
HAL Id: tel-01782396
https://theses.hal.science/tel-01782396v1

Submitted on 2 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security monitoring for network protocols and
applications

Vinh Hoa La

To cite this version:
Vinh Hoa La. Security monitoring for network protocols and applications. Networking and Internet
Architecture [cs.NI]. Université Paris Saclay (COmUE), 2016. English. �NNT : 2016SACLL006�. �tel-
01782396�

https://theses.hal.science/tel-01782396v1
https://hal.archives-ouvertes.fr

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Monitorage des Aspects Sécuritaires pour les Protocoles de Réseaux et Applications.

Mots clés : sécurité, détection d'intrusion, surveillance de sécurité, supervision de réseaux

Résumé : La sécurité informatique, aussi
connue comme la cyber-sécurité, est toujours
un sujet d'actualité dans la recherche en
sciences informatiques. Comme les cyber-
attaques grandissent de plus en plus en volume
et en sophistication, la protection des systèmes
ou réseaux d'information devient une tâche
difficile. Les chercheurs dans la communauté
de recherche prêtent une attention constante à
la sécurité, en particulier dans les deux
directions suivantes: (i) - la conception des
infrastructures sécurisée avec des protocoles de
communication sécurisés et (ii) - surveillance /
supervision des systèmes ou des réseaux afin de
trouver et de remédier aux vulnérabilités. La
dernière vérifie que tout ce qui a été conçu dans
la première fonctionne correctement et en toute
sécurité. Ceci étant le sujet principal de cette
thèse.
Cette dissertation présente un cadre de
surveillance de la sécurité en tenant en compte
des différents types de jeu de données d'audit y
compris le trafic de réseaux et les logs dans les

applications. Nous proposons également des
approches innovantes fondées sur
l'apprentissage supervisé pour prétraiter et
analyser l'entrée de données. Notre cadre est
validé dans une large gamme de cas d’études, y
compris la surveillance des réseaux
traditionnels TCP / IP (v4) (LAN, WAN, la
surveillance de l'Internet), la supervision des
réseaux de objets connectés utilisant la
technologie 6LoWPAN (IPv6), et également
l’analyse des logs d'autres applications.
Dans chaque cas d’étude, nous décrivons
comment nous collectons les jeux de données
d'audit, extrayons les attributs pertinents,
traitons les données reçues et décodons leur
signification de sécurité. Pour ces objectifs,
l’outil Montimage Monitoring Tool (MMT) est
utilisé comme le cœur de notre approche. Nous
évaluons également la performance de la
solution et sa possibilité de marcher dans les
systèmes "à plus grande échelle" avec les jeux
de données plus volumineux.

Title : Security Monitoring for Network Protocols and Applications.

Keywords : security, intrusion detection, security monitoring, network monitoring

Abstract: Computer security, also known as
cyber-security or IT security is always an
emerging topic in computer science research.
Because cyber-attacks are growing in both
volume and sophistication, protecting
information systems or networks becomes a
difficult task. People in research community
give an ongoing attention in security including
two main directions: (i) - designing secured
infrastructures with secured communication
protocols and (ii) - monitoring/supervising the
systems or networks in order to find and
remediate vulnerabilities. The former can assist
the later by forming some additional
monitoring-supporting modules. Whilst, the
later verifies whether everything designed in
the former is correctly and securely
functioning. This is the main topic of this
thesis.
This dissertation presents a security monitoring

framework that takes into consideration
different types of audit data set including
network traffic and applications’ exchanged
messages. We propose also some novel
approaches based on supervised machine
learning to pre-process and analyze the data
input. Our framework is validated in a wide
range of case studies including traditional
TCP/IP(v4) network monitoring (LAN, WAN,
Internet monitoring), Internet of Things (IoT)
using 6LoWPAN technology (IPv6), and other
applications' logs. In each case study, we
describe how we collect the audit data set,
extract the relevant attributes, handle received
data and decode their security meaning. For
these goals, Montimage Monitoring Tool
(MMT) is used as the core of our approach. We
assess also the solution's performance and its
possibility to work in “larger scale" systems
with more voluminous datasets.

Abstract

Computer security, also known as cyber-security or IT security, is always an emerging topic
in computer science research. Because cyber attacks are growing in both volume and sophis-
tication, protecting information systems or networks becomes a difficult task. Therefore,
researchers in research community give an ongoing attention in security including two main
directions: (i) - designing secured infrastructures with secured communication protocols and
(ii) - monitoring/supervising the systems or networks in order to find and re-mediate vul-
nerabilities. The former assists the later by forming some additional monitoring-supporting
modules. Whilst, the later verifies whether everything designed in the former is correctly
and securely functioning as well as detecting security violations. This is the main topic of
this thesis.

This dissertation presents a security monitoring framework that takes into consideration
different types of audit dataset including network traffic and application logs. We propose
also some novel approaches based on supervised machine learning to pre-process and ana-
lyze the data input. Our framework is validated in a wide range of case studies including
traditional TCP/IPv4 network monitoring (LAN, WAN, Internet monitoring), IoT/WSN
using 6LoWPAN technology (IPv6), and other applications’ logs. Last but not least, we
provide a study regarding intrusion tolerance by design and propose an emulation-based
approach to simultaneously detect and tolerate intrusion.

In each case study, we describe how we collect the audit dataset, extract the relevant
attributes, handle received data and decode their security meaning. For these goals, the
tool Montimage Monitoring Tool (MMT) is used as the core of our approach. We assess
also the solution’s performance and its possibility to work in “larger scale” systems with
more voluminous dataset.

Résumé

La sécurité informatique, aussi connue comme la cyber-sécurité, est toujours un sujet
d’actualité dans la recherche en sciences informatiques. Comme les cyber-attaques gran-
dissent de plus en plus en volume et en sophistication, la protection des systèmes ou réseaux
d’information devient une tâche difficile. Les chercheurs dans la communauté de recherche
prêtent une attention constante à la sécurité, en particulier ils s’orientent vers deux direc-
tions principales: (i) - la conception des infrastructures sécurisées avec des protocoles de
communication sécurisés et (ii) - surveillance / supervision des systèmes ou des réseaux afin
de trouver et de remédier des vulnérabilités. La dernière vérifie que tout ce qui a été conçu
dans la première fonctionne correctement et en toute sécurité, ainsi détectant les violations
de sécurité. Ceci étant le sujet principal de cette thèse.

Cette dissertation présente un cadre de surveillance de la sécurité en tenant en compte
des différents types de jeu de données d’audit y compris le trafic de réseaux et les messages
échangés dans les applications. Nous proposons également des approches innovantes fondées
sur l’apprentissage statistique, la théorie de l’information et de l’apprentissage automatique
pour prétraiter et analyser l’entrée de données. Notre cadre est validé dans une large gamme
des études de cas, y compris la surveillance des réseaux traditionnels TCP / IP (v4) (LAN,
WAN, la surveillance de l’Internet), la supervision des réseaux de objets connectés utilisant
la technologie 6LoWPAN (IPv6), et également, l’analyse des logs d’autres applications.
Enfin, nous fournissons une étude sur la tolérance d’intrusion par conception et proposons
une approche basée sur l’émulation pour détecter et tolérer l’intrusion simultanément.

Dans chaque étude de cas, nous décrivons comment nous collectons les jeux de données
d’audit, extrayons les attributs pertinents, traitons les données reçues et décodons leur signi-
fication de sécurité. Pour attendre ces objectifs, l’outil Montimage Monitoring Tool (MMT)
est utilisé comme le cœur de notre approche. Nous évaluons également la performance de
la solution et sa possibilité de marcher dans les systèmes “à plus grande échelle” avec des
jeux de données plus volumineux.

Acknowledgments

In the first place, I would like to thank my supervisor, Prof. Ana Rosa Cavalli, who gave me
the opportunity to do this research and has been providing me a myriad of help, guidance,
and encouragement throughout my doctoral study. She always does her best regarding both
scientific advice and financial resources to send me to conferences, workshops and seminars.
These were genuinely favorable opportunities in which I can access novel research trends
and technologies, present my research achievements and receive feed-backs from experts. I
really appreciate and enjoy the time working with her.

I must thank my colleagues and friends in “Ana’s team” for the joint cross-topic work
we have done together that in its own way made a difference to this research. Many ideas in
this research have their origins in countless discussions with Raul Fuentes whom I have some
collaborative work with. I am more grateful to everyone in the lab: Jorge, Diego, Olga, José,
Natalia, Anis, Stephane, Nina, Huu Nghia, Khalifa, Javier, Fatma, Ichrak, Joao, Pramila,
Anderson, Xiaoping, Hien, Fabrice, Mohamed, Jeevan. The friendly atmosphere that they
have created helped me to go through the endless days on campus. Special thanks to my
Vietnamese and French-Vietnamese friends in TSP who helped me a lot during my arrival
and for passed three years. I will miss our interminable disputations on political issues.

Thanks especially go to Brigitte Laurent, Valerie Mateus, Veronique Guy and Sandra
Gchweinder for their beautiful nature of helping me (and everyone) with administrative
paper-works; they have made it easy for everything.

During the preparation for my dotoral thesis, I had chance to work with excellent people
in Montimage: Edgardo, Bachar, Wissam, Luong, and Huu Nghia, who helped me a lot
concerning practical designs and implementations in this research. I own them a debt of
gratitude.

I would like to thank also people from IDOLE project (Investigation et Détection Opérées
à Large Echelle) from which my PhD research was funded. I really appreciate the chance
to participate in the project which provided me a practical view and contributed a lot to
the state of the art part in this thesis.

Last but not least, thank you my beloved wife Lana, my dearest parents, my stubborn
sister, and my dear departed grandfather. Had it not been for their enormous love and
support, I could not accomplish this mission.

Thanks to all of you!

To Lana, Mama, Papa, and Titi

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Contributions . 10
1.3 Dissertation Outline . 12

2 Background 13
2.1 Security Monitoring . 14

2.1.1 The range of Network Monitoring . 15
2.1.2 Monitoring requirements . 16

2.2 Intrusion Detection . 16
2.2.1 Host-based and Network-based Intrusion Detection 17
2.2.2 Signature-based and Anomaly-based approaches 19
2.2.3 Limitations of classical approaches . 21

2.3 Novel Advanced Detection Techniques based on Machine Learning 21
2.3.1 Supervised learning . 21
2.3.2 Unsupervised learning . 24

2.4 Classic Intrusion Detection Systems . 25
2.4.1 Snort . 25
2.4.2 Bro . 26
2.4.3 Suricata . 27
2.4.4 Evaluation studies of classic IDSs . 27

2.5 Intrusion tolerance . 28

3 Proposed Security Monitoring Framework 30
3.1 Framework Overview . 30
3.2 Montimage Monitoring Tool . 31
3.3 Data capture . 34
3.4 Input pre-processing . 35

3.4.1 Attribute extraction . 35
3.4.2 Dimension reduction . 35

3.5 Training/learning phase . 35
3.6 Detection/Monitoring phase . 36

4 TCP/IP Network Security Monitoring 38
4.1 Introduction . 38
4.2 LAN monitoring . 39

4.2.1 ARP spoofing: An attack still alive . 39
4.2.2 Countermeasures . 43

4.3 WAN/Internet monitoring . 44
4.3.1 HTTP User-Agent field case study . 45
4.3.2 Methodology and implementation . 46
4.3.3 Experimental results . 48

4.4 Framework extension . 54
4.4.1 An extension from HTTP User-Agent field case study 54
4.4.2 QoE-based web pop-up and spam avoidance 55
4.4.3 Smartphone-based security monitoring 56

5 6LoWPAN-based IoT Security Monitoring 57
5.1 Introduction . 57

5.1.1 6LoWPAN overview . 58
5.1.2 IoT/WSNs Security requirements . 60

5.2 MMT Adaptation for 6LoWPAN-based WSNs 61
5.2.1 MMT plugin for 6LoWPAN . 61
5.2.2 Related Work on 6LoWPAN monitoring/intrusion detection 63

5.3 Detection methodology and algorithm . 64
5.3.1 Misbehaving node detection algorithm based on statistical learning . . 64
5.3.2 Anomalies detection based on Information Theory 66

5.4 Experimental results . 67
5.4.1 Proof-of-concept architecture . 67
5.4.2 Experimental results . 68

6 Enabling Intrusion Tolerance by Design 78
6.1 Introduction . 78
6.2 Intrusion Tolerant Routing in WSNs . 80

6.2.1 INSENS - Intrusion-tolerant routing protocol for wireless SEnsor Net-
workS . 81

6.2.2 ITSRP - Intrusion Tolerant Secure Routing Protocol 83
6.2.3 Missing issues of INSENS and ITSRP 85
6.2.4 A Comparative Evaluation . 85
6.2.5 Improvement propositions . 90

6.3 Emulation-based intrusion detection and tolerance 90
6.3.1 General methodology . 91
6.3.2 A novel approach for SQL injection detection and tolerance 92
6.3.3 Discussion . 97

7 Conclusion and Future Work 98
7.1 Conclusions . 98
7.2 Future Work . 100

A FIT IoT-Lab Hardware Information 103
A.1 WSN430 Open Node . 103
A.2 M3 Open Node . 104
A.3 A8 Open Node . 105

B A Taxonomy of Attacks in Vehicular Ad-hoc Environment 108
B.1 Type of attacker . 108

B.1.1 Insider vs. Outsider . 109
B.1.2 Malicious vs. Rational . 109
B.1.3 Active vs. Passive . 109
B.1.4 Local vs. Extended . 109

B.2 Violated Security Properties . 109
B.2.1 Confidentiality . 109
B.2.2 Integrity . 110
B.2.3 Availability . 110
B.2.4 Privacy . 110

B.3 Class of attacks . 110

Bibliography 114

List of Tables

2.1 Principal HIDSs . 18

4.1 MMT and SNORT in case of offline traffic . 49
4.2 Execution time and processing rate of MMT, SNORT and TCPdump in read-

ing PCAP files . 50
4.3 Average resource consumption of MMT, SNORT and TCPdump 51
4.4 Detection latency of MMT and SNORT . 51
4.5 False positive and false negative of our solution and SNORT 52

5.1 Comparison of detection delay between MMT and Foren6 (in millisecond) . . 71
5.2 Solution’s average processing time and throughput 72
5.3 Traffic volume, processing time and processing rate depending on the size of

network . 77

6.1 Two phases and three rounds in the first phase of INSENS 81
6.2 Request message and feedback message format 82
6.3 Format of an entry in LRT (Local Route Table) 83
6.4 Token probability distribution for a benign query 94
6.5 Token probability distribution for a malicious query 95

B.1 A Taxonomy of Attacks in Vehicular Ad-hoc Environment 108
B.2 Attack classification . 110

1

List of Figures

1.1 Total cost of cyber crime in eight countries 8
1.2 Amount of research papers containing corresponding keywords in recent four

years (investigation on IEEE Xplore Digital Library) 9
1.3 Preferred cloud-based solutions chosen by companies to face to cyber-risks . . 9

2.1 Basic active (a)/passive (b)/hybrid (c) monitoring deployment 14
2.2 The range of Network Monitoring . 15
2.3 A NIDS architecture with distributed (MMT) probes 18
2.4 A generic example of Neural Networks . 22
2.5 A generic example of Decision trees . 23
2.6 A generic example of Support Vector Machines 24
2.7 A generic example of Association rules . 24
2.8 A generic example of k-means clustering with k = 3 25
2.9 Bro’s internal architecture . 26

3.1 Overview of proposed framework . 31
3.2 MMT global architecture [1] . 32
3.3 An MMT Security Property sample . 32
3.4 MMT’s position to listen to live traffic . 33
3.5 A proposed architecture to sanitize audit data before analyzing 34
3.6 Training/Learning phase diagram . 36
3.7 Detection/Monitoring phase diagram . 36

4.1 ARP: An example . 40
4.2 ARP spoofing/ poisoning: An example . 40
4.3 ARP case study: Experiment architecture . 41
4.4 JXplorer interface . 42
4.5 MMT security property example to detect ARP spoofing attack 44
4.6 SQL injection: a generic example . 45
4.7 Proposed methodology to detect abnormal behavior using the User-Agent field. 47
4.8 User-Agent strings analysis diagram . 47
4.9 Execution time of MMT, SNORT and TCPdump in function of traffic volume 50
4.10 An example on using metadata to monitor users’activities 53
4.11 User-Agent case study extension . 55

3

List of Figures 4

4.12 QoE-based web pop-up and spam avoidance 55
4.13 Smartphone-based security monitoring example 56

5.1 Complete security scheme proposed by Libelium 59
5.2 6LoWPAN protocol stack in comparison with TCP/IP 60
5.3 An example of actual application of WSN/IoT 60
5.4 A sample captured packet with IEEE 802.15.4 fields 62
5.5 Attribute definition for IEEE 802.15.4 . 62
5.6 List of MMT plugins corresponding to supported protocols 63
5.7 Additional link cost to the neighbor . 65
5.8 Hierarchical architecture of the 6LoWPAN-based WSN in our experiment . . 68
5.9 Volume of traffic and processing time depending on the size of network 69
5.10 Probability Density Functions and Cumulative Distribution Functions of the

travel time . 70
5.11 Proposition’s false positive and accuracy rate in function with the threshold εi 72
5.12 Entropy monitoring of 10 nodes under normal condition 74
5.13 Entropy monitoring of 30 nodes under normal condition 75
5.14 Entropy monitoring of 30 nodes under rebooting 75
5.15 Entropy monitoring of 10 nodes under attacks 76

6.1 Security features for modern systems . 79
6.2 Summary of the first two phases of ITSRP . 84
6.3 Confined portion of the impact caused by a malicious node m [2] 86
6.4 Comparison of average network throughput 87
6.5 Comparison of average network overhead . 88
6.6 Comparison of average network lifetime . 89
6.7 Emulation-based intrusion detection and tolerance methodology 91
6.8 Simple Three-Tier Architecture of database-driven Web Applications 93
6.9 SQL injection detection and tolerance methodology 93
6.10 Information theory-based SQLI detection approach 94
6.11 The response time with and without adding the detection and tolerance mod-

ule: (a), (c) - Malicious queries; (b),(d)- Benign queries 95
6.12 The augmentation in response time caused by the additional module: (a), (c)

- Malicious queries; (b),(d)- Benign queries 96

7.1 Contribution summary in HTTP User-Agent field case study 99
7.2 Contribution summary in 6LoWPAN-based WSNs case study 99
7.3 An adaptive intrusion tolerance example . 102

A.1 WSN430 Open Node . 103
A.2 WSN430 Open Node’s hardware in detail . 104
A.3 M3 Open Node . 105
A.4 M3 Open Node’s hardware in detail . 106
A.5 A8 Open Node . 106
A.6 A8 Open Node’s hardware in detail . 107

Acronyms

6LoWPAN IPv6 over Low power Wireless Personal Area Networks. i

BR Border Router. 63, 67–69

CPU Central Processing Unit. 19

DAO Destination Advertisement Object. 73

DIO DODAG Information Object. 73

DIS DODAG Information Solicitation. 73

DM Diffusion Map. 35

DPI/DFI Deep Packet/Flow Inspection. 35

DTLS Datagram Transport Layer Security. 60, 62

HIDS Host-based Intrusion Detection Systems. 17

HSTS HTTP Strict Transport Security. 42

HTTPS Hypertext Transfer Protocol Secure. 41–43

IDS Intrusion Detection System. 16

IMAP Internet Message Access Protocol. 43

INSENS Intrusion-tolerant routing protocol for wireless SEnsor NetworkS. 81

IoT Internet of Things. i

IPv4 Internet Protocol version 4. i

IPv6 Internet Protocol version 6. i

IT Information Technology. 7

ITSRP Intrusion Tolerant Secure Routing Protocol. 83

5

Acronyms 6

LAN Local Area Network. i, 39

LRT Local Route Table. 1, 83

MAC Media Access Control. 39

MMT Montimage Monitoring Tool. i, ii, 31

NIDS Network-based Intrusion Detection. 17, 18

PCA Principal Component Analysis. 35

POP Post Office Protocol. 35, 39

RP Random Projection. 35

RPL Routing Protocol for Low-Power and Lossy Networks. 59, 73

RSUs RoadSide Units. 110

SMTP Simple Mail Transfer Protocol. 35, 47

SNMP Simple Network Management Protocol. 47

SQL Structured Query Language. 44, 46–48, 51, 52, 54, 92

SQLI SQL Injection. 92

SSL Secure Sockets Layer. 41, 43, 47

SVM Support Vector Machines. 22

TCP Transmission Control Protocol. i

TLS Transport Layer Security. 41, 42

UDP User Datagram Protocol. 27

VANET Vehicular Ad-hoc Networks. 108

VM Virtual Machine. 91–93, 97

WAN Wide Area Network. i

WSN Wireless Sensor Network(s). i

XML Extensible Markup Language. 31

XSS Cross-site Scripting. 45–47, 54

Chapter 1
Introduction

Contents
1.1 Motivation . 7

1.2 Contributions . 10

1.3 Dissertation Outline . 12

1.1 Motivation

Computer security, also known as cyber-security or IT security, has been always an emerging
topic for decades. It is predicted to continuously attract a lot of attention due to the
increasing reliance on computer systems everywhere. Computer systems here are not limited
in the zone of ordinary desktops or laptops but include also smart devices (e.g., smart-
phones, connected objects, sensor devices). Additionally, the incredible growth of Internet
and wireless networks such as Bluetooth and Wi-Fi and the concept Internet of Things
promise to make the world become Internet of Every Things.

However, at the same time, cyber attacks are growing in both volume and sophistication.
According to a study made by Symantec 1 in 2015, nearly one million of new malware
threats are released every day. Two-thirds of Internet users have been victims of cyber-
crime, with more than 1.5 million new victims every day. All over the world, people are
somehow influenced by cyber-crime. Indeed, the governments are paying several millions
of U.S dollars each year in consequence of cyber-attacks. Fig. 1.1 depicts the cost caused
by cyber-crime according to a report of Ponemon Institute 2 in eight countries which are
the most affected in recent three years. In fact, the cost stays high and increases in some
big countries (e.g., United States, United Kingdom) despite the effort and investment for
countermeasures.

Due to the attacks, protecting information systems or networks become a difficult but
indispensable task. People in research community give an ongoing attention in security.
Indeed, as demonstrated in the Fig. 1.2, there are around 5000 papers or more published
each year on IEEE Publisher dealing with the problem of “information security”. This
number is rapidly rising in the recent two years.

1https://www.symantec.com/security-center/threat-report
2Ponemon Institute homepage: https://www.ponemon.org/

7

Motivation 8

Figure 1.1: Total cost of cyber crime in eight countries

We can divide the research on information security into two main directions: The former
is to design secured infrastructures with secured communication protocols. The later is to
monitor/supervise the systems or networks in order to find and re-mediate vulnerabilities.
They are actually mutual tasks. The former can assist the later by forming some additional
monitoring-supporting modules. Whilst, the later can verify if everything designed in the
former is correctly and securely functioning as well as detecting security violations.

More specifically, looking inside research papers on “information security”, we observe
around 25 percents and 15 percents focusing on “security monitoring” and “network security
monitoring” respectively (Fig. 1.2). Despite the low proportion, security monitoring still
plays an important role in industrial enterprises. According to the survey made by Pricewa-
terhouseCoopers LLP (PWC) 3 in 2016, “real-time monitoring and analytic” hold the first
position in the list of popular solutions to face to cyber-risks in companies (Fig. 1.3). In
the other words, security monitoring deserves more attention from researchers, even more
than the rising interest that it currently receives. This is the main topic of this thesis.

3PWC homepage: http://www.pwc.com/

Motivation 9

Figure 1.2: Amount of research papers containing corresponding keywords in recent four
years (investigation on IEEE Xplore Digital Library)

Figure 1.3: Preferred cloud-based solutions chosen by companies to face to cyber-risks

Many establishments assume that their IT infrastructure is sufficiently protected by an
up-to-date anti-virus tool and a reliable firewall. However, cyber-criminals are more and

Contributions 10

more intelligent to develop more sophisticated methods to access company computers and
servers. On the other side, many systems are able to defense very well against attacks
coming from outside but stay vulnerable against those from inside. Sadly, employees are
commonly not well trained enough to keep up with the security menaces and sometimes,
they can be abused by the attackers. As a result, an automated network security monitoring
solution becomes a critical challenging task for the network operator, the service provider in
order to keep the network operation stable, smooth and safe. If a security violation occurs
beyond the company network without being detected, it will be just a matter of time before
the entire network has been compromised. The service provider’s ability to deliver secure
and high-quality services would be compromised too.

As a matter of fact, the monitoring agents must detect every security threats and should
warn the administrators in real-time or “near-real-time” to perform suitable countermea-
sures. However, in addition to the growing sophistication of threats, there are several other
challenges to modern monitoring solutions, namely:

• The rising scale and complexity of running systems or networks under-monitored:
From a few network devices or less than a hundred computers in the past to thousands
in the presents.

• The higher bandwidth of modern networks: From 10 or 100 Mbps (Megabit per second)
before up to 10 Gbps (Gigabit per sec) now.

• The appearance of new devices, new technologies, new network standards and proto-
cols.

The first two challenges prompt the huger traffic which need to be analyzed. The mon-
itors should thus have a better performance by applying novel techniques to deal with
voluminous data. Whilst, the last challenge requires the modern monitoring solutions flex-
ible and extensible in order to adapt in new platforms with new traffic. Indeed, those are
our main goals in this thesis.

To date, the research on attack and intrusion detection systems is mainly focused on how
to detect as many attacks as possible, as soon as possible, with the minimum of the false
alarm rate. However, a growing recognition is that a variety of critical applications need to
continue to operate or provide a minimal level of services even when they are under attack
or have been partially compromised. Additionally, attacks are more and more sophisticated
and thus, they are difficult to be captured. Hence, beside intrusion detection, the future
IT systems in our opinion should be able to tolerate the intrusion or attacks. It will be
surely precious in the cases where IDSs (Intrusion Detection Systems) are too expensive
or unpractical. We consider that the intrusion tolerance can be also the “next-step” of
intrusion detection. For example, if a system detects an intruder, it can react somehow to
keep a proper operation despite the existence of the intruder, in the other words, tolerate
the intrusion. This topic will be discussed in the chapter 6.

1.2 Contributions

The main contribution of this thesis is the proposition and implementation of a security
monitoring framework that takes into consideration different types of audit datasets includ-
ing network traffic and applications’ logs. We propose some novel approaches based on

Contributions 11

supervised machine learning to pre-process and analyze the data input. From our point of
view, these techniques can leverage the data processing speed to assure quick detection even
in large scale systems with high traffic.

Our framework is validated in a wide range of case studies including traditional TCP/IP(v4)
network monitoring (LAN, WAN, Internet monitoring), IoT using 6LoWPAN technology
(IPv6), and other applications’ logs. In each case study, we describe how we collect the au-
dit dataset, extract the relevant attributes, handle received data and decode their security
meaning. To achieve these goals, the tool MMT (Montimage Monitoring Tool) is used as
the core of our approach. We assess also the solution’s performance and its possibility to
work in “larger scale” systems with more voluminous dataset.

