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connaissance du cancer et un pas plus proche vers le traitement de la maladie.  
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Resumé 
 

Mots clés : Carcinome hépatocellulaire, cellules souches cancéreuses, modèles 
innovants de maladie, PDX, développement des lignées cellulaires cancéreuses, 
humanisation des foies de souris, protéines de la famille p53, p73, nouvelles molécules 
contre le CHC, autophagie. 

 

Le carcinome hépatocellulaire est un problème majeur de santé publique, étant le 
deuxième cancer le plus mortel au monde, avec une incidence globale croissante. Le 
seul traitement systémique approuvé est l'inhibiteur des multikinases Sorafenib, qui 
prolonge la survie globale des patients avec une durée moyenne d’uniquement trois 
mois. Le CHC est réfractaire aux médicaments chimio-thérapeutiques connus, et après 
ablation de la tumeur par voie chirurgicale, plus de 50% des patients rechutent. Il a été 
suggeré que ces phénomènes sont dus à l'existence d'une sous-population de cellules 
cancéreuses peu différenciées, largement connues sous le nom de cellules souches 
cancéreuses (CSCs) hépatiques. La compréhension des mécanismes propres aux CSC 
hépatiques pourrait permettre le développement de médicaments innovants, dotés 
d'un mécanisme d'action original. Cependant, le développement des nouvelles 
thérapies contre le CHC est pénalisé par le nombre limité de modèles expérimentaux. 
Compte tenu de ses défis actuels dans le domaine de la recherche sur le CHC, mon 
projet de thèse couvre trois axes principaux : 
 
Role of p73 isoforms in the maintenance of liver CSC 

Les membres de la famille p53 (TP53, TP63 et TP73) codent pour des isoformes 
longues (TA) agissant comme suppresseurs de tumeurs et des isoformes tronqués 
( TA) agissant comme des dominants négatifs de formes TA. Les isoformes TA sont 
obtenus par l’activation d'un promoteur interne ou par un épissage alternatif, et des 
études antérieures ont démontré leur implication dans le maintien du pool de cellules 
souches dans les tissus normaux et tumoraux. Dans une cohorte de 180 échantillons 
de CHC (tumeur et non-tumeur), nous avons analysé l'expression de TP73, en 
particulier l'isoforme longue TAp73, l'isoforme issu du promoteur interne Np73 et les 
isoformes issus de l'épissage alternatif Ex2p73 et Ex2/3p73. Nous avons constaté 
que ces isoformes sont surexprimés dans les tumeurs par rapport au tissu non tumoral 
apparié. De plus, la surexpression de l'isoforme Np73 est fortement corrélée avec les 
facteurs de dédifférenciation Oct4, Nanog et Sox2. Les expériences in vitro suggèrent 
que l'expression de Np73 est plus élevée dans les cellules progénitrices du foie par 
rapport aux cellules différenciées et que son expression dans les lignées cellulaires HCC 
conduit à une dédifférenciation de la population cellulaire totale. 
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Development of novel models of disease. 

Le consortium IMODI (Innovative Models of Disease) est principalement dédié au 
développement de modèles expérimentaux innovants pour 8 types de cancer 
différents. Notre participation au projet concerne 3 objectifs principaux : i) le 
développement de xénogreffes dérivées des tumeurs de CHC humaines (PDX en 
anglais pour Patient Derived Xenograft) ; ii) le développement de nouvelles lignées 
cellulaires de CHC ; et iii) la mise au point d'une méthode de cryoconservation des 
hépatocytes humains primaires (PHH en anglais pour Primary Human Hepatocytes) 
dans le but de les utiliser pour l’humanisation des foies de souris. Trente patients 
prévus pour une résection de CHC ont été recrutés et des fragments de tumeur fraîche 
ont été prélevés. Les échantillons tumoraux ont été xénogreffés par voie sous-cutanée 
chez des souris immunodéficientes ou dissociés pour la mise en culture in vitro dans le 
but de développer des nouvelles lignées cellulaires. Dans un des cas, cela a conduit au 
développement d'un modèle PDX de CHC moyennement différencié et avec des 
caractéristiques histologiques similaires à la tumeur humaine initiale. Plusieurs études 
ont montré l'importance des modèles PDX dans le domaine bio-médical car ils 
récapitulent les profils de sensibilité aux médicaments observés chez les patients dont 
ils dérivent. Néanmoins, très peu de modèles ont été décrits dans la littérature pour le 
CHC. In vitro, les cellules primaires de CHC ont pu être maintenues en culture pendant 
une période de temps limitée, en moyenne 30 jours. Plusieurs lots de PHHs 
cryoconservés provenant de différents donneurs ont été obtenus. La fonctionnalité des 
hépatocytes cryoconservés a été évaluée in vitro et in vivo.  

Le premier modèle de transformation in vitro d'hépatocytes humains a été 
précédemment établi au laboratoire. Les hépatocytes ont été d'abord immortalisés 
avec les onco-protéines de SV40 et ensuite transformés par la forme mutée H-RasG12V. 
J'ai pu démontrer que les CSCs CD90+ apparaissent au cours des étapes précoces du 
processus d'immortalisation alors que la transformation par SV40 et H-RasG12V conduit 
à l'apparition de CSC formant des hépatosphères. 
 
New anticancerous drugs targeting liver cancer progenitor cells 
GNS561 est un nouvel inhibiteur des transporteurs SLC (pour Solute Carier en anglais), 
capable d'induire la mort cellulaire par apoptose et d’induire la perméabilisation du la 
membrane lysosomale. Des travaux antérieurs ont montré que le GNS561 possède un 
fort hépatotropisme, ce qui justifie sa potentielle utilisation dans le traitement des 
tumeurs hépatiques. Nous avons montré que le composé GNS561 a une activité 
antitumorale in vitro puissante contre des lignées cellulaires de CHC, et il est 
également efficace contre la sous- population des CSCs. Nos données suggèrent que le 
GNS561 induit la baisse de l’ARNm codant pour un transporteur SLC spécifique, 
précédemment identifié comme étant une de ses potentielles cibles cellulaires. Le 
soluté transporté par ce transporteur a été montré agir comme un facteur 
indispensable pour les facteurs de transcription impliqués dans le caractère souche des 
cellules. Nous avons analysé l'expression de ce transporteur dans une cohorte de 180 
échantillons de CHC (tumeur et non-tumeur) et des tissus hépatiques sains. Nous 
avons constaté qu'il est surexprimé dans les tumeurs et les tissus adjacents non 
tumoraux par rapport aux tissus sains. Sa surexpression dans les tumeurs de carcinome 
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hépatocellulaire est corrélée à celles des facteurs de dédifférenciation Oct4 et Sox2, 
ainsi que du marqueur CD133 des CSC. Comme le montre l'analyse univariée de la 
survie, la surexpression du transporteur dans les tumeurs des patients est un facteur 
de mauvais pronostic concernant la survie globale et la survie sans récurrence. 
 
En conclusion, mon projet de thèse a conduit au développement d'un modèle PDX de 
HCC viro-induit, a partiellement permis d’éclaircir l'implication des isoformes tronqués 
de p73 dans les caractéristiques de dédifférenciation des tumeurs de CHC et décrit 
également le développement préclinique d'un nouveau médicament contre le HCC 
efficace contre les CSCs hépatiques. 
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Abstract 

 

Keywords : Hepatocellular carcinoma, cancer stem cells, innovative models of disease, 

PDX, cancer cell lines developement, mouse liver humanization, p53 family, p73, novel 

molecules against HCC, autophagy. 

 

Hepatocellular carcinoma (HCC) is a major public health problem, being the second 
most lethal cancer with an increasing incidence around the world. The only approved 
systemic drug is the multikinase inhibitor Sorafenib, which prolongs patients overall 
survival with a median time of three months only. HCC is refractory to known 
chemotherapeutic drugs and more than 50% of patients relapse after surgical tumour 
removal. These phenomena are thought to be due to the existence of a population of 
poorly differentiated cancer cells, widely known as liver cancer stem cells (CSCs). The 
understanding of mechanisms proper to liver CSCs should allow the development of 
innovative drugs with original mechanism of action against liver CSC, likely to improve 
patients’ outcome. However, the development of new therapies against HCC is 
penalized by the limited number of experimental models. According to these current 
challenges in the field of HCC research, my PhD thesis project covers three main axes:  
 
Role of p73 isoforms in the maintenance of liver CSC 
The p53 family members (TP53, TP63 and TP73) encode full-length isoforms (TA) acting 
as tumour suppressors and truncated isoforms ( TA) which are dominant negative of 
TAs and promote cell stemness. TA isoforms are obtained by activation of an internal 
promoter or by alternative splicing and previous studies demonstrated their 
implication in the maintenance of the stem cells pool in normal tissues and tumours. In 
a cohort of 180 HCC patients we analyzed the expression of TP73, especially the full 
length isoform (TAp73), the isoform from the internal promoter ( Np73) and the 
alternative splicing isoforms ( Ex2p73 and Ex2/3p73). We found that these isoforms 
are overexpressed in tumours compared to the matching non-tumoural tissue. 
Moreover, the overexpression of the Np73 isoform is strongly correlated with the 
stemness factors Oct4, Nanog and Sox2. In vitro data suggested that Np73 expression 
is higher in liver progenitor cells compared to differentiated cells and that its 
expression in HCC cell lines leads to dedifferentiation of the entire population. 
Development of novel models of disease. 
The Innovative Models of Disease (IMODI) consortium is mainly dedicated to the 
development of innovative experimental models for 8 different types of cancer. Our 
participation to the project concerned 3 main objectives i) development of HCC 
patient-derived xenografts (PDX) ii) development of new HCC cell lines and iii) set up a 
cryoconservation method of primary human hepatocytes (PHHs) in the aim to employ 
them in humanizing murine livers. 30 patients planned for HCC resection were 
recruited and fresh tumour specimens were subcutaneously xenografted in immune-
deficient mice or dissociated for in-vitro tumour cell culture. One tumour led to the 
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development of a moderately differentiated HCC PDX model, as confirmed by 
histological characterization. Several studies showed the importance of PDX models in 
the drug discovery field as they recapitulate the drug-sensitivity patterns seen in 
patients from which they were derived but very few models have been described in 
the literature for HCC. In vitro, primary HCC cells could be maintained in culture for a 
limited period of time, in average 30 days. Several batches of cryopreserved PHHs 
were obtained, originating from different donors. The functionality of cryopreserved 
hepatocytes was assessed in vitro and in vivo.The first model of in vitro transformation 
of human hepatocyte has been previously established in the lab. Hepatocytes are first 
immortalized with SV40 and further transformed by mutant H-RasG12V. I showed that 
CD90 positive CSCs appear during the early stages of the immortalization process 
whereas fully transformation by SV40 and H-RasG12V leads to the appearance of 
hepatospheres-forming CSCs. 
 
New anticancerous drugs targeting liver cancer progenitor cells 
GNS561 is a new small molecule first-in-class SLC (solute carrier) Transporter Inhibitor 
able to induce apoptotic cell death through inhibition of autophagy. Previous work 
showed that GNS561 has high hepatotropism, justifying its potential use against HCC. 
We showed that GNS561 has potent in vitro anti-tumour activity against both the 
tumour bulk and the CSCs population. Our data suggest that the anti-tumoural activity 
of GNS561 is mediated by down-regulation of a specific SLC transporter expression, 
previously identified as a potential cellular target of GNS561. The substrate 
transported by the SLC transporter has been shown to act as a cofactor for 
transcription factors involved in cell stemness. We analyzed the expression of this 
transporter in a cohort of 180 HCC patients and found that it is overexpressed in 
tumours and adjacent non-tumour tissues compared to healthy tissues. Its 
overexpression in HCC samples is correlated to that of the stemness factors Oct4 and 
Sox2, as well as the CSCs marker CD133. As shown by univariate survival analysis, the 
transporter’s overexpression in patients’ tumour is a factor of poor prognosis 
regarding the overall survival and the recurrence free survival. 
 
In conclusion, my PhD thesis project led to the development of a PDX model of viral-
induced HCC, shed light on the involvement of p73 isoforms in HCC with stem features 
and describes the pre-clinical development of a new drug against HCC targeting liver 
CSCs. 
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Figures 

Figure 1. Estimated age-standardised incidence rates and mortality across the world (both 

sexes). Population weighted average of the area-specific rates applied to the 2012 area population. 

(Globocan 2012) 

Figure 2. Liver architecture. A. Lobule substructure with the relative position of the portal triad 

directing the blood flow towards the central vein (red arrows). B. Schematic representation of the lobule 

tri-dimensional structure. Bile canaliculi networks (yellow-green) run parallel to the blood flow through 

the sinusoids. 

Figure 3. Mechanisms of hepatocarcinogenesis. Common mechanisms between several risk factors 

are indicated using the same colour. In addition HBV can integrate the host genome. NASH, not 

represented here, is another HCC risk factor whose contribution to HCC is increasing worldwide (Farazi 

and DePinho, 2006). 

Figure 4. Hepatitis B virus A. The infectious virion (called the Dane particle) is a 42 nm spherical 

particle containing an envelope and a nucleocapsid. The genome of HBV is a circular partially double-

stranded DNA molecule and has four overlapping ORFs encoding for surface (S), core (C), polymerase (P) 

and X proteins (HBx). (Yokosuka and Arai, 2006) B. HBV cell cycle. After entry into the cell, HBV genomic 

DNA is transported to the nucleus, where the relaxed circular DNA is converted into covalently closed 

circular (ccc) DNA. The cccDNA functions as the template for the transcription of four viral RNAs, 

corresponding to the HBV proteins. The longest (pre-genomic) RNA also functions as the template for 

replication, which occurs within nucleocapsids in the cytoplasm. Nucleocapsids are enveloped during 

their passage through the endoplasmic reticulum (ER) and/or Golgi complex and are then secreted out 

from the cell. (Rehermann and Nascimbeni, 2005) 

Figure 5. Hepatitis C virus. A. HCV viral particle is an enveloped, positive stranded RNA virus. B. HCV 

life cycle. After entry into the cell, hepatitis C virus (HCV) nucleocapsids are delivered to the cytoplasm, 

where the viral RNA functions directly as an mRNA for translation of a long polyprotein precursor of 

approximately 3000 amino acids. Cleavage of the polyprotein by viral and host-cell proteases yields 

structural viral proteins (core protein and envelope proteins E1 and E2) and non-structural viral proteins 

(NS2 through NS5B), with a number of putative activities and functions. Replication occurs within 

cytoplasm membrane-associated replication complexes in a perinuclear membrane. Genomic RNA is 

encapsulated into cytoplasmic vesicles, which fuse with the plasma membrane. (Rehermann and 

Nascimbeni, 2005) 

Figure 6. HCC epidemiology. Estimated age-standardized rates (World) of incidence cases, males, 

liver cancer, worldwide in 2012. (Globocan 2012) 
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Figure 7. Growth patterns of progressed hepatocellular carcinoma. A. Trabecular [hematoxylin 

and eosin (HE), × 300]; B. pseudoglandular (HE, × 100); C. solid/compact (HE, × 200); D. giant cells 

formation (HE, × 200). (Schlageter et al., 2014) 

Figure 8. Histopathological progression and molecular features of HCC. After hepatic injury, 

necrosis followed by hepatocyte proliferation fosters a chronic liver disease condition that culminates in 

liver cirrhosis. Cirrhosis is characterized by abnormal liver nodule formation surrounded by collagen 

deposition and scarring of the liver. Subsequently, hyperplastic nodules are observed, followed by 

dysplastic nodules and ultimately hepatocellular carcinoma (HCC), which can be further classified into 

well differentiated, moderately differentiated and poorly differentiated tumours — the last of which 

represents the most malignant form of primary HCC. Telomere shortening is a feature of chronic liver 

disease and cirrhosis. Telomerase reactivation has been associated with hepatocarcinogenesis. (Farazi 

and DePinho, 2006) 

Figure 9. The prevalence of somatic mutations across human cancer types. Every dot 

represents a sample whereas the red horizontal lines are the median numbers of mutations in the 

respective cancer types. The vertical axis (log scaled) shows the number of mutations per megabase 

whereas the different cancer types are ordered on the horizontal axis based on their median numbers of 

somatic mutations. The red rectangle highlights the frequency of mutations affecting liver tumours. 

(Alexandrov et al., 2013) 

Figure 10. Major pathways altered in hepatocellular carcinoma. Signalling pathways frequently 

mutated in HCC are shown in the left panel, oncogenes are indicated in red and tumour-suppressor 

genes in blue. The percentage of alterations found in HCC is noted in brakets. (Nault and Zucman-Rossi, 

2014) 

Figure 11. Classification of HCC as proposed by Laurent-Puig and collaborators. Two classes are 

clearly distinct: Those characterised by chromosome instability with TP53 mutations (I) and those 

characterised by chromosome stability and CTNNB1 mutations (II). (Laurent-Puig et al., 2001) 

Figure 12. Schematic display of HCC subtyping according to Breuhahn et al, 2004. 

Figure 13. HCC subgroups defined by transcriptome analysis with their related clinical and 

genetic characteristics. Vertical lines indicate significantly associated features. Red and green 

primarily indicate over- and underexpressed genes, respectively, in that particular functional category. 

(Boyault et al, 2007) 

Figure 14. Integration of clinical, pathological and molecular features into HCC 6-group 

molecular classification. (Calderaro et al., 2017) 

Figure 15. Schematic classification of HCC in 3 groups as proposed by Hoshida et al, 2010. 
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Figure 16. Tumour microenvironment is a dynamic physical topography providing structural 

support, access to growth factors, vascular supply and immune cell interactions. (Junttila and de 

Sauvage, 2013). 

Figure 17 Overview of the methodology to establish PDX models and their uses in cancer 

research. Tumours from cancer patients (P0) are transplanted into immunodeficient mice (P1) for 

engraftment. Once grown, tumours are transplanted into secondary recipients (P2) for tumour 

expansion. The expanded tumours can then be cryopreserved or transplanted into P3 mice for 

experiments and model characterisation. Tumours can be transplanted in sites other than that the 

tumours are derived, called heterotopic transplantation or in the corresponding sites of the tumours 

which is called orthotopic transplantation. The successfully established PDX models are used both in 

basic and preclinical cancer research. (Lai et al., 2017) 

Figure 18. Stochastic and hierarchical theories in cancer. A. All cancer cells have the capacity to 

proliferate extensively and form new tumours. B. Only the cancer stem cell subset (CSC; yellow) has the 

ability to proliferate extensively and form new tumours. (Reya et al., 2001) 

Figure 19. Cancer stem cells (in red) are resistant to conventional therapies and can 

regenerate the primary tumour. Only the use of drugs targeting CSCs (in orange) could result in the 

complete eradication of the tumour (Reya et al., 2001) 

Figure 20. Liver CSC surface markers identified to date. (Cheng et al., 2016) 

Figure 21. Liver CSCs origin. Oncogenic events in different hepatic cells can induce cancer stem cell 

phenotype and initiation of liver cancer.  

Figure 22. Barcelona-Clinic Liver Cancer (BCLC) staging classification and treatment schedule. 

(European Association for the Study of the Liver, 2012) 

Figure 23. Targeted therapies in HCC treatment. Survival curves of patients enrolled in the SHARP 

trial for Sorafenib evaluation as a first line treatment (A) and in the RESORCE trial for Regorafenib 

evaluation a second line treatment (B). (Llovet et al., 2008, Bruix et al., 2017) 

Figure 24. The p53 family. The overall domain structure is conserved between p53, p63 and 

p73. (Melino et al., 2002) 

Figure 25. TP73 gene. The different N-terminal spliced isoforms and protein domains positions are 

shown in A. The structure of the TP73 gene and transcripts is depicted in B. The TP73 gene is composed 

of 14 exons plus a 15th one, called exon 3’, inside the intron 3. Sites of alternative splicing are shown 

below the concerned exons. Note the binding of E2F on P1 promoter upstream exon 1 and the 

activation of ΔNp73 expression by binding of p53 or TAp73 on P2 promoter upstream exon3’. (Rufini et 

al., 2011) 

Figure 26. Post translational modifications of p73. (Conforti et al., 2012) 
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Figure 27. Cellular processes regulated by TA and Np73 isoforms determining cancer 

outcome. A. Upon cellular stress, TAp73 expression and activity increases to regulate biological 

processes suppressing tumour growth and development. B. Amino-terminal truncated TAp73 variants 

drive tumour progression and confer chemoresistance, stemness and invasiveness through inhibition, 

de-repression or activation of target genes and EMT activation. (Engelmann et al., 2015) 

Figure 28. p73 mouse models. The tp73 knockout mouse shows severe developmental defects. 

TAp73 and ΔNp73 knockout mice show less severe developmental phenotype, but, importantly, 

depletion of TAp73 predisposes the animal to spontaneous tumourigenesis. (Rufini et al., 2011) 

Figure 29. TAp73 isoforms act as dominant negatives due to the sequestration of TAp73 (top), 

the formation of non-functional TAp73– TAp73 heterotetramers (middle) or the competition with 

TAp73 homotetramers or p53 for binding of the same p53 DNA responsive elements (middle and 

bottom). (Melino et al., 2002). 

Figure 30 Combined mechanism(s) whereby the Np73 variant increases cancer stem cell 

function. The dashed line connecting c-jun to inhibition of Np73 reflects the speculative nature of this 

particular regulation. (Basu and Murphy, 2016) 

Figure 31. Role of p73 in neurogenesis. Functional neurons are generated from neural stem cells 

and then after maturation, are integrated in neuronal circuits. TAp73 is essential for neuronal 

differentiation and maintenance of neural stem cells. ΔNp73 plays a major role as a survival factor. 

Question marks indicate that molecular mechanisms have not been fully investigated yet. (Killick et al., 

2011) 

Figure 32. Regulatome balancing TA/ TAp73 activity. Coordination of TAp73 and TAp73 activity 

underlies a complex network of regulatory proteins. In this regard, pharmacological treatment of cancer 

should consider both TAp73 and TAp73 activities. (Engelmann et al., 2015) 

Figure 33. TP73 expression changes during the course of in vitro experimental 

transformation. 

Figure 34. Survival curves results for patients with acute promyelocytic leukemia (APL  

according to the Np73/TAp73 ratio. Probability of A. Overall survival and B. Disease Free 

Survival. (Lucena-Araujo et al., 2015) 

Figure 35. p73 expression in HCC. A. p73 mRNA transcripts (brown reaction product) within a 

hepatocellular carcinoma (HCC) nodule (right) and non-neoplastic surrounding hepatocytes and fibrous 

tissue without transcripts (original magnification×10). B. Overall survival in patients with p73-positive 

and p73-negative tumours (immunohistochemistry detection. (Tannapfel et al., 1999) 
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Figure 36. Model of TAp73/ Np73-regulated apoptosis. Upon DNA damage, TAp73 activates both, 

the death receptor- (pathway 1) and the mitochondrial-(pathway 2) apoptosis pathway. Np73 is a 

strong inhibitor of both pathways. (Müller et al., 2005) 

Figure 37. Model for cell context-dependent regulation of apoptosis by HBx. A. In normal HBV-

infected hepatocytes, HBx is anti-apoptotic, raising the level of N-terminally truncated p73 isoforms that 

act as transdominant inhibitors of wild-type p53/ p73. (B) The apoptotic function of HBx in cancer cells is 

due to enforced p53/p73 nuclear translocation and upregulation of p53-dependent target genes. (Knoll 

et al., 2011) 

Figure 38. The macroautophagic process. (Galluzzi et al., 2015) 

Figure 39. Autophagy in malignant transformation and tumour progression. Proficient 

autophagic response appears to protect healthy cells from malignant transformation. 

Conversely, autophagy promotes tumour progression and therapy resistance in a variety of 

models. Thus, the transition of a healthy cell toward a metastatic and therapy-insensitive 

neoplasm may involve a temporary (but not a stable) loss in autophagy competence. (Galluzzi 

et al., 2015) 

Figure 41. Tumour-supporting functions of autophagy. (Galluzzi et al., 2015) 

Figure 42. Signalling cascades of autophagy in HCC.  
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I. Cancer 
 

Cancer is the second cause of death in the world, after cardiovascular diseases. Globally, nearly 

1 in 6 deaths are due to cancer. First observations depicted cancer as an abnormal 

proliferation of cells, without knowing what the causes were. In the 20th century, scientific 

studies deepened our knowledge about the biology of this disease and identified several 

aetiological factors leading to its development. However, cancer development was revealed to 

be a very complex process, sometimes lasting over several years, with patients’ outcome and 

responses to treatment varying greatly. To better treat the disease, we have to know more 

about its characteristics and what makes a normal tissue become a cancerous tissue. All the 

observations cumulated until the 21 century, were synthesised in a ground breaking review 

called “Hallmarks of cancer”, (Hanahan and Weinberg, 2000)published in 2000 by D. Hanahan 

and R. Weinberg and updated in 2011 (Hanahan and Weinberg, 2011). According to this 

second publication, cancer is characterised by 8 hallmarks and 2 emerging characteristics that 

characterise this disease (Figure 1).  

However, depending on the organ of origin, tumours develop differently and do not respond in 

the same manner when the same cancer hallmark is inhibited. Therefore, a better 

understanding the biology of each type of cancer could lead to the development of more 

efficient therapies. 

 

Figure 1. Therapeutic targeting of the hallmarks of cancer. (Hanahan and Weinberg, 2011) 
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II. Hepatocellular carcinoma 
 

Liver cancer is the sixth most common type of cancer worldwide and second most common 

cause of cancer death (Ferlay et al., 2010) (Figure 1). 

Hepatocellular carcinoma (HCC) is the main type of primary liver cancer (85-90% of cases) and 

its incidence is constantly increasing. Its pathology is associated with the abnormal 

proliferation of hepatocytes. The disease has a poor prognosis as in most cases it is diagnosed 

at an advanced stage and no curative treatments are available as HCC is refractory to most 

conventional chemotherapeutic drugs. Hepatocellular carcinoma represents therefore a major 

public health problem. 

 

 

Figure 1. Estimated age-standardised incidence rates and mortality across the world (both sexes). 
Population weighted average of the area-specific rates applied to the 2012 area population. (Globocan 
2012) 
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In most cases (80%-85%), HCC develops on a cirrhotic liver in which there is a continuous 

proliferation of hepatic cells. Cirrhosis can be caused by chronic infection with hepatitis B virus 

(HBV) and hepatitis C virus (HCV), abusive alcohol consumption, aflatoxin intoxication as well 

as metabolic diseases. 

The remaining cases of primary liver cancer mainly consist of cholangiocarcinomas, the second 

most common sub-class, as well as combined hepatocholangiocarcinomas. 

 

2.1. Liver architecture 

 

The liver is an essential organ located in the right side of the abdominal cavity. It participates in 

glucose control, lipid and protein metabolism, elimination of xenobiotics, storage of vitamins 

and iron as well as bile production. 

In humans, the liver is structurally divided into 8 segments organised in microscopic units, 

lobules, which arethe functional unit of the liver (Figure 2). Hepatic lobules have hexagonal 

shapes and a portal triad is located at each edge, formed by a hepatic artery, a portal vein and 

a bile duct. At the centre of each lobule, the central vein collects the blood that has swept the 

lobule. Lobules are constituted of hepatic cords (sinusoids) arranged radially in a circle. The 

arterial blood, charged with oxygen, and the venous blood, bringing the nutriments from the 

intestine, mix inside the sinusoids. The blood flow is directed towards the centre of lobules and 

collected by the hepatic vein. 
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Figure 2. Liver architecture. A. Lobule substructure with the relative position of the portal triad directing 
the blood flow towards the central vein (red arrows). B. Schematic representation of the lobule tri-
dimensional structure. Bile canaliculi networks (yellow-green) run parallel to the blood flow through the 
sinusoids. 

 

Hepatocytes are the main type of hepatic cells, representing 80 to 90% of the total cell 

population. Under physiological conditions, they are quiescent (non-dividing) and have a very 

long life span compared to other types of epithelial cells. Hepatocytes are polarised cells, with 

the apical ciliated pole towards the sinusoid space, where the bile is produced, and the basal 

pole towards the blood flow. Hepatic sinusoids are coated with endothelial cells. Between the 

endothelial cells and the hepatocyte layer, a small space, called the Disse space, shelters the 

immune cells and nonparenchymal liver cells that include the Kupffer cells (hepatic 

macrophages), neutrophils, stellate cells etc. 
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Towards the outer extremity of the lobules, cholangiocytes (the second most abundant type of 

epithelial hepatic cells) are arranged in a monolayer forming the bile ducts that collect the bile. 

Between the cholangiocytes and hepatocytes cords, a small population of liver progenitor cells 

form the Hering canal. By lineage specific differentiation, hepatic progenitor cells can 

regenerate both the cholangiocyte and the hepatocyte cell pool. 

Indeed the liver has an excellent capacity of regeneration, superior to other organs. In the case 

of a partial hepatectomy, the lost liver mass will be restored in less than 3 weeks. Hepatocytes 

as well as liver progenitor cells will become active and start to proliferate. Experimental 

manipulations by serial transplantation have shown that hepatocytes can undergo as many as 

69 proliferation cycles before arriving to complete replicative senescence. 

The liver is the site of numerous diseases, called hepatopathies, among which are non-

alcoholic fatty liver disease (NAFLD) evolving into non-alcoholic steatohepatitis (NASH), 

hepatitis (viral or autoimmune associated), cirrhosis and finally liver cancer. 

 

2.2. HCC aetiological factors 

 

The major etiological factors associated with HCC are liver cirrhosis, chronic HBV and HCV 

infections, alcohol or aflatoxin B1 intoxication. These risk factors induce HCC by direct and 

indirect mechanisms (Figure 3). 

 

Figure 3. Mechanisms of hepatocarcinogenesis. Common mechanisms between several risk factors are 
indicated using the same colour. In addition HBV can integrate the host genome. NASH, not represented 
here, is another HCC risk factor whose contribution to HCC is increasing worldwide (Farazi and DePinho, 
2006).  
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2.2.1 Hepatitis B virus (HBV) 

 

HBV is an enveloped hepatotropic DNA virus belonging to the hepadnaviridae class with a 

3.2kb genome size (Figure 4). More than 2 billion people are infected by HBV while 240 million 

are chronic carriers. Globally, HBV chronic infection represents the main risk factor of HCC. 

 

 

Figure 4. Hepatitis B virus A. The infectious virion (called the Dane particle) is a 42 nm spherical particle 
containing an envelope and a nucleocapsid. The genome of HBV is a circular partially double-stranded 
DNA molecule and has four overlapping ORFs encoding for surface (S), core (C), polymerase (P) and X 
proteins (HBx). (Yokosuka and Arai, 2006) B. HBV cell cycle. After entry into the cell, HBV genomic DNA 
is transported to the nucleus, where the relaxed circular DNA is converted into covalently closed circular 
(ccc) DNA. The cccDNA functions as the template for the transcription of four viral RNAs, corresponding 
to the HBV proteins. The longest (pre-genomic) RNA also functions as the template for replication, 
which occurs within nucleocapsids in the cytoplasm. Nucleocapsids are enveloped during their passage 
through the endoplasmic reticulum (ER) and/or Golgi complex and are then secreted out from the cell. 
(Rehermann and Nascimbeni, 2005).  
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Chronic infection by HBV participates in hepatocellular carcinoma development. In Southeast 

Asia and sub-Saharan Africa, this pathology is responsible for 70% of HCC cases (Bosetti et al., 

2008; El-Serag, 2011; Forner et al., 2012). HBV is classified into 9 genotypes (A to I). In regions 

where HBV is endemic, genotypes B,C and E are the most commonly encountered and thought 

to present the greatest risk of HCC development (Chan et al., 2003; Orito and Mizokami, 2003). 

HBV carriers are 100-fold more likely to develop HCC. In general, the HBV viral load in the 

blood of chronic carriers is associated with higher incidence of HCC (Chen et al., 2006). 

The development of the HBV vaccine in the 1980s participated to the reduction of the 

prevalence of HBV thanks to governmental HBV immunisation programs. However, the disease 

remains a major public health problem, especially in low income countries. 

Cirrhosis is the main consequence of HBV infection. It has been proposed that HBV induces 

HCC by direct and indirect functions. Two mechanisms have been proposed for HBV direct-

associated hepatocarcinogenesis. First, HBV can directly induce HCC because of the capacity 

of the viral genome to integrate into the host genome, also named the ‘cis effect’. Even though 

no consistent integration sites have been found, whole genome sequencing studies identified 

several “hot site” breakpoints as the predilection integration regions such as within or 

upstream the sequence of telomerase reverse transcriptase (TERT), the epigenetic regulator 

MLL4 or the cell cycle gene CCNE1 (Fujimoto et al., 2012; Jiang et al., 2012; Sung et al., 2012). 

The number of integration sites varies from 1 to 12 and the HBV integration sequences can be 

either complete genome or rearranged sub-genomic fragments. However, it has been reported 

that HBV integration is mostly partial and it mainly concerns the S and the X genes. Viral 

integration interrupts one or more viral genes and as a result, not all viral genes are expressed 

in HCC. Viral genome insertion leads to HCC development probably due to the cis/trans-

activation of oncogenes, deletions and inactivation of tumour suppressors, translocations, 

production of fusion transcriptions and disruption of chromosome stability. This direct 

oncogenic effect of HBV could explain the cases of non-cirrhotic HCC when patients are HBV 

carriers. HBV integration has been reported to occur in the majority of HBV-related HCC, in the 

tumour and the surrounding non-tumour cells (Bréchot et al., 2000; Tsai and Chung, 2010). 

A second mechanism of HBV directly-induced HCC is associated with the viral proteins that can 

act as putative onco-proteins, which is called the ‘trans’ effect. The development of powerful 

in vitro techniques and transgenic animals expressing the viral transgenes have allowed 

researchers to gain a little more insight into the oncogenic potential of viral proteins and their 

involvement in cellular damage. Several sets of data suggest that mainly two viral proteins, 

HBx and HBs have the potential to transform hepatic cells. HBx plays an important role in the 
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regulation of the viral cell cycle, acting as a transcriptional activator and also directly 

interacting with host proteins (Bouchard and Schneider, 2004). Transgenic mice expressing the 

entire coding sequence of HBx with its own regulatory elements develop HCC. The 

transcriptional activity of HBx in human hepatocytes alters the expression of oncogenic genes 

c-myc and c-myb, as well as the tumour suppressors APC, TP53, p21waf/cip and WT1 (2001). 

Furthermore, HBx is capable of directly interacting and sequestering p53, leading to the 

inhibition of p53-mediated apoptosis. This is thought to be one of the main mechanisms 

responsible for HBX-induced hepatocarcinogenesis. During the hepatocarcinogenesis process, 

HBx induces epigenetic modifications by interacting with histone deacetylase 1 and DNA 

methyltransferase (Park et al., 2007). The HBV S gene has three translation starting sites 

leading to the synthesis of three surface proteins (HBs): large (L) obtained from the PreS1 

region, middle (M) obtained from the PreS2 region and small (S) encoded by the PreS region. 

Transgenic mice obtained by the insertion of the PreS/S region develop HCC, indicating a direct 

oncogenic potential of the S viral proteins. 

The indirect oncogenic activity of HBV is thought to be due to the stimulation of the host 

immunity and interaction with host proteins. Host immunological responses may lead to HCC 

development by inducing oxidative stress and DNA damage in the hepatic cells. 

Furthermore, several recent studies have reported that the presence of HBV in liver cells is 

tightly linked to the emergence of cancer stem cells (CSCs) but little is known about the effect 

that the virus has on the biology of liver CSCs. When the HBV viral protein HBx is over-

expressed in hepatic cells, an EpCAM+ cell population emerges and these cells express the 

pluripotent stem cell transcription factors Oct4, Nanog and Klf4 (Arzumanyan et al., 2011). 

Furthermore, HBX-expressing cells have a higher migration potential, cell growth in soft agar 

and spheroid formation capacities. Clinical data suggested that in HBV positive HCC, high 

expression of HBx is correlated with the expansion of EpCAM+ cells, aggressive 

clinicopathological features and the activation of the Wnt/ -catenin pathway. Recently 

published data suggests that HBX induces the expression of EpCAM through DNA 

demethylation in hepatocytes, increasing the transcription rate of the encoding gene (Fan et 

al., 2016). 
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2.2.2 Hepatitis C virus (HCV) 

 

HCV is a RNA virus belonging to the flaviviridae family, deficient in the reverse transcriptase 

polymerase and has no integration capacity into the host genome. The viral genome is 9.6kb 

and encodes for the structural proteins core, E1 and E2 and non-structural proteins p7, NS2, 

NS3, NS4A, NS4B, NS5A and NS5B (Figure 5) (Shlomai et al., 2014). 170 million people are 

chronic HCV carriers worldwide. 

 

Figure 5. Hepatitis C virus. A. HCV viral particle is an enveloped, positive stranded RNA virus. B. HCV life 
cycle. After entry into the cell, hepatitis C virus (HCV) nucleocapsids are delivered to the cytoplasm, 
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where the viral RNA functions directly as an mRNA for translation of a long polyprotein precursor of 
approximately 3000 amino acids. Cleavage of the polyprotein by viral and host-cell proteases yields 
structural viral proteins (core protein and envelope proteins E1 and E2) and non-structural viral proteins 
(NS2 through NS5B), with a number of putative activities and functions. Replication occurs within 
cytoplasm membrane-associated replication complexes in a perinuclear membrane. Genomic RNA is 
encapsulated into cytoplasmic vesicles, which fuse with the plasma membrane. (Rehermann and 
Nascimbeni, 2005). 

 

In Europe and North America countries, HCV infection is responsible for about 50-70% of HCC 

cases (Bosetti et al., 2008), generally presenting with underlying liver fibrosis and/or cirrhosis. 

No vaccine has been developed yet against HCV but new generation direct-acting anti-viral 

molecules are associated with a radical decline in the number of HCV infected persons. HCV 

carriers are thought to be 17-fold more prone to develop HCC, HCV cirrhotic patients having a 

risk of about 1-4% each year (Degos et al., 2000; Gordon et al., 1998). 

HCV has been classified into seven genotypes (1 to 7). HCV genotypes have been associated to 

different therapy responses (mainly in the case of interferon-based therapies) as well as 

different capacities to provoke HCC. Studies reported that genotypes 1b and 3 present the 

highest risks. However, until now, no consensus has been found concerning which genotype 

has the highest oncogenic potential (Bruno et al., 2007; Raimondi et al., 2009). 

Since the HCV viral genome does not integrate into the host genome, it has been suggested 

that i) several HCV proteins could have transformation potential and/or ii) the virus could 

indirectly provoke liver cancer via chronic inflammation and oxidative stress. Oxidative stress is 

the consequence of the imbalance between the production and the clearance of reactive 

oxygen species (ROS) and has two major consequences. First, by directly reacting with the DNA 

and forming DNA adducts, ROS produce DNA damage. On the other hand, ROS molecules can 

act as second messengers in cellular signalling and trigger the activation of oncogenic signalling 

pathways (Arzumanyan et al., 2013; Higgs et al., 2014). HCV carriers express aberrantly high 

levels of oxidative stress markers such as 8-hydroxydeoxyguanosine (8-OHdG), 

malondialdehyde, and thioredoxin in both sera and liver biopsy samples (Farinati et al., 1999; 

Sumida et al., 2000). The HCV oxidative stress has mainly been attributed to the viral core 

protein which has been shown in vitro and in vivo to induce alteration of mitochondrial 

function and increased intrahepatic lipid peroxidation (Korenaga et al., 2005; Moriya et al., 

2001; Okuda et al., 2002). Concerning the ROS activity as a second messenger, it has been 

reported that increased ROS activate p38, MAPK, JNK, NF-kB and STAT3 pathways, which 

promote cell survival (Gong et al., 2001; Qadri et al., 2004; Waris et al., 2005). The activation of 

these pathways further activates TGF- 1. TGF- 1 is an activating factor of hepatic stellate cells 
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and therefore a profibrogenic factor (Friedman, 2008; Lin et al., 2010). Activated stellate cells 

further produce TGF- 1 and pro-inflammatory cytokines, the latter inducing cell death and 

further contributing to oxidative stress (Kang et al., 2009; Kisseleva and Brenner, 2008; 

Nomura-Takigawa et al., 2006). HCV-induced ROS molecules generate genomic DNA damage, 

including highly toxic double strand DNA (dsDNA) breaks (Higgs et al., 2014; Machida et al., 

2004) and mitochondrial DNA (mtDNA) damage, mitochondria DNA being particularly 

susceptible since it is not associated with histone proteins (Koike and Miyoshi, 2006). 

The HCV viral replication cycle involves the endoplasmic reticulum (ER) and interferes with ER 

functions involved in protein synthesis and post-translational modifications. Consequently, it 

leads to ER stress and triggers the activation of the unfolded protein response (UPR) pathway. 

The expression of HCV proteins has been described to activate the UPR pathway and affect the 

ER calcium pool. Decrease of the calcium levels, a second messenger transducer, results in 

mitochondrial membrane depolarization and triggers cell apoptosis. 

The direct transforming potential of HCV viral proteins has been described both in vitro and in 

vivo in transgenic mice (Lemon and McGivern, 2012). Core proteins have been reported to 

deregulate the tumour suppressor p53 pathway, but multiple studies have shown 

contradictory effects regarding the effect of the viral protein on the expression level of p53 

target genes (McGivern and Lemon, 2011). The core protein has also been reported to activate 

the Wnt/ -catenin pathway, by regulating several important actors upstream of -catenin and 

probably promoting cell proliferation (Liu et al., 2011b). The NS5A protein phosphorylates and 

inactivates GSK3 , leading to the stabilisation and accumulation of -catenin. Both HCV NS5B 

and core proteins inhibit the tumour suppressor RB function and the DNA damage response 

(Hassan et al., 2004; Hernando et al., 2004; Munakata et al., 2005). NS3/4A and core interfere 

with the DNA damage response by impairing the function of the ataxia telangiectasia mutated 

kinase (ATM), a tumour suppressor that detects dsDNA breaks. This favours the accumulation 

of DNA damage and promotes chromosome instability and subsequent malignant 

transformation. Furthermore, it has been described that the presence of HCV virus increases 

the expression of the proto-oncogene c-Myc in vivo and in infected human livers probably due 

to the activation of the Wnt/ -catenin pathway via the Akt pathway (Higgs et al., 2013). 

Similar to HBV, HCV has also been described to favour the emergence of CSCs populations. The 

expression of part of the HCV genome in cultured cells increased the expression of progenitor 

markers such as Lgr5, CD133, AFP or CK19. The same observations have been made in liver 

tissues from HCV-carriers (Ali et al., 2011). 
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2.2.3 Aflatoxin B1 

 

Aflatoxins are mycotoxins produced by two species of molds, Aspergillus flavus and Aspergillus 

parasiticus. In Southeast Asia and sub-Saharan Africa, they contaminate nuts and grains that 

are stored in hot and humid atmospheres. Aflatoxin B1 induces HCC by a mechanism involving 

its interaction with DNA after its conversion into the AFB1-8,9-epoxide within the human 

hepatocytes and this leads to DNA mutations. This carcinogenic compound targets the tumour 

suppressor gene TP53, and induces mutations, in particular on its 249 codon. This hotspot 

mutation leads to the conversion of Arginine into Serine (Hsu et al., 1991; Puisieux et al., 1991; 

Smela et al., 2001). Aflatoxin B1 synergises with HBV and increases the risk of HCC by 6-fold 

(73% both agents present vs 11.3% HBV only or 6.4% AFB1 only (Liu et al., 2012b). 

 

2.2.4 Alcohol abuse 

 

Alcoholism is an important risk factor for HCC because it causes fatty liver, necro-

inflammation, fibrosis and liver cirrhosis. The association between alcohol abuse and HCV or 

HBV infection enhances patients’ predisposition to develop HCC (McKillop and Schrum, 2005; 

Stickel et al., 2002; Voigt, 2005). Alcohol abuse is the most important risk factor for HCC in 

North America and Northern Europe. In Europe and North America, it is responsible for about 

20% of HCC cases and most of these patients present with underlying alcohol steatohepatitis 

(ASH) (Bosetti et al., 2008; Forner et al., 2012). Despite the knowledge that pathologists have 

on the consequences of ethanol induced liver injury, the exact mechanism of alcohol-induced 

HCC is still not clear. Several lines of evidence suggest that it is the metabolism of ethanol 

rather than the ethanol per se that is an oncogenic event. Ethanol metabolites produced by 

hepatocytes generate ROS molecules and thus an oxidative stress. These metabolites are able 

to form DNA adducts and induce mutations. When high levels of ethanol are present in the 

liver, the expression of CYP2E1 is induced in order to increase the levels of ethanol that can be 

metabolised. However, it has been suggested that CYP2E1 can have detrimental effects on 

cells that are associated with cellular transformation due to activation of protooncogenes and 

changes in the cell cycle duration (Albano et al., 1999; McKillop and Schrum, 2005). 

Independently of the effects of ethanol metabolism, alcohol abuse depletes the stock of the 

antioxidant glutathione and leaves cells unprotected against the deleterious effects of ROS 

(Fernández-Checa et al., 1998; Lu, 2000). 
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2.2.5 Non-alcoholic steatohepatitis and other risk factors 

 

Non-alcoholic steatohepatitis (NASH) is an advanced stage of non-alcoholic fatty liver disease 

(NAFLD) and has been recognised as being an increasing risk factor for HCC across the world. 

NAFLD affects 1.0 billion individuals worldwide, representing more than 10% in developed 

countries (Noureddin et al., 2015; Rozman, 2014). It is characterised by chronic changes in 

fatty acid metabolism and hepatic inflammation. The main causes leading to the development 

of this pathology are high fat and glucides content in the diet. Until now, the exact 

mechanisms contributing to hepatocarcinogenesis are not known. NAFLD patients are prone to 

fibrosis or cytogenic cirrhosis development. Once cirrhosis is installed, the rate of HCC 

development has been shown to be over 10% (Oda et al., 2015; White et al., 2012). Genetical 

predispositions have been described in NASH-related HCC patients, such as the PNPLA3 

rs738409 C > G polymorphism, but this result has not been fully confirmed (Liu et al., 2014). 

Another possible link has been described between NASH development and the gut microbiota. 

This last factor has been described to impact on the level and quality of bile acid metabolites, 

for example increasing the levels of deoxycholic acid, which is toxic for hepatocytes and which 

provokes the senescence of hepatic stellate cells. In vivo, in mice, murine senescent hepatic 

stellate cells release tumourigenic factors, such as platelet derived growth factor (PDGF) and 

vascular endothelial growth factor (VEGF) contributing to hepatocellular transformation (Hara, 

2015; Lade et al., 2014; Yoshimoto et al., 2013). 

Several other conditions have been described as risk factors for HCC such as α1-antitrypsin 

deficiency, Wilson disease, diabetes or hemochromatosis. Hemochromatosis is the most 

common genetic defect (1/200 prevalence) and leads to the accumulation of iron in the liver. 

Type 2 diabetes is associated with hyperinsulinemia and increased production of IGF-1, which 

is also thought to contribute to HCC development (Smedile and Bugianesi, 2005). 

 

2.3. Epidemiology 

 

The geographical distribution of HCC prevalence follows the global repartition of its main risk 

factors (Figure 6). Because this tumour is often detected at late stages, the estimated annual 

rate of deaths related to liver cancer is close to the rate of newly diagnosed cases. Therefore, 

HCC is the second most frequent cause of cancer-related death after lung cancer. In 2012, 782 
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000 HCC cases were diagnosed and HCC was associated with 746 000 deaths (Ferlay et al., 

2010; Kabbach et al., 2015; Wang et al., 2015; Zuo et al., 2015).  

Since the first epidemiological studies in the 1970s, important geographical differences in HCC 

incidence rates have been noted (Szmuness, 1978). The highest rates occur in Eastern Asia 

whereas the lowest rates are in Northern Europe and North America. The majority of HCC 

cases (84%) affect developing countries, especially where infection by hepatitis B virus (HBV) is 

endemic and contributes to 70-80% of HCC cases. Owing to national vaccination programs 

against hepatitis B, the incidence of HCC in these areas has started to decline. Another 

etiological factor encountered in developing countries is aflatoxin intoxication. In Western 

countries and Japan, the most common etiological factors are HCV infection, excessive alcohol 

intake, diabetes and obesity associated with NASH (El-Serag, 2011). 

 

 

Figure 6. HCC epidemiology. Estimated age-standardized rates (World) of incidence cases, males, liver 
cancer, worldwide in 2012. (Globocan 2012) 

 

Primary liver cancer is more common among males than in females as globally, rates are more 

than twice as high in males than in females (Jemal et al., 2011). The incidence increases with 

age, reaching a peak in the 30–50 year age group. 

