 

certain properties in the region other than the recurrent. Furthermore, in addition to integrated 

production and inventory control systems, our approach can be applied to problems where the 

optimal policy yields both a recurrent and a transient region. Below, we elaborate on the 

contents of each chapter.  

 

In the first chapter, we give a basic introduction of ATO systems, which includes its 

configurations and its advantages in various industries applications. We describe the challenges 

in implementing ATO systems in practice and give the outline of our thesis. 

 

In the second chapter, we review the current literatures dealing with ATO systems. 

Specifically, we divide the literature based on the inventory review models and number of end 

products. For the periodic review models, we divide the literature into one-period models and 
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multiple-period models. For the continuous review models, we divide the literature into 

exogenous load-independent models and endogenous load-dependent models. We also discuss 

the optimal policy structures and computational methods in diverse problem settings.  

 

In Chapter 3, we formulate the problem as an infinite-horizon Markov decision process. 

We deviate from the standard approach by first characterizing a region (which we refer to it as 

“the recurrent region”) of the state space where all properties of the cost function hold. We 

apply a linear programming technique to solve the problem, which shows that all states in the 

recurrent region have a strictly positive limiting probability. Our analysis reveals that the 

optimal allocation policy is counter-intuitive. For instance, even when one product dominates 

the other, in terms of lost sale cost and lost sale cost rate (i.e., demand rate times the lost sale 

cost), its demand may not have absolute priority (in being satisfied) over the other product’s 

demand. Such a feature has not been observed in many integrated production/inventory 

settings where inventory allocation follows a fixed priority in satisfying demands. 

 

In Chapter 4, we characterize the optimal policy within the recurrent region. In particular, 

we show that within the interior of the recurrent region, components are always produced. The 

optimal component allocation within the recurrent region is characterized by two 

state-dependent thresholds corresponding to the components used by the product. We also 

show that the structure of the optimal policy remains for systems with batch production, 

non-unitary product demand and K-Erlang distributed production times.  

 

In Chapter 5, we propose a heuristic method that is based on system decomposition. We 

compare this heuristic and two other state-independent heuristic methods to the optimal policy. 

Extensive numerical experiments show that these three heuristics are efficient with compared 

to the optimal policy. In particular, the decomposition method works best both with respect to 

relative percentage error and computational time. Taking advantage of this fact, we use this 

heuristic policy as a startup policy to the dynamic programming algorithms used to obtain the 

optimal policy. We show that doing so reduces the CPU time required to obtain the optimal 

policy, by several orders of magnitude. In addition, in order to verify the effectiveness of the 
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decomposition method, we apply it to three other larger systems. In each of these three systems, 

numerical results show it still performs very well. 

 

In last chapter, we conclude our thesis and propose several branches of future research 

perspectives.  

 

 

Key words: Assemble-to-order, Markov decision process, Dynamic programming, Linear 

Programming, Production and inventory control, Inventory rationing, Demand management 
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Résumé étendue en Francais 

 

Les systèmes Assemble-To-Order (ATO) qui comprennent un système d'assemblage et un 

système de distribution sont difficiles à analyser par nature. Dans cette thèse, nous analysons 

un type W (3 composants, 2 produits finales) de système ATO avec des délais de livraison 

aléatoires, l'arrivée aléatoire de la demande et des ventes perdues, en temps continu. Notre 

travail contribue au flux de recherche des systèmes ATO en caractérisant la politique de 

contrôle optimale du système ATO avec la configuration W, qui est un bloc de construction 

pour des systèmes plus généraux. Alors que la grande majorité de la littérature sur la 

production intégrée et le contrôle des inventaires tente de caractériser la structure de la 

politique optimale sur l'ensemble de l'espace étatique, nous avons utilisé une approche 

originale qui caractérise la structure de la politique optimale à la région récurrente dans 

laquelle l'état reste, à la longue. L'avantage d'une telle approche est qu'elle nous permet 

d'identifier un ensemble de propriétés structurelles qui sont satisfaites par la fonction de coût 

(autrement, elles pourraient ne pas être satisfaites en dehors de cette région). Cette approche 

simplifie grandement l'analyse et peut être appliquée à plusieurs problèmes similaires de 

production intégrée et de contrôle d'inventaire. En particulier, dans cette région, l'opérateur 

associé à la décision de production, dans l'équation d'optimalité, satisfait automatiquement 

l'ensemble des propriétés structurelles identifiées. Ceci, en plus de simplifier grandement la 

preuve de la structure de la politique optimale, évite le défi d'avoir la fonction de coût ne 

satisfaisant pas certaines propriétés dans la région autre que le récurrent. En outre, en plus des 

systèmes intégrés de contrôle de la production et des stocks, notre approche peut être appliquée 

aux problèmes où la politique optimale produit à la fois une région récurrente et une région 

transitoire. Ci-dessous, nous développons le contenu de chaque chapitre. 

 

    Dans le premier chapitre, nous donnons une introduction basique des systèmes ATO, qui 

inclut ses configurations, ses avantages et ses applications dans diverses industrielles. Nous 

décrivons les défis dans la mise en œuvre des systèmes ATO dans la pratique et donnons les 

grandes lignes de notre thèse. 
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    Dans le deuxième chapitre, nous passons en revue les littératures actuelles traitant des 

systèmes ATO. Plus précisément, nous divisons la littérature en fonction des modèles de revue 

d'inventaire et du nombre de produits finaux. Pour les modèles d'examen périodique, nous 

divisons la littérature en modèles à une période et en modèles à périodes multiples. Pour les 

modèles de revue continue, nous divisons la littérature en modèles exogènes et indépendants 

de la charge et en modèles endogènes et dépendants de la charge. Nous discutons également 

des structures politiques optimales et des méthodes de calcul dans divers contextes de 

problèmes. 

 

    Dans le chapitre 3, nous formulons le problème comme un processus de décision de 

Markov à l'horizon infini. Nous nous écartons de l'approche standard en caractérisant d'abord 

une région (que nous appelons «la région récurrente») de l'espace d'état où toutes les propriétés 

de la fonction de coût sont maintenues. Nous appliquons une technique de programmation 

linéaire pour résoudre le problème, qui montre que tous les états de la région récurrente ont une 

probabilité de limitation strictement positive. Notre analyse révèle que la politique d'allocation 

optimale est contre-intuitive. Par exemple, même lorsqu'un produit domine l'autre, en termes 

de coût de vente perdu et de perte de prix de vente (c'est-à-dire le taux de demande multiplié 

par le coût de vente perdu), sa demande peut ne pas être prioritaire. Une telle caractéristique 

n'a pas été observée dans de nombreux contextes intégrés de production / d'inventaire où la 

répartition des stocks suit une priorité fixe dans la satisfaction des demandes. 

 

    Au chapitre 4, nous caractérisons la politique optimale dans la région récurrente. En 

particulier, nous montrons qu'à l'intérieur de la région récurrente, les composants sont toujours 

produits. L'allocation optimale des composants dans la région récurrente est caractérisée par 

deux seuils dépendants de l'état correspondant aux composants utilisés par le produit. Nous 

montrons également que la structure de la politique optimale reste pour les systèmes avec 

production par lots, demande de produits non-unitaires et temps de production distribués 

K-Erlang. 

 



 15 

Au chapitre 5, nous proposons une méthode heuristique basée sur la décomposition du 

système. Nous comparons cette heuristique et deux autres méthodes heuristiques 

indépendantes de l'état à la politique optimale. Des expériences numériques approfondies 

montrent que ces trois heuristiques sont efficaces par rapport à la politique optimale. En 

particulier, la méthode de décomposition fonctionne le mieux en ce qui concerne le 

pourcentage relatif d'erreur et le temps de calcul. Profitant de ce fait, nous utilisons cette 

politique heuristique comme une politique de démarrage pour les algorithmes de 

programmation dynamique utilisés pour obtenir la politique optimale. Nous montrons que cela 

réduit le temps CPU nécessaire pour obtenir la politique optimale, de plusieurs ordres de 

grandeur. De plus, afin de vérifier l'efficacité de la méthode de décomposition, nous 

l'appliquons à trois autres systèmes plus importants. Dans chacun de ces trois systèmes, les 

résultats numériques montrent qu'il fonctionne encore très bien. 

 

    Dans le dernier chapitre, nous terminons notre thèse et proposons plusieurs branches de 

perspectives de recherche futures. 

 

 

Mots-clefs: Assemble-To-Order, Processus de décision Markov, Programmation dynamique, Contrôle 

de la production et des stocks, Gestion de la demande 
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Chapter 1. Introduction 

 

Assemble-To-Order (ATO) systems have the advantages of decreasing operational costs, 

increasing variety of end products and reducing response time by pooling inventory of 

components and delaying the assembly stage until demand materialization. It has attracted 

great deal of attention in industry for a long time. In the first chapter, we will try to understand 

what an ATO system is, its advantages, disadvantages and its application fields. Then, we will 

describe the optimal control of ATO systems and lay out the plan of the thesis.  

 

1.1  The ATO system and its applications 

 

1.1.1 What is an ATO system? 

An appropriate production strategy is the keystone for a company (especially for a 

manufacturing company) to integrate effectively its manpower, material resources and capital, 

so as to provide market competitiveness. Typically, based on the customer order decoupling 

point (M. Rudberg and J. Wikner, 2004), there are four frequently used production strategies: 

Engineering-To-Order (ETO), Make-To-Order (MTO), Make-To-Stock (MTS) and 

Assemble-To-Order (ATO) (cf. Figure 1.1). In General, the earlier the customer order 

decoupling point, the higher degree of customization. Depending on the category of products, 

the complexity of production and the specification of demand, different companies may apply 

different production strategies. For instance, for bulky and complex products (Airplane, 

High-speed train etc.) or non-standard products (Customized furniture, Tailored dress etc.), 

customers’ opinions are involved at the design phase of products. In this case, an ETO/MTO is 

a suitable production strategy. However, extra efforts and resources will be needed to meet 

customers’ specifications which increases the cost of the final product. Sometimes, customers 

could only choose from what is available in the marketplace (such as Agricultural products, 

Apartments, etc.). In this case, Research and Development (R&D) is done through market 

investigation and the MTS strategy is chosen for mass production to reduce costs. For example, 

the Ford model T has always been regarded as the most successful initiative of changing from 

MTO production to MTS production, which substantially reduced the cost of a car (K. 
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Williams et al. 1992). The information in the MTS production system transfers to a bottom-up 

model, which may induce a discrepancy between company’s supplies and customers’ needs 

and which may result in a potential loss (H. L. Lee et al. 1997). 

    Because of customer desire for low cost as well as for customization, companies try to 

strike a balance between low cost production and product customization. To this end, Mass 

Customization has been proposed to serve each customer with customized product at a 

reasonable price (B. J. Pine II, 1993). To obtaining the benefits of Mass Customization, 

companies need to find an appropriate production stage to take customers’ needs into account. 

Zinn (1990) found that the postponement of the assembly stage is an effective way to reduce 

operational costs, to avoid unnecessary inventory and to offer a broader assortment of products. 

In particular, postponement of the assembly stage represents a major strategic alternative to 

sales forecast-based distribution when errors in demand forecasting are high. As such, the use 

of the ATO strategy to organize production becomes an attractive alternative, which provides a 

way to gain competitive advantage. 

 

 

 

 

 

 

 

 

 

 

In general, an ATO system comprises several components or sub-assemblies that are 

assembled into end products according to a bill of materials (BOM). Components are 

purchased from suppliers or produced by the company itself. Products are assembled only 

when customers’ demands materialize. The time of assembly can always be neglected, as the 

time to acquire components is always substantially longer (Song and Zipkin, 2003). This 

strategy is particularly attractive to firms with long component production/supply lead-times 

and relatively short assembly time. A basic configuration of an ATO system with n components 

Figure 1.1: Production process of ETO, MTO, ATO and MTS 

MTS ETO MTO ATO 

Supplier Production of 
components 

Assembling Customer 
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and m products is shown in Figure 1.2, where certain components with certain units are 

assembled to an end product and some of them are shared among different end products. The 

system manager must decide when to produce/purchase components and when to satisfy 

demands. If demands cannot be satisfied, they are backlogged or lost, which results in an 

additional cost. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.2 Applications of ATO systems 

The ATO strategy has frequently been used in today’s marketplace due to its advantages. The 

applications of ATO production not only allow companies to offer a large number of products 

with different appearances and performances, but also let them reduce their operational costs. 

We describe the following three fields where ATO systems are widely applied. 

1) Traditional manufacturing 

    ATO is an appealing strategy for firms in such industries as high-tech, automotive and 

white goods manufacturing. One well-known ATO system (also refer to as Configure-To-Order 

(CTO)) is the operation of Dell Computer. Known for its direct sale, Dell lets its customers 

configure their computers from sets of processors, memories, monitors, hard drives etc., and 

build a customized personal computer (R. Kapuscinski, 2004). This strategy has become so 

successful that other personal computer producers are adopting similar strategies, such as 

Figure 1.2: Configuration of a basic ATO system 
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…
 

1 

2 

3 
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n 

Suppliers Products 
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…
 

  

1 

2 

3 

m

Demands 



 20 

Apple and H&P. In the automotive industry, the ATO system is also referred to as 

Build-To-Order (BTO) system. For example, BMW allows customers to make changes to their 

vehicle within 6 days of final assembly. This allows the company to build up to 550,000 

permutations of the Z3 vehicle in applying such a BTO system (A. Gunasekaran, 2004).  

2) Spare part management 

Likewise, the ATO system can be used in the spare part control operation. Due to the 

uncertain arrival of maintenance jobs that require different spare parts with different units, any 

shortage of these leads to delayed maintenance jobs. In order to provide short repair turnaround 

time, the maintenance department needs to keep a high stock level of spare parts. Hence, the 

manager needs to balance the system cost and service level. In this setting, the spare parts refer 

to components, while the end product is the maintenance component. There are many practical 

applications of ATO systems in spare part management. For example, van Jaarsveld (2015) 

analyzed the maintenance system of Fokker Service, which is a Netherlands-based aircraft 

repair shop. He provided managerial insights that aim at balancing the operational cost and 

service quality. Other examples can be found in ASML (Vilegen, I.M.H 2009), Airbus (A. 

Regattieri et al. 2015) etc. 

3) E-commerce  

    The structure of the ATO strategy also applies to other settings such as mail order catalogs, 

e-retailers and distributors of multiple finished products. In such settings, customers may order 

different and possibly overlapping sets of items. In this case, customer service is based on the 

delivery of the entire order. The assembly of a product refers to pick the items in customers’ 

order and packaging them. For instance, Xu (2006) analyzed the relevant order assignment 

problem so as to minimize the procurement and transportation costs of Amazon Inc.  

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

1.2  Outline of the thesis 

 

ATO systems however, are difficult to analyze in spite of their popularity due to the inability of 

identifying the associated optimal operating policies in general. Much of this difficulty can be 

attributed to several factors: Demand of a component depends on the demand of other 

components; production/procurement lead times differ from one component to another; and 
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fulfillment of demand dependents on the availability of several components. In 

multiple-products, multiple-customer classes ATO systems, this difficulty is further 

compounded since the system manager not only must decide when to produce/procure 

components but also must decide how to allocate component inventory among competing 

demands with different priorities (Benjaafar and Elhafsi, 2006). Furthermore, an ATO system 

can be thought of as a combination of an assembly system and a distribution system (Song and 

Zipkin, 2003). The main challenge in an assembly system is component coordination and the 

main challenge in a distribution system is component allocation among multiple products. 

Thus, the difficulty of concurrently dealing with coordination and allocation issues in an ATO 

system. 

In this thesis, we study a continuous time integrated production and inventory control 

W-configuration system with several features common in the literature. Such a system 

constitutes a building block for the general multiple-component, multiple-product ATO system. 

To our knowledge, there is no extant characterization of the optimal component 

production/procurement and inventory allocation policies for even the basic W-configuration 

system. We believe that studying and characterizing the optimal policy of the W-system allows 

us to gain insight and enhance our understating of the general multiple-component, 

multiple-product ATO system. Furthermore, knowing the structure of the optimal policy for the 

W-configuration system allows us to extrapolate and develop efficient algorithms and 

heuristics to manage the general configuration ATO systems.  

The plan of our thesis is organized as follows: In chapter 2, we provide a review of the 

current literature of ATO systems with different perspectives. In chapter 3, we formulate the 

W-configuration ATO system and use a linear programming model to solve the system. In 

chapter 4, we characterize the structure of optimal policy of W-configuration ATO system with 

lost sales and extensions. In chapter 5, we propose three heuristic methods that can be used 

efficiently for larger systems. In chapter 6, we conclude the thesis and provide some 

suggestions for managing ATO systems.  
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1.3  Conclusion 

  

In this chapter, we introduced the concept and advantages of an ATO system. We also 

presented the applications of ATO systems. However, in spite of their popularity, ATO systems 

are difficult to analyze due to their inherent characteristics. Specifically, the difficulty is due to 

concurrently dealing with coordination and allocation issues in an ATO system, which leads to 

the necessity of finding the optimal control policy of such systems.  
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Chapter 2. Literature Review 

 

In recent years, academicians and practitioners alike have become increasingly interested in 

analyzing ATO systems, with most of the papers being published in top journals of this filed. 

The first review of literature relating to ATO systems was provided by Song and Zipkin (2003) 

and the most recent review was provided by Atan et al. (2017). In this chapter, we follow their 

leads to provide a comprehensive review of the current literature in ATO systems. Depending 

on the inventory review approach, we divide the literature into periodic review models and 

continuous review models. 

 

2.1  Inventory periodic review models 

 

In this section, we study ATO systems in the inventory periodic review setting. Based on the 

number of periods, we divide this stream of literature into one-period models and multi-period 

models.  

 

2.1.1. One-period models 

One-period models are studied because of their simplicity. On one hand, they can serve as a 

myopic heuristic or an approximation method to more general models. On the other hand, the 

one-period model can be practical under certain circumstances. For instance, the traditional 

news-vendor model is a basic one-period model, where certain quantity of newspapers is 

purchased according to the distribution of sales forecast ahead of the day and the leftover at the 

end of the day will be discarded. Furthermore, the rapid changes in technology and engineering 

can force companies to treat each demand separately, which lead to one-period models.  

    In a one-period setting, the sequence of events within the period is as follows: (1) 

Components produced or purchased based on anticipated demand for the end products. (2) The 

realization of customers’ demand. (3) Products are assembled from components and delivered 

to customers. Because lead times vary among components, the main objective in the 

one-period model is the coordination of the time and quantity of replenishment orders. 
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Depending on the number of end products, we further divide the literature of one-period 

models into single end product and multiple end products.  

(1) One-period models with single end product 

    The literature of one-period models with single end product is limited. Most papers 

attempt to get the optimal order policy under particular assumptions. Fu et al. (2006) consider 

an inventory and production planning problem in a single product ATO system with uncertain 

demand quantity. With assumptions of long components procurement lead times and limited 

assembly capacity, they use a profit-maximization model to find the optimal inventory and 

production decisions. In addition, the option of outsourcing is considered as an alternative way 

to satisfy customers’ demands. Xiao et al. (2010b) consider a similar system, whereas 

assuming uncertain assembly capacity and emergency component orders. They establish the 

structural properties of the optimal solution and find assemble-in-advance strategy should be 

adopted in certain conditions. Yao et al. (2013) study a single period ATO system for a single 

product assembled from multiple components and assume the stock-out components can be 

obtained through additional two sourcing channels that have different prices and lead-times. 

They use a branch and bound algorithm to solve the system and explore the structure of the 

optimal solutions.  

The other branch of literature in one-period single end product deals with the lead-time 

dependent pricing problem. Hsu et al. (2006) study the optimal stocking quantities problem 

under the assumption of uncertain demand, while the price of the final product and the cost of 

components depend on their delivery lead times. The authors provide an efficient solution 

procedure that allows multiple shipments of full order quantity and extend it to the option of 

not delivering the full quantity but instead taking the penalty for a delivery shortage. Hsu et al. 

(2007) extend this result to consider the situation where the full order quantity must be shipped 

together. They show that the full-shipment model is more appropriate for industries where the 

economies of scale in transportation are critical for cost control. Fang et al. (2008) introduce 

the ‘Vendor Managed Consignment Inventory (VMCI)’ concept to manage the underlying risk 

and suppliers’ decision on production quantities under demand uncertainty. They formulate the 

problem using game theory to find suppliers’ Pareto-optimal equilibrium and derive the 

manufacturer’s optimal pricing scheme. Fu et al. (2009) assume the price of the end product is 
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non-increasing in delivery lead time and the supply of components can be expedited at higher 

prices. They propose a cost-minimization model and develop an efficient polynomial time 

algorithm to solve the problem.  

In conclusion, most researchers studied the optimal ordering problem of one-period single 

end product model with distinct assumptions on the sourcing mode (multiple sourcing channels, 

expedited delivery etc.), the delivery mode (full quantity delivery, partial shipment, lost sale 

etc.) and the assembly capacity (limited, unlimited, outsourcing etc.). In addition, some 

researchers studied the lead-time dependent pricing problem, where the relation between the 

price of end product and delivery lead-time need to be fully taken into consideration.  

(2) One-period models with multiple end products 

    Unlike one-period models with single end product, one-period models with multiple end 

products introduce more complication since components could be demanded by distinct end 

products. To handle such systems, one needs not only to find the optimal order quantity for 

each component, but also needs to determine how to allocate the component to products that 

require it. Component commonality is a special issue in such system.  

    One branch of the literature in such systems is to determine the value of component 

commonality. Inman and Schmeling (2003) investigate the value of decoupled assembly that 

allows the automotive plant to change customer orders associated with a particular physical 

vehicle in traditional assembly initiation. Using a simulation method, they show that the 

decoupled assembly can simultaneously reduce material usage unevenness and worst case 

lead-times. In particular, they claim that the benefit of decoupled orders increases with product 

variety. Fong et al. (2004) provide analytical results for a commonality problem under a 

general cost structure when demands follow an Erlang distribution. They show that the effect 

of component commonality is significant when the budget level is high even if the common 

component is much more expensive, whereas the effect is small or negative when the budget 

level is low relative to the demand requirements for the end products. Chod et al. (2010) study 

component procurement, assembly and product pricing under an MTO system. Specifically, 

they show that the benefits of flexibility increase in demand correlation if the corresponding 

products have a relatively low degree of commonality. Other results can be found in Van 

Mieghem (2004), Zhang et al. (2008) etc.  
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     The other stream of the literature deals with comparing different allocation rules and 

finding their effect on system performance. Xiao et al. (2010a) analyze an ATO system that 

produces two end products with a common component. They apply a profit-maximization 

model to establish the structural properties for the optimal stocking solutions and investigate 

with scenarios of how to fulfill low priority customer’s order. Bernstein et al. (2011) consider 

an ATO system in which multiple products are assembled from a common component and a set 

of product-specific components. In comparing a collection of allocation mechanisms involving 

varying degrees of demand aggregation, they show that the benefit from increased demand 

aggregation is closely linked to the degree of capacity imbalance. Tsai et al. (2013) propose a 

two stages cost-based module mining method for an ATO system, where the first stage 

determines the set of components to be formed as modules and the second stage determines 

how to allocate modules among end products.  

    Bernstein et al. (2007) study the pricing problem in a decentralized multiproduct assembly 

system and show that there exists a unique Pareto-optimal equilibrium in the supplier’s 

capacity game for any set of wholesale prices.  

Correspondingly, in one-period models with multiple end products, most of the research 

focused on determining the value of component commonality and comparing the effect of 

different allocation rules on system performance. Zipkin (2016) studied the relative integer 

linear programming formulation of one-period models with multiple end products. Assuming 

increasing acquisition cost, he proved that the problem holds a cover- #L -convexity property 

and the feasible set has a polymatroid form. 

 

2.1.2. Multi-period models 

In multi-period models, the decisions and sequence of events within a single period are the 

same as in one-period models. However, complications arise by linking subsequent periods 

together. In general, there are two sources of complications. One is that the state at the end of 

the current period will be the beginning state at next period. Besides, if the unsatisfied product 

is backlogged, the backlogged demand need to be satisfied in subsequent periods and the rule 

to clear the backlog is crucial. The other complication is due to the lead-times for components 

replenishment. Song and Zipkin (2003) point out that if the lead times for different components 
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are different, the replenishment decision in one period will affect inventory levels in other 

periods in the future. Depending on the number of end products, we divide the literature on 

multi-period models into single end product and multiple end products.  

(1) Multi-period models with single end product 

    In this setting, the major problem is to find the optimal or near optimal component 

replenishment policy. Rosling (1989) shows that simple reorder policies are optimal under a 

mild condition of components’ initial stock levels. Karaaslan et al. (2013) study an ATO system 

with one final product that is composed of one long lead-time component with short review 

period and one short lead-time component with long review period. They compare the 

balanced base-stock policy with pure base-stock policy and show that the balanced base stock 

policy performs better under low service levels, low holding cost ratios and high demand 

uncertainty.  

    Some researchers study the effect of different base-stock policies on system performance. 

Glasserman and Wang (1998) find there is a linear trade-off between inventory levels and the 

delivery lead time that is subject to a service level target. Song and Yao (2002) show that the 

performance analysis for any base-stock policy reduces to the evaluation of a set of M/G/∞ 

queues with a common arrival stream in a single-product assembly system. In addition, they 

show that it is more desirable to keep higher base-stock levels for components with longer 

mean lead times and lower unit costs. Xu and Li (2007) investigate the strategic level and 

operational level technology-inventory coordination for short life cycle products, in which they 

show the strategic-level technology-inventory coordination is generally sufficient, but the 

operational level coordination becomes necessary when demand variability is high and salvage 

loss is heavy. To extend the corresponding joint price-inventory control problem to 

multi-period models with single end product, Pang et al. (2012) partially characterize the 

structure of optimal joint ordering and pricing policies.  

     As a result, in multi-period models with single end product, researchers mainly focus on 

optimal replenishment policies and the effect of distinct base-stock policies on system 

performance. However, the optimal replenishment policy is still an open problem for stochastic 

demand process.  

(2) Multi-period models with multiple end products 
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    In this setting, the complications are further exacerbated by taking the allocation policy 

into account as in one-period models with multiple end products. Since components may be 

shared among different products, the value of component commonality is one of the research 

topics. Mohebbi and Choobineh (2005) study the impact of component commonality in an 

ATO system under supply and demand uncertainty. They apply a simulation method and show 

that the introduction of common components significantly increases the average percentage of 

products’ on-time delivery, while effects on the reduction of average total inventory of 

components and average total backorder of products are not significant.  

    To fully take the risk pooling advantages of component commonality, one must consider 

the replenishment and allocation decisions jointly. However, Akcay and Xu (2004) show that 

the component allocation problem is a general multidimensional knapsack problem and is 

NP-hard, which means that the effort to find the optimal allocation policy in general ATO 

systems is enormous. Some researchers tried to bypass this difficulty by finding a near optimal 

or an asymptotically optimal allocation policy under certain assumptions. Plambeck and Ward 

(2006) study an ATO system with a high volume of demand arriving. Taking product prices, 

component production capacities and assembly sequences into consideration, they prove that a 

myopic discrete-review sequencing policy is asymptotically optimal. Plambeck and Ward 

(2008) extend their previous model by accepting expedite and salvage and derive the relative 

asymptotical policy. Huang and de Kok (2015) consider a periodic review ATO system under 

linear holding and backlogging costs and show that the First-Come-First-Service (FCFS) 

allocation policy decouples the optimal component allocation problem over time into 

deterministic period-by-period optimal component allocation problems, which results in a 

multi-matching problem. 

    The benefits of ATO systems are undermined by the difficulty of finding the optimal 

control policy. Some researchers examine the efficiency of combining an ATO system with 

other strategies. Eynan and Rosenblatt (2007) show it is beneficial to employ the 

Assemble-In-Advance (AIA) and ATO simultaneously. Furthermore, they state that the use of 

component commonality reduces the number of units to be AIA and increase the number of 

units to be ATO. Tsai and Wang (2009) develop a three-stage multi-site Available-To-Promise 

(ATP) mechanism for ATO manufacturing and experiment on a TFT-LCD manufacturer. Their 
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results show this system could make good use of scarce capacity and provide customers with 

high service level. Chen and Dong (2014) consider an ATP model with the consideration of 

customers’ priority and show it is better than the ATP model that does not consider customers’ 

priority. For components’ ordering policy, Huang et al. (2014) consider a mixed replenishment 

policy that adopts JIT and (Q, r) replenishment mode simultaneously. They use a hybrid 

genetic simulated annealing algorithm to solve the system and show the good quality of 

optimal mixed replenishment policy.  

    Most papers assume the instantaneous assembly in ATO systems. However, Guhlich and 

Fleischmann (2015) explicitly model the intermediate materials and assembly capacity in an 

ATO system.  By taking scheduling and due date quoting decisions into account, they show 

that the result is close to that of the ex-post solution, which contains full knowledge of all 

incoming demand.   