More specifically, we implement the framework for the following case studies:

1. Traditional TCP/IP networks:
We started the research over common TCP/IPv4 networks which have been the most
used all over the world.

• ARP spoofing:
Although ARP spoofing is a very classic attack, we could still perform it to some
LANs. Based on this basic attack, we could realize further attacks to exploit and
receive sensitive information from the network’s members, e.g., user-name and
password. We proposed then some countermeasures to avoid those vulnerabilities.

• HTTP User-Agent field case study:
HTTP is an Internet protocol that is predominant and widely used in every
computer networks nowadays. User-Agent is a field in HTTP request message
which is modifiable and exploitable to perform attacks. We specified this issue,
proposed the methodology and implemented the framework to monitor that field
and detect attacks. The framework was also extended to HTTP traffic in gen-
eral in considering techniques aiming improve the performance (e.g., dimension
reduction, machine learning). We proved that Android malware detection, Web
pop-up and Spam avoidance can be achieved similarly by the same approaches.

2. 6LoWPAN-based WSNs:
To our knowledge, 6LoWPAN traffic was not understandable to any monitoring solu-
tion. That is the reason why we adapted MMT to work in 6LoWPAN-based WSNs by
adding several new plug-ins. Then we proposed a number of algorithms and techniques
to detect anomalies in such networks based on supervised learning including statisti-
cal learning, information theory. Experiments proved our proposition’s applicability,
extensibility and its reasonable performance.

3. Intrusion tolerance: Possible next-step of intrusion detection

• Intrusion tolerant routing in WSNs:
We studied two most famous intrusion tolerant routing protocols by theoretical
analysis and by simulations. We pointed out their missing issues and proposed
some improvements possibly making them practical and more efficient.

• Emulation-based intrusion detection and tolerance:
We proposed an extension of the framework to detect and tolerate attacks at the
same time. This work is validated by the SQL injection case study.

Dissertation Outline 12

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 reviews the literature
of related topics including security monitoring, intrusion detection approaches and tools,
as well as recently proposed detection techniques. Chapter 3 provides a high-level view
of our security monitoring framework. The application of our framework to two practical
platforms (TCP/IPv4 networks and 6LoWPAN-based WSNs) is presented in the following
Chapter 4 and Chapter 5 respectively. Chapter 6 discusses the possibility to enable the
concept intrusion tolerance by design. Finally, Chapter 7 concludes the dissertation and
discusses the future work.

Chapter 2
Background

Contents
2.1 Security Monitoring . 14

2.1.1 The range of Network Monitoring . 15

2.1.2 Monitoring requirements . 16

2.2 Intrusion Detection . 16

2.2.1 Host-based and Network-based Intrusion Detection 17

2.2.1.1 Host-based Intrusion Detection 17

2.2.1.2 Network-based Intrusion Detection 17

2.2.2 Signature-based and Anomaly-based approaches 19

2.2.2.1 Signature-based approaches . 19

2.2.2.2 Anomaly-based approaches . 20

2.2.3 Limitations of classical approaches . 21

2.3 Novel Advanced Detection Techniques based on Machine Learning . 21

2.3.1 Supervised learning . 21

2.3.1.1 Neural networks . 22

2.3.1.2 Decision trees . 23

2.3.1.3 Support Vector Machines . 23

2.3.2 Unsupervised learning . 24

2.3.2.1 Association rules . 24

2.3.2.2 The k-means . 25

2.4 Classic Intrusion Detection Systems . 25

2.4.1 Snort . 25

2.4.2 Bro . 26

2.4.3 Suricata . 27

2.4.4 Evaluation studies of classic IDSs . 27

2.5 Intrusion tolerance . 28

13

Security Monitoring 14

2.1 Security Monitoring

Monitoring is the process of dynamically collecting, interpreting and presenting metrics
and variables related to a system behavior, in order to perform management and control
tasks [3]. Security monitoring is thus a sub-domain of monitoring which focuses mostly in
security issues.

Figure 2.1: Basic active (a)/passive (b)/hybrid (c) monitoring deployment

A typical monitoring platform is basically composed of three main elements:

• Monitoring probes: they directly collect data from the sources to be further analyzed
by the analysis module. Probes can be distributed in diverse locations of the system
(e.g., network, application, user side, etc.) in order to obtain a global view of the
system.

• Database: diverse databases can be utilized. Commonly, one database is used to
store the raw data gathered by the probes, and other databases containing diverse
information (e.g., rules, security, performance) are also consulted to correlate the
collected data in order to extract the required information.

Security Monitoring 15

• Analysis module: it contains the means to examine the input collected by the probes,
correlate it with the information stored in the database and produce an output that can
be used for different purposes. For example, in user access monitoring, the monitoring
component can detect the number of unsuccessful connection attempts from a specific
source; if this number reaches a predefined threshold, the access for this source can be
blocked for a certain period of time.

Additional modules can be added with the aim of performing supplementary tasks. For
example, visualization modules may be used to show the requested statistics to the involved
actors.

Depending on the real scenario, the audit data input of the monitoring tool can be
network traffic, system trace, application logs, users’ activity or heterogeneous data source.
Regarding the way the data source is collected, we can classify monitoring techniques into
three main categories: active, passive and hybrid approaches (Fig. 2.1).

2.1.1 The range of Network Monitoring

Network monitoring is a critical challenging task for a network operator, a service provider
or a corporate infrastructure in order to keep the network operation stable, smooth and
safe. Depending on the network range, the suitable monitoring technique can be chosen.

Figure 2.2: The range of Network Monitoring

The Fig. 2.2 presents the range of network monitoring that we can divide into three
collections of approaches:

• Full Packet Capture: Monitoring module captures “everything” that goes across the
network (e.g., PCAP). This technique is typically used on a single network.

• Meta Data Capture: Monitoring module captures data associated with a particular
network activity, typically in the form of logs. For example, it can capture: from, to,
subject, date, attachments regarding email traffic and source IP, destination IP, URL,
User Agent String regarding web traffic capture.

Intrusion Detection 16

• NetFlow: NetFlow aggregates related packets into unidirectional flows. The flow
records are collected and stored for later analysis, e.g., SiLK, Argus, etc.

2.1.2 Monitoring requirements

The main objectives of monitoring are functional verification of the system under test, per-
formance analysis, verification of security properties, and detection of security vulnerabilities
and attacks. In order for a monitoring platform to be effective in the early detection of any
performance, security, or privacy violation, the following requirements must be fulfilled:

• Data capturing performance: traffic speed and data volume should not affect the
collection of system information.

• Extensibility: it should be easy to incorporate new services to be monitored without
requiring a great effort from the administrators.

• Scalability: the monitoring system should be adaptable to the increase of data to be
collected, services and applications to be monitored. This can be done by reducing
the data collected through the use of efficient data capturing mechanisms and pre-
processing techniques.

• Near real-time operation: in order to achieve early detection of performance or security
is- sues, data capture must be aligned with real-time analysis capabilities.

• Granularity: the monitoring system should be capable of differentiating among the
different protocols, services and applications that are monitored.

• Diversity: diverse network devices, protocol stacks, services, applications, etc. should
be supported by the monitoring platform.

• Low cost: the amount of computing, storage and communication resources consumed
by the monitoring system should be as lower as possible.

• Security: the monitoring system should not add new vulnerabilities to the system.

• Transparency : the monitoring functions should not interact or disturb the normal
operation of the system.

2.2 Intrusion Detection

First of all, an intrusion refers to any set of actions perpetrated to compromise the integrity,
confidentiality or availability of a resource (e.g., a network, an information system, a set of
applications or software). An intrusion detection system is a process that monitors events
occurring within a system and analyzes them to detect possible signs relating to a security
problem.

Initially, intrusion detection was performed manually by human analysts whose task was
to examine the log files looking for suspicious activity. This approach could not work in
large scale, the idea of automating this process quickly gave birth to intrusion detection
systems. Thereafter, an Intrusion Detection System (IDS) became a software/tool designed
to analyze the activities of a computer system and to identify the legitimate and illegitimate

Intrusion Detection 17

ones. Once identified, incidents (i.e. illegitimate actions) are listed and an alert is generated
to inform the person in charge of incident management.

In this section, we revise the classical intrusion detection approaches. These approaches
are first classified according to the perimeter targeted by detection (network-based or host-
based) and according to the detection approach used (anomaly-based or signature-based).

2.2.1 Host-based and Network-based Intrusion Detection

Intrusion detection systems based on the use of probes whose main task is gathering and
analyzing information for the detection of computer attacks. Depending on the location of
the probe and its scope of action, we distinguish two types of intrusion detection systems
detection systems on host (Host-based Intrusion Detection Systems - HIDS) and detection
systems network (Network-based Intrusion Detection Systems - NIDS).

2.2.1.1 Host-based Intrusion Detection

Intrusion detection on the host involves installing a software agent on the host system
which need to be monitored. Common capacities of Host-based Intrusion Detection Systems
(HIDS) include the analysis of activity logs (system, network and applications), event cor-
relation, verification of system integrity and files, the implementation of the policy, rootkit
detection (e.g., stealth malware), alerting, etc. They frequently have also the ability to de-
tect the system configuration changes and provide an general overview of the current state of
the local host. In some specific implementations, the HIDS agents also enable connectivity
and/or compatibility to other security systems. For example, Cisco Security Agent (CSA)
has the ability to send host data “upstream” to Cisco Intrusion Prevention System (IPS),
Checkpoint integrity can be integrated with Checkpoint Secure Client (VPN Client), and
IBM Proventia Desktop can play the role as a Cisco Network Admission Control (NAC)
solution.

Nowadays, most HIDSs have the opportunity to actively prevent malicious or abnormal
activity on the host system. This is called an active HIDS. If a malicious change or unautho-
rized activity is detected, the HIDS can: (a) alert the user via a pop-up, (b) alert the central
management server, (c) block the activity or a combination of the three. The decision is
based on the existing policy in the system. However, because of the potential impact that
the HIDS actions can have on the end user, these systems are often deployed in passive
mode. The system then merely alerts the administrator who will choose the appropriate
response.

To be effective in an environment with multiple hosts, a HIDS is usually managed from
a central location. On the management system, a policy is configured for deployment of
local staff. There may be a single policy for all computers, but often several policies are
used depending on the operating system, the type of machine and the type of user.

There are many types of HIDS software available. Tab. 2.1 presents a list of the most
common including free and commercial ones.

2.2.1.2 Network-based Intrusion Detection

Detecting network intrusion based on the capture and analysis of the network traffic. A
HIDS is capable to detect in real-time an attack taking place at one of the machines in the
network. It can detect also malicious activities and virus dissemination. Network-based

Intrusion Detection 18

Free Commercial

OSSEC (Open Source Host-based Intrusion Detection System) IBM Proventia Desktop
Tripwire Cisco CSA
AIDE (Advanced Intrusion Detection Environment) Checkpoint Integrity
Prelude Hybrid IDS Tripwire Enterprise

Symantec Endpoint Protection
McAfee Host Intrusion Prevention

Table 2.1: Principal HIDSs

Intrusion Detection (NIDS) should then report an alert to the appropriate entity (e.g. user,
administrator, analyst, etc.)

Figure 2.3: A NIDS architecture with distributed (MMT) probes

A NIDS manages and analyzes data packets. A big NIDS server can be installed on the
network backbone in order to handle all the traffic. Alternatively or in addition, smaller
systems can be deployed in specific links to manage traffic to a specific equipment such
as a server, a switch, a gateway, or router. Another type of NIDS could be installed on a
central server in order to scan all file systems to ensure the integrity and detect unauthorized
activities.

There are several common NIDS architectures. Firstly, in the early warning mode, the
NIDS is deployed outside the perimeter firewall. Thus, all traffic entering to hosts or the local
enterprise network is scanned by the NIDS. Another architecture is internal deployment:
In this mode, the NIDS probes are deployed in order to control the traffic through any
link within the monitored network. An example is illustrated in Fig. 2.3 where Montimage
Monitoring Tool (MMT) is used as the NIDS. This architecture provides a high level of
security. NIDS is deployed near the access routers, bridge nodes, and network boundaries.
Finally, a third architecture is to attach a NIDS to each host. NIDS are different from HIDS
in the fact that they stay decoupled from the host’s operating system and can be managed
by a network administrator from a centralized location in the topology.

Intrusion Detection 19

2.2.2 Signature-based and Anomaly-based approaches

Once deployed (in the host machine or network), the probe collects all or selective data
passing through it for analysis. At this point, there are two approaches: signature-based
and anomaly-based. In the first approach we will compare the data collected with our prior
knowledge of the attacks while in the second, it is based on our knowledge of the normal
system behavior.

2.2.2.1 Signature-based approaches

Signature-based approaches rely on the construction of a database of signatures representing
already known attacks or security violations. The intrusion detector then compares the
observed activities with each element of the database and raises a warning if there is a match.
The advantage of this approach is the implementation simplicity and the high relevance of
its detection. Two sub-techniques can be used inside this approach: the pattern matching
and detection by inference.

• Pattern matching
The simplest form of signature-based detection considers the sequences of operations
recorded in the audit as a language. The signature database is a subset defined by
a set of patterns for that language. Intrusion detection becomes classic problems of
language recognition that can be resolved by models such as the Turing machine, State
Automata, Petri net, etc.

To avoid a combinatorial explosion due to the astronomical number of possible states
if we considered all operations in auditing a computer system, the transitions are
provided with guards. These are Boolean functions which allow either simplifying the
specification of patterns or reducing the exploration space.

The pattern matching is a deterministic and accurate method. The main difficulty
lies in the construction of patterns themselves. They must be both specific enough
to discriminate a large number of cases and to avoid generating false positives, and
generic enough to detect different variants of the same attack. In addition, an attacker
knowing signature database could build an undetectable scenario.

• Detection by inference
The pattern matching is a heavy technique and seemingly unusable on a large scale.
Therefore, many intrusion detectors complement the scenarios with a probabilistic
inference algorithm based on the principle of Bayesian inference. In this model, known
attacks constitute the hypotheses that could explain the observed facts. We consider
that a given attack can be detected not only by symptoms appearing in the form of
events in audit, but also statistical data as in the case of anomaly detection (memory
usage, CPU load, etc.). Given a set of symptoms, Bayesian inference can calculate
the probability of each known attack scenario. When a scenario has a high probability,
an alert should be raised.

Suppose that the database of attacks contains a set of hypotheses Ai, some of which
refer to known attacks and the probabilities p(Ai) and p(Ai|Sj) with Sj is an observed
symptom. The construction of this database requires significant expert work for the
formulation of hypotheses, the statistical study of possible cases, and the probability

Intrusion Detection 20

calculations. A Bayesian inference-based intrusion detector recursively constructs a
decision tree, according to the inference rule:

p(An+1) = P (An|Sn) = p(An) ∗ p(Sn|An) ∗ a (2.1)

The initial information, S0, is an early symptom observed (e.g., by pattern matching)
which permits assigning a probability to each of the possible hypotheses. The arrival
of each new element Si modifies these probabilities and adds a new tree node. In the
case of a known intrusion, the algorithm eventually generate a node providing a high
probability to a certain hypothesis Aq, which is defined as this attack.

Each element observed in the audit can be confronted with different hypotheses and
an attack scenario is defined as a combined presence of a set of symptoms, not a
particular sequence of events. This minimizes the risk that an attacker can exploit his
knowledge of basic attacks to go through without being detected. The development of
an undetectable scenario requires the construction of a series of operations realizing
the desired attack, but in which nothing actually confirmed any of the hypotheses.
This is very difficult in the case of non-trivial attacks. The principle of inference
enables detecting number of variants of a known attack and can be applied in the case
where the attacker tries to drown the attack inside the noise, in generating a large
number of trivial operations. However detecting new attacks is still not possible.

2.2.2.2 Anomaly-based approaches

The anomaly-based approach (also known as behavioral approach or misuse approach) con-
sists of two steps: Firstly, a definition of “normal” behavior of the system must be elabo-
rated. This step represents a learning phase and is generally carried out automatically and
progressively. The normal behavior definition can be after that set to evolve over time. It
is thus a qualified empirical approach in which the behavior definition should be “learned”
during the time, by observation. The second step is to analyze the trace to detect any
deviation from the normal behavior defined above.

There are several ways to perform this task including the probabilistic approach and the
statistical approach.

• The probabilistic approach
In this approach, we consider that the behavior of a system is characterized by several
events which we will associate a probability of occurrence to each one. Some qualified
normal events will have a high probability of occurring while doubtful events have a
low or zero probability.

• The statistical approach
Although superficially similar, the statistical approach is more accurate and compre-
hensive than the last. It is a quantitative measure of system resources used in the
context of a normal behavior. Subsequently, the same activity generating different
statistics may or may not (depending on the margin of error) associated with an at-
tack. The efficiency of this approach lies in developing the statistical profile of normal
behavior. If it is skewed by an attempted attack, it will not be able to detect similar
attacks later.

Novel Advanced Detection Techniques based on Machine Learning 21

2.2.3 Limitations of classical approaches

Signature-based detection approaches are relatively easy to implement, require no learning
curve. This eliminates the risk of over-training or voluntary deformation of the profile that
can be observed in behavior-based approaches.

However, these approaches require an active maintenance and very frequent updates of
the signature database to integrate any new attack discovered. Indeed, the update cannot
be performed automatically as in the case of behavior-based detection. This fact implies
a higher rate of false negatives. The problem arises especially with very recent attacks
for which signatures have not been included in the database yet. Also, the absence of
a standard pattern description language limits the usefulness of signatures described in a
given language since interoperability between different detector is probably not possible. If
some signatures descriptions are too simplified for performance reasons, which makes them
likely to correspond to the legitimate actions and therefore to trigger false positives.

Anomaly-based detection approaches have several interesting features. First, as the
hypotheses are made only on the normal behavior of the system and not on possible attacks,
detection is exhaustive. Indeed, the system allows a prior to detect all that “differs” from
established normal behavior. Thus, it becomes possible to envisage detection of unknown
attacks and no specific knowledge about the attacker is required. All necessary information
is collected within the system. On the other hand, once the learning phase terminates,
the IDS does not require particular update. The definition of normal behavior evolve only
slightly if any.

Nevertheless, a high rate of false positives is the main weakness of these approaches
because it is sometimes difficult to define the “normal behavior”. Sudden changes in the
environment can have an impact on behavior. This sudden change in behavior will be
considered as an anomaly and an alert will be generated. Also, since the first phase is
dedicated solely to the development of the definition of “normal behavior”, this one is
particularly vulnerable to attack. Indeed, the presence of signals related to an attack in
the learning trace will result in skewing the definition of behavior. Thereafter, any similar
attack will be treated as a normal behavior. The information used during this first phase
in the optimal condition must be totally free from damage. In practice, it is frequently
impossible to have such perfect environment.

2.3 Novel Advanced Detection Techniques based on Machine
Learning

As mentioned in the section 2.2.3, classic approaches have themselves several weaknesses
that can be exploited by attackers and/or limit their utilization in large scale. This section
presents some prominent novel techniques which attempt to deal with those limitations.

2.3.1 Supervised learning

The automatic supervised learning presupposes the existence of a database used for learning
in which there are data entries (packet attributes, signatures, etc.) and a label (e.g., class)
associated to each entrance. Supervised learning algorithms use the correlation between the
input and the class to modify the internal parameters and thus find the transfer function of
the system. Once the training/learning phase is done, we achieve the internal parameters

Novel Advanced Detection Techniques based on Machine Learning 22

of the model and apply them on new data (which were not used for learning) to have the
classification. The most-used supervised learning algorithms are neural networks, decision
trees, Support Vector Machines (SVM) and Bayesian networks. We present in the following
three of those.

2.3.1.1 Neural networks

A neural network is defined as a set of nodes (or neurons, units) connected by their inputs
and outputs in a predetermined scheme forming a topology. The learning of a neural network
consists of modifying the weights of the connections between neurons while satisfying a
convergence criterion. Effectively, these models are difficult to interpret.

Figure 2.4: A generic example of Neural Networks

The neural topology is organized in three layers (Fig. 2.4): (i)- Input layer: The number
of nodes equals to the number of attributes that characterize the data input in the learning
phase; (ii)- Output layer: The number of nodes equals to the number of classes desired by
the model. Each node gives the probability that the given sample input is classified in the
appropriate class; (iii)- Hidden layers: The number of nodes depends on the implementation.
A big number of hidden layer nodes enables learning a complex function, but increases also
the complexity and the time required for learning.

Like any other supervised learning algorithms, neural networks operate in two phases.
In the first phase, the network learns how to adjust the weight of its connections so that the
output classes correspond to values of the input attributes on labeled samples of learning
data. The weights are usually initialized randomly. Before the learning stage, we must

Novel Advanced Detection Techniques based on Machine Learning 23

decide the desired number of nodes in each layer. In the detection or classification phase,
the neural network will be used for classifying the corresponding attribute values in new
data.

2.3.1.2 Decision trees

A decision tree is a tree structure permitting to represent a set of rules. The rules are
represented by a series of conditions which define a path from the root to a leaf containing
the decision to apply. If the target variable takes a finite set of values, tree models are
called classification trees. In this case, leaves represent class labels and branches represent
conjunctions of features that lead to those class labels. If the target variable takes continuous
values (typically real numbers), decision trees are called regression trees.

Figure 2.5: A generic example of Decision trees

2.3.1.3 Support Vector Machines

Support Vector Machines (SVM) consist of a class of alternative algorithms to neural net-
works. Given a set of training examples, each one is marked for belonging to one of two
categories. An SVM training algorithm builds a model that assigns new examples into one
category or the other, making it a non-probabilistic binary linear classifier. An SVM model
is a representation of the examples as points in space, so that the examples of the separate
categories are divided by a clear gap that is as wide as possible. New examples are then
mapped into that same space and predicted to belong to a category based on which side of
the gap they fall into.

The use of SVM is widespread in the academic world as well as in the industrial world.
It is conceptually easy to understand and it is an optimization problem of a convex function.
SVM is therefore a global optimum and do not fall on local optima as neural networks. In
addition, SVM has a set of vectors easier to interpret than a neural network which is a
black box. In addition to linear classification, SVMs can efficiently perform a non-linear
classification using what is called the kernel trick, implicitly mapping their inputs into high-
dimensional feature spaces.

Novel Advanced Detection Techniques based on Machine Learning 24

Figure 2.6: A generic example of Support Vector Machines

2.3.2 Unsupervised learning

When we do not have a labeled learning data, supervised learning is not possible and an
unsupervised learning approach is required instead. In this case, the algorithm must find
classes that make sense, in the other words, group similar examples and separate distinct
examples. The most-used unsupervised learning algorithms are association rules and k-
means.

2.3.2.1 Association rules

Association rules contain rules in the form X → Y , where X can consist of a set of con-
ditions and Y is usually restricted to only one conclusion (Fig. 2.7). Learning a set of
association rules is to find all instances where X and Y are co-present and to retain only
the rules satisfying statistical criteria, including support and confidence. Association rules
are individually legible but are generally very numerous.

Figure 2.7: A generic example of Association rules

Classic Intrusion Detection Systems 25

2.3.2.2 The k-means

The k-means algorithm is an algorithm partitioning data to separate the examples into k
classes where each instance is assigned to the class whose center is the closest in the sense of
distance. Learning such a classification is to determine the k cluster centers. This algorithm
requires to choose the distance and the number k (Fig. 2.8). It is very effective for a lot of
problem and popular due to its simplicity.

Figure 2.8: A generic example of k-means clustering with k = 3

2.4 Classic Intrusion Detection Systems

In reality, there exists many IDSs proposed both in academic institutions and industrial
companies. They use different techniques to identify malicious behavior and/or to leverage
the data processing speed. From the author’s point of view, there are mainly three classic
IDSs which are the most well-known and widely used, namely Snort, Bro and Suricata.

2.4.1 Snort

According to [4], Snort is an open source intrusion prevention system capable of real-time
traffic analysis and packet logging. Snort is a typical example of signature-based IDSs. It is
able to perform protocol analysis, search/match the content based on a signature database.
Thus, it can be used to detect a variety of attacks such as buffer overflows, port tests, and
worms. Signatures are represented by rules which can be actively contributed by an open
Snort Community. The latest versions of Snort can combine a set of signatures to detect
anomalies.

Snort can operate as a packet sniffer capturing packets traversing the network link, and
display them on the console. It can be also a packet logger saving complete packets into a
log file for later analysis. Most commonly, it plays the role of a NIDS which monitors the
network traffic and verifies the packets in using a set of rules predefined. A Snort rule set

Classic Intrusion Detection Systems 26

is a file containing the signature of a malicious activity or attack with respective actions
in response. Snort uses pattern matching technique to verify whether a rule is matched.
Nevertheless, the current version of Snort does not provide communication mechanisms
which allows Snort instances being deployed in different nodes to correlate data input or
share attack detection information. As a result, Snort does not support distributed intrusion
detection and collaboration between the participating nodes to identify malicious nodes in
a consensual manner.

2.4.2 Bro

Bro [5,6] is a representative network security monitor that focuses not only in security but
also more general network traffic analysis. As any security monitoring tool, Bro passively
supervises the network traffic for detecting signals of security attacks and intruders. In fact,
Bro has two major components: (i)- An event engine transforming the filtered network
traffic stream into a series of higher-level events. (ii)- A policy script interpreter executing
a set of event handlers written in a custom Bro scripting language. Event handlers can be
the expressions of security policies, i.e., responsive actions to take if a pre-defined activity is
detected. The script can be used also to update the global state information, synthesizing
new events, scheduling events, recording information to disk files, and generating alerts. In
a nutshell, users are free to create their own script to specify their policies. This fact makes
Bro flexible and extensible.

Figure 2.9: Bro’s internal architecture

People in Bro project are actively transforming Bro from an originally academic tool
to an industrial product by providing open source version as well as commercial support.
However, in our opinion, the current version of Bro is still more suitable for academic
researcher with expert knowledge in scripting language rather than general users.

Classic Intrusion Detection Systems 27

2.4.3 Suricata

Suricata [7] is an open-source NIDS developed by Open Information Security Foundation
(OISF). The first beta version was released in December 2009. Despite being released for not
very long time, Suricata has been rapidly known and used by the community. The novelty
of Suricata is its multi-threaded architecture that enables taking advantage of multiple core
and multiple processor host architecture. Suricata can, thus, increase the processing speed
and the efficiency of traffic analysis in using hardware acceleration. For example, in can
achieve 10 gigabit speeds on real life traffic without sacrificing rule-set coverage. This fact
can potentially resolve the problem concerning more and more high scale and voluminous
network traffic under-test.

As Snort, Suricata is a (signature) rule-based IDS, i.e., it matches a set of pre-defined
rules to the captured traffic to recognize an attack if any. Therefore, Suricata retains the
same architectural limitations: the inability to provide a cooperative scheme among nodes
to detect sophisticated attack that demands mutual works.

