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Résumé

Les phénomènes quantiques les plus fondamentaux comme la cohérence quan-
tique et l’intrication sont aujourd’hui explorés pour réaliser des nouvelles tech-
nologies. C’est le domaine des technologies quantiques, qui promettent de révo-
lutionner le calcul, la communication et la métrologie. En encodant l’information
dans les systèmes quantiques, il serait possible de résoudre des problèmes inac-
cessibles aux ordinateurs classiques, de garantir une sécurité absolue dans les
communications et de développer des capteurs dépassant les limites classiques
de précision. Les photons uniques, en tant que vecteurs d’information quan-
tique, ont acquis un rôle central dans ce domaine, car ils peuvent être manipulés
facilement et être utilisés pour mettre en œuvre de nombreux protocoles quan-
tiques. Notamment, ils sont des porteurs idéals pour le transfert de l’information
à grandes distances et aussi pour interfacer des systèmes quantiques de nature
différents. Pour cela, il est essentiel de développer des interfaces très efficaces
entre les photons et les systèmes quantiques matériels, tels les atomes uniques,
une fonctionnalité fondamentale à la fois pour la génération et la manipulation
des photons. De nombreux travaux de recherche s’intéressent à la réalisation de
systèmes atome-cavité très efficaces, afin de transférer de façon déterministe et
réversible de l’information entre les photons et la transition optique d’un atome
unique. Des expériences pionnières ont été réalisées en utilisant des atomes na-
turels dans des cavités, où les interactions peuvent être contrôlées au niveau
d’un seul photon. Tout en étant un cadre idéal pour réaliser des protocoles
quantiques, les atomes uniques nécessitent d’un grand effort expérimental pour
être piégé et manipulé dans des cavités optiques. La réalisation de tels systèmes
dans l’état solide permettrait de fabriquer des dispositifs quantiques intégrés et
à large échelle.

Dans ce travail de thèse, nous étudions l’interface lumière-matière réalisée par
une boîte quantique unique, utilisée comme un atome artificiel, couplée de façon
déterministe à une cavité de type micropilier. Ce système permet d’obtenir une
situation proche du régime atomique unidimensionnel, où la transition atomique
interagit avec un seul mode du champ électromagnétique. Toute l’émission de
la boite quantique est canalisée dans la microcavité optique et peut être facile-
ment collectée en dehors des miroirs de la cavité, ce qui permet également une
injection efficace de la lumière. Un tel dispositif s’avère être un émetteur et un
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ii RÉSUMÉ

récepteur efficace de photons uniques, et il est utilisé ici pour implémenter des
fonctionnalités quantiques de base.

Tout d’abord, nous montrons comment la boite quantique dans la cavité est
une source très brillantes de photons uniques, sous une excitation optique non-
résonante et aussi résonante. L’accélération de l’émission spontanée de la boîte
quantique dans la cavité et le contrôle électrique de la structure permettent de
générer des photons très indiscernables avec une très haute brillance. Cela per-
met de surmonter les performances des sources de photons uniques basées sur des
processus paramétriques, qui sont habituellement utilisée pour les expériences
d’optique quantique.

Cette nouvelle génération de sources de photons uniques est utilisée dans
ce travail pour générer des états de photons intriqués en chemin appelés états
NOON. Ces états intriqués sont des ressources importantes pour la détection
de phase optique, et ils pourraient permettre d’effectuer des mesures avec une
précision au-delà de la limite quantique standard. Cependant, leur caractérisa-
tion optique a été peu étudiée jusqu’à présent. Nous présentons une nouvelle
méthode de tomographie pour reconstruire la matrice densité des états NOON
encodés en chemin et implémentons expérimentalement cette méthode dans le
cas de deux photons.

Enfin, nous étudions le comportement de nos composants comme filtres non-
linéaires de lumière. L’interface optimale entre la lumière et la boîte quantique
permet l’observation d’une réponse optique non-linéaire au niveau d’un seul pho-
ton incident. Ce résultat est obtenu dans un régime d’excitation impulsionnel et
sans utiliser aucun postselection. Cet effet est utilisé pour démontrer le filtrage
des états Fock à un seul photon à partir d’impulsions classiques incidentes. Ceci
ouvre la voie à la réalisation efficace d’interactions effectives entre deux pho-
tons dans un système à l’état solide, une étape fondamentale pour surmonter les
limitations dues au fonctionnement probabilistes des portes optiques linéaires
actuellement employées dans les protocoles de calculs et communications quan-
tiques.
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Introduction

The development of quantum mechanics at the beginning of the 20th century
marked a first quantum revolution. New concepts such as the energy quanti-
zation, the wave-particle duality and the uncertainty principle shed new light
on the fundamental processes of nature and led to new discoveries such as the
laser, the transistor or the GPS that have shaped today’s technologies. However,
the most subtle features of quantum mechanics, such as quantum coherence or
entanglement have not yet been exploited in large scale applications. These are
the main concepts that would allow for what is now called a "second" quantum
revolution [1].

The beginning of the field of quantum technologies is marked by Feynman’s
conjecture, that the complexity of a quantum system can be efficiently simu-
lated using a device which processes the information using the laws of quantum
mechanics [2]. This has led to a wide research field focusing on the manipula-
tion, storage and transfer of the information encoded in a quantum system. The
simplest unit of such quantum information is a quantum bit, or qubit, which is
a representation of a quantum mechanical two-level system. The fundamental
difference with respect to a classical bit of information is in that a qubit can
be prepared in a coherent superposition of states. A quantum computer is a
system which allows the preparation, manipulation and readout of a large num-
ber of qubits to implement algorithms. The specific tasks that can be executed
on a quantum computer can then benefit from a classically impossible parallel
computation capability [3, 4]. A typical example, and one of the first quantum
algorithms that have been introduced, is Shor’s algorithm. It allows for the
factorization of prime numbers with a time that scales polynomially with the
number size, as opposed to the sub-exponential scaling that can be obtained
using classical approaches [5].

The continuous developments in quantum information science has led to the
evolution of new fields alongside quantum computation. Quantum simulation
of complex physical systems do not necessarily require a quantum computer. It
can be performed by engineering controllable quantum systems in order to repro-
duce the evolution of other systems, in problem-specific machines [6]. Quantum
metrology aims at using nonclassical correlations of different quantum states to
beat the classical limits of precision measurements [7]. Quantum communica-
tion is focused on the transfer of the quantum information and opened up new
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2 INTRODUCTION

techniques for secure communication. The most important example is Quantum
Key Distribution, which has already reached commercial availability, and offers a
way to exchange cryptographic keys with absolute protection from eavesdroppers
[8, 9].

Many different physical implementations to encode the quantum informa-
tion are being explored, each having specific advantages to perform some tasks.
Photons offers long range undisturbed transmission, atoms and ions long mem-
ory times and high gate fidelities, superconducting circuits reconfigurability and
speed, defects in solids and semiconductor nanostructures integration and ease
of operation, but this list is certainly not exhaustive. Few of them have shown
the capability to manipulate more than a few qubits up to now. The best re-
sults have been obtained with trapped ions [10], followed by superconducting
quantum bits [11] and photonic quantum systems [12]. While the number of
entangled quantum bits is similar for the latters (in the 6 to 10 range), optical
technologies are much less efficient and require key advancements for further
scaling.