    For the joint control of pricing and production decisions, Oh et al. (2014) show that a 

state-dependent base-stock list-price is optimal, in which the optimal state-dependent 

base-stock levels and list prices may increase or decrease as demand backlogs increase, 

whereas demand backlogs always improve the optimal expected profit by providing additional 

flexibilities in component allocation.    

Since it’s difficult to find the optimal base-stock and allocation policies in the 

multi-period model with multiple end products, most papers in this section focus on testing and 

improving the performance of heuristic policies. One way to conquer this problem is to find 

effective heuristic production and allocation policies. The other way is to combine ATO with 

other strategies, such as AIA, ATP and JIT etc. 

 

2.2  Inventory continuous review models 

  

In this section, we study ATO systems in continuous review setting. Unlike periodic-review, 

continuous review lets manufacturers continuously monitor their system and make decisions 

immediately. The development of Enterprise Resource Planning (ERP) software allows this to 

be accomplished easily. We divide this section into the following three parts depending on the 
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characterisation of optimal policies, the use of heuristics policies, performance metrics, and 

approximation methods. 

 

2.2.1 Optimal policies under several ATO configurations 

In general, it maybe hopeless to find the optimal policy for multiple-product 

multiple-component ATO systems due to the high dimensionality of the system in one hand 

and the lack of special properties of the cost function on the other hand. However, under some 

assumptions on the demand and the supply processes and for special configurations of ATO 

systems, one can characterize, fully or partially, the structure of an optimal policy. In the ATO 

literature, such special configurations have been classified based on the number of components, 

number of products, and the degree of commonality of the components. Lu et al. (2010) 

identify four special configurations: (1) The N-configuration is a 2-component, 2-product 

system where one product is made only from one of the components and the other product is 

assembled using both components. (2) The M-configuration is a 2-component, 3-product 

system where one product is assembled using both components while the other two products 

use different components. (3) The W-configuration is a 3-component, 2-product system where 

each product is assembled using a common component and a product-specific component. (4) 

The Nested-configuration is a multiple-component, multiple product system where the 

“smallest” product uses one component only, the “largest” product uses all components, and 

the other products use one component less than the next “larger” product. These systems are 

named after the shape of each configuration, which is shown in Figure 2.1. Depending on 

components’ supply mode, we divide the literature on continuous review setting into 

endogenous and load-dependent systems and exogenous and load-independent systems. 
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(1) Endogenous and load-dependent continuous review systems 

    In such systems, replenishment lead-times are endogenous and depend on the load of the 

system. This includes the work of Ha (1997a, 1997b, 2000), Carr and Duenyas (2000), de 

Véricourt et al. (2002), Teunter and Klein Haneveld (2008), Zhao et al. (2009), Benjaafar et al. 

(2010), Benjaafar and Elhafsi (2012) and Pang (2015). In such literature, typically, the system 

produces a single product and faces Poisson demands which can be for a single unit or multiple 

units and consist of several classes. Demand is either lost or backordered if not fulfilled 

immediately. Items are produced either one at a time or in batches with exponentially 

distributed production times. In this case, the problem is formulated as a continuous time 

Markov Decision Process (MDP). The aim is to determine the optimal production and 

inventory rationing policy. 

As far as ATO systems are concerned, Benjaafar and ElHafsi (2006) were the first to 

consider an MDP formulation of an ATO system. They studied a single-product 

multiple-demand class ATO system under the assumption of exponential component 

production times and Poisson demand arrivals. They showed that the optimal component 

production and the optimal inventory rationing policies are both threshold type policies where 

the thresholds depend on the inventory level of all components. Feng et al. (2008) study the 

optimal pricing of a 2-component, single-product ATO system and showed that the optimal 

component production and product pricing policies are both threshold type as in Benjaafar and 

ElHafsi (2006). Elhafsi (2009) extended the results of Benjaafar and ElHafsi (2006) to the case 

of compound Poisson demands and showed that using the optimal rationing policy results in 

substantial savings compared to the First Come First Serve (FCFS) policy. Cheng et al. (2011) 
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0+1 

1 
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Figure 2.1: Configurations of simple ATO systems 
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study the same system as Benjaafar and Elhafsi (2006), however they assume that the 

production facilities are failure prone. They show that the production and inventory allocation 

policy with respect to a component is not only influenced by the state of the other components 

but also by the state of the production facilities as well. Keblis and Feng (2012) studied the 

same system as Feng et al. (2008) with a general stock-out cost function and proved that the 

pricing policy in Feng et al. (2008) continues to be optimal.  

Elhafsi et al. (2009) study the optimal control of a nested multiple products ATO system, 

which shows that components’ optimal production policy is of the base-stock type with the 

base-stock level for each component non-decreasing in the inventory level of other components 

and components’ optimal inventory allocation is a multi-level rationing policy with the 

rationing level for each component depending on the inventory level of all other components.  

Elhafsi et al. (2015) characterize the optimal policy structure for an M-configuration ATO 

system with lost sales, which exhibits the state-dependent base-stock policy and 

state-dependent rationing policy. Nadar et al. (2014) study a lost sales general M-configuration 

ATO system. Assuming a certain production batch size, the authors show that the optimal 

component production and inventory allocation policies are both lattice-dependent. ElHafsi 

and Hamouda (2015) study a general M-configuration ATO system where in addition to the 

final product, components are also available for sale. Assuming that demand is backordered if 

it cannot be fulfilled immediately, they showed that the optimal rationing policy is not a strict 

priority rule, as is usually the case for integrated production and inventory control problems, 

but rather depends on the inventory levels of components.  

(2) Exogenous and load-independent continuous review systems  

    In such systems, components lead-times are assumed to be exogenous and the system is 

modeled as a set of queues with infinite servers and correlated arrivals. This includes the work 

of Song et al. (1999, 2000, 2002 etc.), Song and Yao (2002), Gallien and Wein (2001), Dayanik 

et al. (2003), Zhao (2009), Lu et al. (2010) and the references therein. 

    Lu et al. (2010) studied an N-configuration ATO system with general component lead 

times and fixed base-stock replenishment policy. They show that a no-holdback allocation 

policy (a no-holdback allocation policy does not reserve components for future product 

demands) is optimal among all allocation policies.  
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Dogru et al. (2010) study a W-configuration ATO system where demand is backlogged if 

not fulfilled immediately and component replenishment times are identical and deterministic. 

Using a stochastic programming framework, they prove that a base stock component 

replenishment policy combined with a priority based allocation rule is optimal under some 

symmetry assumptions. Namely, balanced capacities and identical holding costs allow the 

optimality of this intuitive policy. Lu et al. (2015) considered both an N-configuration and a 

W-configuration system assuming a symmetric cost structure and general component 

procurement lead times. Using a fixed base stock component replenishment policy, they 

obtained similar results to Dogru et al. (2010). 

In summary, the optimal control policy has been identified for N-, M- and nested 

configurations of ATO systems. In such cases, the optimal policy is characterized by 

state-dependent base-stock and state-dependent rationing thresholds. If components are 

produced in batches and the end products require non-unit size of components, the optimal 

policy is characterized by a lattice-dependent type for M-configuration ATO systems. If the 

replenishment lead-times are identical and costs satisfy the symmetry condition in 

W-configuration, the optimal replenishment policy is characterized by the coordinated 

base-stock rule and the optimal allocation policy is characterized by the no-hold back 

allocation rule. However, because of the curse of dimensionality in the MDP formulation, the 

optimal control policy has not been determined for the general W-configuration ATO system. 

 

2.2.2 Heuristic policies and performance metrics  

Though the optimal control policies have been identified for simple ATO systems, it is difficult 

to characterize it in general cases. In addition, the optimal policy is strenuous to be applied in 

practice. Therefore, finding effective and easy to implement heuristic policies is an important 

alternative. Another stream of the literature that is also related to our problem studies ATO 

systems assuming component production/procurement is managed through base-stock levels 

that are independent of the inventory level of other components and inventory allocation is 

managed through specific rules. The aim is to study the performance of the system under such 

rules. In this vein, Gao et al (2010) study a multi-product ATO system where product demand 

occur according to independent Poisson processes and inventory of components is managed by 
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fixed base stock levels. They derive the joint distribution of component inventories which 

allows obtaining performance metrics such as order and item based fill rates. Fu et al. (2011) 

propose approximate methods for obtaining bounds on similar performance metrics. Feng et al. 

(2012) identify a necessary and sufficient condition to evaluate the order-based backorder level. 

Zhou and Chao (2012) study the same system as Gao et al. (2010) and Fu et al. (2011) and 

develop approximation methods to calculate the order-based fill rate of the system. 

In general, most companies use independent base-stock level as components 

replenishment rule. However, Benjaafar and Elhafsi (2006) show that the fixed base-stock 

policy may not be able to work well in certain cases and that the coordinated base-stock rule is 

more suitable. Coincidentally, Lu and Song (2015) show the coordinated base-stock policy is 

optimal for W-configuration under cost symmetry condition. Van Jaarsveld et al. (2015) utilize 

a (s, S) replenishment rule and show the policy works well in a practical example. For 

components allocation rule, Huang and de Kok (2015) show it is of general importance. 

Though FCFS rule is frequently applied, it is not optimal and sometimes it may incur great loss 

potential. Elhafsi and Hamouda (2015) use a priority based allocation rule, which works well 

when the demands have large differences. When the unsatisfied demands are backlogged, Lu et 

al. (2010) show that the non-holdback rule is proved to be optimal in some circumstances and 

outperforms all other component allocation rules.  

The other branch of literature is to analyze the heuristic policies under certain 

performance metrics. Lu et al. (2005) use the weighted average of backorders over product 

types as the performance metric and derive easy-to-compute bounds for it. Similar to Lu et al. 

(2005), Zhao (2009) study a multi-product multi-component ATO system where the external 

demand follows compound Poisson processes and component inventories are controlled by 

continuous time batch ordering policies. The author derives the exact expression for the 

expected delivery lead-times and the order-based fill-rates metrics and estimates it under an 

efficient sampling method. Iravani et al. (2004) consider an ATO system with consideration of 

key and non-key items, in which they evaluate different levels of customer satisfactions using a 

quasi-birth-and-death process. Lu (2008) evaluate the average inventory and immediate order 

fill rate metrics and obtain qualitative results that reveal the impacts of changes in demand 

patterns and lead-time variability upon the performance of the systems.  
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The exact evaluation of any performance metric for complex ATO system faces a huge 

numerical difficult. To overcome this problem, many researchers tried to obtain performance 

bounds. Dayanik et al. (2003) present the order fill rate metric involving evaluation of 

multivariate probability distributions, which is computationally demanding. In alternative to 

the exact evaluation of the performance metric, the authors use tailored approximation ideas to 

derive performance bounds. Busic et al. (2013) present a new bounding method for Markov 

chains and apply it to analyze the out-of-stock situation in an ATO system.  

In conclusion, many easy-to-implement heuristic policies have been developed for ATO 

systems. One way to determine the efficiency of heuristic policies is to compare it with the 

optimal policy. However, it is difficult to obtain optimal policies for complex ATO systems. In 

order to bypass this difficulty, performance metrics have been developed to ease the evaluation 

of heuristic policies, such as delivery lead time, expected backorders, order-based immediate 

fill rate, order-based fill rate within a time window and a response-time based order fill rate. In 

addition to exact evaluation, approximation methods have also been proposed for determining 

performance bounds. 

 

2.2.3 Approximation methods      

The exact solution algorithms always face the curse of dimensionality problem, which means 

that these methods cannot be used for large-scale problems. More recent literature focuses on 

the development of efficient computational and solution methodologies for general ATO 

systems. In this section, we review the studies on approximation methods to analyze 

large-scale ATO systems.   

Ceryan et al. (2012) propose to decompose an n-component, n+1-product ATO system 

into N+1 independent problems. By solving each sub-problem, they can determine the 

base-stock level of each component. Horng and Yang (2012) study a lost sale ATO system with 

Normally-distributed component lead times and fixed base stock levels. They use 

combinatorial optimization to formulate the problem. Using a genetic search algorithm, they 

analyze the computational efficiency and solution quality of the algorithm for a 10-component, 

6-product ATO system. Huang et al (2014) study an ATO system with setup costs and 

simultaneous Kanban and (r, Q) component replenishment policies. Using a combined genetic 
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search and simulated annealing algorithm, for a 20-component, 2-product system, they show 

that such algorithm is very efficient in finding the global optimal solution. van Jaarsveld and 

Scheller-Wolf (2015) use a stochastic programing formulation to determine the 

state-independent base-stock levels of a large-scale ATO system. They assume product 

demands are fulfilled in FCFS fashion and when demand cannot be fulfilled immediately it is 

backordered. By using the column generation method in the integer programming formulation, 

they show their method can be applied in an industrial scale problem. Nadar et al. (2016) 

propose a mixed-integer linear programming method to evaluate the performance of 

lattice-dependent policy, state-dependent policy and fixed policy, in which they show that 

lattice-dependent policies outperform state-dependent and fixed ones with respect to both 

objective value and computation time. Reiman et al. (2015) applied a two-stage stochastic 

programming to set a lower bound on the average inventory cost for general ATO systems with 

identical component lead times and develop the relevant inventory control policies, which 

proved to be asymptotically optimal on the diffusion scale.     

In conclusion, because of the curse of dimensionality afflicting exact algorithms, 

researchers propose approximation methods for large-scale ATO problems, which can be 

solved in polynomial time. These approximation methods depend greatly on the researcher’s 

ingenuity and do not have the same format.  

 

2.3  Conclusion  

 

In this chapter, we compared and analyzed the ATO literature in a systematic way. This helped 

us to gain insight into the current research progress and challenges facing ATO systems. 

Specifically, we divided the literature into inventory periodic review ATO models and 

inventory continuous review ATO models. In periodic review ATO models, we split this stream 

into one-period ATO models and multi-period ATO models, with single end product or multiple 

end products, respectively. For continuous review ATO models, we analyzed the literature from 

optimal policy, heuristic policy and performance metrics, and approximation methods 

standpoints.  
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Chapter 3. Problem formulation and numerical example of 

continuous-time W-configuration ATO systems 

 

The W-configuration ATO system combines both an assembly system and a distribution system, 

which constitutes a building block for the general multiple-component, multiple-product ATO 

system. In this chapter, we will analyze such W-configuration ATO systems under the condition 

that unsatisfied demand is lost. Assuming the production processes follow exponential 

distributions and demand processes follow Poisson distributions, we will formulate the 

problem as a MDP and will adopt the Linear Programming (LP) method to solve it. In addition, 

we will provide a numerical example and will show the form of the optimal policy.  

 

3.1  Introduction 

 

We consider a continuous-time W-configuration ATO system (cf. Figure 3.1). The system 

consists of three production facilities, each producing a different component. Component 0 is 

common to both products. Thus, Product j, {1,2},j  is assembled from Components j and 0. 

Component i, {0,1,2},i  is produced ahead of demand in a make-to-stock fashion. 

Component i’s production times are independent of the state of the system, are independent of 

the production status of other components, and are exponentially distributed with mean 1. 

i  

Therefore, each production facility can be viewed as a single server queue with finite service 

rate i . Demand for Product j takes place continuously over time according to an independent 

Poisson process with rate  j
. Thus, the inter-arrival times between consecutive demands for 

each product are exponentially distributed with mean 1.

j  The assumption that demand 

inter-arrival times and production times are exponentially distributed, is common in the 

integrated production/inventory systems literature (for example, Buzacott and Shanthikumar 

(1993), Ha (1997a, 1997b), Zipkin (2000), and de Véricourt et al. (2002)); and is partly made 

for mathematical tractability since it allows us to formulate the problem as a Markov Decision 

Process (MDP) which enables us to characterize the structure of the optimal operating policy. 
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Figure 3.1: A W-configuration ATO system 

 

3.2  Lost sale case 

 

3.2.1 Model formulation of expected total discounted cost criterion 

In this section, we assume any unfulfilled demand is considered lost (or must be expedited 

through other means such as overtime or outsourcing to a third party) incurring a lost sale cost 

Lj per unit for product j. Demand for, any product, can be satisfied only if there is positive 

inventory available for its components. Without loss of generality, we assume L1 > L2. 

 Since the two products require a common component (Component 0) and their lost sale 

penalties are different, it might be desirable to reject the demand of one product in order to 

preserve the common component’s available inventory for future demand of the product with 

the greater lost sale penalty. Thus, when demand for a product materializes, the system 

manager must decide whether to satisfy it, if the needed components are available, or reject it. 

Furthermore, at any point in time, if a component is not currently in production, the system 

manager must decide whether to start its production. If a component is currently in production, 

the system manager can either continue or interrupt its production. Since component 

production times are exponentially distributed, and because of the memoryless property of the 

exponential distribution, continuing production from where it was interrupted is equivalent to 

starting it from the beginning. Hence, if the production of a component is interrupted, it can be 

resumed next time the production of that component is initiated. Also, since the decision is 
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whether to produce Component i, there is at most one outstanding production order, for each 

component, at any point in time. These assumptions are common in the integrated 

production/inventory systems literature (for example, Veatch and Wein (1996) and Ha (1997a, 

1997b). 

Let 0 1 2( ) ( ( ), ( ), ( ))X t X t X t X t  denote the state of the system at time t, where ( )iX t  

denotes Component i's inventory at time t. Let 
2

0
( ( )) ( ( )),


X i ii

h t h X t  where hi is an 

increasing convex function, denote the total inventory holding cost rate when the system is in 

state X(t). Given our assumption 1 2 ,L L  we naturally assume that 1 2( ) ( ).  h h  Since both 

demand inter-arrival times and production times are exponentially distributed, the system has 

no memory. As such, we can restrict decision epochs to only the times when the state of the 

system changes. Such state changes occur at production completion of a component or the 

fulfillment of a demand for a product. Using the memoryless property, we model the problem 

as an MDP and confine our treatment to Markovian policies for which actions taken at each 

decision epoch depend only on the current state of the system. For each state 0 1 2( , , ),x x x x  a 

control policy 𝜋 specifies an action ( , ),a u w  where 0 1 2( , , )u u u u  and 1 2( , ).w w w  

Here, 1iu  denotes the action “produce Component i”, 0iu  denotes the action “do not 

produce Component i”, 1jw  denotes the action “satisfy an incoming Product j demand”, 

and 0jw  denotes the action “reject an incoming Product j demand”. Let A(x) denote the set 

of admissible actions in state x. Also, for any action ( ),a A x  we must have (i) {0,1},iu  

for {0,1,2},i  and (ii) 0jw , if 
0 0,jx x  otherwise {0,1},jw  for {1,2}.j  

For a given policy 𝜋, we use the expected total discounted cost, over an infinite horizon, 

as our evaluation criterion. Our treatment extends to the average cost criterion, over an infinite 

horizon, as will be shown in section 3.2.2. 

Let ( ),jn t  {1,2},j  denote the cumulative number of Product j demands that have not 

been satisfied up to time t. The expected total discounted cost ( ),
xv  for a given policy 𝜋 
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and initial state 0 1 2( , , ),x x x x  can be written as 

 
2

0 0
1

( ) ( ) ( ) (0)  
 

 



 
   

 
 x X X x

t t

j j

j

v E e h t dt e L dn t        (3.1) 

where 0 1   is the discount rate. Here, ( ) v  denotes a real-valued function defined on 

3
 where  is the set of nonnegative integers and 

3
 is its three-dimensional cross 

product.  

Since production and demand inter-arrival times are both exponentially distributed, the 

transition time from a state to another, which represents either a component production 

completion or a demand arrival, is the minimum of two exponentially distributed random 

variables, and thus it is exponentially distributed. Also, because a transition to the next state 

depends only on the current state, we denote by ( ( )), a x  for ( ),a A x  the transition rate 

from state x to state .x  Let kt  denote the time of the k
th
, 0,1, ,k   transition occurs with 

0 0.t  Then, the state of the system, ( ),X t  remains the same in the time interval 1[ , ).k kt t  

Following Lippman (1975), we use a uniformized transition rate, 
2 2

0 1
,  

 
  i ji j

 such 

that the times between transitions, 1{ : 0},  k kt t k  form a sequence of i.i.d exponentially 

distributed random variables, each with mean 1 .  As such, the process ( ) : 0} {Y Xk kt k  

is a Markov chain with transition probabilities given by: 

 
0

,

if , {0,1, 2}

if ( ), {1, 2}( ( ))

1 otherwise

 

 

  



   
      
  


e

e e
x x

x x

x xa x

i i i

j j j

i j

u i

w jp     (3.2) 

Here, ei ( e j
) is a three-dimensional vector with 1 in the i

th
 (j

th
) element and 0 elsewhere. 

    Using a uniform transition rate allows us to convert the continuous-time problem into an 

equivalent discrete-time one. In this case, ( )j kn t  represents the cumulative number of product 

j’s unfulfilled demands at the k
th
 transition, and ( ( ))X kh t  is the total inventory holding cost 

incurred over the time interval 1[ , ).k kt t  Because states remain constant between transitions, 

the value function ( )
xv  can be written as follows:  
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1 1

1 1
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( ) ( ) ( ) (0) ,

( ) (0) ( ) ( ) .
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t t
t t
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t t

k j

t t
t t

k j j k j k
t t

k k j

v E e h t dt e L dn t

E e dt E h t E e dt E L d n t n t

  

 

 

 


 

 

 
 



  

 
   

 

 
    

 

  

   

x X X x

X X x

 

    Using the fact that transition time intervals, 1[ , )k kt t  , are independent and exponentially 

distributed, we can write the value function ( )
xv  as follows:  

    
 

 
2

1

0 1 1

( )
( ) ( ) ( ) (0)  

     

 



  

    
       

       
  

X
x X x

k k

k

j j k j k

k k j

h t
v E L n t n t   (3.3) 

Let *  be the optimal policy that minimizes the expected total discounted cost over an 

infinite horizon and * *.v v  Thus, the optimal cost function, 
* ,v  can be shown to satisfy 

the following Bellman’s optimality equation: 

 
 

2
* *

,
( )

1

(1 )
( ) min ( ) ( )

 

     





  
    

    
  x x

a A x
x

x
x a x x

j j j

j

L wh
v p v   (3.4) 

Without loss of generality, we rescale time by letting 1.    Using the corresponding 

transition probabilities and time scaling, we can rewrite (3.4) as follows: 

   
2 2

* * *

0
( )

1 0

( ) min ( ( )) (1 ) ( ) 


 

 
        

 
 e e e

a A x
x x x xj j j j j i i i

j i

v h v w L w v u  (3.5) 

Or equivalently, 

 
2 2

* * *

1 0

( ) ( ) ( ) 
 

   x x x xj j i i

j i

v h A v Pv       (3.6) 

where, for any real-valued function, v(x), defined on 
3 ,  Operator Aj is defined as 

0

0

( ) if 0
( )

min{ ( ), ( ) } otherwise

 
 

   e e

x
x

x x

j j

j

j j

v L x x
A v

v v L
    (3.7) 

and Operator Pi is defined as 

 ( ) min ( ), ( ) ex x xi iPv v v        (3.8) 

For a given state x, Operator Pi is associated with the decision of whether or not to produce 

Component i. Operator Aj, upon arrival of Product j’s demand, is associated with the decision 

of whether or not to fulfill it, if sufficient inventory of Components 0 and j exists. Note that it 
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is optimal to produce Component i if * *( ) ( ) x e xiv v . Similarly, it is optimal to fulfill 

Product j’s demand if * *

0( ) ( ) ,   x e e xj jv v L  provided stock of Components 0 and j is 

available. 

    In order to simplify the notation, we define Operator T as follows: 

   

 

2 2

( )
1 0

2 2

1 0

( ) min ( ) (1 ) ( )

( ) ( )

 

 


 

 

 
       

 

  

 

 

E e
a A x

x x x x

x x x

j j j j j i i i

j i

j j i i

j i

Tv h v w L w v u

h A v Pv

   (3.9) 

where 
0 , E e ej j

 for {1,2}.j  We also let 0 1 2.  E e e e  

For any real valued functions v(x) on 3 ,  we introduce the following difference operators: 

( ) ( ) ( ),   x x e xj jv v v  

( ) ( ) ( ).   E x x E x
j jv v v  

Here, ( ) xjv  represents the cost changes resulting from producing a unit of Component j. It 

also can be interpreted as the marginal cost of producing a unit of Component j. Thus, 

( )E x
j
v  represents the marginal cost of simultaneously producing Components 0 and j (or 

equivalently, “producing” a unit of Product j). 

 

3.2.2 Model formulation of average cost criterion  

In this section, we briefly discuss the case where the optimization criterion is the average cost 

rate over an infinite planning horizon. Under a control policy   and an initial state x , the 

average cost rate is given by: 

 
2

0 0
1

1
( ) limsup ( ) ( )

 


 


 
  

 
 x X j j

j

v E h t dt L dn t     (3.10) 

The objective is to identify a policy    that yields 
*( ) inf ( )

x xv v  for all states x. 

    The optimal average cost rate, 
* , is the unique solution together with an associated 

differential cost function f∗ that satisfies the following optimality equations: 
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   * * *

,
( ) ( )

( ) min , ( ) ( ) ( ) 




   
  

 x
x x

x

x x
a A

x x a a x xf g p f      (3.11) 

where g(x, a(x)) denotes the cost rate incurred when the system is in state x and action a is 

taken. It is given as follows 

 
2

1

( , ( )) (1 )


  x a x x j j j

j

g h L w      (3.12) 

By the weak accessibility condition, we know there exists an optimal average cost that is same 

for all initial states (Bertsekas, 2007).  

 

3.2.3 Numerical example    

In order to numerically determine the optimal policy, we use the average cost rate criterion as it 

does not depend on the initial state. Furthermore, we convert the dynamic programming 

optimization problem into a linear programming optimization one. Manne (1960) was the first 

to introduce such reformulation. We note that in general the value iteration and policy iteration 

algorithms (see Puterman 1994) are faster than linear programming. However, in addition to 

the optimal solution, linear programming provides the steady-state probability distribution of 

the system. Such distribution can be helpful in designing efficient heuristic policies as we show 

in the next section.   

    In an effort to simplify the notation and conform to a linear programming format, we first 

order the state space in the lexicographic order such that (0,0,0),  (0,0,1),  (0,0,2), ,  

(0,1,0),  (0,1,1),    is mapped to state 1, 2, 3, .    We further truncate the state space such that 

[0, ],i Tx n  and let {1,2, , }  NS  be the truncated state space after lexicographic ordering 

and mapping, where 
3( 1) | | .  TN n S  We further order the action space accordingly. 

Based on (3.11), we can show that the optimal average cost rate, 
* , is the solution of the 

following linear programming problem. 
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( )

,

( ) ( )

( )

Minimize ( , ) ( , )

. .

( , ) ( ) ( , ),

( , ) 1,

( , ) 0, .

 



  

 

 



 

 

  

 

s a A s

s s

a A s s a A s

s a A s

g s a f s a

s t

f s a p a f s a s

f s a

f s a s

S

S

S

S

S

       (3.13) 

Here, the decision variable ( , )f s a  denotes the steady state probability of being in state s 

when action a is taken and * *

( )

( , ) ( , )
 

 
s a A s

g s a f s a
S

 where *( , ),f s a  s S,  ( ),a A s  is 

the optimal solution to LP (3.13). 

Once LP (3.13) is solved, one can obtain several quantities of interest. First, the optimal 

policy,  , is determined as follows: 

* *

( )

( ) argmax ( , ),


 
a A s

s f s a s S       (3.14) 

The stationary probability of being in state s as a result of the optimal policy is given by: 

* *

( )

( ) ( , )


 
a A s

f s f s a         (3.15) 

Here, we note that for all recurrent states, 
*( ) 0,f s  and for all transient states, 

*( ) 0,f s  

for s S.   

    We should note that in principle, LP (3.13) is solved multiple times starting with an initial 

truncation level Tn  that is gradually increased until the average cost rate is no longer sensitive 

to the truncation level. However, in practice, choosing a relatively large truncation level Tn

usually results in at most two runs of LP (3.13).   

Using the LP (3.13), for a state space truncated at a sufficiently large Tn  value, we 

computed the actions minimizing the average cost rate, for  1.23,  3.20,1  .83  ,  

 1.16,1  .79  ,  0.14,  0.06,  0.13h   and  35.56,  32.60L   (we assumed linear holding 

cost rates, i.e., ( ) ,i i i ih x h x  {0,1,2}.i ). Figures 3.2 and 3.3 show the optimal inventory 

allocation policy for 0 1x  and 0 2,x  respectively. A “●” indicates that it is optimal to 

satisfy Product 1 demand in state 0 1 2( , , )x x x . A “○” at coordinates 1 2( , )x x  indicates that it is 
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optimal to satisfy Product 2 demand in state 0 1 2( , , )x x x . Delimiting black lines indicate the 

recurrent region where it is optimal to produce any component for states in the interior of the 

region and not produce components for states on the boundaries of the region. The blue (red) 

lines indicate the projection of the rationing threshold 1

1 0 2( , )r x x  ( 2

2 0 1( , )r x x ) onto the 

two-dimensional space 1 2( , ),x x  respectively.  