2.4.4 Evaluation studies of classic IDSs

Regarding the performance, there are a number of assessment comparing those classic IDSs.
We review in the following two of them:

In [8], the authors present the results of three realistic experiments to compare Snort
and Suricata by observing:

• Their real-time performance while monitoring live traffic.

• Their performance while analyzing big (off-line) recorded traffic.

• system in response to malicious packets generated by the Pytbull tool [9].

Overall, Suricata performs at least as well as Snort, and even better at most cases. Indeed,
Suricata can handle larger volumes of traffic than Snort with similar accuracy. His perfor-
mance increases more or less linearly with the number of processors. However, there is no
significant advantage in speed or accuracy of Suricata in comparison with Snort observed
in a certain amount of cases. The results concerning false positive and false negative can be
explained by the weaknesses of the set of rules used for testing. It is inconclusive whether
Suricata or Snort has a better detection algorithm, but a 64-bit machine is recommended for
both to allow loading comprehensive rules. The ability to use multi-threading techniques
in a multi-CPU environment will leverage Suricata in the future while network traffic is
continuously increasing. But Snort can remain in service for the near future before Suricata
becomes more stable.

The work presented in [10] attempt to evaluates Suricata, Snort and Bro in different
scenarios. The metrics measured in the experiments are composed of the CPU usage, the
number of packets lost and the number of alerts. Regarding the CPU usage, Bro has a
pretty stable performance even if the traffic rate increases while Snort and Suricata are
more CPU consuming. Those three IDSs react differently in terms of packets lost. Bro is
the best in case of TCP traffic but it is also the worst in case of UDP traffic. No clear trend
is found on the subject of the number of alerts. Indeed, this metric depends largely on how
users define security rules rather than the nature of IDSs themselves.

Regardless of limitations in two aforementioned studies ([8, 10]) concerning the pre-
sentations and not thorough evaluation metrics, we still find the inspiration for our own

Intrusion tolerance 28

evaluations in order to evaluate our propositions. This will be further discussed in the
following chapters.

2.5 Intrusion tolerance

Intrusion or attack tolerance of a system is generally understood as the capability to con-
tinue to function properly with minimal degradation of performance, despite intrusions or
malicious attack [11]. In terms of networks, this concept means the ability to maintain the
overall connectivity and diameter of the network as nodes are removed.

There are four categories of common architectures [12]:

• Detection Triggered [11] (e.g., Sitar, Dpasa, Willow, etc.): These architectures build
multiple levels of defense to increase system survivability. Most of them rely on intru-
sion detection that triggers recovery mechanisms.

• Algorithm Driven (e.g., Pasis, Maftia, ITUA, etc.): These systems employ algorithms
such as the voting algorithm, threshold cryptography, and fragmentation redundancy
scattering (FRS) to harden their resilience.

• Recovery Based (e.g., SCIT): These systems assume that as soon as a system goes
online, it is compromised. Periodic restoration to a known good state is necessary.

• Hybrid (e.g., COCA): These systems are the combinations of different techniques.

In terms of techniques, intrusion tolerance can be realized thanks to the following ap-
proaches:

• Redundancy and Diversity: Redundancy refers to the extra reserved resources al-
located to a system that are beyond its need in normal working conditions. Whilst,
diversity means that a function should be implemented in multiple ways, differently at
different times. For example, research has made it practical to automatically generate
diverse executable from the same source code or automatically change the configura-
tion of a system from time to time to confuse the attacker.

• Voting: Voting is used to resolve any differences in redundant responses and to arrive
at a consensus result based on the responses of perceived non-faulty components in the
system. It has two complementary goals: masking of intrusions, thus tolerating them,
and providing integrity of the data. The process involves comparing the redundant
responses and reaching agreement on the results to find the “correct” response.

• Acceptance Test: This issue usually consists of a sequence of statements that will raise
an exception if the state of the system is not acceptable. If any exception is raised by
the acceptance test, the module is said to have failed or been compromised.

• Threshold Scheme and Distributed Trust: The general idea is to devise a method to
divide data D into n pieces in such a way that it needs at least k shares to reconstruct
original data D. Anything less, reveals no information at all. This elegant idea has
found many applications in key management schemes as well as cryptography.

Intrusion tolerance 29

• Dynamic Reconfiguration: Reconfiguration after the detection of an intrusion in tra-
ditional systems is mostly reactive and generally performed manually by the admin-
istrator, thus, involves some downtime. Survivable systems need a dynamical and
adaptive reconfiguration to be proactive instead.

• Indirection: The common goal of all indirection techniques is to separate clients and
servers by an additional layer that play the role as protection barriers. There are four
main types used in intrusion tolerant systems, namely proxies, wrappers, virtualiza-
tion, and sandboxes.

Chapter 3
Proposed Security Monitoring Framework

Contents
3.1 Framework Overview . 30

3.2 Montimage Monitoring Tool . 31

3.3 Data capture . 34

3.4 Input pre-processing . 35

3.4.1 Attribute extraction . 35

3.4.2 Dimension reduction . 35

3.5 Training/learning phase . 35

3.6 Detection/Monitoring phase . 36

3.1 Framework Overview

The Fig. 3.1 summaries the high-level design of our framework which provides security
monitoring capacities in different platform including networks, systems and applications.
We will go to the details of each modules of the framework in the following sections. In
general, we would like to integrate to it the following possibilities:

• Hybrid approach
The classic intrusion detection approaches have themselves some limitations (Section
2.2.3), e.g., incapacity in detecting new attacks of signature-based approaches and
false positive concern of anomaly-based approaches. Our framework provides hybrid
approaches based on both known signatures and a set of expected legitimate behaviors.

• Novel advanced techniques
We integrate novel investigation and detection techniques in dealing with input data
by using statistical/machine learning. The goal is to efficiently learn and define nor-
mal/abnormal behaviors.

• High performance to monitor large scale systems. We take into consideration the
concern about voluminous data input (e.g., Big Data) created by large scale networks
or complicated systems. The performance of our solution in some case studies will be
evaluated by experiments and discussed in the next chapters.

30

Montimage Monitoring Tool 31

Figure 3.1: Overview of proposed framework

• Flexibility
Our framework can be extended to understand new type of data input (e.g., network
traffic, log files and any structured data). Users have also the flexibility in adding
their rules to detect security incidents in varied situations.

• Scalability
Our framework can realize not only individual tasks at a single monitoring point inside
a network, a system, or a host, but also cooperative missions by correlating the results
received from other monitoring points as well as collaborating with other third party
solutions.

3.2 Montimage Monitoring Tool

Montimage Monitoring Tool (MMT) plays the important role in the framework to achieve
such goals. In this section, we provide a brief introduction on Montimage Monitoring Tool
(MMT) which is the core of our framework.

MMT is a monitoring tool that allows capturing and analyzing network traffic in both on-
line and offline manners. MMT supports network traffic inspection by extracting necessary
attributes and referring to a set of security rules. Fig. 3.2 illustrates the architecture of
MMT. MMT uses Deep Packet/Flow Inspection (DPI/DFI) techniques and consists of three
principal modules:

• MMT-Extract is enables the extraction of network protocol fields of not only offline
structured traffic (e.g., PCAP files) but also real-time on-line network traffic passing
by an interface. It is possible to build a new plug-in for the addition of new protocols
and the parsing of proprietary structured data. In practice, this module permits mon-
itoring different observable application, system, or network. In the case of application,
the input can be the exchanged messages or events log.

• MMT-Security contains security rules written in XML that refer to both expected
and unexpected behaviors. MMT-Security model is inspired from Linear Temporal

Montimage Monitoring Tool 32

Figure 3.2: MMT global architecture [1]

Logic. Different rules can be correlated in order to detect security incidents. Rules
in XML provide the advantage of simple and straightforward structure verification.
A property is an IF < context > THEN < trigger > relation(Fig. 3.3). The trigger
is checked if and only if the context is valid. If the trigger is found valid, then the
property is satisfied. Otherwise, the property is violated.

Figure 3.3: An MMT Security Property sample

Montimage Monitoring Tool 33

• MMT-Operator allows a graphical user interface which is customizable to display
the result.

Figure 3.4: MMT’s position to listen to live traffic

Fig. 3.4 illustrates a typical position of MMT in monitoring an organization’s network,
i.e., Network-based IDS (NIDS). For example in [13], MMT is implemented in a host of a
wired LAN (Local Area Network) to detect ARP spoofing attack. There could be one or
several distributed MMT-Agents (Probes) in different positions of the network collecting a
better global view and correlating different events and security properties.

Nonetheless, MMT can be installed in an individual local host as a Host-based IDS
(HIDS) to listen to traffic passed by one or several interfaces. Web administrators can also
integrate MMT in their web-servers to inspect incoming requests before processing them.
MMT has been recently put on cloud to become an on-line monitoring tool. Users can
inspect their network by creating a tunnel to MMT VPN server thanks to PPTP (Point-to-
Point tunneling protocol) 1

MMT is chosen to be the core in our framework principally because of its flexibility
and extensibility that make it adaptable to different scenarios. Compared to existing intru-
sion detection techniques, the originality of the MMT is that MMT is not based on only
pattern matching (i.e., signature-based) as SNORT nor requires writing executable scripts
as in BRO. MMT is a flexible solution that can integrate pattern matching, statistics and
machine learning [14] techniques depending on the actual problem. MMT property rules are
descriptive and straight forward. They can be written and added to describe normal/ab-
normal behaviors. Furthermore, MMT is open for developer to add plug-in in order to deal
with new structured input as well as to pre-process the attributes before analyzing them in
the module MMT-Security.

1https://mmt-cloud.montimage.com/

Data capture 34

3.3 Data capture

As demonstrated in the Fig. 2.3 and Fig. 3.4, thanks to MMT, our framework is able to
capture the live traffic and trace passing by a monitoring point. The data captured can be
saved for later investigation (offline) or can be inspected immediately (real-time or “near”
real-time monitoring).

One important issue in distributed monitoring solutions is monitoring points where we
should locate the probes (i.e., sniffers, agents). Intuitively, they should be somewhere so
that we can collect the most important traffic/trace without negatively affecting the system
under-monitored. If the solution is installed at a host machine, this host must satisfy
minimum requirements in terms of memory (to store the data captured) and processing
capacity. For example, in some critical systems, a real-time monitoring is demanded to raise
an alert and trigger suitable countermeasures in maximum five seconds after the occurrence
of the incident. The machine hosting the security monitoring solution in this case must be
quick enough to realize necessary computations and actions provoked inside and outside the
security monitor.

Figure 3.5: A proposed architecture to sanitize audit data before analyzing

In some cases, the traffic and logs are not directly captured by the monitoring tool.
Many organizations have themselves means to collect and store (for a duration of time from
some days to some months) the traffic/logs in their network/systems (e.g., Fig. 3.5). Due to
the privacy concern, they do not provide a direct access to a third party security monitor.
Instead, they pre-sanitize (e.g., obfuscation) the data before the analysis. To deal with this
problem, our proposed framework supports both online mode (i.e., listening to the interface)
and offline mode (e.g., reading data provided by the third party). We take advantage also
a plug-in approach that enables understanding “new data input” by adding new plug-in
defining the new structure.

Input pre-processing 35

3.4 Input pre-processing

3.4.1 Attribute extraction

Looking inside the data input, it is typically not so important to look at the entire contents.
Depending on the case study, some attributes can be interesting. But overall, the security
monitoring solution must be able to extract as many attributes (e.g., fields) as possible.
Then it is up to the users extracting their desired attributes to verify corresponding security
properties.

Our framework inherits the capacity to decode and extract fields in more than 150
widely used Internet Protocols in TCP/IP network (HTTP, POP, SMTP, etc.). We have
been adding also new plug-ins concerning protocols related to IoT/6LoWPAN technologies.

We used the Deep Packet/Flow Inspection (DPI/DFI) technique to inspect the traffic.
In the other words, we look inside each packet, determine the protocol’s identifier, identify
its type and extract valuable attributes in referring to data structure that was predefined
for the corresponding protocol. Packets from the same flow are grouped and correlation
analysis can be necessary. There are three types of extracted attributes:

• Real attributes: Protocol field value which can be directly extracted from the inspected
packet.

• Meta attributes: Attributes linked to each packet to describe capture information
(e.g., timestamp)

• Calculated attributes: Attributed indirectly calculated from real attributes and meta
attributes (e.g., delays, packet loss rate, jitter, link weight)

3.4.2 Dimension reduction

If the volume of the data input is huge, an additional step to reduce its complexity is
considered. The benefit is that we can save storage space thanks to data compression and
reduce the size of the processed data if the computing capacity is limited. The reduction
techniques are also used to eliminate noise before the data treatment.

We used so far the following dimension reduction algorithms:

• Principal Component Analysis (PCA)

• Random Projection (RP)

• Diffusion Map (DM)

Depending on the corresponding case study, they will be detailed in the section 4.4

3.5 Training/learning phase

The Fig. 3.6 illustrates the high-level diagram of the training/learning phase. The main
purpose of this phase is to define a database of signature related to malicious activities
and/or a set of expected normal behaviors. A signature can be simple or complicated
depending on the abnormal behavior that it refers to. Whilst, normal behaviors can be
represented by an expected interval of a variable.

Detection/Monitoring phase 36

Figure 3.6: Training/Learning phase diagram

The input of this phase is the training data captured by the monitoring tool itself or
provide by a third party. Dimension reduction can be optionally performed. Valuable
attributes serving the learning algorithm are then extracted. In the context of this thesis,
we use only labeled data (i.e., supervised machine learning) as the input. In the other words,
we know that the input is assumed as normal or related to attacks before learning it. The
detailed description concerning the learning techniques will be discussed later together with
the corresponding case study.

3.6 Detection/Monitoring phase

After the termination of the learning phase, the set of misbehavior signatures as well as
normal behaviors will be saved to be referred in the monitoring/detection phase. Signatures
coming from the third party are also encouraged because the more redundant the signature
database is, the more likely we can detect the malicious intruder or attacks.

Figure 3.7: Detection/Monitoring phase diagram

The input of this phase is the live data captured from the environment or the offline
data stored for analysis. The operations (e.g., dimension reduction, attribute extraction,
variable calculations) are performed similarly to those in the learning phase. Then we refer
to the signature database and the expected zone of normal behaviors to determine whether

Detection/Monitoring phase 37

an observed activity is legitimate or malicious. Sometimes event correlation is needed to
detect complicated attacks.

Three architectures can be taken into account:

• Local analysis: the collected data-under-test is analyzed for security purposes in one
probe (i.e., agent) that collects trace from one or several interfaces.

• Centralized analysis: the traffic capture is distributed but the security analysis is cen-
tralized. All data sources (i.e., probes) send their collected trace (filtered or not) to the
same master server that correlates the traces. It is worth noting that a synchronization
among probes is a need in this case.

• Distributed analysis: Each probe perform a local analysis and share the conclusion to
each other. This analysis can be very interesting in some specific case studies like ad
hoc networks.

Chapter 4
TCP/IP Network Security Monitoring

Contents
4.1 Introduction . 38

4.2 LAN monitoring . 39

4.2.1 ARP spoofing: An attack still alive . 39

4.2.1.1 ARP Definition . 39

4.2.1.2 ARP spoofing/ poisoning . 39

4.2.1.3 Practical experiment . 41

4.2.2 Countermeasures . 43

4.3 WAN/Internet monitoring . 44

4.3.1 HTTP User-Agent field case study . 45

4.3.2 Methodology and implementation . 46

4.3.3 Experimental results . 48

4.3.3.1 Experiments with PCAP files . 49

4.3.3.2 Experiments with live traffic . 51

4.3.3.3 Discussion . 52

4.4 Framework extension . 54

4.4.1 An extension from HTTP User-Agent field case study 54

4.4.2 QoE-based web pop-up and spam avoidance 55

4.4.3 Smartphone-based security monitoring . 56

4.1 Introduction

Network monitoring is a critical challenging task for a network operator, a service provider
or a corporate infrastructure in order to keep the network operation stable, smooth and safe.
If the network becomes vulnerable, under attack or breaks down, even for a small period
of time, the service provider’s ability to deliver secure and high-quality services would be
compromised. Network administrators must be proactive rather than reactive. This means
monitoring the network traffic and performance at all times, and verifying that security
threats do not occur within the network perimeter.

38

LAN monitoring 39

When analyzing the network traffic, it is typically not so important to look at the
contents of the packets; rather the information about them, where they are going and how
they got there. This “network metadata”, often referred to as NetFlow data, can reveal
interesting information about your network and often uncover mis-configurations, policy
abuses and security incidents. The network metadata, which is obviously more succinct than
raw packets in terms of volume, can be a rapid and useful source for detecting abnormal
behavior. This technique is able to reduce computations for the monitoring, thus, decreasing
the time consumption for each detection. Analyzing network metadata can be also the first
step to early recognize malicious attacks before further investigation in detail. Its results
probably simplify the investigation over raw data by limiting the analysis to malicious
zone-under-test. For example, if network monitoring over metadata has detected a set of
abnormal activities of an IP address, then a warning should be raised and other investigation
over this IP address should be performed to avoid serious compromises.

In this chapter, we nominate MMT as a polyvalent monitoring tool which is the core of
our framework. The advantages of MMT are the flexibility and the extensibility to different
domains and technologies, and the scalability with low cost and high performance. Indeed,
counting upon the defined security properties, MMT is able to determine the attributes
to extract them from network traffic, application logs, or whatever structured-data flows.
These attributes can be: (i)-real attributes directly extracted from the inspected input (e.g.,
protocol field value); (ii)-calculated attributes derived from the calculations of extracted
attribute and made available for the security analysis engine (e.g. delays, jitter, packet
loss rate); (iii)-meta attributes linked to each packet to describe capture information (e.g.,
time-stamp).

4.2 LAN monitoring

Local Area Network (LAN) including Wired LAN (Ethernet) and Wireless LAN (Wi-Fi) is
very common in daily life. A LAN interconnects computers within a limited area such as a
residence, school, laboratory, university campus or office building. In this section, we applied
our framework for security monitoring this kind of network in taking into consideration ARP
spoofing attack. We witnessed a high proportion of assessed LANs still vulnerable to this
classic attack.

4.2.1 ARP spoofing: An attack still alive

4.2.1.1 ARP Definition

ARP is an Ethernet Address Resolution Protocol defined in RFC826 used for converting
layer 3- network layer addresses (IP addresses) to link layer 2- link layer addresses (MAC
addresses) (Fig. 4.1).

4.2.1.2 ARP spoofing/ poisoning

Each host in a LAN stores an ARP cache containing (IP, MAC) addresses of other hosts.
This cache is built upon ARP request and reply. ARP spoofing is the kind of attack in
which the attacker sends modified ARP Reply Message so that the victims mis-recognize
MAC address of a certain hosts. For example, in Fig. 4.2, the attacker pretends to be POP
server. The traffic that the POP client want to send to the POP server would be rerouted

LAN monitoring 40

Figure 4.1: ARP: An example

via the attacker. The attacker gains the possibility to deny/ modify this traffic (i.e., Man
in the middle attack)

Figure 4.2: ARP spoofing/ poisoning: An example

LAN monitoring 41

4.2.1.3 Practical experiment

We used a Ubuntu laptop installed ettercap 0.8.2 1 to perform ARP spoofing attack. We
tried to perform the attack in different real LANs including Wired LAN and Wireless LAN
in student residence, campus, commercial center, home, hotel, restaurant, etc. Here below
we present the experiment in which our computer (attacker) connected to LAN in our office
by a wired Ethernet cable (Fig. 4.3).

Figure 4.3: ARP case study: Experiment architecture

Using Wireshark to capture the traffic passing by our Ethernet interface (eth0), we
admited the success of ARP spoofing attack. We sniffed and analyzed the traffic with the
recognition that we could achieve different sensitive information as follows:

Firstly, all the HTTP traffic of poisoned hosts could be recorded and seen in plain text.
The primary concern is the privacy. Evidently, almost all users do not want their history
of visited websites easily disclosed by someone else. Nowadays, HTTPS allows securing
communications between users with must-be-secure web-servers (e.g., the cases of email,
online banking, online shopping, etc.). HTTPS traffic is encrypted with a session key which
is normally created based on Diffie Hellman key exchange. It is, thus, safe and sound from
our attack.

However, it is worth emphasizing that there are still many vulnerable websites using
HTTP even for authentication processes. In this case, username and password are easily
caught by attackers who stay in the middle and listen to the traffic. Those vulnerable
websites are generally not very popular (e.g., forum chat, reselling second-hand object webs,
software/driver download webs, etc.). Other trusted-websites such as Google, Facebook,
Twitter or banks’ websites are certificated with SSL/TLS certificates and obligated to be
retrieved under HTTPS connection. However, the problem is that users normally do not

1Ettercap: https://ettercap.github.io/ettercap/

LAN monitoring 42

create each password for each source but reuse passwords. Some even use the same password
for every accounts which increases in number very fast in the modern life. Therefore, if a
hacker gains a password extracted from seemingly useless HTTP traffic, he/she can try to
use it for other cases and probably gain some sensitive information.

Indeed, in our experiment, we found the ID and password of a colleague when he logged
in an insecure website (e.g, http://fr.tchat.tchatche.com/). Having the full power sniffing
his traffic (encrypted and unencrypted), we could track his surfing history and steal other
web-identities. We could try those passwords to log in his Gmail, school email, Facebook,
etc., but we decided not to go further.

Secondly, we deploy the filter to perform a downgrade attack. The idea is to downgrade
HTTPS connections to HTTP in which the traffic is not encrypted. For this goal, we use
filter to modify captured traffic to force web-servers and clients to use HTTP instead of
HTTPS. We did not want to damage the whole network so from the laptop, we performed
ARP spoofing only between our own machine and the network’s gateway. Then we opened
the browser to connect to some popular HTTPS websites namely gmail.com, facebook.com
and youtube.com. We figured out that connections were denied and our attack turned out
a DoS attack because probably two following reasons:

• The web-servers are configured to use HSTS 2 - a novel protocol enabling web sites to
declare themselves accessible only via secure connections and/or for users to be able
to direct their user agent(s) to interact with given sites only over secure connections.

• Internet browsers in the victim’s computer are well configured to avoid HTTPS/TLS
downgrade attack and ignore manipulated HTTP handshakes.

Figure 4.4: JXplorer interface

However, this experiment is still under extension. The filter can be improved. Down-
grading HTTPS to HTTP seems feasibly impossible but downgrading from HTTPS/TLS

2HTTP Strict Transport Protocol, https://www.ietf.org/rfc/rfc6797.txt

LAN monitoring 43

1.2 to a weaker encryption HTTPS/SSLv3 is realizable. In fact, a successful ARP spoofing
rewards the attacker a powerful role and he/she can easily drop instead of forward the traffic
passed by to trigger DoS attack. Nevertheless, ARP attackers normally silently listen to
the network traffic and inject/modify it as their wish instead of brutally kill the service and
get attention from network administrators. As the man in the middle, the attacker can also
inject a fake certificate. To web browsers, attacker claims to be the secure web server. To
the web server, attacker mimics the web browser. We actually used sslstrip3 and Fiddler24

to realize such intention but without success, possibly because two aforementioned reasons.
Nevertheless, outdated web browsers and many HTTPS websites are still vulnerable. It is
worth re-mentioning that users usually reuse passwords, thus, a single divulged password
can be more harmful than expected.

Thirdly, using ettercap for ARP poisoning and sniffing the traffic between every hosts
in the LAN with the gateway, we eventually captured several sensitive attainments. Our
experiment did not necessitate any complicated filter but some simple rules to extract unen-
crypted userIDs and passwords. The results obtained were really surprising. We did indeed
catch an ID and password concerning LDAP (Lightweight Directory Access Protocol) traf-
fic from the IP address 157.159.10.39, port 389. For further investigations, we installed an
open source LDAP client called Jxplorer to connect to that IP address which we assumed
a LDAP server. And we did succeed. From the windows of Jxplorer, we could explore a
database containing information including Full name, ID to connect to the IT infrastruc-
tures (Fig. 4.4) of all employees and students. It seemed like we could also modified data
or even delete but we did not go that far.

Lastly but the most severely, doing the same last-mentioned attack during a whole day,
we accidentally received some IMAP passwords corresponding to IDs used to log in the email
service which is supposed to use HTTPS. These results were totally out of our expectations
because normally such traffic is always encrypted. It is worth noting that after signing in
the email service, we can also win the connection to other online services. We believed that
there were mis-configurations for IMAP server. Indeed, we figured out the big vulnerability
of the email service that it accepted both HTTP and HTTPS.

4.2.2 Countermeasures

There are in reality a wide range of solutions for ARP spoofing either by design (e.g., static
IP addresses) or by additional tools/framework (e.g., IDS). Our MMT-based framework can
detect such kind of attack in real-time and send an alert (e.g., email) to the administrator
if necessary. A demo can be found in [13]. Fig. 4.5 illustrates a simple rule to detect the
attack in inspecting the attributes concerning ARP. This is a ready-to-use feature in the
original version of MMT.

In addition to measures avoiding the attack, users should be aware of such security
threats and train themselves to battle against. The most important thing is to be careful
with the personal sensitive information and never enter such data to any website not using
HTTPS with a valid certificate.

3https://github.com/moxie0/sslstrip
4http://www.telerik.com/fiddler

WAN/Internet monitoring 44

Figure 4.5: MMT security property example to detect ARP spoofing attack

4.3 WAN/Internet monitoring

The work presented in this section is under the context of the IDOLE project in which we are
developing advanced monitoring techniques for detection and investigation using metadata
from different sources. This section regards our first work on HTTP which is so far a
predominate communication protocol. More precisely, the User-Agent field in HTTP request
headers is exposed to various types of security attacks, namely SQL injection, Stored and
Reflected cross-site scripting and DoS-type attack. Fast or real-time detection of abnormal
traffic concealed among a huge volume of legitimate HTTP traffic is more and more difficult,
especially due to the increasingly high rate of network traffic.

The User-Agent is a field of a HTTP request whose value is a string. This string describes
the user agent generating this HTTP request (e.g., the browser used by the user) and
thus, can be considered as metadata of the user agent. However, attackers can modify the
User-Agent field to perform attacks to the entities dealing with HTTP requests (e.g., web-
server). Our work attempts to automatically detect the occurrences of the suspect traffic
generated by attackers exploiting the User-Agent vulnerabilities. Besides, our detection
approach is also useful for malicious traffic corresponding to malware, botnets or virus
generated intentionally or unintentionally by infected users or proxies. The experiments
proved the practicality of our implementation on both network’s live traffic and offline
captured packets (e.g., PCAP files). We also displayed the improvements provided by
our approach in comparison with SNORT, the classical famous intrusion detection system.
Comparing with the common packet analyzer TCPdump, regarding extraction performance,
our implementation performed a higher rapidity and a lower resource consumption.

WAN/Internet monitoring 45

4.3.1 HTTP User-Agent field case study

The User-Agent field is defined by RFC 2616 to identify the user agent generating HTTP
requests (e.g., web browsers), so that appropriate data can be returned. It was initially
designed for three following main purposes.

