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Résumé 

 
Les hélicases sont des protéines qui utilisent l'énergie fournie par l'hydrolyse de l'ATP ou du 

GTP pour catalyser le déroulement des doubles hélices d'ADN ou d'ARN. Cette activité 

confère à ces enzymes un rôle essentiel dans le métabolisme des acides nucléiques, le 

maintien de la stabilité du génome et les processus de signalisation cellulaire. Par conséquent, 

ces enzymes sont impliqués dans des processus aussi divers que le vieillissement, l'apparition 

de cancers, l'immunité innée. Cette thèse porte sur la compréhension de la fonction et des 

mécanismes moléculaires de deux hélicases différentes et le manuscrit est donc divisé en deux 

parties.  

 

La première partie est dédiée à l'hélicase RIG-I (Retinoic acid-Induced Gene I) spécifique de 

l'ARN. RIG-I est une protéine hautement conservée chez les vertébrés qui appartient à la 

famille des RLR (RIG-I Like Receptors) qui sont des hélicases à DExD/H-box de la 

superfamille des hélicases SF2. RIG-I possède comme toutes ces protéines un domaine 

helicase central dont le fonctionnement dépend de l’hydrolyse de l’χTP suivi d’un domaine 

C-terminal régulateur interagissant avec des ARN de petite taille. Mais RIG-I possède 

également deux domaines CARD (Caspase Activation and Recruitment Domain) en tandem à 

l’extrémité N-terminale. Ce domaine est essentiel pour l’activation de la production d’INF-ȕ, 

par interactions homotypiques essentiellement. δ’induction du son gène de RIG-I (Ddx58) a 

été initialement observée lors du traitement à l’acide rétinoïque de la lignée cellulaire Nψ4, 

dérivée de la moëlle osseuse d’une patiente atteinte de δeucémie Promyélocytaire χiguë 

(APL). Lors de ce traitement, les myeloblastes NB4 cessent de proliférer en promyélocytes 

pour se différentier en granulocytes (Yu M et al., 1997; Liu TX et al. , 2000). Par ailleurs, 

RIG-I est également associé à l'infection virale en raison de la découverte de son induction 

par le virus du Syndrome Dysgénésique et Respiratoire du Porc (SDRP) (Zhang X et al., 

2000) et son rôle indispensable dans la reconnaissance de l'ARN double brin des virus ainsi 

que l’initiation de la protection des cellules contre la réplication des génomes viraux. Dès lors, 

RIG-I a suscité un intérêt croissant puisqu'il s'est avéré jouer un rôle crucial dans l'immunité 

innée et dans la détection de différents acides nucléiques viraux, des ARN simple brin 

(ARNsb) porteurs de 5'triphosphate (5'ppp) ou des ARN double brin (ARNdb) (Yoneyama M 

et al., 2004; Hornung V et al., 2006; C et al., 2010; Pichlmair A et al., 2006; Wang Y et al., 



 

2010; Baum A et al., 2010), avec une préférence pour les ARN de taille courte (10-25 

nucléotides de long) (Kato H et al. , 2008).  

RIG-I est donc impliqué dans deux aspects cruciaux de la vie cellulaire qui sont la réponse 

immunitaire et la différenciation cellulaire. Le mécanisme d'action de RIG-I est bien décrit 

dans le contexte de l'infection virale. Mais dans le cas de la différenciation des cellules 

myéloïdes, son intervention et son rôle dans la balance prolifération / différenciation restent 

partiellement compris. Les interactions de RIG-I notamment avec des ligands cellulaires ne 

sont pas totalement élucidées. La première partie de ce travail a donc consisté à tenter d'isoler 

et de caractériser les partenaires de RIG-I lors de la différenciation des cellules leucémiques 

NB4. Le but a d'abord été d'identifier des ligands spécifiques de l'hélicase au cours du 

traitement par l’χTRχ qui déclenche la différenciation et le blocage de la prolifération. Cette 

identification se réalisant par co-immunoprécipitation et séquençage haut débit ou analyse 

protéomique. Après identification, la deuxième étape du travail concerne la caractérisation 

biochimique de l'interaction puis sa vérification dans la cellule suivie de l'effet sur la 

différenciation et la prolifération des cellules. La possibilité d'une étude structurelle a même 

été envisagée.  

Ce travail est basé sur deux points: 1) la structure en domaines de RIG-I lui permettant de lier 

les ARN et les protéines, 2) plusieurs travaux montrant que la spécificité des hélicases à leurs 

ligands est due à plusieurs facteurs tels que la localisation subcellulaire ou le profil 

d'expression de la protéine en plus de la séquence nucléotidique. Ainsi, certaines hélicases 

peuvent avoir de nouvelles fonctions participant aux processus de signalisation cellulaire. 

Cette première partie de ma thèse est donc divisée en deux parties: RIG-I étant une hélicase à 

ARN, ce travail débute par la recherche de partenaire(s) ARN endogène(s). Dans la littérature, 

non seulement des ARN viraux, mais plusieurs types d'ARN différents sont connus pour se 

lier à RIG-I. Dans le cas des lymphocytes B murins, RIG-I marqué par His se lie à de 

multiples ARNm endogènes tels que l'ARNm 3'UTR de NF-kb1 (Zhang HX et al., 2013). Les 

ARNsn U1 et U2 dans les cellules de carcinome colorectal peuvent également lier RIG-I 

conduisant à l'activation de la voie IFN (Ranoa DR et al., 2016). Parmi les partenaires ARN 

possibles, les miARN sont également de bons candidats. Plusieurs travaux ont montré que les 

miARN affectent la progression tumorale et la différenciation cellulaire. Dans le cas de la 

différenciation hématopoïétique, ils peuvent tous deux avoir un rôle de suppresseur de tumeur 

ou des activités oncogènes (Schotte D et al., 2012). Plus tard, l'orientation du travail a été 

réajustée à la recherche de partenaire(s) protéique(s) reposant sur la présence de deux 

domaines CARD dans l'hélicase. Dans le cas de la différenciation myéloïde, seule la protéine 



 

Src est actuellement connue pour interagir avec RIG-I (Li XY et al., 2014) Cette interaction a 

lieu au niveau des domaines CARD et le linker entre les domaines CARD et Helicase de RIG-

I. Ces travaux sont interessants mais l’étude a été réalisée dans la lignée cellulaire 

macrophagique (U937). Bien qu'il s'agisse d'une lignée myéloïde, elle diffère de notre lignée 

cellulaire APL NB4 qui elle correspond à une situation pathologique réelle. Par ailleurs, les 

auteurs affirment que cette interaction se produit d'une manière indépendante de l'ARN, 

puisque la transfection de petits ARN synthétiques PolyI:C ou 5'-pppARNsb inhibe 

partiellement l'interaction. Mais ils ne prennent pas en compte le fait que ces ARN ne sont pas 

des ARN endogènes, qui peuvent se comporter différemment. De plus, ils proposent un 

modèle d'interaction entre RIG-I et Src, qui libère complètement les domaines hélicase et 

ATPase. La conformation de RIG-I ainsi modifiée rend ces deux domaines totalement 

accessibles soit aux ARN, soit à d'autres protéines. Néanmoins, ces travaux révélant 

l’identification de l'interaction entre Src et RIG-I, ont contribué à la compréhension de la 

position de RIG-I dans la cascade de signalisation du contrôle de la prolifération. En effet, ils 

ont montré que l'hélicase interagit avec le processus de prolifération par un programme de 

mort via une inhibition AKT-mTOR indépendante de l'apoptose et une activation 

autophagique. En terme de recherche de ligands de RIG-I, un autre groupe a observé la 

possibilité d'interactions de multiples protéines. Zhang HX et al., ont démontré par 

immunoprécipitation et iTRAQ-MS que RIG-I interagit à la fois avec le 3'UTR de l'ARNm de 

Nf-κb1 / p105 et Rpl1γ, qui est un composant de la grande sous-unité 60S du ribosome. Dans 

cette étude, il est également important de noter que d'autres protéines ont également été 

identifiées par iTRAQ-MS. Seuls quelques-unes présentaient un intervalle de confiance total 

du score ionique supérieur à 95%. Le groupe n'a pas davantage travaillé sur ces candidats. 

Parmi ces protéines trois d'entre elles (IGFBP5, protéine apparentée à Hip1, et VLA-4) 

auraient pu être étudiées en raison de leur rôle intéressant dans la prolifération, différenciation 

et adhésion cellulaire (Zhang HX et al., 2013).  

Dans le cas de la recherche des partenaires de type ARN, grâce à des expériences de CLIP 

(cross-linking et immunoprécipitation) suivies de migration sur gel, un signal plus fort a été 

observé chaque fois dans le cas du traitement à l’χTRA qu'avec le DMSO (le solvant de 

l'ATRA) révélant la présence de complexes RIG-I-acide nucléique. Les échantillons étant 

préalablement traités avec de la DNAse et l'observation de la diminution du signal après 

traitement à la RNAse, ont permis de considérer que des ARN ou des protéines endogènes en 

plus de RIG-I sont présents dans les complexes. Le signal obtenu avec un traitement au 

DMSO (le solvant de l'ATRA) pourrait être lié comme déjà mentionné par d'autres équipes 



 

(Khanna-Gupta A et al., 1994; Qiu H et al., 2011) à l'initiation du processus de 

différenciation. Aussi en l'absence d'ATRA et de DMSO, un fort signal a pu être observé. 

Dans cette situation expérimentale les cellules sont en état de prolifération et ce signal peut 

correspondre à la présence des ARNr ou des ARNt connus pour être abondants et "collants", 

"contaminant" les échantillons. Nous savons en effet que la capacité de croissance et de 

prolifération des cellules est couplée à la transcription de l'ARNr qui est alors abondant. Au 

cours de la différenciation, l'expression de la protéine proto-oncogène c-Myc est diminuée en 

réponse à la transition de l'état proliférant à l'état non proliférant. Cette régulation négative de 

c-Myc diminue l'expression des facteurs de transcription liés à Pol I conduisant à la régulation 

négative de la transcription de l'ARNr (Hayashi Y et al., 2014). Par conséquent, cette 

différence de niveau d'ARNr entre l'état de prolifération et de différenciation peut expliquer le 

signal fort en absence de traitement, mais il peut aussi masquer la présence d'autres candidats 

ARN intéressants. Finalement l'observation d'un signal compacte nous amène à envisager de 

gros complexes RIG-I-ARN-protéines. Dans un deuxième temps, le travail a consisté à 

démasquer les partenaires protéiques de RIG-I selon la même approche de co-

immunoprécipitation sans crosslinking cellulaire. Avant d'effectuer une approche 

protéomique une migration SDS page et une coloration à l'argent ont été réalisés. Comme on 

pouvait l'attendre, le signal RIG-I a été obtenu de manière satisfaisante en présence d'ATRA. 

En gel 1D il a été très difficile de voir des différences de migration et d'intensité de bande 

entre les différentes conditions de traitement. Seule une migration en gel 2D aurait pu 

permettre de visualiser des différences et de poursuivre le projet.  

 

La seconde partie de la thèse a été consacrée à l'étude du mécanisme moléculaire sous-jacent 

au déroulement des G-quadruplexes par l'hélicase BsPif1. Les hélicases sont des enzymes qui 

se déplacent à travers des acides nucléiques appariés sous forme bicaténaire pour catalyser la 

séparation des brins et permettre la réplication ou la transcription de la molécule d'ADN. 

Cette translocation se produit initialement grâce à la liaison entre les acides nucléiques et 

l'hélicase permettant un changement conformationnel de l'hélicase conduisant à l’hydrolyse de 

l’χTP. δ'hydrolyse de l'χTP déclenche un état d'oscillation entre un état d'affinité maximale 

et un état d'affinité faible dans le site de liaison à l'ADN, ce qui entraîne la translocation à 

travers l'ADN. Dans le cas des structures d'ADN non canoniques formées par l'empilement de 

plusieurs G-quartets appelés G-quadruplex (G4), le mécanisme moléculaire sous-jacent à leur 

déroulement est plus complexe à cause de la présence de plusieurs quartets G générant une 

conformation spécifique caractérisée par des propriétés électrophysiques particulières, 



 

maintenues par l'appariement Hoogsteen et des cations monovalents. Les G-quadruplexes sont 

présents dans les télomères, les origines de réplication de l'ADN, les régions régulatrices de la 

transcription des gènes, les promoteurs de certains oncogènes et également les régions de 

commutation des immunoglobulines. Leur formation peut influencer les processus 

biologiques tels que la réplication de l'ADN, la traduction et le maintien de l'intégrité des 

télomères. Pour contrer la formation de G4, certaines hélicases spécifiques ont la capacité de 

les résoudre, telles que (Pif1 et DNA2 dans la famille SF1, FANCJ, DDX11, RTEL1, BLM, 

WRN et DHX9 dans la famille SF2, SV40T-ag dans la famille SF3, Twinkle dans la famille 

SF4 et RHAU pour la famille SF5) (Mendoza O et al., 2016), mais le mécanisme moléculaire 

n'est pas encore complètement compris. Parmi les questions qui se posent, il n'est pas 

clairement établie: 1) si les hélicases résolvant les G4 possèdent un site spécifique de liaison 

de ces structures qui soit différent du site de liaison classique des ADN simple et double brin, 

2) si le déroulement des G-quadruplexes dépend de l'ATP et 3) comment l'hélicase utilise 

l'énergie dérivée de l'hydrolyse de l'ATP pour effectuer le dépliement des G-quadruplexes. 

Afin de répondre à ces questions un homologue de Pif1p de S cerevisiae, BsPif1 (de 

Bacteroides sp. 3_1_23) a été utilisé.  

La première étape de mon travail a consisté à analyser quantitativement et comparer la 

stimulation des activités ATPase de BsPif1 par différentes structures d'ADN : G-

quadruplexes, ADN double brin et ADN simple brin. Les résultats ont montré que seul 

l'ADNsb déclenche efficacement l'hydrolyse de l'ATP, mais cette activité est proportionnelle 

à la longueur de brin. Un résultat similaire a été observé avec Pif1 humain, qui nécessite un 

minimum de 10 bases pour une liaison efficace de l'enzyme (Gu Y et al., 2013). Lorsque la 

structure de l'ADN est plus complexe et en particulier dans le cas de l'appariement brin / base, 

cette activité est fortement diminuée comme observé avec l'ADNdb. Dans le cas du G-

quadruplex, sa structure et sa conformation déterminent l'activité ATPase. Par dichroïsme 

circulaire j'ai pu observer une différence de stabilité entre deux G-quadruplexes utilisés: un 

G4 monomère avec une conformation parallèle et une structure très stable, un G-quadruplex 

antiparallèle de type télomérique plus instable. Le G4 stable conduit à une hydrolyse 

négligeable de l'ATP, alors que le G4 de type télomérique et moins stable permet une 

récupération partielle de l'activité ATPase de BsPif1. D'autre part, lorsqu'un ADNsb est 

présent à l'extrémité 5' des G-quadruplex l’activité spécifique de l’χTPase est restaurée, et 

comparable à celle de l'ADNsb. La nécessité d'une queue à l'extrémité 5' du G-quadruplex 

pour l'activité ATPase a également été rapportée avec Pif1 humain (Sanders CM, 2010). Ces 

résultats montrent que le G-quadruplex ne stimule pas l’activité χTPase de ψsPif1 de manière 



 

efficace. En combinant l'activité ATPase et des tests de liaison de BsPif1 à d'ADN, et par des 

expériences de compétition entre ADNsb et G-quadruplex, on observe que l'ADNsb et l'ADN 

G4 se lient à des sites distincts avec une affinité de liaison similaire (nM). La réalisation d'une 

carte de potentiel électrostatique de surface de la structure de BsPif1 a permis de déterminer 

deux régions chargées positivement et adaptées pour héberger le G-quadruplex. Mais une 

étude plus approfondie doit être effectuée afin de discriminer les deux sites de liaison 

possibles. Après avoir clarifié la relation entre la liaison du G-quadruplex à l'enzyme et 

l'activité ATPase, le lien entre le déroulement de l'ADN et l'hydrolyse de l'ATP a été étudié. 

En présence du G-quadruplex stable aucune de ces deux activités n'a été observée. En 

revanche, le même G-quadruplex avec une queue d'ADNsb à l'extrémité 5' stimule l'activité 

ATPase et peut être déroulée par BsPif1. Le motif G4 stable est donc un obstacle physique et 

plus d'énergie est nécessaire pour résoudre la structure G4. Dans le cas du G4 moins stable 

l'activité d'ATPase est modérée avec une activité de déroulement qui augmente quand une 

queue simple brin en 5' est ajoutée. L'ensemble des résultats démontrent que BsPif1 nécessite 

une queue simple brin en 5' pour résoudre les G4 et cette activité de déroulement est 

déterminée par la stabilité du G4.  
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General Objectives 

 

Helicases are proteins that utilize the energy provided by the hydrolysis of ATP or GTP to 

catalyse the disjunction of double DNA or RNA helices. This double strand unwinding 

activity gives them an essential role in the metabolism of nucleic acids, the maintenance of 

the genome stability and cell signalling processes.  As a result, they are involved in processes 

as diverse as aging, the appearance of cancers, innate immunity. This thesis is focused on the 

understanding of the function and the molecular mechanisms of two different helicases and 

the manuscript is therefore divided in two parts. The first one is dedicated to the RIG-I 

helicase, an RNA helicase, expressed when leukemic cells stop proliferate and are induced to 

differentiate in granulocytes, which are essential in the recognition of double-stranded RNA 

of viruses, initiating the protection of the cells against the replication of the viral genomes. 

The mechanism of action of RIG-I is well described in the context of viral infection. But in 

the case of the differentiation of myeloid cells, the intervention of RIG-I and its influence on 

the equilibrium proliferation / differentiation remains incomplete. Indeed, RIG-I interactions 

in particular with cellular ligands are not fully understood. The first part of my work consisted 

in an attempt to isolate and characterize RIG-I partners during differentiation of NB4 

leukemic cells. The second one is devoted to the study of mechanisms underlying G-

quadruplexes resolving by helicases. Several questions remain about the interactions between 

the particular structure of G-quadruplexes and these enzymes. A Bacteroides sp 3_1_23 

helicase, BsPif1, was chosen to compare and characterize the interaction between G-

quadruplexes and canonical Watson-Crick DNA. In the two parts of the work, the interactions 

were investigated by biochemical techniques using either a cell line or purified protein and 

synthetic nucleic acids.  
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Introduction 

 

1. Helicases 

 1.1. Discovery and definition 

Helicases are enzymes discovered in E. coli in the late 1970s, firstly described as DNA-

stimulated ATPases (Denhardt et al., 1967; Abdel-Monem M et al., 1976). In the presence of 

DNA, RNA hybrid duplexes and DNA-DNA partial duplexes, the enzyme purified by Abdel-

Monem M was found to denature the duplexes in an ATP-dependent reaction without any 

degradation of the duplexes (Abdel-Monem M et al., 1976). The authors assumed that after 

binding to the DNA molecule, the enzyme unwinds the double-strand DNA in a processive 

fashion, thanks to ATP hydrolysis. Three years later, Takahashi demonstrated that the enzyme 

discovered earlier in 1967 by Denhardt, had helicase properties (Takahashi S et al., 1979). 

Later, it was established that helicases function as molecular motors that transfer the chemical 

energy derived from binding and hydrolysis of ATP into mechanical force to drive directional 

translocation along nucleic acid duplex and separate it into individual single strands (Lohman 

TM and Bjornson KP, 1996; Caruthers JM and McKay DB, 2002; Tanner NK and Linder P, 

2001; von Hippel PH and Delagoutte E, 2001). 

 

 1.2. Helicases classifications and families  

In 1988, Gorbalyena and Koonin performed sequence analysis of several helicases allowing a 

classification based on conserved motifs (Figure 1). They identified 3 superfamilies (SFs) and 

2 smaller families (Fs), called SF1 to SF5  (Gorbalenya AE et al., 1988; Hodgman TC, 1988; 

Gorbalenya AE et al., 1989; Gorbalenya AE et al., 1990; Gorbalenya AE and Koonin EV, 

1993). All the superfamilies possess the Walker A and Walker B motifs (motifs I and II). 

These motifs are involved in the binding and hydrolysis of NTP (Walker JE et al., 1982). 

They are common to the large family of translocases which couple NTP hydrolysis to nucleic 

acid translocation. Therefore helicases constitutes a subset of translocases. A sixth 

superfamily has been identified and consists of helicases containing the AAA+ conserved 

module (ATPases Associated with diverse cellular Activities). This last helicase family is also 

characterized by the presence of the Walker A and Walker B motifs (Erzberger JP and Berger 

JM, 2006). χll the superfamilies also possess an “arginine finger” (R), which helps to couple 

the NTP hydrolysis to conformational change (Rittinger K et al., 1997; Scheffzek K et al., 

1997; Nadanaciva S et al., 1999). 
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Figure 1. Helicase classification. The “core domains” and the positions of the signature 

motifs are shown for each class of helicase. The N-terminal RecA domain (RecA1) is 

represented by a blue cylinder and the C-terminal RecA domain (RecA2) is shown as a red 

cylinder. The conserved amino acid motifs are colored according to their helicase function. 

The motif involved in NTP binding/hydrolysis is shown in yellow, the motif associated with 

translocation appears in green and the nucleic acid interacting motif is colored in blue. The 

motif that are unique to specific superfamilies are highlighted with a red oval. The Walker A 

("A"), Walker B ("B") and arginine finger ("R") motifs are conserved across all helicase 

superfamilies. In the family SF6 de RecA represented by a blue cylinder is named AAA+. 

Adapted from Jackson RN et al., 2014. 

 

Other classifications of helicases are also used and they are based on their substrate specificity 

(RNA, DNA or DNA-RNχ hybrids), their polarity (5’-γ’ or γ’-5’), or their oligomerization. 

Structurally, helicases are classified in two categories: hexameric proteins forming a ring 

which are members of SF3 to 6 (Figure 2B) and non toroidal proteins belonging to SF1 and 2 

(Figure βχ). These different tridimensional structures share a common module called “Recχ-

like” referring to the RecA protein present in bacteria which was the first enzyme with 

ATPase activity and whose tridimensional structure was determined (Story RM and Steitz 
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TA, 1992). The RecA-like module consists of a beta-sheet sandwiched by alpha helices 

(Singleton MR et al., 2007). Two RecA-like domains can be linked in tandem by a flexible 

linker of varying length (SF1 and SF2 helicases) (Figure 2A) or can be present in different 

subunits arranged in an hexameric ring (SF3 to 6) (Figure 2B).  

 

 

 

 

 

 

Figure 2. Representative core structures. (A) Secondary structure of the tandem RecA-like 

(RecA1 colored in blue and the RecA2 in red) folds observed in SF1 and SF2 helicases. The 

RecA-like domains form a cleft that contains an NTP binding pocket in yellow and a nucleic 

acid binding site in blue. The NTP binding and hydrolysis causes the cleft to cycle between 

the closed and open states. (B) SF3, SF4, SF5 and SF6 secondary structure consists in six 

individual RecA- or AAA+-like domains (RecA1 colored in blue) arranged into toroidal 

hexamers that radially array the bipartite NTP binding sites in yellow and a nucleic acid 

binding site in blue in the center. Adapted from Jackson RN et al., 2014. 

 

During my PhD, I was interested in DNA/RNA helicases, which are members of SF1 and 2. 

Therefore I will mainly introduce these two families. 

SF1 and SF2 helicases are the most characterized superfamilies and can translocate along 

DNA or RNA. They are either monomers or dimers and their core domains share twelve 

motifs out of thirteen (Q, I, Ia, Ib, Ic, II, III, IV, V, Va, Vb, VI), which fold RecA-like 

domains, named RecA1 and RecA2 (Figure 1). The domains RecA1 and RecA2 are separated 

A B 
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by a deep cleft. The site for ATP binding is localized in this cleft, between the motifs Q, I, II 

and VI, which are localized in the interface of the two RecA-like domains (Korolev S et al., 

1997). Motifs III and Va, which are important for the coordination between NTP and the 

binding site of the substrate to determine the translocation, are less conserved within the two 

families. Finally the domains Ia, Ib, Ic, IV, V and Vb are involved in nucleic acid binding 

(Fairman-Williams ME et al., 2010).  

Superfamily 1 members carry out different biochemical functions. They can be subdivided in 

two groups according to the polarity of translocation along the DNA or RNA: SF1A helicases 

(γ’ to 5’) such as Rep, Pcrχ, UvrD and SF1ψ (5’ to γ’) helicases including RecD, Dda of T4 

bacteriophage, Rrm3, Pif-1-like, Upf1 (Subramanya HS et al., 1996; Korolev S et al., 1997; 

Velankar SS et al., 1999; Tomko EJ et al., 2007; Saikrishnan K et al., 2008; Zhang DH et al., 

2006; Saikrishnan K et al., 2009). 

Superfamily 2 is the largest helicase family, with members involved in various cell processes. 

They present a specific motif IVa involved the interaction with the nucleic acid (Korolev S et 

al., 1997). The SF2 family includes RNA helicases box DEXD/H as RIG-I-like (Cordin O et 

al., 2006), RecQ helicase (Bachrati CZ and Hickson ID, 2003), Swi/Snf2-like helicases (Flaus 

A et al., 2006; Flaus A and Owen-Hughes T, 2004).  The members of this family are able to 

move over nucleic acids, single or double strands. Some of them are even able to move in 

both directions of migration (Cordin O et al., 2006).  

SF3 share four conserved motifs: Walker χ and ψ, ψ’ and C, the latter being SFγ specific 

(Singleton MR et al., 2007). SF3 helicases translocate in the γ’ to 5’ direction (Thomsen ND 

and Berger JM, 2009).  SF4 is characterized by five conserved motifs: H1, H1a, H2, H3 and 

H4 (H1 and H2 correspond to Walker A and B) (Ilyina TV et al., 1992). SF5 is the smallest 

family and an important member is the transcription terminator Rho, which is related to SF4 

but it has been included in a separate family on the basis of the sequence (Singleton MR et al., 

2007). They translocate in 5’ to γ’ direction (Thomsen ND and Berger JM, 2009). Finally, 

SF6 includes the helicases containing the core AAA+ fold that do not fall into superfamily 3.  

 

1.3. General mechanisms of helicases  

Mechanisms of helicases have been widely discussed in the literature (Lohman TM and 

Bjornson KP, 1996; Patel SS and Picha, KM 2000; Cordin O et al., 2006). The enzymes can 

also be classified on the basis of their biochemical properties. But they have several common 

properties namely the NTP binding and hydrolysis, the interaction with the nucleic acid 
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substrates, the translocation mechanism, the base pair separation, the coupling of NTPase to 

translocation and unwinding, and the annealing, regulatory modules. 

 

  1.3.1. NTP binding and hydrolysis of NTP  

NTP binding and hydrolysis drive the helicase activity leading the enzyme to go through 

defined ligation state, triggering changes in the affinity of the enzyme for the nucleic acid and 

bringing about power stroke for translocation and strand separation. The NTP binding at the 

interface between two RecA domains is a common feature and the presence of a divalent 

cation, normally Mg2+, is required (Bennett RJ et al., 1999; Bae SH et al., 2001). Most 

helicases preferentially hydrolyse ATP than the three other nucleotides (TTP, GTP and CTP). 

Generally, the NTPase activity of helicases is stimulated by the binding of nucleic acid (DNA 

or RNA). However several helicases display ATPase activity even in the absence of nucleic 

acids like DnaB protein (Roychowdhury A et al., 2009). However, it is known that helicases 

do not display specification sequence for ATPase activity, except of Dbpa. The binding of 

NTP at the interface of 2 domains serves several purposes. After binding, changes occurring 

in the pocket assume different ligation states and trigger the subunit movements thanks to the 

contact between the NTP and the subunit. Crystal structures reveal highly conserved arginine 

residues (arginine finger) in the helicase core domain which is involved in ATP hydrolysis 

(Matson SW et al., 1994; Ren H et al., 2007). This conserved arginine residue senses the 

change in the NTP binding state and transmits the change to cause subunit movement 

(Singleton MR et al., 2000; Sawaya MR et al., 1999).  

 

  1.3.2. Interaction with nucleic acid substrates 

Helicase binding to nucleic acids is an important step towards nucleic acids separations. The 

mechanism of binding can be different according to the helicase families. However most of 

them need a single-stranded nucleic acid region to bind. Once loaded on the strand, they 

translocate either 5’ to γ’ or γ’to 5’. The crystal structures of helicases bound to DNA or RNA 

revealed that helicases bind to nucleic acids through their phosphate backbones or nucleotide 

bases in the conserved motifs in the helicase core domain (Velankar SS et al., 1999; Lee JY 

and Yang W, 2006; Saikrishnan K et al., 2008; He X et al., 2012; Chen WF et al., 2016). As 

mentioned earlier, the NTP binding state causing a subunit movement, the nucleic acid 

affinity changes. Moreover, there is a special domain named the zinc-binding motif, which 

has also been found in some helicases to contribute to nucleic acid binding (Alberts IL et al., 

1998; Guo RB et al., 2005). The consequence is a significant conformational change in the 
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helicase domain. This change is absolutely necessary for ATPase and DNA/RNA unwinding. 

For example, when the DEAD box helicase YxiN binds to RNA, it will induce the closer 

conformational change of two helicase subdomains for RNA unwinding (Karow AR and 

Klostermeier D, 2009). Similar structure changes also have been indicated in PcrA and Rep 

helicases (Velankar SS et al., 1999; Korolev S et al., 1997). In addition, some helicases are 

sensitive to chemical modifications of the nucleic acid substrate such as breaks 

(discontinuities in sugar phosphate backbone; substituted with ethylene glycol), abasic sites, 

or electrostatic disruptions (Eoff RL et al., 2005).  

 

  1.3.3. Translocation  mechanism  

Helicases are defined as enzymes that translocate through double-stranded nucleic acid to 

catalyse the separation or unwinding of the complementary nucleic acid strands. Therefore 

they need to unwind nucleic acids much longer than their binding sites. The unwinding occurs 

in a stepwise manner. The helicase stays on the nucleic acid track and catalyzes repeated 

cycles of base pair separation steps coupled to unidirectional translocation. But several 

helicases can translocate along nucleic acids uncoupled from base pair separation (Soultanas 

P et al., 2000). Therefore, translocation and base pair separation mechanisms can be 

distinguished. Many different mechanisms have been proposed for translocation and base pair 

separation. The diverse biochemical properties (the helicase oligomeric state, its binding 

mode of the nucleic acid, the effect of the NTP binding state on nucleic acid binding 

properties) are reflected in the proposed mechanisms. The translocation is characterized by 

the polarity and the step-size. 

Polarity is defined as the direction of helicase translocation along the double-stranded 

nucleic acid (5' to 3' or 3' to 5') and unwinding. For example FANCJ, XPD and RecD unwinds 

in direction 5' to 3', RecQ helicase family displays 3' to 5' polarity. However, some helicases 

like RecBDC, PcrA they can show bipolar unwinding activity (Dillingham MS et al., 2003; 

Naqvi A et al., 2003). 

Step-size is defined as the number of steps resulting in the unwinding of a certain 

number of base pairs during each reaction cycle, which is defined as sequence of chemical 

and conformational states, such as ATP binding, hydrolysis, and product release. To date, the 

reported step-size value of helicases varies largely; it is as small as 1 base pair for PcrA 

helicase and large as 23 base pairs for RecBC (Wigley DB, 2000). 

 Actually, three models have been accepted to explain the mechanism by which 

helicases translocate. These three models are named as 'rolling model', 'inchworm model' and 
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'Brownian model'. These models are illustrated by Figure 3.The inchworm and the rolling 

models are stepping mechanisms in which two nucleic acid binding sites independently bind 

and release nucleic acid in response to the signals received from the NTPase site (Wong I and 

Lohman TM, 1992; Yarranton GT and Gefter ML, 1979; Velankar SS et al., 1999). In these 

models, the helicase is always bound to the nucleic acid via one nucleic acid binding site. 

 The Inchworm model (Figure 3A) works with a monomer or oligomer state, 

and both subdomains bind single strands. One helicase domain is bound tightly to the nucleic 

acid and the second helicase domain is bound weakly to the nucleic acid. ATP binding and 

hydrolysis cause that the protein goes through a serie of conformational states that move the 

domains 1 and 2 closer or further apart relative to each other. The weak site dissociates from 

the nucleic acid and in a power stroke motion moves away from the tight site to bind at a 

position ahead. After the weak site has moved and made tight interactions ahead, the original 

tight site becomes weak. The latter dissociates from the nucleic acid and in a power stroke 

motion it moves forward to get close in distance to the site ahead. One cycle in an inchworm 

stepping mechanism is completed in six conformational changes. This model has been 

proposed by the observations of PcrA (Kim JL et al., 1998; Velankar SS et al., 1999). 

  The Rolling model (Figure 3B) requires a dimerized helicase and each 

monomer presents different conformational state. One state has a high affinity for single stand 

RNA/DNA and the other has higher affinity for double strand RNA/DNA. The 

conformational states vary by NTP binding and hydrolysis. During the hydrolysis of ATP and 

the ADP ejection, the two monomers change their conformation to adopt "that of the other" 

allowing their migration. This model had been proposed from the observation of the Rep 

helicase whose crystals revealed two different conformations (Korolev S et al., 1997). 

  The Brownian model (Figure 3C) is more recent than the others and comes from a 

study of NS3 (Levin MK et al., 2005). It is based on two conformational states of the helicase 

resulting from the different NTP binding states. In the absence of ATP, the helicase binds 

tightly to DNA in its lowest energy state, unable to translocate. The binding of ATP weakens 

the affinity of the helicase to DNA and the binding free energy is constant along the nucleic 

acid length. The consequence is a random Brownian movement of the helicase, which can 

slide along the length of the nucleic acid in either directions. This movement can lead to the 

dissociation of the helicase from the DNA. The weak binding mode is characterized by a short 

life time, since ATP hydrolysis takes place and the enzyme can rebind the DNA tightly. The 

translocation of the helicase and unwinding of the DNA result from the combination of power 

stroke and Brownian motion: if the helicase is in the forward position when ATP is 
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hydrolyzed and released, the helicase will end up one step forwards from its original position 

upon tight binding to the nucleic acid; whereas, no net unidirectional translocation of the 

helicase will occur if the helicase is in the backward position when ATP is hydrolyzed. This 

model is applicable to helicases that function as monomers or oligomers. This mechanism is 

very similar to the inchworm model but it does not explain the polarity. 

Figure 3. Models of Helicase Activity. (A) Inchworm model: the distance between domains 

1 and 2 varies with NTP binding and hydrolysis. Adapted from Tanner NK and Linder P, 

2001 (B) Rolling model: each monomer of the helicase has a different conformational state 

and affinity for single-stranded and double-stranded nucleic acids. Adapted from Tanner NK 

and Linder P, 2001 (C) Brownian model: the helicase undergo nucleic acid by affinity 

changes (tight to weak). Adapted from Patel SS and Donmez I, 2006. 

 

  1.3.4. Base pair separation or unwinding mechanism  

Unwinding activity is characterized by the processivity, which is defined as the number of 

unwound base pairs before the helicase dissociates from the substrate. It is shown that some 

helicases exhibits a high processivity. It is normally the case of helicases involved in genome 

replication. Others can only separate just few bases and are involved in some DNA repair or 

in helping to prevent the breakdown of DNA replication. But it is important to note that many 

ATP ADP+ P 

A 

B 

C 
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helicases interact physically with other proteins in the cell, and this could regulate the 

processicity (Lohman TM and Bjornson KP, 1996; Bennett RJ et al., 1999; Bianco PR et al., 

2001). 

Base pair separation occurs at the junction of single-stranded and duplex regions. Long 

stretches of duplex nucleic acids are unwound by coupling base pair separation to 

translocation. Two base pair separation mechanisms are possible: an active or a passive 

mechanism (von Hippel PH and Delagoutte E, 2001; Betterton MD and Julicher F; Lohman 

TM, 1992) (Figure 4). In the case of the passive mechanism (Figure 4A), thermal fluctuation 

allows spontaneous base pair opening before the helicase moves and binds to the newly 

opened base. The opening of several base pairs at the same time is very unlikely near the 

junction. In this case, to move and bind more than one base at a time, an active mechanism is 

necessary (Figure 4B). Helicase translocate one strand while excluding the complementary 

strand (Jezewska MJ et al., 1998; Kaplan DL 2000; Kaplan DL et al., 2003; Tackett AJ et al., 

2001; Kawaoka J et al., 2004; Ahnert P and Patel SS 1997; McGeoch AT et al., 2005). This 

mechanism prevents re-annealing of the unwound strands. Duplex DNA can be destabilized 

by other ways. For example helicases can interact and distort the duplex region near the 

unwinding junction before separating the strands (Wong I and Lohman TM 1992; Velankar 

SS et al., 1999).  

 

 

 

 

 

 

 

 

 

Figure 4. Passive and active mechanisms for helicase unwinding. (A) In the passive 

mechanism, the helicase does not contact directly with the duplex. Instead, it operates by 

trapping ssDNA at a thermally fraying ss–dsDNA junction. (B) In the active mechanism the 

helicase interacts directly destabilizing the dsDNA by actively unwinding the strands. 

Adapted from Soultanas P and Wigley DB, 2001. 

 

 

A 

B 



 11 

  1.3.5. Annealing 

Although helicase can separate nucleic acid duplexes, they also possess strand-annealing 

activity. Several lines of evidence have shown that annealing activity is a result of oligomeric 

state of helicases. Some laboratories found the C-terminal region of helicase is required for 

the annealing ability (Muftuoglu M et al., 2008). The human RecQ5 (Ren H et al., 2008), 

RECQ4 (Macris MA et al., 2006), the Bloom Syndrome helicase (BLM) (Cheok CF et al., 

2005), the Werner Syndrome helicase (WRN) (Brosh RM Jr et al., 2006) are examples of 

helicases with significant strand annealing activity. The consequence can be the processing of 

Okazaki fragments (Bartos JD et al., 2006), RNA secondary structure formation (Muller UF 

et al., 2001), the redox-regulated (Chamot D et al., 2005). Some RNA helicases, are able to 

carry out the unwinding function in the presence of ATP, and the annealing activity 

independent of ATP (Chamot D et al., 2005). Structure and length of substrate influence the 

annealing ability of helicase (Muller UF et al., 2001). It increases with the length of the 

strands in the cases of BLM and WRN (Machwe A et al., 2006). The unwinding activities are 

significantly stronger than annealing for several helicases, as the redox-regulated 

cyanobacterial RNA helicase (CrhR) (Chamot D et al., 2005). Other proteins regulate the 

balance between annealing and unwinding (Machwe A et al., 2006). Some studies have 

revealed that some proteins present domains responsible of annealing activity, as the 

RecQ5β helicase in the C-terminus (Garcia PL et al., 2004), Pif1 in the N-terminal domain 

(Gu Y et al., 2008). Also the N-terminal region of RECQ1 (Lucic B et al., 2011) and the C-

terminal region of the WRN helicase are required for annealing activity (Muftuoglu M et al., 

2008). Demonstrating that it is not a single conserved domain responsible for the annealing 

activity. The oligomeric state of the helicase is also involved in the anneling activity. The 

tetrameric state of the human RECQ1 helicase promotes annealing whereas monomeric or 

dimeric states have unwinding activity (Muzzolini L et al., 2007; Lucic B et al., 2011). Also 

the ATP permits the unwinding activity and inihibits the annealing. This has been seen with 

BLM (Cheok CF et al., 2005), Pif1 (Gu Y et al., 2008) and the RNA helicase Ddx42p 

(Uhlmann-Schiffler H et al., 2006). Moreover some proteins can regulate the annealing 

activity. For exemple RPA stimulates the unwinding activity of many helicases in vitro such 

as WRN (Brosh RM Jr et al., 1999; Shen JC et al., 1998), BLM (Brosh RM Jr et al., 2000), 

RECQ1 (Cui S et al., 2004), and FANCJ (Gupta R et al., 2007) by inhibiting unwinding and 

annealing activity of RECQ1 (Sharma S et al., 2005), PIF1 (Gu Y et al., 2008), and CSB 

(Muftuoglu M et al., 2006). Also other proteins as U2AF permits anneling of RNA helicase A 

(Lee CG et al., 1993) and XPG permiting annealing activito of the WNR helicase (Trego KS 
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et al., 2011). 

 

  1.3.6. Regulatory domains and specificity 

Helicases are also characterized by the presence of accessory domains. They can be localized 

in the N terminal region, inside the RecA domain, or in the C terminal region. The length, the 

topology and the activities of these domains are variable. These domains are responsible of 

the specificity and the regulation of the enzymatic activity. UvrD/Rep and Pif1-like have 

accessory domains (motif Ia and III) located on top of the nucleic acid binding site, on the 

helicase core determining the definition of the translocation polarity (Saikrishnan K et al., 

2009). Accessory domains modulate the enzymatic activity by targeting the protein at a 

specific substrate such as RecQ-like, that contain DNA-binding accessory domain called 

HRDC domain involved in targeting a variety of substrates. Also DbpA has accessory 

domains, which target different RNA structures (Bennett RJ and Keck JL, 2004; Diges CM 

and Uhlenbeck OC, 2001). In the case of Mss116p's two sub-regions in the C-terminal 

domain modulate and support the activities of the helicase core, the translation and RNA 

splicing (Mohr G et al., 2008). The accessory regions can constitute dimerization sites in the 

case of helicase Hera, which presents a dimerization motif in the C-terminal domain 

connected with RecA domain by a hinge region that confers flexibility onto the helicase, 

allowing for different juxtapositions of the RecA-domains in the dimer (Klostermeier D and 

Rudolph MG, 2009). The accessory domains interact also with proteic partners: among the 

DExD/H box ATPases, Prp2, Prp16, Prp22 and Prp43 allows the assembly of the 

spliceosome, the catalysis of the splicing reaction and the dissociation of the intron-lariat 

spliceosome. For exemple see the case of Prp43, which interacts with the G-patch motif of 

Ntr1 and Prp2 with Spp2 (Company M et al., 1991; Arenas JE and Abelson JN, 1997; 

Edwalds-Gilbert G et al., 2004; Silverman EJ et al., 2004; Christian H et al., 2014). 

 

 1.4 Biological functions of helicases 

Helicases being conserved enzymes from bacteria to human and having interactions with 

nucleic acids, it confers them a key role in genomic metabolism and stability, involving them 

in various cellular processes. Mutations in helicases lead to a number of human diseases such 

as cancer, premature aging, Bone Marrow failure, neurodegenerative diseases, telomere 

shortening and autoimmune diseases. The tables 1 and 2 below summarizes the helicase 

functions related to human diseases: 
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Adapted from Bochman ML, 2014 and Brosh RM Jr, 2013. 

 

DNA Helicase Disease(s) Genome metabolic 

pathway 

Reference 

 

WRN Werner syndrome 
 

Repair 
 

Bernstein KA et al., 
2010; van Brabant 
AJ et al., 
2000; Suhasini AN 
and Brosh RM, 
Jr, 2013 

BLM Bloom syndrome 
 

Repair 
 

Bernstein KA et al., 
2010; van Brabant 
AJ et al., 
2000;  Suhasini AN 
and Brosh RM, 
Jr, 2013 

RECQ4 Rothmund-Thomson 
syndrome, Baller-
Gerold syndrome, & 
Rapadilino syndrome 
 

Replication and 
Mitochondrial DNA 
metabolism 
 

Bernstein KA et al., 
2010; van Brabant 
AJ et al., 
2000; Suhasini AN 
and Brosh RM, 
Jr, 2013; Liu Y, 
2010 

FANCJ Fanconi anemia 
 

Repair 
 

Kim H andD'Andrea 
AD, 2012; Wu Y et 
al., 2008 

XPD and XPB Xeroderma 
pigmentosum, 
Cockayne syndrome, 
and 
trichothiodystrophy 

Reparation and 
Transcription 
 

Fuss JO and Tainer 
JA, 2011; Egly JM 
and Coin F, 2011; 
 

RTEL1 
 

Dyskeratosis 
congenital and 
Hoyeraal-
Hreidarsson 
syndrome 

Telomere 
maintenance and 
Homologous 
recombination 
 

Walne AJ et al., 
2013; Le Guen T et 
al., 2013 
 

PIF1 
 

Cancer 
 

Replication, 
Transcription, 
Telomere 
maintenance and 
Mitochondrial DNA 
metabolism 

Chisholm KM et al., 
2012 
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RNA Helicase Disease(s) Genome metabolic 

pathway 

Reference 

 

RIG-I like Viral infection RNA sensor Bruns AM 
and Horvath CM, 
2011 

DDX1 Viral infection and 
Cancer 

Transcription, 
mRNA processing, 
Translation 
 

Fang J et al., 2005; 
Robertson-
Anderson RM et al., 
2011; Ishaq M et al., 
2009; Tanaka K et 
al., 2009; Bléoo S et 
al., 2001; Kanai Y et 
al., 2004 

DHX36 Viral infection, 
Aging and Cancer 

Telomere 
maintenance,  
mRNA processing 
 

Naji S et al., 2011; 
Sexton AN 
and Collins K, 2011; 
Lattmann S et al., 
2010; Tran H et al., 
2004 

DHX9 Viral infection and 
Systemic lupus 
erythematodes 
 

RNA sensor, 
Transcription, 
Translation 
 

Zhang Z et al., 2011; 
Jeang KT 
and Yedavalli V, 
2006; Roy BB et al., 
2006; Nakajima T et 
al., 1997; Fujii R et 
al., 2001; Aratani S 
et al., 2001; 
Hartman TR et al., 
2006 

DDX39 Cancer Telomere 
maintenance 

Yoo HH 
and Chung IK, 2011  

DDX19 Lethal congenital 
contracture syndrome 

RNA transport Hurt JA 
and Silver PA, 2008 

DDX25 Azoospermia and 
Oligospermia 

RNA transport Sheng Y et al., 2006 
 

Gu Gastric antral 
vascular ectasia 

mRNA processing, 
Translation 

Schmid SR 
and Linder P, 1992 

Adapted from Steimer L and Klostermeier D, 2012. 
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Defining the cellular roles of these helicases and determining the exact steps in which they are 

involved in the metabolic pathway will allow to link the defect in a particular helicase to the 

human disease. Helicases being classified on the basis of their substrate, they can be 

distinguished as DNA helicases and RNA helicases. 

 

  1.4.1. Biological functions of DNA helicases 

DNA helicases are required for the maintenance of genome integrity including DNA 

replication, repair, chromosome recombination and transcription. These proteins are also 

involved in functions in which their helicase activity is not required. Indeed they can interact 

with nucleic acids and other protein partners in the cell, playing the role of molecular sensor 

and participating to signal transductions. The breakdown of genome integrity and cellular 

signaling cascades are a characteristic of many diseases and places them at the forefront of 

biomedical research into genetic disorders, ageing and cancer biology.  

 

   1.4.1.1. DNA replication 

DNA replication consists in the production of two identical replicas of DNA from one 

original DNA molecule. Numerous studies were performed to understand the mechanisms of 

the replication initiation. For instance, in E. coli, the replication origine (Ori C) is recognized 

by the dnaA protein, which allows the fixation of dnaB, which is characterized by a helicase 

activity. Associated with an enhancer of this activity dnaC, dnaB can unwind DNA (Baker 

TA et al., 1987). Therefore helicase acts as a roadblock remover permitting the formation of 

the replication fork. They function as a checkpoint and a surveillance mechanism to remove 

structural roadblock in S-phase of DNA replication. Some DNA replication intermediates 

such as DNA hairpins, D-loop, triple junctions, Holliday junctions can be solved by helicases 

(Hickson ID, 2003).  

 

   1.4.1.2. DNA Transcription  

Transcription is a very elaborated process consisting in copying the information of a DNA 

strand into a molecule of messenger RNA (mRNA). It requires several transcription factors 

and helicases play a major role in the initiation of the transcription. Among the transcription 

factors, TFIIH is a large complex of nine subunits with helicase and kinase activities (Eisen A 

and Lucchesi JC, 1998; Frit P et al., 1999). The 3'-5' helicase XPB is one of them and is 

essential for both DNA repair and transcription initiation (Coin F et al., 1999). The TFIIH 

complex enables the formation of the RNA polymerase II pre-initiation complex by 
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phosphorylation of the C-terminal domain. The active RNA polymerase allows the opening of 

the double-stranded DNA and template transcription. Several other helicases have been 

identified in the initiation of the transcription such as MOT1 in yeast (Davis JL et al., l992), 

Brahma in Drosophila (Tamkun JW et al., 1992), hBrm in human (Muchardt C et al., 1993). 

In yeast, the helicase domain of SNF2 is necessary for the transcription activity (Laurent BC 

et al., 1993) and the N-and C-terminal domains of the protein interact with other members of 

the SWI/SNF family which are DNA binding activators and specific for some general 

transcription factors. The ATPase activity contributes to the unwinding at the initiation site 

(Laurent BC et al., 1993). Other helicases such as Senataxin and Rho are involved in the 

transcription termination at RNA polymerase pause sites (Alzu A et al., 2012; Richardson JP, 

2002).  

 

   1.4.1.3. DNA repair     

Genetic information during metabolic activities is permanently submitted to different stresses 

such as UV irradiations, chemicals leading to DNA damages, mismatches, DNA 

modifications. Fatal damages are DNA Double-Strand Breaks (DSBs) or interstrand DNA 

crosslinks and small DNA lesions such as oxidized or reduced bases, fragmented or non-

bulky adducts. These lesions can block DNA replication and transcription. Therefore DNA 

sequences must be quickly repaired otherwise mutations, cancerogenesis, loss of genetic 

information can occur and lead to cell death. Cells repair these fatal damages by different cell 

pathways: Homologous Recombination (HR), Non-Homologous End-Joining (NHEJ), Base 

Excision Repair (BER) Nucleotide-excision repair (NER) and Interstrand CrossLink (ICL) 

repair. Homologous Recombination (HR) is a type of genetic recombination in which 

nucleotide sequences are exchanged between two similar or identical molecules of DNA and 

it is normaly used to repair damage. RTEL1 supress homologous recombination (HR) by 

unwinding displacement loop (D-loop) (Uringa EJ et al., 2012) and BLooM helicase (BLM) 

interacts with DNA2 helicase/nuclease, EXOnuclease 1 (EXO1), the MRN complex and 

Replication Protein A (RPA) allowing DSB resection during HR-mediated repair (Nimonkar 

AV et al., 2011) (Figure 5A).  Like homologous recombination (HR), Non-Homologous End-

Joining (NHEJ) allows to repair the double-strand breaks (DSB). It is known that WNR 

interacts with the Ku protein complex (Cooper MP et al., 2000) and DNA ligase IV 

(Kusumoto R et al., 2008), which are both implicated in NHEJ. The resulting single-strand 

break can be processed by short-patch BER through a single nucleotide replacement or long-

patch BER through which 2-10 new nucleotides (Figure 5B). The Werner syndrome helicase 
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(WRN) participates in long-patch BER by unwinding 5'-flaps and interacting with BER 

proteins (Rossi ML et al., 2010), by interacting with poly (ADP-ribose) polymerase 1 

(PARP1), which is a sensor of DNA breaks (Lebel M et al., 2003) and other proteins, notably 

DNA polymerase-ȕ, apurinic/apyrimidinic endonuclease 1 (APE1), and flap endonuclease 1 

(FEN1) (Rossi ML et al., 2010).  

Figure 5. Helicases in Homologous Recombination (HR) and Base Excision DNA Repair 

(BER). (A) The Homologous Recombination (HR) allows the disruption of displacement 

loops (D-loops) and decreases double Holliday Junction (HJ) formation. (B) The Base 

Excision DNA Repair (BER) by WNR action in the long-patch allows the strand 

displacement. Adapted from Brosh RM Jr, 2013. 

 
The bulky distortions in the DNA can be recognized by Nucleotide-excision repair (NER) 

leading to the removal of a short single-stranded DNA segment, which includes the lesion and 

creates a single-strand gap in the DNA, which is filled by a DNA polymerase (Figure 6A). In 

this case the TFIIH complex is activated. This complex is composed of two DNA helicases 

XPD (5' to 3') and XPB (3' to 5'), which open the DNA duplex around the lesion. Then the 

Replication Protein A (RPA) enables nucleases recruitment (the XPF–ERCC1 complex and 

XPG) which can then remove the damaged strand (Egly JM and Coin F, 2011). Also HR and 

NER involve the FA pathway of ICL mechanism through a variety of proteins (Figure 6B). 

FA core complex contains FANCM which participates to the ICL detection, FANCJ which 

B A 
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operates downstream of FANCD2 and FANCI mono-ubiquitylation to facilitate 

recombinational repair (Peng M et al., 2007). Moreover BLM participates in this FA complex 

by stabilizing the stalled replication fork (Meetei AR et al., 2003).  

 
 

 

 

Figure 6. Helicases in Nucleotide Excision (NER) and Interstrand Crosslink (ICL) DNA 

Repair. (A) The Nucleotide Excision Repair (NER) by the action of XPB and XPD leads to 

the dsDNA opening. (B) The Interstrand Crosslink (ICL) DNA Repair by the participation of 

various helicases such as FANCJ and BLM allows the action of nucleases which cause the 

removal of one strand, leaving a gap that will be resolved by parallel repair pathways. 

Adapted from Brosh RM Jr, 2013. 

 

   1.4.1.4. Chromosome recombination 

DNA recombination is involved in several biological functions. It is firstly involved in 

meiosis leading to new combinations of DNA sequences, to make gamete cells, sperm and 

egg cells in animals. This results in a genetic variation, which allows adaptation during 

evolution. Also it is used to accurately repair harmful breaks that occur on both strands of 

DNA (DBSs), named in the previous paragraph. In the case of homologous recombination in 

meiosis some helicases are required.  

In normal cells, the sister chromatid exchanges (SCEs) is low (Chaganti RS et al., 1974) due 

to the molecular mechanism which allows mitotic recombination intermediates separation 

B A 
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(Bizard AH and Hickson ID, 2014). The uncoupling of single and double Holliday junctions 

(HJs) proceeds through two mechanisms: dissolution, in which a double HJ (dHJ) is dissolved 

by a DNA helicase or motor protein and unlinking by a type IA topoisomerase (ex. BLM–

TOPIIIα–RMI1–RMI2 (BTRR) in humans), or resolution, in which an HJ or precursor is cut 

by one or several endonucleases (ex. MUS81–EME1, SLX1–SLX4, or GEN1 in humans). 

The dissolution pathway exclusively produces noncrossover products, but the resolution 

pathway may produce either crossover or noncrossover products (Bizard AH and Hickson ID, 

2014; Wyatt HD and West SC, 2014). 

In the case of Double-Strand Breaks (DSBs), in bacteria (E. coli) two helicases of the 

RecBDC pathway are active: RecB which is a 3' to 5' helicase and RecD which is a 5' to 3' 

helicase (Dillingham MS and Kowalczykowski SC, 2008), they move both in the same 

direction and cause a faster unwinding (Singleton MR et al., 2004; Liu B et al., 2013) (Figure 

7A). In eukaryotes a heterotrimeric complex Mre11–Rad50–Xrs1-Sae2 (MRX) binds to a 

DSB (Figure 7B). In vitro, MRX presents a 3' to 5' exonuclease activity (Cannavo E amd 

Cejka P, 2014). MRX (MRN in humans) produces an important intermediate that commits a 

DSB to HR versus nonhomologous end joining (NHEJ), producing a long ssDNA region upon 

which a Rad51 filament forms (Symington LS, 2014). This long-range resection proceeds 

through two alternative routes: the Sgs1-Dna2-RPA pathway and the Exo1 pathway 

(Symington LS, 2014). The Sgs1-Dna2-RPA pathway permits the resolution by the Sgs1 5' to 

3' unwiding activity and the Dna2 5' to 3' nuclease activity stimulated by RPA (Cejka P and 

Kowalczykowski SC 2010; Cejka P et al., 2010; Niu H et al., 2010).  
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Figure 7. Chromosome recombination in the case of Double-Strand Breaks (DSBs). (A) 

The bacterial RecBCD pathway (E. coli). (i) RecBCD helicase-nuclease complex recognises 

the DNA end. (ii) The two helicases translocate each strand RecD in green (5' to 3') and RecB 

in orange (3' to 5'). The nuclease domain is located at the C-terminus of RecB. Before 

encountering a Chi (crossover hotspot initiator) site, the 3' strand is more cleaved than the 5' 

strand and a loop of single-stranded DNA accumulates ahead of RecB. (iii) Chi recognition by 

RecC subunit in blue leads to the stimulation of the nucleases activity complex on the 5' 

strand only. Finally RecA loads on the resulting 3' single-stranded DNA tail, which allows 

Homologous Recombination (HR). (B) The eukaryotic MRX complex pathway (S. 

cerevisiae). (i) The MRX complex (Mre11 in green; Rad50 in red; Xrs1 in orange; Sae2 in 

purple) recognises DNA ends. (ii) MRX recruits Sgs1 helicase in light green to the DSB end. 

The extensive end-resection is performed by DNA2 (in blue) associated with Sgs1 or in an 

alternative way by Exo1. RPA is bound to the unwound single-strands and stimulates Dna2 

nuclease activity on the 5' strand only. (iii) RPA is replaced by Rad51 recombinase on the 3' 

tail initiating Homologous Recombination (HR). Adapted from Blackwood JK et al., 2013. 

 

   1.4.1.5. Telomeres maintenance and G-quadruplexes metabolism 

In vivo observations have shown that several helicases having different functions at 

telomeres, are directly involved in telomere maintenance. The helicase Pif1p from yeast 

inhibits telomerase-mediated telomere lengthening by removing the telomerase from 

telomeric DNA (Zhou J et al., 2000; Boule JB et al., 2005). Helicases such as RTEL1 

(Regulator of Telomere Elongation heLicase 1) and WRN (WNR syndrome helicase) resolve 

A 

B 
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T-loops to enable telomere replication or repair (Vannier JB et al., 2012; Opresko PL et al., 

2004). Also in human, the DNA helicase DDX11 determines telomere length (Vasa-Nicotera 

M.et al., 2005) 

G-quadruplexes are non typical DNA structures composed of planar stacks of four guanines 

interacting by Hoogsteen hydrogen bonds. They are present in promoters and telomers. 

Certain DNA helicases such as WRN, BLM, FANCJ and PIF1 have the ability to unwind G4 

DNA substrates in vitro (Wu Y and Brosh RM Jr, 2010) 

In the second part of this manuscript dealing with the interaction between the Pif1 helicase 

and the G-quadruplex, more informations will be given on these aspects. 

 

   1.4.1.6. DNA sensing 

In the case of a microbe infection, the innate immune system comprises the cells of the first 

defense mechanism of host (Wu J and Chen ZJ, 2014). The pattern-recognition receptors 

(PRRs) allow to recognize in microbes different pathogen-associated molecular patterns 

(PAMPs), such as peptidoglycans (Schwandner R et al., 1999), lipopolysaccharides (LPS) 

(Brightbill HD et al., 1999; Zhang FX et al., 1999) and flagellin (Mizel SB et al., 2003). Also 

PRRs can detect damage associated molecular pattern molecules (DAMPs) that are derived 

from the host itself under stresses, including heatshock proteins (Wick G et al., 2014), 

HMGB1 (Bangert A et al., 2016), ATP (Kouzaki H et al., 2011), uric acid (Andrews NW, 

2005), heparin sulfate (Tsunekawa N et al., 2016) and DNA (Chan YK and Gack MU, 2016). 

The most studied PRRs are the Toll-like receptor (TLR) family that is expressed on innate 

immune cells such as dendritic cells (DCs), macrophages and neutrophils (Yin Q et al., 2015). 

Most TLRs detect extracellular PAMPs (Gay NJ et al., 2014). For exemple TLR1 and TLR2 

recognize triacylated lipoproteins from bacteria and GPI anchored proteins from parasites 

(Kirschning CJ et al., 1998). But also microbes can deliver PAMPs to the cytosol of the host 

cells, and these cytosolic PAMPs are recognized by intracellular PRRs (Beachboard DC and 

Horner SM, 2016). For instance, intracellular LPS can be recognized by inflammatory 

caspases (Shi J et al., 2014) and also Engulfed CpG rich DNAs are sensed by TLR9 in the 

endosomal compartment (Hemmi H et al., 2000).  

In general, all the pathogens contain DNA or RNA for their basic life activities such as 

protein encoding, movement and proliferation. These nucleic acids are potential PAMPs but 

their detection must be tightly regulated because improper recognition of host self nucleic 

acids will cause autoimmune diseases (Burdette DL and Vance RE, 2013). In the case of 

DNA it is more complicated, however eukaryotic genomic DNAs is in the cell nucleus 
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separated from the cytosol. In fact a DNA sensing activity has been described for three 

helicases only: DDX41, DHX9 and DHX36, which are members of the DExD/H-box 

helicases (DDX) protein family. DDX41 (Figure 8A) detects and binds double stranded 

DNAs (dsDNAs) through its DEAD domain (Asp-Glu-Ala-Asp). This interaction enables the 

protein to interact with STING and activate the STING-TBK1-IRF3 pathway in myeloid 

dendritic cells (mDCs) (Zhang Z et al., 2011) allowing finally the subsequent type I interferon 

production (Tanaka Y and Chen ZJ, 2012). It has also been reported that DDX41, directly 

binds cyclic dinucleotides (CDNs), such as cyclic di-GMP (c-di-GMP) inducing IFN 

(Parvatiyar K et al., 2012). In the case of DHX9 and DHX36, these two helicases bind CpG 

DNA (Figure 8B). DHX36 binds CpG-A using the DEAH domain leading to IRF7 activation, 

whereas DHX9 binds CpG-B using the DUF domain (Domain of Unknown Function) leading 

to NFκψ activation, both through MyD88 in plasmacytoid dendritic cells (pDCs) (Kim T et 

al., 2010). Moreover DHX9 has the capacity to bind viral RNA of influenza A and reovirus 

inducing the MAVS-dependent IFN and cytokine expression in myeloid DCs (Zhang Z et al., 

2011). It is important to notice that these three helicases possess other cellular activities such 

as mRNA splicing and translation initiation for DDX41 (Polprasert C et al., 2015; Ilagan JO 

et al., 2013), telomere maintenance and mRNA processing for DHX36 (Sexton AN 

and Collins K, 2011; Lattmann S et al., 2010; Tran H et al., 2004) and transcription and 

translation for DHX9 (Jeang KT and Yedavalli V, 2006; Roy BB et al., 2006; Nakajima T et 

al., 1997; Fujii R et al., 2001; Aratani S et al., 2001; Hartman TR et al., 2006). In the situation 

of the DNA sensing activity by these enzymes, the helicase activity in the literature.  
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Figure 8. Signalling pathways of helicase DNA sensors in innate immunity. (A) The 

signalling pathway of DDX41. After infection, virus and bacteria release dsDNA or c-di-

GMP. DDX41 is then phosphorylated by BTK kinase and gets active. This activation allows 

DEAD domain interaction with foreign PAMPs and activation of STING. STING 

translocates from the endoplasmic reticulum (ER) to Golgi apparatus and interacts with 

TBK1 leading to TBK1 activation and subsequent phosphorylation resulting in nuclear 

translocation of IRF3 and IFN type 1 expression. After immune response, DDX41 is 

ubiquitinated by TRIM21 leading to its degradation in the proteasome. Adapted from Jiang 

Y et al., 2017. (B) The signalling pathway of DHX9/36. After cell infection DHX9/36 

interacts with infectious dsDNχ and activates NFκψ and IRF7 through εyD88, producing 

inflammatory cytokines and INF type I. Adapted from Xia P et al., 2016. 

