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Abstract 

The shear strength of the concrete-rock interface is a key factor in assessing the stability against sliding 

of concrete dams founded on rock. While several studies have shown that both surface roughness and 

the initial cohesion contribute to the shear strength, most of the recommendations for the stability 

assessment of dams propose conventional values for the mechanical parameters of the dam-foundation 

interface (i.e. friction angle and cohesion). Moreover, most of the criteria proposed in the literature in 

order to determine the shear strength of rough joints are based on direct shear tests conducted on joints 

without initial bonding. Another major difficulty lies in the quantification of surface roughness by 

means of an objective parameter able to describe the three dimensional aspect of surface roughness as 

well as the anisotropy observed experimentally.  In this context, one of the primary objectives of this 

thesis is to better understand the shear behavior of bonded rough joints and to relate the shear strength 

to the morphological parameters of the concrete-rock interface. 

Due to the complexity of the shear behavior of bonded joints and because few studies have been carried 

out on cohesive samples, it was decided to perform several experimental campaigns on different types 

of geometries with an increasingly complex roughness (smooth, bush-hammered, tooth-shaped 

asperities and natural surfaces). For this purpose, more than thirty direct shear tests were performed on 

bonded samples at three levels of normal stress. The influence of the shear displacement rate on the 

shear behavior of joints was also investigated. Prior to the shear tests, a morphological tool was 

developed in order to provide an objective quantification of surface roughness based on surface 

measurements obtained with a laser profilometer.  

Based on the shear test results, two different shear behaviors were observed for the natural joints 

according to surface roughness and the level of normal stress. Thus, an analytical expression was 

proposed in order to quantify the contribution from the different modes of failure to the shear strength. 

It is shown that this expression is able to well predict the shear strength of natural joints. Furthermore, 

a new roughness parameter was proposed in order to quantify the morphology of natural joints and to 

account for the different levels of surface roughness involved in the shearing mechanism. This parameter 

was found to be well correlated with the shear strength of joints sheared at a normal stress less than 

0.6MPa. 



On the other hand, numerical simulations of the direct shear tests were conducted by using a 3D finite 

element code and by incorporating the reconstructed joint surface obtained from the laser profilometer. 

Two different models were used: a cohesive-frictional model for the pre-peak phase and a contact law 

for modeling the residual shear behavior. The mechanical parameters of the concrete-granite interface 

(c,) were obtained from the results of the experimental campaigns on bush-hammered samples. The 

comparison between the numerical results and the experimental data showed a good agreement in the 

residual phase. The use of a cohesive-friction model, on the other hand, allowed to mimic the overall 

shape of the shear stress curve. 

Key words: concrete dams, concrete-granite interface, roughness, sliding stability, cohesive bonds, 

normal stress, F.E. simulations 
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Chapter 1 Introduction 

Dams are civil engineering structures constructed on a watercourse with the aim of 

accumulating large volumes of water for the production of electricity, for water supply and 

irrigation, and for regulating and avoiding the risk of flooding. In particular, a concrete dam is 

a massive structure designed so that its own weight is the main factor which ensures stability 

by generating a sufficient frictional force to withstand the hydrostatic pressure exerted on its 

downstream part. When designing dams, engineers focus their attention on two main aspects: 

safety and the realization of an economic construction. Given that the dam is subjected to 

significant stresses mainly from the water volumes, several stability problems have to be 

assessed: 

 Punching stability: This stability is often evaluated for structures built on soft soils. 

The foundations must then be dimensioned in such a way that the resultant of the loads 

applied to the dam does not exceed the bearing capacity of the foundation floor. 

 Tilting stability: Another risk to be assessed is the possibility of rotation of the 

structure around the downstream foot under the action of the hydrostatic pressure. It is 

the weight of the structure that opposes this rotation. 

 Sliding stability: Under the action of hydrostatic forces, the dam tends to slide over the 

weak zones or discontinuities that are present at several levels: in the dam body 

(concrete-concrete discontinuity), in the rock mass (rock-rock discontinuity) or at the 

dam-foundation contact (concrete-rock discontinuity). 

International experiences highlighted the fact that failure in the foundation is a major source to 

the structural failure of concrete dams. In fact, a study performed by ICOLD (International 

Commission On Large Dams) showed that problems at the foundation level due to internal 

erosion and insufficient shear strength were the most common causes of failure, each 

accounting for 21%. Therefore, the evaluation of the shear strength of the concrete-rock 
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interface is a key factor in the assessment of the stability of hydraulic structures. Sliding along 

this discontinuity is probably considered the most prevailing mode of failure for concrete dams 

[1] and represents the most difficult aspect of a stability analysis, especially where the strength 

properties vary throughout the foundation. The approach to evaluate sliding stability is often 

based on the limit equilibrium method with the linear Mohr-Coulomb failure criterion as a basis 

for estimating the maximum available shear strength. Moreover, most of the regulations for 

dam design ( [2], [3] ) propose conventional values for the mechanical parameters of the 

interface (i.e. cohesion and friction angle) that are based on the type of the rock foundation. 

However, several experimental campaigns conducted during the last fifty years have 

demonstrated that several factors contribute to the shear strength of the dam-foundation 

interface that the Mohr-Coulomb criterion does not take into account. The main factors include 

mainly the joint roughness ( [4], [5] ), the normal stress level, the initial cohesion between the 

joint surfaces ( [6], [7] ), the shear displacement rate and the compressive/tensile strengths of 

the materials around the joint surface. Thus, using a simple Mohr-Coulomb criterion in order 

to estimate the shear strength of the rock-concrete joints can lead to a conservative dam design 

due to the failure to take into account the effect of the geometry and the initial cohesion between 

the joint surfaces.  

In order to better understand the shear behaviour of unbonded joints, a significant amount of 

research has been conducted in the literature. In fact several shear strength criteria were 

proposed mainly for rock discontinuities in order to estimate the shear strength of such joints  

( [8], [9], [10], [11] ). Moreover, the contribution of natural and heuristic roughness (i.e. 

triangular and tooth shaped asperities) to the shear strength was widely investigated using 

mainly concrete or mortar replicas. This large research effort not only shows the major 

importance of discontinuity shear strength in rock mechanics, but also demonstrates that 

understanding the mechanical behaviour of joints and the characterisation of the shear 

resistance is a complex problem that is still under investigation. 

While several studies have been conducted on frictional joints, there remains an uncertainty 

regarding the mechanical behaviour of bonded interfaces. In fact little research has been carried 

out on such joints due to the variability of the experimental results [12] and the need to perform 

a significant amount of shear tests at different levels of normal stress. The overall goal of the 
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work presented herein is to gain a better understanding of the shear behaviour of rough cohesive 

joints and investigate the modes of failure occurring at the joint surface as function of the 

applied normal stress. To reach this goal, a series of specific objectives were established and 

will be presented in the following chapters of this thesis. 

In the first chapter, an extensive bibliographic study is presented including a review of the peak 

shear strength criteria proposed in the literature for unfilled rock joints sheared under low 

normal stresses. An extensive review of the available roughness parameters used to quantify a 

joint’s morphology is presented including statistical parameters (i.e. amplitude, spacing, shape 

and inclination parameters), the empirical JRC coefficient and Grasselli three-dimensional 

parameter. A state of the art of the previous experimental campaigns conducted on heuristic 

and natural joints, with and without initial cohesion, is described.  

In the second chapter, the shear apparatus is presented as well as the experimental procedure 

conducted on the different kinds of joint surfaces. A mechanical and morphological 

characterisation of the concrete and granite samples is carried out. Moreover, the mechanical 

parameters of the concrete-granite interface at the local scale are investigated by means of 

direct shear tests performed on flat and bush-hammered samples. 

In the third chapter, the shear behaviour of samples with a notable roughness was examined by 

means of direct shear tests performed on samples with tooth-shaped asperities and natural 

surface roughness. The influence of the applied normal stress and the contribution of the 

surface roughness to the shear strength of natural joints were investigated. 

In the fourth chapter, a new roughness parameter was proposed based on the results of direct 

shear tests on natural joints conducted at low normal stress. An investigation of the test results 

at higher normal stresses showed a possible change in the mode of failure and therefore an 

analytical model was proposed in order to determine the shear strength of the concrete-granite 

joints based both on the joint’s morphology and the level of the applied normal stress.  

In the fifth chapter, numerical simulations of the direct shear tests were conducted using two 

different models under a F.E. code (Code_Aster): a cohesive-frictional model for the pre-peak 

phase and a contact law for the residual phase. The mechanical parameters obtained from the 
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experimental shear tests on the bush-hammered surfaces were considered representative of the 

contribution of the 2nd order asperities and therefore were used as local parameters in the 

numerical models. The numerical results were then compared to the results of the experimental 

direct shear tests performed on natural joints.  

Lastly, a summary of the entire work is presented, outlining the major contributions and 

providing some insights and suggestions for future work.   



 

Chapter 2 Bibliography 

2.1 Shear resistance of discontinuities in geomaterials 

2.1.1 Shear behaviour of joints 

The stability of concrete dams depends on the presence of discontinuities found at different 

levels (in the dam body, at the dam-foundation interface and in the rock mass), but also on the 

mechanical and geometrical properties of those interfaces. The mechanical behaviour can be 

studied by in situ shear tests, performed by isolating a test block in situ or more generally by 

laboratory shear tests on samples of different sizes and taken from several locations. This latter 

method is preferred since in-situ shear tests are rather expensive to perform and boundary 

conditions are difficult to control. To obtain samples with discontinuities, one can either 

conduct a drilling through the joints in the field or break a block of sound rock in order to create 

artificial joints. Another technique consists of manufacturing an artificial joint in the laboratory 

using a suitable mortar. This allows to reproduce the same morphology and therefore be able 

to perform shear tests on the same geometry but under different testing conditions. Most of the 

shear tests performed previously are conducted on saw-cut joints ( [13], [14], [15], [16], [4] ), 

or on mortar replicas ( [13], [17], [18] ). Few researchers have performed shear tests on natural 

rock joints ( [19], [20], [21] ). 

The direct shear test is conventionally used to study the shear behaviour of discontinuities 

under constant normal stress (CNS). This is a reasonable model for numerous real loading 

conditions such as those illustrated in the Figure 2.1.a. The normal stress is kept constant and 

the joint is therefore free to dilate during the shear test. 

However, in some cases, the loading acting normal to the shear plane changes, such as the case 

of the Figure 2.1.c. When a rock socketed pile, for example, is loaded vertically, a number of 

factors such as the roughness of the sides of the socket will usually cause dilation against the 
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stiffness of the surrounding rock mass and therefore lead to an increase in the normal loading. 

This situation leads to constant normal stiffness conditions as demonstrated in [22].   

 

 

 

 

 

 

 

 

 

 

 

 

A direct shear test under constant normal stress (CNS) consists of two phases: First, a normal 

stress is applied on the joint surface then a horizontal displacement is imposed while 

maintaining the normal stress constant during the test. The normal stress (𝑁) and the 

horizontal displacement (𝑡) are imposed while the shear force and the normal displacement 

(𝑛) are measured during the test. It should be noted that the shear stress (τ) is not measured 

directly but it is obtained by dividing the shear load by the initial joint surface. 

The Figure 2.2 and Figure 2.3 show the theoretical evolution of both the shear stress and the 

normal vertical displacement as function of the imposed horizontal displacement. It can be seen 

that the shear stress increases to a maximum value (𝜏𝑝𝑒𝑎𝑘) that corresponds to shearing of the 

asperities, then it decreases toward a residual value (𝜏𝑟𝑒𝑠). The residual shear stress is obtained 

Figure 2.1: Examples of concrete-rock joints controlling stability in practice 
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when the friction coefficient becomes constant: the big wavelength asperities on the joint 

surface are supposed to be sheared off and the joint surfaces are supposed to become relatively 

horizontal. This is clearly the case of a rough joint surface. A relatively smooth surface showed 

a different shear behaviour with no peak in the shear stress curve, instead the residual shear 

stress is directly reached. Regarding the dilatancy curves we can typically identify three phases. 

An initial phase where the normal displacement decreases at the beginning of the shear test. A 

dilatancy phase is then observed with a maximum slope corresponding to the peak shear stress. 

During this phase, and once the peak shear stress is reached, the degradation of the asperities 

can be observed. Finally, a stabilizing phase occurs where the degradation of the asperities 

continues and the residual shear stress is reached. 

Several authors ( [13], [14], [4] ) have presented results of direct shear tests under constant 

normal stress (CNS) conditions, conducted on different types of joints and for different levels 

of roughness. They concluded that when the normal load is increased, the peak and residual 

shear stresses also increased but the dilatancy is decreased. The type of rock and the materials 

used for making the replicas, along with the joint roughness, play an important role in the shear 

behaviour of joints. Researchers have demonstrated a particular interest in the peak and residual 

behaviours of discontinuities and developed a series of shear strength criteria in order to predict 

the shear resistance of joints, which is considered among the most important characteristics for 

dam designs. 

 

 

 

 

 

 

 

 
Figure 2.2: Typical shear stress-shear displacement curve for rock joints with different 

surface roughness  
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2.1.2 Shear strength criteria of rock joints 

2.1.2.1 The Mohr-Coulomb model 

The Coulomb model is the first shear strength criterion proposed in the eighteenth century. It 

is based on the investigations of friction between two flat surfaces. Coulomb concluded that 

the shear stress is function of both the normal stress applied at the joint surface and the basic 

friction angle which depends on the type of materials in contact. This can be expressed by the 

following equation: 

 τ =𝑁 . 𝑡𝑎𝑛 𝑏  Eq. 2-1 

Where τ is the shear stress at failure, N is the effective normal stress acting on the sliding 

surface and b is the basic friction angle. This basic friction angle is defined as the maximum 

inclination angle that a considered sliding plane can have before it starts to slide. The same 

expression can be used to determine the residual shear strength by replacing the basic friction 

angle by the residual angle of friction r. 

This shear strength criterion is widely used nowadays due to its simplicity. It is still the method 

used in most of the sliding stability guidelines for concrete dams [3]. 

Figure 2.3: Typical dilation curves for rock joints sheared under different 

levels of normal stress 
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2.1.2.2 Patton’s bilinear criterion  

The Coulomb’s model previously described is only valid to represent the shear behaviour of 

two flat surfaces. It does not take into account the irregular nature of surface roughness and the 

roughness contribution to the shear strength. Indeed, the influence of both the normal stress 

and the joint’s roughness to the shear strength was a particular interest for several researchers 

in the rock mechanics field ( [13], [14], [15], [4], [17] ). 

Patton [8] was the first to include the surface roughness in a shear strength criterion. He 

concluded that the shear strength is function of both the joint’s roughness and the applied 

normal stress. His conclusions were drawn from a series of direct shear tests conducted on saw-

tooth artificial joints. From these experiments he proposed a bilinear failure criterion for the 

shear strength i.e. a criterion that describes two different modes of failure based on the applied 

normal stress: 

 𝜏𝑝 = 𝑁 . 𝑡𝑎𝑛 (𝑏 + 𝑖),    if 𝑁 < 𝑇 

𝜏𝑝 = 𝑐 + 𝑁 . 𝑡𝑎𝑛 (𝑟),    if 𝑁 ≥ 𝑇 

Eq. 2-2 

 

Where: 

τp = The shear strength, 

N = applied normal stress,  

b = basic friction angle between two flat surfaces,  

b = residual friction angle,  

c = apparent cohesion,  

T = transition stress  

At a normal stress lower than T, sliding along the asperities is the governing shearing 

mechanism. However, when the normal stress becomes important and bigger than a threshold 

value (T), the asperities did not show any contribution to the dilatancy due to the fact that 

most of them were sheared at their base (Figure 2.4). 
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While Patton’s criterion can describe the shear behaviour of rock joints with tooth-shaped 

asperities, it is not suitable for natural discontinuities characterised by an irregular joint surface 

and a non-uniform distribution of inclination angles along the joint surface. Indeed, Patton 

mentioned the discrepancy with real joints by explaining that the failure envelope for natural 

rock surfaces is characterised by changes in the intensities of different modes of failure 

occurring simultaneously rather than by a simple change in the mode of failure at a specific 

normal stress. 

  

  

 

 

 

 

 

 

2.1.2.3 Ladanyi & Archambault  

Ladanyi & Archambault [9] identified the limitation in Patton’s model regarding the transition 

from dilatancy to shearing. They argued that the irregular inclination angles on natural 

discontinuities create a non-uniform stress distribution on the joint surface. Therefore a 

nonlinear behaviour can be seen as some asperities may be broken before reaching the peak 

shear strength.  They stated that “it may be of interest if a more general failure model could be 

developed, which would be valid for any irregular rock surface and would contain a limited 

number of relevant parameters”.  Their proposed model is based on identifying the areas on the 

joint surface where sliding and breaking of asperities take place. They defined (as) as the 

proportion of the joint surface where shearing through the asperities takes place. On the 

remaining proportion of the joint’s surface (1-as), sliding on the asperities was supposed to be 

Figure 2.4: Bilinear failure envelope proposed by Patton 
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the main governing mechanism.  The proposed equation for the total shearing force is as 

follows: 

 𝑇𝑝 = 𝑆𝐹 . (1 − 𝑎𝑠) + 𝑆𝑟 . 𝑎𝑠 Eq. 2-3  

Where Tp is the peak shear force, SF is the shear force required for sliding over the asperities, 

and Sr is the force required to shear through the asperities. By dividing the previous equation 

by the total joint area, the proposed equation for peak shear strength is: 

 
  𝜏𝑝 =

𝑁 .(1−𝑎𝑠).( + tan𝑏)+𝑎𝑠.𝜏𝑟𝑜𝑐𝑘

1−(1−𝑎𝑠)..tan𝑏
 Eq. 2-4 

 

Where τrock is the shear strength of the intact rock,  is the rate of dilation at the peak. 

From the Eq. 2-4, one can express both (as) and () as function of the applied normal stress. At 

very low normal stress levels, when there is almost no shearing of the asperities 

 𝑎𝑠 → 0 and  → tan (𝑖) (where (i) is the constant inclination of a tooth asperity), and the 

proposed shear strength equation reduces to the one proposed by Patton. At very high normal 

stresses, the only shearing mechanism is supposed to be shearing through the asperities and 

therefore one can say that 𝑎𝑠 → 1 and the joint’s shear strength is practically the shear strength 

of the intact rock: 𝜏𝑝 → 𝜏𝑟𝑜𝑐𝑘.  

Ladanyi & Archambault [9] stated that, according to the results of several experimental 

campaigns conducted on concrete saw-tooth surfaces, the parameter (as) increases linearly at 

low levels of normal stress and reaches a value of 1 for a normal stress equal to the transition 

pressure (T). The value of the dilation rate (), on the other hand, decreases rapidly at low 

normal stress and reached zero for a relatively low value of normal stress (Figure 2.5). They 

proposed the following empirical equations for the parameters (as) and () for normal stresses 

between zero and T: 

 
𝑎𝑠 = 1 − (1 −

𝑁

.𝑇
)
𝑘1

 

 = −(1 −
𝑁

.𝑇
)
𝑘2

. tan(𝑖) 

Eq. 2-5 
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Where 𝑘1 = 1.5 and 𝑘2 = 4 and (i) is the inclination angle of the teeth on the profile. 

 

 

 

 

  

 

 

2.1.2.4 Barton’s criterion  

The shear strength criterion widely used nowadays in the rock mechanics community is the 

one proposed by Barton & Choubey [10]. An empirical expression for the shear strength was 

proposed based on the results of an extensive experimental campaign conducted on replicas of 

natural rock joints. The constant dilatancy in Patton’s model was replaced by a term that 

depends on three parameters as expressed in the following equation: 

 τ=𝑁tan [𝑏 + 𝐽𝑅𝐶. log (
𝐽𝐶𝑆

𝑁
)] Eq. 2-6 

 

Where τ is the peak shear strength, N is the applied normal stress, b is the basic friction angle, 

JRC is the Joint Roughness Coefficient and JCS is the Joint Compressive Strength. 

The JCS is used to measure the compressive strength of the rock at the joint’s interface which 

can be different from that of the intact material due to possible chemical reactions or other 

processes that weaken this interface. This measurement can be done by a Schmidt hammer test. 

A value equal to the compressive strength of the intact rock is obtained in the case of a joint 

surface without weathering. 

 

Figure 2.5: Anticipated variation of the dilation rate and shear area ratio with normal stress [9] 
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The Joint Roughness Coefficient (JRC) on the other hand, is a parameter used to describe the 

joint’s surface roughness. It can be obtained by either a visual comparison of the joint surface 

to a series of 10 standard profiles proposed by Barton & Choubey or by a back-analysis of the 

shear tests performed. Values for this parameter typically goes from zero to twenty. A zero 

value corresponds to a smooth joint surface whereas a 20 corresponds to a very rough and 

undulating surface.  The back analysis to determine the JRC is not very useful since the purpose 

is generally to predict the peak shear strength and not to calculate the JRC based on the shear 

test results. On the other hand, a visual comparison to standards profiles is quite a subjective 

method and depends on the person making the decision as outlined in ( [23], [24] ). 

Figure 2.6: Standard profiles used for visual estimation of 

the parameter JRC [10] 
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2.1.2.5 Grasselli’s three-dimensional criterion  

Using the recent advancement in the measurement systems used for scanning surface 

roughness, some authors proposed new shear strength criteria that are based on a three-

dimensional characterisation of discontinuity surfaces ( [11], [25], [26] ). This can be 

considered a step forward since most of the previous peak shear strength models were based 

on a 2D analysis of the joint’s surface and on the definition of empirical parameters for the 

quantification of roughness.  

Based on extensive experimental results Grasselli [11] proposed a failure criterion for rough 

unfilled rock joints that incorporate the three-dimensional joint morphology and considers the 

anisotropy in shear strength. The procedure was based on a detailed surface measurement using 

an optical measurement system (ATS: Advanced Topometric System). The resulting point 

cloud was used to reconstruct the joint’s rough surface by a triangulation algorithm. According 

to Grasselli only the triangles facing the shear direction are involved in the shearing mechanism 

and therefore can provide resistance to the imposed shear displacement. The total potential 

contact area (𝐴𝑐) can be calculated by summing the elementary areas of those triangles facing 

the shear direction. The contribution from each triangle to the shear strength was described by 

a parameter called the apparent dip angle (∗) and described in the Figure 2.7.  Grasselli stated 

that only the surfaces facing the shear direction and steeper than a threshold inclination value 

(
𝐶𝑟
∗ ) are involved in the shearing resistance. Zones with an inclination equal to (

𝐶𝑟
∗ ) will be 

just in contact, while zones inclined more than (
𝐶𝑟
∗ ) will be deformed, sheared or crushed 

depending on the level of the applied normal stress. 

Based on his experimental results, Grasselli proposed the following empirical expression to 

predict the peak shear strength: 

 τ𝑝 =𝑁 tan𝑟 . (1 + 𝑔) Eq. 2-7  

Where τp is the peak shear strength of the joint, N is the applied normal stress, r is the residual 

friction angle obtained after a 5mm shear displacement and g is a term that quantifies the 

roughness contribution to the peak shear strength and is defined as follows: 
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𝑔 = 𝑒

−𝑚𝑎𝑥.𝑛
9.𝐴0.𝐶.𝑡  Eq. 2-8 

 

Where max is the maximum apparent dip angle with respect to the shearing direction, A0 is the 

maximum potential contact area, C is a roughness fitting parameter, and t is the tensile 

strength of the intact rock material obtained by means of a standard Brazilian test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2.6 Discussion 

All the previously mentioned shear strength criteria were primarily developed in order to 

predict the shear strength of rough unfilled rock joints. They all follow the same assumption 

that the total friction angle is the sum of a basic friction angle that depends on the type of 

surfaces in contact, and a dilatancy component. This dilatancy component depends mainly on 

the surface roughness and on other parameters such as the level of normal stress, the mechanical 

properties of the joint surface, the loading conditions and sometimes on the scale. The major 

drawback of most of those criteria lies either in the empirical description of surface roughness 

or in the difficulty to calculate some of the parameters.  

Figure 2.7: Geometrical identification of the apparent dip angle∗, as function of the shear direction [11] 
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On the other hand, most of the shear strength criteria proposed in the literature are friction 

models developed based on the results of direct shear tests on rock joints. For concrete-rock 

joints, however, an initial cohesion between the joint surfaces, formed due to the chemical bond 

between concrete and the foundation rock, was found to be an important aspect in the shear 

strength of joints since it does not only increases the peak shear stress but can also change the 

shear behaviour of rough joints.    

In the following sections, several experimental campaigns conducted on different types of 

geometries will be presented. The results of the few studies conducted on cohesive joints will 

be described in order to serve as a first step in understanding the contribution of roughness and 

the applied normal stress to the shear behaviour of cohesive joints. But first, the scales of 

surface roughness and the methods used to characterise a joint’s geometry will be discussed.  

2.2 Scales of roughness and surface measurement systems  

In rock mechanics, a rock mass is formed by an assembly of intact rock blocks delimited by 

surfaces of discontinuities. The term discontinuity is a general term referring to a physical 

separation between intact rock blocks at different scales (ranging from few meters to a few 

kilometres). At low levels of normal stress, the rock mass behaviour is controlled by slipping 

over the existing discontinuities rather than by breaking the intact rocks. The surface roughness 

was found to play a major role in controlling the shear strength as well as the hydraulic 

transmissivity of such discontinuities. In response, several models incorporating the effect of 

surface roughness were developed in order to provide a better estimation of the shear strength 

of rock joints ( [8], [9], [11] ). With the development of such criteria, it was necessary to 

perform precise surface measurements and to quantify the morphology by certain roughness 

parameters. 

In this paragraph, a definition of the different scales of roughness is first presented in 

section 2.2.1, then, the section 2.2.2 reviews the available techniques and surface measurement 

systems being used currently.  
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2.2.1 Terminology and scales of roughness 

The actual morphology of joints depends on the rock type (its mineralogy and deposit 

conditions), and on its history (rock formation, presence of water, possible chemical alterations, 

etc.). Morphology encompasses geometrical characteristics such as amplitude, angularity, 

undulation, anisotropy and to a lesser extent curvature. It can be defined by the roughness 

which is an irregularity of the surface with respect to a reference plane. In other words, a 

discontinuity roughness may be characterised by a waviness (undulations at the large scale 

which can cause dilation during shear displacement because they are too large to be sheared 

off) and asperities (small scale irregularities which may be damaged during shear displacement, 

or at least, which can produce a dilatancy at this small scale under low normal stress levels).  

According to Patton [8], roughness can be seen at different scales: 

 At the rock structural scale: the irregularities are of small size and related mainly to the 

mineralogical composition of the rock or the material in question. 

 At the centimetric scale: the irregularities are of a greater amplitude and constitute the 

second-order roughness. 

 At the decametric scale: the surfaces present undulations of centimetric amplitudes 

which constitute the first-order roughness. 

 

This classification was adopted by some authors ( [17], [27] ) who defined roughness as second 

order and first order asperities which corresponds respectively to the categories 2 and 3 of 

Patton’s description. The second order asperities can be defined by surface height distributions 

while the first order asperities are defined by the global geometry of the joint surface at a larger 

scale. 