• Statistical purposes: Websites can store a history of visited user agents, then guide
developers to the best suitable views with respect to the browsers sending requests.
For example, if a website witnesses a dominance of Android user agents, it should be
tailored to be better convenient for Android equipment.

• The tracing of protocol violations: If a website observes a constant signal of error
with a particular User-Agent string, the user agent associated should be examined or
even blacklisted.

• Automated recognition of user agents for the sake of tailoring responses to
avoid particular user agent limitations. For instance, thanks to the User-Agent
string, the mobile version of the website is returned by the web-server in response to the
requests coming from mobile devices. This version should support slower connection
and/or a smaller screen with probably a larger font.

Figure 4.6: SQL injection: a generic example

However, the emerging development of tools which allow modifying User-Agent strings
and thus, lying on the kind of browser sending HTTP GET requests, makes the field prone
to malicious attacks. Indeed, in [15], they performed a SQL injection attack based on the
User-Agent field. It is worth noting that when a web-server receives a HTTP GET request,
it extracts the User-Agent string and look it up in a database to provide a suitable return.
The User-Agent string can be also stored in another database for statistical/marketing
purposes. Cleverly modifying the User-Agent string and analyzing the web-page given
back, the authors of [15] could inject their own code and retrieve more and more information
about the database, e.g., version, number of tables and columns etc. Step by step, they
extended their knowledge and discover the vulnerabilities. Similarly, Fig. 4.6 illustrates
another example in which a hacker realized an attack by injecting SQL code to the User-
Agent field. If stored User-Agent strings are not validated before being read, injected SQL
code can be executed.

Furthermore, modifiable User-Agent field is possibly abused by attackers to trigger
Stored and Reflected XSS (Cross-site Scripting). In [16], the author demonstrates a simple

WAN/Internet monitoring 46

example in which the hacker injects a script to User-Agent strings. Without validation,
a web analytical tool can store modified User-Agent strings together with the malicious
script that can be accidentally executed by the administrator. It is even not necessary for
attackers to send modified-User-Agent strings to the web-server by themselves, there are
various manners for them to achieve that goal. They can send malware to the victim user
and poison the user’s Internet browsers in order to change User-Agent strings or maybe
perform a MiM (Man in the Middle) attack and alter HTTP headers via filters. Several
tools supporting this attempt are listed in [17] namely XUL, XAML, Active X and Mocha.

It must be noted that SQL injection and XSS are ranked 1st and 3th in the list of
top 10 web vulnerabilities according to OWASP (Open Web Application Security Project)
Foundation [18]. In addition to them, there are plenty of vulnerabilities based on the User-
Agent field. For instance, a DoS attack can be generated if HTTP requests containing
intensely long User-Agent strings are continuously sent to a web-server. Furthermore, a
hacker presented in [19] his experience to divulge the back-door of a Wireless Broadband D-
Link router and surprisingly, the back-door to pass all the authentications of the router is a
constant string value of the User-Agent field. The vendor of this router secretly leaves a back-
door for probably automatically firmware updating but this back-door was unfortunately
discovered.

In short, the User-Agent field is prone to various type of attacks. Besides aforementioned
attacks, we witnessed, in extracting User-Agent strings from malware traffic samples, that
many malware use specific User-Agent strings in their HTTP request packets. We even ex-
tracted the string “ArchitextSpider” when we listened to the real-time traffic in our network.
By some simple investigation, we recognized an infected host and the traffic containing that
User-Agent string corresponded to a botnet communication. There is another similar expe-
rience presented in [20]. In this web-post, the author witnessed that the infected hosts (i.e.,
bots) made callbacks and communicated with the command and control (C&C) server by
injecting what they want to exchange in the User-Agent field. Similarly, there are several
works [16, 21] [22, 23] invested on this topic. They affirmed that User-Agent strings poten-
tially depict an underrated source of abnormal activity detection and analyzing User-Agent
strings can be the first step for fast detection before further thorough investigation should
be triggered. Although existing proposed method or countermeasures are still manual and
intuitive, they are still a very good source of inspiration. A thorough consideration is,
however, a need.

4.3.2 Methodology and implementation

Our goal in this work is to validate the usability of User-Agent strings to detect abnormal
behaviors hidden amongst a huge volume of legitimate traffic. It is worth noting that there
are two kinds of abnormal activities including (i)-attacks directly abusing the User-Agent
field to inject/attach evil intention and (ii)-attacks which are not directly related to the field
but can be detected based on User-Agent strings. For this goal, we attempt to create a plug-
in and several security rules integrated with our original version of MMT to automatically
detect those activities.

In reality, MMT is applicable for both network and application level. However, in this
case study, we nominate MMT rather as a network monitoring tool. The Fig. 4.7 and
Fig. 4.8 represent our methodology to deal with problems provoked by the User-Agent field
vulnerabilities. In general, the network traffic is the input of our analysis. MMT permits

WAN/Internet monitoring 47

Figure 4.7: Proposed methodology to detect abnormal behavior using the User-Agent field.

capturing a live traffic (Fig. 3.4) or taking PCAP (packet capture) files into consideration.
MMT is able to support the extraction of plenty of protocols’s attributes (e.g., HTTP,
SNMP, SMTP, SMTPs, TCP, UDP, SSL, etc.). In the work presented in this section, we
called the function that allows extracting the User-Agent field of passed by/captured HTTP
traffic.

Figure 4.8: User-Agent strings analysis diagram

After that, we developed a plug-in combining signature-based and anomaly-based ap-
proaches that allows analyzing and detecting malicious User-Agent strings. It is worth
noting that malicious strings consists of: (i)-the ones corresponding to attacks based on
the User-Agent field (e.g., SQL injection, Stored and Reflected XSS and DoS) as well as

WAN/Internet monitoring 48

(ii)-well-known strings corresponding to popular attacks and/or random strings created by
chance. The former should be identified by our embedded function whilst, the latter should
be referred to our database of already-known evil or benign strings.

Regarding the embedded function, currently we attempt to recognize SQL injection and
DoS attack (i.e., based on intense long User-Agent strings). Our current version use “key-
word matching” (e.g., DROP, UNION, single quote, double quote, double hyphen, double
pipe) to detect the injection. The evasion, if any, will be caught when the string is compared
with those in the database. Within the framework of this section, we built our User-Agent
strings database based on those from [24] (http://www.user-agents.org/). In reality, the
administrators of an organization’s network can construct their own database based on
machine learning techniques. Especially with organizations in which new application instal-
lation policies are very strict, their list of user agents is rather static. However, building
such database based on machine learning techniques is out of this work’s scope.

Fig. 4.8 illustrates how an extracted User-Agent string (UA) is processed. Two afore-
mentioned type of malicious strings will be detected effectively. In the next sections, we will
prove the applicability of the solution in determining such User-Agent strings. However,
there are still two issues that we need to consider:

Firstly, if a User-Agent string is created by an exotic browser or an application that
performs directly the HTTP queries with a crafted header, this string may not be present
in either the sub-database of normal strings or the one of malicious strings. The applica-
tion/browser may be considered as an attacker. This leads to a false positive. To mitigate
this problem, the database should be regularly updated. In a strict network, e.g., the net-
work in a bank office, where users are very restricted in new application installation, the
database in this case does not change a lot.

Secondly, because the User-Agent field is modifiable, attacker can use a fake normal
User-Agent string for their evil requests. This attack should be detected by other solutions
(e.g., other rules of MMT) than the work concerning the User-Agent field presented here.
Our goal in this case study is to detect attackers who want to abuse the User-Agent field
to perform their evil intention (i.e., SQL injection, DoS attack) and to support the early
detection of abnormal entities (e.g., malware, botnets or virus) who use very frequently
(until now) their particular User-Agent strings. Detecting a malicious User-Agent string
cannot reveal all harmful user agent in the network but can leverage that procedure.

4.3.3 Experimental results

In order to evaluate MMT in general and in the case study of User-Agent strings, we realized
a number of experiments with both offline (i.e., PCAP files) and on-line (i.e., live traffic)
network traffic. We focus our evaluation on the processing speed as well as the number
of false positive and negative in considering the capacity of our implementation to deal
with a big volume of traffic. We performed the similar experiments with SNORT [4] in
which we disabled all rules except those related to User-Agent strings in order to reduce
the execution time. In the scope of this work, we did not compare MMT with Suricata or
Bro, other two famous network monitors. Suricata [25,26] is multi-threaded, thus, it allows
taking advantage of all the CPU/cores available. Nevertheless, it is not advantageous in the
actual case study in which the network traffic is not very huge. Therefore, the utilization
of Suricata can lead to a waste of resource. Whilst, BRO [5] is rather complicated to set
up and demands a challenging learning curve. It is more suitable for researchers. SNORT

WAN/Internet monitoring 49

seems to be the best candidate to be compared with MMT. Those two are flexible enough
for both research community and real-world network administrators.

4.3.3.1 Experiments with PCAP files

Firstly, we applied our solution and SNORT for the PCAP files downloaded from the website
of NETRESE, an independent software vendor with focus on Network Forensics and Network
Security Monitoring. The PCAP files contain different malware traffic within normal one.
As demonstrated in Tab. 4.1 in which the input contains 214036 HTTP GET packets, we
noticed not only the deficiencies of SNORT in terms of detection but also a slight dominance
of MMT regarding extraction issue. The reason for the low number of detections of SNORT
is that it utilizes only rules identifying blacklisted User-Agent strings, in other words, only a
signature-based technique. Therefore, SNORT is incapable against new abnormal behavior.
Constructing new rules for SNORT to fix this issue is possible but out of scope of our
research. It must be noted that the packet loss rate is calculated as follow:

packet loss rate =
number of packets lost

number of packets sent
(4.1)

Secondly, in order to test MMT and SNORT handling huge network traffic, we realized

MMT SNORT

Number of packets 214036 214036

Number of extractions 213978 213794

Packet loss rate 0.03% 0.11%

Number of detections 83209 585

Table 4.1: MMT and SNORT in case of offline traffic

experiments over the dataset captured in Clarkson University [27] by a Linux Mint 17.2
64-bits machine with Intel Core i5-5200U CPU @ 2.20Ghz (2 cores) and 8 GB of RAM. The
dataset consists of 80 files PCAP containing 83,850,638 packets with total volume of 39.2
GB. We performed 10 tests and in each test, we measured the time consumption of MMT,
SNORT and TCPdump, which is a popular open-source command-line packet analyzer used
for network traffic capture as well as the analysis of PCAP files. We applied them to read
and extract User-Agent strings in the whole dataset. Tab. 4.2 depicts the results. The
processing rate is calculated as follow:

processing rate(Mbps) =
traffic volume(GB) ∗ 1024 ∗ 8

average execution time
(4.2)

In the first five tests, we ran MMT, SNORT and TCPdump all alone. That means we
limited in maximum parallel programs that could consume CPU/RAM resource or network
bandwidth. We experienced a small dominance of MMT over TCPdump and a bigger
dominance over SNORT. The performance of MMT is really positive with a pretty high
processing rate which is approximately 419 Mbps (52 MBps). The Fig. 4.9 illustrates how
execution time increases in function of traffic volume. In later five tests, we ran several
applications at the same time and we found that TCPdump was highly affected while
SNORT just slightly changed. In contrast, we even did not notice any considerable difference
over MMT. This fact was explained when we calculated the resource consumed by MMT,

WAN/Internet monitoring 50

Test N0 MMT [s] SNORT [s] TCPdump [s]

1 807 1010 858
2 835 1004 862
3 743 1219 862
4 783 1006 860
5 720 1003 863
6 739 1005 2181
7 758 1143 2227
8 730 1283 2013
9 740 1307 2574
10 807 1212 2304

Average 766.2 1119.2 1638.4

Processing rate (Mbps) 419 287 196

Table 4.2: Execution time and processing rate of MMT, SNORT and TCPdump in reading
PCAP files

Figure 4.9: Execution time of MMT, SNORT and TCPdump in function of traffic volume

SNORT and TCPdump separately to read the same PCAP file of 300MB (Tab. 4.3), we
observed that MMT expended less resource than the others (the memory consumption
differences were relatively small but CPU usage of TCPdump was considerably higher than
SNORT and MMT).

WAN/Internet monitoring 51

MMT SNORT TCPdump

CPU usage 3.4% 4.5% 6.0%

Memory consumption 12.8% 13.3% 13.0%

Table 4.3: Average resource consumption of MMT, SNORT and TCPdump

4.3.3.2 Experiments with live traffic

Test N0 SQL injection DoS Random UA Known malicious UA
MMT [ms] MMT [ms] MMT [ms] MMT [ms] SNORT [ms]

Test 1 0.901 0.735 0.868 0.776 0.920

Test 2 0.790 0.655 0.773 0.938 0.939

Test 3 0.700 0.555 0.704 0.881 0.942

Test 4 0.590 0.443 0.645 1.118 0.967

Test 5 0.482 0.192 0.988 1.116

Test 6 0.334 0.109 0.934 1.117 0.927

Test 7 0.167 0.978 0.870 1.052 0.959

Test 8 1.002 0.874 1.109 0.851 0.989

Test 9 0.895 0.783 1.136 0.944 0.993

Test 10 0.810 0.695 1.142 0.906

Average 0.667 0.602 0.917 0.970 0.955

Table 4.4: Detection latency of MMT and SNORT

We used a personal computer running Ubuntu 14.04.3 LTS with 4 * Intel(R) Core(TM)
i5-4200M CPU @ 2.50GHz processor and 8GB of RAM. We used also the Mozilla Firefox’s
Add-on named TAMPER DATA to edit manually the User-Agent field and thus, to gen-
erate malicious HTTP requests. In addition, we created a simple C application that was
able to read normal/abnormal User-Agent strings prepared in a text file and passed the
HTTP requests containing them to a web-server. They were captured by MMT when they
went through Ethernet interface (i.e., eth0). The goal is to verify whether our solution is
influenced if HTTP requests are generated at low (i.e., in case of TAMPER DATA) and
high speed (i.e., in case of our own application).

The Tab. 4.4 and Tab. 4.5 present the results when we produced a number of HTTP
requests containing both legitimate and malicious User-Agent strings. We used four cat-
egories of malicious strings including ones identifying SQL injection and DoS-type attack
as well as random and known malicious ones (e.g., User-Agent strings of HTTP requests
corresponding to famous attacks or malware).

In regards to the detection latency, we noticed that our solution is able to detect in
real-time abnormal User-Agent strings that very probably belong to malicious HTTP re-
quests. The signature-based detection approach applied on SQL injection and DoS allows a
little faster (30%) responses in comparison with the approach based on our database User-
Agent strings which is used to raise alerts over random and known malicious User-Agent
strings. Whilst, the current handle of SNORT for detecting malicious User-Agent strings
seems limited. Indeed, we experienced an incompetence of SNORT regarding every other
types of User-Agent strings except known malicious ones. Even for this category, SNORT
missed some evil objects. We were not surprised because of the results seen above in the

WAN/Internet monitoring 52

experiments over offline traffic and the reason aforementioned. The rules about blacklisted
malicious User-Agent strings cannot cover new and random strings. In similar detections,
SNORT and MMT anyhow showed generally the same latency. With respect to the number

MMT SNORT

Number of extractions 212 212

Number of detections 40 8

False positive 0 0

False negative 0 32

Table 4.5: False positive and false negative of our solution and SNORT

of false negative (Tab. 4.5), the weakness of SNORT is obvious. The exigence of a regular
update limits SNORT on the subject of new attack detection. In this point, our proposition
with MMT proves a dominance based on a heterogeneous approach that allows detecting
both known and unknown threats. MMT will not be greatly affected by outdated database
or rules in terms of false negative thank to anomaly-based sub-module. In this practical
experiment, the false positive in case of MMT and SNORT are equal. MMT is, in fact, more
likely prone to trigger false positive alerts than SNORT, especially with exotic browser/ap-
plication as explained in section 4.3.2. However, in any case, a false positive is still better
than a false negative.

4.3.3.3 Discussion

Analyzing the User-Agent field in HTTP requests has attracted the attention since recent
few years. As far as we know, there was no official conference or journal paper validating
the usability User-Agent strings as a good source for network monitoring. The idea of using
them to gain more knowledge about the network as well as their vulnerability are only
presented in some technical reports and blogs.

As an example, according to [21], up to 75% of Web application scanners are incapable
to catch HTTP headers parameters related flaws. This article confirms that several fields
of HTTP headers including the User-Agent field are exposed to SQL injections. Examples
of attacks and tools were briefly presented. The author introduced also a list of 14 scanners
that analyze web-based applications source-code and detect their vulnerabilities. This work,
thus, focuses on source code analyzing and potential vulnerabilities detection rather than
network monitoring and intrusion detection.

In [23], [16], the authors affirmed the vulnerabilities of the User-Agent field and pre-
sented their analysis on offline network traffic (i.e., PCAP files). They proved the relevant
relationship between malware/abnormal activities with strange User-Agent strings collected
from their own network. Especially in [23], VRT (Sourcefire Vulnerability Research Team)
studied their network traffic and observed that unique or less-appeared User-Agent strings
are very probably linked with suspicious activities. In [16], the authors also proposed a list
of tools (e.g., Wireshark, Snort and TCPdump) which could be used to manually hunt down
malicious user agents in analyzing their own organization’s network traffic. A number of tu-
torials showing how to edit and inject User-Agent strings as well as how to catch and inspect
them were presented. Both of two aforementioned works concluded that User-Agent strings
could be a potential source for detecting malicious behavior in networks. Their approaches
were, nevertheless, still intuitive and rather manual.

WAN/Internet monitoring 53

We proposed in this section an automated solution based on MMT that allows real-
time detection of malicious User-Agent strings. In the presented case study, we concentrate
only on security issues. In practice, looking for abnormal behavior is not the unique use
case for MMT. MMT can also monitor user activities and troubleshoot the network (e.g.,
discover an employee using Skype, or spending too much time watching YouTube instead
of working). The Fig. 4.10 depicts an example concerning top network traffic consumers.
Another example related to the User-Agent case study is that we can look at the respective
traffic of each user agent to figure out common user agents in the organization’s network.
The website and other service developers should tailor their products to better adapt those
user agents’characteristics. Not only HTTP but also other network protocols can be taken
into account to provide an improved view in terms of both depth and breadth.

Figure 4.10: An example on using metadata to monitor users’activities

The aforesaid experiments proved that our proposition provides, in the context of the
User-Agent case study and in general network monitoring, some outstanding features as
follow:

• Heterogeneous intrusion detection approach:
SNORT takes the User-Agent field into account but SNORT simply defines rules over
blacklisted User-Agent strings that must be updated regularly with new ones. This
is truly a huge weakness of SNORT because the fact that malware is being generated
faster than people can keep up with. Writing adequate signatures for detection is
thus very difficult. Our methodology combines both two classic intrusion detection
approaches including signature-based and anomaly-based. In theory, the limitation
of signature-based approaches is the incapacity over new attacks. That of anomaly-
based approaches is the high rate of false positive. Our solution allows detecting both
wanted (e.g., security rules) and unwanted (e.g., attacks) behavior. That means we

Framework extension 54

can detect even new suspicious User-Agent strings and also reduce the number of false
positives.

• High-speed extraction and real-time detection:
Experimental results in case of on-line and offline traffic display positive enhancements
of our solution against SNORT and TCPdump regarding both extraction speed and
real-time response to suspicion. This fact suggests the potential capability of MMT
about the passage to large scale monitoring.

• Attribute extraction and legal problems:
Our technique does not require the payload of packages. The private data contained
in payload is therefore not inspected, then our approach is applicable for high privacy
communications. Thanks to the fact that we extract only attributes (i.e., User-Agent
field) instead, the amount of information required is reduced. This leads to the ability
of utilization on large networks even when real-time processing is a must.

Moreover, our solution is always under improvement and extension. As mentioned,
MMT is able to work over a wide range of network protocol fields. It allows the extraction
of various performance indicators and attributes of not only protocol packet formats but also
structured application generated messages (e.g. traces, logs). MMT is applicable for even
applications using non-standard port numbers (e.g., P2P, Skype). As a modular solution,
the utilization of MMT is flexible and we can combine MMT with other systems. MMT-
Security uses rules to define security properties which are feasible to be correlated with other
MMT rules or even other rules of different systems to passively monitor or actively generate
tests. The goals of MMT are not uniquely to detect anomaly or complicated attacks but
also to verify access control policies or to report performance parameters.

Detecting a malicious User-Agent string is evidently not enough to determine a harmful
user agent. But it is still a very good starting point of network traffic inspection. The related
IP address and/or domain, payload data sent and received by this host and other correlated
hosts should be investigated. It is worth reminding that a proxy server or an infected web-
browser/operating system can rewrite HTTP headers that are in transit. Our detection
approach covers two kinds of threats: (i)-attacks in which attackers modify intentionally
the User-Agent field in order to perform their evil intention (e.g., SQL injection, Stored
and Reflected XSS, and DoS) and (ii)-malicious traffic corresponding to suspicious threats
(e.g., malware, botnets or virus) generated intentionally or unintentionally by infected users
or proxies. For example, statistics show that a malware usually uses random User-Agent
strings and in reality, many signatures of User-Agent strings used by well-known attacks are
also registered. All of these will be detected by our solution. After identifying a malicious
host, a maximum information about it should be collected and a thorough investigation will
return it’s real intention.

4.4 Framework extension

4.4.1 An extension from HTTP User-Agent field case study

This section aims to provide an extension of the framework validated for HTTP User-Agent
field case study. More specifically, we optimize the framework for a LAN (e.g., office, home,
company, institution network) in which the set of applications/browsers generating HTTP

Framework extension 55

requests is supposedly fixed after a long enough duration of utilization. This assumption
costs us virtually nothing because indeed, in many companies, the computer provided to
employees are strictly installed only with a pre-defined list of verified programs. If the user
wants to install a new one, he/she must contact the IT service. Sometimes, they even restore
the computers back to their original configuration each time the computers restart. The
work done by the employees is stored online.

Figure 4.11: User-Agent case study extension

The aim of the learning phase is therefore to learn and create a database of normal User-
Agent strings (Fig. 4.11). This phase can be a supervised learning thanks to the support
of experts. The detection phase inherits this database as well as integrates another set of
malicious signatures (e.g., from 3rd party) to leverage the detection. If an audit User-Agent
string is determined abnormal, it can be learned against with the inspection of IT service.

Figure 4.12: QoE-based web pop-up and spam avoidance

4.4.2 QoE-based web pop-up and spam avoidance

Another idea is taking into consideration the QoE (Quality of Experience) to determine the
normal behaviors. The Fig. 4.12 illustrates the framework to avoid web pop-up and spam.

Framework extension 56

The QoE parameter can be based on the reaction of the users in opening a website or an
email. For example, the quicker a website is closed or an email is deleted, the more probably
it is a spam or an unwanted object. Normal and abnormal entities will be learned in addition
to the signature database from third parties. This framework can be implemented in the
form of a browser’s adds-on (Firefox) or Extensions (Chrome) that takes into account the
Internet traffic and browser’s logs.

4.4.3 Smartphone-based security monitoring

Figure 4.13: Smartphone-based security monitoring example

The Fig. 4.13 illustrates our proposition for security monitoring a smartphone and the
Wi-fi network that it connects to. The main idea is to deploy a sniffer and/or a logger
making a systematic recording of network traffic, events, observations, or measurements.
The aforesaid traffic can be the packets passing by the wireless interface of the smartphone.
However, due to the wireless communication characteristics, the smartphone can sniff also
other messages (not encrypted) broadcasted in the Wi-fi network inside its radio range.
Analyzing this traffic is useful not only for the smartphone itself but also the whole network.
Whilst, the logs can be related to sensitive application containing personal information (e.g.,
username, password, bank account).

The smartphone can connect and send the audit data to MMT-Cloud via a VPN con-
nection 5. MMT verifies whether there is any security issue, e.g., the utilisation in case
necessary of HTTPS, the content payload of the traffic concerning sensitive information
must be encrypted, etc.

5https://mmt-cloud.montimage.com/docs/setup-vpn-client

Chapter 5
6LoWPAN-based IoT Security Monitoring

Contents
5.1 Introduction . 57

5.1.1 6LoWPAN overview . 58

5.1.2 IoT/WSNs Security requirements . 60

5.2 MMT Adaptation for 6LoWPAN-based WSNs 61

5.2.1 MMT plugin for 6LoWPAN . 61

5.2.2 Related Work on 6LoWPAN monitoring/intrusion detection 63

5.3 Detection methodology and algorithm 64

5.3.1 Misbehaving node detection algorithm based on statistical learning 64

5.3.1.1 Learning phase . 64

5.3.1.2 Monitoring phase . 64

5.3.2 Anomalies detection based on Information Theory 66

5.4 Experimental results . 67

5.4.1 Proof-of-concept architecture . 67

5.4.2 Experimental results . 68

5.4.2.1 Case 1: Statistical Learning . 68

5.4.2.2 Case 2: Information Theory . 73

5.1 Introduction

There are nowadays about 15 billion devices on the Internet of Things (IoT) and there
would be 50 billion connected devices by 2020 according to a report by Cisco and DHL [28].
As a representation, WSNs are more and more widely used in various domains, e.g., to
monitor physical and environmental conditions in the regions where human access is prob-
ably limited. Smart cities are also another application domain based on the collaboration
of a number of WSNs. However, researchers observed three principal difficult challenges in
designing and implementing a secure WSN, namely:

57

Introduction 58

• The vulnerable characteristics of wireless communication nature:
For example, eavesdropping, unauthorized access, spoofing, replay and Denial of Ser-
vice (DoS) attacks, etc.

• The severely resource-constraints of sensor devices: Typical WSNs are composed of
a large number of low-power tiny sensors and actuators. Those nodes own typically
limited energy lifetime, slow embedded processors, severely constrained memory and
low-bandwidth radios. For example, Waspmote [29], the modern open source sensor
device distributed by Libelium, contains simply a 14 MHz micro-processor, 3.3 V - 4.2
V battery voltage, 8 KB SRAM, 128 KB flash memory and 4 KB EEPROM to save
sensed data and to run an operating system and application programs. These resource
constraints limit the degree of encryption, decryption, and authentication that can be
deployed, thus, the concept security and WSNs sound likely contradictory.

• Additional physical security risks: WSNs are commonly deployed in inaccessible ter-
rains or unattended and even hostile environments to sense data or to observe the
occurrence of certain events. They can self-organize into an ad-hoc style wireless net-
work that collects and forwards sensor data to an information sink (e.g., a base station
acting as a gateway to the wired network).

To date, the research on IoT/WSNs is mainly focused on how to make the concept IoT
realistic and practical. In the other words, most of the research works are enabling this
technology by standardizing the communication protocols, ameliorating the performance of
the IoT systems, optimizing the resource consumption, etc. Security is always considered as
an important issue but difficult to thoroughly achieve because it seems contradictory with
the system’s performance.

