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Chapter I Introduction 1 Context

"The modern medicine as we know it has reached his end" claimed Dr. Margaret Chan, current Director-General of the World Health Organization (WHO) at the beginning of the year 2015 [START_REF] Chan | Who director-general addresses g7 health ministers meeting on antimicrobial resistance[END_REF]. The antimicrobial crisis has become more real those past years and is dramatically changing the way we fight infections. A new era has come. A post-antimicrobial era, where a simple scratch on your knee could get you killed [START_REF] Walsh | Antibiotic resistance: Cameron warns of medical 'dark ages[END_REF][START_REF] Chan | Antimicrobial resistance in the european union and the world[END_REF][START_REF] Sheth | Antibiotics will be the death of modern medicine -an informed guide to preventing the end game of medicine as we know it![END_REF]. In this context, there is an urgent need for novel, reliable and fast methods for the identification of pathogenic microorganisms that could allow accurate diagnosis.

The antimicrobial crisis

Antimicrobial resistance is not new and, actually, started very soon after the introduction of antibiotics. Only few years after the introduction of streptomycin, chloramphenicol, tetracycline and the sulfonamides, resistance to those substances appeared, for instance in 1953, during the Shigella dysentry outbreak in Japan [START_REF] Bensted | Dysentery bacilli-shigella; a brief historical review[END_REF]. Widespread and misguided use are first responsible for the acceleration of antibioticresistant microorganisms evolution [START_REF] Paddock | The antibiotics crisis: How did we get here and where do we go next[END_REF][START_REF] Rantz | Consequences of the widespread use of antibiotics[END_REF]. Some experts still claim that overprescribing antibiotics is more a social and behavioral issue than it is a medical problem [START_REF] Skerrett | Doctors prescribe way too many antibiotics[END_REF]. Incidentally, as illustrated on fig. I.1, France appears in the top countries in terms of antibiotics consumption and hosts a great percentage of Penicillin-nonsusceptible Staphylococcus pneumoniae. A regression line was fitted with 95% confidence bands [START_REF] Albrich | Antibiotic Selection Pressure and Resistance in Streptococcus pneumoniae and Streptococcus pyogenes[END_REF].

Nonetheless, prescription drugs are definitely not the only source of selective pressure on bacteria. Antibiotics given to animals, not only for cure but also as prevention routine [START_REF] Economou | Agriculture and food animals as a source of antimicrobial-resistant bacteria[END_REF], the bad medication disposal and other daily used antimicrobial products such as handsoap that go in wastewater are also responsible for this "ecolution in real time", as the British Society for Imunology calls it [START_REF] Rosenblatt-Farrell | The landscape of antibiotic resistance[END_REF]. Thus, today around 60% of the total antimicrobial production of the United States is used in livestock production [START_REF] Fair | Antibiotics and bacterial resistance in the 21st century[END_REF] and the genetically modified crops industry also starts to be a cause of concern [START_REF] Gay | Antibiotic resistance markers in genetically modified plants: a risk to human health?[END_REF].

The apparition of Multiple Drug Resistance (MDR) bacteria, also called "superbugs" that resist even last-line treatments combined with the massive decline in the development of new antibiotics have made the antimicrobial crisis real [START_REF] Pop-Vicas | The rising influx of multidrugresistant gram-negative bacilli into a tertiary care hospital[END_REF]. Already 480 000 people develop MDR tuberculosis a year and fight against HIV and malaria has become more complicated [START_REF] Who | Antimicrobial resistance -fact sheet[END_REF]. Since the discovery of penicillin in 1929, indeed, thirteen classes of antibiotics have been invented and during the peak of development, up to 20 new drugs a decade were coming out. But in the last ten years, only six new drugs have been discovered and only two new drugs may be currently under development [START_REF] Morel | Stoking the antibiotic pipeline[END_REF].

Today, the crisis has reached a critical step since the discovery in 2009 [START_REF] Yong | Characterization of a new metallo-beta-lactamase gene, blandm-1, and a novel erythromycin esterase gene carried on a unique genetic structure in klebsiella pneumoniae sequence type 14 from india[END_REF] of a new superbug that can resist to practically all antibiotics, even the most powerful ones (last-line drugs carbapenems included) [START_REF] Nordqvist | Extremely resistant superbug is spreading internationally[END_REF]. The NDM-1 enzyme, responsible for this resistance has been mostly found in Escherichia coli and Klebsiella pneumoniae. What is most worryingly is that the gene coding for this enzyme is present on plasmids which means that it can be easily copied and transferred 1 Context between bacteria. "This is potentially the end" said Professor Tim Walsh of UK's Cardiff University. Indeed, after antibiotics, transplant surgery becomes virtually impossible, removing a burst appendix becomes a dangerous operation once again, old people become again the victim of pneumonia, gonorrhea becomes hard to treat and tuberculosis becomes progressively incurable [START_REF] Boseley | Are you ready for a world without antibiotics?[END_REF].

World Health Organization recommendations

The WHO supports countries and help them strengthen their health and surveillance system. It is currently working closely with the Food and Agriculture Organization of the United Nations and the World Organization for Animal Health so as to promote best practices for optimal use of antibiotics in both humans and animals [START_REF] Who | Who global strategy for containment of antimicrobial resistance[END_REF].

In this context, the WHO strongly recommends coordinated action so as to minimize the emergence and spread of antimicrobial resistance. It also claims that greater innovation and investment must be made in research and development of new antimicrobial medicines and diagnostics tools. In this way, all countries need national action plans on antimicrobial resistance [START_REF] Who | Who global strategy for containment of antimicrobial resistance[END_REF][START_REF] Wasington | National action plan for combating antibiotic-resistant bacteria[END_REF]. Ideal diagnostic method would specify WHO "ASSURED" (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free and Deliverable) criteria and also would provide susceptibility and etiological information [START_REF] O'neill | Rapid diagnostics: stopping unnecessary use of antibiotics -the review on antimicrobial resistance[END_REF][START_REF] Okeke | Diagnostics as essential tools for containing antibacterial resistance[END_REF].

Ph.D. scope

During my Ph. D. thesis I had the opportunity to focus my work on a novel technique for microbial diagnosis that fits well within the WHO's recommendations scope. The method, called Elastic Light Scattering (ELS), combines light scattering measurements on growing microorganisms such as bacteria directly on their culture plate, with machine learning algorithms able to learn to discriminate. ELS method is thus able to provide discrimination and identification results between bacterial genus, species and even strains and has been proven to be effective in numerous domain such as agri-food industry or clinical diagnosis. However, until now, practical applications examples mainly concerned the agri-food domain. The main reason why clinical diagnosis has been neglected is that, it requires a drastic modification of the instrumentation so as to handle clinical samples. The ELS method works directly on microorganisms growing on their culture plate (Petri plates) indeed, and, the majority of culture media used in clinical diagnosis are opaque, contrary to other fields, which make ELS unable to acquire light scattered through such samples.

A first objective of my Ph.D. work was to adapt, develop and optimize the technique so as to make it suitable for clinical diagnosis applications. Enlarging
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the ELS application domain included many different tasks from optical and instrumentation design to the implementation of machine learning algorithms combined with data processing and analysis.

Reported performances of ELS in terms of specificity are very promising and identification down to the strain level has been demonstrated. To explain these convincing results, it is conventionally argued that multiple-angle scattering measurements lead to a unique signature of the microorganism's phenotype, whereas a simple microscopic image gives non specific information.

A general drawback of using machine learning algorithms is that, like all techniques based on active learning (artificial intelligence), it suffers from the black box aspect in the sense that we cannot easily explain why the method works well. Since active learning is precisely able to learn to make discrimination between data when human eyes cannot do so, this has the disadvantage of making the end-users's acceptation and investors' confidence difficult to gain, which thus may slow the transfer of ELS to industry.

A second purpose of my Ph.D. work was to go further into the understanding of the technique and achieved results so as to confirm the above mentioned statement. I, thus, first conducted a multi-spectral analysis in an attempt to demonstrate the interest and added-value of scattering patterns acquisition with coherent lighting in comparison with incoherent observation with a microscope. Then, I tried to model the interaction between light and bacteria arrangements. To this end, I used the most realistic bacterial arrangement model, and I compared the simulations to experimental acquisitions. The objective was to explain the physical phenomenon at the origin of the scattering patterns and also the differences observed between different microorganisms.

Before I go into the substance of my Ph.D. work, and in order to better understand the context of microbial diagnosis, I will describe, in the next section, the current reference methods for fast microbial identification. This will help better contextualize the ELS method as a tool for clinical diagnosis.

Reference methods for fast identification of pathogens

"The continued rise in resistance by 2050 would lead to 10 million people dying per year and a reduction of 2% to 3.5% in gross domestic product," according to the final report of Review on Antimicrobial Resistance (AMR) [START_REF] O'neill | Tackling drug-resistant infections globally: final report and recommandations -the review on antimicrobial resistance[END_REF]. "One of the important measures to tackle this problem is fast detection bacterial antibiotic susceptibility for opportunely selecting proper antibiotic treatment" [START_REF] Liu | Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced raman spectroscopic biomarkers[END_REF]. Since Anton van Leeuwenhoek observed his first bacteria and other microorganisms in 1676 with simple lenses [START_REF] Egerton | A history of the ecological sciences, part 19: Leeuwenhoek's microscopic natural history[END_REF], classical microbial identification was based on microscopy and culturing on solid media. Recent advances in microbial diagnosis over the last decades have given birth to a wide range of methods to detect, identify and differentiate microorganisms. The perfect diagnostic method should be specific, sensitive, rapid, cost-effective and not labour intensive and should provide data that are easy to interpret with a high-throughput [START_REF] Sousa | A prospect of current microbial diagnosis methods[END_REF]. Moreover it should be able to give details about the microorganisms virulence and susceptibilities as well. This is indeed not only important for the patients therapy but also for the surveillance of pathogens spreading. Unfortunately, no such diagnostic test exists today, available methods all having proper advantages and drawbacks. These methods are mainly classified into three groups, whether they are based on biochemical assays, genomic analysis or chemical composition analysis. This section is aimed at giving a detailed description of each of them as well as a clear overview of the current traditional identification instruments and techniques. According to the bacterial taxonomy presented on fig. I.3, the identification can be performed at different levels. Usually, the species-level is sufficient to treat the patient but in some cases such as epidemiological study for instance, an identification down to the strain-level can be done. 

Bacterial taxonomy and microbial diagnosis process

Identification from biochemical tests

Bacteria identification based on their phenotype is a classic approach. Phenotypic characteristics are expressed properties of the organism like microscopic and macroscopic morphology, environmental requirement for growth, resistance or susceptibility to chemicals reagents or metabolic capabilities. Those criteria can be measured without reference to the genome and are based on observable metabolic or physical properties. Methods using biochemical assays are today's gold standards for the identification of bacterial pathogens. They basically consist of a combination of tests that investigate the ability of the bacteria to grow or survive in contact with certain inhibitors as well as its enzymatic capabilities (detection of one particular enzyme as well as a complete metabolic pathway) [START_REF] López-Campos | Detection, Identification, and Analysis of Foodborne Pathogens[END_REF]28,[START_REF] Forbes | [END_REF]. [31]. The card is automatically filled by microfluidic channels. The bacterial suspension to be identified dissolve embedded dehydrated reagents. Optical density measurements are made in transmission through each well every 15min during incubation.

Launched in 1979 by BioMérieux, the API©gallery presented fig.I.4 revolutionized the microbiology as it allowed the identification of a wide range of microorganisms (around 800 bacteria and yeasts). The modern version consists now of a fully automated system combining reagents embedded in a microfluidic card with an advanced colorimetry reading device. Tests cards contain 64 wells read every 15 minutes at different wavelengths. Each well gives a phenotypic characteristic so that the whole card forms a phenotypic fingerprint of a particular pathogen species. The high number of wells per card combined with the reading device and the extended available database provide accurate results in reduced time [31].

130 years after Julius Richard Petri invented the Petri plate in 1887 [START_REF] Sumbali | Principles of Microbiolgy[END_REF] culturebased methods are still relevant in clinical practice because of their ability to detect infections with selectivity, sensitivity and robustness using simple and low-cost equipement. Main limitations are the difficulties in growing specific pathogens (fastidious species such as Campylobacter or Neisseria gonorrhoeae for example) or clinical samples transported or stored in particular conditions, the time to results which represents several days due to the culture step and finally the laboriousness. Efforts have been made to make growth-based methods less labour-intensive and devices such as the BacT/Alert®combined with the Vitek2®(bioMérieux), the BD BacTec™coupled with the BD Phoenix™(Becton Dickinson) or the Mi-croscan®WalkAway®(Siemens Healthcare Diagnostics) provide solutions for characterization tasks as well as fully automated laboratories workflow [START_REF] Lazcka | Pathogen detection: A perspective of traditional methods and biosensors[END_REF][START_REF] Weile | Current applications and future trends of molecular diagnostics in clinical bacteriology[END_REF][START_REF]Rapid clinical bacteriology and its future impact[END_REF]. However those improvements do not reduce the time to result, this is why faster methods such as genomic ones have been investigated.

Identification from genomic analysis

Genomic analysis as microorganims identification involves sequencing their deoxyribonucleid acid (DNA). It combines high sensitivity (down to a few nucleic acids) with high specificity. 16S ribosomal DNA sequence analysis is a standard technique used for microorganisms identification [START_REF] Janda | 16s rrna gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls[END_REF] for example. Those methods do not require any growth step and thus provide results in a very reduced time. However it first requires a purification step to isolate the DNA molecules of interest from their environment and then an amplification step during which DNA molecules will be replicated many times. The identification process relies on an amplification by polymerase chain reaction (PCR developed in the early 1980s) which is specific [START_REF] Raoult | What does the future hold for clinical microbiology?[END_REF]. That is to say, we are going to try to replicate DNA molecules from our sample with an a priori on the bacteria we are searching for.

The PCR is an in vitro molecular replication technique which can copy in few hours a million times DNA sequences from complex and low concentrated sample. The process relies on thermal cycling, that is to say the repetition of heating and cooling phases. Two oligonucleotides (small DNA strand of about twenty nucleotides) called "primers" are used to detect a specific region in DNA strands which will be amplified. Those primers are custom made to be specific of a bacterial strain (fig.I.5).
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Basically, the reagents needed are:

• DNA sample to be amplified • custom made primers • Taq polymerase : a thermostable DNA polymerase (an enzyme that synthesizes DNA molecules from deoxyribonculeotides)

• a large amount of deoxynucleotides from which the DNA polymerase builds new DNA strands

• a buffer solution mixed with some other reagents so as to provide a suitable chemical environment for the reaction to be done.

All those reagents (volume of around 100µL) are mixed in a small tube which is placed in a thermal cycler that will repeat about thirty times heating and cooling cycles at specific temperatures required for the different reactions stages. Usually there are three steps which correspond to three different temperatures. The temperatures used depend on many parameters, among them principally the type of enzyme that replicates DNA strands and the primers. As said before, the specificity comes from the primers. Thus, for an identification task, the operator will chose several primers which correspond to the bacteria he thinks may have contaminated the sample and will launch as many PCR in separate tubes as the number of different primers. The identification then involves detecting in which tube the amplification has been effective [START_REF] Emerson | Identifying and characterizing bacteria in an era of genomics and proteomics[END_REF][START_REF] Enzoklop | Schematic drawing of a complete PCR cycle[END_REF]. To detect amplification, one common method is to use DNA probes labeled with a fluorescent reporter. Those DNA probes are sequence specific and are designed so as to permit detection only after hybridization with its complementary sequence. Thus the identification relies on following, usually in real time (real-time PCR) [START_REF] Tille | [END_REF], the fluorescence and waiting for a tube to exceed a certain threshold (fig.I.6). PCR has brought great improvements to microbial diagnosis with the reduction of the time to results (6h-12h) allowed by the suppression of the culture step. However the need for specific-species primers implies the prediction of the infection [START_REF] Weile | Current applications and future trends of molecular diagnostics in clinical bacteriology[END_REF][START_REF] Raoult | What does the future hold for clinical microbiology?[END_REF][START_REF] Rogers | Studying bacterial infections through culture-independent approaches[END_REF]. This added to the drawbacks of dedicated infrastructures, sample preparation steps and cost make it wise to investigate non-molecular techniques that would still use culture plate but would require less biomass (biological material) so as to reduce the time dedicated to growth.

Identification from chemical composition

Since few years, matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a promising tool for microbial diagnosis and has already replaced conventional methods in some laboratories [START_REF] Fox | Mass spectrometry for species or strain identification after culture or without culture: Past, present, and future[END_REF]. Microbiologists readily have reported its use for a wide range of applications as well as microbial identification, where it provides comparable results to reference methods, epidemiological studies, detection of water-and food-borne pathogens just as well as detection of biological warfare agents. The main limitation is the same as methods that require a database and reside in the impossibility to identify new isolates whose peptide mass fingerprints do not belongs to the database [START_REF] Rogers | Studying bacterial infections through culture-independent approaches[END_REF][START_REF] Braga | Bacterial identification: From the agar plate to the mass spectrometer[END_REF].

Mass spectrometry methods involve separating and identifying molecules from their mass and electrical charge. There exist several different techniques but they all follow those stages:

• sample preparation

• molecules ionization

• ions separation based on their mass to charge ratio I Introduction

• signal detection and amplification

• data analysis and sample identification. MALDI-TOF MS is a mass spectrometry technique that uses a matrix assisted laser ionization source coupled with a time of flight analyzer. The molecules separation is soft and allows the ionization of great sized molecules without damage. Thus it is well adapted to fragile bio-molecules such as peptides, proteins or oligonucleotides. The sample is prepared by mixing with an organic compound solution called matrix. As described in fig.I.7 a droplet of this mixture is targeted with a laser so as to be ionized. The resulting ions are then detected and the time they take to reach the detector, which depends on their mass, is measured. The lighter the ions, the faster they reach the detector and inversely, the heavier, the more time they take to reach the detector. Once ions are detected, the signal is amplified and data are analyzed and synthesized as a spectrum. [START_REF] Skerrett | Doctors prescribe way too many antibiotics[END_REF] shows more precisely the desorption-ionization process. An UV-laser (near 337 nm wavelength) is focused on the sample. The matrix, which is energy-absorbent, protects molecules of interest from damaging. It crystallizes with the analyte on drying and thus entraps the molecules. The laser energy absorption induces two phenomena : first the matrix is vaporized and releases peptides (desorption), then, it transfers its protons to the analyte which became ionized. Ions may be positively or negatively charged. Proteins and peptides have protons acceptors and thus became cations (positively charged ions). Conversely, oligonucleotides have protons donors and became anions (negatively charged ions). Time of flight mass spectrometry (TOF MS) techniques separate ionized substance depending on their electrical charge and their molecular weight. The separation is operated by a cathode/anode couple : ionized molecules are directed toward the electrode inversely charged. Then they are accelerated by an electrical field and fly through an empty chamber where the time they take to reach the detector is measured. As said before they are separated depending on their mass to electrical charge ratio. The analyzed data are presented as a spectrum where each peak is associated with a molecule (fig.I.9). The vertical axis represents relative intensity and the horizontal axis indicates the molecule mass in Daltons (Da). The unknown microorganism identification is then achieved by interrogating the database.

MALDI-TOF MS is a competitive method thanks to its high throughput sample analysis and the low amount of consumables needed. It also provides identification results equivalent to standards methods in a faster way. However its sensitivity is still limited to 10 4 -10 5 cells that is quite always not present in clinical samples. Another limitation comes from the technique itself : because identification is based on ribosomal protein spectra, species that are too close in their ribosomal protein sequences will not be differenciated. This is the case with Escherichia coli and Streptococcus pneumoniae for example [START_REF] Braga | Bacterial identification: From the agar plate to the mass spectrometer[END_REF][START_REF] Ghyselinck | Evaluation of maldi-tof ms as a tool for high-throughput dereplication[END_REF]. Finally, the high initial investment cost needed for the equipment make this technique not affordable for most of laboratories. Thus there is place for other techniques that would require less sample preparation. 

Light scattering at the core of tomorrow phenotypic methods

Optical techniques still under development, such as Raman spectroscopy or ELS, have gained interest since few years. Although they have not replaced conventional identification methods yet, they are considered as promising tools for clinical diagnosis. I will briefly introduce them in the followings.

Inelastic light scattering : Raman spectroscopy

Raman spectroscopy based on inelastic light scattering potentially have considerable advantages over other techniques since no sample preparation is required. This modern technique, illustrated fig. I.10, is gaining progressively more and more importance as it offers fast analysis at low cost and can extract a wide content of information on both the structure of biomolecules inside microorganisms and the chemical composition [START_REF] Ashton | Raman spectroscopy : Lighting up the future of microbial identification[END_REF][START_REF] Stöckel | The application of raman spectroscopy for the detection and identification of microorganisms[END_REF].

Raman spectrum obtained after irradiating a sample with a monochromatic wave (laser) usually shows peaks indicating vibrational modes from particular chemical bonds. When probing a bacterial cell, it has been shown that its Raman spectrum represents its fingerprint, as it depends on its biochemical composition, and thus can be used for typing down to the strain [START_REF] Willemse-Erix | Optical fingerprinting in bacterial epidemiology: Raman spectroscopy as a real-time typing method[END_REF][START_REF] Strola | Single bacteria identification by raman spectroscopy[END_REF]. Raman identification has also been proved to be possible on bacterial sample direct on their culture medium [START_REF] Huang | Shining light on the microbial world the application of raman microspectroscopy[END_REF] but because of very weak signal it requires acquisition times up to several minutes which limits its application for high-throughput identification process.

3 Light scattering at the core of tomorrow phenotypic methods 

Elastic light scattering (ELS)

As early as in in 1968 P. J. Wyatt already proved the possibility of identifying microorganisms using light scattering from cells in suspension in their liquid culture [START_REF] Wyatt | Differential light scattering: a physical method for identifying living bacterial cells[END_REF]. Those methods based on elastic light scattering have considerable advantages over above-mentioned techniques since they offer direct on-culture media analysis of microorganisms in a fast, non-invasive and non-destructive way [START_REF] Marcoux | Optical forward-scattering for identification of bacteria within microcolonies[END_REF]. Today there exist two bacterial identification commercial devices based on this technique : one on planktonic cells in liquid culture [START_REF] Dl | Method and apparatus for rapid particle identification utilising scattered light histograms[END_REF] and one directly on colonies growing on culture plates [START_REF] Bae | System automation for a bacterial colony detection and identification instrument via forward scattering[END_REF].

The main reason for using ELS on microorganisms colonies as identification tool starts from the idea that differences in size, shape, biomass distribution (internal cells layout) will generate scattering patterns which can be considered as specific phenotypic fingerprints. Thus the main process of ELS, illustrated fig.I.11, involves:

• growing the unknown microorganism to be identified on a culture plate (few hours),

• acquiring the scattering pattern originated from the interaction between a coherent light beam (laser source for example) and a colony directly on the culture plate (around 100 ms),

• extracting features from the scattering pattern to form a mathematical descriptor (less than 1 s),

• and finally comparing this descriptor to a pre-computed database to give the identification result (less than 1 s).

Since this method is non-destructive, it allows for further testings on the same sample and especially to conduct antibiotics susceptibility testings, which is the next step in an usual microbial diagnosis.

The fig. I.12 briefly situates the ELS method in relation to the current reference method on a time scale basis. It especially shows the positioning of ELS as an early clinical diagnosis tool. Another method I investigated during my Ph.D. is also displayed since it concerns antibiotics susceptibility testings which naturally comes The chap. II is dedicated to the ELS method. More details will be given, including a state of the art as well as an overview of the different existing instruments, the main results achieved so far and my work on the adaptation of the instrument to clinical diagnosis requirements. ELS proposes an early diagnostic while being non destructive so as to allow further testings such as AST. DSA stands for Dynamic Speckle Analysis. This method I developed during my thesis allows an early reading of AST plates and will be detailed in chap. VI.

Thesis plan

This thesis is divided into six chapters including this introduction chapter. As previously mentioned, chap. II is dedicated to the description of the ELS method. Different instruments will be introduced as well as the results achieved so far in the main application fields. To bring some responses, and, especially to get a better understanding of the method itself and the keys beyond its discrimination power, I built a model for the interaction between bacteria and light waves. Thus, after a discussion on the interest and added-value of coherent illumination in comparison with a simple observation with a microscope in chap. III, chap. IV will be focused on the ELS physical modeling. These chapters, not only, could help us to estimate the bio-variability influence on the classification performances but also, justify ELS as a powerful diagnosis tool. Chap. V deals with the whole data process from the image features extraction to the optimization of the machine learning algorithms. Finally, I also tried to extract dynamic phenotypic information by interrogating growing microorganisms with coherent illumination. Despite not being suitable for microorganisms identification, this technique involving dynamic analysis of speckle fields have been successfully employed on anti-microbial susceptibility testings and will be detailed in chap. VI. At last but not least, conclusions as well as perspectives for future work will be discussed in the final chap. VII.

Chapter II

Elastic light scattering for fast identification of pathogens

In this chapter, I will introduce in details the use of ELS as a method for fast identification of microorganisms. First I will detail the method, from the sample on which we work to the data analysis process. I will also show the two different setups used for the acquisition directly on culture plates : one in a transmission geometry through the culture plate and the second which I designed so that it could handle non-transparent growth media. Finally I will detail the different applications investigated and provide the main results achieved so far.

Principle

As described in sec. 3 from chap. I, the ELS method employs a coherent light beam to interrogate microorganisms colonies directly on their culture plates and to record the scattering pattern originated from the interaction between the light and the targeted colony. From now we will only consider the case of bacteria and yeasts identification and we will refer indifferently to bacteria or yeasts unless the precision is made. The sample characteristics, the instrumentation as well as the data processing will be detailed in the followings.

The sample : bacteria growing on culture plates

As they grow on culture plates, bacteria progressively form colonies. A bacterial colony, like presented on fig. II.1, consists of multiple bacterial cells that are orginated all from one mother cell, thus they are all genetically identical and they gather together. Growing in such biofilm shape ensures them stronger defense. Colony morphology charts have been developed to aid microbiologists in differentiating bacteria from an observation with a microscope or simply naked eyes. They define the global form fig.II.2, the elevation profile fig. II.3 as well as the colony margin fig. II.4. A whole lexicon has also been set to precisely describe the surface state (it can be smooth, rough, glistening etc.), the opacity (from transparent to opaque) and also their color. Finally there are also some other criteria such as distinctive odor or diffusible pigments that stain the culture medium [58,[START_REF] Prescott | Klein's Microbiology[END_REF]. An example illustrating the wide diversity of colonies' aspects is provided fig. II.5. This detailed description of the colonies morphology has also a great importance for us because ELS methods are very sensitive to those characteristics.

The substrate on which relies our sample is the classical centenarian Petri dish which consists of a circular plastic plate (90 mm diameter) filled with a solid growth medium. Typically this growth medium contains agar mixed with nutrients. The composition is suited for bacterial growth but can also employ 1 Principle many other formulations particularities to produce selective, differential or enriched media. Selective media contains chemical compounds intended to only letting grow a certain type of organisms while inhibiting the growth of others. For example : nutrient media supplemented with the antibiotic penicillin are widely used to select for the growth of Gram negative bacteria. Differential media are also supplemented with particular chemical reagents but so as to differentiate organisms. For example, the CHROMagar™ Orientation (BD) fig. II.6 is used for the isolation and differentiation of urinary tract pathogens (UTI). Finally, enriched media are supplemented with highly nutritious compounds such as blood or yeast extract to facilitate the growth of fastidious organisms such as streptococci [28] 

Instruments

I will detail in the followings the instruments used for performing ELS. I will begin with two instruments employed for the acquisition of forward-scattering patterns directly through the sample. They are told to be in a transmission geometry and are only compatible with transparent culture media. Then, I will introduce the instrument I designed for the acquisition of backward-scattering patterns coming from the light reflected on the sample when using opaque culture media.

Elastic light forward-scattering

The bacterial rapid detection using optical elastic scattering (BARDOT) system developed at the Purdue University is the first commercial system based on this technology and capable of recording scattering patterns of millimeter-sized bacterial colonies directly on their culture plate. This work was first initiated in 2001 by A. K. Bhunia, professor in food microbiology and E. D. Hirleman, professor at Purdue's school of mechanical engineering [START_REF] Venere | Purdue creates new low-cost system to detect bacteria[END_REF][START_REF] Nebeker | Identification and characterization of bacteria on surfaces using light scattering[END_REF]. At that time the system consisted of a collimated laser beam used to illuminate a bacterial macrocolony, a screen placed behind the culture plate devoted to the projection of the scattered light and a digital camera to record it [START_REF] Hirleman | System and method for rapid detection and characterization of bacterial colonies using forward light scattering[END_REF][START_REF] Robinson | System and method of organism identification[END_REF]. Now the BARDOT, fig. II.8, encompasses many improvements performed by the team of the Molecular Food Microbiology laboratory of Purdue University and is commercialized by Advanced Bioimaging Systems since 2008. The field of application is the identification of common food-borne pathogenic bacteria such as Listeria, Salmonella, Vibrio, Staphylococcus or Escherichia coli [START_REF] Rajwa | Phenotypic analysis of bacterial colonies using laser light scatter and pattern-recognition techniques[END_REF]. The BARDOT deals with bacterial macrocolonies of at least 1 mm size and thus usually requires an incubation time of around a day.

Meantime, E. Schultz and P. Marcoux from the CEA-LETI (Microtechnologies for biology and healthcare division) started in 2012 to develop a similar system but devoted to early clinical diagnosis [START_REF] Marcoux | Optical forward-scattering for identification of bacteria within microcolonies[END_REF]. The investigated bacterial species are different from the ones studied by Purdue's team and the identification occurs at much earlier time in the bacterial growth. The so-called Microdiff system is thus designed to handle much more little colonies with size ranging between 40 µm and 300 µm so that the identification can be performed after only 6 hours of incubation. The laser beam size used to target the colonies is adjustable so as to match the colonies' sizes. Indeed, depending on the species and other environmental parameters, colonies do

.8: From the very first sketch of forward-scattering system on the left [START_REF] Robinson | System and method of organism identification[END_REF] to the actual BARDOT system on the right [START_REF]Advanced Bioimaging System[END_REF]. On the left the old BARDOT simply consists in a laser source illuminating the sample. A screen is used to catch the forward-scattered pattern transmitted through the plate and a camera is focused on this screen to record the pattern. On the right, the integrated BARDOT commercial system include an incubator and Petri plates holder (40 to 1540 plates capacity). Plates are then automatically scanned to detect the colonies to be probed and forward-scattering patterns are recorded. The integrated software then proceed to the analysis so as to give the identification result.

not have the same size at 6 hours of incubation. To summarize, while the BARDOT system employs a collimated size-fixed laser beam, thus requiring to adjust the incubation time to match this millimeter-fixed-size probe, the Microdiff system uses a size-adjustable laser beam to equal colonies' sizes at a fixed growth time (6 hours). 

Performing elastic light backward-scattering: a novel instrument

A major issue for the transmission geometry is that it does not allow to proceed culture plates filled with opaque medium. This is the case with blood-agar, fig. As shown on fig. II.12, hemoglobin molecules contained in blood are responsible for the light absorption in the visible spectrum [400 nm -800 nm]. Furthermore the presence of numerous micrometer-sized particles (mainly blood cells) inside the growth medium causes too much scattering. This unwanted scattering from the 1 Principle medium ruins the scattering pattern coming from the sample. In this condition, finding a spectral window allowing light transmission without being perturbed, appears not possible as bacterial cells also mainly are micrometer-sized. Therefore there was a need for a novel scheme capable of recording the pattern backwardscattered by the sample still directly on the culture plate. I designed a reflection geometry setup able to collect and record backwardscattering patterns [START_REF] Genuer | System for observing objects[END_REF]. To achieve this task, a classic polarization system has been set using a quarter wave plate and a polarizing beam splitter to isolate the reflection coming from the sample. Basically, as described on fig. II.13, the linear polarization originated from the laser source is transformed in a circular one before reaching the sample. After the reflection on the sample the circular polarization state is inverted and a polarizing beam splitter allows the pattern to be recorded on a CCD sensor. This system has been designed to handle microcolonies (size ranging between 20µm and 300µm) as the Microdiff system was and thus is well suited for early clinical diagnosis applications.