According to recent data, the global incidence of HCC is still increasing, although it varies 

throughout the world. Its increase in Western countries is related to the hepatitis C virus and 

non-alcoholic steatohepatitis (NASH) (El-Serag, 2011). 
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2.4. Diagnosis of HCC 

 

As is the case for most solid tumours, HCC is asymptomatic for several months and sometimes 

for years. For this reason, screening for HCC should be carried out in all known chronic liver 

disease patients at regular time intervals. The population of patients at high risk is composed 

of those with chronic cirrhosis or chronic infection by hepatitis B or C virus. When HCC 

develops on the background of a healthy liver, the disease is found by chance following 

ultrasound scan and/or computerized tomography carried out for other reasons, and usually is 

at an advanced stage at the time of diagnosis. 

When manifested, the most frequently observed symptoms are: chronic hepatitis with pain in 

the right side of the abdomen, increased volume of the liver, fatigue, change in mood, edema 

in the legs, swollen abdomen due to ascite fluid accumulation and/or rapid occurrence or 

deterioration of portal hypertension (sometimes accompanied by oesophageal varices). 

The diagnosis of HCC patients is based on imaging techniques (ultrasound, CT, nuclear 

magnetic resonance (NMR)), but the diagnosis can only be confirmed by histology. Generally, 

ultrasound is the first tool recommended for detecting HCC nodules in the population at risk. 

The effectiveness of ultrasound in detecting any form of HCC is quite good (94%), but its 

sensitivity drops to 63% for small nodules (Singal et al., 2009; Trevisani et al., 2007). Contrast-

enhanced ultrasound does not increase the sensitivity for small HCC but it helps in 

differentiating some lesions (Terzi et al., 2016). The threshold for detecting HCC by imaging 

techniques is 1cm. However, lesions less than 1cm are relatively common in patients at risk. 

These lesions are difficult to diagnose even when using biopsy because of the complexity of 

the sampling procedure and therefore the occurrence of false-positive or false-negative 

results. 

Most scientific societies for the study of liver diseases agree that patients at risk should be 

checked every 6 months for the development of HCC. It is considered that the doubling period 

of an HCC nodule is 6 months. In the case of patients with detected lesions inferior to 1 cm or 

undergoing follow-up post-treatment, tumours should be checked at shorter interval times of 

around 3 months. 

Blood tests are not very useful at diagnosis but may help in patient follow-up. No blood marker 

has been found for the diagnosis of HCC, except the observation that in some HCC patients the 

alpha-fetoprotein (AFP) is aberrantly elevated and a proportion of these patients tend to have 

a worse prognosis (Nagasue et al., 1977; Tangkijvanich et al., 2000). Since HCC is often 
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accompanied by an underlying hepatopathy, several serum liver enzymes, such as alanine 

aminotransferase (ALT) and aspartate aminotransferase (AST), are quantified in order to 

appreciate the degree of underlying liver disease. 

Prognosis. Patients with HCC usually have a poor prognosis. Previous estimations suggest that 

close to 70% of patients will relapse within 5 years following surgery. Typically, recurrence rate 

of HCC follows a 2 peaks distribution (Imamura et al., 2003). The first group of patients usually 

develop new hepatocellular tumours within 2 years after resection and this is clinically 

recognised as ‘early’ recurrence. This is mainly related to the metastatic spread of cells 

originating from the primary tumour. The second group of patients develop de novo tumours 

more than 2 years after tumour resection and are clinically labelled as ‘late’ recurrence. 

Patients representing the second peak of HCC relapse, develop additional tumours as a 

consequence of the carcinogenic cirrhotic tissue. Predictive factors for relapse are vascular 

invasion of the primary tumour (both macroscopic and microscopic), tumour size, the number 

of nodules, alpha-fetoprotein (AFP) levels, the degree of differentiation and the presence of 

satellites nodules. Early stage HCC are more likely curable, with a lower relapse probability 

while advanced HCCs are more prone to develop early recurrence. 

Unfortunately, microvascular invasion and satellites can only be assessed on liver biopsies, 

once the tumour has been removed. This eliminates the possibility to predict relapse before 

surgery and adjust the treatment. Besides cancer, another life-threatening condition (i.e., 

cirrhosis) is present in more than 80% of patients with HCC, which renders prognosis 

prediction a major challenge. 

 

2.5. Histopathological characteristics 

 

In the initial phase, HCC develops as a well differentiated nodule. In the case of cirrhotic 

patients, the cancerous nodule develops inside a dysplastic regenerative nodule. The initial 

cancerous nodule grows until it exits the regenerative nodule and progresses to moderate and 

than towards a poorly differentiated tumour. In advanced stages, the tumour will develop 

satellite nodules, resembling to small nodules exiting the primary tumour while in the final 

stage the tumour will evolve into a multinodular structure spread across the liver. 

The macroscopic aspect of hepatocellular tumours depends on the natural history of the 

disease. If the tumour develops in a cirrhotic environment, it is commonly surrounded by a 

fibrous capsule. HCC nodules that develop on a healthy liver tend to be invasive into the 
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adjacent liver tissue, without a visible capsule. In some cirrhotic cases, numerous small 

tumours can occur throughout the liver but are not distinguishable from regenerative nodules. 

Micro- and macrovascular invasion is a common feature of HCC, in particular when involving 

the portal veins. In advanced HCC, more than 70% of cases have tumour thrombi in the portal 

vein and are a cause of intrahepatic metastases due to tumour spread through the portal vein.  

The main target organ for extrahepatic metastasis is the lung. 

HCC is formed of cells resembling hepatocytes. Generally, cells maintain their organisation in 

sinusoid-like shapes lined by a single-cell sheet of endothelial cells while the microscopic 

architecture of lobules is generally lost, especially in cirrhotic patients. HCC exhibits different 

architectural patterns and cytological variants. 

Depending on the organisation of cancerous hepatocytes, the resulting sinusoids can have 

trabecular (tumour cells grow in cords and are commonly encountered in well and moderately 

differentiated HCC), pseudoglandular and acinar (the tissue has a glandular aspect, with cells 

forming a bile canaliculi-like structure, smaller in well differentiated tumours than in 

moderately differentiated), compact (no apparent organisation, cells have a solidarious 

appearance) or scirrhous pattern (marked by accentuated fibrosis) (illustrated in Figure 7). 

 

 

Figure 7. Growth patterns of progressed hepatocellular carcinoma. A. Trabecular [hematoxylin and 
eosin (HE), × 300]; B. pseudoglandular (HE, × 100); C. solid/compact (HE, × 200); D. giant cells formation 
(HE, × 200). (Schlageter et al., 2014) 
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Several cytological variants are encountered depending on the cell appearance, such as 

pleomorphic or clear cells with glycogen storage, evidence of sarcomatous or fatty change, bile 

production (the tumour colour turns to green after formalin fixation) or presence of mallory 

hyaline bodies (aggregated intermediate filaments), globular hyaline bodies, pale bodies 

(accumulation of amorphous materials in cystically dilated endoplasmic reticulum) or ground 

glass inclusions. 

According to the histological grade, hepatocellular tumours are classified following the 

Edmonson classification. They can be well differentiated (common in small tumours less than 

2 cm in diameter with frequent pseudoglandular or acinal pattern), moderately differentiated 

(the most common form in tumours more than 3 cm in diameter accompanied by trabecular 

pattern), poorly differentiated (associated with a compact patterns, with no visible sinusoid-

like shapes) or undifferentiated. 

However, HCC neoplastic nodules are known to be highly heterogeneous and vary 

histologically even at the level of a single nodule. When smaller than 1 cm, HCC nodules are 

uniformly well differentiated but when surpassing this size, they usually contain more than 

two types of tissue with varying histological grades. The tissue at the centre of the tumour is 

generally less differentiated than at the exterior. In general, the well differentiated area 

diminishes and is replaced by less differentiated during tumour growth. Otherwise, if the two 

cellular contingents grow and expand in the same time, the nodule often has a ‘nodule-in-

nodule’ appearance. 

Benign precursor HCC lesions can originate from cirrhotic nodules (dysplastic nodules) or on 

the healthy liver in the case of hepatocellular adenoma. Dysplastic nodules evolve by 

expansion of cirrhotic nodules and show variable cellular atypia without clear malignancy. To 

the naked eye, they resemble both cirrhotic regenerative nodules and to cancerous ones. They 

present no invasion into the portal tracts and many of them have been shown to evolve into 

HCC in follow-up studies, being therefore considered as precancerous lesions. 
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2.6. Hepatocarcinogenesis 

 

Hepatocarcinogenesis is a multi-step process, generally developing in an altered hepatic 

microenvironment, typically on a background of chronic liver damage and rarely on healthy 

liver. Chronic liver injury is accompanied by fibrosis and massive inflammation responsible for 

the deregulation of several signalling pathways and accumulation of genetic alterations in 

normal hepatocytes. Hepatic lesions first present as dysplastic nodules evolving into early 

carcinoma which finally progresses to HCC ( 

 Figure 8). 

 

 
 Figure 8. Histopathological progression and molecular features of HCC. After hepatic injury, necrosis 
followed by hepatocyte proliferation fosters a chronic liver disease condition that culminates in liver 
cirrhosis. Cirrhosis is characterized by abnormal liver nodule formation surrounded by collagen 
deposition and scarring of the liver. Subsequently, hyperplastic nodules are observed, followed by 
dysplastic nodules and ultimately hepatocellular carcinoma (HCC), which can be further classified into 
well differentiated, moderately differentiated and poorly differentiated tumours — the last of which 
represents the most malignant form of primary HCC. Telomere shortening is a feature of chronic liver 
disease and cirrhosis. Telomerase reactivation has been associated with hepatocarcinogenesis. (Farazi 
and DePinho, 2006) 

 

The process that transforms normal hepatic cells into neoplastic cells is not known, but it is 

thought to be the combination between changes in normal liver histology associated to 

cellular alterations due to hepatic viruses, oxygen derived free radicals and toxic compounds, 

and changes in the host immune system. All these factors induce liver cancer over a period of 

time long enough to cause an irreversible phenomenon. 
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Recent data published on colon cancer suggest that the main risk factor of cancer is bad luck 

(Tomasetti and Vogelstein, 2015). The liver is a good example of the model proposed by 

Tomasetti and Vogelstein. Liver cells are quiescent but in response to cell death due to chronic 

liver injury, they show intense replicative activity. Since the greater the replication rate, the 

higher the risk that one or more daughter cells have mutations in their DNA, it makes sense 

that the risk of acquiring HCC is higher in the presence of risk factors, such as HBV or HCV 

infection, alcoholism, aging, excessive iron, and smoking. 

In general cell transformation is mostly governed by an intertwined relationship between 

abnormal cell proliferation and resistance to apoptosis. However, in liver cancer the process is 

a bit more complicated because hepatic cells have a very specific metabolic activity, which 

when deregulated seems to participate to the carcinogenic process. 

Several molecular alterations have been described to be common to most small HCC, 

encountered independently of the associated risk factor, are thought to constitute the early 

stages of hepatocarcinogenesis. Hepatocarcinogenesis is accompanied by dedifferentiation, 

loss of cell adhesion, degradation of the extracellular matrix and constitutive activation of the 

survival and growth-promoting pathways. Analysis of liver biopsies coming from patients with 

cirrhosis suggests that HCC is often multiclonal. On the other hand, the natural progression of 

intermediate and advanced HCC is considered to be highly heterogeneous. 

It is widely accepted that carcinogenesis is a multistep process triggered by the accumulation 

of genetic alterations that activate different signal transduction pathways and drive the 

progressive transformation of normal cells into malignant cells (Fantini et al., 2015; Hai et al., 

2014; Merle and Trepo, 2009). The phenotypic (morphological and microscopic) and genetic 

heterogeneity of HCCs also adds an additional level of complexity to our understanding of 

hepatocarcinogenesis. However, despite many remaining challenges, substantial progress has 

been made in this field. As in other solid cancers, numerous genetic alterations accumulate 

during the process of hepatocarcinogenesis. Genetic alterations affect a limited number of 

genes and chromosomal loci during the early preneoplastic stage and accelerate throughout 

dysplasia and HCC development (Takai et al., 2014). Previous studies have shown that the 

incidence of genetic alterations in HCC is relatively rare and limited to a subset of a few cancer-

specific genes (Nishida and Goel, 2011). 

Liver cirrhosis is accompanied by a significant rate of hepatocellular senescence and 

characterized by considerably short hepatocyte telomeres (Wiemann et al., 2002). The 

molecular mechanisms leading to the development of HCC are extremely complicated and 

consist of prominent genetic and epigenetic alterations (Facciorusso et al., 2016). 
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2.6.1 Epigenetic alterations 

 

Epigenetics refers to mechanisms modulating gene expression without the modification of the 

DNA sequence itself. In cancer, in general, and in HCC in particular, several epigenetic changes 

have been reported including DNA hyper- and hypomethylation, histone modifications, 

chromatin remodelling and aberrant expression of micro-RNA and long noncoding RNAs 

(lncRNAs) (Liu et al., 2012a; Nishida and Goel, 2011; Zhang, 2015). 

Hereafter follows a non exhaustive summary of a few of these epigenetic alterations reported 

to be present in HCC. 

DNA methylation. Like in other types of cancer, HCC presents a higher hypermethylation 

status of the tumour DNA compared to the surrounding non-tumour tissue. Hypermethylation 

contributes to the regulation of gene expression and mainly affects CpG islands situated in 

close proximity to gene promoters. Specific promoter hypermethylation and global 

hypomethylation affect the expression of tumour-suppressors leading to downregulation of 

their expression and favouring genomic instability. It has been described that differential DNA 

aberrant hypermethylation of FZD7, CDKN2A, RASSF1A and APC allows HCC nodules and the 

surrounding tissue to be discriminated. Several other genes have been reported to be 

aberrantly methylated such as CDKN2A (Liu et al., 2012a; Nishida and Goel, 2011), NFATC1, 

GSTP1, BMP4 and GABRA5 (Lambert et al., 2015) and recently reviewed by Wahid et al. (Wahid 

et al., 2017). 

Histone modifications. Histone levels and biochemical modifications affect gene expression 

and chromatin structure. Modifications include ubiquitinations, phosphorylation, methylation 

and acetylation at the histones’ N-terminal tails, affecting the turn-over of these proteins, as 

well as their affinity for their target DNA sequence. These modifications have consequences on 

cellular processes, such as DNA repair, DNA replication and gene transcription. It has been 

reported that in HCC patients, histone-encoding genes are either over-expressed (H3K4diMe, 

SETDB1) (Magerl et al., 2010; Wong et al., 2016; Zhang et al., 2016), downregulated (Patt1) 

(Shon et al., 2009), or that mutations can affect the methyltransferase enzymes (SMYD3) (He 

et al., 2012a). Some histone modifications act as a signature for risk factor exposure, such as 

the PP2Ac phosphatase whose expression is increased in HCV chronic infection and is 

considered as an important event in viral hepatitis associated hepatocarcinogenesis, partly 

responsible for the inhibition of the DNA damage repair (Gong et al., 2015). 
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Chromatin remodelling is mainly the result of nucleosomes recruitment at DNA sites by ATP-

dependent chromatin remodelling complexes and covalent enzymatic modifications of 

histones. Chromosome remodelers are thought to have tumour suppressor roles, as 

inactivated mutations have been reported in cancer (Wilson and Roberts, 2011). Whole exome 

sequencing of hepatocellular tumours revealed that chromatin remodellers are the third more 

frequently mutated genes (Guichard et al., 2012). Mutations of ARID1A, ARID1B and ARID2, 

components of the SWI/SNF chromatin remodelling complex are mutated in HCC at frequency 

of 16.8%, 6.7%, and 5.6%, respectively (Li et al., 2011). 

Noncoding RNAs are divided in several sub-groups based on their length. Of these, the most 

studied are short miRNAs with less than 200 nucleotides and long noncoding RNAs (lncRNA) 

exceeding this length threshold. miRNAs regulate the stability of mRNA and therefore impact 

on the quantity of the synthesised proteins. The level of several miRNAs such as miRNA 122, 

miRNA 125b, miRNA-26, miRNA-101, miRNA-221 and miRNA-1180 are perturbed in HCC 

leading to cell cycle progression, tumour invasion and proliferation of HCC cells (Liu et al., 

2016b, 2016b; Nassirpour et al., 2013; Wu et al., 2016; Yang et al., 2013; Zhao and Wang, 

2015; Zhou et al., 2016b). LncRNAs have been shown to act as scaffold, signal, guide and decoy 

in cancer in general and in HCC in particular. For example, HOTAIR is associated with 

progression of HCC via activation of the Wnt/ -catenin pathway and autophagy while HOTTIP 

is associated with metastasis in HCC patients (Gao et al., 2016; Yang et al., 2016a). These 

lncRNAs could be a good option as therapeutic targets, as well as decision making biomarkers. 

However, the molecular mechanism of noncoding RNAs in cancer is still an emerging area of 

study which will eventually lead to the development of next generation drugs. 

 

2.6.2 Genetic alterations 

 

As in other solid tumours, a large number of genetic alterations accumulate during the 

carcinogenic process. Compared to other types of cancer such as melanoma and lung cancer, 

HCC possesses a low rate of mutations/tumour (90 in average) (Figure 9). 
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Figure 9. The prevalence of somatic mutations across human cancer types. Every dot represents a 
sample whereas the red horizontal lines are the median numbers of mutations in the respective cancer 
types. The vertical axis (log scaled) shows the number of mutations per megabase whereas the different 
cancer types are ordered on the horizontal axis based on their median numbers of somatic mutations. 
The red rectangle highlights the frequency of mutations affecting liver tumours. (Alexandrov et al., 
2013) 

 

Over the past decade, great progress has been made in elucidating the molecular mechanisms 

underlying hepatocarcinogenesis. In particular, recent advances in next-generation sequencing 

technologies have revealed numerous types of genetic alterations, including recurrent 

mutated genes and dysregulated signalling pathways in HCC. 

Genomic instability (also known as “genetic instability” or “genome instability”) consists of 

mutations, including changes in nucleic acid sequences, chromosomal rearrangements, or 

aneuploidy (Zhang, 2015). However, it remains unclear whether genomic instability is a cause 

or a consequence of tumourigenesis. In neoplasms, genomic instability can be broadly 

classified based on its origin as chromosomal instability (CIN) or, less commonly, 

microsatellite instability (MSI) (Chan, 2011). 

1. Chromosomal instability 

In cancer, chromosomal instability is a consequence of increased rate of chromosome 

missegregation during mitosis. CIN is a hallmark of human cancer and is believed to contribute 

to tumourigenesis, tumour progression, and development of therapy resistance (Bastians, 

2015). In addition, it has been widely accepted that CIN is associated with clinical and 

pathological parameters in solid tumours. CIN is one of the most frequent abnormalities in 

HCC. 

CIN usually involves both numerical changes (DNA copy number alterations [CNAs] or 

aneuploidy) and structural chromosomal changes (gain or loss of chromosome fragments, 
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translocations, inversions, amplifications, deletions and allelic loss [loss of heterozygosity 

(LOH)]) (Martin et al., 2010; McGranahan et al., 2012). 

DNA copy number alterations (CNAs) is an important subclass of somatic mutations. 

Aberrant amplifications of chromosomal regions and deletions are commonly associated with 

overexpressed oncogenes or the loss of tumour suppressor genes (TSGs) (Pinkel and Albertson, 

2005). 

Although the distribution of aberrant chromosomal arms differs among HCCs, numerous 

studies have shown that certain regions are frequently affected in HCC, including gains in 

chromosomes 1q, 5p, 6p, 7q, 8q, 17q, and 20q and losses in 1p, 4q, 6q, 8p, 9p, 13q, 14q, 16p-

q, 17p, 21p-q, and 22q (Fernandez-Banet et al., 2014; Homayounfar et al., 2013; Kan et al., 

2013; Nishida et al., 2013a; Roessler et al., 2012; Wang et al., 2013a). These findings reflect a 

high degree of CIN in HCC, contributing to hepatocarcinogenesis (Wilkens et al., 2004). Some 

of these regions contain CNA-associated oncogenes or tumour suppressor genes (TSGs), such 

as c-myelocytomatosis viral oncogene (C-MYC) (8q), cyclin A2  (CCNA2) (4q), cyclin D1 (CCND1) 

(11q), retinoblastoma 1 (RB1) (13q), axis inhibition protein 1 (AXIN1) (16p), TP53 (17p), 

mannose-6-phosphate receptor (IGFRII/M6PR) (6q), p16Ink4A (9p), E-cadherin (CDH1)  (16q), 

suppressor of cytokine signalling (SOCS) (16p), and phosphatase and tensin homolog (PTEN) 

(10q), which have been identified to be associated with HCC (Bertino et al., 2014; Mínguez et 

al., 2009). 

Loss of heterozygosity (LOH) refers to loss of one of the two alleles at one or more loci 

and is the main mechanism for the inactivation of tumour suppressor genes (TSGs). In HCC 

patients, LOH is frequently observed on chromosomes 1p, 4q, 6q, 8p, 9p, 10q, 11p, 13q, 14q, 

16q, and 17p (Midorikawa et al., 2009; Okuno et al., 2009). Of these, losses on 4q and 8p are 

the most frequent chromosomal alterations in HCC. The LOH at 4q has been reported to be 

strongly correlated with increased in alpha-fetoprotein (AFP) levels in HCC (Zhang et al., 2010), 

and is significantly more frequent found in poorly differentiated HCCs (Moinzadeh et al., 2005). 

These results suggest that the inactivation of TSGs on chromosome 4q might be a late event 

occuring after malignant transformation. Two hotspot regions are located on chromosome 4q 

encoding for several TSGs including neil endonuclease VIII-like 3 (NEIL3), interferon regulatory 

factor 2 (IRF2) and inhibitor of growth family member 2 (ING2). Chromosome 8p is rich in 

candidates and validated TSGs, with a cluster of six genes, including deleted in liver cancer 1 

(DLC1), coiled-coil domain-containing protein 25 (CCDC25), elongator complex protein 3 (ELP3), 

proline synthetase co-transcribed bacterial homolog (PROSC), SH2 domain-containing protein 

4A (SH2D4A), and sorbin and SH3 domain containing 3 (SORBS3). 
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Chromothripsis is a new class of complex catastrophic chromosomal rearrangements. 

It occurs as a single cellular crisis during which a chromosome is broken and reassembled by 

DNA repair mechanisms, resulting in a large number of rearrangements clustered in a 

chromosomal region (Stephens et al., 2011). The process is considered as extremely rare, but 

can affect cancer-related genes and has a major impact on the tumour progression, prognosis 

and therapeutic response. To date, only one study reported the implication of chromothripsis 

in HCC affecting chromosomal arms 1q and 8q and favouring gene amplifications (Fernandez-

Banet et al., 2014). 

Somatic mutations in the open reading frame can lead to loss-of-function of tumour 

suppressors or gain-of-function of oncogenes. Mutations can also occur in the regulatory 

regions of genes affecting transcription, translation and stability of the gene product and 

impacting on individual’s cancer risk and progression. Whole genome sequencing of HCC in/or 

the surrounding tissue has evidenced that several genes present recurrent mutations. 

Mutations in genes such as TP53, CTNNB1 (the -catenin coding gene) and Axin1 were 

identified more than 10 years ago (El-Din et al., 2010; Wang et al., 2013b), but recent studies 

employing deep-sequencing techniques have identified additional recurrent mutations 

affecting chromatin remodelling (ARID1A and ARID2), oxidative stress (NFE2L2 and KEAP1), the 

RAS/MAPK (RPS6KA3) and the JAK/STAT pathways (JAK1) (Fujimoto et al., 2012; Guichard et 

al., 2012; Kan et al., 2013; Kawai-Kitahata et al., 2016; Nault et al., 2013, 2014). TERT, TP53 and 

CTNNB1 mutations are the most frequent genetic alterations and play a major role in HCC 

pathogenesis, generally independent of the etiological background, except for the association 

between the codon 249 TP53 mutation and HBV chronic infection and aflatoxin intoxication. 

TERT mutations are observed in 90% of human cancers, and enable cells to bypass cell 

senescence and escape apoptosis, a major step towards the initiation of malignant 

transformation (Bell et al., 2015; Makowski et al., 2016). The TERT gene encodes for the 

catalytic subunit of the reverse transcriptase telomerase which maintains the length of 

telomeric DNA and chromosomal stability. In HCC, TERT mutations mainly affect the promoter 

region, leading to over-expression of the coding sequence. Even though the functional role of 

this genetic alteration is not known, DNA sequencing studies showed that it occurs early during 

the hepatocarcinogenesis process (Chen et al., 2014b; Schulze et al., 2015). The TERT mutation 

frequency varies around the world being found in between 20% to 60% of cases but is 

considered to be the most frequent somatic genetic alteration regardless of patients’ 

geographical origin (Cevik et al., 2015; Chen et al., 2014b; Huang et al., 2015; Killela et al., 

2013; Quaas et al., 2014; Yang et al., 2016c). TERT promoter mutations have been found to be 
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associated with CTNNB1 mutations suggesting an interaction between the telomere’s activity 

and the activation of the Wnt/ -catenin pathway (Nault et al., 2013; Pezzuto et al., 2016; 

Schulze et al., 2015; Totoki et al., 2014). 

TP53 mutations. The p53 protein is responsible for cell cycle arrest and apoptosis in response 

to cellular stress signals and its inactivation leads to uncontrolled proliferation of abnormal 

cells. TP53 mutations rates vary among different geographical regions depending on the 

prevalence of risk factors. The reported mutations lead to the inactivation of p53 proteins 

(Loss of function, LOF) or to p53 acquiring new functions (gain of function, GOF). TP53 

mutations favour the initiation or the progression of HCC, depending on the etiological factor. 

For example, the TP53 mutation at codon 249 is almost exclusively induced by AFB1 and 

appears to be an early event in hepatocarcinogenesis (Hussain et al., 2007). In contrast, in 

AFB1-non related HCC, TP53 mutations are generally found in advanced tumours, suggesting in 

these tumours that p53 inactivation is only required for progression. Mutant p53 represents an 

interesting target for HCC therapy (Parrales and Iwakuma, 2015). Nevertheless, p53 protein 

inactivation without mutation has been observed in several pre-tumoural tissues (Piccinin et 

al., 2012). For HCC, in the case of aetiologies involving cell regeneration, inactivated p53 could 

facilitate continued proliferation, but could also favour the emergence of abnormal pre-

cancerous cells. 

CTNNB1 mutations lead to -catenin stabilisation, which will translocate into the nucleus. It 

acts as a transcriptional co-factor and activates target genes such as MYC, CCND1, COX2 and 

matrix metalloproteinase 7 (MMP7) (Gregorieff and Clevers, 2005). In some studies, CTNNB1 

mutations have been related to early-stage HCCs while in others to HCC progression (An et al., 

2001; Peng et al., 2004; Thorgeirsson and Grisham, 2002). In HCV-induced HCC, CTNNB1 

mutations have been described to be more frequent that in HBV-related HCC (Hsu et al., 2000; 

Huang et al., 1999). Finally, some studies in HCC biopsies showed that CTNNB1 and TP73 

mutations are mutually exclusive, as has already been described for CTNNB1 and TP53 

mutations (Boyault et al., 2007). 

ARID1A and ARID2 inactivating mutations affect the functionality of the chromatin 

remodelling complex SWI/SNF and have been identified in about 10% of HCC cases (Fujimoto 

et al., 2012; Huang et al., 2012; Schulze et al., 2015; Totoki et al., 2014; Zhu et al., 2016). Some 

studies suggested that ARID1A mutations are more frequent in patients with an HCC related to 

alcohol intake while ARID2 mutations would occur in HCV-associated HCC but these findings 

have not been confirmed in other studies (Abe et al., 2015; Guichard et al., 2012; Huang et al., 

2012; Li et al., 2011; Zhao et al., 2011). Most of the mutations affecting these two proteins are 
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inactivating mutations, suggesting that ARID1A and ARID2 could act as tumour suppressors. 

ARID1A and ARID2 mutations are able to initiate HCC in combination with active PI3K/AKT, but 

not per se. 

NRF2 and KEAP1 mutations lead to the activation of an oxidative stress pathway in about 12% 

of HCC cases (Schulze et al., 2015). The NRF2-KEAP1 pathway regulates the cytoprotective 

response to cellular stress, widely caused by ROS molecules. NRF2 acts as a transcription factor 

with KEAP1 being a negative regulator of its activity. These mutations could represent late 

events in hepatocarcinogenesis in humans, since they have been observed only in advanced 

HCC. The NRF2/KEAP1 pathway seems to lead to HCC via epigenetic instability, abnormal 

methylation of tumour suppressor genes or by favouring the accumulation of additional 

genetic alterations (Geismann et al., 2014; Karin and Dhar, 2016; Nishida and Kudo, 2013; 

Nishida et al., 2013b). Furthermore, somatic mutations of NRF2 or KEAP1 would correlate with 

CTNNB1 or AXIN1 mutations that activate the Wnt pathway (i.e. the two types of alterations 

are found in the same tumour sample) (Amaddeo et al., 2012; Guichard et al., 2012). 

JAK1 gene mutations occur at a low frequency (about 9%) in HCC. Nevertheless JAK/STAT 

signalling pathway has been reported as a hepatocarcinogenesis promoter and altered in 

about 45% of HCC (Kan et al., 2013). 

2. Microsatellite instability 

MSI is the result of defects in mismatch repair genes that impacts on the stability of 

microsatellites, which are tandem repeats that are present at millions of loci in the human 

genome. MSI plays an important role in carcinogenesis as it can result in the inactivation of 

TSGs or can disrupt other noncoding regulatory sequences (Kim and Park, 2014). Data suggest 

that MSI is present in cirrhotic liver, mainly induced by HBV infection and is associated with 

more aggressive tumour features and shorter median delays before recurrence (Dore et al., 

2001; Kawai et al., 2000). The degree of MSI was significantly correlated with poor 

differentiation and portal vein invasion (Kondo et al., 2000; Togni et al., 2009). These studies 

suggest that MSI could play a minor role in hepatocarcinogenesis but might be associated with 

the progression of HCC in patients with a background of chronic hepatitis and/or cirrhosis 

(GOUMARD et al., 2017). 
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2.6.3 Deregulated pathways 

 

The pathways commonly altered by genetic alterations (somatic mutations or homozygous 

deletions) in hepatocellular carcinoma include the Wnt/ -catenin pathway, 

phosphatidylinositol 3-kinase (PI3K)/Ras signalling pathways, oxidative and endoplasmic 

reticulum stress modulators and processes responsible for chromatin remodelling (Figure 10). 

 

 

Figure 10. Major pathways altered in hepatocellular carcinoma. Signalling pathways frequently 
mutated in HCC are shown in the left panel, oncogenes are indicated in red and tumour-suppressor 
genes in blue. The percentage of alterations found in HCC is noted in brakets. (Nault and Zucman-Rossi, 
2014) 
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The Wnt pathway plays a major role in the pathogenesis of HCC and has been 

described to be aberrantly activated in 40% to 70% of HCC samples (Yang et al., 2016b). The 

central Wnt pathway effector is -catenin. When the pathway is inactivated, -catenin is 

degraded by the proteasome, after phosphorylation by casein kinase 1 (CK1) and glycogen 

synthase kinase 3β (GSK-3β), in the presence of the axis inhibition protein (AXIN) and the 

adenomatous polyposis coli (APC) proteins (Cervello et al., 2012). In contrast, the activation of 

Wnt pathway, triggered by interaction between Wnt ligands and their frizzled (Fzd) receptors, 

prevents -catenin phosphorylation and degradation.  Consequently, -catenin accumulates in 

the cytosol and in part translocates into the nucleus. By interacting with the transcription 

factors T-cell factor (TCF)/lymphoid enhancer factor (LEF), it initiates the transcription of target 

genes (Pez et al., 2013). 

In HCC, mutations in CTNNB1 exon 3 are the main cause of Wnt pathway aberrant 

activation, followed by inactivating mutations in AXIN1 and APC, over-expression of Frizzled-7 

(FZD-7) and inactivation of GSK-3  (Kim et al., 2008; Merle et al., 2005; Oishi and Wang, 2011; 

Takigawa and Brown, 2008). In these cases, hepatocytes display abnormal cellular proliferation 

and the resulting tumours are associated with metastatic behaviour and cancer stem cells 

(Herencia et al., 2012). The canonical Wnt pathway contributes to angiogenesis, tumour 

infiltration and metastasis through the regulation of factors involved in the execution of these 

processes such as MMP-2, MMP-9, VEGF and bFGF. In HBV-related HCC, -catenin mutations 

have been found to occur at a lower frequency compared to alcohol and HCV-related HCCs 

which show a higher incidence of these mutations (Fujimoto et al., 2012; Guichard et al., 2012; 

Kawai-Kitahata et al., 2016; Levrero and Zucman-Rossi, 2016; Li et al., 2011; Shin and Chung, 

2013; Waly Raphael et al., 2012). 

The PI3K/Akt/mTOR pathway is a major intracellular signalling cascade that is involved 

in the regulation of cell proliferation, growth and survival, through the activation of tyrosine 

kinase receptors, such as VEGFR, EGFR, PDGFR, and IGFR. When a ligand binds to one of these 

receptors, phosphoinositide-3-kinase (PI3K) and AKT become activated (Fruman and Rommel, 

2014). Akt can activate mTOR by inhibition of the TSC1/2 complex. The mTOR pathway is 

implicated in cellular metabolism and inhibition of autophagy. Nearly 50% of patients with HCC 

exhibit activation of the mTOR pathway, which may be partially attributable to activation 

signals from receptor tyrosine kinases such as IGFR and/or EGFR pathways. mTOR pathway 

activation is associated with aggressive HCC and decreased survival of patients (Matter et al., 

2014; Zhou et al., 2010). Despite promising results with the new drugs targeting mTOR, a 

substantial benefit in HCC patients has not yet been shown in clinical practice. 
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The Ras/Raf/MEK/ERK signalling cascade is another important intracellular pathway 

altered in HCC (Lavoie and Therrien, 2015). Activation of Ras and Raf results in the 

phosphorylation and activation of MEK1/2 and than ERK1/2. This leads to apoptosis inhibition 

and cell proliferation. The pathway has a negative feedback loop as ERK1/2 is capable of 

phosphorylating and activating the RSK2 member (encoded by RSP6KA3) which inhibits 

MEK1/2. In 2-9% of HCC cases, inactivating mutations of RSP6KA3 occur, suppressing the 

inhibition control of the pathways and therefore favouring non-controlled activation of the 

pathway. KRAS activating mutations have been reported to be very rare, being found only in 

about 1% of cases (Guichard et al., 2012). 

JAK-STAT activation has been reported due to activating mutations of JAK1 (9.1%), in a 

series of HBV-related HCC (Kan et al., 2013). However, these results have not been confirmed 

in western countries. IL6ST has been reported to be rarely mutated in HCC originating from 

France (2%) (Guichard et al., 2012). 

 

2.6.4 Molecular classification of HCC  and patient prognosis 

 

Hepatocellular carcinomas (HCCs) are a heterogeneous group of tumours with regard to risk 

factors and genetic alterations. A second level of heterogeneity is identified at the individual 

level with differences found between different tumour nodules in the same patient and even 

in the same nodule itself (Bruix et al., 2014; Tao et al., 2011). These two sources of 

heterogeneity have a strong impact on the molecular classification of hepatocellular tumours. 

HCC patients have a highly variable clinical course, indicating that HCC comprises several 

biologically distinctive entities (Llovet et al., 1999a, 2003). 

Several groups have performed studies to quantifiate the expression profile of large panels of 

genes, in order to define gene expression patterns in HCC and better understand the 

underlying hepatocarcinogenesis. These have led to the description of subgroups of HCC 

(between two and six) that differ according to aetiological factors, mutations in tumour 

suppressor genes, rate of recurrence and intrahepatic metastases, as well as the disease stage 

(Boyault et al., 2007; Chen et al., 2002; Chiang et al., 2008; Hoshida et al., 2009; Iizuka et al., 

2003; Lee et al., 2004b; Makowska et al., 2016; Nam et al., 2005; Okabe et al., 2001; Ye et al., 

2003). However, genomic molecular information of the tumour is not robustly associated with 

prognosis, as patient outcome greatly depends on the recurrence probability post-resection 

(Hoshida et al., 2008). 
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Despite plausible distinct mechanisms of carcinogenesis according to the clinical background, 

several alterations are observed across different aetiologies, patient race (i.e., host genetic 

variations) and environmental factors, suggesting that the same molecular pathways are 

deregulated irrespective of aetiology (Totoki et al., 2014). 

Laurent-Puig and collaborators proposed in 2001 a classification of HCC based on the incidence 

of chromosomal aberrations and the status of the three genes known at the time to be the 

most frequently mutated in HCC: TP53, AXIN1 and CTNNB1 (Laurent-Puig et al., 2001). Two 

groups of patients were identified, based on the chromosome stability status: the first group 

comprises CTNNB1 mutations, with chromosome stability except for 8p loses, and are 

characterised by large tumours and negative hepatitis B virus status; the second group 

demonstrates higher chromosome instability, mutations of AXIN1 and TP53, and are poorly 

differentiated tumours, often associated with HBV chronic infection (Figure 11). 

 

 

Figure 11. Classification of HCC as proposed by Laurent-Puig and collaborators. Two classes are clearly 
distinct: Those characterised by chromosome instability with TP53 mutations (I) and those characterised 
by chromosome stability and CTNNB1 mutations (II). (Laurent-Puig et al., 2001) 

 

The first classification based on a large gene expression profile was proposed by Breuhahn and 

collaborators in 2004 (Breuhahn et al., 2004). By analysing the mRNA expression pattern of 43 

different human HCC samples and by comparing them with normal adult liver, two main 

groups have been characterised based on the most highly varying gene expression profiles. 

The group A (65% of cases) showed an induction of the IFN pathway, whereas group B was 

characterised mainly by down-regulation of apoptosis-related genes and inactivation of the 

IFN pathway. Based on the expression pattern of insulin-like growth factor type 2 (IGF-II), the 

group B could be further classified into two groups, B1 (14% of cases) with high expression of 

IGF-II and B2 (21% of cases) without differential expression. In HCC, IFN-pathway and 

overexpression of IGF-II are mutually exclusive (Figure 12). However, no association analysis 

has been performed with respect to patient prognosis. 
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Figure 12. Schematic display of HCC subtyping according to Breuhahn et al, 2004. 

 

Lee and collaborators proposed in 2004 another classification of HCC based on gene 

expression profile but in relation to patient prognosis (Lee et al., 2004b). The gene expression 

profile was established in 91 human primary HCC and matching non-tumour surrounding 

tissue. The authors showed that differential gene expression clustering defined 2 groups of 

patients with poor and good survival. The over-expressed genes in the poor prognosis group 

are enriched with genes involved in cell growth and maintenance, suggesting that these 

tumours grow faster. Many of the genes with lower expression in the cell proliferation group 

were liver-specific, which is consistent with the observation that poorly differentiated HCC 

have less favourable clinical outcomes. 

The first most comprehensive molecular classification is the 6-group classification proposed by 

J Zucmann Rossi’s group in 2007, based on a detailed analysis at the clinical, genetic, and 

transcriptomic level (Boyault et al., 2007). Gene expression profile of 57 hepatocellular 

tumours allowed the identification of 6 groups of tumours (G1 to G6) (Figure 13). The 

association of genetic and clinical data to each one of the 6 groups allowed the identification 

of two larger clusters, with a relatively better or worse prognosis: 

- the first cluster (G1-G3) is characterised by chromosome instability, mutations in the TP53 

and AXIN1 genes, expression of genes involved in cell cycle and cell proliferation, presence of 

cancer stem cells markers and activation of the Akt pathway; this group is frequently 

encountered in patients with HBV infection. Patients in this group have a poor prognosis. 

- the second cluster (G4-G6) is characterised by chromosome stability and activation of the 

Wnt pathway with frequent mutations of the TCF1 and CTNNB1 genes. Patients in this group 

have a better prognosis than those of the first cluster. 
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Figure 13. HCC subgroups defined by transcriptome analysis with their related clinical and genetic 
characteristics. Vertical lines indicate significantly associated features. Red and green primarily indicate 
over- and underexpressed genes, respectively, in that particular functional category. (Boyault et al, 
2007) 

 

Of important note, TP53 mutations and CTNNB1 mutations, the two first discovered and most 

common gene mutations, are mutually exclusive and each define a distinct cluster of patients. 

A 16-gene signature has been validated to efficiently define a tumour as belonging to one of 

the 6 groups. 

Ten years later, a study originating from the same group, completed this 6-group classification 

in relation to clinical and histological features (Figure 14) (Calderaro et al., 2017). The G1, G2, 

G3 proliferative groups enriched in TP53 mutations are poor differentiated tumours, with 

macro- and micro-vascular invasion, high AFP serum levels and activation of PI3K/AKT 

pathway. In addition, the G1 subtype showed progenitor subtype with positive CK19 and 

EpCAM staining. Tumours belonging to the second cluster with CTNNB1 mutations have been 

shown to be cholestatic (bile production), well-differentiated with intact tumour capsule, lack 

of inflammatory infiltrates, maintenance of various markers of hepatic differentiation and 

function (APOB, several isoforms of Cyp450, HNF1A, HNF4A), low AFP expression and low cell 

proliferation. 
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Figure 14. Integration of clinical, pathological and molecular features into HCC 6-group molecular 
classification. (Calderaro et al., 2017) 

 

In 2010, Hoshida and collaborators proposed another classification based on a meta-analysis of 

previous gene expression analyses (Figure 15) (Hoshida et al., 2010). Hepatocellular tumours 

fall in 3 groups based on the expression of differentially expressed genes. 

- The first group, S1 is clinically characterised by greater risk of early recurrence with 

more vascular invasion and satellite nodules, poor survival with more advanced HCC, 

expression of genes associated with epithelial-to-mesenchymal transition and activation of the 

Wnt pathway. This class did not contain CTNNB1 mutated tumours, but authors identified TGF-

 as an activator of the Wnt pathway. 

- The second group, S2 is characterised by bigger tumours, high serum AFP, signature of 

poor survival with more advanced HCC, suppression of IFN targeted genes, myc-related genes 

activation, EpCAM+, higher AFP mRNA in the tumours and Akt activation as shown by IHC. 

- The third group, S3 is characterised by smaller tumours, well differentiated and with a 

good survival signature, related to CTNNB1 mutations and further named “CTNNB1” class. 

The S3 group can be assimilated to the G5-G6 groups from Boyault’s classification while the S1-

S2 group can be assimilated to the G1-G3 cluster. 

For the first time this study, later confirmed by Lachenmayer and collaborators in 2012   

(Lachenmayer et al., 2012), identified two different mechanisms of activation of the Wnt 

pathway leading to two subclasses with activated Wnt. The first one (S3) exhibits CTNNB1 

activating mutations that leads to the constitutive activation of the Wnt pathway thanks to the 
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stabilisation of -catenin, and its accumulation in the nucleus. The second one (S1) involves 

the activation of the TGF-  pathway that favours the translocation of -catenin from the cell 

membrane to the cytoplasm, but not to the nucleus. As a consequence, the Wnt-associated 

differentially expressed genes are different in the two subclasses, called classical Wnt target 

genes and liver-related Wnt target genes, respectively. 

 

 

Figure 15. Schematic classification of HCC in 3 groups as proposed by Hoshida et al, 2010. 

 

Tan et al. completed the S1-S3 classification by assessing the clinicopathological features for 

each of the 3 subclasses (Tan et al., 2016). The association of distinct histopathological 

features to each molecular subclass suggests that the deregulations observed in the molecular 

pathways are related to morphological features. 

- the S1 subclass is characterised by a steatohepatitic-HCC variant with immune cell 

infiltrate and expression of the hepatocarcinogenesis associated marker BIRC5. 

- the S2 subclass present features of macrotrabecular/compact pattern (accelerated cell 

cycle progression and cell proliferation), high serum alpha-fetoprotein, activation of oncogene 

YAP and stemness markers EpCAM and CK19, vascular invasion, HBV infection as well as 

expression of the hepatocarcinogenesis associated marker GPC3. 

- the S3 variant is characterised by a lack of steatohepatitic-HCC, clear cell variants, 

lower histological grade with a microtrabecular pattern (retained normal hepatocyte functions 

involved in a variety of metabolic pathways) and expression of the hepatocarcinogenesis 

associated markers LYVE1 and GLUL. 
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These results suggest that HCC molecular subclasses can be attributed based on the 

assessment of the clinicopathological features. However, there was no significant association 

between HCC molecular subclasses and patient prognosis with respect to survival or 

recurrence. 

Desert and collaborators performed a classification of the non-proliferative, well differentiated 

class described by Boyault’s (G4, G5 and G6 sub-classes) and Hoshida’s classification (S3) 

(Désert et al., 2017). This group of tumours comprises tumours with mutant -catenin and the 

rest of well differentiated tumours with wild-type -catenin. According to Desert’s work, gene 

set enrichment analysis divides non-proliferative HCCs into two distinct subclasses, 

recapitulating the phenotypes of hepatocytes at the two distinct ends of the zonation 

program. The wild-type -catenin group recapitulates the “perivenous“ phenotype of 

hepatocytes, responsible for lipogenesis and glycolysis. The mutant -catenin group 

recapitulates the “periportal” phenotype, responsible for gluconeogenesis and urea synthesis. 

Furthermore, a robust 5-gene signature (GLUL, LRG5, ODAM positive correlation, HAL and VNN1 

negative correlation) has been validated allowing discriminating well differentiated tumours 

with wild-type -catenin from tumours with the mutant allele. 

The first limitation of all these studies is due to the sampling method. All the expression 

profiles have been established using resected tumours. This introduces a selection bias 

towards patients without decompensated liver cirrhosis and with early stage HCC. Secondly, 

the differentially expressed genes were defined in comparison of the matching non-tumour 

tissue, which is already a pre-cancerous tissue, since HCC ofter arises in the context of chronic 

liver disease with cirrhosis. 

 

2.6.5 Tumour microenvironment 

 

It is now known that carcinomas are complex systems consisting of a variety of cells that 

promote tumour growth and protect it from the immune system (Bissell and Radisky, 2001). 

The tumour microenvironment includes endothelial cells, fibroblasts, T, B, natural killer (NK) 

lymphocytes, and antigen presenting cells, such as macrophages and dendritic cells (Figure 16) 

(Albini and Sporn, 2007). The tumour microenvironment defines the behaviour of the tumour, 

due to interactions with and influences of surrounding cells. It is now clear that the cross-talk 

between tumours and the tumour microenvironment is crucial for cell survival, growth, 

proliferation, the epithelial–mesenchymal transition (EMT) and metastasis (Leonardi et al., 
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2012; Yang et al., 2011a). Given the complex risk factors and progression of HCC, an 

understanding of the key players is crucial. 

 

 

Figure 16. Tumour microenvironment is a dynamic physical topography providing structural support, 
access to growth factors, vascular supply and immune cell interactions. (Junttila and de Sauvage, 2013) 

 

Fibroblasts 

Fibroblasts are the non-vascular, non-epithelial, non-inflammatory cells of the connective 

tissue and are its main component (Kalluri and Zeisberg, 2006; Tarin and Croft, 1969). They are 

embedded into the extracellular matrix and are responsible for its production. Cancer 

associated fibroblasts (CAFs) are the most abundant cell type of the tumour stroma and play a 

critical role in tumour-stroma interactions. They are positive for the following markers: alpha-

smooth muscle actin ( -SMA), vimentin, desmin and fibroblast activation protein (FAP) 

(Garin-Chesa et al., 1990). CAFs promote tumourigenesis and are involved in tumour growth 

and invasion. They are able to produce a range of inflammatory and tumourigenic mediators 

such as epidermal growth factor (EGF), fibroblast growth factor (FGF), IL-6, the chemokine 

ligand 12 (CXCL12), matrix metalloproteinase 3 (MMP3), and 9 (MMP9) (Mueller and Fusenig, 

2004). 
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Hepatic stellate cells 

Hepatic stellate cells (HSCs) are a key factor in the development of liver fibrosis (Friedman et 

al., 1985). HSCs are normally quiescent but in response to chronic liver injury they become 

activated. During this process, HSCs trans-differentiate into myofibroblast-like cells, a crucial 

event in the development of liver cirrhosis (Moreira, 2007). Activated HSCs can infiltrate the 

stroma of the liver and localise around tumour sinusoids, fibrous septa and capsules (Faouzi et 

al., 1999; Wu et al., 2012). Co-culture of HCC cells with HSCs promotes HCC cell migration and 

invasion via the FAK-MMP9 signalling pathway (Han et al., 2014). 