Figures 3.2 and 3.3 reveal that the inventory allocation or rationing policy is not simple 

and counter intuitive. Since 1 2 ,L L  one would expect that demand for Product 1 would be 

always satisfied (as long as components are available) and that demand for Product 2 is 

rationed. However, this is not the case. Actually, the optimal rationing policy does not give 

absolute priority to neither product. In other words, for some states, Product 1 demand takes 

priority over Product 2 demand, and vice versa for other states. To see this, note that for low 

inventory levels for components 1 and 2, both product demands are satisfied. As the inventory 

level of Component j ( 0j ) builds up, it is optimal to satisfy Product j demand and reject 

Product i ( i j ) demand. In this case, the shift in priority can be explained by the fact that for 

sufficiently large inventory level of Component j, the only way to reduce it is by giving priority 

to Product j demand. In this case, the holding cost becomes significant enough to offset the lost 

sale penalty due to Product i’s demand. Rejecting Product i’s demand preserves the inventory 

level of Component 0 in order to satisfy the demand of Product j. Such a feature has not been 

observed in many integrated production/inventory problem settings where inventory allocation 

usually follows a fixed priority in satisfying demands. i.e., classes or products are governed by 

ordered rationing levels (See Ha (1997a, 1997b), de Vericourt (2002) for example).  

One would also expect the optimal rationing policy to give priority to Product 1 over 

Product 2 in the case 1 1 2 2 , L L  however in many numerical examples we found that it is 

not the case and the optimal rationing policy still exhibits behavior similar to the one shown in 

Figures 3.2 and 3.3. This indicates that in general ATO systems the product rationing policy is 

very complicated and does not lend itself to a simple rule. Furthermore, due to the state 

dependency of the allocation policy, determining a rule that indicates when Product 1 demand 

has strict priority over Product 2 demand, and when not, is very challenging. Actually, such 
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endeavor requires solving the Bellman equation (3.5) to a closed form, which is known to be 

an impossible task. However, we have noticed that when Product 1’s holding and lost sale costs 

are significantly larger than those of Product 2, then Product 1’s demand is always satisfied and 

Product 2’s demand is rationed; and when the products’ holding and lost sale costs are close to 

each other, both product demands maybe rationed. We have also noticed that the above result 

mostly occurs for small inventory levels of the common component. Of course, the remaining 

parameters of the system (production and demand rates) also do contribute to when such a 

result is observed or not. In any case, one has to be careful by taking into account the above 

result in order to design effective heuristic policies for more general settings.  

 

 

 

 

x2=21                   

20 ○ ○                 

19 ○ ○ ○ ○ ○ ○●             

18 ○ ○ ○ ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

17 ○ ○ ○ ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

16 ○ ○ ○ ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

15 ○ ○ ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

14 ○ ○ ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

13 ○ ○ ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

12 ○ ○ ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●   

11 ○ ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●   

10 ○ ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●   

9 ○ ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●   

8 ○ ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ●   

7 ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ● ● ● ● ●   

6 ○ ○ ○● ○● ○● ○● ○● ○● ○● ● ● ● ● ● ● ●   

5 ○ ○ ○● ○● ○● ○● ○● ○● ● ● ● ● ● ● ● ● ●  

4 ○ ○● ○● ○● ○● ○● ○● ● ● ● ● ● ● ● ● ● ●  

3 ○ ○● ○● ○● ○● ● ● ● ● ● ● ● ● ● ● ● ●  

2 ○ ○● ○● ○● ● ● ● ● ● ● ● ● ● ● ● ● ●  

1 ○ ○● ○● ● ● ● ● ● ● ● ● ● ● ● ● ● ●  

0  ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●  

 x1=0 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 

Figure 3.2: The optimal inventory allocation policy for x0 1, (1.23,3.20,1.83), (1.16,1.79), 

h(0.14,0.06,0.13) and L (35.56,32.60) 

 

 

 

 



 47 

 

 

 

x2=21                    

20 ○ ○ ○● ○● ○●               

19 ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

18 ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

17 ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

16 ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

15 ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

14 ○ ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

13 ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

12 ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

11 ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

10 ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

9 ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

8 ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●    

7 ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●   

6 ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●   

5 ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●   

4 ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●   

3 ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●   

2 ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ○●   

1 ○ ○● ○● ○● ○● ○● ○● ○● ○● ○● ○● ● ● ● ● ● ●   

0  ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●  

 x1=0 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17 

Figure 3.3: The optimal inventory allocation policy for x02,  (1.23,3.20,1.83), (1.16,1.79),  

h (0.14,0.06,0.13) and L  (35.56,32.60)  

 

 

3.3  Conclusion  

 

In this chapter, we applied mathematical expressions to model 3 components, 2 end products 

W-configuration ATO systems. We used a linear programming formulation to solve the system 

and presented the limiting probability distribution in the recurrent region. The optimal policy 

revealed that the inventory allocation or rationing policy is not simple and is counter intuitive. 

Even though Product 1 is more expensive than Product 2 with regard to the lost sale cost, the 

optimal rationing policy does not give absolute priority to neither product. In addition, we 

showed that the rationing of the common component always happens at its low inventory level.  
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Chapter 4. Structure of optimal policy in W-configuration 

ATO systems with lost sales and its extensions 

 

In this chapter, we identify a set of properties and show that the optimal value function satisfies 

these properties in the recurrent region, in W-configuration ATO systems under lost sale case. 

We use a propagation argument to show that these properties are preserved through the 

optimality equation. This will allow us to characterize the structure of optimal inventory and 

allocation policy. We then show that the optimal policy structure is preserved for systems with 

batch production, non-unitary compound demand, and Erlang distributed production times.  

  

4.1  Structure of optimal policy 

 

In this section, we provide a detailed characterization of the optimal production and inventory 

allocation policy. Similar to the literature on integrated production/inventory control, we use 

the approach developed by Porteus (1982), which consists in identifying a set of structural 

properties and then showing, using a propagation argument, that these properties are preserved. 

However, because in our case some of the properties do not hold for all system states, we adopt 

an approach that is different from the standard methodology used in the related literature: First, 

we characterize a compact sub-space of 
3

 which we identify as the recurrent region. Then, 

we show that for any state within the recurrent region, the optimal cost value function satisfies 

a set of properties. This will allow us to infer the structure of the optimal component 

production and inventory allocation policy within the recurrent region. We note that some of 

the properties that hold within the recurrent region do not hold in the entire state space. 

However, we will show that under the optimal policy, it does not matter where the system 

starts, it always ends up in the recurrent region after a sufficient amount of time. Specifically, 

our approach is to first define the hypersurfaces (or base-stock thresholds) defining the 

boundaries of the recurrent region. Then, using certain properties, we show that these 

boundaries are unique and thus enclose a compact sub-space of 
3

.   



 50 

In order to identify the recurrent region, we first define the following two-dimensional 

hypersurfaces (two-dimensional thresholds):   

( ) min{ | ( ) ( ) 0},i i i iS x v v    x x e x      (4.1) 

where ix  is a two-dimensional vector obtained by dropping the i
th
 element from vector x. 

Practically, ( )i iS x  defines the level at which production of Component i should be stopped. 

Since beyond this level, the cost of adding one unit of Component i, ( )iv x e , becomes larger 

than the cost of not producing the component, ( )v x . ( )i iS x  is referred to as the base-stock 

level of Component i. Let 1 1 2 2 3 3( ( ), ( ), ( ))S S SS( )x x x x  and define the sub-space SR as 

follows 

3{ : ( )}.  x x
R
S x S         (4.2) 

Here, the inequality is taken vector component-wise. Using Optimality equation (3.6) and 

operators Pi, in particular, we note that it is always optimal to produce any of the components 

when the state of the system, x, is in the interior of the sub-space SR. 

Let V be the set of real-valued functions v on SR that satisfy the following properties: 

Property 1: ( ) ( ) 0,   E Ex e x
j jjv v  for {1,2};j  

Property 2: 
0( ) ( ) 0,   x e xj jv v  for {1,2};j  

Property 3: ( ) ( ) 0,   x e xj i jv v  for ,i j  and , {1,2};i j  

Property 4: ( ) ( ) 0,   E Ex E x
j jiv v  for ,i j  and , {1,2};i j  

Property 5: ( ) ( ) 0,   x E xj i jv v  for ,i j  and , {1,2}.i j  

Property 1 implies that the marginal cost of an “additional unit” of Product j (i.e. a one unit 

simultaneous increase of both Component 0 and Component j) is non-increasing in the stock 

level of Component j. Property 2 implies that the marginal cost of an additional unit of 

Component j is non-decreasing in the stock level of Component 0. Property 3 implies that the 

marginal cost of an additional unit of Component j is non-increasing in the stock level of 

Component i. Property 4 implies that the marginal cost of an additional unit of Product j is 

non-increasing in an increase in the “stock level” of Product i. Property 5 implies that the 
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marginal cost of an additional unit of Component j is non-decreasing in the “stock level” of 

Product i. Mathematically, Properties 1, 3, and 4 imply that the cost function v is supermodular 

in the directions ( , ),E ej j
 ( , ),e ej i

 and ( , ),E Ej i
 respectively. Properties 2 and 5 imply 

that the cost function v is submodular in the directions 
0( , )e ej

 and ( , ),e Ej i
 respectively.  

A real-valued function v is said to be convex in the direction e j
 (or point-wise convex in 

coordinate 
jx ) if and only if the following holds 

( ) ( ) 0   x e xj j jv v                        (4.3) 

The following observations show that for any real-valued function v on SR, v is point-wise 

convex in coordinate ix , {0,1,2}.i  

Observation 4.1: for any x
R
S  and v V , we have 

0( ) ( ) 0,   E Ex e x
j j
v v  for {1,2}.j  

Proof: By Properties 4 and 5, we have 

0 0( ) ( ) ( ) ( ),          E E E Ex e x e e x E x
j j j ji iv v v v  for ,i j  and , {1,2}.i j  □ 

 

Observation 4.2: for any x
R
S  and v V , v is point-wise convex in ix , {0,1,2}.i  

Proof: Using Properties 1 and 2, we have 

0( ) ( ) ( ) ( ).          x e x e e x E xj j j j j j jv v v v   

which establishes convexity in the direction e j
 for {1,2}.j  To establish convexity in the 

direction 0e , using Observation 1 and Property 2, we have 

0 0 0 0 0 0( ) ( ) ( ) ( )          x x E x e e x ej jv v v v . □ 

 

Observation 4.3: ( ) ( ) 0.    E Ex E E x
j ji jv v  

Proof:  
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0.

                

           



E E E E E E

E E E E

x E E x x E E x e x e x

x e e x e x e x

j j j j j j

j j j j

i j i j i i

i j i i

v v v v v v

v v v v  

The last inequality is due to properties 1 and 5. □ 

 

Lemma 4.1 establishes the structural properties of the optimal cost function. 

 

Lemma 4.1: For any cost function v V  and state x
R
S , Tv is also an element of V. In 

addition, the optimal cost function, v
*
, defined in (3.6) is an element of V.    

Proof: In order to prove Lemma 4.1, we first show that Operator Ak and the holding cost 

function h(x) both preserve properties 1-5. Then, since set V is closed under multiplication by a 

scalar and under addition, we show that Operator Tv preserves properties 1-5 as well. Finally, 

to show that * v V , we use the fact that (1) * lim  n

nv T v  for any v V  (see Proposition 

3.1.5 and 3.1.6, Bertsekas (2001)), and (2) nT v V  since .Tv V  

 

Property 1 

In order to prove Operator  kA v x satisfies property 1, we need to show

    0   E Ex e x
j jk j kA v A v  ,or ,2}f {1j k . By the definition of allocation operator, we 

know 

          

     
  

min ,0

min ,0 min ,0

min ,0

                

         

   

E E E E E

E E

E

x e x x E e x E x E E e

x E e x E E

x E

j j j j k

k k

k

k j k k j k k j j k

k j k k j k

k k

A v A v v v v L

v L v L

v L

 

We discuss from the following two cases. 

Case 1: j k  

In this case, we know 

          

        

min ,0

min ,0 min ,0 min ,0

            

           

E E E E E

E E E

x e x x E e x E x e

x E e x x E

j j j j j

j j j

j j j j j j j j

j j j j j j

A v A v v v v L

v L v L v L
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By property 1 and observation 4.1, we know 

                 E E E Ex E x E e x x e
j j j jj j j jv v v v , which leads to the following five 

subcases.  

1.        0               E E E Ex E x E e x x e
j j j jj j j j j j j jv L v L v L v L  

        0         E E E Ex e x x E e x E
j j j jj j j j j jA v A v v v    

The above inequality is held by property 1. 

2.        0               E E E Ex E x E e x x e
j j j jj j j j j j j jv L v L v L v L  

         

  0

            

     

E E E E E

E

x e x x E e x E x E

x E e

j j j j j

j

j j j j j j j j

j j j

A v A v v v v L

v L
 

The above inequality is held by the assumption.  

3.        0               E E E Ex E x E e x x e
j j j jj j j j j j j jv L v L v L v L  

            0              E E E E E Ex e x x E e x E x E x E e
j j j j j jj j j j j j j j jA v A v v v v v

 

4.        0               E E E Ex E x E e x x e
j j j jj j j j j j j jv L v L v L v L  

       0       E E Ex e x x
j j jj j j jA v A v v L  

The above inequality is held by the assumption.  

5.         0               E E E Ex E x E e x x e
j j j jj j j j j j j jv L v L v L v L  

        0       E E E Ex e x x x e
j j j jj j j jA v A v v v  

The above inequality is held by property 1.  

 

Case 2: j k  

By property 4 and 5, we know               E E Ex E e x E x E E
k k kk j k k jv v v  and 

                E E Ex E e x E E e x E E
k k kk j k j j k jv v v  holds, which leads to the 

following six subcases. 

1.      0 + + +          E E Ex E e x E x E E
k k kk j k k k k j kv L v L v L  and  
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     0 + + +            E E Ex E e x E E e x E E
k k kk j k k j j k k j kv L v L v L

        0         E E E Ex e x x E e x E
j j j jk j k k j kA v A v v v  

The above inequality is held by property 1.  

2.      + 0 + +          E E Ex E e x E x E E
k k kk j k k k k j kv L v L v L  and  

     + 0 + +            E E Ex E e x E E e x E E
k k kk j k k j j k k j kv L v L v L  

           0              E E E E Ex e x x E e x E x E e
j j j j kk j k k j k k j kA v A v v v v L

 

The above inequality is held by property 1 and the assumption. 

3.      + + 0 +          E E Ex E e x E x E E
k k kk j k k k k j kv L v L v L  and 

     + 0 + +            E E Ex E e x E E e x E E
k k kk j k k j j k k j kv L v L v L  

            0              E E E E E Ex e x x E e x E x E e x E
j j j j k kk j k k j k k j kA v A v v v v v

The above inequality is held by property 1 and 5.  

4.      + 0 + +          E E Ex E e x E x E E
k k kk j k k k k j kv L v L v L  and 

     + + 0 +            E E Ex E e x E E e x E E
k k kk j k k j j k k j kv L v L v L  

         

  0

           

     

E E E E E

E

x e x x E e x E x E e

x E E e

j j j j k

k

k j k k j k k j

k j j

A v A v v v v

v

The above inequality is held by property 1 and 4.  

5.      + + 0 +          E E Ex E e x E x E E
k k kk j k k k k j kv L v L v L  and 

     + + 0 +            E E Ex E e x E E e x E E
k k kk j k k j j k k j kv L v L v L  

           

     

     

+ +

= + + 0

                

           

       

E E E E E E

E E E

E E E

x e x x E e x E x E e x E

x E E e x E E x E E

x e x x E E

j j j j k k

k k k

j j k

k j k k j k k j k

k j j k j k j k

j k j k

A v A v v v v v

v v v L

v v v L

The above inequality is held by property 1 and the assumption.  

6.      + + + 0          E E Ex E e x E x E E
k k kk j k k k k j kv L v L v L  and 

     + + + 0            E E Ex E e x E E e x E E
k k kk j k k j j k k j kv L v L v L  
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   = 0

                

        

    

E E E E E E

E E

E E

x e x x E e x E x E e x E

x E E e x E E

x e x

j j j j k k

k k

j j

k j k k j k k j k

k j j k j

j

A v A v v v v v

v v

v v

The above inequality is held by property 1.  

 

 

Property 2 

In order to show that Operator  kA v x satisfies property 2, we must show 

0( ) ( ) 0   x e xj k j kA v A v  for  , 1,2j k  . 

By the definition of allocation operator, we know 

 

   

 

0 0 0

0

( ) ( ) ( ) ( ) min ( ) ,0

min ( ) ,0 min ( ) ,0

min ( ) ,0

k

k k

k

j k j k j k j k k j k

k k k j k

k k

A v A v v v v L

v L v L

v L

               

       

  

E

E E

E

x e x x E e x E x E e e

x E e x E e

x E

We discuss from the following two cases.  

Case 1: j k  

   

   

0 0

0

( ) ( ) ( ) ( ) min ( ) ,0 min ( ) ,0

min ( ) ,0 min ( ) ,0

j j

j j

j j j j j j j j j j j

j j j

A v A v v v v L v L

v L v L

              

     

E E

E E

x e x x E e x E x x e

x e x E

By property 1 and observation 4.1, we know ( ) ( ) ( )      E E Ex E x e x
j j jj jv v v  and

0( ) ( ) ( )      E E Ex E x e x
j j jjv v v , which leads to the following six subcases.  

1. 0 ( ) ( ) ( )          E E Ex E x e x
j j jj j j j jv L v L v L  and 

00 ( ) ( ) ( )          E E Ex E x e x
j j jj j j jv L v L v L  

0 0( ) ( ) ( ) ( )         x e x x E e x Ej j j j j j j jA v A v v v  

The above inequality is held by property 2.  

2. ( ) 0 ( ) ( )          E E Ex E x e x
j j jj j j j jv L v L v L  and 

0( ) 0 ( ) ( )          E E Ex E x e x
j j jj j j jv L v L v L  
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0 0( ) ( ) ( ) ( ) ( ) 0            Ex e x x E e x E x E
jj j j j j j j j j jA v A v v v v L  

The above inequality is held by property 2 and the assumption.  

3. ( ) ( ) 0 ( )          E E Ex E x e x
j j jj j j j jv L v L v L  and 

0( ) 0 ( ) ( )          E E Ex E x e x
j j jj j j jv L v L v L  

0 0( ) ( ) ( ) ( ) ( ) ( ) 0             E Ex e x x E e x E x E x e
j jj j j j j j j j j jA v A v v v v v

The above inequality is held by property 2 and observation 4.1.  

4. ( ) 0 ( ) ( )          E E Ex E x e x
j j jj j j j jv L v L v L  and 

0( ) ( ) 0 ( )          E E Ex E x e x
j j jj j j jv L v L v L  

0 0 0( ) ( ) ( ) ( ) ( ) ( ) 0             E Ex e x x E e x E x E x e
j jj j j j j j j j jA v A v v v v v

The above inequality is held by property 1 and 2.  

5. ( ) ( ) 0 ( )          E E Ex E x e x
j j jj j j j jv L v L v L  and 

0( ) ( ) 0 ( )          E E Ex E x e x
j j jj j j jv L v L v L  

 

0 0 0

0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) 0

               

       

        

E E

E E E

E

x e x x E e x E x E x e

x e x x

x e x x

j j

j j j

j

j j j j j j j j j

j j

j j j

A v A v v v v v

v v v L

v v v L

 

The above inequality is held by property 2 and the assumption.  

6. ( ) ( ) ( ) 0          E E Ex E x e x
j j jj j j j jv L v L v L  and 

0( ) ( ) ( ) 0          E E Ex E x e x
j j jj j j jv L v L v L  

0 0 0

0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) 0

               

    

     

E E

E E

x e x x E e x E x E x e

x e x

x e x

j j

j j

j j j j j j j j j

j

j j

A v A v v v v v

v v

v v

 

The above inequality is held by property 2.  

 

Case 2: j k  

By property 4 and 5, we know 

0 0( ) ( ) ( ) ( )
k k k kk j k k j kv v v v          E E E Ex E e x E x E e e x E e , which leads to the 
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following five subcases. 

1. 
0 00 ( ) ( ) ( ) ( )

k k k kk j k k k k j k k kv L v L v L v L               E E E Ex E e x E x E e e x E e

0 0( ) ( ) ( ) ( ) 0         x e x x E e x Ej k j k j k j kA v A v v v  

The above inequality is held by property 2.  

2. 
0 0( ) 0 ( ) ( ) ( )

k k k kk j k k k k j k k kv L v L v L v L               E E E Ex E e x E x E e e x E e

 

 

0 0

0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

k

k

j k j k j k j k k j k

j k j k k

A v A v v v v L

v v v L

             

        



E

E

x e x x E e x E x E e

x E e x x E  

The above inequality is held by property 3 and the assumption.  

3. 
0 0( ) ( ) 0 ( ) ( )

k k k kk j k k k k j k k kv L v L v L v L               E E E Ex E e x E x E e e x E e

0 0

0

( ) ( ) ( ) ( ) ( )+ ( )

( ) ( )

0

k kj k j k j k j k k j k

j k j

A v A v v v v v

v v

             

     



E Ex e x x E e x E x E e x E

x E e x

The above inequality is held by property 3. 

4. 
0 0( ) ( ) ( ) 0 ( )

k k k kk j k k k k j k k kv L v L v L v L               E E E Ex E e x E x E e e x E e

0 0

0

0 0

( ) ( ) ( ) ( ) ( )

+ ( )+ ( )

( ) ( )+ ( )

0

k

k k

k

j k j k j k j k k j

k k j k

j k j k j k

A v A v v v v

v v L

v v v L

            

    

         



E

E E

E

x e x x E e x E x E e

x E x E e e

x E e x x E e e
 

The above inequality is held by property 3 and the assumption.  

5. 
0 0( ) ( ) ( ) ( ) 0

k k k kk j k k k k j k k kv L v L v L v L               E E E Ex E e x E x E e e x E e

0 0

0 0

0 0 0

( ) ( ) ( ) ( ) ( )

+ ( )+ ( ) ( )

( ) ( )+ ( ) ( )

0

k

k k k

k k

j k j k j k j k k j

k k j k

j k j k j k

A v A v v v v

v v v

v v v v

            

      

           



E

E E E

E E

x e x x E e x E x E e

x E x E e e x E e

x E e x x E e e x E e

The above inequality is held by property 3 and 5.  

 

 

Property A3 
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In order to show that Operator  kA v x  satisfies property 3, we must show that 

( ) ( ) 0   x e xj k i j kA v A v  for i j  and  , , 1,2i j k  .  

By the definition of allocation operator, we know 

 

   

 

( ) ( ) ( ) ( ) min ( ) ,0

min ( ) ,0 min ( ) ,0

min ( ) ,0

k

k k

k

j k i j k j k i j k k i j k

k i k k j k

k k

A v A v v v v L

v L v L

v L

               

       

  

E

E E

E

x e x x E e x E x E e e

x E e x E e

x E

 

We discuss from the following two cases.  

Case 1: j k  

 

   

 

0

0

( ) ( ) ( ) ( ) min ( ) ,0

min ( ) ,0 min ( ) ,0

min ( ) ,0

j

j j

j

j j i j j j j i j j i j

j i j j

j j

A v A v v v v L

v L v L

v L

              

      

  

E

E E

E

x e x x E e x E x e e

x E e x e

x E

 

By property 1 and 5, we know 
0 0( ) ( ) ( )

j j jj i iv v v      E E Ex E e x e e x e  and

0( ) ( ) ( )
j j jj i jv v v     E E Ex E e x E x e , which leads to the following six subcases.  

1. 
0 00 ( ) ( ) ( )

j j jj i j i j jv L v L v L          E E Ex E e x e e x e  and

00 ( ) ( ) ( )
j j jj i j j j jv L v L v L         E E Ex E e x E x e   

( ) ( ) ( ) ( ) 0         x e x x E e x Ej j i j j j j i j jA v A v v v  

The above inequality is held by property 3.  

2. 
0 0( ) 0 ( ) ( )

j j jj i j i j jv L v L v L          E E Ex E e x e e x e  and

0( ) 0 ( ) ( )
j j jj i j j j jv L v L v L         E E Ex E e x E x e   

 ( ) ( ) ( ) ( ) ( ) 0
jj j i j j j j i j j j i jA v A v v v v L             Ex e x x E e x E x E e  

The above inequality is held by property 3 and the assumption. 

3. 0 0( ) ( ) 0 ( )
j j jj i j i j jv L v L v L          E E Ex E e x e e x e  and

0( ) 0 ( ) ( )
j j jj i j j j jv L v L v L         E E Ex E e x E x e   

0( ) ( ) ( ) ( ) ( ) ( ) 0
j jj j i j j j j i j j j i iA v A v v v v v               E Ex e x x E e x E x E e x e e

The above inequality is held by property 1 and 3. 
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4. 
0 0( ) 0 ( ) ( )

j j jj i j i j jv L v L v L          E E Ex E e x e e x e  and

0( ) ( ) 0 ( )
j j jj i j j j jv L v L v L         E E Ex E e x E x e   

( ) ( ) ( ) ( ) ( ) ( ) 0
j jj j i j j j j i j j j i jA v A v v v v v              E Ex e x x E e x E x E e x E

The above inequality is held by property 3 and 5. 

5. 
0 0( ) ( ) 0 ( )

j j jj i j i j jv L v L v L          E E Ex E e x e e x e  and

0( ) ( ) 0 ( )
j j jj i j j j jv L v L v L         E E Ex E e x E x e   

0

0

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

0

j

j j

j

j j i j j j j i j j j i

i j j

j i j j

A v A v v v v

v v L

v v v L

            

     

       



E

E E

E

x e x x E e x E x E e

x e e x E

x e x x e
 

The above inequality is held by property 3 and the assumption. 

6. 
0 0( ) ( ) ( ) 0

j j jj i j i j jv L v L v L          E E Ex E e x e e x e  and

0( ) ( ) ( ) 0
j j jj i j j j jv L v L v L         E E Ex E e x E x e   

0 0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

j

j j j

j j i j j j j i j j j i

i j

j i j

A v A v v v v

v v v

v v

            

      

    



E

E E E

x e x x E e x E x E e

x e e x E x e

x e x
 

The above inequality is followed by property 3. 

 

Case 2: j k  

In this case, if j k , we know i k . By the definition of allocation operator, we know 

 

   

 

0

0

( ) ( ) ( ) ( ) min ( ) ,0

min ( ) ,0 min ( ) ,0

min ( ) ,0

i

i i

i

j i i j i j i i j i j i

i i j i

i i

Av Av v v v L

v L v L

v L

              

      

  

E

E E

E

x e x x E e x E x e e

x e x E e

x E

 

By property 1 and 5, we know 
0 0( ) ( ) ( )

i i ii j jv v v      E E Ex E e x e e x e  and

0( ) ( ) ( )
i i ii j iv v v     E E Ex E e x E x e , which leads to the following six subcases.  
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1. 
0 00 ( ) ( ) ( )

i i ii j i j i iv L v L v L          E E Ex E e x e e x e  and 

00 ( ) ( ) ( )
i i ii j i i i iv L v L v L         E E Ex E e x E x e  

( ) ( ) ( ) ( ) 0j i i j i j i i j iAv Av v v         x e x x E e x E  

The above inequality is held by property 3.  

2. 
0 0( ) 0 ( ) ( )

i i ii j i j i iv L v L v L          E E Ex E e x e e x e  and 

0( ) 0 ( ) ( )
i i ii j i i i iv L v L v L         E E Ex E e x E x e  

 ( ) ( ) ( ) ( ) ( ) 0
ij i i j i j i i j i i j iAv Av v v v L             Ex e x x E e x E x E e  

The above inequality is held by property 3 and the assumption.  

3. 
0 0( ) ( ) 0 ( )

i i ii j i j i iv L v L v L          E E Ex E e x e e x e  and 

0( ) 0 ( ) ( )
i i ii j i i i iv L v L v L         E E Ex E e x E x e  

0( ) ( ) ( ) ( ) ( ) ( ) 0
i ij i i j i j i i j i i j jAv Av v v v v               E Ex e x x E e x E x E e x e e

The above inequality is held by property 1 and 3.  

4. 
0 0( ) 0 ( ) ( )

i i ii j i j i iv L v L v L          E E Ex E e x e e x e  and 

0( ) ( ) 0 ( )
i i ii j i i i iv L v L v L         E E Ex E e x E x e  

( ) ( ) ( ) ( ) ( ) ( ) 0
i ij i i j i j i i j i i j iAv Av v v v v              E Ex e x x E e x E x E e x E

The above inequality is held by property 3 and 5.  

5. 
0 0( ) ( ) 0 ( )

i i ii j i j i iv L v L v L          E E Ex E e x e e x e  and 

0( ) ( ) 0 ( )
i i ii j i i i iv L v L v L         E E Ex E e x E x e  

0

0

( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) 0

i i

i

i

j i i j i j i i j i i j i

j i

j i j i

Av Av v v v v

v L

v v v L

              

   

        

E E

E

E

x e x x E e x E x E e x E

x e e

x e x x e

The above inequality is held by property 3 and the assumption.  