The roughness parameters must therefore be able to incorporate both scales of geometrical 

features in order to provide a comprehensive description of a joint surface. 
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2.2.2 Techniques and measurement systems 

First, a clear distinction should be made between the methods used for evaluating the nanoscale 

to atomic scale features and those used to quantify roughness at the microscale. For most 

engineering applications, microscopic methods are sufficient: they are generally mechanical or 

optical methods. In particular, a variety of instruments and methods are available to measure a 

rock discontinuity topography both in-situ and in the laboratory. The measurement techniques 

can be divided into two main categories: 

 Contact methods: they are mainly mechanical methods, where a component of the 

measurement instrument (e.g. stylus) is in contact with the surface to be measured 

 Non-contact methods 

 

2.2.2.1 Contact methods 

The contact approach is based on the use of a physically moving part in contact with the rough 

surface to measure, either on selected linear profiles or on defined surfaces. There are several 

methods of measuring roughness based on this approach, for example: the use of mechanical 

profilometers, profile combs, and straight edges and rulers. 

It should be noted that a contact type instrument may damage surfaces when used with a sharp 

stylus tip, particularly in the case of soft surfaces. Indeed, although the weight of the stylus is 

very small, so is the contact area of the stylus. For these types of measurements, the normal 

loads have to be low enough so that the contact stresses do not exceed the hardness of the 

surface to be measured [28].  

Another disadvantage of this type of measurement systems is that, the resolution strongly 

depends on the stylus dimensions. For example, in the case of profilometers with a ball point 

stylus, the error on the measured profile is related to the diameter of the tip. Therefore, the 

curvature of a peak can be exaggerated while a valley can be flattened (Figure 2.8).  
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2.2.2.2 Non-contact methods 

Non-contact surface measurements have an advantage over contact methods since no physical 

contact with the measured surface is established. This allows to preserve the surface texture 

from any damage and to increase the measurement speed. These methods are generally based 

on the use of light projections on the surfaces to be measured, and on the measurement of the 

resulting deformed projections in order to calculate the distance to the measuring device. 

 Structured light techniques 

In these methods, certain patterns of light are projected onto the surface to be digitised. 

Photographs of the resulting distortion of these patterns caused by surface roughness are then 

captured and used to reconstruct the surface of the object. 

A slit scanner is an example of this technology (Figure 2.9.a). A laser projects a single line 

onto the joint surface and a camera photographs the distorted shape of the laser line from 

different perspectives. The 3D coordinates of the projected line can therefore be calculated 

based on the baseline distance (distance between the camera and projector) and the angle 

between the baseline and light beam.  

Figure 2.8: Distortion of a roughness profile due to finite dimensions of the stylus tip [28] 
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Another example is the pattern projections using stereo-cameras (Figure 2.9.b). The advantage 

of such a technique is the measurement redundancies that increase accuracy and allow the 

removal of erroneous readings. 

 

 

 

 

 

 

 

 

 

 Laser profilometer 

The principle of a laser profilometer is to emit a laser beam onto the joint surface and then 

detect the reflection through a laser sensor. The output voltage of the sensor is directly related 

to the measured distance and recorded as function of the position of the laser beam. The 

measured data are available in the form of a 3D point cloud defining the coordinates of the 

points on the joint surface.  

A possible disadvantage of this technique is related to possible surface refractions due to the 

presence of quartz crystals on the joint surface. This method will be presented in detail in the 

following chapter. 

Figure 2.9: Structured light projection techniques: (a) A slit scanner with a laser projector and a camera [37],  

(b) A typical single camera fringe pattern projection setup 

(a) 

(b) 
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2.2.2.3 Summary 

The following table provides a summary of the available surface measurement methods along 

with their resolution and their potential drawbacks. 

Table 2-1: Summary of the available surface measurement techniques, their advantages and limitations 

Method 
Quantitative 

information 
3D data 

Resolution (m) 
Limitations 

Lateral Vertical 

Mechanical stylus Yes Yes 0.1 0.001 

Slow measurements 

and destructive 

method 

Optical 

methods 

Taper 

scanning 
Yes No 0.5 0.025 

Destructive method, 

tedious specimen 

preparation 

Light 

sectioning 
Limited Yes 0.5 0.001 Qualitative 

Specular 

reflection 
No No 10-100 0.001 Semi-quantitaive 

Diffuse 

reflection 
Limited Yes 10-100 0.001 

Smooth surfaces 

(<100nm) 

Optical 

interference 
Yes Yes 1 0.001 - 

Laser profilometer Yes Yes 1 50 Slow measurement 

Tomography Yes Yes 4-40 4-40 
Expensive, difficult 

data processing 

Stereo-

photogrammetry 
Yes Yes 1 1 

Difficult data 

processing 
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2.3 Quantifying the joint morphology by means of roughness 

parameters 

Morphological data, whether obtained from 2D profiles or from 3D surfaces, contain a large 

number of points which can be sometimes challenging to deal with. The comparison between 

two different discontinuity surfaces is not straightforward and quantitative parameters 

representative of the surface roughness should be defined. However, the surface roughness of 

natural discontinuities can be quite complex and a large number of parameters can be 

developed to quantify several aspects of roughness such as the amplitude of asperities, the 

angularity, the periodicity and the anisotropy. In the literature, several methods of analysing 

surface roughness were adopted among which we can cite the statistical methods ( [29], [30] ) 

which are based on discrete measurements on the joint surface, and Barton’s empirical method 

( [10], [28] ) which remains one of the most currently used methods in rock mechanics. In the 

following sections, a comprehensive description of the roughness parameters used for 

morphology characterisation is presented along with the physical meaning of each parameter. 

2.3.1 Global statistical parameters 

2.3.1.1 Amplitude parameters 

Surface roughness is generally quantified by scalar parameters which evaluate the height with 

respect to a reference plane. They are usually measured on a single linear 2D profile or along 

a set of parallel profiles defining the total joint surface. The most used amplitude parameters 

are presented as follows: 

 Reference line 

Most of the statistical parameters, particularly amplitude parameters, are defined with respect 

to an average reference line. It is defined as follows: 

 

𝑚 =
1

𝑁
∑𝑍𝑖

𝑁

𝑖=1

 

 

Eq. 2-9 
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Where N is the number of points along the discretised 2D profile and Zi is the height of the 

point (Xi, Zi) with respect to the reference line. 

 The average roughness CLA (Central Line Average), and RMS (Root Mean 

Square) 

They both describe the deviation from the reference line. The CLA is the arithmetic mean of 

the absolute values of vertical deviation from the mean reference line through the profile. The 

RMS, on the other hand, is defined as the square root of the arithmetic mean of the square of 

the vertical deviation from the reference line. 

 

𝐶𝐿𝐴 = 𝑅𝑎 =
1

𝑁
∑|𝑍𝑖|

𝑁

𝑖=1

 

 

Eq. 2-10 

 

𝑅𝑀𝑆 = 𝑅𝑞 = √
1

𝑁
∑𝑍𝑖

2

𝑁

𝑖=1

 

 

Eq. 2-11 

 Other amplitude parameters 

Some other amplitude parameters are focused mainly on the extreme values of the vertical 

deviation from the reference line, such as the absolute roughness, Rt which is defined as 

follows: 

 𝑹𝒕 = 𝒎𝒂𝒙 {𝒁𝒊} −𝒎𝒊𝒏{𝒁𝒊}  Eq. 2-12 

2.3.1.2 Shape parameters 

 Linear roughness (Rp) 

It is defined as the ratio of the true length Lt of a profile to its projected length L, on the 

reference line. 

 
𝑹𝒑 =

𝑳𝒕
𝑳

 

 

 

Eq. 2-13 
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 Wavelength () 

A Fourier analysis can be conducted along a 2D profile in order to investigate the different 

wavelengths composing the 2D roughness. 

 Skewness (Sk) 

Skewness is a measure of the symmetry of the profile height distribution. A value equal to 

zero represents a symmetric distribution with respect to the reference line. 

 

𝑺𝒌 =
𝟏

𝑹𝒒
𝟑𝑵

∑𝒁𝒊
𝟑

𝑵

𝒊=𝟏

 

 

 

Eq. 2-14 

 

 

 

 

 Kurtosis (K) 

The Kurtosis parameter is a measure of the degree of pointedness of the profile. An increase 

in the value of K means a profile with more peaks, while a decrease means a wavy profile 

characterised by less peaks. 

 

𝑲 =
𝟏

𝑹𝒒𝟒𝑵
∑𝒁𝒊

𝟒

𝑵

𝒊=𝟏

 

 

 

Eq. 2-15 

 

 

 

Figure 2.10: A positive skewness means wider valleys, while a negative value means wider peaks 

Figure 2.11: A value bigger than 3 for the parameter K means a more peaky 

profile, while a value lower than 3 means a more wavy profile 
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2.3.1.3 Inclination and curvature parameters 

Myers [31] extended the use of the root mean square to the first and second derivatives of the 

profile height. 

 Root mean square of the first derivative of the profile height, Z2 

This parameter can be associated to the mean inclination along the 2D profile. A bigger value 

for this parameter means a more important roughness. 

 

𝒁𝟐 = √
𝟏

𝑵
∑(

𝒁𝒊+𝟏 − 𝒁𝒊
𝜟𝒙

)
𝟐𝑵

𝒊=𝟏

 

 

Eq. 2-16 

 

 

 

 

 

 Root mean square of the second derivative of the profile height, Z3 

It can be associate to the curvature along the 2D profile. A bigger value for this parameter 

means an increased roughness. 

 

𝒁𝟑 = √
𝟏

𝑵
∑(

𝒁𝒊+𝟏 − 𝟐𝒁𝒊 + 𝒁𝒊−𝟏
𝜟𝒙𝟐

)
𝟐𝑵

𝒊=𝟏

 

 

Eq. 2-17 

 

 

 

Figure 2.12: Graphical interpretation of  

the physical meaning of Z2 

Figure 2.13: Graphical interpretation of 

the physical meaning of Z3 
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2.3.2 Directional parameters 

The statistical roughness parameters previously mentioned give an idea about the amplitude or 

the vertical deviation with respect to a reference line. They provide a description of the shape 

of discontinuity surfaces and describe the mean inclination or the curvature by means of mean 

values. Values for those parameters differ from one selected 2D profile to another on the same 

joint surface. However, it is of particular interest to define certain parameters capable of 

incorporating the anisotropy of roughness not only on different profiles but along the same 

profile in two different directions. This is particularly advantageous since the mechanical 

behaviour of joints can be linked to roughness parameters calculated in each direction. Those 

parameters are in most cases describing the inclination of the asperities facing the shear 

direction. 

 Non compensated inclination parameter, Z4 

This parameter corresponds to the proportion of inclination angles non-compensated along the 

joint length. It can give an idea about the proportion of the joint surface mobilised during the 

shear test. It is strongly dependent on the direction of calculation and therefore is capable of 

quantifying the roughness anisotropy. Moreover, it can have negative and positive values.   

 
𝒁𝟒 =

∑ 𝒙𝒊+
𝑵
𝒊=𝟏 − ∑ 𝒙𝒊−

𝑵
𝒊=𝟏

𝑳
 

 
Eq. 2-18 

 

 

 

 

 

 

 

Figure 2.14: Graphical interpretation of the 

physical meaning of Z4 
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 Mean inclination parameter, 2D 

It describes the mean inclination of all the asperities that are facing the shear direction 2D
+ or 

opposite to the shear direction, 2D
-. It is calculated as follows: 

 𝟐𝑫
+ =

𝟏

𝑵
∑ 𝑨𝒓𝒄𝒕𝒂𝒏 (

𝒁𝒊+𝟏−𝒁𝒊

𝜟𝒙
)𝑵

𝒊=𝟏 , for all 𝒁𝒊+𝟏 > 𝒁𝒊 

𝟐𝑫
− =

𝟏

𝑵
∑ 𝑨𝒓𝒄𝒕𝒂𝒏 (

𝒁𝒊+𝟏−𝒁𝒊

𝜟𝒙
)𝑵

𝒊=𝟏 , for all 𝒁𝒊+𝟏 < 𝒁𝒊   

 

Eq. 2-19 

 

 Grasselli’s three-dimensional parameter, (
Ɵ𝒎𝒂𝒙

𝑪+𝟏
)
𝟑𝑫

 

Grasselli [11] proposed to estimate the joint roughness by introducing a new three dimensional 

parameter. First, the discontinuity surface was scanned using an Advanced Topometric System 

(ATS, see section 2.2.2.2) to obtain a set of coordinates describing the surface roughness. From 

this data, a reference plane was calculated and the joint surface was reconstructed by a 

triangulation algorithm (Figure 2.15.a, b, c, d). Therefore, for each chosen shear direction, the 

inclination of the triangles with respect to the reference plane is calculated and defined by an 

apparent dip angle∗. Based on this parameter, it is possible to calculate the proportion of 

triangles having an inclination greater than a threshold value. The proportion of these surfaces 

is designated by the normalised surface area and can be expressed by the following expression: 

 
𝐴Ɵ∗ = 𝐴0 (

Ɵ𝑚𝑎𝑥
∗ − Ɵ∗

Ɵ𝑚𝑎𝑥∗
)
𝐶

 
 

Eq. 2-20 

Where A0 is the normalised surface corresponding to flat surfaces in the chosen direction of 

analysis, max
* is the maximum inclination angle in the chosen shear direction and C is a 

dimensionless parameter which characterises the form of the distribution (Figure 2.15.e). 

The parameter (
Ɵ𝒎𝒂𝒙

𝑪+𝟏
)
𝟑𝑫

was chosen as a roughness estimate because of its strong correlation 

with the shear strength. This parameter has the advantage of incorporating the roughness 

anisotropy and of being calculated along the total joint surface and not according to 2D linear 

profiles. 
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2.3.3 Empirical parameters 

The simplest method to characterize a discontinuity surface roughness remains the visual 

comparison to Barton’s standard profiles. Although this method is highly subjective, it is still 

widely used to estimate the roughness of rock discontinuities. Barton & Choubey [10] proposed 

a series of typical roughness profiles and an empirical relationship that relates the JRC 

roughness coefficient to the value of the shear strength. Although this method is considered 

relatively simple to apply, it is considered a subjective approach as different practitioners can 

propose very different estimates of JRC for the same roughness profile [32]. Tse and Cruden 

[29] were the first to propose an objective estimate of the JRC parameter. In their study, the 

ten standard profiles were enlarged 2.5 times and discrete measurements of the amplitude were 

made at equal intervals of 1.27 mm. Equations giving the JRC values as a function of different 

statistical roughness parameters have been proposed with the corresponding correlation 

coefficients. The results of the regression analyses indicated that the JRC of a natural surface 

can be particularly well predicted by the Z2 parameter described above (see section 2.3.1.3). 

 𝐽𝑅𝐶 = 32.2 + 32.47𝐿𝑜𝑔𝑍2,      𝑅
2 = 0.986  Eq. 2-21 

(e) 

Figure 2.15: (a), (b), (c), (d) Triangulation of the joint surface from the acquired 3D point cloud,  

(e) Calculation of the normalized surfaces in a chosen shear direction. 



Chapter 2 25 

 

According to Yu & Vayssade [30], the expressions proposed by Tse and Cruden make it 

possible to calculate the JRC from parameters such as the root mean square of the first 

derivative of the profile height Z2, with a high correlation coefficient. However, their equations 

were established for a measurement interval of 0.5 mm. Indeed, some statistical parameters are 

very sensitive to the measurement resolution, so that even if some equations have strong 

correlations between the JRC and Z2, this is not enough in practice. 

Thus, in order to examine the effect of the resolution, Barton’s ten standard profiles were 

digitised with different measurement steps (0.6, 1.2 and 2.4mm) after being enlarged by 2.5 

times. Besides Z2, a number of additional parameters were proposed by Yu & Vayssade [30] 

to describe the roughness of the profiles. Z2 was found to be sensitive to the measurement 

interval: the difference between a JRC discretised at 0.25 mm and a JRC discretised at 1 mm 

was as much as 3.5. Yu & Vayssade proposed a new set of equations for the estimation of the 

roughness coefficient JRC, but they argued that each time an empirical equation is used for 

calculating the JRC, the sampling interval used to obtain this expression should be noted. 

2.3.4 Conclusions 

As described in the previous sections, most of the approaches used to quantify a discontinuity 

surface roughness are based on amplitude, inclination and spacing parameters. Except the 

method proposed by Grasselli [11], all the conventional techniques assign roughness values 

based on the shape of 2D profiles extracted from the middle part of a joint or from the visible 

parts of the discontinuity. This can lead to inaccurate estimates of surface roughness since the 

morphology is strongly variable in space. 

On the other hand, most of the parameters discussed above give the same values of roughness 

for forward and backward shearing. Therefore, they cannot describe the anisotropy in 

roughness observed experimentally when shearing samples in different directions. Finally, the 

JRC coefficient, although widely used in the rock mechanics community, is known to be a 

subjective parameter for a discontinuity analysis. Different practitioners usually assign 

different values for this parameter for the same discontinuity surface. 
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A more reliable method is therefore needed to quantify surface roughness with the aim to 

correlate it with the shear strength, one that incorporates the three dimensional characteristics 

of a joint surface along with the anisotropy usually observed in most rock joints.    

2.4 Experimental studies on concrete-rock joints 

2.4.1 Shear strength of rough joints without initial bonding 

2.4.1.1 Shear behaviour of joints with triangular asperities 

The simplest method to study the shear behaviour of rock joints is mainly by performing direct 

shear tests on joints with triangular asperities. This technique was first introduced by Patton 

who proposed a bilinear failure criterion based on direct shear tests performed on concrete 

joints with constant angle triangles.  

Budi & al. [13] followed the same principal by proposing an extensive experimental campaign 

on model rock joints in order to investigate the influence of normal stress, displacement rate 

and the inclination of the triangular asperities on the shear behaviour of rock joints. An 

impressive campaign with 288 CNS shear tests was conducted with nine variations of the 

inclination angle (i=50 to 450, with a 50 increment), four levels of normal stress (N=0.25, 0.5, 

1 and 1.5 MPa) and four variations of the shear displacement rate (0.314, 0.502, 0.719, and 

1.01 mm/min).  

The authors observed two typical shearing behaviours depending both on the level of normal 

stress and on the inclination of the triangular asperities. For low asperity angles (i=50 to i=200), 

sliding along the asperities was observed especially for the low levels of normal stress  

(N<1 MPa) and the shear stress-shear displacement curves were characterised by a ductile 

behaviour (Figure 2.16.a). Dilation curves showed little to slight damage of the asperities in 

the case of high normal stress levels. On the other hand, for high asperity angles (i>200), a 

brittle shear behaviour was observed with a sudden stress drop after the peak stress, 

accompanied by asperity failure. Dilation curves showed a small dilatancy revealing damaged 

or sheared-off asperities (Figure 2.16.b).  
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2.4.1.2 Shear behaviour of joints with irregular triangular asperities  

Yang & al. [4] noticed the limitation of a study based on shear tests conducted on tooth-shaped 

asperities with the same constant inclination angle. They argued that the shear behaviour of 

regular triangular asperities is different from that of natural joints in that natural discontinuities 

showed a more progressive failure process rather than a brittle behaviour with a simultaneous 

shearing of all the asperities on the joint surface. According to Patton, the behaviour of rough 

rock joints is controlled primarily by the second order asperities- with millimetric amplitudes 

- during small shear displacements. The contribution from larger first order asperities becomes 

more important for larger displacements. Barton, on the other hand, stated that at low normal 

stress levels, the second order asperities control the shear behaviour of rock joints. As the 

normal stress increases, the second order asperities are sheared-off and the first order asperities 

take over as the controlling roughness. A study by Habberfield & al. [33] showed that a joint 

surface with regular identical asperities demonstrated a relatively brittle response with a high 

shear resistance at a small shear displacement. Natural joint surfaces with irregular asperities, 

Figure 2.16: Typical shear stress-shear displacement and dilation curves: (a) Slide-up behavior for low asperity 

angles(𝑖 = 150), (b) Shear-off behavior for high asperity angles (𝑖 = 400)  

(a) (b) 
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however, were more ductile with a generally lower peak resistance and slowed post-peak 

reduction in resistance. 

Based on those findings, Yang & al. [4] noticed that understanding the progressive failure 

process of joints is a meaningful matter, and therefore proposed a series of direct shear tests on 

two types of artificial joints: joints with single tooth-shaped asperities at different inclination 

angles and composite joints composed of two asperities with high and low inclination angles 

(Figure 2.17).  

 

 

 

 

 

 

They concluded that at low normal stress, the overall shape of the dilation curve for the 

composite joint demonstrated a two-staged behaviour and the shear stress-shear displacement 

curve displayed a distinguishable twin-peak pattern (Figure 2.18). The high angle asperity 

(300) was found to first predominate the shear behaviour and then the 150 asperity showed its 

contribution for both types of composite joints (AB and BA). This implies that the effects of 

these teeth on the shear behaviour are separable and their contribution to the whole behaviour 

is successive. On the other hand, for a higher normal stress this difference in contribution 

sequence decreased (Figure 2.19) and the dilation curve became smoother. The two asperities 

were therefore mobilised at the same time. 

 

 

 

 

 

Figure 2.17: Types of model joints tested by Yang & al. [4] 

Figure 2.18: Shear stress-shear displacement and dilation curve for the composite joint at 0.39MPa 
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2.4.1.3 Shear behaviour of natural rock joints  

In most of the experimental campaigns of the literature, little shear tests on the same natural 

surface were performed. Thus, a series of 50 CNL (constant Normal Load) shear tests were 

performed by Grasselli [11] in order to investigate the frictional response of rock joints in the 

laboratory using both replicas of tensile joints and tensile fractures induced for seven rock 

types. The decision to use replicas was made in order to investigate the influence of the normal 

load on the peak shear strength. Moreover, by using replicas of the same surfaces and 

performing shear tests in different directions, the influence of the roughness anisotropy was 

examined.  

Prior to the shear tests, the joint surface was scanned by an optical measurement system and 

the joint surface was reconstructed from the generated point cloud using a triangulation 

algorithm.  

Results of the shear tests on concrete replicas showed that the effect of surface roughness was 

more pronounced for relatively low normal stress (Figure 2.20.a). At a very low normal stress, 

shearing occurred by overriding the asperities which remained unbroken. At higher values of 

normal stress, however, the asperities were sheared-off. The increase in normal load was found 

to decrease the friction coefficient (Figure 2.20.b), this means that the role, surface 

morphology plays in shear resistance, decreases with increasing the normal load.  

Figure 2.19: Shear stress-shear displacement and dilation curve for normal stress of 1.47 MPa 
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In addition, the assumption that the shear strength depends on the direction of shearing was 

experimentally verified by shearing identical surfaces in different directions. The surface 

roughness was measured and quantified using a new three dimensional parameter. The 

comparison between shear strength values obtained from laboratory tests, and the 

morphological parameters calculated in different directions were in strict correlation. The 

mechanical behaviour of replicas was found to be closely correlated to the cement properties. 

The observed ductile behaviour of replicas made it clear that shear tests on this type of replicas 

were only useful for comparison with ductile rocks. On the other hand, the results of the shear 

tests on tensile rock joints were used to develop a new shear strength criterion for rock joints 

on the basis of a three dimensional surface description. 

2.4.2 Shear behaviour of joints with initial bonding 

2.4.2.1 Influence of triangular asperities on the shear behaviour of 

bonded concrete-rock joints  

Several experimental campaigns were performed in the Norwegian University of Science and 

Technology (NTNU) at Trondheim, Norway, to investigate the influence of roughness, more 

specifically triangular asperities, on the shear resistance of concrete-rock interfaces. Direct 

shear tests were performed on concrete-granite joints by Liahagen [14] and similar tests were 

subsequently conducted by Gutierrez [15] on concrete-gneiss joints. Different levels of normal 

stress were applied: 0.4, 0.8 and 1.2 MPa for the granite samples and 1.2, 2.2, and 3.2 MPa for 

Figure 2.20: The effect oaf normal load on (a) the shear force and (b) friction angle based on shear 

tests conducted on replicas of granite with the same morphology [11] 

(a) (b) 
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the gneiss specimens. Asperity angles of 00, 100, 200, and 400 were prepared in both studies. 

Few samples were prepared with an initial cohesion but the majority of the shear tests were 

performed on unbonded joints by using a plastic film on the rock joints before casting the 

concrete (Figure 2.21). 

 

 

 

 

 

 

Liahagen stated that an increase in the asperity angle leads to an eventual increase in the 

shearing resistance.  For a low asperity angle of 100, a ductile behaviour was observed for all 

levels of normal stress. This behaviour was due to simple sliding over the asperities. For high 

asperity angles of 400, the shearing resistance was rather characterised by a rapid drop in shear 

stress after the peak, this was true for all levels of normal stress. For an intermediate inclination 

angle of 200, the shearing behaviour was mainly dependent on the level of normal stress.  

In order to study the influence of initial bonding on the shear strength, four tests were carried 

out, with and without bonding, on joints with asperity angles of i=00 and i=400. Bonding was 

found to strongly influence the shear strength (Figure 2.22). For example, for the joint with 

i=400, the shear strength increased from 3.18 MPa for an unbonded joint to 5.2 MPa for an 

initially bonded sample. Similarly, for a flat surface interface, the shear strength was found to 

increase from 0.9 MPa to 4.17 MPa. This shows how important is the presence of bonding on 

the shear resistance of concrete-rock joints. 

It is however interesting to note that, the shearing resistance was found to increase with 

roughness but at a smaller rate than the case of unbonded joints.  If the shear strength was 

compared for i=00 and i=400 when there is no bonding, an increment of 252% is obtained when 

the inclination angle increases. On the other hand, when the same comparison is made for 

Figure 2.21: Surface profiles tested and plastic film removal before shear tests 
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bonded samples, the shear capacity was found to increase by only 25%. This was due to the 

fact that failure did not follow the interface but rather propagated through the concrete 

(Figure 2.23).  Similar observations were made by Gutierrez for the concrete-gneiss joints. 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.2.2 Shear behaviour of shotcrete-rock joints under different levels 

of normal stress 

In order to investigate the shear strength of cemented shotcrete-rock joints for tunnelling and 

underground mining applications, Saiang [12] performed a series of direct shear tests at low 

levels of normal stress on natural joints of magnetite and trachyte with medium to low 

roughness (JRC=1 to 3 and JRC = 9 to 13).  The average peak shear strength of the interfaces 

with a JRC of 9 to 13 was more than 2.5 times the average peak shear strength of the interfaces 

with a JRC of 1 to 3. The higher shear strength observed for a more important roughness was 

Figure 2.22: Shear stress response for tests with and without bonding  

for i=400 and for a relatively flat surface (i=00) under 1.2 MPa of normal stress [14]. 

Figure 2.23: Failure of a bonded specimen with i=400 and n=1.2 MPa. 
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believed to be due to the failure mechanisms involved in attaining the peak strength. In other 

words, the simultaneous failure of the bond and the shotcrete asperities may have resulted in 

the high average shear strength for the rough surfaces.  

