
HAL Id: tel-01781831
https://theses.hal.science/tel-01781831

Submitted on 30 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Subgraph Isomorphism Search In Massive Graph Data
Chems Eddine Nabti

To cite this version:
Chems Eddine Nabti. Subgraph Isomorphism Search In Massive Graph Data. Databases [cs.DB].
Université de Lyon, 2017. English. �NNT : 2017LYSE1293�. �tel-01781831�

https://theses.hal.science/tel-01781831
https://hal.archives-ouvertes.fr

No d’ordre NNT : xxx

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée au sein de

l’Université Claude Bernard Lyon 1

École Doctorale ED512
Ecole Doctorale Informatique et Mathématiques

Spécialité de doctorat :
Discipline : Informatique

Soutenue publiquement le , par :

Chems eddine NABTI

Subgraph Isomorphism Search In

Massive Graph Data

Devant le jury composé de :

LIETARD Ludovic, Maitre de Conférences, HDR, Université de Rennes1 Rapporteur
TAMINE-LECHANI Lynda, Professeure des Universités, UPS Toulouse Rapporteur(e)
TERMIER Alexandre, Professeur des Universités, Université de Rennes1 Examinateur

SEBA Hamida, Maitre de conférences, HDR, Université Claude Bernard Lyon1 Directrice de
thèse

Abstract

Querying graph data is a fundamental problem that witnesses an increasing

interest especially for massive structured data where graphs come as a promising

alternative to relational databases for big data modeling. However, querying

graph data is different and more complex than querying relational table-based

data. The main task involved in querying graph data is subgraph isomorphism

search which is an NP-complete problem. Subgraph isomorphism search is

an important problem which is involved in various domains such as pattern

recognition, social network analysis, biology, etc. It consists to enumerate the

subgraphs of a data graph that match a query graph. The most known solutions

of this problem are backtracking-based. They explore a large search space which

results in a high computational cost when we deal with massive graph data.

To reduce time and memory space complexity of subgraph isomorphism

search. We propose to use compressed graphs. In our approach, subgraph iso-

morphism search is achieved on compressed representations of graphs without

decompressing them. Graph compression is performed by grouping vertices into

super vertices. This concept is known, in graph theory, as modular decomposi-

tion. It is used to generate a tree representation of a graph that highlights groups

of vertices that have the same neighbors. With this compression we obtain a

substantial reduction of the search space and consequently a significant saving

in the processing time.

Chemseddine Nabti Liris laboratory iii

We also propose a novel encoding of vertices that simplifies the filtering of

the search space. This new mechanism is called compact neighborhood Index

(CNI). A CNI distills all the information around a vertex in a single integer. This

simple neighborhood encoding reduces the time complexity of vertex filtering

from cubic to quadratic which is considerable for big graphs. We propose also

an iterative global filtering algorithm that relies on the characteristics of CNIs to

ensure a global pruning of the search space.

We evaluated our approaches on several real-word datasets and compared

them with the state of the art algorithms.

iv Liris laboratory Chemseddine Nabti

Résumé

L’interrogation de graphes de données est un problème fondamental qui con-

nait un grand intérêt, en particulier pour les données structurées massives

où les graphes constituent une alternative prometteuse aux bases de données

relationnelles pour la modélisation des grandes masses de données. Cepend-

ant, l’interrogation des graphes de données est différente et plus complexe

que l’interrogation des données relationnelles à base de tables. La tâche prin-

cipale impliquée dans l’interrogation de graphes de données est la recherche

d’isomorphisme de sous-graphes qui est un problème NP-complet.

La recherche d’isomorphisme de sous-graphes est un problème très important

impliqué dans divers domaines comme la reconnaissance de formes, l’analyse

des réseaux sociaux, la biologie, etc. Il consiste à énumérer les sous-graphes d’un

graphe de données qui correspondent à un graphe requête. Les solutions les plus

connues de ce problème sont basées sur le retour arrière (backtracking). Elles

explorent un grand espace de recherche, ce qui entraı̂ne un coût de traitement

élevé, notamment dans le cas de données massives.

Pour réduire le temps et la complexité en espace mémoire dans la recherche

d’isomorphisme de sous-graphes, nous proposons d’utiliser des graphes com-

pressés. Dans notre approche, la recherche d’isomorphisme de sous-graphes est

réalisée sur une représentation compressée des graphes sans les décompresser.

La compression des graphes s’effectue en regroupant les sommets en super-

Chemseddine Nabti Liris laboratory v

sommets. Ce concept est connu dans la théorie des graphes par la décomposition

modulaire. Il sert à générer une représentation en arbre d’un graphe qui met

en évidence des groupes de sommets qui ont les mêmes voisins. Avec cette

compression, nous obtenons une réduction substantielle de l’espace de recherche

et par conséquent, une économie significative dans le temps de traitement.

Nous proposons également une nouvelle représentation des sommets du

graphe, qui simplifie le filtrage de l’espace de recherche. Ce nouveau mécanisme

appelé ”compact neighborhood Index (CNI)” encode l’information de voisinage

autour d’un sommet en un seul entier. Cet encodage du voisinage réduit la com-

plexité du temps de filtrage de cubique à quadratique. Ce qui est considérable

pour les données massives.

Nous proposons également un algorithme de filtrage itératif qui repose sur

les caractéristiques des CNIs pour assurer un élagage global de l’espace de

recherche.

Nous avons évalué nos approches sur plusieurs datasets et nous les avons

comparées avec les algorithmes de l’état de l’art.

vi Liris laboratory Chemseddine Nabti

List of Figures

1.1 Hierarchical Model . 2

1.2 Network Model [39] . 2

1.3 Querying a data graph . 3

1.4 graph isomorphism problem [54] 5

2.1 Example of Graphs. 12

2.2 Example of Induced and Partial Subgraphs. 13

2.3 Subgraph isomorphism search. 17

2.4 A partial construction of the search tree. 19

2.5 State of the art Methods. 21

2.6 the NDS distance [55] . 26

2.7 Core-Forest-Leaf Decomposition [6] 31

2.8 Example CPI [6] . 32

2.9 Running Example [6] . 32

2.10 Subgraph isomorphism search on Trinity[47] 34

3.1 Graph compression with [12]. 46

3.2 Compressing steps with modular decomposition. S : series mod-

ule. P: parallel module. N : neighborhood module [31]. 48

3.3 Example of a graph and its compression [44]. 49

3.4 The architecture for the proposed framework. 50

3.5 Compression Step of the Running Example. 52

3.6 Flowchart of step 1 (Supervertex Selection). 55

3.7 Flowchart of step 2 (Subgraph Search). 55

3.8 Supervertex Selection Phase on our Running Example. 57

Chemseddine Nabti Liris laboratory vii

LIST OF FIGURES

3.9 Tree representation of Modules [31]. 58

3.10 Subgraph Search Phase of the Running Example. 59

3.11 AIDS dataset. 66

3.12 NASA dataset. 67

3.13 Human dataset. 67

3.14 Path and Clique Queries. 68

3.15 WebGoogle dataset. 69

3.16 Wiki-talk dataset. 69

3.17 Patent Citation dataset. 70

3.18 LiveJournal dataset. 70

3.19 Pokec dataset. 71

3.20 Orkut dataset. 71

4.1 Running Example. 77

4.2 MND Filter on on the Running Example (pruned of the vertices

that do not match query labels). 80

4.3 Needless NLF filtering . 81

4.4 NLF filtering with two different vertex parsing orders 83

4.5 CNIs of the Query graph and the Data graph. 90

4.6 Filtering iterations of our running example. 93

4.7 Time performance on small datasets (varying |V (Q)|). Results are

in logscale. 104

4.8 Time performance on the small dataset DANIO-RERIO (varying

|Σ| and the label distribution). 105

4.9 Scalability testing (varying |V (Q)|). 106

4.10 Scalability testing on large graphs (varying |V (Q)|). 107

4.11 Scalability testing (varying |V (G)|). 107

viii Liris laboratory Chemseddine Nabti

List of Tables

3.1 Graph Dataset Characteristics. avg |V |: average number of vertices.

avg |E|: average number of edges. 63

3.2 width=17cm . 64

4.1 Notation . 85

4.2 Graph Dataset Characteristics. 101

Chemseddine Nabti Liris laboratory ix

Contents

Abstract iii

Résumé v

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Thesis Scope . 6

1.2 Thesis organization . 7

2 Subgraph Isomorphism search 9

2.1 Basic Definitions . 11

2.2 Querying graph data . 14

2.3 Subgraph isomorphism search over a single large data graph . . 17

2.4 Existing Algorithms . 20

2.4.1 Ullmann’s algorithm . 22

2.4.2 VF2 . 23

2.4.3 SPath and GraphQL . 24

2.4.4 GADDI . 25

2.4.5 QuickSI . 27

2.4.6 Turbo-iso . 29

2.4.7 CFL-match . 30

2.4.8 Other Methods and techniques 33

2.5 Analysis . 35

Chemseddine Nabti Liris laboratory xi

CONTENTS

2.6 Conclusion . 39

3 SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS 41

3.1 Introduction . 43

3.2 Graph Compression . 43

3.3 Compress and Search . 51

3.3.1 Candidate Supervertex Selection 53

3.3.2 Subgraph Search . 57

3.4 Performance Evaluation . 60

3.4.1 Datasets . 61

3.4.2 Results . 65

3.4.3 Discussion . 66

3.5 Conclusion . 73

4 CompactNeighborhood Index for SubgraphQueries inMassiveGraphs 75

4.1 Motivation . 77

4.2 Our approach . 84

4.2.1 Compact Neighborhood Index (CNI) 85

4.2.2 Proof of Theorem 1 . 87

4.3 Proof Sketch of Lemma 3 . 89

4.3.1 Iterative Local Global Filtering Algorithm (ILGF) 89

4.3.2 Subgraph Search . 94

4.3.3 Extension to Larger Graphs 95

4.4 Experiments . 97

4.4.1 Datasets . 97

4.4.2 Results . 101

4.5 cni(v) at (k > 1)-hops Neighborhood 103

4.6 Conclusion . 108

5 Conclusion and Perspectives 111

5.1 Conclusion . 111

5.2 Perspectives . 114

List of Publications 117

xii Liris laboratory Chemseddine Nabti

CONTENTS

References 119

Chemseddine Nabti Liris laboratory xiii

Chapter 1: Introduction

Contents
1.1 Thesis Scope . 6

1.2 Thesis organization . 7

Graphs are data structures composed of a set of vertices and a set of edges

where an edge connects two vertices. A graph is an effective way of formalizing

problems and representing objects. They are used to represent complex and

heterogeneous linked data in various domains. With graphs, vertices represent

objects and edges represent relations between these objects.

Graphs are very flexible, they allow adding new kinds of relationships, new

vertices to an existing structure without disturbing existing queries and applic-

ation functionalities. This is why graphs are widely used in data modeling,

especially for massive data. However this is not new, the first data modeling tool

is graph-based. The hierarchical data model was the first data modeling tool to

be created. First appearing in 1966 as an improvement of general file-processing

systems. The main improvement was the possibility to create relationships

between information in a data model, which is insured by graphs. The main

characteristic of a hierarchical data model is the treelike structure. It consists

of a collection of records that are connected to each other through links with a

parent-child relationship. Figure 1.1 shows an example of a hierarchical data

model.

Chemseddine Nabti Liris laboratory 1

Introduction

Figure 1.1: Hierarchical Model

Figure 1.2: Network Model [39]

As an extension of the hierarchical model, the network model was introduced.

Originally invented by Charles Bachman in the 70s, it apears as a new data model.

It was conceived as a flexible way of representing objects and their relationships.

It allows transversal connections, and uses a graph structure. Basically, while

the hierarchical database model structures data as a tree of records, with each

record having one parent record and many children, the network model allows

each record to have multiple parent and child records, forming a generalized

2 Liris laboratory Chemseddine Nabti

graph structure. Figure 1.2 shows a small example of a network model, that

represents a small network of twitter users.

Graph data models knew a peak of interest in the wake of the NoSQL

mouvement and were developped more deeply in the era of massive data. Graph

characteristics made graph data models more porwerfull than the well appre-

ciated relationnel data model. In a graph data model, vertices represent data,

edges represent relations between two data, and both vertices and relations may

have special properties: the labels.

Graphs are also used naturally to represent networks, especially social net-

works: facebook, twitter, etc. They are also used in biology, and chemistry,

because molecules and chemical data are graphs by definition.

Using graphs as means of representing data cannot be successful without devel-

oping effective ways to search and query this kind of data, especially in nowdays

were graphs are large and growing rapidly.

Figure 1.3 shows an example of a graph query problem, in which the idea is to

find the occurences of a query graph on a larger data graph.

Figure 1.3: Querying a data graph

Chemseddine Nabti Liris laboratory 3

Introduction

Querying graph data is a challenging issue. In fact, querying a graph can

be processed by searching for subgraphs using the relation of inclusion, or by

graph similarity (checking for structural similarity). In the first type of querying

(i.e., searching for graphs using the relation of inclusion), we can distinguish

two problems: subgraph search and supergraph search.

The supergraph search consists in finding all subgraphs in the data graph for

which the query is a supergraph. However, subgraph search consists in finding

all graphs in the data graph for which the query is a subgraph. This problem is

called subgraph isomorphism search, and is considered as a main task involved

in querying data graphs.

The problem of determining isomorphism between two graphs is shown in Figure

1.4. An isomorphism between two graphs G and H is a bijection f , between the

vertex sets of G and H . Such that any two vertices u and v of G are adjacent in G

if and only if f (u) and f (v) are adjacent in H . First became known during 1960’s

as a method of comparing two chemical structures, this problem was listed in

1979, by Garey and Johnson, as one of 12 problems belonging to NP, but not

known to be either NP-complete or solvable in polynomial time. However, the

problem of subgraph isomorphism in which we focus in our thesis is known

to be NP-complete [19]. This problem arises in many real word applications

related to query processing. The main problem in nowdays data is the amount

of information to be processed, and the very large search space in which we

query data. To tackle this problem, researchers try to reduce the processing time,

the search space, and also to reduce the amount of memory space used to store

massive graph data.

Subgraph isomorphism is the problem of finding all embeddings of a query

graph into a target graph called data graph. Most existing subgraph isomorphism

algorithms are based on a backtracking framework which computes solutions by

4 Liris laboratory Chemseddine Nabti

Figure 1.4: graph isomorphism problem [54]

incrementally matching all query vertices to candidate data vertices. The most

known algorithms to subgraph isomorphism search are: Ulmann’s algorithm

[49], VF2 [41], GADDI [55], Spath [57], QuickSI [45], and GraphQL [25].

These algorithms use different join orders, pruning rules, and auxiliary informa-

tion to prune-out falsepositive candidates as early as possible. But none of these

algorithms is designed to handle all types of graphs with all sizes. For example,

QuickSI [45] is designed for handling small graphs, GraphQL [25] and SPath

[57] are designed for handling large graphs. Some of these proposed methods,

mainly because of the complexity of the subgraph isomorphism problem, show

exponential time behavior.

The porposed algorithms are mainly built arround two basic tasks: filter and

search (or filtering and verification). The more powerfull the filtering is, the more

powerfull is the algorithm that searches for subgraph isomorphism. Filtering

is a manner to reduce the search space by eleminating non relevant vertices.

However, this filtering can lead to high cost, so it must be efficient without being

time consuming. Since reducing the search space is very important, a simplified

representation of graphs will be very usefull. This is the main focus of our work.

Chemseddine Nabti Liris laboratory 5

Introduction

1.1 Thesis Scope

In this thesis, we focus on simplifying graph representations to ensure better per-

formance with subgraph isomorphism search, especially in the case of massive

data. We worked on two main approaches:

• A compression of the whole graph: in this case our data graph is sum-

marized and we achieve subgraph isomorphism search on the compressed

version of the graph. The main idea in graph summarizing approaches it to

find a short representation of the input graph, in the form of a compressed

graph. Summarizing a graph can be very usefull:

a. It reduces the storage space. Depending on the size of the graph, a

graph that does not fit in memory before summarizing will be loaded

after compression.

b. Because graphs became smaller, they can be queried and analyzed

faster and more easily.

c. Noise filter. Summarizing graphs help eliminating non important

information. It also highlights only important ones.

Graph summarizing have also many challenges. The main challenge is to

process all the amount of data contained in large graphs, without losing any

information, or important graph structures. In our first approach, we use

modular decomposition as a mean of compression. Modular decomposition

of graphs consists to highlight set of vertices that have the same neighbors

and so are not distinguishable from outside. These sets of vertices are

called modules. We perform subgraph isomorphism search on compressed

graphs without decompressing them.

6 Liris laboratory Chemseddine Nabti

1.2 Thesis organization

• A compression of the neighborhood of a vertex: In this case, we propose

a new manner to encode vertex’s neighborhood in order to simplify filter-

ing. In our approach, all the information arround a vertex is compacted

in a single integer leading to a simple but effective filtering scheme for

processing subgraph isomorphism search. Filtering is the main task that

reduces the search space during subgraph isomorphism search.

In the two cases, the aim is to be able to deal with massive data.

1.2 Thesis organization

The remaining of this thesis contains three chapters:

Chapter 2 ’Subgraph Isomorphism search’ describes the state of the art,

discusses the problem of subgraph isormorphism search, and shows how existing

algorithms handle this problem.

Chapter 3 ’Subgraph isomorphism search on compressed graphs’ is dedicated

to our first contribution in which we propose a new method to subgraph search

in compressed graphs, without decompressing them. The proposed approach

is evaluated on nine datasets, and is compared with other algorithms from the

literature.

Chapter 4 ’Compact Neighborhood Index for Subgraph Queries in Massive

Graphs’ represents our second contribution, in which a vertex’s neighborhood

compression is processed. This compression allows a constant time pruning

mechanism, by using topological information. The proposed algorithm is also

compared with other methods from the literature.

Finally, we conclude the manuscript by summarizing the major contributions

of this thesis and proposing research directions for future work.

Chemseddine Nabti Liris laboratory 7

Chapter 2: Subgraph Isomorphism

search

I
n this chapter, we present the subgraph isomorphism search problem which

is one of the most interresting problems in graph theory. We also survey and

discuss the algorithms proposed to solve this problem.