Tumour-associated macrophages 

Tumour associated macrophages (TAMs) are located in the tumour stroma and can be in 

several polarised activation states. Activated M1 macrophages, which produce type 1 pro-

inflammatory cytokines, play an anti-tumourigenic role, while alternatively activated M2 

macrophages, which produce type 2 cytokines, promote both anti-inflammatory response and 

pro-tumourigenic activity (Biswas and Mantovani, 2010). 

Alternatively activated M2 macrophages with pro-tumourigenic phenotypes have been well 

documented in cancers other than HCC. M2 macrophages appear to contribute to poor 

prognosis in human HCC through CCL2-induced EMT (Yeung et al., 2015). The Kupffer cells, 

which are liver specific macrophages, are able to impair CD8+ T cell-dependent immune 

response through the interaction between Programme death 1 (PD1) on CD8+ T cells and PD 

ligand-1 (PD-L1), causing a deficiency of CD8+ T cell cytotoxic function in HCC (Afreen and 

Dermime, 2014; Wu et al., 2009). 

 

2.6.6 Experimental hepatocarcinogenesis in vitro 

 

To elucidate the initial events and progression of HCC, cellular models of carcinogenesis are 

extremely important. Several highly characterized HCC cell lines have been developed, leading 

to a better understanding of pathways and alterations commonly encountered in HCC. 

However, in order to understand what the processes are occurring in the early stages of 

hepatocarcinogenesis, there is an absolute requirement for developing models that reflect the  

sequential neoplastic transformation of normal hepatocytes. 

Normal human cultured cells are quite resistant to neoplastic transformation, whereas rodent 

cultured cells are transformed to neoplastic cells with relative ease (McCormick and Maher, 

1988; Namba et al., 1996). This species difference is probably due to the difficulty in 
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immortalizing normal human cells in vitro. Until now, neither spontaneous immortalization nor 

spontaneous neoplastic transformation of normal human hepatocytes has been reported. No 

successful malignant transformation of human hepatocytes by chemical agents or ionizing 

radiation in vitro has been reported either despite the fact that exposure to some chemical 

agents has been associated with an increased risk of HCC in humans. 

In contrast to human cells, rodent cells display substantial telomerase activity in several 

somatic tissues, including the liver. Therefore, in vitro they are not sensitive to replicative 

senescence as it is the case for primary human cells. In humans, telomerase activity in most 

cell types is repressed early during development. Consequently, telomere DNA in proliferating 

somatic cells undergoes progressive attrition. Once a critical minimal length is reached, cellular 

growth is irreversibly arrested, a process known as replicative senescence, which was first 

described by Hayflick and Moorhead nearly 50 years ago. 

In 1985, two transgenic mouse lines expressing the HBV surface proteins were independently 

established by two different groups using genetically modified transgenic technology (Babinet 

et al., 1985; Chisari et al., 1985). 

Several strategies have been set-up allowing immortalisation of primary human hepatocytes. 

Immortalized hepatocytes are defined as a population of indefinitely dividing parenchymal 

cells that retain critical liver functions. Immortalization strategies have been developed based 

mainly on the transduction or transfection of hepatocytes with well-known immortalizing 

genes. The most frequently used immortalization methods are (i) overexpression of viral 

oncogenes (the adenoviral E1A/E1B genes, the simian virus 40 large T antigen (SV40TAg) or the 

early region (SV40ER, encoding large T and small t Ag) and the human papillomavirus 16 

(HPV16) E6/E7) genes, (ii) forced expression of hTERT, or (iii) a combination of both (Cascio, 

2001; Reid et al., 2009). As hepatocytes differentiation and proliferation are mutually exclusive 

in vitro, cell growth was associated with deterioration of the differentiated morphology and 

functional phenotype, a phenomenon already described by others (Chamuleau et al., 2005; 

Kim et al., 2000). Hepatocytes were successfully immortalized only by introducing the SV40 

large T antigen; however, immortalisation is necessary but not sufficient for transformation 

(Schippers et al., 1997). Furthermore, there is no evidence that SV40 is related to human liver 

cancer (Strickler et al., 1998). A comprehensive review describing all possible techniques of 

immortalisation has been published (Ramboer et al., 2014). 
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2.6.7 Experimental animal models of hepatocarcinogenesis  

 

The multi-factorial and multi-step nature of cancer development makes analysis difficult when 

using cell cultures, since the interaction between neoplastic cells and the surrounding 

microenvironment may be lost. 

There are three model systems currently used for the study of HCC in mice and rats that allow 

all these steps to be investigated: chemically induced, genetically engineered and xenograft 

models. HCC models in use generally combine two or more model types as liver injuries 

generally synergise. 

Mice with a humanised liver also represent a valuable tool for the study of viral infection as 

well as hepatocarcinogenesis and a brief description of the different models is provided below. 

Viral animal models have been used to investigate the different steps of viral induced 

hepatocarcinogenesis even though mice cannot be naturaly infected with HBV due to the 

narrow host range of HBV and the absence of a proper cellular receptor and other factors 

necessary for HBV infection and replication. 

Transgenic mouse models carrying the HBV genome have been proposed as an alternative. 

However, this model is not adapted for studying HBV-induced HCC as no cccDNA has been 

detected in the animals’ liver, the viruses produced by the transgenic liver cannot re-infect 

hepatocytes and these animals do not develop hepatitis. Nevertheless, viral HBV particles have 

been detected in the blood of HBV transgenic and resemble those purified from HBV-infected 

patients. These observations suggest that the molecular mechanisms regulating the synthesis 

of HBV transcripts and proteins, as well as the viral package and viral secretion, are probably 

shared in human and mouse hepatocytes and this model could be used to evaluate the 

therapeutic efficiency of agents against viral replication. Currently the chimpanzee and tupaia 

are the only animal models that can be infected by HBV. 

Transgenic mice expressing the HBV surface protein were the earliest HBV-related transgenic 

mice to be created (Ng and Lee, 2011; Yamazaki et al., 2008). In the 1980s, Chisari’s group 

developed the first transgenic mouse model expressing the HBsAg. This led to severe chronic 

injury, accompanied by inflammation and regenerative hyperplasia, finally leading to HCC 

(Chisari et al., 1989). However, this model may not fully reflect the changes brought about by 

HBV infection as the phenotype observed could be due to HBsAg accumulating in hepatocytes. 

A second HBV viral protein, HBx, has also been shown to have carcinogenic potential: HBx 

transgenic mice develop HCC and HBx expression induces hepatocyte proliferation, 
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contributing to hepatocarcinogenesis (Kim et al., 1991; Koike et al., 1994, 1998). In this model 

system, cell proliferation is not the early event preceding HCC, but proliferative nodules are 

observed before the onset of HCC (Kim et al., 1991). Since HBx has been described to 

contribute to altered cellular gene regulation, this property could predispose to malignant 

process.  

In contrast to the limitations of HBV mouse models, results obtained with HCV transgenic mice 

proved to be much more fructuous, notably regarding the HCV- induced fibrosis present in 

HCV-infected patients. Mice expressing the complete HCV viral genome develop steatosis and 

finally HCC with immunological reactions (Lerat et al., 2002). HCV core transgenic mice develop 

steatosis from the age of 3 months and about 25% of them developed HCC in their later life, 

demonstrating the direct role of HCV core protein in hepatocarcinogenesis, probably due to 

underlying steatosis (Moriya et al., 1998). 

Genetically engineered animal models (GEMs) including transgenic, knock-out and 

knock-in mice, are valuable tools to elucidate the molecular mechanisms related to 

pathogenesis, including carcinogenesis in the liver. They have also been shown to be very 

useful to evaluate potential chemopreventive agents and new therapeutic targets under 

physiological conditions. GEM models are developed by gene targeting providing knock-out 

models for genes thought to act as tumour suppressors or via loss-of-function studies, as well 

as knock-in models useful for the study of putative oncogenes. Conditional GEMs obtained by 

the use of site-specific recombinase systems are useful to control the spatio-temporal gene 

expression (Frese and Tuveson, 2007). Despite the fact that the precise genetic events 

contributing to HCC remain elusive, several commonly deregulated pathways have been 

explored in the development of GEM models such as p53, RB or Wnt/ -catenin (Leenders et 

al., 2008). The transgenic SV40TAg model has also been widely employed. Large T antigen is 

responsible for the inactivation of the tumour suppressors p53 and Rb. c-Myc liver-specific 

expression has also been used to induce HCC in mice, since its deregulation and coexpression 

with transforming growth factor alpha (TGF- ) are frequent in primary liver tumours (Leenders 

et al., 2008; Murakami et al., 1993). The synergistic effect of c-myc/TGF-  on neoplastic 

development has been demonstrated thanks to the development of a transgenic model 

expressing these two factors (Santoni-Rugiu et al., 1996). The team of Geller and collaborators 

proposed an in vivo mouse model of HCC induced by α1-antitrypsin deficiency (Geller et al., 

1994). These animals expressed high levels of the Z mutant of human 1-antitrypsin in 

hepatocytes. The gene product cannot be efficiently transported outside cells into the serum 
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thus accumulating in hepatocytes and causing 1-antitrypsin deficiency. The carcinogenesis is 

due to the toxicity of the accumulated protein. 

Chemically-induced models of hepatocarcinogenesis are obtained by exposing animals 

to carcinogenic compounds. Carcinogens roughly divide into genotoxic (or direct acting) 

compounds that act as cancer initiators that modify the cells’ DNA and non-genotoxic 

compounds that act as promoting agents, with no direct interaction with DNA and displaying 

intricate mechanisms favouring carcinogenesis. Several carcinogens have been shown to 

induce liver tumours in mice, among which the more commonly used will be described here. 

DEN (Diethylnitrosamine) is the most extensively used genotoxic agent for the chemical 

induction of HCC, causing hepatocyte DNA damage (Ellinger-Ziegelbauer et al., 2009). 

Generally, liver tumours appear within a year but the younger mice are at the time of 

exposure, the faster the HCC occurs because of the high hepatocyte proliferation rates of 

juvenile animals (Anilkumar et al., 1995). Mouse DEN-induced HCC often present with 

activating mutations of the H-RAS proto-oncogene (Aydinlik et al., 2001; Peraino et al., 1984). 

Carbon-tetra-chloride (CCl4) has been used for over 60 years to induce free radical-induced 

liver injury in rodents evolving into liver tumours (Avasarala et al., 2006; Recknagel, 1967). The 

mechanism is related to free radical production, affecting the cell membrane integrity and 

disturbing cell energy processes and protein synthesis (Avasarala et al., 2006; Heindryckx et al., 

2009). In this model, liver inflammatory responses have been described, probably due to 

activated Kupffer and stellate cells, cytokines and proinflammatory factors release and 

activation and recruitment of monocytes, neutrophils and lymphocytes. Phenobarbital (PB) is 

used in combination with DEN to induce HCC in two stages. After administration of a genotoxic 

agent such as DEN, phenobarbital can produce a 5-fold increase in HCC development (McGlynn 

et al., 2003). 

Metabolic injury is another method frequently employed to induce liver cancer in 

mice. Administration of a choline deficient diet induces steatohepatitis followed by fibrosis and 

cirrhosis in mice and rats. Animals develop HCC in about 50 weeks. Choline is essential for 

hepatic beta-oxidation and the production of very low density lipoproteins (VLDL). Deficiency 

of choline leads to hepatic lipid accumulation and steatohepatitis, representing the pathology 

of human non-alcoholic steatohepatitis (NASH) (Kang et al., 2008). High Fat Diet (HFD) has also 

been used to promote HCC in mice, but it seems that this model presents a sex bias since 

males in overweight have a 4.52-fold increase in HCC risk (Chilakapati et al., 2005). HFD models 

were developed to mimic fatty liver disease characterised by accumulation of fat inclusions in 
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liver cells, plus tissue reorganisation leading to fibrotic remodelling. It seems that this is due to 

ROS accumulation driving liver damage and HCC and it is associated with low grade 

inflammatory response. 

Patient derived xenografts (PDX) are obtained by engraftment of tumour tissue 

coming directly from patients into immunodeficient animals. This method allows the intra-

tumour and inter-tumours heterogeneity barrier observed during the screening of new 

anticancer drugs and fundamental studies on the biology of the disease to be overcome. To 

obtain a transplantable model, immunodeficient animals can be used to avoid graft rejection. 

The most often used mouse strains are nude (nu/nu) athymic mice and SCID (scid/scid) mice 

with severe combined immunodeficient mice—that is, T-cell deficient and B + T-cell deficient 

(Ito et al., 2002; Morton and Houghton, 2007; Shultz et al., 2005). The models are established 

by the implantation of fragments of human tumours either under the skin (ectopic) or into the 

organ of tumour origin (orthotopic). The implants consist of small fragments of intact tumour 

tissue or rough tissue digestions. To reproduce the tumour microenvironment and organ 

tropism, an orthotopic model is better than the ectopic model but these former models are 

more technically challenging. Orthotopic implantation is better suited for studying metastases 

(Fu et al., 1992). For increased orthotopic engraftment efficiency, the initial implantation can 

be done subcutaneously and once grown, the tumour may then be digested and orthotopically 

transplanted into subsequent generations of mice. PDX models retain the principal 

characteristics of donor tumours, including histological patterns of differentiation, microscopic 

organisation and staining of marker, as well as molecular features such as gene expression and 

mutational status (Ding et al., 2010; Kresse et al., 2012). Studies have showed a high degree of 

correlation between clinical response to targeted and conventional chemotherapy in patients 

with cancer and the responses to the same agent in the PDX models generated from these 

patients (Fiebig et al., 1985; Houghton et al., 1982; Keysar et al., 2013; Rubio-Viqueira et al., 

2006). 

In basic research, PDX models are extremely useful to study cancer biology, the cellular 

processes involved in cancer cell initiation and proliferation including the involvement of 

cancer stem cells, as well as the metastatic process (Giuliano et al., 2015; Kreso et al., 2013; 

Lawson et al., 2015; Marusyk et al., 2014; Singh et al., 2004; Torphy et al., 2014; Wang et al., 

2007; Williams et al., 2015). In preclinical cancer research PDX models are extremely useful for 

the identification of novel cancer markers, screening of potential new drugs and drug 

combinations, antibody testing and for evaluating the anticancer activity of microorganisms 

(Allen et al., 2013; Berghauser Pont et al., 2015; Chao et al., 2010; Deng et al., 2016; Goel et al., 



 Patricia Gifu thesis 
 

70 
 

2016; Ham et al., 2016; Kurtova et al., 2015; Li et al., 2013; Martin et al., 2016; Prahallad et al., 

2012; Siu et al., 2013; Vora et al., 2014; Wang et al., 2016b; Wei et al., 2016; Zhao and 

Subramanian, 2017). 

Unfortunatly, hepatocellular tumours have very low engraftment efficiency in 

immunodeficient mice and only a few human HCC derived PDX models have been described 

(Cheung et al., 2016; Gu et al., 2015; Reiberger et al., 2015). 

 

 

Figure 17 Overview of the methodology to establish PDX models and their uses in cancer research. 
Tumours from cancer patients (P0) are transplanted into immunodeficient mice (P1) for engraftment. 
Once grown, tumours are transplanted into secondary recipients (P2) for tumour expansion. The 
expanded tumours can then be cryopreserved or transplanted into P3 mice for experiments and model 
characterisation. Tumours can be transplanted in sites other than that the tumours are derived, called 
heterotopic transplantation or in the corresponding sites of the tumours which is called orthotopic 
transplantation. The successfully established PDX models are used both in basic and preclinical cancer 
research. (Lai et al., 2017) 

 

 Chimeric mice with humanised liver are obtained by partially decellularizing mouse 

liver and repopulating it with human hepatocytes. A 70% decellularisation of the liver is 

achieved in immunodeficient mice that overexpress the cytotoxic urokinase-type plasminogen 

activator (uPA) or alternatively, with a knock-out of the fumarylacetoacetate hydrolase (Fah) 

gene (Azuma et al., 2007; Dandri et al., 2001; Mercer et al., 2001). The injected hepatocytes 

commonly consist of differentiated hepatocytes obtained from resected livers or hepatocytes 

obtained by directed differentiation of induced pluripotent human stem cells. Decellularised 

murine liver provides the donor-derived hepatocytes a niche for engraftment and the 
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regenerative stimulus to promote proliferation of the donor cells in the mouse liver. The level 

of liver humanisation is defined by the level of human serum albumin. These models are 

particularly useful for the study of viro-induced HCC. 

 

2.7. Hepatic cancer stem cells 

 

Tumours are composed of anarchically proliferating cancer cells displaying high morphological 

and functional heterogeneity. Two hypotheses have been proposed to explain cancer cell 

origin and the intratumour heterogeneity (Figure 18). According to the stochastic theory, all 

cells inside a tumour have the same tumourigenic potential, have evolved through hazardous 

oncogenic events, and have equal tumourigenic capacities. The hierarchical theory states that 

cells follow an established hierarchy depending on their potential to initiate and sustain 

tumour growth so that cells at the top of the hierarchy, called cancer stem cells (CSCs) or 

tumour initiating cells (TICs) are the most tumourigenic with stem features. Cells down the 

hierarchy are more differentiated and less aggressive. The hierarchical model explains the 

heterogeneity observed within many clonally derived tumours including liver cancer (Bonnet 

and Dick, 1997; Campbell and Polyak, 2007; Clarke et al., 2006; Nowell, 1976; Reya et al., 

2001). 

 

 

Figure 18. Stochastic and hierarchical theories in cancer. A. All cancer cells have the capacity to 
proliferate extensively and form new tumours. B. Only the cancer stem cell subset (CSC; yellow) has the 
ability to proliferate extensively and form new tumours. (Reya et al., 2001) 

 

Similar to normal stem cells, CSCs detain two extraordinary features: self-renewal and 

generation of heterogeneous cancer cells lineages constituting the tumour. Contrary to cancer 
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bulk cells, a very small number of CSCs is sufficient to form xenografts in immunodeficient 

mice. 

Cancer stem cells were first identified in hematological cancers and isolated thanks to surface 

markers. The first CSCs signature described was CD34+CD38- surface markers (Lapidot et al., 

1994). In solid tumours, CSCs existence was confirmed a little later and were first isolated in 

2003 from breast tumours thanks to a CD44+CD24- signature. Since, CSCs have been isolated 

from tumours originating from diverse organs. 

At present, CSCs can be identified and isolated by surface markers and functional assays. In 

solid tumours they are positive for several markers such as CD133, EpCAM, CD44, CD90, CD24, 

ALDH1 enhanced activity (aldehyde dehydrogenase is a metabolic enzyme responsible for cell 

detoxification) and ABCB5. Also, dye exclusion assays allow the identification of a cell side 

population corresponding to CSCs (Hermann et al., 2007; Monzani et al., 2007; O’Brien et al., 

2007; Singh et al., 2004). Indeed, CSCs possess very efficient efflux pumps that eliminate 

foreign substances. Functional assays allow the identification of the presence of CSCs in a 

cancer cell population. Unlike bulk cells, CSCs are able to develop in non-adherent conditions 

and in absence of nutriments, and after 3 to 15 days they form spheroids. Spheroids are 

thought to originate from a single cancer stem cell and to contain cancer progenitor cells at 

several stages of engagement towards cancer lineages.  Another functional assay consists of 

determining the clonogenic potential of cells. This assay, first described by Barrandon and 

Green for normal skin stem cells, has been translated to CSCs later.  It allows the identification 

of three types of single cell-derived clones when in vitro culturing a heterogeneous population 

of epithelial cells: 

- Holoclones are formed of cells with the highest proliferative potential. These colonies 

are big, with a regular shape, almost circular and cells on the borders are small. 

Holoclones are generated from stem cells. 

- Meroclones are intermediary clones between holoclones and paraclones. They have 

an irregular contour suggesting some extent of heterogeneity inside the colony. They 

are thought to contain cells with a regenerative in vivo potential in response to acute 

injury. They are generated from an early progenitor. 

- Paraclones are formed of cells with a limited proliferation potential which stop 

growing after a few replication cycles (not more than 15 cell cycles). These colonies are 

generally the smallest, with an irregular shape, containing large and flattened cells. 

They are generated from a late progenitor. 
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In HCC, CSCs or T-ICs are thought to be responsible for initiation, progression and relapse, 

resistance to therapy and metastasis formation (Figure 19) (Ding and Wu, 2015).  

As assessed by dye exclusion, CSCs possess efflux pumps, explaining their multidrug resistance. 

Another reason explaining their drug resistance is that cancer stem cells are quiescent cells 

that are dormant when the tumour niche is intact. Several drugs target proliferative cells 

therefore leaving CSCs untouched. Consequently, only bulk cells are eliminated upon 

treatment and CSCs are activated in response to tumour cell mass loss. CSCs can rapidly 

reconstitute the initial tumour leading to relapse post-treatment. 

 

 

Figure 19. Cancer stem cells (in red) are resistant to conventional therapies and can regenerate the 
primary tumour. Only the use of drugs targeting CSCs (in orange) could result in the complete 
eradication of the tumour (Reya et al., 2001) 

 

Numerous publications suggest that CSCs may be involved in liver cancer and participate to the 

aggressiveness of the disease. Chiba and collaborators first identified identified a small HCC 

CSCs population called the side population by dye exclusion using Hoechst 33342 and 

propidium iodide. CSCs markers previously identified in other types of tumour have also been 

shown to be specific to HCC CSCs, namely CD133, CD90, EpCAM, CD44, OV6 (Figure 20) (Ma et 

al., 2007; Yamashita et al., 2009; Yang et al., 2008b, 2008c; Yin et al., 2007; Zhu et al., 2010, 

2010). 
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Figure 20. Liver CSC surface markers identified to date. (Cheng et al., 2016) 

 

Until now the origin of these cells has not been elucidated (Figure 21). They could 

hypothetically derive from stem, progenitor or differentiated hepatic cells. Several studies 

suggest that normal stem/progenitor cells accumulate transforming events which convert 

them into cancer stem cells able to generate tumours (Zhu et al., 2009). In a same manner, it 

has been shown that granulocyte macrophage progenitors can generate leukemic stem cells 

(Krivtsov et al., 2006). 

 

 

Figure 21. Liver CSCs origin. Oncogenic events in different hepatic cells can induce cancer stem cell 
phenotype and initiation of liver cancer. (Anfuso et al., 2015) 
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In HCC, the role played by liver progenitor cells (LPCs) during hepatocarcinogenesis is still 

under debate. It has been described that LPC proliferation is correlated to the severity of the 

disease and therefore, to the risk of HCC development during chronic liver disease and 

precancerous conditions such as chronic inflammation (Hsia et al., 1992, 1994; Lowes et al., 

1999; Roskams and Desmet, 1998). Several mouse HCC models indicate that CSCs arise from 

LPC forming tumours with gene expression profiles resembling that of hepatoblasts (precursor 

of epithelial liver cells) (Becker et al., 1996; Dumble et al., 2002; Fang et al., 2004; Gordon et 

al., 2000; Knight et al., 2000, 2008; Yaswen et al., 1985). However, in DEN-induced HCC in 

mice,  it is widely accepted that HCC induced by this carcinogen develops from hepatocytes 

(Scherer et al., 1972). Indeed, LPC proliferation is very rare in this model and does not explain 

the emergence of liver tumours. A large number of human HCC expresses LPC (CK19, OV6) or 

embryonic (AFP) markers and are formed of cancer cells with bipotent properties expressing 

both hepatocyte and biliary markers (albumin, CK7, CK19) (Durnez et al., 2006; Roskams, 

2006). The presence of these markers is associated with poor prognosis and suggests a 

progenitor origin of HCC (Wu et al., 1999). 

Pathways contributing to the emergence and maintenance of CSCs are shared by normal stem 

cells including Bmi-1, Wnt/  -catenin, Notch and Sonic Hedgehog signalling (Chiba et al., 2007; 

Dontu et al., 2003; Kasper et al., 2006; Wong et al., 2008, 2008). Bmi-1 has been shown to 

regulate stem cell renewal in tissue (Iwama et al., 2004). Bmi-1 has been observed to be 

frequently overexpressed in primary HCC  and ectopic expression of Bmi-1 in liver progenitor 

cells results in the development of poorly differentiated liver tumours in vivo (Chiba et al., 

2007; Wang et al., 2008). 

Wnt/ -catenin has been described to play a critical role on stem cell proliferation during an 

organ’s development as well as during regeneration. Similar to Bmi-1, constitutive activation of 

the pathway enhances self renewal and promotes cancer initiation (Chiba et al., 2007). 

The Notch pathway is important in the regulation of stem cells self-renewal and differentiation 

but plays a double role in cancer depending on the cell context (Reya et al., 2001). Activation 

of Notch seems to stop the growth of hepatocellular tumours, whereas cohort studies have 

shown that it is constitutively activated in this disease (Ning et al., 2009). Activation of the 

pathway participates to the maintenance of CSCs whereas its inhibition depletes this cell sub-

population (Fan et al., 2010).  

Recent publications show that Sonic Hedgehog pathway regulates the self-renewal ability of 

CSCs implicated in several types of cancer, such as breast cancer, glioma and multiple 

myeloma (Clement et al., 2007; Dierks et al., 2007; Liu et al., 2006a). Although the role of Sonic 
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HH pathway has not been extensively investigated in liver CSCs, this pathway has been 

reported to be activated in HCC (Sicklick et al., 2006).  

 

2.8. HCC therapies 

 

Patient’s prognosis strongly depends upon the condition of his/her liver at the time of HCC 

diagnosis.  

Staging. As in all patients with cancer, staging is crucial before deciding any treatment. Since 

more than 90% of HCC patients have an extensive underlying liver disease, careful staging 

must also be performed to avoid cancer treatment that damages the surrounding liver. In the 

last 50 years several systems have been proposed to stage liver disease with or without HCC. 

The Barcelona Clinic Liver Classification (BCLC) system established in 1999, with a few 

modifications is the most frequently used (Llovet et al., 1999b). This is due to the fact that, 

besides the tumour burden (size and number of nodules), the stage of liver cirrhosis, the liver 

function and the physical condition are also taken into consideration for the choice of 

treatment (Figure 22). Some authors have proposed that the staging system can be improved 

by introducing tumour biomarkers, such as the level of -fetoprotein in serum and 

pathological features like microvascular invasion and tumour differentiation (Forner et al., 

2012; Roayaie et al., 2009). 
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Figure 22. Barcelona-Clinic Liver Cancer (BCLC) staging classification and treatment schedule. (European 
Association for the Study of the Liver, 2012) 

 

HCC is considered as a chemorefractory tumour. Moreover, underlying cirrhosis and impaired 

liver function can affect the schedule of administration and efficiency of chemotherapeutic 

agents. Response rates achieved with single agents and combination chemotherapies do not 

exceed 10%-20% in most studies, and an encouraging survival benefit has thus far not been 

shown. 

Despite recent advances in therapeutic approaches for treating HCC, this type of cancer is still 

associated with a poor survival mainly due to late diagnosis, the 5-year overall survival 

remaining as low as 18% (Kulik and Chokechanachaisakul, 2015).  

Patients with good liver functions (Child A or Child B) can benefit from curative treatments, 

descrbed below, whereas those with bad liver functions (strong cirrhosis, fibrosis 

steatohepatitis) can only benefit from systemic chemotherapy. 

Targeted molecular therapies have significantly improved cancer treatment in general. The 

only drug that has shown significant benefit in advanced HCC patients is the multikinase 

inhibitor Sorafenib which prolongs patients overall survival with a median time of three 

months (SHARP trial) (Llovet et al., 2008). It inhibits BRaf et CRaF serine/threonine kinases, 

VEGFR (vascular endothelial growth factors receptors)-1/2/3 and PDGFR (platelet-derived 

growth factor receptors)-α/β. The improved patients survival in the Sorafenib group is mainly 

linked to tumour growth stabilisation, since patients in this group show an ORR (objective 
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response rate) of only 2%, compared to 1% in the control group (p=0.05). This year, following 

the RESORCE trial results, the FDA approved the multikinase inhibitor Regorafenib (STIVARGA, 

Bayer HealthCare Pharmaceuticals Inc.) as a second line treatment for patients progressing on 

Sorafenib (Figure 23) (Bruix et al., 2017). 

 

 

Figure 23. Targeted therapies in HCC treatment. Survival curves of patients enrolled in the SHARP trial 
for Sorafenib evaluation as a first line treatment (A) and in the RESORCE trial for Regorafenib evaluation 
a second line treatment (B). (Llovet et al., 2008, Bruix et al., 2017) 

 

Contrary to what has been expected initially, clinical trials with other antiangiogenic tyrosine-

kinase inhibitors (TKIs) failed to show an equivalent or superior antitumour response to 

Sorafenib (Llovet and Hernandez-Gea, 2014). Other molecules targeting other signalling 

pathways are currently under evaluation. 

Liver transplantation is widely considered as the only real potentially curative approach that 

provides treatment of both HCC and the underlying liver cirrhosis. 70% of transplanted 

patients for HCC are alive after 5 years. Unfortunately, only a minority of patients can undergo 

liver transplantation even when it is indicated. The number of donors is largely insufficient to 

cope with the worldwide need and the shortage of organs makes waiting lists longer each day 

in every country. Many patients become unsuitable for transplantation or die while awaiting 

transplant. Patients with early or very early unresectable HCC and liver cirrhosis with good liver 

reserve function (Child Pugh A) (stage 0 or A according to the BCLC system) are excellent 

candidates for liver transplant. Another problem with liver transplant resides in HBV and HCV 

chronic infections. HCV infects several sanctuaries of the body and thus, transplanted patients 

treated with immunosuppressive drugs can develop infection relapse. Moreover, reactivation 

of HBV infection has been reported in patients upon treatment with these new anti-HCV drugs 

and the issue is still open to possible surprises (Takayama et al., 2016). 
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Tumour resection is the other surgical option for HCC  treatment (Pang and Lam, 2015; 

Ramesh, 2014). Recurrence of HCC is quite common (70% to 100% within five years) and 

patients may develop liver failure after large resection (Llovet, 2005; Schwartz et al., 2007). 

Liver resection does not treat the underlying cirrhosis that is a pre-neoplastic lesion and this 

therapeutic option is too risky for patients with advanced HCC and/or liver disease (stage C 

according to the BCLC). Liver resection has some advantages over transplantation (organ 

saving, costs, expertise, etc.) and in addition leaves open the possibility of later 

transplantation, thus allowing many patients to gain time. 

Tumour ablation performed using different techniques can be used in patients where surgery 

is not possible or too risky. Percutaneous ethanol injection (PEI) was the first to be used in 

patients with small HCC lesion(s) (< 3 cm diameter). Excellent results have been observed with 

a recurrence rate at 5 years similar to that resection. PEI consists in injecting ethanol inside the 

tumour mass to cause coagulative necrosis of all neoplastic nodules. PEI has been the most 

successful technique in treating small (less than 3 cm diameter) HCC nodules. It is easy, 

inexpensive, requires minimal equipment and expertise, and has been shown to prolong 

survival of these patients to the same extent as surgery. PEI can be used in patients with more 

than one nodule, usually no more than 3, and because it can easily be repeated on the already 

treated nodule, offers patients a simple and inexpensive treatment of their disease. 

Transarterial embolization (TAE) and transarterial chemoembolization (TACE) are used to 

embolize the artery feeding the HCC and can be employed in patients where surgery is not an 

option. Necrosis of the tumour is rarely complete because tumour angiogenesis forms 

brunches of new small vessels that feed the cancer nodule. In addition, in many cases 

significant blood supply comes from portal blood and the liver cancer cells are ischemia 

resistant (Lv et al., 2015; Peng et al., 2006). This procedure is largely used for downstaging 

patients on the waiting list for liver transplantation because it leads to tumour shrinkage or 

growth arrest. In the last 10 years, the procedure has been improved thanks to radio-labelled 

microspheres or embolizing beads that carry anticancer agents such as doxorubicin or 

cisplatin. 
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III. The role of the p53 family member p73 in cancer 
 

TP53 gene has been identified in 1979 and until 1997 was considered as an orphan gene. It 

was only in 1997 that two other paralogues genes, TP63 and TP73, were identified and the 

notion of a p53 family was proposed (Kaghad et al., 1997; Schmale and Bamberger, 1997). 

These three genes have a strong sequence homology, suggesting they are derived from the 

same ancestral gene (Figure 24). The most primitive organisms with paralogs of p53/63/73 

family member genes are the single-cell choanoflagellates and the sea anemone. During 

evolution, the ancestral gene could have undergone successive duplications leading to TP63 

and TP73, and to TP53. The simultaneous presence of the three paralogs has only been 

observed in the evolutionary tree since bony fishes (Belyi et al., 2010). 

 

 

Figure 24. The p53 family. The overall domain structure is conserved between p53, p63 and p73. 
(Melino et al., 2002).  

 

TP53 encodes for the tumour suppressor p53, also known as the ‘guardian of the genome’ 

because of its protecting role against genetic alterations and thus cancer initiation. It is 

ubiquitously expressed.  The p53 protein acts as a transcription factor regulating genes 

involved in cell cycle arrest, apoptosis, DNA damage response, cell metabolism and several 

other mechanisms. Pathways associated to p53 are mainly activated in response to an 

oncogenic stress and the TP53 gene is frequently inactivated in cancer. 

TP63 and TP73 expression is tissue specific and the encoded proteins play specific roles in 

response to stress and in the control of specific physiological functions in the nervous tissue 

and various epithelia. 
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3.1. TP73 gene 

 

In humans, the TP73 gene is 80kb long and is composed of 15 exons, sharing more than 60% of 

sequence homology with TP53 in the DNA-binding domain (DBD). TP73 gene is located in the 

short arm of chromosome 1 (1p36), a region frequently exposed to chromosomal 

rearrangement in neuroblastoma (Kaghad et al., 1997; Yang et al., 2000). It encodes for 

multiple transcript isoforms, the longest one containing 636 aminoacids. In relation of the 

protein structure, the exons 2 and 3 encode for the transactivation domain, exons 4 to 11 

encode for the DNA binding domain and the last exons, 12 to 14 encode for the C-terminal 

domain. TP73 has two promoters, called P1 and P2, one of which is internal (P2). This second 

promoter P2 is situated in the exon 3’, positioned right after the exon 3 (Figure 25Error! 

eference source not found.). 

 

 

Figure 25. TP73 gene. The different N-terminal spliced isoforms and protein domains positions are 
shown in A. The structure of the TP73 gene and transcripts is depicted in B. The TP73 gene is composed 
of 14 exons plus a 15th one, called exon 3’, inside the intron 3. Sites of alternative splicing are shown 
below the concerned exons. Note the binding of E2F on P1 promoter upstream exon 1 and the 
activation of ΔNp73 expression by binding of p53 or TAp73 on P2 promoter upstream exon3’. (Rufini et 
al., 2011) 

 

TP73 expression is modulated through epigenetic mechanisms as well as promoter activation. 

TP73 P1 promoter hypermethylation and consequently loss of gene expression has been 
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mainly described in haematological malignancies (Zawacka-Pankau et al., 2010). TP73 P1 

promoter contains at least three E2F-binding sites and E2F1-deficient cells have undetectable 

basal TAp73 expression at both protein and mRNA levels (Urist et al., 2004). 

TP73 gene expression is regulated through the activation of both the conventional and internal 

promoters. The P1 promoter is activated by transcription factors such as E2F1 and c-myc (Irwin 

et al., 2000; Lissy et al., 2000; Ozaki and Nakagawara, 2005; Stiewe and Pützer, 2000; Zaika et 

al., 2001). Furthermore, MDM2, the main modulator of the p53 intracellular level, has been 

reported to synergistically cooperate with E2F1 in P1 transactivation (Kasim et al., 2014). The 

P2 promoter contains TAp73 and p53 responsive elements (Buhlmann and Pützer, 2008). This 

generates a negative feedback loop where TAp73 activates the transcription of the Np73 

isoform which in turn acts as a dominant negative of TAp73. Post-translational modifications of 

E2F1 modulate the activity of the P1 promoter. Phosphorylation by Chk1/2 and acetylation by 

histone acetyl-transferase PCAF (P300/CBP-associated factor) positively modify E2F1 activity 

while E2F1 deacetylation by NAD-dependent deacetylase sirtuin-1 leads to the inhibition of 

TAp73 transcription (Bisso et al., 2011). ZEB1 acts as a repressor on the transactivation 

function of E2F1 of the TP73 P1 promoter. It binds within the regulatory region located in the 

first intron of TP73 and attenuates the activity of E2F1 on the TP73 promoter (Zawacka-Pankau 

et al., 2010). Hypermethylation within this particular region decreases ZEB affinity and shows 

increased expression of TAp73 isoforms (Rufini et al., 2011). 

 

3.2. Protein Biochemistry 

 

TP73 expression leads to the synthesis of several isoforms due to alternative promoter and 

alternative splicing. Alternative splicing has been described at the 5’ terminus, affecting exons 

encoding for the N-terminal transactivation domain as well as the 3’ end encoding for the C-

terminal oligomerisation domain. Based on their cell functionality, p73 isoforms can be divided 

into two categories (Figure 25): 

- full length variants (TAp73), synthesised from the entire TP73 coding sequence. They 

have an intact fully functional transactivation domain. 

- and N-terminal truncated variants ( TAp73) lacking the transactivation domain. 

Truncated isoforms originate from differential splicing events at the 5’-end of P1-
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derived transcripts ( Exon2p73, Exon2/3p73 and N’p73 isoforms), as well as the 

activation of the internal promoter within the intron 3’, giving rise to Np73 isoform. 

The N’p73 isoform is obtained by activation of the P1 promoter but the exon 3’sequence is 

aberrantly integrated into the mRNA. This inclusion generates a premature ‘stop’ codon in the 

open reading frame and the translation begins at the start codon corresponding to the second 

promoter leading to the synthesis of a protein that is indistinguishable from the Np73 protein 

generated from the alternative promoter. Therefore, Np73 and N’p73 transcripts encode 

the same protein and can only be distinguished at the mRNA and not at the protein level. 

The organization of the TAp73 functional domains is similar to that of p53: an N-terminal 

transactivation domain (TA), a central DNA binding domain (DBD) and a C-terminal domain. 

The DNA binding domain shows the highest degree of homology between p53 and p73 

suggesting that they can bind to the same DNA sequence and regulate the same gene 

promoters. The transactivation domain is responsible for initiating target gene transcription 

and can bind proteins such as transcriptional adaptors or coactivators. The C-terminal domain 

contains a C-terminal oligomerisation domain (OD), a sterile alpha motif (SAM), not found on 

p53, and a transactivation-inhibitory domain (TID). 

Generally, truncated isoforms TAp73 do not have a transactivation activity, the exception 

being the Np73 isoform. In this isoform the N-terminal region is composed of 14 aminoacids, 

encoded from the 3’ exon, upstream of the DNA-binding domain. These 14 aminoacids are 

specific to Np73 and have been suggested to participate to the gain of function of this 

isoform (discussed below). 

Alternative splicing at the 5’ end of TP73 RNA leads to isoforms with or without a 

transactivation activity. Alternative splicing at the 3’ end generates several C-terminal 

isoforms, called  , , ,   and but little is known about their different activities (De 

Laurenzi et al., 1999; Kaghad et al., 1997; Laurenzi et al., 1998). C-terminal isoforms with the 

SAM domain are expected to interact with proteins during the embryonic development, 

isoforms devoid of the TID to exhibit a better transactivating activity, if they possess the N-

terminal TA domain. 

In order to exert their activity, p73 proteins form dimers thanks to the C-terminal domain. The 

dimers bind together to form tetramers. Since they share the same OD, full-length isoforms 

can bind and tetramerise with the truncated isoforms. 
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Nuclear localisation is tightly regulated because of the ability of p73 to act as a transcription 

factor. The nuclear localization signal (NLS) and the nuclear export signal (NES) sequences are 

present within the p73 C-terminal region. 

Post-translational modifications. Numerous post-translational modifications of p73 protein 

have been described (Figure 26). In normal conditions during the cell cycle, TAp73 

transcriptional activity is abrogated due to Thr86 phosphorylation by the cyclin A-CDK1/2, 

cyclin B-CDK1/2 and cyclin E–CDK2 complexes (Gaiddon et al., 2003). Following DNA damage, 

the cell cycle checkpoint kinases Chk1 and Chk2 phosphorylate TAp73 at Ser-47 which converts 

it into an active form (Urist et al., 2004). In damaged cells, TAp73 is also phosphorylated at the 

PxxP motif located in the C-terminus of the OD (Ben-Yehoyada et al., 2003). c-Abl 

phosphorylates and stabilizes TAp73 isoforms, probably favouring their antiapoptotic roles. 

Following phosphorylation, TAp73 interacts with PIN1 which changes p73 conformation 

allowing p300 acetylation (Mantovani et al., 2004). Acetylation of TAp73 at Lys-321, Lys- 327, 

and Lys-331 is required for full transcriptional activity and is a key event in the decision of p73 

to promote apoptosis instead of cell cycle arrest since nonacetylated p73 fails to selectively 

transactivate proapoptotic target genes (Ozaki et al., 2005). Yes-associated protein (YAP) has 

also been shown to mediate p73 acetylation and trigger p73-dependent apoptosis in response 

to DNA damage. However, the impact of acetylation in TAp73 isoforms is complex and the 

results are not as clear as those for TAp73 (Marabese et al., 2007). 

 

 

Figure 26. Post translational modifications of p73. (Conforti et al., 2012) 

 

Degradation. Under normal cellular conditions TAp73 undergoes proteasomal degradation by 

binding with the E3 ubiquitin ligase ITCH. In case of DNA damage, ITCH expression is down-
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regulated and non-degraded TAp73 accumulates inside the cell (Rossi et al., 2005). N4BP1 and 

YAP1, have the same ITCH-binding motif as TAp73 and compete for the occupation of the 

binding site, increasing the amount of non-ubiquitinated TAp73. Sumoylation of p73 at the C-

terminus SAM domain increases the proteasomal degradation efficiency. Sumoylation at Lys-

627 by small ubiquitin-like modifier (SUMO) proteins occurs specifically in p73α, but not in 

p73β, due to the lack of the sumoylation domain and leads to the inability of p73α to 

transactivate BAX and WAF1 gene promoters. 

Contrary to the p53-MDM2 interactions that leads to ubiquitination and proteolytic 

degradation of both proteins, MDM2-p73 interactions stabilize p73 (Conforti et al., 2012). 

However, MDM2 is transcriptionally activated by p73 and in turn MDM2 competes with 

p300/CBP for p73 binding. Thus, overexpression of MDM2 results in the loss of p73 

transcriptional activity, generating a negative feedback loop. . The U-box-type E3/E4 ubiquitin 

ligase UFD2a promotes the ubiquitination-independent proteasomal degradation of p73 , but 

not of p73 , by interacting with the SAM domain. NQO1 is another regulator of TAp73 

ubiquitination-independent degradation. It acts as a gatekeeper of the 20S proteasome and 

following irradiation, it binds TAp73 in an NADH-dependent manner and protects it from 20S 

proteasomal degradation (Asher et al., 2005). Another protein that interacts directly with 

TAp73 protein and stabilises it is the histone deacetylase 1 (HDAC1). After DNA damage, 

HDAC1 triggers the interaction between Hsp90 and TAp73 and further stabilisation of the 

protein. Hyperacetylation of Hsp90 disrupts the complex formed with TAp73 and free TAp73 is 

subsequently degraded (Zhang et al., 2013a). 

 

3.3. p73 functions in cancer 

 

In addition to sharing several similarities with p53, p73 also exhibits specific functions not 

carried out by other p53 family members. Indeed, several studies have shown that p73 plays a 

role both in cancer and development (Figure 27, 28). In cancer, TP73 acts as a tumour 

suppressor, by sharing several activities with p53, in particular by inducing cell cycle arrest and 

cell death in response to cellular stress. However, there is accumulating evidence that p73 

does not act as a Knudson-type tumour suppressor, ie a gene inactivated during 

tumourigenesis due to genetic alterations in both alleles. In contrast to TP53 which is one of 

the most frequently mutated genes in many tumour types, TP73 is rarely mutated in cancers 

with such a profile being found in hepatocellular carcinoma. Instead, in many cancers, TP73 
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has been described to be over-expressed compared to the surrounding tissue and be a poor 

prognosis factor. 

 

 

Figure 27. Cellular processes regulated by TA and Np73 isoforms determining cancer outcome. A. 
Upon cellular stress, TAp73 expression and activity increases to regulate biological processes 
suppressing tumour growth and development. B. Amino-terminal truncated TAp73 variants drive 
tumour progression and confer chemoresistance, stemness and invasiveness through inhibition, de-
repression or activation of target genes and EMT activation. (Engelmann et al., 2015) 

 

Unlike p53, tp73 knock-out mice are not particularly prone to spontaneously develop cancer 

(Figure 28) (Yang et al., 2000). On the other hand, tp73
+/-

 mice develop lung adenocarcinomas 

and thymic lymphomas, whereas tp53
+/-

tp73
+/- mice develop lung adenocarcinomas, acinar 

pancreatic carcinomas and HCC. Mice specifically lacking the TAp73 isoforms show an 

intermediate phenotype between p53-/- and p73-/- with development of spontaneous or 

carcinogenic-induced tumours, infertility, aging and hippocampal dysgenesis. TAp73 knockout 

mice show enhanced genomic instability and high incidence of spontaneous tumours 

suggesting its key role in cell-cycle arrest and genomic maintenance (Tomasini et al., 2008). 

These animals specifically lack the TAp73 isoform but continue to express the TAp73 isoforms 

therefore provoking an imbalance in the TAp73 and TAp73 ratio. Np73 knockout mice show 

some signs of neurodegeneration. In addition, cells from these mice are sensitized to DNA 

damaging agents and show elevated p53-dependent apoptosis (Wilhelm et al., 2010). Finally, 
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Np73 transgenic mice under the control of Albumin promoter display aberrant cell growth of 

hepatocytes and develop hepatic carcinomas (Tannapfel et al., 2008). 

 

 

Figure 28. p73 mouse models. The tp73 knockout mouse shows severe developmental defects. TAp73 
and ΔNp73 knockout mice show less severe developmental phenotype, but, importantly, depletion of 
TAp73 predisposes the animal to spontaneous tumourigenesis. (Rufini et al., 2011) 

 

3.3.1 Functions of TAp73 isoforms in cancer 

 

TAp73 isoforms act as transcription factors and bind DNA specific sequences via their DNA-

binding domain. Several TAp73 responsive elements and thus target genes are common with 

p53. For example, TAp73 regulates genes involved in the response to oncogenic stress, 

partially compensating for a lack of p53 function in situations where it is inactivated. This is 

extremely important since TP53 has been described to be mutated in more than 50% of 

tumours. But TAp73 can also transactivate its own target genes, especially during development 

and differentiation (Marqués-García et al., 2009). 

The oncosuppressive properties of TAp73 are mediated through the inhibition of cell cycle 

progression, maintenance of genome stability and promotion of cell death (Figure 27). It 

contributes therefore to tumour surveillance, cytotoxicity and elimination of genetically 

altered cells in response to DNA-damaging agents. TAp73 can induce these effects by 

activating genes classified as p53-target genes, as well as in a p53-independent manner. 

Growth arrest. By transactivation of the p53 targets genes p21 WAF1 and GADD45, TAp73 

induces cell cycle arrest in G1 and G2/M (Lee and La Thangue, 1999; Strano et al., 2005). 

Secondly, TAp73 indirectly down-regulates human telomerase reverse transcriptase (hTERT). 

TAp73 forms a complex with Sp1 and prevents Sp1 from binding and activating hTERT 
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promoter (Beitzinger et al., 2006; Racek et al., 2005). TAp73 is essential to control mitotic 

arrest by interacting with the Spindle Assembly Checkpoint key components Bub1, Bub3 and 

BubR1 (Tomasini et al., 2009). TAp73 is phosphorylated in a cell-dependent manner and 

regulates p57 Kip2 transcription to coordinate mitotic exit (Merlo et al., 2005). TAp73 induces 

mitotic cell death via direct BIM transactivation and suppresses polyploidy and aneuploidy 

independently of p53 (Talos et al., 2007; Toh et al., 2010). 