 

  1.4.2. Biological functions of RNA helicases 

RNA helicases are thought to be mainly involved in RNA unwinding. However, they can 

exhibit a large range of activities (Putnam AA and Jankowsky E, 2013). Being engaged in 

several steps of the mRNA metabolism, RNA helicases control the gene expression process 

and the flow of the genetic information by driving and guiding the synthetized molecules 

towards dedicated molecular factories. Several RNA helicases (DDX1, DDX5, DDX17, 

DDX20, DDX21 and DHX9) have a role in transcription regulation and they function as 

transcription co-activators or co-repressors (Fuller-Pace FV, 2006). This category of helicases 

does not interact with mRNAs only, but also with rRNAs, miRNA, and RNPs. Below we 

A B 
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focus on the roles of RNA helicases in translation regulation, ribosome biogenesis, nuclear 

mRNA export, RNA decay, splicing, gene silencing, cytoplasmic transport and storage 

(Lüking A et al., 1998). RNA helicases are also involved in viral RNAs sensing triggering 

innate immune response (Yoneyama M et al., 2004). Moreover, deregulation of certain RNA 

helicases have been linked to neuro-degenerative disorders (Fogel BL and Perlman S, 2006), 

cancers (Abdelhaleem M, 2005) and several research works reveal helicase contribution 

during the differentiation process (Abdelhaleem M, 2005).  

 

   1.4.2.1. RNA splicing 

Splicing of mRNA is an essential cellular process to produce mature mRNAs and to translate 

them into proteins. This process consists in removing additional sequences called introns and 

joining the exons. This process requires more than hundred proteins. Among them, the RNA-

binding proteins (RBPs), and five small nuclear RNA (snRNA), which form RNP complex 

(splicing complex). These complexes take place in 5' and 3' of the intron and also around the 

connection point of the intron. The recognition of splicing sites by the spliceosome is 

modulated by the binding of RBPs on the nascent mRNA and regulates alternative splicing 

(Fu XD and Ares M Jr, 2014; Witten JT and Ule J, 2011; Irimia M and Blencowe BJ, 2012). 

Several RNA helicases have been purified from different splicing complexes (Ilagan JO et al., 

2013; Will CL et al., 2002). They function in various species (Burckin T et al., 2005). In 

human, DDX5 and DDX17 control the splicing of a large number of exons (Dardenne E et al., 

2014). DDX41 interacts with a large number of spliceosome components, and the gene 

mutation of this RNA helicase affects alternative splicing (Polprasert C et al., 2015; Ilagan JO 

et al., 2013). Additionnaly, some RNA helicases have a role in the splicing fidelity by 

rejecting suboptimal splicing substrates (Koodathingal P and Staley JP 2013). Core 

spliceosome helicases may therefore contribute to alternative splicing site selection. It is the 

case for the Prp16 and Prp22 RNA helicases in budding yeast (Semlow DR et al., 2016). 

Seven RNA helicases DExD/H familly and on of Ski2-like are necessary for splicing (de la 

Cruz J et al., 1999). The role of this helicases is required to control the correct RNA base 

pairing during spliceosomal assembly and also to unfold the secondary structures during the 

splicing reaction. 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Yoneyama%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15609720
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   1.4.2.2. Nuclear mRNA export 

In eukaryotic cells, mRNAs reach the cytoplasm to be translated. This implies it must get the 

nuclear membrane through the nuclear pores. Several factors are required for this passage 

(Figure 9). mRNA competent for nuclear export are made thanks to the recruitment to the 

mRNP of adaptor proteins such as Aly/REF export factor (ALYREF or Yra1 in budding 

yeast), the subcomplex THO, which are recruited by the helicase DDX39B (UAP56 or Sub2 

in budding yeast) (Luo ML et al. 2001) giving the TREX complex. This helicase recruits 

nuclear RNA export factor 1 (NXF1; also known as TAP or MEX67 in budding yeast) 

(Gatfield D et al., 2001; Jensen TH et al., 2001; Luo ML et al., 2001; Strasser K and Hurt E, 

2001). Two other RNA helicases have also been shown to play a part in co-transcriptional 

mRNP assembly and mRNA export: DDX5 in humans and its budding yeast homologue 

Dbp2. Then, once mRNPs have transited through the nuclear pore complex, they are 

remodeled by DDX19B (DBP5 in budding yeast) in the cytoplasm, and the nuclear RBPs is 

released from mRNPs in an ATPase-dependent manner (Lund MK and Guthrie C, 2005; Tran 

EJ et al., 2007; Tieg B and Krebber H, 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. mRNA export from nucleus to the cytoplasm. The nascent messenger 

ribonucleoprotein particle (mRNP) is recruited for the transcription-export complex TREX. 
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After mRNP maturation, the nuclear RNA export factor 1 (NXF1) is recruited to the mRNP 

through direct interactions with several TREX components (such DDX39B). Both TREX and 

TREX-2 cooperate to export the same transcripts with NXF1 and its cofactor p15. This 

triggers the transit through the nuclear pore by interacting directly with the nucleoporins. 

After mRNPs have transited through NPCs and arrived in the cytoplasm, the different 

receptors of cargo mRNAs are removed by the action of RNA helicase DBP5 (also known as 

DDX19B). The ATPase activity of DBP5 catalyses the release of RNA-binding proteins 

(RBPs) from mRNAs. This process is regulated by three DBP5-interaction partners: the 

mRNA export factor nucleoporin GLE1 and the small signaling molecule inositol 

hexakisphosphate (InsP6). Adapted from Wickramasinghe VO and Laskey RA, 2015. 

 

An increasing number of RNA helicases have been shown to have a role in selective mRNA 

export: for example, selected mRNAs involved in spermatogenesis are exported thanks to the 

participation of DDX25 (Sheng Y et al., 2006). In Xenopus laevis oocytes, Xp54 or DDX6 in 

humans binds to and exports a set of transcripts that are stored in the cytoplasm and not 

translated (Smillie DA and Sommerville J, 2002). Finally, DDX1, DDX3X, DDX56, DDX21, 

DHX9 and MOV10 participate in the nuclear export of viral RNAs (Yedavalli VS et al., 2004; 

Huang, F. et al., 2015; Yasuda-Inoue M et al., 2013; Reddy TR et al., 2000).  

 

   1.4.2.3. mi-RNA-induced gene silencing 

miRNAs are small non-coding RNAs that assemble with Argonaute proteins into miRNA-

induced silencing complexes (miRISCs). They mediate post-transcriptional silencing by 

interacting with complementary mRNAs (Jonas S and Izaurralde E, 2015; Ha M and Kim VN, 

2014). Several RNA helicases participate in miRNA biogenesis and miRISC assembly (Ha M 

and Kim VN, 2014). Some of them promote the maturation of specific pri-miRNAs, as 

DDX5, DDX17 (Motino O et al., 2015; Moy RH et al., 2014). DHX9 (Kawai S and Amano 

A, 2012), DDX1 (Han C et al., 2014; Gregory RI et al., 2004), DDX23 (Yin J et al., 2015) 

and DDX3X inhibits Drosha-mediated processing of a subset of pri-miRNAs (Krol J et al., 

2015). Some helicase such as DHX36 can inhibit miRNA maturation by competing with 

Dicer for binding to the terminal loop of pre-miR-134 (Bicker S et al., 2013), whereas other 

(DDX5) unwinds a miRNA precursor duplex to facilitate its loading on to miRISCs (Salzman 

DW et al., 2007).  
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   1.4.2.4. Ribosome biogenesis 

Ribosome biogenesisis a complex and multistep process. The first step consists in the 

transcription of ribosomal RNA, several cleavage steps permit the rRNA maturation and 

finally the ribosome formation. Three to four rRNAs (in prokaryotes or eukaryotes), several 

snoRNAs (small nucleolar RNAs) behaving as transactivators factors are involved with many 

ribosomal proteins (Kressler, D et al. 1999). More than 20 RNA helicases have a role in 

rRNA processing without having a role in mRNA metabolism. Only DDX5 and DDX17 have 

been found to participate in both processes. Therefore, it seems that RNA helicases have 

evolved to acquire specialized functions (Bourgeois CF et al., 2016). The depletion of some 

helicases had permitted the determination of their involvement in pre-rRNA folding, RNA 

structural rearrangements, unwinding of snoRNA-pre-rRNA base pairing, and remodelling of 

protein-RNA interactions (Eichler DC and Craig N, 1994; Ripmaster TL et al., 1992). Almost 

all members of the DExD/H family in yeast and higher eukaryotes participate in ribosome 

biogenesis (Bleichert F and Baserga SJ, 2007). For instance, they unwind short duplexes of 

snoRNA-rRNA, rRNA-rRNA, or they are required for the dissociation of RNA-protein 

complexes (Rocak S and Linder P, 2004). Consequently, a considerable number of DEAD-

box proteins are associated with ribosomal RNA maturation (de la Cruz J et al., 1999; 

Kressler D et al., 1999). 

 

   1.4.2.5. Translation initiation and regulation  

The translation permits the production of specific amino acid chains, which fold into an active 

protein and perform their functions in the cell from a messenger RNA (mRNA) obtained by a 

ribosome. mRNAs are exported to the cytoplasm, they are associated to the cap-binding 

complex (CBC). But the CBC-dependent translation depends on the unwinding of the 5’ 

untranslated regions (5ʹ UTRs) by DDX48 helicase. This enzyme interacts directly with CTIF 

(CBC-dependent translation initiation factor) (Choe J et al., 2014). DDX2A and 2B, 

eukaryotic translation initiation factors known as eIF4A1 and eIF4A2 unwind secondary 

structures in the 5ʹ UTR after activation by various factors associated with the eIF4F complex 

otherwise the binding and movement of the 40S ribosome is prevented (Pestova, TV and 

Kolupaeva VG, 2002; Svitkin, YV et al., 2001). These two helicases are also extremely 

important for oncogenes and epigenetic regulators translation with G/C-rich 5’ UTRs and/or 

3ʹ UTRs with miRNA target sites (Modelska A et al., 2015; Wolfe AL et al. 2014). 

Furthermore, the translation inhibitor DDX3X, stimulates the translation of mRNAs with long 

and structured 5ʹ UTRs, such as those encoding cyclin E1 or RAC1 (Lai MC et al., 2008; Sen, 
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ND et al., 2015; Lai MC et al., 2010). RNA helicases, such as DHX29, can also bind directly 

to the 40S subunit leading to enhancement of the processivity and the correct positioning of 

mRNAs at the ribosome entry channel (Dhote, V et al., 2012; Pisareva VP et al., 2008) Others 

RNA helicases like DHX9, are recruited to specific internal secondary structures. Thus, they 

can regulate translation in different ways: by facilitating 40S scanning, by stimulating 

ribosome recycling or mRNA circularization (Halaby MJ et al., 2015; Peng S et al., 2011). At 

later stages of translation RNA helicases can also operate. For instance, the assembly of 

elongation-competent 80S ribosome is promoted by DHX33 (Zhang Y et al., 2015).  

Moreover, recognition of stop codons requires DDX19B which also allows the recruitment of 

eukaryotic polypeptide chain release factor eRF3 to translation termination complexes (Wang 

Y et al., 2015).  

 

   1.4.2.6. RNA decay 

The mRNA turnover plays a key role in gene expression and is a important in the physiology 

of the cell. mRNA degradation occurs in the 5ʹ-to-3ʹ or 3ʹ-to-5ʹ direction (Siwaszek A et al., 

2014). In the 5ʹ-to-3ʹ direction, the DDX6 helicase enhances the mRNA decapping, 

facilitating the access to the nucleic acid by the 5’-to-γ’ exoribonuclease XRN1 (Siwaszek χ 

et al., 2014; Fischer N and Weis, K 2002; Coller JM et al., 2001). Modulation by DDX6 of 

the mRNAs coding for proteins involved in autophagy has also been observed (Hu G et al., 

2015). mRNA decay in the 3ʹ-to-5’ direction starts with deadenylation producing a shortened 

poly(A) tail  (Siwaszek A et al., 2014) which is then degraded via the exosome complex 

assisted by the RNA helicase SKI2. DHX36 (RHAU) helicase is also recruited and interacts 

with the deadenylation complex to enhance the mRNA decay (Johnson SJ and Jackson RN, 

2013; Tran H et al., 2004). Cells present a surveillance mechanism named Nonsense Mediated 

Decay (NMD), which is a crucial mechanism detecting mRNA transcripts bearing translation 

termination codons positioned in abnormal contexts (Lykke-Andersen S and Jensen TH, 2015) 

(Figure 10). It is dedicated to the clearance of theses mRNAs and involves several RNA 

helicases. The helicase eIF4AIII binds the mRNA and plays the role of a scaffold protein for 

the Exon Junction Complex (EJC). The UPF1 RNA helicase is recruited and translocates over 

the nucleic acid, scans the transcript, remodels the mRNP, removes mRNA-associated 

proteins, and signals the RNA for degradation (Fiorini F et al., 2015). NMD is also facilitated 

by the interaction between UPF1 and another helicase, MOV10 by resolving structures and 

displacing proteins from γʹ UTRs (Gregersen δH et al., 2014). Other RNA helicases, DHX34, 
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DHX5, also operate by allowing the assembly of the decay-inducing complex. (Hug N and 

Cáceres JF 2014; Geissler V et al., 2013; Bond AT et al., 2001).  

In bacteria, the degradation complex (degradosome) is constituted by the RNase E, 

responsible of the RNχ decay, PNPase, a γ’-5’ exoribonuclase polynucleotide phosphorylase, 

and the RNA helicase RhlB (Py B et al., 1996; Coburn GA et al., 1999). In E. coli the 

helicases RhlB and CsdA are part of the RNA (Prud'homme-Genereux A et al., 2004).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Normal and nonsense-mediated mRNA decay (NMD). The translation is 

terminated when the termination codon (TC) is in physical proximity to the γ′ poly(χ) tail 

(χχχχχχχχ) and/or the 5′ 7-methylguanosine (m7 G) leading the recruitment of UPF1 and 

SMG1 by the eukaryotic translation release factors eRF1 and eRF3, forming the surveillance 

complex (SURF). Also the two helicases DHX34 and MOV10 are recruited. The recruitment 

of UPFβ and UPFγ is assisted by EJC bound to the γ′ untranslated region (UTR). Then the 

assembly of the decay-inducing complex (DECID), the interaction of UPF1 with UPF2 

induces UPF1 conformational change and activation by SMG1 kinase giving the displacement 

of the ribosome and the eRFs from the RNP complexes enhanced by DHX34 and MOV10 in 

an ATPhydrolysis-dependent manner. Endonucleolytic cleavage, decapping and 

MOV10 
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deadenylation are followed by complete mRNA degradation. Adapted from Hug N and 

Cáceres JF 2014. 

 

   1.4.2.7. Cytoplasmic transport and storage 

mRNAs have an alternative fate to translation and decay: transportation and storage in  

cytoplasmic RNA granules protecting them from degradation (Hooper C and Hilliker A, 

2013;  Hilliker A, 2012; Pimentel J and Boccaccio GL, 2014; Kanai, Y et al., 2004) allowing 

localized translation, which occurs in many (Buxbaum AR et al., 2015). In some cases it 

occurs as a response to cellular stresses or during germ cell differentiation (Hooper C and 

Hilliker A, 2013; Hilliker A, 2012; Pimentel J and Boccaccio GL, 2014; Kanai, Y et al., 

2004). RNA helicases have a major role in RNA granule dynamics. For instance, the forma-

tion of RNA granules is influenced in an ATP-independent manner by DDX6, DDX3X and 

DDX4, as well as their disassembly upon ATP turnover (Hooper C and Hilliker A, 2013; 

Hilliker A, 2012). DDX25 has a dual function: the storage of mRNP-containing mRNAs 

coding for spermatogenesis factors, and the promotion of their translation (Tsai-Morris CH et 

al., 2010; Sheng Y et al., 2006).  

 

   1.4.2.8. RNA sensing 

A collection of cytosolic receptors has been identified for their ability to recognize multiple 

forms of nucleic acids. During the last decade, in addition to studies on DNA sensors as 

exposed above (in the section dealing with the biological functions of DNA helicases), 

numerous works have focused on receptors related to RNA helicases such as DICERs and the 

RIG-I Like Receptors (RLRs) because of their critical role in cell signaling and the initiation 

of innate responses against viruses. DICERs bind dsRNAs derived from the viral genome, 

replication intermediates or subgenomic products and cleave them into small RNAs, which 

will be targeted in order to degrade it. DICERS are sensors of RNA interference (Cerutti H 

and Casas-Mollano JA, 2006; Bernstein E et al., 2001). The RLR (RIG-I Like Receptors) 

helicases are cytosolic proteins and expressed by most cells of the human organism. RLRs 

belong to the family of aspartate-glutamate-any amino acid-aspartate/histidine (DExD/H)-box 

helicases. Upon RNA-binding, the RLRs activate a signaling cascade leading to the 

transcription of type I and type III IFN genes (Goubau D et al., 2013). 

The first part of the thesis dealing with an attempt of partners identification of RIG-I, an RLR 

helicase, in the signalling and cellular proliferation/differentiation balance in the APL, more 

extensive informations will be given on this aspect in the next chapter.   
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While the term “helicase” implicitly suggests a duplex unwinding activity, some helicases and 

more exactly members of the SF2 family (Rig-I-like, Swi/Snf2, RecG) do not share this 

activity. They stably associate with the duplex and they use the energy of ATP-hydrolysis to 

translocate on duplex DNA by a mechanism independent strand-separation (Saha A et al., 

2002; Ristic D et al., 2001; Durr H et al., 2005; Whitehouse I., 2003; Lia G et al., 2006). 
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Chapter I: Identification and characterization of the RIG-I helicase 

partners involved in the balance proliferation / cell differentiation in 

the acute promyelocytic leukemia 

 

Objectif 

 

RIG-I was initially identified as a gene that was induced in retinoic acid-treated Acute 

Promyelocytic Leukemia (APL) NB4 cells and its expression was associated with the 

differentiation of the cells (Yu M et al., 1997; Liu TX et al., 2000). RIG-I, a human homolog 

gene of RNA helicase, is induced by retinoic acid during the differentiation of acute 

promyelocytic leukemia cell (Yu M et al., 1997) and also associated with viral infection when 

a porcine homolog was displayed to be induced by porcine reproductive and respiratory 

syndrome virus  (Zhang X et al., 2000). RIG-I has then generated growing interest since it has 

been found to play a crucial role in innate immunity and in the detection of different viral 

nucleic acids particularly dsRNA (Yoneyama M et al., 2004). Indeed, to respond to a broad 

spectrum of pathogens the immune system operates via different and sophisticated 

mechanisms depending on the nature of pathogen antigen. But the key to establish a specific 

immune response consists in discriminating between “self” and “non self” components. 

Pattern Recognition Receptors (PRRs) were identified to respond to conserve Pathogen 

Associated Molecular Patterns (PAMPs) present on invading pathogens (Hemmi H et al., 

2000; Hoffmann JA et al., 1999; Medzhitov R et al., 1997; Poltorak A et al., 1998). PRR are 

now well characterized and include membrane-associated Toll-Like Receptors (TLRs), C-

type Lectin Receptors(CLRs), cytosolic receptors such as NOD-Like Receptors(NLRs), RIG-I 

Like Receptors (RLRs) and AIM2-Like Receptors (ALRs)  (Kawai T and Akira S, 2011).  

Therefore RIG-I is involved in two crucial aspects of the cell life that are the immune 

response and the cell differentiation. The first one has been subjected to numerous studies 

whereas the second one is not well described in terms of interactions with partners. The 

present work is focused on the role of the RIG-I helicase during the differentiation of NB4 

APL cells. The goal was firstly to identify specific ligand(s) of the helicase during ATRA 

treatment triggering the differentiation and the proliferation block, by coimmunoprecipitation 

and High Throughput Sequencing or proteomic analysis. Depending on the obtained ligand(s), 
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the second step of the work was to characterize the interaction at the biochemical level and 

then to verify the interaction in the cell and the effect on the differentiation and proliferation 

by RNAi or truncated proteins. The possibility of a structural study was even considered.  

This work is based on two points: 1) the domain structure of RIG-I which makes it able to 

bind both RNAs and proteins, 2) several works show that the specificity of the RNA helicases 

to their ligands is due to several factors such as the subcellular localization or the expression 

pattern of the protein in addition to the nucleotide sequence. As a result, certain helicases can 

have new functions taking part to cell signalling processes. This chapter of the thesis is 

therefore divided in two parts: RIG-I being an RNA helicase, I started my work searching for 

RNA partner(s). Later on, the orientation of the work has been readjusted to the search for 

protein partner(s) relying on the presence of two CARD domains in the helicase. The present 

work being focused on a member of the RLR, the RIG-I helicase, the following paragraphs 

will introduce this receptor family, describe the RIG-I helicase accompanied by the 

downstream signaling pathway and its involvement in APL. 
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Introduction 

 

1. RIG-I Like Receptors (RLR)  

1.1. RLR structure 

RLRs have emerged as one of the most important PRR families in immunity to viruses. The 

RLR family includes the Retinoic acid-Inducible Gene I (RIG-I) encoded by the gene Ddx58, 

Melanoma Differentiation-Associated antigen 5 (MDA5) encoded by the gene Ifih1, and 

Laboratory of Genetics and Physilogy 2 (LGP2) encoded by Dhx58 (Yoneyama M et al., 

2004; Kato H et al., 2011; Loo YM and Gale M Jr, 2011). RLRs are DExD/H-box helicase-

like proteins of the SF2 family. RIG-I and MDA5 presents three functional domains, whereas 

LGP2 has only two functional domains. The Figure 11 illustrates the RLR structure.  

Figure 11. RLR structure. The RLR family includes the Retinoic acid-Inducible Gene I 

(RIG-I), Melanoma Differentiation-Associated antigen 5 (MDA5) and Laboratory of Genetics 

and Physilogy 2 (LGP2). These SF2 type helicase proteins are composed of DExD/H-box 

helicase domain that contains the conserved domains Hel1 (motifs Q, I, II and III9) and Hel2 

(motifs IV, V, VI). Between the two helicases domains lies the domain Hel2i, only present in 

RIG-I and MDA5 and the bridging helices (Br) or Pincer (P) within the boarder helicase 

domain. DExD/H-box helicase domain is involved in the typical helicase functions: RNA 
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binding and ATPase activity. All RLRs also contain the C-Terminal Domain (CTD) leading 

to RNA recognition. Finally RIG-I and MDA5 present two N-terminal Caspase Activation 

and Recruitment Domain (CARDs) essential for interaction with MAVS and initiation of 

downstream antiviral signaling. Adapted from Bruns AM and Horvath CM, 2015. 

 

They all share a central ATP dependent DExD/H-box helicase domain. The DExD/H-box 

helicase-like domain is conserved in the three RLR with a 31% of similarity between RIG-I 

and LGP2, 35% between RIG-I and MDA5 and 41% between MDA5 and LGP2 (Takahasi K 

et al., 2009). The helicase presents two RecA-like domains (Hel1 and Hel2): the domain 1 

presents six motifs (Q, I (WalkerA), Ia-Ic, II (Walker B), IIa and III) and the domain 2 has 

four motifs (IV, V, Va and VI). These two fundamental helicase domains are interrupted by 

an intervening insertion, Hel2i, and bridging helices (Br) or Pincer (P) within the boarder 

helicase domain structure, only present in RIG-I and MDA5. Hel2i allows the autorepression 

and inhibition of CARDs domains in RIG-I but in MDA5 this region is shorter and missing a 

key phenylalanine residue. This suggests that MDA5 does not interact with CARDs in 

absence of RNA (Berke IC and Modis Y, 2012). The Motif II is also known at the Walker B 

site and contains the amino acids DExH/D (DECH in the case of RLRs), which gives its name 

to this helicase family. Both RecA domains are involved in the typical helicase functions: 

RNA binding and ATPase activity. The ATPase activity is essential for the immune response 

signal. A mutation of Lys270 of the ATPase site inhibits enzyme activity and makes 

impossibility of signal transduction (Plumet S el al., 2007; Saito T et al., 2007). In the case of 

LGP2 ATPase activity is essential to increase both, its ability to recognize and to bind ARNs. 

It also seems to be important for MDA5 activation (Bruns AM et al., 2013). 

RIG-I and MDA5 present two tandem Caspase Activation and Recruitment Domain (CARDs) 

at the N-terminus, whose amino acid sequences are 23% similar. This domain is essential for 

the activation of the production of IFN-ȕ, since CχRD domains deletion prevent antiviral 

response and sole CARDs domain expression allows the INF production (Saito T et al., 2007; 

Yoneyama M et al., 2004; Fujita T et al., 2007; Wang Y et al., 2010). The CARD motif 

belongs to the family of death fold protein motifs with a characteristic six helical bundle 

(Monie TP et al., 2009). These domains function in the regulation of apoptosis and 

inflammatory responses by mediating homotypic interactions between proteins. They are 

often highly multimeric complexes and the signaling is achieved by receptor clustering 

(Martinon F and Tschopp J, 2004; Bouchier-Hayes L and Martin SJ, 2003). LGP2 differs 

from the two other RLRs because it lacks the two CARDs domains. Single CARDs structures 
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but no exact stoichiometry of the various CARD-CARD complexes are available. The 

structure of the N-terminal single CARD domain of the mitochondrial adapter of RIG-I, 

MAVS (Mitochondrial antiviral-signaling protein), has been solved by X-ray crystallography 

(Potter JA et al., 2008).  

Additionnaly RLRs possess a C-terminal regulatory domain (CTD) also called regulatory 

domain (RD). This domain presents a similarity of sequence of 30% between MDA5 and 

RIG-I, 34% between MDA5 and LGP2, and 29% between RIG-I and LGP2 (Takahasi K et 

al., 2009). It is responsible for initial RNA binding (Takahasi K et al., 2009; Lu C et al., 2010; 

Cui S et al., 2008). Mutagenesis studies have led to identify a conserved lysine at the bottom 

of a positively charged groove, which allowed the recognition of 5'-triphosphate RNA. This 

lysine and other features of the recognition groove are different in LGP2 and MDA5 

suggesting the specificity of RD in determination of the different viral ligands (Cui S et al., 

2008; Takahasi K et al., 2009). Crystallographic and NMR high-resolution structures are 

available for all RLR CTD domains. CTD domain forms a globular structure. It is made of 

twisted anti-parallel main ȕ-sheet and a smaller second anti-parallel ȕ-sheet. Loop regions and 

short helices stabilize the sheets by surrounding them. One Zn2+ ion is coordinated close to 

the smaller b sheet. The RNA binding site has been localized to a large positively charged 

patch on the surface of the main ȕ-sheet of all three molecules (Takahasi K et al., 2009). RIG-

I and LGP2 CTDs were both co-crystallized in a complex with dsRNA. One protein molecule 

is bound to each 5’ end of the dsRNχ to form a β:1 protein: dsRNA complex (Wang Y et al., 

2010; Lu C et al., 2010; Li X et al., 2009). In RIG-I, electrostatic interactions allow the 

positively charged residues of the RNχ to interact with the 5’-PPP. All kinds of interactions 

permit the rest of the RNA to interact with other parts of the CTD (Cui S et al., 2008; Lu C et 

al., 2010; Takahasi K et al., 2009; Wang Y et al., 2010).  

 

 1.2. RLR localization  

It has been shown that RIG-I localizes to the membrane ruffles, in the motile cell surface, 

associated with F-actin, depending on Rac GTPase activity. The inhibition of Rac induces 

RIG-I relocation to the cell periphery. This association of RIG-I with the actin depends on 

CARDs domains and induces cellular migration. MDA5 localizes in the cytoplasm, but co-

localization experiments don’t show F-actin co-localization, (Mukherjee A et al., 2009). RIG-

I localization on the actin network is not surprising because the cytoskeleton is a major player 

in the first line of host defence against pathogens. Indeed other components of the 

inflammatory pathway have been shown to interact directly or indirectly with the actin 
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cytoskeleton, such as caspase-11 (Li J et al., 2007), p65 subunit of nuclear factor NF-kappaB 

(Are AF et al., 2000) and Nucleotide Oligimerization Domain 2 (NOD2), which also is 

associated with RIG-I (Legrand-Poels S et al., 2007; Morosky SA et al., 2011). Finally other 

PRR as toll-like receptors (TLRs), which are transmembrane proteins also allow the 

recognition of the pathogen-associated molecular patterns (PAMPs). 

 

 1.3. RLR ligands 

Several studies have investigated how RLR distinguish viral RNAs from host RNAs. Initially, 

both RIG-I and MDA5 were thought to detect poly I:C (a synthetic RNA double strand 

analog) but these two sensors are not redundant (Kato H et al., 2006). The key signature for 

RIG-I recognition is short blunt-ended dsRNχ (β0 bases) with a 5’ triphosphate (5’ppp), a 

modification that is not found on normal capped or processed cellular RNA (Hornung V et al., 

2006; Cui S et al., 2008; Schlee M et al., 2009; Pichlmair A et al., 2006; Baum A et al., 2010; 

Marq JB et al., 2010; Schmidt A et al., 2009) whereas MDA5 is activated upon binding to 

longer dsRNA (Pichlmair A et al., 2009). Several viruses are differentially recognized based 

upon the length of viral dsRNA produced following infection. RIG-I interacts with dsRNA of 

Reoviridae family (such as Orthoreovirus) (Broquet AH et al., 2011). It also recognizes many 

single-stranded RNA viruses. These include negative-stranded viruses of the Orthomyxovirus 

(such as influenza A or B virus) (Kato H et al., 2006; Loo YM et al., 2008), Paramyxovirus 

(such as measles, and Sendai virus) (Plumet S et al., 2007; Kato H et al., 2005; Yoneyama M 

et al., 2005), Rhabdoviridae (such as vesicular stomatitis virus) (Kato H et al., 2005; 

Yoneyama M et al., 2005) and Filoviridae (such as ebola virus) (Habjan M et al., 2008), and 

positive-stranded viruses like Flaviviridae (such as hepatitis C and Japanese encephalitis 

viruses) (Sumpter R Jr et al., 2005; Saito T et al., 2007). Additionally, DNA viruses activate 

RIG-I via RNA intermediates, such as herpes virus (Paludan SR et al., 2011). RNA 

polymerase III is involved in a DNA sensing pathways in the innate immune system and 

transcribes microbial DNχ templates into dsRNχ containing 5’-PPPs, which in turn activate 

RIG-I (Hornung V et al., 2009; Takaoka A et al., 2007). Modified secondary structures also 

influence RIG-I recognition as incorporation of modified bases such as pseudouridine (often 

found in cellular RNAs) (Hornung V et al., 2006) and phosphorothioated single-stranded 

DNA oligonucleotides (containing a sulfor-substituted internucleotide bond) (Ranjith-Kumar 

CT et al., 2009). Furthermore, products of host RNA cleavage by ribonuclease (RNAse L) 

(Malathi K et al., 2007). Finally surprisingly, some RNAs without 5'PPPs have also been 

reported to trigger RIG-I (Kato H et al., 2008). 
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MDA5 is not studied as well as RIG-I but it is known that MDA5 interacts with dsRNA of 

Reoviridae family (such as Orthoreovirus) like RIG-I (Kato H et al., 2008; Loo YM et al., 

2008), positive-stranded viruses of Picornaviridae (such as Theiler's Murine 

Encephalomyelitis Virus (TMEV), Encephalomyocariditis virus (EMCV) and Enterovirus) 

(Kato H et al., 2006), Calciviridae (Norovirus) (McCartney SA et al., 2008) and finally 

Flaviviridae (such as hepatitis C and Japanese encephalitis viruses) like RIG-I (Kato H et al., 

2006; Loo YM et al., 2008; Fredericksen BL et al., 2008).  

LGP2 is also able to recognize different types of RNA, but preferentially dsRNA and the 

presence of 5'ppp favours the interaction. LGP2 detects the genome of hepatitis C virus (Saito 

T et al., 2007). Having no CARD domain, LGP2 acts as a regulator of RIG-I and MDA5. 

LGP2 overexpression permits the inhibition of INF induction (Yoneyama M et al., 2005), it 

has an inhibitory role. It is also able to interact with RIG-I and inhibit its necessary 

homodimerization to translate the signal (Yoneyama M and Fujita T, 2009). In low 

concentration, LGP2 participates in the activation of MDA5 while a high concentration 

inhibits MDA5 activation (Bruns AM et al., 2013). Therefore LGP2 is a negative regulator of 

RIG-I and ambivalent regulator for the MDA5 activation. 

 

 1.4. Signal transduction in the RLR pathway  

In most cells types, upon viral RNA recognition, the RLRs are the main sensors that induce 

IFN (Gitlin L at al., 2006; Yoneyama M et al., 2004). Moreover RIG-I knockout mice 

demonstrated that epithelial cells, conventional dendritic cells, and fibroblasts are dependent 

on the RLR pathway to stimulate IFN production (Kato H et al., 2005). The components of 

the RLR signaling cascade have been well defined and their interactions are shown by the 

Figure 12.   
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Figure 12. Activation of the IFN response under RLR regulation. Detection of RNA, by 

RIG-I and MDA5 triggers their binding to MAVS through CARD domains. MAVS then 

recruits a panel of several proteins (as TRAFF, TRADD, FADD...), which will allow the 

activation of the transcription factors NF-κψ, IRFγ and IRF7 inducing INF expression.  
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Upon binding of viral RNA to the helicase domain, the molecule undergoes a conformational 

change that exposes the CARD domains (the activation mechanism is detailed further in the 

paragraph dedicated to RIG-I) and promotes RLR dimerization. This conformational change 

is dependent on the ATPase activity of the helicase domain. As a dimer, the RLR binds to 

MAVS (Mitochondrial AntiViral Signaling protein) also known as IPS-1 (IFNȕ-Promoter 

Stimulator 1) VISA (Virus Induced Signaling Adaptor) or Cardif (CARD adaptor inducing 

IFNȕ) (Kawai T et al., 2005; Seth RB et al., 2005; Xu L G et al., 2005; Meylan, E et al., 2005) 

through shared CARD-domain. MAVS contains an N-terminal CARD domain, a proline rich 

region and a C-terminal transmembrane (TM) domain anchoring the protein in the 

mitochondrial membrane, the mitochondrial-associated ER membrane or the peroxisomes 

associated with the mitochondrial-associated ER (Seth RB et al., 2005; Horner SM et al., 

2011; Dixit E et al., 2010). Upon interaction with an activated RIG-I or MDA5, MAVS 

oligomerizes and acts as a scaffold for a multiprotein complex called the ‘εχVS 

signalosome’. This complex includes tumor necrosis factor (TNF) (Baril M et al., 2009), 

receptor-associated death domain (TRADD), TRAF family member-associated NF-κψ 

activator (TANK), and the E3 ubiquitin ligases TNF receptor associated factor (TRAF) 6 and 

3 for NF-κψ and IRF activation, respectively (Yoshida R et al., 2008; Konno H et al., 2009).  

In the case of NF-κψ activation, the TχK1/Tχψ1/β complex is recruited by TRχF6 leading 

to the phosphorylation of the NF-κψ essential modulator (NEεO, also called IKKȖ). Once 

NEεO is activated it can serve as a scaffold for IKKα and IKKȕ. The IKK complex can 

recruit Iκψ (inhibitor of NF-κψ) and NF-κψ subunits, canonically the p65 and p50 subunits. 

IKKȕ phosphorylates Iκψ leading to its dissociation from p65/p50, and NF-κψ translocation 

to the nucleus to promote transcription of NF-κψ target genes. In the case of IRF γ/7, εχVS 

recruits the E3 ligase TRAF3 (Oganesyan G et al., 2006; Saha SK et al., 2006) which 

activates NEMO. NEMO then forms a signaling complex with TANK, IKKİ, and TBK1. 

After formation of this complex, TBK1 is activated to directly phosphorylate IRF3/7. Once 

phosphorylated, IRF3 and IRF7 dimerize and translocate  to the nucleus to induce target genes 

including type-I IFNs and proinflammatory cytokines leading to the inhibition of infected 

cells proliferation (Seth RB et al., 2006). STING (also known as MITA, ERIS and MPYS) is 

also involved in RNA sensing downstream of RIG-I only, whereas MAVS is involved in both 

RIG-I and MDA5 signaling (Ishikawa H and Barber GN, 2008). STING predominantly 

resides in the endoplasmatic reticulum (ER), but is also found in the mitochondrial membrane 

and even the plasma membrane (Jin L et al., 2008). 
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Other proteins also are involved in the MAVS signalling pathway as: caspase8/10, TRADD 

(TNF receptor 1-assiciated death domain), TANK, FADD (Fas-associated death domain, RIP 

(receptor interacting protein 1) (Yoneyama M and Fujita T, 2009). 

When present in small amounts, LGP2 acts as a positive regulator of MDA5, and as an 

inhibitor of RIG-I and MDA5 at high concentration (Rothenfusser S et al., 2005; Satoh T et 

al., 2010; Yoneyama M and Fujita T, 2009). Moreover, LGP2 seems to interact with MAVS 

and block recruitment of IKKİ, thus preventing signal induction (Komuro A and Horvath 

CM, 2006). 

  

 1.5. RLR regulation by host viruses 

To evade detection by RLR, viruses have different strategies. For instance, V proteins of 

paramyxoviridae including NDV and SeV interact with MDA5 interfering with its activity to 

transmit a signal. The Influenza A non-structural protein 1 (NS1) interacts and inhibits RIG-I 

to prevent its ubiquitination (Guo Z et al., 2007; Gack MU et al., 2009). It may also bind 

RNA, sequestering it from RLR recognition. NS3/4a of HCV cleaves MAVS and disrupt its 

mitochondrial activation leading to inhibition of RIG-I mediated IRF3 (Yoneyama M and 

Fujita T, 2009). Ebola virus VP35 protein serves as a competitor for dsRNA. It disrupts RIG-I 

mediated Type-I IFN production, while SeV V protein selectively binds MDA5 and inhibits 

dsRNA induced activation of Type-I IFNs (Wang Y et al., 2011). 

 

2.The RIG-I helicase 

 2.1. Molecular structure 

RIG-I, also known as DDX58, is a highly conserved protein within vertebrates. Its gene was 

cloned from leukaemia cells in 1997 as mentioned earlier and codes for a 106 KDa protein of 

925 residues. The protein harbours the three classical regions: the DExD/H box helicase core 

domain between the amino acids 239 and 793, the RNA binding domain known as C-terminal 

domains (CTD) or repressor domain (RD) between the amino acids 804 to 925, and a tandem 

caspase activation and recruitment domain (CARDs) at the N-terminus between amino acids 1 

to 92 and 101 to 186 (Louber J and Gerlier D, 2010). Teams working on the RIG-I protein of 

duck, human and mouse resolved the three-dimensional structure of entire RIG-I protein and 

truncated forms, interacting or not with dsRNA. Civril F et al., have reported the cristal 

structure of the helicase domain of RIG-I in mouse by in-drop proteolysis approach with a 

resolution of 2.2Å (Civril F et al., 2011). Jiang F et al., worked on the helicase-RD domain in 

human with a 14 base pair dsRNA to 2.9 Å resolution (Jiang F et al., 2011) and Luo D et al., 
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determined the deleted CARD domains RIG-I structure in human and in the presence of a 10 

base pair dsRNA to 2.5 Å resolution (Luo D et al., 2011). Finally Kowalinski E et al., 

describe the full-lenght RIG-I structure in duck in the presence of 5ppp-dsRNA (Kowalinski 

E et al., 2011). The study of RIG-I in presence and absence of different types of DNA has 

allowed to determine the conformation changes and the amino acids interacting with the 

RNA. The CARD1 and CARD2 domains contain 7 and 6 α-helixes respectively and they are 

connected rigidly forming a single functional unit (Saito T et al., 2007). The helicase domain 

contains three structural subdomains. The helicase core consists of four major subdomains: 

two Recχ helicase domains (Hel1 and Helβ), each composed of one ȕ-sheet and some α-

helix, a unique insertion domain (Hel2i) (Helicase β insertion domain) made of 5 α-helixes, 

and a bridging domain (Br) or pincer domain located between Hel2 and CTD and composed 

of two α-helix in V-shaped (Jiang F et al., 2011; Kowalinski E et al., 2011; Luo D et al., 

2011). The pincer coordinates the functions of Hel1, Hel2 and CTD. It also couples RNA 

binding with ATP hydrolysis (Civril F et al., 2011; Jiang F et al., 2011; Kowalinski E et al., 

2011; Luo D et al., 2011). Finally, the CTD domain is structurally organized in two four-

stranded antiparallel ȕ sheets connected by small helical turns (Cui S et al., β008). 

 

 2.2. RIG-I helicase activity 

RIG-I being a helicase, the enzymatic activities of ATPase, RNA unwinding and translocation 

are expected. These activities have not been studied a lot. However the different works have 

mainly been performed to understand the synergy between the helicase and the RNA 

recognition.  

First studies have shown that mutation of K270A in the ATPase site of RIG-I causes an 

inactive antiviral signalling (Yoneyama M et al., 2004) without affecting the RNA binding 

ability (Plumet S et al., 2007). In 2008, Cui S et al. observed that ATPase activity and the 

oligomerization of the protein are stimulated by 5′-triphosphate dsRNA. Moreover when both 

CARDs are deleted, the ATPase activity is stimulated in the absence of a 5′-triphosphate RNA 

(Cui S et al., 2008). In 2009, Myong S et al. have shown by single-molecule fluorescence 

assays that RIG-I can translocate on dsRNA in an ATP-dependent manner affirming that RIG-

I catalyses translocation in successive repetitions on the same RNA molecule without 

unwinding. This translocation is made possible only on the RNA strand, which bears a 5′-

triphosphate. However, CARDs deleted RIG-I is able to translocate in the absence of a 

5’triphosphate. In fact, RIG-I translocation is regulated by its N-terminal (CARDs) and C-

terminal (RD or CTD) domains (Myong S et al., 2009). Recently in 2015, Anchisy S et al. 
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have shown that ATPase activity is independent of 5'ppp and that only a base pair end is 

required. This emphasizes the role of the CTD, which interacts with the blunt end of the 

dsRNχ (independently of the 5′ppp). Tests with ssRNχ in the presence of 5'ppp do not 

trigger ATPase activity even if 5' overhangs cause a low ATPase activity, assuming the 

requirement of dsRNA in 5'. In the case of RNA/DNA hybrids that trigger very poor ATPase 

activity despite normal binding to RIG-I, the presence of a minimal number of 5 

ribonucleotides on the bottom strand is required to induce a normal ATPase activity. These 

studies with hybrids containing increasing numbers of desoxyribonucleotides in the RNA 

bottom strand showed that residues at positions 2 and 5 are key residues for the recovery of 

normal ATPase activity. Their role appeared crucial because they bind to HEL1 and HEL2 

respectively. Moreover, the increase in the number of ribonucleotides on the bottom strand 

from 6 to 10, which corresponds to the total coverage of one RIG-I molecule, causes an 

enhancement of the relative ATPase activity to that promoted by pure dsRNA. This increase 

is determined by the contact with the HEL2i domain and the duplex instability due to 

mismatches by facilitating the discharge of ADP and Pi from the active site. But this type of 

substrates is unable to induce IFN determining that this ATPase activity functions in RIG-I 

recycling (Anchisy S et al., 2015). In 2011, Jiang F et al., observed that ATP hydrolysis is 

necessary for RIG-I activation and RNA recognition without unwinding (Jiang F et al., 2011).  

Regarding the role of the ATPase and translocation activities, it has been suggested that they 

allow repetitive shuttling at specific dsRNA regions of the viral genome providing a structural 

conformation in RIG-I with exposed CARDs to attract the next players in the signalling 

cascade (Myong S et al., 2009). Also the translocation can interfere with viral proteins by 

preventing them from binding to the viral RNA, by blocking their progression on the viral 

genome and sometimes going as far as moving them away. All this results in interfering with 

viral replication (Myong S et al., 2009). Finally the ATPase activity is involved in RIG-I 

recycling activity and leads to competition between recycling, RIG-I oligomerization and 

translocation, and it is important for self-RNA discrimination. This RIG-I recycling activity 

promotes dissociation of RIG-I from inappropriate ligands, as well as from those with a 

dsRNA less than 13bp in length (Anchisy S et al., 2015). Also other studies with RIG-I 

mutants allowing ATP binding and preventing hydrolysis (such as “multi-system disorder 

Singleton-Merten Syndrome SεS mutations phenocopy”), showed that this mutant of RIG-I 

is bound to a 60S ribosomal expansion segment as a dominant self-RNA. But the wild type 

RIG-I displaces this self-RNA (60S ribosomal expansion segment) restoring ATP hydrolysis 

(Lässig C et al., 2015). 
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To conclude, ATP binding and hydrolysis plays a key role in the identification of viral targets 

and the activation of signalling (Rawling DC et al., 2015). ATP binding is required for RIG-I 

signalling on viral RNA and ATP hydrolysis provides an important function by recycling 

RIG-I and promoting its dissociation from non-pathogenic RNA by translocation. 

 

 2.3. RIG-I activation mechanisms  

In the absence of activators, RIG-I exists in the cytoplasm in an inactive conformation, 

preventing effector access to the N-terminal CARDs and the helicase domain (Leung DW et 

al., 2012). Different studies of RIG-I functionality have demonstrated the conformation 

change mechanism for RIG-I activation (Myong S et al., 2009; Yoneyama M and Fujita T, 

2009). The CARD tandem is a constitutive activator of IFN production, while in absence of 

RNA agonist the whole protein is inactive (Saito T et al., 2007; Yoneyama M et al., 2004). 

The transition from the inactive conformation to an active conformation allows CARD-CARD 

interaction between RIG-I and MAVS (Leung DW et al., 2012).  

A multistep mechanism for the complete activation of RIG-I has been raised with the 

structure of this protein. The comparison of RIG-I structure in the absence of ligand and 

presence of dsRNA and non-hydrolysable ATP reveals the conformation changes (Kowalinski 

E et al., 2011). In the absence of RNA stimulation RIG-I is kept inactive in the cytoplasm in a 

self-repressed form through the phosphorylation of multiple residues (Figure 13A). T770, 

S854, and S855 in the CTD are phosphorylated by Casein Kinase II (CK2), which promotes 

interactions necessary for auto-repression (Sun Z et al., 2011). In the CARD domains, 

phosphorylation of S8 and T170 by Protein Kinase C-α and ȕ (PKCα/ȕ) is also required to 

maintain RIG-I auto-repression in the absence of viral infection (Gack MU et al., 2010; 

Maharaj NP et al., 2012; Nistal-Villán E et al., 2010). In the self-repressed conformation, part 

of CARD domains is hidden by CARD2 and Hel2i interaction, thereby preventing the 

recruitment of protein partners required for signalling. The CTD domain is flexibly linked to 

the helicase, without strong interaction with the rest of the protein. It is therefore able to 

detect and bind with dsRNχ 5’ppp with high affinity. The recognition of the 5’ppp by CTD 

leads to a competition between dsRNA and CARD2 for the binding of the helicase domain in 

presence of ATP. This double bound causes a conformational change in the areas Hel1 and 

Hel2 fold on each other according to a twist movement causing a reposition of CTD and the 

release of CARDs domains (Figure 13B). The 3' dsRNA binds to the helicase domain in the 

Ia, Ib and Ic of Hel1 and IIa motif, which interacts with the 5’ strand of dsRNχ. The Q motif, 

Ia II, Va and VI of Hel1 and Hel2 binds the ATP (Kowalinski E et al., 2011; Luo D et al., 
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2011). χlso Helβi binds the 5’ and γ’ strands of dsRNχ. The Hel1, Helβ, Helβi and CTD 

domains enclose the dsRNA in an almost circular channel whose stability is ensured by the 

binding of ATP. The release of the CARDs domains leads the recruitment of the signalling 

cascade, producing the IFN and cytokines secretion. To ensure the recruitment of MAVS, 

additional factors facilitate a series of changes in post-translational modifications leading to 

the fully active form of RIG-I. The E3 ubiquitin ligase Riplet is a regulator of RIG-I through 

activating K63-linked ubiquitination (Oshiumi H et al., 2009; Gao D et al., 2009). 

Ubiquitination of K788 increases the ability of RIG-I to bind to its viral RNA ligand 

promoting the transition to the open conformation for further post-translational modifications 

and interaction with signaling partners (Oshiumi H et al., 2009; Oshiumi H et al., 2013). The 

CARD domains of RIG-I become accessible thanks to RIG-I dephosphorylation by the 

phosphatases PP1α / PP1Ȗ (Wies E et al., β01γ). The RIG-I dephosphorylated form is required 

for the recruitment of the E3 ubiquitin ligase TRIM25 (TRIpartite Motif containing 25). 

TRIM25 transfers short unanchored poly-ubiquitin chains to the two CARD domains 

allowing the aggregation of the MAVS protein, and thus the induction of IFN (Jiang X et al., 

2012).  In addition to the changes in RIG-I post-translational modifications, the protein must 

be relocated for signal activation. In the uninfected cell, RIG-I is dispersed in the cytosol to 

survey the intracellular space for invading pathogens. A third partner is involved as a result of 

the interaction between RIG-I and TRIM25, the chaperone protein 14-3-γİ. This complex 

promotes ubiquitination of RIG-I and allows its translocation to the cytoplasm to interact with 

MAVS (Liu HM et al., 2012). From 2007-2008, two studies suggested that RIG-I 

oligomerization is a required step to transduce the signal (Saito T et al., 2007; Cui S et al., 

2008). The deacetylation of CTD domain is also crucial for the activation of RIG-I, 

preventing the interaction of the CTD with the 5'ppp-dsRNA. This deacetylation by HDAC6 

promotes RIG-I sensing of viral RNAs and facilitates RIG-I oligomerization (Choi SJ et al., 

2016; Liu HM et al., 2016). More recently, other teams observed the oligomerization of the 

RIG-I (Beckham SA et al., 2013; Jiang X et al, 2012; Weber M et al., 2013). According to 

Beckham et al. RIG-I oligomerization is dependent on the length of the RNA ligand. When 

RIG-I is associated with short RNAs, 10-19 base pairs (bp), it is a monomer form, while RIG-

I binds a 39pb RNA it takes a dimer form (Beckham SA et al., 2013). But the oligomerization 

of RIG-I seems to result more of protein accumulation on the RNA than a protein-protein 

interaction. The oligomerization model proposed currently says that a RIG-I molecule is 

capable of binding a RNA ligand by its 5'ppp end and move along the RNA by translocation 

produced for the ATP hydrolysis. The 5'ppp end again free permits that another RIG-I 
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molecule can associate with the RNA and get oligomer form. The RIG-I oligomerization 

promotes activation of MAVS (Patel JR et al., 2013).  

 

 

Figure 13. Structure-based model for RIG-I activation by dsRNA. RIG-I domains are 

coloured in different colours, the flexible linkers are represented by dotted lines and dsRNA is 

represented by a black helix. The inactivation of RIG-I by different partners is represented in 

red and activation in green. (A) Autorepressed state is potentiated by Casein Kinase II (CK2) 

and Protein Kinase C-α and ȕ (PKCα/ȕ). (B) Activated state by ATP and dsRNA binding 

leads to a conformational switch allowing the release of CARDs domains and their interaction 

with MAVS. Also some proteins permits post-translational modifications of RIG-I such as 

PP1α / PP1Ȗ, Riplet, TRIM25, Chaperone protein 14-3-γİ and HDχC6 deacetilation. 

 

 2.4. Additional cellular factors regulate RIG-I 

Prolonged or excessive activation will have deleterious effects on the host tissues. Therefore, 

a wide range of regulators allows keeping control of the IFN induction. Among these 

regulations we find modifications by protein-protein interactions and post-translational 

modifications, such as ubiquitination, phosphorylation and SUMOylation (Maelfait J and 

Beyaert R, 2012; Zhao C et al., 2005; Mi Z et al., 2010). In the case of post-translational 

modifications, several factors regulate RIG-I either by removing the activating K63-linked 

ubiquitination or by affecting RIG-I protein stability through K48-linked ubiquitination and 

proteasome dependent degradation. K63-linked ubiquitination of RIG-I is crucial for its 

signaling activity. Four different deubiquitinases (DUBs) counteract this modification and 

inhibit RIG-I signaling: Cylindromatosis (CYLD) (Friedman CS et al., 2008) which prevents 

any basal activation levels, USP21 (Ubiquitin-Specific Protease 21)(Fan Y et al., 2014), USP3 
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(Ubiquitin-Specific Protease 3)(Cui J et al., 2014) and USP15 (Ubiquitin-Specific Protease 

15) act as a negative regulator of RIG-I signalling to attenuate the establishment of an 

antiviral state by removing ubiquitin chains from CARD domains and interact directly with 

RIG-I to reduce MAVS–RIG-I binding (Zhang H et al., 2015). Following K48-linked 

ubiquitination, RIG-I is also subject to proteasomal degradation: the E3 ligase RNF125 and c-

Cbl binds to and ubiquitinates RIG-I with K48-linked chains, leading to RIG-I degradation 

(Arimoto K et al., 2007; Chen W et al., 2013). Also, LUBAC (the Linear UBiquitin Assembly 

Complex), composed of two E3 ligases, HOIL-1L and HOIP, which regulate negatively RIG-I 

signaling by two mechanisms (Inn KS et al., 2011). First, LUBAC induces TRIM25 

ubiquitination with K48-linked chains leading to proteasomal degradation, and the second 

mechanism depends on the NZF (Npl4 zinc finger) domain of HOIL-1L, which competes 

with TRIM25 for RIG-I binding. As a result, TRIM25-mediated ubiquitination and activation 

of RIG-I are impaired. PKC-α/-ȕ (Conventional Protein Kinase) is also a negative regulator, 

which cause the phosphorylation of the N-terminal CARD domains, preventing TRIM25 

interaction (Maharaj NP et al., 2012). Finally it has been reported that, RIG-I is modified by 

small ubiquitin-like modifier-1 (SUMO-1). SUMOlylation enhances IFN-1 production, the 

increase of RIG-I ubiquitylation and the intermolecular interaction between RIG-I and MAVS 

(Mi Z et al., 2010). Figure 14 summarizes the different cellular regulators of RIG-I leading to 

degradation by proteasome. 
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Figure 14. Structure-based model for RIG-I inactivation and degradation by 

proteasome. RIG-I domains are coloured in different colours, the flexible linkers are 

represented by dotted lines and dsRNA is represented by a black helix. The inactivation of 

RIG-I by different partners is represented in red and activation in green. The RIG-I 

inactivation and degradation is regulated by the removing of K63-linked ubiquitination and 

the addition of K48-linked ubiquitination regulated by DUB, LUBAC and RNF123 and cCbl. 

 

 2.5. RIG-I partners  

In the case of innate immunity and activation of IFN pathway, RIG-I has two types of 

partners: those causing RIG-I post-translational modifications, such as ubiquitination, 

phosporylation and SUMOylation (developed in the previous paragraph) and those acting on 

molecular pathways by protein-protein interaction. The chaperone HSP90 (Heat Shock 

Protein 90) has a major role on RIG-I degradation. It interacts directly with RIG-I without 

involving the participation of the CARD domains. The inhibition of HSP90 activity leads to 

the dissociation with RIG-I, followed by ubiquitination and proteasomal degradation of the 

helicase. This interaction stabilizes RIG-I but may be compromised in the case of infection 

(Matsumiya T et al., 2009). ARL16 (ARF (ADP-Ribosylation Factor)-like Protein 16), which 

is member of the Ras superfamily of GTPases, interacts with the C-terminal domain of RIG-I 

to suppress the association between RIG-I and RNA. In absence of viral infection, ARL16 is 

in its GTP-disassociated and inactive state. Upon virus stimulation, ARL16 binds to GTP and 

sequesters the CTD of RIG-I, preventing overactivation of RIG-I (Yang YK et al., 2011). 
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Atg5 and Atg12 are key regulators of the autophagy process. The Atg5-Atg12 conjugated 

inhibits the type I IFN production pathway by intercalation between the CARDs of RIG-I and 

IPS-1 during virus infection (Jounai N et al., 2007). Furthermore PACT physically binds to 

the C-terminal domain of RIG-I leading to the stimulation of its ATPase activity. It can also 

bind to RNA ligands of RIG-I leading to an amplified activation signal in innate immunity. 

This interaction between PACT and RIG-I preferentially activates IRF3 pathway (Kok KH et 

al., 2011). It has also been shown that RIG-I interacts with the apoptotic pathway, particularly 

with Caspase 9, which interacts with the CARD domain of RIG-I inducing apoptosis. In the 

case of HNSCC (head and neck squamous cell carcinoma) cells, RIG-I activation presents a 

dual role in the regulation of the Akt activation. In the presence of low-dose of viral dsRNA 

promotes NF-κB- and Akt-dependent cell proliferation, whereas in the case of high level of 

viral dsRNA it leads to apoptosis accompanied by decreased activation of Akt (Hu J et al., 

2013). Moreover, RIG-I can form a tri-molecular complex with MAVS and Lyn, which 

belongs to the Src-family-tyrosine kinases. Upon induction by short poly I:C, the complex 

plays a positive regulatory role leading to IRF3 activation and INF-ȕ expression (δim YJ et 

al., 2015). It also has been reported that some viral proteins can interact physically with RIG-I 

such as US11 protein of HSV-1 (Herpes Simplex Virus 1), which causes inhibition of RIG-I 

pathway, preventing the production of IFN (Xing J et al., 2012) and RNA polymerase 

subunits (PB2, PB1 and PA) of Influenza A virus (Li W et al., 2014). 

Finally in the case of myeloid differentiation, RIG-I regulates the proliferation and survival of 

granulocytes by down-regulating the expression level of IFN consensus sequence binding 

protein (ICSBP), a major transcription factor regulating myeloid cell differentiation (Zhang 

NN et al., 2008). Also RIG-I allows the expression of other IFN stimulatory genes (ISGs) by 

promoting STAT1 activation in a MAVS-independent manner (Jiang LJ et al., 2011). RIG-I 

may competitively bind the SH2-TA domain of STAT1 so as to disrupt the binding of STAT1 

with its negative regulator SHP1 being a crucial event in the downstream signal transduction 

IFN pathway (Hou J et al., 2014) since it leads to the transcription of numerous ISG resulting 

in antiviral innate immunity (Levy DE and Darnell JE Jr, 2002) and the cell cycle arrest 

(Altucci L et al., 2001). In macrophages, RIG-I has the capacity to bind directly Src through a 

PxxP motif located between the CARD tandem and the helicase domain of RIG-I. This 

interaction leads to the inhibition of AKT-mTOR signalling pathway (Li XY et al., 2014). 
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 2.6. RIG-I recognizes various endogenous RNAs  

Recognition of RNAs by RIG-I is the most explored aspect of RIG-I studies (Loo YM and 

Gale M Jr, 2011). In addition to viral RNAs, RIG-I is able to recognize cellular RNAs in 

different situations. It is involved in the modulation of the metabolism of some endogenous 

RNAs by forming a complex with protein partners or RNAs. In murine B lymphocytes, His-

tagged RIG-I binds to multiple endogenous mRNAs. For instance, it interacts with Nf-κb1 γ’ 

UTR mRNA, regulating positively its expression. The authors show that RIG-I can recognize 

three tandem motifs in Nf-κb1 γ’ UTR mRNχ. εoreover RIG-I regulates the protein 

translation by interaction with ribosomal components (Zhang HX et al., 2013).  After ionizing 

radiations, the two key components of spliceosomes snRNA U1 and U2 in colorectal 

carcinoma cells translocate to the cytoplasm of the cell and bind RIG-I leading to the IFN 

pathway activation (Ranoa DR et al., 2016). Several miRNAs are able to bind RIG-I. For 

instance, during H5N1 infection of human lung epithelial cells, upregulated miR-136 interacts 

with RIG-I, inducing IFN-ȕ and Iδ-6 expression (Zhao L et al., 2015). Karlsen TA et al., have 

observed that the off-target immune responses of mesenchymal stem cells is triggered by 

upregulating IFN stimulatory genes (ISGs) following the delivery of miR-145 by liposome 

and interaction with RIG-I (Karlsen TA and Brinchmann JE, 2013). Furthermmore, RIG-I can 

bind to short interspersed elements (SINEs) when they are transcribed by polymerase III 

during stresses (Mu X et al., 2016). 

 

 2.7. RIG-I has multiple roles in cell development and cancer: case of the myeloid 

differentiation  

The observations reported above suggest that RIG-I functions far beyond being a PRR. It 

plays more diverse roles in the cellular life and its biological functions are more complicated 

than expected. Recent studies have shown that the RNA helicase is also involved in the 

regulation of basic cellular processes such as hematopoietic proliferation and differentiation, 

maintenance of leukemic stemness, and tumorigenesis of hepatocellular carcinoma.  

In melanoma cells RIG-I activation by RNA ligands triggers apoptosis and induces 

proapoptotic proteins (Puma and Noxa), which depends on IPS-1 activation and TNFα 

without type I IFN induction or p53 pathway (Poeck H et al., 2008). In human head and neck 

squamous cell carcinoma, foreign RNA primed RIG-I associates with caspase 9, a potent 

initiator of apoptosis, through hemophilic CARD (Hu J et al., 2013). Therefore these studies 

suggest that foreign RNA primed RIG-I might be exploited to kill tumor cells by activation of 

the MAVS pathway. Based on the fact that apoptotic tumor cells secrete type I IFNs together 
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with other types of immunostimulatory cytokines if RIG-I is activated by foreign RNA, some 

groups have tried to develop active cellular vaccine (Loo YM and Gale M Jr, 2011). Poeck et 

al., delivered 50-ppp siRNA against the antiapoptotic protein Bcl-2 into melanoma cells in 

vitro and in vivo. As a result, they obtained Bcl-2 silencing, stimulation of the RIG-I/MAVS 

pathway leading to the tumor cells apoptosis and created a microenvironment full of type I 

IFNs leading to an immunosupportive state (Poeck H et al., 2008).  A similar study on tumor 

immunosurveillance was performed by targeting a synthetic 50-ppp siRNA against TGF-b1, 

which plays a critical role in the growth, invasion, and metastasis of pancreatic cancer. This 

siRNA showed significant therapeutic efficacy in a murine model of pancreatic cancer, 

inducing apoptosis of tumor cells, induction of type I IFN (Ellermeier J et al., 2013; Schnurr 

M and Duewell P, 2013). Moreover, the delivery of replication-incompetent virus (such as 

HVJ-E) or ordinary RIG-I ligands (such as Poly I:C or 50-ppp RNA) drove potent induction 

of apoptosis in multiple types of human tumor cells including prostate cancer, mammary 

carcinoma, lung cancer, and glioblastoma cells (Poeck H et al., 2008; Hu J et al., 2013; 

Ellermeier J et al., 2013; Schnurr M and Duewell P, 2013; Glas M et al., 2013; Kaneda Y, 

2013; Kubler K et al., 2010; Petrocca F and Lieberman J, 2008; Qu J et al., 2013; Rehwinkel J 

and Reis e Sousa C, 2013; van den Boorn JG and Hartmann G, 2013; Wolf D et al., 2014; 

Zitvogel L and Kroemer G, 2009).  