From the shear stress-shear displacement curves, two different shearing behaviours 

(Figure 2.24) were observed: 

 At a low normal stress (𝑛 < 1𝑀𝑃𝑎), shear stress increased steeply until the bond 

failed: at that point, shear stress dropped sharply. Thereafter, the shear stress 

increased again until a new peak was reached and sliding was initiated.  

 At a high normal stress (𝑛 ≥ 1𝑀𝑃𝑎), shear stress kept increasing until the peak 

strength was reached, then the stress dropped gradually to a residual value. In this 

case, peak shear strengths were higher for the joints with higher JRC values. 

In addition, Saiang noted that at low normal stress levels the shear strength was mainly 

determined by the bond strength. Values of the peak shear strengths for a normal stress smaller 

than 1 MPa showed a notable scatter with respect to the normal stress. This was attributed to 

the quality of the adhesive bond and therefore no clear correlation was found between the bond 

strength and the normal stress. 

For a normal stress bigger than 1MPa, the asperities and the cohesive bond were broken 

simultaneously. The frictional component of the shear strength became significant, and a linear 

correlation was found between the peak shear strength and the normal stress for the shear tests 

performed under a normal stress bigger than 1MPa. 

 

 

 

 

 

Figure 2.24: Typical shear behavior of joints sheared at: (a) Low normal stress, (b) High normal stress 

(a) (b) 
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2.4.2.3 The effect of the bonding percentage on the shear behaviour of 

concrete-rock joints 

A major difficulty in studying the shear behaviour of joints, as noted by Saiang, was to follow 

the shearing mechanisms and asperity degradations during the shear test. In Sherbrooke 

University, Moradian [34] studied the shear behaviour of joints cored from the Manic dam in 

Canada and evaluated the asperity damage using acoustic emissions. Monitoring the shear 

behaviour of bonded and unbonded joints, Moradian made the following observations during 

the four staged shear behaviour: 

 In the pre-peak linear period: By applying normal and shear loads on a joint surface 

the two halves of the joint are settled and interlocked in this period. The stiffness and 

contact area are increased. No acoustic emissions were noted for bonded joints. For the 

unbonded joints, however, acoustic emissions start directly with the beginning of 

shearing: they come from locking of the joint halves. 

 In the pre-peak nonlinear period: Dilatancy is generated and increased during this 

period because of the sliding and damaging of the secondary asperities. This period 

ends with a peak in the shear stress where the steepest primary asperities are broken 

and dilatancy shows its maximum rate. For bonded joint samples, some acoustic 

emissions were recorded, generating from crack initiation and propagation in the 

contact surface. For unbonded joints, acoustic emissions increased proportionally to 

the shear displacement and showed peaks of the same size before reaching the 

maximum shear stress. This was mainly due to breaking of the secondary asperities. 

 In post-peak period: All secondary and primary asperities facing the shearing 

direction are crushed in this period (depending on the level of normal stress) and the 

shear stress-shear displacement curve shows a progressive softening behaviour. For 

bonded joints acoustic emissions increased dramatically and showed their maximum 

peak due to cracking and breaking of the bonded shear surface. Following this large 

peak, some smaller peaks were generated from the continuous crushing of the 

secondary and primary asperities. For unbonded joints, acoustic emissions showed a 
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sudden increase after the peak shear stress. They decreased gradually at the end of this 

period. 

 In the residual period: The shear stress is approximately constant and asperities 

degradation is continued in a lower rate than that in the previous period. Acoustic 

emissions were at their lowest values for both bonded and unbonded joints since all the 

asperities have already been sheared and the only movement was sliding on the joint 

surface. 

Moradian made similar conclusions as the ones presented by Saiang and Gutierrez. He stated 

that shearing of primary and secondary asperities strongly depends on the amount of normal 

stress and joint roughness. Therefore, in the case of low normal stress large asperities slide on 

each other without any significant failure while smaller asperities are sheared off and show 

significant failure. For low values of normal stress, joints with smaller asperities generated 

more acoustic emissions than the ones with large asperities. This is due to damaging of the 

smaller asperities under this loading condition. 

In a second study, Moradian [7] investigated the influence of normal load and bonding 

percentage on the shearing behaviour of concrete rock joints with natural roughness (JRC=16 

to 19). Joints with the same roughness and mechanical properties were tested under different 

values of bonding percentages at 0.5 MPa of normal stress. A thin layer of clay was spread on 

the joint surface to prevent bonding while the rest of the surface was left to bond with the 

poured concrete (Figure 2.25).  

 

 

 

 

 

 

Figure 2.25: Schematic plan showing the bonding percentages of the joint samples  
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The shear behaviour of the fully bonded joints was characterised by a brittle response due to 

the failure of the cohesive bond and by a maximum shear stress occurring at a shear 

displacement less than 1mm that coincides with the maximum peak of acoustic emissions. It 

was observed that under low values of normal stress, the cohesive bond breaks separately. 

Then, the asperities show their contribution to the shear mechanism by a small peak in the shear 

stress curve. At higher normal stresses, the cohesive bond and the asperities were found to be 

broken simultaneously. 

A decrease in the bonding percentage at the joint surface lead to: 

 A more gradual drop in the shear stress after the peak. The brittle failure of bonded 

joints is changed into a quasi-brittle failure because of a smaller contribution from the 

cohesive bond and a greater contribution from the asperities to the shear strength. 

 A decrease of the maximum shear strength 

 No change in the residual strength since the sheared specimens were characterised by a 

similar roughness. 

On the other hand, fully bonded joints were tested under different normal stresses of 0.15, 0.65 

and 1.25 MPa. However, the effect of the normal load was not significant: the peak shear 

strength value was almost the same for all samples. This was due to the fact that most of the 

samples have a high roughness (JRC>16) and the asperities were broken with the cohesive 

bond. So the peak shear stress was mainly related to the strength of the intact material and little 

dilatancy was observed. 

According to Moradian [7] a more developed study should be performed on specimens with 

different levels of roughness to better understand the influence of the cohesive bond at different 

levels of normal stress. Based on the degree of roughness, simultaneous or successive failure 

of both the cohesive bond and the asperities can occur. 
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2.4.3 Scale effect in the shear behaviour of natural joints  

The choice to perform direct shear tests at the laboratory scale in the experimental studies 

mentioned above is generally based on both technical and economic considerations. Small 

samples usually represent only a fraction of the natural joints. Therefore, a scale effect can be 

expected due the mobilisation of larger but less steeply inclined asperities as sample size is 

increased. Barton & Bandis [35] were the first to study the scale effect on the shear behaviour 

of rock joints by performing shear tests on different sized replicas of natural rock surfaces.  

A rubber moulding was used to take precise impressions of roughness from a variety of joint 

surfaces in various rock types. Direct shear tests were performed on both a full-sized model 

and on other replicas after they had been subdivided into sets of smaller samples having 

dimensions of 5 to 6 cm, 10 to 12 cm, and 18 to 20 cm in length. The samples were tested at 

the same level of normal stress and in the same relative shear direction. 

Figure 2.26: Shear stress and AE rate vs. shear displacement for two bonding percentages  
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From the tests, the authors concluded that peak shear strength is a strongly scale-dependent 

property and tends to be asymptotic with joint length. Increasing scale alters the shearing 

characteristics significantly: the peak shear displacement increases and the behaviour changes 

from brittle to plastic (Figure 2.27). The small and steep asperities regulate the peak shearing 

path of short joints, whereas larger but flatter features become more effective for corresponding 

larger joints. 

Scale effect was found to be more pronounced in the case of rough undulating joints. The key 

factor was the involvement of different asperity sizes in controlling the shear behaviour of 

different lengths of joints. Both geometrical (JRC) and strength characteristics (JCS) of surface 

roughness were found to be potential sources of scale effect. Therefore, the scale effect was 

taken into consideration by changing the values of JRC and JCS depending on the joint size. 

 
𝐽𝑅𝐶𝑛 = 𝐽𝑅𝐶0 (

𝐿𝑛
𝐿0
)
−0.02𝐽𝑅𝐶0

 

𝐽𝐶𝑆𝑛 = 𝐽𝐶𝑆0 (
𝐿𝑛
𝐿0
)
−0.03𝐽𝑅𝐶0

 

Eq. 2-22 

 

Where 𝐽𝑅𝐶0, 𝐽𝐶𝑆0 and 𝐿0 are the values for a profile of length 100mm; 𝐽𝑅𝐶𝑛, 𝐽𝐶𝑆𝑛 and 𝐿𝑛 are 

the values for a profile of length bigger than 100mm. 

 

 

 

 

 

 

 

 
Figure 2.27: The evolution of the shear strength components as function of sample size  
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Another study was performed by Mouzannar & al. [21] in order to investigate the scale effect 

on the shear resistance of bonded samples with a natural surface roughness. For this purpose, 

direct shear tests were conducted on bonded concrete-granite samples at three different scales 

(8x8cm2, 18x18cm2 and 150x100cm2) and under constant normal stress conditions (CNS). 

Prior to the tests, the mechanical and morphological characteristics of the concrete-granite 

interface were evaluated. The initial cohesion was obtained by means of traction tests and the 

surface roughness was scanned and digitised by an optical measurement system. 

 The results of the shear tests at the small scale revealed an important variability in the shear 

strength values. This was found to be correlated with the experimental conditions, more 

specifically with the relative position of the mean plane with respect to the shearing plane 

imposed by the shear box.  

On the other hand, for the specimens sheared at the intermediate scale, two different shear 

behaviours were observed, named “Type A” and “Type B” (Figure 2.28). Although both 

behaviours showed a brittle failure, “Type B” behaviour had a lower shear strength and 

exhibited a gradual softening phase after the peak shear stress. It was also observed that, under 

low normal stress (≤0.6MPa), these two behaviours correspond to two different morphologies 

of the rock surface, more specifically to principal undulations of different wavelengths. “Type 

A” behaviour is characterised by a central asperity with a wavelength equal to the size of the 

sheared specimen. For the “Type B” behaviour, on the other hand, the wavelength is between 

half and two thirds the sample size (Figure 2.29).   

 

 

 

 

 

 

 Figure 2.28: Typical shear stress-shear displacement curves observed at the 

intermediate scale for samples sheared at 0.6 MPa of normal stress 
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Regarding the results at the large scale (150x100cm2), a rough morphology was found to 

increase the shear strength. Moreover, Mouzannar stated that this shear resistance is strongly 

sensitive to the quality of the cohesion at the concrete-rock interface: a sample with no cohesion 

(damaged prior to the shear test), showed a significantly reduced value of shear resistance when 

compared to samples with a good initial cohesion. 

A comparison of the shear strength values obtained from the shear tests performed at the three 

different scales, revealed that the shear strengths at the metric scale were bounded by those 

evaluated at the intermediate scale (Figure 2.30). Consequently, the intermediate scale can be 

considered as the representative scale to study the effect of surface roughness, and the shear 

strength of the concrete-rock interface at the dam scale appears to be a combination of the 

“Type A” and “Type B” behaviours. 
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Figure 2.30: Mohr-Coulomb criterion plotted for the shear test results at different scales 

Figure 2.29: 2D profiles of the appearance of rock surface roughness giving the (a) Type A and (b) Type B 

shear behaviours 

(a) (b) 
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Based on these findings, an analytical method was proposed to estimate the shear resistance at 

the large scale from the shear tests performed at the intermediate scale. The metric samples 

were first discretised into elementary surfaces (Figure 2.31) and their undulations were 

characterised using a morphological tool. Knowing the type of each elementary surface (“Type 

A” or “Type B”), the large scale shearing resistance was evaluated as the weighted average of 

the resistance of A-Type surfaces and the resistance of the B-Type surfaces:  

                                            𝝉𝒑 = 𝜴. 𝝉𝑨 + (𝟏 − 𝜴). 𝝉𝑩  Eq. 2-23 

Where Ω is the proportion of the joint surface exhibiting a “Type A” behaviour, τA and τB are 

respectively the shearing resistance of the concrete-rock interface with a “Type A” and a “Type 

B” behaviour 

The proposed analytical model gave a good correlation with the experimental results for three 

interfaces I7, I2 and I9 (Table 2-2). On the other hand, the high standard deviation evaluated 

on the I8 interface was attributed to the fact that failure did not follow the concrete-granite 

contact but it was granite that was sheared in this case. 

 

 

 

 

 

 

 

 

 Figure 2.31: A large scale sample discretised using 24 

 windows of 25x25cm2 
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Table 2-2: Results of the analytical method for the calculation of the shear strength at the large scale 

Sample 
n  

(MPa) 

τp(exp) 

(MPa) 
Ω 

τA 

(MPa) 

τB 

(MPa) 

τp(calc) 

(MPa) 

Std 

(%) 

I7 0.6 2.2 0.29 3.4 1.64 2.15 2 

I2 0.6 1.8 0.25 3.4 1.64 2.08 14 

I8 0.4 1.48 0.33 2.94 1.49 1.97 28 

I9 0.2 1.45 0.29 2.47 1.34 1.67 14 

 

2.4.4 Discussion 

Based on the previous studies, a better and more detailed understanding of the mechanisms that 

affect the peak shear strength of joints is of particular interest. The contribution of roughness 

to the shearing resistance is mainly governed by two aspects: the normal stress level and the 

degree of bonding.  

Since the failure mechanisms involved in the shearing process are relatively complex, the shear 

behaviour of joints was widely studied on samples with triangular asperities. The shearing 

process was found to be strongly dependent on the level of normal stress. At low normal stress, 

the shear behaviour exhibited was mainly sliding over the asperities with little to no asperity 

damage. At high normal stress levels, the asperities were sheared off and little dilatancy was 

observed.  

A shear test on constant angle triangles, however, was found to be a significant simplification 

of the mechanism involved during a shear test, since the natural discontinuities showed a 

different shear behaviour than that exhibited in the case of tooth-shaped asperities.  Yang & al. 

[4] were the first to investigate the stress distribution in composite joints made from triangular 

asperities with different inclination angles. They argued that superimposing the basic shear 

behaviours of the several combined asperities can form the shear stress-shear displacement 

curve of a natural joint. The interactive behaviour and the local stress redistribution among 
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different asperities in multi-asperity surfaces, however, was found to be difficult to monitor 

and therefore a deeper investigation during the shear movement was found necessary. Due to 

technological advancements in surface measurements, Grasselli [11] proposed a new three 

dimensional criterion for the shear strength of rock joints. Besides a more comprehensive 

quantification of roughness, his criterion was able to quantify the anisotropy in shear strength 

observed experimentally.  

It should be noted that while several studies have been conducted on frictional joints, little 

work was considered for the study of the shear behaviour of cohesive or bonded joints. 

According to Moradian [7], the shear behaviour of bonded joints is mainly related to the 

adhesive bond. This conclusion was made based on direct shear tests on natural joints with 

high roughness (JRC>16). Therefore, the author suggested an additional study should be 

carried out on joints with different levels of roughness and under different normal stress levels. 

On the other hand, a study in the Norwegian University (NTNU) on bonded joints with 

triangular asperities showed that the influence of roughness on the shear strength of bonded 

joints was more important in the case of low normal stress levels. When the normal load was 

increased the failure did not follow the interface but rather propagated in the weaker material 

i.e. in concrete. Similar observations were made by Saiang [12] who stated that at low normal 

stress, the shear behaviour of shotcrete-rock joints was brittle due to the failure of the cohesive 

bond. For higher normal stresses, he argued that the cohesive bond and the asperities were 

broken simultaneously. Moreover, an important scatter was found in the values of shear 

strength for the joints sheared at low normal stress and no clear correlation was established by 

the author in order to quantify the observed test results. 

On the other hand, by investigating the shear behaviour of natural joints sheared at three levels 

of normal stress, Mouzannar & al. [21] found that the shear strength of bonded joints can be 

correlated with the wavelength of the principal undulations at the joint surface. This correlation, 

however, was only valid for low levels of normal stress (≤0.6MPa). Furthermore, the chosen 

parameter does not account for an important physical component of surface roughness: the 

amplitude of the undulations. An additional investigation is therefore needed in order to 

propose a comprehensive roughness parameter and identify a potential change in the modes of 

failure occurring when the normal stress is increased. 
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2.5 Conclusions 

In summary, this chapter provides a review of the different shear strength criteria available in 

the literature for the calculation of the shear strength of rough joints. They are primarily based 

on the assumption that both the geometrical and mechanical properties of the joint surface are 

of particular interest when estimating the shear strength.   

The morphological characterisation, which is a complement to the mechanical characterisation, 

consists in describing the geometrical and structural characteristics of the discontinuity 

surfaces. All the work in the literature on the mechanical behaviour of rock joints showed that 

the initial morphology plays an important role in the deformability of these joints. But the 

contribution of this morphology to the shear behaviour must be precisely quantified. To achieve 

this, two things are required: a precise measurement of the discontinuity roughness, and a 

choice of convenient parameters making it possible to account for this morphology. 

The simplest morphological characterisation approach is a description of roughness using 

classical linear geometrical parameters (Z2, Z3, Z4, CLA, RMS, Rp, etc.). Of all the work 

already done on the morphology of rock joints, no satisfactory method for morphology 

characterisation has been designated as a reference. Most of the three-dimensional problems 

are addressed by two-dimensional approaches, apart from the 3D modelling attempts described 

in ( [11], [36], [37] ). 

In order to account for the initial morphology in the calculation of the shear strength, it seems 

necessary to try to better understand the exact role played by the surface roughness during the 

shear tests. For this purpose, both 2D and 3D roughness parameters are necessary to try to 

describe the state of the surfaces in contact during shearing. Those parameters should account 

for all levels of roughness in order to correctly correlate the joint geometry to the shear 

resistance. 

On the other hand, based on the literature review of experimental studies performed on rough 

joints, it seems that the mechanical behaviour was extensively investigated on joints without 

initial bonding. Due to the lack of the experimental data concerning the shear behaviour of 

bonded joints, an extensive experimental campaign was proposed on concrete-granite joints 
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with different degrees of roughness and at different levels of normal stress. The purpose is to 

allow a better understanding of the shearing mechanisms involved during a shear test and to 

propose a better prediction of the shear strength of joints at the dam-foundation interface based 

on the results of direct shear tests performed at the laboratory scale. 





 

Chapter 3 Characterisation of the concrete-granite 

contact  

3.1 Introduction 

Based on the literature review presented in the previous chapter, the main contributing factors 

to the shear strength of joints, besides surface roughness and the initial cohesion, include the 

applied normal stress, the shear displacement rate and the mechanical properties of the 

materials at the contact surface. On the one hand, the contribution of heuristic and natural 

roughness to the shear strength of joints has been widely investigated in the literature mainly 

on mortar replicas. On the other hand, the initial cohesion has proved to be one of the primordial 

parameters affecting the shear strength but remains little studied and exhibit a large variability 

in the results of the experimental campaigns [12]. 

In this work, the shear characteristics of bonded concrete-granite joints are investigated in order 

to link the shear strength to the geometrical features of the joint surface. But prior to the shear 

tests on natural joints, a characterisation of the concrete-granite contact is carried out in order 

to quantify the geometrical features of the interface as well as the mechanical properties at the 

local scale (at the scale of the 2nd order asperities): 

 All granite samples were scanned by a laser profilometer prior to the shear tests, the 

position of the mean plane is adjusted to coincide with the shearing direction imposed 

by the shearing device and a graphical user interface is developed in MATLAB to 

quantify the surface roughness by objective statistical parameters. 

 Direct shear tests are performed on bonded samples with flat and bush-hammered 

surfaces in order to characterise the friction angle and cohesion at the local scale. 

The results of the experimental characterisation along with the methodology for the direct shear 

tests will be presented herein. 
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3.2 Description and characterisation of the materials 

3.2.1 Concrete 

The same concrete formula (Table 3-1) was used for all the shear tests conducted on the 

different types of surface roughness. It was chosen to represent the type of concrete used in the 

pre-existing concrete gravity dams in France [21].  

Table 3-1: Concrete formula used for samples preparation 

Component Quantity (kg/m3) 

Cement CEM I 52.5R 280 

Sand 0/4mm 650 

Sand 0/2mm 150 

Aggregate 11.2/22.4mm 780 

Aggregate 4/11mm 330 

Plasticizer - OPT 203 2.80 

Water 157 

 

Concrete was prepared in the 3SR lab and was considered to have the same mechanical 

properties as the one used in the work of Mouzannar [21] since the same concrete formula was 

adopted and the materials were obtained from the same quarry (Quarry in Saint-Laurent-de-

Mure, France). In his work, the concrete-granite samples were prepared with three concrete 

mixes. For each mix, six concrete cylindrical specimens (=160mm, h=320mm) were 

prepared, three of which were used in direct compression tests while the other half was used 

for splitting tensile tests. The following table summarises the mechanical properties of the 

chosen concrete: 
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Table 3-2: Mechanical properties of concrete taken from Mouzannar [21] 

Mix 

Number 

Compressive strength Tensile strength Density 

Rc 

(MPa) 

Std 

(%) 

Rt 

(MPa) 

Std 

(%) 

 

(kg/m3) 

Std 

(%) 

1 42.60 1.2 3.45 4 2370 0.50 

2 44.30 0.66 4.10 4.34 2376 0.86 

3 43.30 1.50 3.70 8.75 2363 0.32 

Mean Values 43.40 1.60 3.75 7.10 2370 0.56 

 

 

3.2.2 Granite 

The rock type chosen for this study was granite since it is representative of the material found 

at the dam-foundations in France. It is characterised by an anisotropic roughness and by a 

surface texture made up from first and second order asperities. In order to obtain the mechanical 

properties of granite, ten compression tests were conducted following the ASTM D7012-14 

norm, and 5 Brazilian tests were performed following the French norm NF P94-422 

(Mouzannar [21]).  

It should be noted that the mean values for the mechanical properties of concrete and granite 

will be introduced in the numerical and analytical models developed in the following chapter. 

The choice to perform direct shear tests on concrete-granite joints instead of concrete replicas 

will allow to investigate the influence of the different mechanical properties (Rc,t(granite)≅ 

3×Rc,t(concrete)) on the failure modes observed during the shear tests. 
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Table 3-3: Mechanical properties of granite taken from Mouzannar [21] 

 
Compressive strength, 

Rc (MPa) 

Tensile strength, 

Rt (MPa) 

Density, 

 (Kg/m3) 

Mean values 133 10.21 2608 

Std (%) 5.89 13.91 0.47 

 

3.2.3 Morphological characterisation of the granite surface 

3.2.3.1 Surface measurement device – The laser profilometer 

The acquisition of the surface roughness profiles from the granite samples was carried out using 

a laser profilometer available in the 3SR lab. The system consists of a laser sensor mounted on 

two orthogonal axes allowing displacements parallel to the mean plane of the joint. The laser 

beam emitted on the joint surface is reflected and then detected by a laser sensor to calculate 

the distance at the measured point with a vertical resolution of 0.05 mm.  

On each of the orthogonal axes, there is a motor for controlling the movement of the laser head 

and a displacement sensor (LVDT) for tracking the laser position (Figure 3.1). The 

measurements in the two directions X and Y can be spread over a length of 10 cm. 

Measurements of the joint morphology are carried out by parallel profiles oriented along the X 

axis and offset by increments of displacements along the Y axis (Figure 3.2). The number of 

parallel profiles and measurement points are adjusted according to the joint’s dimensions and 

the desired level of spatial discretisation. The control and the acquisition of data are performed 

by a LABview software, and an output file consisting of a 3D point cloud is obtained. 
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3.2.3.2 Post-processing and reconstruction of the joint surface 

The point cloud provided by the acquisition software and containing the coordinates of points 

along the joint surface, is imported into MATLAB for post-processing. Since the laser 

profilometer measures the distance between the laser sensor and the rock sample, then the true 

amplitude had to be calculated with respect to the mean plane along the joint surface. The 

choice of a reference mean plane is of particular importance in order to quantify the surface 

roughness and thus be able to compare several natural surfaces. This mean reference plane is 

determined by the least square method based on the measurements carried out on each joint 

surface. The joint surface was then reoriented such as the mean plane is horizontal. This is a 

Scanning paths 

along the X axis 

Rock sample 

Laser beam 

S
ca

n
n

in
g
 A

x
is

 Y
 

Figure 3.2: Organization of the scanning paths 

(3) 

(2) 

(1) (4) 

(4) 

Figure 3.1: Laser profilometer: (1): Laser sensor, (2): Motor for the Y axis,  

(3): Motor for the X axis, (4): Displacement sensors (LVDT) 
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necessary step in order to quantify the discontinuity surface without taking the influence of the 

mean plane inclination into consideration. It should be noted here that before conducting the 

shear tests, the position of the granite samples is adjusted such as the calculated reference plane 

coincides with the shear direction (section 3.3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The joint surface was then reconstructed using a Delaunay triangulation algorithm. This 

technique connects each point in the point cloud to its neighbours to form a surface defined by 

contiguous triangles. The algorithm is developed in MATLAB (delaunay) such as the chosen 

triangles are as equilateral as possible with a minimised geometrical distortion (Figure 3.3). 

This step was done for the extraction of 2D profiles from the joint surface along the shear 

direction and for introducing the real joint geometry into the numerical simulations of the direct 

shear tests as will be described in the following chapter. 

2D roughness profiles can be directly obtained using a laser profilometer or can be extracted 

from a TIN (Triangular Irregular Network) surface. Following the acquisition of those profiles, 

they must be aligned to establish a reference line according to which the roughness parameters 

should be calculated. If the profiles are obtained directly by a laser profilometer, a best linear 

regression line can be created and the profile is then rotated such as the best fit line is horizontal. 

If, on the other hand, the profiles are extracted from a triangulated surface, this surface has to 

be oriented such as the mean plane is horizontal and the 2D profiles can then be extracted and 

analysed without any further alignment. This latter method was used since one mean plane was 

defined as reference instead of re-aligning each 2D profile according to a different best fit line. 

This allows the comparison between the calculated roughness parameters and the results of the 

Figure 3.3: A reconstructed joint surface after the calculation of the true amplitude 
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direct shear tests on natural joints since the calculated mean reference plane is considered to 

coincide with the imposed shear direction. The process of extracting 2D profiles was developed 

in MATLAB: a series of vertical parallel planes distanced at 0.25mm were defined and their 

intersections with the reconstructed joint surface were obtained (Figure 3.4) using an 

intersection function developed by Thomas Moller [38]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A graphical user interface was developed in order to import the coordinates of the parallel 

profiles and calculate a series of roughness parameters on each of those profiles. Mean values 

for the most widely used roughness parameters were calculated: shape, amplitude and 

angularity parameters (Figure 3.5). Furthermore, based on the results of a literature review 

[39] on the empirical expressions for the calculation of the JRC coefficient, a mean value was 

proposed for this parameter as shown in the Figure 3.6. The correlation between the JRC values 

and other objective measurements is obtained by digitising the standard profiles (with a 

specified discretisation step), evaluating the roughness of the profiles with an objective 

parameter and then attempting to establish an empirical relationship between the value of the 

standard JRC and the objective roughness parameter. Since the Z2 parameter is the most used 

roughness parameter in the literature, most of the proposed empirical expressions for the 

estimation of JRC depend on this parameter. In the following graphical interface, the empirical 

expressions for the JRC estimation are chosen based on the roughness parameters that are least 

sensitive to the discretisation step.  