Contents

2.1 Basic Definitions . 11

2.2 Querying graph data . 14

2.3 Subgraph isomorphism search over a single large data graph 17

2.4 Existing Algorithms . 20

2.4.1 Ullmann’s algorithm . 22

2.4.2 VF2 . 23

2.4.3 SPath and GraphQL . 24

2.4.4 GADDI . 25

2.4.5 QuickSI . 27

2.4.6 Turbo-iso . 29

2.4.7 CFL-match . 30

2.4.8 Other Methods and techniques 33

Chemseddine Nabti Liris laboratory 9

Subgraph Isomorphism search

2.5 Analysis . 35

2.6 Conclusion . 39

10 Liris laboratory Chemseddine Nabti

2.1 Basic Definitions

2.1 Basic Definitions

A graph is a mathemathical concept defined as follows:

Definition 1. A graph G is a 3-tuple G = (V (G),E(G), �,Σ), where V (G) is a set

of vertices (also called nodes), E(G) ⊆ V (G)×V (G) is a set of edges connecting the

vertices, � : V (G)∪ E(G) → Σ is a labeling function on the vertices and the edges

where Σ is the set of labels that can appear on the vertices and/or the edges.

when a complex object is modeled by a graph, vertices and edges represent

respectively its entities and the relations between these entities. These entities

can be labeled by assigning one or more values (symbolic or numeric) to each

vertex and/or edge. In this case, the graph is called a labeled graph. If no labels

are used, the graph is then called a non-labeled graph. This type of graph is

generally used when only its structure or shape is important and not the labels

of vertices and edges.

However, any non-labeled graph can be represented by a labeled graph by

associating the same vertex label and the same edge label to all vertices and

all edges, respectively. If all graph edges are symbolized by arrows, the graph

is then called oriented graph (labeled or not). For example web services are

represented by labeled oriented graphs. Figure 2.1 shows some graph examples.

An undirected edge between vertices u and v is denoted indifferently by (u,v)

or (v,u). For each v ∈ V (G), d(v) denotes the degree of v, i.e., the number of

neighbors of v, where a neighbor is a vertex adjacent to v. The label or set of

labels of a vertex v is given by �(v).

The notation G = (V ,E), with � omitted means that we actually do not need the

labels of the vertices but just their identifiers.

Chemseddine Nabti Liris laboratory 11

Subgraph Isomorphism search

Figure 2.1: Example of Graphs.

In our thesis we consider data graphs defined as simple labeled graphs.

Simple graphs are graphs with no edges involving a single vertex.

A graph that is contained in another graph is called a subgraph. Here some

subgraph definitions.

Definition 2. A graph G1 = (V (G1),E(G1), �1,Σ) is a subgraph of a graph G2 =

(V (G2),E(G2), �2,Σ) if V (G1) ⊆ V (G2), E(G1) ⊆ E(G2), �1(x) = �2(x) ∀x ∈ V (G1),

and �1(e) = �2(e) ∀e ∈ E(G1).

Definition 3. Induced Subgraph. For two graphs G1 and G2, where:

G1 = (V (G1),E(G1), �1,Σ), G2 = (V (G2),E(G2), �2,Σ). G1 is an induced subgraph of

G2, denoted G1 ⊆i G2, if:

12 Liris laboratory Chemseddine Nabti

2.1 Basic Definitions

– V (G1) ⊆ V (G2)

– E(G1) = E(G2)∩ (VG1
×VG1

)

Definition 4. Partial Subgraph. For two graphsG1 andG2, whereG1 = (V (G1),E(G1), �1,Σ),

G2 = (V (G2),E(G2), �2,Σ). G1 is a partial subgraph of G2, denoted as G1 ⊆p G2, if

G1 is a graph that does not contain all the edges of G1 having their ends in V (G1).

Figure 2.2, illustrates the concepts of induced and partial subgraphs.

Figure 2.2: Example of Induced and Partial Subgraphs.

Chemseddine Nabti Liris laboratory 13

Subgraph Isomorphism search

2.2 Querying graph data

As a data structure, graphs are increasingly used to model data and complex

objects. They allow to convey as much information as possible, to ensure an effi-

cient representation of complex objects and also a relevant comparison between

two objects. Thus various real applications such as social networks and protein

interactions use graphs as a model of representation. Graphs can also represent

complex relationships such as the organization of entities in images which can

be used to identify objects and scenes.

In many cases, the success of an application based on a graph representation

of data is directly dependent on the efficiency of an underlying graph query

processing. Talking about graph query processing lead directly to one of the

most popular problem in graph theory, which is graph and subgraph matching.

Graph matching consists to find the correspondence between the vertices of two

graphs which provides the best alignment of their structures. Generally, graph

matching methods can be divided into two broad categories: Exact and inexact

matching according to their results. In other words, exact graph matching

returns graphs or subgraphs that match exactly a given graph, however, inexact

matching returns a ranked list of the most similar matches.

Exact graph matching approaches aim to find out if an exact mapping

between the vertices, and the edges of the compared graphs is possible. This

requires a strict correspondence between the two objects being matched, or at

least between subparts of them.

Graph Isomorphism is a variant of exact graph matching defined as follows:

Definition 5. A graph G1 = (V (G1),E(G1), �1,Σ) and a graph

G2 = (V (G2),E(G2), �2,Σ) are said to be isomorphic if there exists a bijective function

h : V (G1)→ V (G2) such that the following conditions hold:

14 Liris laboratory Chemseddine Nabti

2.2 Querying graph data

1. ∀u ∈ V (G1) : �1(u) = �2(h(u))

2. ∀(u,v) ∈ E(G1) : (h(u),h(v)) ∈ E(G2) and �1((u,v)) = �2((h(u),h(v)))

3. ∀(h(u),h(v)) ∈ E(G2) : (u,v) ∈ E(G1) and �2((h(u),h(v))) = �1((u,v))

In exact matching we can find also other forms like maximum common

subgraph, monomorphism, and homomorphism.

• The maximum common subgraph is the problem of finding the largest part

of two graphs that is identical in terms of structure, which is refered to the

maximum common subgraph.

• Monomorphism is a variety of exact graph matching where each vertex of

the first graph is mapped to a distinct vertex of the second one, and each

edge of the first graph has a corresponding edge in the second one. The

second graph, however, may have both extra vertices and extra edges.

• A Graph Homomorphism f from a graph G1 = (V (G1),E(G1), �,Σ) to a

graph G2 = (V (G2),E(G2), �,Σ), written as f : G1 → G2 , is a mapping

f : V (G1)→ V (G2) from the vertex set of G1 to the vertex set of G2 such

that (u,v) ∈ E(G1) implies (f (u), f (v)) ∈ E(G2)) but not vice versa.

Inexact graph matching means that it is not possible to find an isomorphism

between the two graphs to be matched. This is the case when the query graph

and the data graph have not the same number of vertices. The interest of inexact

graph matching has been recently increased due to the application of graphs to

areas such as cartography, character recognition, and medicine. In these areas,

automatic segmentation of images results in situations where the data graph

contains more vertices than the query graph. That is why applications on these

areas do usually require inexact graph matching techniques [5]. Usually, inexact

Chemseddine Nabti Liris laboratory 15

Subgraph Isomorphism search

matching algorithms do not impose the edge-preservation constraint used in

exact matching.

In the two cases, exact and inexact matching, querying a data graph can be

categorized into two classes: subgraph matching over a single large data graph,

and subgraph containement search over a graph database. In both categories,

algorithms first filter the list of candidates then verify isomorphism. However,

the verification phase in subgraph containement search aim to check if there

exisits one subgraph isomorphism for each graph candidate. But in subgraph

matching over a single data graph, it aims to find all embeddings for a given

query graph in a data graph.

Subgraph containement search over a graph database needs to index data

graphs (from the graph database), that contain a query. Then, both filtering and

verification mechanisms are performed after indexing.

There are different ways to index data graphs. The most known approaches

use graph-features that include (tree-feature, frequent substructures, path-based

indexing). The idea is to find the best way to represent candidates, in order to

facilitate the isomorphism checking.

The filtering phase must be very effecient in order to minimize the list of

candidates, which will minimize the verification cost. In the verification phase

the final list of candidates given by the filtering algorithm will be parsed, and

each candidate will be compared with the query. A candidate that matches the

query will be added to the final list of results.

A lot of approaches were proposed to tackle the subgraph containement

search problem, such as: gIndex [51], Tree+delta [59] FG-index [28], gCode [62],

and others.

In our thesis, we focus on the second category: subgraph isomorphism search

over a single large data graph which is more difficult than the subgraph contain-

16 Liris laboratory Chemseddine Nabti

2.3 Subgraph isomorphism search over a single large data graph

ment search, because subgraph matching requires enumerating all embeddings.

For a query graph Q, a data graph G, all embeddings of Q in G are to be ennu-

merated. Generaly, to tackle this problem authors aim to find the best way to

visit vertices. The more non relevant vertices are filtered, the more effective the

verification will be.

2.3 Subgraph isomorphism search over a single large

data graph

In Subgraph isomorphism search, the main goal is to enumerate all occurrences

of a query graph Q within a data graph G.

Definition 6. Given two graphs G = (V (G),E(G), �,Σ) and Q = (V (Q),E(Q), �,Σ),

Q is subgraph isomorphic to G if there is an injective function f :Q→ G such that:

1. ∀v ∈ V (Q), f (v) ∈ V (G) and �(v) = �(f (v)).

2. ∀(u,v) ∈ E(Q), (f (u), f (v)) ∈ E(G) and �(u,v) = �(f (u), f (v)).

Figure 2.3: Subgraph isomorphism search.

Chemseddine Nabti Liris laboratory 17

Subgraph Isomorphism search

Figure 2.3 depicts an example where the data graph contains two occurrences

of the query graph.

The basic solution to enumerating the occurrences of Q into G is to directly

compare the vertices of the query with the vertices of the data graph. This

comparison constructs a search tree. In this search tree, each internal vertex

maps a vertex of the query to a vertex of the data graph. Each path from the root

to a leaf in the search tree represents either a unsuccessful mapping, between the

query and a subgraph, that have been dropped by the algorithm, or a successful

one that corresponds to a subgraph that is isomorphic to the query. Figure 2.4

presents a part of the obtained recursion tree for the query graph and the data

graph of Figure 2.3.

Exploring this recursing tree is the main task of subgraph isomorphism search al-

gorithms. Several existing algorithms use backtracking to explore the search tree,

but they do not explore the whole tree. To avoid exploring the whole tree, they

use filtering methods that prune unpromising branches of the tree. Nevertheless,

even with pruning functions, this method rises two main challenges:

• It is memory consuming: besides storing the data graph which can have a

significant size, exploring the search tree has a high memory consumption

and involves complex data structures to support backtracking.

• It is time consuming: backtracking and testing the possible mappings

between vertices has a high computational cost. It is exponential in func-

tion of the number of vertices in the involved graphs.

To deal with this, existing solutions perform filtering/prunning mechanisms

to reduce the size of the search tree.

Existing algorithms are all about one basic point: the more effective and quick

is the filtering, the earlier and easier is finding solutions. But this basic point

18 Liris laboratory Chemseddine Nabti

2.3 Subgraph isomorphism search over a single large data graph

Figure 2.4: A partial construction of the search tree.

is addressed in diferent ways with different algorithms and methods. Globaly,

algorithms go with a filtering and verification process to find all occurrences

of the query in the data graph. The first task, which is the filtering, is the

prunning mechanism that aims to delete irrelevant candidates in the search

space. Filtering is an important step to determine the efficiency of the algorithm.

A good filtering algorithm is an algorithm that does not filter relevant can-

didates, filters the maximum of non relevant candidates, and achieves these two

last tasks as fast as possible. With such a filtering, the final step of verification

Chemseddine Nabti Liris laboratory 19

Subgraph Isomorphism search

will be more efficient and with less cost.

The second phase is the verification step which is generally based on the

Ullmann’s backtracking subroutine, that searches in a depth-first manner for

matchings between the query graph and the data graph obtained by the filtering

step (final list of candidates).

We first present the main algorithms of the state of the art. Then, we analyse

them according to their filtering mechanism.

2.4 Existing Algorithms

In this section, we describe subgraph isomorphism algorithms, in a chronological

order to show their evolution. First Ulmann’s algorithm [49] addresses all forms

of exact graph matching, but it is less suited for the maximum common sub-

graph problem. It is the first result in subgraph matching. Here, the algorithm

matches vertices one by one according to the input order of query vertices. After

Ulmann’s algorithm, VF2, QuickSI, GraphQL, GADDI, and SPath algorithms

were proposed to enhance Ulmann’s algorithm performance. These algorithms

use vertex neighboring informtation, and some other filtering techniques to

remove fals-positive candidates, as soon as possible. SPath focuses on reducing

the candidates of query vertices by exploiting neighborhood-based information.

According to [57] SPath is more performing than GraphQL. On the other hand,

VF2 is more performing than Ulmann’s algotithm. In [33] authors use the word

superior to compare two algorithms (SPath is superior to GraphQL, and VF2 is

superior to ULmann).

Figure 2.5, illustrates existing algorithms for subgraph isomorphism search

over a single large data graph, with a short explanation of each one. A relation of

superiority between algorithms according to [33] is also given. The most efficient

20 Liris laboratory Chemseddine Nabti

2.4 Existing Algorithms

Figure 2.5: State of the art Methods.

Chemseddine Nabti Liris laboratory 21

Subgraph Isomorphism search

algorithms that we found in the literature are Turboiso [23] and CFL-match

[6]. In our contributions, we compare with these two algorithms to show the

performance of our methods.

There are also several works that surveys existing algorithms. For instance,

in [33], authors implements five algorithms VF2 [41], QuickSI[45], GraphQL

[25], GADDI [55], and SPath [57] in a common framework. They use a generic

subgraph isomorphism algorithm as a backtracking algorithm which finds solu-

tions by incrementing partial solutions, or abandoning them. In this generic

algorithm, authors selects first a group of candidate vertices. After that, the

algorithm performs a recursive subroutine to find mapping pairs of vertices.

2.4.1 Ullmann’s algorithm

Ullmann’s algorithm [49] is a tree-search based algorithm. It is a backtracking

algorithm. It is composed of two tasks: tree-search and refinement procedure.

The algorithm begins with a data graph G, and a query graph Q. In the first task,

i.e., tree-search, the algorithm finds a set of candidate vertices for each query

vertex. Basically, for each vertex u in Q, the algroithm finds a set of candidate

vertices C(u) ⊆ V (G), such that �(u) ⊆ �(v). Where �, is the labeling function, and

v ⊆ V (G) is a candidate vertex. After that it invokes a recursive subgraph search

subroutine. This subroutine finds a mapping between a query vertex and a data

vertex. It takes one vertex at time. All reported embeddings, Em(G), are stored

as output of the subgraph search subroutine. The list of embeddings Em(G) will

be used in the refinement procedure.

After that, the second task, i.e., refinement procedure, is processed to min-

imize the computation time required for the subgraph isomorphism testing,

by reducing the search space. To do this, the algorithm filters out candidate

22 Liris laboratory Chemseddine Nabti

2.4 Existing Algorithms

vertices, v ∈ C(u), that have smaller degree than the query vertex through all

adjacent query vertices of u. If the adjacent vertex u′ is already in the list of

embeddings Em(G), which means that: (u′, v′) ∈ Em(G), then it checks if there is

a corresponding edge (v,v′) in the data graph G.

The complexity of Ullmann’s algorithm depends on the size of the graph.

Supppose that the size of the data graph G is n, and that of the query graph is

m. The complexity of the algorithm in the best case will be: O(nm). But it can

go up to O(mnn2) in the most case. As a result, the processing time explodes

exponentially . So it is very expensive.

2.4.2 VF2

Generally, solutions to the subgraph isomorphism search prolem can be obtained

by exhaustive search of all possible partial matching (Brute-force search) as we

have seen in Ullmann’s method. In order to further reduce the search space, the

algorithm VF2 [41] presents a new concept of state space representation. A state

s represents a partial solution of the correspondence between two graphs. M is

the final set of partial solutions, M(s) is a subset of M representing the current

partial solution of state s. The transition between a state s and its successor s′

corresponds to a new pair of matching vertices.

The algorithm starts with the first vertex, selects a vertex connected from the

already matched query vertices, search for a subgraph match, and backtracks

if not. The first search is basically the same as in Ullman’s algorithm. The

difference between them is in the refinement phase.

VF2 algorithm refinement phase uses a set of rules. Authors present these rules

in two groups: syntactic feasibility rules, and semantic feasibility rules. These

rules are as follows:

Chemseddine Nabti Liris laboratory 23

Subgraph Isomorphism search

• Prune out any non connected vertex v ∈ C(u) from already matched data

vertices.

• Prune out any vertex v ∈ C(u) such that, |Cq∩adj(u)| > |Cg∩adj(v)|. Where,

Cq is a set of adjacent and not-yet-matched query vertices connected from

the set of matched query vertices, Mq. Cg is a set of adjacent and not-yet-

matched data vertices from the set of matched data vertices, Mg .

• Prune out any vertex v in C(u) such that, |adj(u) Cq Mq | > |adj(v) Cg Mg |.

VF2 is an improved version of VF algorithm which was proposed by the same

author in [14]. It has reduced the memory requirement from O(n2) in VF to O(n)

(in VF2) for n vertices. Unlike VF2, VF algorithm does not define any order in

which query vertices are selected.

2.4.3 SPath and GraphQL

In Spath [57], paths are used as patterns of comparison. Basically, paths are

used in the matching phase instead of matching each single vertex. SPath

uses neighborhood signatures to minimize candidate sets. In the data graph

processing, the algorithm computes a neighborhood signature for each vertex. A

neighborhood signature (NS(u)) of a vertex u is computed as follows: NS(u) =

{Sk(u)|k ≤ k0} where, Sk(u) is the k-distance set of u. Each element in Sk(u) is

relative to a label l denoted as Sl
k(u). An element contains a set of vertices vi

where vi satisfies: d(u,vi), and l(v) = l(u).

In the other hand, neighborhood signatures are also computed for each

vertex v in the query graph. After that, a filtering mechanism is used in order

to minimize the matching candidate set, C(v). To test if a given vertex u in

C(v) must be pruned or not, authors compares NS(v) and NS(u) to see if there

24 Liris laboratory Chemseddine Nabti

2.4 Existing Algorithms

is a containement or not. This last is defined in [57] as: NS(v)
 NS(u) if

∀k ≤ k0,∀l ∈ Σ, then, |
⋃

k≤k0
Sl
k(v)| ≤ |

⋃
k≤k0

Sl
k(u)|. For each u in C(v) if NS(v)

is not contained in NS(u), then u is safely pruned. After that, the shortest

path of each vertex u in the dataset, is generated from its matched vertex v

in the query graph up to k′ by-product of NS(v). The shortest path of u is

denoted as pu . The set of shortest paths must cover all query graph’s edges (this

set is constructed jointly). And finally the isomorphism testing is done by an

edge-to-edge matching.