In addition to its involvement in apoptosis, as already mentioned above, RIG-I plays a 

regulatory role in the differentiation of granulocytes from Acute Promyelocytic Leukemia in 

NB4 cells. During ATRA induced differentiation of these cells, RIG-I mRNA is highly 

upregulated (Liu TX et al., 2000). Moreover, disruption of RIG-I gene in mice impairs 

granulopoïesis resulting in a progressive myeloproliferative disorder (Zhang NN et al., 2008). 

It has also been observed in U937 AML cell line, that RIG-I regulates the proliferation and 

the granulocytes survival by down-regulating the expression level of ICSBP (IFN cConsensus 

Sequence Binding Protein) which is the major transcription factor regulating myeloid cell 

differentiation. RIG-I has been therefore taken as a tumor suppressor in the case of terminal 

granulocytic differentiation. Also, the expression of other numerous ISG (IFN Stimulatory 

Genes) is enhanced by RIG-I, which promotes STAT1 activation in a MAVS-independent 

manner. The result is the amplification of IFN-/RA-induced differentiation and proliferation 

restriction of leukemia cell (Jiang LJ et al., 2011). Following these observations, two 

independent mechanisms have been documented. First in HepatoCellular Carcinoma (HCC), 

RIG-I level predicts cell survival and the response to INFα (Hou J et al., β014). In this case, 

IFNα signaling induces association of RIG-I to STAT1 via tethering the CARD domains of 
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RIG-I with SH2-transactivation (SH2-TA) domain of STAT1. This prevents the 

dephosphorylation and inactivation of STAT1 by the phosphatase SHP1. The activation of 

STAT1 being enhanced, downstream and apoptotic ISGs such as TRAIL, PML, XAF1, and 

OAS1 are then induced and control HCC carcinogenesis and progression (Liu Z et al., 2016), 

have shown that miR-545 down regulates RIG-I and the HCC development is promoted by  

activated PI3K/Akt signaling. On the other hand in pancreatic ductal adenocarcinoma 

(PDAC), miR545 can down-regulate RIG-I. Tumor cell growth is promoted by the low miR-

545 expression level and the high RIG-I protein level (Song B et al., 2014). The effect is 

therefore totally opposite. Another mechanism has been proposed in U397 cells. When RIG-I 

is upregulated following doxycycline treatment, the AKT-mTOR signaling pathway is 

inhibited. RIG-I inhibits AKT phosphorylation and activation by preventing AKT-Src 

interaction in a STAT1 independent manner. A classic conserved PxxP motif in RIG-I 

between the CARDs and the helicase core interacts with Src (Li XY et al., 2014). CARDs and 

PxxP motif cooperation leads to the disruption of the association between AKT and Src. 

Initially physical association established by tethering RIG-I CARDs with the SH1 domain of 

active Src, is followed by the interaction between the RIG-I PxxP motif and the SH3 domain 

of Src thereby preventing the association of Src SH3 with AKT PxxP. The AKT/Src 

interaction is impaired and as a result the proliferation of myeloid is restricted. 

Therefore all these datas suggest an anti leukemia activity of RIG-I via partner associations. 

However, how RIG-I is integrated in the regulatory program governing the myeloid 

differentiation and proliferation is not totally elucidated. 

 

3. Hematopoiesis and Leukemia 

 3.1. Normal hematopoiesis 

  3.1.1. Hematopoietic hierarchy  

Hematopoiesis is the process allowing the regulated renewal of blood cells. A healthy adult 

produces 1011 - 1012 blood cells per day. Hematopoiesis takes place in different tissues all 

along the development. During fetal life, it occurs in yolk sac until the 2nd month of 

gestation. Thereafter, it takes place from the second month in the liver, the spleen until the 6th 

months and from the fourth month in the spinal cord. In adults, haematopoiesis takes place 

exclusively in the bone marrow and lymphoid organs. Until the age of five years all the bones 

are involved beyond this age it is only in the flat bones. Hematopoïesis is initiated from 

Hematopoietic Stem Cells (HSCs) and give rise to lineage-committed progenitors and end-

stage mature cells. Hematopoïesis starts with the Long-Term reconstituting HSCs (LT-HSCs), 
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which have two properties: multipotency and self-renewal. HSC multipotency consists in the 

ability to differentiate into multiple types of blood. HSC self-renewal consists in the ability to 

give rise to identical daughter cells with the same multipotent properties as the parent cell. 

Under steady-state conditions, HSCs numbers is regulated and are maintained in a quiescent 

state (Jude CD et al., 2008). Then appear the Short-Term reconstituting HSCs (ST-HSCs), 

which derive from from LT-HSCs and, although they maintain multipotency, they exhibit 

more-limited self-renewal potential. Upon differentiation, HSCs give rise to MultiPotent 

Progenitors (MPP), which then differentiate into lineage committed progenitors. Then all the 

differentiated blood cells will be produced. MPPs are developmentally more restricted than 

HSCs in their lineage commitment, giving rise to mature blood cells losing the ability to 

proliferate and self-renew. Progenitors compartment is constituted by a heterogenous cell 

population. Two main categories are distinguished: immature progenitors which conserve a 

quite high ability to proliferate and generate several lineages, and mature progenitors showing 

a more reduced proliferation potential with a restricted ability to differentiate in one lineage. 

Progenitors are designated by their ability to form colonies in semi solid medium growth 

(CFU: Colony Forming Unit), which are characterized by their morphology and a limited 

mobility (Bradley TR and Metcalf D, 1966). MPP differentiation leads to hematopoietic 

myeloid or lymphoid progenitors which are pluripotent and able to differentiate as blasts 

(Orkin SH and Zon LI, 2008) which finally give rise to ten HSC-derived blood cell lineages 

as shown by the Figure 15: myeloid cells by the Common Myeloid Progenitor (CMP) (mast 

cells, dendritic cells (DCs) and GMP), granulocytes and monocytes by the granulocyte-

monocyte progenitor (GMP)  (neutrophils, basophils, eosinophils, macrophages), erythroid 

cells by the Megakaryocyte Erythrocyte Progenitor (MEP)  (megakaryocytes and 

erythrocytes) and lymphoid cells by the  common lymphoid progenitor (CLP) (B and T 

lymphocytes, and natural killer cells). Finally maturate cells pass into the bloodstream.  
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Figure 15. Schematic representation of hematopoiesis. The hierarchical organization 

comprises the Hematopoietic Stem Cells (HSC), which are the origin of the myeloid and 

lymphoid lineages, then the more or less differentiated progenitors and finally the mature cells 

which pass into the blood. Adapted from Wang LD and Wagers AJ, 2011. 

 

The haematopoiesis and HSCs are regulated by the bone marrow microenvironment (niche), 

which release many factors (growth factors, cytokines, hormones and transcription factors). In 

the hematopoietic niche a variety of cells types is present including osteoblasts, osteoclasts, 

mesenchyme stem cells, adipocytes, endothelial cells, perivascular reticular cells, sympathetic 

neurons, macrophages and the extracellular matrix (Krause DS et al., 2014). 

The stromal cells of hematopoietic niche are essential for the survival of the hematopoietic 

precursors, permitting their proliferation and differentiation into different lineages. They 

produce several growth factors involved either in the positive or the negative regulation of 

haematopoiesis. The different positive growth factors are IL-6, Il-1, SCF (Stem Cell Factor), 

LIF (Leukemic Inhibitory Factor) that increase the number of stem cells in the cell cycle and 

sensitize multipotent stem cells. The CSF (Colony Stimulating Factor) regulates the 

proliferation of the progenitors and also acts on the survival and action of myeloid and 
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lymphoid cells, some being specific to a single cell line as G-CSF (granulocyte-CSF) and M-

CSF (macrophage-CSF). There are also growth factors that negatively regulate 

haematopoiesis such as TGF (Transforming Growth Factor ȕ) and TNF (Tumour Necrosis 

Factor). 

Several transcription factors are involved in the regulation of haematopoiesis. The primitive 

haematopoiesis is regulated by SCL (Stem Cell Leukemia hematopoietic transcription factor), 

GATA2 (GATA binding protein 2), LMO2 (LIM Domain Protein 2 Only) and AML-1. HSCs 

self-renewal is induced by Ikaros, HOXB4 (Homeobox protein 4) and GATA2 while 

differentiation is under control of PU-1 factor. In addition, for each cell lineage there are 

specific transcription factors such as RARα that allows differentiation of promyelocytes into 

neutrophils.  

  

  3.1.2. Hematopoietic cells and their biological functions 

Three kinds of blood cells differentiate from the HSCs: erythrocytes, thrombocytes and 

leucocytes. They represent 45% of the blood tissue circulating in the plasma, which represents 

55% of the tissue.    

Erythrocytes (red blood cells) carry oxygen and collect carbon dioxide thanks to the 

haemoglobin. 

Thrombocytes (platelets) come from fragments of megakaryocytes. They release a 

multitude of growth factors including Platelet-Derived Growth Factor (PDGF), a potent 

chemotactic agent, TGF beta which stimulates the deposition of extracellular matrix and other 

basic fibroblast growth factor, insulin-like growth factor 1, platelet-derived epidermal growth 

factor, and vascular endothelial growth factor. Thrombocytes have a fundamental role in 

coagulation.  

 Basophil granulocytes are involved in the immune response and allergic reactions. 

Cytoplasmic granules contain histamin and heparin preventing coagulation but allowing 

diapedesis. After recognition of allergens and parasites, basophils release histamine that 

activates inflammatory response. 

 Eosinophil granulocytes are involved in the immune response and allergic 

inflammation. They play a crucial role in the destruction of parasites thanks to bactericidal 

proteins contained in their granules. Eosinophils also have the ability to participate in 

phagocytosis permitting the regulation of T cells and B cells by antigen-presentation. 

 Neutrophil granulocytes are involved in the immune response. To attack 

microorganisms, intracellular granules have protein-destroying and bactericidal properties 
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leading to phagocytosis of the pathogen. They can also stimulate macrophages by the release 

of Macrophage Inflammatory Protein-1α (εIP-1α), εIP-1ȕ and IFN-Ȗ leading to the 

activation and maturation of macrophages. 

 Monocytes are leucocyte that differentiate into macrophages (which have the capacity 

to phagocyte the pathogen and it is involved in adaptive immunity and inne immunity) or 

dendritic cells (involved in antigen presentation and in triggering the adaptive immune 

response). 

 Lymphocytes B are responsible of the adaptive immune system by the production of 

antibodies or immunoglobulin after antigen presentation by antigen presenting cells 

(macrophages, follicular cells, dendritic cells). In the secondary lymphoid organs takes place 

the antibodies production and the transformation of lymphocytes into plasma cells. 

 Lymphocytes T are involved in the adaptive immune system by stimulating or 

inhibiting antibody production by B-lymphocytes and in cell-mediated immunity by the 

secretion of cytokines or lymphokines. They mature in the thymus (primary lymphoid organ). 

They are classified into different categories according to their membrane receptor expression: 

CD4+ or T helpers, CD8+ or T suppressors or cytotoxic. 

 

 3.2. Leukaemia 

Leukaemia is a malignant haematological disorder characterized by the uncontrolled 

proliferation of white blood cells in the bone marrow. Malignant cells are characterized by the 

inhibition of their differentiation during the hematopoietic process. The transformation of 

leukemic cells is frequently associated with the accumulation of mutations, chromosomal 

translocations and epigenetic changes (Sachs L, 1985). 

 

  3.2.1. Leukaemia classification 

Leukaemia is classified in four major types according to the rate of disease change (acute or 

chronic) and the cell lineage (lymphoblastic or myelogenous). Chronic leukaemia is 

characterized by a long clinical course (several years) by proliferation or accumulation of 

cells in the bone marrow at advanced stage of their proliferation. If the cell proliferation 

concerns lymphocyte cells, leukemia is called chronic lymphocytic and if it involves myeloid 

cells it will be referred to as chronic myelogenous. Acute leukaemia is characterized by a 

rapid clinical progression and proliferation first in the bone marrow then in the blood; cells 

are blocked at an early stage of their differentiation. As chronic leukaemia, depending on the 

origin of the blast, acute leukaemia (AL) is divided in acute myeloid leukaemia (AML) and 
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acute lymphoblastic leukaemia (ALL).  ALL are more frequent in children (80% of AL) 

whereas AML occur mainly in adults around 60s.  

Leukaemias were historically classified based on the French, American and British (FAB) 

classification system, in the 70’s. This classification is based on cytological criteria. A new 

classification was proposed by the WHO (World Health Organitation) in 1999, taking into 

account morphological, cytological, cytochemical and cytogenetic data. The following table 

(Table 3) summarizes this classification: 

 

Chronic 

Leukaemia 

Chronic 
myeloid leukaemia 

(CML) 
 

 Proliferation of mature granulocytes 
(neutrophils, eosinophils and 

basophils). Characteristic 
chromosomal translocation called the 
Philadelphia chromosome (where a 
portion of chromosome 22 binds to 

chromosome 9).  Appears more 
commonly in the elderly with a 

median age at diagnosis of 65 years. 

Chronic lymphoid 
leukaemia (CLL) 

 B cell lymphocytes affection by its 
high presence. More present in adults 

older than 60 years 

 

Acute 

leukaemia 

Acute myeloid 
leukaemia (AML) 

(with recurrent 
genetic 

abnormalities) 
the most frequent 

AML with t(8; 
21)(q22; q22) 

(M2) 

Formation of a fusion protein, 
AML1-ETO or RUNX1-RUNX1T1. 

Affects the adult population 
principally. 

AML with  
inv(16)(p13q2

2) or 
t(16;16)(p13 
;q22) (M4Eo) 

Presence of myelomonocytic blasts 
and atypical eosinophils by gene 

fusion CBF-beta/MYH11. Present in 
adults and children. 

AML with 
t(9;11)(p22;q2

3) (M5) 

Hight presence of monocytic cells 
by the gene fusion MLLT3-MLL. 

This AML type is sub-divided based 
on morphology into M5a 

(predominantly monoblasts) and 
M5b (mixture of monoblasts 

and promonocytes) 
APL t(15; 17) 

(q22;q12) 
(M3) 

 

Accumulation of 
immature granulocytes called 

promyelocytes with gene fusion 
PML-RARA. Affects the median 
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age, approximately 30–40 years. 
AML with 

t(6;9)(p23;q34
) (M2) 

In FAB classification this leukaemia 
type is associated with M2, but in 

this case the chromosome 
translocation is different and give 

different gene fusion, DEK-NUP214 
but has a poor prognosis compared 

to the t(8;21). 

AML with 
inv(3)(q21q26.

2) or 
t(3;3)(q21;q26.

2) 

They present the gene fusion RPN1-
EVI1, which cause hyperplasia with 
dysplasia of megakaryocytes with a 

poor prognosis. 

AML with 
t(1;22)(p13;q1

3) (M7) 

It is a form of leukaemia where a 
majority of the blasts are 

megakaryoblastic. Determinated by 
the gen fusion RBM15-MKL1. Its 
presence is increased in individuals 

with Down Syndrome. 

Acute 
lymphoblastic 

leukaemia 
(ALL) 

B-cell 
lymphoblastic 

leukaemia 
 

It is characteristic for the presence of 
many B-cells lymphoblasts found in 

the blood and bone marrow. It is 
classified in different types, 
depending in chromosome 

translocation: t(9;22)-BCR/ ABL; 
t(v;11q23)-MLL rearrangement; 

t(1;19)-E2A/PBX1; t(12;21)-ETV/ 
CψFα; t(17;19)-E2A/HLF. It is 

principally present in childrens from 
1-5 years. 

T-
lymphoblastic 

leukaemia 

Consists in a high presence of T-
cells lymphoblasts. It is principally 
present in children in oldest ages. 

 

My PhD work was focused on acute promyelocytic leukaemia. 

 

  3.2.2. Acute Promyelocytic Leukaemia (APL) 

Acute Promyelocytic Leukaemia (APL) is a subtype of AML M3 (Acute Myelogenous 

Leukaemia) according to FAB classification. APL represents 10% of AML (Douer D, 2003). 

This leukaemia was first described by Hillestad (Hillestad LK, 1957) as a fatal disease with an 

aggressive course and short duration. It is characterized by the occurrence of sudden 
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haemorrhages mainly caused by coagulation disorders due to thrombocytopenia, which comes 

from an excessive consumption of platelets and bone marrow failure. There is diminished 

platelet count and abnormal accumulation of immature undifferentiated granulocytes called 

promyelocytes. APL reached all ages with equal incidence in men and woman. In France, 

about hundreds of new cases for year are counted. If no therapy is administered quickly, this 

illness leads to death, associated with severe coagulopathy leading to a stroke. 

 

   3.2.2.1. APL molecular pathology 

In 1977, Rowley et al identified the reciprocal t(15:17) translocation as the Hallmark of the 

pathology (Rowley JD et al., 1977). Later, de Thé et al discovered the fusion of the unknown 

promyelocytic leukaemia (PML) gene on chromosome 15 to the Retinoic Acid (RA) Receptor 

α (RχRα) gene on chromosome 17, resulting in the chimeric gene encoding PML-RχRα 

fusion protein (de Thé H et al., 1990) (Figure 16).  

 

 

 

  

 

 

 

 

 

 

Figure 16. Representation of the reciprocal translocation t(15;17)(q24;q21) specific to 

the APLs bringing the PML and RAR genes in contact. Adapted from Chauffaille ML et 

al., 2001 and Legües ME et al., 2002. 

 

Since then, other translocations have been identified, representing 2% of the APL cases. They 

all involve RχRα gene in APL patients and one of the following genes: Zinc Finger and BTB 

domain containing 16 (ZBTB16) (Najfeld V et al., 1989; Sainty D et al., 2000); 

NucleoPhosMin (NPM) (Corey SJ et al., 1994); NUclear Mitotic Apparatus protein 1 

(NUMA1)(Wells RA et al., 1996); Signal Transducer and Activator of Transcription 5B 

(STAT5B) (Jonveaux P et al., 1996); BCL6 CORepressor (BCOR) (Yamamoto Y et al., 

2010); PRotein Kinase, cAMP-dependent PRotein Kinase type I-alpha regulatory subunit 

1 1
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(PRKAR1A) (Catalano A et al., 2007); Factor Interacting with PAPOLA and CPSF1 

(FIP1L1) (Buijs A and Bruin M, 2007; Kondo T et al., 2008); Nucleic acid-binding protein 1 

(NABP1) (Won D et al., 2013) (Figure 17). 

 

 

Figure 17. Schematic representation of the various partner genes of RARA in the APL. 

PML: Promyelocytic leukemia; ZBTB16: Zinc finger and BTB domain containing 16; NPM: 

Nucleophosmin; NUMA1: Nuclear mitotic apparatus protein 1; STAT5B: Signal transducer 

and activator of transcription 5B; BCOR: BCL6 corepressor; PRKAR1A: cAMP-dependent 

PRotein Kinase type I-alpha regulatory subunit; FIP1L1: Factor interacting with PAPOLA 

and CPSF1; NABP1: Nucleic acid-binding protein 1. cc: Coiled-coil domain; D: Dimerization 

domain; O: Oligomerization domain; OB-fold: OB-fold–nucleic acid binding domain; POZ: 

BTB/POZ domain. Adapted from De Braekeleer E et al., 2014.  

 

    3.2.2.1.1. Role of PML 

The PML gene (Promyelocytic Leukaemia) is located on chromosome 15 and is expressed 

ubiquitously. It codes for the PML protein mainly localized in nuclear bodies called PML –

nuclear bodies (NB), nuclear domain 10 (ND10), or PML oncogenic domains (PODs) (Zhong 

S et al., 2000). Alternative splicing of PML gene leads to seven isoforms of PML that is a 
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member of the TRIM family (TRIpartite Motif). PLM expression is controlled by STAT3 

(Signals Transducers and Activators of Trasncription 3) and IRF3 (IFN Regulatory Factor 3). 

(Bernardi R and Pandolfi PP, 2007) and is essential to NBs genesis (Ishov AM et al., 1999). 

The PML protein has been described as a tumour suppressor and is involved in several 

processes such as apoptosis, senescence, DNA repair, transcriptional regulation, 

differentiation and immunity in the case of viral infections (Strudwick S and Borden KL, 

2002). PML overexpression leads to the cell growth arrest and knock out cell lines show a 

dramatic increase in their proliferation (Ruggero D et al., 2000). Some of PML roles depend 

in the accumulation of the protein in PODs or PML NBs and the recruitment of specific 

proteins. For example, the recruitment of hMre11/Rad50/NBS1 repair complex involved in 

DNA repair (Zhou W and Bao S, 2013).  

 

    3.2.2.1.2. RARα and granulopoiesis 

Retinoid signalling plays an important role in the development and the differentiation of 

several tissues such as the musculoskeletal and central nervous systems, the heart and 

respiratory systems, the eye and the hematopoïesis (Mark M et al., 1999; Ross SA et al., 

2000). In different cell lines, it has been shown that retinoids are involved in the terminal 

differentiation of neutrophils (Mehta K et al., 1996; Shiohara M et al., 1999; Nagy L et al., 

1995; Idres N et al., 2001; Benoit G et al., 1999; Ricote et al., 2006; Taschner S et al., 2007). 

Retinoid Acid (RA) is a vitamin A metabolite, which is present in the serum with 

physiological concentrations varying from 1 to 10 nM. It binds to specific nuclear receptors, 

retinoid (RAR) and rexinoid (RXR) which are encoded by three genes giving rise to related 

isoforms α, ȕ and Ȗ having a more or less similar expression pattern (εangelsdorf DJ and 

Evans RM 1995). Both RAR and RXR are activated upon binding with ATRA (All-trans 

retinoic acid) and 9-cis-retinoic acid with a different affinity (Heyman RA et al., 1992). RAR 

and RXR bind together to form an heterodimer (Melnick A et al., 1999). RXR has been 

identified as co-regulators and are required for an efficient binding of RAR to their target 

(Hallenbeck PL et al., 1992; Leid M et al., 1992; Yu VC et al., 1991). Like other nuclear 

receptors, RARs contain different evolutionary conserved domains. Among them, the DNA 

binding domain that binds to Retinoic Acid Response Element (RARE) located in the 

promoter elements of retinoid target genes (Chambon P, 1996), the ATRA binding domain, 

the Retinoid X Receptor Alpha (RXRA) dimerization site and the nuclear co-repressor and 

co-activator binding sites (Nagpal S et al., 1993).  
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In the absence of RA ligand (Figure 18A), the RAR/RXR heterodimer recruits co-repressors 

such as Nuclear receptor CO-Repressor1 (NCOR1) and Silencing Mediator of Retinoid and 

Thyroid receptor (SMRT also named NCOR2) allowing the interaction with the Histone 

DeACetylases (HDAC)-containing Sin3A complex (Hörlein AJ et al., 1995) and Polycomb 

Repressive Complex 2 (PRC2) (Gillespie RF and Gudas LJ, 2007).  Histone deacetylation 

causes chromatin condensation and transcription repression (Pazin MJ and Kadonaga JT, 

1997). Binding of ATRA to RχRα (Figure 18B) induces a conformational change in the 

heterodimer causing co-repressor disruption and the sequential recruitment of coactivators 

complexes such as Nuclear receptor CO-Activator 1 (NCOA1; also known as SRC1), NCOA2 

(also known as SRC2) or NCOA3 (also known as SRC3). These co-activators recruit Histone 

AcetylaseTransferase (HAT) complexes and Trithorax proteins, which cause histone 

acetylation leading to chromatin relaxation and allowing transcription activation of target 

genes implicated in myeloid differentiation (McInerney EM et al., 1998; Kashyap V and 

Gudas LJ, 2010).  

 

Figure 18. RA signalling mechanism. Retinoic acid (RA) binds to RA Receptor (RAR) 

which form a heterodimer complex with Retinoid X Receptor (RXR) and binds to RA 

Reponse Elements (RAREs) near target genes. (A) The absence of RA allows co-repressors as 

Nuclear receptor CO-Repressor (NCOR) family to bind to RAR and recruit repressive factors 

such Polycomb Repressive Complex 2 (PRC2) and Histone DeACetylases (HDAC), (B) 

whereas the presence of RA releases co-repressors and permits co-activators recruitment of 

the Nuclear receptor CO-Activator (NCOA) family to bind to RAR and recruit activating 

factors such as Trithorax and histone acetylase (HAT).   Adapted from Cunningham TJ and 

Duester G, 2015. 

 

It is important to notice that activation of RARs in the absence of RA ligand has been reported 

during different stages of myelopoïesis (Collins SJ, 2002). In these cases, RAR interact with 

transcription factors such as STAT proteins, the PKA receptor. Moreover some hematopoietic 

A B 
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cytokines (IL-3, GM-CSF, IL-1) enhance the transcriptional activity of RA receptors through 

the JAK//STAT pathway (Nakamaki T et al., 1994).   

     

    3.2.2.1.3. PML-RARα induced APL  

The chromosomal translocation t(15;17) leads to the expression of a fusion protein containing 

a N-terminal portion of the protein PML and a C-terminal portion corresponding RχRα (de 

Thé H et al., 1990). There are three variants of the fusion protein PML-RχRα according to 

three different points of break in the PML gene. There is a short form (PML- RχRαS), a 

middle form (PML-RχRαε) and a long form (Pεδ-RχRαδ). These forms are present in 

respectively 70 %, 20% and 10% of patients with APL (Pandolfi PP et al., 1992). Show in the 

Figure 19, PML-RχRα has the same affinity as RχRα for χTRχ and conserves both the 

DNA binding and the heterodimerization properties of each original protein. However, the 

APL fusion protein has altered DNA binding properties and can bind RAREs as homodimer 

(Perez A et al 1993). Moreover, it has dramatic increased ability to bind to co-repressors 

NCOR1 and SMRT rendering ATRA physiological doses (10-9-10-8 M) inefficient to 

dissociate the complexes, leading to apply pharmacological ATRA doses. The fusion protein 

behaves as an aberrant transcriptional repressor on RA target genes. In addition PML-RχRα 

can bind multiple NCOR/SMRT complexes (Lin RJ and Evans RM, 2000; Minucci S et al., 

2000) leading to an increased concentration of HDAC complex on the target gene, enforcing 

DNA deacetylation, and enhanced transcription repression in the presence of physiological 

concentration of RA (Di Croce L et al., 2002). Addition of pharmacological concentrations of 

ATRA greater than 10-6 M does not only release the co-repressors and stimulates the genes of 

myeloid differentiation (Licht JD, 2006), it also degradate the PML-RχRα fusion protein and 

allows the restoration of the retinoid signaling.  
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Figure 19. Promyelocytic leukaemia (PML) and retinoic acid receptor-α (RARα) protein 

fusion. PML-RARα binds and repress RχRα target genes by recruitment of co-repessors and 

the HDAC (Histone Deacetylase), which causes histone deacetylation and transcription 

repression. Pharmacological Retinoic acid (RA) converts PML-RARα into an activator and 

restores differentiation by the recruitment of Co-activators and HAT (histone 

acetyltransferase). Adapted from de Thé H and Chen Z, 2010. 

 

Additional investigations suggest that the origin of APL is multifactorial. The PML-RARα 

protein is not only involved in the repression of RχRα target genes. It has been observed that 

the expression of PML-RARα in myeloid cells in transgenic mice promotes only 15 to 20% of 

the development of APL after a long period of latency (6 to 13 month) (He LZ et al., 1997). It 

has been shown that secondary events like affection on FLT3 or RAS are required for the full 

development of APL phenotype (Sohal J et al., 2003; Chan IT et al., 2006). Martens et al., 

showed that PML-RARα can bind 3000 sites on DNA corresponding to genes that encode 

proteins involved in the regulation of the cell cycle, differentiation, apoptosis, metabolism and 

protein synthesis (Martens JH et al., 2010). In some cases PML-RARα binding to DNχ sites 

is more or less affected by interactions with Polycomb Repressor Complex (PRC1 and PRC2) 

proteins. These complexes induce chromatin remodelling, transcription repression. PRC2 is 

involved in the maintenance of stem cells by repressing the transcription of genes involved in 

the differentiation (Villa R et al., 2007). And finally PML-RARα inhibits various functions of 

PML described previously as its role in apoptosis and senescence, by the inhibition of POD 

formation and modifying the activity of p53 and AKT (Koken MH et al., 1994; Trotman LC 

et al., 2006). 

 

   3.2.2.2. APL cellular model: NB4 cells   

The NB4 cell line is a permanent cell line first described by Lanotte in 1991, derived from the 

marrow of a 20-years-old woman with APL in the second relapse. The cells are hypergranular 

promyelocytes in GO/Gl phase and the karyotype complexity is characterized by the t(15;17) 
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chromosomal translocation with the expression the variant L of PML-RARa, hypotetraploidy 

with loss of several chromosomes, rearrangement of chromosome 19 and simultaneous 

expression of myeloid and T cell markers (Lanotte M et al., 1991). It has been reported that 

NB4 cells in presence of 5 μmol/l of ATRA during three days can be differentiated in 

myelocytes (Khanna-Gupta A et al., 1994). 

Therefore this cell line has been chosen for my PhD work because 1) It is the cell line of 

choice, the closest to APL by comparison to  other cell lines (HL60 and PL21) (Drexler HG et 

al., 1995), 2) The treatment with 1με ATRA allows its differentiation like in vivo. 3) After 4 

to 6 days of treatment the cells are totally differentiated being similar to neutrophils and 

conserving the active functions of neutrophils (Grégoire C et al., 1998).  

 

   3.2.2.3. APL Treatment strategies and side effects 

    3.2.2.3.1. ATRA / Chemotherapy strategy 

In the early 70s monochemotherapy (daunorubicin) was the only treatment practiced with a 

65% remission and only 35-45 % of 5 years event-free survival was obtained (Bernard J et al., 

1973; Tallman MS et al., 2002). But patients developped coagulopathies causing patients 

death. A combination of chemotherapeutic agents (anthracycline, daunorubicin, idarubici and 

cytarabine) was tested and showed similar patients outcomes. The complete response rate was 

55-73% and the survival after treatment did not exceed 2 to 5 years for the majority of 

patients.  

In the mid-1980s, since ATRA was reported to induce in vitro differentiation of the terminal 

APL cells, its introduction as a cancer differentiation inducer and therefore a therapeutic agent 

improved the outcome of de novo patients. To induce differentiation, ATRA acts at different 

levels (Figure 20): 1) it converts PML-RχRα into a transcriptional activator permitting 

differentiation (de Thé et al., 2012), 2) few minutes after ATRA treatment, there is an increase 

of cAMP level upregulating cAMP-dependent protein kinase (PKχ). PKχ permits the RχRα 

phosphorylation and triggers its activation or degradation (Zhao Q et al., 2004; Nasr R et al., 

2008), 3) the degradation of PML-RχRα by the proteasome after ubiquitination (Zhu J et al., 

1999) and autophagy  (Isakson P et al., 2010). The degradation of the PML-RχRα allows the 

reformation of nuclear bodies and restores various functions of PML, such as apoptosis. 
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Figure 20. Effects of ATRA on APL cells. ATRA induces differentiation by conversion of 

PML-RχRα into a transcriptional activator thanks to Nuclear receptor CO-Activator (NCOA) 

recruitment and regulation of cAMP-PKA signaling pathway. Besides ATRA could degradate 

PML-RχRα oncoprotein as well.  

 

But only 77% of patients had a complete remission and the remission durations were short. 

Moreover this treatment induces side effects. During this induction approximately 25% of the 

patients could develop the Retinoic Acid Syndrome (RAS) also known as differentiation 

syndrome. It is the main complication for APL patients treated with ATRA. During the 

treatment a massive accumulation of differentiated cells in the blood cause various side 

effects. The characteristic symptoms of this disease are respiratory distress, the appearance of 

fever, weight gain, pulmonary infiltrates and vascular leak syndrome causing renal failure and 
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pleural and pericardial effusion. 2% of the RAS affected patients dyed. In the case of RAS, 

patients are treated with glucocorticoids such as dexamethasone until the complete 

disappearance of symptoms. Subsequently, treatment with ATRA was associated with 

chemotherapy for 95% of complete remission in patients with survival without disease for 5 

years in 50-75% of cases (Tallman MS et al., 2002; Coombs CC et al., 2015). It is known that 

the use of chemotherapy with ATRA reduces RAS incidence, to 9-2% of patients (De Botton 

S et al., 2003). But chemotherapy obviously adds associated complications. The causes of 

RAS are not currently fully understood. However, the APL cells treated with ATRA release 

inflammatory cytokines, such as interleukin IL-1ȕ, Iδ-6, IL-8 and Tumor Necrosis Factor 

alpha (TNF-α) (Dubois C et al., 1994). Moreover these mature cells also release cathepsin G, 

a serine protease that is involved in endothelium damage (Seale J et al., 1996). It has also 

been suggested that ATRA would induce changes in the adhesive properties of APL cells 

promoting the aggregation of promyelocytes, mediated by interaction of adhesion molecules 

such as InterCellular Adhesion Molecule 2 (ICAM2) and Lymphocyte Function-associated 

Antigen 1 (LFA1) (Larson RS et al., 1997). 

Moreover, after ATRA treatment, relapse cases have been described suggesting the resistance 

to ATRA. It has been shown that continuous ATRA treatment was associated with a marked 

decrease in plasma drug concentration due to mutations in retinoic acid receptors or 

alterations in the expression of CRABP (act to sequester ATRA) or the development of 

enzymes responsible for catabolic drug conversion. (Muindi J et al., 1992). Some mutations 

have been reported in the ATRA binding domain of PML-RARα (Duprez E et al., 2000). 

ATRA resistance could also be linked to the alteration of signaling pathways necessary for the 

granulocytic differentiation. It has been shown that in resistant APL cells, retinoid can 

associate with agonists of protein kinase cAMP (PKA) (Ruchaud S et al., 1994). 

Consequently a defect in cAMP/PKA pathways in APL cells could involve cell resistance to 

ATRA treatment. 

 

     3.2.2.3.2. Arsenic Trioxyde (ATO) strategy          

In 1990, the trioxide arsenic (ATO) was introduced with a high Complete Remission rate (73-

85%) and a relatively long-term remission. But the use of ATO in relapsed patients after 

treatment with ATRA induces complete remission in 95% of cases (Niu C et al., 1999). These 

results indicate that ATO could be efficient to treat APL patients with relapses after treatment 

with ATRA. In vitro, ATO treatment induces two different effects depending on the dose 

(Figure 21). At high doses (0.5 to 2 micromol/L), it induces apoptosis whereas in lower 
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concentrations (0.1 to 0.5 micromol/L) it induces cell differentiation (Chen GQ et al., 1997). 

In the patients, the treatment with ATO induces incomplete differentiation and high cell 

apoptosis. At the molecular level, treating the cells by ATO causes cell death by apoptosis, by 

the downregulation of bcl-2 gene expression at both mRNA and protein levels, and 

modulation of the PML staining pattern (Chen GQ et al., 1996). More recently, it has been 

demonstrated that ATO causes a decrease of the mitochondrial transmembrane potential 

(Δȥm) and the opening of mitochondrial permeability transition pore (PTP) by targetting the 

voltage-dependant anion channel (VDAC), a component of the protein complex regulating 

PTP, and releasing cytochrome c with other apoptosis-inducing proteins (Zheng Y et al., 

2004). Also the apoptosis by ATO is caused by the accumulation of reactive oxygen species, 

c-Jun N-terminal Kinase (JNK) activation and the inhibition of Nuclear Factor-KappaB (NF-

κψ) (Chou WC et al., β004; Davison K et al., β004; εathieu J and ψesançon F, β006). Finally 

the ATO causes the degradation of PML-RχRα by UBC9 (SUMO-ligase) triggering the 

degradation of PML-RARα by RNF4 polyubiquitination and final proteasome degradation 

(Lallemand-Breitenbach V et al., 2008) and also by autophagy (Isakson, P et al., 2010). 

Currently, the standard treatment is the combination of ATRA with chemotherapy 

(anthracyclines) for a complete remission of 90% of patients. And the use of ATO in relapse 

cases. 
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Figure 21. Effects of As2O3 on APL cells. As2O3 action depends on its dose. Low dose (<0.5 

με) of As2O3 mediates differentiation of APL cells by degradation of PML-RχRα 

oncoprotein by sumoylation. On the other hand, a high dose of As2O3 initiates apoptosis by 

opening mitochondrial permeability transition pore (PTP) and releasing cytochrome c and 

other pre-opoptotic factors. Also the downregulation of blc-2 and accumulation of reactive 

oxygen species, c-Jun N-terminal Kinase (JNK) activation and the inhibition of Nuclear 

Factor-KappaB (NF-κψ) give cell apoptosis. Adapted from Shen ZX et al.,  2004.  

 

    3.2.2.3.3. Other reported secondary effects 

Some cases of PseudoTumor Cerebri (PTC) have been reported in early phase of ATRA 

treatment, mostly in children. The exact reason for this complication is not known. One of 

them could be the existence of retinoid receptors and related cytoplasmic binding proteins in 

the nervous system (Ruberte E et al., 1993). Also it has been postulated that in children there 

is a reduction of RAR expression and also a change in RAR response to retinoid stimulation 

in central nervous system (Visani G et al., 1996).  
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Treatment with ATRA / ATO and chemotherapy causes new medical problems as HTN, 

cardiac disease, renal insufficiency, DM, haematological disorders, pulmonary disorders and 

neurological disorders. And finally second malignancies as breast cancer (Eghtedar A et al., 

2015). Furthermore, cells having a chromosomal translocation PLZF-RAR are not very 

sensitive to ATRA compared to those expressing PML-RAR translocation. This difference 

can be explained by the fact that PLZF-RAR, compared to PML-RAR, binds stably with 

PRC1 preventing its release during ATRA treatment blocking the transcription of genes 

involved in the granulocytic differentiation (Boukarabila H et al., 2009). 
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Materials and Methods 

 

1. Cell culture 

The NB4 APL cell line was a gift from Pr. H. de Thé (Hôpital St Louis, Paris, France). NB4 

cell suspensions were grown at 37°C and 5% CO2 in RPMI with 1% L-Glutamine (Gibco), 

1% Penicillin/Streptomycin (Gibco) supplemented with 10% decomplemented FBS for 30 

min at 56°C (Sigma). Cell differentiation was induced by the addition of 10µM ATRA 

(Sigma) or 10µM DMSO (Sigma) to the culture medium during different periods of time (0, 

24, 48, 72, 96, 120 and 140 h) in a confluent max value of 107cells/ml. Cell adhesion to the 

bottom of the flask indicated that NB4 cells were definitively in the differentiation process. 

 

2. Cell coloration 

 Firstly the cell suspensions were concentrated at 0,3x106 cells/ml in 150μl of medium 

then placed in a cytospin chamber. The cells were spun down at 440 rpm for 10 min on glass 

slides, air-dried during 30 seconds and processed for May-Grünwald Giemsa R (RAL 

diagnostics) staining as follow: during 3 min samples were stained with pure May-Grünwald, 

then with 50% May-Grünwald  during 3 more min and finally with Giemsa R during 10 min. 

At the end of the staining, the slides were then washed in distilled water during 30 seconds 

and air-dried. Pictures of the cells were taken with a Trybun microscopy setup at x40 

magnification.  

 

3. UV Cross-Linking Immunoprecipitation (CLIP) of RIG-I/RNA complexes 

The UV cross-linking method, originally described by Ule et al., is able to define sites of 

direct contact between RNA and protein (Ule J et al., 2003). This method is based on the 

intrinsic photoreactivity of nucleic acids bases such as pyrimidines, and some amino acids 

such as cysteine, lysine, phenylalanine, Tryptophane, or tyrosine at 254 nm (Brimacombe R et 

al., 1988; Hockensmith JW et al., 1986; Shetlar MD et al., 1984). UV cross-linking does not 

cross-link proteins to proteins in contrast to formaldehyde that induces multi molecular 

chemical bridges. UV CLIP is therefore specific for nucleic acids-protein interactions 

(Greenberg JR, 1979). Moreover, this method has several advantages over other methods. It is 

performed on live and intact cells, reflecting unperturbed in vivo environment. The UV cross-

linking results in an irreversible covalent bound allowing to remove unspecific co-

immunoprecipitated partners during further steps, and to partially digest the interacting RNA 
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into shorter nucleic acid to facilitate identification. The major drawback of the method is the 

low amount of purified RNA at the end of the multi-step protocol. Several successful CLIP 

studies have been undertaken and to identify the nature of the co-immunoprecipitated RNA, 

next-generation high throughput sequencing method is generally applied to CLIP, termed 

HITS-CLIP.      

 

 3.1. UV cross-linking 

The UV cross-linking was performed at each time of treatment with/without ATRA or DMSO 

(a control was performed without UV cross-linking). Cells were harvested either by 

recovering the cell suspension or by trypsination of adhesive cultures, followed by ice cold 

PBS washes. Then 2x107 cells for each culture condition were set up in 15 cm tissue culture 

dishes lid off, on ice and cross-linked with UVC (254 nm) at 400mJ/cm2, in a UV crosslinker 

1800 Stratagene  in 10ml of ice cold 1X DPBS (no Ca2+, no Mg2+). The irradiated cells were 

transferred into 15ml tube, centrifuged at 2000rpm for 10 min, pelleted in eppendorf tube in a 

final concentration of 108 cells/eppendorf. The pelleted cross-linked cells were frozen in 

liquid nitrogen and stored at -80°C until further use, if not processed the same day for lysis 

and immunoprecipitation. 

 

 3.2. Preparation of antibodies-conjugated beads 

Protein χ sepharose beads (50μl, GE Healthcare) were washed γ times with lysis buffer 

(10mM Tris-HCl pH 7.4, 2.5 mM MgCl2, 150 mM NaCl, 0.5% NP40, 2 mM DTT 2 mM, 

EDTA 0.5 mM), at 4°C and incubated with 5µg of rabbit polyclonal anti RIG-I antibody 

(Millipore), during 4h at 4°C under rotation. Then, to remove unbound antibodies, the 

antibodies-conjugated beads were washed γ times with 500μl of lysis buffer and by 10 min 

centrifugation at 13000 rpm at 4°C. 

Just before immunoprecipitation, to avoid co-elution of antibodies with protein-RNA 

complexes, antibodies were cross-linked to the beads according to Lamond lab protocol 

(http://www.lamondlab.com/newwebsite/Protocols%20for%20Website/Covalently%20Conju

gate%20Antibody%20to%20Beads.pdf). Antibodies-conjugated beads were washed twice 

with sodium borate 0,1M (pH 9) and centrifuged 10 min a 13000rpm at 4°C. Then incubated 

two times with 20mM DMP (Cross-linking reagent: Dimethyl pimelimidate) and sodium 

borate 0,1M for 30min at room temperature under rotation. Finally the antibodies-conjugated 

beads were washed twice with 50mM glycine  (pH 2,5), centrifuged 10 min a 13000 rpm at 

4°C and three times with lysis buffer. 
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 3.3. Cell lysates preparation  

The cell pellet was resuspended and disrupted in 500µl ice-cold lysis buffer (10mM Tris-HCl 

pH 7.4, 2.5 mM MgCl2, 150 mM NaCl, 0.5% NP40, 2 mM DTT 2 mM, EDTA 0.5 mM, 

proteases inhibitor cocktail 1X (Millipore), RNasin 1:100 (Promega), RQ1 DNase 1:50 

(Promega)). Cell lysis was performed during 40 min, vortexing every 2-3 minutes. The cell 

extract was centrifuged at 13000 rpm, at 4°C for 25 min to spin down the cell debris. 

Bradford assay was performed on the soluble fraction and 1 mg of total proteins was 

processed for immunoprecipitation and 50μg in Western ψlot. 

 

 3.4. Immunoprecipitation 

The 1mg cell lysate prepared as above was pre-cleared by incubation with 50μl Protein χ 

Sepharose beads for 10min at room temperature vortexing every 2-3 minutes, then added to 

the 50μl antibodies-conjugated beads in a final volume of 500 μl and incubated overnight on a 

rotating wheel at 4°C to immunoprecipitate the RNA-RIG-I complexes. The following day, 

the immunoprecipitated RNA-RIG-I beads complexes were washed 3 times with lysis buffer 

and centrifuged each time 10 min at 13000 rpm at 4°C. For each time point and drug 

treatments controls were performed without antibody. At this step of the protocol a western 

blot was performed with 50µg of immunoprecipitated proteins to check the presence of the 

protein.  

 

 3.5. Radiolabelling and elution of the crosslinked RNA-RIG-I complexes 

The immunoprecipitated RNA-RIG-I-beads complexes were washed with T4 PNK buffer (70 

mM Tris-HCl pH 7.6, MgCl2 10 mM, DTT 5 mM), resuspended in 20µl of T4 PNK buffer 

(ψiolabs), treated with T4 PNK enzyme (10 U, ψiolabs) and 0.5µl ȖP32ATP (10 mCi/ml, 3000 

Ci/mmol, Perkin Elmer) at 37°C for 20 min. The beads were then washed 3 times with 500µl 

of PNK buffer. Elution of the radiolabeled complexes was performed by incubation in lysis 

buffer with SDS (1%) at 37°C for 10 min. 

 

 3.6. Enzymatic treatment of immunoprecipitated complexes 

To demonstrate the presence of RNA or protein in the complexes after elution, 

immunoprecipitated complexes were treated either by 0,01mg RNAse A (Macherey Nagel) 

during 20min at 37°C or 2mg/ml Proteinase K (Euromedex) during 45min at 55°C. 
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 3.7. Gel migration and revelation 

To denature secondary RNA structures, samples were loaded on 8% polyacrylamide/urea gels 

(Polyacrylamide/Urea 25% (19:1 for sequencing nucleic acids or 37.5:1 for protein 

electrophoresis, 8M Urea, 10X TBE, 10% APS  and 1% TEMED) and run in TBE buffer at 

200V either at 4°C or 20°C, during 4 to 7 hours. Migrations were also performed with 8% 

SDS page gel, to denaturate proteins (resolving gel: Running buffer pH 8.8 (1.5M Tris and 

0.4% SDS), 40% Acrylamide 37:1, 10% APS  and 1% TEMED; stacking gel: Stacking buffer 

pH 6.8 (0.5M Tris and 0.4% SDS), 40% Acrylamide 37:1, 10% APS  and 1% TEMED) These 

gels were run in 10X Electrode Running buffer (30g/L Trisbase, 144g/L Glycine and 10g/L 

SDS) at 150V and room temperature for 1 hour. Finally the samples were also run in a 

8%Nupage gels, which denatures the proteins but have a neutral pH environment that 

minimizes protein modifications  (1M BisTris pH:6.5, 40% Acrylamide 37:1, 10% APS  and 

TEMED) In this case, gels were run in 5X High-MW running buffer (250mM MOPS, 250mM 

TrisBase, 5mM EDTA, 0.5% SDS) and 200X Running buffer reducing agent (1M Sodium 

bisulfite) at 150V at RT for 1 hour. After migration, the gels were directly exposed overnight 

on an X- ray film (Fujifilm) at -80°C, and the following day the film was processed for 

development to see the RNA-RIG-I complexes. 

 

 3.8. Western Blot 

The western blots were performed just after cell extract preparation or immunoprecipitation. 

The samples were denatured in 6x blue loading buffer (Tris pH 6.8 0.375M, SDS 12%, 

glycerol 60%, DTT 0.6M, bromophenol blue 0.06%) for 8min at 90°C, then loaded on 10% 

SDS page-gel (Running buffer pH 8.8 (1.5M Tris and 0.4% SDS), 40% Acrylamide 37:1, 

10% APS and TEMED) (Stacking buffer pH 6.8 (0.5M Tris and 0.4% SDS), 40% Acrylamide 

37:1, 10% APS  and TEMED) run in 10X Electrode Running buffer (30g/L Trisbase, 144g/L 

Glycine and 10g/L SDS) at 150V during 1h 30min at room temperature. The semi-dry transfer 

was performed at 15V during 30min, on nitrocellulose membrane 0.2µm Amersham (GE 

Healthcare Life Sciences). Membranes were blotted with a polyclonal anti RIG-I antibody (at 

1/1500 for 2.30hours, Millipore) and an anti rabbit IgG HRP linked antibody (at 1/2000 for 

1.30hours, Cell Signaling). The result was visualized by exposing the membrane to ECL and 

autoradiographic film (GE Healthcare), then analysed with ChemiDoc XRS (BioRad). 

Quantifications were performed with ImageLab (BioRad) software. 
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4. RIG-I/partner proteins complexes immunoprecipitation 

 4.1. Cell lysates preparation 

Cells were harvested either by recovering the cell suspension or by trypsination of adhesive 

cultures, followed by ice cold PBS washes. Then 2x107 cells for each culture condition 

resuspended and disrupted in 500µl ice-cold co-IP buffer (Tris-HCl pH 7.5 20mM, NaCl 137 

mM, NP40 1%, EDTA 1 mM, proteases inhibitor cocktail 1X (Millipore)) during 30 min 

vortexing every 5 minutes at 4°C. The cell extract was centrifuged at 1200g, 4°C for 25 min 

to spin down the cell debris. BCA assay was performed on the soluble fraction and 2 mg of 

total proteins was processed for immunoprecipitation.  

 

 4.2. Preparation of antibodies-conjugated beads 

Protein χ sepharose beads (β0μl, GE Healthcare) were washed 1 time with 1x PBS at 4°C and 

incubated with 15µg of rabbit polyclonal anti RIG-I antibody (Millipore) in co-IP incubation 

buffer (Tris-HCl pH 7.5 20mM, NaCl 137 mM, EDTA 1 mM), during 4h at 4°C under 

rotation. Then, the antibodies-conjugated beads were washed 3 times with PBS 1X to remove 

unbound antibodies by centrifuging 10 min at 10000 rpm and 4°C. 

 

 4.3. Cross-linking antibodies to sepharose beads 

Just before immunoprecipitation, to avoid co-elution of antibodies with protein-protein 

complexes, antibodies were cross-linked to the beads according to Mayeux lab protocol 

(https://www.institutcochin.fr/les-plateformes/proteomique/prestations/prestations/HP_Fixation_AC_ 

DMP.doc). Antibodies-conjugated beads were washed once with Bicarbonate pH 8 0.2M with 

0.5M NaCl and centrifuged 10 min at 13000rpm at 4°C. Then incubated two times in 50µl of 

ethanolamine 0,1M in Bicarbonate pH 8 0.2M for 1h at 4°C under rotation. Finally the 

antibodies-conjugated beads were washed twice with 1x PBS then once with 50mM glycine 

pH 2.8, then twice with co-IP buffer and finally once with co-IP with proteases inhibitor 

cocktail 1X (Millipore), centrifuged 10 min at 13000 rpm at 4°C each time. 

 

 4.4. Immunoprecipitation 

2mg of cell lysate prepared as above was pre-cleared by incubation with 75µl of Protein A 

Sepharose beads for 10min at 4°C, then the entire pre-cleared lysate was added to the 

antibodies-conjugated beads and incubated overnight on a rotating wheel at 4°C to 

immunoprecipitate the protein-RIG-I complexes. The following day, the immunoprecipitated 
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protein-RIG-I complexes beads were washed 3 times with 1x PBS and centrifuged each time 

10 min at 13000 rpm at 4°C. Controls were performed without antibody.  

 

 4.5. Elution and TCA precipitation 

Three consecutive elutions of the protein complexes were performed by incubation in 40µl of 

0.1M glycine for 10 min at room temperature followed by the addition of 5µl of  Tris-HCl pH 

9.5 1M. Then the protein complexes were precipitated overnight at -20°C in 10% TCA and 

centrifugated at 14000rpm and 4°C during 15min. Incubation with acetone was performed for 

1h at -20°C vortexing every 20min. The precipitated protein complexes were centrifuged at 

14000rpm and 4°C during 15min and the pellet was air dryed at room temperature during 

30min. The pelleted proteins were solubilized in solubilization buffer (Urea 6M, Thiourea 

1.5M, CHAPS 3%, DTT 0.06M) during 2h at 4°C votexing every 20min.  

 

 4.6. Western Blot 

Western blots were performed just after cell extract preparation or immuniprecipitation. The 

samples were denatured in 6x blue loading buffer (Tris pH 6.8 0.375M, SDS 12%, glycerol 

60%, DTT 0.6M, bromophenol blue 0.06%) for 8min at 90°C, then loaded on 10% SDS-page 

gel and run at 150V during 1h 30min at room temperature. The liquid transfer was performed 

at 40V during 16h with 15% ethanol (0.75A during 1.2h), on nitrocellulose membrane 0.2µm 

Amersham (GE Healthcare Life Sciences). Membranes were blotted with a polyclonal anti 

RIG-I antibody (at 1/1500 for 2,30 hours, Millipore) and an anti rabbit IgG HRP linked 

antibody (at 1/2000 for 1,30 hours, Cell Signaling). The result was visualized by exposing the 

membrane to ECL and autoradiographic film (GE Healthcare), then analysed with ChemiDoc 

XRS (BioRad). Quantifications were performed with ImageLab (BioRad) software. 

 

 4.7. Silver staining 

After migration, the gel fixation was performed overnight in 50% Methanol and 12% acetic 

acid. After being washed three times during 20min with 50% Ethanol, the gel was sensitized 

for 1min with a solution of Na2SO3x5H2O 0.2g/L and three washes of 20 seconds in H2O.  

The gel was then stained during 50 minutes maximum in staining solution (AgNO3 2g/L, 

Formaldehyde 37% 0.7mL/L) and washed three times for 20 seconds in H2O. The gel was 

incubated in the development solution (Na2CO3 30g/L, Formaldehyde 37% 0.25mL/L, 

Na2SO3x5H2O 10mg/L) for 20-30min. To stop the reaction the gel was incubated during 
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30min in Trizma base 50g/L and 2.5% acetic acid. Finally, it was washed twice for 10 

minutes in H2O and stored in water with 10% glycerol. 
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Results 

 

1. Effect of ATRA on NB4/NB4R cells differentiation   

Granulopoïesis is the process leading the myeloblast, unipotent stem cell of the bone marrow, 

to differentiate into granulocyte. During this process the myeloblast gives successively rise to 

5 different cell stages according to the following sequence: Myeloblast (Mb), ProMyelocyte 

(PM), Myelocyte (Mc), MetaMyelocyte (MM), Polynuclear (PN) (Figure 22).  

Identification of the different cell stages is allowed by staining with May-Grünwald-Giemsa. 

Once the cells are transferred onto coverslips, the staining can be performed. May-Grünwald-

Giemsa staining is based on two neutral dyes: the May-Grünwald, which contains eosin (an 

acidic stain) and methylene blue (a basic dye) and the Giemsa also containing eosin and 

related azures (also basic dyes). The basic dyes carry net positive charges that consequently 

stain nuclei (because of the negative charges of phosphate groups of DNA and RNA 

molecules), granules of basophil granulocytes, and RNA molecules of the cytoplasm of white 

blood cells. The eosin carries net negative charge and stains red blood cells and granules of 

eosinophil granulocytes.  

As a first step of my study, the effect of ATRA, which is known to induce differentiation, was 

followed on the evolution of the NB4 cell differentiation by visualizing the cell aspect at 

different times of treatment with the drug. As shown in Figure 22 and as expected, I could 

observe all the differentiation stages after different times of treatment with the drug. In the 

presence of ATRA the cells are supposed to show an extended morphology with a condensed 

nucleus, characteristic of the PN morphology. After 72 hours of treatment, I could observe the 

beginning of the cell adhesion. The morphological observation of the cells revealed that they 

correctly differentiated.   
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Figure 22. The different stages of differentiation in NB4 cells. NB4 cells were grown in the 

presence of 10μM ATRA during different times, then stained with May-Grünwald-Giemsa 

and observed with phase contrast microscope at 40X magnification.  

 

To better characterize the evolution of the cell population during the drug treatment, and 

monitor the effect of ATRA on NB4 cell line, I counted each maturating cell type for each 

time of treatment. Comparison was made with DMSO application during the same treatment 

time and is presented in Figure 23. 
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Figure 23. Differentiation of NB4 cells treated with. (A) ATRA and (B) DMSO. The 

graphs present the percentage of the different cell stages at different time points of treatment 

(0h (before treatment application) 24h, 72h and 120h). In dark blue the percentage of 

Myeloblast (Mb), in red the ProMyelocyte (PM), in light purple the Myelocyte (Mc), in 

orange the MetaMyelocyte (MM), in black the Polynuclear (PN) and in light blue the mitotic 

cells (M). 

 

As shown by the Figure 23A, a 24h treatment with ATRA induced a dramatic change in the 

cell population where PM represented more than 90% of the culture and the number of 

proliferative Mb is clearly diminished indicating that the differentiation process has started. 

After 72h, whereas the proportion of PM decreases, three other cellular stages appear in the 

culture Mc, MM and PN. At this time point of treatment cells are adherent. At this time of 

treatment, it is confirmed that the differentiation process is therefore undoubtedly engaged 

and some fully differentiated cells (PN) are present. However and as expected, they are far to 

be predominant and the two previous stages of hematopoïesis (Mc and MM) are majority. 

After 120h (or 5 days), PM cannot be observed anymore being replaced by Mc. Also MM 

decrease to the benefit of PN, which increase. In the presence of DMSO (Figure 23B), starting 

from 24h PM are majority in the culture throughout DMSO treatment until 120h and I could 

never observe the presence of PN. Cell adhesion could be observed for a very small 

proportion of cells which were mainly MM. Therefore I could verify that in our culture 

conditions 10με χTRχ has released the differentiation block as soon as 7βh allowing then to 

obtain fully differentiated cells, PN. In the presence of DMSO, the solvent of the drug may 

have triggered an incompleted and inefficient differentiation process. Treatment with ethanol 

as an other drug solvent led to the same observations.  

The NB4R cell line is a distinct type of maturation deficient subline, which was derived from 

the ATRA sensitive NB4 line (Ruchaud S et al., 1994). The NB4R1 like the NB4 cells 

express the PML-RχRα protein but their terminal differentiation is triggered by the addition 

of cAMP to ATRA treated cultures (Duprez E et al., 1996). We hypothesized that NB4R1 

cells are an interesting tool as a control cell line in which some terminal differentiation 

markers and RIG-I partners are not expected. 
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Figure 24. Differentiation of NB4R cells treated with. (A) ATRA and (B) DMSO. 

The graphs present the percentage of the different cell stages at different time points of 

treatment (0h (before treatment application) 24h, 72h and 120h). In dark blue the 

percentage of Myeloblast (Mb), in red the ProMyelocyte (PM), in light purple the 

Myelocyte (Mc), in orange the MetaMyelocyte (MM), in black the Polynuclear (PN) 

and in light blue the mitotic cells (M). 

 

 As for NB4 cells, I followed the effect of ATRA on NB4R cells. With ATRA (Figure 

24A) or DMSO (Figure 24B), NB4R are mainly mitotic or early maturing cells. After 

72 hours of ATRA treatment NB4R enter also in the maturation process since a high 

percentage of Mc (Myelocyte) and MM (MetaMyelocyte) are present. Therefore like in 

the case of NB4 cells, ATRA releases the differentiation block. Cells become adhesive 

and the differentiation process is maintained until 120 hours. However it is incomplete 
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since PN are never observed. Therefore NB4R are sensitive to ATRA but they cannot 

follow a complete differentiation process. In the presence of DMSO NB4R cells remain 

mainly in early maturation stages.  

 

2. Effect of ATRA on NB4 and NB4R proliferation  

The effect of ATRA on cell proliferation was monitored in parallel to cell 

differentiation in order to verify the impact of the drug treatments over time and 

especially if the progressive differentiation is accompanied by an expected decrease of 

cell proliferation. For this purpose, the number of cells collected from the flasks 

(adhesive and suspension cells) was counted in the presence of ATRA and DMSO for 

each time of treatment. The result is shown in Figure 25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Proliferation of (A) NB4 and (B) NB4R cells in the presence of ATRA or 

DMSO at different time points of treatment. 
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In the presence of ATRA, The number of NB4 (Figure 25A) as well as NB4R (Figure 

25B) cells increases until 72 hours of treatment then stabilizes. On the other hand, in the 

presence of DMSO both cell types keep proliferating constantly. Therefore, both cell 

lines are sensitive to ATRA, which induces a real proliferation block in NB4 and NB4R 

cells concomitant to the triggered differentiation.  

 

Identification of RNA partners of RIG-I involved in the 

proliferation/cell differentiation balance in the case of Acute 

Promyelocytic leukemia (APL)   

 

3. Expression of RIG-I in NB4 cells 

We decided firstly to start the biochemical work on NB4 cells only. Before trying to 

unmask RIG-I partners, it was important to make sure that RIG-I is correctly expressed 

in the cells, during the differentiation of granulocytes induced by ATRA. Western blots 

on total cell extract were performed in the same experimental conditions as further 

experiments, after cell crosslinking at 254 nm to create or enhance the interaction 

between the protein and the possible RNA partner. Then RIG-I expression was 

estimated by ImageLab (BioRad) software allowing the optical density quantification 

for each band. Background was subtracted and the RIG-I presence was plotted relative 

to the level of RIG-I at time zero.  
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Figure 26. RIG-I in NB4 cells:  western blot performed with: (A) 50μl of total cell 

extract and (C) 50μl of immunoprecipitated RIG-I complexes. (B) and (D) show 

respective quantification graph relative to 0h for each time point of treatment with 

10με χTRχ or DεSO.  

 

As shown by Figure 26A, a strong RIG-I signal was detected around 100-110 kDa after 

48 hours of ATRA treatment (2 times higher than 0h) and a dramatic increase of the 

protein is observed after 96 hours (3,7 times higher than 0h). In a much lower amount as 

judged by the intensity of the signal, without any drug or after 48h of DMSO treatment 

a light signal is observed around 100-110 kDa, which can correspond to the basal and 

low expression level of RIG-I. Later after 96h in the presence of DMSO, a slight 

increase of RIG-I band is seen (1,1 times higher than 0h), but is in no way comparable 

to that of 96h treatment with ATRA (3,4 times higher than with DMSO). Therefore I 

could verify that RIG-I expression is upregulated during ATRA induced differentiation 

of our NB4 cells. This result allowed me to proceed with immunoprecipitation of RIG-I 
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and RIG-I complexes. As shown in Figure 26B by the 100-110 kDa band, RIG-I was 

efficiently immunoprecipitated from cell extracts treated with ATRA. 