Figure 3.4: (a) Generation of parallel vertical planes for the extraction of 2D roughness profiles, 

(b) Parallel profiles extracted from the joint surface parallel to the X direction 

(a) 
(b) 
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Figure 3.5: Graphical User Interface (GUI) developed in MATLAB for the calculation of a series of 

statistical roughness parameters on the extracted parallel profiles 

Figure 3.6: Empirical expressions used to estimate the JRC coefficient 
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3.3 Methodology for the direct shear tests 

3.3.1 The mechanical shear device – BCR3D 

The direct shear test is the most classical test used nowadays to study the mechanical behaviour 

of rock joints. A high quality experimental device was designed and developed in the 3SR lab 

[40] in order to perform mechanical and hydro-mechanical tests on rock joints (Figure 3.7). 

The originality of this experimental device lies in the fact that shear is not due to the 

displacement of one part of the joint sample (either the upper part or the lower part), but to the 

symmetrical displacements in opposite directions of the upper and lower parts of the sample. 

This leads to a normal force always centered on the active part of the joint and to a limited 

relative rotation between the two halves of the sample (Figure 3.8).  

Indeed, the BCR3D, as its name suggests, provides a three-dimensional solicitation. It has three 

independent axes: a vertical axis for applying the normal loading and two horizontal orthogonal 

axes for applying the shear loading. To better understand the elements of the shear box, a cross 

section is provided in the Figure 3.9. The prepared sample (1) is sealed in two metal boxes, 

called internal half-boxes (2) which are positioned inside the BCR3D in two other metallic 

boxes called the external half-boxes (3). Those are equipped with sliding systems (4) allowing 

displacements in the X and Y directions. These external boxes are driven by two electro-

mechanical jacks. Each jack is equipped with displacement and force sensors. The vertical 

displacement of the upper box is guided by four rigid vertical columns. The normal loading is 

applied by a vertical electro-mechanical jack (6) equipped with one load cell (5) and with a 

LVDT sensor, giving the normal relative displacement of the upper wall.  

During a shear test, several loading paths are possible: 

 Shearing at constant normal stress 

 Shearing at constant normal force 

 Shearing at constant normal stiffness 

 Shearing at constant normal relative displacement (constant normal volume) 
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Figure 3.8: Advantage of the BCR3D shear box (B) over a classical shear box (A).  

Stage 1: application of the normal load, stage 2: shearing in process, stage 3: important 

applied shearing and rotation of the upper half box in the case of a classical shear box 

Stage 1 

Stage 2 

Stage 3 

Figure 3.7: General overview of the BCR3D shear box with its three orthogonal axes:  

the horizontal axes: (X1-X2), (Y1-Y2) and the vertical axis Z 

X1 

Y1 

Y2 

X2 Z 
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Different shapes of specimens can be tested, but with a maximum size of 10 cm due to the 

dimensions of the internal half-boxes presented in the Figure 3.10. Those boxes are designed 

in such a way to guarantee the quality of the assembly before conducting a shear test. For 

instance, the holes allow the use of metallic guiding cylinders (3) to ensure the exact positioning 

and the parallelism of the two half-boxes. The grooves (1) on the inner sides of the boxes 

prevent slippage of the sample-mortar assembly in the half box during the compression phase 

of the shear test: they serve as an anchor to the mortar. The advantage of these elements is to 

ensure the good positioning of the samples in the BCR3D and to prevent any potential relative 

rotation of the sample frames. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Schematic cross section of the BCR3D shear device along the X axis: 

1-Sample, 2-Internal half box, 3-External half box, 4-Sliding system,  

5-Force sensor, 6-Haydraulic jack, 7-Rigid frame 

Figure 3.10: View of the internal shear boxes: (1) Grooves,  

(2) Upper half box, (3) Guiding cylinder ensuring the parallel 

positioning of the upper and lower boxes, (4) Lower half box 

(1) 

(2) 

(3) 

(4) 
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3.3.2 Sample preparation 

After scanning a natural joint surface, and before proceeding to the sample preparation, the 

sample’s position must be adjusted so that the mean plane is horizontal. Indeed, since the shear 

box imposes a well-defined shear plane, it is therefore necessary to position the joint such as 

its mean plane is horizontal and coincides with the machine’s shear plane. This is a necessary 

step based on the hypothesis that the failure plane follows the mean reference plane. This can 

be particularly true for the shear tests conducted at low levels of normal stress on joints without 

initial cohesion. For higher normal stresses and in the case of bonded joints, the position of the 

failure plane observed after the shear tests should be examined in order to correlate the shear 

resistance to the morphological characteristics. 

The procedure to adjust the mean plane position consists first of calculating this position from 

the coordinates acquired by the laser profilometer. Then, a new plane parallel to the mean 

plane, was drawn on the corresponding natural block by means of the position of four points 

chosen on the extremities of the natural surface (Figure 3.12 and Figure 3.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(f) (e) 

(a) (b) (c) 

(d) 

Figure 3.11: Preparation of the internal shear boxes: (a) Adjusting the position of the mean plane, (b) Pouring concrete in 

the upper half-box after humidifying the granite surface, (c) Applying a thin layer of cement to the upper surface of 

concrete to have a smooth surface texture, (d) Rotation of the assembly, (e) Sealing the granite block in the internal shear 

box by the use of mortar, (f) Applying a smooth finish for the mortar using a cement paste 
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Axe X 

Point 2 Point 1 

Point 3 Point 4 

Axe Y 

Figure 3.13: Four points are chosen on the 

joint surface to plot the position of the 

mean plane 

Figure 3.12: Planes parallel to the 

discontinuities mean plane are drawn on 

the specimens 

(a) (b) 

Figure 3.14: (a) Adjustment of the position of the specimen so 

that the mean plane is horizontal, (b) Scan after the procedure 

was put into place 
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The position of the natural block can therefore be adjusted by means of a table equipped with 

4 screws, so that the plane that has been drawn is horizontal (Figure 3.14). To verify this 

procedure, the natural surface of a granite block, for which the inclination of the mean plane 

was relatively important, was adjusted and rescanned (Figure 3.15) and the new mean plane 

was calculated and was found to be almost horizontal. 

A 10 mm thick plexiglass plate is used to separate the upper and lower internal half-boxes in 

order to create a joint element. Grease is applied on the plexiglass surface so it can be easily 

removed once the specimen is ready to be placed in the shear box. Silicone is then applied 

across the boundaries of the granite sample in order to seal the voids between the granite block 

and the plexiglass plate, and therefore prevent the concrete from reaching the lower half box. 

A metallic guide is placed in order for the whole assembly (upper internal half box-plexiglass 

plate-lower internal half box) to be well oriented. Concrete is then poured on the humidified 

granite surface in order to achieve a bonded concrete-granite interface (Figure 3.11.b). Finally, 

a thin layer of cement paste is applied on the surface of the poured concrete in order to achieve 

a smooth finish (Figure 3.11.c).  

The assembly is vibrated in order to prevent the presence of air bubbles at the concrete-granite 

contact and is left to dry for 24 hours. Then, it is turned upside down in order to seal the granite 

sample in the lower internal half box by the use of mortar (Figure 3.11.d, e). As for the upper 

half box, a thin layer of cement is applied on the mortar in order to achieve a smooth finish 

(Figure 3.11.f). Lastly, the specimen is left to dry for a period of 28 days in ambient 

temperature before conducting the shear tests. 

3.3.3 Experimental program 

Several experimental campaigns on different types of geometries with an increasingly complex 

roughness were carried out (Figure 3.16). A first experimental campaign was conducted on 

smooth interfaces using two different shear displacement rates. A second campaign was 

performed on a number of granite blocks with tooth-shaped asperities with a known dilatancy 

angle. The choice to perform several shear tests on the same geometry allow to investigate the 

influence of the normal stress on the shearing mechanisms involved during the shear tests. 

Furthermore, in order to investigate the influence of second order asperities on the shear 
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behaviour of joints, a number of smooth granite samples were bush-hammered and sheared 

under constant normal stress. Finally, a series of granite samples with a natural joint surface 

were used for studying the shear behaviour of a joint representative of a real dam-foundation 

interface, at the laboratory scale. The joint surface was scanned prior to the shear tests in order 

to precisely quantify the joint morphology.  

The experimental program consists of direct shear tests under constant normal stress (CNS). 

Three values for the applied normal stress were chosen (n=0.5, 1 and 1.5 MPa) since a value 

of 1 MPa can be considered as the mean normal stress found at a dam-foundation interface. 

The normal stress was kept constant during a shear test by correcting the applied normal load 

by the theoretical area of the surfaces in contact, obtained by subtracting from the initial 

dimensions of the sheared sample, the values of the measured horizontal displacement. 

The direct shear tests consisted of two phases: first, a normal stress was incrementally applied 

at the speed of 10 kPa/s, then a horizontal displacement was imposed symmetrically on the 

upper and lower external shear boxes at the speed of 0.1mm/min. The shear and normal 

displacement rates were chosen according to the values recommended by the ISRM [41].  
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Figure 3.16: The chosen types of geometries for the investigation of the shear behavior of the 

(a) dam-foundation contact: (b) Smooth surface, (c) Heuristic surface with tooth-shaped 

asperities, (d) Bush-hammered surface (with 2nd order asperities), (e) Natural granite surfaces 
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Table 3-4: Summary of the experimental program on the different types of joint geometries 

Geometry 
Shear displacement 

rate, VS (mm/min) 

Normal stress, 

n (MPa) 

Nb. of tested 

specimens 

Smooth saw 

cut surfaces 

0.1 
0.5 

1 

0.6 2 

0.1 
1 

1 

0.6 2 

0.1 
1.5 

1 

0.6 1 

Total number of samples 8 

Bush-

hammered 

0.1 

0.5 2 

1 2 

1.5 2 

Total number of samples 6 

Tooth-

shaped 

asperities 

0.1 

0.5 2 

1 2 

1.5 2 

Total number of samples 6 

Natural 

granite 

surface 

0.1 

0.5 6 

1 5 

1.5 4 

Total number of samples 15 
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3.4 Direct shear tests on flat concrete-granite joints 

The choice to perform direct shear tests on saw-cut surfaces was to study the influence of the 

initial bond between concrete and granite on the shear behaviour of joints. In addition, the 

influence of the shear displacement rate was investigated by the application of two shearing 

velocities (VS1= 0.6 mm/min and VS2=0.1 mm/min). A total horizontal displacement of 20 mm 

was applied (10 mm along each shearing axis Y1 and Y2) in order to reach the residual phase. 

3.4.1  Results 

The Figure 3.17 shows the shear behaviour for flat concrete-granite joints sheared under a 

constant normal stress (CNS) with a shear displacement rate of 0.6 mm/min. Since two direct 

shear tests were conducted at each of the first two levels of normal stress (n=0.5 and 1 MPa), 

it is possible to evaluate the reproducibility of the shear behaviour observed experimentally. 

The shear behaviour of the two specimens sheared at a normal stress of 0.5MPa is slightly 

different at the beginning of the shear test (Figure 3.17.a). The shear stress curve for the sample 

No.1 shows a small peak at the beginning of the shear test while the shear behaviour of the 

sample No.2 is characterised by a maximum shear stress which is constant during the whole 

shear test. On the other hand, a comparison of the shear stress curves for the samples sheared 

at 1 MPa of normal stress reveals that the shear behaviour is approximately the same and the 

maximum shear stresses reached are in the same range with a 50kPa difference (Figure 3.17.b). 

Overall since no clear peak in the shear stress curve can be observed, the initial cohesion 

between the joint surfaces is considered very small and sliding along the joint surface can be 

considered as the main shearing mechanism for a flat contact surface. Furthermore, the concrete 

and granite surfaces examined after the shear test (Figure 3.18) showed a perfectly flat surface 

indicating that failure mainly followed the concrete-granite interface. Similarly no important 

peak in the shear stress curve can be observed for the shear test conducted under 1.5MPa of 

normal stress. However, some oscillations can be recorded at the beginning of the shear test up 

to a shear displacement of 1 mm (Figure 3.17.c,d). This will be discussed in detail in the 

following section.  
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Based on the results of the first experimental campaign conducted at a shear displacement rate 

of 0.6mm/min, it was argued whether or not the shear velocity has an influence on the shear 

behaviour, more particularly on the fact that no clear peak in the shear stress curve can be 

Figure 3.18: Photo of the concrete (left) and granite (right) surfaces after a shear test 

conducted at a normal stress of 1MPa and for a shear displacement rate of 0.6mm/min 

Figure 3.17: Results of the direct shear tests conducted under three levels of normal stress: (a) n=0.5MPa, (b) n=1MPa,  

(c) n=1.5MPa. (d) Oscillations in the shear stress curve at the beginning of the shear test (n=1.5MPa)  
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observed. Hence, it was decided to perform additional shear tests (one at each normal stress) 

at a shear displacement rate of Vs2=0.1mm/min as proposed by the ISRM: “Shear displacement 

rates around 0.1-0.2mm/min are usually suitable for the whole test, although it can be slightly 

increased to values around 0.5mm/min after the peak shear strength”. 

 

 

 

 

 

 

 

The three direct shear tests performed at 0.1mm/min of shear displacement rate gave the same 

shear behaviour observed for the shear tests performed at the higher shear displacement rate of 

0.6mm/min (Figure 3.19). In particular, similar to the shear test conducted at 1.5MPa of normal 

stress with a shear displacement rate of 0.6mm/min (Figure 3.17.c,d), the shear test conducted 

under the same applied normal stress at the shear velocity of 0.1mm/min showed some 

oscillations in the shear stress curve up to a horizontal displacement of 2mm (Figure 3.20). 
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Figure 3.20: Stick-slip observed for the shear tests conducted on a saw-cut surface 

under 1.5MPa of normal stress and a shear displacement rate of 0.1mm/min 

Figure 3.19: Shear test results of the shear tests conducted at three levels of  

normal stress with a shear displacement rate of 0.1mm/min 
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3.4.2 Stick-slip phenomenon 

The oscillations observed in the shear tests performed at 1.5MPa of normal stress can be 

attributed to a discontinuous sliding at the joint surface. This stick-slip phenomenon was 

previously reported by Gadi [42] who performed a series of direct shear tests on granite to 

granite interfaces in order to follow the evolution of the frictional resistance during continuing 

shear displacement. He noted that the shearing process along a discontinuity takes place 

through either stable or unstable (stick-slip) motion. Moreover, stick-slip was found to be 

favoured by a flat surface, a high normal stress (Figure 3.21.a) and a low shear displacement 

rate. For example for all the shear tests conducted at a normal stress of 1.5MPa, the shearing 

process was, without exception accompanied by stick-slip.  

On the other hand, according to Gadi, when the normal stress was increased in several steps 

during the same shear test, small irregularities were observed for the normal stress of 0.3MPa 

(564N). Those irregularities changed into fully developed stick-slip vibrations for a normal 

stress of 0.67 MPa (1189N) (Figure 3.21.b).  

 

 

 

 

 

 

 

 

 

 

The author noted that the amplitude of the vibrations was of little significance since they are 

related to the ability of the shear loading system to catch-up the sudden displacements 

occurring at each point of instability. 

Figure 3.21: (a) Stick-slip observed for a shear test conducted under 1.2MPa of normal stress, (b) The evolution  

of stick-slip motion as the normal load is increased. The numbers refer to the normal force in Newtons  

(a) (b) 
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This problem can be faced by using a proportional-integral-derivative controller (PID) which 

is a control loop feedback mechanism widely used in industrial control systems. The controller 

calculates the error between a desired setpoint and a measured variable and then applies a 

correction based on proportional, integral and derivative terms. The proportional term amplifies 

the error in order for the system to react more quickly to the desired setpoint. The integral part, 

on the other hand, helps to compensate the static error and the derivative term increases the 

stability by reducing the initial overshoot (Figure 3.22). This control system can be applied to 

regulate the discontinuous sliding observed during the shear test by correcting the measured 

horizontal displacement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Due to technical limitations only the proportional term of the control system could be adjusted 

in the shearing device available at the 3SR lab. An adjustment of the system’s reactivity (P 

value) leads to a change in the amplitude of the oscillations (Figure 3.23). However, a very 

small value (P=10) leads to a dissymmetric measured horizontal displacement on the two 

shearing axes Y1 and Y2. Therefore, an intermediate value of P=30 can be adopted in order to 

Figure 3.22: A block diagram of a PID controller in a feedback loop 
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regulate the shearing device’s response to sudden displacements related to the stick-slip 

phenomenon while keeping a symmetric response for the two shearing axes. 
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Figure 3.23: Shear stress curves and measured horizontal displacements for the two shearing axes Y1 

and Y2 for different values of the proportional term P.  
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3.4.3 Comparison of the results of the two experimental campaigns 

The results of the shear tests conducted on 8 samples with two different shear displacement 

rates and at three levels of normal stress show that the shear behaviour of flat bonded concrete-

granite samples is characterised by a simple sliding along the joint surface and that even when 

pouring concrete directly on the flat surface of granite, the initial cohesion between those two 

materials is practically negligible (c=100 kPa) as presented in the Figure 3.24.a.   

Table 3-5: Results of the two experimental campaigns under two different shear displacement rates of 

Vs1=0.6mm/min and Vs2=0.1mm/min 

Normal 

stress 

n (MPa) 

Shear disp. 

Rate 

Vs (mm/min) 

Specimen 

No. 

Max shear 

stress, τmax 

(MPa) 

Residual 

shear stress, 

τres (MPa) 

0.5 
0.6 

1 0.47 0.35 

2 0.38 0.33 

0.1 I 0.37 0.3 

1 
0.6 

3 0.63 0.55 

4 0.62 0.6 

0.1 II 0.6 0.55 

1.5 
0.6 5 0.98 0.92 

0.1 III 1 0.8 

 

 

It should be noted that the Mohr-Coulomb criterion plotted based on the results of the peak 

shear stress values confirms the low value of the initial cohesion which is around 100KPa 

(Figure 3.24.a). In addition, from the residual shear stress values a basic friction angle of 

approximately 30o can be calculated for a flat concrete-granite contact (Figure 3.24.b). The 

shear displacement rate had no influence on the peak and residual values of shear stress. 



70 Characterisation of the concrete-granite contact 

 

However, when the shear velocity was reduced to 0.1mm/min and in the case of an important 

normal stress (1.5MPa), a stick-slip phenomenon was clearly observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.4 Conclusion 

In order to identify the cohesion and the basic friction angle of the concrete-granite contacts, a 

series of direct shear tests were conducted on flat bonded samples as described above. The 

calculated value of the cohesion was very low (≅ 100𝑘𝑃𝑎) based on the results of two 

experimental campaigns performed at two different shear displacement rates. The surface 

texture of the flat granite surfaces does not allow an initial bond to be formed with the poured 

concrete, and at the same time does not represent the surface roughness of natural joints at the 

small scale as was previously intended. 

Therefore, a bush-hammering of the flat granite samples was proposed in order to reproduce a 

distribution of second order asperities similar to that observed in the case of natural joints at 

the small scale. Direct shear tests performed on such surfaces allow to investigate the influence 

of both the small scale roughness and the initial cohesion on the shear strength as will be 

presented in the following sections. 
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Figure 3.24: Mohr-Coulomb criterion plotted for all the shear tests at the two shear displacement rates: (a) peak shear 

stress values, (b) residual shear stress values; Test 1,2, 3, 4 and 5 refer to the shear tests conducted at Vs1=0.6mm/min 

while tests I, II and III refer to the shear tests performed at Vs2=0.1mm/min 
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3.5 Direct shear tests on bush-hammered concrete-granite joints 

3.5.1 Sample preparation 

The flat saw-cut surface of granite samples was bush-hammered using a metallic hammer with 

a surface of 45x45mm2. It was placed in two different dispositions in order to create a non-

uniform distribution of 2nd order asperities (Figure 3.25.b). In order to validate this process 

and to compare the surface texture of the bush-hammered surfaces to that of a natural granite 

sample at the local scale, the mean inclinations of the asperities were calculated by means of 

the roughness parameter 2D
+ on both types of surfaces. 

 

 

 

 

 

 

  

 

 

 

 

A comparison of the cumulative distribution of the mean inclination parameter on both types 

of surfaces (Figure 3.26) reveals a nearly identical exponential form and maximum inclination 

values that are in the same order (max=65o for a natural surface and max=70o for a bush-

hammered sample). 

In total six bush-hammered specimens were prepared (Figure 3.27) using the same procedure, 

and direct shear tests were conducted according to the recommendations of the ISRM [41]. A 

(a) (b) 

Figure 3.25: (a) Metallic hammer (45x45mm2, 100 pins), (b) Bush-hammering  

using two different dispositions of the metallic hammer on the granite sample 
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total horizontal displacement of 10 mm was applied since it was considered sufficient to reach 

the residual shear behaviour for the bush-hammered surfaces. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

3.5.2 Results 

3.5.2.1 Influence of the normal stress 

The results of the direct shear tests on the bush-hammered samples are presented in the 

following table. This table shows the normal applied stress n, the peak shear stress peak, the 

Figure 3.27: Surface texture of bush-hammered samples ready for shear testing 

Figure 3.26: Cumulative distribution of the inclination of the asperities on a 

natural granite surface (blue) and on a bush-hammered sample (red) 
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residual shear stress res, the horizontal displacement at the peak peak and the maximum and 

minimum normal displacements respectively noted n (max) and n (min). 

Table 3-6: Summary of the results of direct shear tests performed on six bonded joints with a 

bush-hammered surface 

 

The shear behaviours of the samples sheared under the same normal stress were similar 

(Figure 3.28.a, b, c). Nevertheless, when the applied normal stress was changed, two different 

shear behaviours can be observed:  

 At a low normal stress of 0.5MPa, the shear stress increases at the beginning of the 

shear test to reach a clear peak in the shear stress curve. At this point, a brittle failure 

can be seen accompanied by a distinctive sound, noted during the shear test, due to 

failure of the cohesive bond. The shear stress increases again to reach a second peak 

followed by a gradual decrease toward the residual shear stress (Figure 3.29.a). This is 

due to shearing of the second order asperities after the cohesive bond was broken. 

 At higher normal stresses of 1 and 1.5 MPa, the shear behaviour was different 

(Figure 3.29.b). The shear stress increases at the beginning of the shear test until 

reaching a maximum value. At this point, a more ductile behaviour was observed when 

compared to the shear tests performed at the lower normal stress of 0.5MPa. Indeed, 

when the normal stress is increased, the second order asperities are mobilised and show 

Sample 

No. 
(MPa) peak(MPa) res(MPa) peak(mm) n(max)(mm) n(min)(mm) 

1 
0.5 

1.24 0.40 0.22 0.5 -0.054 

2 1.25 0.55 0.23 0.38 -0.05 

3 
1 

1.50 0.74 0.3 0.3 -0.125 

4 1.61 0.80 0.31 0.31 -0.134 

5 
1.5 

1.93 1.26 0.583 0.1 -0.218 

6 2.11 1.15 0.28 0.1 -0.184 
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their contribution to the peak shear stress. Then, the shear stress was found to gradually 

decrease due to the continuous shearing of the second order asperities until a constant 

value was reached for a shear displacement bigger than 5mm. Oscillations in the shear 

stress curves are observed (Figure 3.28.b, c) and they are found to increase with the 

applied normal stress due to more important shearing of micro-roughness and to the 

increased reactivity of the shearing device (the shear tests herein were conducted prior 

to the regulation by the PID control system as mentioned in section 3.4.2).  

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

The observed shearing behaviours are in agreement with the results of the literature [12]. The 

difference in the shear behaviours observed for samples sheared at different levels of normal 

stress can be explained by the fact that at low normal stress, the peak resistance is equal to the 

bond strength (Figure 3.29.a). On the other hand, for normal stresses greater than 1MPa, 
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Figure 3.28: Reproducibility of the direct shear tests on the bush-hammered samples conducted  

under the same level of normal stress: (a) n=0.5MPa, (b) n=1MPa and (c) n=1.5MPa  
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friction becomes an important f actor in the determination of the shear strength and the peak 

shear stress can be considered as the simultaneous contribution from both the surface roughness 

and the initial cohesion found between the joint surfaces (Figure 3.29.b).  

 

 

 

   

 

 

 

 

3.5.2.2 Comparison with the results on flat surfaces 

From the Figure 3.30.a,b, one can deduce that the influence of normal stress on the shear 

behaviour of flat and bush-hammered samples is not the same. While an increase in the applied 

normal stress on flat samples leads to a simple increase in the shear stress, increasing the normal 

load on bush-hammered samples was found to not only increase the values of shear stresses 

but also to change the shear behaviour of these rough samples.  

On the other hand, the dilatancy curves for the bush-hammered sample showed two-phases: an 

initial contractancy followed by an increase in the normal displacement (Figure 3.30.c). The 

contactancy phase at the beginning of the shear test can be attributed to a shearing of the second 

order asperities. This shearing becomes more important when the applied normal stress is 

increased and therefore a more important contractancy can be observed. Following this phase, 

the measured normal displacement increases and reaches a maximum constant value for a shear 

displacement bigger than 5mm. This dilatancy can be attributed to a sliding on the crushed 

asperities. While a low applied normal stress leads to a simple sliding on the crushed asperities 

and therefore to an important maximum normal displacement, a normal stress of 1.5MPa leads 
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Figure 3.29: Two typical shear behaviours for joints with a bush-hammered surface according  

to the level of normal stress 

-1 0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

-1 0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800



76 Characterisation of the concrete-granite contact 

 

to a continuous shearing of these asperities and therefore to a smaller maximum normal 

displacement recorded at the end of the shear test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, by comparing the shear stress-shear displacement curves for flat and bush-

hammered surfaces on can deduce that the second order asperities lead to a mobilisation of a 

larger cohesion and therefore to a clear peak in the shear stress curves. In this case, the cement 

paste from the poured concrete was able to penetrate in the micro-roughness and therefore an 

initial mechanical bond was formed between the joint surfaces. Unlike the case of shear tests 

on flat samples, the bush-hammered joint surfaces examined at the end of the shear tests 

showed that part of the concrete was damaged and glued to the granite surface (Figure 3.31). 
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Figure 3.30: Shear stress-shear displacement curves for (a) bush-hammered samples and (b) smooth samples,  

sheared at different levels of normal stress; Dilatancy curves for (c) bush-hammered and (d) smooth samples,  

sheared at different levels of normal stress 
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Values of the residual shear stress for bush-hammered samples sheared at three different levels 

of normal stress are more important than those observed for flat surfaces (Figure 3.30.a, b). 

This shows that the shearing mechanism reached at the end of the shear test was sliding along 

the surface of the remaining intact asperities. 