GraphQL was introduced earlier to SPath. SPath has better performance as

compared to GraphQL. Both perform neighbourhood-signature-based pruning

before starting a subgraph matching procedure. Spath performance is directly

related to the neighbors scope. Which means that, the bigger the neighborhood

scope is, the more the filtering time of Spath increases. Also, Spath uses costly

join operations [57].

2.4.4 GADDI

GADDI [55] computes a neighbourhood discriminating structure distance between

pairs of neighbouring vertices of the data graph. Then, the algotithm launches a

subgraph matching algorithm. This one applies a two-way pruning and incor-

porates a dynamic matching schema.

The neighborhood discriminating distance is based on frequent substructure

count. First the algorithm generates intersecting subgraphs between each pair

of vertices from their neighborhood’s sets. After that to prune out unpromising

subtructures, discriminative substructures are selected from the frequent ones.

A discriminative substructure is denoted asDS(G). A substructure is to be called

frequent, if it is subgraph isomorphic to at least half of the intersecting subgraph

Chemseddine Nabti Liris laboratory 25

Subgraph Isomorphism search

Figure 2.6: the NDS distance [55]

of two vertices v1 and v2 in the data graph. After finding a DS(G) for a given

substructure P. A new NDS (Neighboring Discriminating Substructure) distance

denoted as dNDS(G,v1, v2,P), is calculated for each pair of neighboring vertices

as an index structure.

This distance is the number of matches of P in the intersecting subgraph

Int(G,v1, v2). In the example of Figure 2.6, Length =4 (Length is the upper

bound of the shortest distance between a pair of vertices to be indexed), k=3 (the

k-neighboring), P is a substructure. The distance between the two filled vertices

is three because there are three matches in their intersecting subgraphs. Matches

of the discriminative substructure in the interscting subgraphs are marked by

dashed lines.

The matching phase is processed as follows :

26 Liris laboratory Chemseddine Nabti

2.4 Existing Algorithms

1. Vertex matching and distance-based pruning: a vertex in the data graph

is matched to one vertex in the query graph using a depth-first matching

algorithm. For the new matched vertices, a two-way-pruning strategy is

processed. The first way is by fixing the query graph’s vertex and search-

ing for data graph’s vertices that can match it. To do this, ∀v ∈ G,∀u ∈

Q,d(Q,u,v) ≤ Length, find: v′ ∈ G,d(G,v,v′) ≤ length, where: 1) �(v) = �(v),

2) d(Q,u,v) ≥ d(G,v,v′), and 3) dNDS (Q,u,v) ≤ dNDS (G,v,v′). The second

way-pruning consists to fix the data graph’s vertex and search for query

graph’s vertices that can match it. With the same conditions as the first

way. After that the algorithm prunes vertices in the data graph that does

not participate in the current matching.

2. Dynamic matching algorithm: this algorithm aims to find all possible

matches for the query graph. To avoid useless calculations, the algorithm

stores edges after matching a query graph vertex with a data graph vertex

for the first time. If they verify the three conditions mentioned above, two

lists are created for each vertex in the data graph. One represent the list of

query vertices that the data graph’s vertex can be matched to. The second

one is the list of query vertices with which the data graph’s vertex cannot

be matched to.

2.4.5 QuickSI

QuickSI [45] is a subgraph isomorphism search alrorithm, developed to support

large graphs. QuickSI tries to access vertices having infrequent vertex labels and

infrequent adjacent edge labels as early as possible. The algorithm computes

vertices’ frequences before starting the search procedure. QuickSI relies on the

concept of QI-sequence to reduce the search space. A QI-sequence of a graph

Chemseddine Nabti Liris laboratory 27

Subgraph Isomorphism search

G is a rooted spanning tree for a query Q. A spanning tree of Q is a subgraph

that is a tree which includes all of the vertices of Q, with minimum possible

number of edges. The QI-sequence is represented in [45] as a regular expression :

SEQQ = [[TiR
∗
ij]

β]. Where β is the number of vertices in Q, Ti is a spanning entry

(a vertex in the spanning tree). For each i ∈ [1,β], Ti contains: Ti.v that records

a vertex, and [Ti.p,Ti .l]. T i.p is the parent of Ti.v, and Ti.l stores the label of

Ti.v. Also Rij represents extra entries that are stored. These extra entries may be

vertices’ degree, or edges that do not appear in the spanning tree.

To choose an effective QI-sequence, the query graph Q is converted to a

weighted graph according to the average number of possible mappings from Q

to a data graph G. A minimum spanning tree is based on edge weights. This

one is to be used to generate a QI-sequence of Q. Vertices’ weights are used to

determine the order of the first two entries. Using this, the QuickSI algorithm

checks if there is a sequence of a subgraph g in G, which is identical to SEQq. If

two sequences are identical, then the corresponding graphs must be identical.

Quick-SI adopts a depth-first-search order following the order of sequences in

SEQq.

After that, a new filtering approach is proposed to reduce the subgraph

isomorphism testing cost. The filtering uses an index called swift-index, based

on two techniques : a prefix-pruning technique and a prefix-sharing technique.

Swift-index uses tree features instead of subgraph features. A tree feature is

organized by a prefix tree, where each vertex is an entry Ti of a tree feature

sequence. A prerfix SEQi
f is an induced subgraph of the tree feature f against its

vertices. By processing a depth-first search on the prefix-tree, if a prefix SEQi
f

cannot be mapped to q, then the feature f that corresponds to this sequence is

prunned. No need to see all the sequence. A prefix sharing is used when features

share some prefixes in the prefix-tree. The idea is to keep one mapping and

28 Liris laboratory Chemseddine Nabti

2.4 Existing Algorithms

replace it with another one after using it against all features with the shared

prefix.

To control the index size, only frequent and discriminative trees are chosen.

The frequency of a feature f , is computed by f rq(f) =
|{g |f ⊂g∧g∈D}}|

|D|
, f is frequent

iff f rq(f) ≥ δ, where δ ∈ [0,1]. Also a discriminative measure dis(f) is defined as:

dis(f) =
|f .list|

|
⋂
{f ′ .list|f ′⊂f ∧f ′∈I }|

. f is discriminative iff dis(f) < 1−γ , where γ ∈ [0,1].

2.4.6 Turbo-iso

Turboiso is a subgraph isomophism search solution [23] that focuses on solving

the matching order selection problem, the blind exploitation of neighborhood,

and the permutation problem of the existing algorithms.

First of all, Turboiso constructs the query NEC tree. A NEC is a class that

contains a group of vertices. A vertex v of a query graph Q is associated to a

NEC, if all vertices in this class are equivalent to v. Two vertices are said to

be equivalent if they have the same label, and for each embedding m, there

is another embedding m′ which contains m without the matching of this two

vertices with their permutaion. m contains the matching of two vertices.

Rewriting the query graph into a NEC tree is performed by a BFS search, starting

with a start query vertex. The start vertex is chosen by a ranking function:

Rank(u) =
f req(G.l(u))

deg(u)
, f req(G,�) is the number of data vertices in G that have

label l.

After this phase, a candidate region exploration is processed. It identifies

candidate regions which are subgraphs of the data graph where there is more

chance to find embeddings for the query graph. When performing a subgraph

isomorphism search on all candidate regions, all embeddings can be found. Next,

a matching order is obtained by sorting each path in the NEC tree in ascending

Chemseddine Nabti Liris laboratory 29

Subgraph Isomorphism search

order according to its number of candidate vertices. Finally, according to the

matching order obtained and using candidate data vertices of the NEC vertices,

a recursive routine is processed for subgraph search.

Turbo-iso was tested and also compared with the most performing algorithms

such as VF2 and QuickSI and showed better performance.

2.4.7 CFL-match

CFL-match [6] is the most recent method to search for subgraph matching.

First the query graph is decomposed into three substructures. Then subgraph

matching is performed on each of these substructures. This algorithm is based

on a core-forest-leaf decomposition of the query graph. It generates a matching

order that conducts non-tree edges checkings at earlier levels. It aims to postpone

cartesian products. CFL-match [6] uses first a costly filtering method. It uses the

neighborhood label frequency filter to ensure that a data vertex is a candidate.

CFL-match proposes after that another way to filter in order to reduce the time

processing of the first filter. The new filtering mechanism is the maximum

Neighbor-Degree filter. It can be verified in constant time for each candidate

data vertex. In the Core-Forest Decomposition, authors use a spanning tree QT

of the query Q in which, the group of edges of Q that are not in the set of edges

of QT are called non-tree edges. The rest of edges are called tree edges. For

each set of non-tree edges of a spanning tree in Q, the core-forest decomposition

computes a small dense subgraph that contains the set of non-tree edges. This

subgraph is the minimal connected subgraph. The subgraph composed of the

non-tree edges of Q is called the core-structure of Q. For the rest of edges (tree

edges), the subgraph is called forest-structure of Q and denoted T . After the

core-forest decomposition, there is the forest-leaf decomposition. Here, the

30 Liris laboratory Chemseddine Nabti

2.4 Existing Algorithms

forest-structure T is decomposed. into a forest-set VT and a leaf-set VI . All

leaf-set vertices will be at the end of the matching order.

Figure 2.7: Core-Forest-Leaf Decomposition [6]

To encode all possible embeddings of a query in a given data graph, a data

structure called CPI (compact path-index) is built. Figure 2.8 shows an ex-

ample of CPI. In this Figure, we can see that the candidate set of u0 and u1 are

u0.C = v0, ..., v4 and u1.C = v5, ..., v9. After that, authors use a specific CPI-based

Matching Order Selection. All embeddings of Q, in the data graph G, are sorted

by parsing the CPI. G is used only for non-tree edges checking. Figure 2.9 shows

a running example, here we can see the constructed CPI for the query graph

Q over the data graph G. Finally after constructing CPI and with a related

matching order, a CPI-based Forest-Match, and a CPI-based Leaf-Match are

Chemseddine Nabti Liris laboratory 31

Subgraph Isomorphism search

Figure 2.8: Example CPI [6]

Figure 2.9: Running Example [6]

32 Liris laboratory Chemseddine Nabti

2.4 Existing Algorithms

performed to find CPI-based Embeddings.

2.4.8 Other Methods and techniques

Other methods that are more general or that use specific computing plateforms

exist for subgraph isomorphism search. We survey, in the following, some

of them. The Nauty algorithm, of Brendan McKay [38], detects isomorphism

between untyped graphs that may be directed or undirected. Nauty uses trans-

formations to reduce graphs to a canonical form that may be checked relatively

quickly for isomorphism. Specifically, the algorithm computes invariants for

each vertex in a graph (e.g., degree and counts of adjacent vertices) that are

used for candidate selection. Nauty partitions a graph into non-overlapping

subsets such that the vertices in a particular subset share identical invariant

values. Subsets having the same invariant values can then be compared across

graphs. If all subsets are isomorphic between two graphs, then the two graphs

must be isomorphic. Alternatively, if two graphs contain subsets with differing

invariants, there is no need to test isomorphism between the sets directly.

Authors in [47] propose a subgraph matching algorithm for very large graphs

deployed on a distributed memory store. They use the Trinity memory cloud,

which provides a unified adress space for a set of machines, as if a large graph is

stored in one machine.

The subgraph matching of this method is showed on Figure 2.10. It needs three

steps:

1. Query decomposition and STwigs ordering. A Query graph is decomposed

into a set of STwigs. An STwig is a two level tree structure. It contains a

root and the list of its child vertices. An STwig is the basic unit of graph

access. To find a matching between STwigs a MatchSTwig() function is

Chemseddine Nabti Liris laboratory 33

Subgraph Isomorphism search

Figure 2.10: Subgraph isomorphism search on Trinity[47]

used, this function returns a set of STwigs that match the query.

2. Exploration. Using the order selection of STwigs, the list of STwigs is

processed one by one. For each label a of the STwig q1, a set of vertices that

match a is sorted. After that the algorithm compares the union of STwigs

labels’ sets to see if they can produce an answer on their own. Each STwig

provides its group matching, for example for q1, a group G(q1) is sorted.

All STwigs are processed until all vertices of the query are bound.

3. Joins. A sequence of results (G(q1),G(q2), ...,G(qk)) is generated in the

exploration step. This sequence is joined to produce a final answer. This

join is based on a sample-based join cost estimation method and cost-based

join order selection method [47].

TMODS [20] is another algorithm proposed for subgraph isomorphism search.

It uses a set of genetic algorithms to find exact and inexact pattern matches in

directed, attributed graphs. Patterns may specify both structural and attribute

characteristics.

34 Liris laboratory Chemseddine Nabti

2.5 Analysis

TMODS searches for patterns from bottom to up, finding sub-patterns first and

then composing them into more complex higher-level patterns.

2.5 Analysis

We studied the above algorithms specially according to their pruning mech-

anisms. We distinguish three main prunning mechanisms that can be used

separately or combined for more efficiency:

1. Vertex properties: This technique is a local pruning mechanism. A local

pruning prunes the set of mappings that are candidates for a single vertex.

Vertex properties such as the degree and the label, are powerful prun-

ing mechanism used by most algorithms. In fact, the final search space

is the result of joining of the sets of available mappings of each query

vertex. Thus, given a query graph Q = (V (Q),E(Q), �,Σ) and a data graph

G = (V (G),E(G), �,Σ), the aim is to reduce as much as possible the sets C(ui),

i = 1, |VQ |, where C(ui) is the set of vertices of the data graph that match

the query vertex ui . The final search space is obtained by joining these sets,

i.e., C(u1) ×C(u2) × · · · ×C(u|VQ |) [26]. The reduction of C(u) is generally

achieved using the neighborhood information of u. The amount of the

obtained pruning depends on the scope of the considered neighborhood.

The simplest solution considers the one-hop neighborhood such as the

degree of the vertex and/or the labels of the neighbors. Neighborhood at

k−hops is also used in some methods. Ullmann’s Algorithm [49] refines Cu

by removing the vertices that have a smaller degree than u. GraphQL [25]

also uses the direct neighborhood by encoding within a sequence, the labels

of the neighbors of each vertex. Furthermore, GraphQL uses an approxim-

ation algorithm proposed to further reduce the search space by discarding

Chemseddine Nabti Liris laboratory 35

Subgraph Isomorphism search

the data vertices that are not compatible with the query vertex using the

k−neighborhood around u. VF2 [41] looks to 2-hops neighborhood. SPath

Spath [57] uses the k-neighborhood by maintaining for each vertex u a

structure that contains the labels of all vertices that are at a distance less

or equal than k from u. SPath uses its encoding of the k-neighborhood to

remove the data vertices that have a k-neighborhood that does not englobe

any k-neighborhood of query vertices. By rewriting, the query within a

tree, QuickSI [45] and TurboISO [23] use also the k−neighborhood with

the particularity that the neighborhood is rooted at a more pruning vertex.

The tree representation of TurboISO is also more compact as it aggregates

similar vertices.

2. Matching order: the matching order is a global prunning mechanism. a

global pruning operates on the whole search space. The matching order

determines in which order query vertices are handled and in which or-

der data vertices are targeted. This order has also an important pruning

capacity. For the data graph, the idea is to avoid a blind traversal of the

search space and target specified regions on the data graph for subgraph

isomorphism search. These regions are selected according to the properties

of the query vertices. A candidate region for a query graph Q is a subgraph

of the data graph G which may contain embedding of the query graph.

So, performing subgraph isomorphism search on all candidate regions

will ensure that all embedding can be obtained. However, minimizing

the number of candidate regions and the size of each region is obviously

important for faster matching. For this, regions are selected around the

less popular query vertex in the data graph. For example, the authors of

36 Liris laboratory Chemseddine Nabti

2.5 Analysis

[60] rank every query vertex u by :

rank(u) =
f req(G,�(u))

deg(u)
(2.1)

Where f req(G,l) is the number of data vertices in G that have label l,

and deg(u) means the degree of u. This ranking function favors lower

frequencies and higher degrees which will minimize the number of regions.

This ranking is also used in [23] in a more recent solution called TurboISO.

However, when the labels and the degrees are not discriminative, this

ranking becomes obsolete leading to visiting the whole search space.

For the query graph, the matching order means that the query vertices are

handled in an order that simplifies their matching. For this, the most used

order is equivalent to tree traversal of the query vertices. A spanning tree

of the query is constructed according to a ranking equivalent to the one

given by Equation (1). In [26, 46, 56, 58] the root of the tree is the less

popular vertex. This solution is also adopted by TurboISO [23]. However,

TurboISO goes further by grouping the vertices that have the same labels

and the same neighborhood. The obtained smaller tree is called a NEC tree.

TurboISO constructs candidate regions for the query Q in the data graph G

by constructing for each region a BFS search tree TG from the root vertex u′s

of the NEC tree Q′ so that each leaf is on the shortest path from u′s. Then,

for the start vertex vs of each target candidate region, identify candidate

data vertices for each query vertex by performing depth-first search using

TG and starting from vs. TurboISO reduces the number of regions using the

ranking function given by Equation 2.1. When exploring candidate regions,

TurboISO also minimizes the number of enumerated partial solutions by

Chemseddine Nabti Liris laboratory 37

Subgraph Isomorphism search

ordering the NEC tree vertices by increasing sizes. Thus, paths involving

fewer vertices are explored first, the space is pruned if no isomorphism is

possible. In [23], TurboISO is compared to the other approaches and its

superiority in processing queries is attested via extensive experimentations.

3. Query rewriting: is also a glabal prunning mechanism. Consists on rep-

resenting the query in a form that simplifies its matching. Ullmann’s

algorithm and Spath do not define a global pruning mechanism and picks

the query vertices in a random manner. VF2 and GADDI handle a query

vertex only if it is conneceted to an already matched vertex. However

GADDI uses an additional mechanism: a distance based on the number of

frequent sub-structures between the K-neighborhoods of two vertices as a

mean to prune globally the search space after each established mappings

between a query vertex and a data vertex. QuickSI rewrites the query in

the form of a tree: a spanning tree of the query. Edges and vertices of the

query are weighted by the frequency of their occurrence in the data graph.

Based on these weights, a minimum spanning tree is constructed and used

to search the data graph. GraphQL selects the vertex that minimises the

cost of the ongoing join operation. The cost of a join is estimated by the size

of the product of the involved sets of vertices. TurboISO uses the ordering

introduced in [60]. This ordering uses the popularity of query vertices

in the data graph. Every query vertex u is ranked by rank(u) =
f req(G,�(u))

deg(u)

introduced above. Furthermore, TurboISO rewrites the query within a tree

using this ranking as in QuickSI but TurboISO aggregates the vertices that

have the same labels and the same neighbors into a single vertex. This

aggregation has been extended to data graphs in [43]

38 Liris laboratory Chemseddine Nabti

2.6 Conclusion

2.6 Conclusion

In this chapter, we presented and discussed the state of the art related to sub-

graph isomorphism search algorithms. We focused on the more recent and

interesting methods but we also reviewed general approaches as well as those

dedicated to specific plateforms. We then analysed these algorithms according

on how they filter the search space.