Figure II.13: On the left, a diagram presenting the polarization system using a quarter-wave plate to transform the linear polarization issued from the laser source into a circular polarization before hiting the sample [START_REF] Genuer | System for observing objects[END_REF]. On the right a 3-D drawing of the reflection setup, the microscope objective is conjugated with a CCD sensor.

Other investigations on ELS

Other research groups across the world have studied the generation of scattering patterns from the interaction between a coherent beam and bacterial colonies. For example, U. Minoni et al. have stated the incompatibility of the BARDOT process with an automated clinical analysis laboratory. In 2015 indeed, they proposed to avoid the use of fixed colonies sizes and made a more flexible system able to adjust the illumination beam diameter to a fixed incubation duration and tested this configuration on the most common urinary tracts infections (UTI) pathogens [START_REF] Minoni | On the application of optical forward-scattering to bacterial identification in an automated clinical analysis perspective[END_REF]. This study confirms the choices made for the Microdiff instrument developed at the CEA-Leti.

Since 2010, I. Buzalewicz et al. from the Wroclaw University of Technology also worked on bacteria identification from diffraction patterns registration [START_REF] Suchwalko | Computer-based classification of bacteria species by analysis of their colonies fresnel diffraction patterns[END_REF][START_REF] Suchwalko | Identification of bacteria species by using morphological and textural properties of bacterial colonies diffraction patterns[END_REF]. Their work is focused on the acquisition method [START_REF] Suchwałko | Bacteria identification in an optical system with optimized diffraction pattern registration condition supported by enhanced statistical analysis[END_REF] as well as on the physical modeling of the interaction between light and bacterial colonies [START_REF] Buzalewicz | Degeneration of fraunhofer diffraction on bacterial colonies due to their light focusing properties examined in the digital holographic microscope system[END_REF]. Part of their work will be detailed in chapter IV.

Scattering patterns processing

Once the scattering pattern is recorded, two steps separates us from the identification result. Indeed, raw scattering patterns are not directly compared with the database and rather undergo a translation into a mathematical descriptor. This important step is intended to extract relevant characteristics features from the scattering patterns. Then this mathematical descriptor is compared to the database. This database is a classification model that was pre-computed after training a machine learning algorithm on a large amount of images. Basically it is a numerical model that has been trained on many examples to recognize a sample identity and is theoretically able to predict the identity of an unknown sample.

Features extraction

A common approach in the description of an image defined by a function f is to project it on a basis of functions g i , i ∈ [1, n], n ∈ N. The coefficients c i of this projection are called moments and form a features vector C = (c 1 , ..., c n ) describing the image. Thus we have for a 2-D continuous function f :

c i = f, g i = f (x, y) × g * i (x, y) dxdy , (II.1)
and also :

f = n i=1 c i × g i . (II.2)
The choice of the basis of functions is completely arbitrary and depends on the nature of the images we have. B. Bayraktar from Purdue University classically decided in 2006 to use the Zernike polynomials for this task [START_REF] Bayraktar | Feature extraction from light-scatter patterns of listeria colonies for identification and classification[END_REF]. The same projection 1 Principle method was applied with Microdiff [START_REF] Marcoux | Optical forward-scattering for identification of bacteria within microcolonies[END_REF], first, so as to fairly compare our classification performances to Purdues' ones and second, because the use of Zernike polynomials is still relevant considering the symmetry properties of our scattering patterns.

F. Zernike first presented in 1934 a set of complex orthogonal functions which forms a complete orthogonal basis on the square-integrable on the unit disk (x 2 +y 2 ≤ 1, (x, y) ∈ R 2 ) functions class. The Zernike function with order (p, q), V pq is defined by :

V pq (x, y) = R p q (ρ)exp(iqθ), (x 2 + y 2 ≤ 1) , (II.3)
where p ∈ N, q ∈ Z such that |q| ≤ p, ρ = √ x 2 + y 2 and θ = arctan( y x ). R pq is the radial polynomial defined as:

R p q (ρ) = q-p 2 k=0 (-1) k q -k k q -2k q-p 2 -k ρ q-2k . (II.4)
Now, from the projection of f on this basis we define the Zernike moments Z pq of order p with repetition q as:

Z pq = f (x, y) × V * pq (x, y) dxdy . (II.5)
In the case of a digital image we replace integrals by summations and finally get :

Z pq = x y f (x, y) × V * pq (x, y) .
(II.6) A discussion about the different properties of Zernike moments as well as their advantages and drawbacks will be provided in chapter V. Alternatives methods improving features extraction will also be introduced.

Classification

As said before, using ELS for microbiological identification requires the acquisition of a database to which unknown entries will be compared. Basically, considering an example of a two-bacterial-species discrimination application, it starts with the acquisition of a large amount of scattering patterns for the two species. Then the images descriptors are calculated so that we get a set of data containing inputs/outputs pairs: inputs are the vectors and the corresponding output are their known identity (i.e. bacterial species name). The goal is now to build a model able to correctly associate inputs with their outputs so that, if we test an unknown sample it will efficiently be recognized.

For the same reasons as for choosing Zernike moments, Microdiff employs a similar classification method as the one used in the BARDOT system. Thus we worked with a Support Vector Machine (SVM), from the supervised learning algorithms 1 Principle family, for the classification task. Briefly, if we consider our two-bacterial-species application, a Support Vector Machine is a discriminating classifier defined by a separating hyperplane [78]. As illustrated on fig. II.15, a SVM will find the best separating hyperplane (subspace of one dimension less than its ambient space) that maximizes the margin between the two classes. On this 2-D example, there are two classes, the red squares and the blue circles. Each red square is represented by its input (i.e. its coordinates vector (x 1 , x 2 ) in a 2-D space) and its output (i.e. a red square) and same thing for the blue circles. In 2-D space a separating hyperplane is a subspace of dimension 1, that is to say a line. In our case, inputs are the descriptors (i.e. 120 coefficients vectors) and outputs their identity (i.e. species names). The SVM will therefore find the best separating hyperplane (i.e. a 119-D subspace) that will maximize the margin. The main idea is that, once the learning algorithm has been trained on the database and the separating hyperplane calculated, the identification step simply involves determining on which side of the hyperplane falls the unknown entry. The chapter V will deal with this classification task in depth and will provide improvements as well as outlooks.

Performance evaluation

In order to estimate the classification performances of the predictive model computed by the SVM algorithm, a k-fold cross-validation procedure is classically used. Briefly, it involves partitioning the data set (database composed of descriptors and associated species names) into complementary subsets: one training set used for SVM training and predictive model building, and, the second, called validation set or testing set, used to validate the model. The variability is reduced by averaging k times the prediction error calculuses leading to a more accurate estimation of the model prediction performance.

The reader will find a complete description of the classification process with the methods for evaluating its performance in chapter V.

Main results and applications

This section is dedicated to provide an overview of the main and most recent results achieved with ELS. The applications so far, mainly concern agri-food bacterial identification (Purdue University) and clinical diagnosis (CEA-LETI).

ELS for bacterial identification in agri-food industry

As early as in 2008, the team of professor A. K. Bhunia was able to provide a genus and species level distinction for Listeria, Staphylococcus, Salmonella, Vibrio and Escherichia with an accuracy of 90-99% [START_REF] Banada | Label-free detection of multiple bacterial pathogens using light-scattering sensor[END_REF]. Those bacterial species are common human pathogens. Samples obtained from food (chicken, ground frozen, fresh spinach ...) or experimentally infected animal (mice) were plated on culture plates and incubated 16-48 hours, depending on the species, so that colonies reached a size of around 1.3 mm. An overall sensitivity of 1 cfu/25 g sample in presence of background microflora was reported.

A more recent application, published in 2016, reported on the BARDOT system as an on-plate screening tool for Enterobacteriaceae [START_REF] Singh | Optical scatter patterns facilitate rapid differentiation of enterobacteriaceae on chromagar™ orientation medium[END_REF]. Acquisitions were made on a chromogenic medium (CHROMagar™ Orientation : non-selective differential medium, BD) used for the detection of the majority of pathogens in Enterobacteriaceae. Enterobacteriaceae is the largest family in bacterial taxonomy. It contains many pathogens (food-and water borne, enteric and uropathogens ...) and represents a major public health concern because of its involvment in nosocomial infections and its resistance to certain antibiotics [START_REF] Temkin | Carbapenem-resistant Enterobacteriaceae: Biology, epidemiology, and management, ser[END_REF]. A distinction rate of 90% was obtained between Enterobacteriaceae and non-Enterobacteriaceae which cannot be otherwise differentiated because they produce similar chromogens on CHROMa-gar™ Orientation medium. Detailed results are provided on fig. II.16. A cross-validation was performed to compute sensitivity, specifity, Positive Predictive Value (PPV) and Negative Predictive Value (NPV). The sensitivity is the probability that the classifier produces a true result when used on a scattering pattern from a colony of an Enterobacteriaceae and non-Enterobacteriaceae of the database. The specificity describes the probability that the test produces a true negative result when used on an organism not belonging to the database. The NPV is the probability that a colony does not represent a pathogen of interest when a negative result is returned. Finally, the PPV represents the probability of having positives after a match with the database [START_REF] Singh | Optical scatter patterns facilitate rapid differentiation of enterobacteriaceae on chromagar™ orientation medium[END_REF].

ELS for early clinical diagnosis

The results presented in this section were all obtained with the Microdiff instrument from CEA-LETI. I first will report a Gram testing application which could replace the actual labor intensive protocols for bacterial Gram-typing. Then I will explain the ability of ELS to discriminate bacteria down to the strain-level. Finally I will detail the results obtained on a clinical application for the early screening of S. aureus and methicillin-resistant S. aureus carriers.

Protocol : preparation of bacterial samples

Bacterial and yeasts strains were obtained from Microbilogics® (Kwik-Stik™ containing lyophilized ATCC® strain). Starting from 24h-cultures at 37°C on TSA (Trypcase Soy Agar) or COS (Columbia agar +5% sheep blood), 0.5 McF suspensions (DensiCheck, bioMérieux) were prepared in suspension medium (bioMérieux). These suspensions were then diluted at 1/1000 in suspension medium and finally around 40 µL were plated on TSA or COS culture plates to obtain approximately 100-1000 microcolonies after 6 hours of incubation at 37°C. Incubation time may have been extended to 24 hours for certain application.

Gram test : discriminating Gram+, Gram-and Yeasts

Gram staining is almost always the first step in the identification procedure of an organism. This method of staining developed by H. C. Gram in 1884 is intended to separates most of bacteria into two groups (Gram positive and Gram negative) depending on their cell wall composition [START_REF] Acharya | Gram Staining: Principle, Procedure and Results[END_REF]. Although this staining method, illustrated fig. II.17 usually takes a day, requires many manual operations and poisonous reagents it is still widely systematically used in clinical diagnosis as preliminary step. Cross-validation results displayed as a confusion matrix. On the diagonal are presented the correct classification predictions : 92.7% of Gram-positives were identified as Grampositives, 92.4% for correct classification of Gram-negatives and 96.8% for yeasts. We can also read on the first line that 7.3% of Gram-positives were miss-classified : 3.4% as Gram-negatives and 3.9% as yeasts. It yields to an average global correct classification rate of around 94.7%. Respectively 236, 689 and 981 scattering patterns were acquired for Gram-positives, Gram-negatives and yeasts. 15 strains were incubated 6 hours on TSA. The global correct classification rate is 94.7% ± 0.1% (standard deviation over 10 10-fold cross-validations).

E. coli typing

Usually, bacterial identification for clinical diagnosis is simply performed down to the species level. But for epidemiological studies, for example tracking the origin of an infection or comparing clinical cases, typing down to the strain is required [START_REF] Wattiau | Bacterial typing : an indispensable step in the epidemiological monitoring of food-borne infectious diseases[END_REF]. Since traditional culture-based method described in the chapter I generally stops at the species level, molecular methods (like Whole Genome Sequencing) are preferred.

For assessing its identification power, Microdiff has been employed for the typing of 4 strains of Escherichia coli. 100 scattering patterns per strains were acquired to build the database and an average correct classification rate of 90.0% ± 0.1% has been provided on the following bacterial strains: ATCC® 25922, ATCC® 35421, ATCC® 11775 and ATCC® 8739. To recall the bacterial taxonomy tree presented in chap. I, it involves providing the identification to its most accurate level.

The same experiment has also been used to validate the reflection geometry developed later. Thus, with the same conditions of sample preparation and data processing we obtained an average correct classification rate of 87.0% ± 0.6% on the same 4 E. coli strains [START_REF] Genuer | Optical elastic scattering for early label-free identification of clinical pathogens[END_REF] which appears to be comparable to the performance of the transmission geometry.

Early screening of S. aureus and methicillin-resistant S. aureus carriers

Finally, a recent study has been conducted on the screening of S. aureus and methicillin-resistant S. aureus (MRSA) carriers. This widely used procedure, if non-always systematic, is intended to reduce or at least control the spread of MRSA nosocomial (acquired through hospitalized patients cross-transmissions) infections [START_REF] Maragakis | Clinical and economic burden of antimicrobial resistance[END_REF][START_REF] Cosgrove | Comparison of mortality associated with methicillinresistant and methicillin-susceptible staphylococcus aureus bacteremia: A meta-analysis[END_REF]. Given the large volume of patients to be tested, rapid and costeffective methods are developed such as the biplate ChromID MRSA/ChromID S. aureus (bioMérieux) for example, designed for the simultaneous detection of MRSA and S. aureus . These chromogenic selective media achieve the isolation of staphylococci and direct identification of S. aureus in one step but requires incubation time up to 48 hours. The Microdiff system has been able to provide a 91.4% discrimination rate between S. aureus and non-aureus staphylococci directly in transmission on ChromID S. aureus agar plates after 24 hours of incubation. It is a methicillin-resistant S. aureus strain and thus grows into blue/green colored colonies on both part of the bi-plate (methicillin has been added on one side and both part are enriched with a chromogenic substrate that colors S. aureus in blue/green). On the right, a culture plate ChromID S. aureus inoculated with a sample from a patient. The colonies are white. According to this test, the patient is thus not contaminated with a S. aureus .

The influence of biological characteristics on scattering patterns : a state of the art

Since ELS has been used for microbial identification as a phenotypic method, many investigations have been done to relate scattering patterns features to biological characteristics of bacterial colonies. Both modeling and experimental studies have been conducted. The next paragraphs will deal with the influence of the colony morphology on scattering patterns as well as the effects of culture media composition, preparation and storage conditions. Modeling methods used in bibliography based on scalar diffraction theory will be detailed in chapter IV so that only main results will be presented here.

Influence of bacterial colonies morphology

Both physical modeling and experimental acquisitions were made in [START_REF] Bae | Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns[END_REF] so as to explain the influence of colonies morphology on the scattering patterns. Thus, influence of colonies height and diameter was theoretically demonstrated and confirmed with controlled acquisition of forward-scattering patterns on the BARDOT system. Main results are summarized on fig. II.21.

It was found that, considering a Gaussian colony height profile, when the height increased while keeping a constant diameter, the maximum angle of diffraction increased and the number of diffraction rings also increased. The maximum diffraction angle is defined regarding the sample/sensor distance and the scattering pattern size as illustrated fig. II.20. They also conclude that with constant height, the maximum diffraction angle is inversely proportional to the colony diameter and the number of rings remained constant regardless of the colony diameter variations. These are the main relations between the colonies profile and their scattering patterns. Now, let us look at what kind of parameters influence the colonies morphology.

Influence of the growth media

Effects of agar concentration on the morphology of bacterial colonies have been investigated [START_REF] Mitchell | The effects of agar concentration on the growth and morphology of submerged colonies of motile and nonmotile bacteria[END_REF] as well as nutrition levels impacts on scattering patterns [START_REF] Bae | On the sensitivity of forward scattering patterns from bacterial colonies to media composition[END_REF].

Agar concentration

It has been shown, fig. II.22, that agar concentration has a great impact on bacterial growth [START_REF] Mitchell | The effects of agar concentration on the growth and morphology of submerged colonies of motile and nonmotile bacteria[END_REF]. Thus, it was concluded in [START_REF] Bae | On the sensitivity of forward scattering patterns from bacterial colonies to media composition[END_REF] that a change of ±0.3% in agar concentration from control sample (commercial agar plate) was sufficient to cause variations in scattering patterns and affect classification performances. : 0.50% agar, : 0.60% agar, • : 0.70% agar, : 0.80% agar, : 1.0% agar, : 1.5% agar, : 2.0% agar [START_REF] Mitchell | The effects of agar concentration on the growth and morphology of submerged colonies of motile and nonmotile bacteria[END_REF].

Media composition

Nutrients formulations of culture media have also a great impact on the growth of microorganisms. Thus, dramatic changes have been observed in the radial growth speed depending on the nutrient broth used (up to 30 times different [START_REF] Lewis | The influence of nutrition and temperature on the growth of colonies of escherichia coli k12[END_REF]). As a consequence, ELS methods require to compute one database for one specific culture medium.

Influence of preparation and storage of culture plates

Various conditions of preparation and storage of agar media have been tested in [START_REF] Mialon | Effects of preparation and storage of agar media on the sensitivity of bacterial forward scattering patterns[END_REF] and revealed that attention should be paid to culture plate elaboration so that the BARDOT system could be able to produce reproducible scattering patterns.

In particular, were tested different drying conditions after solidification of agar media and it was shown that short (10 -20 min) air-drying should be preferred while prolonged air-drying would affect BARDOT reproducibility.

Finally, experiments have been made to evaluate the influence of the storage conditions and they revealed that storing agar plates in cold room for 30 days in sealed plastic bag did not affect scattering patterns. However storage at room temperature should be avoided since BARDOT reproducibility was affected after few days.

Other influence factors on bacterial morphotype

Other factors that may influence the colony morphogenesis have been investigated in [START_REF] Sousa | Improvements on colony morphology identification towards bacterial profiling[END_REF]. Among them, the plate colony density has been shown to affect the colony morphology. Thus it has been observed that colonies growing close to each other tend to both alter their development and thus present modification in their morphotype [START_REF] Brogden | Polymicrobial diseases[END_REF]. The genetic background may also affect the colony morphogenesis and thus even considering colonies that belong to the same species. Some examples of morphotypic variability are displayed on fig. II.24. [START_REF] Brogden | Polymicrobial diseases[END_REF]. The image displayed in (f) shows to distinct colors for the same S. aureus growing on COS culture plate. In (g), a monomicrobial S. aureus culture on COS culture plate showing a great variability in sizes and hemolytic acitivity (ability to break blood cells) [START_REF] Howden | Reduced vancomycin susceptibility in staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycinintermediate strains: Resistance mechanisms, laboratory detection, and clinical implications[END_REF].

Conclusions

This chapter have introduced the ELS method as a tool for microbial identification directly on culture plates. Successful discrimination of microorganisms has been achieved at the genus-level and also down to the strain-level after only 6 hours of incubation. Reported results suggest that ELS can be integrated in a real clinical microbiology laboratory since it utilizes existing culture media of common use such as TSA, blood agar or chromogenic media. This phenotypic method based on the interrogation of the microorganisms morphotype yields much more photons than inelastic scattering such as Raman spectroscopy, allowing for much shorter acquisition time and thus is non-destructive. Besides being fast, label-free and non-invasive the acquisition performed on closed Petri dish prevents from cross-contamination. However this promising method suffers from the same drawbacks common to all phenotypic approaches in the sense that it is highly sensitive to environmental conditions that would affect the microorganism phenotype expression. Thus it has been shown that ELS robustness key relies on carefully controlled growth protocols thus avoiding reproducibility failures. At the same time, accurate tools combining machine learning algorithms and cross-validation procedures have been implemented to guaranty the diagnosis reliability.

Chapter III

Multi-scale spectral analysis : the interest of coherent illumination

As mentioned in the introduction, an objective was to bring a better understanding of the ELS performance and especially to know why it is more informative than a simple microscope observation. Two approaches were followed: first an analysis of the spatial content of microorganisms colonies and their associated scattering patterns and then a modeling of the physical phenomenon. This chapter deals with the first.

We will first start with numerous observations both of microorganisms colonies and scattering patterns so as to highlight and describe the different features and scales that compose them. This will point out the need for a multiscale spatial frequencies analysis tool that will make the reader fully aware of this multiscale dimensionality present both in scattering patterns and in the biological objects from which they originate. Thus in the first section, a classical method for this analysis will be introduced: the power spectral density calculation of an image. Then the next sections will detail the application of this analysis method to both experimental acquisitions and numerical simulations of bacterial colonies and their associated scattering patterns. Finally a discussion will be held about the added-value of the ELS coherent illumination compared to a simple observation with a microscope or naked eyes.

Spectral analysis 1.Multiscale dimensionality

So as to understand the multiscale dimensionality of the colony itself or the scattering patterns originated from it, I will show, in the next paragraphs, a diversified range of microscopic images as well as scattering acquisitions.

Microorganisms colonies

I only will focus this section on the microorganisms I had the opportunity to work with : bacteria and yeasts.

Bacteria: Bacteria are prokaryotic (without nucleus) single-cell microorganisms and their total number on Earth was estimated as at least 5 × 10 30 in 1998 by William Whitman [START_REF] Whitman | Prokaryotes: The unseen majority[END_REF] (lower estimations tends to be published now [START_REF] Lougheed | There are fewer microbes out there than you think[END_REF]). They own a rigid cell wall and thus, can take a wide variety of shapes, size and structure. Under microscope, bacteria principally appear in three shapes : the rod (bacillus), the sphere (coccus) and the spiral type (vibrio) [START_REF]Different Size, Shape and Arrangement of Bacterial Cells[END_REF]. In addition, depending on their shapes, bacteria can exhibit different arrangements, as illustrated fig. III.1. showing the variety of bacterial cells shape [START_REF]Different Size, Shape and Arrangement of Bacterial Cells[END_REF].

Concerning their size range, average dimensions have been reported. Thus, spherical bacteria tends to have a diameter between 0.5 µm and 2.0 µm. Rodshaped and filamentous bacteria, are generally around 1-10µm long for a diameter falling between 0.25 µm and 1.0 µm. Obviously there exist other bacteria that have dimensions not following those criteria such as Mycoplasma gallicepticum (size around 200 to 300 nm) or the world's largest bacteria Thiomargarita namibiensis which have been measured up to 750 µm [START_REF]Different Size, Shape and Arrangement of Bacterial Cells[END_REF].

On fig. III.2 are displayed examples of bacterial colonies that we cultivated.

Yeasts: Yeasts are single-cell eukaryotic microorganisms from the fungi group. They are capable of causing superficial, cutaneous, systemic as well as allergic diseases [28]. Yeasts express a wide variety of shapes depending on many factors. We will consider here the standard vegetative cells of Candida albicans which usually are egg-shaped or elliptical with typical dimensions of 4 to 8 µm in diameter 

Scattering patterns

As illustrated on fig. III.5 and fig. III.4, forward-or backward-scattering patterns, exhibit intensity features within different scales. We can first notice the diffraction rings (Airy ring like pattern), generally a secondary bright ring in the middle and radial spokes. Additionally we may sometimes observe some speckle grains. Diffraction rings appear when a coherent light beam is diffracted as it goes through a small aperture or when it is obstructed by an opaque circular mask (Babinet's principle for diffraction complementary apertures [START_REF] Neugebauer | Extension of babinet's principle to absorbing and transparent materials, and approximate theory of backscattering by plane, absorbing disks[END_REF]). In the acquisition conditions, the light beam is always larger than the targeted colony. It thus makes this portion of the incident beam attenuated by the colony while the other portion outside the colony is transmitted without being modulated by it. Diffraction rings are therefore created in image plane due to this amplitude-and phase-aperture effect.

Another recurrent feature present on many scattering patterns is this secondary bright ring located in the center. This is induced by differences in the transmission properties between the center part of the colony and its peripheral region (colony edges). In the center, the thickness is usually greater because of the larger number of cells present there, meaning that more light is scattered or absorbed. In addition, the cells nearest the culture medium and in the center are the oldest cells that were at the origin of the colony. They may have thus excreted more extracellular material which makes the biomass density greater than in edges area [START_REF] Limoli | Bacterial extracellular polysaccharides in biofilm formation and function[END_REF][START_REF] Hufnagel | The biology of the escherichia coli extracellular matrix[END_REF]. Conversely, we may notice that cells density in peripheral regions is smaller and, therefore, it offers higher transmission coefficients.

We may also often observe bright radial spokes on scattering patterns. Similar spokes are encountered in optical telescopes and are caused by mirrors mounts [START_REF] Richter | Spider diffraction: a comparison of curved and straight legs[END_REF]. Microscope observations, such as the ones presented on fig. III.6 reveal wavy radial structures inside the colony which point outward in the radial direction. This cells density distributions are microorganisms-specific morphotypes and represent a part of their phenotypic expression. Since they induce specific phase and amplitude modulations, they modulate the light beam as it passes through the colony and thus influence the scattering patterns.

As we can see, whether it concerns the object (microorganism colony) or its corresponding ELS pattern (forward-or backward-scattering) they both exhibit distinctive features, as summed up on fig. III.7 for scattering patterns, having various sizes and shapes that form the microorganism phenotypic signature.

We may have different levels of reading when observing colonies or scattering patterns and thus, we clearly need a method that confirms those effects. 

Power spectral density (PSD)

Multiscale analysis in the spatial frequency domain is a classical tool in image processing. Usually, so as to explore the spatial frequencies content of an image I, one compute F(I), its Fourier transform, followed by its power spectrum P (I) = |F(I)| 2 , which is then averaged in polar coordinates along all its angular directions

P SD(f ) = 1 2π 2π 0 P (f ) exp(jθ)dθ . (III.1)
When applied to images of natural scenes of the macroscopic world, usually acquired under incoherent lighting, it is known that the diversity in shapes and scales translates into a scale invariance. The power spectrum of those images generally exhibits a power law [START_REF] Rousseau | Counting leaves without finger-counting by supervised multiscale frequency analysis of depth images from top view[END_REF][START_REF] Rositi | Analyse en échelles pour l'optimisation du paramètre de reconstruction en tomographie x de phase ; application à l'imagerie du cerveau du petit animal[END_REF][START_REF] Ruderman | Statistics of natural images: Scaling in the woods[END_REF][START_REF] Chene | Multiscale analysis of depth images from natural scenes: Scaling in the depth of the woods[END_REF]. Such behavior, illustrated fig. III.8, may be identified on a log-log graph when the averaged power spectrum follows a line across an extended spatial frequencies range. This is equivalent to a P SD(f ) governed by a constant slope across the scale of spatial frequencies. This scale self-similarity, which remind fractal behavior, has been observed in different conditions like in colorimetric space with other metrics using the 3-D histogram of colors [START_REF] Chauveau | Fractal capacity dimension of three-dimensional histogram from color images[END_REF] or in depth images [START_REF] Chene | Multiscale analysis of depth images from natural scenes: Scaling in the depth of the woods[END_REF]. More recently, this analysis has been applied at a microscopic scale [START_REF] Rositi | Analyse en échelles pour l'optimisation du paramètre de reconstruction en tomographie x de phase ; application à l'imagerie du cerveau du petit animal[END_REF] on complex scenes such as histological slides and showed similar power law's signature. This empirical behavior can apparently be obvious when looking at natural complex scenes originally composed of multiple objects of different scales from microscopic to macroscopic. In fact, this is not that simple considering that, every single object composing the scene taken separately produces a power spectrum not necessarily scale-invariant. 

Images from experimental acquisitions

Microscopic images and scattering patterns were acquired on bacterial colonies. Their averaged P SD were computed and compared to explain the spectral content of both coherent and incoherent type of imaging.

Colony analysis

The fig. III.9 shows the averaged P SD of a microscope image of one bacterial colony. Its spectrum exhibits classical oscillations of a Bessel function of the first kind which is the typical spectral signature of a disk as illustrated on fig. III.10. Thus, this analysis performed on those kind of image does not bring us other information than the colony's size. 

Scattering patterns analysis

If we now look at forward scattering patterns generated from the ELS instrument like on fig. III.11, we can observe that whole colony imaging under coherent illumination seems to bring more specific information about the signature of the bacterial morphotype. This may be obvious in the sense that, coherent illumination translates phase content (induced by the bacterial biomass distribution inside the colony) into intensity oscillations on the sensor while a simple microscopic observation may basically inform us about the colony's size.

On this figure, the presented spectrum is not the P SD resulting from the calculation of the image Fourier transform as previously described. The graph is the image averaged intensity over circular profiles with increasing radii. I decided to put this representation in comparison with the microscope image colony P SD because, following the Fraunhofer approximation of scalar diffraction theory and assuming that the configuration of acquisition meets its criterion, we can consider that the magnitude of the acquired scattering pattern of one colony is proportional to the squared magnitude of the colony's Fourier transform [START_REF] Goodman | Introduction to Fourier Optics[END_REF]. The presented images were taken so as to meet the Fraunhofer criterion since the distance between the 2) acquired with ELS instrument in a transmission geometry. Profiles were computed with same number of sample points so that they can be compared. It shows that the coherent illumination used for the ELS allows to extract more phenotypic related features than a simple view with microscope. The colony used was a Staphylococcus epidermidis cultivated on TSA and incubated for 14 hours at 37°C. Peaks present in the 2D spectrum on (a.2) are the spectral signature of the grooves (scratch on the culture medium) dug during the culture plate inoculation with a plastic microloop.

colony and the screen was always much larger than the ratio w 2 λ , (w the object main dimension and λ the illumination wavelength) or the scattering pattern was acquired directly in the focal plane of a lens.

Advantages of coherent illumination

In a sense, the ELS instrument can be seen as a spatial spectral analyzer that sums up all the morphotypic characteristics of one microorganism colony and this, at all scales. Indeed, from the global colony shape to the internal layout of cells and also the surface aspect they all modulate the coherent beam of light as it goes through the colony. The resulting scattering pattern, thus, exhibits intensities variations which can be seen as an average of all those features. This averaging process is performed directly on a sensor and can be further analyzed by means of image processing treatments. Conversely, incoherent illumination (microscope imaging or naked eyes) needs an experimented person to deduce morphotypic characteristics such as the ones presented before (color, aspect, roughness ...). Therefore, morphotypic characteristics can be exploited much earlier with ELS because we do not have to wait for them to be fully expressed and visible after 24 hours of growth or more. This has been validated, for instance, with high classification rates down to strain-level at only 6h of growth [START_REF] Marcoux | Optical forward-scattering for identification of bacteria within microcolonies[END_REF][START_REF] Genuer | Optical elastic scattering for early label-free identification of clinical pathogens[END_REF]. At this incubation duration, even if colonies are at the limit of human eye perception, we could reach high discrimination rates where naked eyes were completely outperformed (as detailed in sec. 2 from chap. II). Those statements have to be pushed further. In the next section we will focus our analysis on young colonies, at the beginning of their growth.

Images from numerical simulations

Experimentally, it is delicate to track the early growth of a bacterial colony from the few first cells replications directly on a culture plate. In order to investigate what happens during those stages, I followed two approaches in the modeling of the bacterial growth. I first build a cellular automaton that mimics the bacterial cells interaction and replication process during the colony growth. This model will be detailed in chapter VI and is not used here because it does not take into account the cells shape. The second approach involves manually replicating cells mask, like the one showed on the image (a.1) of the fig. III.12, to progressively form a colony. The masks employed were taken from microscopic images. For growth stages over 100 cells, the barycenter of the masks were randomly selected following a uniform white noise (spatially uncorrelated). Cells superposition was allowed so as to mimic the bacterial growth in layers. The coherent illumination was obtained by computing the diffracted field from Rayleigh-Sommerfeld integral which will be detailed in chapter IV. Same analysis for experimental images was performed. Bacterial growth is observed under two modes : one uses a wide field of view and concerns the whole colony and the other is focused on the inside of the colony and thus benefits from a better resolution of the local cell replication dynamic. 

Whole colonies analysis

As illustrated on fig. III.13, in a wide field configuration where we analyze the whole colony, we are essentially influenced by its border. Thus, from colonies with 1 to 10000 cells we can observe that the averaged P SD changes from the spectrum of a unique cell to the characteristics oscillations of a Bessel function of the first kind, which is the typical spectral fingerprint of a disc (example provided fig. III.10). As concluded in the previous section, the whole colony analysis with a global shape resolution does not tell us that much about the spatial spectral composition of the colonies as it is only a size indicator.