 

  

 

 

 

 

 

The Mohr-Coulomb criterion plotted for the residual values of shear stress gives a zero 

cohesion and a residual friction angle of 380 compared to a basic friction angle of 300 calculated 

for the flat samples. The same criterion plotted for the peak shear stress values, gives an initial 

cohesion of approximately 600KPa and a peak friction angle of 430 (Figure 3.32). 

 

 

 

 

 

 

 

 

 

Figure 3.31: Joint surfaces after a shear test conducted on a bush-hammered sample under a 

normal stress of 1.5MPa, showing parts of the concrete that were sheared and glued to the 

granite surface: concrete (left), granite (right), the arrow indicates the shear direction 

Figure 3.32: Mohr-Coulomb criterion plotted from the results of direct shear tests at three levels of 

normal stress for: (blue) Peak values of shear stress for bush-hammered surfaces, (red) residual values 

of shear stress for bush-hammered surfaces, (green) values of shear stress for smooth samples 
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3.6 Discussion 

In this chapter, a geometrical and mechanical characterisation of the concrete-granite contact 

is proposed in order to first provide an objective quantification of surface roughness and second 

to identify the mechanical parameters of the second order asperities. The first experimental 

campaign on flat joint surfaces, performed to obtain the basic friction angle and cohesion of 

concrete-granite contacts, showed that a saw cut granite surface does not allow concrete to 

bond and therefore no initial cohesion was practically obtained between the joint surfaces. The 

shear displacement rate chosen for the direct shear tests did not have an influence on the peak 

and residual shear stress values. However, a stick-slip phenomenon was observed for a low 

shear velocity of 0.1mm/min and in the case of high levels of normal stress (1.5MPa). 

On the other hand, when a distribution of second order asperities was created on the flat granite 

surfaces by means of a bush-hammer, the shear behaviour exhibited by the bonded samples 

was different. Indeed, two different behaviours were observed depending on the level of the 

normal loading. At a low normal stress, a brittle failure was observed and attributed to the sole 

contribution of the initial cohesion to the shear strength. In contrast, when the normal loading 

was increased, a mobilisation of surface roughness was expected and a simultaneous 

contribution from the initial cohesion and from the second order asperities to the shear strength 

was observed.  

Moreover, it should be noted that he bush-hammering of flat granite samples was proposed in 

this chapter since the shear tests performed on flat surfaces gave a negligible initial cohesion 

of 100KPa (due to the chemical bond between the joint surfaces) and a friction angle of 300. 

The bush-hammering technique was found to reproduce a distribution of second order 

asperities very similar to that observed in the case of natural joints at the small scale. Direct 

shear tests performed on such surfaces at three levels of normal stress provided values for the 

mechanical parameters of a rough concrete-granite interface characterised by second order 

asperities. These values will be used as input parameters in the numerical models used to 

simulate the shear behaviour of natural surfaces and in the analytical expression proposed for 

the shear strength of natural joints as will be presented in chapters 4 and 5.  



Chapter 3 79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 4 Shear behaviour of rough bonded 

concrete-granite joints 

4.1 Introduction 

In this work and due to the complexity of the shear behaviour of bonded joints, a series of direct 

shear tests was performed samples with four different levels of surface roughness (smooth, 

bush-hammered, tooth-shaped and natural geometry). While the shear tests conducted on 

smooth and bush-hammered samples serve to characterise the influence of second order 

asperities on the shear behaviour of joints, the experimental tests performed on tooth-shaped 

asperities and on natural joints provide insights into the modes of failure occurring for different 

levels of normal stress in the case of joints with a notable surface roughness.  

It was decided that the CNS (Constant Normal Stress) shear test is the most appropriate 

laboratory experimental setup since the joint is considered free to dilate (see section 1.1.1). The 

applied normal stresses (n=0.5, 1 and 1.5 MPa) were chosen based on the usual range of 

normal stresses acting on the foundations of concrete gravity dams of medium height (10 to 60 

m).  

4.2 Direct shear tests on concrete-granite joints with tooth-

shaped asperities 

4.2.1 Purpose 

In order to study the influence of surface roughness on the shear capacity of bonded joints, the 

most simple shear test is the one conducted on tooth-shaped asperities with a known inclination 
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angle. The choice to perform shear tests on the same joint geometry was to study the influence 

of the applied normal load on the shear behaviour of bonded samples. A total of five direct 

shear tests (Table 4-1) were therefore conducted on bonded concrete-granite samples with 

tooth-shaped asperities consisting of four teeth with an inclination angle of 200 as presented in 

the Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-1: Experimental program on the bonded sample with tooth-shaped asperities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The granite samples (10x10x4cm3) were cleaned with water and the joint surface was 

humidified prior to pouring the concrete (Figure 4.2). The direct shear tests were conducted 

following the ISRM standards and a total horizontal displacement of 20mm was applied in 

order to exceed the peaks of the triangular asperities. 

 

Normal stress  

n (MPa) 

Number of  

shear tests 
Test No. 

0.5 1 Test 1 

1 2 
Test 2 

Test 3 

1.5 2 
Test 4 

Test 5 

Figure 4.1: Dimensions of the granite samples with tooth-shaped asperities 
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4.2.2 Results 

4.2.2.1 Shear behaviour of tooth-shaped asperities 

The shear tests performed under the three chosen levels of normal stress show a similar 

behaviour characterised by elastic deformations then by a peak in the shear stress curve. This 

is followed by a sudden drop in the shear stress value because of the brittle failure of the 

cohesive bond. The shear stress then increases to reach a constant value during the entire 

ascending phase (Figure 4.3.a). For the tooth-shaped asperities, the shear behaviour is mainly 

controlled by the cohesive bond at the beginning of the shear test. Moreover, the dilatancy 

curve during this phase shows that the evolution of the normal displacement is linear with 

respect to the imposed horizontal displacement (Figure 4.3.b). This confirms that sliding along 

the asperities is the governing shear mechanism once the cohesive bond has failed and little to 

no damage can be expected during this phase (Figure 4.4). 

When the imposed horizontal displacement is equal to half the base of the asperities, the shear 

stress begins to decrease due to sliding on the descending facets. In this phase, the contact 

surface between concrete and granite is greatly reduced leading to stress concentrations at the 

tip of the asperities. Therefore, shearing of the concrete asperities can take place especially in 

the case of a high applied normal stress (Figure 4.5). This is obvious when comparing the 

linear part of the dilatancy curve in the ascending phase to the non-linearity observed directly 

after the peak of normal displacement (Figure 4.3.b). In addition, no constant value for the 

shear stress is reached during the descending phase due to the continuous shearing of the 

Figure 4.2: Granite samples cleaned with water before the preparation of the shear boxes 



Chapter 4 83 

 

concrete asperities. Indeed, for the shear test conducted at 1.5MPa of normal stress, a dilatancy 

angle of 220 can be calculated in the ascending phase while a smaller angle of 180 is found for 

the linear part of the dilatancy curve in the descending phase. 
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Figure 4.3: Typical shear behaviour observed for the direct shear tests performed under three levels of 

normal stress 

(a) (b) 

Figure 4.4: Photos of the tooth-shaped asperities for the test 2 conducted under  

n=1MPa during the ascending phase. Sliding is the governing shearing mechanism:  

no damage of the concrete asperities can be observed  

Figure 4.5: Photos of the asperities for the test 2 conducted under n=1MPa during the  

descending phase: slight damage and shearing of the tip of the concrete asperities can  

be observed while the granite surface remains intact 
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It should be noted that as for the shear tests performed on flat concrete-granite samples, the 

shear tests on the tooth-shaped asperities conducted at a normal stress of 1.5MPa showed a 

discontinuous sliding accompanied by oscillations in the shear stress curve (Figure 4.6). This 

is due to the flat surface of the triangular asperities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2.2 Influence of surface roughness 

From the Figure 4.7, it can be seen that both the maximum and residual shear stresses in the 

ascending phase increase linearly with the increase of the applied normal stress. From the 

Mohr-Coulomb criterion plotted based on the values of the residual shear stress, a residual 

friction angle r=51.60 can be obtained. This value is in agreement with Patton’s criterion: 𝜏 =

𝑛. tan (𝑏 + 𝑖). In fact, since a basic friction angle of 300 was obtained from the shear tests 

conducted on flat concrete-rock samples, a dilatancy angle i= r - 30 =21.60 can therefore be 

calculated for the tooth-shaped asperities which is very close to the 200 of the asperities 

inclination angle. The results of the shear tests on tooth-shaped asperities are presented in the 

following table. The test No.3 was excluded from the analysis as a higher asperity angle was 

measured on this sample leading to a different shear behaviour (see appendix B). 
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Figure 4.6: Shear stress-shear displacement curves for the shear tests conducted at 1.5MPa of  

normal stress showing the influence of the stick-slip phenomenon  
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Table 4-2: Results of the shear tests conducted at three levels of normal stress 

Test 

No. 

Normal stress, 

n (MPa) 

Peak shear stress, 

τpeak (MPa) 

Peak horiz. disp,  

t(peak) (mm) 

Residual shear 

stress, τres (MPa) 

1 0.5 1.9 0.24 0.7 

2 1 2.48 0.38 1.6 

4 1.5 2.79 0.54 2 

5 1.5 2.8 0.73 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

Figure 4.8: Photos of the joint surfaces after shear tests conducted under  

(a) 1 MPa and (b) 1.5 MPa of normal stress: (Left) concrete, (Right) Granite. The 

tip of the concrete triangular asperities are sheared and glued to the granite surface 

(b) 

Figure 4.7: Mohr-Coulomb criterion plotted based on the results of the shear tests conducted on bonded 

samples with triangular asperities: (Blue) peak shear stress values, (red) Residual shear stress values 
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In addition, when we compare the difference between the peak and residual stresses for each 

level of normal stress, we can say that this difference decreases when the normal stress becomes 

more important (Figure 4.7). This confirms the fact that when the normal stress increases the 

influence of roughness becomes less important and the peak shear stress becomes mainly 

governed by shearing of the concrete asperities. Indeed, the examination of the joint surface 

after the shear tests reveals that for normal stresses n≥1MPa, the tips of the concrete asperities 

were sheared and glued to the granite samples (Figure 4.8). 

4.3 Direct shear tests on concrete-granite samples with a natural 

joint surface 

4.3.1 Purpose 

After investigating the shear behaviour of samples with a heuristic surface roughness (flat 

surfaces, bush-hammered surfaces and joints with tooth-shaped asperities), it was decided to 

perform a series of direct shear tests on natural granite samples characterised by a surface 

texture made up from second order asperities superimposed to big wavelength waviness. The 

shear behaviour of such joints is rather complex since different levels of surface roughness 

show their contribution to the shear strength. Furthermore, this contribution is expected to 

depend on the level of the applied normal stress as mentioned by Patton [8].  

In total 15 direct shear tests were conducted at three levels of normal stress. The shear test 

results were analysed and compared to the roughness parameters in order to investigate a 

possible correlation between the shear strength of the bonded joints and their morphological 

characteristics. 

The natural surface of the granite joints was scanned prior to the shear tests as described in the 

section 2.2.3.1 and the initial surface roughness was characterised by the calculation of 

statistical roughness parameters as presented in the section 2.2.3.2. The samples were prepared 

such as the mean planes of the natural surfaces were horizontal and coincide with the shear 

direction imposed by the BCR3D shear box (section 2.2.3.3). 
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4.3.2 Sample preparation 

For this study, a number of granite blocks were received from the CEMETE- EDF/TEGG 

laboratory after they have been cut to the dimensions of 10x10x5cm3.  The samples were 

wrapped in bubble plastic bags in order to preserve their surface from any damage during the 

transportation (Figure 4.9).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that before scanning the joint surface, samples were cleaned with water to 

remove clay residues attached to the surface (Figure 4.10). This step was necessary in order to 

perform an accurate scan of the discontinuity surfaces and to conduct shear tests on natural 

joints without any filling material.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Bubble wrapped samples ready for transport 

(a) (b) 

Figure 4.10: Natural granite samples before (a) and after (b) cleaning with water 
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4.3.3 Results 

4.3.3.1 Influence of normal stress on the failure modes of natural 

joints 

The results of the shear tests on natural granite samples showed two different shear behaviours 

based on the applied normal stress. The Figure 4.11.a is a typical shear stress curve for the 

specimens sheared at a low normal stress of 0.5MPa presumably with a low surface roughness 

(in what follows this shear behaviour will be referred as “Type I”). The Figure 4.11.b, on the 

other hand, shows a typical shear behaviour observed for all the specimens sheared under 1 

and 1.5 MPa of normal stress and for two of the samples sheared under 0.5MPa of normal stress 

with a high surface roughness (this shear behaviour will be referred to as the “Type II”).  
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Figure 4.11: (a), (b) The two different shear behaviours observed for the direct shear tests conducted  

on natural joints, (c), (d) The corresponding surface morphology of the granite samples prior to the shear tests 

Block 1-Type I Block 6-Type II 
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For both types of shear behaviours, the normal stress is constant during the shear test except 

for a dynamic perturbation observed when the peak shear stress was reached. The “Type I” 

shear behaviour (Figure 4.11.a) is characterised by a peak in the shear stress curve followed 

by a gradual decrease toward a residual value. On the other hand, the “Type II” shear behaviour 

(Figure 4.11.b) also exhibited a clear peak in the shear stress curve. The difference was mainly 

in the post peak phase where a brittle failure is observed for the “Type II” behaviour, 

accompanied by a sudden decrease in the shear stress. The value of the shear stress then 

decreases toward a constant residual value.  

The following table summarises the results of the 15 direct shear tests conducted on natural 

joint surfaces. It shows the values of the applied normal stress n, the peak shear stress τpeak, 

the peak horizontal displacement peak and the residual shear stress τres along with the type of 

the shear behaviour exhibited by each specimen. The shear stress-shear displacement and 

dilatancy curves for all the direct shear tests are presented in the appendix B.  

A comparison between these shear test results and those obtained by Saiang can be made. 

Saiang [12] performed a series of laboratory shear tests on shotcrete-rock joints with low 

surface roughness (JRC=1-3, 9-13). He noted that the “Type I” behaviour is observed in two 

cases: 

 For the joints sheared under high normal stresses with good initial cohesion: the ductile 

post-peak behaviour was attributed to the simultaneous contribution from both the initial 

cohesion and surface roughness to the shear strength.  

 For joints with a poor initial cohesion sheared under a low normal stress: due to the process 

of preparing the shotcrete-rock samples, the author argued that the cohesion quality was 

not uniform along the joint surface. This resulted in low shear strength values with a notable 

scatter with respect to the normal stress. 

On the other hand, Saiang argued that the “Type II” behaviour is characteristic of joints with a 

good initial cohesion sheared at low normal stress. The maximum shear stress can be attributed 

to the sole contribution from the initial cohesion and the influence of surface roughness was 

not seen till after the peak in the shear stress curve. These conclusions can be particularly true 

for bonded samples with low surface roughness (JRC=1-3, 9-13) and for samples with different 
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levels of initial cohesion. The concrete-granite samples in our lab, however, were prepared 

using the same procedure as to ensure bonding on the whole joint surface. Furthermore, the 

surface roughness was found to be much more important than the case of the specimens used 

by Saiang: JRC values range from 11 to 19. Therefore, different modes of failure can be 

expected as different levels of roughness are contributing to the shear behaviour of the fully 

bonded samples. 

Moreover, it should be noted that the examination of the joint surfaces after the shear tests 

shows that failure occurred mainly at the concrete-granite contact. The granite surface was 

intact and parts of the concrete were damaged and glued to the granite block (Figure 4.12). 

The distribution of the damaged concrete surfaces was found to vary among the sheared 

samples according to the applied normal stress. An increase in the applied normal stress was 

found to increase the proportion of the joint surface where failure occurs in concrete. An 

analytical method is proposed in the following chapter in order to predict the failure modes 

occurring at the joint surface and provide an estimate of the shear strength of the natural joints 

found experimentally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.12: Photos of the joint surfaces after shear tests conducted under  

0.5MPa of normal stress: (a) Block 1, (b) Block 6 

(a) 

(b) 
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The following table summarises the results of the 15 direct shear tests conducted on natural 

joint surfaces. It shows the values of the applied normal stress n, the peak shear stress τpeak, 

the peak horizontal displacement peak and the residual shear stress τres along with the type of 

the shear behaviour exhibited by each specimen. The shear stress-shear displacement and 

dilatancy curves for all the direct shear tests are presented in the appendix B.  

Table 4-3: Summary of the results of the shear tests conducted under three levels of normal stress 

Specimen 

No. 

Normal 

stress,  

n (MPa) 

Peak shear 

stress, τpeak 

(MPa) 

Shear 

behaviour 

Type 

Peak 

horizontal 

Displacement,  

peak (mm) 

Residual 

shear stress, 

τres (MPa) 

1 0.5 0.97 I 0.15 0.62 

2 0.5 1.18 I 0.55 0.80 

3 0.5 1.24 I 0.10 0.47 

4 0.5 1.33 I 0.26 0.62 

5 0.5 1.57 II 0.14 0.43 

6 0.5 1.66 II 0.37 0.49 

7 1 2.05 II 0.30 0.95 

8 1 2.2 II 0.51 1.12 

9 1 2.25 II 0.25 0.88 

10 1 2.54 II 0.28 0.9 

11 1 2.77 II 0.41 1.45 

12 1.5 2.7 II 0.35 1.50 

13 1.5 2.96 II 0.78 1.74 

14 1.5 3.06 II 0.48 1.90 

15 1.5 3.13 II 0.28 1.86 
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4.3.3.2 Variability of the results and correlation with surface 

roughness parameters 

The results of the 15 direct shear tests performed on the natural granite surfaces showed a 

variability in both the peak shear stress and the residual stress values for each level of normal 

stress. Furthermore, a general increase can be seen in the values of the peak and residual 

stresses with respect to the normal stress (Figure 4.13). A linear interpolation performed for 

the peak shear stress values, gives a peak friction angle of 590 and an initial cohesion of 

550KPa. The same interpolation performed for the residual shear stress values gives a residual 

friction angle of 480. 

In order to characterise the variability in the test results and to find a potential correlation 

between the peak shear strength and the surface roughness, the maximum shear stress values 

were compared to different statistical parameters calculated on the joint surfaces. In the 

Table 4-4 linear correlations were calculated between the shear strength and three of the 

roughness parameters since they are considered representative of three different aspects of 

surface roughness:  (wavelength), Rt (amplitude) and 2D
+ (angularity), bearing in mind that 

two of the roughness parameters are independent and can be considered sufficient to 

characterise the surface roughness. 

The comparison of each roughness parameter to the peak shear strength gives no clear 

correlation. This was true for all three levels of normal stress. A single roughness parameter 

(, 2D
+ or Rt) was found insufficient to characterise the variability in the shear strength values. 

In the case of a sample with tooth-shaped asperities for example, the mean inclination angle is 

insufficient to characterise the surface roughness since the sample can have different 

amplitude/wavelength. A more detailed analysis of the modes of failure occurring under 

different levels of normal stress is required in order to better understand the shear behaviour of 

bonded joints. Furthermore, a new roughness parameter is needed in order to quantify the three 

dimensional surface roughness and to provide a better morphological classification of the 

granite samples. 
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Table 4-4: Correlations between the shear strength and the statistical roughness parameters  

Block 
Normal stress, 

n (MPa) 

Peak shear stress, 

τpeak (MPa) 
 (mm) 2D

+ Rt (mm) 

1 0.5 0.97 64 10.0 3.49 

2 0.5 1.18 65 10.6 3.71 

3 0.5 1.24 52 14.8 5.07 

4 0.5 1.33 54 14.9 3.93 

5 0.5 1.57 65 13.5 3.57 

6 0.5 1.66 62 14.1 4.69 

Correlation (R)   0.07 0.6 0.3 

Block 
Normal stress, 

n (MPa) 

Peak shear stress, 

τpeak (MPa) 
 (mm) 2D

+ Rt (mm) 

7 1 2.05 56 13.6 3.57 

8 1 2.20 63 10.0 3.49 

9 1 2.25 66 13.3 4.62 

10 1 2.54 55 13.1 3.90 

11 1 2.77 68 13.3 4.44 

Correlation (R)   0.6 -0.4 0.5 

Block 
Normal stress, 

n (MPa) 

Peak shear stress, 

τpeak (MPa) 
 (mm) 2D

+ Rt (mm) 

12 1.5 2.70 63 10.0 3.49 

13 1.5 2.96 65 14.6 5.24 

14 1.5 3.06 67 14.8 4.97 

15 1.5 3.13 65 15.8 4.99 

Correlation (R)   0.07 -0.4 -0.6 
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4.4 General discussion 

The direct shear tests performed on bonded samples with different types of geometries and at 

different levels of normal stress showed the contribution of surface roughness to the general 

shear behaviour.  

The results of the experimental campaign on joints with tooth-shaped asperities showed that 

the shear behaviour was governed by the initial cohesion at the beginning of the shear test. The 

surface roughness was found to contribute to the shear stress in the post peak phase according 

to the equation proposed by Patton. However, when the normal load increases, more concrete 

was sheared at the tip of the asperities and the influence of surface roughness on the shear 

strength of bonded samples was found to decrease. 

On the other hand, based on the results of 15 direct shear tests on natural joints, two different 

shear behaviours were observed: a possible change in the modes of failure according to the 

level of normal stress may explain the two obtained types of shear stress curves. Compared to 

the direct shear tests on bush-hammered surfaces, the shear tests conducted on natural surfaces 

gave higher levels of shear strength due to the higher levels of surface roughness. A detailed 
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Figure 4.13: Mohr-Coulomb criterion plotted for the results of the 15 direct shear tests performed on 

natural granite surfaces based on the : (Blue) Peak shear stress values, (Red) Residual shear stress values 
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examination of the modes of failure implicated in the shear tests along with a surface roughness 

analysis are presented in the following chapter in order to better understand the main 

mechanisms governing the shear behaviour and the geometrical characteristics involved in the 

determination of the peak shear strength. Moreover, numerical simulations of the direct shear 

tests on natural joints will be performed on reconstructed 3D models of the joint surfaces. The 

mechanical parameters (c,) deduced from the shear tests performed on the bush-hammered 

samples are considered representative of the  mechanical properties of the natural surfaces at 

the small scale and therefore will be introduced as local parameters for the joint element in the 

F.E. code. 

 

 

 



 

Chapter 5 Characterisation of the roughness effect 

by means of an analytical study 

5.1 Introduction 

Given the results of the previous chapter, a single roughness parameter was found insufficient 

to characterise the variability in the shear strength values observed in the shear tests conducted 

at three levels of normal stress. It should be noted, however, that several researchers stated that 

both the failure modes and the spatial distribution of damaged surfaces depend on the contact 

area distribution ( [43], [44] ), which in turn varies according to the morphological 

characteristics of the natural surface. Moreover, the contact surface for a shear test conducted 

on the same specimen, can change according to the experimental conditions such as the shear 

direction and the level of the applied normal stress. The location of the contacting asperities 

can be correlated closely to the damaged areas [44]. Those asperities are located in the steepest 

zones facing the shear direction. This can be particularly true for natural joints without initial 

bonding. For bonded joint, on the other hand, the total joint surface is contributing to the 

shearing mechanisms and the damaged zones cannot be only correlated to the local geometry 

of the natural discontinuity. Therefore, a suitable roughness parameter incorporating the 

different scales of geometrical features should be considered. Furthermore, an examination of 

the modes of failure occurring at different levels of normal stress is needed in order to better 

relate the shear strength to the morphological characteristics of natural joints. 

In summary the objective of this chapter is two-fold. First, an attempt is made to propose a new 

roughness parameter incorporating the different scales of roughness based on the results of 

experimental campaigns conducted during this thesis and in the work of Mouzannar [21]. 

Secondly, an analytical method was developed in order to predict the shear resistance of natural 

joints by including the different modes of failure occurring during a shear test and by estimating 
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the areas on the joint surface where shearing in concrete and at the concrete-granite interface 

are occurring.   

5.2 Characterisation of surface roughness by means of statistical 

parameters 

5.2.1 Influence of measurement resolution on statistical roughness 

parameters  

To examine the influence of the measurement resolution on the roughness estimates and in 

order to investigate the adequacy of roughness parameters calculated at the local scale in 

quantifying a discontinuity surface roughness, a scan of the original document proposed by 

Barton for the ten standard roughness profiles was performed.  

The first step was to digitise Barton’s standard profiles which are classified by increasing order 

of shear strength. The ten profiles were then discretised using two resolutions of 0.5 and 1mm 

in order to calculate two statistical roughness parameters, 2D
+ and Rp,(=Ltotal/L) representative 

respectively of angularity and amplitude distributions along a 2D roughness profile (see section 

1.3). The wavelength parameter  is not included in this study since it is considered 

independent of the chosen resolution and calculated on the whole profile rather than on 

discretised parts. 

The evolution of the roughness parameters with respect to the shear strength or to the JRC 

value is presented in the Figure 5.1 along with the influence of the measurement resolution on 

the calculated values. Both 2D
+ and Rp appear to be sensitive to the measurement steps and 

generally increase when the measurement resolution increases (i.e. measurement step 

decreases). Tatone & Grasselli [45], and Yu & Vayssade [46] made similar observations. 

Consequently, whenever a comparison has to be made between different studies, it is 

recommended to specify the measurement resolution used for the calculation of the statistical 

parameters in question. On the other hand, despite the general increasing tendency of  2D
+ and 

Rp with respect to the JRC, a local peak appears for the profile 4 (JRC=6-8) for the two 
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discretisation steps. This means that the roughness values for the profile 4 (JRC=6-8) are more 

important than those of the profile 5 (JRC=8-10). The results of the shear tests conducted by 

Barton, however, show that the shear strength of the profile 5 is more important.  

 

 

 

 

 

 

 

To explain this trend, and based on the work of Gao & Wong [47], a segmentation of the 

profiles 4 and 5 was proposed as presented in the Figure 5.2. For the three segments of profile 

4, tan(2D
+) varies between 0.320 and 0.625, while the values for the profile 5 range between 

0.219 and 0.346 (Table 5-1). In addition, the mean value for the three segments of profile 4 

(0.334) is larger than that of profile 5 (0.301). This confirms that the profile 4 must be rougher 

than the profile 5 which is in disagreement with the results of the direct shear tests conducted 

by Barton.  

A visual comparison of the two profiles, however, reveals a big wavelength waviness 

(Figure 5.2) observed in the central part of the profile 5 (JRC=8-10). This large asperity can 

be at the origin of the greater shear strength obtained experimentally by Barton.  
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Figure 5.1: Evolution of the parameters (a) 2D
+ and (b) Rp with respect to the JRC using two different resolutions 
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Figure 5.2: Segmentation of the profiles 4 and 5 in three parts of different lengths 
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Based on this finding it should be noted that the aim of the JRC is to express the influence of 

surface roughness at small and large scales on the shear strength. Local parameters, on the 

contrary, such as the angularity and amplitude parameters 2D
+ and Rp, calculated based on 

millimetric discretisation steps, take into account changes in the amplitude at small intervals. 