In the next chapter, we introduce our first contribution that solves subgraph

isomoprhism search problem on compressed graphs in order to deal with large

graphs on a simple commodity machine.

Chemseddine Nabti Liris laboratory 39

Chapter 3: SUBGRAPH

ISOMORPHISM SEARCH ON

COMPRESSED GRAPHS

I
n this chapter, we present our first contribution: a subgraph isomorphism

search that operates on compressed graphs. Our goal is to reduce the amount

of memory used to store graphs, but also reduce the search space within a

backtracking-based subgraph isomorphism algorithm. This explains why we use

compressed graphs. With compressed graphs the processing time is also reduced.

Our challenge is to query these compressed graphs without decompressing them.

We analyze the processing time of the proposed algorithm and conduct extensive

experiments on several datasets, with different sizes to attest the effectiveness of

the proposed approach.

Contents

3.1 Introduction . 43

3.2 Graph Compression . 43

3.3 Compress and Search . 51

3.3.1 Candidate Supervertex Selection 53

3.3.2 Subgraph Search . 57

3.4 Performance Evaluation . 60

Chemseddine Nabti Liris laboratory 41

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

3.4.1 Datasets . 61

3.4.2 Results . 65

3.4.3 Discussion . 66

3.5 Conclusion . 73

42 Liris laboratory Chemseddine Nabti

3.1 Introduction

3.1 Introduction

We recall that the problem of subgraph isomorphism search is the problem

of finding the embedding of a query graph into a target graph called a data

graph. The data graph is generally larger than the query and may contain several

occurrences of it. The objective is then to enumerate all the occurrences of the

query graph within the data graph in a reasonable time.

Given a query graph Q and a data graph G, a straightforward solution to enu-

merating the occurrences of Q into G is to directly compare the vertices of the

query with the vertices of the data graph. This comparison constructs a search

tree where each vertex of the tree corresponds to a mapping between a vertex

from the query with a vertex from the data graph.

In this chapter, we target the memory and time consuming challenges re-

lated to parsing this search space by a new framework that handles efficiently

the problem of querying graph data with subgraph isomorphism search. Our

solution aims to deal with subgraph isomorphism challenges in massive graph

databases through graph compression.

We first present graph compression and its algorithms, then we present an ap-

proach that ensites to search for subgraph isomorphism on compressed graphs.

3.2 Graph Compression

Graph compression, also known as graph summarizing, aims to reduce the

amount of storage space required for storing graphs. It offers simple representa-

tions of huge graphs. Generally, wa are interested in compressing methods that

do not require decompression to process the graphs. So, this summaries must

retain an amount of the graph properties that are sufficient to the application.

Chemseddine Nabti Liris laboratory 43

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

Graph compression has the following advantages [53, 2].

1. Reduction of data volume and storage.

2. Speedup of graph algorithms and queries: in general, an algorithm that is

executed on the compressed version of the graph is more efficient in term

of time processing than when executed on the original graph.

3. Interactive analysis support: summarization is used to handle information

extraction and to speed up user analysis.

4. Noise elimination: real graph data interfere with many hidden, or erro-

neous links and labels. Summarization is used to filter out noise and reveal

patterns that exist in the data.

It has also several challenges [53]:

1. Volume of data: summarization techniques reduce the size of graphs but

the challenge is with large graphs. Summarization methods need to process

large amounts of data, and also to be able to handle scaling.

2. Complexity of data: the heterogenity of nodes and edges continues to

increase within graphs, and other information such as labels or other data,

from different sources, need specific design and quantification.

3. Definition of interestingness: it is difficult to determine, in an obective way,

if an information is interesting or not.

4. Evaluation: evaluation of summaries becomes more difficult when more

elements, such as visualization and multi-resolution summaries, are in-

volved.

44 Liris laboratory Chemseddine Nabti

3.2 Graph Compression

5. Change over time: the question is how to perform efficient analysis on

dynamic data.

Several works published in the domain of graph compression concern the

compression of the web graph [2, 42, 8]. These works aim to reduce the size of

the web graph. The proposed compression focuses on compressing the edges

between vertices. The main approach uses references between vertices that share

a subset of edges. Compression of data graphs takes a different approach that

we can qualify as label-oriented or query-oriented. Label-oriented compression

compacts vertices that have the same label into a kind of supervertices as follows:

Definition 7. [12] Given a labeled graph G with V (G) partitioned into groups, i.e.,

V (G) = V1(G),V2(G), · · · ,Vk(G) such that:

1. Vi(G)∩Vj(G) = φ,1 ≤ i � j ≤ k

2. all vertices in Vi(G),1 ≤ i ≤ k, have the same labels.

We can summarize G into a compressed version comp(G) where:

• comp(G) has exactly k vertices v1, v2, · · · , vk that correspond to each of the

groups of V (G) (i.e., Vi(G) �→ vi). The label of vi is set to be the same as those

vertices in Vi(G), and

• an edge (vi ,vj)with label l exists in comp(G) if and only if there is an edge (u,u′)

with label l between some vertex u ∈ Vi(G) and some other vertex u′ ∈ Vj(G).

Figure 3.1 illustrates the compression (graph (b)) of the graph given in (a).

Each vertex of the compressed graph is a group of vertices having the same

label. However, this compression does not retain all the structural information

available in the original graph. For example, the edge between the vertex labeled

b and the vertex labeled d in Figure 3.1(b) cannot inform us if this edge links

Chemseddine Nabti Liris laboratory 45

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

a b

c

d

a

c

a
c

c
b

c

a

u1
u2

u3

u4
u5

u8

u9

u7

u12

u11

u10

u6

u1
u5u9

u12

a
u2

u11

b

c
u4

u8u7u6
u10

u3

d

(a) (b)

Figure 3.1: Graph compression with [12].

u3 to u11 or u3 to u2. This means that the algorithms that use the compressed

graphs do not aim to have exact solutions but approximative ones.

In [12], authors propose an algorithm that finds all frequent subgraphs

in a database of large graphs where the graphs are compressed according to

Definition 7.

We also have query-oriented compression which is a compression that pre-

serves a kind or a class of queries [3, 27, 10, 37, 50, 16]. Given a graph G and a

kind of queries Q, i.e., path queries, neighborhood queries, reachability queries,

etc., the compression constructs a smaller graph G′ such that the results on G for

all queries in the class Q are equivalent to their results on G′. The compression

function depends of the kind of the queries. For example, the compression

function is equivalent to the one given by Definition 7 for pattern queries and it

46 Liris laboratory Chemseddine Nabti

3.2 Graph Compression

groups the vertices that have the same neighbors for reachability queries.

Grouping the vertices that have the same neighbors in a graph is a well known

concept in graph theory called modular decomposition. Modular decomposition

has been introduced by Gallai [17] to solve optimization problems. It is used to

generate a tree representation of a graph that highlights groups of vertices that

have the same neighbors outside the group. These subsets of vertices are called

modules.

Definition 8. A module of a graph G = (V ,E) is a set M ⊆ V of vertices where all

vertices in M have the same neighbors in V�M .

Modules are classified into three categories according to how the vertices are

connected inside the module:

• Series: if G[M] is a clique (A clique is a set of vertices connected to each

other).

• Parallel: if G[M] is a clique.

• Neighborhood: Both, G[M] and G[M] are connected graphs.

Figure 3.2(a) presents a graph and its modules. This example will be used as a

running example throughout the paper. It is borrowed from [31] with a slight

modification.

In [31], authors use modular decomposition to compress large graphs. They

define a similarity measure between graphs using the obtained compressed

graphs. They compress graphs by recursively compacting modules as illustrated

in Figure 3.2. To obtain a unique representation of the graph only the modules

that do not overlap with other modules are compacted.

To retain all the properties of the original graph with the obtained compact

representation of the graph, adjacency information for neighborhood modules

Chemseddine Nabti Liris laboratory 47

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

a

b

c

d

e

f

g

h
i

j

k

l m

a

(a)

S(b,c)

a

d

e

f

g

h

i
j

k

l m

(b)
a

S(b,c)

a

N(d, e, f, g)h
i

j

k

l m

(c)
a

S(b,c)

a

N(d, e, f, g)h
i

j

k

P(l, m)

(d)
a

S(b,c)

a

N(d, e, f, g)h

S(i, j)

k

P(l, m)

(e)
a

S(b,c)

a

N(d, e, f, g)h
P(S(i,j), k)

P(l, m)

(f)
a

Figure 3.2: Compressing steps with modular decomposition. S : series module.

P: parallel module. N : neighborhood module [31].

48 Liris laboratory Chemseddine Nabti

3.2 Graph Compression

Figure 3.3: Example of a graph and its compression [44].

A protein interaction graph with 1818 vertices and 1833 edges and its compressed graph with 271 vertices and 321

edges.

Chemseddine Nabti Liris laboratory 49

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

Figure 3.4: The architecture for the proposed framework.

50 Liris laboratory Chemseddine Nabti

3.3 Compress and Search

must be stored. Series and parallel modules need no information about adjacency.

For example, The obtained compressed graph illustrated in Figure 3.2(f) is a

neighborhood module that can be denoted :

N (a,S(b,c),N (d,e, f ,g),h,a,P(S(i, j), k),P(l,m)).

For this module, we retain the edges between the supervertices to keep adjacency

information. This gives the final compressed graph. We also retain the edges

that bind the vertices of the neighborhood module N (d,e, f ,g).

This compression method can allow high compression rates as illustrated in

Figure 3.3 that presents a protein interaction graph and its compression obtained

by modular decomposition.

A triangle listing algorithm is also proposed on graphs compressed by mod-

ular decomposition in [30]. In [43], the authors use a compression unifying

Definition 7 and the concept of modules. They compact the vertices that have

the same labels by distinguishing between two kinds of groups of vertices: those

that are completely connected and form a clique, i.e., a series module, and those

that are not connected at all,i.e., a parallel module.

In our framework, we also rely on modular decomposition to compress

graphs mainly because it is a more general compression that encompasses the

compressions used till now.

3.3 Compress and Search

In this section, we present our subgraph isomorphism search framework, named,

SumISO, in detail. Our framework aims to address subgraph isomorphism

search in massive graph databases with a novel approach to reduce search space:

Chemseddine Nabti Liris laboratory 51

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

Figure 3.5: Compression Step of the Running Example.

compression.

To compress graphs, we use modular decomposition which is a well studied

concept in graph theory [21]. To our knowledge, we are the first to use modular

decomposition to reduce the search space in subgraph isomorphism search

algorithms. As we will demonstrate, the benefits are threefold:

1. reduce the storage space needed to store graphs,

2. process the graphs without decompression, and

3. reduce the time necessary to achieve subgraph isomorphism search mainly

because the search space is reduced.

52 Liris laboratory Chemseddine Nabti

3.3 Compress and Search

Figure 3.4 illustrates the architecture of the proposed framework. Data

graphs are compressed offline using modular decomposition. They are stored

and processed in their compressed format. To process a query graph Q, Q is

first compressed similarly to the data graph by modular decomposition. Figure

3.5 illustrates the compression step for our running example and the obtained

compressed graphs (both query and data).

Query processing takes in entry the compressed versions C(Q) and C(G) of Q

and G respectively and reports all the embeddings ofQ in G. To avoid ambiguity,

we will use the terms supervetex or module to denote a node in the compressed

graph and we will denote it by m. The term vertex and leaf will denote a node

from the original graph. The Algorithm operates in two phases: a candidate

supervertex selection phase and a subgraph search phase. During the first phase,

the compressed data graph is parsed to retain only regions of the graph that are

likely to contain the query. This selection uses only the labels of the modules.

During the second phase, a backtracking-like algorithm is used in each region to

verify the embedding. In the following we detail both phases and show how we

can find all the embedding by parsing the compressed data graph.

3.3.1 Candidate Supervertex Selection

The aim of this step is to determine the modules (supervertices) that are likely

to match the query. With this step, we minimize the number of vertices of the

data graph to be processed. For this, we explore the modules of C(G) to get all

those that contain at least one of the labels of the query. Let Cand denotes the

obtained result with:

Cand = {m ∈ C(G) such that �(m)∩ �(C(Q)) �∅}.

Chemseddine Nabti Liris laboratory 53

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

After that the set of candidate modules is partitioned in several subsets where

each of them is candidate for a single embedding. Each subset contains the

minimum number of modules that satisfy all the labels of the query. Subgraph

search is then invoked on each of these subsets. This step is illustrated in Figure

3.6 and its detailed actions are given by Algorithm 1.

Algorithm 1: Supervertex Selection.

Data: A summarized data graph C(G) and a summarized query C(Q).

Result: A set of candidate supervertices of C(G) that match C(Q).

begin
Cand ←∅;

foreach m ∈ C(G) do
if �(Q)∩ �(m) �∅ then

Cand ← Cand ∪ {m};
end

end
C ← {s = {m1,m2, · · · ,mj }|�(Q) ⊆ �(s)};

foreach s ∈ C do
P ←∅;

SubgraphSearch(C(Q), s,P);

end

end

54 Liris laboratory Chemseddine Nabti

3.3 Compress and Search

Figure 3.6: Flowchart of step 1 (Supervertex Selection).

Figure 3.7: Flowchart of step 2 (Subgraph Search).

Chemseddine Nabti Liris laboratory 55

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

Algorithm 2: Subgraph Search.

Data: A set of modules from the data graph s = {m1,m2, · · · ,mj }, the compressed

query C(Q) and a partial embedding P.
Result: All embeddings of Q in s.
begin

if |P | = |V (C(Q))| then
Report P;

else
Choose a non matched vertex u from Leaves(m),m ∈ C(Q);

Cu ← { non matched v ∈ Leaves(mi) such that mi ∈ s and �(v) = �(u) and
IsJoinable(u,v,P)};

foreach v ∈ Cu do
P ← P ∪ {(u,v)};
SubgraphSearch(C(Q), s,P);
Remove (u,v) from P ;

end

end

end

Figure 3.8 illustrates the result of candidate supervertex selection on our

running example. In this Figure, we can see that the query is compressed in a

single supervertex labeled S(P(b,c), a). �(C(Q)) = {a,c,b}. The set of candidate

supervertices is Cand = {1,2,5}, where 1, 2 and 5 are the identifiers of the

supervertices that are candidates to match the query. The partitioning of Cand

yields to the subsets {1,2} and {1,5}. This means that there are two regions in the

data graph to explore for subgraph isomorphism.

Note that at this step, we have a set of candidates with no order. These

candidates are selected solely on labels. No structural verification are done with

the query. So, at the end of this step, we do not know if there is a subgraph in G

that matches the query. The aim of the next step is to aggregate the candidate

supervertices in order to verify if the structure of the query is preserved within

them.

56 Liris laboratory Chemseddine Nabti

3.3 Compress and Search

Figure 3.8: Supervertex Selection Phase on our Running Example.

3.3.2 Subgraph Search

The subgraph search phase is illustrated in Figure 3.7. Its detailed actions are

given by Algorithm 2.

This step takes as inputs a query C(Q) and a set s = {m1,m2, · · · ,mj } of mod-

ules that are likely to contain an embedding of the query. It returns all the

embeddings of the query in these modules. An embedding is represented by

a set P of pairs (u,v), where u is a query vertex and v is the data vertex that

matches u. For each vertex u in C(Q), SubgraphSearch first finds the set of

candidate vertices Cu from the vertices of the modules of the set s. A vertex v of

the data graph matches u if it has the same label as u and all the neighbors of u

are matched to neighbors of v. This is verified by a call to function IsJoinable

(detailed in Algorithm 3). Given two vertices u (from the query) and v (from the

data graph) to be matched, function IsJoinable returns TRUE if the neighbors of

vertex u are matched to neighbors of vertex v in the match P. To have the list

Chemseddine Nabti Liris laboratory 57

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

i

P
S

h

a

j
k

a

ge

c

f

Prl
b

d

S
P

m

Figure 3.9: Tree representation of Modules [31].

of neighbors of a vertex in a compressed graph, we use function Neighbors that

takes advantage from the tree structure of the compressed graph to easily list

the neighbors of a vertex as detailed in Algorithm 4. In fact, each module is a

tree whose leaves are the vertices of the original graph as illustrated in Figure

3.9 for the modules of our example.

Given a vertex v, we denote by Father(v) the module that contains it and by

root(C(G)) the module corresponding to the compressed graph. Given a module

m, Leaves(m) gives the leaves, i.e., vertices of the module m. Also, we will use

�(x) to denote the set of labels of a module or vertex x. According to the type

(series, parallel or neighborhood) of the module that contains the vertex we

can easily determine its neighbors. Algorithm 4 parses the subtree of C(G) that

contains u from the father of u upward to the root of C(G). If a visited vertex

x is a series module, then all the leaves of its descendants that are not in the

branch that contains u are neighbors of u. If the visited vertex is a neighborhood

module, neighbors of u are determined according to the edges of the module.

When a match (u,v) is verified, in procedure SubgraphSearch, it is reported

58 Liris laboratory Chemseddine Nabti

3.3 Compress and Search

in P. As in any backtracking-based algorithm, SubgraphSearch uses recursion

to complete the partial match until it meets the query. When a match fails, the

procedure backtracks to the preceding state by removing the match. For our

running example, only the region {1,2} contains an embedding of the query.

Region {1,5} is dropped by the matching algorithm as illustrated in Figure 3.10.

Figure 3.10: Subgraph Search Phase of the Running Example.

Algorithm 3: Verify that two vertices to be matched have the same adja-

cency (IsJoinable).

Data: Two vertices u and v to be matched.

Result: True is the the vertices have the same adjacency.

begin
return (∀u′ ∈Neighbors(u), if u′ is matched to v′ then v′ ∈Neignbors(v));

end

Chemseddine Nabti Liris laboratory 59

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

Algorithm 4: Computing the set of neighbors of a vertex in a compressed

graph (Neighbors).

Data: A vertex u and a compressed graph C(G).

Result: The set of neighbors of u in G.

begin

N ←∅;

z← u;

x← Father(u);

while x � root(C(G)) do

switch type of x do

case a series module do

foreach child y � z of x do

N ←N ∪Leaves(y);

end

case a Neighborhood module do

foreach edge (z,y) ∈ x do

N ←N ∪Leaves(y);

end

end

z← x;

x← Father(x);

end

return N

end

3.4 Performance Evaluation

In this section, we present a detailed evaluation of SumISO. We evaluate mainly

the execution time performance of SumISO over different type of graphs and size

60 Liris laboratory Chemseddine Nabti

3.4 Performance Evaluation

of queries. We also compared it with the most efficient state of the art algorithm,

called TurboISO and presented in [23]. We recall that TurboISO is itself compared

to the other existing solutions in [23] and showed to be superior to them.