Moreover, the research on IoT security mostly concentrates on designing secure com-
munication protocols, light encryption, authentication, ect. For example, Fig. 5.1 displays
the complete security scheme proposed by Libelium that deals with common security is-
sues including access control (privacy), authentication, data confidentiality, data integrity,
data freshness (avoiding packet injection) and non-repudiation. In general, there are so far
several security propositions for 6LoWPAN-based IoT:

• Hop by hop security: TinySec, Minisec, ContikiSec, IEEE802.15.4 security mechanism,
WSNSec.

• End-to-end approach: WSN-ETESec

Recently, it exists more and more research works on monitoring in general and intrusion
detection in particular for IoT/WSNs. However, some existing approaches are still in design
level and not implemented yet. Some others focus only in routing problem (e.g., Foren6)
or seemingly affect the performance of the systems (e.g., SVELTE). Therefore, security
monitoring with the minimum influence to the running system is the topic that we study in
this chapter.

5.1.1 6LoWPAN overview

Traditional battery-powered networks or low-bit-rate networks (e.g., 802.15.4) were consid-
ered incapable of running IP due to their typical characteristics:

Introduction 59

Figure 5.1: Complete security scheme proposed by Libelium

• Limited processing capability: From 8-bit clock speed processors.

• Small memory capacity: From a few kilobytes of RAM with a few dozen kilobytes of
ROM/ flash memory.

• Low power: From a few dozen of milli-amperes.

• Short range: Normally from 10 meters to 100 meters.

Whilst, a huge majority of LANs and WANs are running IP. As a result, 6LoWPAN has
been designed to work on top of 802.15.4 networks as an adaptation layer which makes the
layer 2 compatible with layer 3 routing and inter-network technology. 6LoWPAN supports
uniquely IPv6 (no IPv4 support available) and is promising to allow low-power and lossy
devices connecting to other IP-based networks, without intermediate entities like translation
gateways or proxies. This success will enable reusing existing IP-based technology including
tools for monitoring, diagnostic and management.

6LoWPAN standards [30] are basically completed. Fig. 5.2 demonstrates the protocol
stack of a 6LoWPAN including following standardized protocols [31]:

• 6LoWPAN: IPv6 over Low-Power WPAN (RFC 4919, Aug 2007) [32]

• RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks (RFC 6550, Mar
2012) [33]

• CoAP: Constrained Application Protocol (RFC 7252, June 2014) [34]

Introduction 60

• DTLS: Datagram Transport Layer Security (RFC 6347, January 2012) [35]

6LoWPAN standards are still being complemented to satisfy routing needs and to extend
to other link layer technology. A 6LoWPAN typically includes devices realizing a combined

Figure 5.2: 6LoWPAN protocol stack in comparison with TCP/IP

work: collecting the physical or environmental parameters and send them to real-world ap-
plications. The most seemingly popular devices are wireless sensors, although a 6LoWPAN
is not necessarily comprised of sensor nodes only, but also actuators. Fig. 5.3 illustrates
an example of typical WSN/IoT solutions proposed by Libelium. Data collected from sen-
sors can be stored in a local or external database which will be queried by cloud-based
applications.

Figure 5.3: An example of actual application of WSN/IoT

However, in reality, sensors are usually affected by noises, mis-configurations, and other
malicious nodes. In addition, 6LoWPAN devices are themselves unreliable due to vari-
ous reasons, namely uncertain radio connectivity, battery drain, device lockups, physical
tampering. Network monitoring and detecting abnormal activities become therefore a need.

5.1.2 IoT/WSNs Security requirements

• Availability: the network should be available even if it is under an attack with a min-
imum performance degradation. In some cases, it can be understood as the resilience
or survivability against attacks.

MMT Adaptation for 6LoWPAN-based WSNs 61

• Confidentiality: ensure that the data is only readable by the proposed destination.
This requirement is closely related to the concept authentication.

• Integrity: ensure that the information contained in the original message is kept in-
tact. In the other words, data or messages delivered among nodes are not altered by
attackers.

• Privacy: ensure that only the desired sensor devices and gateways are part of the
network. Other relevant security requirements are anonymity, liability and trust.

• Authentication: ensure that the supposed sender is the real sender.

• Non-repudiation: a sender should have mandatory responsibility in transmitting the
messages for the investigation that will determine the correct sequence and content of
messages exchanged before the security incident.

5.2 MMT Adaptation for 6LoWPAN-based WSNs

Having been standardized by IETF, 6LoWPAN-based WSNs consist of Low Power objects
equipped with sensors. They use IEEE 802.15.4 as the physical layer standard. However,
they are exposed to various types of security threats due to the intrinsic characteristics
and the lack of security considerations in the design of protocols for them. The failure of
nodes may result in network partition, decreasing the cover ratio, reducing the availability of
the sensor network and even producing the entire network failure. An adapted monitoring
tool that takes into account the particular characteristics of 6LoWPANs (e.g., resource
constraints) is therefore a need.

Nevertheless, to our knowledge, there has not been any official monitoring solution
for such kind of networks yet. The initial propositions concentrate only in routing issues
and they are likely impossible to allow a deep inspection on the network traffic. We aim
to fulfill this missing. Indeed, we have adapted our original version of MMT which has
been well working over TCP/IP networks [1, 13, 36]. Our goal is to consider not only
theoretical topology of the network but also ready-to-use elements in network traffic to
monitor itself (i.e., passive monitoring). Avoiding creating additional traffic, which is costly
in 6LoWPAN, is an important priority throughout our work. We validate MMT integrated
with new 6LoWPAN plugins over a real test-bed in analyzing real-world 6LoWPAN traffic.
Experimental results prove the applicability of our tool which can be useful for both research
community and industrial companies.

5.2.1 MMT plugin for 6LoWPAN

Attempting to adapt MMT for 6LoWPANs, we have built several 6LoWPAN-plugins in
addition to the original version working properly over TCP/IP networks. These plugins
take into consideration the encapsulation and header compression mechanisms that allow
IPv6 packets able to be sent to and received over IEEE 802.15.4 based networks. Attributes
and protocols can be thus recognized and extracted for being analyzed. To the best of our
knowledge, existing monitoring tools and IDS (Intrusion Detection System) (e.g., Suricata,
SNORT) have not provided any official support to IEEE 802.15.4 or 6LoWPAN yet.

Fig. 5.4 presents an example of a packet captured while nodes were exchanging topology
information for routing. It should be noted that there are three different header structures

MMT Adaptation for 6LoWPAN-based WSNs 62

Figure 5.4: A sample captured packet with IEEE 802.15.4 fields

Figure 5.5: Attribute definition for IEEE 802.15.4

corresponding to IEEE 802.15.4 ACK packets, IEEE 802.15.4 DATA Unicast packets and
IEEE 802.15.4 DATA Multicast packets. The field “Frame Control” plays the role of their
identifier. Fig. 5.5 displays a simple description about the header’s structure of the IEEE
802.15.4 DATA Multicast packets. This is only a simple straw description used to generate
the skeleton of the plugin which is in C language.

Our plugins aim to cover all possible structures of packets. Fig. 5.6 briefly resumes our
plugins and their supporting protocols (i.e., packet structures) at the time of writing this
thesis. They include already-done ones (black boxes), almost-done and under-tested ones
(blue boxes), and to-be-done one (yellow box). For the moment, we are mostly focusing on
routing control packets that can identify efficiently the network’s state. For the long term
goal, we would like to verify other protocols in higher layers, especially security-related-
protocols (e.g., DTLS).

Actually, building a new plugin for any structured data/ traffic/ event logs is a feasible
task. Researchers and industrial network administrators can build the plugins themselves
taking into considerations their own interesting data to extract. Montimage provides sup-
porting tools to create skeletons for new plugins based on pre-defined attributes which are
in need of being extracted.

MMT Adaptation for 6LoWPAN-based WSNs 63

Figure 5.6: List of MMT plugins corresponding to supported protocols

5.2.2 Related Work on 6LoWPAN monitoring/intrusion detection

As far as we know, there have been not many monitoring tools for IoT in general and for
6LoWPAN-based WSNs in particular. Foren6 is seemingly the most famous one which is
compared in the section above. However, the current version of Foren6 mainly focuses in vi-
sualizing the network topology and analyzing routing issues. Whilst, MMT is an extendable
monitoring tool that allows adding plugins to define new input as well as writing rules de-
scribing both wanted and unwanted behaviors from the input. This flexibility makes MMT
open to different types of input as well as able to adapt to different scenarios.

Regarding research works dealing with 6LoWPAN objects’s security, SVELTE [37] has
been presented as the most well-known among very few intrusion detection tools work-
ing over such small devices. SVELTE consists of three main centralized modules including
lightweight modules and mini-firewalls deployed in SNs and central modules called 6Mapper
located in BRs. 6Mapper collects the routing information thanks to their “little” collabo-
rators located in SNs. Experiments have been carried out by the authors and their team to
evaluate SVELTE. In comparison with our approach, SVELTE is more active and creates
additional traffic to realize their goal. Whilst, we attempt to passively monitor the network
based on the network’s traffic to avoid additional costs which might hamper 6LoWPAN.

Concerning IDS solutions proposed for WSNs which are not specifically based on 6LoW-
PAN technology, some of the most important ones are studied in [38]. Nevertheless, similarly
to SVELTE, they have a common issue: IDS modules installed in nodes use the same wireless
medium to communicate among themselves. This fact triggers additional cost that could
be expensive and even unaffordable in case of DoS attacks (e.g., jamming or flooding).
Consequently, detecting attacks, the primary task of an IDS, becomes inefficient or even
unachievable. To overcome this problem, the authors of [39,40] proposed DEMO as an IDS
framework combining several existing open source technologies. They focused especially on

Detection methodology and algorithm 64

DoS attacks detection by real-time monitoring of various physical parameters. They inte-
grated to the 6LoWPAN some distributed IDS probes acting as sniffers. These IDS probes
have the mission to send relevant information to the IDS (e.g., Suricata) through wired con-
nections. Wired connectivity, which is certainly more reliable, allows the framework to be
resistant to attacks. However, WSNs are frequently deployed in inaccessible terrains or even
hostile environments. A wired connection in that case is seemingly unrealistic. Meanwhile,
MMT is able to play the same role of Suricata in DEMO framework, without the need of
decoders (Suricata does not officially support IEEE 802.15.4 and 6LoWPAN yet).

5.3 Detection methodology and algorithm

In this section, we summary our methodologies and algorithms to detect anomalies. The
learning phase is realized by utilizing supervised learning approach, i.e., we knew the label
(normal or abnormal) of the audit traffic before learning it. More specifically, we propose
two detection algorithms, one based on statistical learning and another based on information
theory (entropy).

5.3.1 Misbehaving node detection algorithm based on statistical learning

We suppose that s is a sink node (i.e., base station node, gateway) and ni is the ith sensor
node. For a node ni at the moment t, Wi(t) denotes the weight of the link between ni and
s. Depending on real-world case study and requirements, Wi can be defined and calculated
differently.

Our detection algorithm consists of two phases: learning phase and monitoring
phase .

5.3.1.1 Learning phase

We assume that Wi(t) ∼ N(µi, σi
2), i.e., Wi is distributed normally with mean µi and

variance σi. N(µ, σ2) is the normal (or Gaussian) distribution in probability theory [41].
According to 3-sigma rule, approximately 95% and 99.7% of values drawn from a normal

distribution lie correspondingly within two and three standard deviations σ away from the
mean µ. This percentage increases according to the gap away from the mean. In case of 7σ,
the percentage approaches up to 99.99999999974%. In other words, the probability that X
is within [(µ− 7σ), (µ+ 7σ)] is high up to 0.9999999999974.

In the learning phase, we assume that every node functions normally. This phase should
be performed right after the sensor network starts operating. In fact, multiple attempts in
learning phase could be useful to identify “the most common normal status of the network”
thus, to determine the best values for µi and σi for the node ni. We define then [(µi −
εi), (µi + εi)] as the promising interval that Wi should lie within. εi is a customizable
parameter which defines the frontier between normal and abnormal behaviors. Its value is
generally from 3σ to 7σ.

5.3.1.2 Monitoring phase

In this phase, we listen to the network and calculate Wi(t) for every node. We evaluate
whether a node ni is normal or abnormal by comparing Wi(t) with µi defined in the learning
phase.

Detection methodology and algorithm 65

• Step 1: Malicious path identification.
Let Si be the state of ni, Si(t) = 0 if ni operates normally at the moment t. Otherwise,
Si(t) = 1 and there must be (a) misbehavior node(s) somewhere. Hence, Si(t) is
deduced as follows:

Si(t) =

{
0 if Wi(t) ∈ [(µi − εi), (µi + εi)],

1 otherwise
(5.1)

It is worth noting that the fact that Si(t) = 1 does not lead to the conclusion that ni
is malicious. The problem can also come from another sensor node within the path
from ni to the sink node s. Our mission then is to identify a misbehavior node that
we know definitely within the path from nk to s. This is the goal of the step 2.

• Step 2: Misbehavior node identification.
Suppose that we are (passively) monitoring in real-time a 6LoWPAN-WSN and sud-
denly we witness the occurrence of the event “Sk = 1”. Thus, there must be a malicious
node within the path s −→ n1 −→ n2 −→ ... −→ nk.
Thanks to the learning phase, we have already known S1, S2, ..., Sk−1, Sk. Then we
have the following logic deduction:
∃j ∈ N, j ≥ 1 | (Si = 0 for every i ∈ {0, 1, ..., j − 1})

∧
(Sj = 1)

The sink node s is considered as S0 (S0 ≡ s).
Evidently, ni is legitimate for i ∈ {0, 1, ..., j − 1} and nj is logically the first misbe-
havior node detected. We continue to test the other nodes including nj+1 until nk:
s −→ ... −→ nj −→ nj+1 −→ ... −→ nk.
S0 = 0 −→ ... −→ Sj = 1 −→ Sj+1 = 1 −→ ... −→ Sk = 1
We define α as the difference (i.e., delay) between the link weight in reality and the
expected link weight: αi = Wi − µi, and β as the additional link cost to the neighbor
caused by the node n (Fig. 5.7) (β = 0 if and only if n is normal). α is directly
calculated thanks to known values of W and µ, whilst, β would be deducted indirectly
Obviously, 5.1 equals to two following expression:

Si(t) =

{
0 if | αi(t) |> εi,

1 otherwise
(5.2)

Si(t) =

{
0 if βi(t) = 0

1 otherwise
(5.3)

Figure 5.7: Additional link cost to the neighbor

Thus,
(αj+1 − αj) = (Wj+1 −Wj)− (µj+1 − µj) (5.4)

Obviously, | αj |> εj and | αj+1 |> εj+1. µj and µj+1 were derived from the learning
phase. Wj and Wj+1 are calculated in real-time monitoring.

Detection methodology and algorithm 66

Because all nodes from the sink node to nj−1 function normally, αj exists principally
as a result of the communication delay between nj−1 and nj . In other words,

αj ≈ βj (5.5)

In (5.4), (µj+1 − µj) is the weight costed by the link nj −→ nj+1 in normal condition
(in theory); (Wj+1 −Wj) is the one in under-monitored condition (in practice). The
right side is, thus, the additional cost caused over the link nj −→ nj+1, i.e., βj + βj+1

Therefore,
(αj+1 − αj) = βj + βj+1 (5.6)

Because of 5.5, 5.6, βj+1 can be inferred as:

(βj+1 ≈ αj+1 − 2 ∗ αj) (5.7)

We have achieved identifying the status of nj+1.
Continuously, now we are testing nj+2:
Similarly to (5.4), we have:

(αj+2 − αj+1) = (Wj+2 −Wj+1)− (µj+2 − µj+1) (5.8)

The right side of (5.8) is the additional cost caused over the link nj+1 −→ nj+2, i.e.,
βj+1 + βj+2

To sum up,
βj+2 = αj+2 − αj+1 − βj+1 (5.9)

All elements in the right side are disclosed, thus, (5.9) gives us the condition to deter-
mine whether nj+2 is normal or not.

Similarly, we repeat the aforementioned steps to verify the status of the rest:

{nj+3, nj+4, ..., nk}

5.3.2 Anomalies detection based on Information Theory

This subsection aims to take Information Theory into consideration in order to provide
theoretical base for the learning phase of our framework. These measures can be defined
and calculated from extracted attributes. They can be useful to describe the characteristics
of an audit dataset, define a suitable detection model, as well as evaluate the performance
of the model.

1. Entropy
Entropy [42] is an important concept measuring the uncertainty (or impurity) of a
collection of data items. Let X is the collection including N classes of data items xi
(i=1, 2, ..., N). The entropy of X is defined as:

H(X) = H(x1, x2, ..., xN) = −
N∑
i=1

P (xi) ∗ logP (xi) (5.10)

where P (xi) is the probability of xi in X for i=1, 2, ..., N. The “purer” dataset has
a smaller entropy, i.e., the class distribution is skewer. The smallest possible value

Experimental results 67

of the entropy is 0 in case the dataset has only one class of items, i.e., there is no
uncertainty because we know for sure every items belong to this unique class. When
the data is more “impure” the uncertainty increases, the entropy value is bigger.

In the context of this thesis (anomaly detection), we use entropy to measure the
regularity of the data input. For example, a trace file can be translated to a set of
events E = {e1, e2, ..., eN}. The high regularity refers to the fact that many events are
repeated and they will likely appear again in the future. Additionally, if a system works
in the mode of duty cycle and frequently (e.g., WSNs in which sensors periodically
send sensed data), its regularity is seemingly stable. This assumption is assessed in
the experimental section.

2. Conditional Entropy
The conditional entropy of the dataset X given the dataset Y is defined as:

H(X|Y) = −
i=1,N∑
j=1,M

P (xi, yj) ∗ logP (xi|yj) (5.11)

where xi, yj are classes of data items of X and Y respectively (i = 1, N, j = 1,M),
P (xi, yj) is the joint probability of xi and yj and P (xi|yj) is the conditional probability
of xi given yj .

This concept can be used to measure temporal or sequential characteristics of complex
audit datasets corresponding to temporal user, program and network activities. For
intrusion detection point of view, this is usable for detecting complicated attacks
demanding the correlation of different events.

3. Other measures
In addition to two aforementioned measures, there exists several concepts that can
be taken into consideration, namely relative conditional entropy, information gain
and classification, and information cost. They can be useful for building an anomaly
detection model as well as evaluating it.

5.4 Experimental results

5.4.1 Proof-of-concept architecture

In order to validate our framework, we deploy a real 6LoWPAN-based WSN using the open
platform provided by FIT-IoT lab [43]. Fig. 5.8 depicts the hierarchical architecture of our
network acting as the proof-of-concept. The BRs (Border Routers) play the role as sink
nodes equipped with a sniffer which allows capturing live traffic. In the context of this
work, we used A8 and M3 nodes to deploy BR nodes. Whilst, M3 and WSN430 nodes 1

were utilized to implement sensor nodes. Our nodes were running Contiki as the operating
system. Sniffers were integrated with BRs to capture and pass the network traffic to MMT.
Extracted attributes were stored in a local database and further computations would be
performed to detect the problems.

The network deployment was step by step realized as follows:

1Hardware information about nodes: https://www.iot-lab.info/hardware/

Experimental results 68

Figure 5.8: Hierarchical architecture of the 6LoWPAN-based WSN in our experiment

• Selecting available sensor nodes in FIT-IoT test-bed for the experiments: M3/A8 node
as BR node and M3/WSN430 nodes as sensor nodes.

• Starting tunslip6 2 to bridge the BRs to the front-end network.

• Loading suitable firmware for each node: BR firmware with sniffer integrated and
sensor node firmware with HTTP server code included.

• Booting nodes and starting the experiments. Sensor nodes would periodically (every
10 seconds) send sensed data to their corresponding BR. MMT would take the traffic
captured by sniffers as the input.

5.4.2 Experimental results

5.4.2.1 Case 1: Statistical Learning

1. Performance evaluation with offline traffic (PCAP files)
Firstly, we assessed the processing speed of MMT in the cases of different sizes of
the network (i.e., the number of nodes). In each case, the sniffer recorded the traffic
passing by the BR for 5 minutes and saved as a PCAP (packet capture) file. MMT
would analyze the PCAP files and extract all attributes that we had defined by the
plugins. Fig. 5.9 summarizes the results. Evidently the more nodes we inserted to the
network, the more traffic they generated and the more time MMT required to process.
However, MMT has indeed shown a promising processing rate which is always around
420 Mbps. The processing rate is calculated as follows:

processing rate(Mbps) =
traffic volume(kB) ∗ 8

1024 ∗ average execution time
(5.12)

2https://www.iot-lab.info/tutorials/build-tunslip6/

Experimental results 69

This processing rate introduces MMT as a potential candidate for monitoring even
big network consisting of hundreds or thousands connected objects.

Figure 5.9: Volume of traffic and processing time depending on the size of network

2. Real-time monitoring and response delay

Secondly, we validated and compared our solution’s performance with Foren6, which
is one of the first and the most well-known open-source debugging tools for IoT, while
detecting abnormal activities triggered by some misbehavior nodes in the network.
In fact, similarly to MMT, Foren6 permits passively capturing 6LoWPAN traffic and
renders the network state in a graphical user interface. Although it is able to detect
abnormal behaviors in routing, it is mainly used to reconstruct a visual and textual
representation of network (i.e., network troubleshooting). There is, for the moment, no
specific Foren6-based application for detecting security violations. In our experiments,
we created abnormal activities by modifying the firmware loaded to a number of
nodes and forcing them to delay message forwarding process or even sometime avoid
forwarding messages (selective forwarding attack). These misbehaving nodes would
affect all downstream nodes that use them as the forwarder to reach the BR.

In order to detect these behaviors, we applied our own detection algorithm, which
is explained in detail at the section 5.3.1 as well as in [44]. The general idea is to
calculate travel time of each packet coming from the BR to each node or vice versa.
This task was realized by extracting suitable attributes in packets. The travel time
would act as the link weight mentioned in the algorithm. We saved the results when
the network was properly functioning and when aforementioned abnormal activities
were performed.

In case of proper conditions, we observed every node and extracted two attributes
time stamp and MAC address of every packet coming in and out. After that, based
on those values stored, we calculated the travel time related to each node (i.e., the
necessary time for a packet delivered from this node to the BR or vice versa). We
considered this as a random variable and statistically analyzed them in using RStudio

Experimental results 70

Figure 5.10: Probability Density Functions and Cumulative Distribution Functions of the
travel time

3. We received the same result regardless of using MMT or Foren6. Fig. 5.10 presents
the histogram of two PDFs (Probability Density Functions) and two CDFs (Cumula-
tive Distribution Functions) of the travel time of packets concerning a sample node.
Line (a) corresponds the case where we took into account five minutes of monitoring,
whilst, line (b) corresponds the case of ten minutes. We witnessed that it is likely
normally distributed (Gaussian distribution [41]). For both two cases, the mean (i.e.,
expectation) of the distribution is approximated at 380 milliseconds. We call this
observation as the learning phase .

In case of abnormal activities added to the network, we repeated that procedure
(extraction and calculation) and compared received values with the ones derived from
the learning phase. As seen in the case above, if we suppose Xi(t) is the random
variable representing the travel time related to the node ni and the sink node s at the
moment t, Xi(t) can be dealt as a Gaussian distribution:
Xi(t) ∼ N(µi, σi

2) where µi is the mean and σi is the variance.

3https://www.rstudio.com/

Experimental results 71

According to 3-sigma rule [41], approximately 95% and 99.7% of values drawn from
a normal distribution lie within two and three standard deviations σ correspondingly
away from the mean µ. This percentage increases according to the gap away from the
mean. Therefore, we could define then [(µi−εi), (µi+εi)] as the promising interval that
Xi should lie within at whatever moment. εi should be customizable and generally
between 3σ and 7σ. Each occurrence of the event when we witness a value fall outside
this interval should trigger the alert about an abnormal activity. In such case, our
detection algorithm would be applied to determine the misbehaving node.

Nb of nodes Nb of malicious nodes MMT (ms) Foren6 (ms)

5 1 13.87 13.43
10 2 31.9 32.14
15 3 48.54 49.11
20 4 66.58 64.87
25 5 84.61 85.22
30 6 108.22 110.56
35 7 128.92 131.94
40 8 152.57 155.15

Table 5.1: Comparison of detection delay between MMT and Foren6 (in millisecond)

While performing experiments with MMT and Foren6, we successfully detected the
evil nodes which were loaded malicious firmware. Tab. 5.1 depicts the detection de-
lay of MMT and Foren6 depending on the network size. In those experiments, we
fixed the number of malicious nodes equivalent to 20% of total nodes in the network.
We witnessed that the demanding processing time to identify misbehavior nodes are
strikingly increased with the number of nodes (both normal and abnormal ones). This
delay consists of the time for extracting the attributes, calculating variables and per-
forming the detection algorithm to determine malicious entities. It was growing with
the number of nodes and paths under test because the number of computations used
for the algorithm increases correspondingly. In any case, we observed basically the
same performance for both MMT and Foren6.

3. Real-time monitoring and the detection algorithm performance:
Thirdly, in order to evaluate the influence of the threshold εi to the accuracy of
our algorithm, we repeated the experiments with different threshold in counting the
number of false positive and false negative. In the framework of this research, we did
not observe any false negative. Fig. 5.11 illustrates the false positive and accuracy
rate related to an observed node Ni in function with the threshold εi.
It is computed as follows:

false positive rate(%) =
nbr false positive ∗ 100

nbr detection
(5.13)

Since there was no false negative:

accuracy rate = 100− false positive rate(%) (5.14)

Indeed, we observed a very good accuracy when the threshold εi is bigger than 3 ∗ σi.
These results validated once again the 3-sigma rule .

Experimental results 72

Figure 5.11: Proposition’s false positive and accuracy rate in function with the threshold εi

4. Algorithm extension
Although the accuracy witnessed in aforementioned experiments was high, we recog-
nized that certain abnormal nodes detected were not really valuable. Sensor nodes are
weak and sometimes fall to failure but only momentarily and then come back to nor-
mal state. The temporary fault state should be tolerated. To deal with this issue, we
attempted to replace the momentary state in monitoring phase by a more long-lasting
state. Xi would not be calculated at a single moment t but as an average value in the
period from t− τ to t, where τ is the observation duration and pre-defined based on
the characteristics of the network. We performed our experiments with τ = 1 minute.

Evidently, the detection algorithm with and without the presence of τ must have

Without τ With τ

AVG(processing time) (ms) 383 528

Throughput (Kbps) 104 76

Table 5.2: Solution’s average processing time and throughput

different performance in terms of response delay (i.e., processing time) due to the ad-
ditional time for querying other older values of Xi and for extra calculations (Tab. 5.2,
AVG means average (of)). Experiments demonstrated that our solution allowed pro-
cessing network traffic with bit-rate up to 104 Kbps (without τ) and 76 Kbps (with
τ) which is sufficient for 6LoWPAN-based WSNs.

In conclusion, looking to some sample events occuring in some specific moment is

Experimental results 73

not enough for a thorough security monitoring. In stead, monitoring should be a
continuous process taking into account the history and the sequence of events.