Genome maintenance. TAp73 regulates the activity of some mismatch repair proteins 

therefore participating to correcting replication errors. TAp73 transactivates base excision 

repair genes such as the glycosylases SMUG1 and MUTYH (Zaika et al., 2011). In the absence of 

TAp73, DNA damage levels increase. In case of double strand breaks it has been shown in 

several mouse models that TAp73 is required for Mre11, RAD51 and BRCA2 upregulation (Lin 

et al., 2009). 

Cell death. Upon genotoxic or oncogenic stress, TAp73 accumulates and triggers cell death 

through several pathways and mechanisms. For example, cis-Platin treatment of cells can lead 

to physical interaction between TAp73 and the mismatch repair protein PMS2, an interaction 

required for TAp73-dependent apoptosis of damaged cells. Also, YAP1 is the key 

transcriptional co-activator of the TAp73-dependent transcription of proapoptotic genes in the 

presence of chemotherapeutic agents (Levy et al., 2007; Strano et al., 2005). In damaged cells, 

ATM leads to c-Abl-dependent phosphorylation of TAp73 and YAP1, formation of a TAp73-

YAP1 complex and finally recruitment at DNA-response elements (Agami et al., 1999; Baskaran 

et al., 1997; Levy et al., 2008; Shafman et al., 1997; Yoshida et al., 2005). 

It directly induces mitochondrial death through several mechanisms: 

- By activating p53 target genes such as BCL-2 family members BAX, PUMA, NOXA, BAD, BIK 

and the mitochondrial membrane protein p53AIP1 (Pietsch et al., 2008). PUMA triggers Bax 

mitochondrial translocation and release of cytochrome c, therefore activating the intrinsic 

caspase cascade leading to mitochondrial-mediated apoptosis (Melino et al., 2004). TAp73 also 

regulates several activators and inhibitors of apoptosis, such as the JNK apoptotic signalling 

pathway via the upregulation of GADD45a (Baxter, 2014; Broadhead et al., 2009; Díaz et al., 

2008; Harms and Chen, 2005; Ho et al., 2007; Sasaki et al., 2005; Zhang et al., 2012a). 

- Secondly, p73 elicits p53-independent mitochondrial-mediated apoptosis through direct 

transcriptional activation of GRAMD4 (also known as Death Inducing Protein) (John et al., 

2011). GRAMD4 translocates to the mitochondria, physically interacts with Bcl-2, promotes 
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Bax mitochondrial relocalisation and oligomerization and is highly efficient in inducing 

mitochondrial membrane permeabilization with release of cytochrome c and Smac. 

As described above, TAp73 is able to induce the expression of factors directly involved in 

apoptosis execution. 

- p73 seems to play a structural role in mitochondria-induced death, independent of its 

transactivation function, consistent with several arguments on those of p53 at the 

mitochondria (Mihara et al., 2003). The full-length protein TAp73 and some of its products, 

cleaved by caspases in response to DNA-damaging agents and death-receptor activation, were 

found localised near the mitochondria suggesting that it might facilitate the progression of 

apoptosis (Sayan et al., 2008). 

The ability to stimulate expression of the death receptors CD95, tumour necrosis factor (TNF)-

R1, TRAILR1 and TRAIL-R2 as well as the caspases-3, -6 and -8 suggests that TAp73 is also 

involved in the extrinsic apoptosis pathway (Melino et al., 2002; Müller et al., 2005). Induction 

of p73-dependent programmed cell death following DNA damage also involves endoplasmic 

reticulum stress and upregulation of scotin, a putative transmembrane protein able to 

colocalize with endoplasmic reticulum heat-shock proteins, such as GRP94 (Terrinoni et al., 

2004). It was shown that NIS/SLC5A5, a transmembrane glycoprotein that mediates active 

iodide uptake into thyroid follicular cells, is stimulated after doxorubicin treatment of liver 

cancer cells in a TAp73-dependent manner (Guerrieri et al., 2013). Upregulation of NIS 

contributes to DNA-damage-induced apoptosis by yet undetermined mechanisms. 

- Finally, several studies have described the role of TAp73 in autophagy-induced cell death. 

TAp73 induces the transcription of several actors involved in autophagy initiation, such as the 

damage-regulated autophagy modulator (DRAM), as well as proteins involved in the 

autophagy process like ATG5, required for the formation of autophagosomes (He et al., 2013). 

Redox and metabolism. TAp73 modulates mitochondrial respiration by directly transactivating 

COX4I1, an essential component of the mitochondrial complex IV, and thereby prevents ROS 

accumulation (Rufini et al., 2012). Ablation of TAp73 increases oxidative stress that could drive 

oncogenic mutations in addition to favour genomic instability (Tomasini et al., 2008). TAp73 

provides a fail-safe mechanism by inducing ATM (ataxia telangiectasia mutated) - triggered 

apoptosis in response to persistent accumulation of ROS (Dixit et al., 2014). Cancer cells adapt 

their metabolism in order to promote rapid cell proliferation and favour cytosolic aerobic 

glycolysis and lactate fermentation rather than mitochondrial oxidative phosphorylation (Blum 

and Kloog, 2014). In TAp73 knockout cells, mitochondrial respiration and ROS homeostasis are 

also affected, with reduced cellular ATP levels, suggesting that TAp73 deletion leads to a 
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similar switch in energy metabolism (Rufini et al., 2012). TAp73 promotes GLS2 transcription 

and thus drives serine biosynthesis, a precursor of other amino acids, glutathione, lipids and 

nucleotides essential for cell survival (Amelio et al., 2014). Importantly, TAp73 ablation 

interferes with cell proliferation, indicating that TAp73 activity is essential for cancer cells to 

cope with metabolic/ oxidative stress. These results appear to be in disagreement with the 

tumour-suppressor role of TAp73, but one can hypothesize that p73, similarly to p53, helps 

normal and hence cancer cells to face serine starvation, in order to preserve cellular anti-

oxidant capacity, in agreement with their role in genomic and cell integrity. 

 

3.3.2 Functions of N-truncated variants in cancer  

Truncated isoforms act as dominant negatives of full length TAp73 isoforms and p53. They 

exert this function by two different structural mechanisms (Figure 29) (Bailey et al., 2011; 

Ishimoto et al., 2002; Rocco et al., 2006; Stiewe et al., 2002; Zaika et al., 2002) : 

-  Truncated isoforms can form heterotetramers with the full length form because they 

share the same oligomerisation domain. TAp73-TAp73 heterotetramers do not retain 

the transactivation activity because they have not a complete transactivation domain. 

Therefore, TAp73 traps TAp73 isoforms in non-functional complexes. 

- Homo- and heterotetramers with truncated isoforms ( TAp73- TAp73 and TAp73-

TAp73) have a functional DNA-binding domain and compete with the fully functional 

TAp73 homotetramers to bind DNA-specific sequences. 
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Figure 29. TAp73 isoforms act as dominant negatives due to the sequestration of TAp73 (top), the 
formation of non-functional TAp73– TAp73 heterotetramers (middle) or the competition with TAp73 
homotetramers or p53 for binding of the same p53 DNA responsive elements (middle and bottom). 
(Melino et al., 2002) 

 

Since p73 and p53 have structurally distinct oligomerization domains, they do not form 

heterotetramers (Joerger et al., 2009). Therefore, TAp73 only inhibits p53 transactivation 

activity by competition for promoter binding and not by direct protein–protein interaction. 

Np73 isoform has also been described as possessing gain of function properties, independent 

of its dominant negative effect on p53. 

The oncogenic activity of the TAp73 isoform has been demonstrated by the classical in vitro 

experiment of oncogenic cooperation. Indeed, over-expression of Ex2/3p73 or Np73 in 

fibroblasts led to malignant cell transformation and tumourigenicity in nude mice in 

cooperation with the RAS, MYC or E1A oncogenes (Petrenko et al., 2003; Stiewe et al., 2002). 

Wild-type p53 is likely a major target of Np73 inhibition in primary fibroblasts, since deletion 

of TP53 or its requisite upstream activator ARF abrogates the growth-promoting effect of 

Np73. Furthermore it has been described that TAp73 can also act independently of any 

p53/TAp73 antagonism. By triggering hyperphosphorylation of pRB, Np73 blocks the tumour-

suppressor function of this protein. This leads to the activation of cyclin E-cyclin-dependent 

kinase 2 (Cdk2) and cyclin D-Cdk4/6 kinases and consequently to the enhanced E2F release, 

together with the downregulation of the cell cycle inhibitors p21 and p57 (Cam et al., 2006; 

Stiewe et al., 2003; Tannapfel et al., 2008). 
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Apart from contributing to initiating carcinogenesis through inhibition of classical tumour-

suppressor pathways, TAp73 isoforms interfere with several other pathways, thus favouring 

the aggressive behaviour of several tumour types. Indeed, in neuroblastoma patients, Np73 is 

a strong independent predictor of poor prognosis. Other reports highlighted that in 

neuroblastoma, prostate, and cervical cancers, increased level of Np73, without a 

concomitant increase of TAp73, is a significant risk factor for reduced survival and is associated 

with resistance to radiotherapy (Buhlmann and Pützer, 2008). 

Chemoresistance. In many cancers, TAp73 over-expression in tumours is associated with cell 

death resistance. In cervical squamous cell carcinomas, TAp73 and Np73 are inverse 

predictors of sensitivity to therapy (Liu et al., 2004, 2006b). In patient with ovarian cancers and 

HCC, the presence of TAp73 isoforms predict failure to platinum-based chemotherapy in p53-

mutant tumours, as well as shorter survival (Concin et al., 2005; Müller et al., 2005). One of the 

possible explanations is that TAp73 blocks the transactivation activity on TAp73 and 

therefore suppresses death-receptor signalling and mitochondrial-mediated apoptosis, making 

tumours resistant to DNA damaging agents (Schuster et al., 2010; Simões-Wüst et al., 2005). 

Np73 also contributes to multidrug resistance, by counteracting the inhibitory effect of p53 

on ABCB1/MDR1 expression, through its dominant negative effect (Vilgelm et al., 2008). 

Truncated isoforms indirectly lead to ATP-binding cassette (ABC) transporter activation, by the 

following mechanism: Ex2/3p73 suppresses TAp73-mediated activation of miR-205 in 

melanoma cells treated with cisplatin. miR-205 is known to suppress ABCA2, ABCA5 and Bcl-2 

but, since the suppression is removed, the presence of efflux transporters at the cell 

membrane generates anti-cancer drug resistance (Alla et al., 2012; Vera et al., 2013). Np73 

can also contribute to the evasion from chemotherapy independently of its dominant negative 

effect. Np73 interacts with the sensor protein 53BP1 at the site of DNA-damage, inhibits 

signal transduction and prevents ATM activation and consequently p53 stabilization through 

phosphorylation. Moreover, Np73 directly protects cells from apoptosis by interaction with 

JNK and down-regulation of the tumour-suppressor PTEN (Lee et al., 2004a; Vella et al., 2009). 

In agreement with these activities, it has been observed that Np73 knock out cells are 

sensitive to genotoxic drugs and undergo apoptosis in response to DNA-damage (Wilhelm et 

al., 2010). 
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Epithelial-to-mesenchymal transition (EMT), cell invasion and stemness. 

EMT is a highly conserved process, essential for organ development and the spreading of 

cancer cells. The phenotypic changes accompanying EMT include loss of cell–cell junctions, 

loss of apico-basal polarity, acquisition of migratory and invasive properties, as well as 

extracellular matrix degradation. EMT hallmarks include E-cadherin loss and up-regulation of 

N-cadherin, vimentin and/or fibronectin. 

Recent studies suggest that TAp73 isoforms enhance the tumourigenic activity of cancer cells 

beyond their capacity to transform cells. Contrary to normal cells, Np73 ectopic expression in 

tumour cells does not enhance the proliferation rate suggesting alternative mechanisms for 

TAp73-mediated invasiveness. Np73 is aberrantly over-expressed in advanced stages of 

cancer, like in metastases of skin cancer and has been suggested to regulate EMT (Tuve et al., 

2004). Specific depletion of endogenous Np73 in highly metastatic melanoma cell lines 

abolishes the aggressive cell phenotype. On the contrary, tumour xenografts over-expressing 

this variant possess significantly greater capacity of invasion of the surrounding tissue and 

higher efficiency of metastatic lesions formation (Steder et al., 2013). 

Np73 leads to drastic reorganisation of the cell cytoskeleton, loss of E-cadherin and up-

regulation of N-cadherin, as well as of vimentin. Np73 triggers up-regulation of SNAI2 (Slug), 

leading to transcriptional silencing of E-cadherin. Np73 interferes with TAp73-dependent 

transcription of the tumour-suppressor LIMA1/EPLIN. EPLIN plays an important role in 

maintaining cell morphology and tissue integrity, by stabilisation of the actin stress fibres and 

focal adhesion plaques. Np73 over-expression causes EPLIN depletion at the invasive front of 

primary melanoma cells, which will break through the basal membrane. This leads to 

activation of the IGF1R-AKT/STAT3 signalling, increase of Slug transcription and attenuation of 

E-cadherin expression (Steder et al., 2013). Studies in colon cancer show that TAp73 represses 

IGF1R expression suggesting a fine tuned balance between the p73 isoforms in the regulation 

of IGF1R pathway (Nahor et al., 2005). In highly malignant cancer cells, IGF1R signalling has 

been associated with development of resistance to BRAF inhibitors, suggesting that EMT and 

therapy resistance are tightly linked (Villanueva et al., 2010). 

Np73 seems to deregulate the apico-basal polarisation of mammary epithelial cells that are 

capable of forming three-dimensional acini in vitro. When knocking down TAp73 and leaving 

TAp73 expression unaltered, the structure of the acini is altered due to loss of apico-basal 

polarity accompanied by E-cadherin ablation, nuclear accumulation of -catenin and increased 

expression of laminin V, and of the EMT factors Snail, Slug and Twist (Zhang et al., 2012b). 

Np73 cooperates with TGF- to increase the metastatic potential of cancer cells. In the 
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cytosol, Np73 binds and forms protein complexes with Smad3/4. Following TGF-

stimulation, Smad- Np73 complexes translocate into the nucleus, bind on Smad Binding 

Elements and enhance the transactivation of TGF-β signalling targets. 

 

3.3.3 TAp73 role in stem cells 

 

As for Np63, accumulating data suggest that TAp73 isoforms play a role in the maintenance 

of the stem cell pool in several tissues and could also favour the emergence of cancer stem 

cells. In view of the implication of TAp73 in EMT, a biological process that can appear during 

the acquisition of cancer stem cell-like phenotypes, several lines of evidence support the 

implication of DeltaTAp73 forms in cell stemness (Figure 30) (Thiery et al., 2009). 

 

 

Figure 30 Combined mechanism(s) whereby the Np73 variant increases cancer stem cell function. 
The dashed line connecting c-jun to inhibition of Np73 reflects the speculative nature of this particular 
regulation. (Basu and Murphy, 2016) 

 

Nanog is a transcription factor involved in cell immaturity and regulating pluripotency in 

mammalian cells. It is expressed at high levels in embryonic stem cells. Np73 directly 

stimulates the expression of NANOG and participates to the generation of induced pluripotent 

cells by reprogramming human fibroblast (Lin et al., 2012). Induced pluripotent stem cells by 

ectopic expression of Np73 express higher levels of embryonic factors c-Myc, KLF4, OCT4 and 

in-vivo generate less differentiated teratomas. In Acute Myeloid Leukemia, our team showed 
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that Np73 transactivates NANOG expression, is preferentially overexpressed in very 

immature leukemic cells and is associated with an increased rate of early relapse (Voëtzel et 

al., Leukemia, submitted). In addition, it has been shown Np73 triggers IGF1R signalling, 

important in preserving cancer stem cell traits (Chen et al., 2014a). Therefore all these data 

suggest that Np73 could potentially be involved in cancer stem cell generation. 

Two independent studies showed that Np73 silencing decreases the expression of stem cell 

markers, impairs anchorage-independent growth (a hallmark of cancer stem cell function) and 

decreases the engraftment efficiency in vivo (Meier et al., 2016; Prabhu et al., 2016). 

Consistent with these observations, the overexpression of Np73 in the melanoma cell line Sk-

Mel-29 leads to increased expression of CD133, Nanog and Oct4 (Meier et al., 2016). 

Mechanistically, Np73 confers cancer cells with stem-like properties by attenuating the 

expression of miR885-5p, a negative regulator of IGF expression. Similar results have been 

found by another group in colorectal cancer (Prabhu et al., 2016). Through pharmacological 

indirect inhibition of Np73, cells exhibited a decreased capacity to form colonospheres, 

down-regulated the expression of stemness markers ALDH, CD44, ID3 and E-cadherin, and 

showed a decreased capacity to initiate tumours in vivo. 

 

3.3.4 p73 Role in development 

 

It became evident that TAp73 isoforms play an essential role in development when tp73-/- 

mice were described to have several developmental pathologies (Yang et al., 2000). p63 has 

been described to be implicated in the maintenance of epithelial stem cells from stratified and 

glandular epithelia (Mills et al., 1999; Yang et al., 1999). tp73-/- mice present hippocampal 

dysgenesis due to massive apoptosis of sympathetic neurons, hypersecretion of cerebrospinal 

fluid resulting in hydrocephalus and runting, immunological defects causing chronic infections 

and inflammation, as well as altered reproductive behaviour due to pheromone weakness. 

Aberrations of TP73 expression pattern have mainly been described to affect the nervous 

system. Np73 is essential in neuron differentiation and in the nervous system, it blocks 

neuronal terminal differentiation and thus prevents tissue maturation (Cam et al., 2006; 

Hüttinger-Kirchhof et al., 2006) (Figure 31). Pozniac et al (2000) demonstrated that Np73 is 

present in developing neurones and has antiapoptotic functions (Pozniak et al., 2000). In the 

absence of Np73, neurons undergo cell death during the development of the nervous system 

but Np73 rescue by ectopic expression protects neurons from apoptosis. TAp73 has also 
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been implicated in the differentiation of neuroblastoma cells (Billon et al., 2004; Laurenzi et 

al., 2000). Endogenous TAp73 levels rise in neuroblastoma cells induced to differentiate and 

TAp73 may support differentiation by antagonizing Notch signalling in neuroblastoma cells and 

in primary neurons (Hooper et al., 2006). 

 

 

Figure 31. Role of p73 in neurogenesis. Functional neurons are generated from neural stem cells and 
then after maturation, are integrated in neuronal circuits. TAp73 is essential for neuronal differentiation 
and maintenance of neural stem cells. ΔNp73 plays a major role as a survival factor. Question marks 
indicate that molecular mechanisms have not been fully investigated yet. (Killick et al., 2011) 

 

Whereas TAp73 enhances terminal differentiation of oligodendrocyte precursors, Np73 

inhibits this process (Billon et al., 2004). Similarly, during nephrogenesis, Np73 is 

preferentially expressed in proliferating nephron precursors, whereas TAp73 is rather 

expressed in the differentiated region of the renal cortex (Saifudeen et al., 2005). This 

spatiotemporal switch from Np73 to TAp73 may play an important role not only in the 

regulation of terminal differentiation in the developing nephrons, but suggests general 

antagonistic roles in differentiation control for the different p53 family proteins. 

TAp73-/- mice mate normally but they are sterile and it has been found that TAp73-/-oocytes 

reveal a striking increase in spindle organization abnormalities leading to impaired 

preimplantation embryonic development (Tomasini et al., 2008). 
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3.3.5 TAp73 – Np73 balance 

 

Increasing evidence suggest that p73’s effects on tumour progression do not rely on total p73 

levels but rather on the ratio between the TA and TA isoforms expression. 

TAp73 and TAp73 isoforms have dominant negative opposing roles, as well as independent 

cellular functions. In cancer, the balance between the intracellular levels of the TAp73 and 

TAp73 isoforms determines cell fate with respect to survival or death. Expression and activity 

of TP73 products are tightly regulated by a large number of molecular mechanisms including 

promoter activation, transcriptional control, alternative splicing, post-translational 

modifications, isoform-specific degradation and protein-protein interactions (summarised in 

Figure 32). 

 

 

Figure 32. Regulatome balancing TA/ TAp73 activity. Coordination of TAp73 and TAp73 activity 
underlies a complex network of regulatory proteins. In this regard, pharmacological treatment of cancer 
should consider both TAp73 and TAp73 activities. (Engelmann et al., 2015) 

 

At a given time-point, cells express both TAp73 and TAp73 isoforms at levels that vary 

depending on the cell context. In cancer cells, the balance between these isoforms favours a 
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pro-oncogenic or a tumour-suppressor environment. In premalignant stages, the level of the 

transactivation competent TAp73 isoform increases in order to promote cell cycle arrest and 

apoptosis. However, during the progression towards cell transformation, TAp73 expression 

starts to decrease whereas TAp73 increases as demonstrated in an in vitro model of cell 

transformation by oncogenic Ras (Figure 33) (Beitzinger et al., 2008). In patients, the switch of 

the TAp73/ Np73 ratio in favour of Np73 has been frequently observed in many different 

cancer types and has been shown to correlate with advanced tumour stage, lymph node 

metastasis, vascular invasion, weak response to chemo- and radiotherapy, and poor overall 

patient survival (Casciano et al., 2002a; Concin et al., 2005; Domínguez et al., 2006; Müller et 

al., 2005; Stiewe et al., 2004). Whether the poor prognosis of patients with an altered 

TAp73/ Np73 ratio is caused by Np73 overexpression, loss of TAp73 expression or both, 

remains to be investigated. 

 

 

Figure 33. TP73 expression changes during the course of in vitro experimental transformation. During 
the early stages of cell transformation, the expression of both TAp73 and Np73 increases while during 
the fully transformed stage, TAp73 decreases and Np73 continues increasing. Therefore, while in the 
early stages TAp73 level is higher than Np73, in the advanced stages, the balance between the two 
isoforms changes. (Beitzinger et al., 2008) 

 

Epigenetic regulation of the P1 and P2 promoters is one of the mechanisms accounting for 

Np73 accumulation. P2 hypomethylation-associated over-expression of Np73 has been 

reported to be a common mechanism in lung cancer and neuroblastoma while in breast cancer 

promoter methylation redirects the transcription factor Nrf-2 from P1 to P2 (Casciano et al., 

2002b; Daskalos et al., 2011; Lai et al., 2014). In tumours, hypermethylation affects more 
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intensely the P1 promoter than the P2 promoter, as the former one contains three CpG islands 

while P2 has only one. 

Alternative splicing phenomenon affecting P1 transcripts also influence the balance switch. 

However, only one study has explored the deregulation of splicing factors participating to the 

generation of truncated isoforms. Amphiregulin activates the EGF receptor in an autocrine 

manner, inducing phosphorylation of the transcriptional repressor Elk1, which down-regulates 

the splicing factor SLU7. SLU7 suppression causes alternative splicing of the p73 pre-mRNA and 

synthesis of the Ex2p73 isoform (Castillo et al., 2009). 

Apart from the control of the TAp73 and TAp73 synthesis, the balance is also affected by 

factors involved in the stabilisation and activity of these proteins. The C35 protein, which has 

been described to be involved in cancer progression and metastasis, specifically interacts with 

Np73 isoform via the 13 aminoacids N-terminal sequence that is only present in this isoform. 

The Np73-C35 complex activates AKT signalling and the expression of nuclear factor-kB (NF-

kB), especially in response to genotoxic drugsn thus conferring chemoresistance in cancer cells 

(Leung et al., 2013). 

Chaudhary and collaborators described a specific degradation mechanism of Np73 coupled 

with the stabilisation of TAp73. WWP2 is an E3 ligase that ubiquitinates and degrades all p73 

isoforms. In contrast, when WWP2 heterodimerizes with another E3 ligase, WWP1, the 

complex specifically ubiquitinates and degrades Np73. PPM1G is a functional switch that 

controls the balance between monomeric WWP2 and the heterodimeric WWP2/WWP1 state. 

During cellular stress, WWP2 monomers are absent and p73 accumulates, whereas WWP2-

WWP1 heterodimers are functional and degrade Np73, thus shifting the balance 

TAp73/ Np73 in favour of the full length TAp73(Chaudhary and Maddika, 2014). 

Carastro and colleagues suggested that the rs1801173 dinucleotide polymorphism located in 

exon 2 of the TP73 gene negatively impacts the TAp73/ Np73 ratio in cancer cells. In patients 

with prostate cancer, this specific polymorphism is associated with poor overall survival 

(Carastro et al., 2014). A previous meta-analysis study showed that this polymorphism is 

correlated with an increased risk for patients to develop colorectal and head and neck cancers 

(Liu et al., 2011a). 

In addition, TAp73 isoforms have a longer half-life than TAp73, implying that even with a 

similar transcription rate, TAp73 intracellular protein levels are higher than TAp73 due to its 

higher stability (Stiewe et al., 2002). 
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Two studies showed the impact of the balance between TAp73 and Np73 on prognosis of 

patients with leukemias. In acute promyelocytic leukemia (APL), both isoforms are expressed, 

and high Np73/TAp73 expression ratio is associated with low overall survival, low disease-

free survival, and high risk of relapse in APL patients treated with chemotherapy (Figure 34) 

(Lucena-Araujo et al., 2015). Hamdy and collaborators showed that in chronic lymphocytic 

leukemia (CLL) and acute lymphocytic leukemia (ALL) both type of isoforms are over-expressed 

compared to normal peripheral blood lymphocytes : 27-fold for TAp73 and 233-fold for Np73 

in CLL, 9-fold for TAp73 and 386-fold for Np73 in ALL. In both cases patients show an over-

expression of TAp73 in tumour cells, but a resulting Np73/TAp73 ratio in favour of Np73 

(Hamdy et al., 2016). 

 

 

Figure 34. Survival curves results for patients with acute promyelocytic leukemia (APL) 
according to the Np73/TAp73 ratio. Probability of A. Overall survival and B. Disease Free 
Survival. (Lucena-Araujo et al., 2015) 

 

3.4. p73 in HCC 

 

Since the discovery of p73 in 1997, several studies showed that p73 is aberrantly over-

expressed in liver tumours and contributes to the development of primary liver cancer 

independently on other genetic or environmental factors. 

Tannapfel and colleagues observed that TP73 is over-expressed in 32% of HCC nodules 

(Tannapfel et al., 1999). Survival analysis showed that it is an independent poor prognosis 

factor with respect to overall survival (Figure 35). Patients positive for p73 protein in the 
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tumours were twice more likely to die within the same period of time than negative patients. 

In this study, the surrounding non-neoplastic tissue was negative for p73 (mRNA and protein) 

and the antibody used for the immunostaining did not allow discriminating between the 

different p73 isoforms. 

 

Figure 35. p73 expression in HCC. A. p73 mRNA transcripts (brown reaction product) within a 
hepatocellular carcinoma (HCC) nodule (right) and non-neoplastic surrounding hepatocytes and fibrous 
tissue without transcripts (original magnification×10). B. Overall survival in patients with p73-positive 
and p73-negative tumours (immunohistochemistry detection. (Tannapfel et al., 1999) 

 

Sayan and colleagues investigated the differential expression of the p73 isoforms Np73 and 

’Np73, originating from the P1 and the P2 promoter, respectively.  They described that only 

the Np73 truncated isoform, originating from the P2 promoter, is expressed in normal 

murine hepatocytes while TAp73 and Np73 coexpression is present in human HCC (Sayan et 

al., 2001). To investigate the contribution of the activation of the internal promoter and 

aberrant splice processes leading to p73 truncated isoforms in HCC, one study investigated the 

relative expression of Np73 and N’p73 by using specific primers against these two isoforms 

(Pützer et al., 2003). Authors showed that in HCC, N’p73 isoforms are more abundant than 

Np73 and that their expression is differently regulated by p53 and E2F suggesting that the 

two promoter are not regulated through the same mechanisms. These data suggested that P1 

promoter-derived transcripts are the predominant source of potentially oncogenic p73. Stiewe 

and colleagues further analysed the expression of p73 isoforms, by analysing of the expression 

of all p73 truncated isoforms ( Np73, N’p73, Ex2p73, Ex2/3p73) (Stiewe et al., 2004). 

Authors found that in tumour cells, the main source of N-terminal truncated isoforms are 

alternative splicing events and to a lesser extent the activation of the second promoter, in 

relation to what has been described before. Overall enhanced activity of the conventional P1 
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promoter compared to the internal P2 promoter could explain the increase in both full length 

TAp73 and the truncated isoforms. 

Regarding the action of p73 isoforms in HCC, it has also been confirmed that TAp73 and 

TAp73 isoforms have opposite roles in apoptosis regulation (Müller et al., 2005). TAp73 is 

induced in response to DNA damaged induced by chemotherapy. TAp73 cooperates with drugs 

to induce apoptosis by inducing the expression of the pro-apoptotic Bcl-members and 

subsequently mitochondrial apoptosis as well as by transactivating the death receptor CD95. 

When Np73 is coexpressed, tumour cells are less responsive to chemotherapy showing 

inhibition of the TAp73- mediated transactivation of CD95 mediated by and p53 and interfere 

with the mitochondrial apoptosis. In HCC patients, Np73 correlates with low survival. The 

expression of N-terminal isoforms selects against both the expression of death receptors and 

TAp73-mediated mitochondrial apoptotic activity (Figure 36). Schuster and collaborators 

highlighted the Np73-direct effect on the transcription activity of TAp73 in HCC cells. The 

inhibition concerns apoptotic factors acting at several levels of the apoptotic signalling. Np73 

down-regulates both the expression of death receptors as well as mitochondrial factors 

effectuating the apoptosis (Schuster et al., 2010). 

Gonzales et al showed in a cohort study that increased Np63 and Np73 expression, as well 

as reduction of TAp63, TAp73 and cell death receptor expression are associated with reduced 

survival of patients due to tumour recurrence following orthotopic liver transplantation 

(González et al., 2017). The in vitro approach showed that truncated isoforms have more 

potent anti-apoptotic and proliferative activities in WT p53 HCC cell lines than in null p53 cells. 

These results would suggest that Np73’s effect is mainly due to its dominant negative 

function on p53. 
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Figure 36. Model of TAp73/ Np73-regulated apoptosis. Upon DNA damage, TAp73 activates both, the 
death receptor- (pathway 1) and the mitochondrial-(pathway 2) apoptosis pathway. Np73 is a strong 
inhibitor of both pathways. (Müller et al., 2005) 
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In order to understand what are the hepato-specific consequences of the expression of  p73 

truncated isoform, Tannapfel and collaborators studied the effect of the liver-specific 

expression of Ex2/3p73 isoform, originating from the P1 promoter, under the control of the 

albumin promoter (Tannapfel et al., 2008). After 3-4 months, it was observed that mice 

developed preneoplastic lesions, with high hepatocyte proliferation. After 12- to 20-months 

83% of the animals developed hepatic carcinoma. These lesions were characterised by 

phosphorylating inactivation of RB as well as down-regulation of cell cycle inhibitors controlled 

by p53. These results confirm previous findings that p73 is over-expressed in human HCC 

nodules and it acts as an oncogene since it is capable alone to drive HCC development. HCC 

nodules were characterised by high penetrance into the adjacent tissue without visible 

capsule, well differentiation and tumour formation occurred gender independent. Whereas 

transgenic p73 was equally detected in HCC nodules and in the adjacent tissue, 

phosphorylated Rb responsible for TAp73-mediated proliferation was highly detected in HCC 

nodules, at a lower intensity in preneoplastic lesions and barely detected in normal liver. This 

provides an explanation for the selective advantage of p73 overexpressing cells during human 

tumourigenesis. E2F targets cyclin E and cyclin D1 are present in normal liver tissue in 

transgenic mice suggesting that E2F activity is enhanced in normal hepatocytes. In HCC, the 2 

target genes are expressed at a higher level suggesting that p73 truncated isoforms favour the 

development and progression of HCC in a stepwise manner. 

Both p53 and p73 regulate AFP production in the liver by binding to the p53 responsive 

elements in the promoter of the gene. By targeting corepressor proteins and inducing 

repressive histone modification, the two transcription factors decrease the AFP transcription 

within 2 to 3 weeks of age (Cui et al., 2005). 

Since HBV chronic infection is one of the major causes of HCC in the world, Knoll et al (2011) 

studied the diverse effects of the interaction between p73 and the HBV viral protein HBx 

concerning HBV-induced HCC (Figure 37) (Knoll et al., 2011). Both p73 and HBx play dual roles 

in the regulation of apoptosis. While p73’s dual role is due to isoforms with opposing effect, 

HBx’s effect on apoptosis depends on the cells context. In normal cells, HBx induces apoptosis 

while in transformed cells it has an inhibitory effect. In normal cells HBx inhibits apoptosis by 

binding p53 and p73 and retaining them in the cytoplasm. HBx prevents both factors from 

going to the nucleus and binding to the DNA. In HCC cell lines but not in normal hepatocytes, 

HBx induces ATM activation by phosphorylation which further phosphorylates p53, stabilising 

it and inhibiting its degradation by MDM2. In NIH3T3 transformed cells, HBx interacts with 

E2F1 and enhances its transactivation activity, favouring therefore the E2F1-reactive P1 
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promoter activation and showing synthesis of truncated isoforms originating from this 

promoter. The overexpression occurs concomitantly with the rise of TAp73, suggesting once 

again that the ratio between the pro- and the anti-oncogenic forms of p73 is determinant for 

the liver cell fate. 

 

Figure 37. Model for cell context-dependent regulation of apoptosis by HBx. A. In normal HBV-infected 
hepatocytes, HBx is anti-apoptotic, raising the level of N-terminally truncated p73 isoforms that act as 
transdominant inhibitors of wild-type p53/ p73. (B) The apoptotic function of HBx in cancer cells is due 
to enforced p53/p73 nuclear translocation and upregulation of p53-dependent target genes. (Knoll et 
al., 2011) 

 

Kurinna and collaborators investigated the epigenetic effect of p73 in the liver tissue (Kurinna 

et al., 2010). Foxo2 was identified as the transcription factor whose expression is the most 

deregulated during liver regeneration. The authors identified p53 binding elements in the 

promoter of this gene suggesting that both p53 and TAp73 could regulate its expression. 

During liver regeneration, p53 and TAp73 bind to the promoter of Foxo3, recruits the 

acetyltransferase p300 and the active chromatin structure of the gene is disturbed leading to 

loss of Foxo3 expression. After mice partial hepatectomy, authors observed decrease of 

histone activation marks at the site of p53 binding. Foxo3 is a tumour suppressor that 

regulated the expression of genes inhibiting the cell cycle and activating apoptosis (Yang et al., 

2008a). 

  



 Patricia Gifu thesis 
 

106 
 

3.5. Drugable actions of the p73 axis 

 

Several studies explored the usefulness of using pharmacological approaches to re-equilibrate 

the aberrantly regulated balance between TAp73 and Np73. Targeting this mechanism is 

particularly attractive since it is a distinguishing feature of tumour cells. 

The small molecule prodigiosin has been recently found as targeting the Np73 isoform and 

abolishes its oncogenic effect both on tumour bulk cells and also on cancer stem cells (Prabhu 

et al., 2016). Indeed, Prodigiosin prevents the formation of cancer spheroids in vitro, 

independently of the p53 status and is effective against ALDH+ cancer stem cells. In vivo, 

Prodigiosin inhibits the growth of tumour xenografts derived from ALDH+ cancer cells. 

Prodigiosin is therefore capable of restoring the p53 pathway otherwise disturbed by Np73. 

The inhibition of Np73 by prodigiosin is mediated by the c-Jun pathway. 

Bunjobpol and colleagues demonstrated that acetylpolyamine oxidase (PAOX) inhibitors 

could be used to modulate the stability of Np73. PAOX up-regulates Np73 levels by 

suppressing its degradation via the ubiquitin-independent antizyme (Az) pathway (Bunjobpol 

et al., 2014). Down-regulation of PAOX activity by siRNA or chemical inhibition leads to Np73 

degradation in an Az-dependent manner and reversed the resistant phenotype of Np73-over-

expressing cancer cells to genotoxic drugs. 

The cyclooxygenase inhibitor Celecoxib was reported to reduce the expression of Np73 

isoforms in primary and immortalized neuroblastoma cell lines (Lau et al., 2009). Low doses of 

Celecoxib negatively affect E2F1, the main regulator of TP73 P1 promoter. Reduced E2F1-

dependent transactivation of the TP73 P1 promoter down-regulates the expression of both the 

full length and the truncated isoforms. However, at the same time, Celecoxib stabilises the 

pro-apoptotic TAp73  isoform at the protein level, through still unknown mechanisms, thus 

leading to apoptosis. Therefore combining cyclooxygenase inhibitors with chemotherapy could 

be an excellent therapeutic strategy in cancer treatment. This original approach is now in 

clinical trials. In particular, the trial “p73 as a Pharmaceutical Target for Cancer Therapy 

Current Pharmaceutical Design, 2011, Vol. 17, No. 6 583 clinical trial NCT00346801”, aimed at 

testing the efficacy of combined treatment with Celecoxib and cisplatin in non-small cell lung 

cancer. 

The altered balance between TA- and TAp73 isoforms has been also shown to be important 

in acute promyelocytic leukemia (APL). APL is characterized by the t(15;17)(q22;q12) 

translocation, that generates the oncogenic PML-RAR chimeric protein. Treatment with arsenic 
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trioxide (ATO) in combination with two MEK1 (mitogenactivated protein kinase kinase 1) 

inhibitors (PD98059 and PD184352) greatly enhanced apoptosis of primary cells from APL 

patients, and of immortalized APL and erythroleukemia cell lines (Lunghi et al., 2004, 2006, 

2008). This effect is p53-independent and relies mainly in the modulation of TAp73/TAp73 

ratio. While ATO treatment alone stimulates the expression of both TAp73 and Np73 

isoforms, the co-administration of MEK1 inhibitors results in preferential induction of TAp73, 

thus increasing p73-dependent apoptosis both in vivo and in vitro. 

RNA-based strategy targeting all TAp73 isoforms seems to be very promising. Locked nucleic 

acid (LNA) antisense oligonucleotide gapmers coupled to magnetic nano-bead 

polyethyleneimine (MNB/PEI) carriers selectively target TAp73 transcripts and can be 

efficiently delivered to tumour cells both in vitro and in vivo. These molecules induce the 

selective degradation of TAp73 mRNA variants. Down-regulation of aberrantly expressed 

truncated isoforms in neoplastic cells, as well in rapidly growing tumour xenografts, resulted in 

inhibition of tumour growth and sensitization to chemotherapy, supporting the further 

development of specific TAp73 inhibitors as potentially new anticancer agents (Emmrich et 

al., 2009). 
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IV. Autophagy in cancer 
 

Autophagy (from the ancient Greek aυτο + φagos/φagεĩν = self-eating) is a physiologic 

degradation process assuring both the turnover of biomolecules that are dangerous for cells 

(misfolded proteins or damaged organelles), as well as the recycling of cellular components in 

conditions of nutriment deficiency (Hara et al., 2006). The process is useful both for de novo 

synthesis and energy production. Autophagy is constitutively active at low basal levels but can 

be further triggered in response to stress conditions, allowing cells to survive on their own 

resources. Autophagy occurs in non-pathological conditions, assuring homeostasis, but also in 

specific cases, like aging and cancer. 

 

4.1 Autophagy – a process of degradation 

 

Autophagy takes place at the level of the lysosome which contains degradation proteins and 

provides a favourable environment for them to function. 

According to the delivery mode of substrate to the lysosome, three different types of 

autophagy have been described in mammalian cells: macroautophagy, chaperone-mediated 

autophagy (CMA) and microautophagy. The macroautophagy is the mechanism most 

commonly employed by cells and the most studied. During macroautophagy, the material to 

degrade is surrounded by a double membrane forming the autophagosome. Macroautophagy 

can be considered as a process occurring in 4 stages: elongation, maturation, fusion and 

degradation (Figure 38). Several cellular compartments participate to the formation of the 

double membrane including the endoplasmic reticulum, the Golgi apparatus and the plasma 

membrane. The autophagosome fuses with the lysosome and forms the autophagolysosome. 

The proteases, lipases, nucleases and glycases contained inside the lysosome degrade the 

material under the coordination of 37 ATG proteins. Chaperone-mediated autophagy is 

mediated by cytosolic chaperones that recognise specific peptide motifs on the proteins to 

degrade. Chaperones such as HSC70 are specifically recognised by lysosome-associated 

membrane protein, direct the substrate towards the lysosome where is degraded. Finally, in 

microautophagy, the material to degrade, associated or not with chaperones, is directly 

engulfed by the lysosome via membrane rearrangements. 
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Figure 38. The macroautophagic process. (Galluzzi et al., 2015) 

 

The initiation and termination of autophagy is controlled by nutrient-sensing mechanism. Low 

energy state of the cells as well as depletion of amino acids levels in the cytoplasm inhibit the 

mTOR pathway and initiate autophagy. On the contrary, high energy states activate mTOR and 

inhibit cellular autophagy. 

Autophagy is a highly complex mechanism that is finely regulated depending on cell’s needs. 

The main regulator of the pathway is the mTOR pathway, sensitive to the availability of amino 

acids in the cytoplasm (Laplante and Sabatini, 2012). A major inhibitor of the mTOR pathway is 

AMPK protein (protein kinase, AMP-activated), sensitive to declining ATP/AMP ratios 

(Mihaylova and Shaw, 2011). The level of autophagy is also regulated by post-translational 

modifications of autophagy proteins (ATG) such as phosphorylation, leading to their activation 

or inhibition. Besides its role on mTOR regulation, AMPK stimulates autophagy by 

phosphorylating ULK1, phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) and 

Beclin 1 (the mammalian ortholog of yeast Atg6). PIK3C3 and Beclin 1 are essential for the 
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production of phosphatidylinositol 3-phosphate, an essential component for autophagosomes 

biogenesis (Egan et al., 2011; Kim et al., 2013; Zhao and Klionsky, 2011). Two ubiquitin-like 

conjugation systems involving ATG7 are indispensable for autophagy (Mizushima, 2007). A 

detailed discussion of additional factors that are involved in the control and execution of 

autophagic responses can be found here (Boya et al., 2013). 

Sustained autophagy leads to cell death, being considered the second type of programmed cell 

death, right after apoptosis. 

 

4.2 Autophagy in cancer  

 

Autophagy plays a dual role in cancer (Figure 39). First observations regarding this process 

suggested that it prevents malignant transformation through mediating oncosuppressive 

effects due to its key role in the preservation of intracellular homeostasis. 

 

 

Figure 39. Autophagy in malignant transformation and tumour progression. Proficient 
autophagic response appears to protect healthy cells from malignant transformation. 
Conversely, autophagy promotes tumour progression and therapy resistance in a variety of 
models. Thus, the transition of a healthy cell toward a metastatic and therapy-insensitive 
neoplasm may involve a temporary (but not a stable) loss in autophagy competence. (Galluzzi 
et al., 2015) 

 

Oncosuppressive role. It has been shown that inactivation of autophagy predisposes to 

development of spontaneous tumours. As such, several factors involved in autophagy are 

considered as tumour suppressors (Beclin 1), since it has been found that in several tumour 

types, cancer cells have lost the corresponding genes. Some studies suggest that oncogenes 

inhibit autophagy, while proteins preventing malignant transformation stimulate autophagic 
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responses (Morselli et al., 2011). Basal autophagy prevents the formation of tumours as it 

promotes genomic stability in normal cells and obviated cancer initiation. Proficient autophagy 

suppresses the accumulation of genetic and genomic defects that occur during malignant 

transformation, through a variety of mechanisms. Autophagy prevents ROS overproduction by 

removing dysfunctional mitochondria as well as redox-active aggregates of ubiquitinated 

proteins (Green et al., 2011; Komatsu et al., 2007; Mathew et al., 2009; Takahashi et al., 2013); 

maintains the physiological metabolic homeostasis (Galluzzi et al., 2014; Kenific and Debnath, 

2015); contributes to oncosuppressive mechanisms such as oncogene induced cell death or 

oncogene-induced senescence (Elgendy et al., 2011); is involved in the degradation of 

oncogenic proteins, including mutant (but not wild-type) p53 (Choudhury et al., 2013; Garufi et 

al., 2014; Rodriguez et al., 2012); mediates oncosuppressive immune responses and potent 

anti-inflammatory effects (Ma et al., 2013); and represents a first line defense against viral and 

bacterial infection (Figure 40) (Deretic et al., 2013). 

 

 

Figure 40. Oncosuppressive functions of autophagy. (Galluzzi et al., 2015) 
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Pro-oncogenic role. However, several studies sustain the hypothesis that cancer cells increase 

the autophagic flux in order to promote their survival and favour tumour cell growth 

(Amaravadi et al., 2016; White, 2012). Autophagy supports the growth and progression of 

established tumours by reducing their sensitivity to cell-intrinsic and microenvironmental 

stimuli that would normally promote their elimination (Avivar-Valderas et al., 2013; Cai et al., 

2015; Kroemer et al., 2010). Defects in the autophagic machinery often restrain the 

proliferation, dissemination and metastatic potential of malignant cells (Lazova et al., 2012; 

Mikhaylova et al., 2012). In this context, autophagy participates to the maintenance of the 

cancer stem cell pool, survival of senescent cancer cells and resistance to EMT, starvation, 

hypoxia and chemotherapy (Figure 41) (Galluzzi et al., 2015; Viale et al., 2014). 

 

 

Figure 41. Tumour-supporting functions of autophagy. (Galluzzi et al., 2015) 
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4.3 Role of autophagy in HCC 

Autophagy plays an important, still poorly understood role in hepatocellular carcinoma and the 

balance between its activation or inhibition is easily affected (Figure 42) (Chang et al., 2012a). 

Mice deficient for essential autophagy factors develop hepatomegaly and hepatic failure, 

indicating the essential role played by this mechanism in liver metabolism (Komatsu et al., 

2005). Deletion of Beclin1, ATG5 or ATG7 key autophagic genes in mice leads to development 

of HCC besides other types of malignancies, showing the primordial protective role of 

autophagy against the development of liver tumours (Qu et al., 2003; Yue et al., 2003). 

In dysplastic nodules, autophagy plays a protective role against HCC development by 

eliminating newly damaged cells and cells accumulating mutations. However, once the tumour 

is established, deregulation of autophagy contributes to tumour growth by favouring cancer 

cell survival (Sun et al., 2013). According to this observation, autophagy inhibitors favour the 

transition of dysplastic nodules into malignant tumours. Autophagy deficiency has also been 

shown to increase the accumulation of damaged mitochondria, to cause oxidative stress and 

to allow damaged DNA accumulation and genome mutations in hepatic progenitor cells 

(White, 2012; Xue et al., 2016). 

Furthermore, p62 is a substrate of autophagy that accumulates into hepatocytes in case of 

inactivation of this process and contributes to hepatic tumour formation. Indeed, autophagy-

deficiency in absence of p62 shows HCC nodules with smaller size (Kessler et al., 2015). 

IFN- , known to inhibit HCC growth, has been found to be mediated by autophagy cell death. 

IFN-  stimulates autophagosome formation. Inhibition of autophagy abolishes the anti-tumour 

effect of IFN-  on HCC, suggesting that this process is essential for the IFN- inhibition of 

tumour growth. 

The PI3K/Akt/mTOR pathway regulates cell growth, survival, metabolism and apoptosis. This 

pathway that is often activated in cancer is able to inhibit autophagy. On the other hand, PTEN 

activates autophagy, both by inhibiting the PI3K/Akt/mTOR pathway through decrease of PI3K 

activity and by initiating the formation of the autophagosome. PTEN is often mutated or 

downregulated in hepatocellular tumours. Thus, in HCC, the repression of PI3K/AKT/mTOR 

pathway and the activation of autophagy with small molecules restrict the cancer cells’ 

growth. 
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Figure 42. Signalling cascades of autophagy in HCC. (A) PI3K/AKT/mTOR pathway: Binding of 
growth factors to the corresponding receptors such as EGFR activates the signalling pathway, 
leading to repression of autophagy. In addition to activating mTORC1 directly or indirectly, 
active AKT can also directly regulate transcription factors FOXOs resulting in inhibition of 
autophagy. (B) ERK/MAPK pathway: binding of ligands on EGFR or IGFR receptors stimulates 
Ras signalling cascade, resulting in activation of autophagy. (C) PERK pathway: Under 
conditions of accumulation of misfolded or unfolded proteins, GRP78 binds to these proteins, 
permitting the release and the activation of PERK and the subsequent phosphorylation of 
eIF2α. PERK-eIF2α activation, by increasing the intracellular level of ATF4 and CHOP, induce 
autophagy. (D) Wnt/β-catenin pathway: In the presence of Wnt ligand (On state), GSK-3β is 
displaced from the APC/Axin/GSK-3β complex which prevents β-catenin phosphorylation and 
subsequent proteasomal degradation. Thus, the concentration of β-catenin is increased in 
cytoplasm. A growing number of β-catenin limits autophagy in nutrient rich condition, while β-
catenin itself is specifically targeted for degradation by autophagy upon starvation stress (Liu 
et al., 2017). 