We first describe the datasets used in the experiments, then we present our

results.

3.4.1 Datasets

We use nine different real-world graphs to evaluate our approach. Three of

the considered datasets were used in [23] to prove the superiority of TurboISO

against the other algorithms of the literature described in Chapter 2. These

datasets are referred to as AIDS, NASA, and HUMAN. The AIDS and HUMAN

datasets are also available in the RI database of biochemical data1 [9]. The

six other datasets come from the Stanford Large Network Dataset Collection

(http://snap.stanford.edu/) and are referred to as Patent Citation [36], Pokec

[48], LiveJournal [34], Orkut [52], WebGoogle [34] and Wiki-talk [35]. These

are mainly large networks corresponding to real social networks, web graphs

or citation networks. For these graphs, we introduced randomly labels on the

vertices and the edges. The totality of the datasets are described below:

• AIDS database: This dataset consists of graphs representing molecular

compounds. It contains 10,000 graphs of 27 edges. The number of unique

labels in AIDS is 51.

• NASA database: This dataset contains 36,790 trees with an average size of

32, and a number of unique labels of 117,302.

• Human: This dataset consists of one large graph representing a protein

1http://ferrolab.dmi.unict.it/ri/ri.html#description

Chemseddine Nabti Liris laboratory 61

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

interaction network. This graph has 4,675 vertices and 86,282 edges. The

number of unique labels in the dataset is 90.

• Pokec : Pokec is a highly popular on-line social network in Slovakia that

contains friendship relationships. It has been on production for more than

10 years and connects more than 1.6 million people. The Pokec dataset

contains anonymized data of the whole network.

• Patent Citation : This is the citation network among US Patents. It is

maintained by the US National Bureau of Economic Research. This dataset

contains all the utility patents granted from January 1963 to December

1999. It includes almost 4 million patents and almost 17 millions citations.

• LiveJournal: is an on-line social network with almost 5 million highly

active members that regularly update their contents. With LiveJournal,

members have journals, individual blogs, shared blogs and also declares

their friendship relations.

• Orkut: is a free on-line social network with more than 3 million members

and more than 117 friendship connections. This network is provided by

The Online Social Networks Research Project [1].

• WebGoogle: this is Google web graph. Vertices represent web pages and

edges represent hyperlinks between them. It was released in 2002 by

Google as a part of Google Programming Contest.

• Wiki-Talk: this graph is Wikipedia talk network. A vertex represents a

registered user in Wikipedia. An edge connects user i to user j and means

that user i has, at least once, edited a talk page of user j in order to

communicate and discuss updates to various articles on Wikipedia.

62 Liris laboratory Chemseddine Nabti

3.4 Performance Evaluation

Table 4.2 summarises the characteristics of the nine datasets. Besides the

average number of vertices and edges of the graphs in the dataset, we also give the

average compression rate of each dataset. Given a graph G and its compressed

graph C(G), the compression rate of G is given by: CR(G) =
|E(C(G)|)|
|E(G)|

· 100%. It

compares the number of edges in C(G) in respect to G. We also provide the time

necessary to compress each dataset.

Table 3.1: Graph Dataset Characteristics. avg |V |: average number of vertices.

avg |E|: average number of edges.

Dataset Number of avg |V | avg |E| Compression Compression

graphs rate time(s)

AIDS 10,000 26 27 56.8% 0.230

NASA 36,790 94 32 44.2% 0.180

HUMAN 1 4,675 86,282 61% 0.195

WEBGOOGLE 1 5,105,039 2,378,948 53.4% 6.23

WIKI-TALK 1 2,394,385 5,021,410 50.2% 4.23

PATENT CITATION 1 3,774,762 16,518,948 42% 2.1

POKEC 1 1,632,803 30,622,564 44% 3.62

LIVEJOURNAL 1 4,847,571 68,993,773 30% 9.0

ORKUT 1 3,072,441 117,185,083 57% 14.2

Graphs within the three datasets were preliminarily compressed using an

extension of the algorithm proposed in [11, 22] that computes the modular

decomposition of a graph in linear time. So, we compress an input graph in

O(n+m) time, where n is the number of vertices and m the number of edges of

the graph.

To show the storage saving obtained by compressing the datasets, Table 3.2

reports the size on disk of each dataset before and after compression.

The experiments are performed on a 2.40 GHz Intel(R) Core(TM) i5−4210U

64 bits laptop with 8 GB of RAM running windows 7. The algorithm is imple-

mented in C++.

For the AIDS, NASA, and HUMAN datasets, we use the same query sets as in

Chemseddine Nabti Liris laboratory 63

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

Table 3.2: Size on disk.

Dataset Size on disk Size on disk after

compression

AIDS 4.59 Mb 2.18 Mb

NASA 24 Mb 14.42 Mb

HUMAN 1.15 Mb 0.24 Mb

WEBGOOGLE 71.8 Mb 34.1 Mb

WIKI-TALK 63.3 Mb 32.3 Mb

PATENT CITATION 267 Mb 189 Mb

POKEC 404 Mb 302 Mb

LIVEJOURNAL 1 Gb 0.8 Gb

ORKUT 1.64 Gb 0.93 Gb

[23]. These queries are constructed as follows [23]:

• AIDS and NASA query sets: For each of these datasets, the authors of [23]

constructed 6 query sets (Q4, Q8, Q12, Q16, Q20, Q24), each of which

contains 1,000 query graphs of the same size. Additionally, each query Qi

is contained in a query Qi+1. Each query is a subgraph of a graph in the

dataset.

• Human Query sets: For this dataset, the authors of [23] generated three

kind of queries:

1. Subgraph queries as for the Aids and Nasa datasets. In this case, we

have 10 query sets obtained by varying the number of query sizes

from 1 to 10.

2. Clique queries where the query subgraph is a complete graph. For

biological datasets, such as Human, a clique Query corresponds to a

protein complex [26].

3. Path queries where the query subgraph is a path. A path query corres-

ponds to transcriptional or signaling pathways [26].

64 Liris laboratory Chemseddine Nabti

3.4 Performance Evaluation

For the large datasets, i.e., WebGoogle, Wiki-Talk, Kopec, Patent Citation, Live-

Journal and Orkut, we constructed for each graph, 5 query sets (Q100, Q200,

Q300, Q400, Q500). Each set Qi contains 100 query graphs of the same size i.

The time performance reported in the results is the average time computed

over the sets of queries of the same size.

3.4.2 Results

Figure 3.11 shows the experimental results for AIDS. We can clearly see that the

time performed by TurboISO decreases when the query size increases. This is

explained in [23] by the containment relationship among the query sets in AIDS.

We can also observe the same behavior with SumISO which achieves better than

TurboISO. In our case, this can be explained by important compression rate of

AIDS that yields a small number of candidates to be considered.

Figure 3.12 shows the experimental results for NASA. For this dataset,

SumISO achieves significantly better than TurboISO for all the queries.

Figure 3.13 shows the results of subgraph queries over the human dataset.

The superiority of SumISO over TurboISO is clearly observable as soon as the

query size is greater than 8.

Figure 3.14 shows the results of subgraph isomorphism search for path

and clique queries over the Human dataset. For the clique queries, SumISO

significantly outperforms TurboISO. This is mainly due to the fact that a clique

is compressed to a single vertex in our approach. For path queries, we have also

a better results than TurboISO even if not significantly. We explain this by the

Chemseddine Nabti Liris laboratory 65

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

Figure 3.11: AIDS dataset.

fact that paths are not summarized by modular decomposition.

Our results on the large datasets WebGoogle, Wiki-talk, Patent Citation,

LiveJournal, Pokec and Orkut, illustrated respectively on Figures 3.15, 3.16, 3.17,

3.18, 3.19 and 3.20 definitely settle the effectiveness of the proposed approach.

3.4.3 Discussion

Subgraph isomorphism search is an NP-complete problem. This implies an

exponential processing time, i.e. a processing time that grows with the size of

the graphs. Compression allows to reduce the size of data to save storage space.

Consequently, it deals with the Volume of the data by reducing the required

storage space. Volume is one of the most significant aspect of big data and

66 Liris laboratory Chemseddine Nabti

3.4 Performance Evaluation

Figure 3.12: NASA dataset.

Figure 3.13: Human dataset.

Chemseddine Nabti Liris laboratory 67

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

(a) Path Queries.

(b) Clique Queries.

Figure 3.14: Path and Clique Queries.

68 Liris laboratory Chemseddine Nabti

3.4 Performance Evaluation

Figure 3.15: WebGoogle dataset.

Figure 3.16: Wiki-talk dataset.

Chemseddine Nabti Liris laboratory 69

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

Figure 3.17: Patent Citation dataset.

Figure 3.18: LiveJournal dataset.

70 Liris laboratory Chemseddine Nabti

3.4 Performance Evaluation

Figure 3.19: Pokec dataset.

Figure 3.20: Orkut dataset.

Chemseddine Nabti Liris laboratory 71

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

storage is a requirement which cannot grows indefinitely: it is limited.

By compressing data, reducing time processing is not taken for granted by

no means. Contrarily, compression may increase time processing as it generally

requires decompressing the data before processing it. This is the main reason

that motivates the choice of modular decomposition to compress the graphs. Not

only we reduce the size of the graphs as we can see in Table 3.2, storage space

is divided by at least a factor of two for almost all the datasets. Furthermore

and most importantly, we do not decompress the graphs for processing, they are

handled in their compressed form which saves time. Finally, the compressed

graphs are simpler and their processing for subgraph search is lighter than

processing the original graphs. This is clearly illustrated by Figures 3.11 to 3.20.

However, this does not change the complexity of the subgraph isomorphism

problem. It is clear that the exponential aspect of the processing time remains

and is visible as soon as the size of the graphs increases. in fact, we can see on

almost all the figures that plots the execution time performance a clear rise of

the time at the end of the queries. This steep rise shows the exponential aspect

of the time curve that gradually takes shape with the increase of the size of the

query graph. The figures where no rise is observed, i.e., Figures 3.12 and 3.14,

are exceptions that can be explained by a rapid punning for the last queries that

decreased the search time. In fact, the queries where chosen randomly and it

is difficult to foresee the behaviour of the search algorithm. Some queries even

large may be simple to process because the search algorithm does not find a lot

of candidate supervertices in the first step and consequently terminates rapidly.

It is difficult to study this aspect of graph search algorithms because it depends

on the choice of the queries. We can do that manually for very small queries but

not at this scale. To meet both space and time performance with compression,

the best solution is to use an inexact subgraph search algorithm [15, 31, 13].

72 Liris laboratory Chemseddine Nabti

3.5 Conclusion

With such methods that do not enforce an exact mapping between the query

graph and the the data graph we can achieve better time performance.

3.5 Conclusion

In this chapter, we presented our first contribution, we addressed the problem

of querying massive graph data in a manner that allows us to handle also the

volume issue with compression. The advantage of compressing data can be

huge as the volume of data and consequently the quantity of space used to

store it can be massively reduced. And how about avoiding decompressing

the data for query processing? This is the main contribution of our work. We

presented a new approach to deal with scalability of subgraph isomorphism

search in massive graph databases. In our approach, data graphs are summarized

to reduce the number of vertices and edges. This reduces the search space of

subgraph isomorphism search and minimizes storage requirement of the graphs.

Our subgraph isomorphism search algorithm, SumISO, finds all the embedding

of a query graph in a summarized data graph without decompressing the graph.

Compression is achieved by modular decomposition that generalises existing

compression methods used in the literature. Our experimentations show that

the proposed approach achieves good performance on both time processing of

queries and space storage of data graphs.

As part of future work related to this first contribution, it is interesting

to investigate how this approach can be implemented with MapReduce or an

external memory framework to handle larger query graphs and also to reduce

its time cost. Another extension concerns the approach itself. In fact, we have

not combined existing pruning methods with compression in the Subgraph

Chemseddine Nabti Liris laboratory 73

SUBGRAPH ISOMORPHISM SEARCH ON COMPRESSED GRAPHS

Search phase and it may be possible to define some rules to prune the sets

of candidate supervertices selected for the matching step by relying on vertex

invariants, matching order and/or the properties of the compression. It will be

also interesting to see if it is feasible to run such an approach on a graph database

like Neo4j by designing and developing all the necessary database operations

such as create, delete and insert on the compressed dataset.

74 Liris laboratory Chemseddine Nabti

Chapter 4: Compact Neighborhood

Index for Subgraph Queries in

Massive Graphs

I
n this chapter, we propose a novel approach to subgraph isomorphism search.

The main idea is to distill the semantic and topological information that

surround a vertex in a graph into a simple integer. This simple neighborhood

encoding reduces the time complexity of vertex filtering from cubic to quadratic

which is considerable for big graphs. With this encoding, we propose a very

effective global filtering algorithm that is used to reduce the search space before

subgraph search. The second advantage of our algorithm is that it is suitable

for all graph access models: main memory, external memory, and streams by

performing one sequential pass of the disk file (or the stream of edges) of the

input graph. This is very usefull for graphs that do not fit into main memory. We

conduct extensive experiments using synthetic and real datasets in different ap-

plication domains, to compare our approach with the state of the art algorithms,

and attest its effectiveness and efficiency.

Contents

4.1 Motivation . 77

4.2 Our approach . 84

Chemseddine Nabti Liris laboratory 75

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

4.2.1 Compact Neighborhood Index (CNI) 85

4.2.2 Proof of Theorem 1 . 87

4.3 Proof Sketch of Lemma 3 . 89

4.3.1 Iterative Local Global Filtering Algorithm (ILGF) 89

4.3.2 Subgraph Search . 94

4.3.3 Extension to Larger Graphs 95

4.4 Experiments . 97

4.4.1 Datasets . 97

4.4.2 Results . 101

4.5 cni(v) at (k > 1)-hops Neighborhood 103

4.6 Conclusion . 108

76 Liris laboratory Chemseddine Nabti

4.1 Motivation

4.1 Motivation

We recall that subgraph isomorphism search, also known as exact Subgraph

matching or Subgraph queries, is the problem of enumerating all the occurrences

of a query graph within a larger graph called the data graph. Figure 4.1 shows an

example of a query graph and a data graph. This example will be used throught

the chapter to illustrate the algorithms and concepts.

Figure 4.1: Running Example.

Most solutions to tackle this problem are based on exploiting a search space

in the form of a recursion tree that maps the query vertices to the data graph

vertices. However, existing algorithms never construct entirely the recursion tree

and use prunningmethods to have smaller search space. Filtering is fundamental

Chemseddine Nabti Liris laboratory 77

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

as it reduces the search space explored by the searching task. Existing algorithms

differ by the pruning power of the filtering mechanisms they implement but

also by when these filters take place with respect to searching. Our analysis of

these two points of difference, highlighted four weaknesses in the state of the art

algorithms that we address within the proposed framework. These weaknesses

are as follows:

Weakness 1: High filtering cost. The main pruning mechanism used by

existing methods during filtering are the features of the k−neighborhood of

query vertices. This is the amount of information used when matching a query

vertex with data vertices. The more information is used, i.e., k is big, the more the

pruning of the search space can be important. However, representing compactly

the k−neighborhood for practical comparisons is a challenging issue. In fact,

the representation of this information has a direct impact on its cost which

increases with the value of k. Besides filtering with the vertex label and the

vertex degree, the lightest k-neighborhood filter is to consider the features of the

one-hop neighborhood, i.e., k = 1. For this, recent approaches such as TurboIso

[23] and CFL-Mactch [6] use the Neighborhood Label Frequency (NLF) filter [61].

NLF ensures that a data vertex v is a candidate for a query vertex u only if the

neighborhood of v includes the neighborhood of u (see lines 5-9 of Algorithm 5).

However, NLF is expensive: it is O(|V (Q)||V (G)||L(Q)|) where |V (Q)| is the

number of vertices of the query , |V (G)| is the number of vertices in the data

graph and L(Q) is the set of unique labels of the query graph which is O(|V (Q)|)

in the worst case. So, to avoid applying NLF systematically on each vertex,

CFL-match [6] proposes the Maximum Neighbor-Degree (MND) filter, which

can be verified in constant time for each candidate data vertex. The maximum

neighbor-degree of a vertex u in a graph G, denoted mndG(u), is the maximum

degree of all its neighbors [6]. A data vertex v is not a candidate for a query

78 Liris laboratory Chemseddine Nabti

4.1 Motivation

Algorithm 5: NLF and MND filters.

Data: A potential candidate vertex v for a query vertex u
Result: TRUE if v is candidate for u and FALSE otherwise

begin
if mndG(v) < mndQ(u) then

return (FALSE);

end
foreach label l ∈ �(N (u)) do

if |{w ∈N (v)|�(w) = l}| < |{w ∈N (u)|�(w) = l}| then
return (FALSE);

end

end
return (TRUE);

end

vertex u if mndG(v) < mndQ(u). As MND is not as powerful as NLF, the idea is to

apply it before applying NLF as detailed in Algorithm 5 (see lines 2-3). However,

MND is not always effective as we can see in the example depicted in Figure 4.2

where only 3 vertices are pruned with the MND filter and consequently NLF

must be applied for each of the remaining vertices.

It is also worth noting that for some neighborhood configurations filtering

is useless and only the searching step is decisive. Let consider the query and

data graphs depicted in Figure 4.3 where all the vertices have the same label

and the same degree and let consider that k = 1000. Clearly, in this case, the

1000 comparisons required by NLF for each query vertex and each data vertex

are needless. This doesn’t mean that filtering is not necessary but that its cost

must be reduced. Interestingly, using a less costly filtering with Ullmann’s native

subgraph searching subroutine outperforms the state of the art algorithms as

showed by our experiments.