5. Related work
There are actually several malicious and abnormal node detection schemes proposed
in the literature for WSNs in general and recently for 6LoWPAN specifically. As a
result of energy issues, most of them are based on a distributed model, using either
neighbor coordination or clustering. For example, Curiac et al. [45] proposed an auto-
regression technique to detect malicious node. They saved past and present values
provided by each sensor as the input of an auto-regressive predictor to estimate an
expected value. If the received value is too different from the expected one, the related
sensor node must be questionable. The similar point of this work to our one is that
we both predict an expected range based on the received one, i.e., anticipate the
future from the past. Falling outside from this range signifies an abnormal behavior.
However, [45] specifically copes with suspicious nodes sending malicious data, in other
words, it cares more about the content of message rather than other aspects of the
network, e.g., delay, bitrate and packet loss rate which is the main concern taken in
our work.

Whereas, Atakli et al. [46] proposed another scheme do detect compromised node
using weighted-trust evaluation. The authors utilized a clustered topology for their
hierarchical WSN network and built their detection scheme based on weighted-trust
evaluation. They divided their network into three layers including AP (Access Point),
FN (Forwarding Node) and SN (Sensor Node) layer. FNs assigned a weighted-trust to
each SN and an algorithm was proposed to update this value based on what FNs receive
from their SN. Nonetheless, [46] presents simply some preliminary results derived from
some simulations and the performance and the scalability of the solution are still a
problematic that the author left as their future work. As an improvement, Seo Hyun
Oh et al. [47] proposed another scheme using dual-weighted trust evaluation to reduce
mis-detection rate while maintaining comparable performance. Although weighted-
trust is very close to our idea in using link weight represented by packet’s travel time,
FNs in our case are also sensor devices which are not powerful enough to perform
computations.

5.4.2.2 Case 2: Information Theory

The main idea of these experiments is to monitor the entropy value of the system (6LoWPAN-
based WSNs) and see if it can be useful to design an anomaly detection model. Similarly to
the experiments in the section 5.4.2.1, we deployed 6LoWPAN-based WSNs but this time,
we cared only about routing packets. For each packet, we extracted the set of attributes
consisting of source’s MAC address, destination’s MAC address, timestamp, type of routing
packet. So far we defined five different routing packet types: RPL DIS, RPL DIO, RPL
DAO, Neighbor solicitation and Router Advertisement. An event ei is defined as a triplet
<source’s MAC address, destination’s MAC address, type of routing packet>. We analyzed
the traffic and recorded events received then calculated the entropy of the set of all received
events as a temporal variable.

Firstly, we performed five experiments on the networks of 10 nodes. We monitored
the entropy of the set of received events in approximately 40 minutes (from the booting of

Experimental results 74

Figure 5.12: Entropy monitoring of 10 nodes under normal condition

sensor nodes). The topology of the networks in five experiments were fixed but we loaded
BR firmware to five different nodes. The sniffer was always located in the BR node.

As displayed in the Fig. 5.12, after first two or three minutes increasing very fast, the
entropy became quite stable and slightly oscillate around a convergence value. We witnessed
this in all five experiments regardless the convergence values are a little bit different among
five cases. We observed also that the more the BR node was located in the center of the
network (i.e., the more symmetric the topology is), the smaller the entropy became (i.e.,
the purer the set of events is).

Secondly, in order to observe the possible change on larger networks, we repeated the
experiments another three times but on the networks of 30 nodes. On the one hand, we
received the similar results (Fig. 5.13) (the entropy quickly increased in the booting duration
until a pretty stable value). On the other hand, we noticed that the entropy regarding the
30-node-networks is higher than the one regarding the 10-node-networks. This is obviously
understandable, because the larger systems with a bigger number of entities likely become
impurer than the the smaller systems.

Thirdly, we performed another two experiments on the networks of 30 nodes. However,
we rebooted the BR several times to see how the entropy variable reacted. Indeed, it reacted
like we restarted the experiment (ex4 and ex5 in Fig. 5.14) with the stable point a little
bit higher than before the reboot. This is because of the fact that the reboot event and
necessary routing events performed after the reboot make the set of caught events impurer.

Last but not least, we injected some routing attacks to the networks. The Fig. 5.15 (ex6)

Experimental results 75

Figure 5.13: Entropy monitoring of 30 nodes under normal condition

Figure 5.14: Entropy monitoring of 30 nodes under rebooting

depicts the results when we forced some nodes to perform the flooding attack (attack 1) and
the selective forwarding attack (attack 2) [48]. An almost immediate augmentation of the
entropy is noticed at the moment of the attack. When the attack is terminated, the entropy

Experimental results 76

Figure 5.15: Entropy monitoring of 10 nodes under attacks

return the stable state at a point higher than before the attack. This can be explained
by the fact that our model had taken into account also the attack and thus, taken events
are impurer. Indeed, any routing attack affecting considerably the proper normal routing
process of the network can trigger a sudden change in the entropy value.

In short, we acknowledged the usefulness of entropy as a metric to monitor the 6LoWPAN-
based WSNs. A simple entropy-based MMT-Security rule was created to automatically
detect the abnormal change in the entropy value, and then to detect attacks. The main
idea is as follows: (i)- Monitor the network and learn the normal expected zone for the
entropy value (e− ε, e+ ε); (ii)- Keep monitoring the network and raise an alert if the tem-
poral entropy value fall outside the pre-learned normal zone. The learning phase (including
the determination of the expectation e and the threshold ε) is repeated up to the network
administrators. The bigger threshold can lead to the higher rate of false negative. The
smaller one can increase the rate of false positive. The Tab. 5.3 displays the performance of
our solution in different networks consisting of different number of sensor nodes, in which
we defined that: ε = 5% ∗ e . Evidently the more nodes we inserted to the network, the
more traffic they generated and the more processing time (PT) MMT required to process.
However, MMT has indeed shown a promising processing rate which is always around 420
Mbps. The processing rate is calculated as follows:

PR(Mbps) =
traffic volume(kB) ∗ 8

1024 ∗ PT
(5.15)

This processing rate (PR) introduces MMT as a potential candidate for monitoring even
big network consisting of hundreds or thousands connected objects.

To conclude, in addition to other usable metrics, entropy can be a good candidate for
systems where we need to define the normal states. Particularly speaking about RPL-based
WSNs, from our point of view, the link-weight can be another metric providing the local
view of the network [44], while the entropy can provide a global view of the whole system.

Experimental results 77

Nb of nodes Traffic (kB) PT (mS) PR (Mbps)

5 47 0.86 424
10 118 2.19 420
15 235 4.38 419
20 393 7.33 418
25 648 12.16 417
30 1038 19.34 419
35 1334 24.83 419
40 2096 39.06 419

Table 5.3: Traffic volume, processing time and processing rate depending on the size of
network

Chapter 6
Enabling Intrusion Tolerance by Design

Contents
6.1 Introduction . 78

6.2 Intrusion Tolerant Routing in WSNs . 80

6.2.1 INSENS - Intrusion-tolerant routing protocol for wireless SEnsor NetworkS 81

6.2.2 ITSRP - Intrusion Tolerant Secure Routing Protocol 83

6.2.3 Missing issues of INSENS and ITSRP . 85

6.2.4 A Comparative Evaluation . 85

6.2.4.1 Network throughput . 86

6.2.4.2 Network overhead . 87

6.2.4.3 Network lifetime . 88

6.2.5 Improvement propositions . 90

6.3 Emulation-based intrusion detection and tolerance 90

6.3.1 General methodology . 91

6.3.2 A novel approach for SQL injection detection and tolerance 92

6.3.2.1 Problem statement . 92

6.3.2.2 Methodology . 93

6.3.2.3 Implementation . 95

6.3.3 Discussion . 97

6.1 Introduction

For a long time people invest much research on security mechanisms to prevent or detect
intrusions and attacks. However, attacks are more and more sophisticated and thus, they
are difficult to be captured. A system may fail to complete its mission whenever a successful
attack occurs and it may be impossible to recover quickly. In the recent few years, research
community starts to spread the issue attack tolerance that will allow a system strong enough
to tolerate attacks.

Intrusion or attack tolerance of a system is generally understood as the capability to
continue to function properly with minimal degradation of performance, despite intrusions

78

Introduction 79

or malicious attacks [11]. In terms of networks, this concept means the ability to maintain
the overall connectivity and diameter of the network as nodes are removed.

Figure 6.1: Security features for modern systems

The Fig. 6.1 [49] indicates features which should be integrated to a modern system or
network. To gain intrusion/attack tolerance, systems employ redundancy, diversity, and
reconfiguration to remove unwanted intrusions and recover the normal state.

This chapter provides a study on the concept intrusion tolerance by design. We first
assess the possibility to integrate intrusion tolerance to the routing issue in WSNs. Then
we propose an emulation-based extension of aforementioned security monitoring framework
to simultaneously detect and tolerate intrusions.

Intrusion Tolerant Routing in WSNs 80

6.2 Intrusion Tolerant Routing in WSNs

In the current era, WSNs are rapidly emerging as an important area in both the research
community and the public. However, there are three principal difficult research challenges
to design and implement a secure WSNs, namely:

• the vulnerable characteristics of wireless communication nature (e.g., eavesdropping,
unauthorized access, spoofing, replay and DOS attacks).

• the severely resource-constraints of sensor devices. Typical WSNs are composed of
a large number of low-power tiny sensors and actuators that own a limited energy
lifetime, slow embedded processors, severely constrained memory and low-bandwidth
radios, with sensing, computation, and wireless communication capabilities. For ex-
ample, Waspmote [29], the modern open source sensor device distributed by Libelium,
contains simply a 14 MHz micro-processor, 3.3 V - 4.2 V battery voltage, 8 KB SRAM,
128 KB flash memory and 4 KB EEPROM to save sensed data, run and operating
system and application programs. These resource constraints limit the degree of en-
cryption, decryption, and authentication that can be deployed, thus, the concept
security and WSNs were likely contradictory.

• additional physical security risk because of being deployed in inaccessible terrains or
unattended and even hostile environments to sense data or to observe the occurrence of
certain events by self-organizing into an ad-hoc style wireless network that collects and
forwards sensor data to an information sink (e.g., a base station acting as a gateway
to the wired network).

In addition to the intrinsic characteristics, due to the lack of security considerations
in the design of protocols, WSNs are exposed to various types of security threats. The
failure of nodes may result in network partition, decreasing the cover ratio, reducing the
availability of the sensor network and even producing entire network failure. The integration
of an intrusion detection system (IDS) is presumably too expensive in terms of resource.
Therefore, it is essential to take the concept of intrusion tolerance into consideration
in order to sustain the sensor network functionality without interruption despite malicious
attacks and sensor node failures.

The idea on intrusion- tolerant routing for WSNs first appeared around the middle of last
decade, however, there is very little research on this topic. Beside the well-known INSENS,
ITSRP is uniquely another proposition which is much less popular. Nevertheless, ITSRP
still deserves considerations because it took into account the problem “energy consumption”
that is a very critical issue of WSNs.

This section aims to present a study on INSENS and ITSRP. We attempt to briefly
describe how these two protocols work and which properties make them intrusion-tolerant.
We also remark their missing issues, carry out some simulations to assess their practical
performance and suggest some possibilities to upgrade these two protocols. Although the
doubt upon the feasibility of our suggestions, we consider this study as good first step
to approach a further better intrusion- tolerant protocol as well as an intrusion-tolerant
framework that could be integrated to WSNs.

Intrusion tolerance [50–52] is generally understood as the capability to continue to func-
tion properly with minimal degradation of performance, despite intrusions or malicious at-
tacks. A great deal of work has been done to address the sensor network security problems

Intrusion Tolerant Routing in WSNs 81

recently so that the WSNs can tolerate and/or prevent intrusions [53,54]. As other kinds of
networks, routing is one of the most critical features in WSNs. In the following subsections,
we attempt to briefly identify two current approaches used for achieving intrusion-tolerant
routing and focus our analyzes on their intrusion-tolerant properties. The more detailed
descriptions illustrating how INSENS and ITSRP function can be found in [2, 55] and [56].

6.2.1 INSENS - Intrusion-tolerant routing protocol for wireless SEnsor
NetworkS

Intrusion-tolerant routing protocol for wireless SEnsor NetworkS (INSENS), proposed by
Jing Deng et al [2,55,57], aims to assure communication authentication and integrity check
while forwarding tables are being constructed, and to prevents dangerous attacks and ma-
licious activities.

INSENS is possibly subdivided into two phases: Route Discovery phase and Data
Forwarding phase (Tab. 6.1). The goal of the first phase is to collect topology knowledge
and to construct appropriate forwarding tables for every node. Whilst, the second phase
simply enables forwarding of data from each sensor node to the base station and vice versa.
It is worth mentioning that every communication between nodes is one-way forwarded (i.e.,
unicast) via base station.

Phase 1: Phase 2:
Data
Forwarding

Route Discovery
Route Re-
quest

Route
Feedback

Computing
and Propa-
gating Multi-
path Routing
Tables

Table 6.1: Two phases and three rounds in the first phase of INSENS

Intrusion-tolerant properties of INSENS are mostly gained thanks to the Route Dis-
covery phase, that is composed of three rounds: Route Request, Route Feedback, and Com-
puting and Propagating Multi-path Routing Tables. In the beginning (or when the topology
may have changed substantially because of nodes’ mobility), the base station floods limit-
edly a request message to all the reachable sensor nodes in the network. After receiving
a request message for the first time, a sensor node x broadcasts in return another request
message that includes a path from the base station to x and also the identity of x. When-
ever receiving duplicate request messages, it records the identity of the sender as a neighbor,
but stop re-broadcasting the duplicate request. The base station authenticates the feedback
messages received from sensor nodes (authentication manner will be further discussed in the
follow parts of this section). After that, it constructs a topological picture of the network
from the authenticated neighborhood information, computes the forwarding tables for each
sensor node, and sends the tables respectively to nodes using a routing update message. To
address the influences of compromised nodes, INSENS builds redundant multi-path routing
tables containing disjoint paths. Therefore, even if a single node or path is taken down by
an intruder, secondary path will substitute.

Tab. 6.2 details the format of a request message: The type field indicates whether the
message is a request, feedback, routing, or data message. The path field contains the path

Intrusion Tolerant Routing in WSNs 82

from the base station to the current node (the node that sends this request message). The
size field contains the length of this path. In the scope of this work, we concentrate our
interest in the OWS (One-Way Sequence) field and the MAC (MACR and MACF) (Message
Authentication Code Request/Forward) field that support the intrusion-tolerant properties
of INSENS.

request message

type OWS size path MACR

feedback message

type OWS parent inf path inf nbr inf MACF

Table 6.2: Request message and feedback message format

One-way sequences (OWS) concept is actually proposed by µTESLA protocol [58]. It
consists of a function F generating a sequence of numbers K0, K1..., Kn, such that Ki =
F(Ki+1), where 0 < i < n and F satisfies the condition that it is computationally unfeasible
to compute Ki+1 in a limited time by only knowing F and Ki. Initially, every node is pre-
configured to know K0 and F. In the ith Route Discovery phase, the base station includes Ki

in the request message that it broadcasts. After receiving a request message, a node verifies
if the sequence number did indeed originate from the base station by checking whether K0

= F i(Ki). Due to the characteristics of F, a malicious node would be computationally
impossible to guess the next OWS to spoof the base station by generating new OWS. On
the other hand, a sensor node stores the most up-to-date or freshest OWSfresh that it has
just seen from the base station. This fact resists an intruder to disrupt the network by using
old OWS to flood old request messages.

In addition to OWS, keyed MAC (Message Authentication Code) algorithm is another
factor that provides intrusion-tolerant properties for INSENS. Each sensor node is initially
configured with a separate secret key that is shared only with the base station. When a
node x receives a request message for the first time, before forwarding it, x appends its
identity to the path list, and then generates a MAC of the complete new path with its key:
MACRx = MAC(size|path|OWS|type, keyx) where “ |” denotes concatenation. The value
of MACR is also appended to the request message that is then forwarded downstream. This
MACR field will eventually be exploited by the base station to verify the integrity of the
path contained in the packet. The aforementioned concerns about fake or modified request
message can not harm base station thanks to this integrity check. Additionally, even if a
node is compromised, only its secret key will be revealed, so an intruder cannot compromise
the entire network.

In the second round (Route Discovery-Route Feedback), as illustrated in Tab. 6.2 con-
cerning the format of feedback messages, keyed MAC is applied one more time to protect
the integrity of feedback messages (i.e., MACF). List of neighbors nbr info and the path
path info to a node x are protected by the following keyed MACFx:

MACFx = MAC (path info | nbr info | OWS | type, keyx)
In feedback messages, parent info field determines which of a child’s upstream neighbors

is the parent who will take part in forwarding the feedback message to the base station.
Instead of simply using the identity of the parent node, INSENS requires a child node to
put its parent’s MACRp, that is derived from the parent’s original request message, into the
parent info field. This MACRp is tightly linked with the current state of the OWS request-

Intrusion Tolerant Routing in WSNs 83

feedback cycle, as well as to the path to the child node. In other words, the MACRp play
a role as not only an addressing function but also a security function. A casual attacker,
that only knows node id, would be unable to forward a spurious feedback message.

6.2.2 ITSRP - Intrusion Tolerant Secure Routing Protocol

Intrusion Tolerant Secure Routing Protocol (ITSRP) [56] is a secure routing protocol which
focuses on the design of some fields to emphasize the security accounting to the key ex-
change, but, as INSENS, not result in the complexity of the protocol with a reasonable
price regarding energy factor.

ITSRP assumes that each node stores a Local Route Table (LRT) containing entries
whose format is demonstrated in Table 6.3. The first field contains the unique Tag for a
route. The second and the third field record ancestor node and successor node respectively.
The fourth field indicates the total estimated energy for sending out the message from the
source node, via intermediate nodes. This field attempts to construct secure and reliable
routing. The fifth field records a timer to limit the validation of a route. The entry will be
removed if this timer hits 0.

Tag Ancestor Successor Energy Lifetime

Table 6.3: Format of an entry in LRT (Local Route Table)

ITSRP consists of three phases: the path discovery phase, the path reverse phase and the
data transfer phase [56]. These three phases will be principally described in following parts
to illustrate the procedures whenever a source node N0 wants to send a confidential message
M to the sink node Nn but it lacks neither an available route path nor a shared session key
with Nn. A more detailed description could be found in the original paper [56]. It is worth
mentioning that each node is initially issued a Distributed Key (DK) that is shared only
between itself and the sink node (e.g., the base station)

1. Path discovery phase
In this phase, N0 must establish a route path and a session key SK uniquely shared with
Nn through intermediate nodes. The source node N0 first generates the unique Tag for this
route and realizes these following steps:
(1) Select randomly a secret session key SK0, compute the necessary energy E0 for sending
out M.
(2) Set M0 = [Tag|N0|Nn|SK0] (“ |” depicts the concatenation) and encrypt M0 in using
the DK0: C0 = Edk(M0).
(3) Encapsulate the packet [Tag|Nn|C0|E0] and broadcast it to all nodes within its wireless
transmission range.
(4) Store the entry (Tag, 0, ?, E0, T0) to its LRT0 where T0 is the timer for the route and
starts when the entry is added, “ ?” depicts a field that will be fulfilled later
Each node close to N0 receives packet [Tag|Nn|C0|E0], it checks and drops if this packet
has been already received before. Otherwise, it broadcasts this packet within its range and
store (Tag|N0|?|E0|T0) in its LRT1

Intrusion Tolerant Routing in WSNs 84

Figure 6.2: Summary of the first two phases of ITSRP

Without loss of generality, assuming that packet passes the intermediate nodesN1, N2, ..., Nn−1

and reaches the sink Nn. Node Ni stores (Tag|Ni−1|?|E0|Ti) in its LRTi.
2. Path reverse phase

In this phase, the sink node Nn must send back to the source node N0 the reverse path. Nn

works as follows.
(1) Knowing DK0, the sink node Nn is able to decrypt C0 to get M0, and then get SK0

(2) Make Mn = [Tag|N0|Nn|SK0] and use DK0 to encrypt Mn as Cn

(3) Look up its ancestor node Nn−1 according to Tag in its LRTn, then use DKn−1 to
encrypt Tag as Cn−1 and sends [Cn|Cn−1] to Nn−1.
When the node Nn−1 receives [Cn|Cn−1] from Nn, it works as follows.
(1) Use DKn−1 to recover Tag.
(2) Look up in its LRTn−1 according this Tag and update the entry saved from the first
phase: (Tag|Nn−2|Nn|E0|Tn−1).
Similarly to the end, N0 gains the entry (Tag, 0, N1, E0, T0) in its LRT0. Not only has the
route from N0 to Nn been discovered but also a shared session key SK between of them has
been established.

3. Data transfer phase

Intrusion Tolerant Routing in WSNs 85

In this phase, the source node N0 need to confidentially send message M to the sink node Nn

after knowing the route and having successfully established the shared session key SK. The
data can be simply transferred by using the session key SK to encrypt M as C. After that,
C (and Tag) will be forwarded along the route path by looking up the LRTs of intermediate
nodes.

6.2.3 Missing issues of INSENS and ITSRP

As any other security protocol, INSENS and ITSRP have themselves missing issues that
have not been thoroughly solved yet. For INSENS, a malicious node m is still possible to
flood a modified request message in using the current OWS in a valid request message
which it has just received from the base station. Such attack is discussed as rushing attack
in [59]. However, nodes in the tree (Fig. 6.3), that are closer to the base station than
the malicious node m, will receive the valid request message first. These nodes will drop
m’s spurious request messages coming later because, as mentioned above, nodes do not
rebroadcast duplicate request messages (contain the same OWS). Even if neighboring nodes
of m accept to forward the fake request message created by m, they forward only once.
Nevertheless, the problem is that attacker could pack a fake path into its spurious request
message or drop the request message instead of forwarding it. Some nodes can be harmed
(not getting a request message or not being able to forward their feedback message to the
base station in the second round) but, as shown in Fig. 6.3, the damage is locally confined
to the nodes nearest to and downstream from the intruder. This conclusion seems to be
logical but remains intuitive and deserves further evaluation to know whether such damage
can still seriously disrupt the network.

With regard to ITSRP, in [56], the authors affirm that their proposition is immune to
Wormhole attacks but this affirmation seems not surely correct. In fact, Wormhole is a
kind of attacks in which two malicious nodes profit a secret high speed channel or tunnel
to pretend that they are very close to each other to join in the shortest paths of some
routes. After that, they can disrupt this tunnel or do whatever they want because they
have gained a very powerful role in routing activities. In our opinion, a wormhole attack
can still harm ITSRP, even though the probability of this event can be very low. Indeed, in
the path discovery phase, each node, after receiving a path discovery packet, will broadcast
it within its wireless communication range. The shortest path will be found based on the
fastest arrived-discovery packet and duplication will be ignored. If somehow two legitimate
intruders can exchange this packet faster than the normal rate of other nodes, they are still
able to set up a tunnel and thus, generate an incorrect route path. The possibility that they
can do it depends on which mean of wireless communication used in the network, e.g., Wi-Fi,
GPRS, Bluetooth, ZigBee, etc. This problematic deserves more tests and evaluations.

6.2.4 A Comparative Evaluation

To evaluate the performance of INSENS and ITSRP, we performed the simulations by
OMNeT++ with Castalia plug-in integrated. We simulated a rectangular region of 150∗150
m2 in which the wireless sensor nodes were deployed in random topology, with transmission
range of 10 meters. The number of sensor nodes is from 20 to 150 in increment of 20 nodes.
We assumed that every node was static and equally owned the initial energy of 100000
mW and one communication corresponding to the action of sending or receiving a packet

Intrusion Tolerant Routing in WSNs 86

Figure 6.3: Confined portion of the impact caused by a malicious node m [2]

consumed 100 mW. The base station was assumed to have a wired energy supplier. We
performed the simulations under two following kinds of attacks:

• Passive attack : i% of nodes misbehaved as dead nodes that refused to forward packets.

• Active attack : i% of nodes kept repeatedly sending fake feedback messages to the base
station to block the wireless medium (DOS attack).

In each simulation, we measured the throughput, the overhead, and the lifetime of the net-
work when DD (Direct Diffusion - a naive protocol without intrusion-tolerant features [60]),
INSENS and ITSRP utilized. Fig. 6.4, 6.5, 6.6 present our results with i = 25. The suffix
“p” and “a” refer to passive attack and active attack (DOS) correspondingly.

6.2.4.1 Network throughput

In these cases, the throughput of network could be understood as the packet delivery ratio,
i.e., the percentage of successfully received packets by the base station over all sent packets.
As demonstrated in Fig. 6.4, throughput regarding respectively three metrics decreased
more or less. However, the network experienced a considerable decrease in case of DD
(Directed Diffusion) protocol, but only a slight change if INSENS or ITSRP was applied.
This result proves one more time the intrusion-tolerance properties of ITSRP and INSENS.
In terms of network throughput, INSENS is better than ITSRP if the number of sensor
nodes enormously increases while ITSRP is the better choice for small-size WSNs. Another

Intrusion Tolerant Routing in WSNs 87

conclusion is that DOS attack likely affected the throughput of the network more than the
passive attack did.

Figure 6.4: Comparison of average network throughput

6.2.4.2 Network overhead

The overhead of the network in our simulations is computed as the number of packets ex-
changed for the route discovery phase, i.e., the necessary packets to collect enough topology
knowledge and then to build routing tables. This parameter corresponds to the price or the
waiting- duration that the network need to pay to get ready.

Intrusion Tolerant Routing in WSNs 88

We experienced in Fig. 6.5 that no matter what protocol were used, the overhead in case
of DOS attack was higher than the one in passive attack. In other words, DOS attack im-
pacted more severely the network. However, thanks to intrusion-tolerant properties brought
by INSENS and ITSRP, the network overhead was kept much more stable than the one in
case of DD that was extremely huge. In big size networks, INSENS is better than ITSRP
with a slightly lower overhead.

Figure 6.5: Comparison of average network overhead

6.2.4.3 Network lifetime

The network lifetime was defined as the duration since the simulation had been triggered
until the first failure of a legitimate node. This parameter depends on two factors: the
survivability of nodes (i.e., their ability to tolerate attacks) and the energy consumption
volume. In Fig. 6.6, we can easily witness that the lifetime of the network using DD was
strikingly smaller than the one when the network used INSENS or ITSRP, DOS attack
wasted more energy than passive attack (thus, more reduced the lifetime of the network)

Intrusion Tolerant Routing in WSNs 89

and INSENS presented itself as the best solution for dense WSNs with the highest lifetime
(i.e., lowest energy consumption).

Figure 6.6: Comparison of average network lifetime

Emulation-based intrusion detection and tolerance 90

6.2.5 Improvement propositions

In this section, we would like to suggest some directions to improve two aforementioned
protocols by fulfilling the missing issues as well as integrating more helpful functionality.
These suggestions will be also our future works. Our wish is to achieve in near future a
novel intrusion tolerant routing protocol that must be more efficient and stable.