It is plausible that a complex quantum device such as a quantum computer
will be eventually realized as a hybrid system, composed of multiple physical
subsystems [13]. With this prospect, photons have gained a leading role not
only for the possibility of all-optical quantum information processing, but also
as ideal quantum information carriers to interconnect different physical systems.
This idea is exemplified by the architecture for a quantum network, proposed
by Kimble, where a grid of distant quantum nodes is interconnected by quan-
tum channels. In each quantum node, the information can be locally processed,
while an interface to travelling photons allows to distribute the quantum infor-
mation across the network [14]. In the pursue of these objectives, a fundamental
step is the scaling of photonic quantum technologies, which require efficient
sources, detectors and two-photon gates. Commercially available superconduct-
ing nanowires detectors already show near unity efficiencies in a wide spectral
range [15] and high temporal resolution. However, both quantum light sources
and photon-photon gates remain very inefficient: currently available sources have
intrinsically limited efficiencies of few percent and probabilistic two-photon gates
have success rates below 15% [16].

Photonic quantum technologies would strongly benefit from highly efficient
single-photon sources and deterministic photon-photon gates, and both can be
obtained using the anharmonicity provided by an atomic transition [17]. A sin-
gle atom, which can only scatter one photon at a time, can be used to build
single-photon sources as well as condition the transmission of a photon upon the
absorption of another. To obtain such sources and gates in an efficient way, each
photon sent on the system should interact with the atom and symmetrically the
atom should radiate in a well-defined optical mode. This situation is called the
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one-dimensional atom [18], and can be obtained by controlling the spontaneous
emission process of the emitter using cavities [19, 20] or one-dimensional waveg-
uides [21, 22]. Such approach is pursued in the optical domain for atoms [23],
ions [24] and solid-state emitters [25, 20, 26].

Among the different emitters studied in the solid-state, quantum dots (QDs)
behave excellently as artificial atoms [27]. They can be used as quantum light
sources [28, 29], they shows single photon sensitivity [30] and the spin of a single
charge carrier in the QD can be used as a stationary qubit and can be opti-
cally manipulated [31]. They are ideal candidates to implement many quantum
functionalities with semiconductor systems, and have already allowed to demon-
strate spin-photon [32, 33, 34] or spin-spin distant entanglement [35]. Moreover,
they can rely on the well-established III-V semiconductor nano-fabrication tech-
niques, providing a viable way for the scalable fabrication of quantum devices.
In particular, it is possible to couple QDs to many different photonic structures,
such as microcavities [21], waveguides [25], plasmonic resonators [36] and mi-
crolenses [37], etc. This is a crucial step to make all the quantum operations
efficient and compatible with large scale applications.

This thesis work has been developed in the group of Prof. Pascale Senellart at
Centre for Nanoscience and Nanotechnology (C2N/CNRS). The group activity
is centred on the developing of quantum devices based on single QDs in Cavity
QED (CQED) systems. The research team has developed a novel technology
in 2008, called in-situ optical lithography [38], that allows for the deterministic
and scalable fabrication of CQED devices made by a single QD coupled to a
micropillar cavity. The technique allows operation both in the weak and in the
strong coupling regimes [38, 39]. Using this technique, an ultrabright source of
entangled photon pairs has been fabricated in 2010 [40]. In 2013, during the
thesis work of O. Gazzano, the QD-micropillar devices have been demonstrated
to be bright sources of single photons with indistinguishabilities in the 70 % to
90 % range [41] and were used to implement a first Controlled NOT gate [42].
The quantum interference between photons generated by two distant sources was
the first achievement of the thesis of V. Giesz in 2015 [43]. However, while the
source performances were state-of-the-art, the indistinguishability was not high
enough to allow for advanced optical quantum protocols. In 2014-2015, during
the post-doctoral fellowship of Anna Nowak and Niccolo Somaschi, an electrical
control was introduced on the device that allowed for strongly suppressing charge
noise [20].

I joined the team in 2014, and during my first year, I worked with V. Giesz
and N. Somaschi on the study of the new generation of devices as single-photon
sources. We were able to demonstrate that the latest generation of sources could
combine both high efficiency and near perfect indistinguishability [44]. In a sec-
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ond part of my thesis, I used one of these sources to study path entangled NOON
states, a special type of entangled states that are key resources for quantum sens-
ing and quantum metrology. However, their full quantum characterization had
been scarcely addressed. In a first step, working in collaboration with O. Krebs, I
theoretically proposed a new approach to perform the full quantum tomography
of path encoded NOON states. In a second step, I experimentally implemented
this new protocol for the case of N=2 photons [45].
In the last part of my thesis, I investigated the performances of the quantum
dot-cavity devices for the implementation of non-linear photon-photon gate. I
could show that the device shows a non-linearity at the single photon level and
performs as an efficient single photon filter [46]. These observations are a key
step toward the realization of efficient photon-photon gates in the solid-state.

This manuscript is organized as follows:
In Chapter 1, the fundamentals properties of semiconductor quantum dots are
presented, discussing the potential and limitations of these artificial atoms, lim-
itations arising from their coupling to the environment. We then briefly present
the basics of cavity quantum electrodynamics and discuss how it can be used
to mitigate the effect of the environment. We then detail the system under
study, namely a quantum dot in a micropillar cavity and derive its figure of
merits. After briefly describing the technological process used to fabricate the
devices studied during this thesis, we show that these last generation of quantum
dot-micropillar devices provide a close-to-ideal light-matter interface.
In Chapter 2, the devices are studied as single-photon sources. After introducing
the metrics used to describe a single-photon source and brielfy presenting the
state of the art at the beginning of this work, we study the sources under various
excitation schemes. We show that the sources show a record brightness with an
extremely high photon indistinguishability.
In Chapter 3, we study path entangled NOON states, that are key resources
for interferometric based metrology applications. After reviewing the state of
the art, we theoretically propose a new technique to characterize path encoded
NOON states. We then present our experimental implementation of the protocol
and use it to measure a two-photon NOON state generated with a quantum
dot source. We show how an overcomplete tomography approach allows for an
improved state characterization and briefly discuss how to extend our protocol
to an arbitrary number of photons N.
In Chapter 4, we study the quantum dot-cavity system as a non-linear device.
We perform reflectivity measurements using an attenuated coherent beam and
evidence a non-linearity behaviour at the scale of less than one per pulse. We
then analyse the photon statistic of the reflected field and show that our device
efficiently convert a coherent field into a quantum one, where 2 and 3 photon
components are efficiently suppressed.
Finally, in Chapter 5, we briefly conclude and draw perspectives for this work.



Chapter 1

Fundamentals of Quantum Dots in
micropillar cavities

Single atoms and single photons are ideally suited to implements quantum bits
(qubits). The former can be employed as stationary qubits to store and manip-
ulate the information, while the latter as flying qubits, for the transfer of the
information. A long standing goal for the field of quantum information science is
the realization of a quantum network, where multiple stationary quantum nodes
are interconnected by quantum channels, allowing the distribution of the quan-
tum information among distant partners. A critical issue is then the realization
of a quantum interface between an atom and a photon. Such an interface must
be efficient and coherent, allowing the transfer of qubits in a deterministic and
reversible way [14].