Therefore, those parameters are considered insufficient for the description of surface roughness 

especially in the case of profiles with large undulations. As a result, a more comprehensive 

parameter should be proposed in order to incorporate the different aspects and scales of surface 

roughness. 

Table 5-1 Values of tan (2D
+) for the segments of the profiles 4 and 5 

Profile No. 
Segment 

Average (std) 
a-b b-c c-d a-d 

Profile 4 

(JRC=6-8) 
0.625 0.320 0.328 0.345 0.334 (0.017) 

Profile 5 

(JRC=8-10) 
0.346 0.219 0.339 0.325 0.301 (0.071) 

 

5.2.2 Proposition of a new roughness parameter and its correlation with 

the shear strength: IWL (Inclined WaveLength) 

Many experimental investigations of the shear strength of rough discontinuities have shown 

that only a small percentage of the total surface area is contributing to the shearing process of 

natural joints ( [43], [44] ). This is clearly the case of joints without initial bonding. Mouzannar, 

on the other hand, by investigating the shear behaviour of natural joints with initial bonding, 

noted that joints sheared at a low normal stress showed two different shearing behaviours. It 

has been identified that these two behaviours correspond to two different morphologies of the 

rock surface, and more particularly, to principal undulations of different wavelengths (see 

section 1.4.3). Therefore, the question of what scales and aspects (inclination, wavelength, 
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amplitude, etc.) of roughness are of importance in quantifying the morphological 

characteristics of natural joints remains of particular interest.  

While both the mean inclination angle and the wavelength of the asperities appear to be main 

contributors to the shear strength of natural joints, the choice of one parameter to quantify 

surface roughness is not straightforward. The comparison of heuristic roughness profiles show 

that profiles can have the same wavelength but different amplitude/inclination (Figure 5.3.a) 

or the same mean inclination angle but with different amplitude/wavelength (Figure 5.3.b). 

Therefore, two of the three aspects of surface roughness (amplitude, inclination and 

wavelength) must be considered if one must provide a comprehensive description of surface 

roughness. Since the shear strength of joints increases with both the wavelength and the mean 

inclination of the asperities, the product of these two parameters was proposed as a new 

roughness parameter(𝟐𝑫
+ × ). However, considering the fact that the mean inclination angle 

is one of the most widely used parameter to estimate surface roughness and in order to maintain 

the same order of magnitude, the wavelength component was normalised by the length of the 

profile and the new roughness parameter is denoted IWL (Inclined WaveLength: 𝟐𝑫
+ × /𝑳). 

It should be noted here that the wavelength () is a mean value obtained from the series of 2D 

profiles extracted from the joint surface. On each 2D roughness profile, the wavelength 

parameter is obtained by using the “fit” function under MATLAB and the Fourier1 as input 

parameter in order to treat the roughness profile as a periodic signal which is the sum of a sine 

and cosine functions as follows: 

 𝑧 = 𝑎𝑖 cos(𝑤 × 𝑥) + 𝑏𝑖sin (𝑤 × 𝑥)  Eq. 5-1 

Where z is the amplitude along the profile, x is the horizontal position and w=2𝜋/. 

 

A comparison between the shear strength values and the new proposed roughness parameter 

(𝟐𝑫
+ . 𝑳⁄ ) gave very good correlations (R=0.97) for the shear tests conducted on bonded joints 

at low normal stress (n≤0.5MPa). This was true for experimental campaigns performed in the 

3SR lab and in the work of Mouzannar on the same type of natural joints (Table 5-2 and  

Table 5-3).  
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This correlation, however, was found to decrease with increasing normal stress. This is in 

agreement with the conclusions of Grasselli [44] and Liahagen [48]. Indeed, in the case of 

joints without initial bonding, an increase in the normal load leads to a change from sliding to 

shearing of the asperities. This means that the role the surface roughness plays in the shear 

resistance decreases with increasing normal load. Moreover, Liahagen concluded that the 

shearing resistance for bonded joints increases with roughness but at a smaller rate than the 

case of unbonded joints. This can be explained by the fact that the failure plane for bonded 

joints does not follow the interface but rather propagates through the concrete asperities in the 

case of high levels of normal stress.  

As a result, the proposition of a new roughness parameter can be particularly interesting to 

quantify a discontinuity surface roughness but is insufficient to describe the change in the 

modes of failure occurring at the joint surface when the normal stress is increased. 
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Consequently, an investigation of the shearing mechanisms occurring at the joint surface 

should be carried out in order to better quantify the contribution of surface roughness to the 

shear strength when the normal stress increases. 

 

 

Table 5-2: Correlations between the shear strength and the new roughness parameter (2D
+./L) based on the 

results of the shear tests conducted on samples of 18x18cm2 by Mouzannar on bonded natural joints 

Bloc n (MPa) τpeak (MPa)  (mm) 2D
+ Rt (mm) 2D

+.(/L) 

T3 0.2 1.20 94 6.3 5.0 3.25 

T2 0.2 1.57 103 5.9 5.1 3.40 

T1 0.2 2.36 140 6.6 6.2 5.43 

Correlation (R)      0.97 

Bloc n (MPa) τpeak (MPa)  (mm) 2D
+ Rt (mm) 2D

+.(/L) 

T5 0.6 1.50 90 6 4.1 3 

T7 0.6 3.42 142 8.7 10.2 6.92 

T4 0.6 3.72 140 5.8 5.8 4.51 

Correlation (R)      0.71 

Bloc n (MPa) τpeak (MPa)  (mm) 2D
+ Rt (mm) 2D

+.(/L) 

T8 1 2 129 6.2 4.9 4.51 

T6 1 4.17 98 7.2 5.8 3.98 

T9 1 4.45 109 7.1 6.1 4.32 

Correlation (R)      -0.7 
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Table 5-3: Correlations between the shear strength and the new roughness parameter (2D
+./L) based on the 

results of the shear tests conducted on bonded natural joints in the 3SR lab 

Bloc n (MPa) τpeak (MPa)  (mm) 2D
+ Rt (mm) 2D

+.(/L) 

1 0.5 0.97 64 10.0 3.49 7.9 

2 0.5 1.18 65 10.6 3.71 8.6 

3 0.5 1.24 52 14.8 5.07 9.5 

4 0.5 1.33 54 14.9 3.93 10.1 

5 0.5 1.57 65 13.5 3.57 10.9 

6 0.5 1.66 62 14.1 4.69 10.9 

Correlation (R)   0.07 0.6 0.3 0.97 

Bloc n (MPa) τpeak (MPa)  (mm) 2D
+ Rt (mm) 2D

+.(/L) 

7 1 2.05 56 13.6 3.57 9.7 

8 1 2.20 63 10.0 3.49 7.9 

9 1 2.25 66 13.3 4.62 11.1 

10 1 2.54 55 13.1 3.90 9.0 

11 1 2.77 68 13.3 4.44 11.4 

Correlation (R)   0.6 -0.4 0.5 0.43 

Bloc n (MPa) τpeak (MPa)  (mm) 2D
+ Rt (mm) 2D

+.(/L) 

12 1.5 2.70 63 10.0 3.49 7.95 

13 1.5 2.96 65 14.6 5.24 10.24 

14 1.5 3.06 67 14.8 4.97 12.56 

15 1.5 3.13 65 15.8 4.99 12.96 

Correlation (R)   0.07 -0.4 -0.6 0.31 
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5.3 A new analytical model for the shear resistance of natural 

joints 

5.3.1 Principle 

An examination of the joint surfaces for the samples sheared at high levels of normal stress 

reveals that parts of the concrete are damaged in the areas located near the ascending facets of 

the asperities with respect to the shearing direction (Figure 5.4). Damage can be expected in 

these areas of stress concentration since the steeper the asperity, the more resistance it exerts 

against the imposed horizontal displacement. Instead of following the concrete-rock interface, 

failure propagates through the relatively weaker material at the joint surface (Table 5-4).  

 

 

 

 

 

 

Table 5-4: Mechanical parameters of the materials in contact at the joint surface [21] 

 
Tensile strength,  

t (MPa) 

Compressive strength,  

c(MPa) 

Concrete 3.75 43.4 

Granite 10.21 133 

 t(Granite)/ t(Concrete)=2.7 c(Granite)/ c(Concrete)=3.1 

 

A comparison of the local shear stresses in concrete and at the concrete-granite interface 

confirms the change in the failure surface as the applied normal stress increases (Figure 5.5). 

By fitting a Mohr-Coulomb criterion to the results of direct shear tests conducted on bush-

hammered samples, values for the basic friction angle and cohesion of an asperity are obtained. 

Figure 5.4: A granite surface after a shear test conducted at 1.5MPa of normal stress, showing 

parts of the damaged concrete 

Block 14 – 1.5MPa Block 14 – 1.5MPa 
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If we assume a local facet with an inclination angle of 150 with respect to the shear plane, this 

leads to an apparent friction angle increased by 150, represented by the red curve in the 

Figure 5.5. Moreover, by setting a Mohr-Coulomb criterion for the shear failure in concrete, 

we get the dotted curve (Values for the friction angle and cohesion of concrete will be calibrated 

as will be presented in section 5.3.2.4).  

 

 

 

 

 

 

 

 

 

 

 

 

From the analysis of these two curves, one can notice a change in the mode of failure. For low 

values of normal stress, failure follows the concrete-granite interface. Beyond a certain 

threshold denoted (nt), failure propagates through concrete. The transition value of the normal 

stress (nt) at which a change in the mode of failure occurs, depends on the mechanical 

parameters of the materials at the joint surface (i.e. concrete and granite) and on the local 

orientation of the asperities (). This example can be generalised for all asperities with any 

inclination angle, and a limit analysis can be performed to predict the local mode of failure. An 

estimation of the areas on the joint surface where shearing of the concrete asperities take place 

can be performed by comparing the local stress in concrete to that at the concrete-granite 

interface.  
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Figure 5.5: Comparison of the shear stress in concrete to that at the  

concrete-granite interface for an asperity with an inclination angle of 150 
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Therefore, the total shear resistance can be calculated for a given normal stress based on the 

following equation: 

  𝜏𝑀𝑜𝑑 = 𝛺𝐶 . 𝜏𝑐 + (1 − 𝛺𝐶). 𝜏𝑖𝑛𝑡  Eq. 5-2 

Where Ωc is the proportion of the joint surface where shearing through concrete takes place, τc 

is the shear strength of concrete and τint is the shear strength at the concrete-granite interface. 

Based on this principle, the main question is how to estimate the proportion Ωc and choose the 

mechanical parameters (cb, b) of concrete. 

 

5.3.2 Methodology 

5.3.2.1 Identification of the failure surfaces 

The proposed method for estimating the damaged concrete areas is based on the assumption 

that if there is shearing through the concrete asperities, the failure plane is located near the 

zones with a positive inclination angle with respect to the shear direction as was observed by 

examining the joint surfaces after the shear tests (Figure 5.6). Another assumption for the 

proposed analytical model is the horizontality of the failure surfaces. Indeed, based on the 

results of the shear tests conducted on joints with tooth-shaped asperities, it was observed that 

the tip of the concrete asperities was damaged at the beginning of the shear tests. Failure planes 

tended to be horizontal and governed by tensile failure in concrete (Figure 4.8).  
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The first step consists of identifying the potential failure planes. This is done by first detecting 

the local peaks in the 2D roughness profiles and then by finding the corresponding points 

located at the same amplitude (Figure 5.8). The procedure consists of eliminating the noise in 

the 2D roughness profiles by applying a smoothing function already defined in MATLAB 

(smooth()) and then by finding peaks over a user defined length. A peak along the profile is 

considered only if it has the largest height over a length at least equal to 5% of the profile’s 

total length (≅5mm). 
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Figure 5.7: (a) Photos of the joint surfaces after a shear test conducted under  
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5.3.2.2 Comparison of local stresses 

Once the local peaks and the potential failure planes are identified for a 2D roughness profile, 

these planes should be characterised by the calculation of their characteristic lengths and 

inclinations. For example, if the failure is occurring at the concrete-granite interface, the 

potential failure plane can be characterised by its length (LInterface) and by the average 

inclination () of the asperity facing the shear direction (Figure 5.9). If, on the other hand, 

shearing through concrete is taking place, then the failure plane is characterised by its length 

(Lconcrete) which is defined as the distance between the local peak in the roughness profile and 

its corresponding point located at the same amplitude.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to compare the local shear stresses in concrete and at the concrete-granite interface, a 

transformation is required such as the local stresses are expressed in the same coordinate frame 

(Figure 5.10). This can be expressed by the following set of equations written in a matrix form: 

 
(
𝜎𝑁
′

𝜏′
) = (

𝑐𝑜𝑠Ɵ 𝑠𝑖𝑛Ɵ
−𝑠𝑖𝑛Ɵ 𝑐𝑜𝑠Ɵ

) (
𝜎𝑁
𝜏
) 

 
Eq. 5-3 

 

Where (𝜎𝑁
′ , 𝜏′) and (𝜎𝑁 , 𝜏) are the normal and shear stresses expressed respectively in the local 

and global coordinate frames (Figure 5.10). 
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Figure 5.9: Characterization of the potential failure surfaces for a specific shear direction (left to right) 
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If the shear rupture occurs at the concrete-granite interface, then the shear stress at this 

interface(𝜏′) can be expressed using the Mohr-Coulomb criterion: 

 𝜏′ = 𝑐𝑖 + 𝜎𝑁
′ . 𝑡𝑎𝑛(𝜑𝑖)  Eq. 5-4 

Where 𝜎𝑁
′  is the stress normal to the sliding plane and ci and i are respectively the local 

cohesion and friction angle at the concrete-granite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

This Mohr-Coulomb criterion can be expressed in the global coordinate frame by applying the 

previous set of transformation equations (Eq. 3-3):  

 
𝜏𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 =

𝑐𝑖

𝑐𝑜𝑠Ɵ − 𝑠𝑖𝑛Ɵ. 𝑡𝑎𝑛(𝜑𝑖)
+ 𝑡𝑎𝑛(𝜑𝑖 + Ɵ). 𝜎𝑁 

 
Eq. 5-5 

Where  is the average inclination of the asperity along which failure can take place. 

 

Therefore, one can predict the failure mode by comparing the expressions of the shear stress at 

the concrete-granite interface(𝜏𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒) to the shear stress in the concrete material (𝜏𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒): 

failure is supposed to follow the path requiring the less amount of energy i.e. the path with the 

lower shear stress. Since the failure surface in concrete is considered to be horizontal, the local 

coordinate system of concrete is the same as the global system and the shear stress in concrete 

can be expressed as presented in Eq. 3-6. 

 𝜏𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 𝑐
𝑐 + 𝑛. 𝑡𝑎𝑛(𝜑

𝑐)  Eq. 5-6 

Where n is the applied vertical stress, cc and c are respectively the local cohesion and friction 

angle of concrete. 
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Figure 5.10: Local (𝜎𝑁
′ , 𝜏′) and global (𝜎𝑁, 𝜏) coordinate frames for the calculation of stresses 
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5.3.2.3 Calculation of the total shear resistance 

Since the failure planes are calculated on a series of 2D profiles extracted from the joint surface, 

the shear forces at the joint surface can be calculated by multiplying the shear stresses by the 

corresponding characteristic surfaces. For example, if failure occurs at the concrete-granite 

interface, then the shear force is obtained by multiplying the shear stress(𝜏𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒) by the 

characteristic surface (𝑆𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒) defined as a band of length (LInterface) and of width equal to 

the distance (=0.25mm) between two consecutive 2D roughness profiles (Figure 5.11). 

 
{
𝐹𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝑖 = 𝜏𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

𝑖 ∗ 𝑆𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝑖

𝐹𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒
𝑖 = 𝜏𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒

𝑖 ∗ 𝑆𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒
𝑖

 
 

Eq. 5-7 

 

Where: 

 
{
𝑆𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝑖 = 𝐿𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

𝑖 ∗ 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑆𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒
𝑖 = 𝐿𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒

𝑖 ∗ 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 

 

Eq. 5-8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The total shear force (𝐹𝑇𝑜𝑡𝑎𝑙) can therefore be expressed as the sum of the shear forces in 

concrete and at the interface as follows:  

 
𝐹𝑇𝑜𝑡𝑎𝑙 =∑𝐹𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒

𝑖

𝑖

∗ 𝛺𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒 +∑𝐹𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝑖

𝑖

∗ (1 − 𝛺𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒) ∗
𝜆

𝐿
 

 

Eq. 5-9 

Resolution=0.25mm 

LConcrete 

LInterface 

2D roughness profiles  

Resolution=0.25mm 

Figure 5.11: Definition of the shear bands on the joint surface for the calculation of the shear 

forces 
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Where: 

 

{
 
 

 
 𝛺𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒 =

1

𝐿𝑇𝑜𝑡𝑎𝑙
∑𝐿𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒

𝑖

𝑖

𝐿𝑇𝑜𝑡𝑎𝑙 =∑𝐿𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒
𝑖

𝑖

+∑𝐿𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
𝑖

𝑖

 

 

Eq. 5-10 

It should be noted that the total shear force at the interface is multiplied by the coefficient ( 𝐿⁄ ) 

in order to account for the large scale surface roughness at the joint surface. Moreover, in order 

to compare the analytical expression to the experimental results, the previous equation can be 

expressed in terms of mean stresses by dividing the total shear force by the total shear surface: 

 
𝜏𝑀𝑜𝑑 =

𝐹𝑇𝑜𝑡𝑎𝑙
𝑆𝑇𝑜𝑡𝑎𝑙

 
 

Eq. 5-11 

Where 𝑆𝑇𝑜𝑡𝑎𝑙 is the sum of the shear surfaces at the concrete-granite interface and in concrete. 

5.3.2.4 Calibration of the local mechanical parameters 

The use of the proposed analytical model allows to numerically recreate the experimentally 

observed failure surfaces in concrete and to provide an estimate of the measured shear strength. 

To do so, and besides the estimation of the failure surfaces described in the previous section, a 

suitable set of values are needed for the input parameters of the analytical model i.e. for the 

friction angle and cohesion of both concrete and concrete-granite interface. The mechanical 

parameters of the concrete-granite interface are obtained by performing direct shear tests on 

bonded bush-hammered joints (c=0.6MPa, =380, see section 2.5.2.2). On the other hand, the 

characterisation of the shear strength of concrete by means of an experimental procedure was 

challenging since no clear protocol was found in the literature. Therefore, a calibration 

procedure was proposed in order to establish suitable values for the mechanical parameters of 

concrete (cb, b). This procedure involves adjusting the mechanical parameters via trial and 

error until the macroscopic response corresponds to the response observed in the laboratory i.e. 

the calculated value of the shear strength agrees with the experimental results and the estimated 

failure surfaces resemble those observed in the laboratory specimens after the shear tests both 

in term of breadth and location. A good starting point is (cb=1.5, b=300) since for this set of 

parameters shearing in concrete can be expected for all the asperities that have an inclination 
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angle bigger than 100 when the normal stress increases from 0.5 to 1.5 MPa (Figure 5.12). A 

sensitivity analysis, consisting of 5 cases, was performed on the friction angle and cohesion 

values of concrete by applying a change of 50 to the friction angle and 0.5MPa to the cohesion 

value (Table 5-5). An additional case (Case 5) was studied in order to validate the best 

correlation found for the Case 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-5: Sensitivity analysis for the mechanical parameters of concrete  

Case 
Cohesion, 

Cb (MPa) 

Friction angle, 

b (MPa) 

Case 1 1 30 

Initial case 1.5 30 

Case 2 2 30 

Case 3 1.5 25 

Initial case 1.5 30 

Case 4 1.5 35 

Case 5 1.5 40 
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Figure 5.12: Plot of the Mohr-Coulomb criterion for concrete and for asperities with different inclination angles showing 

the change in the mode of  failure from shearing at the concrete-granite interface to shearing through concrete for all the 

asperities with an inclination angle bigger than 100 when the normal stress increases from 0.5 to 1.5MPa. 
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5.3.2.5 Results and comparison with the experimental results 

Of the five cases for the mechanical parameters of concrete, the one with a friction angle of 350 

and a cohesion of 1.5MPa (Case 4) appears to most closely mimic the laboratory behaviour of 

the joints. In particular, a comparison between the shear strength values obtained from the 

direct shear tests, τexp, and those calculated using the analytical expression, τMod, reveals a good 

linear correlation for each level of normal stress (R=0.91-0.99) and an acceptable relative error 

with respect to the measured values (Table 5-6, Figure 5.13). The results of the other four 

cases are presented in the appendix B. 

Table 5-6: Comparison between the direct shear tests and the results of the analytical  

method for the calculation of the shear strength of concrete-granite interfaces (Case 4) 

Bloc n (MPa) τexp (MPa) τMod (MPa) Error (%) ΩConcrete(%) 

1 0.5 0.97 1.26 29.5 0.1 

2 0.5 1.18 1.28 8.1 0.5 

3 0.5 1.24 1.35 9.2 3.2 

4 0.5 1.33 1.49 11.8 4.4 

5 0.5 1.57 1.53 2.3 3.3 

6 0.5 1.66 1.69 1.9 1.9 

  R=0.91 R=0.95 Mean =10.5 Mean=2.3 

7 1 2.05 1.99 2.7 11.7 

8 1 2.2 1.88 14.5 1.7 

9 1 2.25 2.31 2.7 5.9 

10 1 2.54 2.53 0.2 6.6 

11 1 2.77 2.67 3.6 7.6 

  R=0.95 R=0.91 Mean=4.7 Mean=6.7 

12 1.5 2.7 2.36 12.7 6.0 

13 1.5 2.96 3.17 7.2 13.3 

14 1.5 3.06 3.54 15.8 23.9 

15 1.5 3.13 3.58 14.3 29.5 

  R=0.98 R=0.99 Mean=12.5 Mean=18.2 

 

Since the methodology mentioned above for the calculation of the shear strength of concrete-

granite interfaces is based on the identification of surfaces where shearing in concrete take 

place, a comparison between the estimated failure surfaces and those observed for the 

laboratory specimens is carried out. Indeed, the calculated percentage of the joint surface where 

shearing of the concrete asperities occurs, (ΩConcrete,%), is found to increase with the applied 

normal stress from a mean value of 2.3% for joints sheared at a normal stress of 0.5MPa to a 
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value of 18.2% for joints sheared at a normal stress of 1.5MPa (Table 5-6). Moreover, the 

contribution of concrete to the shear strength clearly increases when the applied normal stress 

increases (Figure 5.14). A comparison between the failure surfaces obtained experimentally 

and those predicted using the described analytical model for shear tests performed under 1 and 

1.5 MPa of normal stress is presented in the Figure 5.15 and Figure 5.16. These figures show 

that, the predicted failure surfaces in concrete are rather concentrated in the zones with a 

positive inclination with respect to the shearing direction. In addition, a good agreement is 

observed between the predicted and observed failure surfaces in terms of breadth and location 

(results for the remaining blocks are given in appendix B). 
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Figure 5.13: Comparison between the measured and calculated values of shear stress for the three levels of normal stress 

Figure 5.14: Plot showing a comparison between the calculated and measured values for the shear strength, and 

the contribution of concrete (brown) and concrete-granite interface (Blue) to the total shear strength (Gray) 
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Block 7 – 1MPa Block 7 – 1MPa 

Block 9 – 1MPa Block 9 – 1MPa 

Figure 5.15: Comparison between the failure surfaces in concrete and those predicted using 

the analytical model (blue zones) for the blocks 7 and 9 sheared at 1 MPa of normal stress 

Block 13 – 1.5MPa Block 13 – 1.5MPa 

Block 14 – 1.5MPa Block 14 – 1.5MPa 

Figure 5.16: Comparison between the failure surfaces in concrete and those predicted 

using the analytical model (blue zones) for the blocks 13 and 14 sheared at 1.5 MPa of 

normal stress 
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5.4 Discussion  

The aim of this chapter was to first investigate the ability of the conventional statistical 

roughness parameters in characterising the contribution of surface roughness to the shear 

strength of bonded natural joints. These parameters were found unable to accurately 

characterise the variability observed in the direct shear tests since they only reflect local 

changes in surface roughness and do not encompass all the aspects of a natural discontinuity 

surface roughness (amplitude, angularity and wavelength). A new roughness parameter, 

defined as a combination of the angularity and wavelength parameters(𝟐𝑫
+ .  𝑳⁄ ), was 

proposed in order to take into account the different scales of the natural morphology. This 

parameter provided a good correlation with the results of the shear tests conducted at a low 

normal stress. For higher normal stresses, on the other hand, the influence of surface roughness 

was found to decrease since a greater percentage of concrete at the joint surface was damaged. 

Consequently, a new analytical model, based on a limit analysis, for the calculation of the shear 

strength was proposed in order to estimate the areas on the joint surface where different failure 

modes occur, according to the level of the applied normal stress. It is based on the hypothesis 

that failure planes in concrete are horizontal and located in the steepest zones facing the 

shearing direction. The proposed expression for the shear strength gave a good correlation with 

the experimental results. The local mechanical parameters (c,) in this expression were 

obtained from direct shear tests on bush-hammered samples and by a calibration procedure in 

order to reproduce the experimental values of shear strength. 

 

 



 

Chapter 6 Numerical simulations of the direct 

shear tests on natural joints 

   

6.1 Introduction 

Stability problems involving natural discontinuities in rocks are investigated experimentally by 

direct shear tests which highlight the importance of surface roughness both from a geometrical 

point of view and from a resistance of material standpoint. The bibliography in chapter 1 

summarizes the empirical approaches to model the mechanical behaviour of a discontinuity. 

Numerical methods, on the other hand, can serve as a useful tool to gain understanding of the 

mechanical behaviour of discontinuities in geomaterials.  

Since direct shear testing of discontinuities can involve both sliding along the joint surface and 

shearing of the intact asperities, modelling these processes can be challenging since widely 

used continuum based numerical models are limited in their capability to realistically capture 

these processes. To overcome this limitation two different numerical models were used: 

 A shear cohesive model (JOINT_MECA_FROT) to simulate the shear behaviour of 

bonded joints in the pre-peak phase. This model is valid for small deformations and 

was of particular advantage since a local cohesion can be defined at the joint surface.  

 A friction contact model (DEFI_CONTACT) to simulate the shear behaviour of joints 

in the residual phase where large shear displacements are imposed and sliding is 

considered as the main mechanism governing the shear behaviour. 