Firstly, considering the results from aforementioned simulations, we found that INSENS
seemingly dominates ITSRP. However, from our point of view, ITSRP still proves itself
as a potential solution if it is invested more amelioration. INSENS is not as flexible as
ITSRP and is expensive regarding possibly consumed energy to guarantee OWS and MAC
computations. In contrast, as demonstrated, ITSRP uses LRTs for nodes where we can
add fields to support our goal, i.e., intrusion tolerance. For example, in above-mentioned
simulations, we assumed that the field Energy to send a message from Ni to Nk equals to
the number of nodes in the routing path linking them. This assumption is for facilitating
our simulations but in reality, Energy field deserves more investigations to help network
still intrusion- tolerant but at a reasonable price. Benefiting this field or adding some other
useful fields could be good ideas to upgrade ITSRP. Some good features of INSENS could
be also integrated with ITSRP to gain a wise hybrid version.

Secondly, we only performed simulations in which the proportion of intruders i equals to
25%. In fact, there is a threshold i∗ where the network will be rapidly corrupt if i exceeds i∗.
We are considering this threshold in case of INSENS and ITSRP as a function of network
size. Our goal, a better intrusion- tolerant routing protocol, should have a higher i∗.

Thirdly, other attacks like MitM (Man in the middle attack) should be also considered
to test the protocols. Kinds of attacks depend on communication environments in which
wireless sensor nodes are deployed. In fact, we are looking for a concise case study from an
industrial project to better plan our simulations as well as to modify the protocols in order
to fit practical criteria. Based on a detailed case study, we can also plan the strategies to
prevent attacks and thoroughly overcome the missing issues of INSENS and ITSRP.

6.3 Emulation-based intrusion detection and tolerance

The idea of the approach presented in this section was inspired by [61,62] in which the au-
thors studied an emulation-based network intrusion detection systems to detect the presence
of shellcode in network traffic. Their main idea is to try to execute (portions of) the network
packet payloads in an instrumented environment and then check the execution traces for
signs of shellcode activity. This inspired us thinking about an emulation-based detection
module staying in the middle of the service requester and the service provider. An emulated
infrastructure can be created to test the requests before they are sent to the real service
provider. If these requests are determined free of security concern, they can approach the
real infrastructure. Otherwise, a denial response will be returned.

Evidently, this approach will affect more or less the performance of the system (e.g.,
increase the response delay). However, looking at the bright side, the fact that the requester
(insider or outsider) is tested before having access to real platform, enables both intrusion
detection and intrusion tolerance.

Emulation-based intrusion detection and tolerance 91

6.3.1 General methodology

Fig. 6.7 illustrates the general methodology allowing simultaneously detect and tolerate
intrusions. Suppose that the main entity/service provider (e.g., a database, a server, a
gateway) receives a request from an authenticated entity (e.g., a user, a host). Instead
of immediately processing the request, it refers to an additional intrusion detection and
tolerance framework. This framework is an emulated environment which consists of a VM
(Virtual Machine) acting the role of the requester and a copied entity acting the role of the
service provider. The VM copies the initial request including original parameters and sends
to the copied entity. A detection module is installed to analyze the request and the response,
as well as detect abnormal intentions if any. Of course we can use the security monitoring
framework aforementioned in this thesis here. If any security violation is detected, the
request will be denied and a denial notification will be sent by the main entity to the
requester. Otherwise, a normal response is provided.

Figure 6.7: Emulation-based intrusion detection and tolerance methodology

In the common cases, security monitoring module is installed between the requester and
service provider to analyze the trace of communications (i.e., request and response). If
an anomaly is detected, the request will be denied. However, this approach requires the
detection module a real-time reaction. That means it has to react nearly immediately after
the incident. A late detection can lead to information leakage, network failure or data loss.
In many cases, the real-time detection cannot be always assured.

Our emulation-based approach can overcome this challenge, with the assumption that in
the additional detection and tolerance module we can reduce the analysis complexity to have
a real-time detection. This assumption is realistic if we consider the following measures:

• The copied entity is a reduced version of the main entity. For example, if the main

Emulation-based intrusion detection and tolerance 92

entity is a database, the copied entity can have the same structure but just some sample
data. Depending on the real case study, we can define the copied entity differently in
order to speed up the analysis and detection.

• A set of normal behavior can be achieved by learning the emulated system in response
to a set of normal requests. This demands a thorough learning phase in which we
have to input as many normal requests as possible. This can be done by using testing
techniques and generating a comprehensive test-suite.

• In the emulated system, in addition to the trace analysis, security monitoring can be
applied as well on the VM and the copied entity to facilitate the detection.

6.3.2 A novel approach for SQL injection detection and tolerance

SQL Injection (SQLI) is a wide spread devastating security problem holding the first place
in the list of top 10 web vulnerabilities according to OWASP (Open Web Application Se-
curity Project) Foundation [18]. The work presented in [63] revealed that approximately
63% of websites are still believed to be vulnerable to SQLI attacks. Exploitation of SQL
injection vulnerabilities in web-based application can result in serious consequences such
as authentication bypassing, leakage of sensitive personal information and data loss. It is
worth noting that people usually reuse usernames and passwords so the leakage of these data
in unsafe websites can damage also the safe websites. In this section, we provide a novel
approach for SQLI detection and tolerance, principally in the context of database-driven
Web applications.

6.3.2.1 Problem statement

Many web-based programs store and retrieve sensitive information (e.g., usernames, pass-
words, names, addresses, phone numbers, and credit card details) from databases by execut-
ing SQL queries. These queries often include user supplied inputs. If these are not sanitized
properly before being included and passed to the back-end database, the attacker can lever-
age the syntax and capabilities of SQL by adding their own evil SQL code. Consequently,
the intended structures of dynamic queries get altered and result in SQL Injection (SQLI)
attacks.

As illustrated in the Fig. 6.8 [64], a database-driven Web application commonly has
three tiers: a presentation tier (e.g., a Web browser or rendering engine such as Internet
Explorer, Safari, Firefox, etc.), a logic tier (a programming language (e.g., C#, ASP, .NET,
PHP, JSP, etc.), and a storage tier (i.e., a database such as Microsoft SQL Server, MySQL,
Oracle, etc.). The presentation tier sends requests to the logic tier, which services the
requests by making queries and updates against the storage tier. Sometimes there can be
additionally an application tier between the Web server and the database interacting with
the data store and imposing application and business logic.

SQLI can be performed if the attacker is able to insert SQL code into application/user
input parameters and this code is passed and executed in the back-end SQL database. The
simple countermeasure eliminating SQLI is to sanitize the input parameters first before
passing. However, attackers have their techniques to evade. That is the reason why we
propose a SQLI detection and tolerance framework to immunize the running system in case
there is somehow an evasion.

Emulation-based intrusion detection and tolerance 93

Figure 6.8: Simple Three-Tier Architecture of database-driven Web Applications

6.3.2.2 Methodology

The Fig. 6.9 depicts the concrete methodology for the SQL injection case study, in applying
the method presented in Section 6.3.1. The VM queries the copied database instead. A
detection module is installed to inspect the query.

Figure 6.9: SQL injection detection and tolerance methodology

In the implementation validating the approach, we used the information theoretic detec-
tion technique inspired by [65]. More specifically, we calculate the entropy of the query sent
by the VM and the query executed in the copied database. Any difference between them
signalizes an anomaly, i.e., most probably a SQL injection. Assuming that {x1, x2, ..., xN}

Emulation-based intrusion detection and tolerance 94

is the set of all tokens presented in the query q, the entropy related to q is calculated as
follows:

H(q) = H(x1, x2, ..., xN) = −
N∑
i=1

P (xi) ∗ logP (xi) (6.1)

where P (xi) is the probability of the token xi appearing in q.
For instance, let q = “select id, password from tlogin where login =’”.$sLogin. “’ and

password =’”.$sPassword. “”’. The number of tokens in total is 12 (Tab. 6.4)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
select id password from tlogin where login = sLogin and password sPassword

1/13 1/13 1/13 1/13 1/13 1/13 1/13 2/13 1/13 1/13 1/13 1/13

Table 6.4: Token probability distribution for a benign query

The corresponding entropy is measured then:

H(q) = −11/13 ∗ log(1/13)− 2/13 ∗ log(2/13) = 3.54 (6.2)

The detection approach composes two phases: training phase and detection phase
(Fig. 6.10). In the training phase, we enter a complete legitimate test-suite to the in-
put (i.e., white box, supervised learning). The server side script code is analyzed and the
entropy corresponding to each legitimate query is computed. The entropy is recorded at
the instrumented code. In the detection phase, when a query comes, the generated dynamic
query is analyzed to compute the entropy. The we compare this value with the value learned.
If a deviation is found, a malicious query is detected.

Figure 6.10: Information theory-based SQLI detection approach

Emulation-based intrusion detection and tolerance 95

Let’s go back to the aforementioned instance, suppose that we receive a malicious query
“select id, password from tlogin where login =’ ’ or 1=1 –’ and password =’ ”’. The token
distribution corresponding to the query executed in the storage tier is presented in the
Tab. 6.5.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
select id password from tlogin where login = or 1

1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/6 1/12 1/6

Table 6.5: Token probability distribution for a malicious query

The new entropy is calculated:

H(q) = −2/3 ∗ log(1/12)− 1/3 ∗ log(1/6) = 3.25 (6.3)

Figure 6.11: The response time with and without adding the detection and tolerance module:
(a), (c) - Malicious queries; (b),(d)- Benign queries

6.3.2.3 Implementation

We implemented the framework in an Apache web-server. In order to evaluate the proposed
model, we used three open-source PHP programs available from sourceforge.net including
PHP-Address 1 (address and contact information manager), Serendipity (blog management
program) 2, and PHP-fusion (content management system) 3. These three open-source

1http://sourceforge.net/projects/php- addressbook/?source=directory
2Serendipity PHP Weblog System: http://www.s9y.org/
3http://sourceforge.net/projects/php-fusion

Emulation-based intrusion detection and tolerance 96

programs are ranked among the top five most downloaded applications for the website
development.

For malicious queries entering the input, we inherited test inputs from OWASP security
testing guide [18] in taking into account tautology, union, piggyback, inference, and hex
encoded queries. We divided the queries into four sets (two sets of malicious ones and two
sets of benign ones), and passed them in the following order: malicious - benign - malicious
- benign. It is worth reminding that in each set, we sorted the queries based on their length
(in tokens).

The main concern that we would like to assess is the performance of the overall system
before and after integrating the detection and tolerance module. Obviously, additional detec-
tion and tolerance module requires additional processing time, thus, the system performance
is more or less negatively affected. The metric that we used to evaluate the performance is
the “response time”, i.e., the total amount of time the system takes to process a query and
return a response (data or denial notification). The results are displayed in the Fig. 6.11
and Fig. 6.12 in which we noticed several phenomena as follows:

Figure 6.12: The augmentation in response time caused by the additional module: (a), (c)
- Malicious queries; (b),(d)- Benign queries

• From the local point of view, the longer the query was, not necessarily the more time
the system required to process (i.e., higher response delay). That means the fact that
“the query q1 has more tokens than the query q2 does” does not result in the event “the
response time corresponding q1 is bigger than the one corresponding q2”. However,
from the global point of view, if s1 and s2 are two sets of queries and any query in
s2 is longer than every query in s1, the average response time related to queries in s2
will be likely bigger than the one in s1. We can see this trend in the Fig. 6.11.

• The system without our proposition reacted basically the same regardless the malicious
or legitimate queries. When the intrusion detection and tolerance module was added,
it took more time for the system to deal with the sets of benign queries and with those

Emulation-based intrusion detection and tolerance 97

of malicious queries. This phenomenon can be explained by the fact that in case of
SQLI queries, the systems simply returned a denial notification without querying the
database. Indeed, when a query comes in, either it is legitimate or abnormal, the same
processes are performed to inspect it. If it is determined abnormal, the system simply
returns a refusal. Otherwise, the query is executed in the data storage side and data
is returned. The benign queries take thus more time than the malicious ones.

• In terms of performance degradation represented by the augmentation in response
time (Fig. 6.12), we witnessed a pretty stable response time augmentation around 9%
regarding the malicious queries ((a) and (c)) and a higher loss up to 14% regarding
benign queries ((b) and (d)). This can be explained in the same way like the phe-
nomenon mentioned above: the system with our proposition integrated need more
time to process normal queries than abnormal queries, whilst, the raw system reacts
almost the same against those two types.

• We did not recognize any noticeable difference in response time regarding the injection
type (tautology, union, piggyback, inference, and hex encoded queries).

6.3.3 Discussion

Although in the SQLI case study, the response time increases only approximately 9% to 14%
due to the extra module, the third phenomenon presented in the Section 6.3.2.3 is really the
weakness of the approach. Indeed, the system with the intrusion detection and tolerance
module included need more time to process normal requests than abnormal requests. This
is a bad point because the normal requests are more common than the abnormal ones.

Nevertheless, the approach can be optimized thanks to the following possible improve-
ments:

• Detection technique
A quick detection surely speeds up the overall system. However, it must be efficient
enough. In our case study, the SQLI detection technique based on information theory
was chosen instead of a lot of others because it can avoid evasion tricks from attackers.
A study on the integration of other SQLI techniques to our framework is scheduled as
a future work.

• The configuration of the VM and the definition of the copied entity
Evidently, the more powerful the VM is, the faster the system reacts. Whilst, the
definition of the copied entity must be detailed enough to help the detection process,
but at the same time, it should be abstract enough to reduce the time and resource
consumption.

• Big Data
As demonstrated above, the response time augmentation is mainly caused by the
execution of queries in the storage tier. The more voluminous the database is, the
slower the system processes. Therefore, the techniques dealing with Big Data can be
considered to resolve this problem.

Chapter 7
Conclusion and Future Work

Contents
7.1 Conclusions . 98

7.2 Future Work . 100

7.1 Conclusions

In summary, this dissertation presents a security monitoring framework that takes into con-
sideration different types of audit dataset corresponding to different platforms. Its originality
includes the proposition of some novel approaches based on Supervised Machine Learning
to pre-process and analyze the data input. We took advantage of the novel detection tech-
niques to leverage the data processing speed and assure quick detection even in large scale
system with high traffic. In addition, we implemented an adaptation to 6LoWPAN traffic
of IoT devices. To the best of our knowledge, this is the first time a security monitoring
tool has been adapted to work in such resource-constraint environment.

Our framework is validated in a wide range of case studies as follows.

1. Traditional TCP/IP networks:
We started the research over common TCP/IPv4 networks which have been the most
used all over the world.

• ARP spoofing:
Although ARP spoofing is a very classic attack, we witnessed a high probability
that it is still possible to perform it in some Wired and Wireless LANs. The
problem is that attackers can realize further attacks or investigations to exploit
and receive sensitive information from the network’s members based on this ba-
sic attack. In such cases, availability, confidentiality and integrity of the data
passing throughout the network cannot be assured. We presented some sample
results that we successfully hacked including personal log-in information (e.g.,
user-name, password, hobbies), mis-configurations in some servers, etc. We pro-
posed then some countermeasures to avoid those vulnerabilities and advice for
Internet users to protect themselves against evil intentions.

98

Conclusions 99

Figure 7.1: Contribution summary in HTTP User-Agent field case study

• HTTP User-Agent field case study:
HTTP is a predominant communication protocol which is widely used in every
computer networks nowadays. User-Agent is a field in HTTP request message
which is modifiable and exploitable to perform attacks. We studied existing
works dealing with this problem, clarified some possible attack scenarios (e.g.,
SQL injection, XSS), as well as cited some actually successful attacks presented
in literature. After that, we proposed the methodology and implemented the
framework to monitor that field and detect attacks (Fig. 7.1). We affirmed that
even if User-Agent field is not intentionally abused by the attackers, identifying
suspicious or strange User-Agent strings is not trivial. In contrast, it can be good
source to detect security violations in their early steps. Our framework based on
MMT proved its good performance in comparison with Snort and Tcpdump.

The framework was also extended to HTTP traffic in general in considering
techniques aiming improve the performance (e.g., dimension reduction, machine
learning). We suggested that Smartphone-based security monitoring, Web pop-up
and Spam avoidance can be achieved by the similar approaches.

Figure 7.2: Contribution summary in 6LoWPAN-based WSNs case study

2. 6LoWPAN-based WSNs:
To our knowledge, 6LoWPAN traffic is so far not understandable to any monitoring

Future Work 100

solution, including Snort, Suricata and Bro. That is the reason why we adapted
MMT to work in 6LoWPAN-based WSNs by adding several new plug-ins ((Fig. 7.2)).
After having the ability to analyze 6LowPAN traffic, we proposed then a number of
algorithms and techniques to detect anomalies in such networks based on supervised
learning including statistical learning and information theory. We explained in which
scenarios they can be applied and what metrics can be used.

Experiments proved our proposition’s applicability and its reasonable performance.
We validated the usability of the link-weight (e.g., the travel time) and the entropy
but many other metrics can be probably exploited. The approaches are also applicable
to other case studies, namely communications in Ad-hoc environment.

3. Intrusion tolerance by design:
We emphasized that intrusion/attack tolerance is a feature that should be integrated
into modern computer systems. This goal can be achieved by design or by reactive
responses after detecting a security threat to tolerate it. We focused on the former
type of approaches.

• Intrusion tolerant routing in WSNs:
We studied two most famous intrusion tolerant routing protocols namely IN-
SENS and ITSRP. We provided a theoretical analysis demonstrating how they
can tolerate common attacks. A comparative simulation-based performance eval-
uation was presented to assess their applicability. The performance metrics used
in the simulations consists of network throughput, network overhead and net-
work lifetime. INSENS seemingly dominated ITSRP but the flexible structure in
ITSRP packets open the windows for new amelioration. For both two protocols,
we pointed out their missing issues and proposed some improvements possibly
making them practical and more efficient.

• Emulation-based intrusion detection and tolerance:
We proposed an extension of the framework to detect and tolerate attacks at the
same time. A general architecture was presented, beside a validation regarding
SQL injection case study.

Throughout the case studies, our techniques do not require any touch to the payload
of packages. The private data contained in payload is therefore not inspected, then our
approach is applicable for high privacy communications. Thanks to plug-in architecture,
the framework is extensible to analyze new type of audit data. Therefore, organizations
who want to keep their data private can perform an obfuscation phase first before passing
the data to the input gate of our framework.

7.2 Future Work

Throughout the dissertation, we have discussed the limitations of our security monitoring
framework in each case study which were unfortunately unable to be fulfilled in the context
of the thesis. This section synthesizes several ones which are, in our opinion, important
and deserve more investments. In short, there are actually a number of open problems and
future research directions, including but not limited to the following issues:

Future Work 101

• Detection and investigation in large scale systems and the Big Data issue
Computer networks are continuously more complex and compose a larger number of
entities. The network bandwidth is also higher and higher. It is thus not surprising if
the audit data under-monitored becomes Big Data. This is also the main concern in
the context of IDOLE project. The problem relies on the research on data mining as
well as powerful machine learning algorithms. Good algorithms will allow not only the
rapidity of data processing but also efficiently learning and detecting events related to
security incidents. Dimension reduction is also another direction to reduce the number
of variables (i.e., attributes) under consideration. This is surely useful when the audit
datasets are high-dimensional (e.g., more than 10). There are a number of possible
algorithms which can be taken into account, for instance K-means, PCA, LDA, RP,
etc. We initial assess some of them in this thesis but just as demonstrations in some
simple cases.

• Distributed approach and optimization problem
The more the systems become sophisticated, the harder the monitoring tool can detect
violations. Sometimes it is impossible to realize this task in listening to the traffic
passing by a single point inside the network. Distributed approaches with collaborative
works are therefore a need. This is one of our goals in designing the framework and
should be a feasible task thanks to the open architecture of MMT. But how the agents
collaborate themselves and where we should put the agents are still problematic. One
idea is to take into consideration the concept Multi-Agent processing. However, this
issue merits further thorough considerations.

Another idea coming up from 6LoWPAN-WSNs case study is to use entropy to deter-
mine the best listening points to put the probes. As concluded in the section 5.4.2.2,
the probes should be installed in points so that we can get the audit data logs owning
the smallest entropy.

• Mobility concern and the possibility for VANETS
In the work done with 6LoWPAN-based WSNs, we normally assumed that our net-
works were static rather than mobile. Nevertheless, sensor nodes in reality sometimes
moves. In these cases, the efficiency of the detection could be damaged. Mobility
models are there for a need to avoid significant false positive rate. Together with
distributed issues aforementioned, this problem refers to agent-based modeling and
geographical information data. To our knowledge, it can be resolved by using GAMA
platform 1

If the mobility concern is overcame, the framework can be extended for VANETs
because VANETs and WMNs have multiple similarities. The main difference between
them is the mobility since VANETs consider moving cars as nodes.

• Adaptive intrusion tolerance
We consider that intrusion tolerance can be the next-step after detecting an intrusion.
In the other words, the running system will react somehow to be able to continue to
function properly with minimal degradation of performance. For example, the system
was designed in different models. In case of being attacked, new variant model is

1GAMA homepage: http://gama-platform.org/

Future Work 102

Figure 7.3: An adaptive intrusion tolerance example

called then the attack is detoxified (Fig. 7.3). This topic deserves more considerations
and in fact, it is actually an active subject in research community.

Appendix A
FIT IoT-Lab Hardware Information

A.1 WSN430 Open Node

The WSN430 open node is a WSN430 node based on a low power MSP430-based platform,
with a fully functional ISM radio interface and a set of standard sensors. Concerning the
radio, two versions are developed: version 1.3b presents an open 868 MHz radio interface
while version 1.4 has an IEEE 802.15.4 radio interface at 2.4 GHz.

Figure A.1: WSN430 Open Node

In details, the main hardware components contained in the node are :

• Micro-controller MSP430 offering 48kbyte ROM, and 10kbyte RAM

• Sensors (Temperature, Sound, Ambient light)

• Radio: 868MHz radio interface for version WSN430 1.3b and 2.4GHz radio interface
for version WSN430 1.4

• Serial Number: An EEPROM serial number is available thanks to a Maxim DS2411
chip, giving each node a unique identifier, readable by the MPS430 firmware over a
1-Wire interface.

103

M3 Open Node 104

• Flash memory: 1MByte

• Battery charger is controlled by a Microchip MCP73861 chip. It allows battery charge,
and is supervised by MSP430 through 2 digital outputs

• Three LEDs (green, red, blue)

Figure A.2: WSN430 Open Node’s hardware in detail

A.2 M3 Open Node

The M3 open node is based on a STM32 (ARM Cortex M3) micro-controller. Like the WSN
node this next generation contains a set of sensors and a radio interface. Main evolutions
are a more powerfull 32-bits processing, a new ATMEL radio interface in 2.4 Hz and more
sensors.

In details, the main hardware components contained in the node are :

• ST2M32F103REY (72 MHz, 32bits, 64kB RAM)

• Radio interface 2.4 GHz AT86RF231

• Sensors

– Light sensor ISL29020

A8 Open Node 105

Figure A.3: M3 Open Node

– Pressure sensor LPS331AP

– Tri-axis accelerometer/magnetometer LSM303DLHC

– Tri-axis gyrometer L3G4200D

• External Nor flash (128 Mbits) N25Q128A13E1240F

• Three LEDs (green, red, orange)

• 3,7 V LIPO battery (650 mAh)

A.3 A8 Open Node

The A8 open node is the most powerful IoT-LAB node and allows to run high-level OS
like Linux. The main processor is a TI SITARA AM3505 (Arm Cortex A8) combined with
a STM32 micro-controller and a radio interface. It enables to run applications used in
advanced devices such as set-top box or smart-phone/tablet in order to concentrate sensors
information coming from a wireless sensor network.

Main hardware components contained in this node are :

• A Variscite VAR-SOM-AM35 CPU which a high performance System On Module. It
is a board of the shell based on a TI SITARA AM3505 (600 Mhz, 256 MB)

• A “co-microcontroller” based on ST2M32F103REY (72 MHz, 32bits, 64kB RAM)
which controls :

– Radio interface 2.4 GHz AT86RF231

– Tri-axis accelerometer/magnetometer L3G4200D

– Tri-axis gyrometer LSM303DLHC

• A USB device FTDI2232H to control UART and JTAG

A8 Open Node 106

Figure A.4: M3 Open Node’s hardware in detail

Figure A.5: A8 Open Node

• A GPS device MAXQ (optional)

• Three LEDs (green, red, orange)

• 3,7 V LIPO battery (600 mAh)

A8 Open Node 107

Figure A.6: A8 Open Node’s hardware in detail

Appendix B
A Taxonomy of Attacks in Vehicular
Ad-hoc Environment

The Tab. B.1 summaries a taxonomy of common attacks in Vehicular Ad-hoc Networks
(VANET) in which we characterize the attacks by three attributes: (1) Type of attacker,
(2) Violated Security Properties, (3) Class of attacks. A detailed description of the attacks
can be found in [66]

Attack Type of attacker Violated Security Properties Class of attacks

Sybil I.*.A.* Authentication NA

Bogus Info I.R.A.* Integrity AA
Bus telegraph Authentication

Impersonation *.*.A.L Authentication NA, MA
Masquerade

Timing I.M.A.* Integrity TA
Authentication

GPS Spoofing I.R.A.L Authentication NA, AA

Hidden vehicle I.M.A.L Authentication AA

Tunnel I.R.A.L Authentication NA, AA

Illusion I.R.A.L Authentication NA

ID Disclosure I.R.A.L Authentication NA
Privacy MA

DoS & DDoS *.M.A.L Availability NA

Black Hole I.M.A.L Availability NA

Wormhole I.M.A.E Availability NA

Malware & Spam I.M.A.* Availability NA

MiMA *.*.A.L Confidentiality NA
Authentication

Table B.1: A Taxonomy of Attacks in Vehicular Ad-hoc Environment

B.1 Type of attacker

Inspired by [67,68], we characterize an attacker by Membership. Motivation. Method.
Scope where:

108

Violated Security Properties 109

• Membership stands for Insider (I) or Outsider (O)

• Motivation for Malicious (M) or Rational (R)

• Method for Active (A) or Passive (P)

• Scope for Local (L) or Extended (E)

• A star (*) indicates that the corresponding field can take any value.

For example, an attacker I.R.A.L is an insider who behaves rationally, and performs active
attacks in restricted areas.

B.1.1 Insider vs. Outsider

If the attacker is a member node who can communicate with other members of the network,
it will be known as an Insider and able to attack in various ways. Whereas, an outsider,
who is not authenticated to directly communicate with other members of the network, have
a limited capacity to perform an attack (i.e., have less variety of attacks).

B.1.2 Malicious vs. Rational

A malicious attacker uses various methods to damage the member nodes and the network
without looking for its personal benefit. On the contrary, a rational attacker expects its
own benefit from the attacks. Thus, these attacks are more predictable and follow some
patterns.

B.1.3 Active vs. Passive

An active attacker can generate new packets to damage the network whereas a passive
attacker only eavesdrop the wireless channel but cannot generate new packets (i.e., less
harmful).