Natural atoms provide ideal qubit systems which can be optically accessed,
and have been used to demonstrate different quantum functionalities [14]. How-
ever they are also challenging to trap, prepare and manipulate. Solid-state
confined systems behaving as artificial atoms, among which are semiconductors
Quantum Dots (QDs), have emerged as promising candidates to realize qubit
systems which are scalable and can be integrated into micrometer-sized devices
[47, 48]. The main challenges are to isolate them from the detrimental effects
coming from the solid-state environment and to realize efficient interactions with
light. A fundamental tool towards this goal is given by Cavity Quantum Elec-
trodynamics, which allows to control the light-matter interaction at the single
photon level using solid-state cavities [49, 21].

This Chapter explains how we can obtain an efficient interface between an
individual optical transition of a QD and a photon. In Section 1.1, we discuss
the behaviour of a QD as an artificial atom. In Section 1.2, we see how it can
be efficiently interfaced to a photon by coupling it into a micopillar cavity. In
Section 1.3, we present the deterministic fabrication of a QD-micropillar device,
and the quality of the light-matter interface it can provide. These devices are
used all along this manuscript to generate and manipulate single photons.
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6 CHAPTER 1. FUNDAMENTALS

1.1 A single quantum dot as an artificial atoms

A semiconductor Quantum Dot (QD) is a confined island of a lower bandgap
material embedded in a higher bandgap material. The spatial confinement in all
the three directions of space gives rise to a zero-dimensional structure where the
charge carriers are confined. The resulting discrete energy levels and very sharp
optical transitions allow to obtain optical and electronic properties analogous to
the ones of natural atoms. For these reasons QDs, as other defect centres in the
solid-state, are often called artificial atoms [48]. In the following, we analyse the
extent and limitations of such similarity.

1.1.1 Fabrication of self-assembled QDs

The QDs used in this work are InGaAs QDs fabricated using the Stranski –
Krastanov growth. This method is based on a strain relaxation mechanism in
an heterostructure which leads to the formation of islands of material in an
otherwise 2-dimensional growth process [50, 51].

The fabrication begins with the layer-by-layer deposition of InAs (having
a bandgap of Eg =0.36 eV at 300 K) on a GaAs substrate (having Eg =1.42
eV at 300 K). Since the two materials have different lattice constants (about
7%), noticeable strain builds up during the deposition. At a critical thickness
of the InAs (about 1.7 monolayers), the nucleation of InAs aggregates becomes
energetically favourable and further growth happens in forms of 3-dimensional
lenses. As a result, one obtains a thin layer of InAs over which is found a random
distribution, both in size and position, of InAs islands [52, 53]. The fabrication
is then completed with a capping layer of GaAs, to enclose the structures. The
resulting islands constitute the optically active QDs [27, 54]. In this work, after
the growth, the QDs are annealed at high temperature (850–950̊ ) to adjust their
energy. The exposure to high temperatures cause an interdiffusion of elements
which leads to a variable mixing of GaAs and InAs materials in the QDs. As a
result their potential barrier, with respect to the bulk GaAs, is lowered. The an-
nealing step also affects the shape of the QDs, and leads to a more homogeneous
shape distribution in the fabricated sample and an overall larger size.

The specific properties of the produced InGaAs QDs strongly depends on
the fabrication conditions. In general, they shows a pyramidal shape largely
elongated in the lateral direction, with a typical diameter of 10 to 20 nm and an
height of about 3 nm [55]. An Atomic Force Microscope image of an uncapped
sample is shown in Fig.1.1.a, where the random spatial and size distribution is
clearly visible. Their size variation is responsible for a relatively large inhomo-
geneous broadening of 30–50 meV. Typical QD density can vary from 10µm−2 to
500µm−2. The residual layer of InAs is called wetting layer. Here the carriers are
confined only along the growth direction, thus it is effectively a 2-dimensional
quantum well. The wetting later presents a bandgap around about 1.45 eV,
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(a) (b)

Figure 1.1 – (a) Atomic Force Microscope image of the self-assembled
layer of QDs before the deposition of the capping material. (b) Trans-
mission Electron Microscope image of a single InGaAs QD embedded into
GaAs material. Image measured by A. Lemaitre and C. Gomez at C2N.

corresponding to a photon wavelength of 855 nm, while the energy levels inside
the QDs are typically around 1.34 eV, corresponding to a photon wavelength
of 925nm. A Transmission Electron Microscopy of a single QD is shown in
Fig.1.1.b, where we can see both the QD and the underlying wetting layer.

1.1.2 Energy levels

The precise calculation of the electronic states of a QD require to consider the
specific type and shape of the investigated QDs and is the subject of a wide field
of research [56]. Nonetheless, the energy levels of a QD relevant for quantum
optics experiments can be roughly estimated using the effective mass approx-
imation and considering a single conduction and a single valence band [21].
Moreover, for the small self-assembled QD, the levels are mainly determined by
the confinement, while the carriers interactions can be introduced perturbatively.
In the following, we review the different contributions which determine the QD
levels.

Quantum confinement A very rough and qualitative understanding of the
electronic states in a QD can be obtained considering the ideal situation of a
particle in a box. When the dimensions of the system approaches the de Broglie
wavelength defined by the effective mass of the charge carriers in the material,
quantum confinement effects becomes visible. This mechanism creates discrete
states for both the electron and holes inside the InGaAs QDs [57].

In the effective mass approximation, the electron and holes are confined in
the QD by the discontinuity in the bandgap between the InAs material and the
surrounding GaAs. In a crude approximation, we can consider a 3 dimensional
infinite potential well, where the x and y axis define the in-plane section of the
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QD while the z axis define the vertical growth direction. The energy of the
discrete levels for the carriers are then given roughly by:

Ee/h =
~2π2

2m∗e/h

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)
(1.1)

As shown in the previous section, the shape of the QD is highly flattened in the
in-plane section, with a much smaller height in the growth direction. In reality,
the finite barrier height in the z direction leads to a single nz = 1 confined state.
The growth direction then is the main quantization axis [58, 59]. This has also
the effect of splitting the hole band degeneracy. The lower energy interband
optical transitions are between the conduction and the heavy hole band, hence
the light hole are neglected in the following [21].

The discrete levels arising from the in-plane confinement have typical spac-
ings of tens of meV. Under non-resonant excitation at 10 K, the thermalization
of high energy carriers to the lowest energy state is much faster (<50 ps) than
the radiative recombination time (≈ 1 ns). Thus considering only the lowest
energy state for the carriers also for the in-plane quantization axis is sufficient
to explain most of the observed optical transitions at low excitation power and
low temperature.

The resulting levels for the charge carriers in the QD, which can be filled
according to the Pauli exclusion principle, are represented in Fig.1.2. Beside the
energy of the free particles and the confining potential, the interaction between
carriers must also be taken into account to correctly identify the QD states. This
is detailed in the rest of the section.