 

4. Detection of RIG-I/RNA complexes in NB4 cells 

To detect RIG-I complexes, we firstly decided to start working with NB4 cells. Cells 

were grown for various periods of time with 10με χTRχ or DεSO, and the CδIP 

technique was performed. Cells were UV-crosslinked and 1 mg of total cell extracts was 

treated with proteases inhibitor cocktail 1X (Millipore), RNasin 1:100 (Promega) and 

RQ1 DNase 1:50 (Promega). The sample was then prepared for RIG-I immuno 

precipitation which was followed by radiolabelling of potential RIG-I bound RNA 

partners. Radiolabelled immunocomplexes are visualized on autoradiographic films 

after migration of 8% polyacrylamide/urea firstly. The result is presented by Figure 27. 

 

Figure 27. Detection of RIG-I complexes immunoprecipitated in NB4 cells treated 

with ATRA or DMSO during 72h and 140h. Migration of the samples was performed 

during 7 hours at 4ºC in a 8% polyacrylamide (19:1) /urea gel. 
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the signal is definitively more important in the case of ATRA treatment. In the case of 

control immunoprecipitations, without antibody, no such phenomenon is observed. The 

difference of signal intensity between 72 and 140h is less striking for both types of 

treatment. Moreover at the same time point (72h ATRA and DMSO or 140h ATRA and 

DMSO), the intensity of the obtained bands with ATRA and DMSO seem very similar. 

The molecular weight of the immunoprecipitated product is much higher than RIG-I 

molecular weight (100-110 kDa).  All together, these results suggest that possible 

complexes containing RIG-I have been immunoprecipitated from NB4 cells treated with 

ATRA (and maybe also in a smaller proportion with DMSO). Moreover, since the 

extracts were prepared in the presence of DNase degrading DNA and RNasin, which 

protect RNAs, it is quite possible that the signal obtained corresponds to RIG-I/RNA 

complexes. In the absence of drug (0h), with or without antibody, we can also see a 

strong and totally different signal. In this case, the cells are in a proliferating state. This 

signal appears difficult to explain precisely at this point.  

As a first step to verify that RNA(s) is/are present in immunoprecipitated complexes 

after 72h and 140h, samples were treated with RNAse A after elution of the 

radiolabelled products just before the gel migration. The Figure 28 presents the effect of 

the treatment.  

 

 

 

 

 

 

 

 

Figure 28. Detection of RIG-I-RNA complexes in NB4 cells treated with ATRA or 

DMSO: (A) without RNAse A (B) with RNAse A (0,01mg), after 4 hours of migration 

at 20ºC in 8% polyacrylamide(37.5:1)/urea gel. 
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Without RNAse A (Figure 28A), the signal obtained previously is confirmed being 

more intense with ATRA than with DMSO. On the other hand after treatment of the 

samples with the enzyme (Figure 28B), the signal is significantly reduced without 

disappearing completely. Therefore we can suppose that RNA is present in 

immunoprecipitated complexes in both types of treatment. In the case of samples 

without ATRA and DMSO, RNAse A has also an effect. Because of this observation, it 

is legitimate to think that this signal at 0h can be artefacts due to sticky RNAs in the 

proliferative state and that the observed bands with ATRA and DMSO could result from 

different RNAs kinds.     

In the same way, it was important to verify that the immunoprecipitated protein RIG-I 

was present in these complexes. Moreover in the Figures 27 and 28, the complexes are 

characterized by a slow migration in the gel, staying in the area underneath the wells. 

The immunoprecipitated proteins can form complexes with various partners of different 

sizes or aggregates with several RIG-I molecules slowing down the migration. 

Therefore, to break the complexes and facilitate the migration, but also to be sure they 

contain proteins, I treated the immunoprecipitated and radiolabelled samples with 

proteinase K (Figure 29). Two kinds of result were expected: 1) a more or less complete 

disappearance of the signal due to the protein degradation and fast migration of the 

RNA, which might exit the gel; 2) Several bands characterized by different molecular 

weights revealing fragments of immunoprecipitated RNAs. The result is shown by 

Figure 29.  
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Figure 29. Effect of Proteinase K on RIG-I-RNA complexes in NB4 cells treated 

with ATRA or DMSO. (A) Treatment without Proteinase K, after 4,30 hours of 

migration at 20ºC in a 8% polyacrylamide(37.5:1)/urea. (B) Treatment with Proteinase 

K (2mg/ml), after 2,30 hours of migration at 20ºC in a 8% polyacrylamide(37.5:1)/urea. 

 

In the Figure 29A, after immunoprecipitation with the antibody, radiolabelled RIG-

RNA complexes are again visualized by a strong signal on the film after 140 hours of 

ATRA treatment. Like in the precedent experiment a signal is also observed with 

DMSO. After digestion by Proteinase K, in the Figure 29B, the result appears different. 

The treatment by the enzyme leads to a reduction of the intensity of the bands in the 

upper part of the gel. Moreover, two unclear bands can be detected in the ATRA treated 

samples, between 250 kDa and 10 kDa. This signal was never obtained before and at 

this point we cannot conclude anything about its nature. These observations suggest 

only that proteinase K has digested a major part of RIG-I in the immunoprecipitated 

RIG-I-RNA complexes in differentiated NB4 cells by ATRA. 

To improve the migration resolution and to obtain a more significant signal after the co-

immunoprecipitation, different types of gels migrations were performed. I worked with 

a lower percentage of acrylamide (8%) to facilitate the migration of potential big size 

complexes. I also performed SDSPage gels (8%) and finally NuPage gels (8%), which 

preserve RNAs by pH stabilization. But none of these approaches gave a clear result 
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despite several protocol adjustments. Therefore we decided to stop this search of RNAs 

RIG-I partners and to reorient my PhD project on the search of protein partners.  

 

Identification of protein partners of RIG-I involved in the 

proliferation/cell differentiation balance in the case of Acute 

Promyelocytic leukemia (APL) 

 

5. Isolation of RIG-I from NB4 cells  

Unmasking Proteic RIG-I partners does not necessarely require cell cross-linking, and 

the cell lysis buffer is different from the buffer used in order to isolate co-

immunoprecipitated RNAs. Therefore as a first step, it was cautious to check the 

detection of RIG-I in the lysis conditions allowing later on the protein-protein 

interaction detection, and without cross-linking. A western blot was performed in the 

proliferative state of the cells and after treatment with 10με χTRχ or DεSO during 

96h. Then RIG-I expression was estimated by ImageLab (BioRad) software allowing 

the optical density quantification for each band. Background was subtracted and the 

RIG-I presence was plotted relative to the level of RIG-I at time zero. 
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Figure 30. RIG-I in NB4 cells: western blot performed with: (χ) 50μl of total cell 

extract and (C) 50μl of immunoprecipitated RIG-I complexes. (B) and (D) show 

respective quantification graph relative to 0h for each time point of treatment with 

10με χTRχ or DεSO.  

 

As shown by Figure 30A, a strong signal reflecting RIG-I expression is observed as 

presented by the lower band of a kind of doublet after 96 h of ATRA treatment (2,7 

times higher than 0h). A much less intense band is obtained in control and DMSO 

treated cultures (1,1 times higher than 0h).  

After immunoprecipitation with anti RIG-I antibody (Figure 30B), three elutions of 

potential complexes were performed, pooled and TCA precipitated. A classical western 

blot was then performed. As shown by Figure 30B, once again a stronger RIG-I signal 

was detected in the case of ATRA treatment (1,2 times higher than 0h) than with 

DMSO. No signal is observed as expected in the case of co-immunoprecipitation in the 

absence of RIG-I antibody.  

To probe protein-protein interactions in the case of RIG-I in the framework of NB4 

APL cells differentiation, we considered performing a proteomic approach. Before 
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performing 2D gel electrophoresis and mass spectrometry for protein profiling thanks to 

a proteomic facility, I realized SDS page migration followed by silver staining which is 

the most sensitive technique to detect proteins in gels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. RIG-I in NB4 cells: silver stained SDS page gel after migration of 50μl 

of immunoprecipitated RIG-I complexes, for each time point of treatment with 10με 

ATRA or DMSO. 

 

Figure 31 presents the migration pattern of a single eluted fraction after co-
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stained gel, the RIG-I signal (blue arrow) appears in the case of ATRA treatment and 

immunoprecipitation with anti RIG-I antibody. We can notice that RIG-I is not very 

abundant as juged by the band intensity. Moreover on this gel, it is very difficult to see 

differences of migration pattern and band intensities between the different treatment 

conditions. One can observe some bands (green arrow) which are present only in the 

case of ATRA treatment with and without IP, meaning probably that some compounds 

can stick to the beads. This experiment needed probably to be improved to get a cleaner 

migration. In addition, it is quite difficult to appreciate on a one dimension gel the 

presence of new bands which can migrate at the same level as others already present 

and characterized by the same size, particularly if they are poorly present in the 

prepared sample. This experiment of 1D gel followed by silver staining was tempted in 

case a stricking signal could be observed. But obviously we did not consider the 1D gel 

as the way to answer the question we were asking. The next experimental step was to 

undertake 2D gels to separate more accurately the proteins.  
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Discussion-Conclusion 

 

Helicases are involved in various infectious mechanisms and several cancers. They are 

therefore potentially interesting pharmacological targets but their function and the 

molecular and cellular interactions are still poorly understood. Mounting evidence has 

accumulated that RIG-I helicase contains the specialized domains that recognize foreign 

RNA ligands to wake up it to initiate antiviral innate immunity. Previous works have 

also shown that RIG-I expression is modulated by ATRA and related to granulocytic 

differentiation (Liu TX et al., 2000; Zhang NN et al. 2008). Although a number of 

studies were conducted to elucidate the mechanism of myeloid differentiation and 

improve therapeutic strategy against myeloproliferative syndromes such as Acute 

Promyelocytic Leukemia (APL), a number of questions remain. The purpose of this 

work was to contribute to better understand the role of the RIG-I helicase in the myeloid 

differentiation. The project aimed specifically to identify new partners of RIG-I during 

ATRA treatment inducing differentiation and proliferation block, in the NB4 cell line 

which is the cellular model derived from a patient with APL (Lanotte M et al., 1991).  

It is generally accepted that RIG-I can bind and be activated by viral 5’triphosphate 

(5’ppp) single-stranded RNA (ssRNA) or dsRNA (Yoneyama M et al., 2004; Hornung 

V et al., 2006; Lu C et al., 2010; Pichlmair A et al., 2006; Wang Y et al., 2010; Baum A 

et al., 2010) and it prefers short size RNAs (10-25 nucleotides long) (Kato H et al., 

2008). Therefore when I started my PhD work it was reasonable to look for RNA(s) 

partners first. Through the CLIP experiments, the stronger signal observed each time in 

the case of ATRA treatment than with DMSO can reveal as already mentioned the 

presence of RIG-I-partner complexes (Figures 27, 28A and 29A). The samples being 

beforehand treated with DNAse, it can be considered that either endogenous RNA(s) or 

protein(s) in addition to RIG-I are present in the complexes. But the UV-CLIP 

technique is specific to cross-link nucleic acids to proteins (Greenberg JR, 1979). The 

IP signal obtained with DMSO treatment could be surprising. However, we have seen 

like already mentioned by others teams (Khanna-Gupta A et al., 1994; Qiu H et al., 

2011) that in the presence of DMSO, the differentiation process is initiated. But it is 

incomplete since the cells never reach the polynuclear stage and keep proliferating. 

Additionnaly, in this condition, although expressed to a lesser degree than during 

ATRA treatment, a RIG-I signal is observed by western blot (Figure 26A). As reported 
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by Liu TX et al., and Zhang NN et al., RIG-I is upregulated as soon as 24h of myeloid 

differentiation in early maturing cells such as promyelocytes (Liu TX et al., 2000; 

Zhang NN et al., 2008). Therefore, these observations raise more the question of the 

nature of the RNA partner(s), which is particularly reinforced by the compact signal 

aspect at the level of high molecular weight. Several attempts were performed to obtain 

a better detection and an improved signal resolution by adjusting the preclearing step, 

the migration time and temperature, by using different acrylamide types (19:1, 37:5.1) 

and different gel types to facilitate the complexes migration. It can not be excluded that 

RIG-I oligomerizes (Patel JR et al., 2013), moreover it is possible that rRNAs or tRNAs 

known to be abundant and “sticky” are present, “contaminating” the samples. Detection 

of significant RNAs has to be improved by discarding undesired RNAs (centrifugation, 

molecular biology Kit such as Ribominus....).  The control experiments strongly suggest 

this possibility. Indeed, in the absence of ATRA and DMSO at 0h, an unexpected and 

strong signal is obtained, not completely abolished by RNAse A and only weakened 

when treated with proteinase K (probably because the concentration of enzymes were 

not enough) (Figures 27, 28B and 29B). Moreover, bands are also present in the case of 

control immunoprecipitations (without antibodies) of samples either treated with ATRA 

or DMSO and later on with RNAse A (Figures 27 and 28A/B). In the absence of ATRA 

or DMSO, we also have to consider that the cells are in a proliferating state. We know 

that the capacity of cells to grow and proliferate is coupled to the rRNA transcription. 

During differentiation (e.g. myogenesis, osteogenesis, adipogenesis, granulopoiesis, and 

monocytic differentiation) the expression of the proto-oncogenic protein c-Myc is 

decreased in response to the transition from proliferating state to non-proliferating state. 

This downregulation of c-Myc decreases the expression of Pol I related transcription 

factors leading to the downregulation of rRNA transcription (Hayashi Y et al., 2014). 

Therefore this difference of rRNA level between proliferating and differentiating state 

can explain the strong signal obtained in the absence of any drug or solvent 

corresponding to the proliferating state.  

As a result these non specific immunoprecipitated RNAs can mask the presence of other 

interesting RNAs candidates. In the littereature not only viral RNAs but several and 

different kinds of RNAs are known to bind to RIG-I. In the case of murine B 

lymphocytes, His-tagged RIG-I binds to multiple endogenous mRNAs such as NF-κb1 

γ’UTR mRNχ (Zhang HX et al., 2013). Also snRNA U1 and U2 in colorectal 

carcinoma cells can bind RIG-I leading to IFN pathway activation (Ranoa DR et al., 
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2016). Among the possible RNA partners, miRNAs are also good clients. Several works 

have shown that miRNAs affect tumor progression and cell differentiation. In the case 

of hematopoïeitic differentiation, they can both have tumor suppressor or oncogenic 

activities (Schotte D et al., 2012). Considering that a RNA helicase can also have 

activities through impairing a suppressing miRNA as seen with DDX20, we can also 

consider that RIG-I could interact with a miRNA. Unfortunately at this stage of the 

performed work we can not conclude anything. 

Despite the several tests, the results obtained with the CLIP technique were far to be 

clear-cut and the controls or signal intensities were not always reproducible. This lack 

of reliability has led us to reorient the project and to look for protein partners. As 

already mentioned earlier, previous works have shown that upon activation by foreign 

RNAs, RIG-I interacts with different proteins triggering signalisation cascades (such as 

apoptosis through activation of IPS-1 and caspases (Besch R et al. 2009). Moreover, 

Zhang HX et al., have observed that RIG-I can interact with both endogenous RNA and 

protein (Zhang HX et al., 2013). Also, Li XY et al., show that RIG-I interacts with the 

Src protein in an independent manner of RNA ligand (Li XY et al., 2014). These protein 

partners can interact with the CARDs domains, which are typically involved in direct 

interactions with a wide range of proteins, but they also can bind RIG-I through its 

helicase domain (Lyn, HSP90, PKC-α/ȕ) or its CTD domain (HSP90, UPS15, ARL16, 

PACT). Therefore we did not restrict our search of partners. The silver stained gel 

(Figure 31) I obtained seems to show the presence of RIG-I between 95 and 130 kDa, in 

ATRA treated samples by comparison to the other conditions but it does not indicate 

anything about its abundance and the general migration pattern does not present striking 

differences. This one dimension gel was performed as a first approach to have a general 

view of what can be obtained after IP. We can not exclude that some proteins with 

molecular weight close to that of RIG-I can be coimmunoprecipiated. In the same way, 

specific and unspecific coimmunoprecipitated proteins are not discriminated. Only 2D-

DIGE gels could have given a more resolutive picture of possible partners. In case high-

molecular-weight protein complexes would have been obtained they could also have 

been separated by using agarose 2-DE (Oh-Ishi M and Maeda T, 2007; Chevalier F, 

2010).  Later on mass spectrometry was considered. At this point we can not conclude 

anything.  

In the case of myeloid differentiation only the Src protein is currently known to interact 

with RIG-I (Li XY et al., 2014). It takes place in the CARD domains and the linker 
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between the CARD and the Helicase domains. First of all, this study takes place in the 

U937 cell line, a macrophage line. Although it is a myeloid line, it is different from our 

APL NB4 cell line corresponding to a real pathological situation. The authors asserts 

that this interaction occurs in a manner independent of RNA, since transfection of 

synthetic small RNχs such as PolyI:C or 5’-pppssRNA partially inhibits the interaction. 

But they do not take into account that these RNAs are not endogenous RNAs, which 

can behave differently. Moreover they propose a model of interaction between RIG-I 

and Src, which releases completely the helicase and ATPase domains. The 

conformation of RIG-I thus modified makes these two domains completely accessible 

either for RNAs or other proteins. This does not invalidate what Li XY et al. obtained. 

When they identified the interaction between Src and RIG-I, their work participated 

greatly to the understanding of RIG-I position in the signaling cascade of the 

proliferation control. Indeed they showed that the helicase interacts with the 

proliferation process by a death program via an apoptosis-independent AKT-mTOR 

inhibition and on autophagic activation (Li XY et al., 2014). But another group, already 

mentioned above, has observed this possibility of multiple interactions. Indeed, Zhang 

HX et al., have demonstrated by immunoprecipitation and iTRAQ-MS that RIG-I 

interacts both with γ’UTR of Nf-κb1/p105 mRNχ and Rpl1γ, which is a component of 

the large 60S subunit of ribosome. In this study, it is also important to note that other 

proteins have also been identified by iTRAQ-MS. Only few of them presented a total 

ion score confidence interval higher than 95%. The group did not investigate further 

these candidates. Among them and except trivial candidates such as BSA or histone 

found very frequently with this technique, three of them (IGFBP5, Hip1-related protein, 

and VLA-4) could have desserved to be more investigated because of their interesting 

role in the proliferation, differentiation and cell adhesion (Zhang HX et al., 2013). It 

would have been interesting to pay attention in our search of protein partners if these 

candidates were also obtained in differentiated NB4 cells (granulocytes) since their 

work was performed in a different cellular model, a murine B cell line and later on to 

investigate the real effect of these interactions in the cells.   

 

To conclude, searching either RNAs or protein partners of RIG-I in the context of the 

myeloid differentiation would not only clarify the role of RIG-I in the 

proliferation/differentiation balance. It could also help to understand how the RIG-I 

helicase behaves with these partners, if enzymatic activities in certain conditions could 
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be activated or not. Moreover, it would consolidate the versatility of this helicase 

(immunity and cell differentiation) as it has been observed for other proteins such as the 

catalytic telomerase reverse transcriptase (TERT) which in association with a 

noncoding RNA (TERC) has the ability to elongate telomeres. But in the mitochondria 

TERT associates with another type of RNA (RMRP) and regulates gene expression by 

generating specific siRNAs (Martínez P and Blasco MA, 2011). Finally, this type of 

study can be of high impact for diagnosis and therapeutic strategy in oncology based on 

cellular reprogramming.  
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Chapter II: Characterization of G-quadruplex resolving by the 

helicase Pif1 in Bacteroides  

 

Objectif 

 

As already explained earlier helicases are enzymes that travel through paired nucleic 

acids in double-stranded form to catalyse strand separation and allow replication or 

transcription of the DNA molecule. This translocation occurs initially thanks to the 

binding between the nucleic acids and the helicase allowing a conformational change of 

the helicase allowing its ATPase activity. The hydrolysis of ATP triggers an oscillation 

state between a maximum affinity state and low affinity state in the DNA binding site 

resulting in the translocation through the DNA. In the case of non-canonical DNA 

structures formed by the stacking of several G-quartets called G-quadruplexes (G4), the 

molecular mechanism underlying their unwinding is more complex because of the 

formation of several stacks of guanine. G-quadruplexes are present in telomeres, DNA 

replication origins, gene transcriptional regulatory regions, promoters of certain 

oncogenes and also immunoglobulin switch regions. Their formation can influence 

biological processes including DNA replication, translation and telomere integrity 

maintenance. To counteract the G4 formation certain specific helicases have the ability 

to resolve them, such as Pif-1, RecQ helicases, FANCJ, but the molecular mechanism is 

not yet completely understood. Among the remaining questions, it is not clear if G4-

resolving helicases possess a G4-specific binding site that is different from the classical 

ss/dsDNA binding site, secondly if G-quadruplex unwinding is ATP dependent and 

finally how G4-resolving helicase employs the energy derived from ATP hydrolysis to 

drive G-quadruplex unfolding. To contribute to answer these questions, during the 

second part of my thesis, I used a BsPif1 helicase, a S cerevisiae Pif1p homolog from 

Bacteroides sp. 3_1_23 to quantitatively analyse and compare the DNA stimulation of 

ATPase activities between different G-quadruplexes dsDNA and ssDNA. Then the 

possibility of different binding sites of G-quadruplex and ssDNA with the helicase was 

investigated and I studied the relationship between ATP hydrolysis and G-quadruplex 

unfolding or ss/dsDNA. Finally the annealing activity of BsPif1 was also studied. In 
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conclusion these experiments will allow us to establish a possible model to explain how 

BsPif1 transform the energy derived from ATP hydrolysis into mechanical translocation 

activity to disrupt G4 structure. 
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Introduction 
 

1. Pif1 

 1.1. Discovery and definition 

Pif1 protein (Petite Integration Frequency protein 1) was identified the first time in 

1983, in S. cerevisiae. It was discovered for its mitochondrial DNA repair role after 

induction of DNA damage by Ultraviolet (UV) light or Ethidium Bromide treatment 

(Foury F and Kolodynski J, 1983). In 1991, the same team purified Pif1 from the 

mitochondria and demonstrated that this 5'-3' helicase was specific for DNA and ATP-

dependent (Lahaye A et al., 1991). Few years later, a genetic screen in yeast aiming to 

detect mutants losing their expression of subtelomeric genes led to identify Pif1 in the 

nucleus and to demonstrate its role in the inhibition of telomeres elongation and de novo 

formation (Schulz VP and Zakian VA, 1994). During this time, a second Pif1 family 

helicase in S. cerevisae, Rrm3, was found and described as repressing ribosomal DNA 

(rDNA) recombination (Keil RL and McWilliams AD, 1993). Pif1 helicases are highly 

conserved from bacteria to humans and belong to the superfamily (SF1) as revealed by 

sequence alignments. It has been shown that several fungi, such as Candida albicans 

and Cryptococcus neoformans, possess two Pif1 helicases, Arabidopsis thaliana can 

have three Pifs and kinetoplastid parasites possess seven to eight Pif1 helicases. 

Different organisms contain variable numbers of homologue proteins but higher 

eukaryotes and metazoans contain only one (Bochman ML et al., 2010; Bochman ML et 

al., 2011). They share essentially equal sequence similarity to ScPif1 and ScRrm3 but 

little is known about these enzymes. 

The different studies of Pif1 have established that this helicase plays multiple roles in 

the inhibition of telomere elongation and de novo telomere formation at the level of 

DNA double-strand breaks (Schulz VP and Zakian VA, 1994), the regulation of 

ribosomal DNA replication (Ivessa AS et al., 2000), a role in the resolution of particular 

structures of DNA such as G-quadruplexes (Ribeyre C et al., 2009; Lopes J et al., 2011; 

Paeschke K et al., 2011) and finally, in the maturation of the Okazaki fragments in 

cooperation with Dna2 helicase/nuclease (Budd ME et al., 2006; Stith CM et al 2008). 

Its physiological importance was further highlighted by the fact that mutations in human 

Pif1 are found in families with high risk of breast cancer affecting replication, 

transcription and elongation of telomeres (Chisholm KM et al., 2012). 
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The principal biochemical characteristics of Pif1 helicases have been described. They 

are ATP and Mg2+ dependent enzymes that unwind DNχ with a 5′-γ′ polarity (Lahaye 

A et al., 1993, Gu Y et al., 2008, Liu NN et al., 2015). Although Pif1 helicases display 

only limited unwinding processivity in vitro (Barranco-Medina S and Galletto R, 2010; 

Ramanagoudr-Bhojappa R et al., 2013; Liu NN et al., 2015), they are capable of 

unwinding a variety of DNA structures resembling stalled DNA replication forks and 

other B-form duplexes such as forked duplexes, DNA/RNA duplexes (Boule JB and 

Zakian VA, 2007; Liu NN et al., 2015), R-loop, D-loop and G-quadruplex DNA 

(Sanders CM, 2010; Liu NN et al., 2015). 

 

 1.2. Pif1 isoforms and cell localization 

As mentioned above ScPif1 was first discovered for its role in recombination between 

the mtDNA (Foury F and Kolodynski J, 1983) then for affecting telomeres (Schulz VP 

and Zakian VA, 1994) suggesting its presence in the nucleus. The mitochondrial and 

nuclear isoforms (respectively α and ȕ isoforms) are expressed from the same gene 

ScPIF1 but they are translated from two different start sites separated by the 

mitochondrial targeting signal (MTS) (Zhou JQ et al., 2002). ScPif1 translated from the 

first start site is targeted to the mitochondria thanks to its MTS, which is cleaved upon 

import into the mitochondria. The nuclear isoform translated from the second start site 

is slightly larger than the mitochondrial isoform (Zhou J et al., 2000).  

In Human like in Saccharomyces, Pif1 helicase has two isoforms (α mitochondrial and 

ȕ nuclear), which are encoded by chromosome 15 and generated by alternative splicing 

(Figure 32). Their translations are shifted by one codon. A pre-mitochondrial hPif1 

isoform, translated from the first one, is exported to the mitochondria by a C-terminal 

addressing signal, which is finally cleaved generating an 80kDa (707aa) protein. The 

translation of the nuclear isoform starting at the second codon generates a 74kDa (641 

aa) hPif1 with an NLS, which is cleaved later on. Both isoforms share conserved 

helicase motifs but have differential C-terminal regions, which are responsible of the 

subcellular distribution of the protein. Moreover, it was found only in the C-terminus of 

the ȕ isoform the lipocalin signature, which is a characteristic protein secretion signal 

(Futami K et al., 2007). In yeast, Pif1 expression of isoforms is regulated during the cell 

cycle with a maximal rate expression at the end of the S phase and the beginning of the 

G2 phase (Vega LR et al., 2007). 
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Figure 32. Structure of hPif1 genes and hPif1 proteins. (A) Genomic structure of the 

Pif1 gene. (B) Schematic representation of the two Pif1 isforms mRNA. (C) 

Representation of Pif1 of the two isofoms of Pif1. Adapted from Futami K et al., 2007.  

 

 1.3. Pif1 structure  

Pif1 helicases vary in size from 420 to more than 1000 amino acids per polypeptide 

chain. Pif1 belongs to the SF1 family (described above), which is characterized for the 

presence of two preserved RecA domains (1A and 2A), such as other helicases like 

Deinococcus Radiodurans RecD2 (Saikrishnan K et al., 2009) and bacteriophage T4 

Dda (He X et al., 2012).  Pif1 is functionally and structurally divided into three 

domains: the N-terminal domain, the helicase core domain and the C-terminal domain 

(Figure 33). The N-terminal domain is variable between the different species and not 

required for helicase activity in vitro (Ivessa AS et al., 2002). Actually the N-terminal 

function is unknown, but it has been proposed that some of its regions are invoved in  

protein–protein interactions, oligomerization, and substrate recognition (Hall MC and 

Matson SW, 1999). In Saccharomyces cerevisae, the Pif1 N-terminal domain allows the 

interaction with the chromatin assembly factor 1 subunit, Cac1 (Monson EK et al., 

1997), and is required for double-stranded DNA (dsDNA) unwinding in the presence of 

the mitochondrial ssDNA-binding protein Rim1 (Ramanagoudr-Bhojappa R et al., 

2013). In human this domain contributes to enhance the interaction with ssDNA 

through intrinsic binding activity and DNA strand annealing activity (Gu Y et al., 

2008). The helicase core domain is highly conserved in various organisms. It is 

composed of two RecA domains (1A and 2A) and the seven classical conserved motifs 

(I, Ia, II, III, IV, V and VI) present in SF1. Three additional motifs (A, B and C) are 

found specifically in Pif1 and RecD family helicases (Bochman ML et al., 2011). In 

some bacteria, such as BsPif1 in Bacteroides sp 3_1_23 and BaPif1 from Bacteroides 

sp. 2_1_16 the motifs I, III, IV and VI interact with the ATP (Chen WF et al., 2016; 

A 

B 

C 
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Zhou X et al., 2016). In BsPif1 Q145 in motif IV acts as a sensor to detect the presence 

or absence of Ȗ-phosphate (Chen WF et al., 2016; Saikrishnan K et al., 2009). Pif1 

helicases are also characterized by the unique Pif1-family specific sequence (PFSS, 

21aa), which is located between motifs II and III (Bochman ML et al., 2010; Bochman 

ML et al., 2011). The PFSS motif may contribute to DNA unwinding and binding. The 

interactions between the 1B domain and the PFSS motif may allow the pin of domain 

1B to form a more rigid structure and help the residues on the loop to adopt a precise 

spatial conformation (Chen WF et al., 2016). The DNA binding site is located between 

the domains 1A and 1B and between domains 2A and 2B (Figure 33) and for the ATP 

binding site it is localized between domains 1A and 2A.  

Finally, the C-terminal domain (CTD), is a non conserved domain in terms of length 

and sequence going as far as being absent in certain species. Like the N-terminal 

domain, its role is not completely understood. It is probably involved in protein–protein 

interactions, oligomerization, and substrate recognition (Hall MC and Matson SW, 

1999). Truncation of this domain in yeast leads to a lower processivity probably 

because of the dissociation of the Pif1 during the unwinding (Singh SP et al., 2016). 

Also its phosphorylation in ScPif1 in response to DSBs is required to prevent aberrant 

healing of broken DNA ends by telomerase (Makovets S and Blackburn EH, 2009).  

Figure 33. Schematic representation of the different Pif1 domains. N-terminal 

domain is shown in pink, helicase domains with the four subdomains represented in 

dark blue for 1A, orange 1B, red 2A and blue 2B, also the different characteristic motif 

represented in black. Finally C-terminal domain in brown. 
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Pif1 secondary structure has been determined by crystallization in different bacteroids 

(Bacteroides sp 3_1_23 called BsPif1 by Chen WF et al., 2016 and Bacteroides sp. 2-1-

16 called BaPif1 by Zhou X et al., 2016) and in human (Zhou X et al., 2016) (Figure 

34). The 2B domain of Pif1 forms an SH3 (SRC Homology 3) domain, which is 

characterized by a ȕ-barrel fold consisting in a large beta-sheet that twists and coils to 

form a closed structure. The BsPif1 1B domain forms an ordered loop whereas in 

BaPif1 and hPif1 a loop and an α-helix have been observed. In all the cases, this 1B 

domain forms a pin or wedge that splits the incoming DNA duplex (Saikrishnan K et 

al., 2009; He X et al., 2012). The PFSS is composed of an α-helix and a turn in all three 

reported Pif1 structures. It is located at the entrance of the DNA-binding site, opposite 

the strand separation pin/wedge (Chen WF et al., 2016; Zhou X et al., 2016).  

Figure 34. Crystal structures of Pif1. The domain 1A is shown in green, 1B in red, 2A 

in gray, 2B in cyan, and the Pif1 signature sequence in pink. (A) Structure of hPif1-HD 

(PDB: 5FHH), in purple is represented the ADP-AlF4 (Zhou X et al., 2016). (B) 

Structure of BsPif1 (PDB: 5FTE), the C-terminal domain is represented in orange, the 

AMPPNP in purple and DNA in yellow (Chen WF et al., 2016). (C) Structure of BaPif1 

(PDB: 5FHD), the DNA is shown in yellow (Zhou X et al., 2016). Adapted from Byrd 

AK and Raney KD, 2017. 

 

Investigation of ScPif1 quaternary structure has shown that ScPif1 works as a dimer 

(Barranco-Medina S and Galletto R, 2010). However, the monomeric form has also the 

capacity to translocate on a ssDNA (Galletto R and Tomko EJ, 2013) and to unwind 

dsDNA (Singh SP et al., 2016). Contradictory studies have suggested that the 

monomeric form of ScPif1 is unable to unwind DNA:DNA duplexes, but can unwind 

DNA:RNA duplexes (Zhou R et al., 2014). 
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 1.4. Functions of Pif1 

  1.4.1. Synthesis of Okazaki fragments 

During DNχ replication, the leading strand (5’ to γ’) is the strand of the nascent DNχ 

continuously synthetized in the same direction as the growing replication fork. The 

lagging strand (γ’ to 5’) is the strand of the nascent DNχ synthetized in the opposite 

direction of the growing replication fork. This synthesis occurs in a discontinuous 

manner, leading to short DNA fragments called Okazaki fragments (Sakabe K and 

Okazaki R, 1966; Okazaki R et al., 1968). These short DNA segments are initiated by 

the primase activity of the DNχ polymerase α (Polα) complex, which synthesizes an 

RNA primer of 10-12nt followed by a DNA sequence of 20-30nt (Rossi ML and 

Bambara RA, 2006; Burgers PM, 2009). This primer is recognized by the Replication 

Factor C (RFC), which recruits the Proliferating Cell Nuclear Antigen protein (PCNA) 

able to replace the Polα by the DNχ polymerase Pol . Pol  raises the strand primer and 

synthesizes a new Okazaki fragment up to find the 5'end of the preceding one (Figure 

35). Then the primer is cleaved by a Flap endonuclease, called FEN-1 and the two ends 

of DNA created are fused by DNA ligase I (Liu Y et al., 2004). But a single-stranded 

5'DNA, which has not been cleaved immediately by FEN-1 is lengthened up to 30nt 

which allows the fixation of Replication Protein A (RPA). The presence of RPA would 

inhibit the cleavage activity of FEN-1. Finally the γ0nt primer is resolved by Dnaβ, a 5’ 

to γ’ helicase and endonuclease, which cleaves the DNA into small fragments and 

finally allows the ligation of the two fragments by the ligase I (Bae SH et al., 2001). 

The role of Pif1 in the synthesis of Okazaki fragments has been described for the first 

time in 2006 in S. cerevisiae. Pif1 interacts with Pol  during DNA replication. The 

formation of the outgoing 5' strand would recruit the Pif1 helicase in addition to Pol . 

The combined action of Pol  and Pif1 would promote elongation of the outgoing 5' 

allowing the recruitment of Dna2 for its cleavage. The deletion of Pif1 wouldn't permit 

the extension of the outgoing 5' DNA that will be cleaved by FEN-1 without requiring 

the presence of Dna2 (Budd ME et al., 2006). The reconstitution of the Synthesis of 

Okazaki fragments in vitro confirmed this model (Pike JE et al., 2009).  
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Figure 35.  The two-nuclease pathway for flap processing. The synthesis of Okazaki 

fragments requires an RNA primer, Pol  synthesizes the complementary strand until it 

encounters the upstream primer and generates an outgoing 5 'DNA. A majority of flaps 

(denoted by the thick arrows) the endonuclease FEN-1, which has a 5'flap activity 

cleaves this outgoing 5 'DNA. Finally LigI will ligate the two ends generated. On a 

minority of flaps (denoted by the thin arrows), Pif1 binds the short flap displaced by 

Polį prior to FEN-1 action. Pif1 activity lengthens the size of the flap generating a long 

single-strand, allowing binding of RPA and FEN-I inhibition. It is then Dna2, which 

thanks to its nuclease activity, will reduce the size of the outgoing 5 'DNA until it is 

short enough to stop fixing RPA. As initially, FEN-1 will cleave the outgoing 5 'DNA 

and the generated ends will be ligated by LigI. Adapted from Pike JE et al., 2009.  

 

Otherwise during replication and transcription R-loops (RNA-DNA hybrids) appear and 

their persistent formation is a source of genome instability. Pif1 has the capacity to 

unwind them (Boule JB and Zakian VA, 2007; Aguilera A and Garcia-Muse T, 2012). 

Indeed, Pif1 can utilize its activity to remove the RNA strand from 31-bp RNA–DNA 

hybrids (Zhou R et al., 2014) (Figure 36). 
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Figure 36. The patrolling activity of Pif1 in R-loops. Adapted from Zhou R et al., 

2014. 

 

  1.4.2. Unfolding G-quadruplexes 

In 2009, it has been shown that Pif1 is involved in the stability of G-quadruplexes. The 

allele of the human minisatellite of 1.8 kb, called CEB1-1.8 was inserted into the 

genome of yeast S. cerevisiae. This guanine rich allele is composed of 42 tandems 

repeats ranging in size from 36 to 43bp and is able to form in vitro G-quadruplexes 

(Lopes J et al., 2006). In vitro, Pif1 is able to unwind the G4 structures formed by 

CEB1. In vivo, the absence of Pif1 promotes genetic instability of the G-rich human 

minisatellite CEB1 alleles. On the other hand, helicases such as Sgs1, Dna2, Rrm3 or 

Mph1 have no effect on the stability of the minisatellite CEB1-1.8 (Ribeyre C et al., 

2009). The ability of Pif1 to resolve these G4 structures suggests that Pif1 contributes to 

the stability of the genome by preventing rearrangements induced by structures 

formation in vivo (Figure 37). To better understand the role of Pif1, the same team 

measured the instability of the CEB1 minisatellite inserted beside the ARS305 

(Autonomous Replication Sequence) on the leading orientation (orientation I) or on the 

lagging strand (orientation II) (Lopes J et al., 2011). In WT cells, CEB1 appears to be 

fairly stable with rates of 0.5% rearrangements for both orientations. In pif1Δ cells, the 

instability of the minisatellite in orientation II is quite similar to the WT with a 

rearrangement rate of 2%. In contrast, it is extremely unstable in orientation I, the 

instability reaches 56.3%. Similar results were obtained with the catalytic mutant of 

Pif1 (pif1-K264A) showing that the helicase activity of Pif1 plays a role in the 

stabilization of the minisatellite in orientation I. In order to confirm that the instability 

of CEB1 close to the ARS305 depends on the ability to form G-quadruplexes in vivo, 

the cells were treated with Phen-DC3, a G-quadruplexe ligand able to inhibit the 

unwinding of G4 by Pif1 in vitro. The results show a low rate of rearrangements (0.5%) 

without treatment whereas the addition of the Phen-DC3 ligand generates 11.2% of 

rearrangements in Orientation I versus only 4.1% in orientation II, suggesting that the 
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instability of CEB1 close to the ARS305 depends on the formation of G4 in vivo 

stabilized by Phen-DC3 (Lopes J et al., 2011). The Pif1-K264A protein binds to the 

DNA in a way similar to the wild-type protein but its absence of ATPase / helicase 

activity facilitates the detection of its binding sites. Pif1-K264A has been shown to be 

associated with 11% of the G4 sites at the end of S phase, after replication of the G4 

sequence, suggesting that it has not a role in replication but in mitosis preparation. 

Absence of Pif1 leads replication fork slowing specifically near those G4 motifs to 

which Pif1 normally binds (Paeschke K et al. 2011). Finally it has been shown that Pif1 

can unwind intramolecular G-quadruplexes at every patrolling cycle, by the capacity of 

G-quadruplexes to refold immediately (∼0.2 s) (Zhou R et al., 2014). The capacity of 

Pif1 to unwind G-quadruplexes allows keeping this structures unfolded during 

transcritpion bubble, on DSBs, telomers and on the lagging and/or leading strand during 

replication.  

 

Figure 37. 

The patrolling activity of Pif1 in G-quadruplexes. (A) Unwinding of G-quadruplexes 

during transcription (B) Pif1 allows G-quadruplexes unwinding on the γ′ ssDNχ tails at 

telomeres and DSBs (C and D) unwinding G4 structures on the lagging and/or leading 

strands during DNA replication. Adapted from Zhou R et al., 2014. 

 

  1.4.3. Telomerase regulation 

The role of Pif1 as a negative regulator of the telomere length by telomerase 

processivity was first demonstrated in 1994, in a gene screen. Indeed, a mutant of the 

nuclear form of Pif1 called pif1-m2 resulted in telomere lengthening whereas a mutant 
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of the mitochondrial form of Pif1, pif1-m1, had no effect (Schulz VP and Zakian VA, 

1994). Nuclear Pif1 limits therefore telomerase activity. Different mechanisms were 

supposed (Figure 38): the prevention of initiation of telomerase-mediated telomere 

lengthening or limitation of telomerase processivity or unwinding of telomere DNA 

from the telomerase RNA template (hybrid DNA telomeric and RNA telomerase) 

formed during telomere replication and dislodging telomerase from the chromosome 

terminus (Boule JB et al., 2005). Pif1 over-expression leads to less interactions of 

telomerase with telomeres producing telomere shortening. Conversely, Pif1 depletion 

results in telomere elongation. Also Pif1 promotes genome stability by ejecting 

telomerase from non-telomeric DNA (Schulz VP and Zakian VA, 1994).  

 

Figure 38. The patrolling activity of a Pif1 in the telomers. (A) Pif1 allows 

telomerase displacing from 3′ ssDNχ ends at telomeres. (B) Pif1 permits unwinding of 

telomere DNA from the telomerase RNA template. Adapted from Zhou R et al., 2014. 

 

   1.4.3.1. Processivity of telomerase limitation by Pif1  

It has been suggested that telomerase processivity is a significant determinant of 

telomere length. Two types of processivity have been described for telomerase. The first 

is based on the ability of telomerase to fully copy the TLC1 (Templating telomerase 

RNA) substrate without being dissociated from the DNA. The second is based on its 

ability to translocate RNA in order to initiate a second replication without being 

dissociated from DNA (Lue NF, 2004). The preferential activity of Pif1 for DNA-RNA 

hybrids led to the hypothesis that Pif1 could take off telomerase of telomere. The 

telomerase processivity was measured in vitro in the presence and absence of Pif1. The 

obtained results showed that in the absence of Pif1, telomerase initiates elongation 

products of approximately 5 to 7nt against only 2nt in the presence of Pif1. Also, 

chromatin co-immunoprecipitation experiments showed that overexpression of Pif1 

results in a decrease of telomerase association with telomeres, whereas depleting cells 

of Pif1 increases the levels of telomere-bound Est1p, a telomerase subunit that is 
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present on the telomere when telomerase is active. This study shows that Pif1 limits the 

processivity of telomerase in vitro and 

releases telomerase from telomere oligonucleotides in vitro and in vivo (Boule JB et al., 

2005). 

 

   1.4.3.2. Pif1 inhibits the recruitment of telomerase to DNA 

double-strand breaks 

In order to differentiate the telomere ends of double-strand breaks from DNA, the cell 

implements different strategies. One of them is linked to the presence of telomere 

specific proteins that form a telomere cap necessary for both telomere protection and for 

specific recruitment of telomerase. In the DNA double-strand breaks, there are 

telomerase inhibition pathways that prevent the de novo telomere addition and 

promoting double-strand breaks repair through various DNA repair pathways, either by 

Homolog Recombination (HR) or Non Homologous End Joining (NHEJ). The Pif1 

helicase actively participates in this de novo telomere addition. The use of a pif1-m2 

mutant (nuclear form) has shown a 600 higher presence of Gross Chromosome 

Rearrangement (GCR) levels, the majority corresponding to de novo telomere addition, 

whereas a pif1-m1 mutant which abolishes the mitochondrial form of Pif1 has not effect 

(Schulz VP and Zakian VA, 1994).  Other proteins such as Est1, Est2, Cdc13 and the 

KU complex contribute to the novo telomere addition depending in the presence of 

telomerase. Also it has been proposed that specific phosphorylation of Pif1 inhibits the 

recruitment of telomerase at double-stranded DNA breaks (Makovets S and Blackburn 

EH, 2009). 

 

 1.5. Pif1 regulation 

In 2009, Chang M et al. find that overexpression of Saccharomyces cervisiae Pif1 is 

toxic, in a dose-dependent manner. This Pif1 toxicity is tied to the DNA damage 

accumulation in genes involved in DNA replication and the DNA damage response 

demonstrating that its activity must be regulated (Chang M et al., 2009). Also it has 

been reported that DNA damage activates a serie of kinases such as Rad53 in yeast, 

leading to cell cycle arrest and DNA repair (Branzei D and Foiani M, 2009). The same 

year Makovets and Blackburn hypothesized that Pif1 would be regulated in response to 

DNA damage (Makovets S and Blackburn EH, 2009). Different treatments, such as 

phleomycin (intercalating DNA causing breaks), hydroxyurea (causing stopping of 
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replication forks) or induction of a non-repairable breakage, cause phosphorylation of 

the ScPif1 protein on the threonine 763 and serine 766 residues (C-terminal domain) 

depending on the MEC1-RAD53 DNA damage signalling pathway. The Pif1 

phosphorylation induces inhibition of telomerase specifically at DSBs (Makovets S and 

Blackburn EH, 2009). Recently it has been shown that Rad53 also phosphorylates both, 

ScPif1 and Rrm3 in response to replication fork stalling in the N-terminal domain. This 

phosphorylation causes ScPif1 and Rrm3 inhibition, prevents fork reversal and genome 

instability (Rossi SE et al., 2015). 

 

2. Bacteroides spp  

My work has consisted in studying molecular mechanisms of Pif1 in prokaryotes and 

particularly in Bacteroides sp 3_1_23. Bacteroides sp 3_1_23 belongs to the bacteria 

family and more specificly to genus Bacteroides (Oliver WW and Wherry WB, 1921; 

Roy TE and Kelly CD, 1939) and fragilis family. Bacteroides are gram negative, 

presenting a cell envelope composed of a thin peptidoglycan cell wall sandwiched 

between an inner cytoplasmic cell membrane and a bacterial outer membrane. They are 

anaerobic bacteria, since they are killed by normal atmospheric concentration of oxygen 

(20,95% O2). They use fermentation and anaerobic respiration to produce energy. 

Anaerobic respiration differs from aerobic respiration by electron transport chain; they 

use alternative electron acceptors as sulphate, nitrate, iron, manganese, mercury and 

carbon monoxide. Bacteroides do not present endospores, a dormant, tough and non-

reproductive structure permitting the bacterium to resist in harsh conditions. Finally 

they present a bacilli form and may be motile or no motile depending on the species. 

Their DNA base composition is 40-48% GC (Johnson JL, 1978; Holdeman LV et al., 

1986; Shaheduzzaman SM et al., 1997). Bacteroides are found in the gastrointestinal 

tract more precisely in the colon as members of the endogenous flora. They contribute 

to immunity and digestive metabolism leading to polysaccharide breakdown or nitrogen 

cycling. But Bacteroides also present disadvantageous roles by rapid deconjugation of 

bile acids or the production of mutagenic compounds (Macy JM, 1984; Salyers AA, 

1984). The low presence of Bacteroides is linked with obesity (Ley RE et al., 2005; Ley 

RE et al., 2006; Turnbaugh PJ et al., 2006). They also permit the development of gut-

associated lymphoid tissues (GALT) (Rhee KJ et al., 2004), they produce 

polysaccharides that activate the T-cell dependent immune response (Mazmanian SK 

and Kasper DL, 2006; Mazmanian SK et al., 2005) and they can affect positively the 
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expression of Paneth cell proteins that protect the stem cells of epithelium (Ganz 

T, 2000). But some Bacteroides species also are pathogens and resistant to several 

antibiotics like. The most studied Bacteroides pathogen is Bacteroides fragilis, being an 

important opportunistic pathogen causing anaerobic infections (intra-abdominal sepsis 

principaly and perforated and gangrenous appendicitis) and the associated mortality is 

higher than 19% (Finegold M and George WL 1989; Goldstein EJ, 1996). 

 

 2.1. Biochemical characterization of BsPif1 

In the literature Pif1 has been characterised in Bacteroides sp 3_1_23. BsPif1 can 

hydrolyse all types of nucleotides triphosphates (NTP) and deoxynucleotide 

triphosphates (dNTP) without significant preference except for GTP or dGTP, which 

led to 50–60% of helicase activity. The structural basis for this promiscuity is the 

missing selectivity filter for the adenine base, which is replaced by M10 in BsPif1. The 

biological advantage of non-selective nucleotide base binding over, a selective one 

should be that in the situation of ATP depletion in a cell, helicases can continue to use 

other types of nucleotides to ensure their function (Liu NN et al., 2015; Chen WF et al., 

2016). In the case of its eukaryotic homolog, ScPif1 has a preference for adenosine 

nucleotides (ATP and dATP) as an energy source (Lahaye A et al., 1993). For 

unwinding, hPIF1 and BsPIF1 have a preference for partial duplexes in contrast to 

ScPIF1, which unwinds more efficiently forked than partial duplex (Ramanagoudr-

Bhojappa R et al., 2013). This preference for a substrate could be determinate by the 

oligomerization state. It has been shown that the forked DNA substrate enforces 

dimerization of ScPif1 (Barranco-Medina S and Galletto R, 2010). BsPif1 has only a 

monomeric form, whereas ScPif1 is dimeric in the presence of DNA but not in solution 

(Liu NN et al., 2015; Barranco-Medina S and Galletto R, 2010).  In the presence of 

hybrids, BsPif1 has a higher unwinding activity for DNA/DNA duplexes than 

RNA/DNA hybrids, especially on the resolution of the R-loops. This preference for 

DNA/DNA is expected because Bacteroides sp. 3_1_23, have circular genomes and 

thus no telomere. But this capacity of resolution of R-loops is necessary for maintaining 

genome integrity (Liu NN et al., 2015; Aguilera A and Garcia-Muse TR, 2012). On the 

contrary ScPIF1 prefers the RNA/DNA hybrids to DNA/DNA duplexes, this 

phenomenon was interpreted like the capacity of ScPif1 mediated telomerase disruption 

to form telomere (Boule JB and Zakian VA, 2007). BsPif1 has more difficulties to 

unwind G4 DNA than partial duplex DNA like hPif1 (Liu NN et al., 2015; Sanders CM, 
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2010). ScPIF1 resolves the G4 more effectively than the canonical double helix and 

other non-B form DNA secondary structures (Paeschke K et al., 2013; Duan XL et al., 

2015). In conclusion BsPif1 resembles more to human Pif1 than to Saccharomyces Pif1 

in the choice of substrate. 

 

 2.2. BsPif1 mechanism of unwinding  

The crystallization of BsPif1 in complex with a partial duplex has to propose a 

mechanism for DNA unwinding (Chen WF et al., 2016) (Figure 39). After nucleotide 

binding, the loop3 of the 2B domain suffers a closing movement, which causes its 

interaction with the 1B domain forming a hole where only the ssDNA can pass through. 

Then ATP binds to the helicase in the hydrolysis site leading to the activation of the 

translocase activity by a relative movement of the two RecA domains 1A and 2A. The 

ssDNχ is moved in the 5′ to γ′ direction and incoming duplex is blocked by the rigid 

structure formed by 2B and 1B domains. The translocation force is sufficient to 

destabilize the incoming duplex and to trigger its unwinding. After translocation, the 2B 

domain may move back in the initial position for another cycle of unwinding.  

 

Figure 39. Unwinding mechanism of BsPif1. (A) The 2B domain is in the upper 

position. The ssDNA binding triggers the configuration change of the 2B domain 

forming a tunnel by 2B and 1B domains, where only ssDNA can pass through. (B) ATP 

binding and hydrolysis allows the two RecA domains 1A and 2A to act as a molecular 

motor to move ssDNA. But the 2B domain acts as a wedge, blocking the incoming 

duplex. (C and D) The translocation force is sufficient to open dsDNA on the 2B 

wedge. Finally the 2B domain rotates back for a new cycle. Adapted from Chen WF et 

al., 2016. 
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3. DNA structures 

Deoxyribonucleic acid (DNA) carries the genetic instructions used in the growth, 

development, functioning and reproduction. The DNA can take different tridimentional 

structures depending on the sequences and experimental conditions (solvent, ionic 

strength, presence/absence of salt…). The most common structure of DNA is the B-

helix or double helix, first described by Watson JD and Crick FH in 1953 (Watson JD 

and Crick FH, 1953) (Figure 40B). This structure is possible by the pairing of two anti-

parallel polynucleotides strands held together by hydrogen bonds (named Watson-

Crick) between bases A-T and G-C and base-stacking interactions among aromatic 

nucleobases by π-bonds. In some conditions the complementary nucleic acid sequences 

can adopt two other structures, A-helix and Z-helix. The A-helix (Figure 40A) presents 

slight increase in the number of base pairs (bp) per turn, resulting in a smaller twist 

angle and smaller rise per base pair compared with the B-helix. This A-form is 

preferentially adopted by RNA or DNA in a dehydrated medium (Franklin RE and 

Gosling RG, 1953). The Z-helix (Figure 40C) consits in a left-handed double helical 

structure in which the double helix winds to the left in a zig-zag pattern (Mitsui Y et al., 

1970). Duplexes are not the only structure that DNA or RNA adopts. Other structures 

such as triplex, i-motif and G-quadruplex can be formed. A triple helix (Figure 40D) 

consists in the interaction of a third single strand inside the major groove of a double 

helix through Hoogsteen or reverse Hoogsteen bonding with the purine-rich strand 

(Broitman SL et al., 1987). The i-motif (Figure 40E) are caracteristic of cytosine-rich 

sequences at acidic pH, they form four strands interacting together two by two via C+-C 

base pairs (two cytosines sharing a proton) (Gehring K et al., 1993). In 1910 the 

formation of a gel with a high concentration of G in aqueous solution was reported the 

first time by Bang. In 1962 Gellert and his colleagues elucidated the phenomenon of 

aggregation formed by guanylic acid using X-rays, due to stacking of four associated 

5’monophosphate guanines through H bonds at their Watson-Crick and Hoogsteen sites, 

permitting the formation a quartet of guanines (Gellert M et al., 1962). Thestacking of 

these G-quartets forms a non-canonical structure called G-quadruplex (G4-DNA or G4) 

(Figure 40F). 
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Figure 40. DNA structures. (A) A form. (B) B form. (C) Z form. (D) Triplex (E) i-

motif (F) G-quadruplex. Adapted from Ho PS and Carter M, 2011. 

 
4. G-quadruplexes  

As it has been said before, the G-quadrupex (G4) consists in two or more staked G-

quartets, which are planar structures formed by the association of four guanines. The 

guanines are linked by two H-bounds: 1) internal: established between the oxygen of the 

carbonyl group in position 6 (O6) and the hydrogen of the nitrogen at position 1 (N1);  

2) External: consisting in H bonds via nitrogen at position 7 (N7) and the hydrogen of 

the amino group at position 2. The G-quadruplex is stabilized by monovalent cations, 

which interact with the four oxygen atoms belonging to the carbonyl group (O6) of the 

four guanines during the stacking (Pinnavaia TJ et al., 1978). Also the presence of loops 

and the sequences between the G blocks will determine the G-quadruplex stability.  

A B C 
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Finally, G-quadruplex present three key type interactions: H bonding, dipole 

interactions and π-π stacking that stabilize and determine the structural diversity of G4 

between other parameters. 

 

 4.1. Structural polymorphism of G4 

Different parameters have been described to explain the structural diversity of G4 

mainly: the number of strands, their orientations, the loops conformation and the nature 

of cations. 

 

  4.1.1. Strands number 

According to the number of DNA molecules involved in the formation of G4, two main 

categories of G4 can be described (Figure 41). They can be intermolecular including 

two subcategories: Tetramolecular G4 formed by the association of four strands and 

Bimolecular G4 formed by two strands. Intramolecular or monomolecular G4 made by 

one single strand containing several blocks of guanines are able to fold back and form a 

G4 structure. 

 

 

 

 

Figure 41. Schematic representation of different G4 conformations according to 

the DNA molecules involved. Intermolecular: (A) Bimolecular and (B) Tetramolecular. 

(C) Intramolecular or Monomolecular. 

 

  4.1.2. Glycosidic torsion angle 

The sugar of the G (guanine) is usually in a C2'-endo/C3'-exo conformation. However, 

the glycosidic bond angle can adopt two different orientations: syn and anti (Figure 42). 

The syn conformation appears when the base and the sugar are on the same side of the 

glycosidic bound and the anti conformation when the base and the sugar are on opposite 

sides of the bond. The syn/anti conformations of guanines within a G-quartet define the 

groove dimension between two adjacent guanines, which can be wide, narrow or 

medium (Smith FW and Feigon J, 1992). 
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Figure 42. Torsion angles of nucleic acids. (A) Torsion angles along the backbone (α 

to ζ), within the sugar ring (ν0 to ν 4), and the rotation of the nucleobase relative to the 

sugar (Ȥ). (B) Rotation about the glycosidic bond defines Ȥ-angles for the anti- and syn-

conformations of the bases. Adapted from Ho PS and Carter M, 2011. 

 

  4.1.3. Strand orientation  

The strand orientation is defined by the phosphate backbone directionality 5' - 3'. The 

G-quadruplexes are grouped in 3 categories (Figure 43): Parallel if it contains four 

strands oriented in the same direction. Hybrid (3+1) if three strands are oriented in the 

same direction and the forth in the opposite one. Antiparallel if the strands have 

opposite direction two by two.  

 

 

 

 

Figure 43. Schematic representation of different G4 conformations according to 

strand orientation. (A) Parallel (B) Hybrid (C) Antiparallel. 

 

  4.1.4. Loop conformation 

The loops are the sequences located between the blocks of guanines. In the case of 

tetramolecular G-quadruplex, all G-tracts are independent and there are not 

interconnection loop. However, Bimolecular and Monomolecular G-quadruplexes 

present 2 or 3 loops respectively. There are four types of loop conformation (Figure 44): 

1) Lateral loop or edgewise, which connects two antiparallel adjacent strands, 2) 

Propeller or chain reversal loop, connecting two parallel adjacent strands and 3) 

Diagonal loop connecting antiparallel opposite strands. V-shaped or snap-back loop 

connects the wedges of G-quartet (Yang Q et al., 2010). Moreover loop length will also 

A B C 
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determine G-quadruplex conformation: short loops are usually external and favour a 

stable parallel conformation and longer loops give rise to anti-parallel conformation 

with a reduced stability of G-quadruplex (Rachwal PA et al., 2007; Guedin A et al., 

2010). Finally the type of the nucleotide, which forms the loops determines also the G-

quadruplex stability, the adenine presence reduces remarkably the stability comparing to 

pyrimidines (C and T) (Guedin A et al., 2008).  

Figure 44. Schematic representation of different G4 conformations according to 

loop conformation. (A) Lateral loop or edgewise (B) Propeller or chain reversal loop 

(C) Diagonal loop (D) V-shaped (E) Snap-back loop.  

 

  4.1.5. Cation nature 

G-quadruplexes are stabilized by monovalent cations, metallic cations such as K+ 

principally and in a lesser extend by the presence of Na+ (Mergny JL et al., 1998) and 

NH4+ (Wong A and Wu G, 2003). Other monovalent (Rb+, Cs+, Tl+, Li+) and divalent 

(Sr2+, Ca2+ and Pb2+) cations can also be incorporated between G-quartets determining 

different G-quadruplex structures (Wong A and Wu G, 2003; Wlodarczyk A et al., 

2005). In the literature it has been reported that d[AGGG(TTAGGG)3] G-quadruplex 

exhibit conformational changes in the glycosidic bonds in the presence of K+ and Na+. 

In the presence of Na+ the G-quadruplex present three quartets with syn–anti–anti–syn 

conformations in each G-quartet, but in the presence of K+ all the G residues adopt an 

anti conformation (Balagurumoorthy P and Brahmachari SK, 1994; Gilbert DE and 

Feigon J, 1999; Parkinson GN et al., 2002). Also [d(G4T4G3)]2 has been observed in the 

presence of Na+, K+ and NH4+, and several structures were observed suggesting an 

influence of cation determining the G-quadruplex polymorphism (Črnugelj ε et 

al., 2002). 
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  4.1.6. Bulges in G-quadruplexes 

Discontinuous arrangements of guanines in one column of the G-tetrad core have been 

observed in the sequence of Pu24 from the human c-myc promoter (Phan AT et al., 

2005) and c-kit87up from the human c-kit promoter (Todd AK et al., 2007; Wei D et 

al., 2012), despite the presence of four G-tracts having each at least three continuous 

guanines (Phan AT et al., 2005; Todd AK et al., 2007; Wei D et al., 2012). These 

structures present the bulges, which are projections of bases from the G-quartet core 

connecting two non-adjacent guanines of the same strand within the G-quartet core. 

Phan and his collaborators have shown that many different bulges can exists in G4 

structures, varying in sequence, size, position and number within the G-quadruplex 

(Mukundan VT and Phan AT, 2013) (Figure 45). 

 

Figure 45. Schematic representation of different G4 conformations according to 

the presence of bulges. Different sequences have the ability to form different bulges. 

Adapted from Mukundan VT and Phan AT, 2013. 

 

 4.2. Regulation of G-quadruplex formation 

The participation of G-quadruplexes in biology is determined by their folding and 

unfolding capacity. These two mechanisms are determined by chaperones and helicases, 

respectively. The folding kinetics of G-quadruplexes is sequence dependent and it can 

occur on a time scale ranging from a few milliseconds to minutes. For instances, 

sequences that fold fast are human telomere repeats in 60ms (Zhang AY and 

Balasubramanian S, 2012). But the G-quadruplex kinetics formation can be increased 
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by the presence of protein chaperones (Fang G and Cech TR, 1993). The most identified 

chaperones are in the telomeres, such as the S. cerevisiae telomere double strand 

binding protein Rap1 (Rhodes D and Giraldo R, 1995), the regulatory subunit of yeast 

telomerase Est1 (Li QJ et al., 2013) and the human telomere binding protein TRF2 

implicated in DNA and RNA G-quadruplex binding (Biffi G et al., 2012). Other 

proteins have also the capacity to bind G-quadruplexes and to stabilize them like in 

human. One can cite the DNχ mismatch recognizing factor εutSα promoting synapsis 

of transcriptionally activated immunoglobulin switch regions (Larson ED et al., 2005), 

and others as nucleophosmin (NPM1), which interacts with several G-quadruplex 

regions in ribosomal DNA implicated in ribosome maturation and export (Chiarella S et 

al., 2013), or nucleolin (NCL), which is an essential nucleolar phosphoprotein that binds 

DNA G-quadruplexes with high affinity (Dempsey LA et al., 1999). 