B.1.4 Local vs. Extended

An attacker is considered as local if it is limited in scope, even if it possesses several entities
(e.g., vehicles or base stations). Otherwise, an extended attacker broadens its scope by
controlling several entities that are scattered across the network.

B.2 Violated Security Properties

B.2.1 Confidentiality

In VANETs, the definition of confidentiality refers to “confidential communication” [69]. In
a group, none except group members are able to decrypt the messages that are broadcasted
to every member of group; and none (even other members) except a dedicated receiver
member is capable to decrypt the message devoted to it.

Class of attacks 110

B.2.2 Integrity

It ensures that data or messages delivered among nodes are not altered by attackers. This
concept in VANETs often combines with the concept “authentication” to guarantee that:
A node should be able to verify that a message is indeed sent and signed by another node
without being modified by anyone. In order to gain this property, Data Verification is
also required: Once the sender vehicle is authenticated, the receiving vehicle performs data
verification to check whether the message contains the correct or corrupted data.

B.2.3 Availability

The network should be available even if it is under an attack without affecting its perfor-
mance. This concept of VANETs is not different from itself in other kinds of networks but
not easy to ensure because of the mobility in high speed of vehicles.

Besides three main security requirements above, the following security aspects should
be also satisfied in VANETs:

B.2.4 Privacy

The profile or a driver’s personal information must be maintained against unauthorized
access. We consider the following two cases:

• Communications between vehicles and RoadSide Units (RSUs): Privacy means that
an eavesdropper is impossible to decide whether two different messages come from the
same vehicle.

• Communications between vehicles: Privacy means that determining whether two dif-
ferent valid messages coming from the same vehicle is intensely burdensome for every-
one except a legitimate component (e.g., tracing manager [70]).

Monitoring Attacks

Social Attacks

Timing Attacks

Application Attacks

Network Attacks

Table B.2: Attack classification

B.3 Class of attacks

Tab. B.2 depicts a classification of attacks. In first class, Network Attacks, attackers can
directly affect other vehicles and infrastructure. These attacks are on the high level of
danger because these affect the whole network.

Whilst, in Application Attacks class, the objectives of attackers are applications that
provide added service in VANETs. The attacker is mainly interested in changing contents
used in applications and abusing it for their own benefits.

The third class, Timing Attacks, is a type of attacks in which attackers’main objective
is to add some time slot in original message, for example, to create delays in order to block

Class of attacks 111

this message come to the receiver before the expiration of its lifetime. All unmoral messages,
which trigger bad emotions of other drivers, are classified into the class Social Attacks.

Finally, attacks in which monitoring and tracking activities are performed are laying in
the class Monitoring Attacks.

Publications

[1] Vinh Hoa La and Ana R. Cavalli. Security Attacks and Solutions in Vehicular Ad Hoc
Networks: A Survey. In International Journal on AdHoc Networking Systems (IJANS),
pages 1–20, 2014 (Published).

[2] Vinh Hoa La and Ana R. Cavalli. A study of Intrusion-tolerant routing in Wireless Sensor
Networks. In Proceedings of the Institute for System Programming of RAS, volume 26,
2014. Issue 6. ISSN 2220-6426 (Online), ISSN 2079-8156 (Print), pages 99–110, 2014
(Published).

[3] Vinh Hoa La and Ana R. Cavalli. A Comparative Evaluation of Two Intrusion-Tolerant
Routing Protocols for Wireless Sensor Networks. In 10th International Conference on
Broadband and Wireless Computing, Communication and Applications (BWCCA 2015),
pages 6–12, Nov 2015 (Published).

[4] Vinh Hoa La, Raul Fuentes, and Ana R. Cavalli. Network monitoring using mmt: An
application based on the user-agent field in http headers. In 2016 IEEE 30th Interna-
tional Conference on Advanced Information Networking and Applications (AINA), pages
147–154, March 2016 (Published).

[5] Vinh Hoa La and Ana R. Cavalli. A misbehavior node detection algorithm for 6LoWPAN
Wireless Sensor Networks. In Proceedings of 36th IEEE International Conference on
Distributed Computing Systems (ICDCS 2016), Second IEEE International Workshop
on Security Testing and Monitoring (STAM 2016), 2016 (Published).

[6] Vinh Hoa La, Raul Fuentes, and Ana R. Cavalli. A Novel Monitoring Solution for
6LoWPAN-based Wireless Sensor Networks. In 2016 IEEE 22nd Asia-Pacific Conference
on Communications (APCC), August 2016 (Published).

[7] Vinh Hoa La and Ana R. Cavalli. Information-Theoretic Approach for Anomaly Detec-
tion: A Case Study in RPL-based Internet of Things. In EAI Endorsed Transactions on
Security and Safety, 2016 (Under review).

[8] Vinh Hoa La and Ana R. Cavalli. Novel Learning Techniques for Anomaly Investigation
and Detection in Large Scale. In Journal of Computers, 2016 (Under review).

[9] Raul Fuentes, Vinh Hoa La, and Ana R. Cavalli. Secure M2M Communication Monitor-
ing in 6LoWPAN-based Wireless Sensor Networks. In Wireless Networks: the journal
of mobile communication, computation and information, 2016 (Work in process).

112

Book Chapter

[1] Vinh Hoa La and Ana R. Cavalli. Intrusion detection and intrusion tolerance for
6LoWPAN-based Wireless Sensor Networks. In Georgios Kambourakis, Asaf Shabtai,
Constantinos Kolias, and Dimitrios Damopoulos, editors, Intrusion Detection and Pre-
vention for Mobile Ecosystems. CRC Series in Security, Privacy and Trust - Taylor &
Francis, 2016 (Accepted).

113

Presentations

[1] Vinh Hoa La and Ana R. Cavalli. Intrusion-tolerant Routing in Wireless Sensor Net-
works. In Journée sur la sécurité des SCADA et des infrastructures critiques, Paris,
France, October 2014.

[2] Vinh Hoa La and Ana R. Cavalli. Intrusion-tolerant Routing in Wireless Sensor Net-
works. In French- Russian seminar on Software Verification, Testing and Quality Esti-
mation, Paris, France, November 2014.

[3] Vinh Hoa La and Ana R. Cavalli. Network Security Testing using MMT: A case study
in IDOLE project. In TAROT Summer School 2015, Cadiz, Spain, July 2015.

[4] Vinh Hoa La, Raul Fuentes, and Ana R. Cavalli. Network Monitoring using MMT: An
application based on the User-Agent field in HTTP headers. In Journées non thématiques
RESCOM, Lille, France, January 2016.

[5] Vinh Hoa La and Ana R. Cavalli. Security Monitoring for Network Protocols and
Applications. In TAROT Summer School 2016, Paris, France, July 2016.

114

Bibliography

[1] B. Wehbi, E. Montes de Oca, and M. Bourdelles, “Events-Based Security Monitor-
ing Using MMT Tool,” in IEEE Fifth International Conference on Software Testing,
Verification and Validation (ICST), 2012, April 2012, pp. 860–863.

[2] J. Deng, R. Han, and S. Mishra, “INSENS: Intrusion-tolerant Routing for Wireless
Sensor Networks,” Computer Communications, vol. 29, no. 2, pp. 216–230, 2006.

[3] S. Vladimir and S. Lorenzo, “A survey on online monitoring approaches of computer-
based systems,” in Centre for Software Reliability, City University London, 2009.

[4] Cisco and its affiliates, “SNORT official homepage,” https://www.snort.org/, last
checked: 15.07.2016.

[5] V. Paxson, “Bro: A system for detecting network intruders in real-time,” in
Proceedings of the 7th Conference on USENIX Security Symposium - Volume 7,
ser. SSYM’98. Berkeley, CA, USA: USENIX Association, 1998, pp. 3–3. [Online].
Available: http://dl.acm.org/citation.cfm?id=1267549.1267552

[6] T. B. Project, “Bro official homepage,” https://www.bro.org/, last checked: 15.07.2016.

[7] S. homepage, “Open Source Network-based Intrusion Detection System,” http://www.
openinfosecfoundation.org, last checked: 15.07.2016.

[8] E. Albin and N. C. Rowe, “A realistic experimental comparison of the Suricata and
Snort intrusion-detection systems,” Proceedings of 26th IEEE International Conference
on Advanced Information Networking and Applications Workshops, WAINA 2012, pp.
122–127, 2012.

[9] P. homepage, “Open Source Network-based Intrusion Detection System,” http://
pytbull.sourceforge.net/, last checked: 15.07.2016.

[10] K. Thongkanchorn, S. Ngamsuriyaroj, and V. Visoottiviseth, “Evaluation studies of
three intrusion detection systems under various attacks and rule sets,” Proceedings of
10th IEEE Region Annual International Conference TENCON, vol. 6, pp. 6–9, 2013.

[11] F. Wang, R. Uppalli, and C. Killian, “Analysis of techniques for building intrusion
tolerant server systems,” in Military Communications Conference, 2003. MILCOM
’03. 2003 IEEE, vol. 2, Oct 2003, pp. 729–734 Vol.2.

115

https://www.snort.org/
http://dl.acm.org/citation.cfm?id=1267549.1267552
https://www.bro.org/
http://www.openinfosecfoundation.org
http://www.openinfosecfoundation.org
http://pytbull.sourceforge.net/
http://pytbull.sourceforge.net/

Bibliography 116

[12] Q. Nguyen and A. Sood, “A Comparison of Intrusion-Tolerant System Architectures,”
IEEE Security Privacy, vol. 9, no. 4, pp. 24–31, July 2011.

[13] Montimage, “MMT-Security: User Guide. https://github.com/Montimage/MMT
Security/blob/master/MMT Security User Guide.pdf. 2013,” https://github.com/
Montimage/MMT Security/blob/master/MMT Security User Guide.pdf, 2013, last
checked: 05.09.2015.

[14] J. Pokhrel, B. Wehbi, A. Morais, A. Cavalli, and E. Allilaire, “Estimation of QoE of
video traffic using a fuzzy expert system,” in Consumer Communications and Network-
ing Conference (CCNC), 2013 IEEE, Jan 2013, pp. 224–229.

[15] Bricks, “Advanced SQL Injection on user agent,” http://sechow.com/bricks/docs/
content-page-4.html, 2013, last checked: 05.09.2015.

[16] D. Manners, The User Agent Field: Analyzing and Detecting the Abnormal or Malicious
in your Organization. 2012, SANS Institute, 2012.

[17] MustLive, “XSS attacks via user-agent header,” http://websecurity.com.ua/5195/,
2011, last checked: 05.09.2015.

[18] O. Foundation, “Top 10 web vulnerabilities in 2013,” https://www.owasp.org/index.
php/Top 10 2013-Top 10, 2013, last checked: 05.09.2015.

[19] Craig, “Reverse Engineering a D-Link Backdoor,” http://www.devttys0.com/2013/10/
reverse-engineering-a-d-link-backdoor/, 2013, last checked: 05.09.2015.

[20] J. Nieto, “Pytbull-IDS/IPS Testing Framework,” http://www.behindthefirewalls.com/
2013/11/the-importance-of-user-agent-in-botnets.html, last checked: 15.07.2016.

[21] Y. Aboukir, “SQL Injection through HTTP Headers,” Application Security, 2012, last
checked: 05.09.2015.

[22] C. Sanders, “Using application layer metadata for net-
work security monitoring,” http://chrissanders.org/2011/09/
using-application-layer-metadata-for-network-security-monitoring/, 2011, last
checked: 05.09.2015.

[23] V. Labs, “Analyzing User-Agent Strings For Use In Real-World Detection Scenarios,”
https://labs.snort.org/papers/ua-analysis.html, 2013, last checked: 05.09.2015.

[24] Psychedelix, “List of User-Agents (Spiders, Robots, Crawler, Browser),” http://www.
user-agents.org/, last checked: 05.09.2015.

[25] E. Albin and N. Rowe, “A Realistic Experimental Comparison of the Suricata and
Snort Intrusion-Detection Systems,” in 26th International Conference on Advanced
Information Networking and Applications Workshops, 2012, 2012, pp. 122–127.

[26] K. Thongkanchorn, S. Ngamsuriyaroj, and V. Visoottiviseth, “Evaluation studies of
three intrusion detection systems under various attacks and rule sets,” in TENCON
2013 - 2013 IEEE Region 10 Conference (31194), Oct 2013, pp. 1–4.

https://github.com/Montimage/MMT_Security/blob/master/MMT_Security_User_Guide.pdf
https://github.com/Montimage/MMT_Security/blob/master/MMT_Security_User_Guide.pdf
https://github.com/Montimage/MMT_Security/blob/master/MMT_Security_User_Guide.pdf
https://github.com/Montimage/MMT_Security/blob/master/MMT_Security_User_Guide.pdf
http://sechow.com/bricks/docs/content-page-4.html
http://sechow.com/bricks/docs/content-page-4.html
http://websecurity.com.ua/5195/
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.devttys0.com/2013/10/reverse-engineering-a-d-link-backdoor/
http://www.devttys0.com/2013/10/reverse-engineering-a-d-link-backdoor/
http://www.behindthefirewalls.com/2013/11/the-importance-of-user-agent-in-botnets.html
http://www.behindthefirewalls.com/2013/11/the-importance-of-user-agent-in-botnets.html
http://chrissanders.org/2011/09/using-application-layer-metadata-for-network-security-monitoring/
http://chrissanders.org/2011/09/using-application-layer-metadata-for-network-security-monitoring/
https://labs.snort.org/papers/ua-analysis.html
http://www.user-agents.org/
http://www.user-agents.org/

Bibliography 117

[27] T. F. J. L. Jeanna Matthews, Joshua White, “Quantitative Analysis of Intrusion De-
tection Systems: Snort and SuricataClarkson University. 2011,” http://web2.clarkson.
edu/class/cs644/ids/#content, last checked: 05.09.2015.

[28] J. Macaulay, L. Buckalew, and G. Chung, “Internet of Things in Logistics,” DHL Trend
Research, vol. 1, no. 1, pp. 1–27, 2015.

[29] L. C. D. S.L., “Waspmote Datasheet,” Product description, 2014.

[30] O. Hersent, D. Boswarthick, and O. Elloumi, The internet of things : key
applications and protocols. Chichester, West Sussex: Wiley, 2012. [Online]. Available:
http://opac.inria.fr/record=b1133974

[31] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco, G. Boggia,
and M. Dohler, “Standardized protocol stack for the internet of (important) things,”
IEEE Communications Surveys and Tutorials, vol. 15, no. 3, pp. 1389–1406, 2013.

[32] X. Ma and W. Luo, “The analysis of 6lowpan technology,” in Computational Intelli-
gence and Industrial Application, 2008. PACIIA ’08. Pacific-Asia Workshop on, vol. 1,
Dec 2008, pp. 963–966.

[33] J. P. Vasseur, N. Agarwal, J. Hui, Z. Shelby, P. Bertrand, and C. Chauvenet, “RPL: The
IP routing protocol designed for low power and lossy networks,” In Internet Protocol
for Smart Objects (IPSO) Alliance, no. April, p. 20, 2011.

[34] D. Karaman, N. Gozuacik, M. O. Alagoz, H. Ilhan, U. Cagal, and O. Yavuz, “Managing
6lowpan sensors with coap on internet,” in Signal Processing and Communications
Applications Conference (SIU), 2015 23th, May 2015, pp. 1389–1392.

[35] S. Raza, D. Trabalza, and T. Voigt, “6lowpan compressed dtls for coap,” in Distributed
Computing in Sensor Systems (DCOSS), 2012 IEEE 8th International Conference on,
May 2012, pp. 287–289.

[36] V. H. La, R. Fuentes, and A. R. Cavalli, “Network Monitoring Using MMT: An Ap-
plication Based on the User-Agent Field in HTTP Headers,” in 2016 IEEE 30th Inter-
national Conference on Advanced Information Networking and Applications (AINA),
March 2016, pp. 147–154.

[37] S. Raza, L. Wallgren, and T. Voigt, “SVELTE: Real-time intrusion detection in the
Internet of Things,” Ad Hoc Networks, vol. 11, no. 8, pp. 2661–2674, 2013. [Online].
Available: http://dx.doi.org/10.1016/j.adhoc.2013.04.014

[38] A. H. Farooqi and F. A. Khan, “Intrusion Detection Systems for Wireless Sensor Net-
works: A Survey,” Communications in Computer and Information Science, no. 56, pp.
234–241, 2009.

[39] P. Kasinathan, C. Pastrone, M. a. Spirito, and M. Vinkovits, “Denial-of-Service de-
tection in 6LoWPAN based Internet of Things,” International Conference on Wireless
and Mobile Computing, Networking and Communications, pp. 600–607, 2013.

http://web2.clarkson.edu/class/cs644/ids/#content
http://web2.clarkson.edu/class/cs644/ids/#content
http://opac.inria.fr/record=b1133974
http://dx.doi.org/10.1016/j.adhoc.2013.04.014

Bibliography 118

[40] P. Kasinathan, G. Costamagna, H. Khaleel, C. Pastrone, and M. a. Spirito,
“DEMO: An IDS framework for internet of things empowered by 6LoWPAN,”
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security - CCS ’13, no. October 2015, pp. 1337–1340, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2508859.2512494

[41] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[42] C. E. Shannon, “A mathematical theory of communication,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 5, no. 1, pp. 3–55, Jan. 2001. [Online]. Available:
http://doi.acm.org/10.1145/584091.584093

[43] F. I. Lab, “IoT experimentation at a large scale,” https://www.iot-lab.info/, 2015, last
checked: 28.01.2016.

[44] V. H. La and A. R. Cavalli, “A misbehavior node detection algorithm for 6LoWPAN
Wireless Sensor Networks,” in Proceedings of 36th IEEE International Conference on
Distributed Computing Systems (ICDCS 2016), Second IEEE International Workshop
on Security Testing and Monitoring (STAM 2016), 2016.

[45] D.-I. Curiac, O. Banias, F. Dragan, C. Volosencu, and O. Dranga, “Malicious
Node Detection in Wireless Sensor Networks Using an Autoregression Technique,”
International Conference on Networking and Services (ICNS ’07), pp. 83–83,
2007. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4438332

[46] I. M. Atakli, H. Hu, Y. Chen, W.-S. Ku, and Z. Su, “Malicious Node Detection in
Wireless Sensor Networks using Weighted Trust Evaluation,” Proceedings of the 2008
Spring simulation multiconference, pp. 836–843, 2008.

[47] S. H. Oh, C. O. Hong, and Y.-h. Choi, “A Malicious and Malfunctioning Node Detection
Scheme for Wireless Sensor Networks,” vol. 2012, no. March, pp. 84–90, 2012.

[48] I. Grand, E. Nancy, and T. Nancy, “A Taxonomy of Attacks in RPL-based Internet of
Things,” vol. 18, no. 3, pp. 459–473, 2016.

[49] Raytheon, “Intrusion-Tolerant Systems,” Technology Today Journal, 2007.

[50] D. P. Yves Deswarte, “Intrusion-tolerance on the Internet (tolerance aux intrusions sur
internet),” Presentation at LAAS-CNRS, Toulouse, France, 2005.

[51] B. B. Madan and K. S. Trivedi, “Security Modeling and Quantification
of Intrusion Tolerant Systems Using Attack-response Graph,” High Speed
Networks, vol. 13, no. 4, pp. 297–308, Oct. 2004. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1085412.1085416

[52] F. Wang, R. Uppalli, and C. Killian, “Analysis of techniques for building intrusion
tolerant server systems,” in Military Communications Conference, 2003. MILCOM
’03. 2003 IEEE, vol. 2, Oct 2003, pp. 729–734 Vol.2.

http://dl.acm.org/citation.cfm?doid=2508859.2512494
http://doi.acm.org/10.1145/584091.584093
https://www.iot-lab.info/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4438332
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4438332
http://dl.acm.org/citation.cfm?id=1085412.1085416
http://dl.acm.org/citation.cfm?id=1085412.1085416

Bibliography 119

[53] W. Liang-Min, J. feng Ma, C. Wang, and A. Kot, “Fault and intrusion tolerance of
wireless sensor networks,” in Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International, April 2006, pp. 7 pp.–.

[54] R. Ma, L. Xing, and H. E. Michel, “Fault- Intrusion Tolerant Techniques
in Wireless Sensor Networks,” in Proceedings of the 2nd IEEE International
Symposium on Dependable, Autonomic and Secure Computing, ser. DASC ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 85–94. [Online]. Available:
http://dx.doi.org/10.1109/DASC.2006.30

[55] R. H. J. Deng and S. Mishra, “INSENS: Secure and Intrusion Tolerant Routing for
Wireless Sensor Networks,” Department of Computer Science. University of Colorado,
Boulder, CO, 2004, Tech. Rep., 2004.

[56] J. Zhou, C. Li, Q. Cao, and Y. Shen, “An intrusion-tolerant secure routing protocol
with key exchange for wireless sensor network,” in Information and Automation, 2008.
ICIA 2008. International Conference on, June 2008, pp. 1547–1552.

[57] J. Deng, R. Han, and S. Mishra, “A performance evaluation of intrusion-tolerant routing
in wireless sensor networks,” in Technical report, University of Colorado, 2003, pp. 349–
364.

[58] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “SPINS: Security
Protocols for Sensor Networks,” Wireless Networks, vol. 8, no. 5, pp. 521–534, Sep.
2002. [Online]. Available: http://dx.doi.org/10.1023/A:1016598314198

[59] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor net-
works: a survey,” Computer Networks, vol. 38, pp. 393–422, 2002.

[60] C. Intanagonwiwat, R. Govindan, D. Estfin, J. Heidemann, and F. Silva, “Directed
diffusion for wireless sensor networking,” IEEE/ACM Transactions on Networking,
vol. 11, pp. 2–16, 2003.

[61] A. Abbasi, J. Wetzels, W. Bokslag, E. Zambon, and S. Etalle, On Emulation-Based
Network Intrusion Detection Systems. Cham: Springer International Publishing, 2014,
pp. 384–404. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-11379-1 19

[62] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos, Network–Level Polymorphic
Shellcode Detection Using Emulation. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 54–73. [Online]. Available: http://dx.doi.org/10.1007/11790754 4

[63] N. Antunes and M. Vieira, “Defending against web application vulnerabilities,” Com-
puter, vol. 45, no. 2, pp. 66–72, Feb 2012.

[64] J. Clarke and R. M. Alvarez, SQL Injection Attacks and Defense, 2009. [On-
line]. Available: http://www.amazon.com/Injection-Attacks-Defense-Justin-Clarke/
dp/1597494240/ref=sr{ }1{ }1?s=books{&}ie=UTF8{&}qid=1309070123{&}sr=1-1

[65] H. Shahriar and M. Zulkernine, “Information-Theoretic Detection of SQL Injection
Attacks,” 2012 IEEE 14th International Symposium on High-Assurance Systems
Engineering, pp. 40–47, 2012. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6375635

http://dx.doi.org/10.1109/DASC.2006.30
http://dx.doi.org/10.1023/A:1016598314198
http://dx.doi.org/10.1007/978-3-319-11379-1_19
http://dx.doi.org/10.1007/11790754_4
http://www.amazon.com/Injection-Attacks-Defense-Justin-Clarke/dp/1597494240/ref=sr{_}1{_}1?s=books{&}ie=UTF8{&}qid=1309070123{&}sr=1-1
http://www.amazon.com/Injection-Attacks-Defense-Justin-Clarke/dp/1597494240/ref=sr{_}1{_}1?s=books{&}ie=UTF8{&}qid=1309070123{&}sr=1-1
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6375635
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6375635

Bibliography 120

[66] V. H. La and A. R. Cavalli, “Security Attacks and Solutions in Vehicular Ad Hoc Net-
works: A Survey,” in International Journal on AdHoc Networking Systems (IJANS),
2014, pp. 1–20.

[67] A. K. Al-kahtani, Salman bin Abdulaziz, “Survey on security attacks in Vehicular Ad
hoc Networks (VANETs),” in 6th International Conference on Signal Processing and
Communication Systems (ICSPCS), 2012, pp. 1–9.

[68] J. P. H. M. Raya, “Securing vehicular ad hoc Networks,” in Journal of Computer
Security, vol.15, January 2007, 2007, pp. 39–68.

[69] C. T. Wing, “Secure and Privacy-preserving Protocols for VANETs,” in PhD thesis at
The University of Hong Kong, August 2011.

[70] L. Zhang, “Research on Security and Privacy in Vehicular Ad Hoc Networks,” in PhD
thesis at Universitat Rovira i Virgili, June 2010.

	Introduction
	Motivation
	Contributions
	Dissertation Outline

	Background
	Security Monitoring
	The range of Network Monitoring
	Monitoring requirements

	Intrusion Detection
	Host-based and Network-based Intrusion Detection
	Signature-based and Anomaly-based approaches
	Limitations of classical approaches

	Novel Advanced Detection Techniques based on Machine Learning
	Supervised learning
	Unsupervised learning

	Classic Intrusion Detection Systems
	Snort
	Bro
	Suricata
	Evaluation studies of classic IDSs

	Intrusion tolerance

	Proposed Security Monitoring Framework
	Framework Overview
	Montimage Monitoring Tool
	Data capture
	Input pre-processing
	Attribute extraction
	Dimension reduction

	Training/learning phase
	Detection/Monitoring phase

	TCP/IP Network Security Monitoring
	Introduction
	LAN monitoring
	ARP spoofing: An attack still alive
	Countermeasures

	WAN/Internet monitoring
	HTTP User-Agent field case study
	Methodology and implementation
	Experimental results

	Framework extension
	An extension from HTTP User-Agent field case study
	QoE-based web pop-up and spam avoidance
	Smartphone-based security monitoring

	6LoWPAN-based IoT Security Monitoring
	Introduction
	6LoWPAN overview
	IoT/WSNs Security requirements

	MMT Adaptation for 6LoWPAN-based WSNs
	MMT plugin for 6LoWPAN
	Related Work on 6LoWPAN monitoring/intrusion detection

	Detection methodology and algorithm
	Misbehaving node detection algorithm based on statistical learning
	Anomalies detection based on Information Theory

	Experimental results
	Proof-of-concept architecture
	Experimental results

	Enabling Intrusion Tolerance by Design
	Introduction
	Intrusion Tolerant Routing in WSNs
	INSENS - Intrusion-tolerant routing protocol for wireless SEnsor NetworkS
	ITSRP - Intrusion Tolerant Secure Routing Protocol
	Missing issues of INSENS and ITSRP
	A Comparative Evaluation
	Improvement propositions

	Emulation-based intrusion detection and tolerance
	General methodology
	A novel approach for SQL injection detection and tolerance
	Discussion

	Conclusion and Future Work
	Conclusions
	Future Work

	FIT IoT-Lab Hardware Information
	WSN430 Open Node
	M3 Open Node
	A8 Open Node

	A Taxonomy of Attacks in Vehicular Ad-hoc Environment
	Type of attacker
	Insider vs. Outsider
	Malicious vs. Rational
	Active vs. Passive
	Local vs. Extended

	Violated Security Properties
	Confidentiality
	Integrity
	Availability
	Privacy

	Class of attacks

	Bibliography