Direct Coulomb interaction Two charge carriers qi and qj in the semicon-
ductor, at positions ri and rj, will be subject to the Coulomb interaction given
by:

Vij(ri, rj) =
1

4πεrε0

qiqj
|ri − rj|

(1.2)

When the QD is populated by an electron and a hole, the attractive Coulomb
interaction between the two particles lowers the energy of the system. The
resulting bound state which is formed is called exciton (X), whose energy EX is
lower than the sum of a confined electron and hole energies alone. As opposite
to a bulk crystal however, for the self-assembled InGaAs QDs, the energy levels
are mainly defined by the spatial confinement of the carriers, as the QD size is
typically smaller than the exciton radius in bulk semiconductor. Considering
a particle in a box model, the energy spacing between the discrete levels is
proportional to 1/R2 with the size R of the potential well, while the Coulomb
interaction goes as 1/R with the distance R between the charges. For a small QD
then the dominant mechanism is the quantum confinement, while the exciton
binding energy is a perturbative correction factor [60]. The typical energy shift
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Figure 1.2 – Representation of the energy level structure of non-
interacting charges in the InGaAs QD and in the surrounding material
(InAs wetting layer and GaAs bulk). The lowest energy state of the QD
can be filled by electron and holes according to the Pauli exclusion princi-
ple.

from the direct Coulomb interaction for the fundamental electron-hole state is
about 20 meV.

Exchange Coulomb interaction The exchange interaction arises from the
fermionic statistics of electrons and holes, and effectively couples the spins of
the overlapping particles. It is responsible for the fine structure of the exciton
levels [61]. We only consider heavy holes and electrons to build the exciton
states. Heavy holes have an angular momentum component along the main
quantization axis (the growth direction) of Jh,z = ±3/2, while for the electrons
is Se,z = ±1/2 [62]. As a result there are four possible exciton states having
total angular momentum ±1 or ±2:

|+1〉 = |⇑↓〉 = |+3/2,−1/2〉
|−1〉 = |⇓↑〉 = |−3/2,+1/2〉
|+2〉 = |⇑↑〉 = |+3/2,+1/2〉
|−2〉 = |⇓↓〉 = |−3/2,−1/2〉

which, in the absence of the exchange interaction, are degenerate. Only the
states having a total angular momentum of ±1 have dipole allowed transition
to the ground state of the QD, which has zero angular momentum. These
two transitions are coupled to left |L〉 and right |R〉 circular photons, having
momentum along the propagation direction of −1 and +1. On the contrary, the



10 CHAPTER 1. FUNDAMENTALS

HV

g

±1

X

XX

δ0

δ1

δ2

Xy

Xx

±2 ±2

±2 ±2

Eb

EX

EX

Td symmetry D2d symmetry < D2d symmetry

Figure 1.3 – Level structure for the single exciton (X) and biexciton
(XX) states in the QD for decreasing degree of point-group symmetry. Td
is the tetrahedral point symmetry of the bulk semiconductor, D2d is the
symmetry resulting from the z-confinement only, < D2d is without in-plane
symmetry of the QD [58].

states having total angular momentum ±2 are not optically active due to the
impossibility of momentum conservation. For this reason |±1〉 are called bright
excitons and |±2〉 are called dark excitons. The short range part of the exchange
interaction between an electron with spin Se and a hole with spin Jh composing
the exciton can be written as [62]:

Hexchange = −
∑
i=x,y,z

(
aiJh,i · Se,i + biJ

3
h,i · Se,i

)
(1.3)

where ai and bi are the spins coupling constants along each axis, and the z axis
corresponds to the growth direction, while x and y corresponds to the in-plane
axis of the QD. Using the basis given by the four eigenstate of the total angular
momentum of the exciton (|+1〉,|−1〉,|+2〉,|−2〉), we can write the exchange
interaction Hamiltonian for the exciton in the matrix form [62]:

Hexchange =
1

2


δ0 δ1 0 0
δ1 δ0 0 0
0 0 −δ0 δ2

0 0 δ2 −δ0

 (1.4)
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where δ0 = −3/4(az + 9/4bz), δ1 = 3/8(bx− by) and δ2 = 3/8(bx + by). From the
block-diagonal form of this matrix, we can see that the bright and dark exciton
states do not mix, but they are split in energy by δ0, which has a typical value
of 500 µeV. On the contrary, state mixing happens in each angular momentum
subspace, and the degeneracy of the bright and dark excitons is lifted respectively
by δ1 and δ2. Typically δ1 is in the range of 10–100 µeV while δ2 of 1 µeV
[21]. The observed fine structure is represented in Fig.1.3. Focusing on the
bright excitons states, the two eigenstates of the exchange hamiltonian become
|Xx〉 = (|+1〉 + |−1〉)/

√
2 and |Xy〉 = (|+1〉 − |−1〉)/

√
2, which are split in

energy by δ1, commonly called Fine Structure Splitting (FSS) of the exciton.
The two exciton states |Xx/y〉 are now coupled by two linearly polarized photons
|H〉 = (|R〉+ |L〉)/

√
2 and |V 〉 = (|R〉 − |L〉)/

√
2 to the ground state. This FSS

is detrimental for the generation of entangled photon pairs as discussed in the
next paragraph. Having δ1 = 3/8(bx − by), the splitting vanishes when the x
and y axis are equivalent. Thus, if the QD has in-plane rotational symmetry
the degeneracy of the bright exciton can be restored. Different techniques have
been explored to reduce the exciton Fine Structure Splitting in order to obtain
polarization entangled photons, using electric field [63], strain [64] and Purcell
broadening of the transitions [40]. In this work we use an annealing step that
reduces the anisotropy of the QDs, and we typically have a small but finite FSS
around 3–15 µeV.

Multiparticle states Multiple charges can be trapped inside a single QD,
leading to more complex contributions to the Coulomb interaction.

When two electron-hole pairs are trapped into a QD, a biexciton state (XX)
is formed. The energy of the biexction EXX = 2EX −Eb differs from the energy
of two uncorrelated excitons 2EX by a binding energy Eb due to the Coulomb
interaction between the carriers, as represented in Fig.1.3. This binding energy
is often found to be positive, implying an attractive interaction between the two
pairs, with a magnitude of few meV [56]. The radiative recombination of an
electron-hole pair of the biexciton leads to the emission of a photon and leaves
the QD in a neutral exciton state. The photon emitted by the biexciton will
have an energy different from that of the exciton, by an amount given by the
Coulomb energy Eb. This allows to spectrally discriminate the two transitions.
The polarization of the emitted photon instead is determined by the X state to
which the XX state is decaying. In the biexciton state, the s-shell of the QD
is fully occupied according to the Pauli exclusion principle. The biexciton thus
is in a spin singlet state, which can be written as |⇑⇓↑↓〉. It can radiatively
decay into one of the two bright exciton states, which then sequentially decay to
the QD ground state (see Fig.1.3). These two transitions are linearly polarized
according to the intermediated X state. For a vanishing FSS of the exciton, the
biexciton-exciton cascade can be used as a source of entangled photon pairs [65].
In this case the which-path information of the two possible decay sequence is
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erased, and polarization entangled photons are generated [66, 67, 68, 69].
When a single additional charge is introduced in the QD beside an exciton,