Inside of colonies analysis

Using a field of view focused on the inside of colonies allows to cancel the border effect in the spectrum. Bacterial growth consists in a pattern replication process. Initially, the random replication occurs in a plane. Averaging the P SD in all directions make the succession of translations and rotations of the pattern only impacting the phase of the Fourier transform. As bacterial cells pile up in multilayers, the process meets the "Dead leaves model" introduced by B. Galerne [START_REF] Galerne | The transparent dead leaves model[END_REF] in 2012. This model describes the spectral signature of a scene where multiple semitransparent patterns are replicated and accumulated in a multilayer structure, similarly to dead leaves falling from a tree and accumulating at its bottom. Typical behavior observed for this numerical model translates into averaged P SD governed by a power law. The computed correlation coefficients of the linear fit in log-log scale are close to 1 and thus, show the establishment of the predicted power law [START_REF] Galerne | The transparent dead leaves model[END_REF].

As illustrated on fig. III.15, this power law evolution is not observed under coherent illumination of colonies' inside. Indeed, as the number of cells increases, their individual diffracted fields are coherently summed and it results in the appearance of a speckle field constituted of multiple bright (constructive interference) and dark (destructive interference) grains of different sizes. One may wonder if we could use this variation of the P SD under coherent illumination as a bio-marker for the bacterial growth. Indeed, the P SD shifts measurement appears to be more relevant under coherent illumination since the simple measurement of a power law obtained under incoherent illumination, if at least interesting, may be less sensitive.

In this configuration, the colonies' size augmentation translates into modulations

The behavior observed on fig. III.15, that is to say the shift of the cut-off frequency towards higher spatial frequencies (lower wavelength on the graph (a)) as the colony grows may be compared to what can be seen on the theoretical model presented on fig. III.16. Thus, as the colony grows, higher spatial frequencies enrich the P SD, passing from low spatial frequencies contributions of the coherent superimposition of a small number of cells to higher spatial frequencies features.

Similar behavior was encountered when considering entire colonies. This was well illustrated on fig.III.12, on simulated scattering patterns (a.2) to (d.2). We passed, here, from coarse intensity oscillations on image (a.2) to numerous finer oscillations on image (d.2). This also can be experimentally noticed in the evolution of the scattering pattern of a whole colony as it grows on its culture medium like illustrated on fig. III.17. We clearly can notice the enrichment of the scattering 

Conclusions and perspectives

This study proposed in sec. 3, conducted with professor D. Rousseau, constitutes an interesting practical instance of the theoretical Dead Leaves model proposed in [START_REF] Galerne | The transparent dead leaves model[END_REF] and thus, has been selected for a presentation at the XXVI th GRETSI symposium in 2017 [START_REF] Genuer | Analyse en échelles de colonies de bactéries par imagerie incohérente et cohérente[END_REF]. If it did not lead to major conclusions about ELS so far, the use of P SD analysis, either on microscope images (incoherent illumination) or scattering patterns (coherent illumination) tends to confirm the intuition I proposed at the beginning of this chapter: coherent illumination of microorganisms colonies brings a summary of all their morphotypic characteristics in one image. As described in sec. 1, those scattering images exhibit many different features with various sizes that can be related to the bio-physical characteristics of the colonies.

Therefore it has been seen that microorganisms morphotype expresses itself at different scales. Whether it concerns the global shape and dimensions of the colony or the internal layout of cells that also have an impact on its surface aspect. Current observations are made by experienced staff at around 24 hours of growth, which allows the microorganism to entirely express its phenotypic characteristics. Shape, color or surface roughness are all morphotypic features that require time to be correctly distinguished and appreciated by human eyes (naked or with microscope images). The ELS method proposes a way to combine all those features with the propagation of a coherent light beam through the colony. The result is a scattering pattern in which intensities variations translates phase and intensity modulations by means of optical interference in one shot.

Main advantage is that those patterns are well suited for image analysis and do no more require staff intervention. Another interest is that the acquisition can be made way earlier as it has been successfully demonstrated by our team on clinical application at only 6 hours of growth [START_REF] Marcoux | Optical forward-scattering for identification of bacteria within microcolonies[END_REF][START_REF] Genuer | Optical elastic scattering for early label-free identification of clinical pathogens[END_REF].

Finally, studying scattering patterns of inside parts of colonies could help us appreciate the frequency enrichment of the spectrum. First, numerically, by looking at the power spectrum variations as the number of cells was increased. Then by comparing this increase in high spatial frequencies contributions with numerical and experimental scattering acquisitions on entire growing colonies. As mentioned, P SD variations as a bio-marker for microorganisms growth may be interesting for empirical studies but may hardly be considered for classification task. Therefore there is definitely a need for modeling the physical phenomenon that originates the scattering patterns. This would help us better understand the relation between the colonies morphological characteristics and the corresponding intensity features if the scattering patterns. This is the topic of the chap. IV.

Chapter IV

Modeling the interaction between light and bacterial colonies

The modeling of light and bacterial colonies interaction is at the core of this chapter. This will provide the reader a better understanding of the physical phenomenon underlying the ELS method. Two main approaches were employed to describe the characteristic features introduced in chap. III: one first order approach based on simple geometrical interaction and the second based on the physical modeling of interference according to scalar diffraction theory.

In the first section, we will be focused on the colonies micro-lens effect and thus describe a pure geometrical ray tracing approach. The colonies surface state will also be considered with the use of computer graphics methods in order to model the caustics patterns. In this section, the surface height profile from colonies was carefully modeled to accurately match experimental measurements and a new 3D modeling is proposed. The second section will deal with a physical approach that models interference of light as it travels through the colonies. The propagation model is validated on simple object and then tested on 3D measured profiles.

Geometrical approach

As a first order approach, we modeled the colony influence on the light beam by means of geometrical optics. The bacterial colony is described as a lens with homogeneous refractive index of 1.38 and specific curvatures [START_REF] Bae | Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory[END_REF]. Its surface state may not be smooth, depending on the species, and the reflection of light on it may induces light focusing patterns called caustics. The first section will deal with ray tracing to help understand the numerical aperture needed to correctly record scattering pattern and the second section will describe the use global illumination rendering techniques to model caustics patterns induced by the colonies surface state.

Ray tracing

Ray tracing is a technique widely used in computer graphics and optical design to model simple interaction described by Snell's law like refraction and reflection. Bacterial colonies were initially modeled by basic spherical curves with different radii and also multi-curves profile to take into account the colonies shape which tend to be flat at the border and more dome-shaped at the center [START_REF] Bae | Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory[END_REF].

On fig. IV.2 are displayed two examples of ray tracing for one artificial dome-shaped colony and one flat colony. This illustrates the influence of the colony curvature on the numerical aperture needed to catch the light arising from it. From those numerical simulations we could observe that a bigger numerical aperture is needed for the reflection geometry than in the transmission configuration. In addition, as illustrated on fig. IV.3, spherical colonies require a bigger numerical aperture than flat ones. The level of curvature is determined by the colony height-to-width aspect ratio. 

Colony profiling: toward a 3D ray-tracer

So as to get closer to the real shape of colonies I decided to measure their height profile an thus get a precise topography of their surface and global shape. Those measurements were made with an Altisurf [111] which is a non-contact instrument based on chromatic confocal microscopy. Briefly, light is sent through a calibrated chromatic optical system and is coupled with a spectrometer. Thus, as described on fig. IV.5, the height is coded with light wavelengths. Similar measurements have already been made to follow the evolution of surface and volume of bacterial colonies during their growth and were intended for biomass monitoring and potential pre-identification step [START_REF] Drazek | Three-dimensional characterization of bacterial microcolonies on solid agar-based culture media[END_REF].

Outputs from this instrument are points cloud under text file format. To use these surface profiles, I modified an existing package for 3D ray-tracing [START_REF] Petrov | Optometrika[END_REF] under Matlab™ so that it can support them. I especially implemented new classes and methods so as to adapt the computation on measured profiles. I transformed the Performing ray tracing simulations on real measured colonies profiles helped us to ensure that we did not miss non-symmetric details of colonies. There is indeed no reason why bacterial colonies should be the rotational symmetric from a single profile. As they grow into colonies, microorganisms exhibit specific biomass distribution patterns and this is a part of their phenotypic fingerprint that we are sensing with the ELS method.

The example provided on fig. IV.8 both confirms and shows the limitations of using the first order geometric approach to model backward scattering patterns obtained with the ELS method. The simulated backward scattering pattern in (b) shows good agreement with the experimental acquisition displayed on (c) indeed. This is especially true for the bright ring at the border of the scattering pattern. However we clearly can observe that the wavy structure present at the core and around the peripheral bright ring are not resolved and need more rays to be fully 

retrieved.

The main problem in the ray tracing program I implemented on Matlab™ is that it is quite slow when one want to launch a large number of rays (from few millions for instance) for better accuracy. This is why I present in the next section another method used in computer graphics for global illumination rendering that is well suited for rendering complex effects such as caustic patterns. 

Global llumination rendering: caustic effects

The term caustics in optics refers to light focusing patterns originated from the refraction or reflection of light by a curved surface or object. Well known caustics can be observed when light shines on a drinking glass or at the bottom of a swimming pool when the sun shines over the water and creates a bright ripples net. As illustrated in fig. IV.9, we can found those caustic patterns on the scattering acquisitions obtained with the ELS instrument. The rough surface as well as the biomass distribution inside the colony focus the light and create similar patterns.

Caustics are a form of indirect illumination well known and modeled in computer graphics for rendering complex scenes with multiple objects and illumination sources. To rapidly set the context, computer graphics is a subfield of computer science which is focused on mathematical and computational representation of virtual objects. Thus, today, it is widely used in animation, movies, video games and graphic design. In the case of illumination rendering, that is to say the simulation of the light propagation and the illumination of a scene, there exist many methods physically correct or not. Briefly I will cite those three: Ray tracing: It is a method for generating an image by tracing the light's path while taking in account physical interactions with surrounding objects. This is a very accurate method but it has a great computational cost. An important characteristic is that, depending on the technique used, rays can be launched either from the pixel of the image plane (eye-based) or from the illumination source (light-based).

Path tracing: It is a Monte Carlo method of rendering images such that the global illumination is faithful to reality. It is similar to ray tracing in the sense that rays are cast from a virtual image plane end traced through the scene but at each intersection point between an object and a ray, the incident radiance is approximated using Monte Carlo integration where random sample directions are chosen following the object's BRDF (Bidirectional reflectance distribution function). It is very accurate, unbiased and currently used to generate reference images for evaluating other algorithms.

Photon mapping: It is a two-pass global illumination algorithm where rays from light source and rays from the image plane are independently traced and later connected to compute a radiance value. This biased method is particularly well suited for the simulation of the light propagation through translucent or transparent materials and also subsurface scattering.

I used the open source software Blender™ [START_REF]Blender Online Community, Blender -a 3D modelling and rendering package[END_REF] for creating my 3D environment and importing the 3D meshed surface I created from bacterial elevation profile measurements. I also added the YafaRay rendering engine for the calculation of global illumination. This engine is well known for its efficient caustics modeling [START_REF] Estévez | Yafaray rendering engine[END_REF]. There are many parameters to tune so as to get the desired rendering, among them, principally, the number of photons to launch in the scene, the radius of the zone in which photons are gathered and also the optical characteristics of the sample. Classic materials with defined refractive index were chosen for the simulation displayed on fig. IV.11. As described on fig. IV.10, the plastic plate was made of transparent polystyrene with refractive index 1.54 while the culture medium has a refractive index around 1.33 and the bacterial colony around 1.38. The presented simulated ELS pattern is a preliminary result which confirms the geometrical approach as a relevant approximation for the modeling of caustics features observed on backward-scattering patterns, especially from 24 hours cultured colonies. It is possible to create our own 3D environment with the associated rendering program. This would be a better solution in the long term because it would offer an accurate and customizable way to control every aspect of the illumination rendering step.

Physical modeling: bacterial colonies as diffractive objects

As described in chap. III and also mentioned by other team [START_REF] Bae | Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory[END_REF][START_REF] Bae | Prediction of the light scattering patterns from bacteria colonies by a time-resolved reaction-diffusion model and the scalar diffraction theory[END_REF][START_REF] Bae | Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns[END_REF], images obtained with the ELS method are a multiscale problem, that is to say, a combination of scattering at the microscale by individual cells (bacteria, yeasts ...) and at the macroscale (by the whole colony shape). I choose to develop in this section a macroscopic approach whereby I propose a biophysical model of the colonies and then use scalar diffraction theory to predict their scattering patterns. The following does not claim to be an exhaustive and historical review of diffraction models but will rather details the method I used to predict scattering patterns from the measured colonies profiles.

Biophysical modeling of colonies

Since we only consider a macroscopic interaction, colonies are modeled as 2D amplitude and phase objects. Thus, if we go back to a simple modeling of the colony following a spherical cap, the colony is defined by its phase modulation Φ:

Φ(X, Y ) = k [n(X, Y )H(X, Y ) + n air (H 0 -H(X, Y ))] , (IV.2)
where k is the wavenumber, n(X, Y ) is the refractive index of the colony at the (X, Y ) coordinates, n air the refractive index of ambient air, H(X, Y ) the colony's height at the (X, Y ) coordinates and H 0 the maximum height of the colony. As illustrated on fig. IV.12, H is the colony's height map. In addition, the colony is an amplitude modulator and is therefore defined by its transmission map t which is arbitrary set between 1 and 0 to modulate the transmission of light through it. For this parameterization, the refractive index is considered as constant inside the colony, which in fact is not true. As detailed in sec. 1.1.1, chap. III, colonies are composed of thousand of superimposed cells stuck with a gel of polysaccharides called extracellular matrix that fill the interstitial space and provides a structural and biochemical support to them. This is why I also developed another way to model the colonies that was briefly introduced in sec. 3, chap. III. This model simulates the growth of colonies from a few cells to hundreds of cells. A mask representing a bacterial cell, taken from a microscopic image is manually replicated to progressively form a colony. Then interstitial space is filled with the extracellular matrix which has a refractive index slightly different from the cells. It is generally said to be around 1.38 [START_REF] Bae | Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns[END_REF]. Obviously, this value may depend on the bacterial species. In this case the refractive index map associated with the colony's model follows the height map to set the correct value.

Numerical integration of the Rayleigh-Sommerfeld equation

When considering the propagation and diffraction of light in an isotropic, homogeneous linear medium limited by an aperture much larger than the wavelength, the Helmholtz-Kirchhoff and Rayleigh-diffraction formulas have been widely studied and validated [START_REF] Born | Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[END_REF]. I decided to compute the numerical integration of Rayleigh-Sommerfeld formula by means of Fourier treatments, first, because it has been proved to yield correct evaluations of light fields for both near-and far-field diffraction [START_REF] Harvey | Fourier treatment of near-field scalar diffraction theory[END_REF][START_REF] Mukunda | Consistency of rayleigh's diffraction formulas with kirchhoff's boundary conditions[END_REF][START_REF] Wolf | Comparison of the kirchhoff and the rayleigh-sommerfeld theories of diffraction at an aperture[END_REF] and secondly because the direct integration method requires no approximations such as Fresnel and Fraunhofer which often lead to validity issues. To numerically solve the Rayleigh-Sommerfeld integral, direct integration method (DI) was chosen rather than angular spectrum method (AS) because it is accurate, efficient and it can be used universally [START_REF] Shen | Fast-fourier-transform based numerical integration method for the rayleigh-sommerfeld diffraction formula[END_REF]. According to the coordinate system described on fig. IV.13, the 3D scalar timeindependent form of the wave equation called Helmholtz equation for a linear homogeneous isotropic medium is:

∇ 2 + k 2 U (x, y, z) = 0 ⇔ ∂ 2 U ∂x 2 + ∂ 2 U ∂y 2 + ∂ 2 U ∂z 2 + k 2 U = 0 , (IV.3)
where U is the light field amplitude and k = 2π λ the wavenumber (spatial frequency of the light wave having a wavelength λ). Initial light field and its propagation are handled in spatial-frequency domain, like in AS method, and the propagation of light is written:

Ũ (α, β, z) = Ũ (α, β, 0) × G(α, β, z) , (IV.4)
where Ũ is the Fourier transformation of the light field defined by:

Ũ (α, β, z) = F {U (x, y, z)} = U (x, y, z)exp(-j(αx + βy))dxdy , (IV.5)
and

G(α, β, z) = exp jz k 2 -α 2 -β 2 , (IV.6)
is the optical transfer function of the medium. Its inverse Fourier transformation gives the impulse response [START_REF] Shen | Fast-fourier-transform based numerical integration method for the rayleigh-sommerfeld diffraction formula[END_REF]:

g(x, y, z) = F -1 {G(α, β, z)} = 1 4π 2 G(α, β, z) × exp (j(αx + βy)) dαdβ = 1 2π exp(jkr) r z r 1 r -jk , (IV.7)
where r = √ x 2 + y 2 + z 2 . Therefore, the light field U can be seen as the convolution of the incident light field

U inc (X, Y ) = U (X, Y, z a ) with g: U (x, y, z) ∝ (f * g)(x, y; z) = A g(x -X, y -Y ; z)f (X, Y )dXdY , (IV.8)
where A is the aperture plane where the colony is placed and f takes into account its induced modulation defined previously:

f (X, Y ) = t(X, Y ) × U inc (X, Y ) × e ikΦ(X,Y ) .
(IV.9)

In our case, according to the parameterization proposed on fig. IV.13, the convolution kernel can be expressed as:

g(x -X, y -Y ; z im ) = exp    jkz im 1 + x -X z im 2 + y -Y z im 2    z 2 im 1 + x -X z im 2 + y -Y z im 2 3 2 -jk exp    jkz im 1 + x -X z im 2 + y -Y z im 2    z im 1 + x -X z im 2 + y -Y z im 2 ,
(IV.10) with z im = z i -z a , the distance between the aperture plane and the image plane where the field is computed.

Finally, assuming that the incident field U inc and the colony's phase and amplitude modulations, t and Φ, are sampled to M × N grids on the aperture plane, the integral can be calculated by numerical integration as a Riemann sum for a point (x, y; z im ) on the image plane:

U (x, y; z im ) = M i=1 N j=1 g(x -X, y -Y ; z im )f (X, Y )∆X∆Y , (IV.11)
where ∆X and ∆Y are the sampling intervals on the aperture plane. Concretely, eq. IV.11 can be seen as a discrete linear convolution of f and g. Under Matlab™ , this will be effectively calculated by means of the FFT algorithm.

The main drawback of DI method is that the computation window has the same size as the aperture plane. Thus, if we want to work on a finely sampled grid for the colony model, we will increase the computation time. Nonetheless, in our case, computational time never was an issue and did not exceed a few seconds. Sampling issues and aliasing, however, will be discussed later. This formulation of the problem allowed us to have a versatile model capable of modeling the physics behind the different versions of our instrument for ELS. Indeed, since this model is valid all the time, we do not have to take into account Fresnel or neither Fraunhofer approximations conditions of validity. This is an important advantage because the optical design of our instrument had undergone significant changes from the very beginning to the actual setup. Depending on the version, the illumination could be a collimated or focused laser beam and the light collection could either be achieved with a microscope objective coupled with a sensor or with a projection screen and a camera focused on it. For what concerns the focused laser beam, considering a TEM 00 mode centered on the z axis with its waist at z = 0, as illustrated on fig. IV.13, we can express the electric field on the aperture plane as:

E(X, Y, z) =E 0 × w 0 w(z) exp - X 2 + Y 2 w 2 (z) amplitude × exp jkz -tan -1 z z 0 longitudinal phase × exp jk X 2 + Y 2 2R(z) radial phase , (IV.12)
where the variations of the wavefront's radius R and the beam waist w are defined as:

w 2 (z) = w 0 2 1 + z z R 2 , (IV.13)
and

R(z) = z 1 + z R z 2 . (IV.14)
z R is called the Rayleigh distance. For Gaussian beam, it is the distance (from the beam waist) at which the beam size has been increased by a factor of √ 2. Thus, at this location z = z R , the beam waist w(z R ) equals √ 2w 0 , where w 0 is the beam waist at z = 0. The beam waist is taken at 1 e of the Gaussian amplitude cross section [START_REF] Forget | Laser and non-linear optics: Optical resonators and gaussian beams[END_REF].

Validation on simple objects: polystyrene beads

I decided first to test this model on simple objects with known diffraction behavior. Thus I compared modeling of diffraction on 100 µm polystyrene beads with their scattering pattern obtained on our ELS instrument. 

Importance of Fourier sampling criterion: effect of colony shape on the computational domain 2.4.1 Dimensions of computational domain

As said before, using DI method means we must use the same grid for the object and the image plane. A good way to estimate the grid boundaries is to compute the maximum angle of diffraction that the colony will create. The importance of this angle is crucial since it defines the computational domain we need to display the largest scattering feature. An estimation of the diffraction half-angle, previously defined on the fig. II.20 from chap. II, is given by the formula[125, 126]:

θ max 2 1 k d∆Ψ dr max , (IV.15)
where ∆Ψ = k∆Φ is related to the phase difference across the radial direction from the colony phase modulation Φ previously introduced in IV.2. Since we measured the elevation profile of the colonies we could estimate the minimum computational domain size needed in the image plane:

W i ≥ z im tan -1 θ max 2 , (IV.16)
where W i is the width of the imaging plane. Since we consider squared planes, image plane width equals its height. z im = z i -z a , as defined previously in eq. IV.10 is the distance between the aperture plane and the image plane. Therefore we can estimate the minimum sampling frequency f s needed in the aperture plane:

f s ≥ W i λz im . (IV.17)
Considering N samples, we can introduce the following relation between W a , the computation domain size of the aperture plane were the sample is located and the required sampling frequency f s :

W a ≤ N f s . (IV.18)
Therefore, for an incident light beam diameter 2w(z a ) the aperture computational domain size should satisfy:

2w(z a ) ≤ W a ≤ N f s . (IV.19)

Sampling of phase functions

As shown in eq. IV.11, computing the diffracted field from a colony involve up to two phase functions: the so-called chirp function from the light beam propagation (quadratic phase function described in eq. IV.12) and the colony induced phase modulation. Correct sampling of the chirp phase function is well-known and provide unaliased results if we choose:

dx = λz im W a . (IV.20)
For the colony phase modulation, a theoretical expression derived from the sampling of the chirp function has been reported and is based on the approximation of the colony elevation profile with a Gaussian function [START_REF] Bae | Application of sampling criterion on numerical diffraction from bacterial colonies[END_REF]. Recalling my expression of the colony phase modulation Φ defined in eq. IV.2, they used this formulation:

Φ(X, Y ) = k(n -1)H 0 exp - X 2 + Y 2 w b 2 , (IV.21)
where w b is the Gaussian profile radius they took for the colony. This formulation is convenient because it allows to express the optimal sampling for the colony phase function as:

dx| d∆Φ dr | max ≤ π , (IV.22)
and then, by replacing Φ by its expression we finally have the optimal sampling interval:

dx ≤ π |k(n -1)H 0 2x w b 2 exp -x 2 w b 2 | max . (IV.23)
In my case, since I used measured colonies elevation profiles the sampling of the aperture plane was defined by the acquisition instrument configuration. The minimum acquisition resolution I could set with the Altisurf instrument was around 1µm. This allowed a cellular resolution while keeping reasonable acquisition duration. For instance, considering an acquisition field of 1.5mm 2 with a resolution of 1µm it could take up to half an hour to complete the measurements. This was a duration limit I fixed since fastest observed cellular replication time were around 30 minutes for some E. coli strains for example. This allowed to measure the elevation profile of a colony assuming its biomass increase would not affect its shape. In this case, to handle sampling requirements for unaliased results I used the previous criterion backward to determine to what size I should extend the aperture plane, knowing beforehand the sampling interval imposed by the Altisurf instrument. That is to say, knowing dx the sampling interval, I should extend the aperture plane by zero-padding it until it reach the correct size defined by:

W a = λz im dx , (IV.24)
where dx is should satisfy: Then the identified maximum slope was taken to determine the correct sampling condition. with wavelength λ = 532.4nm, according to eq. IV.25, we found that the sampling interval should satisfy dx ≤ 0.95µm. Therefore, according to eq. IV.24, if one wants to correctly sample the diffracted field at an image plane located at z im = 10cm from the colony we should have a computational size domain W a = 56mm. As illustrated on fig. IV.17, this allowed us to set the correct aperture plane size to correctly display the diffracted field and thus not to miss the maximum frequencies.

Example and limitations

We rapidly can see the limitations of using measured profiles. As previously mentioned, I restrained the acquisition resolution to few micrometers (depending on the scanning size) so that the acquisition duration did not exceed half an hour. This was decided so as to ensure the colony's shape would not change. Not only the replication time of living cells was taken in account but also the culture medium dehydration. The Altisurf instrument was located in a clean-room environment with low level humidity, indeed. This caused the culture medium to dehydrate fast and tended to disturb long lasting elevation profile measurements. If we carefully look at eq. IV.25, this theoretically makes it impossible to set proper sampling interval for colony with high slopes. Nonetheless, in practice, measured colonies exhibited not so high curvatures and correct sampling was possible. Furthermore, the software provided with the Altisurf instrument allowed for re-sampling the measured profiles. We could thus, afterwards, artificially increase the number of sampling points while keeping the same scanning dimensions, which is equivalent to decreasing the resolution. While not providing further information on colonies' surfaces, it helped to achieve proper sampling conditions. 

Results and discussions

Acquisitions were made on bacterial colonies after different duration of incubation. For each probed colony, microscope images, both forward-and backwardscattering patterns with ELS instrument as well as elevation profiles with the Altisurf instrument were acquired. The following sections will details the main results achieved.

Cells mono-layer: the case of young colonies

As explained in sec. 3 from chap. III, I tried to study colonies at the beginning of their formation, while they were still arranged as mono-layer of cells. Numerical colonies were manually created by replicating cells mask taken from microscope images. This was done to mimic cells mono-layer we can encounter when the bacterial growth starts. An example of such a mono-layer is provided on fig. IV.18.

On fig. IV.19 is presented an example of ELS acquisition on a young bacterial colonie (E. coli ATCC® 25922) after only 4h hours of growth in incubator at 37°C. The instrument's optical setup had a microscope objective (Olympus x20 with 0.4 N.A.) so as to shape the laser beam. Corresponding induced phase modulations were taken into account as previously detailed in eq. IV.12. The sensor was placed 3cm away from the sample. ELS acquisition and simulation show good agreement in terms of pattern size and number of diffraction rings. Bright spokes resulting from the constructive superimposition of diffraction patterns along the different dimensions of the colony are also retrieved through the simulation.

This shows the good accuracy of the proposed models, both for bacterial colony modeling and light propagation modeling in the case of young colonies having only one layer of cells. Same conclusions were made in the case of older colonies, that is to say, colonies having cells multi-layers. The model that simply considers the colonies as curved domes with homogeneous refractive index reaches its limits. Thus, even if the propagation model described by the numerical integration of Rayleigh-Sommerfeld equa-tion has been proven to provide accurate results, the way we model the colony is crucial to precisely render all the specific features exhibited in ELS patterns.

Towards older colonies

Taking into account cells arrangement

The previous results highlight the importance of considering the internal cells arrangement in the formation of scattering patterns whether it is at the individual cell scale or at a greater scale where cells are arranged in stacks similarly to what can be observed in liquid crystals.

Individual cells arrangement

Taking the case of bacilli, that is to say rod shaped bacterial cells, I wanted to show that we could discriminate different artificial species according to the orientation of the cells inside the colonies. For this study, colonies were artificially created by multiplying thousands of Gaussian profiles with dimensions similar to bacilli. The global shape of the colony followed a two-radii curved profile. Two classes were made of hundred colonies each. ELS patterns were simulated and a classification model using an SVM was computed. Bessel-Fourier polynomials were used to build the descriptors. As illustrated on fig. IV.21,one class called "random" contained colonies made of randomly oriented bacilli while the other one called "fixed" had colonies created from equally oriented cells. The cross-validation used to validate the classifier provided a 100% correct classification rate between those two classes. This result must be carefully interpreted in the sense that modeled colonies were not composed of cells' stack but only exhibited a particular surface state caused by the specific orientation and arrangement of the cells. The global shapes and height profiles were the same for all the two hundred colonies. Thus, it shows that a discrimination can be made between the two classes of microorganisms only on their surface states. Since this surface state mainly depends on the arrangement of cells on the surface we may reasonably conclude that specific arrangement and orientation of cells inside microorganisms colonies play a crucial role in the discrimination power of the ELS method. This conclusion can be extended to the internal arrangement of cells since the ELS patterns for forward scattering are the sum of the whole colony structure as the light goes through it. For ELS patterns obtained with the reflection geometry, since the surface state is the main feature for the caustics patterns generation, cells arrangement although plays a great role in the ELS discrimination ability.

Stack of cells and radial spokes

As shown by Purdue University [START_REF] Bae | Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory[END_REF] when they tried to explain the presence of those bright radial spokes on ELS patterns, we need to add phase inclusions to the modeling of the colony's modulation. This is a way to artificially produces the 

The inside of bacterial colonies: phase variations

Obviously, it appears that the main features exhibited in scattering patterns are induced by the internal phase modulations due to a particular biomass distribution which is part of the microorganism phenotype expression. Therefore, we wanted to make this obvious by measuring phase variations within the colonies. Pascal Picart, professor at the Laboratoire d'Acoustique de l'Université du Maine and Ecole Nationale Supérieure d'Ingénieurs du Mans gave me the opportunity to make phase measurements on growing bacterial colonies. I thus went to his lab with all the materials required for bacterial cultivation and made experiments with an off-axis digital holographic setup.

Off-axis digital holographic measurements: Mach-Zehnder setup

Basically, digital holography consists of recording an optical field perturbed by a sample and numerically calculating, from diffraction theory models, the field distribution in a reconstruction plane. In a practical way, optical holograms are recorded on a sensor and are results of interferences between a reference beam and a beam diffracted by the sample to be measured. The recorded interference pattern can be expressed as [START_REF] Goodman | Introduction to Fourier Optics[END_REF]:

E = |R| 2 + |O| 2 + O * R + OR * , (IV.26)
where R and O are reference and object optical fields while their complex conjugates are denoted by R * and O * . Two main configurations exist to record interference pattern between reference and object beams: in-line and off-axis setups. I used an off-axis Mach-Zehnder setup described on fig. IV.25. Typically, both object and reference beams are recombined on a sensor with a relative angle α as illustrated on fig. IV.26 (a) so that they can interfere. The angle α should be chosen in order to meet the sampling theorem requirements. Thus, under paraxial conditions, the maximum angle that leads to a correct sampling of the interference pattern is defined by: Usually, the recording of digital holograms is followed by a reconstruction step which involves refocusing the original object using backward propagation algorithms. I will not give further details, but there exists a relation between an off-axis recorded hologram and the reconstructed intensity in a certain plane that we can infer from Huygens-Fresnel principle [START_REF] Goodman | Introduction to Fourier Optics[END_REF][START_REF] Born | Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[END_REF]. Several methods have been developed to efficiently compute digital holographic reconstruction and mainly use fast Fourier transform algorithms.

α max ≈ λ 2p x , ( IV 

Discussion

For our preliminary experiments, I carefully cut out small parts of culture medium from inoculated culture plates and placed those samples in the object beam path of the holographic setup. The previously defined angle α was then adjusted to fulfill the sampling theorem by looking at the recorded hologram spectrum in real time. We encountered here a first problem, because the probed bacterial colonies were so old that their curvatures made the beam too divergent to correctly fill the Fourier space. We thus should work on younger colonies and also select bacterial species known for having relatively flat height profile (E. coli ATCC® 11775 or ATCC® 25922 for instance). A greater problem put a stop to our preliminary experiments. I wanted to make an acquisition that followed the bacterial growth during several hours so as to measure the phase variations induced by the cells replication movements and the resulting variation in biomass distribution. However I could not achieve, in the amount of dedicated time, to make a robust setup able to cancel the artifacts caused by culture medium dehydration. Since culture medium are mainly composed of water, their dehydration rate was dramatically fast and accentuated by air conditioning. Due to the lack of time and the issues inherent to the recording on such biological sample, I could not obtain exploitable measurements. However it helped us to list the principal points we should take into account so as to perform in our lab such measurements. The main point is to provide a controlled environment for the biological sample so that its changes do not affect the measurements. Either by putting the whole setup in an incubator with controlled temperature and hygrometry or by only confining the sample itself. This would allow to perform acquisition during bacterial growth and surely provide very interesting information about the biomass distribution inside colonies as they grow directly on their culture medium. 