To unfold the G-quadruplexes, some specific helicases are put into play, and their loss-

of-function is linked to various cancers and genetic disorders. These specific G-

quadruplex helicases play important roles in DNA replication and telomere maintenance 

(Brosh RM Jr, 2013). The human helicases WRN (Werner syndrome), BLM (Bloom 

syndrome) and S. cerevisiae Sgs1 are involved in telomere maintenance by their G-

quadruplex unwinding capacity (Lipps HJ and Rhodes D, 2009). Mutations in WRN 

cause the Werner syndrome and mutations in BLM the Blooms syndrome, that gives 

rise to premature aging (adult progeria) and increased risk of cancer, respectively. Also 

the FANCJ helicase, the orthologous of the C. Elegans DOG-1 helicase is essential for 

G-quadruplexes unwinding and its loss of function is associated with the Fanconi 

anaemia (London TB et al., 2008). As said before Pif1 presents a strong G-quadruplex 

unwinding activity and its loss of function gives a high DNA double strands breaks 

presence (Ribeyre C et al., 2009; Paeschke K et al., 2011; Paeschke K et al., 2013). But 

it has been reported that in the absence of G-quadruplex helicases, a number of 

nucleases act to process G-quadruplexes, leading to G-tract deletions, such as FEN1, 

EXO1 and DNA2 in human (Vallur AC and Maizels N, 2008). EXO1 and FEN1 play a 

role in DNA replication and are involved in telomere maintenance (Saharia A et al., 

2008; León-Ortiz AM et al., 2014). In addition, the single-strand binding replication 

protein RPA that is also involved in telomere maintenance has been shown to facilitate 

G-quadruplex unfolding by shifting the equilibrium from a folded to an unfolded state 

(Safa L et al., 2014). RNA G-quadruplexes can also be unwound by the RHAU helicase 

(Lattmann S et al., 2010; Giri B et al., 2011). The knockdown of RHAU cause impaired 



 121 

telomerase assembly and changes in telomere length (Booy EP et al., 2012). These 

examples provide evidence that there are proteins that directly regulate G-quadruplexes 

resolution or removal to prevent replication fork stalling and DNA breakage, and RNA 

folding. 

 

 4.3. G-quadruplexes in vivo 

Since the first description of G-quadruplexes in vitro, the key question was if these 

structures occur in vivo and what is their function. Firstly by bioinformatic studies the 

G-quadruplexes were searched in the human genome (Huppert JL and Balasubramanian 

S, 2005; Todd AK et al., 2005). These identified regions are called Putative Quadruplex 

Sequences (PQS) (Huppert JL and Balasubramanian S, 2005; Huppert JL, 2008). The 

reference sequence is G3N1-7G3N1-7G3N1-7G3N1-7, where G represents the guanine tracts 

and N the loop regions that are made of any nucleotide. The G tracts were restricted in 3 

and the loops to 1-7 nucleotides. This pattern gave 360 000 motifs in human (Huppert 

JL and Balasubramanian S, 2005), 27 motifs in Saccharomyces cerevisiae (Piazza A et 

al., 2015). In Bacteroides sp 3_1_23 I could find 2 motifs determined by the reference 

sequence G3N1-7G3N1-7G3N1-7G3N1-7 research in the Bacteroides sp 3_1_23 genome. But 

G-quadruplexes can show longer loops made of more than seven nucleotides (Dai J et 

al., 2006; Balkwill GD et al., 2009; Amrane S et al., 2012). Recently, it has been 

observed that G-quadruplexes can be formed by 4n-1 guanines: one G tract can be 

shorter by one guanine, the G-quadruplex will contain two G-tetrads and one n–1 G-

quartets a G-triad (Heddi B et al., 2015). This G-triad was observed in the structure of 

truncated thrombin aptamer (Cerofolini L et al., 2014) and in G-quadruplex formed by a 

human minisatellite sequence (Adrian M et al., 2014). Because G-quadruplex sequences 

are not archetypal as it seems, a new algorithm has been developed to determine G-

richness and poorness of regions in the genome (Bedrat A et al., 2016) in agreement to 

high-resolution sequencing approach, which permitted the identifiaction of more than 

700 000 sequences forming G4 structures in human (Chambers VS et al., 2015).  

The first direct evidence came from the developement of a G-quadruplex structure-

specific antibody to detect G-quadruplexes in Stylonychia lemnae macronuclei telomers 

(Schaffitzel C et al., 2001). Then other labs have tried to produce other antibodies to 

detect G-quadruplex, especially in mammalian cells. Biffi et al. have produced a 

specific antibody, BG4, to visualize DNA G-quadruplex structures, without any 

preference and any particular conformation, in human cells (Biffi G et al., 2013). 
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Finally, a murine monoclonal antibody, 1H6, which permits the visualization of G-

quadruplexes in human and murine cells has also been developed (Henderson A et al., 

2014). Moreover the DNA binding protein studies has contributed to detect G-

quadruplex in vivo such as in bacteria, ciliates and human in which their unwinding and 

folding take place (Sundquist WI and Klug A, 1989; Paeschke K et al., 2005; Zaug AJ 

et al., 2005).  

 

 4.4. G-quadruplexes localization 

These studies in human, yeast and bacterial genomes, have then allowed to determine 

the localization of such structures. Principally the G-quadruplexes are localised in non-

coding regions, with a higher density in telomeres and promoters (Huppert JL et al., 

2008) (Huppert JL and Balasubramanian S, 2005; Todd AK et al., 2005; Bedrat A et al., 

2016; Rawal P et al., 2006; Maizels N and Gray LT, 2013) but also in coding strand 

determining gene transcription (Rankin S et al., 2005). G-quadruplexes localization is 

not random. Indeed they are present in functional regions and furthermore, are highly 

conserved between different species (König SL et al., 2010) by a selection pressure to 

retain such sequences at specific genomic regions. This high conservation is present in 

mammalian species and decreases in non-mammalian and lower organisms (Frees S et 

al., 2014). The highest abundance of G-quadruplexes is at telomeres, consisting of 5 to 

10000 bp of 5'TTAGGG repeat in humans. Then in the gene promoters, at the border 

between introns and exons and target immunoglobulin switch regions (S regions) 

(Maizels N and Gray LT, 2013). Also the G-quadruplexes are present in 90% of human 

DNA replication origins (Cayrou C et al., 2011; Cayrou C et al., 2012; Besnard E et al., 

2012). The genome instability is the hallmark in many cancers.  Genome-wide analysis 

of DNA breakpoints in different cancer types show a significant enrichment in G-

quadruplexes in the vicinity of somatic copy number alterations (SCNA) (De S and 

Michor F, 2011), as well as telomeres being favoured targets of persistent DNA damage 

response in aging (Hewitt G et al., 2012). Also G-quadruplexes have been found in the 

5'-UTR regions of encoded mRNA (3000 G-quadruplex motifs in humans) having the 

role of translational repressors. (Bugaut A and Balasubramanian S, 2012). But they are 

also present in the 3'-UTR regions in mRNA, which impact in the polyadenylation (PA) 

process permitting mRNA maturation (Beaudoin JD and Perreault JP, 2013). TERRA 

(Telomere repeat-containing RNA) is a transcript of telomere DNA, which forms a G-

quadruplex structure and participates in the regulation of telomerase and telomeres (Xu 
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Y et al., 2010). The presence of G-quadruplexes in important genomic regions suggests 

that they provide a regulatory role. 

 

 4.5. Fonctions of G-quadruplexes 

  4.5.1. Role of G-quadruplexes in promoter region 

It has been possible by bioinformatic techniques to identify G-quadruplex motifs at 1kb 

upstream of TSS regions (Transcription Start Site) in more than 40% of human genes  

(Huppert JL and Balasubramanian S, 2007). These G-quadruplexes are more present in 

oncogene promoters and regulatory genes than in tumour suppressor promoters and 

housekeeping genes (Eddy J and Maizels N, 2006; Huppert JL and Balasubramanian S, 

2007). This G-quadruplex enrichment in promoter regions is also found in yeast, 

bacteria, plants and mammalians (Hershman SG et al., 2008; Capra JA et al., 2010; 

Rawal P et al., 2006; Mullen MA, et al., 2010; Yadav VK et al., 2008). Additionally, in 

humans, G-quadruplexes are less found in the template strand (particularly the 3'UTR) 

than in the non-template strand (Huppert JL et al., 2008). In yeast, they are present in 

the two strands indistinctly, but there is a correlation between nucleosome-free regions 

and G-quadruplexes in promoters (Capra JA et al., 2010). This observation suggests that 

G-quadruplexes play a role in gene expression regulation. In humans, these structures 

have been described in different genes including HIFχα, ψCδ-2, c-MYC (De Armond 

R et al., 2005; Dai J et al., 2006; Simonsson T et al., 1998). G-quadruplexes have four 

roles in the promoters (Figure 46). 1) Their presence in the template strand causes the 

inhibition of the transcription, being a block factor (Figure 46A). In the case of NHEIII1 

(Nuclease hypersensitive element III1), which is downstream of the MYC promoter, the 

presence of G-quadruplex causes transcription repression (Siddiqui-Jain A et al., 2002). 

2) On the contrary the G-quadruplex presence in the non-template strand could prevent 

annealing to the template strand allowing accessibility of the transcription machinery 

(Figure 46B). In this case the G-quadruplex structures could be enhancers of the high 

transcription level of some genes. 3) Proteins bound to the G-quadruplex structures can 

have a dual role as transcriptional enhancers and repressors. Some proteins cause the 

unfolding of the G-quadruplexes allowing the final transcription of the temple strand 

(Figure 46C), like some specific helicases: PIF1, WNR, BLM of 22 helicase that have 

this ability. 4) Other repressors work by stabilizing G-quadruplexes presents in the 

template strand (Figure 46D), such as TMPyP4 that binds to the G-quadruplex in 
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NHEIII1 reducing MYC transcription (Siddiqui-Jain A et al., 2002; Grand CL et al., 

2002). 

 

 

 

Figure 46. Functions of G4 structures during transcription in promoter 

regions. (A) G-quadruplexes block transcription by polymerase (purple) inhibition. (B) 

G-quadruplexes facilitate transcription by keeping the dsDNA unwound and allowing 

the transcription of the template strand. (C) G-quadruplexes stimulate transcription by 

recruiting proteins (green) such as helicases, which are able to unwind G-quadruplexes. 

(D) G-quadruplexes block transcription via the recruitment of G4 binding proteins 

(blue), which directly or indirectly (red) repress transcription. Adapted from ψochman 

εδ et al., β01β. 

 

  4.5.2. Role of G-quadruplexes in DNA replication 

In the replication the double stranded DNA is separated into two strands. Firstly the G-

quadruplex can appear before the replication origin by slowing or stalling the 

replication fork machinery (Zeman MK and Cimprich KA, 2014) (Figure 47). It can 

also have an initiating role thanks to the recruitment of helicase specific for G-

quadruplex, the strand localization of the G-quadruplex determines the precise position 

of the replication start site (Valton AL et al., 2014). Secondly during replication, the 
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leading strand is continuously duplicated but G-quadruplex structures can be formed 

before. χlso the lagging strand’s replication is opposite to the direction of the growing 

replication fork. For this reason the lagging strand is discontinuous and some portions 

are free to form secondary structures, such as G-quadruplexes, which could act as 

transcriptional regulators (Bochman ML et al., 2012). The absence or inactivity of these 

helicases prevents the unwinding of these G-quadruplexes, slowling down the DNA 

replication and the apparition of DSBs at many of the G-quadruplex, as in the case of 

Pif1 absence (Ribeyre C et al., 2009; Lopes J et al., 2011). Also the Pif1 deficient cells 

present a high level of G-quadruplexes mutations, which eliminate the ability of the 

motif to form a G-quadruplex structure. When theses mutated motifs are reintroduced in 

the genome of a normal cell (in presence the Pif1), they do not bind Pif1, and slow 

down DNA replication or cause DSBs (Ribeyre C et al., 2009; Lopes J et al., 2011; 

Paeschke K et al., 2011).  

 

 

Figure 47. Functions of G4 structures during replication. (A) Origins of replication 

are GC-rich. G-quadruplex formation causes slowing or stalling or initiation of DNA 

replication, and its localization determines the site of initiation. (B) G-quadruplexes 

formed during replication in the leading or lagging strand when the DNA is single 

stranded impede replication but the presence of helicases specific for G-quadruplex 

unwinding allows the replication. Adapted from Rhodes D and Lipps HJ, 2015.  
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  4.5.3. Role of G-quadruplexes in telomeres 

The telomeres are constituted by DNA sequences protected by proteins at the ends of 

chromosomes and they are composed of a double stranded region and 3' single stranded 

overhang (Bochman ML et al., 2012). The principal role of telomeres is to protect the 

chromosome from degradation and end-to-end fusion. Usually this 3' single stranded 

overhang sequence consists in repetitions of G-rich motif, like (TTAGGG)n in 

vertebrates (Dreesen O et al., 2005). Several studies using specific binding protein and 

antibodies binding have shown that this G-rich sequences are able to form G-

quadruplexes in vivo (Paeschke K et al., 2005; Biffi, G et al., 2013; Chambers VS et al., 

2015; Fang G and Cech TR, 1993; Giraldo R and Rhodes D, 1994; Zaug AJ et al., 2005; 

Wang H et al., 2011) suggesting that G-quadruplexes might act as a telomere capping 

structure (Figure 48). This telomere capping structure allows telomere protection from 

nucleases (Capra JA et al., 2010) (Figure 48A). In ciliates, they protect the telomeres by 

recruitment of telomere end binding protein TEψPα, which allows two telomeres fusion 

and attachment to a sub-nuclear structure (the nuclear matrix or scaffold) via 

recruitment of the telomere-end binding protein TEψPȕ (Paeschke K et al., 2005) 

(Figure 48B). The telomeres length is regulated by telomerase and influenced by G-

quadruplexes structure. Intramolecular antiparallel G-quadruplexes structures block 

telomerase activity, whereas intermolecular parallel G-quadurplexes do not (Zahler AM 

et al., 1991; Oganesian L et al., 2006; Oganesian L et al., 2007).  Also like in the case of 

transcription and replication, a variety of ligands stabilize the G-quadruplexes causing 

telomerase inhibition by preventing annealing of telomerase RNA to G-strand 

overhangs, as telomestatin (Kim MY et al., 2002; Rezler EM et al., 2005) (Figure 48C).  
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Figure 48. Functions of G4 structures at telomeres. (A) The G-rich 3' overhang can 

form folded G-quadruplexes that protects telomeres from nuclease degradation. (B) 

Ciliate telomeres form G-quadruplex structures involving two telomeres promoted by 

the telomere-end binding protein TEψPα and the attachment to sub-nuclear structure 

(the nuclear matrix or scaffold) with the recruitment of the telomere-end binding protein 

TEψPȕ. (C) Stabilizing of G-quadruplexes by G-quadruplex binding ligands blocks 

telomerase action. Adapted from Rhodes D and Lipps HJ, 2015. 

 

 4.6. Characterization of telomeric G-quadruplex motif and (GGGT)4 motif 

The GGGTTA motif is found in many phylogenetically distant organisms, such as 

vertebrates (Moyzis RK et al., 1988), several fungi (Schechtman MG, 1990) and slime 

mold (Forney J et al., 1987). Variants of this motif are found in many other organisms 

such parasites (Le Blancq et al., 1991), plants (Richards EJ and Ausubel FM, 1988), 

algae (Petracek ME et al., 1990), nematodes (Wicky C et al., 1996) and yeasts (Lue NF, 

2010). Different studies determine that the sequence can fold into a parallel, hybrid or 

antiparallel G-quadruplexes depending on experimental conditions and the exact 

sequence (Phan AT, 2010).  

In human this GGGTTA motif is present in the telomeres that comprises thousands of 

this tandem repeats with a γ′-end overhang of 100-200nt long (Makarov VL et al., 

1997). This motif in different experimental conditions could adopt four different 

intramolecular G-quadruplexes forms involving three G-tetrad layears (Figure 49): 1) in 

Na+ d[A(GGGTTA)3GGG] presents an antiparallel stranded basket form (Wang Y and 

Patel DJ, 1992), 2) in K+ d[A(GGGTTA)3GGG] presents a parallel stranded propeller 

form (Parkinson GN et al., 2002), 3) in K+ d[TA(GGGTTA)3GGG] presents a hybride 

form type 1 (Luu KN et al., 2006). 4) in K+ d[TA(GGGTTA)3GGGTT presents a 

hybride form type 2 (Phan AT et al., 2006). The presence of these structures in the 
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telomeres causes inhibition of the telomerase activity (Zahler AM et al., 1991), which is 

critical for the proliferation of most cancer cells (Kim NW et al., 1994).  

Figure 49. Schematic structures of intramolecular G-quadruplexes formed by the 

human telomeric sequences: (A) d[A(GGGTTA)3GGG] in Na+ solution a basket-type 

form (B) d[A(GGGTTA)3GGG] in a K+ a propeller-type form, (C) 

d[TA(GGGTTA)3GGG] in K+ solution hybride form type 1 and (D) 

[TA(GGGTTA)3GGGTT] in K+solution hybride form type 2. The G-rich columns in are 

represented in black and connecting loops in red. The anti guanines are coloured 

cyan; syn guanines are coloured magenta. Adapted from Lim KW et al., 2009. 

 

In the litterature the structure of this human telomere d[(GGGTTA)3GGGT] sequence 

has been investigated and characterized (Figure 50). It is the most similar to the 

sequence we use in this thesis. This sequence was studied in presence of K+ establishing 

a basket-type G-quadruplex fold. The G-quadruplex core consists of two tetrads, G1-

G14-G20-G8 and G2-G7-G19-G15 with a glycosidic conformation of guanines of syn-

syn-anti-anti in each tetrad. Each strand constituting the core has both a parallel and 

antiparallel adjacent strands. The loops are successively edgewise diagonal edgewise. 

This structure, with two G-tetrads in the core, is more stable than the intramolecular G-

quadruplexes with three-G-tetrads. In terms of melting temperature the G-quadruplexes 

with two-G-tetrads presents a 57°C melting temperature compared to G-quadruplexes 

with three-G-tetrads, which presents a lower melting temperature 47.2°C and 53.6°C. 

This high stability is explained by the extensive base pairing and stacking of thymine 

bases (T4, T10, and T16) into the hydrophobic grooves in the loops capping both ends 

of the G-tetrad core  (Lim KW et al., 2009).  
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Figure 50. Structure of the human telomeric G-quadruplex d[(GGGTTA)3GGGT]. 

(A) Ribbon view of a representative structure of natural d[(GGGTTA)3GGGT]. The 

anti guanines are coloured cyan; syn guanines are coloured magenta. The backbone is 

represented in grey and the O4′ atoms in yellow. (ψ) Schematic view of a representative 

structure of natural d[(GGGTTA)3GGGT] The G-rich columns in are represented in 

black and connecting loops in red. The anti guanines are coloured cyan; syn guanines 

are coloured magenta. The letters W, M1, M2 and N represent wide, medium 1, medium 

2 and narrow grooves, respectively. Adapted from Lim KW et al., 2009 

 

The d[(GGGT)4] motif is used as an HIV-1 integrase inhibitor, a viral enzyme 

responsible for the integration of viral DNA into the host-cell genome (Jing N et al., 

1997; Jing NJ et al., 2000). Its variants are unusually high thermal stable. The 

d[(GGGT)4] motif folds in presence of K+ and forms a dimeric G-quadruplex composed 

by the stacking of two-propeller type parallel stranded by their 5'-ends (Figure 51A). 

This dimeric characteristic, trained to investigate to obtain a monomeric form of this 

kind of G-quadruplex (Do NQ et al., 2011). It has been shown that the addition of 

terminal non-G residues reduces the stacking propensity of these G-quadruplexes 

(Wang Y and Patel DJ, 1992; Kato Y et al., 2005; Martadinata H and Phan AT, 2009). 

The addition of two thymine at the 5′-end of d[(GGGT)4] motif give a monomeric form 

with a similar condition, a propeller-type G-quadruplex with three G-tetrad layers (Do 

NQ et al., 2011) (Figure 51B). The use of this monomeric form d[TT(GGGT)4] showed 

the capacity of Rhau18 to bind to the 5'-end G-tetrad, projecting the first two thymine 

bases outward (Heddi B et al., 2015). 
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Figure 51. Structure of G-quadruplex d[(GGGT)4] and d[TT(GGGT)4]. (A) Ribbon 

view of a representative structure of the dimeric parallel-stranded G-quadruplex 

structure of d[(GGGT)4] in K+ solution. Bases from the top monomer are colored blue 

while those from the bottom monomer are colored red. Backbone and sugar atoms are 

coloured gray, with O4′ atoms in yellow. χdapted from Do NQ et al., 2011. (B) Ribbon 

view of d[TT(GGGT)4]. Superposition of the free (red) and bound to Rhau18 (blue). 

Adapted from Heddi B et al., 2015. 

 

Also a variant of HIV-1 integrase inhibitor named G3T d[(GGGT)3GGG] has been 

investigated and was used for my thesis research. As d[(GGGT)4] in presence of K+ , it 

forms parallel G-tracts and chain-reversal single-loops and dimerise giving a melting 

temperature of 75°C (Rachwal PA et al., 2007; Kankia B et al., 2016). The stability of 

this HIV-1 integrase inhibitor variant G3T d[(GGGT)3GGG] G-quadruplex has been 

tested also in presence of Sr2+.This ion leads to the highest thermal stability and stable 

dimers are formed through end-to-end stacking. But the increase in the cation 

concentration causes a hysteretic behaviour determined by the dimerization of the G3T 

through stacking and the dimerization occurs after G3T folding (Lomidze L et al., 

2016).  
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Materials and Methods 

 

1. Protein expression and purification 

BsPif1 was prepared in XG Xi laboratory in China with the following procedure. The 

gene encoding BsPif1 protein (Genebank number: WP_008647876.1) was amplified 

with genomic DNA prepared from Bacteroides sp. 3_1_23 strain. The amplified 

polymerase chain reaction (PCR) products were cloned into pET15b-SUMO 

(Invitrogen) using ExTaq PCR (Takara) according to the manufacturer's protocol. In 

this system, BsPif1 was tagged with an N-terminal Sumo fusion domain preceded by a 

6x-His tag. All constructs were verified using PCR screening and sequencing 

(Invitrogen, Shanghai). The BsPif1 expression vector was transformed into 

theEscherichia coli strain BL21(DE3) and cultures were performed at 37°C until an 

OD600 of ∼0.6 and then incubated overnight with 0.4 mM IPTG at 18°C. After 

centrifugation, the cell pellets were re-suspended in lysis buffer (20 mM Tris–HCl pH 

8.0, 500 mM NaCl, 10 mM Imidazole and 10% glycerol (v/v)). The cells were sonicated 

and then centrifuged at 12 000 rpm for 40 min. Before loading on a Ni2+ charged IMAC 

column (GE Healthcare), the samples were filtered through a 0.45-μm filter. The protein 

was then eluted from the Ni2+ affinity column by running a 20–300 mM imidazole 

gradient in a 20 mM Tris–HCl buffer (pH 8.0), 500 mM NaCl and 10% glycerol (v/v). 

The eluted protein was incubated with Sumo protease (Invitrogen, Beijing) for 20h at 

4°C and dialyzed against the lysis buffer at 4°C overnight. Then the Sumo-digested 

proteins were loaded on a Ni2+ affinity column (equilibrated in the lysis buffer) and 

flow through. The protein was dialyzed against buffer Q (20 mM Tris–HCl, pH 7.4, 200 

mM NaCl, 1 mM EDTA, 1 mM Dithiothreitol (DTT) and 5% glycerol (v/v)), and 

loaded on a Source Q column (GE Healthcare). The protein was then eluted by a NaCl 

gradient (200–1000 mM in buffer Q). The eluted fraction containing BsPif1 was 

collected, concentrated and was further purified by gel filtration using a Superdex 200 

10/300 GL column. The final purified protein was dialyzed against the storage buffer 

(20 mM Tris–HCl, pH 7.4, 350 mM NaCl, 1 mM DTT and 20% glycerol (v/v)) and was 

stored at −80°C. 
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2. DNA sequences 

The following table (Table 4) presents the different DNA sequences, which were used 

in this work. The structures differ by the position of the G quadruplex in the sequences 

either preceded or followed by single/double strand DNAs. Moreover, the length as well 

as the nucleotide sequence are variable.    
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Name Structure Sequence 

ssDNA 25nt  5’TTTTTCTTTTTCTTTTCTTTTCTTT 

ssDNA 18nt  5’GCCTCGCTGCCGTCGCCA-F 

ssDNA 17nt  5’TTTTTTTTTTTTTTTTT 

ssDNA 10nt  5’TTCCTCGGχC 

G4TTA   5’GGGTTχGGGTTχGGGTTχGGG 

G4TTA 2  5'F-TGGGTTAGGGTTAGGGTTAGGG 
 

G4T   5’GGGTGGGTGGGTGGG 

G4T 2  5'F-AGGGTGGGTGGGTGGGT 
 

17TG4T  5’TTTTTTTTTTTTTTTTTGGGTGGGTGGGTGGG 

2TG4T  5’TTGGGTGGGTGGGTGGG 
 

10TG4TTA  5'TTTTTTTTTTGGGTTAGGGTTAGGGTTAGGG-F 

G4TD17b  5’GGGTGGGTGGGTGGGATGTATGTCAAGGAAGG 

G4TTA10T  5'GGGTTAGGGTTAGGGTTAGGGTTTTTTTTTT-F 

17TG4TD17   5’TTTTTTTTTTTTTTTTTGGGTGGGTGGGTGGGχTGTχTGTCχχGGχχGG 
                                                                                      γ’TχCχTχCχGTTCCTTCC 

17TG4TD10  5’TTTTTTTTTTTTTTTTTGGGTGGGTGGGTGGGTTCCTCGGχC 
                                                                                   γ’χχGGχGCCTG 

17TG4TTAD17   5’TTTTTTTTTTTTTTTTTGGGTTχGGGTTAGGGTTAGGGATGTATGTCAAGGAAGG 
                                                                                                     γ’TχCχTχCχGTTCCTTCC 

G4TD17    5’GGGTGGGTGGGTGGGχTGTχTGTCχχGGχχGG 
                                            γ’TχCχTχCχGTTCCTTCC 

G4TD10  5’GGGTGGGTGGGTGGGTTCCTCGGAC  
                                         γ’χχGGχGCCTG 

G4TTAD17    5’GGGTTχGGGTTχGGGTTχGGGχTGTχTGTCχχGGχχGG 
                                                            γ’TχCχTχCχGTTCCTTCC 

D18  5'GCCTCGCTGCCGTCGCCA-F 
γ’CGGχGCGχCGGCχGCGGT 

D17  5’χTGTχTGTCχχGGχχGG 
γ’TχCχTχCχGTTCCTTCC 

D10  5’TTCCTCGGχC  
γ’χχGGχGCCTG 

17TD17  5’ TTTTTTTTTTTTTTTTTχTGTχTGTCχχGGχχGG 
                                            γ’TχCχTχCχGTTCCTTCC 

17TD10  5’TTTTTTTTTTTTTTTTTTTCCTCGGχC  
                                        γ’χχGGχGCCTG 

25nt 

18nt 

17nt 

10nt 

17nt 

10nt 

2nt 

17nt 

10nt 

17nt 17bp 

17nt 10bp 

17nt 17bp 

17bp 

18bp 

17bp 

10bp 

17bp 

10bp 

10bp 17nt 

17bp 17nt 
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3. DNA substrates preparation  

The DNA oligonucleotides were synthesized by Eurogentec (Kaneka Eurogentec SA, 

Seraing, Belgium) on a 40 nmoles scale (see table 4 for sequences). Single Strands were 

dissolved in distilled water at 100με. χ 1mε working stock solution of G-quadruplex 

containing DNAs were folded by incubating at 90°C for 25 min in a buffer containing 

20 mM K Phosphate and 100 mM KCl (pH 6.5), then cooled down to room temperature 

overnight. The various DNA substrates were then stored at -20°C. 

 

4. ATPase activity assay 

The χTPase activity of ψsPif1 was measured at γ7°C in a reaction mixture (40 μl) 

containing 27 mM Tris-HCl (pH 7.5), 69 mM NaCl, 2.2 mM MgCl2, 0.005 mg/ml BSA, 

and 2.2 mM DTT, 2 µM DNA substrate and 150nM BsPIF1. In the presence of G-

quadruplexes, K phosphate and KCl was added in a final concentration of 4mM K 

phosphate and 20mM KCl. The reaction was initiated by the addition of indicated 

amounts of [Ȗ-32P] ATP (Perkin Elmers, The Netherlands, 3000Ci/mmol) and stopped 

by transferring γ5 μl of the mixture every β0 s into 600 μl of hydrochloric solution of 

ammonium molybdate (Ammonium molybdate (NH4)2MoO4 5g with HCl 10N 40ml in 

a final volume of 500ml saturated in water) with 6μl β0mε Phosphate acid. The 

enzymatic activity was monitored by quantification of released 

radioactive 32Pi extracted, 1ml of the solution of 2-butanol–cyclohexane–acetone– 

hydrochloric solution of ammonium molybdate (250:250:50:0.1) saturated with water 

was added. The mix of the two solutions was vortexed and centrifuged at 14000 rpm for 

1 min, permitting the separation of the organic phase and the aqueous phase. Finally 

500 µl of organic solution were taken-out and transferred in a new tube. The CPM value 

of radioactivity was counted with a Tri-Carb Counter (Perkin Elmers, Welleslay, MA, 

USA). The hydrolysis rate was determined by the following equation and plotted using 

KaleidaGraph software. 

    (CPM sample – CPM control) x 1000000 

 V/[enzyme] =           

     CPM ATP x V x T x [enzyme] 

Where V/[enzyme] is the hydrolysis rate (µM ATP/ min) in dependance of the enzyme 

concentration (µM protein); CPM sample is the radioactive value of the sample; CPM 

control is the radioactive value of blank control without radioactivity; CPM ATP 

presents the radioactive value of 1µmol of ATP; V is the volume (μl) of the reaction; T 
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is the reaction time (min) and [enzyme] is the concentration of enzyme (με) used 

during the reaction. 

 

5. DNA labelling  

Oligonucleotides were 5’-end labelled using [Ȗ-32P] ATP (Perkin Elmers, The 

Netherlands, 3000Ci/mmol) and T4 polynucleotide kinase (New England BioLabs) by 

incubation for 1h at 37°C. 5µM Oligonucleotide was labelled in a 1x PNK buffer  (New 

England BioLabs) with 2000U of T4 polynucleotide kinase (New England BioLabs) 

and  1.3 µε [Ȗ-γβP] χTP (Perkin Elmers, The Netherlands, γ000Ci/mmol). The 5’-end 

labelled oligonucleotides were purified by illustra MicroSpin G-25 columns (GE 

Healthcare). The columns were firstly washed once with 1xTE buffer and centrifuged at 

3000 rpm for 3min at 4°C. The labelled-oligo was loaded onto the column, centrifuged 

at 3000 rpm for 3 min at 4°C and the flow-through solution were collected. The column 

was washed with 20µL of H2O four times and centrifuged to collect the flow-through. 

The CPM value of each fraction was counted and the highest CPM values fractions 

were pulled and stored at -20°C. The concentration of labelled-oligo was calculated 

with the following expression: 

     C0 x V0 x (CPMP / CPMT) 

C label=  

         VP 

The “C label” is the concentration of labeled oligo, C0 is the original concentration of 

oligo, V0 is the original volume of oligo before addition into reaction system; CPMP is 

the total count of CPM of pooled fractions; CPMT is the total count of CPM of all 

fractions; VP is the volume of pooled oligo.  

 

6. DNA strand annealing 

Hybridation mix was composed of the labelled and unlabelled ssDNA at ratio of 1:1 

(6pmol/ 6pmol) and 1X Hybridation buffer (20mM Tris HCl pH 7.4, 0.1M NaCl), 

incubated at 37°C for 1hour and finally stored at -20°C. In the presence of G-

quadruplexes, K phosphate and KCl was added in a final concentration of 20 mM 

Kphosphate and 100 mM KCl. 

 

 

 



 136 

7. Helicase assays 

Helicase reactions were performed for 15 min at γ0°C in β0 μl of a reaction mixture 

containing 30 mM Tris-HCl (pH 7.5), 100 mM NaCl, 2.4 mM MgCl2, 2.4 mM DTT, 

0.005 mg/ml BSA, 4 mM ATP and indicated amounts of BsPif1 enzyme. In the 

presence of G-quadruplexes K phosphate and KCl was added in a final concentration of 

3 mM Kphosphate and 15 mM KCl. The reaction was initiated by adding 32P-labeled 

DNA substrate at 1.5 nM final concentration into the mixture and stopped by the 

addition of 5 μl of the quench solution (150 mε EDTχ, β% SDS, γ0% glycerol, and 

0.1% bromphenol blue). Reaction products were resolved on 12% (19:1) native 

polyacrylamide gels run at 4°C for 2 h 30 min at 140-200V, visualized and analysed 

following exposure on an X-ray film at -80°C with ChemiDoc XRS (BioRad). 

Quantifications were performed with ImageLab (BioRad) software. 

 

8. Annealing assays 

The annealing activity reaction was performed by adding first the labelled ssDNA and 

then quickly the unlabelled ssDNA at radio of 1:1 (1.5nM/ 1.5nM).  ATP is not added 

for annealing activity and because sometimes it can inhibit the annealing activity by the 

helicase. The annealing reaction buffer contained 27 mM Tris-HCl (pH 7.5), 69 mM 

NaCl, 2.2 mM MgCl2, 0.005 mg/ml BSA, and 2.2 mM DTT and indicated amounts of 

BsPif1 enzyme. Controls were performed with χTP, χTPȖS (adenosine 5’-[Ȗ-thio] 

triphosphate), added to a final concentration of 4 mM. The reaction system was 

incubated at 30°C for 30 min and then stopped by the addition of 5 μl of the quench 

solution (150 mM EDTA, 2% SDS, 30% glycerol, and 0.1% bromphenol blue). The 

helicase assays reaction products were resolved on 12% (19:1) native polyacrylamide. 

The gels were run at 4°C for 2h30 at 140-200V, visualized and analysed after exposure 

on an X-ray film at -80°C with ChemiDoc XRS (BioRad). Quantifications were 

performed with ImageLab (BioRad) software. 

 

9. DNA-binding assay 

DNA-binding assays were performed in XG Xi laboratory in China with the following 

procedure. The binding of BsPif1 to fluorescein-labeled DNA substrates was analyzed 

by fluorescence polarization assay using Ininite F200 instrument (TECAN). Varying 

amounts of protein were added to a 150 µl solution of buffer A (25 mM Tris HCl, 

pH7.5,50 mM NaCl,2mM MgCl2 and 2mM DTT) containing 5nM fluorescein labeled 
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DNA. Each sample was allowed to equilibrate in solution for 5 min. After 5 min, the 

steady-state fluorescence anisotropy (r) was measured. A second reading was taken 

after 10min, in order to ensure that the mixture was well-equilibrated and stable. Less 

than 5% change was observed between the 5- and 10-min measurements.  

Competition experiments were performed with complexes of BsPif1 (100nM) bound to 

fluorescein G4 or ssDNA labeled (5nM) and varying amount of non labeled indicated 

DNA (0-500nM). 

 

10. Circular dichroism (CD) 

The circular dichroism was used to probe G4 folding and conformation of the tested 

DNA oligonucleotides. Oligonucleotides previously folded were diluted to a final 

conentration of 5 µM in 28.6 mM Tris-HCl (pH 7.5), 95.2 mM NaCl, 2.3 mM MgCl2, 

2.3 mM DTT, 0.47% glycerol and 3.8mM Kphosphate, 15.2mM KCl. The CD spectra 

were recorded on a Jobin‐Yvon CD6 dichrograph using a quartz cell of 1mm path 

length. The temperature was set at 30°C and the spectra were recorded over a 

wavelength range of 230–320 nm after 15min of incubation. Acquired spectra were 

baseline corrected for signal contribution due to the buffer and the observed ellipticities 

in mdeg. 

 

11. Electrostatic potential surface map 

The electrostatic potential of solvent-accessible surface area (SASA) of BsPif1 (PDB 

code: 5FTE) was solved using the APBS (Adaptive Poisson-Boltzmann Solver) plugin 

(Baker NA et al., 2001) in PyMOL (Schrödinger LLC, 2015) software, with the ion 

charges of PARSE and ionic strength of 150 mM. The obtained results appear as color-

coded electrostatic surfaces. The dielectric constants of the solvent and the solute were 

set to 80.0 and 2.0, respectively at pH= 7. 
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Results 

 

1. Verification of G-quadruplex structure  

Circular dichroism allows the secondary structure of proteins and DNA to be 

understood by the ability of a sample to absorb circularly polarized right light and 

circularly polarized left light. The dichroic spectrum corresponds to the difference in 

absorbance between these two types of light, for each wavelength. This technique can 

be applied to G-quadruplex to verify that the sequence is correctly folded as revealed by 

a typical spectrum. Principally CD spectra are empirically used to speculate on the 

relative orientation of the four strands constituting the G-tetrad core. Parallel-stranded 

are characterized by a positive peak at β60 nm and antiparallel-stranded are 

characterized by a positive peak at 290–β95 nm. Therefore, not only informations about 

quadruplex structures of DNAs can be obtained but also the effects of sequence, cations, 

chemical modification and ligand binding on quadruplex structure can be observed and 

monitored. To make sure that the G-quadruplex used during my work was correctly 

folded and had the expected structure I performed the CD spectra of the three principal 

G-quadruplexes that were planned to be used (G4T, G4TTA and 17TG4T). The Figure 

52 shows that G4T and 17TG4T had a parallel-stranded form with a high mDEG in the 

positive peak (∼2mDEG) indicating their high stability. On the contrary the G4TTA 

presents antiparallel-stranded form with a low mDEG in the positive peak (∼0.4mDEG) 

indicating its low stability. 
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Figure 52. G-quadruplex structure by circular dichroism. CD Spectra were recoded 

by varying the wevelength between 220 and 320 nm with the DNA in final conentration 

of 5µM after 15min of incubation at 30°C. In blue is represented the Human telomeric 

G-quadruplex (G4TTA), in red the variant HIV-1 integrase inhibitor G-quadruplex 

(G4T) and in green the variant HIV-1 integrase inhibitor G-quadruplex with an ssDNA 

tail in 5' of 17nt (17TG4T). 

 

2. ATP hydrolysis stimulation 

It has been shown that ATPase activity is required for double strand unwinding in 

Saccharomyces cerevisae by Pif1 (Lahaye A et al., 1993; Galletto R and Tomko EJ, 

2013). Previously other labs have tested G-quadruplexes ATP stimulation with a certain 

type of tetramolecular G-quadruplexes: these structures are all G-tracts which are 

constituted by four single stranded DNA being hybridized by intermolecular bonds and 

each strand is long enough to stimulate ATPase activity by loading into the classical 

SF1 ss/dsDNA binding channel (Sanders CM, 2010). Also it has been reported that 

ATP hydrolysis is stimulated by ScPif1 when the enzyme is bound to a parallel 

quadruplex linked with an ssDNA (15T) 5' tail. This ATP hydrolysis is reduced when is 

compared to a single-stranded DNA. However it occurs at a faster rate than G-

quadruplex unfolding, indicating that some ATP hydrolysis events are non-productive 

(Byrd AK and Raney KD, 2015). Therefore it is not established whether the G4 

structure is the only factor necessary to cooperatively stimulate ATPase activity or if it 
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can be in combination with ssDNA. To answer this question and investigate the 

substrate features necessary to stimulate ATPase activity in BsPif1. I tested 3 different 

types of structures: 1) 3 ssDNA, 2 dsDNA of different length and sequence and a partial 

duplex DNχ with 5’-overhang ssDNA (ssDNA 25nt, ssDNA17nt and ssDNA10nt, D17 

and D10, 17TD17 a 5’s-3'ds), 2) A parallel G4-motif (G4T), a parallel G4-motif linked 

with 2 nucleotides at 5' end (2TG4T) and a telomere antiparallel G4-motif (G4TTA), 3) 

A parallel G4-motif (G4T) linked with a ssDNA at both 5' or γ' end (17TG4T a 5’sG4T 

and G4TD17b a G4T-3's), also with a ssDNA at 5' and duplex in 3' (17TG4TD10 a 

5’sG4T-3'ds) and a dsDNA at 3' end (G4TD10 a G4T-3'ds). The ATPase activity was 

determined by measuring the inorganic phosphate Pi released during the hydrolysis of 

radioactive ATP then the velocity was calculated by using the Michaelis-Menten 

equation. To ensure the stability of the G-quadruplex structures, an appropriate 

potassium concentration was used.  

The Figure 53 shows the comparison of the ATPase activities of BsPif1 in the presence 

of ssDNAs and the parallel G4-motif. Strikingly, 3 categories of ATPase activities are 

obtained in terms of amplitudes, depending on the DNA structures. 1) In the presence of 

ssDNA 25nt and 17nt, the ATPase activity is greatly stimulated, with Vmax values of 

880.13 µM ATP/min/µM BsPif1; 2) In the presence of a shorter ssDNA (10nt) the 

ATPase activity is about half from that of ssDNA17nt and 25nt. 3) In the presence of 

G4T the ATPase activity is even weaker. Theses results taken together allow us to say 

that the structure and the length of the single strand of DNA (not the sequence of the 

ssDNA) determine the ATPase activity. Obviously 10 nucleotides are not sufficient for 

optimal ATPase activity.  

 

 

 

 

 

 

 

 



 141 

 

 

 

 

 

 

 

 

Figure 53. BsPif1 ATPase activity in the presence of ssDNA (ssDNA 25nt, ssDNA 

17nt and ssDNA 10nt) and parallel G4-motif (G4T). The enzymatic assay was 

performed with 150nM of BsPif1, 2µM DNA, without any co-factor during 6min at 

37°C. Data were obtained after subtracting the ATPase activity in the absence of DNA, 

and fitted to the Michaelis–Menten equation.  

 

To test the effect of the DNA folding or strand hybridization on the BsPif1 ATPase 

activity, I compared the enzymatic activity with 3 different G4 (G4T, 2TG4T and 

G4TTA) and 2 double strand (D17 and D10) structures. Results are presented in Figure 

54. Like in the precedent case three categories of ATPase activities were obtained: 1) In 

the presence of the ssDNA 17nt the ATPase activity was unchanged with a maximal 

amplitude like above. 2) In the presence of the two dsDNA and the human telomere G4-

motif (G4TTA), the ATPase activity is greatly reduced. 3) In the presence of the 

parallel G4-motif (G4T) with or without 2nt at its 5' end (2TG4T) the ATPase activity is 

insignificant. Theses results allow us to conclude that a G-quadruplex structure affects 

the ATPase activity. The striking effect is observed with the parallel G4-motif (G4T).  

This G-quadruplex is the most stable structure because of its dimerization, which is 

prevented by the addition of 2nt at its 5' end (2TG4T) (Do NQ et al., 2011) without any 

changes of ATPase activity. In contrast the telomere antiparallel G-motif (G4TTA) is 

less stable and seems to stimulate the ATPase activity. More details shall be given in the 

discussion section.  
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Figure 54. BsPif1 ATPase activity in the presence of ssDNA (ssDNA 17nt), dsDNA   

(D17 and D10) and G-quadruplexes (G4TTA, 2TG4T and G4T). The reaction was 

performed in 150nM of BsPif1, 2µM DNA during 6min at 37°C. Data were obtained 

after subtracting the ATPase activity in the absence of DNA, and fitted to the 

Michaelis–Menten equation. 

 

Since only ssDNA seems to stimulate ATPase activity, we asked if the presence of a 5' 

or a γ’ ss DNχ sequence or a γ’ds DNχ sequence in the parallel G-quadruplex (G4T) 

could affect its activity. The Figure 55 reveals that full BsPif1 ATPase activity is 

recovered when the parallel G4-motif and stable G4 (G4T) bears a ssDNA sequence at 

the 5’ end (17TG4T a 5’sG4T) reaching equal amplitudes to those of ssDNχ. χlso the 

presence of a duplex in the 3' of the ssDNA and the G-quadruplex with 5' ssDNA tail 

didn't affect the amplitude, giving a high ATPase activity rate (17TD10 a 5’s-3'ds and 

17TG4TD10 a 5’sG4T-3'ds). On the other hand, the presence of either an ssDNA 

(G4TD17b a G4T-γ's) or dsDNχ (G4TD10 a 5’sG4T-γ'ds) sequence at the γ’end of the 

G4 does not allow this full recovery of activity. However, ATPase activity of G4 motif 

bearing a dsDNχ at it γ’ end is higher than that of the G4 only motif (G4T) and reaches 

equal amplitude to that of a dsDNA of the same length.  
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Figure 55. BsPif1 ATPase activity. In the presence of ssDNA (ssDNA 17nt), a partial 

duplex DNχ with 5’-overhange ssDNχ (17TD10 a 5’s-3'ds), G-quadruplex linked with 

a ssDNχ in 5' or γ' (17TG4T a 5’sG4T and G4TD17b a G4T-3's), G-quadruplex linked 

with a ssDNA in 5' and a duplex in 3' (17TG4TD10 a 5’sG4T-3'ds), G-quadruplex 

linked with a dsDNA in 3' (G4TD10 a G4T-3'ds) and G-quadruplex (G4T). The reaction 

was performed in 150nM of BsPif1, 2µM DNA during 6min at 37°C. Data were 

obtained after subtracting the ATPase activity in the absence of DNA, and fitted to the 

Michaelis–Menten equation. 

 

Taken together, these results demonstrate that ssDNA is an essential factor to stimulate 

BsPif1 ATP hydrolysis. The stimulation of ATPase activity by an isolated and stable G4 

motif is fairly weak. 

 

3. Determination of distinct binding sites for ssDNA and G4 motif 

The precedent observations that only ssDNA stimulate ATPase activity and not the G4-

motif may suggest that BsPif1 possesses two kinds of DNA binding sites: one specific 

to ssDNA being the main stimulating ATPase activity and an other one which is G4-

specific but fails to stimulate ATPase activity. To confirm this conjecture, two 

competition experiments were performed. Firstly after saturation of BsPif1 with the 

ssDNA (ssDNA 17nt) the parallel G4-motif lonely (G4T) was added up to three times 
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the concentration of ssDNA. If parallel G4-motif competitively binds the same site as 

ssDNA the ATPase activity will be affected causing a fall of ATPase activity. Secondly 

the reverse experiment was carried out: BsPif1 was bound with a high concentration of 

parallel G4-motif lonely (G4T), then ssDNA (ssDNA 17nt) was gradually increased to 

three times the concentration of G-quadruplex. In this experimental case if the G4-motif 

competes with the ssDNA, it is expected that ssDNA stimulation does not affect 

ATPase activity, which will be close to zero when G4 motif bind. The results are shown 

in Figure 56. Indeed, the G4-motif cannot counteract ssDNA stimulation ATPase 

activity whereas ATPase activity of BsPif1 was gradually increased with ssDNA 

concentration. 

Figure 56. BsPif1 ATPase activity competition. The green crosses represent the 

χTPase activity when βμε ssDNχ (ssDNχ 17nt) is saturated and parallel G4-motif 

(G4T) is progressively added. The blue empty circles present the ATPase activity when 

βμε of parallel G4-motif (G4T) is saturated and ssDNA (ssDNA 17nt) is progressively 

added. The reaction was performed with 150nM of BsPif1 during 6min at 37°C.  
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these phenomena reflect BsPif1 intrinsic properties of ATPase activity stimulated by the 

different DNχ structures. To answer the question, the Xuguang Xi’s lab in China 

performed a DNA binding assay by fluorescence anisotropy. The experiments permitted 

to assess the equilibrium binding properties of the BsPif1 with six similar substrates 

used for ATPase assay (ssDNA 18nt, D18, G4T 2, G4TTA 2, 10TG4TTA and 

G4TTAT10). These DNχ substrates were labelled with a fluorescein group at their γ’ 

or 5’ ends and ψsPif1 concentration-dependent changes in fluorescence anisotropy were 

measured. Interestingly, BsPif1 binds the five substrates (ssDNA 18nt, G4T 2, G4TTA 

2, 10TG4TTA and G4TTAT10) with a similar apparent dissociation constant Kd∼25nM 

(Figure 57A). However, the binding affinity for dsDNA (D18) was reduced as revealed 

by Kd∼200nM (Figure 57A). To finally confirm that BsPif1 possesses distinct binding 

sites for G-quadruplex and ssDNA respectively, they performed binding competitive 

experiments by fluorescence anisotropy. BsPif1 was firstly bound with a fluorescein-

labelled G4-motif (G4TTA 2) (Figure 57B) or ssDNA (ssDNA 18nt) (Figure 57C), and 

then the binding fractions were determined with increasing concentration of no-labelled 

ssDNA (ssDNA 18nt) (Figure 57B) or G4-motif  (G4TTA 2) (Figure 57C). Figure 57 B 

and C shows that the fluorescein-labelled G4-motif or ssDNA binding with BsPif1 were 

not influenced by the addition of non-labelled DNA, confirming the first hypothesis. 

Both ssDNA and G4 bind to BsPif1 with similar binding affinity, but at distinct sites.   
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Figure 57. DNA binding assay of BsPif1 by fluorescence anisotropy. (A) Binding 

curves in presence of different DNA substrates: ssDNA 18nt, D18, G4T 2, G4TTA 2, 

10TG4TTA and G4TTAT10. The reaction was performed 2 or 3 times in different 

BsPif1 concentrations and 5nM of DNA. (B) Binding competition with BsPif1 (100nM) 

bound with a fluorescein-labelled G4-motif (G4TTA 2) (5nM) and increasing 

concentration of no-labelled ssDNA (ssDNA 18nt) (0-500nM). (C) Binding competition 

with BsPif1 (100nM) bound with a fluorescein-labelled ssDNA (ssDNA 18nt) (5nM) 

and increasing concentration of no-labelled G4-motif (G4TTA 2) (0-500nM). 
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4. Potential G4 bindings sites  

The verification that isolated G-quadruplexes (G4T and G4TTA) bind BsPif1 and the 

absence of competition with ssDNA led us to think that G-quadruplex and ssDNA have 

different binding sites on the protein. Their accurate determination requires more 

extensive investigations. But I have attempted rapid determination of this possible G4 

binding site by electrostatic potential surface map. This was performed with the 

cristallized BsPif1 structure in complex with ssDNA and ADP-AlF3 (PDB code: 5FTE; 

Chen WF et al., 2016) by Adaptive Poisson-Boltzmann Solver (APBS) plugin in 

PyMOL. A similar study was also undertaken on ScPif1p in complex with an 8T3G4 

(5'TTTTTTTTGGGTGGGTGGGTGGGT) by SAXS experiments, and determination of 

electrostatic potential surface (Lu KY et al., 2017). It appeared that the G4 DNA, which 

is principally an electronegative structure (Lane AN et al., 2008), potentially interacts 

into the positively charged pliers in its positive residues (Lu KY et al., 2017). Also a 

NMR study of RHAU18 helicase with G4 DNA (5'TTGGGTGGGTGGGTGGGT) 

determined the interaction between three positively charged amino acids and negatively 

charged phosphate groups of the G-quadruplex (Heddi B et al., 2015). 
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Figure 58. Potential G-quadruplex binding site of the crystal structure of BsPif1 

(PDB code: 5FTE) in presence of ssDNA (6nt) and ADP-AlF3. (A) Molecular 

electrostatic potential distribution on solvent-accessible surface of BsPif1 generated in 

PyMOL with the positively charged regions in blue and negatively charged regions in 

red, ±1kT/e. The positively charged patch being the possible binding regions of G-

quadruplex are indicated with a pink arrow. The binding site of ssDNA is indicated with 

a green arrow and the ADP-AlF3 binding site with a yellow arrow. (B) Van der Waals 

surface model of the different domains compositions of BsPif1. The domains of the 

helicase core: 1A in dark blue; 1B in orange; 2A in red and 2B in cyan and the domain 

C-terminal in brown. The co-crystallized ssDNA molecule is shown in green and the 

ADP-AlF3 in yellow. The possible binding regions of G-quadruplex are indicated with 

a pink arrow. 
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The electrostatic surface potential of BsPif1 has several positively polarized regions that 

could function as DNA-binding sites (Figure 58). One is a cluster of positively charged 

residues that surround the ssDNA between the domains 1A, 1B, 2A, 2B and the second 

is a positively charged pocked between the domains 1A and 2A where ADP-AlF3 is 

disposed. Two positive charged regions are preferentially adapted for host G-

quadruplex. One between the domains 1A and 1B, but this region does not form a deep 

pocket where the G-quadruplex can be inserted and protected from external conditions. 

The second area is localized between the domains 1A, 2A and 2B. This latter seems to 

be the most possible one because it forms a clear pocket where the molecule could be 

inserted and trapped allowing possible interactions with different protein residues.  

 

5. ATP hydrolysis is required for G4 unfolding 

Different works have shown that G4 resolving helicases require ATP hydrolysis to 

unfold G-quadruplexes. Among these helicases, one can cite FANCJ (Wu Y et al., 

2008) and WRN (Fry M and Loeb LA, 1999). But the mechanism by which G4 

resolving helicases unfold these structures appears more complicated. Indeed, other 

observations with apparent contradictory results question whether G4 unfolding is 

driven by ATP hydrolysis. By using single molecular assays Budhathoki JB et al, 

reported that BLM unfolds G-quadruplexes in an ATP-independent manner when high 

protein concentration are preincubated for a long period of time (Budhathoki JB et 

al., 2014). However Xi’s lab observed that χTP hydrolysis is necessary for ψδε to 

resolve G4 structures (Wu WQ et al., 2015). Other contradictory observations were 

obtained in the case of the RHAU helicase. Tipanna R et al, show by smFRET that 

human RHAU unfold G4 in an ATP-independent manner (Tippana R et al., 2016). But 

You H et al, show with an different technique (magnetic tweezers) that ATP hydrolysis 

is necessary to the Drosophila RHAU which is homolog to the human enzyme (You H 

et al., 2017).   Studies on hPif1 and ScPif1 have demonstrated that ATP binding and 

ATP hydrolysis is absolutely required for unfolding G4 structure (Sanders CM, 2010; 

Duan XL et al., 2015). To clarify whether ATP hydrolysis is necessary or not for G4-

motif unfolding, a comparison of BsPif1 unwinding activity in the presence of four 

different DNAs structures was performed. They differ as observed above by their ability 

to stimulate BsPif1 ATPase activity: a partial duplex DNχ with 5’-overhange ssDNA 

(17TD10 a 5’s-3'ds), the parallel G4-motif linked with a ssDNχ and a dsDNχ at 5’ and 

γ’ ends respectively (17TG4TD10 a 5’sG4T-3'ds) and the parallel G4-motif linked with 
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a ssDNχ at 5' (17TG4T a 5’sG4T) which efficiently hydrolyse ATP; dsDNA (D17 and 

D10) and the parallel G4-motif linked with a dsDNχ at its γ’-end (G4TD10 a G4-γ’ds), 

which poorly hydrolyse ATP. In the case of the parallel G4-motif (G4T) ATPase 

activity is poorly stimulated whereas telomere antiparallel G4-motif (G4TTA) triggers a 

higher but not maximal ATPase activity. The capacity of BsPif1 for unwinding was 

monitored by the helicase test, which consists in labelling one of the two strands of the 

DNA duplex with radioactive ATP and observing the gel migration shift when the 

duplex is unwound by the helicase. Then the percentage of unwound DNA was 

estimated by ImageLab (BioRad) software allowing the optical density quantification of 

each bands observed on the gel. In the present case, background was subtracted and the 

unwound percentage was determined by the total signal obtained in the lane, 

considering the spontaneous unwinding. 

The Figure 59 presents the unwinding efficiency of BsPif1 in the presence of the 

different aforesaid structures. When BsPif1 is as low as 10nM, it quickly drives the 

unwinding of duplex DNχ with 5’ overhang (17TD17 a 5’s-3'ds) (Figure 59A) leading 

to about 75% of unwound DNA (Figure 59G). The parallel G4-motif with a 5’ overhang 

and a γ’ds (17TG4TD17 a 5’sG4T-3'ds) was almost completely unwound by 100nM of 

the protein (Figure 59C and 59G). However, the duplex DNA (D17) and the parallel 

G4-motif with a duplex in 3' (G4TD17 a G4T-3'ds) cannot be efficiently unwound 

below 100nM protein (Figure 59B and 59D). At this concentration, only 6% and 11% of 

each DNA respectively is resolved (Figure 59G). Only a slight unwinding was observed 

by 800nM protein, suggesting that the ssDNA-stimulated ATPase activity is essential 

for the duplex DNA and G4-γ’ds unwinding (G4TD17 a G4T-3'ds). But the G4-motif 

type seems to influence the BsPif1 concentration necessary for its unwinding. As 

mentioned above the parallel G4-motif with a 5’ overhang and a γ’ds (17TG4TD17 a 

5’sG4T-3'ds) which is stable needs 40nM of BsPif1 for a 50% G4-motif unwound 

(Figure 59G), on the other hand the telomere antiparallel G4 motif with a 5’ overhang 

and a γ’ds (17TG4TTχD17 a 5’sG4TTχ-3'ds) will need only 6nM of BsPif1 for a 50% 

G4-motif unwound (Figure 59G). But the parallel G4-motif linked at the γ’ duplex 

without a 5' overhang (17TG4TD17 a 5’sG4T-3'ds) cannot be efficiently unwound 

below 100nM protein (as mentioned above) (Figure 59D). It is important to notice that 

telomere antiparallel G4-motif linked with a duplex in the 3' (G4TTAD17 a G4TTA-

3'ds) was totally unwound in 100nM of BsPif1 (Figure 59F), suggesting that this 

difference of unwinding between the two G4-motifs is determined by its stability. 
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Figure 59. Unwinding characteristics of BsPif1 helicase using various DNA 

substrates. DNA unwinding assays were processed 2 or 3 times in the presence of 

4mε χTP, 1.5nε of DNχs (with a 5’-32P-labelled (*) D17a) and different 

concentrations of BsPif1 after 15 min incubation at 30°C. (A) a duplex 5' overhang 

(17TD17 a 5’s-3'ds), (B) duplex DNA substrate (D17), (C) parallel G4-motif with a 

duplex in 3' and a ssDNA in 5' (17TG4TD17 a 5’sG4T-3'ds), (D) a parallel G4-motif 

with a duplex in 3' (G4TD17 a G4T-3'ds), (E) telomere antiparallel G4-motif with a 

duplex in 3' and a ssDNA in 5' (17TG4TTχD17 a 5’sG4TTχ-3'ds), (F) telomere 

antiparallel G4-motif with a duplex in 3' (G4TTAD17 a G4TTA-3'ds), (G) DNA 

unwinding kinetics graph.  

 

6. BsPif1 does not catalyse dsDNA annealing 

To better characterize the BsPif1 activities, and after showing that the protein doesn't 

have the capacity to unwind dsDNA and stable G4 structures, I investigated if BsPif1 

has the ability to rewind DNA. Indeed, in the literature it has been reported that an 

increasing number of helicases have the capacity to anneal complementary strands of 

oligonucleotides in the presence of ATP such as HARP and AH2 (Yusufzai T and 

Kadonaga JT, 2008; Yusufzai T and Kadonaga JT, 2010) or in the absence of ATP such 

as RecQ family (Vindigni A and Hickson ID, 2009), Dna2 (Masuda-Sasa T et al., 

2012) TWINKLE (Sen D et al., 2012) and UvsW (Nelson SW and Benkovic SJ, 2007). 

This annealing capacity is used to stabilize stalled replication forks, double-strand break 

(DSB) repair, to regulate telomere metabolism, chromatin remodelling and transcription 

(Wu Y, 2012). Human Pif1 and 
Saccharomyces cerevisiae Pif1 (Gu Y et al., 2008; 

George T et al., 2009) are some of them since they are involved in telomere metabolism 

by strand-annealing activity, as well as WRN, DNA2, RECQL4 (Opresko PL et al., 

2004; Opresko PL et al., 2005; Masuda-Sasa T et al., 2006; Ghosh AK et al., 2012). 

This Pif1 annealing activity is supposed to be required to stabilize structure such as a T-

loop in single-stranded telomere overhang (Ramanagoudr-Bhojappa R et al., 2014). To 

test whether BsPif1 has strand-annealing property, two complementary single stranded 

oligonucleotides (oligos D17a and D17b at 1,5nM / 1,5nM each and one of them is 

labelled with [Ȗ- 32P] ATP) were incubated during 30 min at 30°C with a series of 

BsPif1 concentrations (Figure 60). The experiment could be performed only once but 

has to be reproduced with other conditions. The products were analysed on 12% (19:1) 

native polyacrylamide gels. If strand annealing occurred, a duplex strand would be 
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formed. In the absence of ATP one can observe that a spontaneous hybridization of the 

oligonucleotides occurs. Addition of BsPif1 in increasing concentration (0 to 200nM) to 

the oligonucleotide mix seems to prevent spontaneous hybridization as seen by the 

increasing signal of single strand on the gel. Addition of ATP to the reaction occurring 

in the presence of high BsPif1 concentration (200nM) does not induce annealing. In the 

presence of dsDNχ previously hybridized and with χTP or χTPȖS, no unwinding 

occurs. Therefore we can verify that the presence of the single strands does not result in 

the unwinding activity of BsPif1 on spontaneously hybridized DNA duplex in the 

presence of ATP. Therefore BsPif1 does not have the ability to rewind DNA, further 

experiments have to be performed to establish a reliable result. 

 

Figure 60. BsPif1 does not have annealing activity. Annealing of the 5’-32P-labelled 

(*) D17a (1,5nM) and D17b ssDNA (1,5nM) substrates by BsPif1 was performed once. 

Control annealing was performed with hybrized D17. Reactions were performed with 

the indicated protein concentrations for 30 min at 30°C and ATP or χTPȖS was added 

when cited in the Figure. The reaction products were separated by 12% (19:1) native 

polyacrylamide and visualized on X-ray film. 
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Discussion-Conclusion 

 

Many works have been focused on the understanding of DNA duplex unwinding by 

different helicases such as Pif1 leading to establish that it occurs stepwise, 1 base pair 

per step movement coupled to the hydrolysis of one ATP molecule (Ramanagoudr-

Bhojappa R et al., 2013; Zhou R et al., 2014; Duan XL et al., 2015; Zhou X et al., 2016; 

Chen WF et al., 2016). DNA G-quadruplexes are radically different from canonical 

DNA. The presence of several G quartets generates a specific conformation 

characterized by special electro-physical properties, maintained by Hoogsteen pairing 

and monovalent cations. These structures display particular roles in DNA replication, 

transcription and telomere maintenance (Brosh RM Jr, 2013). As a consequence, only 

few helicases can unfold these structures (Pif1 and DNA2 in the SF1 family, FANCJ, 

DDX11, RTEL1, BLM, WRN and DHX9 in the SF2 family, SV40T-ag in the SF3 

family, Twinkle in the SF4 family and RHAU for the SF5 family) (Mendoza O et al., 

2016). This non-canonical structure makes very challenging to elucidate the molecular 

mechanisms underlying G4 unwinding. Recent papers have started investigations on G-

quadruplex unfolding by ScPif1 giving different numbers of base step process of 

unwinding such as three steps (Zhou R et al., 2014) or two steps (Hou XM et al., 2015). 