Weakness 2: Global filtering Vs local filtering. Depending on its scope,

filtering can be characterised as global or local. Local filtering designates the

Chemseddine Nabti Liris laboratory 79

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

Figure 4.2: MND Filter on on the Running Example (pruned of the vertices that

do not match query labels).

filtering methods that reduce the number of data vertices candidates for a given

query vertex, i.e., reduce the size of C(ui), i = 1, |VQ |, where C(ui) is the set of

vertices of the data graph that are candidates for the query vertex ui . Global

filtering designates the filtering methods that can be applied on the entire search

space, obtained by joining the above sets, i.e., C(u1)×C(u2)× · · · ×C(u|VQ |
). Our

study of existing algorithms shows that local pruning is predominant. Some

mechanisms allow global pruning but they require extra passes of the data graph

to be effective. The matching order is such a mechanism. However, it is a very

difficult problem to choose a robust matching order mainly because the number

of all possible matching orders is exponential in the number of vertices. So, it

is expensive to enumerate all of them. For example, TuorboIso relies on vertex

80 Liris laboratory Chemseddine Nabti

4.1 Motivation

Figure 4.3: Needless NLF filtering

ordering for pruning. However, to compute this order, it needs to compute for

each query vertex a selectivity criteria based on the frequency of its label in the

data graph.

To deal with this problem, we introduce the Iterative Local Global Filtering

mechanism (ILGF), a simple way to achieve global punning relying on local

pruning filters.

Weakness 3: Late filtering. Our analysis of how filtering and searching are

undertaken with respect to each other in the state of the art algorithms revealed

that most algorithms apply their filtering mechanisms during subgraph search.

In fact, little filtering, reduced mainly to label or degree filtering, is undertaken

prior to subgraph search. This means that, the first cartesian products involved

by subgraph search are costly. To tackle this, CFL-match [6] applies the MND-

NLF filter prior to subgraph search. However, as we can see in Figure 4.4, the

Chemseddine Nabti Liris laboratory 81

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

amount of achieved pruning depends on the order within which vertices are

parsed. In our example, if v2 is processed before v16 the amount of pruning is

less than the one obtained with the reverse order. To get caught up, existing

solutions rely on additional mechanisms and data structures during subgraph

search such as NEC tree in TurboIso [23] and CPI in CFL-mach [6] that both

use path-based ordering during subgraph search. However, the underlying

data structures are time and space exponential [6]. To avoid constructing and

maintaining such data structures, we propose to achieve filtering solely prior to

subgraph search. Our experiments show that this approach is as efficient as the

state of the art algorithms.

Weakness 4: lack of scalability. This drawback results directly from the three

above weaknesses. In fact, the lack of global filtering and the necessity to keep

the data graph into memory for several passes make these backtracking-based

solutions not suitable for graphs that do not fit into main memory. We aim to

achieve a single parse of the data graph and reduce as early as possible the search

space.

So, our contributions are:

• We propose a novel encoding of vertices, called Compact Neighborhood

Index (CNI) that distills all the information around a vertex in a single

integer leading to a simple but extremely efficient filtering scheme for

processing subgraph isomorphism search. The whole filtering process

is based on integer comparisons. CNIs are also easily updatable during

filtering.

• We propose an Iterative Local Global filtering algorithm (ILGF) that relies

on the characteristics of CNIs to ensure a global pruning of the search

space before subgraph search.

82 Liris laboratory Chemseddine Nabti

4.1 Motivation

v2 is processed before v16

v16 is processed before v2

Figure 4.4: NLF filtering with two different vertex parsing orders

Chemseddine Nabti Liris laboratory 83

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

• Our encoding mechanism has the advantage to adapt to all graph access

models: main memory, external memory and streams. By performing one

sequential pass of the disk file (or the stream of edges) of the input graph.

This avoids expensive random disk accesses if the graph does not fit into

main memory.

• We conduct extensive experiments using synthetic and real datasets in

different application domains to attest the effectiveness and efficiency of

the proposed scheme.

4.2 Our approach

We propose a novel approach to subgraph isomorphism search that aims to

reduce the cose of the filtering step. The approach is also adapted for all access

methods and especially for big graphs that are accessed within a stream or

in external memory. The main task of the proposed framework is a filtering

step that relies on integer comparisons. This step is followed by Ullmann’s

matching subroutine. The efficiency of the filtering step relies on a novel method

to encode a vertex. This encoding distills all the neighboring information that

characterise a vertex into a single integer. Unlike existing methods that statically

and invariably encode neighboring information, our vertex encoding integer can

be dynamically updated leading to an iterative filtering process that allows a

glabal pruning of the search space without additional data structures.

For presentation convenience, we do not show edge labels on our examples

but these labels are considered in our algorithms and datasets. Table 4.1 sum-

marises the notation used in this chapter.

84 Liris laboratory Chemseddine Nabti

4.2 Our approach

Table 4.1: Notation

Symbol Description

G = (V ,E,�,Σ) undirected vertex and edge labeled graph

� is a labeling function

Σ is the set of labels

V (G) vertex set of the graph G
E(G) edge set of the graph G
deg(v) degree of vertex v in G
degS (v) number of neighbors of v

that have a label in S
G[X] the subgraph of G induced by the set

of vertices X
L(Q) the set of unique labels in the query Q
cni(v) compact neighborhood index of v

4.2.1 Compact Neighborhood Index (CNI)

In our method, the high-level idea is to put into a simple integer the neigh-

borhood information that characterise a vertex. Matching two vertices is then

a simple comparison between integers. Given a vertex u, the compact neigh-

borhood index of u, denoted cni(u), distills the whole structure that surrounds

the vertex into a single integer. It is the result of a bijective function that is

applied on the vertex’s neighborhood information. This function ensures that

two given vertices u and v will never have the same compact neighborhood index

if they have the same number of neighbors and the same label unless they are

isomorphic at one-hop. Let x1,x2,x3, · · · ,xk be the list of u’s neighbors’ labels.

The compact neighborhood index of u in the graph G is given by:

cni(u) = �(1,x1) + �(2,x1 + x2) + · · · + �(k,x1 + x2 + x3 + · · · + xk). So, cni(u) =∑ k
j=1�(j,x1 + ...+ xj) where �(q,p) =

(q+p−1
q

)
=

(q+p−1)!
q!(p−1)!

Theorem 1 states that cni(u) is a bijection. Its proof is provided in Appendix

Chemseddine Nabti Liris laboratory 85

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

4.2.2.

Theorem 1. ∀(x1,x2,x3, · · · ,xk) ∈N
k and k > 0, gk is a bijective function from N

k in

N, where:

gk(x1,x2,x3, · · · ,xk) =
∑

k
j=1�(j,x1 + ...+ xj)

and

�(q,p) =

(
q + p − 1

q

)
=
(q + p − 1)!

q!(p − 1)!

To use this bijection on vertices’labels, we need to assign a unique integer to

each vertex label. This assignment can be simply achieved by numbering labels

parting from 1 or by using an associative array to store the query labels. We

use ord(�(u)) to retrieve the integer associated to the label of vertex u. ord(�(u))

will return 0 if vertex u has a label that does not belong to L(Q). This will

systematically prune the neighbors that do not verify the label filter and avoid

to consider them in the computation of the CNI of a vertex. Figure 4.5 illustrates

the CNIs for our pruning example. In the computation of cni(v) and degL(Q)(v),

we do not consider the neighbors of the data vertex v that have not a label in

L(Q). These vertices are illustrated in the figure with dotted lines. For example,

degL(Q)(v13) = 1 because v17 has a label that does not belong to the query.

For filtering, We rely on three filters: the label filter, the degree filter and

the CNI filter. The label and degree filters are the basis of all pruning methods.

The CNI filter is based on the above bijection. So, we verify candidates for query

vertices by the lemmas below.

Lemma 1 (Label filter). Given a queryQ and a data graph G, a data vertex v ∈ V (G)

is not a candidate of u ∈ V (Q) if �(v) � �(u).

Lemma 2 (Degree filter). Given a query Q and a data graph G, a data vertex

v ∈ V (G) is not a candidate of u ∈ V (Q) if degL(Q)(v) < degL(Q)(u).

86 Liris laboratory Chemseddine Nabti

4.2 Our approach

Lemma 3 (CNI filter). Given a query Q and a data graph G, a data vertex v ∈ V (G)

that verifies the label and degree filters is not a candidate of u ∈ V (Q) if cni(v) <

cni(u).

Lemmas 1 and 2 are straightforward. The proof of Lemma 3 is given in

Appendix 4.3. We note also that the CNI of a vertex can also be defined to cover

the k-hops neighborhood with k > 1.

4.2.2 Proof of Theorem 1

Proof. We need the following lemmas.

Lemma 4. p < p′ ⇒ �(k,p) < �(k,p′)

Proof. By deduction from the property of the binomial coefficient:
(n
k

)
=

(n−1
k

)
+(n−1

k−1

)
(Pascal Formula)

Lemma 5. ∀k > 0, gk(x1, ...,xk) < �(k,x1 + ...+ xk +1)

Proof. This inequality is trivial for k = 1: g1(x1) = x1 and �(1,x1 + 1) = x1 + 1.

Assume that, for k ≥ 1, the inequality holds and let us prove that it also holds for

k +1.

By definition of gk , we have:

gk+1(x1, ...,xk+1) = gk(x1, ...,xk)+�(k+1,x1 + ...+xk+1) < �(k,x1 +

...+ xk +1)+�(k +1,x1 + ...+ xk+1) < �(k,x1 + ...+ xk + xk+1 +1)+

�(k +1,x1 + ...+ xk+1)

By the property of Pascal’s triangle, we know that:

�(k,x1 + ...+ xk + xk+1 + 1) + �(k +1,x1 + ...+ xk+1) = �(k +1,x1 + ...+ xk+1 + 1), we

have gk+1(x1, ...,xk+1) < �(k +1,x1 + ...+ xk+1 + 1)

Chemseddine Nabti Liris laboratory 87

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

Lemma 6. ∀k > 0, If gk(x1, ...,xk) = gk(x
′
1, ...,x

′
k) then x1 + ...+ xk = x′1 + ...+ x′k

Proof. Assume that gk(x1, ...,xk) = gk(x
′
1, ...,x

′
k).

According to Lemma 5, we have:

�(k,x1 + ...+ xk) < gk(x1, ...,xk) = gk(x
′
1, ...,x

′
k) < �(k,x1 + ...+ xk +1

we obtain then: �(k,x1 + ... + xk) < �(k,x1 + ... + xk + 1 According to Lemma

4, �(k,p) is strictly increasing. So, the inequality x1 + ...+ xk ≤ x′1 + ...+ x′k holds.

Similarly, we prove the inverse inequality. This proves that x1+...+xk = x′1+...+x
′
k .

To prove Theorem 1, we first prove that gk is injective from N
k to N. It is

trivial for k = 1. In fact, g1 = �(1,x1) =
(x1
1

)
=

x1!
1!(x1−1)!

= x1 is the identity in N.

For k ≥ 2, we assume that gk−1 is injective and we prove that gk is also injective.

Let (x1,,xk) and (x′1,,x
′
k) such that gk(x1,,xk) = gk(x

′
1,,x

′
k). According to

Lemma 6, x1 + ...+ xk = x′1 + ...+ x′k . We have also by definition of gk :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
gk(x1, ...,xk) = gk−1(x1, ...,xk−1) + �(k,x1 + ...+ xk)

gk(x
′
1, ...,x

′
k) = gk−1(x

′
1, ...,x

′
k−1) + �(k′,x1 + ...+ x′k)

By subtracting side by side, we obtain gk−1(x1, ...,xk−1) = gk−1(x
′
1, ...,x

′
k−1) which is

our induction hypothesis that gives (x1, ...,xk−1) = (x′1, ...,x
′
k−1). This implies that

xk = x′k .

Conclusion: gk is injective.

To show that gk is also surjective, we recall that �(k,x1+...+xk) ≤ gk(x1, ...,xk) <

�(k,x1 + ...+ xk +1). As p→ �(k,p) is a strictly increasing sequence, we deduce

that each n in N have an antecedent in N
k .

So, gk is a bijection from N
k to N which proves Theorem 1.

88 Liris laboratory Chemseddine Nabti

4.3 Proof Sketch of Lemma 3

4.3 Proof Sketch of Lemma 3

We prove the lemma by contradiction. Assume v is a candidate of u with

cni(v) < cni(u). That is, there is an embedding M that maps u to v. This means

that �(v) = �(u) and deg(v) ≥ deg(u) and �(N (u)) ⊆ �(N (v)). Let deg(u) = k and

deg(v) = k + t, t ≥ 1. Let (l1, l2, · · · , lk) be the labels of the neighbors of u accord-

ing to the order given by function ord(). Similarly, let (l1, l2, · · · , lk, lk+1, · · · , lk+t)

be the labels of the neighbors of v. By construction of, we have cni(v) =

gk+t(l1, l2, · · · , lk+t)=gk(l1, l2, · · · , lk)+�(k+1, l1+ ...+ lk+1)+· · ·+�(k+t, l1+ ...+ lk+t). So,

cni(v) = cni(u)+�(k +1, l1 + ...+ lk+1)+· · ·+�(k + t, l1 + ...+ lk+t). as t > 0, we reach a

contradiction. Thus, the lemma holds.

Note that, the CNI filter can be verified in constant time; that is, verifying

one candidate vertex v for a query vertex u takes O(1) time versus O(L(Q)) for

NLF.

4.3.1 Iterative Local Global Filtering Algorithm (ILGF)

The aim of the Iterative Local Global Filtering Algorithm (ILGF) is to reduce

globally the search space using CNIs. It relies on the fact that cni(v) can be

easily updated after a local filtering giving rise to new filtering opportunities.

Algorithm 6 details this iterative filtering process. To verify the CNI filter

on a candidate data vertex, the algorithm uses the cniMatch() subroutine that

implements Lemma 3 and consequently allows to verify that a data vertex is

a candidate for a given query vertex according to the CNI filter. The ILGF

algorithm removes iteratively from G the vertices that do not match a query

vertex using the label, the degree and the CNI filters (see lines 5-7) of the

algorithm. Each time a vertex is removed by the filtering process the degree

and CNI of its neighbors are updated (lines 8-10) giving rise to new filtering

Chemseddine Nabti Liris laboratory 89

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

Figure 4.5: CNIs of the Query graph and the Data graph.

Vertices (and the corresponding edges) in dotted lines are not considered in the

computation of degL(Q)(u) and cni(u).

90 Liris laboratory Chemseddine Nabti

4.3 Proof Sketch of Lemma 3

opportunities. Filtering stops when no further vertices are removed. This is

implemented by the boolean variable stopFilter. This iterative filtering leads to

an early global filtering of the search space.

Algorithm 6: ILGF.

Data: A data graph G
Result: A filtered version of G
begin

stopFilter← FALSE;

cpt← |V (G)|;

repeat
foreach vertex v ∈ V (G) do

if ∀u ∈ V (Q), !cniMatch(v,u) then
remove v from V (G) and the corresponding edges from E(G);

foreach x ∈N (v) do
update cni(x);

end

end
else

cpt;

end

end
if cpt=0 then

stopFilter← TRUE;

end

until stopFilter;
foreach vertex u ∈ V (Q) do

C(u)← {v ∈ V (G) such that cniMatch(v,u)};
if C(u) = ∅ then

return (∅);

end

end
M ←∅;

SubgraphSearch(M);

end

Figure 4.6 illustrates the ILGF algorithm on our example. We can see in these

Chemseddine Nabti Liris laboratory 91

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

Algorithm 7: Function cniMatch(v,u).

Data: A data vertex v and a query vertex u.
Result: returns true if v is a candidate for u according to the label, degree

and CNI filters.

begin
return (�(v) = �(u)

∧
degL(Q)(v) < degL(Q)(u)

∧
cni(v) < cni(u)) or

(�(v) = �(u)
∧

degL(Q)(v) = degL(Q)(u)
∧

cni(v) = cni(u)))

end

figures that using our three filters we have the following possible mappings

betwen data vertices and query vertices:

• u1 has candidates v4 and v6,

• u2 has candidates v8, v9 and v10,

• u3 has candidate v10,

• u4 has candidates v11, and

• u5 has candidates v2 and v12.

In fact, the first iteration of the ILGF algorithm, finds out that vertices v1, v3, v5,

v7, v13, v14, v15, v16, v17, v19, v20 and v21 cannot be mapped to any query vertex

because:

• v7, v14 and v15 do not pass the label filter.

• v1, v13, v15, v16, v19, v20 and v21 do not pass the degree filter.

• v3 and v5 do not pass the CNI filter.

After removing these vertices and updating the degree and CNI of their neigh-

bors a new filtering iteration is triggered (see Figure 4.6 (b). This second filtering

iteration reveals that vertices v2, v4, v8 and v18 can also be pruned. In fact, v2

92 Liris laboratory Chemseddine Nabti

4.3 Proof Sketch of Lemma 3

(a) Filtering iteration 1

(b) Filtering iteration 2

Figure 4.6: Filtering iterations of our running example.

and v4 do not pass the CNI filter and v8 and v18 do not pass the degree filter.

The final filtered graph is illustrated in Figure 4.6 (b).

Chemseddine Nabti Liris laboratory 93

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

4.3.2 Subgraph Search

After filtering, the data graph contains only the vertices that are candidates

for query vertices, i.e., the vertices map at one-hop according to the CNI filter.

Subgraph search allows to verify the mapping at k-hops. Algorithm 8 imple-

ments this step. It is the depth first search subroutine of Ullmann’s algorithm. It

lists the subgraphs of the filtered data graph that are isomorphic to the query

by verifying the adjacency relationships. This step allows also to handle edge

labels by discarding those that do not match the query labels. The subroutine

neighborCheck() verifies that a mapping (v,u) is added to the current partial

embedding M only if v and u have neighbors that also map.

Algorithm 8: SubgraphSearch.

Data: a partial embedding M .

Result: All embeddings of Q in G.

begin
if |M | = |V (Q)| then

Report M ;

end
Choose a non matched vertex u from V (Q);

C(u)← { non matched v ∈ V (G) such that cniMatch(v,u));
foreach v ∈ C(u) do

if neighborCheck(u,v, M) then
M ←M ∪ {(u,v)};
SubgraphMatch(M);

Remove (u,v) from M ;

end

end

end

94 Liris laboratory Chemseddine Nabti

4.3 Proof Sketch of Lemma 3

Algorithm 9: Function neighborCheck(u,v,M).

Data: a partial embedding M , a query vertex u and a data vertex v.
Result: returns true if u and v have neighbors that match.

begin
return
∀(u′, v′) ∈M, ((u,u′) ∈ E(Q)→ (v,v′) ∈ E(G)

∧
�((u,u′)) = �((v,v′))

end

4.3.3 Extension to Larger Graphs

For large data graphs, we aim to keep in memory as few vertices and edges as the

three filters can achieve. So, filtering begins while reading the data graph. For

this, we compute vertex degrees and CNIs incrementally during graph parsing.