Conclusions and perspectives

Two different approaches were employed so as to model the interaction between light and microorganisms colonies. A first order approach only based on geometrical optics which has been proved to bring useful information for the ELS instruments optical design. Especially, the use of measured profile instead of curvature approximations, as it was classicaly described in literature, could help us to predict the beam spread after it passes through the sample. It has also been shown that this first order approach could accurately render caustics patterns that can be observed when recording ELS pattern in reflection geometry. Further improvements can be done using global illumination rendering so as to take interference into account and thus simulate wave effects with ray-based methods [START_REF] Cuypers | Reflectance model for diffraction[END_REF][START_REF] Oh | Rendering wave effects with augmented light field[END_REF].

On the other side, the second proposed approach based on physical optics, despite being accurate for near and far field propagation in transmission, requires a more precise modeling of the object. It has been shown that we can accurately model the case of young colonies having only one layer of cells. However, considering older colonies as homogeneous dome-shaped object does not allow to retrieve all 96 features we can observe on ELS pattern, especially the bright radial spokes we often can encounter when probing old colonies. Thus it has been shown that one should carefully consider the internal arrangement of cells. The phase modulation induced by the specific biomass distribution plays indeed a great role in the formation of ELS pattern. Information should be extracted from phase measurements on growing colonies so as to bring a better insight into those particular cells arrangements which constitute a great part of microorganisms phenotypic signature.

During my Ph.D., I mainly focused my work on the light propagation modeling and its interactions and thus brought two different approaches that have their own advantages and drawbacks. Now, efforts have to be put into a more precise modeling of microorganisms colonies. Surface height profiles measurements were a first step toward a more accurate representation of colonies, however, considering them as simple volumes with homogeneous refractive index definitely will not provide correct results.

Chapter V Data processing : from images features extraction to machine learning algorithms

As mentioned in the introduction, the ELS method includes statistical analysis. The purpose is to learn differences between the scattering patterns from different species (or strains) so as to be able, later, to identify an image acquired from an unknown sample. Numerous methods exist to do this learning task. I choose to apply a supervised learning algorithm called Support Vector Machine (SVM) and to focus my study on its optimization. The main objective is to obtain the classification model that best generalizes a dedicated data set while providing high correct classification rates and low computational costs. The proposed optimization method is explained on a 4-srains E. coli database and is then validated on substantial data set such as our Staphylococcus database. Results demonstrated the benefits of this method.

Before using the learning algorithm, we need to translate the scattering patterns into comprehensible data for it. This is a crucial step, because the way features are extracted has a great impact on the global classification performances. Three methods were tested, from the simple extraction of morphological descriptors to the projection on polynomial basis. The influence on the classification rate was studied. Therefore, this chapter first deals with the methods employed for the features extraction from scattering patterns and then with the machine learning algorithm used to build the classification model and its optimization in the case of the identification of microbial pathogens. Finally, I will discuss the possibility of building our own projection basis by reducing the number of descriptors while preserving the image description fidelity and classification rate.

V Data processing : from images features extraction to machine learning algorithms 1 Features extraction

The features extraction is crucial in the identification process because it consists of a translation of the scattering patterns into comprehensible data for the machine learning algorithm. The way features are extracted from the images has thus a great and direct impact on the global classification performances. Two main approaches were tested: one based on the observation and calculation of simple characteristics of the images and the other one, briefly described in chapter II, based on the projection onto a basis of function.

Simple morphological descriptors

The use of simple morphological descriptors was investigated by the CEA in collaboration with NT2I (french company specialized in industrial imaging). Basically it involves computing features such as the number of diffraction rings, their radii or more generally the global variance of the images for example. The final descriptor is a vector containing all those features concatenated. A bench-marking of this method was realized by NT2I and a synthesis of the main results is proposed in the next paragraphs.

The table on fig. V.2 summarizes the main features that were tested. BFarea corresponds to the area of low frequencies in the scattering images, that is to say the zone containing the zero order (high intensity center) plus the closest diffraction rings with similar gray levels values. Eccentricity is the eccentricity of the ellipse having the same quadratic moment as BFarea. NbAnneaux, NbArtefacts and Rayons respectively correspond to the number of rings, the number of non-complete rings and their radii and were computed from the images in polar coordinates as illustrated on fig. V.1. Variance and NbMax are the gray levels variance and the number of local maxima in the image. Circ is a circularity parameter computed on the largest ring. VarRayons is the variance of the different rings radii while the parameter DistMax describes the rings distribution over the image by computing the distance between the largest and the smallest ring. Finally, the area containing the low frequencies plus the high frequencies, AreaAll, was computed. Then the gray levels mean was computed on this zone MeanDiff and on the whole image Mean. VarDiff is the gray levels variance of the AreaAll zone.

A method for features selection is illustrated on the table of the fig. V.2. In the first column, each parameter is tested independently and the best is kept in the next column. The percentages correspond to the percentage of miss-classified images over the whole database using k-means clustering. An overall classification rate of 84% was obtained over a database of 912 images from 8 different bacterial strains. Although this method is simple and requires low computation cost, there was a need for selecting the optimal set of features for each couple of class that were highly confused in the classification task. This approach appears to be slow, laborious (because of the need for finding the best features combination), not robust (because of the arbitrary manual binarization and thresholding of the images for finding high and low frequencies areas) and thus not versatile. This is why this approach was rapidly abandoned in favor of the projection on polynomial functions basis such as Zernike or Bessel-Fourier which will be detailed in the next sections. 

Zernike moments

As defined in eq II.6 in subsec. 1.3.1, Zernike moments are the coefficients of the image projection onto the Zernike polynomial functions basis.

Despite benefiting from rotational invariance, Zernike polynomial functions suffer from zeros distribution that does not match the scattering patterns main characteristics. As illustrated fig. V.3, Zernike polynomials reach their maxima at the border of the unit disk while the intensity of the scattering patterns tends to be at its maximum in the center, for forward scattering patterns, or at least homogeneously distributed over the unit disk for backward scattering patterns.

Reconstructions were computed in order to evaluate the ability of the Zernike basis at accurately describing scattering patterns. That is to say, after projecting images on the Zernike basis, their vectors of moments were multiplied by the vectors of the basis and summed so as to reconstruct the original image. We define the mean squared error of reconstruction (MSER) as follows :

M SER = (M,N ) (i,j) |I O (i, j) -I R (i, j)| 2 M × N , (V.1)
where I O is the original image and I R its reconstruction after projection on the Zernike basis, both defined as a M × N matrices, (M, N ) ∈ N 2 .

The original image and its reconstruction are linked as previously defined in eq. II.2 by the relation :

1 Features extraction Figure V.3:
Here are some Zernike polynomials Z p,q of order q with repetition p.

I R = |q|≤p (p,q) Z p,q × V p,q , (V.2)
with (Z p,q ) |q|≤p the set of Zernike moments obtained after projection of I O on the Zernike basis (V p,q ) |q|≤p , (p, q) ∈ N × Z, as defined in eq. II. [START_REF] Paddock | The antibiotics crisis: How did we get here and where do we go next[END_REF].

Different examples of scattering patterns reconstruction with their associated MSER are displayed on fig. V.4. It shows the inadequacy of the Zernike basis at retrieving fine details from intensity oscillations. Thus, if this method is able to catch coarse intensity variations from scattering patterns, we definitely needed a solution so as to compute more accurate images descriptors. 

Bessel-Fourier moments

Olivier Gal (CEA/LIST) suggested the use of Bessel-Fourier moments to our team and helped us testing it to compute the image descriptors. He especially provided us with an efficient computational cost-saving implementation of the polynomial basis calculation. The set of Bessel-Fourier functions F mn , (m, n) ∈ N * × Z defined as:

F mn (ρ, θ) = J n (λ nm ρ)e -jmθ , (V.3)
form a basis on the unit disk ρ ≤ 1. J n is the Bessel function of first kind of order n and λ nm its m th zero.

The Bessel-Fourier moments B mn of order m ∈ N * and repetition n ∈ Z, using Bessel function of first kind in polar coordinates for a continuous image f are thus defined as:

B mn = 1 2ma n 2π 0 1 0 f (ρ, θ)J n (λ n ρ)e -jmθ ρdρdθ , (V.4)
where

a n = [J n+1 (λ n )] 2 2 is a normalization coefficient.

Features extraction

As illustrated on fig. V.5 and V.6, by using Bessel-Fourier moments, we take advantages of the zeros distribution of the Bessel function. They are homogeneously distributed over the unit disk and thus allow a fine recovering of scattering images details. V Data processing : from images features extraction to machine learning algorithms

Impact of better images descriptors on classification performances

Intuitively, we could think that accurate images description could lead us to better classification performances but it is not so obvious since the machine learning algorithm does not necessarily relies on features that have a physical meaning and make sense to human mind. Nevertheless, we first need to find the parameters that yield low MSER. Fig. V.9 shows the MSER variations when varying the radial and azimuthal order for projection. Each graph is for one E. coli strain. For this database it reveals that an increase of image description (low MSER) is obtained for high radial orders and medium azimuthal orders. Thus the lowest MSER has been reached for a projection up to the 80 th radial order and 16 th azimuthal order of the Bessel-Fourier basis. The expansion may be pushed further but the calculation cost and memory storage of Bessel-Fourier matrices also increase. In addition, as the orders are increased, the features vectors dimension also increase, making the learning step slower and more complicated. Fig. V.10 illustrates the behavior of MSER when varying only one moments order. Thus, on graph (a), the radial order is fixed at 80 while the azimuthal order is varied from 4 to 16. For each E. coli strain, MSER is averaged over all the images and decreases as the azimuthal order is increased. In the same way, graph (b) shows the MSER decrease as the radial order is varied from 10 to 80 with azimuthal order fixed at 16. One may wonder if, at fixed number of moments, MSER is better with high radial order or high azimuthal order. The fig. V.11 displays for each E. coli strain the MSER with the radial and azimuthal orders. We can notice that, for each strain, the best MSER (lowest value) is achieved with radial order higher than azimuthal one. Now, we logically want to confirm or not, whether low MSER values (high image description accuracy) lead to better classification performances. The graph on fig. V.12 plots the correct classification rate (averaged on hundred 10-fold crossvalidations) obtained with an SVM, against the MSER (averaged over the four E. coli strains) and the number of moments used for projection. It shows that the highest classification rate is not obtained for the lowest MSER and that at equivalent MSER, an average number of moments gives a better classification rate. Thus the best classification rate has been obtained for a 240 Bessel-Fourier moments (15 th radial and azimuthal orders). It also confirms the fact that their is no need for finding the best and more accurate way to describe the images since the classification performances are not only linked to the MSER. In the next section we will focus on the machine learning process so as to understand the underlying challenges of classification.

Machine learning

This section is focused on machine learning algorithms dedicated to the classification task in ELS. After a brief introduction of the main principles and algorithms, I will detail the Support Vector Machine (SVM) algorithm employed and the method I used for its optimization.

Principle and brief overview

An often quoted formal definition given by the field pioneer T.M. Mitchell in 1997 is: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T , as measured by P , improves with experience E" [START_REF] Mitchell | Machine learning[END_REF]. To rephrase it, machine learning is a subfield of computer science which goal is to learn from data so as to build generalizable models able to provide accurate predictions, or find particular patterns in new and unseen similar data.

Usually, three main categories separates the wide family of machine learning algorithms depending on the type of learning data. These are: supervised learning: algorithms are provided with example inputs and their desired outputs with the final goal of building a model that maps inputs with outputs unsupervised learning: no labels are given so that the algorithm finds on its own hidden pattern in provided inputs reinforcement learning: the program navigates in its problem space and interacts with a dynamic environment while performing a dedicated task such as driving a car for example.

Another categorization is possible when considering the desired output. In our case for example, we want to compute a classification model from labeled data, that is to say, we want to separate data in different classes or groups. This is classically achieved with supervised learning algorithm. On the other hand, clustering, which consists of the same separation task as for classification but performed on unlabeled data will employ unsupervised learning algorithms so as to find hidden structure to group data into different clusters. Learning algorithms may also be employed for regression (map discrete) or dimensionality reduction for example.

In practice, there is no magic recipe that indicates the right learning algorithm to use and the best practice is still to try different algorithms and compare their performances. However, considering the type and amount of data we have, the use of a Support Vector Machine (SVM) is a good choice in terms of robustness, prediction accuracy and ease of use. In the next paragraphs, I will detail the SVM algorithm so as to make the optimization task understandable.

Support Vector Machine (SVM) algorithm

As introduced in chapter II, subs. 1.3.2, SVM is a binary linear classifier from the supervised learning family. It is defined by a separating hyperplane between two labeled groups of data.

Linear discrimination and margin maximization

We consider a training dataset of n ∈ N points ( -→ x 1 , y 1 ), ..., ( -→ x n , y n ). The -→ x i , i ∈ [1, n] are vectors in R p , p ∈ N. In our case, the dimension p corresponds to the dimension of the descriptors, that is to say the dimension of the basis used for the projection. The y i,i∈ [1,n] ∈ {-1, 1} indicate the class to which belong the -→ x i .

As illustrated on fig.

V.13, we want to find the "maximum-margin hyperplane", H, that divides the two classes so that the distance between the hyperplane and the nearest point from either class is maximum. V Data processing : from images features extraction to machine learning algorithms

d = | - → w . - → x i -b| - → w , (V.5)
and the maximum margin equals :

δ = 2 - → w . (V.6)
The In order to maximize the in-between distance, we have to minimize -→ w (we often find the formulation min -→ w ,b

1 2 - → w 
2 ), subject to the constraint that each point must lie on the correct side of the hyperplane H or at least lies on the margin lines. Thus we have :

- → w . - → x i -b ≤ -1 if y i = -1 , (V.7)
and

- → w . - → x i -b ≥ 1 if y i = 1 , (V.8) which is equivalent to ∀i ∈ [1, n], y i ( - → w . - → x i -b) ≥ 1 . (V.9)
This is a convex optimization problem (quadratic objective function with linear constraints) and a global optimum exists but we have to use a numerical solver since there is no literal solution [START_REF] Boyd | Convex optimization[END_REF][START_REF] Smith | Lagrange multipliers tutorial in the context of support vector machines[END_REF].

Primal and dual formulations

The primal expression of the problem

min -→ w ,b 1 2 - → w 2 subject to ∀i ∈ [1, n], y i ( - → w . - → x i -b) ≥ 1 . (V.10)
is not convenient as soon as the dimension p is high, typically from 100. Furthermore it does not ease the use of kernel functions which allow to go beyond the case of linear classifiers. Since we have descriptors with dimensions above 100 and non linearly separable data sets we use the dual expression of our optimization problem (this expression exists since we are in a convex space [START_REF] Boyd | Convex optimization[END_REF]). Thus, using the Lagrangian, the primal expression V.10 becomes :

L( - → w , b, α) = 1 2 - → w 2 - n i=1 α i [y i ( - → w . - → x i -b) -1] , (V.11)
where (α i ) i∈ [1,n] is the set of Lagrange multipliers.

The cancellation of Lagrangian's partial derivatives (which I will not detail here for the sake of clarity and concision, for further information the reader may refer to [START_REF] Smith | Lagrange multipliers tutorial in the context of support vector machines[END_REF]) gives the following expression of the optimization problem :

max α L(α) = n i=1 α i - 1 2 n i=1 n j=1 α i α j y i y j x i , x j subject to ∀i ∈ [1, n], α i ≥ 0 and n i=1 α i y i = 0 .
(V.12)

x i , x j is the scalar product between the points x i and x j . The first constraint defines the weights of the support vectors while the second guarantees the existence of support vectors with different labels (y i ∈ -1, 1). This formulation implies a perfect separation of the variables, which, in practice, does not happen because some points lies on the wrong side of the frontier H. This is why a vector of slack variables ξ is used to define a soft margin (regularization of the cost function). [1,n] is a vector with dimension n, the number of data, and each ξ i ≥ 0 represents the error of classification for each variable as illustrated on fig. V.15. algorithms ξ i = 0 when the point is on the right side of the margin line of its label. ξ i < 1 when the point is on the right side of the frontier line H but lies between the frontier line and the margin line of its class. Finally, when ξ i > 1, the variable is miss-classified. The use of this soft margin leads to a reformulation of the primal expression :

Non-ideal separation case : introduction of the soft margin

ξ = (ξ i ) i∈
min -→ w ,b 1 2 - → w 2 + C n i=1 ξ i s.t. ∀i ∈ [1, n], y i ( - → w . - → x i -b) ≥ 1 -ξ i and ∀i ∈ [1, n], ξ i ≥ 0 , (V.13)
and its dual expression becomes :

max α L(α) = n i=1 α i - 1 2 n i=1 n j=1 α i α j y i y j x i , x j s.t. ∀i ∈ [1, n], 0 ≤ α i ≤ C and n i=1 α i y i = 0 . (V.14)
The error tolerance is adjusted with the cost parameter C. Thus we can more or less penalize miss-classifications whether we want to compute a learning model that is close to the learning data or not. A low C will give a more general model while too high values of C will give an over-fitting model that will, of course, excel at classifying the learning data set, but, will be poorly accurate on new data.

Non-linear discrimination: the "kernel trick"

As said before, those formulations are under the hypothesis of a linearly separable set of data. With data acquired from real experiments this is nearly never the case. Thus we can introduce a function φ that maps the variable in a space where they are linearly separable as illustrated on fig. V.16. The Lagrange optimization of the dual expression needs the calculation of each φ(x i ), φ(x j ) , for (i, j) ∈ [1, n] 2 . However the cost of calculation increases as well as the memory cost. The "kernel trick" method has been invented and states that we can find a kernel function K so that :

∀i ∈ [1, n], K(x i , x j ) = φ(x i ), φ(x j ) .
(V.15) The main consequence is that we simply have to compute the scalar product and transform its result with the kernel function K. Finally, the dual formulation with the soft margin and a kernel function K is :

max α L(α) = n i=1 α i - 1 2 n i=1 n j=1 α i α j y i y j K(x i , x j ) s.t. ∀i ∈ [1, n], 0 ≤ α i ≤ C and n i=1 α i y i = 0 . (V.16)
Below are the three commonly used kernel functions :

Polynomial kernel: K(u, v) = (a + u, v ) d . (V.17)
With a = 0 and d = 1, K is the linear kernel.

Radial Basis kernel Function (RBF):

K(u, v) = exp(-γ u -v 2 ) . (V.

18) algorithms

The default γ value in software is generally set to 1 n , with n the number of variables.

Sigmoïd kernel:

K(u, v) = tanh(γ u, v + a) . (V.19)
Parametrization and management of the cost parameter C are the key factors when one wants to tune the machine learning algorithm so that it well classifies our data.

From 2-class to multi-class problems: the multi-class SVM

The SVM algorithm detailed before is formally defined for 2-class problems but it can simply be extended to multi-class problems with y ∈ {y 1 , ..., y k }, k the number of class [START_REF] Milgram | one against one" or "one against all": Which one is better for handwriting recognition with svms?[END_REF]. Two main approaches exist: one-against-rest: k discriminating models are built considering each time one class against the other. k decision functions are obtained and we take the highest score to predict the class of an unseen instance. Despite its simplicity, this method may artificially introduce imbalance in classes as score scales may differ between classifiers and instances distribution may be unbalanced.

one vs. one: k k-1 2 discriminating models are built taking each class pairwise. The predicted class is obtained by establishing a vote between all models and counting the highest number of victories. This model requires more models to build but with reduced number of data. The main drawback is the computation cost increasing with k.

Validation method : k-fold cross-validation

A common method to get an unbiased estimation of the accuracy of our learned model is to train the learning algorithm only on a subset of our data set and keep the other part, which is "unknown" for the model, for testing it. k-fold cross validation, as briefly introduced in sec. 2, involves randomly partitioning the data set in k subsets and successively leave one subset out for the test set and train on the rest (k-1 remaining subsets). Then the accuracy of each learned model is averaged to produce the overall accuracy. The fig. V.17 illustrates the process.

One may wonder if accuracy is the only way of adequately measure the predictive performance. Indeed, the calculation of accuracy may not be useful in cases where there are differential miss-classification costs for example. In medical diagnosis, false positive results in additional test for the patient while a false negative results in a failure of the disease treatment and sometimes may lead to critical condition. Other accuracy metrics exist that allow precise estimation of the learning models performances. Thus we can define, according to fig. V.18, the true positive rate (T P -rate), called recall as: A true positive is an instance found true by the machine learning algorithm and which is actually true, conversely, a true negative is an instance found to be negative by the algorithm and actually negative. A false positive is an instance which is found positive by the algorithm while it is actually false and same reasoning for a false negative. Inspired from [START_REF] Page | Evaluating machine learning methods[END_REF].

A Receiver Operating Characteristic (ROC) curve, as defined on fig. V.19, plots the T P -rate versus the F P -rate as a threshold on the confidence of an instance being positive is varied. One may adjust the learning algorithm to get the desired behavior in different parts of the ROC space depending on the cost of F P vs. F N .

V Data processing : from images features extraction to machine learning algorithms

ROC curves are insensitive to changes of class distribution (distribution of positive and negative instances) and it is useful to identify optimal classification thresholds for tasks with differential miss-classification costs like ours. We also define the precision as: 

SVM hyperparameters optimization: grid-search method

For our learning data set, I decide to use a Radial Basis kernel function as defined in eq. V.18. Basically the tuning of the parameters involves finding the best couple (C, γ), so that we get the best classification rate while having a low number of support vectors to guarantee a well generalizable model and prevent over-fitting. Since it is not known beforehand which couple (C,γ) is the best for a given problem, a parameter search is needed to determine the optimal combination that will provide the best classification accuracy. I classicaly implemented a "grid-search" method combined with a k-fold cross-validation in Matlab™ using the LIBSV M library [START_REF] Chang | Libsvm: A library for support vector machines[END_REF]. Then, the software used for the training of the learning algorithm with optimized parameters was Weka 3.6. developed at the University of Waikato [START_REF] Eibe | The WEKA Workbench. Online Appendix for[END_REF] for convenient presentation of the results.

The grid-search is straightforward and involves testing various pairs of (C,γ) values until we get the best cross-validation accuracy. Testing exhaustively every pairs in a determined range seems to be laborious and not cost-effective. This is why several methods have been introduced to do this grid-search more efficiently [START_REF] Bergstra | Random search for hyper-parameter optimization[END_REF][START_REF] Snoek | Practical bayesian optimization of machine learning algorithms[END_REF]. However I still decided to do an exhaustive grid-search on (C,γ), firstly because the computational time was not that high with our data set (few minutes), then because I was not feeling comfortable with heuristic methods avoiding the testing of each possible pair values. Finally it could easily be parallelized since each (C,γ) is independent. In order to limit the computational time, I still first used a coarse grid that allows to define a region of best accuracy. A finer grid on this region is then used for selecting the best parameters.

The whole process, detailed on the algorithm of fig. V.21, is as follows:

• a first coarse grid range is arbitrary defined 

Features reduction

We have seen in the previous section that one could increase the image description accuracy by basically increasing the azimuthal or radial order of projection. This has for consequence a drastic increase of the descriptor vector dimension. I thus decided to apply dimensionality reduction methods so as to reduce the number of features used for image description. First, to limit the computation cost and also to get a more general and robust model based on few important features. Another objective was to identify the features on which was based the discrimination so as to construct our own basis of projection specific to the targeted microbial application. I will first introduce the Partial Least Squares Regression (PLSR) method used for dimensionality reduction and then present the results obtained when applied to the 4-strains E. coli database. In this section, matrices will be written in bold to clarify equations. Thus we define our data set as the p × n matrix X = [ -→ x 1 , ..., -→

x n ] where n is the number of instances and p the descriptor vector dimension.

Partial Least Squares Regression method (PLSR)

The curse of dimensionality, as described in [START_REF] Carreira-Perpinan | A review of dimension reduction techniques[END_REF], is a well-known phenomenon that misleads learning algorithms when applied to data set with high dimensions. Many dimensionality reduction methods have thus been developed as a possible response to this problem [START_REF] Carreira-Perpinan | A review of dimension reduction techniques[END_REF][START_REF] Pang | Neighborhood Preserving Projections (NPP): A Novel Linear Dimension Reduction Method[END_REF]. Among them, I decided to apply the PLSR because it combines the advantages of Multiple Linear Regression (MLR) and Principal Components Regression (PCR) methods by maximizing covariance be-123 V Data processing : from images features extraction to machine learning algorithms tween data (also called predictors) X and their outputs Y (also called responses). Thus by using PLSR we will both capture maximum variance of X while achieving maximum correlation between X and Y.

PLSR was initially commonly used as a regression method, especially in chemometrics [START_REF] Jong | Simpls: An alternative approach to partial least squares regression[END_REF]. In this context, it seeks linear combination of original features with maximum correlation to the outputs. The resulting "principal components" are uncorrelated. Since PLSR takes class labels into account for calculation, it is one of the most used supervised dimensionality reduction method and is now commonly used for this task [START_REF] Huang | Refinement of breast cancer risk prediction with concordant leading edge subsets from prognostic gene signatures[END_REF][START_REF] Boulesteix | Partial least squares: a versatile tool for the analysis of high-dimensional genomic data[END_REF][START_REF] Rosipal | Overview and recent advances in partial least squares[END_REF].

So as to understand the PLSR mechanisms, let us first start by recalling the main goal of PCR. PCR is a regression method based on Principal Components Analysis (PCA). The idea behind PCR is to first perform a PCA on data and then use only few first principal components to compute the regression. Considering our data X, performing a PCA involves finding an orthogonal matrix P that defines the change of variable:

T = XP (V.23)
such that the covariance matrix cov(T, T) is diagonal and that its diagonal values are in decreasing order. The matrix P is called the principal components of X and the matrix T is the scores [START_REF] Ng | A simple explanation of partial least squares[END_REF]. To compute this principal components, one method is to perform a singular values decomposition of X which gives:

X = UDP * (V.24)
where U is an p×p matrix containing the eigenvectors of XX t , P is the principal components n × n matrix made up of the eigenvectors X t X and D is an p × n diagonal matrix made up of the square roots of the non-zero eigenvalues of both X t X and XX t . P * refers to the conjugate transpose matrix of P which is equal to transpose matrix P t because we only consider real values in our case. Thus, X can be decomposed as [START_REF] Ng | A simple explanation of partial least squares[END_REF]:

X = TP t = UDP t . (V.25)
Now, the idea of PLSR is to decompose both the data matrix X and the response matrix Y like in PCA to have:

X = TP t Y = UQ t (V.26)
and then perform regression between T and U. T and U are respectively the scores of X and Y while P and Q are respectively their loadings. The main interest of PLSR is that it ensures that the decompositions of X and Y are done while taking into account information from each other.

Application to the 4-strains E. coli database acquired in transmission geometry

To perform PLSR on my data set (4-strains E. coli database projected on Bessel-Fourier basis up to the 15 th azimuthal and radial orders) I used the SIM P LS algorithm implemented on Matlab™ . This algorithm has been specially designed to perform PLSR on multiclass classification problems.

PLSR process

Dummy-coding

Although PLSR was initially dedicated to continuous outputs, it is possible to treat categorical data like ours (class labels) as continuous ones by transforming them according to dummy-coding [START_REF] Boulesteix | Partial least squares: a versatile tool for the analysis of high-dimensional genomic data[END_REF]. Thus, prior to PLSR, each output y i∈ [1,n] ∈ {1, . . . , c} from Y is transformed in a c-dimensional vector, with c the number of classes. This new outputs vector Y is defined as:

y ij = 1 if y i = j y ij = 0 otherwise . (V.27)
In our case, considering a 4-class problem we have c = 4 and:

∀i ∈ [1, n], y i ∈ {1, 2, 3, 4} ∀i ∈ [1, n], y n1 = [1, 0, 0, 0] y n2 = [0, 1, 0, 0] y n3 = [0, 0, 1, 0] y n4 = [0, 0, 0, 1] . (V.28)

Percentage of variance explained

By applying both PLSR and PCR on our 4-strains E. coli database we can show on the fig. V.23 that PLSR is as good as PCR to explain the variance of the data. But where PCR does not take into account responses, PLSR also try to maximize the variance of the responses. This also shows that only few first principal components computed from regressions are needed to explain almost all the variance of data and outputs. We also can observe that 15 = 12 + 2 + 1 images were misclassified. Among them 12 were classified as ATCC® 25922 while only 2 were classified as ATCC® 9839 and 1 as ATCC® 35421. This confirms the results obtained from PLSR and showed on spider plots.

Components selection by minimizing the error of prediction

A good strategy when dealing with choosing the number of components is to minimize the expected error when predicting the response from data. As said before, using a large number of components will produce a model that fits well the observed data but will lead to overfitting and thus will be poorly accurate on unseen data. In this case we also use cross-validation so as to use different subsets for fitting and estimating the prediction error. By doing so, we guarantee that the estimate of prediction error is not too optimistic (i.e. biased downwards) [153]. The implementation of the PLSR under Matlab™ have an option that allows the estimation of the mean squared error of prediction (MSEP) using k-fold cross-validation. Fig. V.26 shows on plot (b) the estimation of MSEP against the number of components selected. This graph allows us to choose the optimal number of components which corresponds to the estimation of the lowest MSEP. In the displayed example, the optimal number of components is 17 and we can observe that adding more components increase the MSEP. It is interesting to note that, as illustrated on graph (c), this number of components does not necessary corresponds to a maximum of the variance explained. 

V Data processing : from images features extraction to machine learning algorithms

PLSR weights

Looking at the PLSR weights is a good way to identify the importance that each principal component gives to each features of the data. The weights of the first five components of PLSR are displayed on fig. V.27 and thus shows on which features they rely on. A more informative graph is to plot the cumulative weights for a certain number of components to know which features are responsible for the best estimation of prediction rate. Thus, on fig. V.28, both graphs exhibit periodic weights patterns. Graph (a) plots the PLSR weights cumulated over the optimal set of first 17 components. We can notice that the weights always increase on low Bessel-Fourier moments orders and decrease for the high orders. Conversely, the weights pattern exhibited on the graph (b), which sums the PLSR weights of the other components (from the 18 th to the 239 th in our example), consists of high values on high Bessel-Fourier moments orders and low values on low orders. Thus it indicates that the separation between the four E. coli strains is based on coarse intensity variations of scattering patterns. Then, taking further components than the 17 optimal ones, gives more weight to high orders moments and thus, as previously showed, increases the estimate error prediction. This is interesting because it explains why using Zernike moments initially gave not so bad results. Indeed, they were good at retrieving coarse intensity variations as the low orders Bessel-Fourier moments do. Both graphs exhibit opposed periodic patterns. In (a) weights are always higher for low orders moments and low for high orders while, conversely, on the graph (b), weights are higher for high order moments and low for low orders ones.

Toward a dedicated projection basis

We are now able to build our new projection basis based on the 17 principal components weights issued from the PLSR. As previously explained in subs. 3.1, each component is a linear combination of the original features vector components and the coefficients are the PLSR weights. Thus, the new basis has been computed and is displayed on fig. V.29. Each vector of this basis is a linear combination of the Bessel-Fourier moments weighted by the PLSR weights and as stated in the previous paragraph, they principally exhibit coarse variations. algorithms 

Results

The database has been projected on this new basis and SVM classification combined with optimization has been conducted. Many advantages have been observed and are summarized on the fig. V.30. First the overall correct classification rate averaged on hundred 10-fold cross-validations has been raised to 92.3%±0.2%. This is nearly 5% better than the previous result. Then the standard deviation has been greatly reduced from 0.7% to 0.2% which is an indicator of an increase in reproducibility. The number of support vectors has also been reduced from 175 to 134 which shows that the SVM produce a more general classification model that will certainly be more accurate on new data. Finally, the computational cost has been dramatically decreased since the time needed for the projection of an image on this new low-dimensional basis has been divided by a factor of 14. The computational cost diminution is well appreciated when thinking of the ELS method integration in a microbial diagnosis work-flow. We can notice an increase of the correct classification rate of around 13% and a decrease of the computational time by a factor of 6 for the grid-search optimization and a factor of 14 for the features vector calculation. The number of support vectors for the SVM algorithm has also been decreased from 215 to 134 which provides a more general classification model.