 

However, autophagy can play a protective role in hepatocellular carcinoma, by detoxifying 

cells and supporting cancer cell survival in low nutriment conditions, hypoxia and even 

metabolic stress (White, 2015). In HCC patients, the activation of autophagy, as assessed by 

overexpression of LC3-II in tumours compared to adjacent tissue, is positively correlated with 

poor overall survival (White, 2015). On the other hand, it has been shown that Beclin 1 is 

downregulated in hepatocellular tumours compared to the adjacent tissue (72.8 vs 89.5%) and 

its overexpression is an independent indicator of poor prognosis (Qiu et al., 2014). These 

contradicting results are probably due to the complexity of the autophagy. Analysis of 

individual markers cannot provide the full picture regarding the level of autophagy at a given 
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time point. In other studies it has been shown that autophagy is related to malignant 

transformation and low survival rate (Lazova et al., 2012; Mikhaylova et al., 2012). 

It has been shown that miR-375, one of the most strongly down-regulated miRNA in HCC 

impacts the autophagy balance in HCC cells. In hypoxic conditions, miR-375 decreases viability 

of HCC cells and inhibits autophagy through down-regulation of Atg7 and blocking the 

conversion of LC3-I into LC3-II. By down-regulating miR-375, established HCC cells use 

autophagy to promote survival (Chang et al., 2012b; He et al., 2012b). 

Several body of evidence has shown that autophagy impairment during HCC development 

activates tumour suppressors such as p53, p16, p21 and p27 (Tian et al., 2015). That means 

that during cancer progression, autophagy contributes to the inactivation of tumour 

suppressors and that inhibition of this mechanism could restore the oncosuppressive activity 

of these proteins. In the same manner autophagy seems to increase the transformation 

potential of activated Ras (Guo et al., 2011, 2013; Song et al., 2009). 

It has been shown that autophagy also contributes to chemoresistance in HCC. In hypoxic 

conditions, autophagy decreases the sensitivity of cells to apoptosis. Sorafenib was shown to 

partially act by inducing autophagy (Llovet et al., 2008; Yuan et al., 2014). The acquired 

resistance to Sorafenib, currently encountered in clinic, seems to be mediated by the induction 

of autophagy and the inhibition of autophagy in resistant cells renders them sensitive again to 

the drug. 

The ERK/MAPK pathway promotes cell growth, proliferation, survival and differentiation, 

partially by inducing autophagy (Yoon and Seger, 2006; Maddodi et al., 2010). In a cohort study 

of 46 HCC, it has been observed that the ERK pathway members MEK1/2 and ERK1/2 are 

activated/up-regulated in 69% to 100% of the cases, but whether the role of ERK on HCC 

promotion is solely mediated by activation of autophagy has not been demonstrated until 

now. 

The Wnt/ -catenin pathway, often activated in HCC, inhibits autophagy through the -catenin 

(Petherick et al., 2013). When stabilised, -catenin acts as a co-repressor and down-regulates 

the expression of p62 in nutrient-rich conditions and therefore limits autophagy. On the other 

hand, in starvation conditions, -catenin directly interacts with LC3, being itself a substrate of 

degradation by autophagy. 

In conclusion, autophagy seems to have a dual effect in hepatocarcinogenesis. It appears to 

exert a protective role in normal liver cells, to eliminate damaged/preneoplastic cells, but also 

to favour survival of liver tumour cells. Considering the discrepancies observed between the 
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different reports, extensive studies are required to better characterise the mechanisms by 

which autophagy exerts different functions at different stages of HCC. Indeed, regulators of 

autophagy could represent promising anti-cancer molecules, in particular for HCC. 

 

4.4 Autophagy and cancer stem cells 

 

Stem cells reside for very long periods of time inside an organ and are the main source of 

somatic cells. Several observations suggest that autophagy plays a crucial role in the 

maintenance and function of normal stem cells and is therefore thought to ensure their quality 

control (Guan et al., 2013; Phadwal et al., 2013; Vessoni et al., 2012). However, the exact 

contribution of autophagy to stem cell function has not been studied in detail (Lin et al., 2015). 

Given the analogy between CSCs and normal stem cells, it has been suggested that autophagy 

also plays a cytoprotective role in CSCs. Autophagy is thought to be able to drive cell survival 

and evasion of death after cancer therapy. 

Several key components of the autophagy process have been shown to be involved in CSCs 

biology. ATG4A inactivation (through shRNA technology) in breast cancer cells was shown to 

inhibit mammospheres formation (Wolf et al., 2013). Strikingly, Beclin 1, considered as a 

tumour suppressor, promotes the survival of CSCs (but not of bulk cells) and contributes to 

their in vivo tumourigenicity. This suggests a dual role for Beclin-1 in tumourigenesis. The 

expression of Beclin 1 is higher in CSCs than in the total cancer cell population (Gong et al., 

2013). DRAM1 and p62, two regulators of autophagy were shown to be involved in 

bioenergetic metabolism, migration and invasion of glioblastoma CSCs (Galavotti et al., 2013). 

Downregulation by shRNA of LC3 and ATG12 decreases the CD44+ breast CSCSs population 

(Cufí et al., 2011).  

In triple negative breast carcinoma (TNBC), cells that are able to form mammospheres have a 

more intense autophagy flux compared to parental cells (Rao et al., 2012). Preclinical and 

clinical studies have been conducted with the autophagy inhibitor, chloroquine (CQ), and 

demonstrated that CQ is able to deplete the CD44+ CSCs population in TNBC (Choi et al., 

2014). Also, in breast ductal carcinoma in situ, CQ treatment reduces propagation, invasion 

and growth potential of cancer stem/progenitor cells forming mammospheres (Espina et al., 

2010). 
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Autophagy is important for CSCs not only in solid cancers, which are confined inside the 

tumour mass, but also in haematological cancers. In these latter, the survival of cancer cells 

and cancer stem cells have been shown to rely mainly on autophagy, since the impairment of 

autophagy by knock-down experiments is lethal for these cells (Altman et al., 2011; Rothe et 

al., 2014). 

One of the most widely expressed markers of CSCs is CD133. It has been shown that CD133+ 

cells show a high level of autophagy (Song et al., 2013). In fact, CD133 is a regulator of 

autophagy. In starvation conditions, CD133 is translocated to the cytoplasm and stimutates 

phagosome formation as well as glucose uptake and thus, enhances CSCs survival under 

conditions of stress or nutrient restriction within tumours (Chen et al., 2013a, 2013b). 

According to this, CD133 depletion favours cell death by inhibition of autophagy and induction 

of necrotic cell death and leads to diminished tumourigenicity of CSCs in several tumour types 

(Wei et al., 2013). In particular, it has been shown that CD133-blocking antibody inhibited 

hepatocellular carcinoma CSCs to develop in vitro into spheroids and to form in vivo tumours in 

NOD/SCID mice. 

Autophagy is activated in CSCs in response to environmental stress stimuli such as hypoxia, 

metabolic or oxidative stress which promote self-renewal and plasticity. In poorly vascularized 

tumours, hypoxia stimulates autophagy and activation of stem cell markers and factors 

(Degenhardt et al., 2006; Heddleston et al., 2009; Lin and Yun, 2010; Ma et al., 2011; Mathieu 

et al., 2011; Qiang et al., 2012). In one study, hypoxia has been described to enhance the 

metastatic capacity of CD133+ pancreatic cancer stem cells (Zhu et al., 2014a). If considering 

that autophagy helps CSCs to adapt to hostile environmental conditions, it has been shown 

that interfering with autophagy in hypoxic conditions specifically eliminates pancreatic cancer 

stem cells (Rausch et al., 2012; Song et al., 2013). 

Autophagy also impacts on CSC plasticity. Activation of autophagy blocks differentiation and 

leads to conversion of CD133 negative cells into CD133 positive cells (Yang et al., 2011b; Zhu et 

al., 2013). On the other hand, CD133 translocation into the cytoplasm enhances autophagic 

process, thus creating a positive feedback loop that results in the increased survival of CSCs in 

stress conditions (Jang et al., 2017 for review). 
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4.5 Modulation of autophagy in anti-cancerous treatments 

 

Given the dual role of autophagy in cancer, should we try to enhance autophagy or should we 

try to inhibit it for the treatment of cancer? In pre-malignant lesions, enhancers of autophagy 

might prevent cancer development and conversely, in advanced cancers, both enhancing 

autophagy and inhibiting it have been suggested as therapeutic strategies (Amaravadi et al., 

2016; Galluzzi et al., 2015; Levy and Thorburn, 2011; Towers and Thorburn, 2016). The 

protumoural role of autophagy opens the hope that the inhibition of autophagy by new drugs 

could improve the prognosis of HCC patients (Guo et al., 2013; White, 2015). 

Autophagy can be blocked at several key levels: inhibition of the lysosome functionality, 

inhibition of autophagosome formation, inhibition of the fusion between the autophagosome 

and the lysosome or post-translational inactivating modifications of ATG proteins (Gozuacik 

and Kimchi, 2004; Xie et al., 2015). 

HCQ (hydroxychloroquine) is a derivative of the natural compound CQ (chloroquine) and the 

most famous molecule inhibiting autophagy through suppression of lysosome functions. HCQ 

has been approved by the FDA for the treatment of malaria. However, the dosage needed for 

cancer treatment exceeds the threshold of toxicity of this drug and for this reason its anti-

cancer effect has only been explored in preclinical studies (Maclean et al., 2008). These studies 

showed that inhibition of autophagy enhances the death-promoting activity of tumour 

suppressor pathways (White and DiPaola, 2009). 

Anti-autophagic agents can be associated to other commonly used therapies in order to 

enhance their efficiency or preventing acquired resistance. It has been shown that 3-MA (3-

methyladenine) which blocks the fusion between the autophagosome and the lysosome, can 

enhance the pro-apoptotic effect of meloxicam, a selective inhibitor of Cox2, effective in 

several types of cancer (Maclean et al., 2008; Zhong et al., 2015). 

However, further studies need to be conducted in order to determine whether cancer cells are 

more sensitive to autophagy inhibitors that normal cells. Since autophagy is a physiological 

process indispensable at basal level in normal cells, the ideal treatment would spare non-

malignant cells while being deleterious to cancer cells (Karsli-Uzunbas et al., 2014; White, 

2015). In particular, such a treatlent should eliminate CSCs with a limited toxicity for normal 

stem cells. 
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The inhibition of autophagy in HCC cells could be one of the reasons that Sorafenib 

significantly improves HCC patients’ outcome (Shimizu et al., 2012). When associated to 

specific autophagy repressors, Sorafenib shows an increased efficiency against HCC. Several 

body of evidence raises the possibility that autophagy control may be used to avoid cellular 

resistance to Sorafenib or other anticancerous agents (Liu et al., 2016a; Zhai et al., 2014). 
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AIM 
 

 

 

In view of the current state of the art regarding hepatocellular carcinoma pathogenesis, I have 

focused during my PhD thesis on the development of innovative models of study of this 

disease, as well as investigating the role of p73 isoforms in the acquisition of stemness 

characteristics of these tumours. Furthermore, I have contributed to the preclinical 

development of a new potential drug against HCC that inhibits autophagy and is efficient 

against cancer stem cells. The aim was to combine several approaches that together would 

lead to a better management of hepatocellular carcinoma as well as a deeper understanding of 

its pathogenesis. 
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Study 1 

In vitro and in vivo models of hepatocarcinogenesis 

 
 

The IMODI initiative (Innovative Models of Disease) is a consortium including public 

laboratories, biotechnology and bio-pharma companies sustained by the French Public 

Investments Bank (BPI). The aim of IMODI is to develop novel models of eight human tumour 

types: prostate, breast, ovary, liver, pancreas, lung, myeloma and lymphoma. The main 

objective is the development of three types of models: patients derived xenografts (PDX), 

patient-derived cancer cell lines and PDX models in mice with humanised liver or immune 

system. In addition, several other deliverable products should be the result of this 

collaboration (not discussed here). 

Our research group “Hepatocarcinogenesis and Viral Infection” from the Cancer Research 

Centre in Lyon participated to this project by contributing to the development of PDX and 

patient-derived cell lines of HCC. We acted as a collection centre for fresh HCC samples from La 

Croix Rousse Hospital (Lyon) and we also provided our research expertise by performing in 

vitro culture of primary HCC cells. A second collection centre was situated at Pitié-Salpetrière 

Hospital and Saint Antoine Hospital in Paris. I will only describe here the experience of our 

team in this project. 

Secondly, we also contributed to the mouse liver humanisation part of the project. Mice livers 

were repopulated using a conventional source of cells namely primary human hepatocytes 

(PHHs) (studies reported that iPS reprogrammed hepatocytes can also be used (Zhu et al., 

2014b)). The goal was to set up a cryoconservation/thawing method of PHHs, in order to use 

them at any time after isolation from human liver fragments. PHHs were isolated from human 

liver fragments obtained after liver resection for colorectal carcinoma metastases. 

*** 

The team initiated a study regarding the capacity of PHHs to be transformed in vitro. I 

contributed to this study by evaluating the emergence of the cancer stem cell pool during 

immortalisation and transformation of hepatocytes. The corresponding manuscript of this 

article is presented after the results of the IMODI project. 
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Innovative models of cancer disease 
 
 
 
 

Introduction 

Hepatocellular carcinoma is a disease with very few treatment options. Until now, most of the 

clinical trials showed negative results due to the limited knowledge of the pathogenesis of 

HCC, the high radio- and chemoresistance of tumour hepatic cells and the absence of 

therapeutic strategies specific to this type of cancer. Only a limited number of preclinical 

models are available for this disease. These models are extremely useful for the identification 

of new targets for therapies (not only intrinsic to tumour cells but also related to the 

microenvironment and to the modulation of the immune system), for the screening of novel 

drugs, as well as for assessing their toxicity. At the preclinical stage, cancer cell line models are 

extremely important because they are less expensive and less time consuming than in vivo 

models. They are employed both for screening new libraries of molecules and for searching for 

new potential targets of interest. In vivo models are complementary to in vitro models, 

because they better model the physiological conditions encountered in patients. During this 

last decade, a new type of in vivo models of cancer has emerged, the PDX models. These 

transplantable models are obtained by implanting patient’s tumour specimens in 

immunodeficient mice, subcutaneously (ectopically) or in the organ of origin of the tumour 

(orthotopically). PDX tumours were shown to retain most of the characteristics of the original 

tumour and be highly predictive for the clinical outcome (Bertotti et al., 2011; Damhofer et al., 

2015; Fichtner et al., 2008; Gao et al., 2015; Garrido-Laguna et al., 2011; Julien et al., 2012; 

Keysar et al., 2013; Marangoni et al., 2007; Michelhaugh et al., 2015; Migliardi et al., 2012; 

Siolas and Hannon, 2013; Sivanand et al., 2012; Tentler et al., 2012; Zhang et al., 2013b). PDX 

models are extremely useful in the study of the interaction between cancer cells with the 

tumour microenvironment and the host immune system as well as performing 

pharmacokinetics and pharmacodynamics studies. 

Besides the tumour models described here above, in vitro and in vivo biological systems using 

PHHs are extremely useful. PHHs cultured in vitro are used to study infection by hepatitis B 

(HBV) and C virus (HCV), cell transformation, as well as drug metabolism. Of note, HBV and 

HCV viruses have a very narrow host range and only PHHs and the HepaRG cell line can be 

infected in vitro (Galle et al., 1994; Gripon et al., 1988, 1993, 2002; Ochiya et al., 1989).  
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Mice with humanised livers are extremely useful in virology, oncology as well as drug discovery 

for performing studies at the level of an organism. However, the biggest limit of these models 

is that, contrary to cancer-related models, they are not transplantable. Therefore, there is a 

constant need for sources of PHHs which do not replicate in vitro. These cells are isolated from 

human liver fragments but since the number of donors is extremely low, primary hepatocytes 

need to be stored frozen to be used at different times after isolation. However, as for many 

other primary human cell types, PHHs are very sensitive to the freezing process due to 

intracellular ice formation. Current protocols involve the use of cryoprotectants (e.g. DMSO, 

glycerol, antifreeze glycoproteins) and a controlled freezing rate in order to promote 

vitrification or dehydration and thus limit intracellular ice formation (Stéphenne et al., 2010). 

Until now, no method of cryoconservation of PHHs has been described that could be easily 

employed in the laboratory. Other than fresh PHHs, another source of cells are those 

commercialised by biotechnology companies. 

The aim of this project was both the development of HCC patient-derived cell lines and PDX 

models, as well as setting up of a less expensive cryopreservative method of hepatocytes that 

could be easily adapted in any laboratory. 

Results 

In vitro functionality of cryoconserved PHH  

PHHs were isolated from human liver resections with a viability rate close to 100%. 

Immediately after isolation, hepatic cells were cryoconserved in one-step manner by 

resuspension in the CS10 solution and then were frozen at -80°C (details are provided below). 

Hepatocytes were stored in liquid nitrogen for at least 1 week prior to thawing and functional 

assays. In total, 15 liver fragments were collected from different donors and for each of them a 

separate batch of hepatocytes was prepared. 

Three million viable cells were obtained after thawing each vial and the cell viability was close 

to 100%. However, since five million cells were initially distributed per vial, it means that the 

cryoconservation and thawing steps are fatal for about 40% of cells. Dead cells were 

eliminated during the washing step prior to cell counting and plating. Plated cryopreserved 

and fresh hepatocytes had the same morphology (Figure 1A). 

The functionality of PHHs was investigated in vitro by using different assays: human albumin 

production and secretion, leakage of lactate dehydrogenase (LDH) and infection by HBV. 
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Albumin is the most abundant protein produced by hepatic cells and albumin synthesis is a 

classical assay for the study of liver-specific function. The level of this protein was measured by 

ELISA in the supernatant of fresh and cryopreserved hepatocytes cultures, obtained from the 

same donor. It was found that cryopreserved and thawed PHHs secrete similar quantities of 

albumin as compared to fresh hepatocytes, for example 213 ng/mL and 138 ng/mL, 

respectively for one of the batches. High level of albumin in the supernatant is indicative of a 

functional metabolic circuit and secretory system of hepatocytes. 

Membrane integrity was assessed by LDH dosage in the cell medium. When the cell membrane 

is damaged, the LDH is leaking out of the cell. LDH dosage in the cell supernatant is commonly 

employed as a cell death assay. As for the albumin, the levels of released LDH was compared 

between freshly isolated and cryoconserved hepatocytes. The quantification method of the 

released LDH is relative to the intracellular pool of this enzyme. The cryoconserved 

hepatocytes did not release a higher quantity of LDH than fresh hepatocytes. We found that 

the supernatant of cryoconserved hepatocytes contained less than 1% of LDH compared to the 

intracellular level, while the supernatant of the fresh hepatocytes contained the equivalent of 

30% of the intracellular pool. The high levels of LDH observed to be released by fresh 

hepatocytes cultured right after isolation from liver resections suggests that the perfusion 

method of the liver fragments endangers the cells membrane. This is probably a consequence 

of perfusing the liver resections with buffers containing proteases, namely the collagenase in 

this case. The use of collagenase is intended to dissociate cells from the extracellular matrix 

and from each other. However, the collagenase is a fast-acting enzyme and probably it creates 

holes in the hepatocytes’ membrane that are not repaired fast enough after cell plating. Since 

LDH leakage was not observed for cryoconserved hepatocytes, it is possible that freezing and 

thawing the cells would affect the dynamics of the cell membrane in a way that would allow 

the redistribution of lipids and proteins and thus repair of the membrane damage. 

Alternatively, cryopreserved hepatocytes with membrane damage have perhaps been 

destroyed during thawing, since 40% of frozen hepatocytes are lost during this process. These 

results could be confirmed by electron microscopy of freshly isolated and cryopreserved 

hepatocytes. 

Thirdly, the capacity of cryoconserved hepatocytes to be infected by HBV was investigated in 

collaboration with the HBV infection group in our team. Infectivity by HBV is of major 

importance, since PHHs are the cells that best sustain in-vitro infection by HBV. Cryoconserved 

hepatocytes and fresh hepatocytes were infected with HBV virions three days post-plating. The 

efficiency of infectivity was assessed by measuring the levels of HBe and HBs antigens in the 
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supernatant by ELISA. HBsAg represents the protein at the surface of both genome-containing 

HBV virions and empty HBV particles released from the host hepatocytes. The viral HBeAg is an 

indicator of active viral replication. For both HBe and HBs proteins, the quantity released by 

the fresh infected hepatocytes and cryoconserved hepatocytes were similar (Figure 1B). These 

results remain to be confirmed on more samples, but they suggest that cryopreserved 

hepatocytes sustain infection and replication of HBV in vitro with an efficiency similar to 

freshly isolated hepatocytes. 

 

Figure 1. Comparison between fresh and cryopreserved hepatocytes. A. Contrast microscopy 
of hepatocytes monolayer before and after cryopreservation (200X). Photos were taken two 
days post-plating. B. Levels of the viral proteins HBeAg and HBsAg in cell culture supernatant, 
after HBV infection of fresh (light grey) and cryopreserved hepatocytes (dark grey). HBV virions 
were obtained by concentration of HepG2 2.2.15 cell culture supernatants. Infection was 
pursued for 6 days and quantification of the viral antigens was done by ELISA.  
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PHH for in vivo humanisation 

After testing in vitro the quality of cryopreserved hepatocytes, their in vivo functionality was 

investigated with respect to their capacity to repopulate FRG mouse livers after liver injury, 

thus leading to chimeric mice with a humanised liverd. 

Seven batches of cryopreserved PHHs were tested. Briefly, cells were thawed, counted and 

500 000 viable hepatocytes were injected intrasplenically in two FRG mice with chemically-

induced liver destruction. Two vials of each batch were tested. A commercial batch of 

cryoconserved hepatocytes was used as a positive control for which the humanization efficacy 

was found to be excellent. Humanization was assessed by measuring the level of human serum 

albumin in the mice sera every 3 weeks. It was considered that albumin levels exceeding 10-

12mg/mL, reflect a mouse liver fully humanized i.e. when the human hepatocytes replaced 

around 90% of murine hepatocytes and took over the animal’s hepatic functions. For 

cryopreserved hepatocytes as well as for the commercial hepatocytes, we observed a 

progressive increase in the level of human serum albumin that reached more than 10mg/mL at 

week 14 (Figure 2). After 14 weeks following humanization with both cryopreserved and 

commercial hepatocytes, the level of albumin diminished, probably related to the degradation 

of the animal general condition. At the end of the study, mice were sacrificed, and the 

morphology of the liver was analyzed by histology with H&E staining. Human hepatocytes 

were found to represent more than 80% of the volume of the liver (data not shown). 
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Figure 2. Human serum albumin (HSA) concentration in the sera of FRG mice with humanized 
livers. For each of the three batches of cryopreserved hepatocytes, two vials (vial 1 and vial 2) 
were tested, and for each vial two recipient mice were injected (#1 and #2). HSA concentration 
after liver humanisation with home-made hepatocytes was less high than using commercial 
hepatocytes, but sufficiently high to consider mice livers as fully humanised. A commercial 
batch of cryoconserved hepatocytes was used as a positive control for which the humanization 
efficacy was found to be excellent. 
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Patient recruitment for tumour specimens’ collection 

Thirty patients were included in the preclinical study aimed at developing preclinical models of 

HCC. The clinical features of our series were common for Western patients with HCC treated 

by liver resection. The prevalence of viral factors was 27% and 10% for HCV and HBV infection, 

respectively (Figure 3). For the other patients, the main risk factor was alcohol abuse but for 

some of them no risk was identified. Mixed aetiologies were observed in 1 patient (3%) that 

was HCV positive and HBV spontaneously cured (anti-HBs and anti-HBc positive). There was a 

strong male predominance (97%). Since the tumour fragments were obtained from patients 

for whom surgery was prescribed, we can assume that only patients with early stages HCC 

were included (Child A and B). 

 

Figure 3. Prevalence of HCC aetiologies and patients gender in the IMODI cohort. Tumours 
were classified according to their HCC aetiology: 8 patients (28%) were HCV positive, 3 (10%) 
were HBV positive and 19(63%) were viro-negative; 29 patients were male (97%) and 1 patient 
was female (3%). 
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In vitro cell culture 

Three types of cell culture systems were tested with the aim of developing HCC cell lines from 

patients’ tumour fragments (Figure 4A). 

At first, HCC fragments were digested with the Tumour Dissociation Kit from Miltenyi Biotec. 

Most probably, this technique was extremely aggressive for HCC cells which seem to be quite 

sensitive to mechanical as well as enzymatic methods. Twenty-four hours after plating the cell 

mixture obtained by tissue digestion on collagen-coated plates, all cells were found floating in 

the media. A collagenase-based digestion technique was therefore preferred for tumour cell 

isolation. Contrary to the commercial kit, where the composition of the enzymatic cocktail is 

unknown and the concentrations of the enzymes cannot be adapted during the experiment, 

the classical digestion with collagenase is a protocol much more flexible that can be adjusted 

depending on the texture of the tissue. Indeed, big differences in tissue stiffness have been 

observed for HCC coming from individual patients. 

The explant technique on collagen matrix yielded good results. For most of the tumour 

fragments, colonies of epithelial-like cells were observed circling the explant. These colonies 

were surrounded by fibroblast-like cells and the two cell types did not mix. Once the two cell 

populations arrived at confluency, cells would stop proliferating. At this point, cells were gently 

trypsinated or detached with enzyme-free dissociating buffers in order to try to amplify the 

epithelial-like cell population. However, cells did not survive to any of the dissociation 

attempts and no cell line was derived by this method. Probably explant culture conditions 

previous to cell dissociation could be improved so that cells would better tolerate cell 

detachment from the support. Additionally, other dissociation methods could be tested that 

would be less harmful to cells. 

Regarding the 2D single cell culture technique following digestion with the collagenase, a 

primary cell monolayer was established with a good efficiency after plating (Figure 4B). For 

some HCC specimens, cell monolayers at 70% to 90% of confluency were observed as early as 

24 hours after plating. This was probably due to cell attachment with a good efficiency rather 

than cell division, in view of such a short period of time after tissue digestion. Unfortunately, 

these primocultures would start to degrade after 1 week. Cells would become less and less 

numerous and those remaining would increase in size. By one month of culture, individualized 

cells were observed, with a big ratio cytoplasm/nucleus, typical for senescent cells. For some 

of these cells, several nuclei per cell were observed. Replicative senescence is a physiological 

process that appears in all cells except immortalised/ tumour cells, suggesting that the cells 
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observed in our cultures were not true tumour cells. The senescent phenotype could be 

confirmed by performing a staining of the senescence-associated  β-galactosidase (SA-β-gal) 

marker as previously described (Dimri et al., 1995). In some cases, attempts were done to 

amplify these cells before they would go into replicative senescence. Following gentle 

trypsination, cells adhered again but after about one week they continued their natural course 

towards cell senescence. 2D culture was performed for the 30 HCC specimens but no cell line 

was derived. 

Attempts to amplify the cancer stem cell population from the digestion mix have proven quite 

successful (Figure 4C). In most of the cases, we observed that spheres would form after 1 week 

of cell culture in low-adherence conditions. Once spheres were formed, they did not increase 

in size over time and they could not be amplified by trypsination and re-seeding in the same 

conditions. 
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Figure 4. In vitro culture of primary HCC cells coming from patient included in the IMODI 
cohort. A. Three culture systems were tested : explant fragments as well as monolayer and 
sphere conditions after tissue dissociation by chemical and enzymatic means. B. Monolayer 
cultures were obtained from primary HCC cells but over the time cells became senescent and 
could not be amplified (40x and 400x). C. Primary HCC sphere obtained after culturing primary 
HCC cells in low-adherence and in absence of serum (200x). The photos presented in this figure 
are representative of the results.  
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One model of HCC PDX 

Twenty-eight of the thirty tumour samples were engrafted in immunodeficient mice for PDX 

development. The first 16 specimens were engrafted in BALB/c nude mice. Since no tumour 

growth was observed for these tumours, it was possible that the tumour fragment was 

eliminated by the mouse’s remaining immune system. Therefore the following engraftments 

assays were performed on a more immunodeficient mouse strain, the NSG mouse strain. 

While nude mice are devoid of T cells, the NSG strain is even more immunodeficient since it 

does not possess T, B, and natural killer (NK) cells. Unfortunately, the efficacy of engraftment 

on NSG mice was not better. 

Of the 28 specimens, only one gave rise to a PDX model called IM-LIV-516 (Figure 5A). The 

tumour originated from a 53 years old male patient. The patient was HCV positive and HBV 

spontaneously cured. He had a high AFP serum concentration of 542 ng/mL. 

The primoengraftment of the tumour fragment was performed on a BALB/c nude mouse and 

the second passage as well as the amplification step of the model was done on the NSG strain 

in the hope to ensure better engraftment efficiency. The second passage was done three 

months after the primograft. 

In order to confirm that the IM-LIV-516 model indeed originated from the human 

hepatocellular carcinoma fragment implanted, and that it retained the pathological features of 

the original tumour, the histology of the PDX tumours was performed and compared to that of 

the original tumour tissue collected from the patient. Tissue morphology was assessed by 

counterstaining with H&E as well as the tumour markers HepPar 1, Arginase 1, and Glypican 3. 

The histopathological staining as well as the analysis of these experiments was performed by 

Pr Dominique Wendum in Paris (Saint Antoine Hospital). Results showed that the IM-LIV-516 

PDX tumours preserved similar histological, differentiation and immune-histochemical 

characteristics as the original tumour (Figure 5B). The original tumour as well as the 

transplanted PDX showed strong and homogenous staining for the Glypican 3 marker as well 

as focal staining for HepPar 1 and Arginase 1. In summary, the HCC PDX model IM-LIV-516 is 

moderately differentiated, positive for Glypican 3 and focally positive for Arginase 1 and 

HepPar 1, in the same manner as the original tumour. 
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Figure 5. Development and characterization of the PDX model IM-LIV-516. A. IM-LIV-516 was 
derived from the HCC of a patient spontaneously cured from HBV and HCV positive. The 
tumour engraftment was not found to have cachexic properties as the animal’s weight was 
constant (left panel). Tumour growth was observed 10 weeks after engraftment in one of the 
four xenografted immunodeficient mice (right panel). B. Histology of patient’s tumour and 
xenografts of IM-LIV-516 from passages 1, 2 and 3 (p1, p2 and p3). H&E staining confirmed the 
moderate differentiation of the primary and xenografted tumours. Tumour markers Glypican-
3, HepPar 1 and Arginase 1 confirmed the human HCC origin of the PDX tumour as well as the 
maintenance of the main histological features. 
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HBV replication could be reactivated in the tumour 

Since the PDX model IM-LIV-516 was derived from a patient previously infected with HBV and 

HCV, it was possible that tumour cells allow the replication of the virus. As no other PDX model 

has been described for viral-induced HCC, it is not known whether the sub-cutaneous 

xenografted tumour itself can produce HBV and/or HCV virions. In patients it could be very 

difficult to assess whether tumour cells are able of sustain the replication of the HBV and/or 

HCV virus in the context of an infected liver. 

The presence of viral genomic DNA and RNA was tested both inside IM-LIV-516 mice tumours 

as well as in sera. The quantification of HBV and HCV genomes was performed by RT-qPCR, a 

technique already described before, both for HBV as well as for HCV (El-Shamy et al., 2016; 

Lucifora et al., 2008). The analysis was performed on several passages of the PDX in order to 

determine whether proliferation of HCC cells would finally lead to loss of replication or, on the 

contrary, to its reactivation. Serum samples were collected at passages 1, 3 and 5 while 

tumour samples were collected at passages 2, 3 and 5. 

Neither HBV DNA nor HCV RNA has been detected inside the PDX tumours at either of the 

investigated passages. On the contrary, we found HBV circulating DNA even though at 

relatively very low levels (Table 1). 

 

Sample  qPCR VHB  copies /ml qPCR VHC  copies/ml  

Serum IM-LIV-5156 passage 1 
N=1 139 
N=2 33     NEGATIVE 

Serum IM-LIV-516 passage 3 
N=1 922 
N=2 811 NEGATIVE 

Serum IM-LIV-516 passage 5 
N=1 190 

N=2 NEGATIF  NEGATIVE 
Tumour IM-LIV-516 passage 2 NEGATIVE NEGATIVE 
Tumour IM-LIV-516 passage 3 NEGATIVE NEGATIVE 
Tumour IM-LIV-516 passage 5 NEGATIVE NEGATIVE 

 

Table 1. Virological parameters of the PDX model IM-LIV-516. The genomes of HBV and HCV 
were quantified in the sera and tumours of mice by RT-qPCR. The detection threshold was 160 
copies/mL for HBV and 1200copies/mL for HCV. Viral HBV genome was found in the sera of 5 
out of 6 animals, while HCV viral genome was undetected. 
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Discussion 

Despite the fact that numerous efforts are done worldwide to improve HCC treatment and 

cancer in general, HCC still remains a disease difficult to treat. This is tightly linked to the 

heterogeneity of the disease, explained by the patient’s clinical history and the natural history 

of the tumour. Knowing that at the moment there are only few experimental tools reflecting 

this patient variability, it becomes extremely difficult to develop targeted and efficient 

therapies against this type of cancer. 

Clinical trials are the time-limiting step in the development of new therapies as they require 

large number of patients, are expensive and they can expose patients to fatal outcomes. 

However, only very few clinical trials lead to the commercialisation of efficient antitumour 

compounds with an acceptable toxicity. 

Experimental models of human cancers are thus a very valuable tool that could be used to 

select the most effective molecules to enter clinical trials as they closely mimic clinical 

situations observed in patients. 

The aim of the IMODI project is to develop and characterise new experimental models of 

human cancer. The project is focused on the development of primary models i.e. models 

developed directly from fresh human samples. Primary models were shown to be most suited 

for testing new drug candidates, very useful in the process of biomarker validation, help to 

predict patients’ response to therapies and leads to a better selection and stratification of 

patients in clinical trials. 

More precisely, these models consist of in vivo amplification of tumours in immunodeficient 

mice, called PDX models as well as establishment of new cancer cell lines. These two models 

are extremely useful both for the bio-medical industry and in the academic research. 

Maintaining in vivo a human tumour by implanting it in immunodeficient mice provides a 

renewable tissue resource. It has been shown that from a biological point of view, PDX models 

resemble the original human tumours regarding their cytogenetic, genetic or phenotypic 

characteristics. PDX models can also be useful to study synergisms in combined therapies, to 

predict their toxicity or efficacy or detect antagonistic effects. Coupled to imaging techniques, 

it is possible to observe treatment effects at the vascular level or at the tumour’s metabolic 

level. 

In this context, we have recruited 30 patients with resectable HCC for the development of PDX 

models and HCC cell lines. One PDX model was established, named IM-LIV-516 and significant 

progress was done in performing in vitro culture of primary human HCC cells. Another PDX 
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model has been derived from a cholangiocarcinoma collected at La Pitié-Salpétrière Hospital 

(IM-LIV-019). Its histological characterisation is currently under progress. 

The PDX model IM-LIV516 was established from a patient with HCC on HBV and HCV infection 

background. The model was shown to recapitulate the features of the original tumour in terms 

of histopathology. The original and the PDX tumour were found positive for the markers 

Arginase 1, Glypican 3 and HepPar 1. The HepPar 1 antigen is employed as a positive marker 

for histopathologically differentiating HCC from metastatic carcinoma (Hanif and Mansoor, 

2014). The use of this marker is particularly useful for poorly differentiated HCC where tumour 

cells lose the hepatocyte-specific morphology. Glypican-3 has been described as a highly 

reliable marker in differentiating benign hepatocellular lesions (such as hepatocellular 

adenoma) from HCC (Capurro et al., 2003; Hsu et al., 1997; Midorikawa et al., 2003; Nakatsura 

et al., 2003; Zhu et al., 2001). 

From the 30 patients that have been included, this was the only case with a double infection 

by HBV and HCV. No previous studies reported whether tumour aetiology is correlated with 

the engraftment efficiency in immunodeficient mice. In the present case, it is possible that the 

original tumour was more aggressive due to the synergy between cellular mechanisms that the 

two viruses trigger to induce cell transformation. One of these mechanisms (but probably not 

the only one) could be linked to the emergence of cancer stem cells, described in the case of 

both HBV and HCV infection (Arzumanyan et al., 2011; Fan et al., 2016; Ali et al., 2011). 

Cancer stem cells have high tumourigenic potential and possess tumour-initiating properties. 

Regarding the contributions of cancer stem cells to the efficiency of generating PDX models, it 

should be noted that the patient had an abnormally high level of AFP of 542 ng/mL at the time 

the surgery was performed. High levels of AFP together with EpCAM positivity were described 

as poor prognosis factors in HCC patients thus associated with tumour aggressiveness 

(Yamashita et al., 2008). The presence of cancer stem cells could be investigated in the PDX 

tumours by performing staining against EpCAM and CD133 markers. 

The virological status of HBV and HCV was assessed in both IM-LIV-516 mice sera as well as 

inside the tumours. It confirmed the presence of HBV viral genome in the blood of the mice 

but not inside the PDX tumours while HCV was negative both in the blood and the tumours. It 

should be noticed that the patient was considered as viro-suppressed for HBV, but still 

infected by HCV. This result raised several questions such as: Where is the HBV in the blood 

coming from? Is it linked to HBV replication or HBV integration in the genome of the HCC cells? 

Why was HBV detected but not HCV? 
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One of the major differences between HBV and HCV is that HBV viral DNA can integrate into 

the host genome. In our case, it is indeed possible that HBV had partially integrated into the 

genome of the HCC host cells. Thus, the viral sequence is transcribed by the transcriptional 

machinery of HCC cells. However, in that case, the mRNA level within the tumour tissue should 

be in a greater amount than the free RNA circulating in the animal’s blood and more easily 

detectable. 

The most probable source of HBV in the blood is the replication of the virus by the tumour 

cells. However, in this case, it is surprising that HBV was not detected inside the tumours. One 

of the explanations could be that our detection method is not sensitive enough to detect very 

low levels of HBV. In the literature, reports concerning the replication of HBV in HCC cells are 

contradictory. As such, in HCC patients with chronic HBV infection, it has been described that 

at the time the HCC appears, cancerous hepatocytes no longer allow viral DNA replication and 

do not express HBcAg, although HBsAg can be detected in approximately 20% of cases (Wang 

et al., 1991). The core protein, which is required for replication, is detected in only 15% of HCC 

cases but only in a minor fraction of tumour cells (Hsu et al., 1989). On the contrary, other 

reports demonstrated the persistence of intermediates of replication in tumour liver cells from 

patients with HCC and suggested that they may not normally be encapsidated (Raimondo et 

al., 1988). Finally, it has been recently reported that cccDNA can be found both in tumour or 

non-neoplastic liver tissue of patients with HCC and that cccDNA copy number correlates with 

the level of circulating HBs (Wang et al., 2016a). Thus, in our case, additional analysis by 

quantification of the HBV viral proteins both in the tumour and serum, could shed some light 

on the question regarding HBV replication in tumour-bearing mice. Quantification of HBsAg 

viral protein by ELISA in the serum is a very good method for assessing active infection. In 

addition, measurement of HBeAg in the serum is considered as a strong reliable test for HBV 

replication. 

Another explanation for the presence of HBV DNA in the blood of mice could be due to the 

release of dying or viable HCC cells in the bloodstream. An abundant literature describes the 

use of circulating tumour DNA, called liquid biopsy, and its huge potential to serve as a 

biomarker for early detection, real-time monitoring of treatment response and prediction of 

tumour metastasis/recurrence, especially for HCC (Tang et al., 2016; Zhou et al., 2016a). 

Regarding the replication of HCV inside the liver tumoural tissue, although some previous 

investigations have shown no difference in the presence and levels of HCV RNA between the 

tumour and nontumour liver tissues from HCV-associated HCC patients, others have reported 

low to undetectable levels of HCV RNA within the tumour (Dash et al., 2000; Gerber et al., 
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1992; Harouaka et al., 2016; Haruna et al., 1994; Horiike et al., 1993; Kobayashi et al., 1994; 

Sobesky et al., 2007). On the basis of these observations, three hypotheses rise regarding the 

absence of detection of HCV in the tumour and serum of our PDX IM-LIV-516 model: (i) the 

tumour cells from the patient do not contain the HCV virus; (ii) the tumour cells from the 

patient do not allow the replication of the HCV RNA-genome; (iii) our detection method is not 

sensitive enough. 

Very few studies have described the development of PDX models from human HCC and none 

of them from a viro-positive tumour (Cheung et al., 2016; Gu et al., 2015). The reason for the 

absence of a large panel of PDX models is probably linked to the low efficiency of engraftment. 

In our case, this issue represented the main limit in the development of a panel of PDX models 

of HCC. HCC is not the only tumour type for which the IMODI consortium had difficulties to 

obtain PDXs. At present, only one PDX from multiple myeloma, 2 from lymphoma and 0 from 

prostate carcinoma were established, whereas many PDXs were obtained for breast, lung, 

ovarian and pancreatic carcinomas. The absence of tumour growth in mice can be linked both 

to the viability of the tumour cells at the time of engraftment, as well as the graft intake rate 

by the mice. One of the adjustements that could be done is to try to improve the transport 

procedure of the tumour fragments from patients to the animal facility, by testing other 

transport media as well as transporting the samples in temperature-controlled conditions. 

Secondly, the low intake rate of tumours in the recipient organism could be related to the 

mouse strain used and/or the engraftment site. Another axis of the project, not discussed 

here, tested the efficiency engraftment when performed subcutaneously or orthotopically. No 

better results were obtained for the orthotopic engraftment. 

In order to validate the HCC PDX model IM-LIV-516, a more profound characterisation could be 

considered. Apart for the three markers that were assessed, several others are interesting of 

testing. Several reports identified subgroups of patients positive for the stem-cell like markers 

CK19, EpCAM and AFP. They suggested that these HCC are enriched in CSCs and were 

associated with poor prognosis (Kim et al., 2011; Yamashita et al., 2008). EpCAM is strongly 

expressed in several types of human cancers from epithelial origin. The function and the 

regulation of EpCAM are not clearly elucidated to date. In the adult liver, hepatocytes are 

negative for EpCAM. On the contrary, in the embryonic liver, most of hepatocytes express 

EpCAM. In the cirrhotic liver, EpCAM is expressed in the proliferative region next biliary 

canaliculi, considered as the place where hepatic progenitor cells reside. The same pattern of 

expression has been described for CK19 and AFP, while a small difference that CK19 is also a 

marker for cholangiocytes, the hepatic epithelial subtype forming the bile canaliculi. The 
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reason why some patients have a very poor prognosis is mainly related to primary or 

secondary resistance of cancer to treatment as well as relapse post-surgery, both attributed to 

CSCs. CSCs have a high tumourigenic capacity and are capable by themselves to initiate tumour 

growth. Histological assessment of the expression of these three markers would allow 

determining whether the PDX model IM-LIV-516 is enriched in CSCs, in which case it would 

represent an excellent model predicting the response to treatment for a sub-group of HCC 

patients with poor prognosis. 

A second axis of characterisation is the immune infiltrate in these tumours. A new emerging 

field in oncology is the immune response to tumour formation. Tumour cells were shown to 

modulate the host immune system in order to stop their elimination, by expressing immune-

checkpoint molecules. The better example in this case is the couple PD1 & PD-L1. PD-L1 

(programmed cell death 1) expressed by some tumour cells is the ligand of the PD1 receptor 

present at the membrane of cytotoxic T cells, B cells and myeloid cells. The coupling PD1 – PD-

L1 inhibits the proliferation of T cells and can induce immune cells’ death (Topalian et al., 

2016). 

Thirdly, genetic characterisation of the model would allow classifying it according to the 

molecular classification previously established (see Fig. 14 of introduction). We expect that IM-

LIV-516 will be close to human HCC that are poorly differentiated, with an HBV aetiology, 

genetic instability, TP53 mutation and expression of stemness markers, thus, belonging to the 

G1-G3 subgroup of HCCs. 

A cryoconservation method for primary human hepatocytes was established and can be easily 

adapted in any lab performing isolation of PHHs. Regarding the humanisation capacity of the 

cryopreserved hepatocytes, we observed a lower level of human albumin in the sera of mice 

humanised with these cells compared to the commercial batch of hepatocytes used as a 

positive control. The difference could be due to the young age of this particular donor (8 

years). Nevertheless, most commercial batches of cryopreserved hepatocytes tested were 

found to yield comparable results to what was found for the cryopreserved hepatocytes in the 

lab (F. Fusil personal communication). 

The efficiency of cryoconservation is not reproducible between liver donors. This could be in 

part due to the health condition of the donor. Indeed, liver fragments originated from patients 

suffering of a colorectal carcinoma with liver metastases and might exhibit impaired liver 

function linked to treatment as well as steatohepatitis, fibrosis or mild cirrhosis. Moreover, the 

perfusion procedure is very much dependent on the morphology of the liver fragment. When 

the entry points for the perfusion are large, the digestion buffer will be easily and uniformly 
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distributed inside the tissue. This will require a shorter perfusion and lead to preservation of 

cells’ quality. 

In perspective, we plan to perform orthotopical HCC engraftment in mice with humanised liver 

which could strongly increase the engraftment efficiency and represent a more adapted model 

for the preclinical studies. 

  



 Patricia Gifu thesis 
 

142 
 

Materials and Methods  

 

Primary human hepatocytes isolation and culture 

Primary human hepatocytes (PHHs) were isolated from liver resections obtained from patients 

undergoing surgery for colorectal metastases in the liver at the Center Léon Berard. Only the 

liver parenchyma surrounding the metastasis was used for hepatocyte isolation, which would 

have otherwise been disposed of. Appropriate consent was obtained from all patients. 

Hepatocytes were isolated by a two-step collagenase perfusion technique as previously 

described (LeCluyse et al., 2005). Cell viability was assessed by trypan blue exclusion and 

hepatocytes were sedimented by centrifugation for 1min at 170g. The hepatocyte suspension 

was adjusted to 1 million viable cells per millilitre of complete medium (William’s medium 

supplemented with 5μg/mL bovine insulin, 5*10-5 M hydrocortisone hemisuccinate (Roche 

Diagnostics), 50 U/mL penicillin/ 50μg/mL streptomycin (Invitrogen), and 10% fetal calf serum 

(FCS, Fetal Clone II, Hyclone)). Cells were plated in cell culture dishes previously coated with 

collagen at a seeding density of 150 000 cells/cm2.  After incubation for 16h at 37°C, 5%CO2 

and 95% humidity, cell medium was replaced with fresh cell medium without serum in order to 

eliminate non-attached cells and limit the proliferation of fibroblasts. Twenty-four hours later 

and then every 2 or 3 days, medium was changed with fresh complete culture medium 

containing 10% FCS. 

Primary human hepatocytes cryoconservation and thawing  

Primary human hepatocytes were prepared for cryopreservation immediately after liver 

perfusion. No additional step of cell purification was performed. Cells were washed once with 

PBS and suspended in pre-cooled cryoconservaton medium CS10 (Sigma) at a final cell density 

of 5*106 /mL. One mL of the cell suspension was distributed in each cryovial. Vials were put 

into a pre-cooled isopropanol freezing chamber, incubated for 10min at +4°C and then stored 

at -80°C. After 24 hours, the vials were removed from the isopropanol freezing chamber and 

left at -80°C in a storage box. For storage longer than 1 week, cells were transferred in liquid 

nitrogen. 

For functional assays, hepatocytes were thawed at least 1 week later after freezing. 

Hepatocytes were thawed by putting the cryovial into a water bath at 37°C immediately after 

taking it out of the liquid nitrogen container. The vial was removed from the water bath when 

a small ice cube still remained inside. Five hundred microliters of complete cell medium was 

added into the vial in order to dilute the DMSO-containing freezing media that is toxic for cells 
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at room temperature. The suspension of hepatocytes was diluted in 6mL of complete medium 

and centrifuged for 1min at 170g in order to eliminate the DMSO and dead cells. Hepatocytes 

were suspended in complete medium and plated in the same manner as fresh hepatocytes. 

In vitro LDH dosage 

Cell death was assessed by lactate dehydrogenase (LDH) release. The level of LDH release was 

measured in hepatocytes culture supernatants with the Lactate Dehydrogenase Activity Assay 

Kit (Sigma) according to the manufacturer’s instructions. Cell supernatants were collected 

every 3 days starting from day 4 post-plating. 