6. 
0 0( ) ( ) ( ) 0

i i ii j i j i iv L v L v L          E E Ex E e x e e x e  and 

0( ) ( ) ( ) 0
i i ii j i i i iv L v L v L         E E Ex E e x E x e  
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0 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) 0

i i

i i

j i i j i j i i j i i j i

j

j i j

Av Av v v v v

v v

v v

              

    

     

E E

E E

x e x x E e x E x E e x E

x e e x e

x e x

The above inequality is held by property 3.  

 

 

Property A4 

In order to show that Operator  kA v x satisfies property 4, we must show that 

( ) ( ) 0
j jk i kA v A v   E Ex E x  for i j  and  , , 1,2i j k  .  

By the definition of allocation operator, we know 

 

   

 

( ) ( ) ( ) ( ) min ( ) ,0

min ( ) ,0 min ( ) ,0

min ( ) ,0

                

         

   

E E E E E

E E

E

x E x x E E x E x E E E

x E E x E E

x E

j j j j k

k k

k

k i k i k k i j k k

i k k j k k

k k

A v A v v v v L

v L v L

v L

We discuss from the following two cases.  

Case 1: j k  

 

   

 

( ) ( ) ( ) ( ) min ( ) ,0

min ( ) ,0 min ( ) ,0

min ( ) ,0

              

       

   

E E E E E

E E

E

x E x x E E x E x E

x E E x

x E

j j j j j

j j

j

k i k i j j i j

i j j j

j j

A v A v v v v L

v L v L

v L

 

By property 4 and observation 4.3, we know 

( ) ( ) ( ) ( )          E E E Ex E x E E x x E
j j j jj i j iv v v v , which leads to the following five 

subcases.  

1. 0 ( ) ( ) ( ) ( )               E E E Ex E x E E x x E
j j j jj j i j j j i jv L v L v L v L  

( ) ( ) ( ) ( ) 0         E E E Ex E x x E E x E
j j j jk i k i j jA v A v v v  

The above inequality is held by property 4. 

2. ( ) 0 ( ) ( ) ( )               E E E Ex E x E E x x E
j j j jj j i j j j i jv L v L v L v L  
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( ) ( ) ( ) ( ) ( )

( )

0

             

    



E E E E E

E

x E x x E E x E x E

x E E

j j j j j

j

k i k i j j j j

i j j

A v A v v v v L

v L  

The above inequality is held by the assumption. 

3. ( ) ( ) 0 ( ) ( )               E E E Ex E x E E x x E
j j j jj j i j j j i jv L v L v L v L  

( ) ( ) ( ) ( ) ( ) ( ) 0              E E E E E Ex E x x E E x E x E x E E
j j j j j jk i k i j j j i jR v R v v v v v

 

4. ( ) ( ) ( ) 0 ( )               E E E Ex E x E E x x E
j j j jj j i j j j i jv L v L v L v L

 ( ) ( ) ( ) 0       E E Ex E x x
j j jk i k jA v A v v L  

The above inequality is held by the assumption. 

5. ( ) ( ) ( ) ( ) 0               E E E Ex E x E E x x E
j j j jj j i j j j i jv L v L v L v L  

( ) ( ) ( ) ( ) 0       E E E Ex E x x x E
j j j jk i k iA v A v v v  

The above inequality is held by property 4. 

 

Case 2: j k  

In this case, we know i k . By the definition of allocation operator, we know 

 

   

 

( ) ( ) ( ) ( ) min ( ) ,0

min ( ) ,0 min ( ) ,0

min ( ) ,0

            

       

   

E E E E E

E E

E

x E x x x E x E

x x E E

x E

j j j j i

i i

i

i i i i j i

i j i i

i i

Av Av v v v L

v L v L

v L

 

By property 4 and observation 4.3, we know 

( ) ( ) ( ) ( )          E E E Ex E x E E x x E
i i i ii j i jv v v v , which leads to the following five 

subcases.  

1. 0 ( ) ( ) ( ) ( )               E E E Ex E x E E x x E
i i i ii i j i i i j iv L v L v L v L  

( ) ( ) ( ) ( ) 0       E E E Ex E x x x E
j j j ji i i iAv Av v v  

The above equation is held by property 4. 

2. ( ) 0 ( ) ( ) ( )
i i i ii i j i i i j iv L v L v L v L               E E E Ex E x E E x x E  
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( ) ( ) ( ) 0      E E Ex E x x
j j ji i i iAv Av v L  

The above inequality is held by the assumption.  

3. ( ) ( ) 0 ( ) ( )               E E E Ex E x E E x x E
i i i ii i j i i i j iv L v L v L v L  

( ) ( ) ( ) ( ) 0        E E E Ex E x x x E E
j j j ii i i j iAv Av v v  

The above inequality is held by observation 4.3.  

4. ( ) ( ) ( ) 0 ( )               E E E Ex E x E E x x E
i i i ii i j i i i j iv L v L v L v L  

( ) ( ) ( ) 0        E E Ex E x x E E
j j ii i i j i iAv Av v L  

The above inequality is held by the assumption. 

5. ( ) ( ) ( ) ( ) 0               E E E Ex E x E E x x E
i i i ii i j i i i j iv L v L v L v L  

( ) ( ) ( ) ( ) 0         E E E Ex E x x E x E E
j j i ii i i j j iAv Av v v  

The above inequality is held by property 1.  

 

 

Property A5 

In order to show that Operator  kA v x  satisfies property 5, we must show that 

( ) ( ) 0   E Ex e x
j jk i kA v A v  for i j  and  , , 1,2i j k  .  

By the definition of allocation operator, we know 

 

   

 

( ) ( ) ( ) ( ) min ( ) ,0

min ( ) ,0 min ( ) ,0

min ( ) ,0

                

         

   

E E E E E

E E

E

x e x x e E x E x e E E

x e E x E E

x E

j j j j k

k k

k

k i k i k k i j k k

i k k j k k

k k

A v A v v v v L

v L v L

v L

We discuss from the following two cases.  

Case 1: j k  

 

   

 

( ) ( ) ( ) ( ) min ( ) ,0

min ( ) ,0 min ( ) ,0

min ( ) ,0

              

       

   

E E E E E

E E

E

x e x x e E x E x e

x e E x

x E

j j j j j

j j

j

j i j i j j i j

i j j j

j j

A v A v v v v L

v L v L

v L
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By property 4 and 5, we know ( ) ( ) ( )       E E Ex e E x e x
j j ji j iv v v  and

( ) ( ) ( )       E E Ex e E x E x
j j ji j jv v v , which leads to the following six subcases.  

1. 0 ( ) ( ) ( )           E E Ex e E x e x
j j ji j j i j jv L v L v L  and  

0 ( ) ( ) ( )           E E Ex e E x E x
j j ji j j j j jv L v L v L  

( ) ( ) ( ) ( ) 0         E E E Ex e x x e E x E
j j j jj i j i j jA v A v v v  

The above inequality is held by property 5. 

2. ( ) 0 ( ) ( )           E E Ex e E x e x
j j ji j j i j jv L v L v L  and  

( ) 0 ( ) ( )           E E Ex e E x E x
j j ji j j j j jv L v L v L  

 ( ) ( ) ( ) ( ) ( )

( ) 0

             

    

E E E E E

E

x e x x e E x E x e E

x E

j j j j j

j

j i j i j j i j j

j j

A v A v v v v L

v L
 

The above inequality is held by the assumption. 

3. ( ) ( ) 0 ( )           E E Ex e E x e x
j j ji j j i j jv L v L v L  and  

( ) 0 ( ) ( )           E E Ex e E x E x
j j ji j j j j jv L v L v L  

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 0

              

         

E E E E E E

E E

x e x x e E x E x e E x e

x E x e

j j j j j j

j j

j i j i j j i j i

j j i j

A v A v v v v v

v L v L

The above inequality is held by the assumption. 

4. ( ) 0 ( ) ( )           E E Ex e E x e x
j j ji j j i j jv L v L v L  and  

( ) ( ) 0 ( )           E E Ex e E x E x
j j ji j j j j jv L v L v L  

( ) ( ) ( ) ( ) ( ) ( ) 0              E E E E E Ex e x x e E x E x e E x E
j j j j j jj i j i j j i j jA v A v v v v v

 

5. ( ) ( ) 0 ( )           E E Ex e E x e x
j j ji j j i j jv L v L v L  and  

( ) ( ) 0 ( )           E E Ex e E x E x
j j ji j j j j jv L v L v L

( ) ( ) ( ) 0       E E Ex e x x e
j j jj i j i jA v A v v L  

The above inequality is held by assumption. 
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6. ( ) ( ) ( ) 0           E E Ex e E x e x
j j ji j j i j jv L v L v L  and  

( ) ( ) ( ) 0           E E Ex e E x E x
j j ji j j j j jv L v L v L  

( ) ( ) ( ) ( ) 0       E E E Ex e x x e x
j j j jj i j iA v A v v v  

The above inequality is held by property 5.  

 

Case 2: j k   

In this case, we know i k . By the definition of allocation operator, we know 

 

   

 

( ) ( ) ( ) ( ) min ( ) ,0

min ( ) ,0 min ( ) ,0

min ( ) ,0

                

         

   

E E E E E

E E

E

x e x x e E x E x e E E

x e E x E E

x E

j j j j i

i i

i

i i i i i i i j i i

i i i j i i

i i

Av Av v v v L

v L v L

v L

By property 1 and 4, we know ( ) ( ) ( )          E E Ex E x E E x e E E
i i ii j i i j iv v v  and

( ) ( ) ( )          E E Ex E x e E x e E E
i i ii i i i j iv v v , which leads to the following six 

subcases. 

1. 0 ( ) ( ) ( )              E E Ex E x E E x e E E
i i ii i j i i i j i iv L v L v L  and 

0 ( ) ( ) ( )              E E Ex E x e E x e E E
i i ii i i i i i j i iv L v L v L  

( ) ( ) ( ) ( ) 0
j j j ji i i i i iAv Av v v         E E E Ex e x x e E x E  

The above inequality is held by property 5. 

2. ( ) 0 ( ) ( )              E E Ex E x E E x e E E
i i ii i j i i i j i iv L v L v L  and 

( ) 0 ( ) ( )              E E Ex E x e E x e E E
i i ii i i i i i j i iv L v L v L  

( ) ( ) ( ) ( ) ( ) 0            E E E E Ex e x x e E x E x E
j j j j ii i i i i i i iAv Av v v v L  

The above inequality is held by property 5 and assumption.  

3. ( ) ( ) 0 ( )              E E Ex E x E E x e E E
i i ii i j i i i j i iv L v L v L  and 

( ) 0 ( ) ( )              E E Ex E x e E x e E E
i i ii i i i i i j i iv L v L v L  

( ) ( ) ( ) ( ) ( ) ( ) 0              E E E E E Ex e x x e E x E x E x E E
j j j j i ii i i i i i i j iAv Av v v v v

The above inequality is held by property 4 and 5.  
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4. ( ) 0 ( ) ( )              E E Ex E x E E x e E E
i i ii i j i i i j i iv L v L v L  and 

( ) ( ) 0 ( )              E E Ex E x e E x e E E
i i ii i i i i i j i iv L v L v L  

( ) ( ) ( ) ( ) ( ) ( ) 0              E E E E E Ex e x x e E x E x E x e E
j j j j i ii i i i i i i i iAv Av v v v v

The above inequality is held by property 1 and 5.  

5. ( ) ( ) 0 ( )              E E Ex E x E E x e E E
i i ii i j i i i j i iv L v L v L  and 

( ) ( ) 0 ( )              E E Ex E x e E x e E E
i i ii i i i i i j i iv L v L v L  

( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( )

0

                

    

          



E E E E E E

E

E E E

x e x x e E x E x E x e E

x E E

x e x x e E E

j j j j i i

i

j j i

i i i i i i i i i

j i i

i i j i i

Av Av v v v v

v L

v v v L

The above inequality is held by property 5 and the assumption. 

6. ( ) ( ) ( ) 0              E E Ex E x E E x e E E
i i ii i j i i i j i iv L v L v L  and 

( ) ( ) ( ) 0              E E Ex E x e E x e E E
i i ii i i i i i j i iv L v L v L  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) 0

                

        

     

E E E E E E

E E

E E

x e x x e E x E x E x e E

x E E x e E E

x e x

j j j j i i

i i

j j

i i i i i i i i i

j i i j i

i

Av Av v v v v

v v

v v

The above inequality is held by property 5.  

 

It is straightforward to show that h(x) satisfies Property 1-5, since h(x) is separable in the 

variables ix  and increasing convex in each ix . Since V is closed under multiplication by a 

scalar and addition, Tv satisfies Property 1-5.  

Hence, Operator Tv V.  □ 

 

 Lemma 4.2 establishes the structural properties of the subspace SR and identifies it as the 

recurrent region under the optimal policy. 

 

Lemma 4.2: for any state ,x
R
S  if the cost function v satisfies ( ) 0, xjv  then Tv 

satisfies ( ) 0, xjTv  for {0,1,2}.j  Furthermore, for ,x
R
S  the optimal cost function 



 67 

*( )xv  satisfies the property *( ) 0, xjv  for {0,1,2}.j  

Proof: We need to prove that ( ) 0, xjTv  for ( ).j j jx S x  Since for ( )j j jx S x , we have 

( ) ( ) ( ) 0    x x e xj jv v v . ( ) xjTv  can be written as follows: 

2

1

( ) ( 1) ( ) ( ) ( ) ( ),  
 

          x x x xj j j j j j j i j i k j k

i j k

Tv h x h x v Pv A v  

Where  0,1,2 , j i  1,2 .k  

Operator Pi:  

( ) ( ) ( )

min{ ( ), ( )} min{ ( ), ( )}

min{ ( ), ( )} min{ ( ), ( )} 0.

   

     

    

x x e x

x e e x e x e x

x e x x e x

j i i j i

j i j i

i i

Pv Pv Pv

v v v v

v v v v

 

Operator Ak: We distinguish three cases: 

0:j   

   

   

0 0

0

( ) ( ) ( )

min ( ), ( ) min ( ), ( )

min ( ), ( ) min ( ), ( ) 0.

   

      

      

x x e x

x e x e x E x

x E x x E x

k k k

k k k k

k k k k

A v A v A v

v v L v v L

v v L v v L

 

:j k  

0

( ) ( ) ( )

min{ ( ), ( ) } min{ ( ), ( ) }

min{ ( ), ( ) } min{ ( ), ( ) } 0.

   

      

      

x x e x

x e x e x E x

x E x x E x

j j j j j

j j j j

j j j j

A v A v A v

v v L v v L

v v L v v L

 

0: j k  

( ) ( ) ( )

min{ ( ), ( ) } min{ ( ), ( ) }

min{ ( ), ( ) } min{ ( ), ( ) } 0.

   

       

      

x x e x

x E e x e x E x

x E x x E x

j k k j k

k j j k k k

k k k k

A v A v A v

v v L v v L

v v L v v L

 

Since, by assumption, we have ( 1) ( ) 0,  j j j jh x h x  it follows that ( ) 0 xjTv  for 

( )j j jx S x  □ 

 

Theorem 4.1 uses the results of Lemmas 4.1 and 4.2 to identify the recurrent region under 

the optimal policy. 

 



 68 

Theorem 4.1: Under the optimal policy, the sub-Space SR is unique, closed and is identical to 

the recurrent region, i.e., the region with all states x being recurrent states. 

 

Proof: By Observation 4.1, we know that for ,x
R
S  * *( ) ( ).   x e xi i iv v  Hence, 

*( ) xiv  is increasing in the direction .ei  Also, by Lemma 4.2, we know that for ,x
R
S  

*( ) 0. xiv  As a result, *( ) 0 xiv  for ,x
R
S  This implies that thresholds ( ),i iS x  

{0,1,2},i  are unique and together enclose a unique bounded region identified by the 

sub-space SR. Furthermore, since for states ,x
R
S  *( ) 0 xiv  it follows that it is always 

optimal to produce components within the region .
R
S  Also, since for ( ),i i ix S x  

*( ) 0, xiv  it is not optimal to produce Component i. This means that the inventory level of 

Component i, xi, can only decrease due to product demand, for ( ),i i ix S x  Thus, sooner or 

later, the state of the system enters sub-space SR. On the other hand, if ( ),i i ix S x  and since it 

is optimal to produce Component i then its inventory will increase to a maximum level of 

( ),i iS x  at which level production of Component i is no longer optimal. In conclusion, once the 

state of the system enters sub-space SR, it never leaves it thereafter. Hence, sub-space SR 

identifies the recurrent region. □ 

 

In order to characterize the structure of the optimal policy within the recurrent region, we 

further define the following two- dimensional threshold functions: 

( ) min{ | ( ) ( ) },k

j j k j jr x v v L     x x x E  for {1,2},j  {0, }.k j   (4.4) 

We can easily verify that ( ) ( )k

j j k kr Sx x  for x
R
S  and {1,2},j  {0, }k j . We are now 

ready to describe the structure of the optimal policy. 

 

Theorem 4.2: There exists an optimal control policy that is stationary and is specified, for any 

initial state x, in the recurrent region SR as follows: 

(i) It is always optimal to produce Component i for ( )i i ix S x  and not to produce it 
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otherwise.  

(ii) The optimal inventory allocation policy for Product j is characterized by a two-dimensional 

vector of state-dependent rationing levels, 0

0( ( ), ( )),j

j j jr rx x  such that it is optimal to fulfill 

Product j incoming demand if 0

0 0( , ) ( ( ), ( ))j

j j j jx x r r x x  and not to fulfill it otherwise. 

(iii) Component j’s base-stock level, ( ),j jS x  {1,2},j  is non-decreasing in the inventory 

level of Component 0. Component 0’s base-stock level, 0 0( ),S x  is non-decreasing in the 

inventory level of Component j, {1,2}.j  Component j base-stock level, ( ),j jS x  is 

non-increasing in the inventory level of Component i, {1,2}. j i  Rationing level ( )j

j jr x  

is non-increasing in the inventory level of Component j and non-decreasing in the inventory 

level of Component i, {1,2}. j i Rationing level 0

0( )jr x  is non-increasing in the inventory 

level of Component j, {1,2}.j  

 

Proof: Part (i) follows from the definition of the recurrent region, SR, and Theorem 4.1. 

Part (ii): by Observation 4.1, ( ) E x E
j jv , for {1,2},j  is non-decreasing in 0 .x  Thus, 

there exists a unique value, 0

0( ),jr x  such that

0 0

0 1 2 0 1 2( ( ) 2, 1, ) ( ( ) 1, 1, )
j jj j jv r x x L v r x x        E Ex x .  Similarly, by Property 1, 

1 1( ) E x Ev  (
2 2( ) E x Ev ) is non-decreasing in 1x  ( 2x ). Thus, there exists a unique value, 

1

1 1( )r x  ( 2

2 2( )r x ) such that 
1 1

1 1

0 1 1 2 1 0 1 1 2( 1, ( ) 2, ) ( 1, ( ) 1, )v x r x L v x r x        E Ex x  

(
2 2

2 2

0 1 2 2 2 0 1 2 2( 1, , ( ) 2) ( 1, , ( ) 1)v x x r L v x x r        E Ex x ). 

Part (iii): ( )j jS x  is non-decreasing in 0x  is due to Property 2. 0 0( )S x  is non-decreasing in 

jx  {1,2},j  is due to Property 2. ( )j jS x  is non-increasing in ,ix  {1,2}, j i  is due to 

Property 3. ( )j

j jr x  is non-increasing in ,jx  {1,2},j  is due to Property 1. ( )j

j jr x  is 

non-decreasing in ,ix  {1,2}, j i  is due to Property 5. 0

0( )jr x  is non-increasing in ,jx  

{1,2},j  is due to observation 4.1. □ 
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 Theorem 4.2 states that it is always optimal to produce all components once the state of 

the system x enters the recurrent region SR. It also states that component inventory allocation is 

governed by a rationing policy that depends on the other components’ inventory level that 

specifies whether a demand from a particular product is fulfilled or not. In particular, a demand 

for a product is satisfied only if the inventory level of each component, used to assemble the 

product, is above its rationing level for that product. We note that the components inventory 

rationing levels, for a product, are in general non-identical.  

    Furthermore, Theorem 4.2 indicates that production of Component 0 increases the 

desirability of producing components 1 and 2. Production of Component 1 (Component 2) 

increases the desirability to produce Component 0 and decreases the desirability to produce 

Component 2 (Component 1). i.e., 
0( ) ( ),j j j jS S x xe  

0 0 0 0( ) ( ),jS S x xe  and 

( ) ( ),j j i j jS S x xe  for ,i j  {1,2}j . An increase in the inventory level of Component j 

could lead to a decrease in the rationing levels of Components j and 0. An increase in the 

inventory level of Component 0 could lead to a decrease in the rationing levels of the other 

components. An increase in the inventory level of Component j could lead to an increase in the 

rationing level of Component i, .i j  

 

4.1.1 Structure of optimal policy under average cost rate criterion 

The main take away of this section is that the structural characteristics of the optimal policy 

described under the discounted cost criterion carry over to the average cost rate criterion.  

 

Theorem 4.3: Under the average cost rate criterion, there exists an optimal stationary policy 

that retains all the properties of the optimal policy under the discounted cost criterion. Namely, 

under this optimal policy, the sub-Space SR is unique, closed and is identical to the recurrent 

region. For any state within the interior of the recurrent region, it is always optimal to produce 

any of the components; the optimal inventory allocation policy for a particular product is 

characterized by a two-dimensional vector of state-dependent rationing levels; and the 

base-stock and rationing levels satisfy (iii) in Theorem 4.2. Furthermore, the optimal average 

cost rate is finite and independent of the initial state, x. in other words, there exists a finite 
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constant *  such that * *( ) ,xv  for all states x. 

Proof: we take the limit as 0,   in the discounted cost problem in order to show that, 

under the average cost rate criterion, an optimal policy exists with a finite average cost rate that 

is independent of the starting state. As such, two conditions must be satisfied (Cavazos-Cadena 

and Sennott 1992; Weber and Stidham, 1987): (1) there exists a stationary policy that induces 

an irreducible positive recurrent Markov chain with finite average cost, , and (2) the number 

of states for which the holding cost ( ) xh  is finite. For (1), one can consider the policy 

that does not produce any of the components and thus yields an average cost rate 

1 2 2.   iL L  (2) holds since  xh  is component-wise increasing convex in its arguments. 

Hence, for any positive value , the number of states for which ( ) xh  is always finite. 

Using (1) and (2), Weber and Stidham (1987) show that there exists a constant *  and a 

function ( )xf  such that 

   *

,
( ) ( )
min , ( ) ( ) ( ) ( ) , 




   
  

 x
x x

x

x x
a A

x a a x x xg p f f  

Furthermore, the stationary policy that minimizes the right hand side of the above equation for 

each state x is an optimal policy for the average cost criterion and yields a constant average 

cost rate 
*.  As a result, properties of the average cost optimal policy are the same as 

determined through function ( )xf  in much the same way as were properties of the 

discounted cost optimal policy determined by ( )xv . □ 

 

4.2  Extension to batch production and non-unitary compound 

Poisson demand process 

 

In this section, we extend the original model to the case where production occurs in batches 

and demand for the products is non-unitary and constitutes a compound Poisson process. We 

use the same notation as the previous section. Component 0 is the common component, 

Component 1 (Component 2) is the product specific component and is assembled with 

component 0 to an end product 1 (product 2).  
2

0 i ii
h x

  denotes the total inventory holding 
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cost and kL ,  1, 2k   denotes the lost sale cost for each product if demands are not 

satisfied.  

Assuming the demand process of each product follows by a compound Poisson 

distribution with rate k ,  1, 2k  . The requested amount for each product is bounded above 

by quantity kD ,  1, 2k  . The probability that the order size of product k’s demand will be d 

is    k kP d p d   ,  1, 2k   and  1, 2, , kd D  . The production process of each 

component follows by an exponential rate i ,  0,1, 2i   and the batch production size can 

be any value of b. Since the memoryless property still holds in this case, we can formulate the 

system as a MDP. Hence, the optimality equation can be written as Eq. (4.5). The Operator 

( )d

kH v x  is the allocation operator and the Operator ( )iPv x  is the production operator.    

   
2 2

1 1 0

( ) ( ) ( )   

  

 
   

 
  

kD
d

k k k i i

k d i

v x h x p d H v x Pv x            (4.5) 

Where
  

 
00 min min , ,

( ) min ( ) ( )
 

   x
k

d

k k k
q x x d

H v x v qE d q L ,  
0

( ) min ( )


 i i
b

Pv x v x b ,  0,1, 2i 

and  1, 2k  .  

 

Note  

  
 

    

0

0

0 min min , ,

0 min min , ,
0

( ) min ( ) ( )

( )+( 1) max ( )

 

 


   

 
       

 


x

x x

k

kk

d

k k k
q x x d

q

k k E k kq x x d
n

H v x v qE d q L

v E d L nE L

 

Let  ,
xkq d  denote the value that minimizes ( ) ( )  x k kv qE d q L . Then,  ,

xkq d  is 

characterized by the Lemma 4.3. 

Let    
2 2

1 1 0

( ) ( ) ( ) 
  

 
   

 
  

kD
d

k k k i i

k d i

Ov x h x p d H v x Pv x .  

 

Lemma 4.3: If v V , let  0min , ( ) xkx x m , then we have  



 73 

 
  

0 if ( )

,
max ( ) ,0 min ( ), otherwise



  


 
     

x

x
x x

k

k

E k

k

E k k

L

q d
q qE L q m d

 

 

Proof: By property 1 and observation 4.1, we have ( ) ( ) ( )        x x x
k k kE E k E kE nE . 

If ( )  x
kE kL , which means it is not optimal to satisfy any value of the batch demand. 

If ( )   x
kE k kqE L , then we need to find the value    , 0, min ( ),   x xkq d m d , which 

lets  ( , )   x x
kE k k kq d E L  and   ( , 1 )    x x

kE k k kq d E L . □ 

 

Lemma 4.4 and Lemma 4.5 determine the changes in the value  ,
xkq d , with changes in 

components’ inventory levels under different conditions.  

 

Lemma 4.4: Let  0 0 0, ,   e e e e e e ek k j  and v V , where  = 1,2k  then we have 

 

 

    

      

      

   

0

, 0 ( )

, min min , , and ( )

, 1 , ( ) and ( , 1 )

, , 1 1 , ( ) and ( , 1 )

, , ( )





  

   

 

      

      

         

             

  

x x e

x x

x x x x e x

x e x x x x e x

x x x

k

k

k

k

k E k k

k k E k k

k k E k k k

k k k E k k k

k k

q d v E L

q d d x x d d v dE L

q d q d m d v q d E L

q d q d q d m d v q d E L

q d q d m m

   

   

( )

, , ( ) ( ) 1 and ( ( ) )

, 1 , ( ) ( ) 1 and ( ( ) )

 

 










 


             
               


x e

x x x x e x e x e

x x x x e x e x e

k

k

k k E k k

k k E k k

d

q d q d m m d v m E L

q d q d m m d v m E L

 

Proof: we discuss each sub-equality by the following cases.  

Case 1: By property 1, we know ( ) ( )       x x e
k kE k E k kv E v E L  and by Lemma 4.3, 

we have  , 1 xkq d  and  , 1  x ekq d . Hence,    , , 0   x e xk kq d q d . 

Case 2: By property 1, we know ( ) ( )       x e x
k kE k E k kv dE v dE L . In addition, as 

  0min min , , kx x d d ,    , ,   x e xk kq d q d d . 

Case 3: By property 1, we know ( ) ( )     x e x
k kE k E kv E v E , which means 

   , ,  x e xk kq d q d . By Lemma 4.3, we have    , , 1   x e xk kq d q d . Hence,
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   , ,  x e xk kq d q d . 

Case 4: By Lemma 4.3, we know    , , 1   x e xk kq d q d . In addition, 

        ( , 2 ) ( , 2 ) ( , 1 ) ,               x e x x x x x
k k kE k k E k k k E k k kv q d E v E q d E v q d E L

which means    , , 2   x e xk kq d q d . Hence,    , , 1   x e xk kq d q d . 

Case 5: By Lemma 4.3, we know    , , 1   x e xk kq d q d . By property 1, we have 

( ( , ) ) ( ( , ) )        x e x x x
k kE k k E k k kv q d E v q d E L , which means ( , ) ( , )  x e xk kq d q d . 

Hence, ( , ) ( , )  x e xk kq d q d . 

Case 6: By   ( , 1 )     x e x
kE k k kv q d E L , we know    , , 1   x e xk kq d q d . By 

property 1, we know    ( , ) ( , )        x e x x x
k kE k k E k k kv q d E v q d E L , which means 

   , ,  x e xk kq d q d . Hence,    , ,  x e xk kq d q d . 

Case 7: By   ( , 1 )     x e x
kE k k kv q d E L , we know    , , 1   x e xk kq d q d . 