The aim of this chapter is to determine the abilities and limitations of using a FEM to reproduce 

the shearing behaviour of natural discontinuities at the lab-scale and therefore to provide a first 

step for applications to larger scale shearing problems where physical testing is both difficult 
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and expensive to conduct. The procedure herein consists of performing mesoscopic simulations 

of the direct shear tests with a reconstruction of the natural joint surfaces and an introduction 

of simple friction laws at the local scale in order to reproduce the macroscopic behaviour of 

natural joints (Figure 6.1). Mechanical properties for the friction laws are obtained by 

conducting direct shear tests on joints with 2nd order asperities. A comparison of the 

experimental and numerical simulations can be carried out in order to investigate the ability of 

the numerical model to mimic the macroscopic shear behaviour of natural joints and to quantify 

the mechanical response by means of objective roughness parameters.  
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Figure 6.1: Methodology adopted for reproducing the shear behaviour of natural joints and  

quantifying the mechanical response in terms of objective roughness parameters 
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6.2 Mesh topology and boundary conditions 

Numerical simulations of a direct shear test are usually based on the construction of 2D models 

by extracting a 2D roughness profile from a natural fracture surface. Unlike the 2D profiles of 

flat or saw tooth geometries, the shape of a 2D profile for a natural surface changes according 

to its position on the joint surface. In particular, adjacent 2D profiles can have significantly 

different shapes due to the irregular 3D topography of natural discontinuities. This irregularity 

leads to a complex interaction of the fracture walls during a shear test. Furthermore, since the 

contact area changes between the upper and lower materials during a shear test, a 2D profile 

extracted from one location can be in contact while a neighbouring profile can show little to no 

contact.  

Consequently, the selection of a 2D profile to simulate the shear behaviour of a 3D joint surface 

can be considered as a major simplification and can therefore lead to misleading results. 

Instead, a 3D reconstruction of the joint surface is suggested using a triangulation algorithm: 

in proximity to the joint surfaces the 3D model was meshed with 1mm elements which graded 

to bigger elements away from the interface (Figure 6.3). It should be noted here that for 

compatibility considerations, the layer of joint elements had to be supported on other meshes 

of the same type and dimension. Therefore, the joint layer was extruded upwards and 

downwards in order to create suitable elements in concrete and granite (Figure 6.3.f). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.2: Boundary conditions for a 3D simulation of a direct shear test  
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In terms of boundary conditions, the rock (lower) block was fixed: all displacements normal to 

the granite block faces were restrained. Meanwhile, the upper half concrete element was left 

free to move in the X and Z directions, yet its horizontal displacement along the Y direction 

was restricted on the Faces C1 and C3. Moreover, the vertical dilation is imposed to be the 

same along the upper face (C5) in order to prevent any rotation during the shear test 

(Figure 6.2).  

(f) (e) 

(a) (b) 

(c) (d) 

Figure 6.3: Construction of a 3D mesh for the numerical simulation of a direct shear on a natural 

surface: (a) Natural granite blocks, (b) Reconstruction of the joint surface, (c) Upper concrete block, 

(d) Lower granite block, (e) Whole 3D mesh with a joint element, (f) Cross-section showing the 

elements size in the material and at the joint surface   
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On the other hand, loadings are applied in a two phase approach. First, a constant pressure is 

incrementally applied on the top of the concrete specimen to mimic constant normal load in 

the laboratory. Once the final value of normal stress is reached, a horizontal displacement is 

incrementally applied on one side (Face C4) of the concrete specimen (Figure 6.4).   

 

 

 

 

 

 

 

6.3 Numerical models 

Based on the results of Moradian [49], it was noted that little to no damage can be observed in 

the pre-peak period of a direct shear test conducted on bonded joints with a natural surface. 

Unlike the case of unbonded joints where important acoustic emissions were recorded before 

reaching the maximum shear stress, little to no acoustic emissions were recorded in the case of 

bonded samples. Moreover, acoustic emissions increased dramatically in the post-peak period 

due to cracking and breaking of the bonded interface. Therefore, an elastic model was found 

suitable to model the behaviour of the geomaterials on either side of the discontinuity in the 

pre-peak phase due to its simplicity and since no important failure was noticed prior to the peak 

shear stress. The mechanical parameters of concrete and granite employed in the numerical 

models are given in Table 6-1 based on the work of [21] and the values found in [50].                   

Since a common limitation of the continuum approaches is the inability to capture the 

emergence of new discontinuities generated by brittle fracturing processes, it was decided to 

limit the numerical investigation to the study of pre-peak and residual phases.  
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Figure 6.4: A two-step approach for the application of the  

normal stress and shear displacement rate 
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Table 6-1: Mechanical parameters of the materials around the discontinuity surface 

 Young’s Modulus,  

E (GPa) 

Poisson’s ratio, 

 

Concrete 38 0.2 

Granite 60 0.25 

 

For the pre-peak phase an elastoplastic law based on the Mohr-Coulomb model was used for 

the contacting interfaces (Figure 6.5). It depends on four parameters: the normal stiffness Kn, 

the tangential stiffness Kt, the cohesion c and the coefficient of friction  (=tan ). An 

additional fifth parameter, K, is introduced in order to regularize the tangential slope in the 

sliding phase. The shear displacement 𝑡⃗⃗  ⃗, can be decomposed into an elastic ⃗ 𝑡
𝑒𝑙

 and a plastic 

⃗ 𝑡
𝑝𝑙

 part. The mechanical formulation of this law gives the following set of mathematical 

equations: 

 

{

𝛿 𝑡 = 𝛿 𝑡
𝑒𝑙 + 𝛿 𝑡

𝑝𝑙

𝜎 𝑡 = 𝐾𝑡𝛿 𝑡
𝑒𝑙 = 𝐾𝑡(𝛿 𝑡 − 𝛿 𝑡

𝑝𝑙)

𝜎𝑛 = min(𝐾𝑛𝛿𝑛, 𝑅𝑡)

         {

𝑓(𝜎 , 𝜆) = ‖𝜎 𝑡‖ + 𝜇𝜎𝑛 − 𝑐 − 𝐾𝜆

𝑓. �̇� = 0;  �̇� ≥ 0

𝛿 ̇𝑡
𝑝𝑙 = �̇�

�⃗⃗� 𝑡

‖�⃗⃗� 𝑡‖

 

 

Eq. 6-1 

Where Rt is the tensile strength (=c/),  is the plastic multiplier, n is the normal displacement. 

In the elastic zone, 𝑓(𝜎 , 𝜆) < 0, the relations between displacements and stresses are linear and 

the plastic tangential displacement  𝛿 𝑡
𝑝𝑙

, is constant. When the stress state is on the yield surface, 

defined by 𝑓(𝜎 , 𝜆) = 0, the evolution of the plastic tangential displacement is governed by the 

non-associated flow rule (Eq. 5-1, Figure 6.6).  

An attempt to model the post-peak behaviour was made by attributing residual mechanical 

parameters (c=0) for the plasticised joint elements at the contact surface (Figure 6.5). This was 

done by checking all the elements at the joint surface for each step of shear displacement. The 
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ability of this method to model the post-peak behaviour will be discussed in the following 

section. 

For the residual phase where the shear stress is approximately constant and asperities 

degradation continue but at a significantly lower rate than the post peak phase, a contact friction 

model is used with a friction angle of 380. A definition of the potential contact surfaces (master 

and slave surfaces) is required for the calculation process: the rock surface was defined as 

master since it has the greater stiffness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to numerically reproduce a reasonable shear behaviour for the natural surfaces both in 

the pre-peak and residual phases, experimental results were used as a basis: 

Figure 6.5: Graphic representation of the Mohr-Coulomb criterion (Original: red and modified: blue) 
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Figure 6.6: Evolution of the yield surface due to hardening 
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 The mechanical parameters of the concrete-granite interface are obtained from the 

experimental study on the bush-hammered surfaces following the assumption that the 

local behaviour of natural surfaces is represented by the shear strength of the bush-

hammered joints (c=0.6MPa, peak=380). 

 To better approximate the laboratory results in the pre-peak elastic phase, values for the 

normal and tangential stiffness were calibrated such as the initial slope, in the shear 

stress-shear displacement curves, was similar to that measured in the laboratory 

(Figure 6.7).  

Values for the mechanical parameters of the joint-element are given in the Table 6-2. 

 

 

 

 

 

 

 

 

 

 

  

Table 6-2: Mechanical parameters at the joint surface obtained from the experimental results  

on bush-hammered samples (c, ) and from the calibration to fit the experimental data (Kn, Kt) 

Physical parameter Symbol Value 

Normal stiffness Kn 2e10 Pa/m 

Shear stiffness Kt 1e10 Pa/m 

Friction coefficient  0.781(peak=380) 

Cohesion c 0.6MPa 

Hardening parameter K 3e4 Pa/m=( Kn+ Kt)×e-6 (by default) 
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Figure 6.7: Comparison between the shear stress-shear displacement curves obtained from  

a direct shear test (red curve) and from the numerical simulation using a friction cohesive  

model (blue curve) for two natural surfaces 
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6.4 Results 

6.4.1 Pre-peak phase 

With the friction angle and the cohesion for the joint element set to the experimentally derived 

values of the bush-hammered samples(c=0.6MPa, =380), the results of a direct shear test 

simulation are characterised by a low peak shear resistance compared to the experimental 

results. Even when the value of the cohesion is increased from 0.6 to 2 MPa, the shear resistance 

was still underestimated for all the joints sheared at the three levels of normal stress 

(Figure 6.8.a,b,c). In order to fit the experimental data obtained for the shear tests conducted 

under 1MPa of normal stress, a value equal to 3MPa for the cohesion was obtained 

(Figure 6.9.d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

Figure 6.8: Comparison between the shear stress-shear displacement curves obtained from direct shear  

tests (red curves) and from the numerical simulations using a friction cohesive (c=2MPa) model  

(blue curves) for three natural blocks sheared at three levels of normal stress 
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This value for the cohesion, however, leads to an overestimation of the shear resistance for the 

shear tests conducted under 0.5MPa of normal stress and to an underestimation of the peak 

shear stress for the tests performed under 1.5MPa of normal stress (Figure 6.9.b, f). In order 

to further explore the reason of the inaccurate values for the peak shear resistance, a comparison 

of the results of numerical simulations performed under the same level of normal stress for 

different natural surfaces was carried out. It can be seen from the Figure 6.10 that the numerical 

model does not reflect the influence of surface roughness since similar peak shear strength 

values were obtained for different natural surfaces sheared at the same normal stress. 

To better understand the results, a simplified numerical simulation was performed on a 

specimen with a flat joint surface with the same boundary conditions and overall specimen 

dimensions. Two set of values were chosen for the normal and shear stiffness of the interface: 

(Kn=2e10Pa/m, Kt=1e10 Pa/m) and (Kn=2e12Pa/m, Kt=1e12 Pa/m). Moreover, for each set of 

local stiffness values, two simulations were performed: a simulation with a modified friction-
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Figure 6.9: Comparison between the shear stress-shear displacement curves obtained from direct shear  

tests (red curves) and from the numerical simulations using a friction cohesive (c=3MPa) model  

(blue curves) for three natural blocks sheared at three levels of normal stress  



Chapter 6 127 

 

cohesive model by attributing a zero cohesion for the plasticised joint elements (red curves in 

Figure 6.11), and a simulation with the original friction-cohesive model implemented in 

Code_Aster (blue curves in Figure 6.11). 
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Figure 6.10: Comparison between the simulations of direct shear tests performed on  

joints under the same normal stress: (a) n=0.5MPa, (b) n=1MPa, (c) n=1.5MPa 
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Figure 6.11: Shear stress-shear displacement curves obtained with the original Mohr-Coulomb model implemented  

in Code_Aster (blue curves) and with a modification of the original model by attributing residual mechanical  

parameters for the interface (red curves): (a) c=1MPa, =450, Kn=2e10Pa/m, Kt=1e10 Pa/m, n=0.5MPa,  
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While different values for the local normal and shear stiffnesses lead to a different stress 

distribution along the joint surface, it can be seen that, in the case of the original Mohr-Coulomb 

model, the value of the peak shear stress is in agreement with the Mohr-Coulomb expression: 

𝜏 = 𝑐 + 𝑛 × 𝑡𝑎𝑛 = 1 + 0.5 × 𝑡𝑎𝑛(45) = 1.5𝑀𝑃𝑎 (blue curves). On the other hand, by 

considering the way the post-peak behaviour is simulated in the modified Mohr-Coulomb 

model, the reasons of the unexpected values for the shear resistance of natural joints 

(Figure 6.8) became clear. Since a zero cohesion is attributed to a plasticised element on the 

joint surface, failure of one element can lead to the failure of a neighbouring joint element in a 

“domino effect”. This type of unstable propagation along the joint surface can result in a rapid 

decrease in the shear stress value without any redistribution of stresses. This explains the high 

values needed for the local cohesion in order to fit the experimental values of the shear 

resistance. 

6.4.2 Residual phase 

The results of the numerical simulations using the contact-friction model for modelling the 

shear behaviour of natural joints in the residual phase matched closely the laboratory response. 

In particular, the shear stress-shear displacement curves for the blocks sheared at a normal 

stress of 0.5 and 1 MPa fitted the experimental curves for a shear displacement larger than 2mm 

(Figure 6.12.a,b). The same comparison for a direct shear test conducted at a higher normal 

stress reveals that the curves are slightly different.  An inspection of the joint surfaces for the 

block 14 sheared at 1.5MPa of normal stress provided some insight into this discrepancy: parts 

of the concrete specimen were damaged during the shear test and were glued to the granite 

surface (Figure 6.13). This could lead to a change in the initial morphology and therefore to 

an unexpected value for the residual shear stress. A numerical simulation with an updated 

geometry of the joint surface can be conducted by performing a scan right after the peak in the 

shear stress curve. However, the continuous shearing of the concrete asperities at a high normal 

stress can be expected to continuously change the joint’s morphology during the shear test. 

Therefore, modelling the residual shear behaviour of natural joints at high normal stresses 

requires the use of a damage model to take the failure in the concrete asperities into account. 
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In terms of the dilatancy response, the simulated and laboratory results compared favourably 

well. The overall shape of the curves of normal displacement as function of the shear 

displacement were similar. The numerical results, however, underestimate the dilatancy at the 

beginning of the shear test (Figure 6.14.a,c,e). This can be attributed to a maximum dilatancy 

reached at the failure of the cohesive bond which the contact-friction model does not take into 
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Figure 6.12: Comparison between the shear stress-shear displacement curves obtained from the direct shear 

tests and from the simulations using the contact law: (a) Block 6, n=0.5MPa, (b) Block 9, n=1MPa, (c) 

Block 14, n=1.5MPa 
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Figure 6.13: The joint surface for the block 14 sheared at a normal stress of 1.5MPa 
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account. Therefore, in order to compare the results in the residual phase, the normal 

displacement obtained numerically was adjusted to the experimental value reached at a shear 

displacement of 10 mm. Doing so, one focuses on the residual behaviour only without taking 

into account the loading history and response. In this case, the mean trend of the numerical 

curve mimicked the laboratory behaviour reasonably well (Figure 6.14.b,d,f).  
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Figure 6.14: Comparison between the dilation curves obtained from the experimental direct shear  

tests (blue curves) and those obtained from the simulations using the contact law (red curves) for three  

blocks sheared at three levels of normal stress: (a),(c),(e) Before correction, (b),(d),(f) After correction 
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6.5 Discussion 

In this chapter, a procedure to numerically mimic the experimental direct shear tests conducted 

on natural joints was developed using the FEM Code_Aster both in the pre-peak and residual 

phases. The procedure consisted first in constructing 3D models of the natural joint surfaces 

using the 3D coordinates obtained by scanning the granite samples using a laser profilometer. 

Then, the mechanical parameters of the materials (i.e. concrete and granite) introduced in the 

F.E.M. were obtained from experimental tests performed in the work of Mouzannar. In 

addition, the local mechanical parameters of the concrete-granite interface (c,) were derived 

from direct shear tests performed on bush-hammered samples characterised by a surface texture 

with second order asperities. Lastly, the remaining input parameters for the numerical models 

(normal and shear stiffness, Kn, Kt) were calibrated in order to fit the experimental results in 

the elastic phase and to ensure a homogeneous stress distribution along the joint surface.  
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Figure 6.15: Comparison of the overall shape of the shear stress-shear displacement curves obtained from  

direct shear tests and from the simulations using two shearing models with an initial cohesion of 3MPa:  

(a) Block 6, n=0.5MPa, (b) Block 9, n=1MPa, (c) Block 14, n=1.5MPa 
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Although the cohesive-friction model was able to reproduce the overall shape of the shear 

stress-shear displacement curve in the pre-peak phase, the value of the peak shear resistance 

could not be predicted because of the brittle failure observed once a joint element is plasticised. 

Hence, the ability to define a gradual failure criterion is needed in order to represent the stress 

redistribution along the joint surface and therefore reproduce the variability in the shear 

strength observed experimentally. 

On the other hand, considering the residual phase, a similitude between the numerical and 

laboratory results was observed: the shape of the shear stress curves were in very good 

agreement (Figure 6.15). Moreover, the numerical dilation curves provided a good 

representation of the residual shear behaviour once the normal displacement obtained 

numerically was adjusted to the experimental value reached at 10mm. This was done in order 

to disregard the local failures occurring in the concrete asperities prior to the residual phase. 

The residual shear behaviour of natural joints can indeed be predicted using a reconstructed 

joint surface and a contact-friction model since sliding along the joint surface is the main 

shearing mechanism and no important asperity damage is expected during the residual phase. 

 



 

Chapter 7 Conclusions and perspectives 

The purpose of this thesis was to understand the shear behaviour of bonded concrete-granite 

joints by investigating the different scales of roughness involved in the shear tests conducted 

on natural joints and by examining the different modes of failure occurring at the concrete-

granite interface for different levels of normal stress. Due to the complex shear behaviour of 

bonded joints, an extensive experimental campaign was conducted on specimens with 

increasingly complex surface roughness (flat, bush-hammered, tooth shaped asperities and 

natural surface).  

The results of the first experimental campaign conducted on joints with a flat surface showed 

that the saw-cut granite surfaces do not allow concrete to bond, and therefore the initial 

cohesion obtained by fitting a Mohr-Coulomb criterion to the results of direct shear tests 

performed at three levels of normal stress was very low (≅ 100 𝑘𝑃𝑎). Interestingly, the 

influence of the normal stress on the shear behaviour of flat concrete-granite joints was 

observed by a stick-slip phenomenon. Small irregularities in the shear stress curves were 

observed for the shear tests conducted at 1 MPa of normal stress. The discontinuous sliding 

was favoured and the amplitude of the vibration increased when the normal stress was 

increased to 1.5MPa. Unlike the shear tests on flat joints, the results of the direct shear tests on 

bush-hammered samples were characterised by a clear peak in the shear stress curves. 

Moreover, the influence of the normal stress was found not only to increase the peak shear 

stress but also to change the shear behaviour observed experimentally. At a low normal stress, 

a brittle failure was observed due to the sole contribution of the initial cohesion. In contrast, 

when the normal stress was increased, a ductile behaviour was observed due to the additional 

contribution of surface roughness to the shear strength. Since the bush-hammering technique 

was found to reproduce a distribution of second order asperities similar to that of natural joints, 

the mechanical parameters (c,) obtained by fitting a Mohr-Coulomb criterion to the results of 
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the direct shear tests were considered representative of the local mechanical parameters of the 

concrete-granite interface. 

The results of the direct shear tests conducted on joints with tooth-shaped asperities revealed 

the different modes of failure occurring at different levels of normal loading. At low levels of 

normal stress, the peak shear stress was mainly governed by the contribution of the initial 

cohesion between the joint surfaces and no clear damage was observed in the concrete 

asperities at the beginning of the shear test. When the applied normal stress was increased, the 

tip of the concrete asperities was sheared and the failure surface did not follow the concrete-

granite interface. Similarly, the results of the direct shear tests on natural joints showed two 

different shear behaviours according to the level of the applied normal stress. The type I shear 

behaviour was mainly observed for shear tests conducted at 0.5 MPa of normal stress. It is 

characterised by a gradual decrease in the shear stress toward the residual value due to the 

failure of the cohesive bond followed by a sliding along the joint surface. The type II behaviour, 

on the other hand, is observed for the shear tests conducted at high levels of normal stress. It is 

characterised by a brittle response due to the failure in the concrete asperities at the joint 

surface. Indeed, the examination of the joint surfaces after the shear tests revealed that the 

granite surface was intact and parts of the concrete was sheared and glued to the joint surface 

for the shear tests conducted at 1 and 1.5 MPa of normal stress. Due to the different modes of 

failure occurring at the joint surface, the characterisation of the shear strength variability 

observed experimentally by means of a conventional statistical roughness parameter was 

difficult to achieve. 

Indeed, prior to the shear tests, a precise three-dimensional measurement of the discontinuity 

surface roughness was carried out using a laser profilometer with a horizontal resolution of 

0.25mm in order to account for the different scales of roughness at the joint surface. Based on 

a literature review of the most used roughness parameters, a morphological tool was developed 

in MATLAB for the post processing of the scan results. A series of 2D roughness profiles were 

extracted from the reconstructed surface of natural joints in order to quantify the three-

dimensional surface roughness. None of the calculated roughness parameters from the 

literature, however, was able to predict the shear strength results of the bonded natural joints. 

According to a case study performed on Barton’s standard profiles, it was found that the values 
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of the statistical parameters increase with the JRC, except for a profile with a large wavelength. 

Since most of these parameters are calculated according to a certain resolution or discretisation 

step, it was argued that these parameters can only reflect changes in the local amplitudes along 

a 2D roughness profile and therefore are not suitable in the case of profiles with large 

wavelength undulations. Consequently, a new roughness parameter was defined in order to 

take into account both the mean inclinations of the asperities (2D) as well as the characteristic 

wavelength () calculated on the sample. This new parameter (Inclined WaveLength: 2D×

/𝐿 ) gave a good correlation with the shear strengths of natural joints but only for shear tests 

performed at low levels of normal stress (n≤0.5MPa). This correlation was found to decrease 

with the applied normal stress for shear tests conducted in this work and in the work of 

Mouzannar. An examination of the joint surfaces after the shear tests revealed that parts of the 

concrete specimen were damaged and glued to the granite samples. The proportion of the 

damaged areas was observed to increase with the applied normal stress. Based on these 

observations, it was concluded that the proposed roughness parameter is indeed able to quantify 

the contribution of surface roughness to the shear strength, but when the applied normal stress 

increases, this contribution decreases since a different mode of failure is taking over at the joint 

surface i.e. shearing of the concrete asperities. The simple proposition of a roughness parameter 

was found insufficient to estimate the shear strength of natural joints sheared at different levels 

of normal loading. Instead, an investigation of the modes of failure occurring at the concrete-

granite interface was carried out. 

The analytical model proposed for the estimation of the shear strength of natural joints was 

based on the assumption that failure in concrete can take place near the ascending facets of the 

asperities with respect to the shear direction when the local shear strength in concrete is smaller 

than that along the concrete-granite interface. This was based on the experimental results which 

demonstrated that the failure surfaces in concrete depend besides the normal stress on the 

direction of shearing. Once the failure surfaces in concrete were estimated, the total shear 

strength was calculated as the sum of the shear strengths in concrete and at the concrete-granite 

interface. The comparison between the failure surfaces in concrete and those predicted using 

the analytical model revealed a good agreement regarding their location and breadth. 
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Moreover, the analytical expression for the shear strength gave a good representation of the 

measured values.  

The close agreement between the estimated failure surfaces in concrete, as a function of the 

applied normal stress and the inclinations of the asperities, and the experimental results 

suggests the ability of the analytical model to predict the real failure surfaces during a shear 

test by choosing the direction of shearing and the proper values for the mechanical parameters 

of the materials. Values for the mechanical parameters of concrete were calibrated in order to 

reproduce the macroscopic response obtained experimentally. In addition, the local mechanical 

parameters of the concrete-granite interface were obtained from direct shear tests performed 

on bush-hammered concrete-granite joints. The distribution of the second order asperities along 

the surface of these joints was found similar to that of real natural joint surface at the local 

scale. Therefore, the friction angle and cohesion obtained from the direct shear tests performed 

on these joints were used in the expression for the shear stress of the concrete-granite interface.  

An attempt to numerically simulate the mechanical behaviour of concrete-granite joints 

undergoing shearing at the interface was carried out. The procedure of identifying the local 

mechanical parameters has been proposed by performing shear tests on bush-hammered joints. 

A reconstruction of the natural joint surface with a suitable resolution (1mm) and the 

introduction of the local mechanical parameters at the local scale in a F.E. code allowed to 

include the different aspects of surface roughness into a numerical model in order to reproduce 

the macroscopic behaviour of natural joints. The difficulty lies in correctly describing the 

mechanical response in the different phases of the shear tests (pre-peak, post peak and residual 

phase) for different normal stresses i.e. for different local failure modes. In particular, since the 

direct shear tests involved sliding and shearing of the asperities, modelling these processes 

using the classical finite elements can be challenging. Nevertheless, an attempt to describe the 

mechanical behaviour, mainly in the pre-peak and the residual phases was carried out using 

two different models for each part of the mechanical response. The friction-cohesive model 

used to reproduce the pre-peak phase, mimicked the overall shaped of the shear stress curve. 

However, the values of the local mechanical parameters obtained from direct shear tests and 

introduced in the numerical model, were found inappropriate to reproduce the observed peak 

in the shear stress curve. An examination of the post-peak behaviour revealed that once an 
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element of the joint surface is plasticised, failure is propagating to neighbouring elements in a 

domino effect upon stress redistribution yielding a brittle failure. The contact friction model, 

on the other hand, used to reproduce the residual phase of the direct shear tests, gave results 

that matched very closely the laboratory response particularly for the shear tests performed at 

0.5 and 1 MPa of normal stress. Indeed, since no important damage was observed for these 

shear tests in the residual phase, sliding along the joint surface is considered as the main 

shearing mechanism. Analysis of the vertical measurements made during the laboratory tests 

shows the presence of an important dilatancy during the shear tests on natural joints. The 

overall shape of the simulated dilatancy curves compared favourably with the experimental 

curves. However, a correction was needed in order to eliminate the initial dilatancy observed 

during the experimental shear tests which is not accounted for by the friction model. This 

dilatancy can be attributed to the failure of the concrete asperities and therefore to the presence 

of a filling material at the concrete-granite interface once the peak shear stress is reached.  

The work presented herein provided a methodology for the prediction of the shear strength of 

natural joints based on the estimation of the modes of failures occurring at the joint surface. 

The results showed the potential to define a relationship between measurable surface roughness 

features ((2D× /𝐿) and the shear strength of laboratory specimens. Propositions for future 

research can be divided into two categories: future experimental work and future numerical 

work: 

 Extend the study to soft rocks: The direct shear tests performed in this work were 

conducted on concrete-granite specimens in order to simulate the shear behaviour of 

joints at the dam-foundation interface. The proposed analytical expression for the shear 

strength of natural joints was based on the mechanical parameters of the concrete-

granite interface which were identified using experimental direct shear tests on bush-

hammered samples. Indeed, experimental observations have shown that local failures, 

if any, occur only through the concrete asperities since this material is by far the weakest 

of the two studied in this work. However, in other cases one may face the situation 

where both materials have similar mechanical properties. Therefore, some hypothesis 

of our analytical and numerical analysis do not hold true anymore and our contribution 

must be revisited in that case.  
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 Characterise the mechanical parameters of concrete: Since the analytical model for 

the shear strength is based on calibrated mechanical parameters for the concrete 

material, it is recommended to perform additional experimental tests in order to validate 

the chosen values introduced in the analytical expression. Since no aggregates are in 

contact with the granite material at the joint surface, the resistance of the concrete 

material at the interface is expected to be controlled by the mechanical parameters of 

the mortar. Therefore, triaxial tests can be performed on mortar samples in order to 

identify the values of the friction angle and cohesion. 