But how this stepwise mechanism might contribute to G-quadruplex unfolding and how 

ATP hydrolysis drives G4 resolving remains to be clarified. The purpose of this study 

was to contribute to answer these questions and the prokaryotic Pif1 of Bacteroides sp 

3_1_23 has been chosen because its structure was previously well described (Chen W et 

al., 2016).  

The first step of my work consisted in comparing BsPif1 ATPase activities stimulated 

by different DNA structures and particularly the effect of G-quadruplexes. The results 

showed that only ssDNA efficiently fires ATP hydrolysis but this activity is 

proportional to the ssDNA length. A similar result was observed with human Pif1, 

which requires a minimum of 10 bases for an efficient binding of the enzyme (Gu Y et 

al., 2013). When the DNA structure is more complex and especially in the case of 

strand/base pairing this activity is strongly decreased as shown by dsDNA. In the case 

of G-quadruplex, its structure and conformation determines the ATPase activity. Other 

groups have tested in the past two types of G-quadruplexes: a tetramolecular G-

quadruplex (Sanders CM, 2010) and an intramolecular parallel G-quadruplex (Byrd AK 
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and Raney KD, 2015). In this work I tested two G-quadruplexes and by circular 

dichroism I could observe their difference of stability: 1) a monomeric G4 (G4T) with a 

parallel conformation appeared as a very stable structure and 2) an antiparallel G-

quadruplex (G4TTA) more unstable since it was characterized by a low mDEG close to 

the value expected for a single strand DNA (0mDEG). The G4 stable (G4T) structure 

leads to negligible ATP hydrolysis.  When the stability of the G-quadruplex structure is 

weaker (G4TTA), ATP hydrolysis is partially recovered (about 50%). On the other 

hand, when an ssDNχ is present at 5’ end of the G-quadruplexes (G4T) and does not 

affect the G4 folding as seen by Circular dichroism a high ATP hydrolysis rate is 

restored, comparable to the case of ssDNA. The need of a tail in 5' end of the G-

quadruplex for ATPase activity was also reported by Sanders CM with human Pif1 

(Sanders CM, 2010). Moreover, in the case of ScPif1 the unfolding of different G-

quadruplexes is made possible by a periodic patrolling mechanism in the presence of a 

tail in 5' end (Zhou R et al., 2014; Hou XM et al., 2015). These results show clearly that 

G-quadruplex is a contrainst in ATP hydrolysis. By combination of ATPase and DNA 

binding assays, and competitive experiments between ssDNA and G-quadruplex, it has 

demonstrated that ssDNA and G4 DNA bind at distinct separate sites with similar 

binding affinity (nM). G-quadruplex binding experiment rules out the possibility that 

inefficient stimulation of ATP hydrolysis by G-quadruplex motif is not due to 

inefficient G-quadruplex binding. The performance of an electrostatic potential surface 

map of the BsPif1 structure permitted to determine two positive charged regions 

preferentially adapted for host the G-quadruplex, but further investigation have to be 

done such SAXS to discriminate between the two possible binding sites. 

After clarifying the relationship between the binding of the G-quadruplex to the enzyme 

and the ATPase activity, I tried to investigate the link between unwinding and ATP 

hydrolysis. In the presence of the parallel and stable G-quadruplex (G4T) neither of 

these two activities were observed whereas the G-quadruplex with a ssDNA tail at 5' 

end stimulates high ATPase activity and can be unwound from a certain and high 

BsPif1 concentration. Moreover the fact that 10 and 100nM proteins are respectively 

needed for the partial duplex DNA (17TD17 a 5’s-3'ds) and G-quadruplex with a 

ssDNχ tail at 5' and a duplex in γ' (17TG4TD17 a 5’sG4T-γ’ds) to be unwound at 

comparable level indicates that the stable G4 motif is a physical obstacle and that more 

energy is required to resolve G4 structure. In addition, a middle ATPase activity of the 

less stable G-quadruplex (G4TTA) was present, giving also an unwinding activity 
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(G4TTAD17 a G4TTA-3'ds) but more efficient when a 5' ssDNA tail is added 

(17TG4TTχD17 a 5’sG4TTχ-3'ds). However the presence of this 5' tail does not 

improve the unwinding activity, which is similar to the activity of the partial duplex 

DNχ (17TD17 a 5’s-3'ds). Taken together these results demonstrate that BsPif1 

requires a 5' ssDNA tail for efficient G4 unfolding by covalent continuity of the ribose-

phosphate backbone but its stability will determine the efficiency of unfolding. As 

tested with other G-quadruplex helicases the addition of G-quadruplex stabilization 

compounds gave unwinding inhibition by RecQ helicases (Wu X and Maizels N, 2001; 

Huber MD et al., 2002).  

The annealing activity of Pif1 has been studied by other groups in order to understand 

the contribution of this activity to G-quadruplex unfolding and reduce genomic stability. 

It has been observed that Pif1 can form T-loops in the single-stranded telomere 

sequences or can melt G-quadruplex during replication by annealing of the 

complementary strand prior to refolding of the G-quadruplex structure (Gu Y et al., 

2008; George T et al., 2009; Ramanagoudr-Bhojappa R et al., 2014). In our experiences 

ψsPif1 didn’t present any annealing activity in the presence of two complementary 

ssDNA wherever in absence and presence of ATP. One can even think that Pif1 

prevents spontaneous duplex formation by binding to single strand. In some helicases 

the annealing activity has been linked to specific domains such as in the case of BRG1 

(Brahma-related gene 1, a central catalytic ATPase of the SWI/SNF chromatin-

remodelling complex) and the HELLS (Lymphoid-specific helicase). These proteins are 

devoid of the 2HP domain that is tandem HARP domain, which endows ATP driven 

annealing activity (Ghosal G et al., 2011). Further investigations have to be performed 

to strengthen the observation made with BsPif1 and if it is related to this protein 

domain.  

Finally on the basis of previously determined crystallographic structures and the 

discoveries reported previously with BsPif1 (Chen W et al., 2016) and the present work, 

a tentative “molecular wire stripper” model is proposed to interpret how ψsPif1 use the 

energy derived from ATP hydrolysis to drive G4 unfolding (Figure 54). Accordingly, 

ssDNA was loaded into the classical ssDNA binding channel and the highly negative 

charged G4 was locked at 5’-DNA entry gate where 2A and 1B domains constituted a 

physical tunnel which allow ssDNA, but impede native structured G4 enter into the 

ssDNA binding channel due to the steric hindrance of G4. Upon ATP binding and 

hydrolysis, ssDNχ translocate from 5’ to γ’ and force G4 to be disrupted to pass 
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through the channel. Certainly, this speculative model needs to be further studied with 

other G4-resolving helicases to probe whether this is a common mechanism shared by 

other type of G4-unfolding helicases.     

 

 

Figure 61. G-quadruplex unwinding mechanism of BsPif1. (A) The 2B domain is in 

the upper position. The ssDNA binding triggers the configuration change of the 2B 

domain forming a tunnel by 2B and 1B domains, where only ssDNA can pass through. 

(B) ATP hydrolysis allows the two RecA domains 1A and 2A to act as a molecular 

motor to move ssDNA. But the 2B domain acts as a wedge, blocking the incoming G-

quadruplex. (C and D) The translocation force is sufficient to unwind the G-quadruplex.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DNA binding 

ATP binding 

  

ATP hydrolysis 

  

5' to 3' ssDNA translocation 

  

G4 unwinding 

  

2B rotation 

2B 

2A 

C-ter 

1A

1B

2A rotation 

A B C D 



 158 

References 

 

Abdel-Monem M and Hoffmann-Berling H. (1976) Enzymic unwinding of DNA. 1. 
Purification and characterization of a DNA-dependent ATPase from Escherichia coli. 
Eur. J. Biochem. 65, 431-40. 
 
Abdelhaleem M. (2005) RNA helicases: regulators of differentiation. Clin. 
Biochem. 38, 499-503.  
 
Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA and Hornung V. (2009) 
RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase 
III-transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072. 
 
Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, Hopfner KP, Ludwig J 
and Hornung V. (β01γa) cGχS produces a β′- 5′-linked cyclic dinucleotide second 
messenger that activates STING. Nature. 498, 380–384. 
 
Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T, Latz E and 
Hornung V. (2013b) Cell intrinsic immunity spreads to bystander cells via the 
intercellular transfer of cGAMP. Nature. 503, 530–534. 
 
Adrian M, Ang DJ, Lech CJ, Heddi B, Nicolas A and Phan AT. (2014) Structure and 
conformational dynamics of a stacked dimeric G-quadruplex formed by the human 
CEB1 minisatellite. J. Am. Chem. Soc. 136, 6297-305. 
 
Aguilera A and Garcia-Muse T. (2012) R loops: from transcription byproducts to threats 
to genome stability. Mol. Cell. 46, 115–124. 
 
Ahnert P and Patel SS. (1997) Asymmetric interactions of hexameric bacteriophage T7 
DNA helicase with the 5'- and 3'-tails of the forked DNA substrate. J. Biol. Chem. 272, 
32267–32273.  
 
Alberts IL, Nadassy K and Wodak SJ. (1998) Analysis of zinc binding sites in protein 
crystal structures. Protein Sci. 7, 1700-1716. 
 
Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C and Gronemeyer H. 
(2001) Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine 
action of tumor-selective death ligand TRAIL. Nat. Med. 7, 680-6. 
 

Alzu, A, Bermejo R, Begnis M, Lucca C, Piccini D, Carotenuto W, Saponaro M, 
Brambati A, Cocito A, Foiani M and Liberi, G. (2012) Senataxin Associates with 
Replication Forks to Protect Fork Integrity across RNA-Polymerase-II-Transcribed 
Genes. Cell, 151, 835–846.  
 
Amrane S, Adrian M, Heddi B, Serero A, Nicolas A, Mergny JL and Phan AT. (2012) 
Formation of Pearl-Necklace Monomorphic G-Quadruplexes in the Human CEB25 
Minisatellite. J. Am. Chem. Soc. USA. 134, 5807–5816. 



 159 

Andrews NW. (2005) Membrane repair and immunological danger. EMBO Rep. 6, 826–
830. 
 
Anchisi S, Guerra J and Garcin D. (2015) RIG-I ATPase Activity and Discrimination of 
Self-RNA versus Non-Self-RNA. mBio. 6, e02349–14. 
 
Aratani S, Fujii R, Oishi T, Fujita H, Amano T, Ohshima T, Hagiwara M, Fukamizu A 
and Nakajima T. (2001) Dual roles of RNA helicase A in CREB-dependent 
transcription. Mol. Cell. Biol. 21, 4460 - 9. 
 
Are AF, Galkin VE, Pospelova TV and Pinaev GP. (2000) The p65/RelA subunit of 
NF-kappaB interacts with actin-containing structures. Exp. Cell. Res. 256, 533-44. 
 
Arenas JE and Abelson JN. (1997) Prp43: An RNA helicase-like factor involved in 
spliceosome disassembly. Proc Natl Acad Sci U S A. 94, 11798-11802.  
 
Arimoto K, Takahashi H, Hishiki T, Konishi H, Fujita T and Shimotohno K. (2007) 
Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc. Natl. 

Acad. Sci. USA. 104, 7500-7505. 
 
Bachrati CZ and Hickson ID. (2003) RecQ helicases: suppressors of tumorigenesis and 
premature aging. Biochem. J. 374, 577-606.  
 
Bae SH, Bae KH, Kim JA and Seo YS. (2001) RPA governs endonuclease switching 
during processing of Okazaki fragments in eukaryotes. Nature. 412, 456-461. 
 
Bae SH, Kim JA, Choi E, Lee KH, Kang HY, Kim HD, Kim JH, Bae KH, Cho Y, Park 
C and Seo YS. (2001) Tripartite structure of Saccharomyces cerevisiae Dna2 
helicase/endonuclease. Nucleic Acids Res.  29, 3069-79. 
 
Baker NA, Sept D, Joseph S, Holst MJ and McCammon, JA. (2001) Electrostatics of 
Nanosystems: Application to Microtubules and the Ribosome. Proc. Natl. Acad. Sci. U. 

S. A. 98, 10037–10041. 
 
Baker TA, Funnell BE and Kornberg A. (1987) Helicase action of dnaB protein during 
replication from the Escherichia coli chromosomal origin in vitro. J. Biol. Chem. 262, 
6877-85. 
 
Balagurumoorthy P and Brahmachari SK. (1994) Structure and stability of human 
telomeric sequence. J. Biol. Chem. 269, 21858-69. 
 
Balkwill GD, Garner TP, Williams HEL and Searle MS. (2009) Folding Topology of a 
Bimolecular DNA Quadruplex Containing a Stable Mini-hairpin Motif within the 
Diagonal Loop. J. Mol. Biol. 385, 1600–1615. 
 
Bangert A, Andrassy M, Muller AM, Bockstahler M, Fischer A, Volz CH, Leib C, 
Goser S, Korkmaz-Icoz S, Zittrich S, Jungmann A, Lasitschka F, Pfitzer G, Müller OJ, 
Katus HA and Kaya Z. (2016) Critical role of RAGE and HMGB1 in inflammatory 
heart disease. Proc. Natl. Acad. Sci. U S A. 113, E155–E164. 
 



 160 

Baril M, Racine ME, Penin F and Lamarre D. (2009) MAVS dimer is a crucial 
signaling component of innate immunity and the target of hepatitis C virus NS3/4A 
protease. J. Virol. 83, 1299-311. 
 
Barranco-Medina S and Galletto R. (2010) DNA Binding Induces Dimerization of 
Saccharomyces cerevisiae Pif1. Biochemistry. 49, 8445–8454. 
 
Bartos JD, Wang W, Pike JE and Bambara RA. (2006) Mechanisms by which Bloom 
protein can disrupt recombination intermediates of Okazaki fragment maturation. J. 

Biol. Chem. 281, 32227-32239. 
 
Baum A, Sachidanandam R and Garcia-Sastre A. (2010) Preference of RIG-I for short 
viral RNAmolecules in infected cells revealed by next-generation sequencing. Proc. 

Nalt. Acad. Sci. USA. 107, 16303-8. 
 
Beachboard DC and Horner SM. (2016) Innate immune evasion strategies of DNA and 
RNA viruses. Curr. Opin. Microbiol. 32, 113–119. 
 
ψeaudoin JD and Perreault JP. (β01γ) Exploring mRNχ γ′-UTR G-quadruplexes: 
evidence of roles in both alternative polyadenylation and mRNA shortening. Nucleic 

Acids Res. 41, 5898–5911. 
 
Beckham SA, Brouwer J, Roth A, Wang D, Sadler AJ, John M, Jahn-Hofmann K, 
Williams BR, Wilce JA and Wilce MC. (2013) Conformational rearrangements of RIG-
I receptor on formation of a multiprotein:dsRNA assembly. Nucleic Acids Res. 41, 
3436-45. 
 
Bedrat A, Lacroix L and Mergny JL.  (2016) Re-evaluation of G-quadruplex propensity 
with G4Hunter. Nucleic Acids Res. 44, 1746–1759. 
 
Bennett RJ and Keck JL. (2004) Structure and function of RecQ DNA helicases. Crit. 

Rev. Biochem. Mol. Biol. 39, 79–97. 
 
Bennett RJ, Keck JL and Wang JC. (1999) Binding specificity determines polarity of 
DNA unwinding by the Sgs1 protein of S. cerevisiae. J. Mol. Biol. 289, 235-248. 
 
Benoit G, Altucci L, Flexor M, Ruchaud S, Lillehaug J, Raffelsberger W, Gronemeyer 
H and Lanotte M. (1999) RAR-independent RXR signaling induces t(15;17) leukemia 
cell maturation. EMBO J. 18, 7011-8. 
 
Berke IC and Modis Y. (2012) MDA5 cooperatively forms dimers and ATP-sensitive 
filaments upon binding double-stranded RNA. EMBO J. 31, 1714–26. 
 
Bernard J, Weil M, Boiron M, Jacquillat C, Flandrin G and Gemon MF. (1973) Acute 
promyelocytic leukemia: results of treatment by daunorubicin. Blood. 41, 489–496. 
 



 161 

Bernardi R and Pandolfi PP. (2007) Structure, dynamics and functions of promyelocytic 
leukaemia nuclear bodies. Nat. Rev. Mol. Cell Biol. 8, 1006-16. 
 
Bernstein E, Caudy AA, Hammond SM and Hannon GJ. (2001) Role for a bidentate 
ribonuclease in the initiation step of RNA interference. Nature. 409, 363–366. 
 
Bernstein KA, Gangloff S and Rothstein R. (2010) The RecQ DNA helicases in DNA 
repair. Annu. Rev. Genet. 44, 393-417. 
 
Besch R, Poeck H, Hohenauer T, Senft D, Häcker G, Berking C, Hornung V, Endres S, 
Ruzicka T, Rothenfusser S and Hartmann G. (2009) Proapoptotic signaling induced by 
RIG-I and MDA-5 results in type I interferon-independent apoptosis in human 
melanoma cells. J. Clin. Invest. 119, 2399–2411. 
 
Besnard E, Babled A, Lapasset L, Milhavet O, Parrinello H, Dantec C, Marin JM and 
Lemaitre JM. (2012) Unraveling cell type-specific and reprogrammable human 
replication origin signatures associated with G-quadruplex consensus motifs. Nat. 

Struct. Mol Biol. 19, 837-44. 
 
Betterton MD and Julicher F. (2005) Opening of nucleic-acid double strands by 
helicases: active versus passive opening. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 

71, 011904. 
 
Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, Kowalczykowski SC and Baskin 
RJ. (2001) Processive translocation and DNA unwinding by individual RecBCD 
enzyme molecules. Nature. 409, 374-8. 
 
Bicker S, Khudayberdiev S, Weiß K, Zocher K, Baumeister S, Schratt G. (2013) The 
DEAH-box helicase DHX36 mediates dendritic localization of the neuronal precursor-
microRNA-134. Genes Dev. 27, 991–996. 
 
Biffi G, Tannahill D and Balasubramanian S. (2012) An intramolecular G-quadruplex 
structure is required for binding of telomeric repeat-containing RNA to the telomeric 
protein TRF2. J. Am. Chem. Soc. 134, 11974-6. 
 
Biffi G, Tannahill D, McCafferty J and Balasubramanian S. (2013) Quantitative 
visualization of dna g-quadruplex structures in human cells. Nat. Chem. 5, 182–186. 
 
Bizard AH and Hickson ID. (2014) The dissolution of double Holliday junctions. Cold 

Spring Harb. Perspect. Biol. 6, a016477. 
 
Blackwood JK, Rzechorzek NJ, Bray SM, Maman JD, Pellegrini L and Robinson NP. 
(2013) End-resection at DNA double-strand breaks in the three domains of 
life. Biochemical Society Transactions. 41, 314–320.  
 
Bleichert F and Baserga SJ. (2007) The long unwinding road of RNA helicases. Mol 

Cell. 27, 339-52.  
 



 162 

Bléoo S, Sun X, Hendzel MJ, Rowe JM, Packer M and Godbout R. (2001) Association 
of human DEAD box protein DDX1 with a cleavage stimulation factor involved in γ′-
end processing of pre-MRNA. Mol. Biol. Cell. 12, 3046 - 59. 
 
Bochman ML, Judge CP and Zakian VA. (2011) The Pif1 family in prokaryotes: what 
are our helicases doing in your bacteria? Mol. Biol. Cell. 22, 1955-9. 
 
Bochman ML, Paeschke K and Zakian VA. (2012) DNA secondary structures: stability 
and function of G-quadruplex structures. Nat. Rev. Genet. 13, 770–780. 
 
Bochman ML, Sabouri N and Zakian VA. (2010) Unwinding the functions of the Pif1 
family helicases. DNA Repair (Amst). 9, 237-49. 
 
Bochman ML. (2014) Roles of DNA helicases in the maintenance of genome integrity. 
Mol. Cell. 1, e963429.  
 
Bond AT, Mangus DA, He F and Jacobson A. (2001) Absence of Dbp2p alters both 
nonsense-mediated mRNA decay and rRNA processing. Mol. Cell. Biol. 21, 7366–
7379. 
 
Booy EP, Meier M, Okun N, Novakowski SK, Xiong S, Stetefeld J and McKenna SA. 
(2012) The RNA helicase RHAU (DHX36) unwinds a G4-quadruplex in human 
telomerase RNA and promotes the formation of the P1 helix template boundary. Nucleic 

Acids Res. 40, 4110-24. 
 
Bouchier-Hayes L and Martin SJ. (2003) CARD games in apoptosis and immunity. 
EMBO Rep. 3, 616-21. 
 
Boukarabila H, Saurin AJ, Batsché E, Mossadegh N, van Lohuizen M, Otte AP, Pradel 
J, Muchardt C, Sieweke M and Duprez E. (2009) The PRC1 Polycomb group complex 
interacts with PLZF/RARA to mediate leukemic transformation. Genes Dev. 23, 1195-
206. 
 
Boule J.B and Zakian VA. (2007) The yeast Pif1p DNA helicase preferentially unwinds 
RNA DNA substrates. Nucleic Acids Res. 35, 5809–5818. 
 
 
Boule JB, Vega LR and Zakian VA. (2005) The yeast Pif1p helicase removes 
telomerase from telomeric DNA. Nature. 438, 57–61. 
 
Bourgeois CF, Mortreux F and Auboeuf D. (2016) The multiple functions of RNA 
helicases as drivers and regulators of gene expression. Nat. Rev. Mol. Cell Biol. 17, 426-
38. 
 
Bradley TR and Metcalf D. (1966) The growth of mouse bone marrow cells in vitro. 
Aust. J. Exp. Biol. Med. Sci. 44, 287-299. 
 
Branzei D and Foiani M. (2009) The checkpoint response to replication stress. DNA 

Repair. 8, 1038–1046. 
 



 163 

Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland 
M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ and 
Modlin RL. (1999) Host defense mechanisms triggered by microbial lipoproteins 
through toll-like receptors. Science. 285, 732–736. 
 
Brimacombe R, Stiege W, Kyriatsoulis A and Maly P. (1988) Intra-RNA and RNA-
protein cross-linking techniques in Escherichia coli ribosomes. Methods Enzymol. 164, 
287-30. 
 
Broitman SL, Im DD and Fresco JR. (1987) Formation of the triple-stranded 
polynucleotide helix, poly(A.A.U). Proc. Natl. Acad. Sci. USA. 84, 5120-4. 
 
Broquet AH, Hirata Y, McAllister CS and Kagnoff MF. (2011) RIG-I/MDA5/MAVS 
are required to signal a protective IFN response in rotavirus-infected intestinal 
epithelium. J. Immunol. 186, 1618-26. 
 
Brosh RM Jr, Li JL, Kenny MK, Karow JK, Cooper MP, Kureekattil RP, Hickson ID 
and ψohr Vχ. (β000) Replication protein a physically interacts with the ψloom’s 
syndrome protein and stimulates its helicase activity. J.Biol. Chem. 275, 23500–23508.  
 
Brosh RM Jr, Opresko PL and Bohr VA. (2006) Enzymatic mechanism of the WRN 
helicase/nuclease. Methods Enzymol. 409, 52-85. 
 
Brosh RM Jr, Orren DK, Nehlin JO, Ravn PH, Kenny MK, Machwe A and Bohr VA. 
(1999) Functional and physical interaction between WRN helicase and human 
replication protein A. J. Biol. Chem. 274, 18341–18350.  
 
Brosh RM Jr. (2013) DNA helicases involved in DNA repair and their roles in cancer. 
Nat. Rev. Cancer. 13, 542-58. 
 
Bruns AM and Horvath CM. (2011) Activation of RIG-I-like receptor signal 
transduction. Crit. Rev. Biochem. Mol. Biol. 47, 194-206. 
 
Bruns AM and Horvath CM. (2015) LGP2 synergy with MDA5 in RLR-mediated RNA 
recognition and antiviral signaling. Cytokine. 74, 198-206. 
 
Bruns AM, Pollpeter D, Hadizadeh N, Myong S, Marko JF, Horvath CM. (2013) ATP 
hydrolysis enhances RNA recognition and antiviral signal transduction by the innate 
immune sensor, laboratory of genetics and physiology 2 (LGP2). J. Biol. Chem. 288, 
938-46. 
 
Budd ME, Reis CC, Smith S, Myung K and Campbell JL. (2006) Evidence suggesting 
that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and 
DNA polymerase delta. Mol. Cell. Biol. 26, 2490-500. 
 
Budhathoki JB, Ray S, Urban V, Janscak P, Yodh JG and Balci H. (2014) RecQ-core of 
BLM unfolds telomeric G-quadruplex in the absence of ATP. Nucleic Acids Res. 42, 
11528-45. 
 



 164 

Bugaut A and Balasubramanian S. (2012) 5'-UTR RNA G-quadruplexes: translation 
regulation and targeting. Nucleic Acids Res. 40, 4727-41. 
 
Buijs A and Bruin M. (2007) Fusion of FIP1L1 and RARA as a result of a novel 
t(4;17)(q12; q21) in a case of juvenile myelomonocytic leukemia. Leukemia. 21, 1104-
8. 
 
Burckin T, Nagel R, Mandel-Gutfreund Y, Shiue L, Clark TA, Chong JL, Chang TH, 
Squazzo S, Hartzog G and Ares M Jr. (2005) Exploring functional relationships 
between components of the gene expression machinery. Nat. Struct. Mol. Biol. 12, 175–
182. 
 
Bürckstümmer T, Baumann C, Blüml S, Dixit E, Dürnberger G, Jahn H, Planyavsky M, 
Bilban M, Colinge J, Bennett KL and Superti-Furga G. (2009) An orthogonal 
proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the 
inflammasome. Nat. Immunol. 10, 266–272. 
 
Burdette DL and Vance RE. (2013) STING and the innate immune response to nucleic 
acids in the cytosol. Nat. Immunol. 14, 19–26. 
 
Burgers PM. (2009) Polymerase dynamics at the eukaryotic DNA replication fork. J. 
Biol. Chem. 284, 4041-5.  
 
Buxbaum AR, Haimovich G and Singer RH. (2015) In the right place at the right time: 
visualizing and understanding mRNA localization. Nat. Rev. Mol. Cell Biol. 16, 95–
109. 
 
Byrd AK and Raney KD. (2007) Structure and function of Pif1 helicase. Biochem. Soc. 

Trans. 45, 1159-1171.  
 
Cannavo E and Cejka P. (2014) Sae2 promotes dsDNA endonuclease activity within 
Mre11–Rad50–Xrs2 to resect DNA breaks. Nature. 514, 122–25. 
 
Capra JA, Paeschke K, Singh M and Zakian VA. (2010) G-quadruplex DNA sequences 
are evolutionarily conserved and associated with distinct genomic features in 
Saccharomyces cerevisiae. PLoS Comput. Biol. 6, e1000861. 
 
Caruthers JM and McKay DB. (2002) Helicase structure and mechanism. Curr. Opin. 
Struct. Biol. 12, 123-33. 
 
Catalano A, Dawson MA, Somana K, Opat S, Schwarer A, Campbell LJ and Iland H. 
(2007) The PRKAR1A gene is fused to RARA in a new variant acute promyelocytic 
leukemia. Blood. 110, 4073-6. 
 
Cayrou C, Coulombe P, Vigneron A, Stanojcic S, Ganier O, Peiffer I, Rivals E, Puy A, 
Laurent-Chabalier S, Desprat R and Méchali M. (2011) Genome-scale analysis of 
metazoan replication origins reveals their organization in specific but flexible sites 
defined by conserved features. Genome Res. 21, 1438-49. 
 
 



 165 

Cayrou C, Grégoire D, Coulombe P, Danis E and Méchali M.Genome-scale 
identification of active DNA replication origins. (2012) Methods. 57, 158-64. 
 
Cejka P and Kowalczykowski SC. (2010) The full-length Saccharomyces cerevisiae 
Sgs1 protein is a vigorous DNA helicase that preferentially unwinds Holliday junctions. 
J. Biol. Chem. 285, 8290–301.  
 
Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S, Campbell JL and 
Kowalczykowski SC. (2010) DNA end resection by Dna2– Sgs1–RPA and its 
stimulation by Top3–Rmi1 and Mre11–Rad50–Xrs2. Nature. 467, 112–16. 
 
Cerofolini L, Amato J, Giachetti A, Limongelli V, Novellino E, Parrinello M, Fragai M, 
Randazzo A and Luchinat C. (2014) G-triplex structure and formation propensity. 
Nucleic Acids Res. 42, 13393-404. 
 
Cerutti H and Casas-Mollano JA. (2006) On the origin and functions of RNA-mediated 
silencing: from protists to man. Curr Genet. 50, 81-99. 
 
Chaganti RS, Schonberg S and German J. (1974) A manyfold increase in sister 
chromatid exchanges in ψloom’s syndrome lymphocytes. Proc Natl Acad Sci U S A. 71, 
4508–12. 
Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP and Balasubramanian 
S.  (2015) High-throughput sequencing of DNA G-quadruplex structures in the human 
genome. Nat. Biotechnol. 33, 877–881. 
 
Chambon P. (1996) A decade of molecular biology of retinoic acid receptors. FASEB J. 
10, 940-54. 
 
Chamot D, Colvin KR, Kujat-Choy SL and Owttrim GW. (2005) RNA structural 
rearrangement via unwinding and annealing by the cyanobacterial RNA helicase, CrhR. 
J. Biol. Chem. 280, 2036-2044. 
 
Chan IT, Kutok JL, Williams IR, Cohen S, Moore S, Shigematsu H, Ley TJ, Akashi K, 
Le Beau MM and Gilliland DG. (2006) Oncogenic K-ras cooperates with PML-RAR 
alpha to induce an acute promyelocytic leukemia-like disease. Blood. 108, 1708-15.  
 
Chan YK and Gack MU. (2016) Viral evasion of intracellular DNA and RNA sensing. 
Nat. Rev. Microbiol. 14, 360–373. 
 
Chang M, Luke B, Kraft C, Li Z, Peter M, Lingner J and Rothstein R. (2009) 
Telomerase is essential to alleviate pif1-induced replication stress at telomeres. 
Genetics. 183, 779-91. 
 
Chauffaille MLLF, Figueiredo MS, Beltrani R, Antunes SV, Yamamoto M and 
Kerbauy J. (2001) Acute promyelocytic leukemia: the study of t(15;17) translocation by 
fluorescent in situ hybridization, reverse transcriptase-polymerase chain reaction and 
cytogenetic techniques. Braz. J. Med. Biol. Res. 34, 735-743. 
 
 



 166 

Chen GQ, Shen ZX, Wu F, Han JY, Miao JM, Zhong HJ, Li XS, Zhao JQ, Zhu J, Fang 
ZW, Chen SJ, Chen Z and Wang ZY. (1996) Pharmacokinetics and efficacy of low-
dose all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Leukemia. 
10, 825-8. 
 
Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, Han ZG, Ni JH, Shi GY, Jia PM, 
Liu MM, He KL, Niu C, Ma J, Zhang P, Zhang TD, Paul P, Naoe T, Kitamura K, Miller 
W, Waxman S, Wang ZY, de The H, Chen SJ and Chen Z. (1997) Use of arsenic 
trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 
exerts dose-dependent dual effects on APL cells. Blood. 89, 3345-53. 
 
Chen W, Han C, Xie B, Hu X, Yu Q, Shi L, Wang Q, Li D, Wang J, Zheng P, Liu Y 
and Cao X. (2013) Induction of Siglec-G by RNA viruses inhibits the innate immune 
response by promoting RIG-Idegradation. Cell. 152, 467-78. 
 
Chen WF, Dai YX, Duan XL, Liu NN, Shi W, Li N, Li M, Dou SX, Dong YH, Rety S 
and Xi XG. (2016) Crystal structures of the BsPif1 helicase reveal that a major 
movement of the 2B SH3 domain is required for DNA unwinding. Nucleic Acids Res. 
44, 2949–2961. 
 
Cheok CF, Wu L, Garcia PL, Janscak P and Hickson ID. (2005) The Bloom's syndrome 
helicase promotes the annealing of complementary single-stranded DNA. Nucleic Acids 

Res. 33, 3932-3941. 
 
Chevalier F. (2010) Highlights on the capacities of "Gel-based" proteomics. Proteome 

Sc. 8, 23. 
 
Chiarella S, De Cola A, Scaglione GL, Carletti E, Graziano V, Barcaroli D, Lo Sterzo 
C, Di Matteo A, Di Ilio C, Falini B, Arcovito A, De Laurenzi V and Federici L. (2013) 
Nucleophosmin mutations alter its nucleolar localization by impairing G-quadruplex 
binding at ribosomal DNA. Nucleic Acids Res.41, 3228-39. 
 
Chisholm KM, Aubert SD, Freese KP, Zakian VA, King MC and Welcsh PL. A 
genomewide screen for suppressors of Alu-mediated rearrangements reveals a role for 
PIF1. PLoS One. 7, e30748.   
 
Choe J, Ryu I, Park OH, Park J, Cho H, Yoo JS, Chi SW, Kim MK, Song HK, Kim YK. 
(2014) eIF4AIII enhances translation of nuclear cap-binding complex-bound mRNAs 
by promoting disruption of secondary structures in 5′UTR. Proc. Natl Acad. Sci. USA. 

111, E4577–E4586. 
 
Choi SJ, Lee HC, Kim JH, Park SY, Kim TH, Lee WK, Jang DJ, Yoon JE, Choi YI, 
Kim S, Ma J, Kim CJ, Yao TP, Jung JU, Lee JY and Lee JS. (2016) HDAC6 regulates 
cellular viral RNA sensing by deacetylation of RIG-I. EMBO J. 35, 429–442. 
 
Chou WC, Jie C, Kenedy AA, Jones RJ, Trush MA and Dang CV. (2004) Role of 
NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity 
in myeloid leukemia cells. Proc. Natl. Acad. Sci. U S A. 101, 4578-83.  
 



 167 

Christian H, Hofele RV, Urlaub H and Ficner R. (2014) Insights into the activation of 
the helicase Prp43 by biochemical studies and structural mass spectrometry. Nucleic 

Acids Res. 42, 1162-1179. 
 
Civril F, Bennett M, Moldt M, Deimling T, Witte G, Schiesser S, Carell T and Hopfner 
KP. (2011) The RIG-I ATPase domain structure reveals insights into ATP-dependent 
antiviral signalling. EMBO Rep. 12, 1127–1134.  
 
Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, Hornung V 
and Hopfner KP. (2013) Structural mechanism of cytosolic DNA sensing by cGAS. 
Nature. 498, 332-7. 
 
Coburn GA, Miao X, Briant DJ and Mackie GA. (1999) Reconstitution of a minimal 
RNA degradosome demonstrates functional coordination between a 3' exonuclease and 
a DEAD-box RNA helicase. Genes Dev. 13, 2594-603. 
 
Coin F, Bergmann E, Tremeau-Bravard A and Egly JM. (1999) Mutations in XPB and 
XPD helicases found in xeroderma pigmentosum patients impair the transcription 
function of TFIIH. EMBO J. 18, 1357-66. 
 
Coller JM, Tucker M, Sheth U, Valencia-Sanchez MA and Parker R. (2001) The DEAD 
box helicase, Dhh1p, functions in mRNA decapping and interacts with both the 
decapping and deadenylase complexes. RNA. 7, 1717–1727 (2001). 
Collins SJ. (2002) The role of retinoids and retinoic acid receptors in normal 
hematopoiesis. Leukemia. 16, 1896-905.  
 
Company M, Arenas J and Abelson J. (1991) Requirement of the RNA helicase-like 
protein PRP22 for release of messenger RNA from spliceosomes. Nature. 349, 487-493.  
 
Coombs CC, Tavakkoli M and Tallman MS. (2015) Acute promyelocytic leukemia: 
where did we start, where are we now, and the future. Blood Cancer J. 5, e304.  
 
Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D and Bohr VA. (2000) Ku 
complex interacts with and stimulates the Werner protein. Genes Dev. 14, 907-12. 
Cordin O, Banroques J, Tanner NK and Linder P. (2006) The DEAD-box protein family 
of RNA helicases. Gene. 367, 17–37. 
 
Corey SJ, Locker J, Oliveri DR, Shekhter-Levin S, Redner RL, Penchansky L and 
Gollin SM. (1994) A non-classical translocation involving 17q12 (retinoic acid receptor 
alpha) in acute promyelocytic leukemia (APML) with atypical features. Leukemia. 8, 
1350-3. 
 
Crnugelj M, Hud NV and Plavec J. (2002) The solution structure of 
d(G(4)T(4)G(3))(2): a bimolecular G-quadruplex with a novel fold. J. Mol. Biol. 320, 
911-24. 
 
Cui J, Song Y, Li Y, Zhu Q, Tan P, Qin Y, Wang HY and Wang RF. (2014) USP3 
inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors. Cell Res. 

24, 400-416. 
 



 168 

Cui S, Arosio D, Doherty KM, Brosh RM Jr, Falaschi A and Vindigni A. (2004) 
Analysis of the unwinding activity of the dimeric RECQ1 helicase in the presence of 
human replication protein A. Nucleic Acids Res. 32, 2158-70. 
 
Cui S, Eisenächer K, Kirchhofer A, Brzózka K, Lammens A, Lammens K, Fujita T, 
Conzelmann KK, Krug A and Hopfner KP. (2008) The C-terminal regulatory domain is 
the RNχ 5’-triphosphate sensor of RIG-I. Mol. Cell. 29, 169-79. 
 
Cunningham TJ and Duester G. (2015) Mechanisms of retinoic acid signalling and its 
roles in organ and limb development. Nat. Rev. Mol. Cell Biol. 16, 110-23.  
 
Dai J, Chen D, Jones RA, Hurley LH and Yang D. (2006) NMR solution structure of 
the major G-quadruplex structure formed in the human BCL2 promoter region. Nucleic 

Acids Res. 34, 5133–44. 
 
Dai J, Dexheimer TS, Chen D, Carver M, Ambrus A, Jones RA and Yang D (2006). 
intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands 
formed in the human BCL-2 promoter region in solution. J. Am. Chem. Soc. 128: 1096-
1098. 
 
Dardenne E, Polay Espinoza M, Fattet L, Germann S, Lambert MP, Neil H, Zonta E, 
Mortada H, Gratadou L, Deygas M, Chakrama FZ, Samaan S, Desmet FO, Tranchevent 
LC, Dutertre M, Rimokh R, Bourgeois CF and Auboeuf D. (2014) RNA helicases 
DDX5 and DDX17 dynamically orchestrate transcription, miRNA, and splicing 
programs in cell differentiation. Cell Rep. 7, 1900–1913. 
 
Davis JL, Kunisawa R and Thomer J. (1992) A presumptive helicase ( MOT1 gene 
product) affects gene expression and IS required for for viab1lity in the yeast 
Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 1879-92 
 
Davison K, Mann KK, Waxman S and Miller WH Jr. (2003) JNK activation is a 
mediator of arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells. 
Blood. 103, 3496-502.  
 
de Armond R, Wood S, Sun D, Hurley LH and Ebbinghaus SW. (2005) Evidence for 
the presence of a guanine quadruplex forming region within a polypurine tract of the 
hypoxia inducible factor 1alpha promoter. Biochemistry. 44, 16341-16350. 
 
de Botton S, Chevret S, Coiteux V, Dombret H, Sanz M, San Miguel J, Caillot D, 
Vekhoff A, Gardembas M, Stamatoulas A, Conde E, Guerci A, Gardin C, Fey M, Cony 
Makhoul D, Reman O, de la Serna J, Lefrere F, Chomienne C, Degos L and Fenaux P. 
(2003) Early onset of chemotherapy can reduce the incidence of ATRA syndrome in 
newly diagnosed acute promyelocytic leukemia (APL) with low white blood cell 
counts: results from APL 93 trial. Leukemia. 17, 339-42. 
 
de Braekeleer E, Douet-Guilbert N and De Braekeleer M. (2014) RARA fusion genes in 
acute promyelocytic leukemia: a review. Expert. Rev. Hematol. 7, 347-57.  
 
de la Cruz J, Kressler D and Linder P. (1999) Unwinding RNA in Saccharomyces 
cerevisiae: DEAD-box proteins and related families. Trends Biochem. Sci. 24, 192-8. 



 169 

de S and Michor F. (2011) DNA secondary structures and epigenetic determinants of 
cancer genome evolution. Nat. Struct. Mol Biol. 18, 950-5. 
 
de Thé H and Chen Z. (2010) Acute promyelocytic leukaemia: novel insights into the 
mechanisms of cure. Nat. Rev. Cancer. 10, 775-83. 
 
de Thé H, Chomienne C, Lanotte M, Degos L and Dejean A. (1990) The t(15;17) 
translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha 
gene to a novel transcribed locus. Nature. 347, 558-61. 
 
de Thé H, Le Bras M and Lallemand-Breitenbach V. (2012) The cell biology of disease: 
Acute promyelocytic leukemia, arsenic, and PML bodies. J. Cell Biol. 198, 11-21. 
 
Dempsey LA, Sun H, Hanakahi LA, Maizels N. (1999) G4 DNA binding by LR1 and 
its subunits, nucleolin and hnRNP D, A role for G-G pairing in immunoglobulin switch 
recombination. J. Biol. Chem. 274, 1066-71. 
 
Denhardt DT, Dressler DH and Hathaway A. (1967) The abortive replication of 
PhiX174 DNA in a recombination-deficient mutant of Escherichia coli. Proc. Natl. 

Acad. Sci. U S A. 57, 813-20. 
 
Dhote V, Sweeney TR, Kim N, Hellen CU and Pestova TV. (2012) Roles of individual 
domains in the function of DHX29, an essential factor required for translation of 
structured mammalian mRNAs. Proc. Natl Acad. Sci. USA 109, E3150–E3159. 
 
Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo Coco F, 
Kouzarides T, Nervi C, Minucci S, Pelicci PG. (2002) Methyltransferase recruitment 
and DNA hypermethylation of target promoters by an oncogenic transcription factor. 
Science. 295, 1079-82. 
 
Diges CM and Uhlenbeck OC. (2001) Escherichia coli DbpA is an RNA helicase that 
requires hairpin 92 of 23S rRNA. EMBO J. 20, 5503–12. 
 
Dillingham MS and Kowalczykowski SC. (2008) RecBCD enzyme and the repair of 
double-stranded DNA breaks. Microbiol. Mol. Biol. Rev. 72, 642–71. 
 
Dillingham MS, Spies M and Kowalczykowski SC. (2003) RecBCD enzyme is a 
bipolar DNA helicase. Nature. 423, 893-897. 
 
Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, 
Whelan SP, Fransen M, Nibert ML, Superti-Furga G and Kagan JC. (2010) 
Peroxisomes are signaling platforms for antiviral innate immunity. Cell. 141, 668-681. 
 
Do NQ, Lim KW, Teo MH, Heddi B and Phan AT. (2011) Stacking of G-quadruplexes: 
NMR structure of a G-rich oligonucleotide with potential anti-HIV and anticancer 
activity. Nucleic Acids Res. 39, 9448-57. 
 
Douer D. (2003) The epidemiology of acute promyelocytic leukaemia. Best Pract. Res. 

Clin. Haematol. 16, 357-67. 
 



 170 

Dreesen O, Li B and Cross GAM. (2005) Telomere structure and shortening in 
telomerasedeficient Trypanosoma brucei. Nucleic Acids Res. 33, 4536–43. 
 
Drexler HG, Quentmeier H, MacLeod RA, Uphoff CC, Hu ZB. (1995) Leukemia cell 
lines: in vitro models for the study of acute promyelocytic leukemia. Leuk. Res. 19, 681-
91.  
 
Duan XL, Liu NN, Yang YT, Li HH, Li M, Dou SX and Xi XG. (2015) G-quadruplexes 
significantly stimulate Pif1 helicase-catalyzed duplex DNA unwinding. J. Biol. Chem. 
290, 7722–7735. 
 
Dubois C, Schlageter MH, de Gentile A, Balitrand N, Toubert ME, Krawice I, Fenaux 
P, Castaigne S, Najean Y and Degos L. (1994) Modulation of IL-8, IL-1 beta, and G-
CSF secretion by all-trans retinoic acid in acute promyelocytic leukemia. Leukemia. 8, 
1750-7. 
 
Duprez E, Benoit G, Flexor M, Lillehaug JR and Lanotte M. (2000) A mutated 
PML/RARA found in the retinoid maturation resistant NB4 subclone, NB4-R2, blocks 
RARA and wild-type PML/RARA transcriptional activities. Leukemia. 14, 255-61. 
 
Duprez E, Lillehaug JR, Naoe T and Lanotte M. cAMP signalling is decisive for 
recovery of nuclear bodies (PODs) during maturation of RA-resistant t(15;17) 
promyelocytic leukemia NB4 cells expressing PML-RAR alpha. Oncogene. 12, 2451-9. 
 
Durr H, Korner C, Muller M, Hickmann V and Hopfner KP. (2005) X-ray structures of 
the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell. 
121, 363–373. 
 
Eddy J and Maizels N. (2006) Gene function correlates with potential for G4 DNA 
formation in the human genome. Nucleic Acids Res. 34, 3887–3896.  
 
Edwalds-Gilbert G, Kim DH, Silverman E and Lin RJ. (2004) Definition of a 
spliceosome interaction domain in yeast Prp2 ATPase. RNA. 10, 210-220.  
 
Eghtedar A, Rodriguez I, Kantarjian H, O'Brien S, Daver N, Garcia-Manero G, Ferrajoli 
A, Kadia T, Pierce S, Cortes J and Ravandi F. (2015) Incidence of secondary neoplasms 
in patients with acute promyelocytic leukemia treated with all-trans retinoic acid 
plus chemotherapy or with all-trans retinoic acid plus arsenic trioxide. Leuk. 

Lymphoma. 56, 1342-5 
 
Egly JM and Coin F. (2011) A history of TFIIH: two decades of molecular biology on a 
pivotal transcription/repair factor. DNA Repair (Amst). 10, 714-21. 
 
Eichler DC and Craig N. (1994) Processing of eukaryotic ribosomal RNA. Prog. 

Nucleic Acid Res. Mol. Biol. 49, 197-239. 
 
Eisen A and Lucchesi JC. (1998) Unraveling the role of helicases in transcription. 
Bioessays. 20, 634-41.  
 



 171 

Ellermeier J, Wei J, Duewell P, Hoves S, Stieg MR, Adunka T, Noerenberg D, Anders 
HJ, Mayr D, Poeck H, Hartmann G, Endres S and Schnurr M. (2013) Therapeutic 
efficacy of bifunctional siRNA combining TGF-beta1 silencing with RIG-I activation in 
pancreatic cancer. Cancer Res. 73, 1709-20.   
 
Eoff RL, Spurling TL and Raney KD. (2005) Chemically modified DNA substrates 
implicate the importance of electrostatic interactions for DNA unwinding by Dda 
helicase. Biochemistry. 44, 666–674. 
 
Erzberger JP and Berger JM. (2006) Evolutionary relationships and structural 
mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 93-114. 
 

Fairman-Williams ME, Guenther UP and Jankowsky E. (2010) SF1 and SF2 helicases: 
family matters. Curr. Opin. Struct. Biol. 20, 313-24. 
 
Fan Y, Mao R, Yu Y, Liu S, Shi Z, Cheng J, Zhang H, An L, Zhao Y, Xu X, Chen Z, 
Kogiso M, Zhang D, Zhang H, Zhang P, Jung JU, Li X, Xu G and Yang J. (2014). 
USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase. J. 

Exp. Med. 211, 313–328.  
 
Fang G and Cech TR. (1993) The beta subunit of Oxytricha telomere-binding protein 
promotes G-quartet formation by telomeric DNA. Cell. 74, 875-85. 
 
Fang J, Acheampong E, Dave R, Wang F, Mukhtar M and Pomerantz RJ. (2005) The 
RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes. 
Virology. 336, 299 - 307. 
 
Fernandes-Alnemri T, Yu JW, Datta P, Wu J and Alnemri ES. (2009) AIM2 activates 
the inflammasome and cell death in response to cytoplasmic DNA. Nature. 458, 509–
513. 
 
Finegold SM and George WL. (1989) Anaerobic Infections in Humans. Academic 
Press. San Diego, CA. 
 
Fiorini F, Bagchi D, Le Hir H and Croquette V. (2015) Human Upf1 is a highly 
processive RNA helicase and translocase with RNP remodelling activities. Nat. 

Commun. 6, 7581. 
 
Fischer N and Weis K. (2002) The DEAD box protein Dhh1 stimulates the decapping 
enzyme Dcp1. EMBO J. 21, 2788–2797.  
 
Flaus A and Owen-Hughes T. (2004) Mechanisms for ATP-dependent chromatin 
remodelling: farewell to the tuna-can octamer? Curr. Opin. Genet. Dev. 14, 165–73. 
 

Flaus A, Martin DM, Barton GJ and Owen-Hughes T (2006) Identification of multiple 
distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–
905. 
 
 



 172 

Fogel BL and Perlman S. (2006) An approach to the patient with late-onset cerebellar 
ataxia. Nat. Clin. Pract. Neurol. 2, 629-35. 
 
Forney J, Henderson ER and Blackburn EH. (1987) Identification of the telomeric 
sequence of the acellular slime molds Didymium iridis and Physarum polycephalum. 
Nucleic Acids Res. 15, 9143–9152. 
 
Foury F and Kolodynski J. (1983) Pif mutation blocks recombination between 
mitochondrial rho+ and rho- genomes having tandemly arrayed repeat units in 
Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 80, 5345-9. 
 
Franklin RE and Gosling RG. (1953) Molecular Configuration in Sodium 
Thymonucleate. Nature. 171, 740-741. 
 
Fredericksen BL, Keller BC, Fornek J, Katze MG and Gale M Jr. (2008) Establishment 
and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I 
and MDA5 signaling through IPS-1. J. Virol. 82, 609–616. 
 
Frees S, Menendez C, Crum M and Bagga PS. (2014) QGRS-Conserve: a 
computational method for discovering evolutionarily conserved G-quadruplex motifs. 
Hum. Genomics. 8, 8. 
 
Friedman CS, O'Donnell MA, Legarda-Addison D, Ng A, Cárdenas WB, Yount JS, 
Moran TM, Basler CF, Komuro A, Horvath CM, Xavier R and Ting AT. (2008) The 
tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. 
EMBO Rep. 9, 930-936. 
 
Frit P, Bergmann E and Egly JM. (1999) Transcription factor IIH: a key player in the 
cellular response to DNA damage. Biochimie. 81, 27-38. 
 
Fry M and Loeb LA. (1999) Human werner syndrome DNA helicase unwinds 
tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n. J. Biol. 

Chem. 274, 12797–12802. 
 
Fu XD  and Ares M Jr. (2014) Context-dependent control of alternative splicing by 
RNA-binding proteins. Nat. Rev. Genet. 15, 689–701.  
 
Fujii R, Okamoto M, Aratani S, Oishi T, Ohshima T, Taira K, Baba M, Fukamizu A 
and Nakajima T. (2001) A Role of RNA Helicase A in cis-Acting Transactivation 
Response Element-mediated Transcriptional Regulation of Human Immunodeficiency 
Virus Type 1. J. Biol. Chem. 276, 5445 - 51.  
 
Fujita T, Onoguchi K, Onomoto K, Hirai R and Yoneyama M. (2007) Triggering 
antiviral response by RIG-I-related RNA helicases. Biochimie. 89, 754-760. 
 
Fuller-Pace FV. (2006) DExD/H box RNA helicases: multifunctional proteins with 
important roles in transcriptional regulation. Nucleic Acids Res. 34, 4206–4215. 
 



 173 

Fuss JO and Tainer JA. (2011) XPB and XPD helicases in TFIIH orchestrate DNA 
duplex opening and damage verification to coordinate repair with transcription and cell 
cycle via CAK kinase. DNA Repair (Amst). 10, 697-713. 
 
Futami K, Shimamoto A, Furuichi Y. (2007) Mitochondrial and nuclear localization of 
human Pif1 helicase. Biol. Pharm. Bull.  30, 1685-92. 
 
Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, Farzan M, Inoue S, 
Jung JU and García-Sastre A. (2009) Influenza A virus NS1 targets the ubiquitin ligase 
TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host. Microbe. 
5, 439-49. 
 
Gack MU, Nistal-Villan E, Inn KS, García-Sastre A and Jung JU. (2010) 
Phosphorylationmediated negative regulation of RIG-I antiviral activity. J. Virol. 84, 
3220-3229.  
 
Galletto R and Tomko EJ. (2013) Translocation of Saccharomyces cerevisiae Pif1 
helicase monomers on single-stranded DNA. Nucleic Acids Res. 41, 4613–4627. 
 
Ganz T. (2000) Paneth cells-guardians of the gut cell hatchery. Nat. Immunol. 1, 99-
100. 
 
Gao D, Yang YK, Wang RP, Zhou X, Diao FC, Li MD, Zhai ZH, Jiang ZF and Chen 
DY. (2009) REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-
inducible gene-I. PLoS One. 4, e5760.  
 
Garcia PL, Liu Y, Jiricny J, West SC, Janscak P. (2004) Human RECQ51β, a protein 
with DNA helicase and strand-annealing activities in a single polypeptide. EMBO J. 23, 
2882–2891.  
 
Gatfield D, Le Hir H, Schmitt C, Braun IC, Kocher T, Wilm M and Izaurralde E. (2001) 
The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in 
Drosophila. Curr. Biol. 11, 1716-1721. 
 
Gay NJ, Symmons MF, Gangloff M and Bryant CE. (2014) Assembly and localization 
of Toll-like receptor signalling complexes. Nat. Rev. Immunol. 14, 546–558. 
 
Gehring K, Leroy JL and Guéron M. (1993) A tetrameric DNA structure with 
protonated cytosine.cytosine base pairs. Nature. 363, 561-5. 
 
Geissler V, Altmeyer S, Stein, B, Uhlmann-Schiffler H and Stahl H. (2013) The RNA 
helicase Ddx5/p68 binds to hUpf3 and enhances NMD of Ddx17/p72 and Smg5 
mRNA. Nucleic Acids Res. 41, 7875–7888.  
 
Gellert M, Lipsett MN and Davies DR. (1962) Helix formation by guanylic acid. Proc. 
Nalt. Acad. Sci. USA. 48, 2013-8. 
 
George T, Wen Q, Griffiths R, Ganesh A, Meuth M and Sanders CM. (2009) Human 
Pif1 helicase unwinds synthetic DNA structures resembling stalled DNA replication 
forks. Nucleic Acids Res. 37, 6491–6502. 



 174 

Ghosal G, Yuan J and Chen J. (2011) The HARP domain dictates the annealing helicase 
activity of HARP/SMARCAL1. EMBO Rep. 12, 574–580.  
 
Ghosh AK, Rossi ML, Singh DK, Dunn C, Ramamoorthy M, Croteau DL, Liu Y snf 
Bohr VA. (2012) RECQL4, the protein mutated in Rothmund-Thomson syndrome, 
functions in telomere maintenance. J. Biol. Chem. 287, 196–209. 
 
Gilbert DE and Feigon J. (1999) Multistranded DNA structures. Curr. Opin. Struct. 

Biol. 9, 305-14. 
 
Gillespie RF and Gudas LJ. (2007) Retinoid regulated association of transcriptional co-
regulators and the polycomb group protein SUZ12 with the retinoic acid response 
elements of Hoxa1, RARȕ2, and Cyp26A1 in F9 embryonal carcinoma cells. J. Mol. 

Biol.  372, 298–316. 
 
Giraldo R and Rhodes D. (1994) The yeast telomere-binding protein RAP1 binds to and 
promotes the formation of DNA quadruplexes in telomeric DNA. EMBO J. 13, 2411–
2420.  
 
Giri B, Smaldino PJ, Thys RG, Creacy SD, Routh ED, Hantgan RR, Lattmann S, 
Nagamine Y, Akman SA and Vaughn JP. (2011) G4 resolvase 1 tightly binds and 
unwinds unimolecular G4-DNA. Nucleic Acids Res. 39, 7161-78. 
 
Gitlin L, Barchet W, Gilfillan S, Cella M, Beutler B, Flavell RA, Diamond MS and 
Colonna M. (2006) Essential role of mda-5 in type I IFN responses to 
polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. 
Natl. Acad. Sci. U S A. 103, 8459-8464. 
 
Glas M, Coch C, Trageser D, Dassler J, Simon M, Koch P, Mertens J, Quandel T, 
Gorris R, Reinartz R, Wieland A, Von Lehe M, Pusch A, Roy K, Schlee M, Neumann 
H, Fimmers R, Herrlinger U, Brüstle O, Hartmann G, Besch R and Scheffler B. (2013) 
Targeting the cytosolic innate immune receptors RIG-I and MDA5 effectively 
counteracts cancer cell heterogeneity in glioblastoma. Stem Cells. 31, 1064-74. 
 
Goldstein EJ. (1996) Anaerobic bacteremia. Clin. Infect. Dis. 23, S97-S101. 
 
Gorbalenya AE and Koonin EV. (1993) Helicases: amino acid sequence comparisons 
and structure-function relationships. Curr. Opin. Struct. Biol. 3, 419. 
 
Gorbalenya AE, Koonin EV and Wolf YI. (1990) A new superfamily of putative NTP-
binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett. 262, 
145–48. 
 
Gorbalenya AE, Koonin EV, Donchenko AP and Blinov VM. (1988) A conserved 
NTP-motif in putative helicases. Nature. 333, 22. 
 
Gorbalenya AE, Koonin EV, Donchenko AP and Blinov VM. (1989) Two related 
superfamilies of putative helicases involved in replication, recombination, repair and 
expression of DNA and RNA genomes. Nucleic Acids Res. 17, 4713–4730. 



 175 

Goubau D, Deddouche S and Sousa CRE. (2013) Cytosolic sensing of viruses. 
Immunity. 38, 855–869. 
 
Grand CL, Han H, Muñoz RM, Weitman S, Von Hoff DD, Hurley LH and Bearss DJ. 
(2002) The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase 
reverse transcriptase expression and inhibits tumor growth in vivo. Mol. Cancer Ther. 1, 
565– 573.  
 
Greenberg JR. (1979) Ultraviolet light-induced crosslinking of mRNA to proteins. 
Nucleic Acids Res. 6, 715-32. 
 
Gregersen LH, Schueler M, Munschauer M, Mastrobuoni G, Chen W, Kempa S, 
Dieterich C and Landthaler M. (2014) MOV10 is a 5' to 3' RNA helicase contributing to 
UPF1 mRNA target degradation by translocation along 3' UTRs. Mol. Cell. 54, 573–
585. 
 
Grégoire C, Welch H, Astarie-Dequeker C and Maridonneau-Parini I. (1998) 
Expression of azurophil and specific granule proteins during differentiation 
of NB4 cells in neutrophils. J. Cell. Physiol. 175, 203-10. 
 
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar 
R. (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature. 

432, 235–240. 
 
Gu Y, Masuda Y and Kamiya K. (2008) Biochemical analysis of human PIF1 helicase 
and functions of its N-terminal domain. Nucleic Acids Res. 36, 6295–6308. 
 
Gu Y, Wang J, Li S, Kamiya K, Chen X and Zhou P. (2013) Determination of the 
biochemical properties of full-length human PIF1 ATPase. Prion. 7, 341–347.  
 
Guedin A, De Cian A, Gros J, Lacroix L and Mergny JL. (2008) Sequence effects in 
single-base loops for quadruplexes. Biochimie. 90, 686-696. 
 
Guedin A, Gros J, Alberti P and Mergny JL. (2010) How long is too long? Effects of 
loop size on G-quadruplex stability. Nucleic Acids Res. 38, 7858-7868. 
 
Guo RB, Rigolet P, Zargarian L, Fermandjian S and Xi XG. (2005) Structural and 
functional characterizations reveal the importance of a zinc binding domain in Bloom's 
syndrome helicase. Nucleic Acids Res. 33, 3109-3124. 
 
Guo Z, Chen LM, Zeng H, Gomez JA, Plowden J, Fujita T, Katz JM, Donis RO and 
Sambhara S. (2007) NS1 protein of influenza A virus inhibits the function of 
intracytoplasmic pathogen sensor, RIG-I. Am. J. Respir. Cell. Mol. Biol. 36, 263-9. 
 
Gupta R, Sharma S, Sommers JA, Kenny MK, Cantor SB and Brosh RM Jr. (2007) 
FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein a 
and interacts physically and functionally with the single-stranded DNA-binding 
protein. Blood. 110, 2390–2398. 
 



 176 

Ha M and Kim VN. (2014) Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell 

Biol. 15, 509–524. 
 
Habjan M, Andersson I, Klingström J, Schümann M, Martin A, Zimmermann P, 
Wagner V, Pichlmair A, Schneider U, Mühlberger E, Mirazimi A and Weber F. (2008) 
Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid 
RIG-I-dependent interferon induction. PLoS One. 3, e2032. 
 
Halaby MJ, Harris BR, Miskimins WK, Cleary MP and Yang DQ. (2015) Deregulation 
of internal ribosome entry site-mediated p53 translation in cancer cells with defective 
p53 response to DNA damage. Mol. Cell. Biol. 35, 4006–4017.  
 
Hall MC and Matson SW. (1999) Helicase motifs: the engine that powers DNA 
unwinding. Mol. Microbiol. 34, 867–877. 
 
Hallenbeck PL, Marks MS, Lippoldt RE, Ozato K, Nikodem VM. (1992) 
Heterodimerization of thyroid hormone (TH) receptor with H-2RIIBP (RXR beta) 
enhances DNA binding and TH-dependent transcriptional activation. Proc. Natl. Acad. 

Sci. U S A.  89, 5572-6. 
 
Han C, Liu Y, Wan G, Choi HJ, Zhao L, Ivan C, He X, Sood AK, Zhang X, Lu X. 
(2014) The RNA-binding protein DDX1 promotes primary microRNA maturation and 
inhibits ovarian tumor progression. Cell Rep. 8, 1447-60. 
 
Hartman TR, Qian S, Bolinger C, Fernandez S, Schoenberg DR and Boris-
Lawrie K. (2006) RNA helicase A is necessary for translation of selected messenger 
RNAs. Nat. Struct. Mol. Biol. 13, 509-16. 
 
Hayashi Y, Kuroda T, Kishimoto H, Wang C, Iwama A and Kimura K. (2014) 
Downregulation of rRNA transcription triggers cell differentiation. PLoS One. 9, 
e98586.  
 
He LZ, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V, Cattoretti G and Pandolfi 
PP. (1997) Acute leukemia with promyelocytic features in PML/RARalpha transgenic 
mice. Proc. Natl. Acad. Sci. U S A. 94, 5302-7. 
 
He X, Byrd AK, Yun MK, Pemble CW, Harrison D, Yeruva L, Dahl C, Kreuzer KN, 
Raney KD and White SW. (2012) The T4 phage SF1B helicase Dda is structurally 
optimized to perform DNA strand separation. Structure. 20, 1189–1200. 
 