Besides, 

        ( , 2 ) ( , 2 ) ( , 1 ) ,                x e x x x x x
k k kE k k E k k k E k k k kv q d E v E q d E v q d E L

then    , , 2   x e xk kq d q d . Hence,    , , 1   x e xk kq d q d .□ 

 

Lemma 4.5: Let  e e j
 and v V , where  1,2 j k , then we have  

 

 

    

     

     

   

0

, 0 ( )

, min min , , and ( )

, 1 1 , ( ) and ( , )
,

, 1 , ( ) and ( , )

, , ( ) (





  



  

 

     

       

         
 

        

   

x x

x x e

x x x x e x
x e

x x x x e x

x x x x

k

k

k

k

k E k k

k k E k k

k k E k k k

k

k k E k k k

k k

q d v E L

q d d x x d d v dE L

q d q d m d v q d E L
q d

q d q d m d v q d E L

q d q d m m

   

) and ( ( ) )

, 1 , ( ) ( ) and ( ( ) ) 










     


           

e x e x

x x x x e x e x

k

k

E k k

k k E k k

d v m E L

q d q d m m d v m E L

 

Proof: we discuss each sub-equality by the following cases.  

Case 1: By property 5, we know ( ) ( )       x e x
k kE k E k kv E v E L  and by Lemma 4.3, 

we have  , 1 xkq d  and  , 1  x ekq d . Hence,    , , 0   x e xk kq d q d . 
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Case 2: By property 5, we know ( ) ( )       x e x
k kk E k E kL v E v E . In addition, as

  0min min , , kx x d d , hence,    , ,   x e xk kq d q d d . 

Case 3: By  ( , )    x e x
kE k k kv q d E L , we know    , ,  x e xk kq d q d . Besides, we 

have

          , 1 , 1 , ,                 x e x x e x x x
k k kE k k E k k E k k kv q d E v E q d E v q d E L

which means    , , 1   x e xk kq d q d . Hence,    , , 1   x e xk kq d q d . 

Case 4: By  ( , )    x e x
kE k k kv q d E L , we know    , ,  x e xk kq d q d . Besides, by 

property 3, we have        , 1 , +1         x e x x x
k kE k k E k k kv q d E v q d E L , which 

means    , , 1   x e xk kq d q d . Hence,    , ,  x e xk kq d q d .  

Case 5: By  ( , )    x e x
kE k k kv q d E L , we know    , ,  x e xk kq d q d . Besides, as 

( ) ( ) x e xm m , we have    , , 1   x e xk kq d q d . Hence,    , ,  x e xk kq d q d . 

Case 6: By ( ( ) )    x e x
kE k kv m E L , we know    , ,  x e xk kq d q d . By property 5, 

          , 1 , 1 ,                 x e x x e e x x x
k k kE k k E k k E k k kv q d E v q d E v q d E L

, we have    , , 1   x e xk kq d q d . Hence,    , , 1   x e xk kq d q d . □ 

 

Lemma 4.6: The observations in Lemma 4.1 are preserved in the batch production and 

non-unitary compound Poisson demand case. That is, for any cost function v V  and state

x
R
S , Ov is also an element of V. In addition, the optimal cost function, v

*
, defined in (4.5) is 

an element of V.    

Proof: In order to prove Lemma 4.6, we first show that Operator 
d

kH v , Operator ( )iPv x and 

the holding cost function h(x) preserve properties 1-5. Then, since set V is closed under 

multiplication by a scalar and under addition, we show that Operator Ov preserves properties 

1-5 as well. Finally, to show that * v V , we use the fact that (1) 
* lim  n

nv O v  for any 

v V  (see Proposition 3.1.5 and 3.1.6, Bertsekas (2001)), and (2) nO v V  since .Ov V  
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Property 1 

In order to prove operator d

kH v satisfies property 1, we need to show

    0   E Ex e x
j j

d d

k j kH v H v  ,or ,2}f {1j k . By the definition of the allocation operator, 

we know  

   

       

   

   

 

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , )

 

 

   

   

       

         

     

       

E Ex e x

x e x e x x

x e x e x e x e

x x x x

x e x e x x

j j

d d

k j k

d d d d

k j j k j k j k

j j k j j k j k j k

j k j k k k

k j j k j k j k k

H v H v

H v E H v H v E H v

v E q E d E v q d E

v E q E d E v q d E

q E d q d q E d q d L

 

We discuss the following two cases.   

Case 1: j k  

   

   

   

 

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , )

 

 

   

   

         

     

       

E Ex e x

x e x e x e x e

x x x x

x e x e x x

k k

d d

k k k

k k k k k k k k k k

k k k k k k

k k k k k k k k k

H v H v

v E q E d E v q d E

v E q E d E v q d E

q E d q d q E d q d L

 

Using the results of Lemma 4.4, we recognize that:  

( , ) ( , ) ( , ) 1     x x e xk k k kq d q d q d , 

( , ) ( , ) ( , ) 1     x x xk k k kq d q E d q d , 

( , ) ( , ) ( , ) 1       x e x x ek k k k k kq d q E d q d  and 

( , ) ( , ) ( , ) 1        x x e xk k k k k k kq E d q E d q E d .  

We consider all combinations of these conditions and discuss the following subcases. 

1. ( , ) ( , ) ( , ) ( , )         x x e x x ek k k k k k k kq d q d q E d q E d  

   

       

   

( , ) ( , ) ( , ) ( , )

( , ) ( , ) 0

   

 

   

           

       

E E

E E

x e x

x e x x e x x x x x

x e x x x

k k

k k

d d

k k k

k k k k k k k k k k k k

k k k k k

H v H v

v E q d E v q d E v E q d E v q d E

v q d E v q d E

The inequality holds by property 1. 

2. ( , ) ( , ) ( , ) and ( , ) 1             x x e x x ek k k k k k k kq d q d q E d q q E d q  
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1

1

1 1 0

   

  

   

   

             

             

                  

E E

E E E

E E E E

x e x

x e x e x x

x e x x e

x e x x e x

k k

k k k

k k k k

d d

k k k

k k k k k k k k k

k k k k k k k

k k k k k k k k

H v H v

v E q E v q E v E q E v q E L

v q E v q E v E q E L

v q E v q E v E q E v E q E

The above inequality holds by Lemma 4.3, which shows

    1          E Ex x
k kk k k k kv E q E L v E q E .  

3. ( , ) ( , ) and ( , ) ( , ) 1             x x e x x ek k k k k k k kq d q d q q E d q E d q  

   

         

         

1 1

1 1

0

   

   

   

             

                 



E E

E E E E

x e x

x e x e x x

x e x x e x

k k

k k k k

d d

k k k

k k k k k k k k

k k k k k k k k

H v H v

v E q E v q E v E q E v q E

v q E v q E v E q E v E q E

 

4. ( , ) and ( , ) ( , ) ( , ) 1             x x e x x ek k k k k k k kq d q q d q E d q E d q  

   

          

  

1 1 1

1 0

   



   

               

      

E E

E

x e x

x e x e x x

x e

k k

k

d d

k k k

k k k k k k k k k

k k k

H v H v

v E q E v q E v E q E v q E L

v q E L

The above inequality holds by Lemma 4.3 (   1     E x e
k k k kv q E L ).  

5. ( , ) ( , ) , ( , ) 1and ( , ) 2               x x e x x ek k k k k k k kq d q d q q E d q q E d q  

   

         

  

2 1

1 0

   



   

              

      

E E

E

x e x

x e x e x x

x e

k k

k

d d

k k k

k k k k k k k k k

k k k

H v H v

v E q E v q E v E q E v q E L

v q E L

 

The above inequality holds by Lemma 4.3 (   1     E x e
k k k kv q E L ).  

6. ( , ) , ( , ) ( , ) 1and ( , ) 2               x x e x x ek k k k k k k kq d q q d q E d q q E d q  

   

          2 1 1 0   

  

               

E Ex e x

x e x e x x

k k

d d

k k k

k k k k k k k k

H v H v

v E q E v q E v E q E v q E
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Case 2: j k  

   

       

   

   

 

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , )

 

 

   

   

       

         

     

       

E Ex e x

x e x e x x

x e x e x e x e
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d d

k j k

d d d d

k j j k j k j k
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H v H v

H v E H v H v E H v

v E q E d E v q d E

v E q E d E v q d E

q E d q d q E d q d L

 

By using Lemma 4.4 and Lemma 4.5, we recognize that:  

( , ) 1 ( , ) ( , )     x x e xk k j kq d q d q d ， 

( , ) ( , ) ( , ) 1     x x xk k j kq d q E d q d , 

( , ) ( , ) ( , ) 1        x e x e x ek j k j j k jq d q E d q d  and  

( , ) 1 ( , ) ( , )        x x e xk j k j j k jq E d q E d q E d .  

We consider all combinations of these conditions and discuss the following subcases. 

1. ( , ) ( , ) ( , ) ( , )           x e x e x xk j k j j k k jq d q E d q d q E d q  

   

       

    0
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x e x
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j j

d d

k j k
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v E q E v q E v E q E v q E

v q E v q E

 

The last inequality holds by property 1.  

2. ( , ) ( , ) ( , ) and ( , ) 1             x e x e x xk j k j j k k jq d q E d q d q q E d q  
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1 0
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    The last inequality holds by property 1 and Lemma 4.3. 

3. ( , ) ( , ) and ( , ) ( , ) 1             x e x e x xk j k j j k k jq d q E d q q d q E d q  
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   The last inequality holds by property 1 and 4 similar to inequality below. 
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4. ( , ) ( , ) and ( , ) ( , ) 1             x e x x e xk j k k j j k jq d q d q q E d q E d q  
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The last inequality holds by convexity property and property 3 similar to inequality below.  

    

   

       

   , ,

1

0

 

 

   

 

      

       

               

        

x x

x e e x

x e e x e x e x

x e e x

j j k j k

j j k k j k

j j k k j j k j j k j k

j k j k k j j k

v E q E v q E

v q E v q E

v q E v q E v q E v q E

v q E v q E
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The last inequality holds by property 1 and Lemma 4.3 (   1     E x e
k j k kv q E L ). 

6. ( , ) 1, ( , ) ( , ) and ( , ) 1               x e x e x xk j k j j k k jq d q q E d q d q q E d q  
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The last inequality holds by property 1 and Lemma 4.3 (

    1          E Ex e x
k kj k k j kv q E L v E q E ). 
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7. ( , ) 1, ( , ) and ( , ) ( , ) 1               x e x e x xk j k j j k k jq d q q E d q q d q E d q  

   

          

      

      , ,

1 1 1

1

1 0

   

  

  

   

               

            

            

E E

E E E

E E E E

x e x

x e x e x x

x e x x e

x x x e

j j

j j k

j j k k

d d

k j k

j j k j k j k k k

j k k j k k

j k k j k k

H v H v

v E q E v q E v E q E v q E L

v q E v q E v q E L

v q E v q E v q E L

The last inequality holds by property 1, 4 and Lemma 4.3 (      E x e
k j k kv q E L ).  

8. ( , ) 1, ( , ) and ( , ) ( , ) 1               x e x x e xk j k k j j k jq d q q d q q E d q E d q  

   

          

      

     , ,

1 1 1

1

0

   

  

  

   

               

            

             

E E

E

E

x e x

x e x e x x

x x x e

x e x e x e

j j

k

k

d d

k j k

j j k j k j k k k

j j k j k j k k

j j k k j k k k j k k

H v H v

v E q E v q E v E q E v q E L

v E q E v q E v q E L

v q E v q E v q E L

The above inequality holds due to the convexity property, property 3 and Lemma 4.3 (

     E x e
k j k kv q E L  ). 

 

 

Property 2 

In order to prove operator 
d

kH v satisfy Property 2, we need to show

   0 0   x e x
d d

j k j kH v H v  {f r 2}o 1,j . By the definition of the allocation operator, we 

know  

   

       

   

   

 

0

0 0

0 0 0 0

0 0

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , )

 

 

   

   

       

         

     

       

x e x

x e e x e x e x

x e e x e e x e x e

x e x e x x

x e e x e x e x

d d

j k j k

d d d d

k j k k j k

j k j k k k

j k j k k k

k j k k j k k

H v H v

H v H v H v H v

v q d E v q d E

v q d E v q d E

q d q d q d q d L

 

We discuss the following two cases.  

Case 1: j k  
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0

0 0 0 0

0 0

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , )

 

 

   

   

         

     

       

x e x

x e e x e e x e x e

x e x e x x

x e e x e x e x

d d

k k k k

k k k k k k

k k k k k k

k k k k k k k

H v H v

v q d E v q d E

v q d E v q d E

q d q d q d q d L

 

By Lemma 4.4, we recognize that:  

0( , ) ( , ) ( , ) 1     x x e xk k kq d q d q d ; 

( , ) ( , ) ( , ) 1     x x e xk k k kq d q d q d ; 

0 0 0( , ) ( , ) ( , ) 1        x e x e e x ek k k kq d q d q d  and 

0( , ) ( , ) ( , ) 1        x e x e e x ek k k k k kq d q d q d . 

We consider all combinations of these conditions and discuss the following subcases. 

1. 0 0( , ) ( , ) ( , ) ( , )           x x e x e x e ek k k k k kq d q d q d q d q  

   

       

   

0

0 0

0 0

   

 

   

           

       

x e x

x e e x e x e x

x e x

d d

k k k k

k k k k k k

k k k k

H v H v

v q E v q E v q E v q E

v q E v q E

 

The above inequality holds by property 2. 

2. 0 0( , ) ( , ) ( , ) and ( , ) 1             x x e x e x e ek k k k k kq d q d q d q q d q

   

        

      

0

0 0

0 0

1

1 0

   

  

   

             

              E

x e x

x e e x e x e x

x e x x e e
k

d d

k k k k

k k k k k k k

k k k k k k k

H v H v

v q E v q E v q E v q E L

v q E v q E v q E L

 

The above inequality holds by property 2 and Lemma 4.3 (

  0 1      E x e e
k k k kv q E L ). 

3. 0 0( , ) ( , ) and ( , ) ( , ) 1             x x e x e x e ek k k k k kq d q d q q d q d q  

   

         

    

 

0

0 0

0 0

0,0 0

1 1

1

0

   

 



   

             

       

    

x e x

x e e x e x e x

x e x

x e

d d

k k k k

k k k k k k

k k k

k

H v H v

v q E v q E v q E v q E

v q E v q E

v q E

 

   The above inequality holds by the convexity property. 
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4. 0 0( , ) ( , ) and ( , ) ( , ) 1             x x e x e x e ek k k k k kq d q d q q d q d q  

   

         

    

 

0

0 0

0

k,k

1 1

1

0

   

 



   

             

       

    

x e x

x e e x e x e x

x e x

x e

d d

k k k k

k k k k k k

k k k k

k k

H v H v

v q E v q E v q E v q E

v q E v q E

v q E

 

The above inequality holds by the convexity property. 

5. 0 0( , ) and ( , ) ( , ) ( , ) 1             x x e x e x e ek k k k k kq d q q d q d q d q  

   

          

        

0

0 0

0

1 1 1

1 1 1 0

   

  

   

               

              E

x e x

x e e x e x e x

x e x x
k

d d

k k k k

k k k k k k k

k k k k k k

H v H v

v q E v q E v q E v q E L

v q E v q E v q E L

The above inequality holds by property 2 and Lemma 4.3 (   1    E x
k k kv q E L ). 

6. 0 0( , ) , ( , ) ( , ) 1 and ( , ) 2               x x e x e x e ek k k k k kq d q q d q d q q d q  

   

          

    

  

0

0 0

0 0 0

0,

2 1 1

1

1 0

   

 



   

              

       

    

x e x

x e e x e x e x

x x e

x

d d

k k k k

k k k k k k

k k

k k

H v H v

v q E v q E v q E v q E

v q E v q E

v q E

 

The above inequality holds by property 2. 

7. 0 0( , ) , ( , ) 1 and ( , ) ( , ) 2               x x e x e x e ek k k k k kq d q q d q q d q d q  

   

          

        

     

0

0 0

0

, 0

2 2 1

2 1 1

2 1 0

   

  

 

   

               

             

          

x e x

x e e x e x e x

x e x x

x e x

k

k

d d

k k k k

k k k k k k k

k k k k E k k

k k k E k k

H v H v

v q E v q E v q E v q E L

v q E v q E v q E L

v q E v q E L

The above inequality holds by the convexity property and Lemma 4.3 (

  1    x
kE k kv q E L ). 

8. 0 0( , ) , ( , ) 1 and ( , ) ( , ) 2               x x e x e x e ek k k k k kq d q q d q q d q d q  
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0

0 0

0 0

0,0

2 1 2

2 1 1

2 1 0

   

  

 

   

               

             

          

x e x

x e e x e x e x

x e x x

x e x

k

k

d d

k k k k

k k k k k k k

k k k E k k

k k E k k

H v H v

v q E v q E v q E v q E L

v q E v q E v q E L

v q E v q E L

The above inequality holds by the convexity property and Lemma 4.3 (

  1    x
kE k kv q E L ). 

 

Case 2: j k  

   

       

   

   

 

0

0 0

0 0 0 0

0 0

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , )

 

 

   

   

       

         

     

       

x e x

x e e x e x e x

x e e x e e x e x e

x e x e x x

x e e x e x e x

d d

j k j k

d d d d

k j k k j k

j k j k k k

j k j k k k

k j k k j k k

H v H v

H v H v H v H v

v q d E v q d E

v q d E v q d E

q d q d q d q d L

 

By Lemma 4.5, we recognize that:  

( , ) ( , ) ( , ) 1      x e x x ek j k k jq d q d q d ; 

0( , ) ( , ) ( , ) 1      x x e e xk k j kq d q d q d  and  

0 0 0( , ) ( , ) ( , ) 1         x e e x e x e ek j k k jq d q d q d . 

We consider all combinations of these conditions and discuss the following subcases. 

1. 0 0( , ) ( , ) ( , ) ( , )           x e x x e e x ek j k k j kq d q d q d q d q

   

       

   

0

0 0

0 0

   

 

   

           

       

x e x

x e e x e x e x

x e x

d d

j k j k

j k k j k k

j k j k

H v H v

v q E v q E v q E v q E

v q E v q E

 

    The above inequality holds by property 2. 

2. 0 0( , ) ( , ) ( , ) and ( , ) 1             x e x x e e x ek j k k j kq d q d q d q q d q  
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0

0 0

0 0 0

0

,

1

1 1

1

0

   

   

 



   

             

                 

       

    

x e x

x e e x e x e x

x e x x e x e e

x x e

x e

k k

d d

j k j k

j k k j k k k

j k j k E k E j k

j k j k

j k k k

H v H v

v q E v q E v q E v q E L

v q E v q E v q E v q E

v q E v q E

v q E

The first inequality holds by Lemma 4.3 that states   0 1      x e e
kE j k kv q E L . 

The last inequality holds by property 3. 

3. 0 0( , ) ( , ) and ( , ) ( , ) 1             x e x x e e x ek j k k j kq d q d q q d q d q  

   

         

    

 

0

0 0

0

,

1 1

1

0

   

 



   

             

       

    

x e x

x e e x e x e x

x e x

x e

d d

j k j k

j k k j k k

j k j k

j k k k

H v H v

v q E v q E v q E v q E

v q E v q E

v q E

 

The above inequality holds by property 3. 

4. 0 0( , ) and ( , ) ( , ) ( , ) 1             x e x x e e x ek j k k j kq d q q d q d q d q  

   

          

       

    

0

0 0

0

,

1 1 1

1 1

1 0

   

  

 

   

               

            

         

x e x

x e e x e x e x

x e x x

x e x

k

k

d d

j k j k

j k k j k k k

j k j k E k k

j k k k E k k

H v H v

v q E v q E v q E v q E L

v q E v q E v q E L

v q E v q E L

The above inequality holds by property 3 and Lemma 4.3 (   1    x
kE k kv q E L ). 

5. 0 0( , ) , ( , ) ( , ) 1and ( , ) 2               x e x x e e x ek j k k j kq d q q d q d q q d q   

   

          

           

           

 

0

0 0

0 0

0 , ,

0

1 2 1

1 1 2 1

1 1 1 1

1

   

   

   



   

              

                  

                 

    

x e x

x e e x e x e x

x e x x e x e

x e x x e x

x e

k k

k k

d d

j k j k

j k k j k k

j k j k E k E j k

j k j k k E k k j E k

j

H v H v

v q E v q E v q E v q E

v q E v q E v q E v q E

v q E v q E v q E v q E

v q      

    

,

, ,

1

1 0

 

 

       

         

x x e

x e x e

k

k

k j k k E k k

j k k k k E k k

E v q E v q E

v q E v q E

The above inequality holds by property 1 and 3. 
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6. 0 0( , ) , ( , ) 1and ( , ) ( , ) 2               x e x x e e x ek j k k j kq d q q d q q d q d q

   

          

       

0

0 0

, , 0

2 2 1

1 2

0

   

  

   

               

               



x e x

x e e x e x e x

x e x e x e e
k k

d d

j k j k

j k k j k k k

j k k k k E k k E j k k

H v H v

v q E v q E v q E v q E L

v q E v q E v q E L

The above inequality holds by property 1, 3 and Lemma 4.3 (

  0 2      x e e
kE j k kv q E L ). 

 

 

Property A3 

In order to prove operator d

kH v satisfy Property 3, we need to show 

    0   x e x
d d

j k i j kH v H v  for and {1,2}, i j i j . By the definition of the allocation 

operator, we know  

   

       

   

   

 

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , )

 

 

   

   

       

         

     

       

x e x

x e e x e x e x

x e e x e e x e x e

x e x e x x

x e e x e x e x

d d

j k i j k

d d d d

k i j k i k j k

i j k i j k i k i k

j k j k k k

k i j k i k j k k

H v H v

H v H v H v H v

v q d E v q d E

v q d E v q d E

q d q d q d q d L

 

We consider the following two cases.  

Case 1: j k   

   

       

   

   

 

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , )

 

 

   

   

       

         

     

       

x e x

x e e x e x e x

x e e x e e x e x e

x e x e x x

x e e x e x e x

d d

k k i k k

d d d d

k i k k i k k k

i k k i k k i k i k

k k k k k k

k i k k i k k k k

H v H v

H v H v H v H v

v q d E v q d E

v q d E v q d E

q d q d q d q d L

 

By Lemma 4.4, we recognize that:   

( , ) 1 ( , ) ( , )     x x e xk k i kq d q d q d ; 

( , ) ( , ) ( , ) 1      x x e e xk k i k kq d q d q d  and  
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( , ) ( , ) ( , ) 1         x e e x e x e ek i k k k k i kq d q d q d . 

We consider all combinations of these conditions and discuss the following subcases. 

1. ( , ) ( , ) ( , ) ( , )           x e x x e e x ek i k k i k k kq d q d q d q d q  

   

       

    0

   

 

   

           

       

x e x

x e e x e x e x

x e x

d d

k k i k k

i k k i k k k k

k i k k k

H v H v

v q E v q E v q E v q E

v q E v q E

 

The above inequality follows by property 3.  

2. ( , ) ( , ) ( , ) and ( , ) 1             x e x x e e x ek i k k i k k kq d q d q d q q d q  

   

        

      

1

1 0

   

  

   

             

             

x e x

x e e x e x e x

x e x x e
k

d d

k k i k k

i k k i k k k k k

k i k k k E k k k

H v H v

v q E v q E v q E v q E L

v q E v q E v q E L

 

The above inequality follows by property 3 and Lemma 4.3 (   1     x e
kE k k kv q E L ). 

3. ( , ) ( , ) and ( , ) ( , ) 1             x e x x e e x ek i k k i k k kq d q d q q d q d q  

   

         

    

  0,

1 1

1

1 0

   

 



   

             

       

     

x e x

x e e x e x e x

x e x

x e

d d

k k i k k

i k k i k k k k

i k k i k

i k k

H v H v

v q E v q E v q E v q E

v q E v q E

v q E

 

The above inequality holds by property 2.   

4. ( , ) and ( , ) ( , ) ( , ) 1             x e x x e e x ek i k k i k k kq d q q d q d q d q  

   

          

       

     0,

1 1 1

1 1

1 1 0

   

  

 

   

               

            

          

x e x

x e e x e x e x

x e x x

x e x

k

k

d d

k k i k k

i k k i k k k k k

i k k i k E k k

i k k E k k

H v H v

v q E v q E v q E v q E L

v q E v q E v q E L

v q E v q E L

The above inequality holds by property 2 and Lemma 4.3 (   1    x
kE k kv q E L ).  

5. ( , ) 1, ( , ) ( , ) and ( , ) 1               x e x x e e x ek i k k i k k kq d q q d q d q q d q  
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1 1

1 0

   

   

   

             

                

x e x

x e e x e x e x

x e x x e x e
k k

d d

k k i k k

i k k i k k k k

k i k k k E i k E k k

H v H v

v q E v q E v q E v q E

v q E v q E v q E v q E

 

The above inequality holds by property 3 and Lemma 4.3 (

    1          x e x e
k kE i k k E k kv q E L v q E ).  

6. ( , ) 1, ( , ) and ( , ) ( , ) 1               x e x x e e x ek i k k i k k kq d q q d q q d q d q  

   

          

      

   0, 0

1 1 1

1

0

   

  

 

   

               

            

         

x e x

x e e x e x e x

x e x x e

x e x e

i

i

d d

k k i k k

i k k i k k k k k

i k k i k E i k k

i k E i k k

H v H v

v q E v q E v q E v q E L

v q E v q E v q E L

v q E v q E L

The above inequality holds by property 2 and Lemma 4.3 (      x e
kE i k kv q E L ).  

 

Case 2: j k  

In this case, if j k , we know i k . Hence, by symmetry, this case is equivalent to the case 

.j k  Thus, we omit the corresponding proof.  

 

 

Property A4 

In order to show that operator 
d

kH v satisfies Property 4, we must show that 

    0   x x
j j

d d

E k i E kH v E H v  for i j  and  , , 1,2i j k .  

By the definition of allocation operator, we know 

   

       

   

   

 

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , )

 

 

   

   

       

         

     

       

x x

x x x x

x x x x

x x x x

x x x x

j j

d d

E k i E k

d d d d

k i j k i k j k

i j k i j k i k i k

j k j k k k

k i j k i k j k k

H v E H v

H v E E H v E H v E H v

v E E q E E d E v E q E d E

v E q E d E v q d E

q E E d q E d q E d q d L

 

We consider the following cases.  

Case 1: j k   
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( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , )

 

 

   

   

         

     

       

x x

x x x x

x x x x

x x x x

k k

d d

E k i E k

i k k i k k i k i k

k k k k k k

k i k k i k k k k

H v E H v

v E E q E E d E v E q E d E

v E q E d E v q d E

q E E d q E d q E d q d L

 

By Lemma 4.4, we recognize that:  

( , ) ( , ) ( , ) 1     x x xk k i kq d q E d q d ; 

( , ) ( , ) ( , ) 1       x x xk i k k k iq E d q E d q E d  and 

( , ) ( , ) ( , ) 1        x x xk k k i k k kq E d q E E d q E d . 

We consider all combinations of these conditions and discuss the following subcases. 

1. ( , ) ( , ) ( , ) ( , )           x x x xk k k k i k i kq d q E d q E d q E E d q  

   

       

    0

   

 

   

           

       

x x

x x x x

x x

k k

k k

d d

E k i E k

i k k i k k k k

E i k E k

H v E H v

v E E q E v E q E v E q E v q E

v E q E v q E

 

The above inequality holds by property 4.  

2. ( , ) ( , ) ( , ) and ( , ) 1             x x x xk k k k i k i kq d q E d q E d q q E E d q  

   

        

  

1

1 0

   



   

             

      

x x

x x x x

x

k k

k

d d

E k i E k

i k k i k k k k k

E k k k

H v E H v

v E E q E v E q E v E q E v q E L

v E q E L

 

The above inequality holds by Lemma 4.3 (   1     x
kE k k kv E q E L ).  

3. ( , ) ( , ) and ( , ) ( , ) 1             x x x xk k i k k k i kq d q E d q q E d q E E d q  

   

         1 1 0   

  

              

x x

x x x x

k k

d d

E k i E k

i k k i k k k k

H v E H v

v E E q E v E q E v E q E v q E
 

4. ( , ) and ( , ) ( , ) ( , ) 1             x x x xk k i k k k i kq d q q E d q E d q E E d q  

   

          

  

1 1 1

1 0

   



   

               

      

x x

x x x x

x

k k

k

d d

E k i E k

i k k i k k k k k

E i k k

H v E H v

v E E q E v E q E v E q E v q E L

v E q E L
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The above inequality follows from Lemma 4.3 (   1     x
kE i k kv E q E L ).  

5. ( , ) 1, ( , ) ( , ) and ( , ) 1               x x x xk k i k k k i kq d q q E d q E d q q E E d q  

   

         1 1 0   

  

              

x x

x x x x

k k

d d

E k i E k

i k k i k k k k

H v E H v

v E E q E v E q E v E q E v q E
 

6. ( , ) 1, ( , ) and ( , ) ( , ) 1               x x x xk k i k k k i kq d q q E d q q E d q E E d q  

   

          

  

1 1 1

1 0

   



   

               

      

x x

x x x x

x

k k

k

d d

E k i E k

i k k i k k k k k

E k k k

H v E H v

v E E q E v E q E v E q E v q E L

v E q E L

The above inequality follows by Lemma 4.3 (   1     x
kE k k kv E q E L ).  