a charge exciton state (CX), called trion, is formed. A negative trion is made by
two electron and a hole, while a positive trion is made by two holes and one elec-
tron. The state of the two carriers of the same species must be antisymmetrized
into a singlet state, being fermionic particles [21]. This effectively cancels out
the exchange interaction. The CX is a bound state whose energy differs from the
sum of the neutral exciton plus the single charge energy. This difference is due
to the Coulomb energy whose sign and magnitude depends on the QD size and
shape, but has typical values of few meV [56]. As a consequence, the radiative
recombination of an electron-hole pair from the CX will produce a photon with
different energy from the energy of the neutral exciton one. Once radiatively de-
cayed, the trion leaves the QD in a charged state with a single residual electron
or hole [70, 71]. The spin of this residual carrier can be used as a stationary
qubit, which can be optically manipulated and measured [72, 73, 74].

1.1.3 Optical properties

In the effective mass approximation, the optical transitions are determined by
the creation and the destruction of electron-hole pairs. As in a QD the pair exists
in a bound state, the exciton, the optical transitions are defined by the excitonic
states. We have seen that the presence of additional pairs introduce additional
Coulomb potentials, changing the transition energies for each additional pair.
This creates an anharmonic energy spectrum which can be used to isolate and
optically address specific transitions. An empty QD can absorb a photon of
energy EX which creates an exciton. Once the QD contains an exciton it cannot
absorb a second photon of energy EX, but only a photon of energy EXX − EX.
Symmetrically, when the QD is populated with a biexciton and an electron-hole
pair radiatively recombine, a photon of energy EXX − EX is emitted, and the
QD is left with an exciton state. The decay of the exciton leads to the emission
of a photon of energy EX [56]. This process is represented in Fig.1.4.a. Multiple
electron-hole pairs then recombine in a sequential way giving rise to a radiative
cascade [75], where each step produces a photon of different energy. Similarly,
the presence of a single additional charge in the QD leads to different energies
for the optical transitions of charged excitons.

A typical photoluminescence spectrum from a QD in a planar cavity is shown
in Fig.1.4.b. Here the excitation energy of the laser is higher than the bandgap
of the GaAs. As a consequence multiple carriers are created in the bulk material
and are randomly captured into the QD, filling up various energy levels. The
radiative cascade and individual electron or hole capture leads to the appearance
of multiple emission lines, which can be attributed to the XX, CX and X states.
In an ideal situation, each line emits a single photon arising from an individ-
ual electron-hole recombination process. To identify the emission lines different
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Figure 1.4 – (a) Radiative cascade in the QD. The right part shows the
sequential recombination of a biexciton and an exciton state to the QD
ground state. The left part shows the recombination of a negative trion,
leaving a single resident electron in the QD. Each step generates a photon
of different energy. (b) Typical spectra from a QD in a planar cavity. The
emission from the recombination of the different states can be spectrally
discriminated.

techniques can be used: power dependence of the emission intensity [76], corre-
lations measurements [77] and study of the fine structure of the transitions in
magnetic fields [78, 79].

By fixing the energy and the polarization of the excitation laser to corre-
spond to a specific transition, such as the exciton one, is possible to study and
manipulate a single two-level system. More details on the different excitation
techniques of a QD are given in Section 2.4. In the following we analyse the
spontaneous emission process from a QD and how it is affected by the semicon-
ductor environment. In particular, we focus on the neutral exciton transition,
which is the one studied in this thesis work.

Spontaneous emission We consider the radiative decay of an exciton state,
which can be viewed as a two-level atom, in an homogeneous medium constituted
by the GaAs embedding the QD. The full quantum treatment of the spontaneous
emission process was first given by Weisskopf and Wigner [80]. With a more
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general approach, we can consider this problem as the coupling of a discrete state
to a quasi-continuum of states by a constant perturbation. Solving this standard
quantum mechanics problem, it is found that the occupation probability for the
initial state of the system follows an exponential decay 1, whose transition rate
can be calculated using the Fermi golden rule [84], given by:

Γi→f =
2π

~
|〈f |Hi |i〉|2 ρ(Ef ) (1.5)

The radiative decay of an exciton is given by the transition of an electron from
a conduction band state |ψc〉 to a valence band state |ψv〉. In the dipole approx-
imation, the interaction is given by the dipole hamiltonian Hi = −d̂ · Ê, and the
relevant matrix element can be calculated as:

| 〈ψv| − d̂ · Ê |ψc〉 | =
√

~ω0

2ε0V
dge (1.6)

where dge = 〈ψv|dge |ψc〉 is the dipole moment of the exciton transition. The
final density of states in an homogeneous medium having an index of refraction
n is given by:

ρ(E) =
nω2

0V

π2~c3
(1.7)

Substituting these two into Eq.1.5, we can retrieve the spontaneous emission
rate as:

γsp =
nω3

0

3πε0~c3
|dge|2 (1.8)

This defines the radiative lifetime T1 = (γsp)−1 of the exciton. The exponential
decay of the population will accordingly generate an exponentially decaying
photon wave packet having a time constant T1. For a large variety of InGaAs
QD in bulk GaAs, a decay time of T1 = 0.8–1.3 ns is typically observed. The
spectral profile of the emission is a Lorentzian peak having a width γsp and the
generated radiation state, starting from the initial exciton state, can be written
as:

|ψ〉 =
∑
k,ε

gk,ε
e−iωkt

(ωk − ω0) + iγsp/2
â†k,ε |0〉 (1.9)

which identifies a pure single photon state [84]. The spatial distribution of the
photon instead is determined by the dipole moment orientation. The sponta-
neous emission rate γsp is often expressed in terms of the oscillator strength
f = 2dge

~ω0m0
, a dimensionless quantity describing the strength of the optical tran-

sition [21].

1The constant transition rate obtained with the Fermi golden rule is an approximation
valid at intermediate times. The decay of the initial state is slower than exponential at very
short and very long timescales, but this small correction can often be neglected [81, 82, 83].
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In the following we neglect the possibility for the exciton to recombine non-
radiatively. In general however this must be considered as it decreases the effi-
ciency of the transition and influence the decay dynamics. The strength of the
radiative decay channel Γrad to the non-radiative one Γnrad is quantified by the
quantum efficiency QE = Γrad/(Γrad+Γnrad). The quantum efficiency is typically
very high in InGaAs QDs, with reported values above 0.9 [85, 86].

However, we consider here two limitations of this spontaneous emission pro-
cess in the perspective of developing efficient quantum devices, which affect the
spatial and spectral profile of the emitted photons. The first fundamental limi-
tation is due to the fact that such emitter is coupled to a final density of state
for the electromagnetic field which is almost isotropic. As a consequence, there
will be a very small probability of collecting the emitted photons within a given
numerical aperture. The efficiency of a source built from a single InGaAs QD in
bulk GaAs is lower than 1% [25]. Symmetrically, the probability of interaction
between the QD and the photons used to excite is very small, since diffraction ef-
fects preclude the focusing the incident light at the nanometre scale of the QD.
The interface between such two-level system and a spatially localized optical
mode is then highly inefficient.