Heddi B, Martín-Pintado N, Serimbetov Z, Kari TMA and Phan AT. (2015) G-
quadruplexes with (4n-1) guanines in the G-tetrad core: formation of a G-triad·water 
complex and implication for small-molecule binding. Nucleic Acids Res. 44, 910–916. 
 
Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino 
K, Wagner H, Takeda K and Akira S. (2000) A Toll‐ like receptor recognizes bacterial 
DNA. Nature. 408, 740‐ 745.  
 



 177 

Henderson A, Wu Y, Huang YC, Chavez EA, Platt J, Johnson FB, Brosh RM Jr, Sen D, 
Lansdorp PM. (2014) Detection of G-quadruplex DNA in mammalian cells. Nucleic 

Acids Res. 42, 860–869. 
 
Hershman SG, Chen Q, Lee JY, Kozak ML, Yue P, Wang LS, Johnson FB. (2008) 
Genomic distribution and functional analyses of potential G-quadruplex forming 
sequences in Saccharomyces cerevisiae. Nucleic Acids Res. 36, 144–156.  
 
Hewitt G, Jurk D, Marques FDM, Correia-Melo C, Hardy T, Gackowska A, Anderson 
R, Taschuk M, Mann J and Passos JF. (2012) Telomeres are favoured targets of a 
persistent DNA damage response in ageing and stress-induced senescence. Nat 

Commun. 3, 708. 
 
Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM and Thaller C. 
(1992) 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell. 68, 
397-406. 
 
Hickson ID. (2003) RecQ helicases: caretakers of the genome. Nat. Rev. Cancer. 3, 
169-178. 
 
Hillestad LK. (1957) Acute Promyelocytc Leukemia. J. Intern. Med. 159, 189-194. 
 
Hilliker A. (2012) Analysis of RNA helicases in P-bodies and stress granules. Methods 

Enzymol. 511, 323–346. 
 
Ho PS and Carter M. (2011) DNA Structure: Alphabet Soup for the Cellular Soul, DNA 
Replication-Current Advances. Dr Herve Seligmann (Ed.). InTech. 
 
Hockensmith JW, Kubasek WL, Vorachek WR and von Hippel PH. (1986) Laser cross-
linking of nucleic acids to proteins. Methodology and first applications to the phage T4 
DNA replication system. J. Biol. Chem. 261, 3512-8. 
 
Hodgman TC. (1988) A new superfamily of replicative proteins. Nature.  333, 578. 
 
Hoffmann JA, Kafatos FC, Janeway CA and Ezekowitz RA. (1999) Phylogenetic 
perspectives in innate immunity. Science. 284, 1313‐ 1318.  
 
Holdeman LV, Kelley RW and Moore WEC. (1986) Family I Bacteroidaceae and genus 
I ψacteroides. In: Krieg NR and Holt JG (Eds.) ψergey’s εanual of Systematic 
Bacteriology. 1st ed. Williams and Wilkins. Baltimore, MD. 
 
Hooper C and Hilliker A. (2013) Packing them up and dusting them off: RNA helicases 
and mRNA storage. Biochim. Biophys. Acta. 1829, 824–834.   
 
Hörlein AJ, Näär AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, 
Söderström M, Glass CK and Rosenfeld MG. (1995) Ligand-independent repression by 
the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 377, 
397-404. 



 178 

Horner SM, Liu HM, Park HS, Briley J and Gale M Jr. (2011) Mitochondrial-associated 
endoplasmic reticulum membranes (MAM) form innate immune synapses and are 
targeted by hepatitis C virus. Proc. Natl. Acad. Sci. U S A. 108, 14590-14595.  
 
Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, 
Latz E and Fitzgerald KA. (2009) AIM2 recognizes cytosolic dsDNA and forms a 
caspase-1-activating inflammasome with ASC. Nature. 458, 514-8. 
 
Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, 
Conzelmann KK, Schlee M, Endres S and Hartmann G. (2006) 5'-Triphosphate RNA is 
the ligand for RIG-I. Science. 314, 994-997. 
 
Hou J, Zhou Y, Zheng Y, Fan J, Zhou W, Ng IO, Sun H, Qin L, Qiu S, Lee JM, Lo CM, 
Man K, Yang Y, Yang Y, Yang Y, Zhang Q, Zhu X, Li N, Wang Z, Ding G, Zhuang 
SM, Zheng L, Luo X, Xie Y, Liang A, Wang Z, Zhang M, Xia Q, Liang T, Yu Y and 
Cao X. (2014) Hepatic RIG-I Predicts Survival and Interferon-a Therapeutic Response 
in Hepatocellular Carcinoma. Cancer Cell. 25, 49-63. 
 
Hou XM, Wu WQ, Duan XL, Liu NN, Li HH, Fu J, Dou SX, Li M and Xi XG. (2015) 
Molecular mechanism of G-quadruplex unwinding helicase: sequential and repetitive 
unfolding of G-quadruplex by Pif1 helicase. Biochem J.  466, 189-99. 
 
Hu G, McQuiston T, Bernard A, Park YD, Qiu J, Vural A, Zhang N, Waterman SR, 
Blewett NH, Myers TG, Maraia RJ, Kehrl JH, Uzel G, Klionsky DJ and Williamson 
PR. (2015) A conserved mechanism of TOR-dependent RCK-mediated mRNA 
degradation regulates autophagy. Nat. Cell Biol. 17, 930–942. 
 
Hu J, He Y, Yan M, Zhu C, Ye W, Zhu H, Chen W, Zhang C and Zhang Z. (2013) Dose 
dependent activation of retinoic acid-inducible gene-I promotes both proliferation and 
apoptosis signals in human head and neck squamous cell carcinoma. PLoS One. 8, 
e58273. 
 
 Huang F, Zhang J, Zhang Y, Geng G, Liang J, Li Y, Chen J, Liu C and Zhang H. 
(2015) RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate 
Rev/RRE-dependent nuclear export of viral mRNAs. Virology. 486, 15–26.  
 
Huber MD, Lee DC and Maizels N. (2002) G4 DNA unwinding by BLM and Sgs1p: 
substrate specificity and substrate-specific inhibition. Nucleic Acids Res. 30, 3954–
3961. 
 
Hug N and Caceres JF. (2014) The RNA helicase DHX34 activates NMD by promoting 
a transition from the surveillance to the decay-inducing complex. Cell Rep. 8, 1845–
1856. 
 
Huppert JL and Balasubramanian S. (2005) Prevalence of quadruplexes in the human 
genome. Nucleic Acids Res. 33, 2908–2916. 
 
Huppert JL, Bugaut A, Kumari S, Balasubramanian S. (2008) G-quadruplexes: the 
beginning and end of UTRs. Nucleic Acids Res. 36, 6260–6268.  



 179 

Huppert JL. (2008) Four-stranded nucleic acids: structure, function and targeting of 
Gquadruplexes. Chem. Soc. Rev. 37, 1375-1384. 
 
Hurt JA and Silver PA. (2008) mRNA nuclear export and human disease. Dis. Model 

Mech. 1, 103 - 8.  
 
Idres N, Benoît G, Flexor MA, Lanotte M, Chabot GG. (2001) Granulocytic 
differentiation of human NB4 promyelocytic leukemia cells induced by all-trans 
retinoic acid metabolites. Cancer Res. 61, 700-5. 
 
Ilagan JO, Chalkley RJ, Burlingame AL and Jurica MS. (2013) Rearrangements within 
human spliceosomes captured after exon ligation. RNA. 19, 400–412. 
 
Ilyina TV, Gorbalenya AE and Koonin EV. (1992) Organization and evolution of 
bacterial and bacteriophage primase-helicase systems. J. Mol. Evol. 34, 351–57. 
 
Inn KS, Gack MU, Tokunaga F, Shi M, Wong LY, Iwai K and Jung JU. (2011) Linear 
ubiquitin assembly complex negatively regulates RIG-I- and TRIM25- mediated type I 
interferon induction. Mol. Cell. 41, 354-365. 
 
Irimia M and Blencowe BJ. (2012) Alternative splicing: decoding an expansive 
regulatory layer. Curr. Opin. Cell Biol. 24, 323–332. 
 
Isakson P, Bjørås M, Bøe SO and Simonsen A. (2010) Autophagy contributes to 
therapy-induced degradation of the PML/RARA oncoprotein. Blood. 116, 2324-31.  
 
Ishaq M, Ma L, Wu X, Mu Y, Pan J, Hu J, Hu T, Fu Q and Guo D. (2009) The DEAD-
box RNA helicase DDX1 interacts with RelA and enhances nuclear factor kappaB-
mediated transcription. J. Cell Biochem.106, 296 - 305. 
 
Ishikawa H and Barber GN. (2008) STING is an endoplasmic reticulum adaptor that 
facilitates innate immune signalling. Nature. 455, 674-678. 
 
Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ET, 
Strauss JF 3rd and Maul GG. (1999) PML is critical for ND10 formation and recruits 
the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. 
J. Cell Biol. 147, 221-34. 
 
Ivessa AS, Zhou JQ and Zakian VA. (2000) The Saccharomyces Pif1p DNA helicase 
and the highly related Rrm3p have opposite effects on replication fork progression in 
ribosomal DNA. Cell. 100, 479-89. 
 
 

Ivessa AS, Zhou JQ, Schulz VP, Monson EK and Zakian VA. (2002) Saccharomyces 
Rrm3p, a 5' to 3' DNA helicase that promotes replication fork progression through 
telomeric and subtelomeric DNA. Genes Dev. 16, 1383–1396. 
 
Jackson RN, Lavin M, Carter J and Wiedenheft B. (2014) Fitting CRISPR-associated 
Cas3 into the Helicase Family Tree. Curr. Opin. Struct.l Biol. 0, 106–114.  



 180 

Jeang KT and Yedavalli V. (2006) Role of RNA helicases in HIV-1 replication. Nucleic 

Acids Res. 34, 4198–4205.  
 
Jensen TH, Boulay J, Rosbash M and Libri D. (2001) The DECD box putative ATPase 
Sub2p is an early mRNA export factor. Curr. Biol. 11, 1711-1715. 
 
Jezewska MJ, Rajendran S and Bujalowski W. (1998) Complex of Escherichia coli 
primary replicative helicase DnaB protein with a replication fork: recognition and 
structure. Biochemistry. 37, 3116–3136. 
 
Jiang F, Ramanathan A, Miller MT, Tang GQ, Gale M Jr, Patel SS and Marcotrigiano J. 
(2011) Structural basis of RNA recognition and activation by innate immune receptor 
RIG-I. Nature 479, 423-427. 
 
Jiang LJ, Zhang NN, Ding F, Li XY, Chen L, Zhang HX, Zhang W, Chen SJ, Wang 
ZG, Li JM, Chen Z and Zhu J. (2011) RA-inducible gene-I induction augments STAT1 
activation to inhibit leukemia cell proliferation. Proc. Natl. Acad. Sci. USA. 108, 1897–
1902. 
 
Jiang X, Kinch LN, Brautigam CA, Chen X, Du F, Grishin NV and Chen ZJ. (2012) 
Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates 
antiviral innate immune response. Immunity. 36, 959-73.  
 
Jiang Y, Zhu Y, Liu ZJ and Ouyang S. (2017) The emerging roles of the DDX41 
protein in immunity and diseases. Protein Cell. 8, 83. 
 
Jin L, Waterman PM, Jonscher KR, Short CM, Reisdorph NA and Cambier JC. (2008) 
MPYS, a novel membrane tetraspanner, is associated with major histocompatibility 
complex class II and mediates transduction of apoptotic signals. Mol. Cell Biol. 28, 
5014-5026. 
 
Jing N, Gao X, Rando RF and Hogan ME. (1997) Potassium-induced loop 
conformational transition of a potent anti-HIV oligonucleotide. J. Biomol. Struct. Dyn. 
15, 573-585. 
 
Jing NJ, Marchand C, Liu J, Mitra R, Hogan ME and Pommier Y. (2000) Mechanism of 
inhibition of HIV-1 integrase by G-tetrad-forming oligonucleotides in vitro. J. Biol. 

Chem. 275, 21460-21467. 
 
Johnson JL. (1978) Taxonomy of the bacteroides. I: Deoxyribonucleic acid homologies 
among Bacteroides fragilis and other saccharolytic Bacteroides species. Int. J. Syst. 

Bacteriol. 28, 245–256. 
 
Johnson SJ and Jackson RN. (2013) Ski2-like RNA helicase structures: common themes 
and complex assemblies. RNA Biol. 10, 33–43.  
 
Jonas S and Izaurralde E. (2015) Towards a molecular understanding of microRNA-
mediated gene silencing. Nat. Rev. Genet. 16, 421-33. 
 
 



 181 

Jonveaux P, Le Coniat M, Derre J, Flexor MA, Daniel MT and Berger R. (1996) 
Chromosome microdissection in leukemia: a powerful tool for the analysis of complex 
chromosomal rearrangements. Genes Chromosomes Cancer.15, 26-33. 
 
Jounai N, Takeshita F, Kobiyama K, Sawano, A, Miyawaki A, Xin KQ, Ishii KJ, Kawai 
T, Akira S, Suzuki K and Okuda K. (2007) The Atg5 Atg12 conjugate associates with 
innate antiviral immune responses. Proc. Natl. Acad. Sci. USA. 104, 14050–14055. 
 
Jude CD, Gaudet JJ, Speck NA and Ernst P. (2008). Leukemia and hematopoietic stem 
cells: balancing proliferation and quiescence. Cell Cycle. 7, 586-591. 
 
Kanai Y, Dohmae N and Hirokawa N. (2004) Kinesin transports RNA: isolation and 
characterization of an RNA-transporting granule. Neuron. 43, 513 - 25. 
 
Kaneda Y. (2013) The RIG-I/MAVS signaling pathway in cancer cell-selective 
apoptosis. Oncoimmunology. 2, e23566. 
 
Kankia B, Gvarjaladze D, Rabe A, Lomidze L, Metreveli N and Musier-Forsyth K. 
(2016) Stable Domain Assembly of a Monomolecular DNA Quadruplex: Implications 
for DNA-Based Nanoswitches. Biophys. J. 110, 2169–2175. 
 
Kaplan Dδ, Davey εJ and O’Donnell ε. (β00γ) Mcm4,6,7 uses a "pump in ring" 
mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. 
J. Biol. Chem. 278, 49171–49182. 
 
Kaplan DL. (2000) The 3'-tail of a forked-duplex sterically determines whether one or 
two DNA strands pass through the central channel of a replication-fork helicase. J. Mol. 

Biol. 301, 285–299. 
 
Karlsen TA and Brinchmann JE. (2013) Liposome delivery of microRNA- 145 to 
mesenchymal stem cells leads to immunological off-target effects mediated by RIG-I. 
Mol. Ther. 21, 1169–1181. 
 
Karow AR and Klostermeier D. (2009) A conformational change in the helicase core is 
necessary but not sufficient for RNA unwinding by the DEAD box helicase YxiN. 
Nucleic Acids Res. 37, 4464-71. 
 
Kashyap V and Gudas LJ. (2010) Epigenetic regulatory mechanisms distinguish 
retinoic acid-mediated transcriptional responses in stem cells and fibroblasts. J. Biol. 

Chem. 285, 14534-48. 
 
Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, 
Takeda K, Fujita T, Takeuchi O and Akira S. (2005) Cell type-specific involvement of 
RIG-I in antiviral response. Immunity. 23, 19-28. 
 
Kato H, Takahasi K and Fujita T. (2011) RIG-I-like receptors: Cytoplasmic sensors for 
non-self RNA. Immunol. Rev. 243, 91-98. 
 
 



 182 

Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, Hiiragi A, 
Dermody TS, Fujita T and Akira S. (2008) Length-dependent recognition of double-
stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma 
differentiation–associated gene 5. J. Exp. Med. 205, 1601–1610.  
 
Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung 
A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, 
Matsuura Y, Fujita T and Akira S. (2006) Differential roles of MDA5 and RIG-I 
helicases in the recognition of RNA viruses. Nature. 441, 101-105. 
 
Kato Y, Ohyama T, Mita H, Yamamoto Y. (2005) Dynamics and thermodynamics of 
dimerization of parallel G-quadruplexed DNA formed from d(TTAGn) (n=3-5). J. Am. 

Chem. Soc. 127, 9980–9981.  
 
Kawai S and Amano A. (2012) BRCA1 regulates microRNA biogenesis via the 
DROSHA microprocessor complex. J. Cell Biol. 197, 201–208.  
 
Kawai T and Akira S. (2011) Toll-like receptors and their crosstalk with other innate 
receptors in infection and immunity. Immunity. 34, 637-650. 
 
Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O and 
Akira S. (2005) IPS-1, an adaptor triggering RIG-I- and Mda5- mediated type I 
interferon induction. Nat. Immunol. 6, 981-988.  
 
Kawaoka J, Jankowsky E and Pyle AM. (2004) Backbone tracking by the SF2 helicase 
NPH-II. Nat. Struct. Mol. Biol. 11, 526–530. 
 
Keil RL and McWilliams AD. (1993) A gene with specific and global effects on 
recombination of sequences from tandemly repeated genes in Saccharomyces 
cerevisiae. Genetics. 135, 711-8. 
 
Kelley S, Boroda S, Musier-Forsyth K and Kankia BI. (2011) HIV-integrase aptamer 
folds into a parallel quadruplex: a thermodynamic study. Biophys. Chem. 155, 82–88. 
 
Khanna-Gupta A, Kolibaba K, Zibello TA and Berliner N. (1994) NB4 cells show 
bilineage potential and an aberrant pattern of neutrophil secondary granule protein gene 
expression. Blood. 84, 294-302. 
 
Kim H and D'Andrea AD. (2012) Regulation of DNA cross-link repair by the Fanconi 
anemia/BRCA pathway. Genes Dev. 26, 1393-408. 
 
Kim JL,  Morgenstern KA,  Griffith JP,  Dwyer MD,  Thomson JA,  Murcko MA, Lin C 
and Caron PR (1998) Hepatitis C virus NS3 RNA helicase domain with a bound 
oligonucleotide: the crystal structure provides insights into the mode of unwinding. 
Structure. 6, 89-100. 
 
Kim MY, Vankayalapati H, Shin-Ya K, Wierzba K and Hurley LH. (2002) 
Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the 
human telomeric intramolecular G-quadruplex. J. Am. Chem. Soc. 124, 2098–2099.  
 



 183 

Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, 
Wright WE, Weinrich SL and Shay JW. (1994) Specific association of human 
telomerase activity with immortal cells and cancer. Science. 266, 2011–2015. 
 
Kim T, Pazhoor S, Bao M, Zhang Z, Hanabuchi S, Facchinetti V, Bover L, Plumas J, 
Chaperot L, Qin J and Liu YJ. (2010) Aspartateglutamate-alanine-histidine box motif 
(DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid 
dendritic cells. Proc. Natl. Acad. Sci. U S A. 107, 15181–15186. 
 
Kirschning CJ, Wesche H, Merrill Ayres T and Rothe M. (1998) Human toll-like 
receptor 2 confers responsiveness to bacterial lipopolysaccharide. J. Exp. Med. 188, 
2091–2097. 
 
Klostermeier D and Rudolph MG (2009) A novel dimerization motif inthe C-terminal 
domain of the Thermus thermophilus DEAD box helicase Hera confers substantial 
flexibility. Nucleic Acids Res. 37, 421-430. 
 
Kok KH, Lui PY, Ng MH, Siu KL, Au SW, Jin DY. (2011) The double-stranded RNA-
binding protein PACT functions as a cellular activator of RIG-I to facilitate innate 
antiviral response. Cell Host. Microbe.  9, 299-309. 
 
Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, 
de Jong L, Szostecki C, Calvo F and Chomienne C. (1994) The t(15;17) translocation 
alters a nuclear body in a retinoic acid-reversible fashion. EMBO J. 13, 1073-83. 
 
Komuro A and Horvath CM. (2006) RNA- and virus-independent inhibition of antiviral 
signaling by RNA helicase LGP2. J. Virol. 80, 12332-42. 
Kondo T, Mori A, Darmanin S, Hashino S, Tanaka J and Asaka M. (2008) The seventh 
pathogenic fusion gene FIP1L1-RARA was isolated from a t(4;17)-positive acute 
promyelocytic leukemia. Haematologica. 93, 1414-16. 
 
König SL, Evans AC and Huppert JL. (2010) Seven essential questions on G-
quadruplexes. Biomol. Concepts. 1, 197-213. 
 
Konno H, Yamamoto T, Yamazaki K, Gohda J, Akiyama T, Semba K, Goto H, Kato A, 
Yujiri T, Imai T, Kawaguchi Y, Su B, Takeuchi O, Akira S, Tsunetsugu-Yokota Y and 
Inoue J. (2009) TRAF6 establishes innate immune responses by activating NF-kappaB 
and IRF7 upon sensing cytosolic viral RNA and DNA. PLoS One. 4, e5674. 
 
Koodathingal P and Staley JP. (2013) Splicing fidelity: DEAD/H-box ATPases as 
molecular clocks. RNA Biol. 10, 1073–1079. 
 
Korolev S, Hsieh J, Gauss GH, Lohman TM and Waksman G. (1997) Major domain 
swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound 
to single-stranded DNA and ADP. Cell. 90, 635-47. 
 
Kouzaki H, Iijima K, Kobayashi T, O’Grady Sε and Kita H. (β011) The danger signal, 
extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and 
innate Th2-type responses. J. Immunol. 186, 4375–4387. 
 



 184 

Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J, Grigorov B, Gerlier D and 
Cusack S. (2011) Structural basis for the activation of innate immune pattern-
recognition receptor RIG-I by viral RNA. Cell. 147, 423-435.  
 
Krause DS, Lazarides K, Lewis JB, von Andrian UH and Van Etten RA. (2014) 
Selectins and their ligands are required for homing and engraftment of BCR-ABL1+ 
leukemic stem cells in the bone marrow niche. Blood. 123, 1361-71. 
 
Kressler D, Linder P and de La Cruz J. (1999) Protein trans-acting factors involved in 
ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell Biol. 19, 7897-912. 
 
Krol J, Krol I, Alvarez CP, Fiscella M, Hierlemann A, Roska B and Filipowicz W. 
(2015) A network comprising short and long noncoding RNAs and RNA helicase 
controls mouse retina architecture. Nat. Commun. 4, 7305. 
 
Kubler K, Gehrke N, Riemann S, Böhnert V, Zillinger T, Hartmann E, Pölcher M, 
Rudlowski C, Kuhn W, Hartmann G and Barchet W. (2010) Targeted activation of 
RNA helicase retinoic acid-inducible gene-I induces proimmunogenic apoptosis of 
human ovarian cancer cells. Cancer Res. 70, 5293-304. 
 
Kusumoto R, Dawut L, Marchetti C, Wan Lee J, Vindigni A, Ramsden D and Bohr VA. 
(2008) Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-
processing. Biochemistry.  47, 7548-56. 
 
Lahaye A, Leterme S, Foury F. (1993) Pif1 DNA helicase from Saccharomyces 
Cerevisiae. Biochemical characterization of the enzyme. J. Biol. Chem. 268, 26155–
26161. 
 
Lahaye A, Stahl H, Thines-Sempoux D and Foury F. (1991) PIF1: a DNA helicase in 
yeast mitochondria. EMBO J. 10, 997-1007.  
 
Lai MC, Chang WC, Shieh SY and Tarn WY. (2010) DDX3 regulates cell growth 
through translational control of cyclin E1. Mol. Cell. Biol. 30, 5444–5453. 
 
Lai MC, Lee YH and Tarn WY. (2008) The DEAD-box RNA helicase DDX3 associates 
with export messenger ribonucleoproteins as well as tip-associated protein and 
participates in translational control. Mol. Biol. Cell. 19, 3847–3858.  
 
Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L, Zhou J, Zhu 
J, Raught B and de Thé H. (2008) Arsenic degrades PML or PML-RARalpha through a 
SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol. 10, 547-55.  
 
Lane AN, Chaires JB, Gray RD and Trent, JO. (2008) Stability and kinetics of G-
quadruplex structures. Nucleic Acids Res. 36, 5482–5515.  
 
Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F and Berger R. (1991) 
NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute 
promyelocytic leukemia (M3). Blood. 77, 1080-6. 
 



 185 

Larson ED, Duquette ML, Cummings WJ, Streiff RJ and Maizels N. (2005) MutSalpha 
binds to and promotes synapsis of transcriptionally activated immunoglobulin switch 
regions. Curr Biol. 15, 470-4. 
 
Larson RS, Brown DC and Sklar LA. (1997) Retinoic acid induces aggregation of the 
acute promyelocytic leukemia cell line NB-4 by utilization of LFA-1 and ICAM-2. 
Blood.  90, 2747-56. 
 
Lässig C, Matheisl S, Sparrer KM, de Oliveira Mann CC, Moldt M, Patel JR, Goldeck 
M, Hartmann G, García-Sastre A, Hornung V, Conzelmann KK, Beckmann R and 
Hopfner KP. (2015) ATP hydrolysis by the viral RNA sensor RIG-I prevents 
unintentional recognition of self-RNA. eLife. 4, e10859.  
 
Lattmann S, Giri B, Vaughn JP, Akman SA and Nagamine Y. (2010) Role of the amino 
terminal RHAU-specific motif in the recognition and resolution of guanine quadruplex-
RNA by the DEAH-box RNA helicase RHAU. Nucleic Acids Res. 38, 6219-33. 
 
Laurent BC1, Treich I and Carlson M. (1993) The yeast SNF2/SWI2 protein has DNA-
stimulated ATPase activity required for transcriptional activation. Genes Dev. 7, 583-
91. 
 
Le Blancq SM, Kase RS and Van der Ploeg LH. (1991) Analysis of a Giardia lamblia 
rRNA encoding telomere with [TAGGG]n as the telomere repeat. Nucleic Acids Res. 
19, 5790. 
 
Le Guen T, Jullien L, Touzot F, Schertzer M, Gaillard L, Perderiset M, Carpentier W, 
Nitschke P, Picard C, Couillault G, Soulier J, Fischer A, Callebaut I, Jabado N, 
Londono-Vallejo A, de Villartay JP and Revy P. (2013) Human RTEL1 deficiency 
causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome 
instability. Hum. Mol. Genet. 22, 3239-49. 
 
Lebel M, Lavoie J, Gaudreault I, Bronsard M and Drouin R. (2003) Genetic cooperation 
between the Werner syndrome protein and poly(ADP-ribose) polymerase-1 in 
preventing chromatid breaks, complex chromosomal rearrangements, and cancer in 
mice. Am. J. Pathol. 162, 1559-69. 
 
Lech CJ, Heddi B and Phan AT. (2013) Guanine base stacking in G-quadruplex nucleic 
acids. Nucleic Acids Res. 41, 2034–2046 . 
 
Lee CG, Zamore PD, Green MR and Hurwitz J. (1993) RNA annealing activity is 
intrinsically associated with U2AF. J.Biol. Chem.  268, 13472–13478. 
 
Lee JY and Yang W. (2006) UvrD helicase unwinds DNA one base pair at a time by a 
two-part power stroke. Cell. 127, 1349-60. 
 
Legrand-Poels S, Kustermans G, Bex F, Kremmer E, Kufer TA and Piette J. (2007) 
Modulation of Nod2-dependent NF-kappaB signaling by the actin cytoskeleton. J. Cell. 

Sci. 120, 1299-310. 



 186 

Legües ME, Franco G and Bertin P. (2002) Pilot study of PML/RAR alpha fusion by 
fluorescence in situ hybridization (FISH)method in acute promyelocyte leukemia. Rev. 

Med. Chil. 130, 737-44. 
 
Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen JY, Staub 
A, Garnier JM, Mader S and Chambon P (1992) Purification, cloning, and RXR identity 
of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences 
efficiently. Cell. 68, 377-95. 
 
León-Ortiz AM, Svendsen J and Boulton SJ. (2014) Metabolism of DNA secondary 
structures at the eukaryotic replication fork. DNA Repair (Amst). 19, 152-62. 
 
Leung DW and Amarasinghe GK. (2016) When your cap matters: structural insights 
into self vs non-self recognition of 5’ RNχ by immunomodulatory host proteins. Curr. 

Opin. Struct. Biol. 36, 133–141. 
 
Leung DW, Basler CF and Amarasinghe GK. (2012) Molecular mechanisms of viral 
inhibitors of RIG-I-like receptors. Trends Microbiol. 20, 139-146. 
 
Levin MK, Gurjar M and Patel SS. (2005) A Brownian motor mechanism of 
translocation and strand separation by hepatitis C virus helicase. Nat. Struct. Mol. 

Biol.  12, 429-35.  
 
Levy DE and Darnell JE Jr. (2002) Stats: transcriptional control and biological impact. 
Nat. Rev. Mol. Cell. Biol. 3, 651-62 
 
Ley RE, Backhed F, Turnbaugh PJ, Lozupone CA, Knight RD and Gordon JI. (2005) 
Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA. 102, 11070-11075. 
 
Ley RE, Turnbaugh PJ, Klein S and Gordon JI. 2006. Microbial ecology: human gut 
microbes associated with obesity. Nature. 444, 1022-1023. 
 
Li J, Brieher WM, Scimone ML, Kang SJ, Zhu H, Yin H, von Andrian UH, Mitchison 
T and Yuan J. (2007) Caspase-11 regulates cell migration by promoting Aip1-Cofilin-
mediated actin depolymerization. Nat Cell Biol. 9, 276-86. 
 
Li QJ, Tong XJ, Duan YM and  Zhou JQ. (2013) Characterization of the intramolecular 
G-quadruplex promoting activity of Est1. FEBS Lett. 587, 659-65. 
 
Li W, Chen H, Sutton T, Obadan A and Perez DR. (2014) Interactions between the 
influenza A virus RNA polymerase components and retinoic acid-inducible gene I. J. 

Virol. 88, 10432-47. 
 
Li X, Ranjith-Kumar CT, Brooks MT, Dharmaiah S, Herr AB, Kao C and Li P. (2009) 
The RIG-I-like receptor LGP2 recognizes the termini of double-stranded RNA. J. Biol. 

Chem. 284, 13881-91. 
 
Li XD, Wu J, Gao D, Wang H, Sun L and Chen ZJ. (2013) Pivotal roles of cGAS-
cGAMP signaling in antiviral defense and immune adjuvant effects. Science. 341, 
1390–1394. 



 187 

Li XY, Jiang LJ, Chen L, Ding ML, Guo HZ, Zhang W, Zhang HX, Ma XD, Liu XZ, 
Xi XD, Chen SJ, Chen Z and Zhu J. (2014) RIG-I modulates Src-mediated AKT 
activation to restrain leukemic stemness. Mol. Cell. 53, 407-19. 
 
Li Y, Chen R, Zhou Q, Xu Z, Li C, Wang S, Mao A, Zhang X, He W and Shu HB. 
(2012) LSm14A is a processing body-associated sensor of viral nucleic acids that 
initiates cellular antiviral response in the early phase of viral infection. Proc. Natl. 

Acad. Sci. U S A. 109, 11770–11775. 
 
Lia G, Praly E, Ferreira H, Stockdale C, Tse-Dinh YC, Dunlap D, Croquette V, 
Bensimon D and Owen-Hughes T. (2006) Direct observation of DNA distortion by the 
RSC complex. Mol. Cell. 21, 417–425. 
 
Licht JD. (2006) Reconstructing a disease: What essential features of the retinoic acid 
receptor fusion oncoproteins generate acute promyelocytic leukemia? Cancer Cell.  9, 
73-4. 
 
Lim KW, Alberti P, Guédin A, Lacroix L, Riou JF, Royle NJ, Mergny JL and Phan AT. 
(2009) Sequence variant (CTAGGG)n in the human telomere favors a G-quadruplex 
structure containing a G·C·G·C tetrad. Nucleic Acids Res. 37, 6239–6248.  
 
Lim YJ, Koo JE, Hong EH, Park ZY, Lim KM, Bae ON and Lee JY. (2015) A Src-
family-tyrosine kinase, Lyn, is required for efficient IFN-ȕ expression in pattern 
recognition receptor, RIG-I, signal pathway by interacting with IPS-1. Cytokine. 72, 63-
70. 
 
Lin RJ and Evans RM. (2000) Acquisition of oncogenic potential by RAR chimeras in 
acute promyelocytic leukemia through formation of homodimers. Mol. Cell. 5, 821-30. 
Lipps HJ and Rhodes D. (2009) G-quadruplex structures: in vivo evidence and function. 
Trends Cell Biol. 19, 414-22. 
 
Liu B, Baskin RJ, Kowalczykowski SC. (2013) DNA unwinding heterogeneity by 
RecBCD results from static molecules able to equilibrate. Nature. 500, 482–85. 
 
Liu HM, Jiang F, Loo YM, Hsu S, Hsiang TY, Marcotrigiano J and Gale MJ (2016) 
Regulation of retinoic acid inducible gene-I (RIG-I) activation by the histone 
deacetylase 6. EBioMedicine. 9, 195–206. 
 
Liu HM, Loo YM, Horner SM, Zornetzer GA, Katze MG, Gale M Jr. (2012) The 
mitochondrial targeting chaperone 14-3-3İ regulates a RIG-I translocon that mediates 
membrane association and innate antiviral immunity. Cell Host. Microbe. 11, 528-37.  
 
Liu NN, Duan XL, Ai X, Yang YT, Li M, Dou SX, Rety S, Deprez E and Xi XG.The 
Bacteroides sp. 3_1_23 Pif1 protein is a multifunctional helicase. Nucleic Acids Res. 43, 
8942-54. 
Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ, Tong JH, Lanotte M, 
Waxman S, Chen SJ, Mao M, Hu GX, Zhu L and Chen Z. (2000) Gene expression 
networks underlying retinoic acid-induced differentiation of acute promyelocytic 
leukemia cells. Blood. 96, 1496-504. 
 



 188 

Liu Y, Kao HI, Bambara RA. (2004) Flap endonuclease 1: a central component of DNA 
metabolism. Annu. Rev. Biochem.  73, 589-615.  
 
Liu Y. (2010) Rothmund-Thomson syndrome helicase, RECQ4: On the crossroad 
between DNA replication and repair. DNA Repair (Amst). 9, 325-30. 
 
Liu Z, Dou C, Yao B, Xu M, Ding L, Wang Y, Jia Y, Li Q, Zhang H, Tu K, Song T and 
Liu Q. (2016) Ftx non coding RNA-derived miR-545 promotes cell proliferation by 
targeting RIG-I in hepatocellular carcinoma. Oncotarget. 7, 25350–25365. 
 
Lohman TM and Bjornson KP. (1996) Mechanisms of helicase-catalyzed DNA 
unwinding. Annu Rev Biochem.  65, 169-214.  
 
Lohman TM. (1992) Escherichia coli DNA helicases: mechanisms of DNA unwinding. 
Mol. Microbiol. 6, 5–14. 
 
Lomidze L, Kelley S, Gogichaishvili S, Metreveli N, Musier-Forsyth K and Kankia B. 
(2016) Sr(2+) induces unusually stable d(GGGTGGGTGGGTGGG) quadruplex 
dimers. Biopolymers. 105, 811-8. 
 
London TB, Barber LJ, Mosedale G, Kelly GP, Balasubramanian S, Hickson ID, 
Boulton SJ and Hiom K. (2008) FANCJ is a structure-specific DNA helicase associated 
with the maintenance of genomic G/C tracts. J. Biol. Chem. 283, 36132-9. 
 
Loo YM and Gale M Jr. (2011) Immune signaling by RIG-I-like receptors. Immunity. 

34, 680-692. 
 

Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, 
Gill MA, García-Sastre A, Katze MG and Gale M Jr. (2008) Distinct RIG-I and MDA5 
signaling by RNA viruses in innate immunity. J. Virol. 82, 335–345. 
 
Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, Teulade-Fichou MP, Foiani M 
and Nicolas A. (2011) G-quadruplex-induced instability during leading-strand 
replication. EMBO J. 30, 4033–4046.  
 
Lopes J, Ribeyre C, Nicolas A. (2006) Complex minisatellite rearrangements generated 
in the total or partial absence of Rad27/hFEN1 activity occur in a single generation and 
are Rad51 and Rad52 dependent. Mol. Cell Biol.  26, 6675-89. 
 
Louber J and Gerlier D. (2010) εotifs d’χRN viraux et récepteurs de type RIG-I 
déclencheurs de l’interféron. Virologie. 14, 203-16. 
 
Lu C, Xu H, Ranjith-Kumar CT, Brooks MT, Hou TY, Hu F, Herr AB, Strong RK, Kao 
CC and δi P. (β010) The Structural ψasis of 5’ Triphosphate Double-Stranded RNA 
Recognition by RIG-I C-Terminal Domain. Structure. 18, 1032-43.  
Lu KY, Chen WF, Rety S, Liu NN, Wu WQ, Dai YX, Li D, Ma HY, Dou SX, Xi XG. 
(2017) Insights into the structural and mechanistic basis of multifunctional S. 

cerevisiae Pif1p helicase, Nucleic Acids Res. gkx1217. 
 



 189 

Lucic B, Zhang Y, King O, Mendoza-Maldonado R, Berti M, Niesen FH, Burgess-
Brown NA, Pike ACW, Cooper CDO, Gileadi O and Vindigni A. (2011) A 
prominent β-hairpin structure in the winged-helix domain of RECQ1 is required for 
DNA unwinding and oligomer formation. Nucleic Acids Res. 39, 1703–1717. 
 
Lue NF. (2004) Adding to the ends: what makes telomerase processive and how 
important is it? BioEssays. 26, 955-962. 
 
Lue NF. (2010) Plasticity of telomere maintenance mechanisms in yeast. Trends. 

Biochem. Sci. 35, 8–17.  
 
Lüking A, Stahl U and Schmidt U. (1998) The protein family of RNA helicases. Crit. 
Rev. Biochem. Mol. Biol. 33, 259-96. 
 
Lund MK and Guthrie C. (2005) The DEAD-box protein Dbp5p is required to 
dissociate Mex67p from exported mRNPs at the nuclear rim. Mol. Cell. 20, 645-51. 
 
Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD and Pyle AM. (2011) Structural 
insights into RNA recognition by RIG-I. Cell.  147, 409-22.  
 
Luo ML, Zhou Z, Magni K, Christoforides C, Rappsilber J, Mann M and Reed R. 
(2001) Pre-mRNA splicing and mRNA export linked by direct interactions between 
UAP56 and Aly. Nature. 413, 644-647. 
 
Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ. (2006) Structure of the human 
telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. J. Am. Chem. 

Soc.  128, 9963–9970. 
 
Lykke-Andersen S and Jensen TH. (2015) Nonsense-mediated mRNA decay: an 
intricate machinery that shapes transcriptomes. Nat. Rev. Mol. Cell Biol. 16, 665–677. 
 
Machwe A, Lozada EM, Xiao L and Orren DK. (2006) Competition between the DNA 
unwinding and strand pairing activities of the Werner and Bloom syndrome proteins. 
BMC. Mol. Biol. 7, 1. 
 
Macris MA, Krejci L, Bussen W, Shimamoto A and Sung P. (2006) Biochemical 
characterization of the RECQ4 protein, mutated in Rothmund-Thomson syndrome. 
DNA Repair (Amst). 5, 172-180. 
 
Macy JM. (1984) The biology of gastrointestinal Bacteroides. Ann. Rev. Microbiol. 33, 
561–594. 
 
Maelfait J and Beyaert R. (2012) Emerging role of ubiquitination in antiviral RIG-I 
signaling. Microbiol. Mol. Biol. Rev. 76, 33-45.  
Maharaj NP, Wies E, Stoll A and Gack MU. (2012) Conventional protein kinase C-
alpha (PKCalpha) and PKC-beta negatively regulate RIG-I antiviral signal transduction. 
J. Virol. 86, 1358-137. 
 
Maizels N and Gray LT.  (2013) The G4 Genome. PLoS Genet. 9, e1003468. 
 



 190 

Makarov VL, Hirose Y and Langmore JP. (1997) Long G tails at both ends of human 
chromosomes suggest a C strand degradation mechanism for telomere shortening. 
Cell.  88, 657–666. 
 
Makovets S and Blackburn EH. (2009) DNA damage signalling prevents deleterious 
telomere addition at DNA breaks. Nat. Cell Biol. 11, 1383–1386.  
 
Malathi K, Dong B, Gale M and Silverman RH. (2007) Small self-RNA generated by 
RNase L amplifies antiviral innate immunity. Nature. 448, 816–819.  
 
Mangelsdorf DJ, Evans RM. (1995) The RXR heterodimers and orphan receptors. Cell. 
83, 841-50. 
 
Mark M, Ghyselinck NB, Wendling O, Dupé V, Mascrez B, Kastner P and Chambon P. 
(1999) A genetic dissection of the retinoid signalling pathway in the mouse. Proc. Nutr. 

Soc. 58, 609-13.  
 
Marq JB, Hausmann S, Veillard N, Kolakofsky D and Garcin D. (2011) Short double-
stranded RNχs with an overhanging 5’ pppnucleotide, as found in arenavirus genomes, 
act as RIG-I decoys. J. Biol. Chem. 286, 6108–6116. 
 
Marq JB, Kolakofsky D and Garcin D. (2010) Unpaired 5’ ppp-nucleotides, as found in 
arenavirus double-stranded RNA panhandles, are not recognized by RIG-I. J. Biol. 

Chem. 285, 18208–18216. 
 
Martadinata H and Phan AT. (2009) Structure of propeller-type parallel-stranded RNA 
G-quadruplexes, formed by human telomeric RNA sequences in K+ solution. J. Am. 

Chem. Soc. 131, 2570–2578. 
 
Martens JH and Stunnenberg HG. (2010) The molecular signature of oncofusion 
proteins in acute myeloid leukemia. FEBS Lett.  584, 2662-9.  
 
Martínez P and Blasco MA. (2011) Telomeric and extra-telomeric roles for telomerase 
and the telomere-binding proteins. Nat. Rev. Cancer. 11, 161-76. 
 
Martinon F and Tschopp J. (2004) Inflammatory caspases: linking an intracellular 
innate immune system to autoinflammatory diseases. Cell. 117, 561-74. 
 
Masuda-Sasa T, Polaczek P and Campbell JL. (2006) Single strand annealing and ATP-
independent strand exchange activities of yeast and human DNA2: Possible role in 
Okazaki fragment maturation. J. Biol. Chem. 281, 38555–38564. 
 
Mathieu J and Besançon F. (2006) Arsenic trioxide represses NF-kappaB activation and 
increases apoptosis in ATRA-treated APL cells. Ann. N. Y. Acad. Sci. 1090, 203-8. 
Matson SW, Bean DW and George JW. (1994) DNA helicases: enzymes with essential 
roles in all aspects of DNA metabolism. Bioessays. 16, 13-22. 
 



 191 

Matsumiya T, Imaizumi T, Yoshida H, Satoh K, Topham MK and Stafforini DM. 
(2009) The levels of retinoic acid-inducible gene I are regulated by heat shock protein 
90-alpha. J. Innunol. 182, 2717-25. 
 
Mazmanian SK and Kasper DL. (2006) The love-hate relationship between bacterial 
polysaccharides and the host immune system. Nat. Rev. Immunol. 6, 849-858. 
 
Mazmanian SK, Liu CH, Tzianabos AO and Kasper DL. (2005) An immunomodulatory 
molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 122, 
107-118. 
 
McCartney SA, Thackray LB, Gitlin L, Gilfillan S, Virgin HW and Colonna M. (2008). 
MDA-5 recognition of a murine norovirus. PLoS Pathog. 4, e1000108. 
 
McGeoch AT, Trakselis MA, Laskey RA and Bell SD. (2005) Asymmetric interactions 
of hexameric bacteriophage T7 DNA helicase with the 5'- and 3'-tails of the forked 
DNA substrate. Nat. Struct.Mol. Biol. 12, 756–762. 
 
McInerney EM, Rose DW, Flynn SE, Westin S, Mullen TM, Krones A, Inostroza J, 
Torchia J, Nolte RT, Assa-Munt N, Milburn MV, Glass CK and Rosenfeld MG. (1998) 
Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional 
activation. Genes Dev. 12, 3357-68. 
 
Medzhitov R, Preston‐ Hurlburt P and Janeway CA Jr. (1997) A human homologue of 
the Drosophila Toll protein signals activation of adaptive immunity. Nature. 388, 394‐
397.  
 
Meetei AR, de Winter JP, Medhurst AL, Wallisch M, Waisfisz Q, van de Vrugt HJ, 
Oostra AB, Yan Z, Ling C, Bishop CE, Hoatlin ME, Joenje H and Wang W. (2003) A 
novel ubiquitin ligase is deficient in Fanconi anemia. Nat. Genet. 35, 165-70.  
 
Mehta K, McQueen T, Neamati N, Collins S and Andreeff M. (1996) Activation of 
retinoid receptors RAR alpha and RXR alpha induces differentiation and apoptosis, 
respectively, in HL-60 cells. Cell Growth Differ. 7, 179-86. 
 
Melnick A, Fruchtman S, Zelent A, Liu M, Huang Q, Boczkowska B, Calasanz M, 
Fernandez A, Licht JD and Najfeld V. (1999) Identification of novel chromosomal 
rearrangements in acute myelogenous leukemia involving loci on chromosome 2p23, 
15q22 and 17q21. Leukemia. 13, 1534-8. 
 
Mendoza O, Bourdoncle A, Boulé JB, Brosh RM Jr and Mergny JL. (2016) G-
quadruplexes and helicases. Nucleic Acids Res. 44, 1989–2006. 
 
Mergny JL, Phan AT and Lacroix L. (1998) Following G-quartet formation by UV-
spectroscopy. FEBS Lett. 435, 74-78.  
 
Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R and 
Tschopp J. (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is 
targeted by hepatitis C virus. Nature. 437, 1167-1172. 
 



 192 

Mi Z, Fu J, Xiong Y and Tang H. (2010) SUMOylation of RIG-I positively regulates 
the type I interferon signaling. Prot. Cell. 1, 275-283. 
 
Minucci S, Maccarana M, Cioce M, De Luca P, Gelmetti V, Segalla S, Di Croce L, 
Giavara S, Matteucci C, Gobbi A, Bianchini A, Colombo E, Schiavoni I, Badaracco G, 
Hu X, Lazar MA, Landsberger N, Nervi C and Pelicci PG. (2000) Oligomerization 
of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. 
Mol. Cell. 5, 811-20. 
 
Mitsui Y, Langridge R, Shortle BE, Cantor CR, Grant RC, Kodama M and Wells RD. 
(1970) Physical and enzymatic studies on poly d(I-C)-poly d(I-C), an unusual double-
helical DNA. Nature. 228, 1166-9. 
 
Mizel SB, West AP and Hantgan RR. (2003) Identification of a sequence in human toll-
like receptor 5 required for the binding of Gramnegative flagellin. J. Biol. Chem. 278, 
23624–23629. 
 
Modelska A, Turro E, Russell R, Beaton J, Sbarrato T, Spriggs K, Miller J, Gräf S, 
Provenzano E, Blows F, Pharoah P, Caldas C and Le Quesne J. (2015) The malignant 
phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational 
landscape. Cell Death Dis. 6, e1603. 
 
Mohr G, Del Campo M, Mohr S, Yang Q, Jia H, Jankowsky E and Lambowitz AM 
(2008) Function of the C-terminal domain of theDEAD-box protein Mss116p analyzed 
in vivo and in vitro. J Mol Biol. 375, 1344-1364 
 
Monie TP, Moncrieffe MC and Gay NJ. (2009) Structure and regulation of cytoplasmic 
adapter proteins involved in innate immune signaling. Immunol. Rev. 227, 161-75. 
 
Monson EK, de Bruin D and Zakian VA (1997) The yeast Cac1 protein is required for 
the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc. Natl 

Acad. Sci. U.S.A. 94, 13081–13086. 
 
Morosky SA, Zhu J, Mukherjee A, Sarkar SN and Coyne CB. (2011) Retinoic acid-
induced gene-I (RIG-I) associates with nucleotide-binding oligomerization domain-2 
(NOD2) to negatively regulate inflammatory signaling. J. Biol. Chem. 286, 28574-83. 
 
Motiño O, Francés DE, Mayoral R, Castro-Sánchez L, Fernández-Velasco M, Boscá L, 
García-Monzón C, Brea R, Casado M, Agra N, Martín-Sanz P. (2015) Regulation of 
microRNA 183 by cyclooxygenase 2 in liver is DEAD-box helicase p68 (DDX5) 
dependent: role in insulin signaling. Mol. Cell. Biol. 35, 2554–2567.   
 
Moy RH, Cole BS, Yasunaga A, Gold B, Shankarling G, Varble A, Molleston JM, 
tenOever BR, Lynch KW and Cherry S. (2014) Stem-loop recognition by DDX17 
facilitates miRNA processing and antiviral defense. Cell. 158, 764–777.  
 



 193 

Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, 
Ratliff RL, and Wu JR. (1988) A highly conserved repetitive DNA sequence, 
(TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S 

A. 85, 6622–6626. 
 
Mu X, Ahmad S and Hur S. (2016) Endogenous retroelements and the host innate 
immune sensors. Adv. Immunol. 132, 47–69. 
 
Muchardt C and Yaniv M. (1993) A human homologue of Saccharomyces cerevisiae 
SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the 
glucocorticoid receptor. EMBO J. 12, 4279-90. 
 
Muftuoglu M, Kulikowicz T, Beck G, Lee JW, Piotrowski J and Bohr VA. (2008)  
Intrinsic ssDNA annealing activity in the C-terminal region of WRN. Biochemistry. 47, 
10247-10254. 
 
Muftuoglu M, Sharma S, Thorslund T, Stevnsner T, Soerensen MM, Brosh RM Jr and 
Bohr VA. (2006) Cockayne syndrome group B protein has novel strand annealing and 
exchange activities. Nucleic Acids Res. 34, 295–304.  
 
Muindi J, Frankel SR, Miller WH Jr, Jakubowski A, Scheinberg DA, Young CW, 
Dmitrovsky E and Warrell RP Jr. (1992) Continuous treatment with all-trans retinoic 
acid causes a progressive reduction in plasma drug concentrations: implications for 
relapse and retinoid "resistance" in patients with acute promyelocytic leukemia. Blood. 
79, 299-303.  
 
Mukherjee A, Morosky SA, Shen L, Weber CR, Turner JR, Kim KS, Wang T, Coyne 
CB. (2009) Retinoic Acid-induced Gene-1 (RIG-I) associates with the actin 
cytoskeleton via caspase activation and recruitment domain-dependent interactions. J. 

Biol. Chem. 284, 6486–6494. 
 
Mukundan VT and Phan AT. (2013) Bulges in G-quadruplexes: broadening the 
definition of G-quadruplex-forming sequences. J. Am. Chem. Soc. 135, 5017-28. 
 
Mullen MA, Olson KJ, Dallaire P, Major F, Assmann SM and Bevilacqua PC. (2010) 
RNA G-quadruplexes in the model plant species Arabidopsis thaliana: prevalence and 
possible functional roles. Nucleic Acids Res. 38, 8149–8163.  
 
Muller UF, Lambert L and Goringer HU. (2001) Annealing of RNA editing substrates 
facilitated by guide RNA-binding protein gBP21. EMBO J. 20, 1394-1404. 
 
Muzzolini L, Beuron F, Patwardhan A, Popuri V, Cui S, Niccolini B, Rappas M, 
Freemont PS and Vindigni A. (2007) Different quaternary structures of human RECQ1 
are associated with its dual enzymatic activity. PLoS Biology. 5, e20. 
 
Myong S, Cui S, Cornish PV, Kirchhofer A, Gack MU, Jung JU, Hopfner KP and Ha T. 
(2009) Cytosolic viral sensor RIG-I is a 5′-triphosphate dependent translocase on double 
stranded RNA. Science. 323, 1070–1074.  



 194 

Nadanaciva S, Weber J, Wilke-Mounts S and Senior AE. (1999) Importance of F1-
ATPase residue alpha-Arg-376 for catalytic transition state stabilization. Biochemistry. 
38, 15493-9. 
 
Nagpal S, Friant S, Nakshatri H, Chambon P. (1993) RARs and RXRs: evidence for 
two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in 
vivo. EMBO J. 12, 2349-60. 
 
Nagy L, Thomázy VA, Shipley GL, Fésüs L, Lamph W, Heyman RA, Chandraratna 
RA, Davies PJ. Activation of retinoid X receptors induces apoptosis in HL-60 cell lines. 
Mol. Cell Biol. 15, 3540-51. 
 
Najfeld V, Scalise A and Troy K. (1989) A new variant translocation 11;17 in a patient 
with acute promyelocytic leukemia together with t(7;12). Cancer Genet. Cytogenet. 43, 
103-8. 
 
Naji S, χmbrus G, Cimermančič P, Reyes JR, Johnson JR, Filbrandt R, Huber εD, 
Vesely P, Krogan NJ, Yates JR 3rd, Saphire AC and Gerace L. (2011) Host cell 
interactome of HIV-1 Rev includes RNA helicases involved in multiple facets of virus 
production. Mol. Cell. Proteomics. 11, M111.015313. 
 
Nakajima T, Uchida C, Anderson SF, Lee CG, Hurwitz J, Parvin JD and Montminy M. 
(1997) RNA helicase A mediates association of CBP with RNA polymerase II. Cell. 90, 
1107-12 
 
Nakamaki T, Hino K, Yokoyama A, Hisatake J, Tomoyasu S, Honma Y, Hozumi M 
and Tsuruoka N. (1994) Effect of cytokines on the proliferation and differentiation of 
acute promyelocytic leukemia cells: possible relationship to the development of 
"retinoic acid syndrome". Anticancer. Res.  14, 817-23. 
 
Naqvi A, Tinsley E and Khan SA. (2003) Purification and characterization of the PcrA 
helicase of Bacillus anthracis. J. Bacteriol. 185, 6633-6639. 
 
Nasr R, Guillemin MC, Ferhi O, Soilihi H, Peres L, Berthier C, Rousselot P, Robledo-
Sarmiento M, Lallemand-Breitenbach V, Gourmel B, Vitoux D, Pandolfi PP, Rochette-
Egly C, Zhu J and de Thé H. (2008) Eradication of acute promyelocytic leukemia-
initiating cells through PML-RARA degradation. Nat. Med. 14, 1333-42. 
 
Nelson SW and Benkovic SJ. (2007) The T4 phage UvsW protein contains both DNA 
unwinding and strand annealing activities. J. Biol. Chem. 282, 407–416. 
 
Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL, Wyman C, Modrich 
P and Kowalczykowski SC. (2011) BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-
MRN constitute two DNA end resection machineries for human DNA break repair. 
Genes Dev. 25, 350-62. 
 
Nistal-Villán E, Gack MU, Martínez-Delgado G, Maharaj NP, Inn KS, Yang H, Wang 
R, Aggarwal AK, Jung JU and García-Sastre, A. (2010) Negative role of RIG-I serine 8 
phosphorylation in the regulation of interferon-beta production. J. Biol. Chem. 285, 
20252-20261. 



 195 

Niu C, Yan H, Yu T, Sun HP, Liu JX, Li XS, Wu W, Zhang FQ, Chen Y, Zhou L, Li 
JM, Zeng XY, Yang RR, Yuan MM, Ren MY, Gu FY, Cao Q, Gu BW, Su XY, Chen 
GQ, Xiong SM, Zhang TD, Waxman S, Wang ZY, Chen Z, Hu J, Shen ZX and Chen 
SJ. (1999) Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: 
remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 
47 relapsed acute promyelocytic leukemia patients. Blood. 94, 3315-24. 
 
Niu H, Chung WH, Zhu Z, Kwon Y, Zhao W, Chi P, Prakash R, Seong C, Liu D, Lu L, 
Ira G and Sung P. (2010) Mechanism of the ATP-dependent DNA end-resection 
machinery from Saccharomyces cerevisiae. Nature. 467, 108–11. 
 
Oganesian L, Graham ME, Robinson PJ and Bryan TM. (2007) Telomerase recognizes 
G-quadruplex and linear DNA as distinct substrates. Biochemistry. 46, 11279–11290. 
 
Oganesian L, Moon IK, Bryan TM and Jarstfer MB. (2006) Extension of G-quadruplex 
DNA by ciliate telomerase. EMBO J. 25, 1148–1159.  
 
Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B, Perry A and Cheng 
G. (2006) Critical role of TRAF3 in the Toll-like receptor-dependent and -independent 
antiviral response. Nature. 439, 208-211.  
 
Oh-Ishi M and Maeda T. (2007) Disease proteomics of high-molecular-mass proteins 
by two-dimensional gel electrophoresis with agarose gels in the first dimension 
(Agarose 2-DE). J. Chromatogr. A. 849, 211-222. 
 
Okazaki R, Okazaki T, Sakabe K, Sugimoto K, Sugino A. (1968) Mechanism of DNA 
chain growth. I. Possible discontinuity and unusual secondary structure of newly 
synthesized chains. Proc. Natl. Acad. Sci. U S A. 59, 598-605.  
 
Oliver WW and Wherry WB. (1921) Notes on some bacterial parasites of the human 
mucous membranes. J. Infect. Dis. 28, 341–345. 
 
Opresko PL, Mason PA, Podell ER, Lei M, Hickson ID, Cech TR and Bohr VA. 
(2005) POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA 
substrates. J. Biol. Chem. 280, 32069–32080.  
 
Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kolvraa S, May A, Seidman 
MM and Bohr VA. (2004) The Werner syndrome helicase and exonuclease cooperate to 
resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol. Cell. 14, 
763–774.  
 
Orkin SH, Zon LI. (2008) Hematopoiesis: an evolving paradigm for stem cell biology. 
Cell. 132, 631-44.  
 
Orzalli MH, Broekema NM, Diner BA, Hancks DC, Elde NC, Cristea IM and Knipe 
DM. (2015) cGAS-mediated stabilization of IFI16 promotes innate signaling during 
herpes simplex virus infection. Proc. Natl. Acad. Sci. U S A. 112, E1773–E1781. 
 



 196 

Oshiumi H, Matsumoto M, Hatakeyama S and Seya T. (2009) Riplet/RNF135, a RING 
finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early 
phase of viral infection. J. Biol. Chem. 284, 807-817. 
 
Oshiumi H, Miyashita M, Matsumoto M and Seya T. (2013) A distinct role of Riplet-
mediated K63- Linked polyubiquitination of the RIG-I repressor domain in human 
antiviral innate immune responses. PLoS Pathog. 9, e1003533. 
 
Paeschke K, Bochman ML, Garcia PD, Cejka P, Friedman KL, Kowalczykowski SC 
and Zakian VA. (2013) Pif1 family helicases suppress genome instability at G-
quadruplex motifs. Nature. 497, 458–462. 
 
Paeschke K, Capra JA and Zakian VA. (2011) DNA replication through G-quadruplex 
motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell. 145, 
678–691.  
 
Paeschke K, McDonald KR and Zakian VA. (2010) Telomeres: structures in need of 
unwinding. FEBS Lett. 584, 3760–72. 
 
Paeschke K, Simonsson T, Postberg J, Rhodes D and Lipps HJ. (2005) Telomere end-
binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat. 

Struct. Mol. Biol. 12, 847–854.  
 
Paludan SR, Bowie AG, Horan KA and Fitzgerald KA. (2011) Recognition of 
herpesviruses by the innate immune system. Nat. Rev. Immunol. 11, 143-154. 
 
Pandolfi PP, Alcalay M, Fagioli M, Zangrilli D, Mencarelli A, Diverio D, Biondi A, Lo 
Coco F, Rambaldi A and Grignani F. (1992) Genomic variability and alternative 
splicing generate multiple PML/RAR alpha transcripts that encode aberrant PML 
proteins and PML/RAR alpha isoforms in acute promyelocytic leukaemia. EMBO J. 11, 
1397-407. 
 
Parkinson GN, Lee MP and Neidle S. (2002) Crystal structure of parallel quadruplexes 
from human telomeric DNA. Nature. 417, 876-80. 
 
Parvatiyar K, Zhang Z, Teles RM, Ouyang S, Jiang Y, Iyer SS, Zaver SA, Schenk M, 
Zeng S, Zhong W, Liu Z, Modlin RL, Liu YJ and Cheng G. (2012) The helicase 
DDX41 recognizes the bacterial secondary messenger cyclic di-GMP and cyclic di-
AMP to activate a type I interferon immune response. Nat. Immunol.  13, 1155–1161.  
 
Patel JR, Jain A, Chou YY, Baum A, Ha T, García-Sastre A. (2013) ATPase-driven 
oligomerization of RIG-I on RNA allows optimal activation of type-I interferon. EMBO 

Rep. 14, 780-7.  
 
Patel SS and Donmez I. (2006) Mechanisms of helicases. J. Biol. Chem. 281, 18265-8. 
 
Patel SS and Picha KM. (2000) Structure and function of hexameric helicases. Annu. 

Rev. Biochem.  69, 651-97.  
 



 197 

Pazin MJ and Kadonaga JT. (1997) What's up and down with histone deacetylation and 
transcription? Cell. 189, 325-8. 
 
Peng M, Litman R, Xie J, Sharma S, Brosh RM Jr and Cantor SB. (2007) The 
FANCJ/MutLalpha interaction is required for correction of the cross-link response in 
FA-J cells. EMBO J. 26, 3238-49.  
 
Peng S, Chen LL, Lei XX, Yang L, Lin H, Carmichael GG and Huang Y. (2011) 
Genome-wide studies reveal that Lin28 enhances the translation of genes important for 
growth and survival of human embryonic stem cells. Stem Cells. 29, 496–504. 
 
Perez A, Kastner P, Sethi S, Lutz Y, Reibel C and Chambon P. (1993) PMLRAR 
homodimers: distinct DNA binding properties and heteromeric interactions with RXR. 
EMBO J. 12, 3171-82. 
 
Pestova TV and Kolupaeva VG. (2002) The roles of individual eukaryotic translation 
initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16, 
2906–2922.  
 
Petracek ME, Lefebvre PA, Silflow CD and Berman J. (1990) 
Chlamydomonas telomere sequences are A+T-rich but contain three consecutive G-
C base pairs. Proc. Natl. Acad. Sci. U S A. 87, 8222–8226. 
 
Petrocca F and Lieberman J. (2008) RIG-ing an antitumor response. Nat. Med. 14,1152-
3. 
 
Phan AT, Kuryavyi V, Gaw HY and Patel DJ. (2005) Small-molecule interaction with a 
five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat. Chem. 

Biol. 1, 167-73.  
 
Phan AT, Luu KN and Patel DJ. (2006) Different loop arrangements of intramolecular 
human telomeric (3+1) G-quadruplexes in K+ solution. Nucleic Acids Res. 34, 5715–
5719. 
 
Phan AT. (2010) Human telomeric G-quadruplex: structures of DNA and RNA 
sequences. FEBS J. 277, 1107–1117. 
 