Results, conclusions and perspectives

Results, conclusions and perspectives

Back to Zernike polynomials

Since the previous results on the E. coli database in transmission showed a classification model fairly based on coarse intensity variations, I have performed the optimization and PLSR of the dataset computed with Zernike polynomials (radial and azimuthal orders up to 20 which makes 121 moments). 26 principal components were selected from PLSR. Correct classification rate could be increased up to 95.7% ± 0.3% by using a degree two polynomial kernel (as defined in eq. Comparison between the use of Bessel-Fourier and Zernike moments for features extraction. We can notice that despite providing high MSER (poorly accurate image description) using Zernike moments leads to higher classification rate. The computed classification model is also more general (uses twice less support vectors). algorithms Those conclusions were made from this small E. coli database where apparently only coarse details in images were necessary to produce accurate discrimination between bacterial species. Adding more information by using a finer description of the scattering patterns may add noise to the features vectors or at least intensity contributions that may not be related to bacterial specificity and thus lower the classification performances. However when considering a larger database with more species, finer descriptors such as the ones obtained from Bessel-Fourier polynomials may be needed to access more discriminant information on scattering patterns. This will be discussed in the next paragraph.

E. coli database in reflection geometry

Before evaluating a larger database, the same study was performed on the E. coli database acquired with a reflection geometry. Results are summarized on fig. V.32. Best classification performances were obtained using 420 Bessel-Fourier moments (both azimuthal and radial orders up to 20) and a SVM with a degree two polynomial kernel. PLSR was performed and 15 principal components were selected. I reached an averaged global correct classification rate of 97.4% ± 0.2% which is 17% more accurate than the first results described in subs. 2.2 (chapter II) and also 2% better than the best classification rate obtained on the same four E. coli strains in transmission geometry. 

Toward larger database: Gram test and screening of SA and MRSA carriers

Gram test

The Gram test introduced in subs. 2.2 (chapter II) has also been pushed further since the PLSR combined with the optimization of a SVM using a RBF kernel (as defined in eq. V.18) provided us with an averaged correct classification rate of 98.1% ± 0.2%, which is a 3.4% gain. This database was acquired at 6 hours of incubation in transmission geometry over 15 species (previously detailed in subs. 

2.2). The table presented on

Screening of SA and MRSA carriers

As briefly mentioned in subs. 2.2 (chapter II), an acquisition campaign on the screening of S. aureus and methicillin-resistant S. aureus was launched in 2015 at the Centre hospitalier universitaire de Grenoble (Bacteriology laboratory directed by professor Max Maurin). Around 5000 scattering patterns were recorded over 38 different strains from 12 Staphylococci. At that time we could reach an average correct classification rate of 77.5% ± 0.5% which I could increase with optimization and PLSR to 86.2% ± 0.4%. This classification rate is a binary classification result since it corresponds to the correct discrimination rate between S. aureus and white Staphylococci. I used 1360 Bessel-Fourier moments (80 th radial order and 16 th azimuthal order) reduced to 38 components with PLSR. Now with the use of novel textures descriptors developed by Olivier Gal and Chakib Belafdil from the CEA/List laboratory, the classification rate has been increased to 91.4% which is close to the 93% claimed by bioMérieux [154] with their chromogenic medium chro-mID S. aureus read after 24h of growth in incubator compared to only 6h for our ELS method. We thus obtain comparable results as the current reference method but in 4 times less time.

Conclusions and perspectives

This chapter has given an overview of the work I did concerning data processing, from features extraction of scattering patterns to the classification task and its improvement. Thus we learned that there is no need for a super high accurate images description to get high correct classification rate. Currently, other images descriptors are being tested by our team. For example, textures descriptors such as Haralick or Local Binary Patterns are computed and concatenated to the Bessel-Fourier moments. They add discriminant information by catching local textures patterns that appear on scattering patterns, especially when working on longer incubation time like 24h. As stated in sec. 1, intuitive reasoning does not necessary leads to better results. This is why, we better test many solutions and V Data processing : from images features extraction to machine learning algorithms compare the obtained classification performances, especially since one method does not fit all databases.

Concerning the learning process, the optimized SVM algorithm tested provides satisfying results. Other approaches are also being tested. Among them, Neural Networks and Boosted Trees already give promising performances. Since the field of machine learning is in complete effervescence since few years, many improvements will be done and we surely will benefit from them.

Finally, the applied dimensionality reduction method, not only allowed us to increase classification performances and reduce computational cost, but also could interestingly relates those classification results to the data themselves. Reducing computational costs really makes the ELS method appealing and suitable for integration in a microbial diagnosis work-flow as specified in the WHO recommendations [START_REF] Who | Who global strategy for containment of antimicrobial resistance[END_REF][START_REF] Wasington | National action plan for combating antibiotic-resistant bacteria[END_REF].

Last but not least, we realized that the way data are processed and learning algorithms are trained are of great importance and thus should be treated, with at least, the same attention as the instrument that acquires the scattering patterns. Each step of the ELS for microbial identification method is important and must be carefully tuned to guarantee optimal performances.

Chapter VI

Dynamic speckle analysis as a tool for studying the dynamic phenotypic signature

Speckle patterns are intensity patterns induced by mutual interference of multiple wavefronts. This phenomenon typically appears in diffuse reflections of monochromatic light (such as the laser light used for ELS) on rough surfaces or media containing a large number of scattering particles. In our case, it has been shown that speckle patterns can be observed when microorganisms macrocolonies are illuminated with the ELS instrument.

We may wonder if this speckle field, taken alone without the diffraction from the colony border, can be a phenotypic discriminant feature for microorganisms classification.

Whether it is in astronomy[155], mechanical engineering [START_REF] Zaitsev | Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography[END_REF] or biology [START_REF] Nassif | Detection of golden apples climacteric peak by laser biospeckle measurements[END_REF][START_REF] Fujii | Blood flow observed by time-varying laser speckle[END_REF], statistical analysis of speckle fields can provide useful information about spatial or temporal phenomenon [START_REF] Rabal | Dynamic Laser Speckle and Applications[END_REF]. This is why I investigated the possibility of discriminating microorganisms on their dynamic phenotypic signature by means of dynamic speckle analysis during their growth on culture plates. This chapter will start with a brief overview of the different techniques used for biospeckle patterns analysis, that is to say, speckle acquired on biological samples. Then I will present an attempt of bacterial classification based on differences in cellular replication times. For this task, I created and implemented a cellular automaton that mimics bacterial growth and I coupled this with a speckle field generation model to compare numerical simulations with experimental results. Finally I will detail a practical application for antimicrobial susceptibility testing by means of dynamic speckle analysis combined with machine learning algorithms.

Overview of biospeckle analysis usage and applications

This first section does not intend to be an exhaustive review of all existing speckle analysis methods and their numerous application possibilities. I rather wanted to introduce the main approaches used for the analysis of speckle fields acquired on biological sample, so that the reader can fully understand the ins and the outs of the study I will detail in this chapter.

Origin of biospeckle formation

As illustrated on fig. VI.1, when a coherent light beam irradiates a rough surface, the scattered light interferes with itself and produces randomly distributed dark and bright spots of different size and shapes called speckle grains or patterns. As mentioned, biospeckle is thus an interference phenomenon that occurs when a biological sample is illuminated by a coherent light source. In the case of biological material, light can penetrate more or less deeper in the sample through cells or skin for instance [START_REF] Castronuovo | Skin perfusion pressure measurement is valuable in the diagnosis of critical limb ischemia[END_REF]. Each encountered particle will then act as a diffuser that sometimes can be in motion, like blood cells inside blood vessels for skin imaging applications for example [START_REF] Richards | Lowcost laser speckle contrast imaging of blood flow using a webcam[END_REF]. Active movement of microorganisms is also a source of biospeckle activity and can be used in various fields such as biology for the detection of bacteria in liquid culture media [START_REF] Zheng | Feature information extraction from dynamic biospeckle[END_REF] or the evaluation of the viability of animal semen [START_REF] Carvalho | Motility parameters assessment of bovine frozen semen by biospeckle laser (bsl) system[END_REF] for instance. It has also been utilized in agriculture for the detection of fungi in beans [START_REF] Jr | Detection of fungi in beans by the laser biospeckle technique[END_REF] or the control of fruits quality [START_REF] Zdunek | Relation of biospeckle activity with quality attributes of apples[END_REF] for example. Two main basic categories of speckle exist depending on the acquisition configuration [START_REF]Statistical properties of laser speckle patterns[END_REF]:

1 Overview of

biospeckle analysis usage and applications

Objective speckle This kind of speckle is obtained when there is not any lens involved. Thus, the speckle can be observed directly on a screen. The average size of the speckle grain directly depends on the wavelength of the coherent source and the size and the geometry of the illuminated surface. Considering an area of diameter D, illuminated by a source with a wavelength λ, the statistical average size of the speckle grains observed at a distance L is λL D .

Subjective speckle This is the name given to speckle imaged with an optical system. In the case of a lens with F -number F (focal lens f to lens diameter D ratio) such that the image/object magnification is M , the diffraction-limited average speckle size is given by 1.2(1 + M )λF .

As illustrated on fig. VI.2, we recurrently encountered speckle patterns when using ELS, especially with old colonies (24 hours) or colonies from the Bacillus family. 

Methods for biospeckle analysis

In the case of biospeckle acquisition from time evolving biological samples, a traditional method involves analyzing the Time History Speckle Pattern (THSP). The THSP is a 2D image with its rows representing the biospeckle spatial profile and its columns describing the temporal behavior [START_REF] Walsh | Antibiotic resistance: Cameron warns of medical 'dark ages[END_REF]. Using this kind of representation, main methods to extract information are the autocorrelation function, the inertia moment of the co-occurrence matrices and the Brier's contrast [START_REF] Chan | Antimicrobial resistance in the european union and the world[END_REF][START_REF] Sheth | Antibiotics will be the death of modern medicine -an informed guide to preventing the end game of medicine as we know it![END_REF][START_REF] Bensted | Dysentery bacilli-shigella; a brief historical review[END_REF]. To keep the spatial information of the illuminated scene and construct related activity maps, tools based on Fujii's method [START_REF] Fujii | Evaluation of blood flow by laser speckle image sensing. part 1[END_REF] or Laser Speckle Contrast Analysis (LASCA) are preferred. They found various applications whether it concerns paints drying time characterization in [START_REF] Faccia | Differentiation of the drying time of paints by dynamic speckle interferometry[END_REF] or biology, especially for the imaging of tissues vascularization [START_REF] Draijer | Review of laser speckle contrast techniques for visualizing tissue perfusion[END_REF].

Numerous methods can be found in the cited literature. I will focus only on the methods I used for my application: the calculation of the normalized autocorrelation intensity in a first part and statistical descriptors combined with learning algorithms in a second part.

DSA for microorganisms classification

In this section, I will detail the study I conducted so as to test the ability of speckle imaging for microorganisms classification. Since I wanted to take advantage of the dynamic phenotypic signature, I tried to demonstrate if we could differentiate different species based on their cellular generation time. Cells movements directly affect the biofilm surface aspect indeed, which in turn will greatly influence the speckle pattern distribution. The temporal analysis of this speckle field should thus give us discriminant information.

Numerical simulations

I first decided to build a numerical model for speckle imaging on growing microorganisms to know if we could reasonably achieve microorganisms discrimination based on their cellular generation time. In this condition, I implemented my own cellular automaton to mimic the microorganism growth from the temporal point of view and also a speckle field generator that could be coupled with the cellular automaton.

Cellular automaton

From the very first "Game of Life" devised by the British mathematician J. H. Conway in 1970 [START_REF] Gardner | Mathematical Games: The fantastic combinations of John Conway's new solitaire game "life[END_REF], cellular automata have been widely studied in mathematics, physics, theoretical biology and microstructure modeling [START_REF] Wolfram | Statistical mechanics of cellular automata[END_REF]. Basically, a cellular automaton consists of a regular grid of cells defined by a finite number of states. The whole grid is governed by an ensemble of rules. Thus, the state of one cell depends on temporal and spatial rules which also take into account the state of the neighbor cells.

Inspired by [START_REF] Men | Microbial growth modeling and simulation based on cellular automata[END_REF], I designed my own cellular automaton (CA) under Matlab™ so as to model the bacterial growth on a culture plate. Bacterial cells shape are not taken in account and we assume that one cell on the grid (one case of the matrix) is one bacterial cell. The main grid is defined on three levels so as to simulate a growth in 3D over three layers of cells. Basically, one cell can be in three different states: 0 when the bacterial cell is dead (or grid cell empty), 1 when the cell is in division mode and 2 when the cell is in growth mode. At the beginning, the grid is "inoculated" following the same concentration of bacterial cells we experimentally use when inoculating a culture plate. As an example, inoculating a standard Petri dish (96mm in diameter) with 10µL of a bacterial suspension at 0.5McF is equivalent to set around 200 cells at the state 2 for a 1000×1000 numerical grid (1µm pixel size). Once the grid is initialized, we set the phenotype of each cell. I defined the phenotype of one cell as a list of parameters. Among them:

• the generation time: duration between two cell divisions,

• the division probability: the probability that the cell divides itself which depends on the food availability and the number of neighbors. It models the cell competition for food and space,

• the survival time: the time the cell can survive without food.

Each probability has been arbitrary defined but follows natural observed behaviors. Thus, for example, a cell which is fully surrounded by other cells will have less probability to divide itself because of the pressure contrary to one cell that have no neighbors and thus have more space and food available. The food is also managed with grid. In each cell of the food-grid, there is a number of food units. Of course, bacterial cells can eat the food from their own cell on the grid but also can eat the food from neighboring cells but with less probability.

Another important point is the generation time and the phenotype inheritance. Considering one bacterial strain, each cell will not have exactly the same generation time. Thus, I arbitrary defined a Gaussian distribution for the attribution of the generation time to the cells with mean set to the main desired generation time (30min for example) and a standard deviation of 1min . The question of the phenotype inheritance arises. Indeed, it has not be proved yet that daughter cells inherit the phenotype from their mother. Thus I defined the following rule: during the division, the daughter does not necessary inherits its mother's phenotype. This inheritance rule also follows a Gaussian distribution centered around the initial chosen generation time so as to maintain the global phenotype distribution set during initialization.

The algorithm that rules the update of the grid is detailed on fig. VI.3. The loop is on a time scale of one minute. After the grid initialization, each cell is tested. Depending on its state, different rules are applied. If the grid cell is empty (state = 0), nothing happens. If the grid cell is in division state (state = 1), we check the number of neighbors and apply the previously defined probability to determine if the cell effectively divide itself. If this is the case, the mother cell goes back in growth state (state = 2) and one empty neighbor cell is selected and set to the growth state. The phenotype inheritance rule is then applied. If the cell does not divide itself, its state is set to growth state. Finally if a cell is in growth we check the number of neighbors and apply the previously defined probability to determine if the cell effectively divide itself. If this is the case, the mother cell goes back to growth state (state = 2) and one empty neighbor cell is selected and set to the growth state. The phenotype inheritance rule is then applied. If the cell does not divide itself, its state is set to growth state. Finally if a cell is in growth state, we check for food availability. If there is food we apply the probability that the cell eats one unit and then the probability that it goes into the division state. If there is no more food, we debit one unit from the survival time counter. The probability that the cell enters the division mode, although there is not any food, is checked and we also check that the survival time counter has not reached zero. Then the cell state is updated. The algorithm can be stopped after different criteria are met.
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Retrieving cell generation time

As illustrated on fig. VI.4, the bacterial growth usually follows four different phases [START_REF] Rolfe | Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation[END_REF]. Just after inoculation, cells are not dividing but rather prepare themselves for by increasing in metabolic activity. The length of this so called lag phase depends on a wide variety of factors such as the time needed to recover from physical damage during the transfer, the size of the inoculum or the time necessary to metabolize the culture medium for example. Then comes the exponential growth phase where all the cells are regularly dividing by binary fission. The cells are dividing at a constant rate called generation time or doubling time, which may vary according to growth conditions like the culture medium composition or incubation temperature for instance. Since cell growth generally occurs in closed environment with limited nutrients stock and limited biological space, a stationary phase follows the exponential growth. Finally, if the incubation continues, a death phase follows during which the viable cell population decreases. I generally stopped my CA once the stationary phase was reached because this is during the exponential growth that we expect the speckle field to have more fluctuations. An example of CA running is provided on fig. VI.5. The cell population evolution curve is also displayed and shows the expected typical growth phases. The lag phase does not appear since I do not take into account this phase into the CA algorithm. During the exponential phase, cells grow by binary fission (one mother cell divides into two daughter cells). Therefore, the cell population increase follows a geometric progression defined by:

N end = N start × 2 n , (VI.1)
where N start and N end are respectively the number of cells at the beginning and at the end of a time interval t. n is the number of generations, that is to say, the number of times the cell population has doubled during t. It is related to the generation time G by: 

G = t n . (VI.2)
Therefore, we can deduce the generation time from the cell population growth curve by calculating:

G = t 3.3 × log 10 N end Nstart . (VI.3)
For example, on the above mentioned simulation displayed on fig. VI.5, I found the generation time G = 29min. This is consistent with the generation time I set for the simulation. The difference is due to the phenotype mutations I modeled with the Gaussian law centered at G = 30min for the generation time distribution among the cell population.

Once the CA was implemented, I coupled it with the generation, in real time, of the speckle field originated from the culture grid surface illumination with a coherent light.
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Speckle field generation

As previously mentioned, the CA I developed does not take into account the cells shape during the growth modeling since only pixels on the grid are considered with states on/off. Knowing the fact the illuminated surface roughness have a great influence on the speckle pattern this bacterial growth model is still relevant since we only have interest for temporal variations. Therefore, I considered pixels on the grid as unique cells with size around 1.5µm. The CA map was then converted to a height map H and used for the modulation of a phase function Φ. Considering free space propagation with no pupil function to take into account (except the Gaussian one due to illumination spot zone) one can express the speckle field amplitude E associated to the bacterial growth as [START_REF] Goodman | Speckle phenomena in optics: theory and applications[END_REF]:

E = |F -1 F(E 0 e iΦ ) | 2 , (VI.4)
where E 0 is the field amplitude at the surface plane, F the Fourier transform and F -1 the inverse Fourier transform. The phase function Φ is modulated by the cells proliferation as:

Φ(x, y) = 2π(n bact -n air )H(x, y) λ , (VI.5) 
where n bact and n air are the refractive indices of bacterial cells and air respectively, H(x, y) is the CA map converted into a height profile map. The illumination spot size aperture effect was taken in account in H using the Gaussian transverse intensity profile property of a Gaussian laser beam (detailed in chap. IV eq. IV.12). λ is the illumination wavelength.

Since the generated phase is not fully distributed between -π and π, this simulation leads to speckle field that is not fully developed. Thus, as illustrated on fig. VI.7, its intensity statistic (histogram of a simulated speckle pattern from one CA frame on image (a)) is slightly different from the expected Rayleigh distribution[177] (histogram of one fully developed speckle image (b)). In practice, acquired speckle with our instrument were fully developed considering the roughness amplitude larger than the wavelength and the roughness correlation much smaller than the illuminated area. VI Dynamic speckle analysis as a tool for studying the dynamic phenotypic signature

Normalized intensity temporal autocorrelation

A classical tool to analyze the temporal fluctuation of a speckle field is to compute the autocorrelation of its normalized intensity which is defined as [START_REF] Gutt | Measuring temporal speckle correlations at ultrafast x-ray sources[END_REF]:

C(x, y; τ ) = 1 T -τ T -τ t=1 I(x, y; t)I(x, y; t + τ )δt , (VI.6)
where, I(x, y; t) is the normalized speckle field intensity at the coordinates (x, y) taken at the time t. δt is the time difference while τ is the lag time taken for the autocorrelation calculation. The lag time τ can be adjusted depending on the acquisition rate and also the temporal range of the signal of interest. For instance, in our case, the typical time constant of the signal we want to detect is at least 25min since the shortest generation time we could observe was around 25/30min for E. coli species. Setting the lag time to few seconds is not reasonable in this case since it would increase the risk of catching temporal fluctuations arising from undesired signals. Therefore, this method requires an a priori knowledge of the time constant of the signal to be analyzed. 

Results

Experimental results

After assessing the possibility of using this method for sensing the bacterial activity with numerical simulations, I experimentally tested it on culture plates.

Instrument

The first instrument tested, described on fig. VI.9, was configured to record objective speckle patterns. That is to say, there were no lenses between the CCD sensor and the sample. A simple laser source at 534.2nm illuminates the culture plate with its lid closed. The beam extension and divergence was adjusted to adapt the speckle grain size regarding the sensor pixel size. Finally the whole instrument was placed in an incubator with controlled temperature for optimal microorganisms growth. The region illuminated was around 1cm large.

Figure VI.9: First version of the instrument for objective speckle acquisition. A laser source (534.2nm) illuminates a culture plate with closed lid. A sensor, without lenses, is placed close to the sample so as to record the speckle pattern. The whole system is in an incubator with temperature set for optimal bacterial growth.

Sterile versus contaminated plates

As illustrated on fig.VI.10, comparing speckle pattern taken at different times confirms the potential of the method in detecting microorganisms proliferation on culture plates. Indeed, as shown on image (a.3), no changes occur on the control sterile plate while significant changes can be observed on the plates that were inoculated with bacterial suspension.

On fig. VI.11 is presented normalized autocorrelation curves for experimental acquisitions on sterile and contaminated culture plates. COS culture plates were used and incubated 15 hours at 37°C. Contaminated plates were culture plates signature inoculated with 40µ/L of an E. coli ATCC® 25922 suspension obtained from a 1:1000 diluted 0.5McF suspension. Sterile plates were inoculated with 40µ/L of sterile suspension medium so as to take into account the presence of liquid on the surface of the culture medium. We can observe that we are able to easily distinguish the two categories and thus detect the bacterial proliferation.

To push further this techniques, it could be interesting to determine which minimal size of colony we are able to detect so as to compare it with the EviSight™(bioMérieux) launched in 2016 which is able to detect colonies from 30µm [179].

One may wonder if we could make discrimination between different bacterial species on this principle. 

Bacterial discrimination

Acquisitions were made based on the same protocol as explained in the previous paragraph. This time different bacterial species were used: two E. coli strains, ATCC® 25922 and ATCC® 35421 and one Staphylococcus epidermidis ATCC® 12228. The results displayed on fig. VI.12 shows that I could not achieve the discrimination between the species. Taking microorganisms with very different generation time like E. coli and Candida albicans for instance could have provide better results since yeasts are known for having generation time much longer than 30min. However this discrimination would not have been clinically relevant. As reported in [START_REF] Yoon | A simple and rapid method for detecting living microorganisms in food using laser speckle decorrelation[END_REF], Yoon et al analyzed speckle fields generated from sterile and experimentally contaminated food samples (fresh chicken breast). This method hardly can be considered for microorganisms classification. Bacterial species involved in common foodborne diseases have generation time too close to be distinguished.

As mentioned in the introduction, many other statistical indicators can be used for biospeckle analysis and may eventually lead to better results. In the next section, I will present another approach that keeps the spatial information from the scene and thus allows to compute activity maps that help discriminate zones depending on their surface changes.

Dynamic speckle analysis for antimicrobial susceptibility testing

Considering the previous results, it appeared that DSA (Dynamic Speckle Analysis) could be especially appropriate for the reading of antimicrobial susceptibility tests.

Antimicrobial Susceptibility Testing (AST)

As mentioned in the first chapter, another important task in clinical diagnosis is the Antimicrobial Susceptibility Testing (AST) and the reading of the Minimum Inhibitory Concentration (MIC). It involves determining the best drug and what concentration to use to treat an infected patient. It is also useful to detect possible resistance of the pathogen to certain drugs [START_REF] Reller | Antimicrobial susceptibility testing: A review of general principles and contemporary practices[END_REF]. Most commonly used methods are culture based phenotypic methods. Since results are only available after 48 to 72 hours after sampling, the patients receive meanwhile empirical antibiotherapy. It is this inadequate therapy routine and the use of broad-sepectrum antibiotics that greatly participate in the emergence of multi-drug-reistant microorganisms [START_REF] Coorevits | Direct susceptibility testing by disk diffusion on clinical samples: a rapid and accurate tool for antibiotic stewardship[END_REF].

Since 1966, the disk diffusion method [START_REF] Aw | Antibiotic susceptibility testing by a standardized single disc method[END_REF] remains among the most widely used techniques. Another is Broth Microdilution (BMD) testing which is currently the reference method to which all other AST methods are compared to during their development [START_REF] Van Belkum | Next-generation antimicrobial susceptibility testing[END_REF]. As illustrated on fig. VI.13, the disk diffusion method involves placing antibiotic disks (filter-paper disk impregnated with an antibiotic) on an inoculated culture plate to test the susceptibility of the pathogen. Basically, the plate is inoculated, then the disks are placed and it is left to incubate. If an antibiotic stops the bacterial growth or kill the bacteria, there will be a visible area around the disk where the bacteria have not grown. This is the inhibition zone and its size depends on how the antibiotic is effective on the bacteria. Thus, a strong antibiotic will create a large inhibition zone around the disk and tends to correlate with small MIC (because a low concentration of antibiotic is sufficient to inhibit bacterial growth). The BMD method, illustrated on fig.

VI.14 usually involves filling a 96 micro-wells tray with varying concentrations of antibiotics suspensions and observe the bacterial activity in each well after incubation. All AST methods provide at least qualitative results using categories susceptible, intermediate or resistant but can also provide quantitative MIC. Methods based on solid culture plates, such as the disk diffusion method have the advantage of easily allowing the testing of antimicrobial synergies, that is to say the effect on bacterial growth of the combination of two or more antibiotics. Therefore, since AST methods based on solid culture plates are current reference methods, using DSA for measuring bacterial activity maps on such application could help provide crucial results in much less time.

Instrument

As proposed in [START_REF] Murialdo | Analysis of bacterial chemotactic response using dynamic laser speckle[END_REF], I used the configuration described on fig. VI.15 for the acquisition on AST. A 650nm laser diode was used. At this wavelength close to signature near infra-red, more light is absorbed by water. Thus, to limit the culture medium warming that would cause an exposition to this laser beam during 10 hours, I added a shutter synchronized with the CCD sensor acquisition rate so as to illuminate the sample only when the sensor was grabbing an image (1s maximum). The CCD sensor was coupled with an objective to image the sample and thus record subjective speckle patterns. The whole instrument was placed in an incubator for optimal microorganisms growth. A laser diode (650nm) was used for this task so as to get high transmission through COS plates. A shutter was synchronized with the acquisition camera so as to illuminate the sample only during the acquisition (maximal illumination duration 1s). The CCD sensor was coupled with an objective to get an image from the sample and thus record subjective speckle patterns. The whole instrument was placed in an incubator with controlled temperature around 37°C.

Spatial classification based on learning algorithms

Images of speckle pattern were acquired at constant time intervals with the instrument previously introduced. Then each pixel intensity was analyzed as temporal sequence using different statistical descriptors. Numerous descriptors for speckle patterns characterization have been developed and presented in literature. Most of them achieve good performance in describing the dynamic signature of the sample [START_REF] Arizaga | Dynamic Laser Speckle and Applications[END_REF]. Since the physical description of the dynamics is often barely understood, most of descriptors are heuristic or based on statistics [START_REF] Pra | Signal feature extraction using granular computing. comparative analysis with frequency and time descriptors applied to dynamic laser speckle patterns[END_REF]. Hereafter, I propose a set of well known time-domain descriptors. We cannot expect, indeed, to fully characterize the pixels intensities variations with only one descriptor. I will thus introduce in the next sections a method using learning algorithms able to recognize and classify what I call similar activity zones. In other words, as evoked in chap. V, I use unsupervised learning algorithms so as to automatically identify and classify pixels from the illuminated scene depending on their dynamic characteristics.

Statistical descriptors

I will introduce here the list of descriptors I used [START_REF] Sendra | Biospeckle descriptors: a performance comparison[END_REF]. They are mainly timedomain descriptors except the Shannon wavelet entropy which is a time-frequency 154 3 Dynamic speckle analysis for antimicrobial susceptibility testing descriptor. In the followings, I n is the intensity of one pixel of the n th ≤ N speckle image. N is the total number of acquired images during the acquisition.

Subtraction average of consecutive intensities

The simplest one, which is the subtraction average of two consecutive elements:

SA = N -1 n=1 |I n -I n+1 | N -1 . (VI.7)
Averaged differences Also known as the Fujii's descriptor [START_REF] Fujii | Evaluation of blood flow by laser speckle image sensing. part 1[END_REF], the difference between contiguous samples is weighted by the local average:

AD = N -1 n=1 |I n -I n+1 | |I n + I n+1 | . (VI.8)
Generalized differences Since AD is not suited for detecting slow varying signals and is sensitive to noise regions of low intensity, the generalize differences descriptors GD take into account intensity variations in different time scales:

GD = i j |I i -I i+j | . (VI.9)
Dynamic range It is computed as the difference between the maximum and the minimum value of the intensity and is good at discriminating regions with coarse different dynamics. 

Substantial change counts

It counts how many times there is a substantial change of the pixel intensity. The substantial change is defined using a threshold t computed from the first two images. It is the average absolute intensity difference across all pixels considering non zero absolute differences.

SCC = N -1 n=1 δ n N -1 , (VI.11)
where:

δ n =    1 if |I n+1 -I n | ≥ t , 0 if |I n+1 -I n | < t .
(VI.12)

Shannon wavelet entropy Discrete wavelet transform is used to compute a timefrequency representation of the speckle temporal signal so that stationarity is ensured. Then Shannon entropy is computed:

SW E = - B i=1 q i log(q i ) , (VI.13)
where B is the number of sub-band signals obtained after taking the discrete wavelet transform of I. q i is the relative wavelet energy [START_REF] Sendra | Biospeckle descriptors: a performance comparison[END_REF].

k-means clustering

k-means clustering is an unsupervised learning algorithm which aim at finding k clusters into a set of data. The principle is illustrated on fig. VI.16. I will not enter in details of the algorithm but basically it follows these steps: initially, k "means" are randomly generated within the data. Then k clusters are created by associating every instance with the nearest mean. The centroid of each of the k clusters becomes the new mean. The two previous step are repeated until convergence criterion is met. For this task, I used the Matlab™ function kmeans with the squared Euclidean distance measure. The number of clusters and the metric can be varied.

At the same time, Pra et al [START_REF] Pra | Dynamic speckle image segmentation using self-organizing maps[END_REF] proposed to compute activity maps using Self-Organizing Maps (SOM). SOM are a type of artificial neural network trained using unsupervised learning algorithms. They achieved similar speckle images segmentation based on differences in dynamics on bruised apples and paints drying. I also tested this approach using convenient SOM implementations under Matlab™ but found it much heavier and longer than my simple k-means approach which already provided promising results.

Results

I used the presented tools on different microbiological applications. The clusters attributed to different pixels in the scene image were used to display an activity map where the colors code the different zones with similar dynamic characteristics according to the statistical descriptors used.

Simple case validation: contaminated droplets

In this experiment, I dropped off a few micro-liters droplets of 0.5McF bacterial suspension on culture plates and placed it into the incubator at 37°C for a few hours. The results are displayed on fig. VI.17. Droplets positions and shapes could be retrieved after only 4 hours of incubation (right image, activity map) while the image on the left was taken after 20 hours of growth. On the activity map, one may notice brighter rings around the retrieved droplets. This indicates higher bacterial cells concentration at the border of the droplet due to fluidic interactions.

Figure VI.17: A COS culture plate was inoculated by dropping off some micro-liters droplets of 0.5McF bacterial suspension (E. coli ATCC® 25922). The plate was then placed onto the instrument previously described at 37°C during 20 hours. The activity map presented on the right shows pixel with similar dynamic characteristics according to the statistical descriptors previously introduced. This map was computed after only 4 hours of incubation while the image on the left was taken after 20 hours of incubation.

It shows the ability of the presented method to spatially detect bacterial proliferation in a simple case (high bacterial cells concentration). One Mueller-Hinton culture plate was inoculated with an E. coli ATCC® 11775 suspension. I dropped off an Etest®AMPICILLIN AM (bioMérieux) on the culture plate and then placed it onto the instrument. The activity map displayed on the right prove the possibility to read the MIC after only 4 hours of incubation at 37°C while the image on the left was taken 20 hours after incubation. The map displays only 3 clusters. The yellow lines are the scratch patterns made during the inoculation with the plastic swab and show high activity while dark blue refers to the culture medium surface free of cells and the blue-green color stands for inactivity. The Etest®appears both in dark-blue and blue-green because it is a paper-filter that sucks the water from the culture medium as it enters in contact with it. Thus it has an activity which, of course, is not similar to the one caused by bacterial proliferation. 