In vitro albumin dosage 

The level of human albumin secreted by hepatocytes cultured in-vitro was measured in culture 

supernatant. Continuous secretion of albumin from hepatocytes is an indicator of well-being. 

Human albumin was measured by enzyme-linked immunosorbent assay (ELISA) with the kit 

Human Serum Albumin DuoSet ELISA (R&D Systems) according to the manufacturer’s 

instructions. Cell supernatants were collected every 3 days starting from day 4 post-plating. 

In vitro infection of hepatocytes by HBV  

The in-vitro infection assay of primary human hepatocytes by HBV was performed with the 

expertise of Dr Olivier Hanz and Dr Laetitia Gerossier, two members of our team. Concentrated 

culture supernatant of HepG2 2.2.15 cell was used to inoculate cells as previously described 

(Glebe et al., 2001; Luangsay et al., 2015). Cells were infected with the concentrated infectious 

supernatant, 1000-fold diluted in the culture medium supplemented with 4% PEG and 

0.42mg/mL hydrocortisone. The infection was pursued for 16h at 37°C. At the end of the 

incubation, cells were washed three times with culture medium and complete medium was 

added (see composition above). The level of infection was assessed by measuring the level of 

the viral antigens HBeAg and HBsAg in the supernatants 9 days post infection. HBsAg and 

HBeAg were quantified in the medium by ELISA kit (Autobio Diagnostics Co., China) following 

manufacturer’s instructions. 

Humanization of mice liver with cryoconserved hepatocytes  

The functionality of cryopreserved hepatocytes was assessed in vivo by investigating their 

capacity to repopulate mice livers partially depleted in murine hepatocytes. The liver 

humanisation experiments were performed in the laboratory of Floriane Fusil and Francois Loic 

Cosset at the International Center for Infectiology Research (CIRI) in Lyon. The FRG (Rag2−/− 

Il2rg−/− Fah−/−) mouse strain was employed where immunodeficient mice (for innate and 
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adaptive immunity) are depleted of the fumarylacetoacetate hydrolase (Fah) gene (Azuma et 

al., 2007). Since accumulation of the toxic metabolite fumarylacetoacetate could induce liver 

damage, mice were treated with NTBC in order to prevent it. Previous to the humanization 

process, administration of NTBC was stopped, leading to liver damage. PHHs were then 

injected in order to restore the population of the hepatic cells. A selection pressure operates 

between human and remaining mouse damaged hepatocytes because of fumarylacetoacetate 

accumulation. Cryopreserved PHHs were thawed as described above and one million cells in 

suspension were injected in the mice spleen. Human hepatocytes localized in the liver and 

repopulate the empty spaces left by the murine hepatocytes. The damaged liver will provide 

physical support for the implantation of human hepatocytes as well as liberating stimulatory 

signals favoring proliferation. The repopulation of liver was assessed every three weeks by 

quantification of the human albumin in the serum. At the end of the study, mice were 

euthanized for liver examination. Liver fragments were collected, fixed in 4% formaldehyde, 

embedded in paraffin and stained with H&E in order to assess their morphology. 

HCC samples specimens  

Fresh tumour samples were collected from patients undergoing surgery for removal of HCC at 

the Hopital de la Croix Rousse, Lyon, France. Appropriate consent was obtained from patients. 

Thirty patients were recruited for the study over a period of time of two-years. The clinical 

history of these patients was collected in an eCRF database. Patients were recruited 

independently of their virological status (HBV and/or HCV) and patients positive for HIV or 

HTLV1&2 were excluded. All experimental procedures were conducted in accordance with 

French laws and regulations and were approved by the Ethics Committee. Tumours were 

collected within 15 minutes following tumour resection in order to preserve tumour cell 

viability. Two fragments were collected in the core of the HCC nodule and placed in two 

separate jars, containing pre-cooled sterile ‘transport medium’ AXIQ (Life Science Production) 

and transported on ice. One fresh fragment was dedicated to the development of PDX and the 

other to HCC patients-derived cell lines. A third fragment was collected at the site adjacent to 

the fragment intended to xenograft and placed in 4% formol for the histological 

characterization of the tumour. A fourth fragment was collected in the same manner as the 

third one and frozen in dry ice for later genetic analysis. 

In vivo xenograft 

Six to eight weeks-old female Balb/c nude or NSG mice (Charles River) were used for 

implantation of patient tumour fragments. Two animal facilities performed the engraftment of 
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the fresh tumour sample. Non-viral HCC (negative for HBV, HCV, HIV and HTLV 1&2) were 

engrafted in a pathogen-free animal facility at “Laboratoire des Modèles Tumoraux”, Centre 

Léon Berard in Lyon. Tumours that were HBV and/or HCV positive were engrafted in an A3 

animal facility belonging to the CIRI. The engraftment was performed subcutaneously, in both 

sides of the flanks of mice. Mice were monitored for tumour growth for at least 6 months after 

tumour implantation. The histopathology of these tumours and the immunohistochemistry 

characterization were performed by Pr Dominique Wendum and Dr Francoise Praz in order to 

confirm the human origin as well as the maintainance of the original tumour characteristics. 

Viremia in tumours 

PDX models developed from patients HBV and/or HCV positive were tested for the presence of 

HBV and HCV genomes in the serum and in the tumour grafts. In both cases, nucleic acids were 

extracted with the MasterPure RNA purification kit from Epicentre. Nucleic acids were 

extracted following manufacture’s instructions from 50 μL of serum or a small tumour 

fragment of about 1mm3. 

HBV DNA was quantified as previously described by real-time PCR using the primers 5’-

GCTGACGCAACCCCCACT-3’ (forward) and 5’-AGGAGTTCCGCAGTATGG-3’ (reverse) (Lucifora et 

al., 2008). An iCycler MyiO thermocycler (96-well format; Bio-Rad) was used with an iQ SYBR 

Green Supermix kit. 

For the quantification of the HCV genome, HCV RNA was reverse transcribed (RT) using MMLV 

Reverse Transcriptase  (Invitrogen) on 10μL of the extracted nucleic acid mixture (for the 

serum samples) or on 1000ng of RNA (for the tissue samples). The RT reaction was performed 

at 25°c for 10mn, followed by 37°c for 50mn, and finally 70°c for 15mn. Amplification was 

performed by RT-qPCR on 5μL of the cDNA by using the following primers: forward 5‘-

GTCTAGCCATGGCGTTAGTA-3’ and reverse 5‘-CTCCCGGGGCACTCGCAAGC-3’. The following 

amplification programme was used: preincubation at 95°C for 180 seconds; 30 cycles of 

amplification at 95°C for 15 seconds, at 60°C for 30 seconds, at 72°C for 30 seconds; melting at 

95°C for 60 seconds, at 65°C for 60 seconds and at 97°C for 1 seconds; cooling at 37°C for 60 

seconds. 

Primary HCC cell isolation and in vitro culture 

Primary HCC cells were cultured in vitro after isolation from fresh human tumour samples 

collected as described above. At first, the commercial tissue digestion kit Tumor Dissociation 

Kit (Miltenyi Biotec) was tested. Since the results were not satisfactory, the protocol was 

changed and three in vitro culture systems were tested: conventional 2D culture, culture as 
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explants and culture in non-adherent conditions. Tumour samples weighting approximately 

one gram were washed with PBS buffer and then minced into small pieces with a sterile 

scalpel. For the tumour explant culture, several tiny fragments inferior to 1mm3 were taken 

and put in cell culture dishes coated with collagen. After a brief dried up incubation at 37°C, 

5% CO2 and 95% humidity, complete culture medium was added (several culture media were 

tested, the same as for the 2D culture described below). The rest of the tumour sample was 

digested with 0.025% collagenase (Sigma) diluted in Hepes buffer containing 0.075% CaCl2 and 

0.5mg/mL Deoxyribonuclease I from bovine pancreas (Sigma). The tumour homogenate was 

incubated for 10min at 37°C and mixed every 3min by shaking the jar up and down. The single-

cell suspension was diluted with complete cell culture medium containing 10% heat-

decomplemented FCS to neutralize the collagenase. Cells were washed twice with the same 

medium. Viable cells were separated from dead cells and cell debris by a gradient 

centrifugation on Percoll 1/12 (GE Healthcare) and washed again with PBS to eliminate silica 

traces from Percoll. Cells were resuspended in 100μl of PBS buffer. 10μL of the cell suspension 

were taken and added into 12mL of tumorospheres medium (William’s medium supplemented 

with 2mM GlutaMAX (Invitrogen), 5μg/ml bovine insulin, 5*10-5 M hydrocortisone 

hemisuccinate (Roche Diagnostics), B27 (Life Technologies), 20ng/mL EGF (R&D Systems), 

20ng/mL bFGF (StemCell Technologies) and 4μg/mL heparin) and equally distributed in ultra-

low adherence 6-well plates (Corning). The rest of the tumour cell suspension (90μL) was 

added into 12mL of complete cell culture media and distributed in cell culture dishes coated 

with collagen. Several cell media were tested in order to optimize cell platting and 

proliferation: IMDM (Sigma)(supplemented with 10% heat-decomplemented FCS), EMEM 

(ATCC) (supplemented with 10% heat-decomplemented FCS), DMEM (supplemented with 10% 

heat-decomplemented FCS) and William’s (supplemented with 10% heat decomplemented 

FCS, 2mM GlutaMAX (Invitrogen), 5μg/mL bovine insulin and 5*10-5 M hydrocortisone 

hemisuccinate (Roche Diagnostics)). Culture medium was changed the next day to eliminate 

dead cells and then replaced with fresh medium twice a week. Epithelial cell colonies were 

observed and passaged by gentle trypsination or with enzyme free cell removal buffer. Cells 

were observed via inverted phase-contrast microscope. 
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ABSTRACT word count: 244 

Human hepatocarcinogenesis is a complex process in which the early changes initiating 

transformation and the liver cells most permissive to this process are poorly identified. 

In order to address these issues, we have made use of an innovative model based on 

primary human hepatocytes (PHH) lentivirus-transduced with SV40, HRASV12 and 

hTERT genes. The differentiation program of these transduced-PHHs was characterized 

by total RNA sequencing including lncRNAs, and the expression of hepatocyte and 

stemness markers confirmed by RT-qPCR and immunofluorescence. In addition, their 

ability to cycle was monitored by FACS and transformation capacity assessed by colony 

formation in soft agar and tumorigenicity in immunodeficient mice. HRASV12 triggered 

senescence in the PHHs whereas co-expression with SV40 antigens, in association or 

not with hTERT, led to the cancerous transformation of some clones. These latter clones 

were characterized by a poorly differentiated phenotype with expression of stemness 

and mesenchymal-epithelial transition markers and gave rise to cancer stem cells. In 

vivo, they resulted in poorly differentiated hepatocellular carcinoma with a reactivation 

of endogenous hTERT. These proof-of-principle experiments have demonstrated for the 

first time that non-cycling human mature hepatocytes can be permissive to in vitro 

cancerous transformation through a dedifferentiation process. This tool provides a 

means to identify the role and impact of genetic/epigenetic changes associated with the 

initiation of hepatocarcinogenesis, as well as to explore the potential role of liver 

progenitors and stem cells as a first step to set up a comprehensive in vitro paradigm for 

human hepatocarcinogenesis.  
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INTRODUCTION  

Hepatocellular carcinoma (HCC) is a poor prognosis tumor ranking third in terms of the 

most frequent cause of cancer death worldwide (1). Hepatocarcinogenesis is a complex 

process combining the accumulation of widely heterogenous genetic and epigenetic 

changes that occur during the initiation, promotion, and progression of the disease. 

Common alterations have been identified, such as the deregulation of p53, the Wnt 

pathway, ErbB receptor family members and p16(INK4a) (2). Nevertheless, the early 

changes leading to the initiation of transformation and the identity of the liver cells most 

permissive to this process are poorly characterised. The Weinberg oncogene 

combination, i.e. SV40 large T antigen (SV40LT), SV40 small T antigen (SV40ST), 

oncogenic RAS (HRASV12), and human telomerase reverse transcriptase subunit 

(hTERT) (3, 4), has been used in many human primary cell types including fibroblasts, 

mammary and bronchial cells, in order to better characterize the initiation of the 

transformation steps during in vitro transformation (5). In rodents, numerous cell types, 

including primary hepatocytes, have been successfully transformed in vitro by the 

SV40LT+ST and HRASV12 combination and recently, it has been demonstrated that such a 

strategy leads to primary mouse hepatocyte transformation regardless of the cell 

differentiation state. These results indicate that any cell type in the mouse hepatic 

lineage can initiate HCC (6-8). However to date, little is known about the 

transformation of primary human hepatocytes (PHH), since only immortalized 

hepatocyte cell lines seem to be permissive (9). In order to address this, we have set up 

the first model of in vitro cancerous transformation of PHH.  
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MATERIALS AND METHODS 

Cell culture and transduction 

PHHs were isolated from freshly resected normal liver tissue from three individuals 

undergoing surgery for colorectal adenocarcinoma liver metastasis (Centre Léon Bérard 

Resource Biological Centre, ministerial agreements #AC-2013-1871 and DC-2013-

1870). Signed informed written consent was obtained from patients before surgery. 

Histological analysis was performed to ensure the absence of microscopic tumour 

invasion. The two-step collagenase (0.05%, Sigma-Aldrich C5138) perfusion method 

was used and cells were seeded at confluence in collagen-coated plates (10). They were 

maintained for 3 days in William’s medium devoid of foetal calf serum (FCS), 

supplemented with 100UI/mL penicillin-G, 100μg/mL streptomycin, 5μg/mL insulin, 

and 5.10-5M hydrocortisone hemisuccinate, and then grown in complete William’s 

medium containing 10% FCS and 1.8% DMSO. The HuH7 cell line, used as control in 

tumorigenicity experiments, was cultured in RPMI1640 medium supplemented with 

10% FCS, 100UI/mL penicillin G, 100μg/mL streptomycin, 1% non-essential amino 

acids and 0.01M Hepes buffer.  

The pLenti6-RASV12 vector was obtained by inserting the RASV12 gene from pBabe-

puro RasV12 (Addgene) into the pLenti6 lentiviral vector (Invitrogen), by using the 

Gateway technology (Invitrogen). The same strategy was used to transfer hTERT from 

pBabe-hygro hTERT (Addgene) into the plenti6 vector. pLenti CMV/TO SV40 small + 

Large T (Addgene) was also used. Virions from lentiviral constructs encoding human 

HRASV12, SV40ST+LT or hTERT were produced in 293FT cells (Invitrogen), and PHHs 

were transduced at a multiplicity of infection of one (MOI-1) in a medium with 6μg/mL 

polybrene. Cells were then selected with 300μg/mL geneticin (SV40ST+LT) and/or 

3μg/mL blasticidin (HRASV12) and/or 200μg/mL zeocin (hTERT). Lentiviral particles 

containing empty vector (EV) were used as controls. 

 

RNA extraction, RNA sequencing and real-time quantitative PCR (RT-qPCR) 

Total RNA was extracted using Extract all (Eurobio) from two independent 

experiments, according to the manufacturer’s instructions. About 3.5 μg of total RNA 

was ribodepleted using the Ribozero kit (Epicentre) and then cDNA libraries for PHH-

EV, PHH-SV40LT+ST and PHH-SV40LT+ST/HRASV12 samples were prepared following 

the Illumina protocol. Libraries were single-end 50 bp sequenced on an Illumina HiSeq 
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2500 sequencer. Fastq files underwent a first quality control to assess the quality of 

sequencing data. Raw reads were aligned on the human genome GRCh38. After 

filtering not aligned reads or reads with multiple alignments, sequencing depth ranged 

from 26 to 40 million of aligned reads. 

 

Immunofluorescence 

Cells were plated on glass coverslips in a 12-well plate. Twenty four hours later, cells 

were fixed in 4% paraformaldehyde and then permeabilized in PBS-0.1% saponin 

(30min at room temperature (RT)). After saturation in PBS-3% BSA-0.1% saponin, 

cells were incubated (1hour at RT) with a primary antibody against either vimentin 

(EP21), CK19 (EP72), CK18 (EP30) (Epitomics), albumin (15C7; AbCam), or N-

Cadherin (13A9; Upstate). After washing with PBS-0.1% saponin an alexaFluor488 or 

555-conjugated secondary antibody against mouse or rabbit IgG (Dako) was added 

(30min/ RT). Finally, coverslips were washed with PBS-0.1% saponin, incubated 

(5min/ RT) with 0.25μg/mL DAPI prior to mounting in Vectashield medium (Vector 

Laboratories) and analyzed using a Nikon fluorescence microscope. 

 

Cell growth determination 

Growth curves of PHH-SV40ST+LT, PHH- SV40ST+LT/HRAS12V and PHH-SV40ST+LT/ 

HRAS12V/hTERT were compared using cell counting and 3-(4,5-Dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT). Cells were seeded at a density of 1.5x104/cm² 

in complete medium with 10% FCS. For the 1% FCS cell growth assay, after overnight 

plating, cells were washed twice in PBS-1X, and complete medium with 1% FCS added 

to the flasks. MTS assay (Promega) was done every day according to the manufacturer’s 

instructions. Two independent experiments were conducted in triplicate. 

 

Flow cytometry 

For cell cycle analysis, cells were harvested in a citrate/sucrose/DMSO buffer 48h after 

seeding. Then, RNA was digested and DNA content was stained with propidium iodide 

(PI) (CycleTest Plus kit, Becton Dickinson). The cell cycle distribution was determined 

using a FACScan flow cytometer (Becton Dickinson), according to the manufacturer’s 

instructions. 
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Soft agar assay and soft agar colonies isolation 

About 5.103 cells were seeded in 6-cm dishes with culture medium containing 0.35% 

noble agar, overlaid on culture medium containing 0.7% noble agar. Liquid medium 

was refreshed every 5 days and cultures were maintained for 4 weeks when colonies (> 

0.15 mm) were then counted. For soft agar colonies isolation, macroscopic colonies 

formed in the semi-solid medium were isolated, trypsinized and re-plated for sub-

culture. 

 

Hepatospheres formation  

Cells were collected after trypsinization in 15mL tubes containing 8mL of complete 

medium and centrifuged for 5min at 200g. The supernatant was discarded and the 

pellets were resuspended in PBS 1X buffer at 106cells/mL. For each cell line, cells were 

then diluted to 1.6 104 cells/mL in 2mL of serum-free hepatosphere medium (William’s 

media supplemented with 100UI/mL penicillin G, 100μg/mL streptomycin, 1% non-

essential amino acids, 0.01M Hepes buffer, B27 1/50, EGF 10μg/mL, bFGF 20μg/mL, 

heparin 4μg/mL). 0.5mL of this dilution was dispensed in two wells of a 24-well ultra-

low adherence plate (BD). Photos of spheres were taken 4 days after seeding. Each 

condition was performed in duplicate. 

 

Nude mice tumorigenicity  

BALB/c nude mice (Charles River) were maintained in accordance with Rhone-Alpes 

ethics committee for animal experimentation and institutional and national guidelines. 

Transduced-PHHs (1x106) were implanted subcutaneously into the flanks of 5-week-old 

females. Food and water were given ad libitum. Mice were sacrificed when the tumor 

size reached 1 cm2 following ethical committee recommendations, or systematically 

after 6 months post-injection. Immediately after sacrifice, the tumors were removed and 

divided into two parts: one piece for freezing in liquid nitrogen, and the second for 

fixation in 4% buffered formalin and paraffin embedded. Sections were cut from the 

paraffin block and stained with hematoxylin and eosin (H&E). 

 

Statistical Analysis 
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Continuous variables and proportions were compared using the Mann-Whitney 

(Wilcoxon for paired samples), t-Student (paired samples t-test when appropriate) and 

Chi-squared P< 0.05 were considered as significant (MedCalc Version 12.7.1.0). 

Differential expression analysis and pathway analysis on RNA-sequencing data were 

performed as previously described (11). Genes were considered as differentially 

expressed at family-wise error rate (FWER) < 0.01 (Bonferroni correction) and with 

absolute fold change higher than 2. 
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RESULTS 

Specific isolation of PHHs and impact of lentiviral transduction on their 

proliferative capabilities 

As previously described (12), PHHs are non-dividing cells resting in G0-phase of the 

cell cycle. Morphological analysis using light microscopy 7 days after isolation showed 

cubic binucleated cells that formed a confluent monolayer. They maintained this 

morphology throughout the three weeks culture period. By immunofluorescence (IF), 

PHHs exhibited expression of hepatocyte markers [CK18(+), albumin(+)], and absence of 

cholangiocyte [CK7(-), CK19(-)], liver progenitor [EpCAM(-), CD133(-)] and 

mesenchymal cell [vimentin(-)] markers (Supplementary Fig. S1).  

After lentiviral transduction of PHHs, the ectopic expression of transgenes was verified 

by western-blotting (Supplementary Fig. S2) and the morphology of cells assessed by 

phase contrast microscopy. PHH-EV cells resembled the parental hepatocytes, while the 

PHH-HRASV12 cells displayed an oncogene-induced senescence phenotype (Fig. 1A). 

The PHH- SV40LT+ST and PHH-SV40LT+ST/HRASV12 transduced cells dramatically 

changed morphology (Fig.1A) and re-entered the cell cycle as confirmed by FACS 

analysis (Fig. 1B). The growth rate was similar in PHH-SV40LT+ST and PHH-

SV40LT+ST/HRASV12 cells when cultured in 10% FCS (Fig. 1C). Under conditions of 

serum starvation (1% FCS), PHH-SV40LT+ST transduced cells reduced their growth rate 

while the PHH-SV40LT+ST/HRASV12 cells continued to grow rapidly, indicating a 

markedly reduced dependence on external mitogen stimuli, one of the hallmarks of in 

vitro transformation (Fig. 1D).  

 

Transformation of PHH and tumorigenicity 

The assessment of anchorage-independent growth, another hallmark of in vitro 

transformation, showed that only the combination of SV40LT+ST/HRASV12 or 

SV40LT+ST/HRASV12/hTERT expressed in the PHHs was associated with the ability to 

form colonies > 0.15 mm diameter in soft agar (Fig. 2). Six colonies from the PHH-

SV40LT+ST/HRASV12 and PHH-SV40LT+ST/HRASV12/hTERT cells were picked and 

subsequently expanded in vitro in 2D-cell subcultures: 6/6 PHH-

SV40LT+ST/HRASV12/hTERT agar colonies grew, while only 2/6 for PHH-

SV40LT+ST/HRASV12. Indeed, the majority (4/6) PHH-SV40LT+ST/HRASV12 subcultures 

underwent senescence (data not shown). All sub-clones that continued to grow were 
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characterized by the same morphology, the same growth rate and formed similar 

number of anchorage-independent colonies as their parental cells after a second soft 

agar sub-cloning assay (data not shown). In the two PHH-SV40LT+ST/HRASV12  clones 

that survived without replicative senescence, endogenous hTERT mRNA was detected 

(Supplementary Fig. S3). Interestingly hTERT mRNA showed a gradual increase in 

levels as the cells progressed towards a more transformed phenotype suggesting that the 

acquisition of hTERT expression is critical in this process (Table 1 and Supplementary 

Fig. S3). 

To test the in vivo tumorigenic potential of the different cells, 106 PHH-

SV40LT+ST/HRASV12, or PHH-SV40LT+ST/HRASV12/hTERT cells isolated after two 

rounds of soft agar growth and sub-culturing, were subcutaneously injected into 

immuno-deficient nude mice (two independent experiments with two animals per cell 

line). After three months of follow-up, tumors were detected in animals injected with 

both sub-clones (Fig. 3A). In contrast, injection of either 106 PHH-EV or PHH-

SV40LT+ST cells failed to give rise to tumors in nude mice within 6 months of follow-up, 

an observation consistent with previous data obtained from two human immortalized 

hepatocyte cell lines (9). Pathological analysis of the tumors arising in nude mice 

showed a poorly differentiated pattern of HCC infiltrating adjacent tissues (Fig. 3B, C). 

A second tumorigenic assay was performed by using an independent batch of 

transduced-cell lines, giving the same results. 

 

Transcriptomic analysis 

A transcriptomic analysis was carried out to identify the genes that showed altered 

expression profiles during the immortalization and transformation processes. A 

comparison of the immortalized PHHs (PHH-SV40LT+ST) with the PHH-EV showed that 

this process was associated with a dramatic change in gene expression with 4,003 

differentially expressed genes (DEGs) (FWER<0.01, FC>2): 2,139 down-regulated 

genes in PHH-SV40LT+ST (among which was 186 lncRNAs) and 1,864 up-regulated 

(135 lncRNAs) compared to PHH-EV (Fig. 4A). 1,428 genes were differentially 

expressed (FWER<0.01, FC>2) in the next transformation stage: 692 genes were down-

regulated (40 lncRNAs) and 736 up-regulated (83 lncRNAs) when the profiles of PHH 

SV40LT+ST/HRASV12 cells were compared to PHH-SV40LT+ST (Fig. 4B). Most up-

regulated genes showed an increased expression only in the later stages of this 
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immortalization/transformation process with changes being noted only in the PHH-

SV40LT+ST/HRASV12 cells and with no differential expression between the PHH-EV and 

PHH-SV40LT+ST cells (Fig. 4B). The DEGs clustered clearly in three sub-groups: i) one 

showing high expression in PHH-EV that was reduced in the PHH-SV40LT+ST cells and 

remained low in the PHH-SV40LT+ST/HRASV12 cells; ii) a second showing an up-

regulation only in the PHH-SV40LT+ST cells; and iii) a third showing a gradual increase 

in expression as the cells move from the “normal” phenotype seen in the PHH-EV cells 

to intermediate levels in PHH-SV40LT+ST cells and the highest levels in the fully 

transformed PHH-SV40LT+ST/HRASV12 cells.  

Pathway analysis showed that genes up-regulated in PHH-SV40LT+ST vs. PHH-EV cells 

are involved in cell cycle and cell proliferation pathways (including histone coding 

genes) (Fig. 4C). Interestingly, down-regulated genes in PHH-SV40LT+ST were mostly 

associated with hepatic metabolism. Loss of HNF4A expression and its target genes 

(ALB, CYP450 and coagulation factor genes) indicated that immortalization was 

associated with a loss of liver cell differentiation (Fig. 4D). A comparison of PHH-

SV40LT+ST/HRASV12 vs. PHH-SV40LT+ST transcriptome showed that the up-regulated 

genes were mostly involved in the PI3k-Akt pathway (Fig. 4E) while down-regulated 

genes were enriched in cell-cell interaction pathways, although this trend was not very 

consistent across the different interrogated databases (Fig. 4F). Taken together, these 

results suggest that these two pathways are critical to induce the transformation of 

immortalized cells. 

Most of the altered lncRNAs were upregulated during the transition from immortalized 

PHH-SV40LT+ST towards the transformed PHH-SV40LT+ST/HRASV12 cells 

(Supplementary Fig. S4). The majority of them have not been previously identified 

associated with HCC, although a number of them have been described to be cancer-

related (for example CCAT, CRNDE, LUCAT1, CASC8, CASC19). In contrast, 

HOTAIR, a well-known cancer promoting lncRNA, was found up-regulated already in 

the immortalized PHH-SV40LT+ST cells, suggesting that its up-regulation is an early 

event in HCC development. These data showed that the PHH-EV cells clustered and 

were distinct from the immortalized (PHH-SV40LT+ST) and transformed cells (PHH-

SV40LT+ST/HRASV12) (Supplementary Fig. S5).  
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Immortalization and transformation of PHH is associated with a dedifferentiation 

process 

As suggested by the large-scale transcriptome analysis, hepatocyte dedifferentiation 

occurred during the immortalization/transformation process as confirmed by the 

assessment of the expression of a panel of gene transcripts by RT-qPCR (Table 1). In 

comparison to the PHH-EV cells, the PHH-SV40LT+ST and PHH-SV40LT+ST/HRASV12 

cells harbored a striking decrease of hepatocyte-specific markers: ALBUMIN, AAT, 

CYP3A4, CYP2B6, HNF4, TAT, TDO. The levels of KRT18 epithelial marker were 

already lowered in the PHH-SV40LT+ST cells and showed no further decrease in the 

PHH-SV40LT+ST/HRASV12  cells, while the KRT19 progenitor marker showed high 

levels in the immortalized PHH-SV40LT+ST cells and lower levels in the poorly 

differentiated transformed PHH-SV40LT+ST/HRASV12 cells. Those data were confirmed 

at the protein level by IF in the PHH-SV40LT+ST and PHH-SV40LT+ST/HRASV12 cells 

(Fig. 5) by comparison to PHH (Supplementary Fig. S1): a sequential decrease of 

hepatocyte and epithelial markers (Albumin, CK18) and appearance of mesenchymal 

markers (vimentin, N-cadherin) were noted. Also, CK19, a progenitor cell marker was 

up-regulated in PHH-SV40LT+ST and its expression lost in PHH-SV40LT+ST/HRASV12 

cells. Similar data were observed in HCC growing after heterotopic injection in nude 

mice (Table 1). In order to confirm that the transduced cells had changed differentiation 

status, we used HCV infection as an end point, as this can only occur in mature 

hepatocytes. Indeed, both the PHH-SV40LT+ST and PHH-SV40LT+ST/HRASV12 cells had 

lost their functional capability to support HCV infection (Supplementary Fig. S6).  

 

Transformation of PHHs is associated with acquisition of stemness markers and 

cancer stem cell (CSC) properties 

As assessed by RT-qPCR, stemness markers such as DLK1, EpCAM, BMI, NANOG, 

OCT4, and SOX2 were mainly up-regulated in transformed PHH-SV40LT+ST/HRasV12 

compared to PHH-EV cells and were absent or modestly over-expressed in 

immortalized PHH-SV40LT+ST cells. However, FZD7 and Np73, associated to 

immaturity in several tissues, were strikingly up-regulated in the early steps of 

transformation, as suggested by an up-regulation in PHH-SV40LT+ST cells and remained 

at higher levels in our model of fully transformed cells (PHH-SV40LT+ST/HRASV12 

cells) (Table 1). FACS analysis showed that PHH-SV40LT+ST and PHH-
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SV40LT+ST/HRASV12 cells carried CD90 surface stemness marker as well as ALDH 

labeling, whereas they both were negative for others stemness markers, such as CD44v6 

and CD133 (Supplementary Fig. S7). Confirming the increased stem-like phenotype of 

PHH-SV40LT+ST/HRASV12, only these cells could give rise to hepatospheres in low 

attachment conditions, a classical assay for stem cells (Fig. 6). Taken together, these in 

vitro molecular and cellular characterizations indicate that dedifferentiation 

accompanied the immortalization step and was reinforced during full-transformation. 

 

DISCUSSION 

This study reports the use of normal differentiated adult hepatocytes of human origin 

(PHHs) to establish a model of in vitro hepatocarcinogenesis in which HCC cells with 

features of immaturity and CSC-like properties are generated. The in vitro 

transformation of hepatocytes of human origin has been previously reported although 

the cells used were not fully normal hepatocytes but the pre-immortalized HL-7702 and 

HL-7703 cell lines, transformed either by the SV40LT+ST/RAS/hTERT combination (9) 

or RhoC (13). The transformed cells that we obtained showed a dedifferentiation 

program although keeping some features of their hepatocyte origin (expression of 

hepatocyte-specific markers), a phenomenon also described in rodent models (8). It is 

recognized that both the cell of origin and the type of cancer-predisposing 

genomic/epigenomic alterations will contribute to the phenotypic and molecular 

diversity of HCC. Both hepatic stem/progenitor cells and differentiated hepatocytes 

have been implicated as the potential cells of origin of HCCs. The expansion of 

progenitor cells in rodent hepatocarcinogenesis models and the frequent expression of 

stem/progenitor cell markers in experimental and human HCCs favor the hypothesis of 

progenitor cell origin at least for some HCCs (14-17). However in rodent, Holczbauer 

and collaborators provided conclusive evidence that the acquisition of stemness 

properties in HCCs is independent of the cell of origin (8). In their model, the 

expression of both SV40LT and oncogenic HRASV12 forced diverse hepatic cell lineages 

(primary hepatic progenitor cells, lineage-committed hepatoblasts and differentiated 

mature adult hepatocytes) to reprogram into HCC cells with some stemness and EMT 

traits, as also found in human tumors (18, 19). However, this present study is the first 

demonstration of in vitro transformation of human hepatocytes with these same traits 

involved. 



 Patricia Gifu thesis 
 

162 
 

While it is clear that cancers arise from the accumulation of genetic and/or epigenetic 

abnormalities that endow the malignant cell with the properties of uncontrolled growth 

and proliferation, the precise sequence of these events that program human 

hepatocarcinogenesis remains heterogeneous and unclear. The study of the transforming 

proteins derived from DNA tumor viruses in experimental models of transformation has 

provided fundamental insights into the process of cell transformation. Weinberg and 

collaborators reported for the first time that the co-expression of SV40LT and SV40ST, 

hTERT, and HRASV12into normal human cells such as fibroblasts, kidney and mammary 

epithelia, converted these cells into a tumorigenic state (3, 20). However, this has never 

been investigated in hepatocytes. In the present study, we showed for the first time that 

the SV40LT+ST co-expression could immortalize PHHs and that the addition of HRASV12 

could transform these cells. This process required the reactivation of telomerase either 

by spontaneous upregulation of the endogenous hTERT or directly by lentiviral 

transduction of hTERT. Transcriptome analysis showed that immortalization induced 

the greatest change in the gene expression profiles with a partial loss of cell identity, 

including a decrease of hepatocyte markers, such as albumin, CYP genes, coagulation 

factors, lineage-specific transcription factors, e.g. HNF4A being found. These results 

suggest that the loss of cell identity/dedifferentiation may be an early event in HCC 

development. Similar loss was also detected in the transcriptomic analysis from 

cirrhotic livers (P. Gifu, personal communication), which is recognized to be pre-

cancerous tissue.  

Although being a key driver for cancer development (21), the Ras oncoprotein provokes 

oncogene-induced senescence by activation of the p53/pRb gatekeepers, which serves 

as a major barrier to Ras-driven transformation in different kind of cells including 

hepatocytes (22). Indeed, in our model system the ectopic expression of HRASV12 

alone, without previous immortalization by SV40LT+ST, led to oncogene-induced 

senescence of PHH, strengthening the need of immortalization prior to transformation 

as has been reported in many models (23). In our experiments, SV40LT+ST expression 

allowed the G0 phase-resting PHH cells to re-enter the cell cycle and reach 

immortalization as has been described with other proteins such as HCV core or HPV 

E6-E7 (24, 25). It is well established that expression of SV40LT in combination with an 

oncogenic allele of HRAS suffices to transform normal rodent cells (26) including 

hepatocytes (8). One of the mechanisms is the inactivation of the p53 and 
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retinoblastoma (pRb) tumor suppressor proteins through their interaction with SV40LT. 

However, similar attempts to transform normal cells of human origin through 

immortalization with SV40LT alone, have mostly failed due to the cells entering into an 

irreversible growth arrest or undergoing apoptosis (27). Interestingly, SV40ST is able to 

boost SV40LT expression (28). This will, for instance, perturb the expression of the 

phosphatase 2A protein (4), and allow the SV40LT-mediated inhibition of p53 that has 

been shown to contribute to the acquisition and maintenance of CSC properties (29) in 

addition to cell transformation. 

We found that, among the lentivirus transduced PHHs giving rise to colonies in soft 

agar, all the PHH-SV40LT+ST/HRASV12/hTERT-derived colonies were able to grow after 

subsequent subculture, whereas only one third of the PHH-SV40LT+ST/HRASV12-derived 

colonies displayed the same capabilities. These latter colonies showed reactivation of 

the endogenous hTERT, thus preventing replicative senescence and enhancing 

cancerous transformation. The role of telomerase expression as an essential requirement 

for the neoplastic conversion of human cells has been controversial. In models in which 

normal human cells were converted to cancer cells by the combination of SV40 and 

oncogenic RAS, hTERT was originally described as essential (3). In other approaches 

using primary cultures of colon smooth muscle cells isolated from surgical specimens, 

ectopic SV40 and oncogenic HRAS rapidly transformed the cells growing in vitro, and 

they were tumorigenic in immunodeficient mice without a previous selection in culture 

(30). However, the cells in the resulting cancers showed morphological evidence of 

crisis, consistent with their lack of telomerase, thus supporting the concept that 

HRASV12 and SV40 form a minimal set of genes that can convert normal human cells to 

cancer cells without a requirement for hTERT (30). Another hypothesis would be that 

the SV40LT+ST and HRASV12 combination is able to reactivate the endogenous 

telomerase, either by direct impact or by a stepwise manner as described in mammary 

models of transformation driven by Wnt signaling (31).  

In conclusion, the in vitro and in vivo characterization of the immortalized and 

transformed human, adult, mature hepatocytes has generated for the first time a 

paradigm for the study of the molecular and cellular events involved in 

hepatocarcinogenesis. This study highlights that hepatocytes are the cells targeted in this 

process as they are able to reacquire stemness and CSC properties, and the 

transcriptomic changes that are involved in this process. 
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This proof of concept model with the well-established SV40 and RAS combination 

could provide the experimental basis for the assessment of the contribution of other 

genetic and epigenetic changes implicated in human hepatocarcinogenesis and provides 

an assay system for the development of more effective therapeutic strategies.  
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FIGURES AND TABLES 

Table 1.  Gene expression assessed by RT-qPCR in PHH-EV, PHH-SV40LT+ST and 

PHH-SV40LT+ST/HRASV12 and in in PHH-SV40 LT+ST /HRASV12 tumors developing 

subcutaneously in nude mice.  Data were generated from 3 independent experiments, 

and normalized to PHH-EV. ND, not determined. 

 

Gene expression 

Arbitrary value ± 

SD 

PHH-EV PHH-SV40 PHH-

SV40/HRASV12 

Subcutaneous 

tumors arising in 

nude mice 

ALBUMIN 1 ± 0.1 3.7 10-6 ± 0.9 10-

6 

3.9 10-5 ± 0.6 10-5 7 10-4 ± 1 10-4 

AAT 1 ± 0.21 2 10-3 ± 5 10-5 8.5 10-3 ± 3 10-4 4 10-3 ± 4 10-4 

CYP3A4 1 ± 0.20 1.3 10-2 ± 3 10-3 8 10-3 ± 3 10-3 5 10-4 ± 5 10-5 

CYP2B6 1 ± 0.26 0.002 ± 0.0005 0.013 ± 0.001 1.31 ± 0.55 

HNF4 1 ± 0.16 3 10-4 ± 1 10-4 4 10-4 ± 2 10-4 6 10-4 ± 1 10-5 

TAT 1 ± 0.31 2 10-4 ± 8 10-5 4 10-4 ± 1 10-6 4 10-5 ± 2 10-5 

TDO 1 ± 0.14 0.01 ± 0.0002 0.01 ± 0.0002 0.001 ± 0.00001 

KRT18 (CK18) 1 ± 0.31 0.24 ± 0.09 0.25 ± 0.02 0.57 ± 0.006 

KRT19 (CK19) 1 ± 0.17 6.63 ± 1.18 0.33 ± 0.09 0.01 ± 0.005 

hTERT 1 ± 0.29 1.93 ± 0.32 4.06 ± 0.15 3.72 ± 0.38 

AFP 1 ± 0.26 0.01 ± 0.003 0.009 ± 0.003 ND 

DLK1 1 ± 0.34 1.88 ± 0.89 7.32 ± 0.35 ND 

EpCAM 1 ± 0.36 0.11 ± 0.02 1.76 ± 0.44 ND 

BMI 1 ± 0.29 1.69 ± 0.29 2.15 ± 0.17 ND 

NANOG 1 ± 0.31 0.78 ± 0.15 1.98 ± 0.40 ND 

OCT4 1 ± 0.60 1.54 ± 0.59 2.21 ± 0.27 ND 

SOX2 1 ± 0.22 1.30 ± 1.02 2.53 ± 0.05 ND 

FZD7 1 ± 0.60 3.90 ± 0.30 5.40 ± 0.05 ND 

Np73 1 ± 0.01 24.0 ± 10.0 18.0 ± 0.05 ND 
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Supplementary Materials and Methods 

RNA extraction, RNA sequencing and real-time quantitative PCR (RT-qPCR) 

About 1μg of total RNA was DNAse I digested (Roche) and then reverse transcribed 

(RT) with random primers and MMLV-RT (Life technologies). Quantitative real-time 

PCR (qPCR) was performed with a LightCycler 480 (Roche) using QuantiFast SYBR 

Green PCR Kit (Qiagen). Levels of gene expression were determined using the Ct 

method with 18S gene as housekeeping gene. Each experiment was conducted three 

times in triplicate. Oligonucleotide sequences are available on request. 

Immunofluorescence 

Cells were plated on collagen-coated glass coverslips in a 12-well plate. Twenty four 

hours later, cells were fixed in 4% paraformaldehyde and then permeabilized in PBS-

0.1% saponin  (30min/  room temperature (RT)). After saturation in PBS-3% BSA-0.1% 

saponin, cells were incubated (1hour/ RT) with a primary antibody against either 

vimentin (EP21), CK19 (EP72), CK18 (EP30) (Epitomics), CK7 (OV-TL 12/30, Dako), 

albumin (15C7; AbCam), EpCAM (ab32392, Epitomics), or CD133 (ab19898, 

AbCam). After washing with PBS-0.1% saponin an alexaFluor488-conjugated 

secondary antibody against mouse or rabbit IgG (Dako) was added (30min/ RT). 

Finally, coverslips were washed with PBS-0.1% saponin, incubated (5min/ RT) with 

0.25μg/mL DAPI prior to mounting in Vectashield medium (Vector Laboratories) and 

analyzed using a Nikon fluorescence microscope. 

Protein extraction and Western blotting 

Proteins were extracted with RIPA (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% 

Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, 1mM Na3VO4, protease cocktail 

inhibitor (Roche)) and protein concentrations were determined using the BCA assay 

(Pierce).  Whole-cell extracts were resolved by SDS-PAGE, transferred onto a PVDF 

membrane and probed with a specific primary antibody against SV40ST+LT (PAb419, 

Harlow E et al., J Virol. 1981); HRas (SC520, Santa Cruz Biotechnology); Ku80 

(AHP317, Serotec); hTERT (H-231, Santa Cruz Biotechnology) and then with a HRP-

conjugated secondary goat anti-rabbit  or goat anti-mouse antibody (Sigma). Protein 

revelation was performed by using enhanced chemiluminescence kit (Amersham). All 

blots were standardized for equal protein loading with Ku80 staining. 

HCV infection 
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PHH were infected with HCV (HCVcc: JFH1) and harvested 5 hours (H-5), 1 day (D-

1), 3 days (D-3), 6 days (D-6) or 8 days after HCV inoculation (D-8).  Detection of 

intracellular HCV RNA was performed by RT-qPCR. Primers sequences are available 

on request.  

Flow cytometry 

Cells were harvested by trypsinization in 15mL tubes containing 8mL of complete 

media and centrifuged for 5min at 200g. The supernatant was discarded and the pellets 

were resuspended in PBS buffer at 106cells/mL. For each staining condition, 0.5mL of 

the cell suspension was dispensed in 1.5mL Eppendorf tubes and centrifuged for 5min 

at 400g. The supernatants were discarded, the pellet were resuspended in 100μL of 

staining buffer (1X PBS, 2% BSA) and incubated on ice for 10min for non-specific 

antigen saturation. For CD44v6, CD90 and CD133 detection, the following antibodies 

were used for staining at dilution factors and incubation times indicated by the 

manufacturer, in the dark and on ice: CD44v6-FITC (eBiosciences ref:BMS 125FI), 

CD90-PE (BD Biosciences, ref: 555596), CD133-APC (Miltenyi ref: 130-090-826). At 

the end of the incubation period, cells were washed with 1mL of staining buffer and 

centrifuged for 5min at 400g. Supernatants were discarded and pellets were suspended 

in 0.5mL of staining buffer. Cells were incubated with isotype controls according to the 

same protocol. Staining analysis was performed with the same cytometer and for each 

condition at least ten thousand events were recorded. 
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Study 2  

p73 and cancer stem cells 
 

 

Several lines of evidence prove the existence of cancer stem cells in solid tumours, including 

hepatocellular carcinoma. In contrast there is only emerging data showing the importance of 

truncated isoforms of the p73 in the maintenance of the stem cells pool and in particular of 

the cancer stem cells. 

During my PhD thesis, I initiated a study dedicated to investigating the link between p73 

expression profile in HCC and cancer stem cells features. This study was performed on HCC 

biopsies by gene transcription analysis as well as by studying HCC cell lines in vitro. 
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Np73 favors the developpement of CSCs 

Introduction 

It has been proposed that resistance to treatment and relapse could be mainly due to a small 

population of highly aggressive cancer cells, which are the cancer stem cells (CSCs). These cells 

represent a small population of tumour cells with stemness features. They have infinite 

proliferation potential and are highly resistant to drugs. Therefore, targeting liver cancer stem 

cells could represent an excellent strategy for preventing cancer resistance and tumour 

relapse. However, the mechanisms and factors that are unique for CSCs are still poorly 

understood. 

Several studies have shown that in HCC the p73 truncated isoforms are over-expressed and are 

of poor prognosis. Mechanistic studies suggested that during carcinogenesis, there is a switch 

in the expression of p73 isoforms. In non-neoplastic cells the balance is in favour of the anti-

oncogenic TAp73, while in transformed cells the transcription of the truncated isoforms 

TAp73 increases. 

The aim of this study was to investigate the pattern of expression of p73 in liver biopsies from 

healthy and HCC patients undergoing tumour resection and correlate their expression with 

clinical data, patients’ outcome and expression of stemness markers. 

Results 

p73 expression in human primary HCC 

RNA extraction was performed on an HCC cohort comprising 138 tumour and adjacent non-

tumour samples and gene expression was performed by RT-qPCR. In parallel, a second cohort 

was studied comprising 11 healthy liver tissues without any clinical history of acute or chronic 

liver disease. The expression of four p73 isoforms Np73, TAp73, Ex2p73, and Ex2/3p73 

was analysed at the mRNA level in the two cohorts. In parallel the expression of NANOG, OCT4, 

SOX2, CD133, CK19 and EPCAM genes was quantified in the same manner. 

Np73 is generated from the internal promoter P2 of TP73 while TAp73, Ex2p73 and 

Ex2/3p73 isoforms are transcribed from the conventional P1 promoter. Ex2p73 and 

Ex2/3p73 are obtained by alternative splicing of the pre-mRNA that also serves for TAp73 

translation. The expression profile of Ex2p73 and Ex2/3p73 isoforms reflects both the 

activity of the P1 promoter and the intensity of alternative splicing events. 
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The expression data of the four isoforms across the cohorts of HCC samples and healthy livers 

is presented on the dot plots in Figure 1. The first column is dedicated to the expression in the 

healthy livers (HL), the second one to the HCC non-tumour tissues (NT) and the third one 

represents the HCC samples (T). 

 

Figure 1. Expression of p73 in healthy and tumoural human liver tissues. The expression of 
the p73 isoforms Np73, Ex2p73, Ex2/3p73 and TAp73 was quantified by RT-qPCR from 
frozen liver biopsies of healthy liver (HL) (no known chronic liver disease), tumour (T) and 
surrounding non-tumour (NT) tissue originating from patients with HCC. Expression data are 
presented as the result of the relative quantification after normalization to the housekeeping 
gene on a logarithmic scale. Horizontal black bars represent the median of expression. 
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For each of the four p73 isoforms, the wide expression range reflects the high variability in the 

transcriptional activity among the population of HCC patients. For three of the four isoforms, 

Np73, TAp73 and Ex2/3p73, the median of expression is lower in the healthy liver tissue 

compared to the HCC non-tumoural and tumoural tissue. However, this tendency could be 

biased by the small size of the healthy liver cohort (11 samples versus more than 150 samples 

for the HCC cohort). Increased level of these three transcripts in the liver tissue adjacent to the 

HCC nodule suggests that chronic liver stress (in our cohort due to HCV and HBV chronic 

infection, alcohol abuse and NASH) could favour their production. Further, the median of 

expression of Np73, TAp73 and Ex2/3p73 is higher in HCC than in adjacent liver non-

tumoural tissue. These observations suggest that the expression of the three isoforms is 

progressively increased in human liver during the transition healthy liver  chronic liver 

disease  hepatocellular carcinoma. 