 

Case 2: j k   

In this case, if j k , we know i k . Hence, by symmetry, this case is equivalent to the case 

.j k  Thus, we omit the corresponding proof.  

 

 

Property A5 

In order to show that operator 
d

kH v satisfies Property 5, we must show that 

    0   x e x
j j

d d

E k i E kH v H v  for i j  and  , , 1,2i j k .  

By the definition of allocation operator, we know 

   

       

   

   

 

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , )

 

 

   

   

       

         

     

       

x e x

x e x e x x

x e x e x e x e

x x x x

x e x e x x

j j

d d

E k i E k

d d d d

k i j k i k j k

i j k i j k i k i k

j k j k k k

k i j k i k j k k

H v H v

H v E H v H v E H v

v E q E d E v q d E

v E q E d E v q d E

q E d q d q E d q d L

 

We consider the following two cases.  

Case 1: j k  
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( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , )

 

 

   

   

         

     

       

x e x

x e x e x e x e

x x x x

x e x e x x

k k

d d

E k i E k

i k k i k k i k i k

k k k k k k

k i k k i k k k k

H v H v

v E q E d E v q d E

v E q E d E v q d E

q E d q d q E d q d L

 

By Lemma 4.4 and Lemma 4.5, we recognize that:   

( , ) ( , ) ( , ) 1      x e x x ek i k k iq d q d q d ,  

( , ) ( , ) ( , ) 1      x x e xk k i k kq d q E d q d  and  

( , ) ( , ) ( , ) 1         x e x x ek i k k k k i kq E d q E d q E d . 

We consider all combinations of these conditions and discuss the following subcases. 

1. ( , ) ( , ) ( , ) ( , )           x e x x e xk i k k i k k kq d q d q E d q E d q  

   

       

    0

   

 

   

           

       

x e x

x e x e x x

x e x

k k

k k

d d

E k i E k

i k k i k k k k

E i k E k

H v H v

v E q E v q E v E q E v q E

v q E v q E

 

The above inequality follows by property 5. 

2. ( , ) ( , ) ( , ) and ( , ) 1             x e x x e xk i k k i k k kq d q d q E d q q E d q  

   

        

  

1

1 0

   



   

             

       

x e x

x e x e x x

x e

k k

k

d d

E k i E k

i k k i k k k k k

E i k k k

H v H v

v E q E v q E v E q E v q E L

v E q E L

 

The above inequality follows by Lemma 4.3 (   1      x e
kE i k k kv E q E L ).  

3. ( , ) ( , ) and ( , ) ( , ) 1             x e x x e xk i k k i k k kq d q d q q E d q E d q  

   

         1 1 0   

  

              

x e x

x e x e x x

k k

d d

E k i E k

i k k i k k k k

H v H v

v E q E v q E v E q E v q E
 

4. ( , ) and ( , ) ( , ) ( , ) 1             x e x x e xk i k k i k k kq d q q d q E d q E d q  

   

          

  

1 1 1

1 0

   



   

               

     

x e x

x e x e x x

x

k k

k

d d

E k i E k

i k k i k k k k k

E k k

H v H v

v E q E v q E v E q E v q E L

v q E L
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The above inequality follows by Lemma 4.3 (   1    x
kE k kv q E L ).  

5. ( , ) 1, ( , ) ( , ) and ( , ) 1               x e x x e xk i k k i k k kq d q q d q E d q q E d q  

   

         1 1 0   

  

              

x e x

x e x e x x

k k

d d

E k i E k

i k k i k k k k

H v H v

v E q E v q E v E q E v q E
 

6. ( , ) 1, ( , ) and ( , ) ( , ) 1               x e x x e xk i k k i k k kq d q q d q q E d q E d q  

   

          

  

1 1 1

1 0

   



   

               

       

x e x

x e x e x x

x e

k k

k

d d

E k i E k

i k k i k k k k k

E i k k k

H v H v

v E q E v q E v E q E v q E L

v E q E L

The above inequality follows by Lemma 4.3 (   1      x e
kE i k k kv E q E L ). 

 

Case 2: j k  

In this case, we know i k . 

   

   

   

 

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , )

 

 

   

   

         

     

       

x e x

x e x e x e x e

x x x x

x e x e x x

j j

d d

E k i E k

k j k k j k k k k k

j k j k k k

k k j k k k j k k

H v H v

v E q E d E v q d E

v E q E d E v q d E

q E d q d q E d q d L

 

By Lemma 4.4 and Lemma 4.5, we recognize that: 

( , ) ( , ) ( , ) 1     x x e xk k k kq d q d q d ; 

( , ) ( , ) ( , ) 1     x x xk k j kq d q E d q d ; 

( , ) ( , ) ( , ) 1        x e x e x ek k k k j k kq d q E d q d  and  

( , ) ( , ) ( , ) 1        x x e xk j k k j k jq E d q E d q E d .  

We consider all combinations of these conditions and discuss the following subcases. 

1. ( , ) ( , ) ( , ) ( , )           x x e x x ek k k k j k k jq d q d q E d q E d q  

   

       

    0

   

 

   

           

       

x e x

x e x e x x

x e x

j j

j j

d d

E k i E k

k j k k k j k k

E k k E k

H v H v

v E q E v q E v E q E v q E

v q E v q E
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The above inequality follows by property 5. 

2. ( , ) ( , ) ( , ) and ( , ) 1             x x e x x ek k k k j k k jq d q d q E d q q E d q

   

        

      

1

1 0

   

  

   

             

              

x e x

x e x e x x

x e x x e

j j

j j k

d d

E k i E k

k j k k k j k k k

E k k E k E k j k k

H v H v

v E q E v q E v E q E v q E L

v q E v q E v E q E L

 

The above inequality follows by property 5 and Lemma 4.3 (

  1      x e
kE k j k kv E q E L ). 

3. ( , ) ( , ) and ( , ) ( , ) 1             x x e x x ek k k k j k k jq d q d q q E d q E d q  

   

         

    

    ,E ,

1 1

1

1 0

   

 

 

   

             

       

        

x e x

x e x e x x

x x

x x

j j

j k

d d

E k i E k

k j k k k j k k

k j k k k

k k k E j k

H v H v

v E q E v q E v E q E v q E

v E q E v q E

v q E v E q E

 

The above inequality follows by property 1 and 5. 

4. ( , ) ( , ) and ( , ) ( , ) 1             x x x e x ek k j k k k k jq d q E d q q d q E d q  

   

         

    

  0,

1 1

1

1 0

   

 



   

             

       

     

x e x

x e x e x x

x e x

x e

j j

j j

j

d d

E k i E k

k j k k k j k k

E k k E k

E k k

H v H v

v E q E v q E v E q E v q E

v q E v q E

v q E

 

The above inequality follows by property 1. 

5. ( , ) and ( , ) ( , ) ( , ) 1             x x x e x ek k j k k k k jq d q q E d q d q E d q  

   

          

        

1 1 1

1 1 1 0

   

  

   

               

              

x e x

x e x e x x

x e x x

j j

j j k

d d

E k i E k

k j k k k j k k k

E k k E k E k k

H v H v

v E q E v q E v E q E v q E L

v q E v q E v q E L

The above inequality follows by property 5 and Lemma 4.3 (   1    x
kE k kv q E L ). 

6. ( , ) 1, ( , ) ( , ) and ( , ) 1               x x x e x ek k j k k k k jq d q q E d q d q q E d q  
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   , 0,

1 1

1

0

   

   

 

   

             

               

      

x e x

x e x e x x

x e x x e x

x x

j j

j j k k

j k

d d

E k i E k

k j k k k j k k

E k k E k E k j k E k

k E k E k

H v H v

v E q E v q E v E q E v q E

v q E v q E v E q E v q E

v q E v q E

 

The above inequality follows by property 1 and 5. 

 

For the production operator ( )iPv x  and the holding cost function h(x), we can easily verify 

that they satisfy properties 1-5. Since V is closed under multiplication by a scalar and addition, 

Ov satisfies properties 1-5.  

Hence, Operator Ov V.  □  

 

Adopting a similar approach to that used in the previous section, we can show that the 

recurrent region, the base-stock, and rationing thresholds retain the same definition. The 

Optimal policy has a similar structure to the one described in Theorem 4.2: For any state, x, in 

the recurrent region it is optimal to produce ( )i i iS x x  units of Component i when 

( ),i i ix S x  and not to produce when ( );i i ix S x  For an incoming demand of size d units, it 

is optimal to fulfill *

jq  units of Product j, where 

* 0

0 0min{ ,max(0, ( )),max(0, ( ))}.j

j j j j jq d x r x r  x x  Furthermore, ( ),i iS x  {0,1,2},i  and 

( ),k

j jr x  {0, },k j  {1,2},j  retain all the properties described in (iii) in Theorem 4.2.  

 

 

4.3  Extension to K-Erlang production process  

 

In this case, we assume that the time required to produce Component i, {0,1,2},i  follows an 

Erlang distribution with shape parameter iK  and scale parameter 𝜇. That is, the probability 

density function of the lead time is
1

( ; , ) ( 1)!.    i iK K t

i if t K t e K  The Erlang distribution 

allows modelling a variety of production time distributions with varying scales and shapes. It is 
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also useful in modeling settings where production takes place over several stages. Thus, in 

order to simplify the analysis, we take this view and refer to iK  as the number of stages in the 

production process, with stage 1 being the starting stage. As a result, each production stage 

takes a production time that is exponentially distributed with mean 1 .i iK  Let iy  denote 

the current production stage. Then, 0iy  means that the production facility is currently idle 

(not producing), and i iy K  means that Component i is at its last production stage after 

which a unit is transferred to the stock of Component i, .ix  Thus the optimality equation in 

(3.6) can be modified as follows 

2 2

1 0

( , ) h( , ) ( , ) ( , )   

 

   x y x y x y x yj j i i i

j i

v A v K Pv         (4.6) 

where for any real-valued function, v(x,y), defined on 3 ,  Operator Aj is defined as 

0( , ) if 0,
( , )

min{ ( , ), ( , ) } otherwise,

 
 

 

y
y

E y y

x
x

x x

j j

j

j j

v L x x
A v

v v L
       (4.7) 

and Operator Pi is defined as 

 min ( , ), ( , ) if 0,

( , ) ( , ) if 0 ,

( , ) otheriwise,

  


   
  

y y e

y y e

e y e

x x

x x

x

i i

i i i i

i i i

v v y

Pv v y K

v y

        (4.8) 

Let Operator 
2 2

1 0

( , ) h( , ) ( , ) ( , ) 
 

   x y x y x y x yj j i i i

j i

Tv A v K Pv . 

We redefine the production base-stock level of component i as follows, 

( , ) min{ , 0 | ( , ) ( , ) 0}i i i i i iS x y v v     x x e xy y y        (4.9) 

and letting 1 1 1 2 2 2 3 3 3, ( ( , ), ( , ), ( , ))S S SS( )x y x y x y x y . We redefine the recurrent region, SR, 

as 
3{ ,0 , {0,1,2}: ( , )}.i iy K i     x x y

R
S x S         

Then, for any state ,
R
Sx  we can rewrite ( , )yxiPv  as 

( , ) if 0 ,
( , )

( , ) otheriwise.

  
 

 

y e
y

e y e

x
x

x

i i i

i

i i i

v y K
Pv

v y
            (4.10) 

As a result, all the properties we defined for the original model still hold. The optimal policy in 
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this case has the exact structure as in the original model. 

 

Lemma 4.6 identifies the characterizations shown in Lemma 4.2 still preserve under the 

K-Erlang production process case.  

 

Lemma 4.6: for any state ,x
R
S  if the cost function v satisfies ( ) 0, xjv  then Tv 

satisfies ( ) 0, xjTv  for {0,1,2}.j  Furthermore, for ,x
R
S  the optimal cost function 

v  satisfies the property *( ) 0, xjv  for {0,1,2}.j  

Proof: From Operator Tv(x), we know 

   
2 2 2

0 1 0

( , ) ( , ) ( , ) ( , ), where , 0,1,2 , 1,2 
  

          x y x y x y x yj j k j k i i j i

i k i

Tv h A v K Pv i j k

In order to prove ( ) 0 xjTv , for ( )i i ix s x . We discuss each part of the optimality equation 

separately.  

 

1. Operator ( , )x yiPv  

Case 1: i j  

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0         x y x e y x y x e y x y x yj j j j j j jP v P v P v v v v  

Case 2: i j   

   

( , ) ( , ) ( , )

min ( , ), ( , ) min ( , ), ( , ) 0

   

      

x y x e y x y

x e y e x e y x y e x y

j i i j i

j i j i

Pv Pv Pv

v v v v
 

The above inequality is held by the observations that ( , ) ( , )   x e y e x y ej i iv v  and

( , ) ( , ) x e y x yjv v .  

 

2. Operator ( , )x ykA v  

In order to show that operator ( , )x ykA v  satisfies Lemma 4.6, we must show that 

 , 0j kA v x y  in the transient region for all  0,1,2j   and  1,2k  . 
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( , ) ( , ) ( , )

min ( , ), ( , ) min ( , ), ( , ) 0

   

        

x y x e y x y

x e y x e y x y x y

j k k j k

j k j k k k

R v R v R v

v E v L v E v L
 

The above inequality holds by the observations that ( , ) ( , )   x e y x yj k kv E v E  and 

( , ) ( , )   x e y x yj k kv L v L . 

  

3. Holding cost 

Since the holding cost is always non-decreasing in its inventory level and work-in process 

inventory level, the optimality equation of K-Erlang production process satisfies this property. 

□ 

 

4.4  Conclusion  

 

In this chapter, we identified the recurrent region. Through numerical experiments, we showed 

that a set of properties in the recurrent region are satisfied by the optimal value function. We 

used a propagation argument to show that these properties are preserved by the optimal cost 

function. These properties allowed us to infer the structure of the optimal production and 

allocation policies of the continuous-time W-configuration ATO system with lost sales. 

Specifically, we showed that it is always optimal to produce all components once the state of 

the system enters the recurrent region and component inventory allocation is governed by a 

rationing policy that depends on the other components’ inventory level that specifies whether a 

demand from a particular product is fulfilled or not. Finally, we extended the results to the 

cases of batch production, batch compound Poisson demand process and K-Erlang production 

times.    
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Chapter 5. Heuristic methods 

 

In this chapter, we propose several heuristic methods that will provide effective approximate 

policies to ease the computational burden of the optimal policy. Then, we run a numerical 

experiment to compare the effectiveness of these heuristic policies under randomly generated 

system parameters. In addition, we show that the utilization of the heuristics as startup policies 

in the value/policy iteration algorithms leads to a faster convergence of these exact algorithms. 

At last, we test one of the heuristics in some larger ATO systems.  

 

 

5.1  Introduction  

 

As described in the previous chapter, the optimal policy structure is fairly complex since both 

components’ production and allocation decisions are governed by state-dependent thresholds. 

As such, for a general W-configuration ATO system with N components and N1 products, 

each threshold represents a switching surface embedded in an (N1)-dimensional hyperspace. 

For systems with a large number of components and products, the number of states increases 

exponentially thus making it prohibitive to compute the optimal policy in a reasonable amount 

of time. Though the optimal policy can be characterized with relatively simple mathematical 

expressions, it is difficult to implement in practice due to its complexity. In this chapter, we 

propose three heuristic methods and compare their effectiveness regarding to the optimal 

policy. Then, we apply one of the heuristics to some larger ATO systems. 

The organization of this chapter is given below. In the second section, we propose a 

method that is based on a decomposition of the W-configuration ATO systems into two 

N-configuration sub-systems. We solve each sub-system separately and construct an 

approximate policy by combining the optimal policies of two sub-systems. In the third section, 

we propose two state-independent heuristic methods that provide fixed base-stock level and 

fixed rationing level. In the fourth section, we run a numerical experiment that comprises 100 

randomly generated system parameters instances to compare the effectiveness of these 

heuristic methods. In addition, we show that the heuristic policies can be used as startup 
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policies in the value iteration and policy iteration algorithms, which results in a much faster 

converge of these algorithms. In the fifth section, we apply the decomposition method to three 

larger ATO systems and present its effectiveness. 

 

5.2  Decomposition method 

 

Due to the ‘curse of dimensionality’ in dynamic programming, it is prohibitive to apply it to 

high-dimensional problems. However, motivated by the relative ease of solving ATO systems 

with limited number of components and products, we can decompose a general ATO system 

into several sub-systems and construct a control policy by combining the optimal policy of all 

sub-systems. As the constructed policy derives the components’ production and allocation 

policy from the optimal policy of its sub-systems, the resulting heuristic control policy has 

state-dependent thresholds.  

As illustrated in the properties of W-configuration ATO systems with lost sales, the 

inventory level of component 0 is non-decreasing in the inventory level of Component 1 (2), 

whereas the inventory level of Component 1(2) is non-increasing in the inventory level of 

Component 2(1) and non-decreasing in the inventory level of ‘Product’ 2(1). This means that 

Component 0 has a higher influence on the inventory level of Component 1(2) than 

Component 2(1). This relationship motivates us to decompose the general ATO system into 

single-product ATO systems. For instance, a general N-component, (N-1)-product 

W-configuration ATO system, can be decomposed into N-1 sub-systems, where each 

sub-system contains a product specific component and a common component that is used in 

another sub-system. By solving each sub-system, we obtain the production policy of the two 

components and the allocation policy of the end product. For the production policy of product 

specific component, we map the optimal production policy generated in sub-system directly to 

the general system by adding the state variable of the rest of the components. For the 

production policy of common components, we first construct it by minimizing two optimal 

production policies generated from two sub-systems in order to take advantage of inventory 

pooling. Then, we map it to the general system by adding the state variable of the rest of the 

components. For product allocation policies, we take the optimal allocation policy generated 
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from each sub-system and map it to the general system.  

For example, for a 3-component, 2-product, W-configuration ATO system, it can be 

decomposed into two 2-component ATO sub-systems (cf. Figure5.1). Each system comprises a 

common component and a product specific component. The demands arise for the end product 

as well as for the common component. The demand rate and lost sale cost of the common 

component is the same as that of the other product. All other parameters remain the same as in 

the original system. By solving Sub-system 1, we obtain the optimal production policy of 

Component 0 and Component 1, together with the optimal allocation policy of Product 1, 

while sub-system 2 gives the optimal production policy of Component 0 and Component 2, 

together with the optimal allocation policy of Product 2. For the production policy of 

Component 1, we take the optimal production policy of Component 1 obtained from 

Sub-system 1 and map it from state (x1, x0) to state (x1, x0, x2). For Component 2, the 

production policy can be obtained in a similar way. For the production policy of Component 0, 

as Sub-system 1 and Sub-system 2 both provide an optimal production policy, we take the 

minimum of these two policies and map it to the original system. For the allocation policy of 

Product 1(2), we take the optimal allocation policy obtained from Sub-system 1(2) and map it 

to the original system.  

 

 

Figure 5.1: Decomposing the W-configuration ATO system into two N-configuration systems 
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By constructing the heuristic control policy in this way, we retain much of the 

characteristics of the optimal component production and rationing policy structure in the 

original system. For instance, the base stock level of Component 1(2) is state-dependent 

threshold, which is non-decreasing in the inventory level of Component 0, non-decreasing in 

the inventory level of ‘Product’ 2(1) and non-increasing in the inventory level of ‘Product’ 1(2). 

This decomposition method only neglects the influence between the product specific 

components. Thus, we expect this decomposition method to work well.  

 

5.3  (S, R) method and Exhaustive search method 

 

5.3.1 (S, R) method (Heuristic I) 

Inspired by the structure of the optimal policy and noticing that the rationing of the inventory 

of Components 1 and 2 occurs only for low values of the inventory of Component 0, we will 

only ration the inventory of Component 0 in favor of Product 1. In other words, Product 1 

demand is satisfied as long as components 0 and 1 are available. Let 0

Ir  denote the rationing 

level below which Product 2 demand is rejected. Thus Product 2 demand is only satisfied when 

Component 2 is available and the inventory level of Component 0 is above 0 .Ir  We also 

denote by ,I

js  {0,1,2},j  the base stock level of Component j under Heuristic I. As such, 

the inventory of Component 0 behaves as a two-class 0/ /1/ IM M s  queue, while the 

inventory of Components 1 and 2, each behaves as a single-class / /1/ I

jM M s  queue. The 

average cost rate, , I
 induced by Heuristic I can then be determined using the following 

dynamic programming equation: 

2 2 2

0 1 0

1
( ) ( ) ( )  

   

 
    

 
  I I I

x x xi i j j i i

i j i

v h x A v P v         (5.1) 

Where Operator ,IjA  {1,2},j  is defined as 

1 0 1

1

0 1

( ) if 0
( )

( ) otherwise

 
 

 

I

e e

x
x

x

v L x x
A v

v
                    (5.2) 
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2 0 0 2

2

0 2

( ) if  or 0
( )

( ) otherwise

v L x r x
A v

v

   
 

 

x
x

x

I

I

e e
            (5.3) 

Operator ,IiP  {0,1,2},i  is defined as 

( )
( )

( )

  
 



I

I

I

ex
x

x

i i i

i

i i

v x s
P v

v x s
                     (5.4) 

In order to determine the parameters 0

Ir  and ,I

js  {0,1,2},j  we treat the inventory 

level behavior of each component independently. This allows us to obtain the steady state 

probability distribution of the inventory level of each component which in turn allows us to 

determine the average holding and lost sales cost under such setting. Finally, minimizing this 

average cost yields the value of parameters 0

Ir  and I

js  under Heuristic I. 

Letting ( ),jp l  0 ,  jl s  {0,1,2},j  denote the steady state probability distribution of 

the inventory level of Component i, we have  

1

(1 )
( ) , 0,1, , ,  for {1,2}

1 j

j

j js

j

p l l s j






  


          (5.5) 

0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

0

0 0 0

1 1

1 1

1 1 1

1 1

1 1

1 1
0 01 1 1

1 1

1

1 1

1 1

(1 )(1 )
0

(1 )(1 ) (1 )(1 )

(1 )(1 )
( ) 1, , 1

(1 )(1 ) (1 )(1 )

(1 )(1 )

(1 )(1 ) (1

r s r

r s r s r

r l s r

r s r s r

s l

r s r

l

p l l r

   

    

   

    

  

   

  

    

   

    



  

 


    

 
  

    

 

    0 0
0 01
, ,

)(1 )
s r

l r s
  








 



   (5.6) 

Where j
j

j





 , {1,2}j , is the utilization rate of Component 1 and Component 2. 

 1 2

2

 





  is the utilization rate of Component 0 by both products, 1
1

2





  is the 

utilization rate of Component 0 by Product 1.  

Let 
,0jp  denote the probability of not satisfying an arriving demand of Product j,

{1,2}.j  Then, 

,0 0 0(0) (0) (0) (0)  j j jp p p p p                       (5.7) 

The average cost is then given by 
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               (5.8) 

and 
0 0 1 2

0 0 1 2 0 0 1 2
, , ,

( , , , ) argmin ( , , , )I I I I

r s s s

r s s s c r s s s . 

Through extensive numerical experiments, the cost function in (5.8) is convex in its arguments. 

Thus parameters 0 0 1 2, , ,I I I Ir s s s  can be obtained using classical nonlinear minimization 

algorithms (see Bazara and Shetty 1993). 

 

5.3.2 Exhaustive search method (Heuristic II) 

The exhaustive search heuristic method has the same structure as the (S,R) heuristic method. 

However, the parameters 0 0 1 2( , , , )II II II IIr s s s  are determined via an exhaustive search on the 

spaces max max max max

0 0 1 2[0, ] [0, ] [0, ] [0, ],  r s s s  making it much more computationally 

demanding compared to (S,R) heuristic. Here, max

is   and max

0r   are suitably chosen as noted 

below. We propose exhaustive search method for two reasons: First, even though it uses fixed 

thresholds, in a similar fashion as the (S,R) heuristic method, the exhaustive search method 

preserves the correlation among component production and demands, which results in a better 

performance compared to (S,R) heuristic method. Second, as Table 5.1 shows, the intensive 

computational effort required by the exhaustive search method does not justify its use as it 

does not offer much improvement over the (S,R) heuristic method, which is computationally 

much more efficient. In order to speed up the exhaustive search method, we found it efficient 

to restrict the search space of parameters 0 0 1 2( , , , )II II II IIr s s s  to

0 1 0 1 0 2 0 2 1 3 1 3 2 4 2 4[ , ] [ , ] [ , ] [ , ],          I I I I I I I Ir m r m s m s m s m s m s m s m  where ,km  

1, , 4,k   have relatively small values. 

 

5.4  Numerical experiments  

 

Table 5.1 shows 100 randomly generated problems each is identified by its set of parameters. 

The parameters, shown in the Table, are drawn from a uniform distribution with a relatively 
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large variation so that extreme cases could be generated. The table also shows the relative 

average cost gap between the heuristic and the optimal policy which is calculated as: 

 % 100( )HGap                            (5.9) 

Where    and  H  represent the average cost of the optimal and the heuristic policy, 

respectively. For ease of exposition, we let Gap I, Gap II and Gap III represent the gap between 

the cost of (S,R) heuristic, the cost of exhaustive search heuristic and the cost of decomposition 

heuristic (Heuristic III) policy compared to the optimal cost, respectively.  

    As Table 5.1 illustrates, all three heuristics perform very well compared to the optimal 

policy. In particular, for the (S,R) heuristic, the average gap over the 100 problem instances is 

1.60% with a minimum gap of 0.04% and a maximum gap of 8.39%; for the exhaustive search 

heuristic, the average gap over the 100 problem instances is 0.69% with a minimum gap of 

0.03% and a maximum gap of 2.35%; for the decomposition method, the average gap over the 

100 problem instances is 0.19% with a minimum gap of 0.00% and a maximum gap of 2.57%. 

As expected, the decomposition method outperforms the other two heuristics, as it retains the 

same features of the optimal policy. Namely, a state-dependent base stock level and a 

state-dependent rationing level. For the state-independent heuristics, the exhaustive search 

method outperforms the (S,R) heuristic. However, this outperformance is not very significant 

and does not justify using the exhaustive search heuristic over the (S,R) heuristic given the 

extra computational effort required by the exhaustive search method.  

    We note that for all heuristics the relatively high % gaps occur for systems where the 

production rate of Component 0 cannot keep up with the demand rates of the two products. 

Since in these cases, the inventory level of Component 0 remains low most of the time and 

recalling, as we mentioned above, that the rationing of Components 1 and 2 occurs at low 

levels of the inventory of Component 0, given that both the (S,R) and the exhaustive heuristics 

ignore the rationing of Components 1 and 2, this explains the relatively larger % gaps in those 

cases. In addition, as the decomposition heuristic preserves part of this rationing structure, 

though the cost gap is larger than other cases, it is much lower than the previous two heuristics. 

We also note that the heuristics give the lowest % gaps for systems where the production rates 

are much larger than the demand rates. In these cases, the product demands are served in a 
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FCFS fashion and there is no inventory rationing. The cases with high % gap correspond to 

systems where the production rate of at least one component is below the demand rate of the 

product using that component. For example, in case 8, the production rate of Component 1 is 

smaller than the demand rate of Product 1, which resulted in a gap of 4.99%; in case 21 the 

production rate of Component 0 is smaller than the sum of the demand rates of the products, 

which resulted in a gap of 7.2%; in case 53, the production rate of Component 2 is smaller than 

the demand rate of product 2, which resulted in a gap of 8.39%. However, in practice these 

cases are not common. 

    The performance of the heuristics can also be partly explained through the optimal 

steady-state probability distribution of the system states, which is obtained by solving Linear 

Program (3.13). For example, in the case where the gap is 0.04%, we noted that the significant 

probabilities are for states where inventory of components is high. However, looking at figures 

3.2 and 3.3, we note that within this region the base stock levels are less sensitive to the other 

components inventories thus can well be approximated by straight lines. Therefore, the % gap 

is expected to be relatively low in this case. On the other hand, looking at the case where the 

gap is 7.2%, we noted that the significant probabilities are for states where inventory of 

components is relatively low. In this case, also as shown in figures 3.2 and 3.3, the base stock 

levels are very sensitive to the other components inventory levels. Thus, approximating them 

with fixed thresholds results in a relatively higher gap.     

    The optimal policy for MDP problems is frequently obtained via dynamic programming 

based methods such as Value Iteration and Policy Iteration (Puterman, 1994) as they are 

usually relatively faster than other methods (e.g., Linear Programming method). Nevertheless, 

these methods still suffer from the curse of dimensionality and generally are very slow even for 

low-dimension problems. As Table 5.1 shows, the (S,R) heuristic performs quiet well against 

the optimal policy with the advantage of being much faster to obtain. This inspired us to use it 

as a starting policy for the value and policy iteration methods. This allows us to quantify the 

gain in computational time by using the (S,R) heuristic as a starting policy in one hand and 

allows us to extrapolate this gain for systems with larger number of components and products, 

in the other hand. 