Application to naturally rough substrates: Petrifilm and filtering membranes

As illustrated on fig. VI.20, early speckle imaging on culture plates can sometimes be limited by slow bacterial growth. It would thus be interesting to apply this method to naturally rough substrates.

For example, on fig. VI.21 the image (a.1) shows a Test 3M™Petrifilm™. This substrate is considered as the future of the Petri dish since it can be stored at ambient temperature (since the culture medium is dehydrated), takes much less space (as thin as paper sheet) and is provided with many different tests possibilities (coliforms, Listeria, Enterobacteriacea as well as Staphylococcus tests) [193]. Filtering membranes (image (b)) are also of great interest since they are used for water microbial analysis. In this case, 100mL of water is filtered through one of this membrane. Eventually, microorganisms cells may be caught, depending on their sizes. Then the membrane is placed on a classic culture plate and incubated as well. The nutrients reach the microorganisms by capillarity. The image (a.2) shows the speckle field originated from the illumination of a Petrifilm™. Therefore naturally rough alternative culture substrates could allow to perform speckle analysis much earlier. 

Conclusions and perspectives

Starting with the idea to use coherent lighting to access the dynamic phenotype signature of growing microorganisms, this chapter showed the work I did to extend the speckle analysis to the characterization of disk-diffusion method-based AST.

The implementation of a cellular automaton that mimics bacterial growth coupled with the simulation of the corresponding biospeckle showed us the theoretical possibility of discriminating microorganisms depending on their generation time. However, experimentally, the analysis of the biospeckle normalized autocorrelation intensity alone failed to differentiate bacterial species. We have seen that numerous statistical descriptors exist and possibly may give us better results. Nonetheless, I personally doubt that this technique could discriminate bacterial species of interest only on temporal criteria since generation times will tend to overlap as the number of species is increased. Spatial statistics about speckle grains should be added to provide further information about the probed surface state.

On the other hand, the application of DSA to the generation of "similar activity" maps showed very promising results. Indeed, the combination of statistical descriptors of biospeckle pixel intensities temporal series with a k-means clustering algorithm allowed the detection of particular zones exhibiting similar dynamics. If this kind of analysis was already employed in various applications such as paints drying analysis, viability of seeds assessment or also cells motility on culture plate observation, this was the first time, to my knowledge that it was used to generate activity maps for the reading of AST and MIC determination. I thus showed the possibility of reading the MIC much earlier on Etest®. AST constructor as well as The European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommends to read the MIC between 16h and 20h [START_REF] Eucast | Mic determination of non-fastidious and fastidious organisms[END_REF]. This is intended to let the antibiotic diffuse in agar medium and also to let it impact the tested microorganism. Nevertheless, during the dozen of acquisitions we made, the MIC we read at 4 or 6 hours was always the same as the one read after 20 hours of growth in incubator. Even if we cannot conclude on those examples, this would be very interesting to investigate the possibility of reading the MIC much earlier than it is currently recommended by authorities. This would be of considerable interest since it could drastically reduce the time dedicated to AST with a simple instrument that can be easily integrated in a incubator. It has incidentally been already envisaged to put biospeckle analyzer in refrigerator for food control [START_REF] From | The fridge laser that detects bacteria crawling all over food[END_REF].

Finally, as mentioned, this chapter only touched on the biospeckle analysis, which could have been the topic of a complete Ph. D. thesis. Despite being very promising, the presented tools and results were not optimized and did not showed the whole potential of this technique. Thus, it would be interesting to study the accuracy and precision of the MIC reading depending on the descriptors and classifier chosen. As we could become aware of in chap. V, a meticulous choice of the right descriptors signature combined with a precise optimization of the classifier is crucial. I am personally convinced it would bring the power of this technique, studied for long time, to the fight against antimicrobial resistance.

Chapter VII

Conclusions and perspectives

The current health situation across the world is of great concern. There is an urgent need for novel and innovative diagnostic methods that would speed up accurate treatments decisions and be of significant utility for public health in the fight against antibiotic resistance. Most of research in modern medicine has abandoned culture-based methods in favor of rapid tools such as real-time PCR or Raman spectroscopy. Nonetheless, culture-based techniques remain the gold standard in clinical diagnosis and continue to hold interest of some researchers. ELS is an example of those techniques that can lead to rapid, accurate and affordable tools which can be integrated in automated clinical workflow. Compared to Raman spectroscopy, ELS yields much more photons which allows much shorter acquisition time and thus non-destructive process. It is based on the elastic scattering of a coherent light beam by a microorganism colony: the resulting scattering pattern is closely related to the microorganism phenotypic signature. Moreover, compared to PCR, ELS is much more affordable and does not require experimented staff to be utilized. This thesis have investigated the use of ELS for pathogens identification directly on their culture medium. Two main objectives guided my work. The first one was to improve the method itself through instrumentation design and data analysis optimization. The second purpose was to explain the physical origin of the observed complex scattering patterns. This study was motivated after noticing that we could not understand on which key features relied the learning algorithms used for scattering patterns processing. Improvements and optimizations are thus governed by trial and error process, which is definitely not efficient.

Instrument improvements

During this thesis work I could design a novel system for the acquisition of backward scattered patterns in reflection on non-transparent culture plates. This innovative system based on polarization management could enlarge the application domain of ELS to widely used enriched culture media in clinical diagnosis. The development of ray-tracing algorithms also could help us to adapt the instrument design. Indeed, it allowed us to relate the microorganisms colonies morphology to the numerical aperture needed to record their scattering patterns.

The short-term perspectives concerning the instrumentation are mainly focused on the acquisition automation. Whether it concerns colonies targeting, beam centering, laser spot size managing, sensor sample distance adjustment as well as correct acquisition time and High Dynamic Range images acquisition setting. This automation step is crucial to collect larger data set and thus extend the already promising classification results into more real applications. Currently, experimented staff decide which colony must be analyzed on a culture plate. Their decisions are based on great experience of morphotypes distinction according to colors, shapes, surface states, as well as odors and mechanical properties. Scanning all colonies is not reasonable for duration purposes. On polymicrobial plates, there is thus a need for a pre-stratification step that would automatically separate the different morphotypes. In that case, only few samples per morphotypes would be tested. This is a complex task that should be kept in mind for the longterm development. Some methods using hyperspectral imaging of culture plates already show results in that direction [START_REF] Yoon | Hyperspectral imaging for detecting pathogens grown on agar plates[END_REF]. By the way, an internship is currently being completed by M. Fournier in our laboratory on the testing of holographic methods for the early detection and stratification of culture plates.

Classification performance improvements

In addition, I could develop a method that improved classification scores while simplifying data manipulation and grandly reducing processing duration. In this way, I could achieve an averaged correct classification rate of 98.1% ± 0.2% on the Gram+/Gram-/Yeats discrimination (15 species). I also confirmed the ability of ELS to provide results down to the strain level with the typing of four different E. coli strains at 97.4% ± 0.2% of correct classification rate. Finally the application of this method to the early screening of S. aureus and methicillin-resistant S. aureus with a score of 86.2% ± 0.4% (38 strains, 5424 images database).

As highlighted in chap. V, the data processing step is crucial in ELS method and needs a deep attention whether it concerns the images features extraction or the classification. Indeed, important differences in performances can arise from inappropriate methods choices.

A multi-step classification approach could be considered: first a coarse classification (Gram+/Gram-or coccus/bacillus for example) and then a finer classification to the desired level. I personally believe it is not realistic to think we could find the perfect couple descriptor/classifier that will allow absolute identification (as a genomic signature does). In this way, I showed that we could build our own projection basis to compute dedicated descriptors. Therefore, we may consider creating a specific basis for each specific application.

Numerous methods are being tested by the CEA-List, either for images description or classification. An encouraging method that implements a vote between different couple descriptor/classifier has already been proposed and showed promising improvements. It has also the advantage of providing a confidence score as it is currently the case with MALDI-TOF mass spectrometry.

Better understanding of the underlying phenomenon

I implemented a physical model for the simulation of optical interactions between the laser beam and bacterial colonies. This was intended to reproduce and thus better understand the great variety of features observed on scattering patterns and try to relate them to the colonies biological characteristics.

For old colonies with great biomass, a simple geometrical approach is good at retrieving caustics due to mutltiple refraction and reflection across them. Those bright light focusing patterns can be reproduced in transmission or reflection geometry. The physical approach based on scalar diffraction theory and the numerical integration of Rayleigh-Sommerfeld equation is more general and thus should described the implicated phenomena with more accuracy. However, due to a poor physical modeling of bacterial colonies, this could be achieved only for young colonies at the beginning of their growth and only in transmission geometry. Thus, this approach needs to be completed by phase measurements of colonies' insides, more precise sample model and also the modeling of reflection geometry. As mentioned in chap. IV, phase measurements directly on colonies growing on their culture medium are an arduous task. Morphological characteristics of colonies greatly restrain and complicate the measurements as light may be highly deviated. Finally the culture medium itself disturbs the acquisitions. Other solid growth substrates such as Petrifilm™ could be used as well as other measurement configurations.

Main consequences on ELS expectations

This study reveals that it is difficult to assess the real ELS potential for a species-level identification. We were able to provide results down to the strain-level as well as family-level limited classifications. In [START_REF] Bae | Current status and future prospects of using advanced computer-based methods to study bacterial colonial morphology[END_REF], E. Bae shares his doubts. He is more inclined to see ELS as a complement for helping spectroscopy methods. Nevertheless, since no database at higher scale has been tested yet, we count on all those promising results and great improvements in data processing to promote ELS to a higher rank among reference diagnostic methods.

Knowing what incubation duration should be considered for our applications is also of great interest. 6 hours, 10 hours ... ? Currently the choice has been arbitrary made. The question is to know which minimal incubation duration provides satisfying results. Obviously, the more the microorganism grows, the more it has time to express its phenotype and thus the more specific information there is. However, are we able to record and correctly appreciate this complex signature ? Those are questions it would be interesting to answer. It would allow us to set the optimal tradeoff between early diagnosis and accurate (specific and sensible) diagnosis.

Toward a knowledge-based model: gray-box principle

All the presented work paves the way for a knowledge-based model. It consists of a global mathematical description of the problem using both equations of physics and biology and learning algorithms. In our case, Rayleigh-Sommerfeld equations applied to phase and amplitude objects contains parameters that have a real physical meaning (e.g. refractive index, phase, transmission coefficient, height profile ...). On the other hand, we have learning algorithms that build a model based on features that do not often have meaning for us. Recent advances in deep learning have led to the development of generative models able to generate data from learned rules. Combining both approaches, knowledge-based and learning-based, could help us build a more general model describing the system. Thus, as follow-up of my work, we could consider a novel approach where the physical-modeling would guide the machine learning algorithms. The goal is to take advantage of the available knowledge of the process, while keeping the generalization and accuracy capabilities of the machine learning. This would led to a semi-physical model that could improve the identification performance and also reduce the time dedicated to build the database. This "gray-box" approach, as introduced by Y. Oussar in [START_REF] Oussar | How to Be a Gray Box: The Art of Dynamic Semi-Physical Modeling[END_REF], could be considered in a system like illustrated on fig. VII.1. The principle would be as follow: each class (C 1 ...C n ) corresponding to a microorganism is defined by a set of parameters (P 1 ...P n ). Those parameters are both physical ones, based on real biophysical characteristics (colonies morphology, sizes, refractive index ...) and non-physical based parameters. This set of parameter is then used to generate scattering patterns using equations of physics. Non-physical parameters would be here to bring variability in scattering patterns caused by environmental conditions for example such as the nutrients composition of culture media or density of neighboring colonies. Thus we would have a semi-physical model that could be used to generate a database so that we can train the main learning algorithm for classification and thus save the huge time currently dedicated to acquisitions. This kind of approach would need a perfect knowledge and deep study of all the parameters that have an influence on the scattering patterns formation but could definitely bring the ELS method to another dimension. 

Introduction

La médecine moderne telle que nous la connaissons touche bientôt à sa fin. La crise antimicrobienne mondiale se fait de plus en plus pressante et cause de profonds changements dans notre manière de traiter les infections. Il y a donc un réel besoin en termes d'outils de diagnostic pour l'identification rapide et fiable de microorganismes pathogènes.

La résistance bactérienne n'est pas un phénomène nouveau puisqu'elle commence peu après l'introduction des antibiotiques dès la fin de la Seconde Guerre Mondiale. Depuis ces dernières années, le phénomène prend de plus en plus d'ampleur, précipité par une accessibilité aux traitements accrue et la diffusion généralisée de mauvaises pratiques (sur-prescription notamment). Aujourd'hui l'urgence est d'autant plus réelle que le développement de nouvelles familles d'antibiotiques est à son plus bas niveau depuis 10 ans. L'apparition de nouvelles super-bactéries résistantes à tous les traitements (traitement de dernier recours aux carbapénèmes) en est un exemple. On peut citer également l'augmentation du nombre de cas de tuberculose ou malaria multi-résistantes.

Dans ce contexte, l'Organisation Mondiale de la Santé (OMS) recommande fortement des actions coordonnées entre les pays afin de minimiser l'émergence ainsi que la propagation des résistances aux antibiotiques. Pour cela, elle prône le développement de nouveaux outils de diagnostic qui doivent être à la fois bas coût, sensibles, rapides, robustes et capables de donner des informations concernant la virulence du pathogène et sa susceptibilité aux traitements.

Durant cette thèse, j'ai eu l'opportunité d'investiguer une nouvelle méthode de diagnostic basée sur la diffusion élastique optique (ELS en anglais pour Elastic Light Scattering). Son potentiel pour répondre aux exigences de l'OMS est fort car elle permet une identification rapide, non destructive et non invasive avec une instrumentation simple et peu chère. La diffusion élastique optique combine la mesure de motifs de diffraction directement sur des microorganismes en croissance sur leurs milieux de culture avec l'utilisation d'algorithmes d'apprentissage automatique (machine learning algorithms) afin de proposer une identification. Des résultats d'identification au genre, à l'espèce et même à la souche (niveau le plus fin d'identification) ont été démontrés. Les domaines visés sont variés et touchent aussi bien l'industrie agro-alimentaire que le diagnostic clinique. Dans le cas du diagnostic clinique, l'utilisation massive de milieux de culture opaques (car enrichis avec du sang, le plus souvent pour faciliter la croissance des microorganismes fastidieux) a nécessité d'effectuer d'importants changements au niveau de l'instrumentation.

Un premier objectif de ma thèse fût donc d'adapter l'instrument afin de le rendre pleinement compatible avec des applications de diagnostic clinique. Ce travail inclut l'adaptation de l'architecture optique ainsi que l'optimisation des algorithmes de traitements. Bien que des résultats prometteurs aient été démontrés, l'effet « boîte noire » engendré par l'utilisation d'algorithmes d'apprentissage automatique freine potentiellement l'acceptation de la méthode pour la classification microbienne. En effet, s'il est souvent argumenté que les images de diffractions obtenues avec l'ELS constituent les signatures phénotypiques spécifiques des microorganismes étudiés, il est difficile de savoir exactement sur quelles réalités biophysiques repose la capacité de classification.

Dans un second temps, j'ai donc concentré mon travail sur la compréhension des phénomènes physiques sous-jacents. Pour cela, j'ai développé plusieurs approches afin de modéliser l'interaction entre la lumière et les colonies de microorganismes. L'une, basée sur une simple modélisation géométrique utilisant les lois de la réfraction et de la réflexion de Snell et Descartes et l'autre basée sur la théorie scalaire de la diffraction. L'objectif était d'expliquer les différents phénomènes à l'origine de la création des images de diffractions.

Ce résumé de mon rapport de thèse s'articule comme suit : dans une première partie, je résumerai le chapitre II de mon rapport présentant l'état de l'art autour de la technique d'identification par diffusion élastique optique. Un bref rappel des méthodes actuelles de référence pour le diagnostic clinique sera fait au début de cette partie. Dans une deuxième partie j'expliquerai les principales idées développées dans le chapitre III traitant de l'analyse multi-échelle à la fois des images de diffraction et des images microscope pour justifier l'apport d'une illumination cohérente vis à vis d'une simple observation à l'oeil nu (ou au microscope) sous éclairage incohérent. La troisième partie sera l'occasion de détailler les idées abordées dans le chapitre IV de mon rapport sur la modélisation des phénomènes physique au travers des deux approches mentionnées précédemment. Je résumerai ensuite les avancées obtenues dans le chapitre V dans le cadre de l'optimisation des descripteurs d'images et des algorithmes de classification basés sur les séparateurs à vaste marge. Enfin, je proposerai dans une dernière partie les résultats obtenus sur l'utilisation de l'imagerie de speckle pour le suivi dynamique du phénotype microbien. La fin de ce résumé sera consacrée aux principales conclusions de ce travail de thèse et aux perspectives envisagées pour la poursuite des travaux de recherche autour de l'ELS.

Chapitre II : Diffusion élastique optique pour l'identification rapide de pathogènes

Plusieurs méthodes existent afin d'identifier un microorganisme. Les méthodes génomiques, comme la PCR (Polymerase Chain Reaction) proposent une identification directement basée sur l'ADN du microorganisme. D'autres méthodes, comme la spectrométrie de masse MALDI-TOF (Matrix Assisted Laser Desorption Ionization -Time Of Flight), s'intéressent à la composition chimique du microorganisme d'intérêt. Enfin, il y a les méthodes dites phénotypiques, c'est à dire basées sur l'analyse des caractéristiques phénotypiques de l'échantillon comme sa morphologie micro-et macroscopique, ses besoins pour la croissance, ses résistances et susceptibilités à des composés chimiques ou encore ses capacités métaboliques. La méthode actuelle de référence déduit l'identité du microorganisme à la suite de tests biochimiques effectués dans des cartes microfluidiques embarquant des réactifs lyophilisés (Vitek2, bioMérieux). Toutes ces méthodes reposent sur la comparaison de paramètres à une base de données, que ce soit une séquence d'ADN, une composition chimique ou encore une liste de caractéristiques phénotypiques.

L'ELS est une méthode phénotypique reposant sur le principe suivant : un prélèvement est tout d'abord étalé sur une boîte d'isolement (boîte de Pétri). Au cours de la croissance en incubateur, les microorganismes ont tendance à grandir en formant des amas de cellules issues de la même lignée cellulaire appelés colonies. Une colonie est alors illuminée avec un faisceau cohérent (issu d'une source laser par exemple) et l'image de diffraction est enregistrée grâce à un capteur placé derrière la boîte de culture. L'image est ensuite transformée en un descripteur mathématique qui est finalement comparé à une base de données pour obtenir un résultat d'identification. Classiquement, les descripteurs mathématiques utilisés pour l'ELS sont les moments de Zernike qui correspondent aux coefficients de la projection des images de diffraction sur la base des polynômes de Zernike. A chaque image est donc attribué son vecteur descripteur. Le modèle auquel est finalement comparé ce vecteur a été obtenu au moyen d'un algorithme d'apprentissage automatique (SVM : Support Vector Machine). Cet algorithme est capable de produire un modèle de classification en apprenant à reconnaître les différentes classes au sein d'une base de données.

En diagnostic clinique la majorité des milieux de culture sont cependant opaque au spectre visible comme le milieu de culture COS (Columbia sheep blood, enrichi avec 5% de sang de mouton). L'acquisition de l'image de diffraction en transmission au travers de la boîte est donc impossible. Pour pouvoir effectuer l'acquisition sur ce type de milieux, j'ai mis au point et breveté un système de polarisation permettant d'enregistrer l'image de diffraction en réflexion. Ce système a été validé de bactéries sur lesquelles nous avons pu travailler appartenaient à deux grands groupes : les coques (sphères d'environ 1µm) et les bacilles (bâtonnets d'environ 10µm par 1µm) pour les formes les plus générales. A une échelle au-dessus, nous retrouvons les empilements de cellules qui donnent naissance à des structures macro-métriques au sein des colonies.

Ce sont autant de caractéristiques qui participent à la spécificité des images de diffractions associées. L'observations de ces images permet également de remarquer la présence de nombreux attributs de taille et de nature différentes. Les anneaux de diffraction apparaissent alors que le faisceau cohérent incident est bloqué par la colonie (effet d'ouverture diffractante). Des anneaux lumineux secondaires sont également observables et résultent des différences de transmission optique à l'intérieur de la colonie. Généralement le centre de la colonie est plus absorbant car les cellules y sont plus vieilles, plus nombreuses et ont potentiellement eu le temps d'excréter plus de matrice extracellulaire alors que la partie périphérique a tendance à être moins densément peuplée offrant ainsi une plus grande transmission. Des rayons radiaux brillants peuvent également être observés et sont causés par des distributions de biomasse et des structures particulières au sein de la colonie. Ainsi, que ce soit dans l'objet colonie ou son image de diffraction, les deux possèdent des attributs de taille, de forme et de nature différentes renforçant leur spécificité.

Une approche classique a été employée afin d'explorer le contenu des fréquences spatiales à la fois des images de diffraction et des images microscope des colonies associées. Ainsi la densité spectrale de puissance (DSP) a été calculée à partir du module carré de la transformée de Fourier de ces deux types d'images. Appliquée à des images de scènes naturelles acquises usuellement sous éclairage incohérent, il est connu que la diversité des formes et des échelles se traduit par une invariance au travers des échelles donnant lieu à l'instauration d'une loi de puissance dans la DSP. Ce comportement empirique peut paraître évident au premier abord lorsque l'on s'intéresse à des scènes naturellement composées d'objets de multiples tailles. En fait, ce n'est pas si simple dans la mesure où chaque objet pris séparément ne produit pas nécessairement un spectre invariant par échelle. L'analyse de la DSP d'images microscope (illumination incohérente) de colonies était réduite à une analyse de la taille de la colonie puisque le spectre global était systématiquement gouverné par les oscillations d'une fonction de Bessel de premier ordre (signature spectrale typique d'un disque). En revanche, la comparaison avec l'image de diffraction associée, que l'on peut assimiler dans les conditions d'acquisitions (optique de Fourier), au module carré de la transformée de Fourier de la colonie nous a montré la plus grande richesse spectrale des images issues de la technique ELS. Afin d'avoir accès à la dynamique de réplication cellulaire au premier stade de la croissance bactérienne, des simulations numériques sur de jeunes colonies artificiellement générées ont été réalisées. Le calcul de la DSP sur l'intérieur des colonies en augmentant progressivement le nombre de cellules, afin de s'affranchir de la signature des bords nous a permis d'apprécier l'enrichissement du spectre des fréquences spatiales avec la croissance du microorganisme.

Ce travail, initié par le professeur D. Rousseau, fût l'occasion de proposer une approche pratique du modèle dit de « feuilles mortes », introduit par B. Galerne, où l'instauration d'une loi de puissance dans le spectre peut être observée à mesure que le nombre d'élément est augmenté. Finalement, il apparaît que le suivi des variations de la DSP comme bio marqueur s'avère peu utile pour une tâche de classification mais reste intéressant dans le cadre d'études empiriques.

Chapitre IV : Modélisation de l'interaction entre lumière et colonies bactériennes

Deux approches ont été proposées, motivées par différents objectifs. L'une simplement basée sur l'optique géométrique et l'autre utilise la théorie scalaire de la diffraction.

Dans un premier temps, l'implémentation de programmes de lancer de rayons 2D et 3D sous Matlab en utilisant des modèles simples de portions de sphère nous a permis de calculer l'ouverture numérique nécessaire afin de collecter le plus de lumière possible. Ainsi que ce soit en configuration de transmission ou de réflexion, différents type de profils, plus ou moins courbés ont été testés. On a pu remarquer que la configuration de réflexion nécessite systématique plus d'ouverture numérique pour la collection que la configuration de transmission à profils équivalents. En outre il a été observé que plus le ratio hauteur de colonie sur diamètre est important, plus l'ouverture numérique doit être importante. Ces travaux ont été utiles dans le design de l'instrumentation optique afin de positionner au mieux les éléments.

Dans un second temps, j'ai pu proposer une nouvelle approche en mesurant des profils de colonies à l'aide d'un profilomètre confocal chromatique directement sur leurs milieux de culture. Ces profils expérimentaux étaient ensuite utilisés dans les programme de lancer de rayons afin de simuler les effets de caustiques. Les caustiques sont des effets de concentrations de lumière que l'on peut retrouver au fond d'une piscine par exemple. Ils proviennent de réfractions et réflexions consécutives au sein d'un objet transparent ou translucide. Les programmes développés étant gourmands en calcul lorsque le nombre de rayons lancés dépassait quelques dizaines de millions, j'ai décidé d'utiliser un environnement de modélisation 3D, Blender, couplé à un moteur de rendu, Yafaray, réputé pour ses performances dans la modélisation des caustiques. Une approche basée sur des techniques d'illumination globale et notamment sur un algorithme de photon mapping nous a permis d'accroître la qualité de génération des caustiques par rapport aux rendus obtenus avec les programmes de lancer de rayons précédents.

L'approche physique proposée reposait sur l'intégration numérique des équations de Rayleigh-Sommerfeld par traitements de Fourier. Ce formalisme permet d'évaluer les champs diffractés de manière correct que ce soit en champ proche ou lointain. Aucune approximation de type Fresnel ou Fraunhofer n'est requise, ce qui assoupli grandement le domaine de validité du modèle. La colonie était considérée comme un objet d'amplitude et de phase venant moduler le champ. D'un autre côté les variations de phase induites par le faisceau laser Gaussien de la source étaient également prises en compte. L'effet de l'échantillonnage des fonctions de phase sur le domaine de calcul a également été minutieusement traité afin de garantir un rendu sans recouvrement de spectre.

Le modèle a été validé sur de simples objets comme des billes de polystyrène. Il a également prouvé son efficacité sur des modèles de colonies jeunes ne contenant qu'une seule couche de cellules. Cependant, les limites du modèle biophysique des colonies choisis sont atteintes dès lors que l'on veut simuler le phénomène sur des colonies plus âgées. En effet, il a été montré que l'arrangement interne des cellules au sein de la colonie joue un rôle au moins aussi important que sa surface et son profil dans la formation des images de diffractions. Pour cela une modulation de phase spécifique aux fluctuations internes de la biomasse doit être prise en compte. Des essais de mesure de phase sur un montage holographique ont été menés en collaboration avec le professeur P. Picart, mais les acquisitions sur ce type d'objet se sont révélées très instables et il n'a pas été possible, dans le temps imparti, d'apporter plus d'informations concernant la répartition de la modulation de phase à l'intérieur de la colonie.

Ainsi, si le modèle de propagation proposé s'est révélé correct sur de simples objets, la modélisation biophysique des colonies doit faire l'objet d'une plus profonde réflexion. Des mesures de phase seraient grandement utiles pour cette tâche mais nécessiteraient une instrumentation dédiée dans une atmosphère contrôlée (hygrométrie et température) afin de limiter les perturbations liées au milieu de culture.

Chapitre V : Analyse des données, de la description des images à l'apprentissage automatique

L'analyse des données dans la méthode ELS pour l'identification repose sur deux tâches : l'extraction de paramètres mathématiques afin de décrire les images et l'utilisation d'algorithme d'apprentissage automatique pour construire le modèle de classification.

Cette première étape de description des images est cruciale puisqu'il s'agit de trouver la méthode la plus appropriée pour traduire ces images en descripteurs compréhensible par les algorithmes de classification.

Au tout début du développement de l'instrument Microdiff, une approche basée sur une simple description morphologique des images a été testée. Ainsi le vecteur descripteur de l'image était composé d'indicateurs comme le nombre d'anneau de diffraction, leurs diamètres ou encore de descripteurs statistiques comme la valeur moyenne des niveaux de gris par exemple. Cette approche simple était cependant trop lente, laborieuse et peu robuste (beaucoup de paramètres devaient être ajustés manuellement). Elle fût abandonnée au profit de la projection sur des bases de polynômes.

Historiquement dans le cadre du développement de la technique ELS, les moments de Zernike étaient utilisés pour la description des images. Ils correspondent au module des coefficients des projections sur la base des polynômes Zernike définis sur le disque unité. Bien qu'ils offrent une invariance par rotation, les polynômes de Zernike sont pénalisés par une distribution de leurs zéros très inhomogène. En effet, ils ont tendance à atteindre leur maximum au bord du disque de définition alors même que les images de diffraction présentent plutôt des maxima d'intensité en leur centre. Le taux d'erreur de reconstruction a été calculé afin d'apprécier la précision de la description des images. Le principe est de calculer la projection de l'image sur la base de polynômes puis de réutiliser ces coefficients de projection pour reconstruire l'image à partir des polynômes de la base. Les deux images, l'originale et la reconstruite sont alors comparées. Nous avons pu observer que les polynômes de Zernike ne parviennent pas à décrire les détails fins présents dans les images de diffraction mais sont plus à même de retranscrire les variations grossières d'intensité. Une nouvelle base a donc été proposée sous l'impulsion d'O. Gal. Utilisant les polynômes de Bessel-Fourier cette base bénéficie d'une meilleure répartition de ses zéros et, à nombre de moments équivalents, produit des taux d'erreur de reconstruction beaucoup plus bas que ceux obtenus avec Zernike. Les images sont donc mieux décrites. L'impact d'une description plus précise des images sur les performances de classification a été évalué. L'intuition voudrait qu'avec une description plus fidèle des images l'on obtienne de meilleur taux de classification. Cependant, il a été montré qu'il n'y a pas nécessairement de corrélation entre un faible de taux d'erreur de reconstruction et un taux de classification élevé.

L'algorithme d'apprentissage utilisé est un séparateur à vaste marge (SVM pour Support Vector Machine an anglais). C'est un classifieur binaire linéaire de la famille des algorithme d'apprentissage supervisé. Cet algorithme cherche à trouver l'hyperplan qui sépare les données avec la marge maximum. Dans la plupart des cas, et c'est d'autant plus vrai avec des données réelles, les données ne sont pas linéairement séparables dans leur espace. L'introduction d'une fonction noyau permet alors de trouver un espace dans lequel ces données seront linéairement séparables. Deux principaux paramètres doivent être optimisés afin d'obtenir le meilleur taux de classification. L'un, défini le coût de la classification. Il permet d'ajuster la tolérance accordée aux données mal classées et ainsi d'obtenir un modèle plus ou moins général. L'autre permet d'ajuster la fonction noyau et peut être vu comme le rayon de la zone d'influence de chaque instance. Un programme d'optimisation de ces deux paramètres par simple recherche de grille a permis d'améliorer les taux de classification.

Enfin une méthode de réduction de dimensionnalité a été appliquée afin de réduire la taille des vecteurs descripteurs des images. Cette approche basée sur une régression partielle aux moindres carrés (PLSR pour Partial Least Squares Regression) a permis non seulement de réduire drastiquement la dimension des vecteurs descripteurs, mais également d'augmenter les taux de classification. En outre, la construction de notre propre base de projection à partir des combinaisons linéaires des composantes principales de la régression a permis de diviser par 14 le temps de calcul des descripteurs. A titre d'exemple, le taux de classification sur le typage des 4 souches d'E. coli en géométrie de réflexion a pu être augmenté de 17%, passant ainsi à 97%.

Ce travail nous a en particulier permis de réaliser l'importance des étapes de traitements des images de diffraction. Ainsi, le choix des descripteurs mais également l'optimisation des étapes d'apprentissage sont déterminants dans l'obtention de bonnes performances de classification.

Chapitre VI : Analyse dynamique de speckle pour l'étude de la signature phénotypique dynamique

Ce chapitre propose d'étendre l'illumination cohérente de microorganisme sur boîte de culture à l'étude de la signature phénotypique dynamique au moyen de l'analyse de motifs de speckle.

Les motifs de speckle sont des motifs d'intensité produits par les interférences mutuelles de plusieurs fronts d'ondes. Ce phénomène apparaît typiquement lors de réflexions diffuses sur des surfaces rugueuses. Dans le cadre de l'ELS, de tels motifs de speckle avaient pu être observés sur des images de diffraction en réflexion. L'idée principale était de déterminer si l'on pouvait discriminer des microorganismes en observant la décorrélation du champ de speckle induite par les mouvements en surface de tapis bactériens sur boîte de culture occasionnés par les réplications cellulaires lors de la croissance.

Pour cela, un modèle théorique a été développé combinant un automate cellulaire mimant la croissance cellulaire à un programme de génération de speckle. Des simulations ont permis d'établir théoriquement la séparation de microorganismes sur des différences dans les temps de génération cellulaire. Cependant, les premières expériences réalisées dans ce sens se sont révélées infructueuses. Si l'analyse dynamique de speckle se révèle peu convaincante dans la cadre de la classification, elle apparaît plus appropriée pour la lecture de tests de susceptibilité aux antibiotiques par la méthode de diffusion sur agar et notamment la détermination de la concentration minimale inhibitrice (CMI, concentration en antibiotique minimale suffisante pour inhiber la croissance microbienne).