Regarding the isoform Ex2p73, the range of expression in the healthy liver is wider in 

comparison to the three isoforms mentioned above. The median of expression in the non-

tumour liver surrounding the HCC nodule does not seem to be higher than in the healthy 

livers. However, the same tendency was found in the HCC cohort where the median of 

expression is higher in the tumour than in the non-tumoural tissue, even though the difference 

is less striking than for the isoforms TAp73, Np73 and Ex2/3p73. 

In conclusion, for the four p73 isoforms the median of expression is higher in the tumour 

samples compared to the matching non-tumour and could be due to an individual increase in 

the level of each of these isoforms. To have an overview of this aspect, the expression in each 

tumour sample was graphically represented as linked to the matching non-tumoural samples 

(Figure 2). The arrows between the non-tumour and tumour samples are not all directed 

upwards, which would have indicated a systematic increased expression in tumours compared 

to the matching non-tumour. Patients with high levels in the tumour presented lower levels in 

the non-tumour and vice versa, while for other patients the levels were roughly the same in 

the tumoural and matching non-tumoural tissue. However, for TAp73 and Ex2/3p73 a higher 

proportion of arrows are directed upwards, suggesting a more systematic increase in the 

tumour. This question was more profondly explored statistically here below. 
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Figure 2. Correlation between the over-expression in the tumoural HCC (T) and matching 
non-tumoural (NT) tissue for each of the investigated p73 isoforms ( Np73, Ex2p73, 

Ex2/3p73 and TAp73). Each arrow represents a pair tumour (T) / surrounding non-tumour 
(NT). The overall higher median of expression of each p73 isoform in the tumour observed in 
Figure 1 does not seem to result from a systematic increase of the expression between the 
non-tumoural and tumoural tissue pairs of the same patient. 
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Differential regulation of TP73 in tumour and adjacent non-tumoural tissue 

The overall increase of p73 transcripts in the HCC cohort compared to the healthy livers led to 

the identification of patients in whom the two transcripts were over-expressed. 

The expression of the four p73 isoforms in the HCC nodules and matching non-tumoural 

tissues was compared to the healthy liver samples in order to identify the groups of patients 

over-expressing each of these isoforms. Over-expression was established when the expression 

level was higher than the mean plus two standard deviations of that of healthy livers. 

We found that each of the four isoforms was over-expressed from 15% to 60% of HCC samples 

and from 15% to 25% of the non-tumoural tissues. 

The full length isoform TAp73 was found to be over-expressed in 58.6% of HCC and 25.8% of 

the surrounding non-tumour tissues and overexpression between the two regions was found 

to be associated (p=0.023, r=0.183.). In the non-tumour tissues, the overexpression of TAp73 

was associated with those of Np73 (p<0.001, r=0.318), Ex2p73 (p=0.003, r=0.237) and 

Ex2/3p73 (p<0.001, r=0.342) as presented in Table 1. In HCC samples, overexpression of 

TAp73 only correlated with overexpression of the P1 promoter-related isoforms Ex2p73 

(p=0.004, r=0.213) and Ex2/3p73 (p<0.001, r=0.522) but not with Np73 (p=0.722), 

transcribed from the P2 internal promoter. This suggests that in tumour cells, the P1 and P2 

promoters are differentially activated whereas in the adjacent tissue they could be activated 

simultaneously. 

 

TAp73 NT_up_HL TAp73 T_up_HL 
Total prevalence 25.8% up 58.6% up 

Pearson's Chi-Square 2-Sided 
p 2 p 2 

Np73 NT_up_HL <0.001 15.691     
Np73 T_up_HL     0.722 0.127 
Ex2p73 NT_up_HL 0.003 8.681     
Ex2p73 T_up_HL     0.004 8.286 
Ex2/3p73 NT_up_HL <0.001 18.202     
Ex2/3p73 T_up_HL     <0.001 49.8 

TAp73 NT_up_HL - 0.023 5.204 
TAp73 T_up_HL 0.023 5.204 - 

Table 1. Correlation between the over-expression of TAp73 and Np73, Ex2p73 and 
Ex2/3p73 in tumoural (T_up_HL) and adjacent non-tumoural (NT_up_HL) tissue. 

Overexpression was determined with respect to the threshold in the healthy liver (HL) tissue. 
In non-tumour samples, TAp73 overexpression is correlated with that of all the other isoforms 
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(middle column), whereas in tumour samples it is correlated with all, except Np73 (right 
column). For statistical analysis the Chi-2 Squared 2-sided test was employed, and significance 
was established for p<0.05. 
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To have a more quantitative visual idea, we represented the expression of TAp73 in function of 

that of Np73, Ex2p73 and Ex2/3p73 (Figure 3). Graphs clearly show that when TAp73 

expression increases in tumours, the expression of Ex2p73 and Ex2/3 increases but this is 

not the case for Np73. However, in the non-tumour tissue, the expression of all three 

isoforms Np73, Ex2p73 and Ex2/3p73 seems to increase at the same time as TAp73. 

Secondly, the expression of Ex2p73 and Ex2/3p73 seems to be more correlated to TAp73 in 

the tumoural compared to the non-tumour tissue. This is perhaps due to alterations of the 

alternative-splicing machinery in HCC cancer cells which would favour the production of 

truncated isoforms. 
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Figure 3. Correlation between TAp73 and Np73, Ex2p73 and Ex2/3p73 mRNA expression 
(log scale). Increase of TAp73 seemed to correlate with Ex2p73, Ex2/3p73 and Np73 in 
non-tumoural (NT) tissue and with Ex2p73, Ex2/3p73 but NOT with Np73 in the tumoural 
(T) tissue. Data were modelised using the linear regression approach. Fisher F-test was 
employed to tesh whether the slope is significantly non-zero.  
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The transcripts Ex2p73 and Ex2/3p73 were found to be overexpressed in 16.7% and 37.0% 

of tumours, respectively, and in 15.5% and 16.1% of non-tumours compared to healthy livers, 

respectively (Table 2 and Table 3). Moreover, the two transcripts were overexpressed in 

approximately the same proportion in non-tumoural liver samples and their overexpression 

was statistically correlated (p<0.05). In HCC samples, Ex2/3p73 was more frequently 

overexpressed than Ex2p73. Both transcripts are obtained by alternative splicing from the P1 

promoter. Until now, no specific alternative splicing mechanism has been described that would 

preferentially lead to the Ex2/3p73 transcript. Castillo and collaborators showed that the 

EGFR ligand amphiregulin favours the alternative splicing leading to the formation of the 

Ex2p73 (Castillo et al., 2009). 

 

 
Ex2p73 

NT_up_HL 
Ex2p73  

T_up_HL 
Total prevalence 15.5% up 16.7% up 
  Pearson's Chi-Square 2-Sided 
  P 2 p 2 

Np73 NT_up_HL <0.001 39.842     
Np73 T_up_HL     <0.001 15.540 
Ex2p73 NT_up_HL - 0.248 1.335 
Ex2p73 T_up_HL 0.248 1.335 - 
Ex2/3p73 NT_up_HL <0.001 18.522     
Ex2/3p73 T_up_HL     0.003 8.649 

TAp73 NT_up_HL 0.003 8.681     
TAp73 T_up_HL     0.004 8.286 

Table 2. Correlation between the over-expression of Ex2p73 and Np73, Ex2/3p73 and 
TAp73 in tumoural (T_up_HL) and adjacent non-tumoural (NT_up_HL) tissue. Overexpression 
was determined with respect to the threshold in the healthy liver (HL) tissue. In both cases, 

Ex2p73 overexpression correlated with that of all the other isoforms (numbers in red). For 
statistical analysis the Chi-2 Squared 2-sided test was employed, and significance was 
established for p<0.05. 
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Ex2/3p73 

NT_up_HL 
Ex2/3p73 

T_up_HL 
 

Total prevalence 16.1% up 37.0% up  

  Pearson's Chi-Square 2-Sided 
  p 2 p 2 

Np73 NT_up_HL <0.001 13.690     
Np73 T_up_HL     0.077 3.137 
Ex2p73 NT_up_HL <0.001 18.522     
Ex2p73 T_up_HL     0.003 8.6493 
Ex2/3p73 NT_up_HL - <0.001 14.332 
Ex2/3p73 T_up_HL <0.001 14.332 - 

TAp73 NT_up_HL <0.001 18.202     
TAp73 T_up_HL     <0.001 49.8 

Table 3. Correlation between the over-expression of Ex2/3p73 and Np73, Ex2p73 and 
TAp73 in tumoural (T_up_HL) and adjacent non-tumoural (NT_up_HL) tissue. Overexpression 
was determined with respect to the threshold in the healthy liver (HL) tissue. In both cases, 

Ex2/3p73 overexpression correlated with that of Np73, Ex2p73, and TAp73 (numbers in 
red) (at the borderline of significance for the couple Ex2/3p73 – Np73 in tumours - numbers 
in black). For statistical analysis the Chi-2 Squared 2-sided test was employed, and significance 
was established for p<0.05. 

 

Ex2/3p73 overexpression observed in tumours was also found in the matching non-tumoural 

tissues (p<0.001, r=0.305) but this was not the case for Ex2p73 (p=0.248). This suggests that 

Ex2p73 overexpression is proper to HCC cells. High Ex2/3p73 and Ex2p73 expression in 

tumours and non-tumours correlated with high Np73 expression, with the correlation 

Ex2/3p73 and Np73 overexpression in tumours at the borderline of significance (p=0.077). 

Finally, Np73, the only isoform originating from the activation of the internal promoter P2 of 

TP73, was found overexpressed in 15.5% of tumours and 16.1% of non-tumour tissues 

compared to healthy liver tissue (Table 4). 
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Np73 NT_up_HL Np73 T_up_HL 
Total prevalence 15.5% up 16.1% up 
  Pearson's Chi-Square 2-Sided 
  p 2 p 2 

Np73 NT_up_HL - 0.019 5.483 
Np73 T_up_HL 0.019 5.483 - 
Ex2p73 NT_up_HL <0.001 39.842     
Ex2p73 T_up_HL     <0.001 15.540 
Ex2/3p73 NT_up_HL <0.001 13.690     
Ex2/3p73 T_up_HL     0.077 3.137 

TAp73 NT_up_HL <0.001 15.691     
TAp73 T_up_HL     0.722 0.127 

Table 4. Correlation between the over-expression of Np73 and Ex2p73, Ex2/3p73 and 
TAp73 in tumoural (T_up_HL) and adjacent non-tumoural (NT_up_HL) tissue. Overexpression 
was determined with respect to the threshold in the healthy liver (HL) tissue. In both cases, 

Np73 overexpression correlated with that of Ex2p73 and Ex2/3p73 (numbers in red) (at 
the borderline of significance for the couple Ex2/3p73 – Ex2/3p73 in tumours - numbers in 
black). TAp73 and Np73 overexpression correlated in non-tumoural tissues but not in the 
tumoural ones. For statistical analysis the Chi-2 Squared 2-sided test was employed, and 
significance was established for p<0.05. 

 

As for Ex2/3p73, overexpression of Np73 in tumours and non-tumours were found 

correlated (p=0.019, r=0.188). As described here above, both in tumours and non-tumours, 

Np73 overexpression was associated with the overexpression of the other isoforms, except 

for TAp73 in the tumours (p=0.722). These observations were graphically represented in Figure 

4. 

  



 Patricia Gifu thesis 
 

198 
 

 

Figure 4. Correlation between Np73 vs. TAp73 and Ex2p73 vs Ex2/3p73 regarding mRNA 
expression (log scale). Increase of Np73 seemed to correlate with TAp73 in non-tumoural 
tissue but not in tumours. Data were modelised using the linear regression approach. Fisher F-
test was employed to tesh whether the slope is significantly non-zero. 
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TP73 over-expression correlates with stemness markers and clinicopathologic features 

We investigated whether TP73 over-expression correlated with the clinicopathologic data of 

patients, such as the presence or absence of cirrhosis, microvascular invasion, or tumour 

differentiation, as well as the overexpression of the stemness factors Sox2, Nanog and Oct4 or 

the stem-like markers CD133, CK19 and EpCAM. 

Over-expression of Np73 in tumours and surrounding non-tumoural tissue correlated with 

stemness factors Nanog, Oct4 and Sox2 (p<0.05) (Table 5). From a clinicopathological point of 

view, over-expression of Np73 in non-tumoural tissues negatively correlated with HCC 

multinodularity (p=0.030, r=-0.179) and high AFP levels (>200ng/mL) (p=0.030, r=-0.186) while 

over-expression in the tumours correlated with the absence of NASH (p=0.020, r=-0.2). 

 

Clinico-biology, pathology  Np73 NT_up_HL Np73 T_up_HL 

  Pearson's Chi-Square 2-Sided 
  p 2 p 2 
Etiology: HBV vs. HCV vs. alcohol vs. NASH vs. 

others  0.668 2.370 0.020 11.640 

Presence vs. absence of cirrhosis 0.830 0.040 0.360 0.820 
Tumour size > 50 mm vs. ≤ 50 mm 0.580 0.300 0.730 0.110 
Presence vs. absence of HCC multinodularity 0.030 4.320 0.180 1.740 
Poor vs. moderate vs. good differentiation 0.450 1.580 0.850 0.310 
AFP > 200 vs. ≤ 200 ng/mL 0.030 4.370 0.440 0.590 
Microscopic portal invasion 0.710 0.130 0.740 0.100 
Presence vs. absence of satellite nodules 0.550 0.340 0.350 0.860 
Recurrence: extra-hepatic vs. hepatic multifocal vs. 

hepatic uninodular 0.730 0.620 0.960 0.060 

Vascular emboli 0.930 0.006 0.320 0.980 
CD133 T_up_HL   0.770 0.080 
CK19 T_up_HL   0.520 0.400 
EpCAM T_up_HL   0.740 0.100 
Nanog NT_up_HL <0.001 23.510   
Nanog T_up_HL   <0.001 16.051 
Oct4 NT_up_HL <0.001 13.240   
Oct4 T__up_HL   0.007 7.050 
Sox2 NT_up_HL <0.001 30.470   
Sox2 T_up_HL   0.040 3.910 

Table 5. Correlation between the over-expression of Np73 in HCC (T) and the surounding 
non-tumoural (NT) tissues and clinicopathological data, over-expression of stemness factors 
(Nanog, Oct4, Sox2) and of stem markers (CD133, CK19, EpCAM). For statistical analysis the 
Chi-2 Squared 2-sided test was employed, and significance was established for p<0.05. 
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Over-expression of TAp73 in non-tumours positively correlated with cirrhosis (p=0.011, 

r=0.078) and over-expression of the stemness factors Nanog (p=0.027, r=0.195), Oct4 

(p=0.001, r=0.299) and Sox2 (p=0.001, r=0.283) (Table 6). In tumours, it positively correlated 

with the stem-like marker EpCAM (p=0.021, r=0.196) and the stemness factors Nanog 

(p=0.012, r=0.221) and Oct4 (p=0.012, r=0.221). No correlation was found in tumoural or non-

tumoural tissue with HCC aetiology (HBV, HCV, alcohol and NASH). 

Table 6. Correlation between the over-expression of TAp73 in tumoural (T) and the 
surounding non-tumoural (NT) tissue and clinicopathological data, over-expression of 
stemness factors (Nanog, Oct4, Sox2) and of stem markers (CD133, CK19, EpCAM). For 
statistical analysis the Chi-2 Squared 2-sided test was employed, and significance was 
established for p<0.05. 

Clinico-biology, pathology TAp73 NT_up_HL TAp73 T_up_HL 

Total prevalence Pearson's Chi-Square 2-Sided 
p-value 2 p 2 

Etiology: HBV vs. HCV vs. alcohol vs. NASH vs. 
others 

 
0.035 10.312 0.012 12.825 

Presence vs. absence of cirrhosis 0.011 6.497 0.775 0.082 

Tumour size > 50 mm vs. ≤ 50 mm 0.430 0.622 0.305 1.051 
Presence vs. absence of HCC multinodularity 0.267 1.232 0.298 1.081 

Poor vs. moderate vs. good differentiation 0.210 3.126 0.146 3.842 

AFP > 200 vs. ≤ 200 ng/mL 0.554 0.349 0.947 0.005 
Microscopic portal invasion 0.081 3.044 0.238 1.390 
Presence vs. absence of satellite nodules 0.077 3.126 0.377 0.780 
Recurrence: extra-hepatic vs. hepatic multifocal vs. 
hepatic uninodular 0.470 1.510 0.053 5.870 
Vascular emboli 0.768 0.087 0.836 0.043 

CD133 T_up_HL   0.978 0.001 
CK19 T_up_HL   0.128 2.313 
EpCAM T_up_HL   0.021 5.303 
Nanog NT_up_HL 0.027 4.878   
Nanog T_up_HL   0.012 6.308 
Oct4 NT_up_HL 0.001 11.467   
Oct4 T_up_HL   0.012 6.308 
Sox2 NT_up_HL 0.001 10.264   
Sox2 T_up_HL   0.566 0.330 
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Both in tumours and in the non-tumours, over-expression of Ex2p73 and Ex2/3p73 isoforms 

correlated with high expression of the stemness factors Nanog, Sox2 and Oct4 (p<0.05) except 

for Ex2p73 and Nanog that were not found to be significantly correlated in HCC samples 

(p=0.437) (Table 7 and Table 8).

Regarding the association with the clinicopathological data, Ex2p73 over-expression in the 

tumoural tissue correlated with microscopic portal invasion (p=0.037, r=0.182). Over-

expression of Ex2/3p73 in tumours was associated to poor differentiation (p=0.041), 

microscopic portal invasion (p=0.008, r=0.230), and recurrence (p=0.039) but no association 

was found with the HCC aetiology (HBV, HCV, alcohol abuse or NASH). 

Clinico-biology, pathology  Ex2p73 NT_up_HL Ex2p73 T_up_ HL 

Total prevalence Pearson's Chi-Square 2-Sided 
  
  P 2 p 2 
Etiology: HBV vs. HCV vs. alcohol vs. NASH vs. 
others  

0.508 3.300 0.420 3.840 

Presence vs. absence of cirrhosis 0.230 1.410 0.644 0.213 
Tumour size > 50 mm vs. ≤ 50 mm 0.150 2.030 0.301 1.060 
Presence vs. absence of HCC multinodularity 0.340 0.880 0.650 0.200 
Poor vs. moderate vs. good differentiation 0.939 0.127 0.707 0.693 
AFP > 200 vs. ≤ 200 ng/mL 0.843 0.039 0.686 0.164 

Microscopic portal invasion 1.000 0.000 0.037 4.360 

Presence vs. absence of satellite nodules 0.380 0.760 0.938 0.006 
Recurrence: extra-hepatic vs. hepatic multifocal vs. 
hepatic uninodular 

0.340 2.120 0.320 2.224 

Vascular emboli 0.400 0.690 0.343 0.896 
CD133 T_up_HL   0.770 0.082 
CK19 T_up_HL   0.315 1.007 
EpCAM T_up_HL   0.872 0.026 
Nanog NT_up_HL <0.001 24.589   
Nanog T_up_HL   0.437 0.603 
Oct4 NT_up_HL <0.001 32.809   
Oct4 T__up_HL   <0.001 15.123 
Sox2 NT_up_HL <0.001 38.081   
Sox2 T_up_HL   0.001 10.670 

Table 7. Correlation between the over-expression of Ex2p73 in tumours (T) and the 
surounding non-tumoural (NT) tissue and clinicopathological data, over-expression of 
stemness factors (Nanog, Oct4, Sox2) and of stemness markers (CD133, CK19, EpCAM). For 
statistical analysis the Chi-2 Squared 2-sided test was employed, and significance was 
established for p<0.05. 
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Clinico-biology, pathology  Ex2/3p73 NT_up_HL Ex2/3p73 T_up_HL 

  Pearson's Chi-Square 2-Sided 
  p 2 p 2 
Etiology: HBV vs. HCV vs. alcohol vs. NASH vs. 

others  0.020 11.667 0.045 9.724 

Presence vs. absence of cirrhosis 0.127 2.324 0.165 1.926 
Tumour size > 50 mm vs. ≤ 50 mm 0.353 0.864 0.648 0.208 
Presence vs. absence of HCC multinodularity 0.400 0.708 0.074 3.195 
Poor vs. moderate vs. good differentiation 0.829 0.375 0.041 6.388 
AFP > 200 vs. ≤ 200 ng/mL 0.665 0.187 0.251 1.318 
Microscopic portal invasion 0.579 0.307 0.008 6.960 
Presence vs. absence of satellite nodules 0.626 0.237 0.144 2.132 
Recurrence: extra-hepatic vs. hepatic 

multifocal vs. hepatic uninodular 0.531 1.268 0.039 6.474 

Vascular emboli 0.317 1.003 0.385 0.754 
CD133 T_up_HL   0.603 0.270 
CK19 T_up_HL   0.025 5.012 
EpCAM T_up_HL   0.320 0.988 
Nanog NT_up_HL <0.001 20.160   
Nanog T_up_HL   0.001 10.971 
Oct4 NT_up_HL <0.001 28.233   
Oct4 T__up_HL   <0.001 22.465 
Sox2 NT_up_HL <0.001 33.438   
Sox2 T_up_HL   0.018 5.573 

Table 8. Correlation between the over-expression of Ex2/3p73 in tumoural (T) and the 
surounding non-tumoural (NT) tissue and clinicopathological data, over-expression of 
stemness factors (Nanog, Oct4, Sox2) and of stemness markers (CD133, CK19, EpCAM). For 
statistical analysis the Chi-2 Squared 2-sided test was employed, and significance was 
established for p<0.05. 
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The expression of each of the p73 isoforms was graphically represented in function of the 

expression of the stemness factors Nanog, Sox2 and Oct4 both in tumours and in the adjacent 

liver tissue (Figure 5 and Figure 6). In both cases, the correlation between the expression of 

the p73 isoforms and the stemness factors found by statistical tests was also observed on the 

graphical representation. Additionally, the graphical representation clearly suggested that in 

HCC nodules, the level of p73 isoforms is closely correlated to the expression level of the three 

stemness factors Sox2, Nanog and Oct4. 
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Figure 5. Correlation between the mRNA expression of each p73 isoform and the stemness 
factors Sox2, Nanog and Oct4 in the TUMOURAL tissue (log scale). Data were modelised using 
the linear regression approach. Fisher F-test was employed to tesh whether the slope is 
significantly non-zero.
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Figure 6. Correlation between the mRNA expression of each p73 isoform and the stemness 
factors Sox2, Nanog and Oct4 in the NON-TUMOURAL tissue (log scale). Data were modelised 
using the linear regression approach. Fisher F-test was employed to tesh whether the slope is 
significantly non-zero. 
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Np73 over-expression is a factor of poor overall survival 

We investigated the association between p73 isoforms over-expression and patients overall 

survival (OS), progression free survival (PFS), early recurrence-free survival and late 

recurrence-free survival. Patients were divided in two separate groups with respect to the 

over-expression of each p73 isoform. Overexpression was defined by three methods: tumours 

versus matching non-tumoural tissue, tumours versus healthy liver or non-tumoural tissue 

versus healthy liver. We performed univariate analysis separately for each of these groups of 

patients with respect to each of the end-points mentioned here above. Results are presented 

in Table 9. 

  



 Patricia Gifu thesis 
 

207 
 

 

Univariate analysis of survivals 
regarding variables vs. rest 

Overall survival 
Early recurrence-free 
survival (< 24 months) 

Progression free 
survival (PFS) 

Late recurrence-free 
survival (>24 months) 

  HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P 
Np73 NT_up_HL 0.88 (0.34-2.23) 0.780 1.21 (0.64-2.312) 0.56 1.34 (0.75-2.38) 0.321 2.06 (0.59-7.19) 0.258 

Np73 T_up_HL 0.89 (0.40-1.99) 0.776 1.11 (0.59-2.07) 0.748 1.08 (0.63-1.86) 0.771 1.09 (0.37-3.22) 0.874 
Np73 T_up_NT 1.56 (0.86-2.82) 0.140 1.55 (0.96-2.51) 0.074 1.28 ( 0.84-1.92) 0.247 0.74 (0.31-1.74) 0.485 

Ex2p73 NT_up_HL 0.81 (0.34-1.92) 0.632 1.20 (0.65-2.25) 0.559 1.03 (0.58-1.82) 0.92 0.55 (0.13-2.34) 0.414 

Ex2p73 T_up_HL 1.51 (0.78-2.93) 0.222 1.16 (0.63-2.13) 0.628 1.22 (0.73-2.02) 0.446 1.35 (0.53-3.42) 0.526 
Ex2p73 T_up_NT 1.60 (0.88-2.89) 0.121 1.24 (0.77-1.99) 0.378 1.208 (0.80-1.82) 0.366 1.16 (0.52-2.59) 0.719 

Ex2/3p73 NT_up_HL 0.69 (0.27-1.74) 0.429 1.06 (0.56-2.03) 0.852 1.23 ( 0.72-2.11) 0.454 1.83 (0.68-4.92) 0.234 
Ex2/3p73 T_up_HL 0.79 (0.42-1.49) 0.464 1.41 (0.87-2.28) 0.162 1.19 (0.78-1.81) 0.417 0.70 (0.29-1.70) 0.433 

Ex2/3p73 T_up_NT 0.98 (0.52-1.88) 0.960 1.15 (0.68-1.95) 0.605 1.11 (0.71-1.75) 0.653 1.04 (0.43-2.50) 0.938 

TAp73 NT_up_HL 1.46 (0.73-2.91) 0.284 1.17 (0.68-2.04) 0.567 1.24 (0.77-2.01) 0.376 1.51 (0.56-4.06) 0.42 

TAp73 T_up_HL 0.72 (0.40-1.30) 0.279 0.94 (0.580-1.51) 0.784 0.99 (0.66-1.50) 0.979 1.17 ( 0.52-2.70) 0.703 
TAp73  T_up_NT 1.07 (0.50-2.30) 0.864 1.09 (0.60-2.01) 0.768 1.08 (0.64-1.84) 0.77 1.08 (0.36-3.21) 0.89 
Tumour size > 50 mm  1.65 (0.92-2.96) 0.095 2.59 (1.58-4.24) <0.001 2.17 (1.43-3.29) <0.001 1.25 (0.52-2.97) 0.619 
HCC multinodularity 0.98 (0.46-2.12) 0.967 1.26 (0.71-2.24) 0.437 1.23 (0.74-2.05) 0.418 1.15 (0.39-3.40) 0.801 
AFP > 200 ng/mL 1.17 (0.55- 2.46) 0.685 1.98 (1.14-3.46) 0.016 1.47 (0.88-2.45) 0.139 0.45 (0.11-1.92) 0.28 
Satellite nodules  2.23 (1.20-4.15) 0.011 2.05 (1.25-3.37) 0.004 2.07 ( 1.32-3.23) 0.001 2.34 (0.84-6.52) 0.104 
Recurrence: extra-hepatic vs. hepatic 

multifocal vs. hepatic uninodular 
1.56 (1.02-2.38) 0.038 1.48 (1.06-2.06) 0.023 1.33 (0.99-1.78) 0.059 0.89 (0.47-1.69) 0.719 

Cirrhosis 2.39 (1.27-4.53) 0.007 1.23 (0.75-2.00) 0.416 1.53 (0.99-2.35) 0.053 2.97 (1.25-7.07) 0.014 
vascular emboli 2.72 (1.50-4.94) 0.001 3.66 (2.23-6.00) <0.001 2.60 (1.70-3.97) <0.001 0.75 (0.25-2.22) 0.597 
Microscopic portal invasion 0.68 (0.29-1.62) 0.387 1.30 (0.71-2.39) 0.397 1.20 (0.70-2.07) 0.507 0.90 (0.26-3.08) 0.862 

CD133 T_up_HL 1.26 (0.62-2.55) 0.519 0.90( 0.49-1.69) 0.752 1.13 (0.68-1.88) 0.634 1.95 (0.80-4.76) 0.142 
CK19 T_up_HL 1.29 (0.64-2.60) 0.484 1.35 (0.78-2.36) 0.299 1.31 (0.80-2.16) 0.287 1.19 (0.40-3.53) 0.75 
EpCAM T_up_HL 1.05 (0.56-1.95) 0.889 1.01 (0.60-1.69) 0.978 1.01 (0.65-1.56) 0.983 0.99 (0.42-2.33) 0.991 
FZD7 T_up_HL 0.67 (0.36-1.27) 0.219 1.14 (0.70-1.85) 0.599 1.19 (0.78-1.80) 0.417 1.33 (0.59-2.97) 0.494 

Oct4 T _up_ HL 0.50 (0.18-1.42) 0.193 1.31 (0.69-2.46) 0.409 1.25 (0.71-2.18) 0.444 1.04 (0.31-3.54) 0.946 
Oct4 NT _up_ HL 1.31 (0.51-3.36) 0.572 1.21 (0.55-2.67) 0.633 1.19 (0.59-2.38) 0.625 1.10 (0.26-4.73) 0.897 
Oct4 T _up_ NT 0.96 (0.51-1.80) 0.894 1.57 (0.93-2.67) 0.092 1.41 (0.91-2.20) 0.123 1.12 (0.49-2.53) 0.793 

Nanog T _up_ HL 0.81 (0.32-2.07) 0.661 1.28 (0.65-2.53) 0.481 1.38 (0.76-2.50) 0.296 1.77 (0.52-6.00) 0.360 
Nanog NT _up_ HL 0.95 (0.45-2.01) 0.894 0.96 (0.52-1.77) 0.884 0.93 (0.55-1.56) 0.773 0.84 (0.31-2.28) 0.738 

Nanog T _up_ NT 1.34 (0.71-2.52) 0.361 1.32 (0.79-2.20) 0.289 1.42 (0.92-2.21) 0.115 1.80 (0.78-4.11) 0.166 

Sox2 T _up_ HL 1.59 (0.78-3.26) 0.203 1.32 (0.71-2.43) 0.383 1.05 (0.60-1.85) 0.86 0.49 (0.11-2.09) 0.333 
Sox2 NT _up_ HL 1.20 (0.37-3.91) 0.758 1.19 (0.43-3.29) 0.738 1.57 (0.68-3.62) 0.29 4.03 (0.90-18.08) 0.069 
Sox2 T _up_ NT 1.38 (0.69-2.77) 0.366 0.88 (0.52-1.50) 0.645 0.78 (0.50-1.22) 0.27 0.55 (0.23-1.31) 0.177 

Table 9. Univariate survival analysis performed with the Cox-2 hazard ratio method. In red 
are represented the statistically significant results. 
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The over-expression of Np73 in tumours compared to the matching non-tumoural tissue was 

found as a prognosis factor in favour of early recurrence, at the borderline of significance 

(HR=1.551, 95%CI[0.958-2.510], p=0.074). The results were also represented with the Kaplan-

Meier method and confirmed by the log rank test (Figure 7A). The other transcripts were not 

found to have a significant impact on patient outcome. In multivariate analysis, Np73 was 

found to be a prognostic factor for early recurrence versus the other factors. This result could 

be attributed to specific gain of function properties of Np73, since this observation was not 

true for the two other truncated isoforms Ex2p73 and Ex2/3p73. 

Strikingly, no association was found between the expression level of TAp73 and patients 

outcome. TAp73 is considered as a tumour suppressor and it was shown that during an 

oncogenic stimulus, in absence of functional p53, TAp73 expression increases in order to 

replace part of the cellular functions of p53. In this case, cells were shown to be more sensitive 

to apoptosis. In our cohort of HCC patients, the Kaplan-Meyer diagram representing the overall 

survival of patients overexpressing TAp73 versus the rest, showed a tendency towards a better 

outcome for the first group, but not statistically significant (HR=0.723, 95%CI[0.401-1.301,], 

p=0.279) (Figure 7B). 
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Figure 7. Kaplan Meier curves regarding A. Early recurrence probability when Np73 is over-
expressed in tumours compared to the matching non-tumoural (T_up_NT) tissue; and B. 
Overall survival probability when TAp73 is over-expressed in tumours compared to healthy 
liver (HL). 



 Patricia Gifu thesis 
 

210 
 

The balance between the truncated isoforms and TAp73 impacts the patients’ late 
recurrence and presence of stemness factors. 

It has been previously reported that in leukemia, rather then the over-expression of one single 

truncated isoforms, it is the balance between the relative cellular amounts of Np73 and 

TAp73 that has the strongest impact on patient outcome (Chapter 3.3.5 of the Introduction). A 

high ratio Np73/TAp73 is a prognosis factor for recurrence and poor overall survival in 

patients treated with chemotherapy. The value of this balance has two consequences. First, it 

is linked to the dominant negative effect of Np73 on TAp73. If the balance is in favour of 

Np73 (high Np73/TAp73), TAp73 is outweighted by Np73 and will not be capable of 

transactivating target genes involved in cell cycle arrest or apoptosis. Second, this impacts on 

the gain of function properties of Np73, because TAp73 can act in its turn as a dominant 

negative of this truncated isoform. In this case, even if Np73 is highly expressed, 

simultaneous high levels of TAp73 will inhibit the specific activity of Np73. In both cases, 

switching the balance in favour of Np73 has a rather pro-oncogenic than anti-oncogenic 

effect. For each patient included in our HCC cohort, the value of the expression ratio 

Np73/TAp73 was calculated in both tumours and surrounding non-tumour tissue. The result 

is represented in Figure 8A for each patient, with the horizontal lines representing the median 

of expression. We found that the median of Np73/TAp73 ratio is lower in tumoural than in 

the non-tumoural samples. This result was unexpected since we hypothesized that the balance 

in favour of Np73 would benefit tumoural cells and thus would increase during 

tumourigenesis. 
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Figure 8. Ratio Np73/TAp73 in liver tissue. A. Relative expression in HCC tumoural (T) and 
surrounding non-tumoural (NT) tissue. Horizontal black lines represent the median of 
expression. B Comparison of the ratio Np73/TAp73 between each tumour (T) and the 
corresponding non-tumoural (NT) tissue. Each arrow represents a pair tumour/surrounding 
tissue. 
 

The value of the ration Np73/TAp73 is determined both by the variation of Np73 and 

TAp73. Therefore, an increase in the ratio can be due either to a Np73 increase or to a TAp73 

decrease and vice versa for low values of the ratio. To better understand how this ratio varies 

in non-tumoural and tumoural tissue, we graphically represented the value of the ratio 

Np73/TAp73 both in tumours and non-tumours in function of Np73 or TAp73 (Figure 9). We 

found that the value of this ratio was much more impacted by the variations in the expression 

of Np73 than that of TAp73. When TAp73 expression increased, small variations of this ratio 

were observed. 
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Figure 9. Correlation between the value of Np73/TAp73 ratio and the mRNA expression of 
Np73 or TAp73. Data were modelised using the linear regression approach. Fisher F-test was 

employed to tesh whether the slope is significantly non-zero. 
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We divided patients in two groups based on the value of the ratio Np73/TAp73: the first 

group was formed of patients with a higher ratio Np73/TAp73 in the tumour than in the 

matching non-tumour (n=91) and the second group with a lower ratio (n=63). The impact of a 

low or a high ratio was then evaluated on patients overall survival, progression free survivial 

and early and late recurrence (Table 10). Univariate survival analysis indicated that a higher 

ratio Np73/TAp73 in tumours than in corresponding non-tumours could be a prognostic 

factor for late recurrence (HR=2.71, 95%CI [0.92-7.94], p=0.07) (Table 10). Late recurrence is 

recognised when a tumour is detected more than 2 years after tumour resection and is 

associated to the intrinsic capacity of the surrounding tissue to develop de novo hepatocellular 

tumours. This suggests that an increase in the Np73/TAp73 ratio in cells from the 

surrounding tissue could be involved in the emergence of de novo tumour. To confirm this 

observation, we represented the results with the Kaplan-Meier method and confirmed them 

by the log rank test (Figure 10). 

 

Univariate analysis of 
survivals regarding 
variables vs. rest 

Overall survival 
Early recurrence-free 
survival (< 24 months) 

Progression free survival 
(PFS) 

Late recurrence-free 
survival (>24 months) 

  HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P 

Np73/TAp73 T_up_NT 
0.96 (0.53-1.77) 0.907 0.87 (0.54-1.41) 0.566 1.11 (0.73-1.71) 0.623 2.71 (0.92-7.94) 0.07 

Table 10. Univariate analysis between increased ratio Np73/TAp73 in tumours compared to 
the corresponding non-tumours (T_up_NT). 
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Figure 10. Kaplan- Meier curve representing the influence of the increased Np73/TAp73 
ratio in tumours (T) compared to the corresponding non-tumour (NT) on late recurrence free 
survival. 
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Np73 is downregulated during the differentiation of HepaRG 

 

Of the four p73 isoforms studied in the HCC cohort, Np73 was the only one that we found to 

be a prognosis factor for early recurrence. Early recurrence is related to the tumour initiating 

capacity of cancer cells remaining in the liver after tumour resection. Studies showed that 

these cells are considered as cancer stem cells. For these reasons we investigated the role of 

Np73 in the progenitor phenotype of liver cells and the emergence of the CSCs. 

We studied in-vitro the expression status of Np73 during the differentiation process of liver 

progenitor cells. For this, we used HepaRG cells which are a liver bipotent progenitor cell line. 

When cultured in sub-confluent conditions, HepaRG cells proliferate and have the morphology 

intermediate between epithelial cells and mesenchymal cells and express progenitor markers 

(Parent et al., 2004). In confluent conditions, cells stop proliferating and engage into a 

differentiation program towards hepatic cells. After maintaining cells for 2 weeks in confluent 

conditions followed by two other weeks of culture in presence of DMSO, cells will organize into 

a monolayer formed of the two epithelial liver cell types: hepatocytes and cholangiocytes. As 

shown in Figure 11A, hepatocytes appear as small cells, organized in longitudinal cords, with 

inter-cellular bile canaliculi and surrounded by cholangiocytes while are larger cells. At this 

time point and during the proliferative stage, cells were collected and the expression of the 

p73 isoform Np73, albumin and EpCAM were measured by RT-qPCR. We found a decreased 

expression of Np73 isoform in differentiated cells compared to proliferative cells. The 

expression of EpCAM, associated to liver progenitor phenotype and albumin, associated to 

hepatocyte phenotype were assessed in order to confirm cell phenotype. As expected, 

proliferating HepaRG cells express a higher level of EpCAM and lower level of albumin 

compared to differentiated HepaRG cells (Figure 11B). 

We confirmed the results at the protein level by Western Blot analysis on total cell extracts 

with a specific antibody against Np73. In differentiated HepaRG cells Np73 was 

undetectable while a band corresponding to this isoform (at 72kDa) appeared in the sample 

lane corresponding to non-differentiated HepaRG cells. 
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Figure 11. Expression of Np73 in proliferating and differentiated HepaRG cells. A. 
Differentiation protocol of the liver progenitor cell line HepaRG. B. RT-qPCR analysis of the 
expression of Np73, the hepatic marker albumin and the progenitor marker EpCAM in 
proliferating and differentiated HepaRG. C. Western Blot result confirming the absence of 

Np73 at the protein level in differentiated HepaRG cells and its presence in progenitor 
proliferating HepaRG cells. The Ku80 protein was used as a loading control. 
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Np73 expression increases during the early stages of hepatocarcinogenesis 

Since we and others found that Np73 is overexpressed in HCC, we investigated the level of 

expression of this isoform in an in vitro model of cell transformation established in the lab. 

PHHs were immortalized in vitro by ectopic expression of the SV40 oncoviral proteins small T 

(ST) and large T (LT) and further transformed with the mutant active form of H-RasV12 (Figure 

12A). 

The expression of Np73 was investigated in parental primary human hepatocytes, 

transformed hepatocytes and a sub-population of these transformed hepatocytes isolated by 

agar colony formation. We found that Np73 expression increased during transformation and 

was enhanced in transformed hepatocytes sub-clones from agar assay, thought to possess 

aggressive features. In this model of hepatic immortalization and transformation, cells acquire 

EMT (such as vimentin) and progenitor markers (such as CK19) (Pez, Gifu et al, in prep). 

 

Figure 12. Expression of Np73 during the in vitro transformation of primary human 
hepatocytes. A. Model of in vitro transformation by expression of the SV40 oncoviral proteins 
and a constitutively active mutant form of RAS. B. Expression of Np73 in PHHs, transformed 
hepatocytes and in an agar clone-derived population of these transformed hepatocytes. 
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Np73 is overexpressed in cancer stem cells 

We than investigated whether Np73 was specifically overexpressed in liver cancer progenitor 

cells, as this isoform is thought to promote cell stemness. We isolated the most immature cells 

from three HCC cell lines: HuH7, Hep3B and Focus by culturing the entire cell population in 

non-adherent conditions and in absence of serum. In these in-vitro conditions, only 

immature/cancer stem cells can develop and form hepatospheres, mainly composed of cancer 

progenitor cells. We performed gene expression analysis by RT-qPCR in the parental 

heterogeneous population and derived 4-days old hepatospheres. We confirmed that 

hepatospheres are formed of a subpopulation with progenitor traits since they overexpressed 

stemness factors such as Sox2, Oct4, Klf4 and Nanog. We found that Np73 was 

overexpressed in the isolated cancer progenitor cell population (Figure 13). The presence of 

Np73 in HCC progenitor cells could be either a driver to the emergence of this subpopulation 

or the consequence of the progenitor phenotype. 

 

Figure 13. Expression of Np73 and the stemness factors Sox2, Oct4, Klf4 and Nanog in three 
HCC cell lines (HuH7, Hep3B and Focus) in adherent conditions (black) or in spheres obtained 
after culture in low-adherent conditions (grey). 
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Np73 ectopic expression increases the expression of stemness markers 

In order to determine if Np73 could drive the expression of immaturity markers, we 

ectopically expressed this isoform in the p53-null HCC cell line Hep3B and in the p53 wild-type 

(WT) progenitor cell line HepaRG. The stable cell lines overexpressed the exogenous protein 

Np73 as shown by Western-Blot in Figure 14A. The expression of stemness factors in the 

Np73 stable cell lines was analyzed at the mRNA level and compared to the parental cell 

lines. We observed that independently of the status of p53, Np73 expression increased the 

transcription of stemness factors Oct4, Klf4 and Nanog as well as IGF1R and TAp73 (Figure 

14B). The morphology of cells did not change after transduction suggesting than Np73 would 

not contribute to the epithelial-to-mesenchymal transition (data not shown). Furthermore, it 

has been shown that in melanoma and lung cancer cells, Np73 induces the expression of 

IGF1R, which has been shown to maintain pluripotency by blocking differentiation of 

embryonic stem cells into somatic cells. We found that in hepatocellular carcinoma Np73 also 

regulates IGF1R. 

 

Figure 14. Expression of Np73 and stemness factors in Np73 stably transduced Hep3B and 
HepaRG cell lines. A. Western Blot results confirming the expression of Np73 protein in 
stably transduced Hep3B and HepaRG cell lines; EV, cells transduced with an empty lentivirus. 
Ku80 was used a load control. B. Expression of Np73, TAp73, Nanog, IGF1F, Oct4 and Klf4 in 

Np73-overexpressing cells and the control empty vector (black).  
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Np73 expression increases the efficacy of holoclones formation 

It has been described that epithelial stem cells and progenitor cells can be distinguished thanks 

to their capacity to generate colonies starting from single cells. More cells of origin are de-

differentiated, more the resulting colony is bigger, with sizes described as small, medium and 

large and formation of paraclones, meroclones and holoclones, respectively. 

We examined the colony formation potential of Np73-transduced cell lines in comparison to 

the EV control cell lines. Paraclones were counted separately and called here ‘small colonies’ 

while medium and large colonies were counted together and called ‘large colonies’. We 

observed that Np73 expression modifies the size, but not the number of colonies. When 

Np73 was present, cells formed larger colonies, which means that the Np73 stable cell line 

contains a similar number of immature cancer cells compared to control cells, but these 

immature cells are composed of more early progenitors and cancer stem cells (Figure 15). 

 

Figure 15. Quantification of small and large colonied formed by Np73-expressing and 
empty vector Hep3B cells. 
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Np73 does not enhance the proliferative capacity of HCC or liver progenitor cells

It has been shown that TAp73 inhibits cell proliferation but it is not known whether Np73 

could favor cell proliferation, in particular by blocking TAp73 and p53 through its dominant 

negative properties (Jost et al., 1997; Kaghad et al., 1997; Zhu et al., 1998). To answer this 

question, the growth rate of Hep3B (p53 null) and HepaRG (p53 WT) cells stably transduced 

with Np73 was compared to cells transduced with empty vector. No difference was observed 

between the control and the Np73-expressing cells the two first days. However, Np73-

expressing cells showed a higher proliferation rate at day 3 and 4, suggesting that they are less 

sensitive to cell contact inhibition or to growth factors deprivation than control cells (Figure 

16). Additional experiments should be performed to further investigate into this hypothesis. 

 

 

Figure 16. Proliferation assay of HepaRG and Hep3B cells ectopically expressing Np73 
versus control cells (empty vector). Cells were cultured for 4 days in 96 well plates. 
Proliferation was measured by MTS assay. 
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Discusion 

Hepatocellular carcinoma patients have a very poor outcome. This cancer type is highly 

refractory to conventional chemotherapeutic agents and patients undergoing tumour removal 

show a high incidence of cancer relapse. Moreover, patients treated by Sorafenib rapidly 

develop secondary resistance. It is thought that drug resistance and relapse post-surgery are 

due to the existence of cancer stem cells inside hepatocellular tumours. 

Little is known about the factors contributing to the emergence and maintenance of the CSCs 

pool. Increasing number of studies show that the of the p53 family members p63 and p73 are 

not only important in regulating apoptosis and cell cycle arrest but also play a role in the 

maintenance of the CSCs pool. 

Our results show that in the non-tumoural liver tissue surrounding the HCC nodules, the four 

N-terminal truncated p73 isoforms are overexpressed in about the same proportion of cases 

(with TAp73 having a slightly superior incidence). In the tumours, we found that the transcripts 

Ex2/3p73 and TAp73 corresponding to the P1 promoter are much more frequent. This 

suggests that the P1 promoter is activated more frequently in tumours than in non-tumour 

tissues. Secondly, this result also suggests that in HCC cells, alterations of the transcription-

splicing coupling regulation or of the elongation rate could appear, thus explaining why we 

observed more often Ex2/3p73 overexpression than Ex2p73. Such alterations have already 

been reported in which activation of the EGFR pathway triggers aberrant IR-A/IR-B ratio 

(IR:insulin receptor) in HCC cells through the upregulation of several splicing factors (Chettouh 

et al., 2013). 

Although Np73 is a target-gene of the transcriptionally competent p53 family members, in 

particular TAp73, we did not observe correlation between TAp73 and Np73 overexpression in 

the tumoural tissue, contrary to the non-tumour. This is probably due to the involvement of 

other transcription factors in the regulation of the P1 and P2 promoters, for example the 

oncogenic factor c-myc for P2 and the transcription factor E2F1 for P1, both of them previously 

described to be overexpressed in HCC. 

In the liver non-tumour tissue, activation of the P1 and P2 promoters correlate but in HCC, P2 

activation does not seem to occur at the same time as P1 in terms of frequency. It has been 

shown that the P2 promoter contains responsive elements to the oncogene c-Myc and E2F1, 

both described to be overexpressed in cancer and proliferating cells. 

We hypothesised that Np73 overexpression triggers the expression of stemness features in 

HCC. We and others showed that Np73 counteracts the p53-dependent inhibition of Sox2, 
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Oct4 and Nanog expression and that Nanog is a true Np73-target gene, probably by 

synergizing the transactivation activity of a non-identified transcription factor (Lin et al., 2012, 

Voeltzel et al., submitted). Here, we found that besides the Np73 isoform, TAp73, Ex2/p73 

and Ex2/3p73 also correlate with stemness factors Sox2, Oct4 and Nanog in HCC. However, 

this result should be carefully interpreted as it does not necessarily mean that these isoforms 

trigger the transcription of these stemness factors. First, this could be an artefact due to the 

simultaneous overexpression of TAp73, Ex2p73 and Ex2/3p73 and of Np73 in the same 

tumour. Events that lead to Np73 overexpression also lead to overexpression of TAp73, 

Ex2p73 and Ex2/3p73. Since Np73 triggers the transcription of Oct4, Sox2 and Nanog, this 

could explain the significance of the correlation tests between the isoforms Ex2/p73 and 

Ex2/3p73 and the three stemness factors. Secondly, since Np73 and Ex2p73 and 

Ex2/3p73 share the same DNA binding domain, these two last truncated isoforms can also 

block the p53-dependent inhibition of Oct4, Sox2 and Nanog expression. 