The second limitation is coming from the fact that, being embedded in a
solid-state environment, the excitonic states of a QD are inevitably coupled to
the mechanical and electromagnetic degrees of freedom of the host material.
Different mechanisms can limit the coherence of the QD state, which also affects
the emission properties. In the ideal case, the loss of coherence of the exciton
state is due to a decay of the population: the exciton state is destroyed along
with the creation of a photon, which happens at a timescale given by the ra-
diative lifetime T1. In this case T1 defines both the temporal duration of the
photons and their bandwidth. The coherence of the exciton, however, can also
be destroyed without loss of population. This process, called dephasing, is due
to uncontrolled interactions with the environment, leading to the loss of the in-
formation about the phase of the quantum state. When this is faster than the
radiative recombination, the photon will not inherit the initial coherence of the
exciton, and is described by a statistical mixture. In this case, while the tempo-
ral duration of the photons is always given by T1, their bandwidth is determined
by the coherence time T2 over which the phase coherence is preserved. A simple
modelling of this dephasing is a coupling to a Markovian reservoir which projects
at random times the optical transition to its excited or ground state [87]. This
leads to an exponential decay of the phase coherence with a typical time of T ∗2
called pure dephasing time. The total coherence time T2 of the transition is thus
given by [88]:

1

T2

=
1

2T1

+
1

T ∗2
(1.10)
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or equivalently, for a QD in the bulk, the total dephasing rate γ is:

γ =
γsp

2
+ γ∗ (1.11)

where the factor of two comes from the fact that γ∗ is the damping rate of the
phase amplitude, while γsp is the damping rate of the populations [62]. The
bandwidth of the emitted photons is thus determined by γ. If there is a non-
negligible pure dephasing γ∗, the observed linewidth of the transitions are larger
than what expected from the radiative lifetime of the excited state.

Many sources of decoherence cannot be modeled as the coupling to Markovian
reservoir, resulting in the simple model of pure dephasing. In the following
paragraphs, we describe the effect of the two main environmental effects affecting
the optical transitions of a QD: coupling to phonons and electric and magnetic
noise.

Coupling to phonons The states of the charge carriers in the QD are affected
by the strain potential in the host material, so that carriers interact with the
phonon modes of the structure. In particular, the coupling to acoustic phonons
is identified as the main source of decoherence for the QD states [89, 90, 91].
This affects the optical transitions of the QD through two different processes.

The first effect is due to elastic exciton-phonon scattering, producing an inco-
herent broadening of the Lorentzian spectrum of the isolated exciton transition,
called Zero Phonon Line (ZPL). It can be explained by virtual transitions to
higher excited states of the exciton, assisted by phonons, which returns to the
same initial exciton state [92, 93]. This introduce a loss of phase coherence
without any damping of the exciton population. In this condition, the observed
width of the ZPL is no longer determined solely by the radiative lifetime of the
exciton, but is broadened by this pure dephasing effect.

The second effect is due to inelastic exciton-phonon scattering, which leads to
the radiative decay of the exciton assisted by phonons [94, 95, 96]. As a result
the exciton recombination can be associated with the absorption (anti-Stokes
process) or emission (Stokes process) of an integer number of phonons, thus the
energy of the emitted photon is lowered or increased to conserve the total energy
of the system. The spectrum of the isolated exciton transition is then modified
as shown in Fig.1.5. The sharp ZPL is surrounded by two broadband incoherent
phonon sidebands (PSBs). The PSBs represents the photon emitted altogether
with the emission of phonons (low energy side of the ZPL) or absorption of
phonons (high energy side of the ZPL). At low temperature, this happens on
a timescale of tens of picoseconds [97, 98]. At high temperature, the process
is more efficient and most of the emission happens in the PSB. By lowering
the temperature it is possible to decrease the contribution from the PSB, thus
increase the strength of the ZPL, thanks to the lowered phonon population in
the material. However, as we can see from Fig.1.5, even at zero temperature the
low energy side of the PSB is present because phonon emission is still possible.
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Figure 1.5 – Figure from [21]. Normalized emission spectrum from a QD
coupled to a longitudinal acoustic phonon reservoir at different tempera-
tures. The inset shows the fraction of emission into the phonon sidebands.

We see that the coupling of excitons to the phonon bath reduces the coherence
of the QD states [99]. This draws a limitation on the similarity with the atom-like
behaviour of this solid-state system. To partially overcome the effects described
above, low temperature operation as well as spectral filtering of the ZPL is
required [100, 101, 102].

Charge and spin noise The carriers in the QD are also coupled to static
electric and magnetic fields [56]. In controlled conditions, these fields are impor-
tant tools to manipulate the QD states. An external electrical field F introduce
an additional potential VF = −qF ·r, which shifts the electron and hole states re-
spectively to lower and higher energies. This leads to the quantum confined Stark
effect, where the transition energies of all the QD states are lowered [103, 104].
In this work, the Stark shift is used to adjust the spectral position of the exciton
state to be in exact resonance with the optical mode of the surrounding micropil-
lar cavity, as will be detailed later. The same effect has also been used to control
the FSS of the exciton [63]. An external magnetic field B, instead, introduces an
additional potential VB = −µ ·B which couples to the magnetic moment of each
charge carrier and thus depends on the total angular momentum of the electrons
and holes. The resulting Zeeman effect allows lifting the degeneracy of the QD
states and control their splitting. It is useful not only to study the symmetries
of the QD states, but also to exploit spin-selective transitions to interface an
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external photon with the spin of a charge carrier [73].

The semiconducting environment in which the QD is built however, intro-
duces an uncontrolled electrical and magnetic noise, which can affect the optical
transitions through both spectral wandering and dephasing phenomena. Electri-
cal noise arises from fluctuations in the charge carriers distribution, which result
in a fluctuating electric field at the QD location. This produces a random Stark
shift, with typical times of µs. The wave packets emitted at different times have
different central energies, which broadens the transition linewidth observed at
above µs time scale [105]. Magnetic noise is due to fluctuations in the nuclear
spins of the semiconductor material. This also causes fluctuation of the exciton
and trion spectral position that takes place at µs time scale as well [105].

Gated structures has been shown to be effective in suppressing the charge
noise. Radiatively limited linewidth have been reported in doped structure,
where the residual noise is happening at long timescale with respect to typical
radiative recombination times of the excitons [106, 107].