La combinaison de descripteurs statistiques avec un algorithme de partionnement de type k-moyennes a permis le calcul de cartes d'activité. Ces cartes permettent de repérer les zones au sein de la scène illuminée qui possèdent une dynamique similaire. Ainsi, pour l'exemple de disques imbibés d'antibiotique déposés sur une culture bactérienne, la technique a permis de déterminer la CMI au bout de seulement quatre heures de croissance alors que la lecture de tels antibiogrammes se fait actuellement entre 16 heures et 20 heures.

Ce chapitre propose des résultats intéressants et prometteurs puisqu'il s'agit d'une technique simple, bas coût et modulable qui pourrait très bien s'intégrer dans un processus automatique de lecture d'antibiogrammes. Ces résultats préliminaires ont cependant besoin d'être confirmés et peuvent grandement être améliorés. Une étude de sensibilité et notamment de limite de détection d'activité doit être menée sur la lecture de la CMI.

Conclusions et perspectives

De nos jours, une majeure partie de la recherche en diagnostic microbien délaisse les méthodes basées sur la culture au profit de techniques rapides comme la PCR quantitative ou la spectroscopie Raman. Néanmoins, les instruments basés sur la culture microbienne restent parmi les méthodes actuelles de référence pour le diagnostic clinique et continuent d'intéresser les chercheurs. L'ELS est un exemple de ces méthodes qui peuvent conduire au développement d'outils de diagnostique rapide, sensibles et bas coût qui s'intègreront parfaitement dans les chaînes automatiques de diagnostic. Comparé aux techniques de spectroscopie, l'ELS produit beaucoup plus de photons ce qui permet de réduire les temps d'acquisitions et rend le processus non-destructif pour l'échantillon biologique qui peut alors être réutilisé pour des tests complémentaires. Basée sur la diffusion élastique d'un éclairage cohérent au travers de colonies de microorganismes en croissance sur leurs milieux de culture, cette technique permet d'enregistrer leurs signatures phénotypiques. De plus, comparé à la PCR, l'ELS ne requiert ni gros investissement financier, ni personnel qualifié. L'instrumentation existante fût améliorée afin d'étendre le domaine d'application de la méthode au diagnostic clinique avec notamment la prise ne charge de mi-lieux de culture opaques. Les simulations numériques effectuées au moyen des programmes de lancer de rayons développés nous ont également permis d'ajuster l'architecture optique du système afin d'enregistrer les images de diffractions dans les meilleures conditions.

Les perspectives à court terme concernant l'instrumentation sont principalement tournées vers l'automatisation de l'acquisition. Un gros travail est donc en cours sur le ciblage de la colonie, le centrage du faisceau laser, l'ajustement de la taille du spot et de la distance échantillon capteur ainsi que le paramétrage des temps d'acquisition. Cette tâche d'automatisation constitue une étape cruciale du développement de la technique puisqu'elle permettra à terme, l'acquisition de base de données plus importantes et donc d'étendre les premiers résultats obtenus vers des applications plus proches de la réalité clinique.

Actuellement, c'est un personnel qualifié et expérimenté qui, à partir d'une boîte d'isolement, choisit quelle colonie sera analysée. Leur choix est guidé par une grande expérience dans la distinction des morphotypes selon les couleurs, formes, tailles, aspect de surface, odeurs ou encore propriétés mécaniques des colonies. Il n'est pas raisonnable, en terme de durée, d'effectuer la mesure sur toutes les colonies. Ainsi, dans le cas de boîtes polymicrobiennes, une étape de pré-stratification automatique est requise afin de faire une première séparation des morphotypes. Par la suite, seulement quelques échantillons par morphotypes seront mesurés. C'est une tâche complexe qu'il convient de garder à l'esprit pour le développement à long terme de la technique et quelques pistes sont déjà explorées notamment du côté de l'imagerie hyperspectrale ou encore dans notre laboratoire avec des techniques holographiques. J'ai également pu mettre au point une méthode systématique d'optimisation qui a permis d'augmenter significativement les performances de classification. Les principaux résultats proposés sont : un test Gram+/Gram-/Levures à 98% de taux de discrimination sur une base de 15 espèces, un typage de quatre souches d'E. coli avec un taux correct de classification de plus de 97% et enfin une distinction entre staphylocoques dorés et non-dorés à plus de 86% sur une base de 38 souches et 5424 images.

Nous avons pu remarquer la grande importance du choix du couple descripteur d'image/algorithme de classification et les variations de performances significatives que cela pouvait entraîner sur la classification.

La méthode ne se destine pas à proposer une base de données absolue regroupant toutes les souches de microorganismes pathogènes pour l'homme comme pourrait le faire la PCR. En effet, notre capacité à retranscrire la signature phénotypique des microorganismes ne garantit pas son universalité. Ainsi une approche de classification en plusieurs étapes devra être considérée. Une première distinction grossière pourrait être envisagée (Gram+/Gram-ou coques/bacilles par exemple) puis, une classification de plus en plus fine pour atteindre le niveau de distinction souhaité.

Comme mentionné, trouver le couple descripteur/classifieur universel n'est pas envisageable. En ce sens j'ai montré la possibilité de construire des bases de données spécifiques pour des applications données en utilisant des méthodes de réduction de dimensionnalité sur les vecteurs descripteurs. En outre, de nombreuses autres pistes sont actuellement explorées en collaboration avec le CEA-LIST (Saclay) avec notamment des systèmes de votes à la majorité entre différents couples descripteurs/classifieurs. La mise au point d'un modèle physique pour la description de la formation des images nous a permis de relier certains paramètres biophysiques des colonies avec les caractéristiques des images. Notamment, nous avons pu mettre en évidence l'importance d'une modélisation précise de la modulation de phase induite par la répartition de la biomasse et des structures internes.

Ce travail de thèse révèle la difficulté de confirmer la capacité de l'ELS à donner une classification à l'espèce. En effet nous pouvions aussi bien obtenir une classification jusqu'à la souche alors que nous étions parfois limités à des résultats au niveau de la famille. E. Bae, de l'Université de Purdue, un des précurseurs de la technique partage même ses doutes et voit en l'ELS une méthode qui se positionnerait plus en tant que complément de méthodes de spectroscopie par exemple. Néanmoins, puisqu'aucune base de données de grande ampleur n'a encore pu être confrontée, nous comptons sur tous ces résultats prometteurs obtenus au fil des années ainsi que sur les grandes avancées au niveau du traitement des images et de la classification pour promouvoir l'ELS et ainsi la rapprocher des méthodes actuelles de référence dans le diagnostic clinique.

Résumé

Dans un contexte mondial de prolifération de pathogènes résistants aux antibiotiques, il y a un réel besoin de nouvelles techniques de diagnostic microbiologique rapides et fiables.

Ce travail de thèse vise à apporter une meilleure compréhension de la technique d'identification microbienne par diffusion élastique (ELS pour Elastic Light Scattering). Cette méthode phénotypique utilise la diffraction d'un faisceau de lumière cohérente sur une colonie microbienne directement sur son milieu de culture. L'image de diffraction alors obtenue est considérée comme la signature phénotypique du microorganisme étudié. Cette image est ensuite transformée au moyen de descripteurs mathématiques afin de la comparer à une base de données pré-calculée au moyen d'algorithmes d'apprentissage automatiques.

Dans un premier temps, l'architecture optique de l'instrument a été modifiée afin de le rendre compatible avec les milieux de culture opaque très répandus en diagnostic clinique. Deux approches ont ensuite été proposées afin de modéliser l'interaction lumière/colonie microbienne. Une première approche d'optique géométrique par lancer de rayons nous a permis d'apprécier les besoins en termes d'ouverture numérique pour l'acquisition des images de diffraction selon le profil morphologique des colonies. La seconde approche basée sur la théorie scalaire de la diffraction a permis de mettre en évidence l'importance de la répartition de la biomasse à l'intérieur de colonies. En effet, les macrostructures résultantes de l'empilement des cellules microbiennes jouent un rôle majeur dans la formation des images de diffraction. Dans un second temps, une procédure systématique d'amélioration des performances de classification a été proposée. Elle combine une description plus fidèle des images de diffraction via la projection sur une base de Fourier-Bessel, une optimisation par recherche de grille sur les paramètres de l'algorithme d'apprentissage automatique supervisé et enfin l'application d'une méthode de réduction de dimensionnalité. Grâce à cela nous pouvons par exemple proposer un test Gram+/Gram-/Levures avec un taux de discrimination de plus de 98% sur une base de 15 espèces. Enfin, l'utilisation de l'illumination cohérente a également été étendue à la lecture d'antibiogrammes par analyse dynamique de speckle.

Abstract

The current health situation across the world is of great concern. There is an urgent need for novel and innovative diagnostic methods that would speed up accurate treatments decisions and be of significant utility for public health in the fight against antibiotic resistance. This Ph. D. work aims to better understand the Elastic Light Scattering (ELS) method for microbial identification. This phenotypic technique is based on the elastic scattering of a coherent light beam by a microorganism colony growing on its culture plate. The resulting scattering pattern can be considered as the phenotypic signature of the microorganism. Then this image is translated using mathematical descriptors so that it can be compared to a database previously obtained using learning algorithms.

Part of this work was dedicated to the improvement of the optical design so that the instrument can handle opaque culture media widely used in clinical diagnosis. Then two approaches were proposed to model the interaction between light and bacterial colonies. A first geometrical approach could help us, using ray tracing algorithms, to estimate the numerical aperture needed for the acquisition depending on the colonies morphologies. The second approach, based on scalar diffraction theory, highlighted the importance of the biomass distribution inside the colonies. Macro-structures resulting from cells arrangement play a great role in the scattering patterns formation indeed. In addition, the features extraction step from images using a Bessel-Fourier basis significantly improved the description accuracy. A systematic approach comprising the optimization of the learning algorithm and a dimensionality reduction technique was proposed. Great improvements of classification rates were achieved. Among them: a Gram+/Gram-/Yeasts discrimination at 98.1% was obtained over 15 species. Finally, the use of coherent lighting for the reading of antibiotics susceptibility test by means of dynamic speckle analysis was introduced and showed promising results.

Figure I. 1 :

 1 Figure I.1: Total antibiotic use in the outpatient setting (horizontal axis) versus prevalence of penicillin-nonsusceptible Streptococcus pneumoniae (vertical axis) in 20 industrialized countries.A regression line was fitted with 95% confidence bands[START_REF] Albrich | Antibiotic Selection Pressure and Resistance in Streptococcus pneumoniae and Streptococcus pyogenes[END_REF].

  Let us first start by recalling the overall process of microbial diagnosis. As described on fig. I.2 the classic procedure in confirming a microbial diagnosis first starts by the collection of a sample from the suspected zone or patient. Then comes the identification step which provide the identity of the pathogen. Finally, in the case of clinical diagnosis, further testings are made to determine the best treatment for the patient.

Figure I. 2 :

 2 Figure I.2: Laboratory procedures used in confirming a clinical diagnosis of infectious disease[28].

Figure I. 3 :

 3 Figure I.3: Bacterial taxonomy.

Figure I. 4 :

 4 Figure I.4: From the very first API©gallery 20E (a) for manual identification of species among the Enterobacteriaceae family, to the Vitek®2 64 wells card (b) automatically analyzed with the Vitek 2 system commercialized by bioMérieux [31]. The card is automatically filled by microfluidic channels. The bacterial suspension to be identified dissolve embedded dehydrated reagents. Optical density measurements are made in transmission through each well every 15min during incubation.

Figure I. 5 :

 5 Figure I.5: Polymerase chain reaction work flow [39].

Figure I. 6 :

 6 Figure I.6: Amplification plot. Baseline-substracted fluorescence versus number of PCR cycles [41]. X-axis represents the number of PCR cycles while the y-axis indicates the fluorescence from the amplification reaction which is directly proportional to the amount of amplified product in the tube. The cycle number at which the fluorescence level cross the threshold is called the quantification cycle C q .

Figure I. 7 :

 7 Figure I.7: Scheme showing the MALDI-TOF MS work flow

Fig.I.

  Fig.I.8 shows more precisely the desorption-ionization process. An UV-laser (near 337 nm wavelength) is focused on the sample. The matrix, which is energy-absorbent, protects molecules of interest from damaging. It crystallizes with the analyte on drying and thus entraps the molecules. The laser energy absorption induces two phenomena : first the matrix is vaporized and releases peptides (desorption), then, it transfers its protons to the analyte which became ionized. Ions may be positively or negatively charged. Proteins and peptides have protons acceptors and thus became cations (positively charged ions). Conversely,

Figure I. 8 :

 8 Figure I.8: Schematic diagram of MALDI process

Figure I. 9 :

 9 Figure I.9: Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrum [45] of the lipopeptide iturin fraction of Bacillus subtilis.

Figure I. 10 :

 10 Figure I.10: Raman spectroscopy principle[52, 53].

Figure I. 11 :

 11 Figure I.11: ELS work flow : a streaking is realized from a sample on a culture plate. The microorganism then, grows in incubator at 37°C (temperature may depend on the species). After a fixed time of incubation (few hours), scattering patterns from diverse individual colonies are recorded (around 100 ms). Features descriptor are computed and then compared to the classification model to obtain the most probable identity. The analysis process generally takes no longer than a few seconds

Figure I. 12 :

 12 Figure I.12: Positioning of ELS technology in comparison to reference method in terms of time-toresults. ID and AST respectively stand for Identification and Antimicrobial Susceptibility Testing.ELS proposes an early diagnostic while being non destructive so as to allow further testings such as AST. DSA stands for Dynamic Speckle Analysis. This method I developed during my thesis allows an early reading of AST plates and will be detailed in chap. VI.

Figure II. 1 :

 1 Figure II.1: Example of Escherichia coli, ATCC® 11775 after 8 hours of growth on agar plate at 37°C. Microscope Zeiss Axio. Microscope objectives Zeiss Epiplan x20, x50 and x100.

Figure II. 2 :

 2 Figure II.2: Microbial colony morphology : form[58].

Figure II. 3 :

 3 Figure II.3: Microbial colony morphology : elevation profile[58].

Figure II. 4 :

 4 Figure II.4: Microbial colony morphology : margin[58].

.

  On fig. II.7 are displayed two widely used culture plates: one Trypcase Soy Agar (TSA) on the right and one Columbia agar + 5% sheep blood (COS) on the left.

Figure II. 5 :

 5 Figure II.5: Child's hand print on a culture plate illustrates the wide diversity of colonies' aspects[60].

Figure II. 6 :

 6 Figure II.6: Typical appearance of microorganisms on CHROMagar™ Orientation. Chromogenic media are based on soluble colourless molecules (chromogens), composed of a substrate (targeting a specific enzymatic activity) and a chromophore. As the target organism's enzyme cleaves the susbtrate, the chromofore is released and exhibits its distinctive colour[START_REF]CHROMagar™ Orientation[END_REF].

Figure II. 7 :

 7 Figure II.7: Pictures of culture plates. Trypcase Soy Agar (TSA) on the right and Columbia agar + 5% sheep blood (COS) on the left.

Figure II. 9 :

 9 Figure II.9: Diagram of the Microdiff optical set-up on the left[START_REF] Marcoux | Optical forward-scattering for identification of bacteria within microcolonies[END_REF] and photo of the Microdiff integrated system currently under test at the bacteriology laboratory of Grenoble hospital[START_REF] Genuer | Optical elastic scattering for early label-free identification of clinical pathogens[END_REF].

Figure II. 10 :

 10 Figure II.10: Example of bacterial colonies and their corresponding scattering patterns[55]. The underneath line shows microscopic images of E. coli after 6 hours of incubation at 37°C on TSA medium. Their corresponding forward-scattering pattern acquired on Microdiff are on the upper row.

  II.11 for example which is a classical trypticase soya agar growth medium enriched with 5% sheep blood. Blood-supplemented agar remains the gold standard for the culture of Streptococcus pneumoniae, Streptococcus pyogenes or Staphylococcus aureus in the context of serious bacterial infections and thus represents a relevant part of the culture media used in clinical diagnosis.

Figure II. 11 :

 11 Figure II.11: Columbia agar + 5% sheep blood incubated 24 hours with S. pneumoniae ATCC® 6305[START_REF]Columbia agar + 5% sheep blood[END_REF] 

Figure II. 12 :

 12 Figure II.12: Water and Hemoglobin absorption spectra[START_REF] Ma | Near-infrared quantum dots: synthesis, functionalization and analytical applications[END_REF] 

Figure II. 14

 14 Figure II.14: 2-D graphical representation of Zernike polynomials V p,q magnitudes. The larger p -|q| difference, the more oscillations are present

Figure II. 15 :

 15 Figure II.15: Illustration of a SVM finding the best separating hyperplane by maximizing the margin between two classes: the red-squares class and the blue-circles class[78]. Support vectors of each class are materialized by color filled markers.

Figure II. 16 :

 16 Figure II.16: In this study, 27 ATCC® strains were used on CHROMagar™ Orientation medium.A cross-validation was performed to compute sensitivity, specifity, Positive Predictive Value (PPV) and Negative Predictive Value (NPV). The sensitivity is the probability that the classifier produces a true result when used on a scattering pattern from a colony of an Enterobacteriaceae and non-Enterobacteriaceae of the database. The specificity describes the probability that the test produces a true negative result when used on an organism not belonging to the database. The NPV is the probability that a colony does not represent a pathogen of interest when a negative result is returned. Finally, the PPV represents the probability of having positives after a match with the database[START_REF] Singh | Optical scatter patterns facilitate rapid differentiation of enterobacteriaceae on chromagar™ orientation medium[END_REF].

Figure II. 17 :

 17 Figure II.17: Gram stain of mixed Gram-positive cocci (S. aureus ATCC® 25923, purple) and Gram-negative bacilli (E. coli ATCC® 11775, pink)[83].

Figure

  Figure II.18: Cross-validation results displayed as a confusion matrix. On the diagonal are presented the correct classification predictions : 92.7% of Gram-positives were identified as Grampositives, 92.4% for correct classification of Gram-negatives and 96.8% for yeasts. We can also read on the first line that 7.3% of Gram-positives were miss-classified : 3.4% as Gram-negatives and 3.9% as yeasts. It yields to an average global correct classification rate of around 94.7%. Respectively 236, 689 and 981 scattering patterns were acquired for Gram-positives, Gram-negatives and yeasts. 15 strains were incubated 6 hours on TSA. The global correct classification rate is 94.7% ± 0.1% (standard deviation over 10 10-fold cross-validations).

Figure II. 19 :

 19 Figure II.19: On the left, S. aureus ATCC® BAA-976 growing on ChromID bi-plate SA/MRSA.It is a methicillin-resistant S. aureus strain and thus grows into blue/green colored colonies on both part of the bi-plate (methicillin has been added on one side and both part are enriched with a chromogenic substrate that colors S. aureus in blue/green). On the right, a culture plate ChromID S. aureus inoculated with a sample from a patient. The colonies are white. According to this test, the patient is thus not contaminated with a S. aureus .

Figure II. 20 :

 20 Figure II.20: Illustration of the maximum angle of diffraction definition.

Figure II. 21 :

 21 Figure II.21: Main relations between colony morphology and associated scattering pattern characteristics.

Figure II. 22 :

 22 Figure II.22: Effect of agar concentration on bacterial colony diameter. On the left Salmonella typhimurium, and on the right Listeria monocytogenes. Colonies tends to have smaller diameters with increasing agar concentration.: 0.50% agar, : 0.60% agar, • : 0.70% agar, : 0.80% agar, : 1.0% agar, : 1.5% agar, : 2.0% agar[START_REF] Mitchell | The effects of agar concentration on the growth and morphology of submerged colonies of motile and nonmotile bacteria[END_REF].

3

  The influence of biological characteristics on scattering patterns : a state of the art Experiments, illustrated on fig. II.23, have been made to observe changes caused by an increase in yeast extract (related to global nutrition concentration) in LB (Lysogeny broth) culture medium on the growth of E. coli K12 colonies. It has been shown that an increase in nutrients concentration has no effect on colonies while lower nutrition level generate noticeable changes in the distributions of colony diameters and thus the corresponding forward-scattering patterns.

Figure II. 23 :

 23 Figure II.23: Effect of nutrient concentration (yeast extract concentration) on forward scattering patterns/colony diameter. LB media (Lysogeny broth) were prepared with increasing nutrients concentration[89]. Control sample were about 0.3% of yeast extract. Increasing nutrients concentration has no effects on colonies while lower nutrition levels change the colonies diameters and thus influence the scattering patterns dimensions. Yeast extract concentrations : • (red) : 0%, (green) : 0.25%, (blue) : 0.5% and (yellow) : 0.75%.

Figure II. 24 :

 24 Figure II.24: (a) Polymicrobial vaginal culture[93]. Close to the E. coli colony B, the Candida albicans colony A exhibits a complete different morphotype than the other Candida albicans colonies in C and D. Both colonies in C have an intermediate roughness between the smooth original morphotype in D and the highly rough morphotype of the colony A.Images (b), (c), (d) and (e) are some examples of different Candida albicans 3153A morphotypes[START_REF] Brogden | Polymicrobial diseases[END_REF]. The image displayed in (f) shows to distinct colors for the same S. aureus growing on COS culture plate. In (g), a monomicrobial S. aureus culture on COS culture plate showing a great variability in sizes and hemolytic acitivity (ability to break blood cells)[START_REF] Howden | Reduced vancomycin susceptibility in staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycinintermediate strains: Resistance mechanisms, laboratory detection, and clinical implications[END_REF].

Figure III. 1 :

 1 Figure III.1: Tableshowingthe variety of bacterial cells shape[START_REF]Different Size, Shape and Arrangement of Bacterial Cells[END_REF].

Figure III. 2 :

 2 Figure III.2: Examples of bacterial colonies cultivated at our laboratory. (a) E. coli GFP after 6 hours of growth on LB + ampicillin. (b) S. aureus ATCC® 14990 after 6 hours of growth on TSA. (c) and (d) E. coli ATCC® 11775 after 8 hours of growth on blood agar (COS). On images (a) and (b), typical dimensions are specified and marked with arrows. On (a), bacilli (rod shaped cells) are around 5µm× 0.9µm in size. Inter-cells spacing varies around 1µm. On (b), cocci (spheres) have a diameter around 2µm with an inter-cells spacing around 5µm.

Figure III. 3 :

 3 Figure III.3: Examples of yeasts colonies cultivated at our laboratory. (a) and (b) Candida albicans ATCC® 14053 after 6 hours of growth on SDA (Sabouraud Dextrose Agar, formulated to grow fungi). Typical dimensions are specified and marked with arrows. Cells are rice-shaped with dimensions around 4µm×2µm with an inter-cells spacing around 5µm.

Figure III. 4 :

 4 Figure III.4: Examples of scattering patterns acquired with our ELS instrument in a reflection geometry. Bacterial species were incubated 24h at 37°C on COS culture medium (Columbia agar + 5% sheep blood, bioMérieux). Top line form left to right: Enterococcus faecalis ATCC® 29212, Pseudomonas aeruginosa ATCC® 9027, Streptococcus pneumoniae ATCC® 49619 and Enterobacter aerogenes ATCC® 13048. Bottom line from left to right: Hafnia alvei ATCC® 51815, Stenotrophomonas maltophilia ATCC® 13636, Escherichia coli ATCC® 35421 and Pseudomonas putida ATCC® 31483. The black hole in the center is due to the instrument optical design.

Figure III. 5 :

 5 Figure III.5: Examples of scattering patterns acquired with our ELS instrument in a transmission geometry. Bacterial species were incubated 24h at 37°C on TSA culture medium (Trypcase Soy Agar, bioMérieux). Top line from left to right: Enterobacter aerogenes ATCC® 13048, Staphylococcus aureus subs. aureus ATCC® BAA-976, Staphylococcus epidermidis ATCC® 700296. Bottom line from left to right: Escherichia coli ATCC® 11775, Citrobacter freundii ATCC® 8090, Staphylococcus lentus ATCC® 700403.

Figure III. 6 :

 6 Figure III.6: Wavy structures inside a E. coli colony. This is a fluorescence image obtained on a genetically modified E. coli that exhibits the green fluorescent protein (GFP). Growth was achieved on LB (Lysogeny Broth) plus ampicillin during 10 hours at 37°C.

Figure III. 7 :

 7 Figure III.7: Scattering patterns acquired on bacterial colonies: (a) and (b) Enterobacter aerogenes ATCC® 13048 forward-and backward scattering patterns, (c) Pseudomonas putida, (d) Pseudomonas aeruginosa ATCC® 9027 and (e) Staphylococcus lentus ATCC® 700403. Characteristic features are highlighted. [1] are diffraction rings. [2] the secondary bright ring often observed. [3] the radial spokes. [4] caustics patterns and [5] small speckle grains.

Figure III. 8 :

 8 Figure III.8: Example of log-log graph power law for P SD (right) computed from depth images of natural images taken in the wood (left)[105].

Figure III. 9 :

 9 Figure III.9: At the top, a microscope image of a E. coli colony (ATCC® 11775) after 10 hours of growth on TSA medium (Tryptic Soy Agar from VWR®). At the bottom, its radially averaged P SD showing typical spectral signature oscillations of a disk.

Figure III. 10 :

 10 Figure III.10: Typical spectral signature of a disk. (b.1) and (b.2) are disks with radii of respectively 10 µm and 40 µm. Their averaged P SD are displayed in (a).

Figure III. 11 :

 11 Figure III.11: Comparison of circular profiles (red doted circles on the images) from the P SD of a microscope image (a.1, a.2) and from a scattering pattern (b.1, b.2) acquired with ELS instrument in a transmission geometry. Profiles were computed with same number of sample points so that they can be compared. It shows that the coherent illumination used for the ELS allows to extract more phenotypic related features than a simple view with microscope. The colony used was a Staphylococcus epidermidis cultivated on TSA and incubated for 14 hours at 37°C. Peaks present in the 2D spectrum on (a.2) are the spectral signature of the grooves (scratch on the culture medium) dug during the culture plate inoculation with a plastic microloop.

Figure III. 12 :

 12 Figure III.12: (a.1), (b.1), (c.1) and (d.1) are colonies obtained after numerical replication of a cell mask. They are respectively composed of 1, 10, 100 and 10000 cells. The cell mask used for replication is the rod-shaped cell showed in (a.1) taken from a microscopic image of an E. coli colony. In (a.2), (b.2), (c.2) and (d.2) are plotted their corresponding diffracted field.

Figure III. 13 :

 13 Figure III.13: Averaged P SD of numerical colonies (incoherent illumination). As the number of bacterial cells increases, the P SD tends to be governed by a Bessel function of the first kind. Thus we can observe those characteristics oscillations on the P SD of the 10000 cells' colony.

  Under the impulsion of professor D. Rousseau (full professor at Lyon 1 University, Creatis), I have transferred this Dead leaves model to the practical approach of bacterial growth by modeling bacterial cells with different levels of transparency T = 0, 0.5 and 0.95 (T = 0: opaque and T = 1: transparent). Fig. III.14 shows how this law is progressively set as the number of cells is increased from 100 to 10000 under incoherent illumination.

Figure III. 14 :

 14 Figure III.14: P SD of colonies' inside under incoherent illumination displayed in (a), (b) and (c). P SD are displayed ± standard deviation calculated over 10 generations of colonies for each category (100, 1000 and 10000 bacterial cells). In (d) an example of colony's inside selection. Cells transparency was varied : (a) T = 0, (b) T = 0.5, (c) T = 0.95. Linear fit in log-log scale were computed on the mean P SD of each category. The corresponding correlation coefficients R 2 are displayed. Slopes were usually comprised between 1 and 2.

Figure

  Figure III.15: (b.1), (b.2) and (b.3) are speckle fields numerically simulated from the coherent illumination of inside of colonies respectively composed of 100, 1000 and 10000 cells. Their averaged P SD are presented above, on the graphic (a). The spectral behavior is similar to the one of spatial white noise low-pass filtered.

Figure III. 16 :

 16 Figure III.16: Example of white noise low-pass filtered and its spectral signature. (b.1) 2-D gaussian white noise with mean = 0 and variance of 1. (b.2) and (b.3) correspond to the image (b.1) filtered by a 2-D gaussian kernel with standard deviation σ = 3 and σ = 9 respectively. Their averaged P SD are plotted on the graph (a). We recognize the typical spectral signature of a white noise with the same power distributed over all the spectrum. The two other spectra exhibit a cutoff frequency which vary with the characteristics of the low-pass filter.

Figure III. 17 :

 17 Figure III.17: Comparison of microscope images and corresponding forward-scattering patterns acquired on the same E. coli ATCC® 11775 colony during its growth on TSA culture plate at 37°C. Acquisitions were performed from 4h50min to 10h of growth[START_REF] Marcoux | Optical forward-scattering for identification of bacteria within microcolonies[END_REF].
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 11 2D model I began first by developing a 2D ray tracer under Matlab™ . Rays are represented by vectors and their directions are computed at each interface between medium 1 and medium 2 following the Snell's law: n 1 sin(θ 1 ) = n 2 sin(θ 2 ) , (IV.1) where n 1 and n 2 are the refractive indices of media 1 and 2, and θ 1 and θ 2 are the angles defined in fig. IV.1.

Figure IV. 1 :

 1 Figure IV.1: Illustration of the Snell's law for reflection (on the left) and refraction (on the right).In the reflection case, we have θ 1 = -θ 2 . For the refraction, angles are linked by he relation detailed in eq. IV.1.

Figure IV. 2 :

 2 Figure IV.2: Examples of ray tracing on two different simulated colony profiles, one spherical on the left (a) and one more flat on the right (b). In (a), the numerical aperture needed to catch at least 90% of the transmitted rays is 0.46 and for reflected rays it is 0.54. In (b) we need a numerical aperture of 0.29 for reflection and 0.25 for transmitted rays.

Figure IV. 3 :

 3 Figure IV.3: Numerical aperture versus colony aspect ratio. Numerically simulated colony profile.

Figure IV. 4 :

 4 Figure IV.4: Example of different stages of growth for one Staphylococcus epidermidis ATCC® 14990 colony growing on a COS culture plate (bioMérieux). (a) is a microscope image taken after 5 hours of growth at 37°C while (b) was taken after 18 hours of growth.

Figure IV. 5 :

 5 Figure IV.5: Principle of chromatic coding[113].

Figure IV. 6 :

 6 Figure IV.6: Example of 3D meshed surface from measured Hafnia alvei ATCC® 51815 colony elevation profile with Altisurf instrument after 24 hours of growth on TSA culture medium (bioMérieux). Resolution in both plane directions was 30µm.

Figure IV. 7 :

 7 Figure IV.7: Example of 3D ray tracing for reflection from a Citrobacter freundii ATCC® 8090 colony. On the left, the global scene with a source (collimated fan of rays) which shines on the 3D meshed surface (orange color). Then the reflected rays are directed toward a screen (dark blue) using a beam splitter oriented at 45°. On the right, a zoom on the rays hitting the colony's surface.

Figure IV. 8 :

 8 Figure IV.8: Example of a backward scattering pattern obtained using the developed 3D ray-tracer on a E. coli ATCC® 25922 colony. As a first-order approach, the colony can be considered as a rough convex mirror. (a): the 3D surface plot of the colony measured with the Altisurf instrument. (b): the result obtained after launching a million rays on the meshed 3D surface. It displays the hit spots of the reflected rays from the colony's surface. (c): backward scattering pattern acquired with our ELS instrument.

Figure IV. 9 :

 9 Figure IV.9: Illustration of caustics patterns. In (a.1) and (a.2) are displayed numerical simulations. Global illumination methods were used to render the effect of light shining on a transparent and rough surface. In comparison, backward-scattering patterns acquired on bacterial colonies are displayed in (b.1) E. coli , (b.2) Pseudomonas putida and (b.3) Pseudomonas aeruginosa.

Figure IV. 10 :

 10 Figure IV.10: Object model for the sample. The whole culture plate is modeled with different materials. Polystyrene plate with refractive index 1.54, culture medium with refractive index 1.33 and the colony meshed surface with refractive index 1.38.