Piazza A, Adrian M, Samazan F, Heddi B, Hamon F, Serero A, Lopes J, Teulade-
Fichou MP, Phan AT and Nicolas A. (2015) Short loop length and high thermal stability 
determine genomic instability induced by G-quadruplex-forming minisatellites. EMBO 

J. 34, 1718–1734. 
 
Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F and Reis e Sousa C. 
(2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'- 
phosphates. Science. 314, 997-1001. 
 
Pichlmair A, Schulz O, Tan CP, Rehwinkel J, Kato H, Takeuchi O, Akira S, Way M, 
Schiavo G and Reis e Sousa C. (2009) Activation of MDA5 requires higher-order RNA 
structures generated during virus infection. J. Virol.  83, 10761-9.  
 



 198 

Pike JE, Burgers PM, Campbell JL and Bambara RA. (2009) Pif1 helicase lengthens 
some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-
nuclease processing pathway. J. Biol. Chem. 284, 25170-80. 
 
Pimentel, J. & Boccaccio, G. L. (2014) Translation and silencing in RNA granules: a 
tale of sand grains. Front. Mol. Neurosci. 7, 68. 
 
Pinnavaia TJ, Marshall, CL, Mettler, CM, Fisk CL, Miles HT and Becker ED. (1978) 
Alkali metal ion specificity in the solution ordering of a nucleotide, 5'- guanosine 
monophosphate. J. Am. Chem. Soc. 100, 3625- 3627. 
 
Pisareva, V. P., Pisarev, A. V., Komar, A. A., Hellen, C. U. & Pestova, T. V. 
Translation initiation on mammalian mRNχs with structured 5’UTRs requires DExH-
box protein DHX29. Cell 135, 1237–1250 (2008). 
 
Plumet S, Herschke F, Bourhis JM, Valentin H, Longhi S and Gerlier D. (2007) 
Cytosolic 5'-triphosphate ended viral leader transcript of measles virus as activator of 
the RIG I-mediated interferon response. PLoS One. 2, e279. 
 
Poeck H, Besch R, Maihoefer C, Renn M, Tormo D, Morskaya SS, Kirschnek S, Gaffal 
E, Landsberg J, Hellmuth J, Schmidt A, Anz D, Bscheider M, Schwerd T, Berking C, 
Bourquin C, Kalinke U, Kremmer E, Kato H, Akira S, Meyers R, Häcker G, Neuenhahn 
M, Busch D, Ruland J, Rothenfusser S, Prinz M, Hornung V, Endres S, Tüting T and 
Hartmann G. (β008) 5’-Triphosphate-siRNA: turning gene silencing and Rig-I 
activation against melanoma. Nat. Med. 14, 1256-63. 
 
Polprasert C, Schulze I, Sekeres MA, Makishima H, Przychodzen B, Hosono N, Singh 
J, Padgett RA, Gu X, Phillips JG, Clemente M, Parker Y, Lindner D, Dienes B, 
Jankowsky E, Saunthararajah Y, Du Y, Oakley K, Nguyen N, Mukherjee S, Pabst C, 
Godley LA, Churpek JE, Pollyea DA, Krug U, Berdel WE, Klein HU, Dugas M, 
Shiraishi Y, Chiba K, Tanaka H, Miyano S, Yoshida K, Ogawa S, Müller-Tidow C and 
Maciejewski JP (2015) Inherited and somatic defects in DDX41 in myeloid neoplasms. 
Cancer Cell. 27, 658–670.  
 
Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, 
Silva M, Galanos C, Freudenberg M, Ricciardi‐ Castagnoli P, Layton B and Beutler B. 
(1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in 
Tlr4 gene. Science. 282, 2085‐ 2088. 
 
Potter JA, Randall RE and Taylor GL. (2008) Crystal structure of human IPS-
1/MAVS/VISA/Cardif caspase activation recruitment domain. BMC Struct. Biol. 8, 11. 
 
Prud'homme-Généreux A, Beran RK, Iost I, Ramey CS, Mackie GA and Simons RW. 
(2004) Physical and functional interactions among RNase E, polynucleotide 
phosphorylase and the cold-shock protein, CsdA: evidence for a 'cold shock 
degradosome'. Mol. Microbiol. 54, 1409-21. 
 
Putnam AA and Jankowsky E. (2013) DEAD-box helicases as integrators of RNA, 
nucleotide and protein binding. Biochim. Biophys. Acta. 1829, 884-93. 



 199 

Py B, Higgins CF, Krisch HM and Carpousis AJ. (1996) A DEAD-box RNA helicase in 
the Escherichia coli RNA degradosome. Nature. 381, 169-72. 
 
Qiu H, Wu SL, Guo XH, Shen HJ, Zhang HP and Chen HL. (2011) Expression of ȕ1,3-
N-acetylglucosaminyltransferases during differentiation of human acute myeloid 
leukemia cells. Mol. Cell Biochem. 358, 131-9. 
 
Qu J, Hou Z, Han Q, Zhang C, Tian Z and Zhang J. (2013) Poly(I: C) exhibits an anti-
cancer effect in human gastric adenocarcinoma cells which is dependent on RLRs. Int. 

Immunopharmacol. 17, 814-20. 
 
Rachwal PA, Findlow IS, Werner JM, Brown T and Fox KR. (2007) Intramolecular 
DNA quadruplexes with different arrangements of short and long loops. Nucleic Acids 

Res. 35, 4214-4222. 
 
Ramanagoudr-Bhojappa R, Byrd AK, Dahl C and Raney KD. (2014) 
Yeast Pif1 accelerates annealing of complementary DNA strands. Biochemistry. 53, 
7659-69. 
 
Ramanagoudr-Bhojappa R, Chib S, Byrd AK, Aarattuthodiyil S, Pandey M, Patel SS 
and Raney KD. (2013) Yeast Pif1 helicase exhibits a one-base-pair stepping mechanism 
for unwinding duplex DNA. J. Biol. Chem. 288, 16185–16195. 
 
Ranjith-Kumar CT, Murali A, Dong W, Srisathiyanarayanan D, Vaughan R, Ortiz-
Alacantara J, Bhardwaj K, Li X, Li P and Kao CC. (2009) Agonist and Antagonist 
Recognition by RIG-I, a Cytoplasmic Innate Immunity Receptor.  J. Biol. Chem. 284, 
1155–1165.  
 
Rankin S, Reszka AP, Huppert J, Zloh M, Parkinson GN, Todd AK, Ladame S, 
Balasubramanian S and Neidle S. (2005) Putative DNA quadruplex formation within 
the human c-kit oncogene. J. Am. Chem. Soc. 127, 10584-10589. 
Ranoa DR, Parekh AD, Pitroda SP, Huang X, Darga T, Wong AC, Huang L, Andrade J, 
Staley JP, Satoh T, Akira S, Weichselbaum RR and Khodarev NN. (2016) Cancer 
therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. 
Oncotarget. 7, 26496–26515. 
 
Rawal P, Kummarasetti VBR, Ravindran J, Kumar N, Halder K, Sharma R, Mukerji M, 
Das SK and Chowdhury S. (2006) Genome-wide prediction of G4 DNA as regulatory 
motifs: role in Escherichia coli global regulation. Genome Res. 16, 644–655.  
 
Rawling DC, Fitzgerald ME and Pyle AM. (2015) Establishing the role of ATP for the 
function of the RIG-I innate immune sensor. eLife. 4, e09391. 
 
Reddy TR, Tang H, Xu W and Wong-Staal F. (2000) Sam68, RNA helicase A and Tap 
cooperate in the post-transcriptional regulation of human immunodeficiency virus and 
type D retroviral mRNA. Oncogene. 19, 3570–3575. 
 
 
 



 200 

Rehwinkel J and Reis e Sousa C. (β01γ) Targeting the viral χchilles’ heel: recognition 
of 5’-triphosphate RNA in innate anti-viral defence. Curr. Opin. Microbiol. 16, 485-92. 
Ren H, Dou SX, Rigolet P, Yang Y, Wang PY, mor-Gueret M and Xi XG. (2007) The 
arginine finger of the Bloom syndrome protein: its structural organization and its role in 
energy coupling. Nucleic Acids Res. 35, 6029-6041. 
 
Ren H, Dou SX, Zhang XD, Wang PY, Kanagaraj R, Liu JL, Janscak P, Hu JS and Xi 
XG. (2008) The zinc-binding motif of human RECQ5beta suppresses the intrinsic 
strand-annealing activity of its DExH helicase domain and is essential for the helicase 
activity of the enzyme. Biochem. J. 412, 425-433. 
 
Rezler EM, Seenisamy J, Bashyam S, Kim MY, White E, Wilson WD and Hurley LH. 
(2005) Telomestatin and diseleno sapphyrin bind selectively to two different forms of 
the human telomeric G-quadruplex structure. J. Am. Chem. Soc. 127, 9439–9447.  
 
Rhee KJ, Sethupathi P, Driks A, Lanning DK and Knight KL. (2004) Role of 
commensal bacteria in development of gut-associated lymphoid tissues and preimmune 
antibody repertoire. J. Immunol. 172, 1118-1124. 
 
Rhodes D and Giraldo R. (1995) Telomere structure and function. Curr. Opin. Struct. 

Biol. 5, 311-22. 
 
Rhodes D and Lipps HJ. (2015) G-quadruplexes and their regulatory roles in biology. 
Nucleic Acids Res. 43, 8627-37. 

 

Richardson JP. (2002) Rho-dependent termination and ATPases in transcript 
termination. Biochim. Biophys. Acta. 1577, 251-260. 
 

Ribeyre C, Lopes J, Boulé JB, Piazza A, Guédin A, Zakian VA, Mergny JL and Nicolas 
A. (2009) The yeast Pif1 helicase prevents genomic instability caused by G-
quadruplexforming CEB1 sequences in vivo. PLoS Genet. 5, e1000475.  
 
Richards EJ and Ausubel FM. (1988) Isolation of a higher eukaryotic telomere from 
Arabidopsis thaliana. Cell. 53, 127–136. 
 
Ricote M, Snyder CS, Leung HY, Chen J, Chien KR and Glass CK. (2006) Normal 
hematopoiesis after conditional targeting of RXRalpha in murine hematopoietic 
stem/progenitor cells. J. Leukoc. Biol. 80, 850-61. 
 
Ripmaster TL, Vaughn GP and Woolford JL Jr. (1992) A putative ATP-dependent RNA 
helicase involved in Saccharomyces cerevisiae ribosome assembly. Proc. Nalt. Acad. 

Sci. U S A. 89, 11131-5. 
 
Ristic D, Wyman C, Paulusma C and Kanaar R. (2001) The architecture of the human 
Rad54-DNA complex provides evidence for protein translocation along DNA. Proc. 

Natl Acad. Sci. USA. 98, 8454–8460. 
 

Rittinger K, Walker PA, Eccleston JF, Nurmahomed K, Owen D, Laue E, Gamblin SJ 
and Smerdon SJ. (1997) Crystal structure of a small G protein in complex with the 
GTPase-activating protein rhoGAP. Nature. 388, 693-7. 



 201 

Robertson-Anderson RM, Wang J, Edgcomb SP, Carmel AB, Williamson JR 
and Millar DP. (2011) Single-molecule studies reveal that DEAD box protein DDX1 
promotes oligomerization of HIV-1 Rev on the Rev response element. J. Mol. Biol. 410, 
959 - 71. 
 
Rocak S and Linder P. (2004) DEAD-box proteins: the driving forces behind RNA 
metabolism. Nat. Rev. Mol. Cell Biol. 5, 232-41. 
 
Ross SA, McCaffery PJ, Drager UC and De Luca LM. (2000) Retinoids in embryonal 
development. Physiol. Rev. 80, 1021-54. 
 
Rossi ML and Bambara RA. (2006) Reconstituted Okazaki fragment processing 
indicates two pathways of primer removal. J. Biol. Chem. 281, 26051-61. 
 
Rossi ML, Ghosh AK and Bohr VA. (2010) Roles of Werner syndrome protein in 
protection of genome integrity. DNA Repair (Amst). 9, 331-44.  
 
Rossi SE, Ajazi A, Carotenuto W, Foiani M and Giannattasio M. (2015) Rad53-
mediated regulation of Rrm3 and Pif1 DNA helicases contributes to prevention of 
aberrant fork transitions under replication stress. Cell Rep. 13, 80–92. 
 
Rothenfusser S, Goutagny N, DiPerna G, Gong M, Monks BG, Schoenemeyer A, 
Yamamoto M, Akira S and Fitzgerald KA. (2005) The RNA helicase Lgp2 inhibits 
TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J. 

Immunol. 175, 5260-8. 
 
Rowley JD, Golomb HM, Dougherty C. (1977) 15/17 translocation, a consistent 
chromosomal change in acute promyelocytic leukaemia. Lancet. 1, 549-50. 
 
Roy BB, Hu J, Guo X, Russell RS, Guo F, Kleiman L and Liang C. (2006) Association 
of RNA helicase a with human immunodeficiency virus type 1 particles. J. Biol. Chem. 
281, 12625 - 35. 
 
Roy TE and Kelley CD. (1939) Genus VIII. Bacteroides Castellani and Chalmers, p. 
556–569. In: ψergey DH, ψreed RS, εurray EGD, and Hitchens χP (ed.), ψergey’s 
manual of determinative bacteriology, 5th ed. Williams Wilkins Co., Baltimore. 
 
Roychowdhury A, Szymanski MR, Jezewska MJ and Bujalowski W. (2009) 
Mechanism of NTP Hydrolysis by the Escherichia coli Primary Replicative Helicase 
DnaB Protein. II. Nucleotide and Nucleic Acid Specificities. Biochemistry. 48, 6730-46. 
 
Ruberte E, Friederich V, Chambon P and Morriss-Kay G. (1993) Retinoic acid 
receptors and cellular retinoid binding proteins. III. Their differential transcript 
distribution during mouse nervous system development. Development. 118, 267-82. 
 
Ruchaud S, Duprez E, Gendron MC, Houge G, Genieser HG, Jastorff B, Doskeland SO 
and Lanotte M. (1994) Two distinctly regulated events, priming and triggering, during 
retinoid-induced maturation and resistance of NB4 promyelocytic leukemia cell line. 
Proc. Natl. Acad. Sci. U S A.  91, 8428-32. 
 



 202 

Ruggero D, Wang ZG and Pandolfi PP. (2000) The puzzling multiple lives of PML and 
its role in the genesis of cancer. Bioessays. 22, 827-35. 
 
Sachs L. (1985) Leukemogenesis and differentiation. Annu. Rev. Med. 36, 177-84.  
 
Safa L, Delagoutte E, Petruseva I, Alberti P, Lavrik O, Riou JF and Saintomé C. (2014) 
Binding polarity of RPA to telomeric sequences and influence of G-quadruplex 
stability. Biochimie. 103, 80-8.   
 

Saha A, Wittmeyer J and Cairns BR. (2002) Chromatin remodeling by RSC involves 
ATP-dependent DNA translocation. Genes Dev. 16, 2120–2134. 
 
Saha SK, Pietras EM, He JQ, Kang JR, Liu SY, Oganesyan G, Shahangian A, Zarnegar 
B, Shiba TL, Wang Y and Cheng G. (2006) Regulation of antiviral responses by a direct 
and specific interaction between TRAF3 and Cardif. EMBO J. 25, 3257-3263.  
 
Saharia A, Guittat L, Crocker S, Lim A, Steffen M, Kulkarni S, Stewart SA. (2008) 
Flap endonuclease 1 contributes to telomere stability. Curr. Biol. 18, 496-500. 
 
Saikrishnan K, Griffiths SP, Cook N, Court R and Wigley DB. (2008) DNA binding to 
RecD: role of the 1B domain in SF1B helicase activity. EMBO J.  27, 2222-2229. 
 
Saikrishnan K, Powell B, Cook NJ, Webb, MR and Wigley DB. (2009) Mechanistic 
basis of 5'–3' translocation in SF1B helicases. Cell. 137, 849–859. 
 
Sainty D, Liso V, Cantù-Rajnoldi A, Head D, Mozziconacci MJ, Arnoulet C, Benattar 
L, Fenu S, Mancini M, Duchayne E, Mahon FX, Gutierrez N, Birg F, Biondi A, 
Grimwade D, Lafage-Pochitaloff M, Hagemeijer A and Flandrin G (2000) A new 
morphologic classification system for acute promyelocytic leukemia distinguishes cases 
with underlying PLZF/RARA gene rearrangements. Blood. 96, 1287-96. 
 
Saito T, Hirai R, Loo YM, Owen D, Johnson CL, Sinha SC, Akira S, Fujita T and Gale 
M Jr. (2007) Regulation of innate antiviral defenses through a shared repressor domain 
in RIG-I and LGP2. Proc. Natl. Acad. Sci. USA. 104, 582–587. 
 
Sakabe K and Okazaki R. (1966) A unique property of the replicating region of 
chromosomal DNA. Biochim. Biophys. Acta. 129, 651-4.  
 
Salyers AA. (1984) Bacteroides of the human lower intestinal tract. Ann. Rev. 

Microbiol. 38, 293–313. 
 
Salzman DW, Shubert-Coleman J and Furneaux H. (2007) P68 RNA helicase unwinds 
the human let-7 microRNA precursor duplex and is required for let-7-directed silencing 
of gene expression. J. Biol. Chem. 282, 32773–32779. 
 
Sanders CM. (2010) Human Pif1 helicase is a G-quadruplex DNA-binding protein with 
G-quadruplex DNA-unwinding activity. Biochem. J. 430, 119–128. 
 



 203 

Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, Matsushita K, Tsujimura T, Fujita 
T, Akira S and Takeuchi O. (2010) LGP2 is a positive regulator of RIG-I- and MDA5-
mediated antiviral responses. Proc. Natl. Acad. Sci. USA. 107, 1512-7. 
 
Sawaya MR, Guo S, Tabor S, Richardson CC and Ellenberger T. (1999) Crystal 
structure of the helicase domain from the replicative helicase-primase of bacteriophage 
T7. Cell. 99, 167–177. 
 
Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ and Plückthun A. (2001) In vitro 
generated antibodies specific for telomeric guanine-quadruplex DNA react with 
Stylonychia lemnae macronuclei. Proc. Natl. Acad. Sci. U S A.  98, 8572-7.  
 
Schechtman MG. (1990) Characterization of telomere DNA from Neurospora crassa. 
Gene. 88, 159–165. 
 
Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F and 
Wittinghofer A. (1997) The Ras-RasGAP complex: structural basis for GTPase 
activation and its loss in oncogenic Ras mutants. Science. 277, 333-8. 
 
Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, Coch C, 
Janke M, Mihailovic A, Wardle G, Juranek S, Kato H, Kawai T, Poeck H, Fitzgerald 
KA, Takeuchi O, Akira S, Tuschl T, Latz E, Ludwig J and Hartmann G. (2009) 
Recognition of 5' triphosphate by RIG-I helicase requires short blunt doublestranded 
RNA as contained in panhandle of negative-strand virus. Immunity. 31, 25-34.  
 
Schmid SR and Linder P. (1992) D-E-A-D protein family of putative RNA helicases. 
Mol. Microbiol. 6, 283 - 91. 
 
Schmidt A, Schwerd T, Hamm W, Hellmuth JC, Cui S, Wenzel M, Hoffmann FS, 
εichallet εC, ψesch R, Hopfner KP, Endres S and Rothenfusser S. (β009) 5’-
triphosphate RNA requires base paired structures to activate antiviral signaling via RIG-
I. Proc. Natl. Acad. Sci. U S A. 106, 12067-72. 
 
Schnurr M and Duewell P. (2013) Breaking tumor-induced immunosuppression with 
5’-triphosphate siRNA silencing TGFbeta and activating RIG-I. Oncoimmunology. 2, 
e24170. 
 
Schotte D, Pieters R and Den Boer ML. (2012) MicroRNAs in acute leukemia: from 
biological players to clinical contributors. Leukemia. 26, 1-12.  
 
Schrödinger LLC. (2015) The PyMOL Molecular Graphics System, Version 1.8. 
 
Schulz VP and Zakian VA. (1994) The Saccharomyces PIF1 DNA helicase inhibits 
telomere elongation and de novo telomere formation. Cell. 76, 145–55. 
 
Schwandner R, Dziarski R, Wesche H, Rothe M and Kirschning CJ. (1999) 
Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like 
receptor 2. J. Biol. Chem. 274, 17406–17409. 
 
 



 204 

Seale J, Delva L, Renesto P, Balitrand N, Dombret H, Scrobohaci ML, Degos L, Paul P 
and Chomienne C. (1996) All-trans retinoic acid rapidly decreases cathepsin G 
synthesis and mRNA expression in acute promyelocytic leukemia. Leukemia. 10, 95-
101. 
 
Semlow DR, Blanco MR, Walter NG and Staley JP. (2016) Spliceosomal DEAH-Box 
ATPases remodel pre-mRNA to activate alternative splice sites. Cell. 164, 985–998. 
 
Sen D, Nandakumar D, Tang GQ and Patel SS. (2012) Human mitochondrial DNA 
helicase TWINKLE is both an unwinding and annealing helicase. J. Biol. Chem. 287, 
14545–14556. 
 
Sen ND, Zhou F, Ingolia NT and Hinnebusch AG. (2015) Genome-wide analysis of 
translational efficiency reveals distinct but overlapping functions of yeast DEAD-box 
RNA helicases Ded1 and eIF4A. Genome Res. 25, 1196–1205.  
 
Seth RB, Sun L and Chen ZJ. (2006) Antiviral innate immunity pathways. Cell Res. 16, 
141-7. 
 
Seth RB, Sun L, Ea CK and Chen ZJ. (2005) Identification and characterization of 
MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. 
Cell. 122, 669-682. 
 
Sexton AN and Collins K. (2011) The 5′ guanosine tracts of human telomerase RNχ are 
recognized by the G-quadruplex binding domain of the RNA helicase DHX36 and 
function to increase RNA accumulation. Mol. Cell. Biol. 31, 736 - 43. 
 
Shaheduzzaman SM, Akimoto S, Kuwahara T, Kinouchi T and Ohnishi Y. (1997) 
Genome analysis of Bacteroides by pulsed-field gel electrophoresis: Chromosome sizes 
and restriction patterns. DNA Res. 4, 19–25. 
 
Sharma S, Sommers JA, Choudhary S, Faulkner JK, Cui S, Andreoli L, Muzzolini L, 
Vindigni A and Brosh RM Jr. (2005) Biochemical analysis of the DNA unwinding and 
strand annealing activities catalyzed by human RECQ1. J.Biol.Chem. 280, 28072–
28084.  
 
Shen JC, Gray MD, Oshima J and Loeb LA. (1998) Characterization of Werner 
syndrome protein DNA helicase activity: directionality, substrate dependence and 
stimulation by replication protein A. Nucleic Acids Res. 26, 2879–2885.  
 
Shen ZX, Shi ZZ, Fang J, Gu BW, Li JM, Zhu YM, Shi JY, Zheng PZ, Yan H, Liu YF, 
Chen Y, Shen Y, Wu W, Tang W, Waxman S, De Thé H, Wang ZY, Chen SJ and Chen 
Z. (2004) All-trans retinoic acid/As2O3 combination yields a high quality remission and 
survival in newly diagnosed acute promyelocytic leukemia. Proc. Natl. Acad. Sci. U S 

A. 101, 5328-35.  
 
Sheng Y, Tsai-Morris CH, Gutti R, Maeda Y and Dufau ML. (2006) Gonadotropin-
regulated testicular RNA helicase (GRTH/Ddx25) is a transport protein involved in 
gene-specific mRNA export and protein translation during spermatogenesis. J. Biol. 

Chem. 281, 35048–35056. 



 205 

Shetlar MD, Taylor JA, Hom K. (1984) Photochemical exchange reactions of thymine, 
uracil and their nucleosides with selected amino acids. Photochem. Photobiol. 40, 299-
308. 
 
Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L and Shao F. (2014) Inflammatory 
caspases are innate immune receptors for intracellular LPS. Nature. 514, 187–192. 
 
Shiohara M, Dawson MI, Hobbs PD, Sawai N, Higuchi T, Koike K, Komiyama A and 
Koeffler HP. (1999) Effects of novel RAR- and RXR-selective retinoids on myeloid 
leukemic proliferation and differentiation in vitro. Blood. 93, 2057-66. 
 
Siddiqui-Jain A, Grand CL, Bearss DJ and Hurley LH. (2002) Direct evidence for a G-
quadruplex in a promoter region and its targeting with a small molecule to repress c-
MYC transcription. Proc Natl Acad Sci USA. 99, 11593–11598.  
 
Silverman EJ, Maeda A, Wei J, Smith P, Beggs JD and Lin RJ. (2004) Interaction 
between a G-patch protein and a spliceosomal DEXD/Hbox ATPase that is critical for 
splicing. Mol. Cell. Biol. 24, 10101-10110. 
 
Simonsson T, Pecinka P and Kubista M. (1998) DNA tetraplex formation in the control 
region of c-myc. Nucleic acids Res. 26, 1167-1172. 
 
Singh SP, Koc KN, Stodola JL and Galletto R. (2016) A monomer of Pif1 unwinds 
double-stranded DNA and it is regulated by the nature of the non-translocating strand at 
the 3'-end. J. Mol. Biol. 428, 1053–1067. 
 
Singleton MR, Dillingham MS and Wigley DB. (2007) Structure and mechanism of 
helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23-50. 
 
Singleton MR, Dillingham MS, Gaudier M, Kowalczykowski SC and Wigley DB. 
(2004) Crystal structure of RecBCD enzyme reveals a machine for processing DNA 
breaks. Nature. 432, 187–93. 
 
Singleton MR, Sawaya MR, Ellenberger T and Wigley DB. (2000) Crystal structure of 
T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. 
Cell. 101, 589–600. 
 
Siwaszek A, Ukleja M and Dziembowski A. (2014) Proteins involved in the 
degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA Biol. 

11, 1122–1136. 
 
Smillie DA. and Sommerville J. (2002) RNA helicase p54 (DDX6) is a shuttling protein 
involved in nuclear assembly of stored mRNP particles. J. Cell Sci. 115, 395–407. 
 
Smith FW and Feigon J. (1992) Quadruplex structure of Oxytricha telomeric DNA 
oligonucleotides. Nature. 356, 164-168. 
 
 
 



 206 

Sohal J, Phan VT, Chan PV, Davis EM, Patel B, Kelly LM, Abrams TJ, O'Farrell AM, 
Gilliland DG, Le Beau MM and Kogan SC. (2003) A model of APL with FLT3 
mutation is responsive to retinoic acid and a receptor tyrosine kinase inhibitor, 
SU11657. Blood.  101, 3188-97.  
 
Song B, Ji W, Guo S, Liu A, Jing W, Shao C, Li G and Jin G. (2014) miR- 545 
inhibited pancreatic ductal adenocarcinoma growth by targeting RIG-I. FEBS Lett. 588, 
4375–4381. 
 
Soultanas P, Dillingham MS, Wiley P, Webb MR and Wigley DB. (2000) Uncoupling 
DNA translocation and helicase activity in PcrA: direct evidence for an active 
mechanism. EMBO J. 19, 3799-810. 
 

Soultanas P and Wigley DB. (2001) Unwinding the 'Gordian knot' of helicase action. 
Trends Biochem. Sci. 26, 47-54. 
 
Steimer L and Klostermeier D. (2012) RNA helicases in infection and disease. RNA 

Biol. 9, 751-71. 
 
Stith CM, Sterling J, Resnick MA, Gordenin DA and Burgers PM. (2008) Flexibility of 
eukaryotic Okazaki fragment maturation through regulated strand displacement 
synthesis. J. Biol. Chem. 283, 34129-40. 
 
Story RM and Steitz TA. (1992) Structure of the recA protein-ADP complex. Nature. 
355, 374-6. 
 
Strasser K and Hurt E. (2001) Splicing factor Sub2p is required for nuclear mRNA 
export through its interaction with Yra1p. Nature. 413, 648-652. 
 
Strudwick S and Borden KL. (2002) Finding a role for PML in APL pathogenesis: a 
critical assessment of potential PML activities. Leukemia. 16, 1906-17. 
 
Subramanya HS, Bird LE, Brannigan JA and Wigley DB. (1996) Crystal structure of a 
DExx box DNA helicase. Nature. 384, 379-83. 
 
Suhasini AN and Brosh RM Jr. (2013) Disease-causing missense mutations in human 
DNA helicase disorders. Mutat. Res. 752, 138-52. 
 
Sumpter R Jr, Loo YM, Foy E, Li K, Yoneyama M, Fujita T, Lemon SM and Gale M 
Jr. (2005) Regulating intracellular antiviral defense and permissiveness to hepatitis C 
virus RNA replication through a cellular RNA helicase, RIG-I. J. Virol. 79, 2689–2699. 
 
Sun Z, Ren H, Liu Y, Teeling JL and Gu J. (2011) Phosphorylation of RIG-I by casein 
kinase II inhibits its antiviral response. J. Virol. 85, 1036-1047. 
 
Sundquist WI and Klug A. (1989) Telomeric DNA dimerizes by formation of guanine 
tetrads between hairpin loops. Nature. 342, 825–829.  
 
 



 207 

Svitkin YV, Pause A, Haghighat A, Pyronnet S, Witherell G, Belsham GJ and 
Sonenberg N. (2001) The requirement for eukaryotic initiation factor 4A (elF4A) in 
translation is in direct proportion to the degree of mRNχ 5′ secondary structure. RNA. 

7, 382–394. 
 
Symington LS. (2014) End resection at double-strand breaks: mechanism and 
regulation. Cold Spring Harb. Perspect. Biol. 6, a016436. 
 
Tackett AJ, Morris PD, Dennis R, Goodwin TE, and Raney KD. (2001) Unwinding of 
unnatural substrates by a DNA helicase. Biochemistry. 40, 543–548 . 
 
Takahashi S, Hours C, Chu A and Denhardt DT. (1979) The rep mutation. VI. 
Purification and properties of the Escherichia coli rep protein, DNA helicaseIII. Can. J. 

Biochem. 57, 855-66. 
 
Takahasi K, Kumeta H, Tsuduki N, Narita R, Shigemoto T, Hirai R, Yoneyama M, 
Horiuchi M, Ogura K, Fujita T and Inagaki F. (2009) Solution structures of cytosolic 
RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA 
recognition loop in RIG-I-like receptors. J Biol Chem. 284, 17465-74. 
 
Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, Lu Y, Miyagishi M, 
KodamaT, Honda K, Ohba Y and Taniguchi T. (2007) DAI (DLM-1/ZBP1) is a 
cytosolic DNA sensor and an activator of innate immune response. Nature. 448, 501-5. 
 
Tallman MS, Nabhan C, Feusner JH and Rowe JM. (2002) Acute promyelocytic 
leukemia: evolving therapeutic strategies. Blood. 99, 759–767. 
 
Tamkun JW, Deuring R, Scott MP, Kissinger M, Pattatucci AM, Kaufman TC and 
Kennison JA. (1992) Brahma: a regulator of Drosophila homeotic genes structurally 
related to the yeast transcriptional activator SNF2/SWI2. Cell. 68, 561-72. 
 
Tanaka K, Okamoto S, Ishikawa Y, Tamura H and Hara T. (2009) DDX1 is required for 
testicular tumorigenesis, partially through the transcriptional activation of 12p stem cell 
genes. Oncogene. 28, 2142 - 51. 
 
Tanaka Y and Chen ZJ. (2012) STING specifies IRF3 phosphorylation by TBK1 in the 
cytosolic DNA signaling pathway. Sci. Signal. 5, ra20. 
 
Tanner NK and Linder P. (2001) DExD/H box RNA helicases: from generic motors to 
specific dissociation functions. Mol. Cell. 8, 251-62. 
 
Taschner S, Koesters C, Platzer B, Jörgl A, Ellmeier W, Benesch T and Strobl H. 
(2007) Down-regulation of RXRalpha expression is essential for neutrophil 
development from granulocyte/monocyte progenitors. Blood. 109, 971-9. 
 
Tieg B and Krebber H. (2013) Dbp5 - from nuclear export to translation. Biochim. 

Biophys. Acta. 1829, 791–798. 
 



 208 

Tippana R, Hwang H, Opresko PL, Bohr VA and Myong S. (2016) Single-
molecule imaging reveals a common mechanism shared by G-quadruplex-resolving 
helicases. Proc. Natl. Acad. Sci. USA. 113, 8448-53. 
 

Thomsen ND and Berger JM. (2009) Running in Reverse: The Structural Basis for 
Translocation Polarity in Hexameric Helicases. Cell. 139, 523–534.  
 
Todd AK, Haider SM, Parkinson GN and Neidle S. (2007) Sequence occurrence and 
structural uniqueness of a G-quadruplex in the human c-kit promoter. Nucleic Acids 
Res. 35, 5799-808.  
 
Todd AK, Johnston M  and Neidle S. (2005) Highly prevalent putative quadruplex 
sequence motifs in human DNA. Nucleic Acids Res. 33, 2901–7. 
 
Tomko EJ, Fischer CJ, Niedziela-Majka A and Lohman TM. (2007) A nonuniform 
stepping mechanism for E. coli UvrD monomer translocation along single-stranded 
DNA. Mol. Cell. 26, 335–347. 
 
Tran EJ, Zhou Y, Corbett AH and Wente SR. (2007) The DEAD-box 
protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling 
events. Mol. Cell. 28, 850-9. 
 
Tran H, Schilling M, Wirbelauer C, Hess D and Nagamine Y. (2004) Facilitation of 
mRNA deadenylation and decay by the exosome-bound, DExH protein RHAU. Mol. 

Cell. 13, 101 - 11. 
 
Trego KS, Chernikova SB, Davalos AR, Perry JJP, Finger LD, Ng C, Tsai MS, 
Yannone SM, Tainer JA, Campisi J, Cooper PK. (2011) The DNA repair endonuclease 
XPG interacts directly and functionally with the WRN helicase defective in Werner 
syndrome. Cell Cycle. 10, 1998–2007.  
 
Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C and Pandolfi 
PP. (2006) Identification of a tumour suppressor network opposing nuclear Akt 
function. Nature. 441, 523-7. 
 

Tsai-Morris CH, Sheng Y, Gutti RK, Tang PZ and Dufau ML. (2010) Gonadotropin-
regulated testicular RNA helicase (GRTH/DDX25): a multifunctional protein essential 
for spermatogenesis. J. Androl. 31, 45–52. 
 
Tsunekawa N, Higashi N, Kogane Y, Waki M, Shida H, Nishimura Y, Adachi H, 
Nakajima M and Irimura T (2016) Heparanase augments inflammatory chemokine 
production from colorectal carcinoma cell lines. Biochem. Biophys. Res. Commun. 469, 
878–883. 
 
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER and Gordon JI. (2006) 
An obesity-associated gut microbiome with increased capacity for energy 
harvest. Nature. 444, 1027-1131. 
 



 209 

Uhlmann-Schiffler H, Jalal C and Stahl H. (2006) Ddx42p—a human DEAD box 
protein with RNA chaperone activities. Nucleic Acids Research. 34, 10–22. 
 
Ule J, Jensen KB, Ruggiu M, Mele A, Ule A and Darnell RB. (2003) CLIP identifies 
Nova-regulated RNA networks in the brain. Science. 302, 1212-5. 
 
Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, Jin 
T, Latz E, Xiao TS, Fitzgerald KA, Paludan SR and Bowie AG. (2010) IFI16 is an 
innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004. 
 
Uringa EJ, Lisaingo K, Pickett HA, Brind'Amour J, Rohde JH, Zelensky A, Essers J and 
Lansdorp PM. (2012) RTEL1 contributes to DNA replication and repair and telomere 
maintenance. Mol. Biol. Cell. 23, 2782-92.  
 
Vallur AC and Maizels N. (2008) Activities of human exonuclease 1 that promote 
cleavage of transcribed immunoglobulin switch regions. Proc. Natl. Acad. Sci. USA. 
105, 16508-12. 
 
Valton AL, Hassan-Zadeh V, Lema I, Boggetto N, Alberti P, Saintomé C, Riou JF and 
Prioleau MN. (2014) G4 motifs affect origin positioning and efficiency in two 
vertebrate replicators. EMBO J. 33, 732-46. 
 
van Brabant AJ, Stan R and Ellis NA. (2000) DNA helicases, genomic instability, and 
human genetic disease. Annu. Rev. Genomics Hum. Genet. 1, 409-59. 
 
van den Boorn JG and Hartmann G. (2013) Turning tumors into vaccines: co-opting the 
innate immune system. Immunity. 39, 27-37. 
 
Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MI, Ding H and Boulton SJ. (2012) 
RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere 
integrity. Cell. 149, 795-806. 
 
Vasa-Nicotera M, Brouilette S, Mangino M, Thompson JR, Braund P, Clemitson JR, 
Mason A, Bodycote CL, Raleigh SM, Louis E and Samani NJ. (2005) Mapping of a 
major locus that determines telomere length in humans. Am. J. Hum. Genet. 76, 147-51. 
Vega LR, Phillips JA, Thornton BR, Benanti JA, Onigbanjo MT, Toczyski DP and 
Zakian VA. (2007) Sensitivity of yeast strains with long G-tails to levels of telomere-
bound telomerase. PLoS Genet. 3, 1065–1075. 
 
Velankar SS, Soultanas P, Dillingham MS, Subramanya HS and Wigley DB. (1999) 
Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate 
an inchworm mechanism. Cell. 97, 75–84. 
 
Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Viré E, Nomdedeu JF, 
Jenuwein T, Pelicci PG, Minucci S, Fuks F, Helin K and Di Croce L. (2007) Role of the 
polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell. 11, 513-
25. 
 
Vindigni A and Hickson ID. (2009) RecQ helicases: Multiple structures for multiple 
functions?. HFSP J. 3, 153–164. 



 210 

Visani G, Tosi P, Ottaviani E, Zaccaria A, Baccini C, Manfroi S, Pastano R, Remiddi C, 
Morelli A, Molinari AL, Zanchini R and Tura S. (1996) All-trans retinoic acid and in 
vitro cytokine production by acute promyelocytic leukemia cells. Eur. J. Haematol. 57, 
301-6. 
 
von Hippel PH and Delagoutte E. (2001) A general model for nucleic acid helicases and 
their "coupling" within macromolecular machines. Cell. 104, 177-90. 
 
Walker JE, Saraste M, Runswick MJ and Gay NJ. (1982) Distantly related sequences in 
the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring 
enzymes and a common nucleotide binding fold. EMBO J. 1, 945. 
 
Walne AJ, Vulliamy T, Kirwan M, Plagnol V and Dokal I. (2013) Constitutional 
mutations in RTEL1 cause severe dyskeratosis congenita. Am. J. Hum. Genet. 92, 448-
53. 
 
Wang H, Nora GJ, Ghodke H and Opresko PL. (2011) Single molecule studies of 
physiologically relevant telomeric tails reveal POT1 mechanism for promoting G-
quadruplex unfolding. J. Biol. Chem. 286, 7479–7489.  
 
Wang LD and Wagers AJ. (2011) Dynamic niches in the origination and differentiation 
of haematopoietic stem cells. Nat. Rev. Mol. Cell. Biol. 12, 643-55. 
 
Wang Y and Patel DJ. (1992) Guanine residues in d(T2AG3) and d(T2G4) form 
parallel-stranded potassium cation stabilized G-quadruplexes with anti glycosidic 
torsion angles in solution. Biochemistry. 31, 8112–8119. 
 
Wang Y, Arribas-Layton M, Chen Y, Lykke-Andersen J and Sen GL. (2015) DDX6 
orchestrates mammalian progenitor function through the mRNA degradation and 
translation pathways. Mol. Cell. 60, 118–130. 
 
Wang Y, Ludwig J, Schuberth C, Goldeck M, Schlee M, Li H, Juranek S, Sheng G, 
Micura R, Tuschl T, Hartmann G and Patel DJ. (2010) Structural and functional insights 
into 5’-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat. Struct. 

Mol. Biol. 17, 781-7. 
 
Wang Y, Swiecki M, McCartney SA and Colonna M. (2011) dsRNA sensors and 
plasmacytoid dendritic cells in host defense and autoimmunity Immunol. Rev. 243, 74-
90. 
 
Watson JD and Crick FH. (1953) Molecular structure of nucleic acids; a structure for 
deoxyribose nucleic acid. Nature. 171, 737-8.  
 
Weber M, Gawanbacht A, Habjan M, Rang A, Borner C, Schmidt AM, Veitinger S, 
Jacob R, Devignot S, Kochs G, García-Sastre A and Weber F. (2013) Incoming RNA 
virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and 
antiviral signaling. Cell Host. Microbe. 13, 336-46. 
 



 211 

Wei D, Parkinson GN, Reszka AP and Neidle S. (2012) Crystal structure of a c-
kit promoter quadruplex reveals the structural role of metal ions and water molecules in 
maintaining loop conformation. Nucleic Acids Res. 40, 4691-700. 
 
Wells RA, Hummel JL, De Koven A, Zipursky A, Kirby M, Dubé I and Kamel-Reid S. 
(1996) A new variant translocation in acute promyelocytic leukaemia: molecular 
characterization and clinical correlation. Leukemia. 10, 735-40. 
 
Whitehouse I, Stockdale C, Flaus A, Szczelkun MD and Owen-Hughes T. (2003) 
Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol. Cell. 

Biol. 23, 1935–1945. 
 
Wick G, Jakic B, Buszko M, Wick MC and Grundtman C. (2014) The role of heat 
shock proteins in atherosclerosis. Nat. Rev. Cardiol. 11, 516–529. 
 
Wickramasinghe VO and Laskey RA. (2015) Control of mammalian gene expression by 
selective mRNA export. Nat. Rev. Mol. Cell Biol. 16, 431-42. 
 
Wicky C, Villeneuve AM, Lauper N, Codourey L, Tobler H and Müller F. (1996) 
Telomeric repeats (TTAGGC)n are sufficient for chromosome capping function in Caen
orhabditiselegans. Proc. Natl. Acad. Sci. U S A. 93, 8983–8988. 
 
Wies E, Wang MK, Maharaj NP, Chen K, Zhou S, Finberg RW and Gack MU. (2013) 
Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is 
essential for innate immune signaling. Immunity. 38, 437-49. 
 
Wigley DB. (2000) DNA helicases: one small step for PcrA, one giant leap for RecBC? 
Curr. Biol. 10, R444. 
 
Will CL, Urlaub H, Achsel T, Gentzel M, Wilm M and Lührmann R. (2002) 
Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p 
homologue and an SF3b DEAD-box protein. EMBO J. 21, 4978–4988. 
 
Witten JT and Ule J. (2011) Understanding splicing regulation through RNA splicing 
maps. Trends Genet. 27, 89–97. 
 
Wlodarczyk A, Grzybowski P, Patkowski A and Dobek A. (2005) Effect of ions on the 
polymorphism, effective charge, and stability of human telomeric DNA. Photon 
correlation spectroscopy and circular dichroism studies. J. Phys. Chem. B. 109, 3594-
3605. 
 
Wolf D, Heine A and Brossart P. (2014) Implementing combinatorial 
immunotherapeutic regimens against cancer: the concept of immunological 
conditioning. Oncoimmunology. 3, e27588. 
 
Wolfe AL, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR, Mavrakis KJ, 
Jiang M, Roderick JE, Van der Meulen J, Schatz JH, Rodrigo CM, Zhao C, Rondou P, 
de Stanchina E, Teruya-Feldstein J, Kelliher MA, Speleman F, Porco JA Jr, Pelletier J, 
Rätsch G and Wendel HG. (2014) RNA G-quadruplexes cause eIF4A-dependent 
oncogene translation in cancer. Nature. 513, 65–70. 



 212 

 
Won D, Shin SY, Park CJ, Jang S, Chi HS, Lee KH, Lee JO and Seo EJ. (2013) 
OBFC2A/RARA: a novel fusion gene in variant acute promyelocytic leukemia. Blood. 
121, 1432-5. 
 
Wong A and Wu G. (2003) Selective binding of monovalent cations to the stacking G-
quartet structure formed by guanosine 5'-monophosphate: a solid-state NMR study. J. 

Am. Chem. Soc. 125, 13895-13905.  
 
Wong I and Lohman TM. (1992) ATPase activity of Escherichia coli Rep helicase is 
dramatically dependent on DNA ligation and protein oligomeric states. Science 256, 
350–355. 
 
Wu J and Chen ZJ. (2014) Innate immune sensing and signaling of cytosolic nucleic 
acids. Annu Rev Immunol. 32, 461–488. 
 
Wu J, Sun L, Chen X, Du F, Shi H, Chen C and Chen ZJ (2013) Cyclic GMP-AMP is 
an endogenous second messenger in innate immune signaling by cytosolic DNA. 
Science. 339, 826–830. 
 
Wu WQ, Hou XM, Li M, Dou SX and Xi XG. (2015) BLM unfolds G-quadruplexes in 
different structural environments through different mechanisms. Nucleic Acids Res. 43, 
4614-26. 
 
Wu X and Maizels N. (2001) Substrate-specific inhibition of RecQ helicase. Nucleic 

Acids Res. 29, 1765–1771. 
 
Wu Y and Brosh RM Jr. (2010) G-quadruplex nucleic acids and human disease. FEBS 

J. 277, 3470–3488.  
 
Wu Y, Shin-ya K and  Brosh RM Jr. (2008) FANCJ Helicase Defective in Fanconia 
Anemia and Breast Cancer Unwinds G-Quadruplex DNA To Defend Genomic Stability. 
Mol. Cell. Biol. 28, 4116–4128. 
 
Wu Y, Shin-ya K and Brosh RM Jr. (2008) FANCJ helicase defective in Fanconia 
anemia and breast cancer unwinds G-quadruplex DNA to defend genomic 
stability. Mol. Cell. Biol. 28, 4116-28. 
 
Wu Y. (2012) Unwinding and rewinding: Double faces of helicase?. J. Nucleic Acids. 
2012, 140601. 
 
Wyatt HD and West SC. (2014) Holliday junction resolvases. Cold Spring Harb. 

Perspect. Biol. 6, a023192. 
 
Xia P, Wang S, Gao P, Gao G and Fan Z. (2016) DNA sensor cGAS-mediated immune 
recognition. Protein Cell. 7, 777-791.  
 
Xing J, Wang S, Lin R, Mossman KL and Zheng C. (2012) Herpes simplex virus 1 
tegument protein US11 downmodulates the RLR signaling pathway via direct 
interaction with RIG-I and MDA-5. J. Virol. 86, 3528-40. 



 213 

 
Xu LG, Wang YY, Han KJ, Li LY, Zhai Z and Shu HB. (2005) VISA is an adapter 
protein required for virus-triggered IFN-beta signaling. Mol. Cell. 19, 727-740.  
 
Xu Y, Suzuki Y, Ito K and Komiyama M. (2010) Telomeric repeat-containing RNA 
structure in living cells. Proc. Nalt. Acad. Sci. USA. 107, 14579-84. 
 
Yadav VK, Abraham JK, Mani P, Kulshrestha R, Chowdhury S. (2008) QuadBase: 
genome-wide database of G4 DNA—occurrence and conservation in human, 
chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Res. 36, 381–
385.  
 
Yamamoto Y, Tsuzuki S, Tsuzuki M, Handa K, Inaguma Y and Emi N. (2010) BCOR 
as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of 
acute promyelocytic leukemia. Blood. 116, 4274-83. 
 
Yamazaki T, Fujiwara N, Yukinaga H, Ebisuya M, Shiki T, Kurihara T, Kioka N, 
Kambe T, Nagao M, Nishida E, Masuda S. (2010) The closely related RNA helicases, 
UAP56 and URH49, preferentially form distinct mRNA export machineries and 
coordinately regulate mitotic progression. Mol. Biol. Cell. 21, 2953–2965. 
 
Yang P, An H, Liu X, Wen M, Zheng Y, Rui Y and Cao X. (2010) The cytosolic 
nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-
catenin-dependent pathway. Nat. Immunol. 11, 487–494. 
 
Yang Q, Xiang J, Yang S, Li Q, Zhou Q, Guan A, Zhang X, Zhang H, Tang Y and Xu 
G. (2010) Verification of specific G-quadruplex structure by using a novel cyanine dye 
supramolecular assembly: II. The binding characterization with specific 142 
intramolecular G-quadruplex and the recognizing mechanism. Nucleic Acids Res. 38, 
1022-1033. 
 
Yang YK, Qu H, Gao D, Di W, Chen HW, Guo X, Zhai ZH, Chen DY. (2011) ARF-
like protein 16 (ARL16) inhibits RIG-I by binding with its C-terminal domain in a 
GTP-dependent manner. J. Biol. Chem. 286, 10568-80. 
 
Yarranton GT and Gefter ML. (1979) Enzyme-catalyzed DNA unwinding: studies on 
Escherichia coli rep protein. Proc. Natl. Acad. Sci. U. S. A. 76,1658–1662. 
 
Yasuda-Inoue M, Kuroki M and Ariumi Y. (2013) Distinct DDX DEAD-box RNA 
helicases cooperate to modulate the HIV-1 Rev function. Biochem. Biophys. Res. 

Commun. 434, 803–808. 
 
Yedavalli VS, Neuveut C, Chi YH, Kleiman L and Jeang KT. (2004) Requirement of 
DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell. 119, 381–
392. 
 
Yin J, Park G, Lee JE, Choi EY, Park JY, Kim TH, Park N, Jin X, Jung JE, Shin D, 
Hong JH, Kim H, Yoo H, Lee SH, Kim YJ, Park JB and Kim JH. (2015) DEAD-box 
RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis. 
Brain. 138, 2553–2570. 



 214 

 
Yin Q, Fu TM, Li J and Wu H. (2015) Structural biology of innate immunity. Annu. 
Rev. Immunol. 33, 393–416. 
 
Yoneyama M and Fujita T. (2009) RNA recognition and signal transduction by RIG-I-
like receptors. Immunol. Rev.  227, 54–65.  
 
Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, 
Loo YM, Gale M Jr, Akira S, Yonehara S, Kato A and Fujita T. (2005) Shared and 
unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral 
innate immunity. J. Immunol. 175, 2851–2858. 
 
Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira 
K, Akira S and Fujita T. (2004) The RNA helicase RIG-I has an essential function in 
double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730-7. 
Yoo HH and Chung IK. (2011) Requirement of DDX39 DEAD box RNA helicase for 
genome integrity and telomere protection. Aging Cell.10, 557 - 71.  
 
Yoshida R, Takaesu G, Yoshida H, Okamoto F, Yoshioka T, Choi Y, Akira S, Kawai T, 
Yoshimura A and Kobayashi T. (2008) TRAF6 and MEKK1 play a pivotal role in the 
RIG-I-like helicase antiviral pathway. J. Biol. Chem. 283, 36211-36220.  
 

You H, Lattmann S, Rhodes D, Yan J. (2017) RHAU helicase stabilizes G4 in its 
nucleotide-free state and destabilizes G4 upon ATP hydrolysis. Nucleic Acids Res. 45, 
206–214. 
 
Yu M, Tong JH, Mao M, Kan LX, Liu MM, Sun YW, Fu G, Jing YK, Yu L, Lepaslier 
D, Lanotte M, Wang ZY, Chen Z, Waxman S, Wang YX, Tan JZ and Chen SJ. (1997) 
Cloning of a gene (RIG-G) associated with retinoic acid-induced differentiation of acute 
promyelocytic leukemia cells and representing a new member of a family of interferon-
stimulated genes. Proc. Natl. Acad. Sci. USA. 94, 7406-11. 
 
Yu VC, Delsert C, Andersen B, Holloway JM, Devary OV, Näär AM, Kim SY, Boutin 
JM, Glass CK, Rosenfeld MG. (1991) RXR beta: a coregulator that enhances binding of 
retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response 
elements. Cell. 67, 1251-66. 
 
Yusufzai T and Kadonaga JT. (2008) HARP is an ATP-driven annealing 
helicase. Science. 322, 748–750. 
 
Yusufzai T and Kadonaga JT. (2010) Annealing helicase 2 (AH2), a DNA-rewinding 
motor with an HNH motif. Proc. Natl. Acad. Sci. U.S.A. 107, 20970–20973. 
 
Zahler AM, Williamson JR, Cech TR and Prescott DM. (1991) Inhibition of telomerase 
by G-quartet DNA structures. Nature. 350, 718–720.  
 
Zaug AJ, Podell ER and Cech TR. (2005) Human POT1 disrupts telomeric G-
quadruplexes allowing telomerase extension in vitro. Proc. Natl. Acad. Sci. USA. 102, 
10864–10869.  
 

https://www.ncbi.nlm.nih.gov/pubmed/1662118
https://www.ncbi.nlm.nih.gov/pubmed/1662118


 215 

Zeman MK and Cimprich KA. (2014) Causes and Consequences of Replication Stress. 
Nat. Cell Biol. 16, 2-9. 
 
Zhang AY and Balasubramanian S. (2012) The kinetics and folding pathways of 
intramolecular G-quadruplex nucleic acids. J. Am. Chem. Soc. 134, 19297-308. 
 
Zhang DH, Zhou B, Huang Y, Xu LX and Zhou JQ. (2006) The human Pif1 helicase, a 
potential Escherichia coli RecD homologue, inhibits telomerase activity. Nucleic Acids 

Res. 34, 1393-1404. 
 
Zhang FX, Kirschning CJ, Mancinelli R, Xu XP, Jin Y, Faure E, Mantovani A, Rothe 
M, Muzio M and Arditi M. (1999) Bacterial lipopolysaccharide activates nuclear factor-
kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial 
cells and mononuclear phagocytes. J. Biol. Chem. 274, 7611– 7614. 
 
Zhang H, Wang D, Zhong H, Luo R, Shang M, Liu D, Chen H, Fang L and Xiao S. 
(2015) Ubiquitin-specific Protease 15 Negatively Regulates Virus-induced Type I 
Interferon Signaling via Catalytically-dependent and -independent Mechanisms. Sci. 

Rep. 5, 11220. 
 
Zhang HX, Liu ZX, Sun YP, Zhu J, Lu SY, Liu XS, Huang QH, Xie YY, Zhu HB, 
Dang SY, Chen HF, Zheng GY, Li YX, Kuang Y, Fei J, Chen SJ, Chen Z and Wang 
ZG. (2013) Rig-I regulates NF-kappaψ activity through binding to Nfkappab1 γ’-UTR 
mRNA. Proc. Natl. Acad. Sci. U S A. 110, 6459-64. 
 
Zhang NN, Shen SH, Jiang LJ, Zhang W, Zhang HX, Sun YP, Li XY, Huang QH, Ge 
BX, Chen SJ, Wang ZG, Chen Z and Zhu J. (2008) RIG-I plays a critical role in 
negatively regulating granulocytic proliferation. Proc. Natl. Acad. Sci. U S A. 105, 
10553-8. 
 
Zhang X, Brann TW, Zhou M, Yang J, Oguariri RM, Lidie KB, Imamichi H, Huang 
DW, Lempicki RA, Baseler MW, Veenstra TD, Young HA, Lane HC and Imamichi T. 
(2011) Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather 
than type I IFN. J. Immunol. 186, 4541–4545. 
 
Zhang X, Wang C, Schook LB, Hawken RJ and Rutherford MS. (2000) An RNA 
helicase, RHIV -1, induced by porcine reproductive and respiratory 188 syndrome virus 
(PRRSV) is mapped on porcine chromosome 10q13. Microb. Pathog. 28, 267-278. 
 
Zhang Y, You J, Wang X and Weber J. (2015) The DHX33 RNA helicase promotes 
mRNA translation initiation. Mol. Cell. Biol. 35, 2918–2931.   
 
Zhang Z, Yuan B, Bao M, Lu N, Kim T and Liu YJ. (2011) The helicase DDX41 senses 
intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12, 
959–965. 
 
Zhao C, Denison C, Huibregtse JM, Gygi S and Krug RM. (2005) Human ISG15 
conjugation targets both IFN-induced and constitutively expressed proteins functioning 
in diverse cellular pathways. Proc. Natl. Acad. Sci. USA. 102, 10200-10205. 
 



 216 

Zhao L, Zhu J, Zhou H, Zhao Z, Zou Z, Liu X, Lin X, Zhang X, Deng X, Wang R, 
Chen H and Jin M. (2015) Identification of cellular microRNA-136 as a dual regulator 
of RIG-I-mediated innate immunity that antagonizes H5N1 IAV replication in A549 
cells. Sci. Rep. 5, 14991. 
 
Zhao Q, Tao J, Zhu Q, Jia PM, Dou AX, Li X, Cheng F, Waxman S, Chen GQ, Chen 
SJ, Lanotte M, Chen Z and Tong JH. (2004) Rapid induction of cAMP/PKA pathway 
during retinoic acid-induced acute promyelocytic leukemia cell differentiation. 
Leukemia. 18, 285-92. 
 
Zheng Y, Shi Y, Tian C, Jiang C, Jin H, Chen J, Almasan A, Tang H and Chen Q. 
(2004) Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial 
permeability transition pore opening and cytochrome c release induced by arsenic 
trioxide. Oncogene. 23, 1239-47. 
 
Zhong S, Salomoni P and Pandolfi PP. (2000) The transcriptional role of PML and the 
nuclear body. Nat. Cell Biol. 2, E85-90. 
 
Zhou J, Monson EK, Teng SC, Schulz VP and Zakian VA. (2000) Pif1p helicase, a 
catalytic inhibitor of telomerase in yeast. Science. 289, 771-4.  
 
Zhou JQ, Qi H, Schulz VP, Mateyak MK, Monson EK and Zakian VA. (2002) 
Schizosaccharomyces pombe pfh1+ encodes an essential 5' to 3' DNA helicase that is a 
member of the PIF1 subfamily of DNA helicases. Mol. Biol. Cell. 13, 2180-91. 
 
Zhou R, Zhang J, Bochman ML, Zakian VA and Ha T. (2014) Periodic DNA patrolling 
underlies diverse functions of Pif1 on R-loops and G-rich DNA. eLife. 3, e02190. 
 
Zhou W and Bao S. (2014) PML-mediated signaling and its role in cancer stem cells. 
Oncogene. 33, 1475-84. 
 
Zhou X, Ren W, Bharath SR, Tang X, He Y, Chen C, Liu Z, Li D and Song H. (2016) 
Structural and functional insights into the unwinding mechanism of Bacteroides sp. 
Pif1. Cell Rep. 14, 2030–2039. 
 
Zhu J, Gianni M, Kopf E, Honoré N, Chelbi-Alix M, Koken M, Quignon F, Rochette-
Egly C and de Thé H. (1999) Retinoic acid induces proteasome-dependent degradation 
of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. 
Proc. Natl. Acad. Sci. U S A.  96,  
  



Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France  

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Titre : Identification et caractérisation des interactants de l'hélicase RIG-I impliquée dans la 
balance prolifération/différentiation cellulaire. Caractérisation du déroulement du G-quadruplex 
par l'hélicase Pif1 dans Bacteroides sp 3_1_23. 

Mots clés : Hélicase, RIG-I, Leucémie, Cancer, Pif1, Translocation 

Résumé : Les hélicases sont des protéines 
qui utilisent l'énergie fournie par l'hydrolyse 
de l'ATP ou du GTP pour catalyser la 
disjonction des doubles hélices d'ADN ou 
d'ARN. Cette activité de déroulement de 
double brin leur confère un rôle essentiel 
dans le métabolisme des acides nucléiques, le 
maintien de la stabilité du génome et les 
processus de signalisation cellulaire. En 
conséquence, ils sont impliqués dans des 
processus aussi divers que le vieillissement, 
l'apparition de cancers, l'immunité innée. 
Cette thèse est axée sur la compréhension de 
la fonction et des mécanismes moléculaires 
de deux hélicases différentes et le manuscrit 
est donc divisé en deux parties. Le premier 
est dédié à l'hélicase RIG-I, une hélicase à 
ARN, exprimée lorsque les cellules 
leucémiques cessent de proliférer et sont 
induites à se différencier en granulocytes, 
indispensables à la reconnaissance de l'ARN 
double brin des virus, initiant la protection 
des cellules contre la réplication des génomes 
viraux. Le mécanisme d'action de RIG-I est 
bien décrit dans le contexte d'une infection 
virale. 

Mais dans le cas de la différenciation des 
cellules myéloïdes, l'intervention de RIG-I et 
son role dans la balance la prolifération / 
différenciation  restent incomplets. En effet, 
les interactions RIG-I en particulier avec les 
ligands cellulaires ne sont pas totalement 
comprises. La première partie de mon travail 
consistait à tenter d'isoler et de caractériser 
les partenaires de RIG-I lors de la 
différenciation des cellules leucémiques 
NB4. La seconde est consacrée à l'étude des 
mécanismes sous-jacents aux G-
quadruplexes résolus par les hélicases. 
Plusieurs questions subsistent quant aux 
interactions entre la structure particulière des 
G-quadruplexes et ces enzymes. Une helicase 
de Bacteroides sp 3_1_23, BsPif1, a été 
choisie pour comparer et caractériser 
l'interaction entre les G-quadruplexes et 
l'ADN canonique de Watson-Crick. Dans les 
deux parties du travail, les interactions ont 
été étudiées par des techniques biochimiques 
utilisant soit une lignée cellulaire ou une 
protéine purifiée et des acides nucléiques 
synthétiques. 
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Résumé : Helicases are proteins that utilize 
the energy provided by the hydrolysis of 
ATP or GTP to catalyse the disjunction of 
double DNA or RNA helices. This double 
strand unwinding activity gives them an 
essential role in the metabolism of nucleic 
acids, the maintenance of the genome 
stability and cell signalling processes.  As a 
result, they are involved in processes as 
diverse as aging, the appearance of cancers, 
innate immunity. This thesis is focused on 
the understanding of the function and the 
molecular mechanisms of two different 
helicases and the manuscript is therefore 
divided in two parts. The first one is 
dedicated to the RIG-I helicase, an RNA 
helicase, expressed when leukemic cells stop 
proliferate and are induced to differentiate in 
granulocytes, which are essential in the 
recognition of double-stranded RNA of 
viruses, initiating the protection of the cells 
against the replication of the viral genomes. 
The mechanism of action of RIG-I is well 
described in the context of viral infection.  

But in the case of the differentiation of 
myeloid cells, the intervention of RIG-I and 
its influence on the equilibrium proliferation / 
differentiation remains incomplete. Indeed, 
RIG-I interactions in particular with cellular 
ligands are not fully understood. The first 
part of my work consisted in an attempt to 
isolate and characterize RIG-I partners 
during differentiation of NB4 leukemic cells. 
The second one is devoted to the study of 
mechanisms underlying G-quadruplexes 
resolving by helicases. Several questions 
remain about the interactions between the 
particular structure of G-quadruplexes and 
these enzymes. A Bacteroides sp 3_1_23 
helicase, BsPif1, was chosen to compare and 
characterize the interaction between G-
quadruplexes and canonical Watson-Crick 
DNA. In the two parts of the work, the 
interactions were investigated by biochemical 
techniques using either a cell line or purified 
protein and synthetic nucleic acids. 

 