From the above discussion, we can see that the presence of phonons and noise
in the environment limits the performances of QDs as artificial atoms. Using
the Eq.1.10, we can quantify the coherence of the optical transition through the
ratio T2

2T1
. In the ideal situation T2 is given by 2T1 and this ratio is unity. The

presence of a fast pure dephasing time T ∗2 reduces this ratio. To restore the
coherence of the optical transitions, two strategies can be employed. Controlling
the semiconductor environment so as to reduce the dephasing effects allows to
increase T ∗2 , making its contribution to T2 negligible. The complementary ap-
proach is to increase the spontaneous emission rate: if T1 � T ∗2 then T1 will
be the dominant contribution to the total coherence time T2. As mentioned
above, the first strategy implies low temperature operation, spectral filtering of
the emission, the design of gated structures [108]. The second strategy instead
implies the modification of the photonic density of states in the location of the
QD, to achieve an enhanced spontaneous emission rate in specific optical modes.
This can be achieved by coupling the QD to photonic structures like cavities. It
is especially effective to suppress the detrimental effects of phonons, by strongly
suppressing the rate of phonon assisted processes as recently demonstrated in
our group [100]. Such approach has also the important consequence of allowing
to control the emission pattern, making it possible to realize an efficient interface
between the QD transitions and specific modes of the electromagnetic field. In
this work, we employ both approaches by exploiting the Purcell effect in a gated
optical microcavity. In the following we discuss the effect of coupling the emitter
to an optical cavity.
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1.2 Cavity QED with solid-state microcavities

In the previous section, we have considered the artificial atom in an homogeneous
environment, where no specific boundary conditions are imposed to the vacuum
electromagnetic field interacting with the atomic transition. However, when the
electromagnetic environment of an emitter is modified, its radiative properties
can be altered. This has been first noted by Purcell in 1946 [109], who described
the enhancement of the spontaneous emission from nuclear magnetic transitions
coupled to a microwave resonator, which was later experimentally demonstrated
in 1983 [110]. The opposite effect, the possibility to inhibit the spontaneous
emission has been proposed by Kleppner [111] in 1981 and observed shortly
after [112]. Since then, the study of the interaction between atoms and light
confined in cavities has been the subject of an intense field of research, Cavity
Quantum Electrodynamics (CQED). The technological advancements allowed
reaching unprecedented levels of control over single atoms and single photons,
opening new possibilities for fundamental studies of the light-matter interaction
as well as applications for quantum information processing [113, 114]. In this
work, a micropillar cavity is used to control the spatial distribution of the pho-
tons emitted by the spontaneous emission process from the QD as well as to
reduce the effect of pure dephasing.

In the following, we review the ideal CQED system, described by the Jaynes-
Cummings model, and then a real atom-cavity system which includes dissipative
effects. We will then discuss the micropillar cavity used in this work.

1.2.1 The Jaynes-Cummings model

We summarize here the standard derivation of the Jaynes-Cummings model,
which can be found in many quantum optics textbooks, such as [84, 83]. We
consider an ideal cavity supporting a single quantized mode of the electromag-
netic field at a frequency ωc, interacting with a two-level atom having a transi-
tion frequency ω0 between its excited state |e〉 and ground state |g〉. The total
hamiltonian of the system is given by:

H = Ha +Hf +Hi (1.12)

where Ha and Hf describes respectively the total energy of the atom and of
the field and Hi describe the interaction energy between the two. Assuming the
vacuum energy 1

2
~ωc to be the origin of the electromagnetic field energy, the two

hamiltonian terms Ha +Hf can be written as:

Ha +Hf = ~ω0σ̂
†σ̂ + ~ωcâ

†â (1.13)

where we have introduced the atomic rising σ̂† = |e〉 〈g| and lowering σ̂ = |g〉 〈e|
operators. The interaction terms is given by the electric dipole Hamiltonian
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Hi = −d̂·Ê where d̂ = qr̂ is the electric dipole operator and Ê(r, t) is the electric
field operator. For simplicity, we assume the atom to be fixed at the maximum
of the cavity field, and with a dipole moment aligned to its polarization. We can
then define the atom-field coupling constant as:

g = −
√

~ωc
2ε0V

dge (1.14)

where V =
∫
u(r)d3r is the mode volume of the field, expanded in terms of

the normal modes u(r), and dge = 〈g| d̂ |e〉 is the matrix element for the dipole
moment transition between the two atomic states. In the rotating wave ap-
proximation, valid when the atomic transition and the field mode are close to
resonance (ω0 ≈ ωc), the dipole interaction Hamiltonian can be written as:

Hi = ~g(σ̂â† + σ̂†â) (1.15)

It contains two terms describing opposite processes: the de-excitation of the
atom combined with the creation of a photon, and the excitation of the atom
with the destruction of a photon. The total Hamiltonian describing the Jaynes-
Cummings model becomes now:

H = Ha +Hf +Hi = ~ω0σ̂
†σ̂ + ~ωcâ

†â+ ~g(σ̂â† + σ̂†â) (1.16)

We consider here the case of exact resonance (ω0 = ωc). Eq.1.16 can be divided
into two commuting parts. The first one is Ha + Hc, whose eigenstates are the
uncoupled atom-field states |e, n〉 and |g, n〉 which in absence of interaction are
degenerate. The second part is given by the interaction term Hi, that couples
only states in the form |e, n− 1〉 and |g, n〉, resulting in a total hamiltonian in a
block diagonal form. The only exception is the ground state of the system |g, 0〉,
which is not coupled to any other state. In each 2 × 2 subspace, it takes the
form:

H = ~
(
nω0 g

√
n

g
√
n nω0

)
(1.17)

and is analogous to the Rabi model. It can be diagonalized to give the eigenval-
ues:

E± = ~
(
nω0 ± g

√
n
)

(1.18)

which corresponds to the eigenstates:

|±, n〉 =
1√
2

(|g, n〉 ± |e, n− 1〉) (1.19)

The new eigenstates of the system are entangled states of the atom and the
photons in the cavity, often called dressed states of the atom. They give rise to
the anharmonic energy spectrum shown in Fig.1.6.a. The degeneracy of every
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Figure 1.6 – (a) Ground state and first two excited states manifolds for a
two-level atom resonant to a cavity, without (left column) and with (right
column) dipole interaction. (b) Representation of the atom-cavity system.

excited state of the system is lifted, creating a ladder of doublets separated in
energy by 2g

√
n. In general, there are four possible transitions between two

adjacent ladders. In the classical limit of a high number of photons (n � 1),
when the spacing between levels is almost equal, this leads to the Mollow triplet
[83]. On the contrary, only two transitions to the ground state |g, 0〉 are possible.

To understand the dynamical behaviour of the system, we consider an atom
initially excited placed inside the empty cavity. It is not an eigenstate of the
system, but can be expressed in terms of Eq.1.19 as:

|ψ(t = 0)〉 = |e, 0〉 =
1√
2

(|+, 1〉 − |−, 1〉) (1.20)

and evolves in time according to:

|ψ(t)〉 =
1√
2

(
e−iE+t/~ |+, 1〉 − e−iE−t/~ |−, 1〉

)
= e−iω0t (i sin(gt) |g, 1〉+ cos(gt) |e, 0〉) (1.21)

From this last equation, we see that the probability of finding the atom in
the excited state oscillates in time as Pe(t) = cos2(gt) and, symmetrically, the
probability of finding a photon in the cavity oscillates in time as Pe(t) = sin2(gt).
The single energy quantum in the system oscillate coherently between the atom
and the cavity. These are called vacuum Rabi oscillations, to which corresponds
a vacuum Rabi doublet in the spectral domain, given by the two transitions to
the ground state represented in Fig.1.6.a. However, any realistic atom-cavity
system present dissipations that must be considered.