    Table 5.2 shows the CPU time (in seconds) and the % gain in CPU time using the (S,R) 
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heuristic as a startup policy for the same systems of Table 5.1. The % gain in CPU time is 

calculated as follows 

% 100( )  I IGain CPU Time CPU Time CPU Time       (5.10) 

where CPU Time indicates the CPU Time without using the Heuristic I and ICPU Time  

indicates the CPU Time using the Heuristic I as a startup policy.  

    Computations were carried on a DELL computer equipped with an Intel Core i5 650 3.2 

GHz processor. We note that, without the heuristic, on average, Value Iteration is faster than 

Policy Iteration with an average CPU time of 38.92 seconds compared to 112.08 seconds. With 

the (S,R) heuristic, on average, Value Iteration is faster than Policy Iteration with an average 

CPU time of 16.18 seconds compared to 28.32 seconds. However, Policy Iteration benefit from 

using heuristic is more than that of Value iteration with an average % CPU time gain of 608.02% 

compared to 181.89%. The minimum and maximum % CPU time gain for Value Iteration 

(Policy Iteration) is 101.51% (237.81%) and 10624.19% (1146.75%), respectively. 

    As one can see from the above results, Using the (S,R) heuristic as a startup policy 

tremendously reduces the computational effort to obtain the optimal policy. This result is very 

encouraging as one can use the Heuristic I (in addition of the possibility of using it as an 

approximate policy to the optimal one as indicated above) to determine a starting policy for 

larger systems in order to obtain their optimal policy in relatively short amount of time.  

 

 

Table 5.1: Performance of Heuristic methods 

 System Parameters Optimal 

cost 

% Gap 

 

1 2 0 1 2 h0 h1 h2 L1 L2 I II III 

1 1.841 1.254 3.131 2.849 1.186 0.10 0.09 0.08 30.73 26.81 68,39 3.54 1.22 0.15 

2 1.352 1.831 3.739 1.629 1.743 0.09 0.16 0.16 40.21 35.33 94,36 2.47 1.02 0.17 

3 1.076 1.054 2.602 1.112 0.994 0.07 0.14 0.12 27.39 19.22 86,83 2.75 1.06 0.44 

4 1.162 1.794 4.305 1.422 2.994 0.14 0.15 0.09 50.42 38.81 41,75 0.44 0.10 0.00 

5 1.451 1.084 3.976 1.384 1.833 0.17 0.20 0.13 53.85 32.84 98,41 1.07 0.70 0.06 

6 1.107 1.962 6.103 1.147 1.981 0.18 0.11 0.06 52.25 30.61 55,68 0.94 0.58 0.14 

7 1.431 1.911 5.487 2.174 3.253 0.07 0.18 0.14 38.87 23.74 26,12 0.04 0.04 0.00 

8 1.417 1.050 2.368 1.328 1.321 0.12 0.19 0.10 42.23 24.90 146,06 4.99 1.59 1.91 

9 1.780 1.390 4.915 2.398 2.491 0.07 0.19 0.19 41.46 27.67 35,67 0.30 0.06 0.02 

10 1.235 1.353 2.607 2.425 2.573 0.08 0.16 0.15 38.74 32.31 53,42 1.96 1.50 0.05 

11 1.547 1.296 3.003 2.522 1.421 0.08 0.14 0.11 39.41 19.76 52,98 1.37 0.60 0.07 
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12 1.929 1.776 4.678 2.534 2.312 0.10 0.13 0.13 40.45 39.89 40,60 0.32 0.14 0.04 

13 1.644 1.379 3.063 2.006 1.941 0.19 0.18 0.13 60.40 51.32 111,32 2.04 1.00 0.16 

14 1.208 1.301 3.206 1.892 1.293 0.08 0.08 0.08 23.42 19.01 42,72 1.56 1.01 0.07 

15 1.311 1.923 4.266 2.146 1.844 0.20 0.12 0.07 44.06 33.17 64,85 3.54 1.52 0.05 

16 1.595 1.262 3.316 1.721 1.994 0.07 0.10 0.09 24.94 23.09 42,85 0.68 0.46 0.05 

17 1.086 1.262 2.394 2.097 1.194 0.16 0.14 0.12 43.23 35.00 109,91 3.73 1.24 0.11 

18 1.963 1.547 4.319 3.072 1.950 0.14 0.15 0.11 58.74 34.59 46,25 0.43 0.20 0.02 

19 1.183 1.240 2.348 2.287 1.562 0.08 0.20 0.16 40.81 34.14 84,64 5.10 2.35 0.11 

20 1.060 1.682 5.218 1.952 2.069 0.06 0.17 0.17 40.86 27.27 34,56 0.18 0.10 0.01 

21 1.660 1.519 2.933 1.866 1.549 0.12 0.17 0.11 33.07 25.24 118,81 7.20 1.99 0.43 

22 1.292 1.432 5.348 1.185 2.385 0.07 0.11 0.08 25.59 19.51 43,57 0.55 0.49 0.04 

23 1.952 1.920 7.284 2.070 2.903 0.11 0.19 0.13 60.45 34.82 46,59 0.33 0.19 0.02 

24 1.301 1.701 3.337 1.580 1.851 0.15 0.08 0.07 45.32 25.67 61,71 1.05 0.45 0.09 

25 1.033 1.561 2.520 1.145 2.542 0.11 0.20 0.12 56.14 25.96 97,07 3.04 1.16 0.65 

26 1.645 1.376 4.916 2.173 1.744 0.07 0.14 0.08 32.69 21.05 30,51 0.17 0.17 0.01 

27 1.252 1.290 2.921 1.899 1.297 0.20 0.16 0.10 56.54 33.12 89,42 1.50 0.89 0.07 

28 1.906 1.880 3.822 2.904 2.194 0.05 0.11 0.10 19.70 17.46 37,59 2.21 1.37 0.17 

29 1.423 1.094 2.930 1.818 1.193 0.15 0.15 0.06 39.69 22.45 66,16 0.86 0.41 0.12 

30 1.531 1.654 4.278 1.543 1.777 0.20 0.13 0.10 52.36 32.51 83,51 1.84 0.84 0.33 

31 1.779 1.423 5.775 2.696 2.404 0.09 0.13 0.12 41.49 30.34 24,16 0.09 0.09 0.00 

32 1.255 1.224 2.752 1.247 1.732 0.17 0.15 0.05 51.01 30.24 99,35 2.36 1.18 0.76 

33 1.916 1.001 3.752 2.539 1.289 0.17 0.17 0.10 49.03 27.33 56,24 0.50 0.18 0.08 

34 1.176 1.722 3.696 1.988 2.443 0.14 0.16 0.08 57.88 27.33 41,99 0.47 0.20 0.04 

35 1.269 1.766 4.949 1.887 3.183 0.14 0.15 0.13 47.51 38.27 32,52 0.23 0.03 0.03 

36 1.459 1.662 3.243 2.054 1.852 0.11 0.18 0.17 46.58 36.11 83,68 1.56 0.74 0.12 

37 1.582 1.541 3.056 2.401 2.230 0.07 0.19 0.15 42.43 31.77 69,44 3.94 2.02 0.33 

38 1.545 1.647 3.863 1.656 2.025 0.20 0.08 0.07 31.28 28.18 56,49 0.94 0.55 0.05 

39 1.405 1.448 3.965 1.466 1.652 0.17 0.20 0.19 43.12 40.51 91,40 1.06 0.52 0.11 

40 1.348 1.150 2.933 2.050 2.184 0.16 0.12 0.09 47.19 33.93 50,87 0.83 0.25 0.02 

41 1.736 1.395 3.441 1.882 1.822 0.05 0.11 0.10 21.16 18.26 44,16 1.04 0.44 0.13 

42 1.822 1.430 3.149 2.480 1.487 0.11 0.17 0.16 38.68 33.17 100,46 4.75 1.88 0.26 

43 1.790 1.949 5.369 1.983 2.554 0.18 0.17 0.08 67.73 46.57 54,76 0.50 0.19 0.02 

44 1.514 1.884 3.985 2.554 3.040 0.11 0.17 0.16 50.99 36.04 42,99 0.32 0.32 0.04 

45 1.534 1.090 4.628 2.637 1.201 0.12 0.12 0.08 28.52 21.39 31,62 0.60 0.23 0.03 

46 1.851 1.561 3.225 2.016 1.837 0.17 0.20 0.18 69.14 35.43 150,61 4.19 1.72 0.48 

47 1.613 1.990 4.412 2.047 2.029 0.08 0.19 0.12 49.69 32.89 64,20 1.18 0.55 0.09 

48 1.739 1.586 5.130 1.932 2.883 0.14 0.16 0.15 60.13 55.41 50,13 0.29 0.20 0.01 

49 1.552 1.630 6.129 1.787 2.272 0.06 0.12 0.08 21.80 15.31 24,25 0.33 0.21 0.02 

50 1.147 1.189 4.444 1.301 1.777 0.13 0.15 0.12 43.78 36.95 50,07 0.15 0.15 0.01 

51 1.124 1.490 2.584 1.097 2.251 0.08 0.15 0.13 32.21 26.05 87,92 3.52 1.35 0.74 

52 1.948 1.082 5.378 3.329 1.804 0.14 0.14 0.06 53.92 34.74 25,02 0.12 0.12 0.00 

53 1.738 1.063 2.756 1.639 0.975 0.18 0.17 0.13 48.49 36.02 190.36 8.39 1.95 2.57 

54 1.134 1.031 2.036 1.666 1.522 0.10 0.15 0.12 45.53 22.56 92.70 3.33 1.78 0.22 
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55 1.559 1.854 4.8160 2.031 3.482 0.08 0.15 0.10 42.90 19.70 28.26 0.19 0.19 0.11 

56 1.178 1.360 4.752 1.449 1.938 0.08 0.19 0.08 43.92 23.16 38.07 0.13 0.13 0.01 

57 1.912 1.104 3.184 2.030 1.319 0.08 0.14 0.09 26.34 19.58 63.85 1.97 0.69 0.34 

58 1.895 1.072 4.596 3.560 1.401 0.05 0.18 0.08 30.93 14.38 23.13 0.11 0.11 0.03 

59 1.684 1.132 3.016 2.974 1.984 0.15 0.15 0.10 51.46 38.86 57.60 0.80 0.55 0.01 

60 1.631 1.090 4.961 1.688 1.045 0.13 0.17 0.07 40.67 25.42 71.46 1.38 0.75 0.23 

61 1.746 1.010 5.210 1.939 1.172 0.13 0.16 0.16 51.37 36.71 60.81 0.37 0.37 0.04 

62 1.693 1.557 4.403 3.152 1.608 0.10 0.16 0.14 29.53 26.72 44.81 0.73 0.47 0.03 

63 1.789 1.368 5.062 3.242 1.420 0.08 0.13 0.11 35.08 23.24 33.17 0.41 0.41 0.01 

64 1.485 1.152 2.720 2.649 1.703 0.09 0.13 0.06 30.25 16.50 42.10 1.17 0.90 0.02 

65 1.112 1.784 4.2920 1.290 1.654 0.11 0.16 0.15 46.12 38.55 104.39 1.54 0.98 0.12 

66 1.110 1.934 4.969 1.682 1.976 0.12 0.17 0.11 36.72 24.12 47.52 0.80 0.60 0.03 

67 1.673 1.430 4.024 1.932 2.669 0.10 0.17 0.15 29.76 28.34 44.06 0.62 0.26 0.02 

68 1.092 1.008 2.7860 1.223 1.079 0.13 0.14 0.07 31.13 22.08 69.38 1.03 0.68 0.16 

69 1.099 1.142 3.729 1.778 1.654 0.10 0.09 0.08 35.04 30.68 29.26 0.12 0.12 0.01 

70 1.556 1.184 4.369 2.847 1.130 0.16 0.13 0.10 47.00 29.501 52.74 1.33 0.90 0.03 

71 1.988 1.170 4.824 2.693 2.150 0.15 0.20 0.11 56.73 36.87 41.73 0.15 0.15 0.01 

72 1.154 1.381 4.250 1.209 1.351 0.10 0.15 0.09 46.81 30.11 78.50 0.94 0.64 0.18 

73 1.598 1.335 4.3160 2.071 1.772 0.10 0.16 0.13 37.92 33.86 45.09 0.64 0.13 0.02 

74 1.125 1.024 3.188 1.629 1.148 0.19 0.19 0.12 67.72 38.73 76.98 0.76 0.54 0.06 

75 1.759 1.741 3.699 3.122 1.915 0.12 0.08 0.06 36.71 21.65 44.17 0.94 0.50 0.04 

76 1.164 1.666 2.730 1.437 1.808 0.07 0.19 0.13 44.69 21.16 89.35 3.31 1.67 0.35 

77 1.809 1.749 6.219 2.220 2.514 0.13 0.11 0.11 30.66 28.55 29.41 0.10 0.10 0.00 

78 1.021 1.924 3.300 0.963 3.216 0.19 0.17 0.14 51.46 40.84 97.02 1.98 1.21 0.07 

79 1.752 1.229 5.535 1.824 1.361 0.16 0.15 0.11 55.14 37.57 66.41 0.56 0.48 0.06 

80 1.317 1.815 3.217 1.303 2.259 0.15 0.19 0.12 63.09 27.77 115.14 2.39 1.10 0.82 

81 1.631 1.355 2.719 2.571 1.520 0.14 0.11 0.07 35.36 21.74 95.85 4.98 1.41 0.12 

82 1.184 1.726 4.029 1.178 1.835 0.14 0.19 0.08 63.37 26.85 90.26 1.14 0.78 0.57 

83 1.627 1.022 2.532 1.660 1.078 0.17 0.14 0.11 49.56 42.76 166.00 4.92 1.40 1.10 

84 1.275 1.249 3.273 2.003 1.271 0.20 0.13 0.05 59.16 27.44 62.22 1.62 0.76 0.05 

85 1.224 1.269 2.759 1.557 1.452 0.09 0.17 0.08 50.28 28.63 69.35 1.01 0.33 0.12 

86 1.108 1.182 4.093 1.396 1.919 0.18 0.06 0.06 44.18 37.53 33.82 0.06 0.06 0.00 

87 1.312 1.179 3.541 2.096 1.463 0.19 0.14 0.07 45.94 26.49 46.90 0.38 0.24 0.02 

88 1.501 1.432 2.670 1.521 1.809 0.18 0.11 0.07 56.41 48.86 198.09 6.42 1.29 0.42 

89 1.714 1.618 4.720 1.614 2.815 0.16 0.17 0.15 58.54 42.87 93.33 1.28 0.85 0.02 

90 1.835 1.323 3.798 1.688 1.594 0.10 0.14 0.10 42.59 28.80 105.83 3.29 1.17 1.24 

91 1.492 1.695 2.941 2.142 1.690 0.16 0.19 0.05 58.86 29.26 127.54 6.49 0.99 0.12 

92 1.282 1.230 2.711 1.465 1.440 0.15 0.10 0.06 36.48 25.59 73.00 1.26 0.57 0.26 

93 1.715 1.856 5.339 1.827 3.188 0.18 0.14 0.07 56.69 33.65 46.73 0.41 0.41 0.01 

94 1.504 1.490 2.917 2.112 1.935 0.19 0.20 0.06 65.10 29.83 101.59 1.88 0.73 0.08 

95 1.586 1.675 4.551 1.819 1.698 0.05 0.20 0.06 41.13 14.22 48.54 0.82 0.43 0.11 

96 1.404 1.122 3.820 2.144 1.605 0.07 0.10 0.07 32.98 15.44 25.74 0.57 0.13 0.11 

97 1.930 1.399 6.300 2.736 1.486 0.17 0.15 0.13 61.00 31.74 44.77 0.43 0.43 0.02 
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98 1.304 1.046 3.807 1.399 1.121 0.18 0.14 0.06 61.34 43.62 77.57 0.66 0.64 0.08 

99 1.944 1.549 3.728 3.005 1.539 0.12 0.15 0.13 51.13 33.64 57.90 0.77 0.42 0.10 

100 1.504 1.647 4.602 2.579 2.097 0.10 0.17 0.17 45.48 30.77 39.86 0.20 0.19 0.02 

** The system parameters are drawn from uniform distribution, where k ~ U(1,2), i ~ U(0.5,1.1),k=k 

/i, 0=(1+2) /0, hi ~ U(1,10) and Lk~ U(100,200)×(h0+hk), i=(0,1,2); k=(1,2). For ease of disposition, 

we let h = h/100 and L = L/100.   

 

   

 

Table 5.2: CPU Time Performance of Value and Policy Iteration Methods 

 Value Iteration  Policy Iteration 

 

Without 

Heuristic I (s) 

With 

Heuristic I (s)  
% gain 

Without 

Heuristic I (s) 

With 

Heuristic I (s) 
% gain 

1 1789,35 28,99 6071,31 299,98 56,03 435,41 

2 279,91 62,40 348,56 124,67 26,49 370,65 

3 39,96 4,72 747,30 63,10 12,02 425,15 

4 10,13 3,50 189,06 6,90 0,97 612,29 

5 761,51 25,80 2851,50 16,25 2,30 604,96 

6 1132,44 70,66 1502,65 90,63 13,22 585,75 

7 2,01 0,71 181,46 2,76 0,24 1039,86 

8 150,68 20,19 646,21 434,42 62,44 595,78 

9 3,72 1,19 212,20 4,42 0,49 793,68 

10 2005,43 18,70 10624,19 16,07 1,30 1134,70 

11 130,98 11,32 1057,58 34,20 5,13 566,85 

12 10,78 4,04 166,75 19,04 3,19 496,99 

13 365,02 31,82 1047,10 71,24 11,93 497,21 

14 85,18 15,91 435,30 23,13 3,37 587,17 

15 581,30 121,53 378,34 76,31 11,23 579,66 

16 25,48 9,52 167,63 27,77 3,39 718,47 

17 724,89 34,89 1977,65 89,37 10,76 730,26 

18 20,27 3,89 421,29 16,19 2,34 591,03 

19 4130,09 57,07 7137,49 55,31 7,20 667,84 

20 8,95 1,05 748,76 3,07 0,35 771,76 

21 3763,50 42,57 8741,10 500,81 95,13 426,44 

22 1262,61 25,89 4776,99 13,02 1,04 1146,75 

23 210,49 13,13 1503,73 11,72 1,76 564,98 

24 87,83 13,18 566,43 82,86 12,36 570,21 

25 834,43 37,64 2117,11 72,20 11,59 523,12 

26 53,74 2,09 2466,49 7,85 0,95 728,91 

27 84,39 17,56 380,51 33,21 5,08 553,13 

28 2185,76 25,53 8462,72 48,46 6,74 618,51 

29 63,79 7,84 713,24 21,88 3,67 496,69 

30 969,50 16,27 5857,60 99,17 19,32 413,37 
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31 6,73 0,57 1084,70 2,78 0,27 938,03 

32 211,41 10,78 1860,88 106,91 11,26 849,16 

33 20,61 2,67 671,73 10,51 1,19 786,10 

34 6,13 1,02 502,43 6,37 0,72 783,45 

35 2,28 0,71 221,28 2,55 0,28 799,91 

36 229,98 15,55 1378,77 40,55 7,24 460,37 

37 4883,77 66,49 7245,49 63,36 10,25 518,23 

38 58,33 14,13 312,87 32,45 6,43 404,76 

39 43,14 9,36 360,90 22,85 3,79 502,37 

40 9,56 1,65 478,45 5,76 0,61 847,51 

41 34,84 6,95 401,33 34,12 5,08 571,09 

42 1864,16 63,93 2816,16 141,38 28,02 404,65 

43 59,74 13,04 357,99 28,70 5,60 412,00 

44 20,21 2,31 773,91 6,14 0,71 759,71 

45 9,55 3,22 196,83 4,14 0,38 987,59 

46 1611,21 86,05 1772,50 313,67 57,11 449,25 

47 113,62 7,64 1387,83 64,94 12,43 422,23 

48 35,79 6,66 437,35 8,74 1,31 566,94 

49 19,64 3,87 407,54 9,86 0,98 906,69 

50 25,81 5,09 406,86 6,38 0,74 766,11 

51 316,61 40,98 672,56 127,25 20,99 506,33 

52 2,70 0,89 204,36 5,13 0,45 1027,80 

53 127.32 50.67 151.28 1122.20 315.07 256.17 

54 28.59 10.73 166.56 15.22 1.83 732.23 

55 2.60 0.84 208.99 2.87 0.30 845.12 

56 2.89 0.97 196.99 2.46 0.31 693.68 

57 6.79 1.65 312.11 45.64 7.01 551.50 

58 1.65 0.56 197.10 1.63 0.17 841.65 

59 8.32 2.92 184.40 4.91 0.58 740.01 

60 84.88 33.64 152.30 37.00 6.20 496.45 

61 10.22 3.26 213.04 7.80 1.12 593.63 

62 11.70 4.29 172.86 5.02 0.72 592.82 

63 11.56 3.73 209.54 3.97 0.48 733.54 

64 9.60 2.99 221.26 6.39 0.76 734.83 

65 78.40 32.50 141.19 34.84 6.77 414.67 

66 12.89 4.55 183.26 5.54 0.70 692.64 

67 3.71 1.33 179.80 3.54 0.42 733.07 

68 9.28 3.60 157.55 9.64 1.51 537.92 

69 1.18 0.41 189.39 1.69 0.17 869.44 

70 33.29 11.83 181.30 8.25 0.82 907.09 

71 1.65 0.57 191.76 2.05 0.28 622.72 

72 47.09 19.80 137.82 25.67 4.61 457.39 

73 0.93 0.20 370.21 5.26 0.69 663.09 



 110 

74 9.07 2.12 327.16 6.19 0.77 703.41 

75 13.89 5.38 158.39 22.94 3.13 632.40 

76 67.07 26.73 150.88 72.55 12.04 502.66 

77 3.56 1.24 186.33 3.44 0.38 801.33 

78 53.04 21.76 143.74 28.76 3.74 668.75 

79 29.59 11.70 152.95 16.88 2.62 545.00 

80 72.92 36.19 101.51 100.28 16.05 524.63 

81 59.36 23.88 148.52 60.81 11.37 434.77 

82 55.00 24.23 127.02 45.11 7.49 502.58 

83 65.89 21.15 211.47 510.75 101.30 404.19 

84 30.08 12.15 147.56 13.64 2.53 438.46 

85 9.98 4.11 142.77 23.27 3.98 484.13 

86 3.50 1.21 189.64 2.78 0.28 880.73 

87 2.94 1.05 179.54 3.22 0.31 950.90 

88 281.31 135.20 108.07 1835.85 543.46 237.81 

89 94.02 37.78 148.86 23.33 3.39 587.43 

90 152.36 71.62 112.72 153.23 27.20 463.42 

91 147.61 68.41 115.77 334.76 87.87 280.97 

92 4.50 1.12 303.18 27.92 4.65 499.97 

93 20.28 7.65 165.20 8.03 1.30 517.14 

94 12.24 3.03 304.10 33.52 5.32 530.54 

95 24.07 9.91 142.97 19.83 4.43 347.85 

96 1.15 0.40 186.91 1.87 0.27 597.59 

97 11.60 4.25 173.02 5.82 0.70 734.86 

98 31.89 13.45 137.15 22.05 4.16 430.66 

99 114.60 39.29 157.37 648.93 159.88 881.35 

100 1.98 0.68 189.07 2.37 0.24 891.97 

Ave. 38.92 16.18 181.89 112.08 28.32 608.02 

** System parameter is same as Table 5.1. 

 

 

5.5  Decomposition method for larger systems 

 

In the previous section, we showed that the average cost obtained by the decomposition 

method is very close to the optimal cost, with an average gap of 0.19%. In several cases, the 

cost gap even is zero. Furthermore, the computational burden is much less than the exhaustive 

search heuristic. Thus, both in performance and computational time, the decomposition method 

is a very effective heuristic method in W-configuration ATO systems. In order to show that the 

decomposition method is still effective for other ATO systems, we apply the decomposition 
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method to three larger ATO systems, which have 4 components and 2, 3, and 4 end products, 

respectively, with distinct configurations.  

 

5.5.1 Decomposition method for system 1 

System 1 has 4 components and 2 end products, where Product 1 is assembled from the first 

three components (Component 1, Component 2 and Component 3) and Product 2 is assembled 

from the last three components (Component 2, Component 3 and Component 4). The 

production rates of these components are 1 , 2 , 3  and 4 , respectively. The demand 

rates of the end products are 1  and 2 , respectively. If demand cannot be fulfilled 

immediately, it is lost and incurs a lost sales cost of L1 for Product 1 and L2 for Product 2 (cf. 

Figure 5.2). This system can be regarded as a general W-configuration ATO system, where 

each product is assembled from a product specific component and two common components.  

 

 

Figure 5.2: Decomposing map of 4 components, 2 end products systems 
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    Applying the decomposition method, System 1 can be decomposed into two sub-systems, 

where each sub-system comprises the corresponding components for each product. For 

instance, Sub-system 1 includes Component 1, Component 2 and Component 3 with a demand 

of Product 1. As in the original system, Component 2 and Component 3 are also used in 

Product 2. We add a corresponding demand rate and lost sale cost L2 for both Component 2 and 

Component 3. In addition, we add an artificial demand rate 3 0   for Component 1 (cf. 

Figure 5.2). This Sub-system constitutes a three components M-configuration ATO system, 

where demands arise for both end product and components. For Sub-system 2, it can be 

illustrated in the same way.  

The optimal policy of M-configuration ATO systems can be difficult to obtain if they have 

large number of components or have special system parameters. In order to facilitate the 

process of obtaining the production and allocation policy for each component, we further 

adjust the Sub-systems. For instance, in Sub-system 1, to obtain the heuristic production and 

rationing policy of Component 1, we combine Component 2 and Component 3 together and 

regard them as a single component. For the combined component, the production rate and 

holding cost equal to the sum of that of the two components, that is, 2 3     and 

2 3h h h  . For the demand rate of the combined component, as both Component 2 and 

Component 3 demand inter arrival times follow an exponential distribution, we treat it as the 

mean of maximum of two independent exponential distributed demand variables 2  and 3 . 

Though the inter arrival time between demands for components 2 and 3 no longer follows and 

exponential distribution, we use the rate of the maximum distribution as an approximate rate 

for an exponentially distributed inter arrival time. The mean of the maximum of n independent 

random variables (Z1, Z2,…, Zn) where each random variable Zi is exponentially distribution 

with mean 1
i
 is given as follows.  
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The lost sale cost of the combined component is the sum of the lost sale costs of the 

components in the original sub-system. The other parameters remain the same as in 

Sub-system 1 (production rate, demand rate and holding cost of Component 1, and demand 

rate and lost sale cost of the Product 1). Thus, the modified Sub-system 1 is a two component, 

one end product M-configuration ATO system, whose optimal policy can be obtained easily. 

By solving this modified Sub-system 1, we can obtain the production policy and rationing 

policy of Component 1. To obtain the production policy and allocation policy of Component 2 

and Component 3 in Sub-system 1, we combine Component 1 & Component 3 and Component 

1 & Component 2 and solve the relative systems, respectively. As a result of the modified 

sub-system, the obtained production and allocation policy is two dimensional. Hence, we need 

to map the production and allocation policy to the three-dimensional system of Sub-system 1. 

From the structure of the optimal policy which is characterized in the previous chapter, we 

know that the production decision for a certain component is strongly influenced by the 

component with the lowest inventory level. However, numerical experiments show the 

rationing decision for a certain component is strongly influenced by the component with 

highest inventory level. Such behavior is intuitive, as the aim is to keep the inventory level 

balanced. Thus, for component i’s production policy, we map the original three-dimensional 

state to state   , min , 1,2,3,i jx x j j i  . For component i’s allocation policy, we map the 

original policy to state   , max , 1,2,3,i jx x j j i  . 

We handle Sub-system 2 in the same manner as in Sub-system 1 to obtain the production 

and rationing policy of Component 2, Component 3 and Component 4. Then, we construct the 

heuristic policy as follows. First, for all components, we map their production and rationing 

policies directly to the 4 components system by adding the state of the rest component. For 

example, for Component 1’s production policy, we map the policy in state (x1, x2, x3) to state 

(x1, x2, x3, x4) by adding the state of Component 4. Second, for the production policy of 

common components, as both sub-systems provide a corresponding policy, we obtain it by 

multiplying the two production policies that were obtained from the two distinct Sub-systems 

in order to take advantage of inventory pooling property. Last, we note that the demand for a 

product can be satisfied only if the inventory of all its components is above their corresponding 
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rationing level. A such, we multiply the allocation policy of Component 1, Component 2 and 

Component 3 obtained by solving Sub-system 1 to obtain the allocation policy of Product 1 

and we multiply the allocation policy of Component 2, Component 3 and Component 4 

obtained by solving Sub-system 2 to obtain the allocation policy of Product 2. 