Only a single pass of the graph is needed. This is important if we deal with a

graph stream or a sequential read of a graph from disk, i.e., a graph that does

not fit into main memory and that is loaded part by part. We keep in memory

only the vertices (and the corresponding edges) that verify the label, degree and

CNI filters. These are the vertices and edges that will be used during subgraph

search. As we parse the data graph, the label filter is straightforward. However,

the degree and the CNI can be used when their values, computed incrementally,

are sufficient for pruning. However, this depends on how the stream of edges

arrives. If edges are sorted, i.e., we access all the edges involving vertex i, then

all the edges involving vertex i + 1 and so on, the amount of pruning will be

larger during the parse than in the case edges arrive randomly.

Algorithm 10 presents the filtering actions performed during the data graph

reading in the case where edges are sorted. In this case, the three filters can

be applied as the edges of a vertex are accessed avoiding to store them. When

all the edges incident to the current vertex are available (see lines 14-20), we

can compute the CNI of the current data vertex and compare it with the CNIs

Chemseddine Nabti Liris laboratory 95

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

of the query vertices (see lines 21-25), the vertex and all its edges are pruned.

The filtered data graph, denoted GQ obtained at the end of the reading-filtering

process contains only the data vertices that are candidates to query vertices.

Algorithm 10: Large Data Graph Filtering .

Data: A Data Graph G (stream of edges).

Result: A filtered data graph GQ.

begin
//processing a stream of sorted edges

V (GQ)←∅;

E(GQ)←∅;

read edge (x,y);
repeat

current←−1;

if x � V (GQ) and �(x) ∈ L(Q) then
V (GQ)← V (GQ)∪ {x};

end
if x ∈ V (GQ) then

current← x;
end
while x = current do

if �(y) ∈ L(Q) and y � V (GQ) then
V (GQ)← V (GQ)∪ {y};
E(GQ)← E(GQ)∪ {(x,y)};

end
read edge (x,y);

end
compute cni(current);

if ∀u ∈ V (Q), !cniMatch(current,u) then
remove current from V (GQ);

remove all the edges of current from E(GQ);

end

until end of stream;

end

96 Liris laboratory Chemseddine Nabti

4.4 Experiments

4.4 Experiments

We evaluate the performance of our algorithm, CNI (for Compact Neighborhood

Index), over various types of graphs, sizes of queries, number of labels and their

distribution on vertices. We also compare it with three state of the art algorithms,

CFL-match [6], TurboISO [23] and SumISO [40] a representative algorithm for

compressed based subgraph search approaches developed in [31], [43], and [40].

Note that each of CFL-match, TurboISO and SumISO are compared to the other

existing solutions, such as QuickSI and SPath, and showed to be more efficient

in [23, 43, 6, 40].

All experiments are performed on an Intel i5 2.40 GHz, 64 bits laptop with 8

GB of RAM running windows 7. Algorithms are implemented in C++. For the

state of the art algorithms, we used the binaries provided by the authors.

We first describe the datasets used in the experiments, then we present our

results.

4.4.1 Datasets

We use seven datasets of real-world graphs to undertake the experiments. We

also used synthetic graphs to evaluate the scalability of the algorithms. These

datasets can be classified into three categories:

1. Small graphs: these graphs are known datasets used by almost all existing

methods in their evaluation process. So, we mainly use them as comparat-

ive datasets. The underlying graphs represent protein interaction networks

coming from three main organisms: human (HUMAN and HPRD datasets),

yeast (YEAST dataset) and fish (DANIO-RERIO dataset). The HUMAN and

DANIO-RERIO datasets are available in the RI database of biochemical

Chemseddine Nabti Liris laboratory 97

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

data1 [9]. The HPRD and YEAST come from the work of [33] and [6].

• HUMAN: This dataset consists of one large graph representing a

protein interaction network. This graph has 4,675 vertices and 86,282

edges.

• HPRD: This is a graph that contains 37,081 edges and 9,460 vertices.

The number of unique labels in the dataset is 307.

• YEAST: This graph contains 12,519 edges, 3,112 vertices, and 71

distinct labels.

• DANIO-RERIO: This graph contains 51,464 edges and 5,720 vertices.

We used it with different number of labels (32, 64, 128 and 512) and

distributions of them.

To query the HUMAN, HPRD and YEAST datasets, we use the sets of

queries generated in [6]. Each query is a connected subgraph of the data

graph obtained using a random walk on the data graph. For HPRD an

YEAST, the authors of [6] provide 8 query sets, each containing 100 query

graphs of the same size. The 8 query sets are denoted 25s, 25n, 50s, 50n,

100s, 100n, 200s, and 200n, where is and in denote query sets with i

vertices and, respectively, average degree ≤ 3 (i.e., sparse) and > 3 (i.e., non-

sparse). For HUMAN which is the smallest graph among the considered

datasets, the authors constructed smaller queries denoted 10s, 10n, 15s,

15n, 20s, 20n, 25s, and 25n.

We used the DANIO-RERIO dataset to evaluate the algorithms in function

of the number of labels and their distribution on the vertices. So, we used

this dataset with 4 different number of unique labels 32, 64, 128, and 512

1http://ferrolab.dmi.unict.it/ri/ri.html#description

98 Liris laboratory Chemseddine Nabti

4.4 Experiments

provided by the RI database [9]. We use 2 distributions of the labels on

the vertices: a uniform distribution and a Gaussian distribution (normal

distribution). The obtained graphs are denoted 32u, 64u, 128u, 512u, 32g ,

64g , 128g and 512g where iu and ig denote a DANIO-RERIO data graph

with i distinct labels and respectively a uniform distribution and a normal

distribution of labels. For all these graphs, we use two sets of queries

sparse queries and non sparse queries with the same number of vertices:

128.

2. Large graphs: In this category, we considered a real graph from the Stan-

ford Large Network Dataset Collection 2 called LiveJournal. It is a graph

representing an on-line social network with almost 5 million members

and over 68 million friendship relations, i.e., edges. We used 200 distinct

labels and 4 sets of queries with 100k, 200k, 400k and 500k (with k = 103)

vertices. Each set contains 10 query graphs of the same size.

3. Big Graphs (stream of edges): In this category, we considered two graphs

from the Stanford Large Network Dataset Collection. They are Twitter and

Friendster.

• Twitter is a snapshot of the twitter microblogging social network that

corresponds to the period of June-Dec 2009. The vertices represent

users and edges correspond to user-follower relationships.

• Friendster is an on-line social network where edges correspond to

friendship relations. It contains more than 65 million vertices and

more than 180 billion edges.

These graphs do not fit in the main memory of the computer used for

2http://snap.stanford.edu/

Chemseddine Nabti Liris laboratory 99

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

the experiments: Twitter is 7.5 GB and Friendster is 30GB. We used 200

unique labels with a uniform distribution with Twitter and 512 unique

labels for Friendster. For these two graphs, we also constructed 4 sets of

queries of 100k, 200k, 400k and 500k (with k = 103) vertices. Each set

contains 10 query graphs of the same size. Each query graph is a connected

subgraph obtained by a random walk in the data graph. We processed

these big graphs as a stream of edges by partitioning each disk file into

several sequential files that fit into main memory.

We also constructed 3 synthetic graphs with 5 billion, 20 billion and 70

billion vertices respectively. Edges are added following a power law dis-

tribution of the degree according to the characteristics of real big graphs.

For each of these graphs, we used 512 labels distributed uniformly on the

vertices. We queried these graph with a set of 10 queries of 500k vertices

each.

Table 4.2 summarises the characteristics of the datasets. For each graph, we

report the number of vertices, the number of edges, the number of unique labels

and the compression rate which is the ratio between the number of edges of the

compressed graph on the number of edges of the original graph using modular

decomposition of graphs as a compression tool of graphs [18, 21, 31]. Modular

decomposition compresses graphs by aggregating vertices that have the same

neighbors into one single vertex. The compression ratio is used to show how

well the datasets are compressible and consequently how well they are suitable

for a subgraph isomorphism search algorithm such as TurboI so, its boost version

developed in [43] or SumI so [40]. For instance, we can see that the HUMAN

dataset is highly compressible, i.e., compression rate of 61%.

100 Liris laboratory Chemseddine Nabti

4.4 Experiments

Table 4.2: Graph Dataset Characteristics.

Dataset |V | |E| Number of Compression

labels rate(%)

HUMAN 4,675 86,282 44 61

HPRD 9,460 37,081 307 25

DANIO-RERIO 5,720 51,464 32/64/128/512 25

YEAST 3,112 12,519 71 43

LIVEJOURNAL 4,847,571 68,993,773 200 30

TWITTER 17,069,982 476,553,560 200 -

FRIENDSTER 65,608,366 180,606,731,005 512 -

4.4.2 Results

In this subsection, we report and comment the results obtained by comparing

our algorithm with the state of the art algorithms CFL-match [6], TurboISO [23]

and SumISO [40] the representative algorithm for compression-based subgraph

search approaches developed in [43], [31] and [40]. Our main metric is the time

performance by varying |V (Q)|, i.e., the number of vertices in the query, |Σ|,

i.e., the number of unique labels, the sparsity of the queries, the distribution of

labels, and |V (G)|, i.e., the number of vertices in the data graph. We present the

obtained results according to this metrics and by category of graphs (small, large

and big). We note also that all the algorithms output the same sets of isomorphic

subgraphs for each query graph.

Against Existing Algorithms by Varying |V (Q)| within the small datasets:

Figure 4.7 shows the average total processing time for each query graph on the

HUMAN dataset (subfigure (a)), YEAST dataset (subfigure (b) and the HPRD

datset (subfigure (c)) for the four algorithms. First of all, it is interesting to see

that our results are completely different from those obtained in [6] as none of the

algorithms exceed 5 hours of execution on the large queries: 100s, 200s, 100n

Chemseddine Nabti Liris laboratory 101

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

and 200n. In fact, the experiments undertaken in [6] on the same data graphs

and the same set of queries report that TurboIso exceeds 5 hours running time

on these large queries on almost the all three datasets on an Intel i5 3.20 GHz

CPU and 8GB memory. We recall that, we used the binaries provided by the

authors and consequently no modifications have been done on these algorithms.

According to our results plotted on Figure 4.7, there is practicably no difference

between the four algorithms on the HUMAN data graph whatever is the size of

the query and its sparsity. We note that this dataset is highly compressible and

is suitable for algorithms such as TurboIso and SumIso.

For YEAST and HPRD, we clearly see that CNI outperforms CFL-match and

SumIso, which behave almost similarly on all queries, and both perform better

than TurboIso that obtains the worst time performance. This is due to our new

neighborhood encoding that allows an easy global pruning step.

Against Existing Algorithms by Varying |Σ| within the small datasets: Fig-

ure 4.8 shows the average total processing time for each query graph on the

DANIO-RERIO for the four algorithms with various numbers of query labels

and also two distributions (uniform and Gaussian) of these labels on vertices.

These graphs are queried by 2 sets of queries: sparse and non sparse queries.

Each set contains 100 query graphs of the same size (128 vertices). We can see on

this Figure that the worst results are obtained by TurboIso. This can be explained

by the complexity of its data structures when we list all the embeddings [6].

CFL-match and sumIso have very close results on sparse queries on all the con-

sidered label numbers and with the two distributions. However, sumIso behaves

better with non sparse queries mainly because the corresponding grahs are more

likely compressible. CNI clearly outperforms the three other algorithms which

confirms the importance to reduce filtering cost.

Against Existing Algorithms by Varying |V (Q)| within the large dataset:

102 Liris laboratory Chemseddine Nabti

4.5 cni(v) at (k > 1)-hops Neighborhood

Figure 4.10 shows the average total processing time for each query graph our

large dataset LIVEJOURNAL. The obtained results have the same pattern as

the results obtained on small graphs. However, the difference between the four

algorithms is less pronounced than with small graphs. This can be explained

by the fact that the small graphs are more difficult instances for subgraph

isomorphism search with denser graphs.

Against Existing Algorithms by Varying |V (Q)| within the big datasets: It

was not possible to use CFL-match, TurboIso, and SumIso with big graphs. So, the

results concern only CNI. Figure 4.9 shows the total processing time of CNI on

the two big graphs. We can mainly see that even with a query graph of 500,000

vertices we cannot perceive any exponential shape which confirms the scalability

of the approach. This tendency is also confirmed when we vary the number

of vertices of the data graph on Figure 4.11. These results definitely settle the

scalability of the proposed approach.

4.5 cni(v) at (k > 1)-hops Neighborhood

The compact neighborhood index can also be computed for the k-neighborhood

with k > 1 and can be extended to cover edge labels. The CNI of vertex v

featuring its neighborhood at k-hops can be computed using the same formula:

cnik(v) =
∑ s

j=1�(j,x1 + ...+ xj) where �(q,p) =
(q+p−1

q

)
=

(q+p−1)!
q!(p−1)!

, s is the number

of k-hops neighbors of v, i.e, number of vertices of G that are reachable from

v with exactly k-hops in a shortest path from v, and x1, · · · , xs are the numeric

labels of these vertices. For instance, the CNI at k = 2 of the query vertex u1 of

our running example (see Figure 4.1 comprises vertices u4 and u5 and can be

computed as: cni2(u1) = �(1,3) + �(2,4) = 7. The CNI at k-hops can be used to

prune the data vertices that are not candidate for a query vertex but that passe

Chemseddine Nabti Liris laboratory 103

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

(a) HUMAN dataset

(b) YEAST dataset

(c) HPRD dataset

Figure 4.7: Time performance on small datasets (varying |V (Q)|). Results are in

logscale.

104 Liris laboratory Chemseddine Nabti

4.5 cni(v) at (k > 1)-hops Neighborhood

(a) sparse query

(b) non sparse query

Figure 4.8: Time performance on the small dataset DANIO-RERIO (varying |Σ|

and the label distribution).

Chemseddine Nabti Liris laboratory 105

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

(a) Twitter

(b) Friendster

Figure 4.9: Scalability testing (varying |V (Q)|).

106 Liris laboratory Chemseddine Nabti

4.5 cni(v) at (k > 1)-hops Neighborhood

Figure 4.10: Scalability testing on large graphs (varying |V (Q)|).

Figure 4.11: Scalability testing (varying |V (G)|).

Chemseddine Nabti Liris laboratory 107

Compact Neighborhood Index for Subgraph Queries in Massive Graphs

through the (k − 1)-hop CNI as follows:

Lemma 7 (k-hop Degree filter). Given a query Q and a data graph G, a data vertex

v ∈ V (G) is not a candidate of u ∈ V (Q) if degk
L(Q)

((v) < degk
L(Q)

(u) where degk
L(Q)

(u)

is the number of vertices reachable from u with exactly k-hops in a shortest path from

u and have a label in L(Q).

Lemma 8 (CNIk filter). Given a queryQ and a data graph G, a data vertex v ∈ V (G)

that verifies the CNIk filter and the (k + 1)-hops Degree filter is not a candidate of

u ∈ V (Q) if cnik+1(v) < cnik+1(u).

Lemma 7 is straightforward. The proof of Lemma 8is similar to the proof of

Lemma 3.

To cover edge labels, a CNI can also be computed for the edges at several

hops as for vertices. A CNI for edges can be used as a first filter before testing

the compatibility of labels edge by edge.

4.6 Conclusion

Subgraph isomorphism search is an NP-complete problem. This means a pro-

cessing time that grows with the size of the involved graphs. Pruning the search

space is the pilar of a scalable subgraph isomorphism search algorithm and

has been the main focus of proposed approaches since Ullmann’s first solution.

In our contribution, we proposed CNI, a simple subgraph isomorphism search

algorithm that relies on a compact representation of the neighborhood, called

Compact Neighborhood Index (CNI), to perform an early global pruning of the

search space. CNI distills topological information of each vertex into an integer.

This vertex encoding is easily updatable and can be used to prune globally the

search space using an iterative algorithm. Furthermore CNI does not require

108 Liris laboratory Chemseddine Nabti

4.6 Conclusion

that the entire data graph is loaded into main memory and can be used with a

graph stream. Our extensive experiments validate the efficiency of our approach.

As part of future work related to this second contribution, it will be inter-

esting to extend CNI to construct a graph index that allows to handle a graph

database. For this issue, we plan to compute a vertex CNI that includes the

vertex label: cni(u) =
∑ k

j=1�(j,x1 + ...+ xj) where the label of u is among the xi

and then compute a compact neighborhood index for the graph using the same

formula as follows: cni(G) =
∑ k

j=1�(j,x1 + ...+ xj) where each xi is the CNI of a

vertex of G. This resulting graph CNI can be used to index a graph in a database

of graphs defined on the same set of labels.

Chemseddine Nabti Liris laboratory 109

Chapter 5: Conclusion and

Perspectives

Contents
5.1 Conclusion . 111

5.2 Perspectives . 114

5.1 Conclusion

To conclude this manuscript, we present, in the following, a summary of the

work that we achieved during our thesis. The research perspectives that could

be considered following this work are also discussed.

In this thesis, we studied the problem of subgraph isomorphism search in

massive data. Subgraph isomorphism search is the main tool used for graph

querying. It is an NP-complete problem. Basically, this problem consists to

determine an equality between two graphs in terms of structure and labels. It

also finds a mapping between all the vertices and/or edges of the query graph

and the target graph while respecting the labeling functions. Graph querying

can be very usefull. For example, in chemistry, scientists usually aim to find

a small complex molecule in a big one during their tests. Such a problem can

be solved using subgraph isomorphism seach with a graph representation of

Chemseddine Nabti Liris laboratory 111

Conclusion and Perspectives

molecules.

As presented in the state of the art (see Chapter 2), many algorithms and

solutions were proposed to solve subgraph isomorphism search efficiently. The

main problem is how to reduce the search space to save memory space and time

processing.

A search space is generally a tree that the algorithm has to parse to search for

the query. The very first and most used technique to browse the search space is

backtracking, proposed first by Ullmann [49]. Algorithms that followed, rely on

Ullmann’s solution and try to outperform it by further reducing the size of the

search space. This is done by filtering unpromising vertices, that can not answer

the query, as soon as possible.

Many techniques were proposed to reduce the search space, some of them use

paths as patterns of comparison. Instead of checking for isomorphism with all

vertices, the search will be performed on a shorter list of candidates. A candidate

is a pattern that shows more probability to answer the query. Some techniques

use score functions to determine if a candidate is relevant or not. After reducing

the search space by returning a list of relevant candidates a second phase, called

verification phase, is performed on the final list of relevant candidates to check

for subgraph isomorphism.

In the second chapter of this thesis, we presented the subgraph isomorphism

search problem deeply by showing its utility to query graphs, and by presenting

existing methods that are the most related to what we have done in our contribu-

tions.