 Upscale the experiments: The specimen dimensions considered in this study were 

limited by the shear testing apparatus available in the laboratory and by the design of 

the laser profilometer. While conducting shear tests on larger specimens of the same 

materials could give insights into the field-scale behaviour, this kind of tests was found 

to be both expensive and difficult to conduct as was presented in the work of Mouzannar 

who performed shear tests at a metric scale. It is therefore of particular interest to 

perform direct shear tests not only at a metric scale but also at small and intermediate 

scales (5cm, 20cm, 50cm) where the boundary conditions can be precisely controlled. 

This allows to validate the methodology adopted in this work for the estimation of the 

shear strength i.e. the macroscopic shear behaviour of natural joints can be reproduced 

by the reconstruction of the joint’s global geometry and by taking the influence of the 

smaller scale roughness into consideration by their mechanical parameters measured 

from shear tests. 

 

From a numerical point of view, the recommendations for future work include: 

 Define a gradual failure criterion for the joint elements: The numerical simulations 

of the pre-peak phase of the direct shear tests showed that as soon as a joint element 

was plasticised, failure propagated through neighbouring elements in a domino effect. 

This leads to an inaccurate redistribution of stresses along the joint surface and to an 

underestimation of the shear strength. Therefore, the definition of a gradual failure 

criterion for the joint elements is of particular interest in order to reproduce the peak 

shear strengths of natural joints. This can be done for example by calibrating an 
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analytical law into the post-peak results of the direct shear tests performed on bush-

hammered samples for the three levels of normal stress. 

 Modelling the failure surfaces in concrete: Since the results of the experimental 

campaigns showed that for the shear tests performed under high levels of normal stress 

failure propagated in concrete instead of following the joint surface, it would be 

interesting to define a suitable damage model around the joint element in order to 

predict the location of the damaged surfaces observed in concrete.  

In this work, graphical interfaces were developed in order to provide a user friendly tool to 

both calculate a series of roughness parameters based on measurement data from a laser 

profilometer and to estimate the shear strength of natural joints at the laboratory scale (10cm) 

based on a limit analysis. However, since the ultimate objective is to provide a tool for 

engineers to estimate the peak shear strength in situ, a methodology involving numerical 

simulations and a characterisation of the concrete-granite contact in laboratory is suggested. 

Since the results of the numerical simulations of the direct shear tests in the residual phase 

suggest the ability to reproduce the macroscopic behaviour of natural joints by a 3D 

reconstruction of the joint surface and by assigning local mechanical parameters to the interface 

based on the results of direct shear tests conducted on bush-hammered samples, the same 

procedure can be adopted to estimate the peak shear strength. The observed damage at the 

concrete-granite interface can be introduced in the friction-cohesive law by defining a gradual 

failure criterion for the joint elements. This can be done by fitting an analytical law into the 

post-peak curves of the direct shear tests conducted on bush-hammered samples at three levels 

of normal stress. Therefore, in continuity to this work, it is suggested to continue to develop 

the numerical model in order to investigate its ability to reproduce the variability in the peak 

shear strength of natural joints. 
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Appendix A  

A.1 Results for the direct shear tests on flat concrete-granite 

interfaces 

A.1.1   Experimental campaign with a shear displacement rate of 

Vs1=0.6mm/min 
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Figure A.1: Shear stress-shear displacement and dilatancy curves for the shear tests  

conducted at n=0.5MPa: (a),(b) Test 1, (c),(d) Test 2 
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Figure A.2: Shear stress-shear displacement and dilatancy curves for the shear tests  

conducted at n=1MPa: (a),(b) Test 3, (c),(d) Test 4 
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Figure A.3: Shear stress-shear displacement and dilatancy curves for the shear test 5 conducted at n=1.5MPa 
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A.1.2 Experimental campaign with a shear displacement rate 

Vs2=0.1mm/min 
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Figure A.4: Shear stress-shear displacement and dilatancy curves for the shear test I conducted at n=0.5MPa 
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Figure A.5: Shear stress-shear displacement and dilatancy curves for the shear test II conducted at n=1MPa 
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Figure A.6: Shear stress-shear displacement and dilatancy curves for the shear test III conducted at n=1.5MPa 
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A.2 Results for the direct shear tests on bush-hammered 

concrete-granite interfaces 
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Figure A.7: Shear stress-shear displacement and dilatancy curves for the shear tests  

conducted at n=0.5MPa: (a),(b) Test 1, (c),(d) Test 2 
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Figure A.8: Shear stress-shear displacement and dilatancy curves for the shear tests  

conducted at n=1MPa: (a),(b) Test 3, (c),(d) Test 4 
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Figure A.9: Shear stress-shear displacement and dilatancy curves for the shear tests  

conducted at n=1.5MPa: (a),(b) Test 5, (c),(d) Test 6 
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(c) (d) 
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A.3 Photos of the bush-hammered joint surfaces after the shear 

tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 SB1-0.5MPa  SB1-0.5MPa 

Figure A.10: Photos of the bush-hammered sample SB1 after the shear test conducted at 

0.5MPa of normal stress (left: concrete, right: granite) 

 
SB2-0.5MPa 

 
SB2-0.5MPa 

Figure A.11: Photos of the bush-hammered sample SB2 after the shear test conducted at 

0.5MPa of normal stress (left: concrete, right: granite) 

 SB3-1MPa  SB3-1MPa 

Figure A.12: Photos of the bush-hammered sample SB3 after the shear test conducted at 

1MPa of normal stress (left: concrete, right: granite) 
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 SB4-1MPa  SB4-1MPa 

Figure A.13: Photos of the bush-hammered sample SB4 after the shear test conducted at 

1MPa of normal stress (left: concrete, right: granite) 

 SB5-1.5MPa  SB5-1.5MPa 

Figure A.14: Photos of the bush-hammered sample SB5 after the shear test conducted at 

1.5MPa of normal stress (left: concrete, right: granite) 

 SB6-1.5MPa  SB6-1.5MPa 

Figure A.15: Photos of the bush-hammered sample SB6 after the shear test conducted at 

1.5MPa of normal stress (left: concrete, right: granite) 





 

Appendix B  

B.1 Results for the direct shear tests on concrete-granite 

interfaces with tooth-shaped asperities 
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Figure B.1: Shear stress-shear displacement and dilatancy curves for the shear test 1 

conducted at n=0.5MPa 
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Figure B.2: Shear stress-shear displacement and dilatancy curves for the shear test 2 conducted at n=1MPa 
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B.2 Photos of the joint surfaces with tooth-shaped asperities 

after the shear tests 
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Figure B.3: Shear stress-shear displacement and dilatancy curves for the shear tests  

conducted at n=1.5MPa: (a),(b) Test 4, (c),(d) Test 5 
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 TRI1-0.5MPa  TRI1-0.5MPa 

Figure B.4: Photos of the sample 1 with tooth-shaped asperities after the shear test 

conducted at 0.5MPa of normal stress (left: concrete, right: granite) 
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 TRI2-1MPa  TRI2-1MPa 

Figure B.5: Photos of the sample 2 with tooth-shaped asperities after the shear test 

conducted at 1MPa of normal stress (left: concrete, right: granite) 

 TRI4-1.5MPa  TRI4-1.5MPa 

Figure B.6: Photos of the sample 4 with tooth-shaped asperities after the shear test 

conducted at 1.5MPa of normal stress (left: concrete, right: granite) 

 TRI5-1.5MPa  TRI5-1.5MPa 

Figure B.7: Photos of the sample 5 with tooth-shaped asperities after the shear test 

conducted at 1.5MPa of normal stress (left: concrete, right: granite) 
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B.3 Results for the direct shear tests on concrete-granite 

interfaces with a natural surface 

B.3.1 Shear tests performed under an applied normal stress of n=0.5MPa 
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Figure B.8: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=0.5MPa  
on the natural block 1 
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Figure B.9: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=0.5MPa  
on the natural block 2 
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Figure B.10: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=0.5MPa  
on the natural block 3 
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Figure B.11: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=0.5MPa  
on the natural block 4 

 

-5 0 5 10 15 20
0

200

400

600

800

1000

1200

1400

1600

1800

Horizontal displacement (mm)

S
h

e
a
r 

s
tr

e
s
s
 (

k
P

a
)

Bloc 5

-5 0 5 10 15 20
-1

0

1

2

3

4

Horizontal displacement (mm)

N
o

rm
a
l 
d

is
p

la
c
e
m

e
n

t 
(m

m
)

Bloc 5Block 5 Block 5 

Figure B.12: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=0.5MPa  
on the natural block 5 
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B.3.2 Shear tests performed under an applied normal stress of n=1MPa 
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Figure B.13: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=0.5MPa  
on the natural block 6 
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Figure B.14: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=1MPa  
on the natural block 7 
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Figure B.15: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=1MPa  
on the natural block 8 

 



 B-7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-5 0 5 10 15 20
0

500

1000

1500

2000

2500

Horizontal displacement (mm)

S
h

e
a
r 

s
tr

e
s
s
 (

k
P

a
)

Bloc 9

-5 0 5 10 15 20
-1

0

1

2

3

4

Horizontal displacement (mm)

N
o

rm
a
l 
d

is
p

la
c
e
m

e
n

t 
(m

m
)

Bloc 9Block 9 Block 9 

Figure B.16: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=1MPa  
on the natural block 9 
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Figure B.17: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=1MPa  
on the natural block 10 
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Figure B.18: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=1MPa  
on the natural block 11 
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B.3.3 Shear tests performed under an applied normal stress of n=1.5MPa 
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Figure B.19: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=1.5MPa  
on the natural block 12 
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Figure B.20: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=1.5MPa  
on the natural block 13 
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Figure B.21: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=1.5MPa  
on the natural block 14 
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B.4 Photos of the natural joint surfaces after the shear tests 
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Figure B.22: Shear stress-shear displacement and dilatancy curves for the shear test conducted at n=1.5MPa  
on the natural block 15 

 

 Block 2-0.5MPa  Block 2-0.5MPa 

Figure B.23: Photos of the natural block 2 after the shear test conducted at 0.5MPa of 

normal stress (left: concrete, right: granite) 

 Block 3-0.5MPa  Block 3-0.5MPa 

Figure B.24: Photos of the natural block 3 after the shear test conducted at 0.5MPa of 

normal stress (left: concrete, right: granite) 
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 Block 4-0.5MPa  Block 4-0.5MPa 

Figure B.25: Photos of the natural block 4 after the shear test conducted at 0.5MPa of 

normal stress (left: concrete, right: granite) 

 Block 6-0.5MPa  Block 6-0.5MPa 

Figure B.26: Photos of the natural block 6 after the shear test conducted at 0.5MPa of 

normal stress (left: concrete, right: granite) 

 Block 7-1MPa  Block 7-1MPa 

Figure B.27: Photos of the natural block 7 after the shear test conducted at 1MPa of 

normal stress (left: concrete, right: granite) 
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 Block 8-1MPa  Block 8-1MPa 

Figure B.28: Photos of the natural block 8 after the shear test conducted at 1MPa of 

normal stress (left: concrete, right: granite) 

 Block 9-1MPa  Block 9-1MPa 

Figure B.29: Photos of the natural block 9 after the shear test conducted at 1MPa of 

normal stress (left: concrete, right: granite) 

 Block 10-1MPa  Block 10-1MPa 

Figure B.30: Photos of the natural block 10 after the shear test conducted at 1MPa of 

normal stress (left: concrete, right: granite) 
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 Block 13-1.5MPa  Block 13-1.5MPa 

Figure B.32: Photos of the natural block 13 after the shear test conducted at 1.5MPa of 

normal stress (left: concrete, right: granite) 

 Block 11-1MPa  Block 11-1MPa 

Figure B.31: Photos of the natural block 11 after the shear test conducted at 1MPa of 

normal stress (left: concrete, right: granite) 

 Block 14-1.5MPa  Block 14-1.5MPa 

Figure B.33: Photos of the natural block 14 after the shear test conducted at 1.5MPa of 

normal stress (left: concrete, right: granite) 
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 Block 15-1.5MPa  Block 15-1.5MPa 

Figure B.34: Photos of the natural block 15 after the shear test conducted at 1.5MPa of 

normal stress (left: concrete, right: granite) 



B-14   

 

B.5 Results of the analytical model for different values of the 

input parameters (cb,b) 

 Initial case (cb=1.5 MPa,b=300) 

Table B.1: Comparison between the direct shear tests and the results of the analytical  

method for the calculation of the shear strength of concrete-granite interfaces (Initial case) 

Bloc n (MPa) τexp (MPa) τMod (MPa) Error (%) ΩConcrete(%) 

1 0.5 0.97 1.26 29.5 0.1 

2 0.5 1.18 1.27 7.7 0.6 

3 0.5 1.24 1.35 8.6 3.5 

4 0.5 1.33 1.51 13.2 5.3 

5 0.5 1.57 1.52 3.4 4.0 

6 0.5 1.66 1.68 1.2 2.1 

   R=0.93 Mean =10.6 Mean=2.6 

7 1 2.05 1.96 4.5 15.7 

8 1 2.2 1.84 16.5 2.8 

9 1 2.25 2.23 0.8 8.3 

10 1 2.54 2.46 3.1 9.0 

11 1 2.77 2.59 6.3 9.5 

   R=0.91 Mean=6.2 Mean=9.1 

12 1.5 2.7 2.20 18.7 12.1 

13 1.5 2.96 3.10 4.6 22.1 

14 1.5 3.06 3.66 19.8 32.0 

15 1.5 3.13 3.88 24.0 37.0 

   R=1.00 Mean=16.8 Mean=25.8 
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R2=0.8535

Figure B.35: Comparison between the calculated and measured values of the shear strength for the initial case 

(cb=1.5MPa, b=300) 
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 Case 1 (cb=1 MPa,b=300) 

Table B.2: Comparison between the direct shear tests and the results of the analytical  

method for the calculation of the shear strength of concrete-granite interfaces (Case 1) 

Bloc n (MPa) τexp (MPa) τMod (MPa) Error (%) ΩConcrete(%) 

1 0.5 0.97 1.17 20.4 3.2 

2 0.5 1.18 1.13 4.6 6.4 

3 0.5 1.24 1.17 5.7 16.3 

4 0.5 1.33 1.31 1.6 21.0 

5 0.5 1.57 1.32 16.2 22.7 

6 0.5 1.66 1.42 14.7 13.8 

   R=0.87 Mean =10.5 Mean=13.9 

7 1 2.05 1.31 36.1 50.0 

8 1 2.2 1.99 9.4 34.2 

9 1 2.25 3.75 66.9 52.7 

10 1 2.54 3.48 37.1 48.1 

11 1 2.77 2.76 0.5 35.5 

   R=-0.04 Mean=30.0 Mean=44.1 

12 1.5 2.7 3.86 43.0 73.5 

13 1.5 2.96 3.64 22.9 45.6 

14 1.5 3.06 4.97 62.5 56.4 

15 1.5 3.13 4.84 54.8 54.1 

   R=0.72 Mean=45.8 Mean=57.4 
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R2=0.83432

Figure B.36: Comparison between the calculated and measured values of the shear strength for the case 1  

(cb=1MPa, b=300) 
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 Case 2(cb=2 MPa,b=300) 

Table B.3: Comparison between the direct shear tests and the results of the analytical  

method for the calculation of the shear strength of concrete-granite interfaces (Case 2) 

Bloc n (MPa) τexp (MPa) τMod (MPa) Error (%) ΩConcrete(%) 

1 0.5 0.97 1.26 29.9 0 

2 0.5 1.18 1.29 9.3 0.2 

3 0.5 1.24 1.40 12.7 1.9 

4 0.5 1.33 1.80 35.2 2.1 

5 0.5 1.57 1.65 4.9 1.4 

6 0.5 1.66 1.75 5.2 1.0 

   R=0.81 Mean =16.2 Mean=1.1 

7 1 2.05 2.16 5.3 5.0 

8 1 2.2 1.95 11.3 0.3 

9 1 2.25 2.45 8.9 3.2 

10 1 2.54 2.74 7.8 2.4 

11 1 2.77 2.90 4.8 3.7 

   R=0.89 Mean=7.6 Mean=2.9 

12 1.5 2.7 1.95 27.7 2.6 

13 1.5 2.96 3.45 16.7 5.6 

14 1.5 3.06 3.77 23.2 14.8 

15 1.5 3.13 3.61 15.3 18.2 

   R=0.95 Mean=20.7 Mean=10.3 
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Figure B.37: Comparison between the calculated and measured values of the shear strength for the case 2  

(cb=2MPa, b=300) 
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 Case 3(cb=1.5 MPa,b=250) 

Table B.4: Comparison between the direct shear tests and the results of the analytical  

method for the calculation of the shear strength of concrete-granite interfaces (Case 3) 

Bloc n (MPa) τexp (MPa) τMod (MPa) Error (%) ΩConcrete(%) 

1 0.5 0.97 1.25 29.3 0.2 

2 0.5 1.18 1.27 7.6 0.7 

3 0.5 1.24 1.33 7.2 4.0 

4 0.5 1.33 1.45 9.2 5.9 

5 0.5 1.57 1.50 4.6 4.4 

6 0.5 1.66 1.67 0.3 2.4 

   R=0.94 Mean =9.7 Mean=2.9 

7 1 2.05 1.91 6.9 19.7 

8 1 2.2 1.79 18.6 4.2 

9 1 2.25 2.12 5.6 12.5 

10 1 2.54 2.39 6.1 12.3 

11 1 2.77 2.51 9.4 12.1 

   R=0.92 Mean=9.3 Mean=12.2 

12 1.5 2.7 2.28 15.6 25.1 

13 1.5 2.96 2.95 0.2 31.4 

14 1.5 3.06 4.00 30.8 40.7 

15 1.5 3.13 4.35 39.1 44.4 

   R=0.95 Mean=21.4 Mean=35.4 
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Figure B.38: Comparison between the calculated and measured values of the shear strength for the case 3  

(cb=1.5MPa, b=250) 
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 Case 5(cb=1.5 MPa,b=400) 

Table B.5: Comparison between the direct shear tests and the results of the analytical  

method for the calculation of the shear strength of concrete-granite interfaces (Case 5) 

Bloc n (MPa) τexp (MPa) τMod (MPa) Error (%) ΩConcrete(%) 

1 0.5 0.97 1.25 29.7 0.1 

2 0.5 1.18 1.28 8.3 0.5 

3 0.5 1.24 1.36 9.5 3.0 

4 0.5 1.33 1.52 13.9 3.4 

5 0.5 1.57 1.55 1.0 2.8 

6 0.5 1.66 1.71 2.7 1.5 

   R=0.94 Mean=10.9 Mean=1.9 

7 1 2.05 2.04 0.3 8.7 

8 1 2.2 1.91 13.2 1.2 

9 1 2.25 2.38 5.8 4.5 

10 1 2.54 2.64 3.9 4.1 

11 1 2.77 2.76 0.4 5.6 

   R=0.90 Mean=4.7 Mean=5.7 

12 1.5 2.7 2.48 8.3 3.3 

13 1.5 2.96 3.36 13.5 7.5 

14 1.5 3.06 3.71 21.1 14.217.1 

15 1.5 3.13 3.58 14.3 20.9 

   R=0.96 Mean=14.3 Mean=12.2 
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Figure B.39: Comparison between the calculated and measured values of the shear strength for the case 5  

(cb=1.5MPa, b=400) 
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B.6 Failure surfaces in concrete after the shear tests and those 

predicted by the analytical model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Bloc 2-0.5MPa 

 
Bloc 2-0.5MPa 

Figure B.40: Comparison between the predicted and actual failure surfaces in concrete for the shear test conducted  

on the natural block 2 at 0.5MPa of normal stress 

 
Bloc 3-0.5MPa 

 
Bloc 3-0.5MPa 

Figure B.41: Comparison between the predicted and actual failure surfaces in concrete for the shear test conducted  

on the natural block 3 at 0.5MPa of normal stress 

 
Bloc 4-0.5MPa 

 
Bloc 4-0.5MPa 

Figure B.42: Comparison between the predicted and actual failure surfaces in concrete for the shear test conducted  

on the natural block 4 at 0.5MPa of normal stress 
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 Bloc 5-0.5MPa  Bloc 5-0.5MPa 

Figure B.43: Comparison between the predicted and actual failure surfaces in concrete for the shear test conducted  

on the natural block 5 at 0.5MPa of normal stress 

 Bloc 6-0.5MPa  Bloc 6-0.5MPa 

Figure B.44: Comparison between the predicted and actual failure surfaces in concrete for the shear test conducted  

on the natural block 6 at 0.5MPa of normal stress 

 Bloc 7-1MPa  Bloc 7-1MPa 

Figure B.45: Comparison between the predicted and actual failure surfaces in concrete for the shear test conducted  

on the natural block 7 at 1MPa of normal stress 
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Bloc 8-1MPa 

 
Bloc 8-1MPa 

Figure B.46: Comparison between the predicted and actual failure surfaces in concrete for the shear test conducted  

on the natural block 8 at 1MPa of normal stress 

 
Bloc 9-1MPa 

 
Bloc 9-1MPa 

Figure B.47: Comparison between the predicted and actual failure surfaces in concrete for the shear test conducted  

on the natural block 9 at 1MPa of normal stress 

 
Bloc 10-1MPa 

 
Bloc 10-1MPa 

Figure B.48: Comparison between the predicted and actual failure surfaces in concrete for the shear test conducted  

on the natural block 10 at 1MPa of normal stress 
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Bloc 11-1MPa 

 
Bloc 11-1MPa 

Figure B.49: Comparison between the predicted and actual failure surfaces in concrete for the shear test conducted  

on the natural block 11 at 1MPa of normal stress 

 Bloc 13-1.5MPa  Bloc 13-1.5MPa 

Figure B.50: Comparison between the predicted and actual failure surfaces in concrete for the shear test conducted  

on the natural block 13 at 1.5MPa of normal stress 

 Bloc 14-1.5MPa  Bloc 14-1.5MPa 

Figure B.51: Comparison between the predicted and actual failure surfaces in concrete for the shear test conducted  

on the natural block 14 at 1.5MPa of normal stress 
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 Bloc 15-1.5MPa  Bloc 15-1.5MPa 

Figure B.52: Comparison between the predicted and actual failure surfaces in concrete for the shear test conducted  

on the natural block 15 at 1.5MPa of normal stress 



B-24   

 

B.7 Results of the numerical simulations on natural joints 
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Figure B.53: (a) Comparison between the shear stress curves obtained experimentally (red curve) and from the numerical 

simulations using the friction-cohesive model (Black curve) and the contact friction law (blue curve),  

(b) Zoom at the beginning of the shear test conducted on the natural block 3 at 0.5MPa of normal stress 

(a) (b) 

-2 0 2 4 6 8 10 12 14 16 18 20
-1

0

1

2

3

4

Horizontal displacement (mm)

V
e
rt

ic
a
l 
d

is
p

la
c
e
m

e
n

t 
(m

m
)

Block 3

 

 

Exp

Num

-2 0 2 4 6 8 10 12 14 16 18 20
-1

0

1

2

3

4

Horizontal displacement (mm)

V
e
rt

ic
a
l 
d

is
p

la
c
e
m

e
n

t 
(m

m
)

Block 3

 

 

Exp

Num

(a) (b) 

Figure B.54: (a) Comparison between the dilatancy curves obtained from the experimental direct shear tests (red curves) and 

those obtained from the numerical simulation using the contact law (blue curve): (a) Before correction, (b) After correction,  

for the natural block 3 sheared at 0.5MPa of normal stress 
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Figure B.55: (a) Comparison between the shear stress curves obtained experimentally (red curve) and from the numerical 

simulations using the friction-cohesive model (Black curve) and the contact friction law (blue curve),  

(b) Zoom at the beginning of the shear test conducted on the natural block 5 at 0.5MPa of normal stress 
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Figure B.56: (a) Comparison between the dilatancy curves obtained from the experimental direct shear tests (red curves) and 

those obtained from the numerical simulation using the contact law (blue curve): (a) Before correction, (b) After correction,  

for the natural block 5 sheared at 0.5MPa of normal stress 
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Figure B.57: (a) Comparison between the shear stress curves obtained experimentally (red curve) and from the numerical 

simulations using the friction-cohesive model (Black curve) and the contact friction law (blue curve),  

(b) Zoom at the beginning of the shear test conducted on the natural block 6 at 0.5MPa of normal stress 
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Figure B.58: (a) Comparison between the dilatancy curves obtained from the experimental direct shear tests (red curves) and 

those obtained from the numerical simulation using the contact law (blue curve): (a) Before correction, (b) After correction,  

for the natural block 6 sheared at 0.5MPa of normal stress 
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Figure B.59: (a) Comparison between the shear stress curves obtained experimentally (red curve) and from the numerical 

simulations using the friction-cohesive model (Black curve) and the contact friction law (blue curve),  

(b) Zoom at the beginning of the shear test conducted on the natural block 9 at 1MPa of normal stress 
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Figure B.60: (a) Comparison between the dilatancy curves obtained from the experimental direct shear tests (red curves) and 

those obtained from the numerical simulation using the contact law (blue curve): (a) Before correction, (b) After correction,  

for the natural block 9 sheared at 1MPa of normal stress 
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Figure B.61: (a) Comparison between the shear stress curves obtained experimentally (red curve) and from the numerical 

simulations using the friction-cohesive model (Black curve) and the contact friction law (blue curve),  

(b) Zoom at the beginning of the shear test conducted on the natural block 10 at 1MPa of normal stress 
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Figure B.62: (a) Comparison between the dilatancy curves obtained from the experimental direct shear tests (red curves) and 

those obtained from the numerical simulation using the contact law (blue curve): (a) Before correction, (b) After correction,  

for the natural block 10 sheared at 1MPa of normal stress 
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Figure B.63: (a) Comparison between the shear stress curves obtained experimentally (red curve) and from the numerical 

simulations using the friction-cohesive model (Black curve) and the contact friction law (blue curve),  

(b) Zoom at the beginning of the shear test conducted on the natural block 11 at 1MPa of normal stress 
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Figure B.64: (a) Comparison between the dilatancy curves obtained from the experimental direct shear tests (red curves) and 

those obtained from the numerical simulation using the contact law (blue curve): (a) Before correction, (b) After correction,  

for the natural block 11 sheared at 1MPa of normal stress 
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Figure B.65: (a) Comparison between the shear stress curves obtained experimentally (red curve) and from the numerical 

simulations using the friction-cohesive model (Black curve) and the contact friction law (blue curve),  

(b) Zoom at the beginning of the shear test conducted on the natural block 14 at 1.5MPa of normal stress 
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Figure B.66: (a) Comparison between the dilatancy curves obtained from the experimental direct shear tests (red curves) and 

those obtained from the numerical simulation using the contact law (blue curve): (a) Before correction, (b) After correction,  

for the natural block 14 sheared at 1.5MPa of normal stress 