Figure IV. 11 :

 11 Figure IV.11: An example of scene rendering with ELS pattern recorded in a reflection geometry.

Figure IV. 12 :

 12 Figure IV.12: Colony parameterization. Here is presented a cross-section of a colony profile. The colony is characterized by its height map H with H 0 the maximum height and its refractive index map n.

Figure IV. 13 :

 13 Figure IV.13: Problem parameterization. For a focused light beam, its waist is located at z = 0.The colony is on the sample plane at z = z a described by the coordinates (X, Y ) and the image plane is at z = z i and is defined by the coordinates (x, y).

Figure IV. 14 :

 14 Figure IV.14: Comparison between experimental acquisition and simulation for diffraction on a 100 µm polystyrene bead with image plane at 5cm from the sample. In (a) the experimental acquisition with the forward ELS instrument: transmission geometry. In (b) the result of Rayleigh-Sommerfeld integral direct integration calculation. In (c) are displayed intensity profiles for both images. They show good agreement. Differences in intensity variations are due to non homogeneous illumination and misalignment between laser beam and the bead.

Figure IV. 15 :

 15 Figure IV.15: Comparison between experimental acquisition and numerical simulation for forward diffraction on two 100 µm polystyrene beads. The two beads are touching each other. In (a) the experimental acquisition with the forward ELS instrument: transmission geometry. In (b) the result of Rayleigh-Sommerfeld integral direct integration calculation. In (c) are displayed intensity profiles for both images. Differences in intensity variations are due to non homogeneous illumination and misalignment between laser beam and the two beads.

  colony's elevation profile H. Since H is a priori non symmetric in our case, conversely to the Gaussian profile employed by the other team, | dH(r) dr | max was computed along different axis as illustrated by the red doted lines on the fig. IV.16.

  In the example of fig. IV.16, taking a refractive index n = 1.35 for the bacterial colony, a maximum profile slope | dH(r) dr | max = 0.83 and a green laser

Figure IV. 16 :

 16 Figure IV.16: Example of searching the optimal sampling condition for one E. coli ATCC® 25922 colony. In (a) and (b) is displayed its height profile from the Altisurf instrument. The red dotted lines illustrate the different profiles taken to compute the maximum slope | dH(r) dr | max

Figure IV. 17 :

 17 Figure IV.17: In (a) is displayed the diffracted field computed from the measured profile of one E. coli ATCC® 25922 colony. As recommended by the computation of the sampling criterion, the computational window size was W a = 56mm with dx = 1µm, which allowed a correct sampling. Conversely the conditions used to compute the diffracted field displayed in (b) are not appropriate to correctly sample the image plane, W a = 25mm with dx = 1µm.

Figure IV. 18 :

 18 Figure IV.18: In (a) is displayed a numerical simulated colony. This was accomplished by replicating a cellular mask taken from a microscope image. Cells are surrounded in what we called extracellular matrix. This configuration is used to define the refractive index map since cells and extracellular matrix have different ones. In (b) is displayed a microscope image of one E. coli ATCC® 25922 mono-layer colony at an early stage of growth on TSA (bioMérieux) culture medium (4 hours of incubation at 37°C).

Figure IV. 19 :

 19 Figure IV.19: ELS acquisition on a young bacterial colonie (E. coli ATCC® 25922) after 4h hours of growth in incubator at 37°C. (a) is a microscope image numerically enhanced so as to exhibit the cells arrangement and the extra-cellular matrix. The ELS pattern acquired in transmission geometry through the TSA (bioMérieux) culture plate. In (b.1) the simulated ELS pattern where we can observe the laser beam size around the pattern. The laser beam was shaped with a microscope objective (Olympus x20 with 0.4 N.A.) and its characteristics were taken into account in the simulations. In (b.2) a zoom of the image (b.1). Green, blue and red rectangles highlight the bright spokes resulting from the constructive superimposition of diffraction patterns along the different dimensions of the colony.

  Let us first consider an intermediate colony with only two layers of cells as illustrated on fig. IV.20. We reasonably cannot generate the same kind of map obtained from microscope images as previously displayed on fig. IV.19, image (a). This is why I use a model based on two-layers height profile with two different radii as shown on image (b.1) from fig. IV.20. The intensity profiles provided show the inappropriate choice for the bacterial bio-physical modeling. Despite reproducing the main oscillations locations, the proposed model fails to retrieve the whole pattern characteristics.

Figure IV. 20 :

 20 Figure IV.20: Example of a young E. coli ATCC® 11775 after 6 hours of growth on TSA culture medium (bioMérieux). In (a.1) and (a.2) are displayed respectively a microscope image and the forward scattering pattern acquired with our ELS instrument. In (b.1) and (b.2) a numerical simulation based on a two-layers model colony with first circular layer of 100µm diameter and small secondary layer with 50µm. In (c) are displayed their intensity profiles. It shows that a simple two-layers model can reproduce the main oscillations location but retrieves the intensities with difficulty. Thus, modeling bacterial colonies as simple objects with homogeneous refractive index without taking in account cells arrangement brings a limited representation of the scattering patterns produced with ELS.

Figure IV. 21 :

 21 Figure IV.21: Example of artificial colonies following a double-radii height profile: more curvy in the center and flat at the border. Each colony contains 10 000 bacilli. In (a.1) one colonie with all bacilli oriented in the same direction and its corresponding simulated ELS pattern in (a.2). In (b.1) a colony with randomly oriented bacilli and its simulated ELS pattern displayed in (b.2). Two classes were made of hundred instances of each of this two models.

Figure IV. 22 :

 22 Figure IV.22: ELS patterns illustrating the bright radial spokes observed in transmission and reflection geometry on old colonies. (a) and (b): Staphylococcus epidermidis ATCC® 700296 and Staphylococcus lentus ATCC® 700403 after 20 hours of growth on TSA culture plate (bioMérieux) at 37°C. (c) and (d): Enterobacter aerogenes ATCC® 13048 and Escherichia coli ATCC® 35421 after 20 hours of growth on COS culture plate (bioMérieux) at 37°C

Figure IV. 24 :

 24 Figure IV.24: Simulation of ELS pattern with radial phase inclusions added into the colony model. Half-colony-radius long (around 100µm) radial phase inclusions were added.

. 27 )

 27 where p x denotes the pixel size of the sensor array (considering squared pixels). Thus p x corresponds to the spatial sampling rate for the recording of holograms. As illustrated on fig. IV.26 (b), the off-axis angle α causes the four terms of eq. IV.26 to be separated in the spatial frequency domain. The center part of the spectrum |R| 2 + |O| 2 is called the autocorrelation term and its size is related to the highest spatial frequency of the object f m . OR * and O * R are the expression of respectively the real and twin images of the object. For object reconstruction we thus have to select only the real image of the object and thus cancel the autocorrelation and twin image terms by spatial filtering or phase shifting methods[129,[START_REF] Cuche | Spatial filtering for zeroorder and twin-image elimination in digital off-axis holography[END_REF].

Figure IV. 25 :

 25 Figure IV.25: Schematic diagram on the left showing the optical Mach-Zehnder setup configuration for phase measurement. One beam goes through the sample to be measured and the second is taken as a reference. Both beams are finally recombined so that they can interfere on the sensor. Interference fringes are controlled by tilting the reference beam. The inter-fringe distance must meet the sampling theorem requirements fixed by the pixel size of the sensor. On the right, a photograph of the setup while making an acquisition.

  Fig. IV.27 shows anyway an acquisition performed on a E. coli colony.

Figure IV. 26 :

 26 Figure IV.26: In (a), schematic diagram for recording an hologram in off-axis configuration. In (b) the Fourier space, i.e. the spatial frequency representation of off-axis holograms.

Figure IV. 27 :

 27 Figure IV.27: In (a) a digital hologram recorded on a growing E. coli ATCC® 11775 after 6 hours of incubation at 37°C. Straight lines are scratches on the culture medium made during the plate inoculation. Its 2D Fourier spectrum used for the selection of the OR * component for reconstruction is displayed in (b). (c.1) is the reconstructed phase of the optical field in the object plane. (c.2) corresponds to the phase displayed in (c.1) after removing phase jumps induced by the important slope of the culture medium surface. Unfortunately, due to bad acquisitions conditions, those results are not exploitable.

Figure V. 1 :

 1 Figure V.1: Illustration of the extraction of some features from a scattering image (a). (b) is the representation of (a) in polar coordinates while the images (c) and (d) illustrates the extraction of rings.

Figure V. 2 :

 2 Figure V.2: Table illustrating the features selection. In the first column, each parameter is tested independently and the best is kept in the next column. The percentages correspond to the percentage of miss-classified images over the whole database using k-means clustering. The database contains 912 images from 8 different bacterial species (around 110 images per strain). Strains used are : E. coli ATCC® 11775, ATCC® 35421, ATCC® 8739 and ATCC® 25922, Hafnia alvei ATCC® 13337, Citrobacter freundii ATCC® 8090, Enterobacter cloacae ATCC® 13047 and Pseudomonas putida ATCC® 12633.

Figure V. 4 :

 4 Figure V.4: Reconstructions from projection on first 120 Zernike polynomials (both radial and azimuthal orders up to 20). Computed MSER (Mean Squared Error of Reconstruction) were respectively 62.5% for (a.2), 55.4% for (b.2) and 52.9% for (c.2).

Figure V. 5 :

 5 Figure V.5: This figure displays some polynomials magnitudes of the Bessel-Fourier basis. We can observe the number of rings increasing with radial order and so does the number of lobes with the azimuthal order.

Fig. V. 7

 7 Fig. V.7 shows some reconstructions of scattering images with their associated MSER and fig. V.8 illustrates the superiority of the Bessel-Fourier moments at accurately recovering images comparing with Zernike ones with equal number of moments. Thus Bessel-Fourier moments are the best compromise in terms of computational cost (memory and time) because it requires less moments to well describe scattering patterns.

Figure V. 6 :

 6 Figure V.6: Here are some of Bessel-Fourier radial polynomials to illustrates the homogeneous distribution of its zeros over the unit disk due to the presence of a Bessel function of first kind.They are all set to zero at the unit disk border so as to avoid convergence problems which were often encountered with the use of Zernike moments.

Figure V. 7 :

 7 Figure V.7: Reconstructions from projection on Bessel-Fourier basis. Computed MSER (Mean Squared Error of Reconstruction) with Bessel-Fourier moments with radial order up to 100 and azimuthal order up to 4 (900 moments) were respectively 15.9% for (a.2), 28.9% for (b.2) and 27.8% for (c.2).

Figure V. 8 :

 8 Figure V.8: Comparison of image (a) reconstruction accuracy between Zernike and Bessel-Fourier as the number of moments for projection is increased. The number of moments used are: (b.1) 50, (c.1) 49, (b.2) 120, (c.2) 121, (b.3) 500 and (c.3) 484. With equal number of moments, the Bessel-Fourier method will provide more accurate images descriptions.

Figure V. 9 :

 9 Figure V.9: MSER variations with radial and azimuthal order of the Bessel-Fourier expansion. Each graph is for one species of the 4-strains E. coli database: (a)ATCC® 25922, (b)ATCC® 8739, (c)ATCC® 35421, (c)ATCC® 11775. For each species, points in black are the averaged MSER over all images reconstructions with standard deviation materialized by a vertical black bar. The surface has been extrapolated from those computed points to show the trend of the MSER evolution as the radial and azimuthal order are increased.

Figure V. 10 :

 10 Figure V.10: (a) MSER variations with azimuthal order for radial order fixed at 80. (b) MSER variations with radial order for azimuthal order fixed at 16. Scattering images were taken from the 4-strains E. coli database. Presented curves are the averaged MSER with standard deviation over the whole images for each species.

Figure V. 12 :

 12 Figure V.12: Here are the optimized correct classification rates against the MSER and the number of moments. MSER were averaged on the four MSER E. coli strains to indicate the global database description performance. Standard deviations are materialized by black bars for MSER (horizontal bars) and classification rate (vertical bars)This illustrates the counter-intuitive fact that low MSER (high images description accuracy) do not necessary allow better classification performances.

Figure V. 13 :

 13 Figure V.13: This illustrates how a SVM would choose a separating hyperplane between two classes represented by 2D points. H 1 does not separate the classes while H 2 does with a small margin and H 3 with a maximum margin[134].

∀i ∈ [ 1 ,

 1 n], -→ x i ∈ H ⇔ -→ w . -→ x i -b = 0, where -→ w is a vector normal to H and b an offset. Thus, if the data are linearly separable, as illustrated on fig. V.14, we have either -→ w . -→ x i -b ≤ -1 or -→ w . -→ x i -b ≥ 1. The distance between any point x i and the hyperplane H is defined by the orthogonal projection :

  dotted lines on the fig. V.14 are the margin lines and lies on the points called support vectors. We have -→ w . -→ x i -b = ±1 when the point -→ x i lies on either one of the margin line.

Figure V. 14 :

 14 Figure V.14: This graphic shows the maximum margin separating hyperplane between the two classes (circles and black filled circles). Dotted lines on both sides of the hyperplane are the margins and samples that lies on them are called the support vectors[START_REF]Svm max separating hyperplanes[END_REF].

Figure V. 15 :

 15 Figure V.15: Slack variables. Dotted lines are the margin lines for the two classes : circles and black filled circles. For each variables -→ x i we compute its classification error ξ i ≥ 0. 0 ≤ ξ i ≤ 1 ifthe variables is well classified but lies between its class margin line and the frontier line. ξ i > 1 if the variable is miss-classified.

Figure V. 16 :

 16 Figure V.16: Illustration of the kernel trick that uses a kernel function to map data into a space where they are linearly separable[138].

Figure V. 17 :

 17 Figure V.17: This figure illustrates how the original data set is divided into smaller subsets and how they are all iteratively used as training and testing set.

FFigure V. 18 :

 18 Figure V.18: Definition of the terms displayed in a confusion matrix. A true positive is an instance found true by the machine learning algorithm and which is actually true, conversely, a true negative is an instance found to be negative by the algorithm and actually negative. A false positive is an instance which is found positive by the algorithm while it is actually false and same reasoning for a false negative. Inspired from[START_REF] Page | Evaluating machine learning methods[END_REF].

Figure V. 19

 19 Figure V.19: A Receiver Operating Characteristic (ROC) curve plots the T P -rate versus the F Prate as a threshold on the confidence of an instance being positive is varied[141]. Algorithms can be tuned to have different behavior in the ROC space considering the cost of F P vs. F N .

  precision vs. recall curves, as defined on fig. V.20, show the fraction of predictions that are false positives which is a useful tool for tasks with many negative instances.

Figure V. 20 :

 20 Figure V.20: The precision/recall curves are useful to show the fraction of predictions that are F P [140].

Figure V. 22 :

 22 Figure V.22:Example of two "accuracy maps" obtained from the previously described grid search algorithm. The map on the left is the result of a coarse grid while the map on the right is the final result after using a fine grid. Each point on those maps is a classification rate averaged on ten 10-fold cross validations evaluated with a unique couple (C,γ). The data set used was the 4-strains E. coli database projected on the Bessel-Fourier basis with radial order 80 and azimuthal order 16 (features vector of dimension 1360 = 80×(16+1)). Final best classification rate obtained is 87.50% ±0.73% , with (C,γ) = (1.4142,4) and 221 support vectors.

Figure V. 23 :

 23 Figure V.23: Here are the percentages of variance explained in data (predictors) or outputs (responses) against the number of principal components computed from the regression. PLSR is as good as PCR for explaining the variance of the data. Furthermore PLSR is also able to capture the variance in the responses. Database used is the 4-strains E. coli database projected on Bessel-Fourier basis up to the 15 th azimuthal and radial orders.

Figure V. 24 :

 24 Figure V.24: Two spider plots showing the scores matrices of PLSR. (a) PLSR using only ten principal components and (b) the maximum available components (i.e. 239 = 240-1, 240 is the number of Bessel-Fourier moments used for building the features vectors describing the database). It shows a confusion trend between the ATCC® 25922 and ATCC® 11775 E. coli strains and also between the ATCC® 11775 and ATCC® 8739 strains, especially visible on graph (a). On (a) for the ATCC® 11775 (orange line with cross markers) we can notice high scores for ATCC® 11775 (itself) and also not negligible score for ATCC® 25922 and ATCC® 8739. It explains confusion trends in classification.

Figure V. 25 :

 25 Figure V.25: Confusion matrix obtained after performing an SVM classification with 10-fold crossvalidation on the software Weka. Names EC10, EC11, EC21 and EC28 respectively are short names for respectively the E. coli strains ATCC® 25922, ATCC® 8739, ATCC® 35421 and ATCC® 11775. To read this matrix, let us consider the boxed line at the bottom which sum up the classification performance for the ATCC® 11775 strain. 85 represents the number of images that were effectively classified as ATCC® 11775.We also can observe that 15 = 12 + 2 + 1 images were misclassified. Among them 12 were classified as ATCC® 25922 while only 2 were classified as ATCC® 9839 and 1 as ATCC® 35421. This confirms the results obtained from PLSR and showed on spider plots.

Figure V. 26 :

 26 Figure V.26: In (a) and (b) plots of the estimated MSEP obtained from PLSR with 10-fold crossvalidation.The optimal number of components that minimize the MSEP is 17. Plot (c) shows that this optimal number of components does not meet the maximum percentage of variance explained of data and neither of outputs.

Figure V. 27 :

 27 Figure V.27: Here are the five first component computed from PLSR on the 4-strains E. coli database. These components are linear combinations of Bessel-Fourier moments used for image projection.

Figure V. 28 :

 28 Figure V.28: This bar plot displays the cumulative weights of the PLSR components. That is to say, for each Bessel-Fourier moment, the weights of the PLSR absolute value of the PLSR weights have been summed. This allows to show the importance given to specific moments by the PLSR. Graph (a) shows the cumulative weights over the optimal set of 17 first PLSR components. Graph (b) presents the cumulative weights over all the other components without considering the 17 firsts.Both graphs exhibit opposed periodic patterns. In (a) weights are always higher for low orders moments and low for high orders while, conversely, on the graph (b), weights are higher for high order moments and low for low orders ones.

Figure V. 29 :

 29 Figure V.29: Here are the optimal set of 17 first PLSR components as linear combination of Bessel-Fourier moments. We can notice that principally coarse oscillations are present.

Figure V. 30 :

 30 Figure V.30: Summary of the improvements brought by the hyperparameters optimization and the dimensionality reduction with PLSR. Results presented are for the 4-strains E. coli database.We can notice an increase of the correct classification rate of around 13% and a decrease of the computational time by a factor of 6 for the grid-search optimization and a factor of 14 for the features vector calculation. The number of support vectors for the SVM algorithm has also been decreased from 215 to 134 which provides a more general classification model.

  2.2). Number of support vectors was decreased to 62 which ensure a more general model than the one obtained with Bessel-Fourier moments. The results are summarized on fig. V.31. In this example, high accuracy images description does not lead to better classification performances.

Figure V. 31 :

 31 Figure V.31: Summary of the results obtained on the E. coli database in transmission geometry.Comparison between the use of Bessel-Fourier and Zernike moments for features extraction. We can notice that despite providing high MSER (poorly accurate image description) using Zernike moments leads to higher classification rate. The computed classification model is also more general (uses twice less support vectors).

Figure V. 32 :

 32 Figure V.32: Summary of the results obtained on the E. coli database in reflection. 420 Bessel-Fourier moments reduced to 15 principal components with PLSR provide a correct classification rate of 97.4% while using around 50 support vectors (less than for the database in transmission).

  fig. V.33 sums up the results.

Figure V. 33 :

 33 Figure V.33: Summary of the results obtained on the Gram test database in transmission. 121 Zernike moments reduced to 22 principal components with PLSR provide a correct classification rate of 98.1% while using 104 support vectors. The first line present the result without global optimization. No support vectors are displayed because a polynomial kernel was used for this previous result obtained in 2014.

Figure VI. 1 :

 1 Figure VI.1: On the left, schematic diagram of speckle pattern formation. When a coherent light beam irradiates a rough surface, the scattered light interferes with itself and produces randomly distributed dark and bright spots of different size and shapes called speckle grains or patterns. On the right, an example of speckle field acquired on a culture plate inoculated with 40µL of an E. coli ATCC® 11775 suspension at 0.5McF 1:1000 diluted. Acquisition was made after 5 hours of growth in incubator at 37°C with the instrument described on fig. VI.9.

Figure VI. 2 :

 2 Figure VI.2: (a) scattering pattern acquired on a Bacillus subtilis ATCC® 6633 colonie after 10 hours of growth (b) scattering pattern acquired on a Bacillus subtilis ATCC® 6633 colonie after 7 hours of growth. Kim et al discussed in[167] the apparition of those speckle patterns during bacterial growth.

Figure VI. 3 :

 3 Figure VI.3: Cellular automaton algorithm. The loop is on a time scale of one minute. After the grid initialization, each cell is tested. Depending on its state, different rules are applied. If the grid cell is empty (state = 0), nothing happens. If the grid cell is in division state (state = 1), we check the number of neighbors and apply the previously defined probability to determine if the cell effectively divide itself. If this is the case, the mother cell goes back to growth state (state = 2) and one empty neighbor cell is selected and set to the growth state. The phenotype inheritance rule is then applied. If the cell does not divide itself, its state is set to growth state. Finally if a cell is in growth state, we check for food availability. If there is food we apply the probability that the cell eats one unit and then the probability that it goes into the division state. If there is no more food, we debit one unit from the survival time counter. The probability that the cell enters the division mode, although there is not any food, is checked and we also check that the survival time counter has not reached zero. Then the cell state is updated. The algorithm can be stopped after different criteria are met.

Figure VI. 4 :

 4 Figure VI.4: Bacterial growth curve under ideal conditions. It can be described by four different phases: a lag phase, an exponential growth phase,a stationary phase and a death phase[175].

Figure VI. 5 :

 5 Figure VI.5: Numerical simulation of microorganism growth using the CA. (a) image of the grid just after its initialization. (b) image of the grid after around 3 hours of growth. Colors code for the layer level of the cells: 0 (dark-blue) for the agar level to 3 rd level (yellow). Number of cells layers was limited to 3. The curve (c) shows the evolution of the cell population in log scale during growth and exhibits the same typical four different phases. Food levels and survival times were intentionally set to low levels so as to observe the cell population decrease over a short time scale. Usually, simulations were stopped just after reaching the plateau (stationary phase).

Figure VI. 6 :

 6 Figure VI.6: Illustration of the speckle field generation from CA simulations. On the left, CA grid images and on the right, the computed speckle fields corresponding to the green oval zone illuminated with a coherent light.

Figure VI. 7 :

 7 Figure VI.7: In (a), histogram of one speckle image generated from one frame of a CA simulation. In (b), an ideal fully developed speckle histogram distribution following a Rayleigh distribution.

I

  display in fig.VI.8 the results of numerical simulation based on the generation of speckle field from CA runs. Three different generation time were employed: 25min, 45min and 80min. Ten realizations of the CA were made for each generation time category. The normalized autocorrelation intensity has been averaged on the whole image and is displayed. It shows that we theoretically can differentiate microorganisms on their generation time.

Figure VI. 8 :

 8 Figure VI.8: Numerical simulation based on the generation of speckle field from CA runs. Three different generation time were employed: 25min, 45min and 80min. Ten realizations of the CA were made for each generation time category. On the left is displayed the normalized autocorrelation intensity C(τ ) averaged on the whole image. On the right, the graph presents the values of C(τ ), for τ = 150min. The three categories are theoretically well separated.

Figure VI. 10 :

 10 Figure VI.10: Speckle acquisitions on sterile and inoculated culture plates. 10 minutes separates images (a.1) and (a.2) taken on a sterile culture plate. The image (a.3) is the difference between (a.1) and (a.2) and shows no changes in the recorded images. Images (b.1), (b.2) and (b.3) correspond to the same experiment but on a culture plate inoculated with 25µL of an E. coli ATCC® 25922 suspension at 0.5McF. The culture plate used for the images (c.1) and (c.2) were inoculated with the E. coli ATCC® 35421. Differences (b.3) and (c.3) show visible changes induced by the bacterial proliferation during the 10 minutes.

Figure VI. 11 :

 11 Figure VI.11: Normalized autocorrelation intensity curves for speckle acquisition with the instrument presented on fig. VI.9. Standard deviation were computed over ten samples for each category (sterile and contaminated). Sterile plates were inoculated with 40µ/L of sterile suspension medium. Contaminated plates were inoculated with 40µ/L of an E. coli ATCC® 25922 suspension obtained from a 1:1000 diluted 0.5McF suspension. COS culture plates were used. During the 15 hours acquisition, they were placed in incubator at 37°C.

Figure VI. 12 :

 12 Figure VI.12: Normalized autocorrelation intensity curves for speckle acquisition with the instrument presented on fig. VI.9. Standard deviation were computed over ten samples for each category (EC10: E. coli ATCC® 25922, EC21: E. coli ATCC® 35421 and SE26: Staphylococcus epidermidis ATCC® 12228). COS plates were inoculated with 40µ/L of a 1:1000 diluted 0.5McF bacterial suspension and incubated 15 hours at 37°C

Figure VI. 13 :

 13 Figure VI.13: A disk diffusion test in (a) with an isolate of Escherichia coli from a urine culture. The diameters of all zones of inhibition are measured and those values translated to categories of susceptible, intermediate, or resistant. A Staphylococcus aureus isolate in (b) tested by the Etest gradient diffusion method with vancomycin (VA), daptomycin (DM), and linezolid (LZ) on Mueller-Hinton agar. The minimum inhibitory concentration of each agent is determined by the intersection of the organism growth with the strip as measured using the scale inscribed on the strip[181].

Figure VI. 14 :

 14 Figure VI.14: A broth microdilution susceptibility panel containing 98 reagent wells and a disposable tray inoculator[181].

Figure VI. 15 :

 15 Figure VI.15: Instrument used for AST analysis. A laser diode (650nm) was used for this task so as to get high transmission through COS plates. A shutter was synchronized with the acquisition camera so as to illuminate the sample only during the acquisition (maximal illumination duration 1s). The CCD sensor was coupled with an objective to get an image from the sample and thus record subjective speckle patterns. The whole instrument was placed in an incubator with controlled temperature around 37°C.

Figure VI. 16 :

 16 Figure VI.16: k-means clsutering algorithm illustration[189]. (a)k "means" (colored disks) are randomly generated within the data (gray squares). (b) k clusters are created by associating every instance with the nearest mean. (c) The centroid of each of the k clusters becomes the new mean. Previous step are then repeated until convergence is reached.

3. 4 . 2

 42 Antimicrobial E-strip: determining the Minimum Inhibitory Concentration (MIC) On fig. VI.19, I present the activity map computed on an E. coli AST performed with an Etest®AMPICILLIN AM (bioMérieux). As illustrated on fig. VI.18, Etest®(image on the left) is a thin plastic strip. One side carries the MIC reading scale in µg/mL and on the other side has been immobilized a predefined exponential gradient of dried antibiotic. Thus this strip covers a continuous concentration range across 15 two-fold dilutions of a conventional AST[191].

Figure VI. 18 :

 18 Figure VI.18: Etest®(image on the left) is a thin plastic strip. One side carries the MIC reading scale in µg/mL and on the other side has been immobilized a predefined exponential gradient of dried antibiotic. Thus this strip covers a continuous concentration range across 15 two-fold dilutions of a conventional AST[191]. On the right, an example of AST using an Etest®. The MIC can be directly read at the end of the inhibited growth zone (red arrows)[192].

Figure VI. 19 :

 19 Figure VI.19: Example of AST with an Etest®AMPICILLIN AM (bioMérieux) placed on a Mueller-Hinton culture plate inoculated with an E. coli ATCC® 11775 suspension. Acquisition was made with the previous described instrument. The activity map displayed on the right proves the possibility to read the MIC after only 4 hours of incubation at 37°C while the image on the left was taken 20 hours after incubation. 3 clusters were computed with k-means algorithm.

Figure VI. 20 :

 20 Figure VI.20: Formation of speckle pattern from bacterial proliferation. In upper line (a) are displayed speckle image taken from a COS culture plate inoculated with an E. coli ATCC® 25922 suspension. Time indications are incubation duration at 37°C. In (b) a COS culture plate inoculated with a Staphylococcus epidermidis ATCC® 12228 suspension. We can notice that the speckle pattern formation takes longer time for the Staphylococcus than for the E. coli due to its longer generation time. It also due to the smaller size of Staphylococcus cells (coccus: sphere around 1µm) compared to E. coli cells (bacillus: rod-shaped up to 5µm).

Figure

  Figure VI.21: (a.1) a Petrifilm™. (b) a filtering membrane for water microbial analysis. In (a.2) is displayed the speckle pattern recorded from the illumination of a Petrifilm™.

Figure VII. 1 :

 1 Figure VII.1: Semi-physical model and "gray-box" principle illustration for automatic generation of a database. This system requires a perfect knowledge of the parameters (P 1 ...P n ) that have an influence on scattering patterns. Then, the generation of numerous artificial scattering patterns is achieved by combining equations of physics (diffraction theory for example) and generative algorithms. The set of physical-based characteristics defining a microorganism class (C 1 ...C n ) would be completed by parameters that has to be fitted by learning algorithms.
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V Data processing : from images features extraction to machine learning algorithms

V Data processing : from images features extraction to machine learning algorithms

VI Dynamic speckle analysis as a tool for studying the dynamic phenotypic signature state, we check for food availability. If there is food we apply the probability that the cell eats one unit and then the probability that it goes into the division state. If there is no more food, we debit one unit from the survival time counter. The probability that the cell enters the division mode, although there is not any food, is checked and we also check that the survival time counter has not reached zero. Then the cell state is updated. The algorithm can be stopped after different criteria are met. In my case I broke the algorithm at the end of the exponential growth phase. 

Communications

Conferences

Oral presentations biologiquement puisqu'il permet de réaliser des classifications avec des performances comparables aux systèmes en transmission.

Le premier système ELS fût créé en 2001 par l'équipe du professeur A. K. Bhunia de l'université de Purdue (Etats-Unis). Ce système appelé BARDOT était principalement utilisé pour des applications dans le domaine de l'agro-alimentaire et fit l'objet d'une commercialisation à partir de 2011 via la société Advanced Bioimaging Systems. Dès 2008, le BARDOT proposait des résultats de classification après 20 heures de croissance environ de 90% sur une disctinction entre les espèces Listeria, Staphylococcus, Salmonella, Vibrio et Escherichia. Ces espèces sont souvent à l'origine d'infections de l'homme dues à de la nourriture contaminée.

Dans le même temps, l'équipe du CEA-LETI portée par E. Schultz (instrumentation optique) et P. Marcoux (microbiologie) développait l'instrument Microdiff destiné à l'identification de pathogènes d'intérêt clinique à des temps de croissance beaucoup plus court : 6 heures. Un taux de classification de 90% sur le typage (degré de classification le plus fin) de quatre souches d'E. coli a pu être obtenu. Une campagne de mesure menée au Centre Hospitalier Universitaire de Grenoble en collaboration avec le professeur M. Maurin sur le dépistage des porteurs de staphylocoques dorés permit d'obtenir une discrimination de 91.4% entre les staphylocoques dorés et non dorés (base de données de 38 espèces pour 5424 images acquises sur milieu de culture ChromID S. aureus). Depuis l'apparition de l'ELS, de nombreuses études ont été menées afin de caractériser l'influence des paramètres morphotypiques sur les images de diffraction. Ainsi, l'influence de la taille et de la hauteur de la colonie mais également la composition du milieu de culture et de ses conditions de stockage ou encore la densité de population au sein de la boîte de culture ont été étudiées. Ce chapitre nous a permis de réaliser que, l'ELS, comme toute méthode phénotypique requiert une maîtrise, voire au moins une parfaite connaissance des conditions environnementales de l'acquisition et ce afin de garantir une reproductibilité et une robustesse du processus. Néanmoins, cette méthode bas coût, sensible, sans-marquage et nondestructive (temps d'acquisition court) apparaît tout à fait intégrable dans une chaîne de diagnostic automatisée.

Chapitre III : Analyse multi-échelles spectrale, l'intérêt de l'illumination cohérente

Les colonies sont un des principaux lieux d'expression des caractéristiques phénotypiques des microorganismes et cela à différentes échelles. Elles peuvent en effet avoir des formes, des tailles, des profils ainsi que des odeurs, couleurs ou encore des propriétés mécaniques très variés. La première échelle rencontrée est micrométrique puisqu'elle concerne les cellules composant les colonies. Les formes