In order to examine the effectiveness of our decomposition method, we carry out a 

numerical experiment consisting of 25 problems with randomly generated parameter settings 

(cf. Table 5.3). The results of the numerical experiment show that the decomposition method 

works very well in this system, despite being more involved than the 3 components 

W-configuration ATO system. The average gap over the 25 problems is 0.55%, with a 

minimum of 0.14% and a maximum of 1.10%. 

 

 

Table 5.3: Parameter settings and decomposition results for System 1 

 
System Parameters Optimal 

Cost 

Gap 

% 1 2 1 2 3 4 h1 h2 h3 h4 L1 L2 

1 1,044 1,687 1,450 4,327 4,448 2,125 0,11 0,12 0,07 0,10 39,34 54,65 34,29 0,30 

2 1,247 1,311 2,003 3,590 4,710 1,721 0,06 0,12 0,05 0,16 40,17 40,91 32,87 0,36 

3 1,431 1,703 2,166 5,472 3,720 2,321 0,11 0,08 0,08 0,13 39,01 51,27 33,59 0,52 

4 1,070 1,847 1,387 5,261 3,460 3,185 0,14 0,13 0,07 0,05 61,45 45,29 34,13 0,52 

5 1,421 1,057 1,935 4,350 3,131 1,481 0,09 0,19 0,16 0,18 46,95 63,24 56,69 0,49 

6 1,568 1,888 1,873 4,020 3,947 2,285 0,05 0,05 0,06 0,09 16,75 28,87 30,92 1,10 

7 1,341 1,541 1,541 4,654 4,538 1,827 0,10 0,07 0,13 0,18 41,25 63,65 47,50 0,56 

8 1,468 1,861 2,138 4,761 4,790 3,144 0,06 0,06 0,18 0,09 57,00 56,20 28,75 0,20 

9 1,725 1,607 2,346 4,949 5,576 2,394 0,05 0,14 0,19 0,06 40,03 75,32 30,32 0,18 

10 1,247 1,009 1,510 4,056 2,648 1,875 0,10 0,14 0,14 0,15 62,57 61,20 57,97 0,71 

11 1,140 1,752 1,910 3,804 3,430 3,282 0,20 0,05 0,18 0,18 44,71 62,67 49,03 0,57 

12 1,943 1,322 2,362 4,408 4,002 1,612 0,06 0,09 0,15 0,12 58,78 63,64 49,62 0,80 

13 1,568 1,299 2,603 3,355 4,224 1,572 0,06 0,18 0,05 0,18 56,59 63,70 54,87 0,63 

14 1,120 1,178 1,432 2,760 4,471 1,467 0,19 0,10 0,15 0,10 53,61 62,27 59,21 0,84 

15 1,723 1,279 2,351 4,491 5,592 2,509 0,12 0,09 0,10 0,09 37,04 39,99 24,86 0,33 

16 1,698 1,204 2,215 4,284 4,309 2,111 0,08 0,14 0,09 0,13 60,64 62,88 36,13 0,29 

17 1,679 1,959 2,073 4,897 4,139 3,740 0,09 0,20 0,17 0,12 76,34 68,74 55,12 0,84 

18 1,380 1,213 2,113 5,067 3,764 1,916 0,20 0,13 0,18 0,11 74,07 76,97 44,87 0,14 

19 1,991 1,524 2,288 4,418 4,835 1,717 0,17 0,19 0,15 0,11 75,98 85,62 72,91 0,90 

20 1,015 1,157 1,474 3,028 4,145 1,516 0,18 0,07 0,12 0,09 72,57 44,10 43,44 0,59 

21 1,865 1,058 2,730 3,705 4,599 1,602 0,13 0,18 0,17 0,06 61,37 56,73 47,01 0,41 

22 1,865 1,420 3,129 4,444 4,748 1,652 0,19 0,17 0,16 0,16 98,64 52,25 55,92 0,69 
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23 1,336 1,004 1,607 3,329 3,620 1,700 0,13 0,09 0,06 0,06 30,33 30,51 33,90 0,61 

24 1,123 1,443 1,307 4,001 4,683 1,983 0,18 0,10 0,06 0,07 36,59 40,02 35,80 0,33 

25 1,862 1,084 2,932 4,956 4,697 1,213 0,13 0,16 0,18 0,08 89,62 45,72 42,08 0,77 

** The system parameters are drawn from uniform distribution, where k ~ U(1,2); i ~ U(0.5,0.9);k=k 

/k ,(k=1,4); =(1+2) /k , (k=2,3); hi ~ U(1,10) and Lk~ U(100,200)×( h2+h3+hk), i=1,2,3,4; k=1,2. For 

ease of disposition, we let h = h/100 and L = L/100.  

 

 

5.5.2 Decomposition method for system 2 

System 2 has 4 components and 3 end products, where Product 1 is assembled from 

Component 1 and Component 2, Product 2 is assembled from the Component 2 and 

Component 3 and Product 3 is assembled from Component 2, Component 3 and Component 4. 

The production rate and holding cost of each component is i  and ih , (I = 1, 2, 3, 4). The 

demand rate of each product is k  (j = 1, 2, 3). If demand cannot be fulfilled immediately, it 

is lost and incurs a lost sales cost of Lk for Product k (cf. Figure 5.3).  

 

 

Figure 5.3: Decomposing map of 4 components, 3 end products systems 
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System 2 can be decomposed into three sub-systems, where each sub-system comprises 

the corresponding components for each product (cf. Figure 5.3). For instance, Sub-system 1 

includes Component 1 and Component 2 with a demand for Product 1. As in the original 

system, Component 2 is also needed by Product 2 and Product 3. We add a corresponding 

demand rate  2 3   and lost sale cost (L2+ L3) for Component 2. In addition, we add an 

artificial demand rate 4 0   for Component 1. This Sub-system represents a two components 

M-configuration ATO system, where demands arise for both end product and components. 

Sub-system 2 comprises Component 2 and Component 3, which can be illustrated in the same 

way. Sub-system 3 uses Component 2, Component 3 and Component 4 to assemble into 

Product 3. In addition, Component 2 is demanded by Product 1 and Product 2 and faces a 

demand rate of 1 2  ; Component 3 is demanded by Product 2, which faces a demand rate of 

2 . Sub-system 3 is modelled as a 3 components M-configuration ATO system by adding an 

artificial demand rate 4 0   to Component 4.  

By solving each Sub-system, we obtain the production and rationing policy of each 

component. After mapping the policy into the original system, we construct the heuristic 

control policy as in System 1. For example, as Component 2 is present in all three Sub-systems, 

we obtain the production policy of Component 2 by multiplying together the production 

policies obtained by solving the three Sub-systems. The other components’ production policy 

can be obtained in a similar way. For the allocation policy of the end product we note that the 

demand for a product can be satisfied only if the inventory of all its components is above their 

corresponding rationing level. As such, we multiply the allocation policy of Component 2, 

Component 3 and Component 4 obtained by solving Sub-system 3 to obtain the allocation 

policy of Product 3. The other Products’ allocation policy can be obtained in a similar way. To 

illustrate the effectiveness of the decomposition method, we run a numerical experiment that 

comprises 25 problems with distinct system parameters. Table 5.4 gives the system parameters 

of each problem together with the optimal cost and heuristic gap. Through Table 5.4, the 

average gap of the 25 problems is 1.52%, with a minimum of 0.64% and a maximum of 3.03%. 

The results of the numerical experiment show that the decomposition method still works well 
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in system 2.  

 

 

Table 5.4: Parameter settings and decomposition results for System 2 

 
System Parameters Optim. 

Cost 

Gap 

% 1 2 3 1 2 3 4 h1 h2 h3 h4 L1 L2 L3 

1 1,57 1,70 1,74 1,96 7,65 5,13 1,97 0,14 0,18 0,09 0,14 49,78 52,80 44,77 38,94 2,06 

2 1,48 1,34 1,80 1,66 8,20 5,27 2,30 0,11 0,20 0,20 0,15 56,25 54,94 87,87 41,74 1,13 

3 1,99 1,56 1,93 2,52 7,90 4,62 2,26 0,08 0,11 0,20 0,11 31,37 58,59 83,50 38,67 1,10 

4 1,65 1,11 1,04 2,21 5,22 2,42 1,30 0,15 0,13 0,09 0,19 42,80 22,41 69,85 55,78 1,65 

5 1,52 1,06 1,89 2,40 7,55 5,41 3,03 0,08 0,15 0,06 0,09 29,75 39,05 43,19 18,11 1,06 

6 1,76 1,60 1,78 3,22 5,77 4,03 3,43 0,12 0,10 0,14 0,08 34,56 39,02 52,46 35,21 2,79 

7 1,45 1,04 1,51 2,18 7,36 3,73 2,23 0,13 0,17 0,16 0,18 31,93 39,75 73,97 36,50 1,10 

8 1,96 1,79 1,45 3,09 9,93 4,07 2,07 0,08 0,11 0,08 0,16 26,56 36,77 35,82 21,11 0,88 

9 1,83 1,63 1,54 2,41 6,32 5,89 1,81 0,05 0,09 0,08 0,19 15,63 27,06 58,95 30,11 1,61 

10 1,65 1,86 1,06 2,00 6,43 3,76 1,81 0,13 0,16 0,19 0,12 31,14 36,88 75,85 44,76 1,43 

11 1,80 1,69 1,35 2,04 6,83 3,44 2,54 0,08 0,17 0,19 0,17 32,04 40,70 96,23 49,83 1,81 

12 1,28 1,68 1,90 1,48 6,08 5,92 2,45 0,07 0,07 0,08 0,07 21,92 15,80 39,91 22,03 1,77 

13 1,92 1,14 1,33 2,23 6,26 3,31 1,82 0,15 0,05 0,13 0,05 38,21 24,60 44,02 34,26 0,95 

14 1,25 1,58 1,94 2,40 9,14 6,92 2,51 0,14 0,07 0,17 0,14 22,14 25,29 43,08 19,97 0,88 

15 1,79 1,09 1,24 2,99 7,60 2,76 1,59 0,16 0,15 0,13 0,10 51,12 30,74 42,93 35,18 0,72 

16 1,02 1,96 1,97 1,86 7,21 5,16 3,20 0,16 0,13 0,11 0,09 52,07 47,06 58,42 28,46 1,71 

17 1,50 1,65 1,80 2,53 6,68 6,32 2,64 0,18 0,19 0,12 0,09 60,12 59,98 61,07 31,88 3,03 

18 1,97 1,20 1,11 3,19 6,50 3,45 1,78 0,15 0,06 0,11 0,09 28,46 19,25 42,77 23,42 1,11 

19 1,28 1,16 1,00 2,09 4,77 2,54 1,94 0,19 0,07 0,18 0,17 48,97 27,83 62,41 47,37 0,88 

20 1,41 1,17 1,58 1,89 7,09 3,88 1,76 0,12 0,15 0,11 0,06 35,90 47,91 43,24 32,75 1,32 

21 1,08 1,51 1,37 1,36 5,58 3,50 1,65 0,08 0,07 0,17 0,15 14,93 45,83 58,70 46,28 1,04 

22 1,54 1,61 1,76 1,83 7,52 6,31 2,22 0,10 0,18 0,11 0,17 32,44 31,82 85,71 34,89 1,77 

23 1,07 1,54 1,28 1,54 5,03 4,84 1,72 0,10 0,18 0,07 0,07 55,06 29,07 36,59 33,37 2,98 

24 1,16 1,09 1,45 1,51 4,44 3,12 1,85 0,12 0,16 0,19 0,13 36,17 32,64 58,84 67,01 2,67 

25 1,23 1,46 1,62 1,65 7,87 5,61 2,64 0,16 0,11 0,17 0,19 38,06 30,10 74,84 30,12 0,64 

** The system parameters are drawn from uniform distribution, where  ~ 1, 2
k

U ;  ~ 0.5,0.9
i

U ; 

   
1 2 3 2 31 4

1 2 3 4

, , ,
i

     


   

  

 
 
 

 and    2 3 4

1 2 2
~ 100, 200 , , ,

k i i ii i i
L U h h h

  
     

   1,2,3, 4 , 1, 2,3i k  . For ease of disposition, we let h = h/100 and L = L/100.  

 

 

 

 



 118 

5.5.3 Decomposition method for system 3 

System 3 is a 4-components nested ATO system, where Product 1 is assembled from 

Component 1, Product 2 is assembled from Component 1 and Component 2, Product 3 is 

assembled from Component 1, Component 2 and Component 3 and Product 4 is assembled 

from Component 1, Component 2 and Component 3 and Component 4. The production rate 

and holding cost of each component is 
i  and ih , (i =1, 2, 3, 4). The demand rate of each 

product is 
k  (j = 1, 2, 3, 4). If demand cannot be fulfilled immediately, it is lost and incurs a 

lost sales cost with Lk for Product k (cf. Figure 5.4).  

    System 3 can be decomposed into four sub-systems, where each sub-system comprises the 

corresponding components for each product. For instance, Sub-system 1 is a single component 

system facing two demand classes with different demand rates and lost sale penalties. 

Sub-system 4 uses Component 1, Component 2, Component 3 and Component 4 to assemble 

into Product 4. In addition, Component 1 is demanded by Product 1, Product 2 and Product 3, 

Component 2 is demanded by Product 2 and Product 3, Component 3 is demanded by Product 

3. We add the corresponding demand rate for each component. Sub-systems 4 is modelled by a 

4 components M-configuration ATO system by adding an artificial demand rate 5 0   to 

Component 4.   

    By solving each Sub-system, we obtain the production and rationing policy of each 

component. We construct the heuristic policy as in System 1 and System 2. To illustrate the 

effectiveness of the decomposition method, we run a numerical experiment that comprises 25 

problems with distinct system parameters. Table 5.5 gives the system parameters of each 

problem together with the optimal result and heuristic gap. 

The average gap of the 25 problems is 3.87%, with a minimum of 1.74% and a maximum 

of 5.65%. The results of the numerical experiment show that the decomposition method is still 

appropriate in System 3 with an acceptable gap. However, the heuristic result is not as good as 

that of System 1 and System 2. There are two reasons that lead to this result. First, our 

decomposition method breaks down the original system into its end products, thus ignores the 

influence of other components belonging to the other products. However, because of the state 

dependency structure of the optimal policy (see Chapter 4), the state of components that do not 
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belong to same end product still influence those in other sub-systems. For instance, with 

respect to the allocation policy, the demand of an end product can be satisfied in the 

sub-system, but may be denied in the original system as other components may have a higher 

inventory level, so that the common component is allocated to other products in order to 

decrease the inventory holding cost. In addition, since we decompose each sub-system as a 

2-Component M-configuration ATO system, the demand rate of each component is equal to the 

sum of the demand rates of the other products. Furthermore, a demand that is satisfied in the 

sub-system may not be satisfied in the original system if other components that belong to the 

same product are not available. Also, a demand of an end product that is denied in the 

sub-system may be satisfied in the original system. As System 3 is more unbalanced in terms 

of components per product compared to system 1 and 2, this effect is more accentuated. Last, 

the demand rate of each component is the rate obtained from the distribution of the maximum 

of several exponential distributions which itself is not exponentially distributed. This will 

further deteriorate the performance as systems become larger. 
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 Figure 5.4: Decomposing map of 4 components, 4 end products nested systems 

 

 

 

 

 

 

2 

3 

1 

2 

3 

2 

1 

 

 

2 

3 

 


2
 


1
 


2
 2 

1 

 
2 

3


4
 


1


3


4
 

 


2
 


3
 

3 2 

 
3 

4
 


2


4
 

 
4 


4
 

3 


4
 

 


3
 


2
 


3
 

4 

2 

 
3 


2


3
 

 
4 


4
 


3
 


5
 

Sub-system 1 

Sub-system 2 

Sub-system 3 


1
 1 

4 

 


1
 

1 1 


1
 


2


3


4
 

 


1
 

1 
1


2


4
 

 


1
 

1 
1


2


3
 


4
 

Sub-system 4 



 121 

Table 5.5: Parameter settings and decomposition results for System 3 

 System Parameters Optim. 

Cost 

Gap 

% 1 2 3 4 1 2 3 4 h1 h2 h3 h4 L1 L2 L3 L4 

1 1,8 1,6 1,4 1,5 9,6 6,5 4,0 2,6 0,1 0,2 0,1 0,2 7,5 26,3 65,9 96,1 23,8 2,8 

2 1,8 1,5 1,6 1,2 8,7 7,8 5,3 1,6 0,1 0,1 0,1 0,1 22,0 25,3 39,2 48,0 19,4 3,7 

3 1,4 1,5 1,2 1,7 11,3 8,0 3,4 2,0 0,1 0,1 0,2 0,1 10,0 32,4 58,3 44,6 22,2 2,3 

4 1,4 1,9 1,7 1,4 8,8 8,5 4,4 1,6 0,2 0,1 0,2 0,1 35,3 29,3 52,8 95,3 28,2 4,3 

5 1,1 1,5 1,8 1,7 11,2 7,8 5,7 2,6 0,1 0,1 0,2 0,1 16,1 32,9 76,4 96,6 20,5 1,9 

6 1,7 1,5 1,3 1,6 10,2 7,0 3,5 1,9 0,2 0,2 0,1 0,1 27,5 68,5 72,4 78,1 29,1 4,4 

7 1,3 1,7 1,5 1,8 11,3 7,2 6,4 2,4 0,2 0,2 0,1 0,2 22,9 55,5 53,6 64,0 22,9 4,5 

8 1,9 1,1 1,4 1,6 7,5 6,3 3,8 2,9 0,1 0,2 0,1 0,2 15,6 47,9 44,7 64,1 26,3 5,5 

9 1,5 1,1 1,9 1,3 9,9 6,3 5,0 2,1 0,1 0,2 0,1 0,1 17,9 48,8 49,5 107,8 25,0 4,2 

10 1,6 1,2 1,5 1,1 7,1 6,0 3,9 1,6 0,2 0,1 0,1 0,1 15,9 44,8 33,2 85,6 25,6 5,2 

11 1,7 1,9 1,5 1,2 11,1 6,4 3,5 2,0 0,2 0,1 0,1 0,1 28,2 28,9 40,4 70,2 22,4 3,7 

12 1,6 1,1 1,5 1,7 7,9 7,2 5,0 2,2 0,2 0,1 0,2 0,1 19,8 24,3 55,7 71,7 25,1 4,7 

13 1,3 1,3 1,2 1,9 7,6 7,2 4,9 2,9 0,1 0,1 0,2 0,1 23,0 22,1 54,9 85,7 24,3 4,0 

14 1,6 1,2 2,0 1,5 11,0 6,9 4,5 2,0 0,1 0,1 0,1 0,1 21,5 27,0 45,5 55,0 18,9 3,3 

15 1,7 1,9 1,1 1,0 8,4 5,9 3,3 2,1 0,2 0,2 0,2 0,1 20,8 42,9 82,1 95,7 30,1 3,5 

16 1,3 1,8 1,8 1,8 11,0 10,4 5,0 2,2 0,1 0,1 0,2 0,1 13,8 25,6 39,0 56,2 17,7 1,7 

17 1,1 1,6 1,8 1,5 11,7 6,1 5,1 2,5 0,1 0,1 0,1 0,2 8,8 29,8 40,7 96,0 22,6 2,8 

18 1,9 1,5 1,8 1,5 8,0 7,2 4,1 1,6 0,1 0,1 0,1 0,1 14,3 33,4 43,1 56,7 29,4 5,6 

19 1,8 1,5 1,5 1,8 12,1 6,4 5,2 2,8 0,1 0,2 0,1 0,2 25,9 38,0 51,4 81,8 22,1 3,4 

20 1,9 1,5 1,3 1,5 8,5 6,5 5,6 2,0 0,1 0,1 0,1 0,1 15,6 28,1 53,1 55,3 20,0 4,4 

21 1,7 1,9 1,7 1,7 10,8 9,1 4,9 3,0 0,2 0,1 0,2 0,2 25,9 42,7 84,1 132,6 26,1 3,1 

22 1,8 1,8 1,7 1,6 8,6 7,3 3,9 3,0 0,2 0,1 0,1 0,1 21,6 44,8 63,3 89,5 30,7 5,3 

23 1,3 1,8 1,5 1,5 7,4 5,5 5,7 1,9 0,1 0,1 0,1 0,2 17,0 32,2 48,6 88,9 32,9 5,0 

24 1,7 1,6 1,4 1,6 9,7 6,9 4,7 2,4 0,1 0,2 0,1 0,1 19,8 46,4 49,6 78,0 22,3 3,8 

25 1,9 1,1 1,4 1,1 7,5 5,0 3,1 1,8 0,1 0,1 0,2 0,1 18,7 34,6 54,7 114,3 38,2 3,8 

** The system parameters are drawn from uniform distribution, where  ~ 1, 2
k

U ;  ~ 0.5,0.9
i

U ; 

     
1 2 3 4 2 3 4 3 4 4

1 2 3 4

, , ,
i

         


   

     

 
 
 

 and    2 3 4

1 1 11
~ 100, 200 , , ,,

k i i ii i i
L U h h hh

  
   

   1,2,3, 4 , 1,2,3,4i k  . For ease of disposition, we let h = h/100 and L = L/100; we keep one 

decimal point in this case.  
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5.6  Conclusion 

  

In this chapter, we conducted a numerical experiment for a W-configuration ATO system. The 

numerical results showed that the decomposition method works best in this system, followed 

by the exhaustive search method and the (S,R) heuristic. The difference of heuristic results 

between exhaustive search method and the (S,R) heuristic is small, considering exhaustive 

search method requires intensive computational effort. Furthermore, we showed that the 

computation is much faster if we utilize the results obtained by the (S,R) heuristic in value the 

iteration/ policy iteration compared to just applying them without the startup policies obtained 

through the (S,R) heuristic. Finally, we applied the decomposition method to three larger ATO 

systems and showed that the heuristic continues to perform well.  
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Chapter 6. Conclusion and Future research perspectives 

 

 

 

It is well recognized that ATO systems are difficult to analyze as they comprise both an 

assembly system and a distribution system. This dissertation significantly broadens the current 

literature in ATO systems. In particular, the characterization of the structure of the optimal 

policy within a MDP framework.  

In this dissertation, we studied a W-configuration ATO system. While the vast majority of 

the literature dealing with integrated production and inventory control tries to characterize the 

structure of the optimal policy over the entire state space, we used a novel approach that 

characterize the structure of the optimal policy within a sub space which we identified as the 

recurrent region within which the state remains in the long run. The advantage of such 

approach is that it allows us to identify a set of structural properties that are satisfied by the 

cost function (otherwise may not be satisfied outside this region). This approach greatly 

simplifies the analysis and can be applied to several similar integrated production and 

inventory control problems. In particular, within this region, the operator associated with the 

production decision, in the optimality equation, automatically satisfies the set of identified 

structural properties. This, in addition to greatly simplifying the proof of the structure of the 

optimal policy, avoids the challenge of having the cost function not satisfying certain 

properties in the region other than the recurrent. Furthermore, in addition to integrated 

production and inventory control systems, our approach can be applied to problems where the 

optimal policy yields both a recurrent region and a transient region. Specifically, we showed 

that this region is bounded by three state-dependent thresholds or base-stock levels, each 

corresponding to a component. We showed that it is optimal to produce/replenish a component 

if its inventory level is strictly below its corresponding base-stock level and not to produce it 

otherwise. We also showed that, within the recurrent region, the optimal inventory allocation 

policy for each product is characterized by two state-dependent thresholds corresponding to the 

components used by the product. Our analysis revealed that the optimal allocation policy does 

not follow the same structure usually encountered in the integrated production/inventory 
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literature. In particular, one would expect that the demand of the product with the higher lost 

sale cost or higher lost sale cost rate (i.e., demand rate times the lost sale cost) would always be 

satisfied and would take priority over that of the other product. However, we showed examples 

of the optimal allocation policy where the demand of the product with the lower lost sale and 

even lower lost sale cost rate takes priority over the product with higher values of the two 

parameters. This indicates that the optimal inventory allocation policy may not be simple to 

implement and thus has to be carefully designed when developing heuristic procedures. We 

have also showed that the optimal policy structure is preserved for systems with batch 

production, Erlang distributed production times, and non-unitary product demands. 

Based on the structure of the optimal policy, we proposed a decomposition method that 

decomposes the W-configuration ATO system into two N-configuration systems. We compared 

it with two other state independent heuristic policies, which are obtained by the (S,R) heuristic 

and the exhaustive search method. Extensive numerical experiments showed that the three 

heuristics are efficient compared to the optimal policy. In particular, the decomposition method 

works best both in terms of cost performance computational time, whereas the (S,R) heuristic 

has the advantage of being very efficient in terms of computational time compared to the 

exhaustive search method. Taking advantage of this fact, we also used the heuristic as a startup 

policy to the dynamic programming algorithms used to obtain the optimal policy. We showed 

that doing so reduced the CPU time, required to obtain the optimal policy, by several orders of 

magnitude. In addition, to validate the effectiveness of the decomposition method, we applied 

it to three additional larger systems. For each system, we conducted a numerical experiment, 

which showed that the decomposition method continues to perform very well.  

    This work can be extended in several directions. One extension would be to consider the 

case where demand of a product is backordered if it cannot be fulfilled immediately. In this 

case, one needs to keep track not only of the inventory of components but also of the number 

of backorders of each product, adding further complexity to the model. Another extension is to 

consider the general W-configuration ATO system which consists of several products sharing 

multiple components. We expect the component production and inventory allocation policies to 

continue to have the same structure. However, it would be very challenging to obtain the 

optimal policies, numerically, in such a case. Finally, another direction would be to extend the 



 125 

problem to the case of phase-type distributions for both component production times and 

demand inter-arrival times. We expect the structure of the optimal policy to remain the same in 

these cases. 
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Analyse et algorithmes de résolution de systèmes ATO (Assemble-To-Order) : Applications 

aux systèmes du type W 

Résumé: Les systèmes ATO qui comprennent un système d'assemblage et un système de distribution 

sont difficiles à analyser par sa nature. Dans cette thèse, nous analysons un type W de système ATO avec 

des délais de livraison aléatoires, l'arrivée aléatoire de la demande et des ventes perdues, en temps 

continu. Nous formulons le problème en tant que processus de décision Markov à l'horizon infini. Nous 

nous éloignons de l'approche standard en caractérisant une région de l'espace d'état où toutes les 

propriétés de la fonction de coût tiennent. Nous caractérisons la politique optimale dans cette région. En 

particulier, nous montrons que, dans l'intérieur de la région récurrente, les composants sont toujours 

produits. Nous caractérisons également la politique d'allocation de composants optimale qui spécifie si 

une demande de produit arrivant devrait être remplie. Notre analyse révèle que la politique d'allocation 

optimale est contre-intuitive. Par exemple, même lorsqu'un produit domine l'autre, en termes de 

coût/taux de vente perdue, sa demande peut ne pas avoir une priorité absolue par rapport à la demande 

de l'autre produit. Une telle caractéristique n'a pas été observée dans de nombreux paramètres intégrés de 

production/inventaire où l'allocation d'inventaire suit une priorité fixe pour satisfaire les exigences. Nous 

montrons également que la structure de la politique optimale reste la même pour les systèmes à 

production par lots, les temps de production répartis par Erlang et la demande de produits non unitaire. 

Enfin, nous proposons des heuristiques efficaces qui peuvent être utilisées comme substitut à la politique 

optimale ou peuvent être utilisées comme une politique de départ pour les algorithmes communs utilisés 

pour obtenir une politique optimale dans le but de réduire leur temps de calcul. 

Mots-clefs: Assemble-To-Order, Processus de décision Markov, Programmation dynamique, Contrôle 

de la production et des stocks, Gestion de la demande 

 

Analysis and Computational Algorithms for Assemble-To-Order systems: Application to 

W-configuration systems 

Abstract: The ATO systems that comprise an assembly system and a distribution system are difficult to 

analyze by its nature. In this thesis, we analyze a W-configuration ATO system with random lead times, 

random arrival of demand, and lost sales, in continuous time. We formulate the problem as an 

infinite-horizon Markov decision process. We deviate from the standard approach by first characterizing 

a region (the recurrent region) of the state space where all properties of the cost function hold. We then 

characterize the optimal policy within this region. In particular, we show that within the interior of the 

recurrent region components are always produced. We also characterize the optimal component 

allocation policy which specifies whether an arriving product demand should be fulfilled. Our analysis 

reveals that the optimal allocation policy is counter-intuitive. For instance, even when one product 

dominates the other, in terms of lost sale cost and lost sale cost rate (i.e., demand rate times the lost sale 

cost), its demand may not have absolute priority over the other product’s demand. Such a feature has not 

been observed in many integrated production/inventory settings where inventory allocation follows a 

fixed priority in satisfying demands. We also show that the structure of the optimal policy remains the 

same for systems with batch production, Erlang distributed production times, and non-unitary product 

demand. Finally, we propose efficient heuristics that can be either used as a substitute for the optimal 

policy or can be used as a starting policy for the common algorithms that are used to obtain the optimal 

policy in an effort to reduce their computational time. 

Keywords: Assemble-To-Order, Markov decision process, Dynamic programming, Production and 

inventory control, Demand management 