We catigorized the subgraph matching problem into two categories: the first

one consists to find all graphs, in a graph database, that contain the query. This

category is called subgraph containement search over a graph database. The

second category, in which we focused our work, is subgraph matching over a

112 Liris laboratory Chemseddine Nabti

5.1 Conclusion

single large data graph. This problem is more dificult than the first one, because

here we aim to find all the occurrences of the query in the data graph, instead of

checking for the exsistance of the query on each graph in a database.

After analyzing our state of the art, we presented our two contributions that

globaly aim to reduce the search space by compression.

In the first contribution, we compress the whole data graph. In fact, a smaller

representation of the graph will definitely lead to a smaller search space, which

gives less time and memory storage complexity. Graph compression (or sum-

marizing), is a well known technique that is effective when dealing with massive

data.

The best compression algorithm is the one that retains all the properties of

the original graph. We surveyed several approaches to compress graph and the

one that responds to this criteria is a concept from graph theory called modular

decomposition and that dates back to the work of Gallai in 1967 [17].

Modular decomposition of graphs consists to highlight a set of vertices that

have the same neighbors and so are not distinguishable from outside. These

sets of vertices are called modules. Each module is compressed as a single

vertex depending on how vertices are connected within a module. We showed

that we can query these compressed graphs without decompressing them. Our

experimentations show that the proposed approach achieves good performance

on both time processing of queries and space storage of data graphs.

In our second contribution, we compress the neighborhood of each vertex.

In this contribution, we focused on the best way to filter the search space. We

proposed a new constant time pruning mechanism. The main idea in this contri-

bution was to avoid comparing all vertex’s neighbors, in order to check if two

vertices are identical or not. To do so, we regroup all information that surround

a vertex on one simple integer.

Chemseddine Nabti Liris laboratory 113

Conclusion and Perspectives

We used a bijective function that basically performs specific mathematical op-

erations on vertex’s neighbors to obtain one integer. Because this function is

bijective, we are sure that two vertices with the same label and number of neigh-

bors, that get the same result with the bijective function, are the same. This

simple neighborhood encoding reduces the time complexity of vertex filtering.

Our encoding mechanism is also adapted to massive graphs, that do not

fit into memory. We perform one sequantial pass of the disk file, and retain

all needed information. This avoids expensive random disk accesses. The new

encoding is called Compact Neighbourhood Index (CNI), with which the filtering

phase is processed with integer comparisions, and relies on the characteristics of

CNIs to ensure a global prunning of the search space.

After this filtering, the input graph used to perform the final subgraph search

contains only vertices that are candidates for query vertices. Finally, the depth

first search subroutine of Ullmann’s algorithm is used to list the subgraphs of the

filtered data graph that are isomorphic to the query by verifying the adjacency

relationships.

Our extensive experiments validate our approach.

5.2 Perspectives

Our work can be extended according to several axes:

• In our first contribution, we relied on graph compression. It is interessting

to do more research on the existing compression methods, to propose new

methods for graph compression. To be efficient, a compression method

must preserve all graph’s information, without losing any significant struc-

ture information. The idea will be to find a way to compact a larger number

of vertices on one module, without losing information. Such technique

114 Liris laboratory Chemseddine Nabti

5.2 Perspectives

must also facilitate the subgraph search on modules without decompress-

ing them by storing clear and usefull information related to each vertex.

The challenge in our first contribution was that two modules with different

types are not necessarily storing different structures and we had to do a lot

of testing to decide whether to prune a module or not. So, the data stored

for each module must be helpfull on filtering modules.

Another futur issue, that will help handling large graphs, will be to find a

way to test these representations on a parralel programming model such

as MapReduce.

It is also interesting to see if it is feasible to run such approach on a graph

database like Neo4j by designing and developing all the necessary database

operations such as create, delete, and insert on the compressed dataset.

• In our second contribution, the idea was to propose an effecitve and very

tight filtering technique to filter-out unpromising vertices as soon and

effective as possible. Our filtering was based on the vertex’s neighborhood

information.

Even if our method shows good performance, the issue is that we have to

compute the CNI for each vertex. It will be interesting to extend this tech-

nique by constructing a subgraph neighborhood index, instead of doing it

for each vertex. The idea will be to divide the target graph into candidate

subgraphs. A candidate subgraph is a subgraph that have more possibility

to match the query. Unlike our contribution, the idea will be to compact

all neighborhood information of the subgraph on one integer.

For example: if we have a target graph of 100 vertices divided into 10 can-

didate subgraphs, the index will contain 10 integers storing all necessary

information, instead of calculating 100 integeres. The last comparison

Chemseddine Nabti Liris laboratory 115

Conclusion and Perspectives

will be between the query, which will also have an integer regrouping all

neighborhood information, and 10 other integers (representing the target

graph). This will largely reduce the processing time, and the search space.

If the query and the target graph are large graphs, the query will be also

divided into subgraphs, each one with its CNI and the target graph’s sub-

graphs in this case will be candidates for the query subgraphs instead of

being candidate for the whole query.

Another issue will be to extend CNI to construct a graph index that allows

to handle a graph database. For this, we plan to compute a vertex CNI that

includes the vertex label. The resulting graph CNI can be used to index a

graph in a database of graphs defined on the same set of labels.

• Another perspective that seems interesting is to developp a hybrid method

that takes the advantages of the first contribution (the power of compres-

sion), and the effectiveness of the second method’s filtering. Such work,

according to each contribution’s advantages, will be effective, with less

time consuming, less memory space usage, and less searching space.

116 Liris laboratory Chemseddine Nabti

List of Publications

Journal paper

[1] Chemseddine Nabti, Hamida Seba. Querying Massive Graph Data: a Com-

press and Search Approach. Future Generation Computer Systems (FGCS),

Volume 74, September 2017, Pages 63-75, Elsevier

International conferences with proceeding

[2] Chemseddine Nabti, Hamida Seba. Subgraph Isomorphism Search in

Massive Graph Databases. In The International Conference on Internet of

Things and Big Data – IoTBD 2016, 23-25 Avril 2016, Rome (Italie). HAL :

hal-01313922. Best paper award.

International conferences without proceeding

[3] Chemseddine Nabti, Hamida Seba. Querying Massive Graph Data: a Com-

press and Search Approach. In High Quality Journals Forum, in IoTbds2017,

24-26 Avril 2017, Porto (Portugal). Best Presentation Award.

Paper Under Submission

[4] Chemseddine Nabti, Hamida Seba. Compact Neighborhood Index for

Subgraph Queries in Massive Graphs. A preliminarily version is available in

Arxiv https://arxiv.org/abs/1703.05547.

Chemseddine Nabti Liris laboratory 117

References

[1] http://socialnetworks.mpi-sws.org/data-imc2007.html.

[2] Micah Adler and Michael Mitzenmacher. Towards compressing web graphs.

In Proceedings of the Data Compression Conference, DCC ’01, Washington,

DC, USA, 2001. IEEE Computer Society.

[3] A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a

directed graph. SIAM Journal on Computing, 1(2):131–137, 1972.

[4] Boanerges Aleman-Meza, Christian Halaschek-Wiener, Satya Sanket Sahoo,

Amit Sheth, and I Budak Arpinar. Template based semantic similarity for

security applications. In International Conference on Intelligence and Security

Informatics, pages 621–622. Springer, 2005.

[5] Endika Bengoetxea. Inexact Graph Matching Using Estimation of Distribution

Algorithms. PhD thesis, Ecole Nationale Sup´erieure des Telecommunic-

ations Departement Traitement du Signal et des Images Ecole doctorale

Edite, University of the Basque Country Computer Engineering Faculty

Intelligent Systems Group, Paris, FRANCE, 2002.

[6] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. Efficient

subgraph matching by postponing cartesian products. In Proceedings of the

2016 International Conference on Management of Data, SIGMOD ’16, pages

1199–1214, New York, NY, USA, 2016. ACM.

[7] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. Efficient

subgraph matching by postponing cartesian products. In Proceedings of

the 2016 International Conference on Management of Data, pages 1199–1214.

ACM, 2016.

[8] P. Boldi and S. Vigna. The webgraph framework i: Compression techniques.

In Proceedings of the 13th International Conference on World Wide Web, WWW

’04, pages 595–602, New York, NY, USA, 2004. ACM.

Chemseddine Nabti Liris laboratory 119

REFERENCES

[9] Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and

Alfredo Ferro. A subgraph isomorphism algorithm and its application to

biochemical data. BMC Bioinformatics, 14(Suppl 7)(S13), 2013.

[10] Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on com-

pressed xml. In Proceedings of the 29th International Conference on Very

Large Data Bases - Volume 29, VLDB ’03, pages 141–152. VLDB Endowment,

2003.

[11] Christian Capelle, Michel Habib, and Fabien De Montgolfier. Graph decom-

positions and factorizing permutations. Discrete Mathematics & Theoretical

Computer Science - DMTCS, 5(1):55–70, 2002.

[12] Chen Chen, Cindy X. Lin, Matt Fredrikson, Mihai Christodorescu, Xifeng

Yan, and Jiawei Han. Mining graph patterns efficiently via randomized

summaries. Proc. VLDB Endow., 2(1):742–753, August 2009.

[13] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty

Years of Graph Matching in Pattern Recognition. International Journal of

Pattern Recognition and Artificial Intelligence, 18:265–298, 2004.

[14] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. Per-

formance evaluation of the vf graph matching algorithm. In Image Analysis

and Processing, 1999. Proceedings. International Conference on, pages 1172–

1177. IEEE, 1999.

[15] Wenfei Fan and Jin-Peng Huai. Querying big data: Bridging theory and

practice. Journal of Computer Science and Technology, 29(5):849–869, 2014.

[16] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. Query preserving

graph compression. In Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’12, pages 157–168, New York,

NY, USA, 2012. ACM.

[17] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica,

18:25–66, 1967.

[18] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica,

18:25–66, 1967.

[19] Michael Randolph Garey and David S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. 1979.

120 Liris laboratory Chemseddine Nabti

REFERENCES

[20] S Greenblatt, S Marcus, and T Darr. Tmods-integrated fusion dashboard-

applying fusion of fusion systems to counter-terrorism. In Proc. Interna-

tional Conference on Intelligence Analysis, 2005.

[21] M. Habib and C. Paul. A survey of the algorithmic aspects of modular

decomposition. Computer Science Review, 4(1):41–59, 2010.

[22] Michel Habib, Fabien De Montgolfier, and Christophe Paul. A simple linear-

time modular decomposition algorithm for graphs. Scandinavian Workshop

on Algorithm Theory - SWAT, pages 187–198, 2004.

[23] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Turboiso: Towards Ultra-

fast and Robust Subgraph Isomorphism Search in Large Graph Databases.

In Proceedings of the 2013 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’13, pages 337–348, New York, NY, USA, 2013.

ACM.

[24] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Turboiso: Towards ul-

trafast and robust subgraph isomorphism search in large graph databases.

In Proceedings of the 2013 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’13, pages 337–348, New York, NY, USA, 2013.

ACM.

[25] Huahai He and Ambuj K. Singh. Graphs-at-a-time: Query language and

access methods for graph databases. In Proceedings of the 2008 ACM SIG-

MOD International Conference on Management of Data, SIGMOD ’08, pages

405–418, New York, NY, USA, 2008. ACM.

[26] Huahai He and Ambuj K. Singh. Graphs-at-a-time: Query language and

access methods for graph databases. In Proceedings of the 2008 ACM SIG-

MOD International Conference on Management of Data, SIGMOD ’08, pages

405–418, New York, NY, USA, 2008. ACM.

[27] Harry T. Hsu. An algorithm for finding a minimal equivalent graph of a

digraph. J. ACM, 22(1):11–16, January 1975.

[28] Sharanya Jayaraman. Fg-index: Towards verification-free query processing

on graph databases. 2013.

[29] Donald E Knuth. Estimating the efficiency of backtrack programs. Mathem-

atics of computation, 29(129):122–136, 1975.

Chemseddine Nabti Liris laboratory 121

REFERENCES

[30] Sofiane Lagraa and Hamida Seba. An efficient exact algorithm for triangle

listing in large graphs. Data Mining and Knowledge Discovery, pages 1–20,

2016.

[31] Sofiane Lagraa, Hamida Seba, Riadh Khennoufa, Abir M’Baya, and Hama-

mache Kheddouci. A distance measure for large graphs based on prime

graphs. Pattern Recognition, 47(9):2993 – 3005, 2014.

[32] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee.

An in-depth comparison of subgraph isomorphism algorithms in graph

databases. In Proceedings of the VLDB Endowment, volume 6, pages 133–144.

VLDB Endowment, 2012.

[33] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee.

An in-depth comparison of subgraph isomorphism algorithms in graph

databases. In Proceedings of the 39th international conference on Very Large

Data Bases, PVLDB’13, pages 133–144. VLDB Endowment, 2013.

[34] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. Community structure

in large networks: Natural cluster sizes and the absence of large well-

defined clusters. Internet Mathematics 6(1) 29–123, 2009, 6(1):29–123,

2009.

[35] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive

and negative links in online social networks. In Proceedings of the 19th

International Conference on World Wide Web, WWW ’10, pages 641–650.

ACM, 2010.

[36] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time:

Densification laws, shrinking diameters and possible explanations. In Pro-

ceedings of the Eleventh ACM SIGKDD International Conference on Knowledge

Discovery in Data Mining, KDD ’05, pages 177–187, New York, NY, USA,

2005. ACM.

[37] Hossein Maserrat and Jian Pei. Neighbor query friendly compression of

social networks. In Proceedings of the 16th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 533–

542, New York, NY, USA, 2010. ACM.

[38] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II.

CoRR, abs/1301.1493, 2013.

122 Liris laboratory Chemseddine Nabti

REFERENCES

[39] Ryan Boyd William Lyon Michael Hunger. Rdbms graphs: Sql vs. cypher

query languages. https://neo4j.com/blog/sql-vs-cypher-query-languages/,

2015.

[40] Chemseddine Nabti and Hamida Seba. Querying massive graph data: A

compress and search approach. Future Generation Computer Systems, 74:63

– 75, 2017.

[41] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A

(sub)graph isomorphism algorithm for matching large graphs. IEEE Trans.

Pattern Anal. Mach. Intell., 26(10):1367–1372, October 2004.

[42] K. H. Randall, R. Stata, R. G. Wickremesinghe, and J. L. Wiener. The link

database: fast access to graphs of the web. In Data Compression Conference,

2002. Proceedings. DCC 2002, pages 122–131, 2002.

[43] Xuguang Ren and Junhu Wang. Exploiting vertex relationships in speeding

up subgraph isomorphism over large graphs. Proc. VLDB Endow., 8(5):617–

628, January 2015.

[44] Hamida Seba, Sofiane Lagraa, and Elsen Ronando. Comparison issues in

large graphs: State of the art and future directions. CoRR, abs/1502.07576,

2015.

[45] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. Taming veri-

fication hardness: An efficient algorithm for testing subgraph isomorphism.

Proc. VLDB Endow., 1(1):364–375, August 2008.

[46] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. Taming veri-

fication hardness: An efficient algorithm for testing subgraph isomorphism.

Proc. VLDB Endow., 1(1):364–375, August 2008.

[47] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li.

Efficient subgraph matching on billion node graphs. Proc. VLDB Endow.,

5(9):788–799, May 2012.

[48] L. Takac and M. Zabovsky. Data analysis in public social networks. In

International Scientific Conference and International Workshop Present Day

Trends of Innovations. Lomza, Poland, May 2012.

[49] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–

42, January 1976.

Chemseddine Nabti Liris laboratory 123

REFERENCES

[50] Sebastiaan J. van Schaik and Oege de Moor. A memory efficient reachability

data structure through bit vector compression. In Proceedings of the 2011

ACM SIGMOD International Conference on Management of Data, SIGMOD

’11, pages 913–924, New York, NY, USA, 2011. ACM.

[51] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph indexing: A frequent

structure-based approach. In Proceedings of the 2004 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD ’04, pages 335–346,

New York, NY, USA, 2004. ACM.

[52] Jaewon Yang and Jure Leskovec. Defining and evaluating network com-

munities based on ground-truth. Knowledge and Information Systems,

42(1):181–213, 2015.

[53] TARA SAFAVI DANAI KOUTRA YIKE LIU, ABHILASH DIGHE. Graph

summarization: A survey. ACM Computing Surveys, 2017.

[54] Bob Yirka. Computer scientist claims to have solved the

graph isomorphism problem. https : / / phys . org / news /

2015-11-scientist-graph-isomorphism-problem.html/tutoriel/, 2016.

[55] Shijie Zhang, Shirong Li, and Jiong Yang. Gaddi: Distance index based

subgraph matching in biological networks. In Proceedings of the 12th Inter-

national Conference on Extending Database Technology: Advances in Database

Technology, EDBT ’09, pages 192–203, New York, NY, USA, 2009. ACM.

[56] Shijie Zhang, Shirong Li, and Jiong Yang. Gaddi: Distance index based

subgraph matching in biological networks. In Proceedings of the 12th Inter-

national Conference on Extending Database Technology: Advances in Database

Technology, EDBT ’09, pages 192–203, New York, NY, USA, 2009. ACM.

[57] Peixiang Zhao and Jiawei Han. On graph query optimization in large

networks. Proc. VLDB Endow., 3(1-2):340–351, September 2010.

[58] Peixiang Zhao and Jiawei Han. On graph query optimization in large

networks. PVLDB, 3(1):340–351, 2010.

[59] Peixiang Zhao, Jeffrey Xu Yu, and Philip S. Yu. Graph indexing: Tree + delta

graph. In Proceedings of the 33rd International Conference on Very Large Data

Bases, VLDB ’07, pages 938–949. VLDB Endowment, 2007.

[60] Xiang Zhao, Chuan Xiao, Xuemin Lin, and Wei Wang. Efficient Graph

Similarity Joins with Edit Distance Constraints. In IEEE 28th International

124 Liris laboratory Chemseddine Nabti

REFERENCES

Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arling-

ton, Virginia), 1-5 April, pages 834–845, 2012.

[61] Gaoping Zhu, Xuemin Lin, Ke Zhu, Wenjie Zhang, and Jeffrey Xu Yu.

Treespan Efficiently computing similarity all-matching. In Proceedings of

the 2012 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’12, pages 529–540, New York, NY, USA, 2012. ACM.

[62] Lei Zou, Lei Chen, Jeffrey Xu Yu, and Yansheng Lu. A novel spectral coding

in a large graph database. In Proceedings of the 11th International Conference

on Extending Database Technology: Advances in Database Technology, EDBT

’08, pages 181–192, New York, NY, USA, 2008. ACM.

Chemseddine Nabti Liris laboratory 125

REFERENCES

126 Liris laboratory Chemseddine Nabti

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