TP73 expression is tissue specific. For example, several studies found a link between TP73 

hypermethylation and overexpression in haematological diseases, but similar reports in the 

liver reported absence of aberrant methylation of the gene while the protein was still found to 

be overexpressed. In the same manner, two studies showed the link between deregulation of 

the balance Np73/TAp73 and patient outcome (discussed in the Introduction, Chapter 3). 

However, in our study we did not found a significant impact on patient overall survival or 

recurrence. This suggests once again that p73 overexpression is regulated differently 

depending on the type of tissue that is being studied. 

It is possible that by stratifying patients based on the p53 status (wild type or mutated) 

we could observe even to a higher extent the importance of TAp73 overexpression on patients 

overall survival when p53 is mutated. In these patients, activation of the P1 promoter is 

needed to activate the transcription of TAp73. But, the combination between P1 activation 

and the deregulation of splicing could favour the formation of splicing products rather than the 

full-length isoform. 

The result that Np73 overexpression in HCC correlates with that of stemness factors 

is a strong argument for implicating this isoform in the emergence of CSCs. Correlation data 

between overexpression of each p73 isoform and stemness factors showed significant 

associations in all cases, both in the tumours and the non-tumours. However, at this level it is 

very difficult to assess whether there is a relation between Np73 expression and CSCs 

population, since the latter represent a very small population inside the tissue sample 

investigated. 
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It is of importance to note that our approach does not take into account the mRNA level of 

N’p73. This transcript is obtained from the activation of the P1 promoter but integrates the 

sequence of the 3’ exon exon (located in the intron 3 and coding for the N-terminal specific 

part of Np73). The inclusion of the 3’ exon generates a stop codon upstream from the AUG 

contained in this exon and therefore the protein obtained is exactly the same as the one 

obtained from the Np73 transcript. The primers that we used in the cohort study allowed us 

specifically to amplify Np73, not N’p73. By not taking into consideration the amount of the 

N’p73 transript, we underestimate the protein amount of the Np73 isoforms and therefore 

i) we have false-negative cases for the overexpression of Np73 protein and ii) the balance 

between the cellular amount of full length and truncated isoforms cannot be well estimated. 

This is extremely important since we consider that the cell outcome dependends on the total 

amount of p73 protein. Our survival analysis shows that Np73 overexpression is not 

predictive of patients overall survival, contrary to other studies clearly showing that patients 

having positive immunostaining inside the tumour have a shorter overall survival than the rest. 

However, these studies did take into consideration the total amount of the Np73 protein 

inside the cell. It could be very interesting to perform immunohistochemistry analysis of 

Np73 expression at least on some samples from our cohort and to compare with the 

transcript level. 

The initial aim of this work was to prove that Np73 would promote by itself the expression of 

stemness factors that would favour the appearace of an HCC cancer stem cells population. 

However, as we showed here, the overexpression of the Np73 is accompagnied by the 

overexpression of TAp73 (both in HCC samples and in vitro). It would be important to verify the 

functionality of the TAp73 protein present in these tumours. Indeed, like for p53, some 

proteins have been shown to decrease or abolish TAp73 activity. For example, by binding on its 

N-terminus, MDM2 induces TAp73 neddylation and its subsequent cytoplasmic localization, 

thus decreasing TAp73 transactivation function (Watson et al., 2006). Also, Np63 isoform 

promotes survival of breast cancer cells by interacting with TAp73 and thereby inhibiting its 

proapoptotic activity (Leong et al., 2007). 

The moderate effect that we observe on stemness factors expression after 

overexpressing Np73 can be explained by the inhibition TAp73-mediated. Indeed, if we admit 

that Np73 posses gain of function properties, for example by binding and cooperating with 

transcription factors, then TAp73 behaves as a dominant negative of Np73, quite in the same 

manner as this last acts on the former one. 
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We observed that Np73 expression is progressively increased during hepatocarcinonegesis. If 

considering that Np73 acts as a stemnes factor during this process, this result is in 

accordance to other data in the literrature reporting the progressive enrichment in stemness 

features during multistep hepatocarcinogenesis in HCC patients and murine HCC models 

(Kowalik et al., 2015; Yoo et al., 2017). Preneoplastic cells retained a certain plasticity potential 

and can acquire additional markers during complete transformation.  
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Materials and Methods  

Human Tissue Samples 

138 HCC and matched non-tumour surrounding liver samples were obtained from patients 

with resectable HCC. Patients with all HCC aetiologies were included (HBV, HVB, alcohol abuse, 

NASH) and clinicopathological data was collected together with patients follow-up. The 

distributon of aetiology in the cohort was HCV 28.3% (n=39), HBV 21.0% (n=29), alcohol abuse 

35.5% (n=49), NASH 16.7% (n=23) and for 10.1% (n=14) of patients the aetiological factors 

were unknown. 52.2% of patients developed the HCC on a cirrhotic background. The grade of 

HCC differentiation was estimated according to the Edmonson-Steiner criteria that take into 

consideration the size, morphology and mitotic figures and grouped in the present study as 

well-differentiated. Healthy liver tissues were collected from patients with liver metastasis 

from colon cancers undergoing surgery for tumour resection at Centre Léon Berard in Lyon, 

France. Total RNA was extracted from liver biopsies with Extract-All as described here bellow. 

RNA extraction 

Nucleic acids were extracted with Extract-All (Eurobio) following manufacturer’s instructions 

and precipitated with isopropanol. The RNA pellet was washed two times with ethanol 95% 

and 70% and then dissolved in distilled water. 

Lentivirus transduction 

Hep3B and HepaRG cells were transduced with FG12-empty vector (EV) of FG12- Np73 

lentiviruses in presence of polybrene 8 μg/mL at a multiplicity of infection (MOI) of 1. The 

FG12 empty vector and the FG12 containing the coding sequence of Np73a were provided by 

the lab. The selection for the integration of the FG12 vector in eukaryote cells is done based on 

the resistance to puromycin. Lentiviruses were produced in the 293T cells. Brieffly, cells were 

transfected with FG12 EV or Np73 together with the packaging and the envelope vectors 

(VSVG and 8.9.1) in relative amounts 5:1:5 by using the CalPhos kit (Clontech) and following 

the manufacter’s instructions. The lentivirus production was harvested after 24 and 48h, mixed 

and concentrated by centrifugation. The lentiviral production was titrated in order to 

determine the number of virions per volume unit. 

Real time quantitative PCR (RT-qPCR) 

RNA was isolated from liver biopsies as described here above and for the cell lines, cells were 

first washed with PBS, harvested by scrapping and the RNA was isolated in the same manner. 

One μg of total RNA was submitted to retrotranscription (RT) for the synthesis of 

complementary DNA (cDNA) with the SuperScript III kit following provider’s instructions 

(ThermoFisher). The RT was performed with a Biorad Thermocycler. The qPCR was performed 
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on the synthesized cDNA corresponding to 10ng, mixed with 1X quantifast Qiagen SYBR Green, 

and 500nM of each primer in 10μL total volume. Reactions were performed using LightCycler 

480 (Roche). The thermal cycling conditions comprised an initial step at 95°C for 5 minutes, 

followed by 40 cycles at 95°C for 10 seconds, and 60°C for 30 seconds. Experiments were 

performed in duplicate. All primers were designed with Primer3 plus software : TAp73 forward 

5’- GCACCACGTTTGAGCACCTCT -3’ and reverse: 5’- GCAGATTGAACTGGGCCATGA -3’; Np73 

forward 5’- AAGCGAAAATGCCAACAAAC -3’ and reverse: 5’- CACCGACGTACAGCATGGTA -3’; 

Ex2p73 forward 5’- GACGGCTGCAGGGAACCAGA -3’ and reverse: 5’- 

TGCCCTCCAGGTGGAAGACG -3’; Ex2/3p73 forward 5’- TGCAGGCCCAGTTCAATCTGC -3’ and 

reverse: 5’- TCGGTGTTGGAGGGGATGACA -3’. GUS and TBP were used as internat control in 

parallel for each run and for the quantification. The - Ct or Pfaffl method was used to 

analyse the ratio of the target gene in the test sample to the calibrator sample, normalized to 

the expression of the reference gene. Normalizing the expression of the target gene to that of 

the reference gene compensates for any difference in the amount of sample tissue. 

Cell line culture 

Hep3B cells were maintained in EMEM medium (ATCC) supplemented with 10% heat-

decomplemented fetal calf serum (FCS, Invitrogen), 100U/mL penicillin, 100μg/mL 

streptomycin. HepaRG cells were maintained in William’s medium supplemented with 10% 

FCS, 100U/mL penicillin, 100μg/mL streptomycin, 2mM GlutaMAX (Invitrogen), 5μg/mL bovine 

insulin and 5*10-5 M hydrocortisone hemisuccinate (Roche Diagnostics). Cells were kept in 5% 

CO2, at 37°C in an atmosphere saturated in H2O. Hep3B stable cell lines transduced with the 

FG12 vector were selected with 2 mg/mL  puromycin while HepaRG cell lines transduced with 

the FG12 vector were selected with 2.3 mg/mL puromycin. 

Cell proliferation 

Cell proliferation was determined by using the MTS kit by following the indications of the 

commercial assay manufacturer’s instructions (Promega). 

Western blot analysis 

The expression of Np73 and the load control Ku80 were assessed in cell lines by Western-blot 

on total cell lysates. Cell were washed with PBS and harvested by scrapping. Total cellular 

protein extraction was done with the (RIPA) lysis buffer (50 mM Tris-Cl (pH 8.0), 1 mM EDTA, 

0.5 mM EGTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 140 mM NaCl) 

supplemented with Protease Inhibitor Cocktail (Roche). Protein quantification was performed 

with the Pierce protein kit according to the manufacturer’s instructions (ThermoFicher) and 

using the bovine serum albumin (BSA) as standard. Proteins (40μg) were heat-denaturated, 
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fractionated on sodium dodecyl sulphate (SDS) polyacrylamide 8% W/v gel and transferred to 

PVDF membranes. Membranes were blocked with 5% non-fatty milk in PBS. Membranes were 

incubated overnight at 4⁰C with commercial primary antibodies against Np73 (Imgenex 313A 

1/200) and KU80 (Serotec 1/40000). Excess of antibody was removed by washing the 

membranes three times with PBS-NP40 0.05% followed by incubation for 1 hour at room 

temperature with a horseradish peroxidase-conjugated secondary antibody (Dako 1/1000). 

Excess of antibody was removed by washing the membranes several times with PBS-NP40 

0.05%. Detection of the proteins was carried out by using an enhanced chemiluminescence 

Western blotting system (GE Healthcare). 

Colony assay 

Cells were plated in 6 well plates at a cell density of 2000 cells/well. Coloy growth was 

followed under the microscope and the experiment was stopped 3 weeks latter. Cells were 

fixed with methanol and stained with crystal violet by incubating cells with a fixation and 

staining solution containing acetic acid/methanol 1/7 (v/v) and 0.5% crystal violet for 10 min. 

The excess of crystal violet was washed with H2O and dishes were let to air dry. Plates were 

scanned and the area of colonies was measured with the ImageJ software. 

Sphere assay 

Total cell population was seeded in sphere media (complete cell media without FCS and 

supplemented with B27 (Life Technologies), 20ng/mL EGF (R&D Systems), 20ng/mL bFGF 

(StemCell Technologies) and 4μg/mL heparin) and distributed in ultra low adherence 24-well 

cell culture plates (Corning). Spheres were harvested 96h later. Spheres either used for RNA 

extraction or were dissociated by trypsination and seeded for cell viability assays. 

Statistical analysis 

Pearson's chi-squared test was employed to define significance of the correlation between 

expression of p73 isoforms and clinicopathological features as well as expression of stemness 

markers. Univariate and multivariate survival analysis were performed by the Cox proportional 

hazard ratio (HR) method in order to asses the impact of p73 overexpression in patient overall 

survival, progression-free survival as well as early and late recurence. Results of the univariate 

analysis were confirmed by the Kaplan-Meier method and the log rank test. The Mann-

Whitney test was employed to test the hypothesis whether two populations are identical. The 

software Medcal, NCSS and Prism GraphPad were used. 
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Study 3 

Preclinical development of the SLC Inhibitor GNS561 against 

Hepatocellular Carcinoma 
 

In the aim of discovering novel small molecules against cancer, the company Genoscience 

Pharma screened a library of quinoline derivatives on a panel on cancer cell lines. It was found 

that the compound GNS561 has a high efficacy against hepatocellular carcinoma cell lines and 

showed no particular toxicity for normal hepatocytes in vitro. In vivo pharmacological studies 

showed that GNS561 has a strong hepatotropism, justifying the interest of its use in the 

treatment of liver tumours. In vivo, the anti-tumourigenic activity of GNS561 was assessed on 

two models of murine HCC (orthotopic xenograft and chemically-induced) and it was found 

that GNS561 has a strong anti-tumourigenic capacity, at least comparable to Sorafenib. In 

vitro, GNS561 was shown to induce lysosome membrane permeabilisation, as well as 

activation of caspase 3/7. Biochemical analysis of molecular interactions allowed the 

identification of the molecular target of GNS561, for the moment under confidence. 

In the laboratory we investigated the anti-tumour capacity of GNS561 and studied the profile 

of expression of its molecular target in HCC cells and tumours. 
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Introduction 

In spite of successful approval and wide application of Sorafenib for advanced hepatocellular 

carcinoma (HCC) treatment, the prognostic remains poor. 

A highly tumourigenic subpopulation of cancer cells named Cancer Stem Cells (CSCs) have 

been claimed as participating to tumour recurrence. Indeed, CSCs are resistant to 

chemotherapy, and they have the ability to regenerate the tumour bulk with its 

heterogeneous cell populations. For this reason, innovative drugs with original mechanism of 

action which target CSC properties would likely improve cancer treatment of patients. 

We investigated the in vitro antitumour activity of GNS561 in view of its potential use in 

targeted therapy against HCC. The antitumour activity was explored in vitro both on the bulk of 

cells and on a sub-population of HCC cells enriched in CSCs. We also studied the expression of 

the molecular target of GNS561 in HCC patient tumours and its association with CSCs markers. 
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Results 

EC50 GNS561 and Sorafenib 

The cytotoxic effect of GNS561 was assessed on three HCC cell lines Hep3B, HuH7 and Focus at 

48 hours and 72 hours post treatment. Experiments were performed in parallel with Sorafenib, 

the gold standard targeted therapy for HCC. Results were compared between the two drugs. 

After treatment with GNS561 or Sorafenib, cells responded in a dose dependent manner. After 

48 hours or 72 hours post-treatment and at equimolar concentrations, GNS561 exhibited a 

higher cytotoxicity than Sorafenib. We found that for the two time points, 48 hours and 72 

hours, the dose of drug needed to kill half of cells (defined here as EC50) was lower for 

GNS561 than for Sorafenib (Figure 1). The cytotoxicity of GNS561 did not change significantly 

between 48 hours and 72 hours since the EC50 for the two time points were not significantly 

different (Table 1). The EC50 of GNS561 for the three cell lines, Hep3B, Focus and HuH7 

remained in the same range, between 2.4μM and 1.8 μM. The EC50 of Sorafenib showed a 

higher variability due to an unexpectedly high EC50 for the HuH7 cell line. 

 

Figure 1. In vitro anti-tumourigenic activity of Sorafenib and GNS561 on the Hep3B and HuH7 
cells lines. 
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Table 1. EC50 of Sorafenib and GNS561 on the HCC cell lines Hep3B, HuH7 and Focus after 
treatment for 48 or 72 hours. 

 

Sphere-derived cells are not resistant to GNS561 or Sorafenib 

Since cancer cell lines are heterogeneous, we explored the sensitivity of a cell sub-population 

enriched in cancer progenitor cells to both Sorafenib and GNS561. We confirmed by RT-qPCR 

analysis that the CSCs enriched population overexpressed liver progenitor factors such as Sox2, 

Oct4, Klf4 or Nanog (Figure 2). The enriched population was obtained by culturing the entire 

cell population of two HCC cell lines, Focus and Hep3B, in sphere conditions during 96 hours. 

Then, spheres were dissociated and plated in cell culture dishes in adherent conditions and at 

the same cellular density as the parental total population for the cytotoxic assays. 

 

 

Figure 2. Expression of the stemness factors Sox2, Oct4, Klf4 and Nanog in adherent cell 
conditions and in spheres. 

Compared to the total cell population, CSCs enriched population did not show resistance to 

Sorafenib or GNS561 when treated in monolayer for 24h, 48h or 72h (Figure 3). The EC50 

obtained were within the same range as what has been determined previously. Since cells with 
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progenitor phenotype have a higher plasticity when cultured in vitro, we hypothesise that they 

could have derived after 24 hours of monolayer culture and restored the initial heterogeneous 

population. We repeated the experiment and assessed cytotoxicity at shorter time lapses (6h, 

8h and 24h) and with higher doses. Similarly, no resistance has been observed between the 

cancer bulk cells and the CSCs enriched population to Sorafenib or GNS561 (Figure 4). 
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Figure 3. Anti-tumourigenic activity of Sorafenib and GNS561 on total populations (adherent) 
(orange) or CSCs enriched populations (spheres derived) (blue) of HCC cell lines Hep3B and 
HuH7 after 24, 48 or 72 hours of treatment. 
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Figure 4. Anti-tumourigenic activity of Sorafenib and GNS561 on total populations (adherent) 
(orange) or CSCs enriched populations (spheres derived) (blue) of HCC cell lines Hep3B and 
HuH7 after SHORT treatment periods of 6, 8 or 24 hours and with high drug concentrations 
(up to 64μM). 

 

GNS561 inhibits formation of hepatospheres 

The possibility that among the CSC-enriched population only a very small amount would be 

resistant to GNS561 was explored. We cultured two HCC cell lines, Hep3B and Focus, in non-

adherent conditions and in absence of serum in order to specifically favour the proliferation of 

CSCs. 

At the time of platting, cells were treated with Sorafenib or GNS561 at several concentrations. 

Contrary to Sorafenib which allowed the formation of spheres, GNS561 completely inhibited 

these, even at low concentrations (0.33*EC50) (Figure 5). At 1*EC50, Sorafenib treatment 

significantly decreased the average sphere size, showing therefore a partial inhibitory effect on 

the capacity of cancer progenitor cells to develop into spheres (unpaired Mann-Whitney test, 

p<0.001) (sphere size refers to area). It should be noted that the EC50 in this case was 

calculated for the adherent total population. Similar results have been obtained after 

treatment with Sorafenib of the Focus cell line, for which GNS561 also completely inhibits the 

capacity of cells to form spheres. These results demonstrate the high efficacy of GNS561 to 

counteract the proliferation and survival of isolated immature cell sub-populations from HCC 

cell lines. 



 Patricia Gifu thesis 
 

237 
 

 

Figure 5. Anti-tumour effect of GNS561 and Sorafenib on HCC cell lines Hep3B and Focus 
cultured in sphere conditions. On the quantification panel, each dot represents an individual 
sphere and its position is related to its size. Statistical analysis was performed with unpaired 
Mann-Whitney test.  
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Cancer stem cells are less sensitive to GNS561 when pre-treated in adherent 

conditions 

In order to confirm that low concentrations of GNS561 completely eliminates CSCs, we pre-

treated the total cell population in adherent conditions with GNS561 at 0.33*EC50, 0.66*EC50 

and 1*EC50 or Sorafenib 1*EC50 for 72h. Cells were further cultured in hepatospheres 

conditions and for each condition the same number of cells was seeded without continuing 

drug treatment (GNS561 or Sorafenib). Prior treatment with GNS561 or Sorafenib did not 

affect the capacity of cells to develop hepatospheres after 96h of culture (Figure 6). For each 

of GNS561 concentrations tested, we did not observe significant decrease in the size or 

number of spheres formed by treated cells. However, for Sorafenib we obtained the same 

tendency regarding a decreased size of spheres that were formed. If we consider that GNS561 

eliminated the entire CSCs population during adherent treatment but the remaining bulk cells 

are still able to form hepatospheres, it means that these cells are able to regenerate the 

cancer stem cells population in the in vitro conditions tested here. 

This observation has already been reported in the case of breast cancer (Gupta et al., 2011). 

When researchers sorted by FACS luminal, basal and stem-like from a heterogeneous cell 

population and cultured them separately, the three sub-populations initially homogenous 

reconstituted the heterogeneous population. This highlights that there is an equilibrium in a 

cancer cell population due to cancer cell plasticity. 
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Figure 6. Anti-tumour effect of GNS561 and Sorafenib on HCC cell lines Hep3B and Focus 
pretreated and then cultured in sphere conditions. On the quantification panel, each dot 
represents an individual sphere and its position is related to its size. Statistical analysis was 
performed with unpaired Mann-Whitney test. 
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GNS561 molecular target is downregulated in sphere-derived CSCs 

The molecular target of GNS561 was previously identified and corresponds to a specific SLC 

transporter (here called SLCt). Since we showed that GNS561 has a cytotoxic activity on liver 

cancer stem cells, we investigated the level of expression of the SLC transporter in cancer stem 

cells isolated from Hep3B, Focus and Huh7 HCC cell lines, by spheres formation. The level of 

expression of the SLC transporter was measured in 4-days old hepatospheres as well as the 

initial total cell population. We found that for the 3 cell lines, the mRNA of the SLC transporter 

was lower in hepatospheres compared to the initial parental cell population (Figure 7). This 

result was unexpected as it is considered that a given drug is more efficient on cells with high 

levels of the molecular target. One explanation could be that in bulk cells, partial inhibition of 

the transporter will probably not trigger sufficient low concentration of the solute 

incompatible with cell growth and viability. On the contrary, in the case of cancer stem cells 

the inhibition of the transporter will lead to drastic decrease in the cellular level of the solute, 

probably below the threshold concentration, thus leading to impaired stem-specific cell 

functions. 

 

Figure 7. Expression of the molecular target of GNS561, SLCt in bulk and spheres forming 
cancer cells of three HCC cell lines Hep3B, HuH7 and Focus. SLCt mRNA levels is reduced in 
the spheres forming cells. Unpaired Mann-Whitney test (p<0.05).  
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GNS561 treatment rapidly diminishes the mRNA level its target  

We explored the hypothesis whether GNS561 also has an effect on the expression of SLCt, 

besides acting as a structural inhibitor of this transporter. We treated the HCC cell line Hep3B 

in adherent conditions with GNS561 at three concentrations for 4, 8 and 24 hours. At the end 

of each time point cells were collected and the expression of the SLCt target was assessed at 

the mRNA level. We observed that GNS561 decreases the level of the SLCt mRNA in a time 

dependent manner (Figure 8). We observed that after 4 hours treatment, the mRNA level of 

SLCt already decreased by 30%. The fast inhibitor activity of GNS561 suggests that the drug 

might rather affect the stability of the SLCt mRNA rather than its transcription rate. The 

inhibition was found to be rather time dependent than concentration dependent. Indeed, for 

each time point we did not observe a significant difference when treating with 1*EC50, 2*EC50 

or 4*EC50. 

 

Figure 8. Expression of SLCt in Hep3B cells after treatment with increasing doses of GNS561 
for 4, 8 or 24 hours. 

 

GNS561 target expression in HCC patients 

One of the requirements justifying GNS561 as a targeted therapy in HCC patients is the 

expression of the GNS561 target SLC transporter in tumours. The expression of SLCt was 

investigated by RT-qPCR in surgically resected hepatocellular tumours (T) and the matched 

non-tumour (NT) liver tissues (n=180) as well as in healthy livers (HL) devoid of chronic or 
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acute disease (n=10). Healthy liver tissues were collected from liver resection coming from 

patients undergoing surgery for colorectal liver metastases. 

We found that the SLC transporter was overexpressed in 40.5% of tumours and 33.3 % of the 

non-tumour tissue compared to the healthy liver samples. As shown in the Figure 9, there is 

not a systematic increase of SLCt transcription in hepatocellular tumours compared to the 

matching non-tumour liver. While some patients have a lower level of SLCt in tumours than in 

non-tumours, others show increased levels in tumours compared to matching non-tumoural 

liver. 

 

Figure 9. 
Expression of SLCt in human HCC biopsies and healthy liver parenchyma. Left panel. The 
expression of the SLCt was quantified by RT-qPCR from frozen biopsies of healthy livers (HL) 
(no known chronic liver disease), tumours (T) and surrounding non-tumour (NT) tissue 
originating from patients with HCC. Expression data are presented as the result of the relative 
quantification after normalization to the housekeeping gene. Horizontal black bars represent 
the median of expression. Right panel. Correlation between the overexpression of SLCt in the 
tumoural HCC (T) and the matching non-tumoural (NT) tissue. Each arrow represents a pair 
tumour (T) / surrounding non-tumour (NT). 
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We then investigated whether SLCt overexpression correlated with the clinicopathologic data 

of patients and expression of immaturity markers. High SLCt in HCC samples was associated 

with microvascular emboli (p=0.034) and with the expression of the stem cell factor Sox2 

(p=0.025) and the stem marker CD133 (p=0.034) (Table 2). High SLCt in non-tumoural liver 

correlated with cirrhosis (p=0.009) and presence of satellite nodules (p<0.001). Univariate 

analysis showed an association between overexpression of SLCt in tumours and shortened 

overall survival (OS) (HR=1.08, p=0.020), lower progression-free survival (PFS) (HR=1.76, 

p=0.006) as well as early recurrence-free survival (ERFS) (within 2 years post-surgery) 

(HR=1.88, p=0.008) (Table 3). In multivariate analysis, high SLCt tended to be an independent 

factor for OS, and this was strongly significant for PFS and ERFS (Table 4). High SLCt in non-

tumoural liver, is quite a poor outcome factor on late recurrence-free survival (LRFS) (HR=2.33, 

p=0.056) together with cirrhosis in univariate analysis, but remained dependent of cirrhosis in 

multivariate analysis. Late recurrence is linked to the intrinsic tumourigenic status of the liver 

and associated with development of de-novo HCC nodules. Results were confirmed by Kaplan 

Meier method and the log rank test (Figure 10). 
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SLCt T_up_HL SLCt NT_up_HL 

Total prevalence  40,5% up 30,3% up 

Chi-Square 2-Sided 

Clinico-biology, pathology p 2
 p 2

 

Etiology: HBV vs. HCV vs. alcohol vs. 
NASH vs. others  0,96 0,64 0,45 3,69 

Presence vs. absence of cirrhosis 0,29 1,13 0,009 6,77 

Tumour size > 50 mm vs. ≤ 50 mm 0,98 <0.001 0,98 <0.001 

Presence vs. absence of HCC 
multinodularity 0,24 1,37 0,75 0,10 

Poor vs. moderate vs. good 
differentiation 0,33 2,20 0,82 0,39 

AFP > 200 vs. ≤ 200 ng/mL 0,41 0,68 0,77 0,08 

Microscopic portal invasion 0,478 0,50 0,45 0,56 

Presence vs. absence of satellite 
nodules 0,32 0,99 <0.001 0,98 

Recurrence: extra-hepatic vs. 
hepatic multifocal vs. hepatic 
uninodular 

0,17 3,55 2,58 0,28 

Vascular emboli 0,03 4,49 0,35 0,87 

CD133 T_up_HL 0,03 4,49 0,11 2,54 

CK19 T_up_HL 0,35 0,89 0,60 0,28 

EpCAM T_up_HL 0,96 0,003 0,47 0,52 

Nanog T_up_HL 0,25 1,34   

Oct4 T_up_HL 0,08 3,16   

Sox2 T_up_HL 0,03 4,99   

SLCt T_up_HL - - 0,002 9,94 

new Nanog NT_up_HL   0,20 1,63 

Oct4 NT_up_HL   0,41 0,69 

Sox2 NT_up_HL   0,37 0,79 

SLCt NT_up_HL 0,002 9,9369 - - 

Table 2. Correlation between the overexpression of SLCt and clinicopathological data as well 
as stem-cells molecular features. 
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Univariate analysis of 
survivals regarding 
variables vs. rest 

Overall survival Early recurrence-free survival 
(TTR) (< 24 mo) 

Progression free survival 
(PFS) 

Late recurrence-free survival 
(TTR) (> 24 mo) 

  HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P 

SLCt T_up_HL 1.08 (1.88-3.28) 0,020 1.88 (1.18-3.01) 0,008 1.76 (1.17-2.64) 0,006 1.4 (0.60-3.24) 0,420 

SLCt NT_up_HL 1.27 (0.65-2.48) 0,460 1.22 (0.72-2.07) 0,450 1.44 (0.91-2.27) 0,110 2.33 (0.97-5.58) 0,050 

SLCt T_up_NT 0.94 (0.50-1.78) 0,860 1.27 (0.76-2.11) 0,340 1.28 (0.83-1.99) 0,250 0.78 (0.33-1.87) 0,590 

Tumour size > 50 mm    0,190 2.16 (1.35-3.44) 0,001 2.03 (1.35-3.03) <0.001 1.66 (0.74-3.72) 0,210 

HCC multinodularity 1.43 (0.82-2.48) 0,470 1.34 (0.79-2.27) 0,270 1.38 (0.87-2.18) 0,160 1.5 (0.59-3.76) 0,380 

AFP > 200 ng/mL 1.39 (0.72-2.69) 0,320 1.89 (1.10-3.24) 0,020 1.43 (0.88-2.34) 0,140 0.56 (0.16-1.89) 0,350 

Satellite nodules  2.20 (1.23-3.92) 0,007 2.3 (1.42-3.71) <0.001 2.2 (1.43-3.38) <0.001 1.98 (0.72-5.38) 0,180 

Recurrence: extra-
hepatic vs. hepatic 
multifocal vs. hepatic 
uninodular 

1.49 (1.01-2.20) 0,040 1.38 (1.00-1.91) 0,040 1.27 (0.95-1.68) 0,090 0.93 (0.50-1.71) 0,816 

Cirrhosis 3.29 (1.64-6.63) <0.001 1.34 (0.81-2.24) 0,250 1.72 (1.10-2.68) 0,010 3.33 (1.37-8.08) 0,007 

Vascular emboli 1.94 (1.11-3.39) 0,010 2.7 (1.68-4.33) <0.001 1.95 (1.29-2.94) 0,001 0.59 (0.20-1.73) 0,330 

Microscopic portal 
invasion 0.68 (0.30-1.53) 0,360 1.19 (0.65-2.18) 0,560 1.16 (0.68-1.97) 0,570 1.05 (0.35-3.10) 0,920 

CD133 T_up_HL 1.52 (0.82-2.81) 0,180 1.14 (0.65-2.00) 0,620 1.35 (0.84-2.14) 0,200 2.02 (0.87-4.71) 0,10 

CK19 T_up_HL 1.32 (0.69-2.53) 0,390 1.42 (0.83-2.43) 0,190 1.4 (0.87-2.25) 0,150 1.33 (0.49-3.56) 0,570 

EpCAM T_up_HL 1.21 (0.68-2.14) 0,500 1.16 (0.71-1.90) 0,540 1.13 (0.74-1.72) 0,550 1.03 (0.45-2.32) 0,934 

 Oct4 T_up_HL 0.4 (0.14-1.12) 0,080 1.17 (0.62-2.18) 0,610 1.2 (0.70-2.07) 0,490 1.3 (0.44-3.83) 0,620 

Oct4 NT_up_HL 1.2 (0.49-3.23) 0,620 1.15 (0.52-2.53) 0,720 1.13 (0.56-2.26) 0,720 1.06 (0.24-4.55) 0,930 

Oct4 T_up_NT 0.88 (0.47-1.64) 0,690 1.41 (0.83-2.37) 0,190 1.28 (0.83-1.99) 0,250 1.05 (0.46-2.39) 0,890 

 Nanog T_up_HL 0.84 (0.37-1.87) 0,670 1.04 (0.54-1.99) 0,880 1.31 (0.76-2.26) 0,310 2.68 (1.00-7.19) 0,050 

 Nanog NT_up_HL 1.06 (0.51-2.17) 0,860 1.05 (0.57-1.90) 0,870 0.99 (0.59-1.66) 0,996 0.86 (0.31-2.32) 0,760 

 Nanog T_up_NT 1.22 (0.65-2.27) 0,520 1.18 (0.71-1.97) 0,500 1.29 (0.83-2.00) 0,240 1.67 (0.72-3.83) 0,220 

Sox2 T_up_HL 1.66 (0.89-3.07) 0,100 1.24 (0.70-2.16) 0,450 1.12 (0.68-1.84) 0,640 0.86 (0.29-2.52) 0,790 

Sox2 NT_up_HL 1.15 (0.35-3.75) 0,810 1.13 (0.41-3.14) 0,801 1.5 (0.65-3.46) 0,340 3.84 (0.85-17.23) 0,070 

Sox2 T_up_NT 1.2 (0.61-2.37) 0,590 0.77 (0.46-1.30) 0,340 0.68 (0.43-1.06) 0,090 0.48 (0.20-1.13) 0,090 

Table 3. Univariate analysis regarding the prognosis of each molecular and 
clinicopathological parameter on patient outcome. 
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Multivariate analysis of survivals regarding variables vs. 
rest HR (95% CI) p 

Overall survival 
  GNS561 target receptor T_up_HL 

Satellite nodules  1.87 (0.89-3.92) 0,090 
Recurrence: extra-hepatic vs. hepatic multifocal vs. 

hepatic uninodular 1.95 (0.61-6.19) 0,250 

Cirrhosis 2.98 (0.86-10.33) 0,080 
Vascular emboli 1.87 (0.89-3.92) 0,090 

TTR 

  GNS561 target receptor T_up_HL 

Tumour size > 50 mm  1.94 (1.28-2.943) 0,001 
Satellite nodules  1.55 (1.02-2.35) 0,030 

Cirrhosis 1.74 (1.15-2.65) 0,008 

Vascular emboli 1.49 (0.98-2.27) 0,060 

Early recurrence-free survival (< 24 mo) 
  GNS561 target receptor T_up_HL 

Tumour size > 50 mm  2.01 (1.25-3.23) 0,003 
AFP > 200 ng/mL 1.74 (1.08-2.82) 0,020 
Satellite nodules  1.67 (1.04-2.71) 0,030 

Recurrence: extra-hepatic vs. hepatic multifocal vs. 
hepatic uninodular 1.30 (0.78-2.17) 0,290 

Vascular emboli 1.56 (0.96-2.53) 0,060 
PFS 

  GNS561 target receptor T_up_HL 

Tumour size > 50 mm  1.94 (1.28-2.94) 0,002 
Satellite nodules  1.55 (1.02-2.35) 0,030 

Cirrhosis 1.74 (1.15-2.65) 0,008 
Vascular emboli 1.49 (0.98-2.27) 0,060 

late TTR 

  GNS561 target receptor NT_up_HL 

Cirrhosis 1.55 (0.61-3.94) 0,350 
 Nanog T_up_HL 2.55 (1.04-6.20) 0,030 

Table 4. Multivariate analysis regarding the combined prognosis of SLCt overexpression with 
each clinicopathological factor on patient outcome. 
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Figure 10. Kaplan Meier curves regarding A. Impact of SLCt overexpression in tumours (T) 
compared to healthy liver (HL) tissue on patients overall survival. Log rank test Chi2=5.192 
p=0.023. B. Impact of SLCt overexpression in tumours (T) compared to healthy liver (HL) tissue 
on early recurrence. Log rank test Chi2=7.288; p=0.007. C. Prognosis of SLCt overexpression in 
non-tumour (NT) liver tissue compared to healthy liver (HL) tissue on late recurrence. Log rank 
test Chi2=3.787; p=0.0517. 
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Discusion 

HCC is refractory to most conventional chemotherapies and only the tyrosine kinase inhibitor 

(TKI) Sorafenib has shown a significant benefit in the treatment of HCC patients with non-

resectable HCC. One of the reasons for the high mortality rate is the existence of a small 

population of cancer stem cells with high tumourigenic features. CSCs are resistant to 

therapies because, like normal stem cells, they have put in place defence mechanisms 

endowing them with genomic stability and detoxification mechanisms in order to resist 

stressful conditions. 

GNS561 is small molecule belonging to the family of quinoline derivatives. Another member of 

this family is the well known chloroquine, used in clinic for the treatment of malaria and in 

research thanks to its capacity to inhibit autophagy. 

The antitumoural effect of GNS561 on HCC bulk cells and on cancer stem cells can be both 

explained by its capacity to inhibit autophagy as well as its action on the membrane 

transporter SLCt. 

Autophagy is a very important mechanism with a dual role in cancer. In the precancerous 

stage, autophagy is thought to inhibit tumour initiation. In the advanced stages, autophagy has 

a pro-tumour activity by favouring the survival of cancer cells in stressful conditions such as 

hypoxia and low-nutriment. In the cancer stem cell population, autophagy is particularly 

important since these cells are those that have the highest genetic stability and are supposed 

to resist in the toughest conditions. Studies showed that inhibition of autophagy depletes the 

cancer stem cell pool. It is possible that in our case, inhibition of autophagy by GNS561 render 

cancer stem cells more vulnerable to the cytotoxic effect of the molecule. Moreover, inhibition 

of autophagy impacts also on the plasticity of these cells and impairs the biological features 

related to cell stemness. Therefore it is possible that GNS561 blocks cancer stem cells to act as 

stem cells by favouring their behaviour rather as cancer bulk cells. 

Secondly, the solute transported by the SLC was shown to be involved in cellular stemness 

features. Inhibition of the SLCt leads to low levels of the solute and specific cellular stemness 

mechanisms will be impaired. However, once the molecule GNS561 is withdrawn, the 

intracellular concentration of the solute is restored and thus conditions become favourable for 

the development of the cancer stem cells population that has been shown in the case of breast 

cancer to derive from the bulk cell population thanks to their remarkable plasticity. 

Besides the direct molecular interaction between the small molecule GNS561 and the SLCt 

transporter, we showed that after treatment, GNS561 diminisHes the SLCt mRNA level in a 
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time dependent manner. It should be noted that the decrease is remarkably rapid, as after 4 

hours of treatment the pool of SLCt mRNA decreased by 40%. This rapid decrease suggests 

that it is rather the consequence of SLCt mRNA instability than the transcription rate of the 

SLCt coding gene. 

Furthermore, the cohort study results clearly showed that the mRNA overexpression of this 

transporter correlates with overexpression of stemness factors Oct4 and Sox2. Several studies 

demonstrated that cancer stem cells have tumour initiating properties and can be responsible 

both for initiation of the primary tumour and tumour relapse. In our case, we found indeed 

that overexpression of SLCt in the tumours was correlated with relapse post-surgery while 

overexpression in the adjacent liver parenchyma correlates with late recurrence, linked to the 

capacity of the liver to reform tumours. Therefore, this study also identifies SLCt as a putative 

prognostic factor for early recurrence and potentially a predictive factor for primary HCC 

initiation. Validation cohorts and prospective assessments are needed to define high SLCt as a 

potential biomarker. 

In conclusion, our results show that in comparison to Sorafenib, the gold standard treatment 

for advanced HCC, GNS561 has a lower EC50 and a higher antitumour activity in vitro and it is 

more efficient to kill the immature sub-population of HCC cancer cell lines, considered as 

tumour initiating cells. Together with its high hepatotropism and the frequent overexpression 

of its target, GNS561 represents a promising new therapeutic agent for HCC therapy. 
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Materials and Methods  

Cell culture 

Hep3B and Focus cells were maintained in EMEM medium (ATCC) supplemented with 10% 

heat-decomplemented fetal calf serum (FCS), 100U/mL penicillin, 100μg/mL streptomycin. 

HuH7 cells were maintained in DMEM medium supplemented with 10% FCS, 100U/mL 

penicillin, 100μg/mL streptomycin, 2mM GlutaMAX (Invitrogen), and 1mM Sodium Pyruvate. 

Cells were kept in 5% CO2, at 37°C in an atmosphere saturated in H2O. 

Cell viability assay 

Hep3B and Huh7. Cells were seeded in 96 well plated at 12 000 cells/well. GNS561, Sorafenib 

or vehicle (H2O for GNS561 and DMSO for Sorafenib) were added at appropriate 

concentrations 24 hours later. At the indicated time points cell viability was assayed using a 

standard MTS assay (Promega). EC50 was calculated as the dose needed to eliminate half of 

the cell population. 

Sphere assay 

Total cell population was seeded in sphere medium (complete cell culture medium without 

FCS and supplemented with B27 (Life Technologies), 20ng/mL EGF (R&D Systems), 20ng/mL 

bFGF (StemCell Technologies) and 4μg/mL heparin) and distributed in ultra low adherence cell 

culture plates (Corning). Spheres were harvested 96h later. Spheres were dissociated by 

trypsination and seeded for cell viability assays. 

Cytotoxic activity on cancer cells cultured in sphere conditions 

Hep3B cells (pre-treated or not) were seeded in sphere conditions as described above. At the 

time of seeding, GNS561, Sorafenib or vehicle (H2O for GNS561 and DMSO for Sorafenib) were 

added to the media. Spheres were observed 96h later to assess the effect of the treatment. 

Expression of GNS561 target gene in HCC liver biopsies 

The effect of GNS561 treatment was also studied by evaluating the mRNA expression of a 

specific SLC transporter, previously identified as the molecular target of GNS561. The 

expression of this SLC transporter was measured by RT-qPCR at several time points post-

treatment and for three different GNS561 concentrations. The expression of the target SCLt 

was investigated by RT-qPCR in liver biopsies coming from patients with (n=180) and without 

HCC (n=10). In the population of HCC patients, 21% were HBV positive, 28% were HCV, 36% 

were reported as abusive alcohol consumers, 17% were diagnosed with NASH while for 10% of 

patients the aetiology of the disease remained unknown. Correlation studies were performed 
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regarding associations between the overexpression of the target SLC transporter, 

clinicopathological features and expression of stemness markers. 

RNA extraction 

Nucleic acids were extracted with Extract-All (Eurobio) following manufacturer’s instructions 

and precipitated with isopropanol. The RNA pellet was washed two times with ethanol 95% 

and 70% and then dissolved in demineralised water. 

Real time semi-quantitative PCR (RT-qPCR) 

RNA was isolated from liver biopsies as described here above and for the cell lines, cells were 

first washed with PBS, harvested by scrapping or centrifugation (for spheres) and the RNA was 

isolated in the same manner. One μg of total RNA was submitted to retrotranscription (RT) for 

the synthesis of complementary DNA (cDNA) with the SuperScript III kit following providers’ 

instructions (ThermoFisher). The RT was performed with a Biorad Thermocycler. The RT-qPCR 

was performed on the synthesized cDNA corresponding to 10ng RNA equivalent, mixed with 

1X quantifast Qiagen SYBR Green, and 500nM of each primer in 10μL total volume. Reactions 

were performed using LightCycler 480 (Roche). The thermal cycling conditions comprised an 

initial step at 95°C for 5 minutes, followed by 40 cycles at 95°C for 10 seconds, and 60°C for 30 

seconds. Experiments were performed in duplicate. All primers were designed with Primer3 

plus software. GUS and TBP were used as internal control in parallel for each run and for the 

quantification. The - Ct or Pfaffl method was used to analyse the ratio of the target gene in 

the test sample to the calibrator sample, normalized to the expression of the reference gene. 

Normalizing the expression of the target gene to that of the reference gene compensates for 

any difference in the amount in sample tissue. 

Statistical  analysis 

Pearson's chi-squared test was employed to define significance of the correlation between 

expression of the target SLC transporter and clinicopathological features as well as expression 

of stemness markers. Univariate and multivariate survival analysis were performed by the Cox 

proportional hazard ratio (HR) method in order to assess the impact of the SLC transporter 

expression in patient overall survival, progression-free survival as well as early and late 

recurrence. Results of the univariate analysis were confirmed by the Kaplan-Meier method and 

the log rank test. The Mann-Whitney test was employed to test the hypothesis whether two 

populations are identical. The software Medcal, NCSS and Prism GraphPad were used. 
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General Conclusions and Perspectives 
 

The studies presented in this manuscript are focused around cancer stem cells in HCC and the 

development of in vivo and in vitro models of HCC. One of the aims is to contribute to the 

development of more efficient therapies against HCC as well as a more optimal administration. 

*** 

One of the studies showed that truncated p73 isoforms expression in HCC correlates with 

stemness features, previously found to be associated with poor prognosis. In vitro data 

showed that the truncated isoform Np73 itseld drives the expression of transcription factors 

regulating cell stemness (Oct4, Sox2, Nanog). This suggests that specific inhibition of p73 

truncated isoforms could downregulate the expression of these stemness features, and 

possibly render HCC more sensitive to therapy. This hypothesis could be tested in the near 

feature as specific inhibitory strategies against these isoforms have already been developed 

(described in the introduction, Chapter 3.5 ”Drugable actions of the p73 axis”). Since cohort 

studies showed that not only Np73 isoform, but also Ex2p73 and Ex2/3p73 correlate with 

stemness factors, wide spectrum inhibitors against all TAp73 isoforms should be tested in 

parallel to Np73-specific inhibitors. In vitro testing the effect of these inhibitors on the 

stemness characteristics of HCC could also clarify whether Np73 alone drives stemness by 

gain of function properties or whether all TAp73 isoforms have this property. 

Indeed, in the perspective of this work, it should be tested if inhibition of TAp7A could 

represent a therapy per se or rather be considered as a cotherapy that would synergise with 

classical therapeutic interventions (both chemo and radiotherapy). 

Sorafenib has proven to be efficient in HCC treatment but data showed that the main 

drawback of this molecule is that it engenders resistance. It is possible that coupling TAp73 

inhibitors to Sorafenib could reveal to have a better effect than Sorafenib alone. Secondly, HCC 

has proven to be extremely resistant to chemotherapeutic drugs and radiotherapy but 

administration of TAp73 inhibitors coupled to chemotherapeutic drugs or radiotherapy could 

render these tumours more sensititve to these therapies. However, it remains to be discussed 

if the best responders to the therapies are those that overexpress these isoforms, in which 

case, a stratification of patients should be done based on the level of expression of p73 

isoforms in HCC biopsies. 

*** 
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The third study regarding the pre-clinical development of GNS561 against HCC and targeting 

cancer stem cells is a step closer to clinical development than TAp73 inhibitors for which the 

pre-clinical proof of concept still remains to be performed. We showed here the pre-clinical 

development of GNS561 in vitro as well as the pertinence of its molecular target through 

cohort sudies. The in vitro part clearly shows the important anti-tumourigenic effect of 

GNS561 againts cancer stem cells as well as the wide expression of the GNS561 target in 

human HCC and its correlation with the stemness marker CD133 and stemness factors Oct4 

and Sox2, justifying its potential efficacy in at least one third of cases. Several complementary 

in vivo experiments were performed by our collaborators that demonstrate the efficacy of 

GNS561 in pre-clinical rodent models of HCC. They also showed the weak in vitro toxicity of the 

molecule on normal hepatocytes. If Phase 1 clinical trial succeeds, it will remain to be 

determined whether GNS561 could be employed as a monotherapy or in combination with 

Sorafenib or other therapeutic agents. 

*** 

Our participation to IMODI consortium concluded to the development of one HCC PDX model 

IM-LIV-516, derived from a patient HBV spontaneously cured and infected by HCV. The 

histological characterization confirmed that the model retained the characteristics of the initial 

tumour. Pharmacological characterisation of the model remains to be performed, principally 

by studying the anti-tumoural effect after treatment with Sorafenib. This part of the project is 

managed by the bio-pharmaceutical companies of the consortium. 

However, the efficiency of xenografting of HCC fragments subcutaneously in immunodeficient 

mice was very low, as estimated on the thirty tumours that were engrafted. For reasons that 

are not clear to date, while some types of tumours can easily be engrafted in mice such as 

breast or ovary, HCC models have rarely been described in the literature. In order to try to 

enhance the efficiency of engraftment, it could be interested to try to orthotopically implant 

human HCC fragments in immunodeficient mice with humanised livers. This approach would 

provide the implanted tumour a tissue microenviroment closely to what is found in humans 

livers. It is possible that in the case of hepatocellular carcinoma, the tumours 

microenvironment plays a much stronger role in terms of angiogenesis as well as release of 

hepato-specific growing factors. In the case of HCC, the nodules generally develop on the 

background of a chronic liver disease environment which means that the surrounding tissue 

releases specific soluble factors which are not normally found in healthy organs.  
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The two studies that described the successful development of HCC PDX models employed 

human samples coming from patients with southeastern asian origins. In this part of the world, 

the molecular epidemiology of the HCC is different from Europe, and from France in particular. 

While the main risk factor in China is HBV chronic infection, in Europe HBV-associated HCC is 

less frequent due to vaccination campaigns. In our study, HBV chronic infection represented 

10% of cases. However, it should be noted that the only PDX model that was established 

originated from a patients previously infected by HBV.  
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