1.2.2 Incoherent processes

The situation described by the Jaynes-Cummings model is completely coherent
and gives rise to a fully reversible behaviour. However, in a real situation both
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the atom and the cavity are subject to irreversible interactions with the envi-
ronment. There are three important dissipative processes which must be taken
into account, represented in Fig.1.6.b:

• The cavity damping rate κ: describes the irreversible optical losses from
the cavity field to external electromagnetic modes, and it leads to the finite
spectral width of the optical mode of the cavity.

• The QD spontaneous decay rate γsp: describes the spontaneous emission
of the atom into modes other than the cavity one.

• The QD dephasing rate γ∗: describes the damping rate of the coherence
of the transition caused by pure dephasing effects.

The state of the system in this case must be described by a density matrix ρ,
whose evolution can be computed through a master equation. Each dissipative
process is described by a non-hermitian collapse operators Ĉif =

√
γi→f |f〉 〈i|

representing a random collapse of the system from the state |i〉 to the state |f〉 at
a rate γi→f . For each collapse operator, a normalized Lindlabad superoperator
acting on the density matrix is defined as L̂[ρ] = 1

2

(
2ĈifρĈ

†
if − Ĉ

†
ifĈifρ− ρĈ†ifĈif

)
.

The master equation for the evolution of the system can then be computed as
[115]:

ρ̇ = −i[H, ρ] +
∑
if

L̂[ρ] (1.22)

where the first part describes the coherent temporal evolution, while the sec-
ond part the incoherent one. The Hamiltonian operator H = Ha + Hf + Hi

for the system is given by the Jaynes-Cummings one of Eq.1.16. The dissipa-
tive processes listed above are instead described by the three collapse operators
Ĉcav =

√
κâ, Ĉsp =

√
γspσ̂ and Ĉdeph =

√
2γ∗σ̂†σ̂. The expectation values of

the operators describing the system evolution can be derived from the master
equation as 〈Ȯ〉 = Tr[Oρ̇]. In particular, the populations and the coherences of
the atom and cavity fields are described by the equations of motion [116, 117]:

d

dt
〈â†â〉 = −κ〈â†â〉+ g〈σ̂†â〉+ g〈â†σ̂〉 (1.23a)

d

dt
〈σ̂†σ̂〉 = −γ〈σ̂†σ̂〉 − g〈σ̂†â〉 − g〈â†σ̂〉 (1.23b)

d

dt
〈σ̂†â〉 = iδ〈σ̂†â〉 − γ + γ∗ + κ

2
〈σ̂†â〉+ g(〈σ̂†σ̂〉 − 〈â†â〉) (1.23c)

In the low power limit, with a single excitation in the system, we can consider the
evolution to be restricted to the subspace spanned by the states |e, 0〉, |g, 1〉 and
|g, 0〉. Assuming the absence of pure dephasing (γ∗ = 0), the eigenfrequences of
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Figure 1.7 – Figure reproduced from [121]. The two regimes of the CQED
system. Both the temporal and the spectral characteristics are shown for
the strong coupling (left) and weak coupling (right) regime.

this coupled system of equations are [118]:

λ0 = −κ
2

λ± = −(κ+ γ)

2
±

√(
κ− γ

4

)2

− g2 (1.24)

Depending on the value of the argument of the square root we obtain two regimes
presenting very different behaviours, as shown in Fig.1.7 [119, 120].

Strong coupling regime When g > |κ − γ|/4, the two solutions λ± are
complex, thus the evolution of the atom and cavity populations is described by
two damped oscillations.

The system is in a strong coupling regime, where the coherent exchange of
energy between the atom and the cavity dominates over the dissipative processes
(left part of Fig.1.7). Here, an initially excited atom which emits a photon into
the cavity can reabsorb it to return to the initial excited state. This cycle can
happen several times before the photon is lost to the environment. The strong
coupling situation is close to the one described by the Jaynes-Cummings model,
and Rabi oscillations, damped in time due to the presence of losses, can be



24 CHAPTER 1. FUNDAMENTALS

observed. Spectrally, this regime is characterized by the resolution of a doublet
in emission spectroscopy due to the mixed atom-photon nature of the states.

Weak coupling regime When g < |κ − γ|/4, the two solutions λ± are real,
describing an exponential damping.

The system is in the weak coupling regime, where the dissipative processes
dominates over the coherent exchange between the atom and the cavity (right
part of Fig.1.7). As for the spontaneous emission in free space, the radiative
decay of an initially excited atom is irreversible. In this case however, the expo-
nential decay of the excited state population happens at a rate given by Γ = 4g2

κ
.

It is possible thus to obtain a cavity-enhanced spontaneous emission from the
atom, whose transition rate will be strongly accelerated by the presence of the
cavity. This is the essence of the Purcell effect, that is detailed in the next sec-
tion. A single Lorentzian peak is observed in the emission spectrum at the atom
transition frequency, having a width enhanced by the decay rate in the cavity.

1.2.3 The Purcell effect

The weak coupling regime described above can also be treated perturbatively.
In particular, if κ � γ/2, g the cavity mode can be adiabatically eliminated,
which consists in modelling the cavity as a reservoir, whose dynamics is much
faster than the evolution of the two-level atom. This is equivalent to consider the
cavity bandwidth much larger than the linewidth of the transition [115]. Under
this assumption, we can use the Fermi golden rule, as in the original approach
by Purcell. Looking at Eq.1.5, we can understand how the spontaneous emission
rate is modified. By placing the emitter in an optical cavity, it will be coupled
to a field having a different amplitude and polarization, as well as a different
possible density of final states for the process. This situation can be modeled as
the coupling of the emitter to a quasi-mode density of states ρqm, built from the
cavity mode and the free space continuum [122, 123, 124]. Considering a single
cavity mode centred on ωc having a width κ, the emitter is effectively coupled
to a Lorentzian mode density [125]:

ρqm(ω) =
2

πκ

κ2

4(ω − ωc)2 + κ2
(1.25)

We assume here the emitter to be spectrally in resonance with the cavity mode,
at the maximum of its electric field and having its dipole moment aligned to the
field polarization. In such ideal condition, using the Fermi golden rule (Eq.1.5),
we find the spontaneous emission rate to be:

Γ =
2dgeQ

~n2V
(1.26)
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where dge is the electric dipole moment of the transition, n is the refractive
index of the material at the emitter location, Q = ωc/κ is the quality factor of
the cavity and V is the effective volume of the optical mode of the cavity. To
quantify the enhancement of the spontaneous emission into the confined mode
of the cavity, we can relate the decay rate in the cavity Γ to the decay rate of the
same emitter in an homogeneous medium γsp, which we have already calculated
in Eq.1.8. This ratio is defined as the Purcell Factor [109]:

FP =
Γ

γsp
=

3

4π2

Q(λ/n)3

V
=

4g2

κγsp
(1.27)

The spontaneous emission rate into the cavity mode is proportional to Q/V ,
thus high quality factor and low mode volume are required to reach a strong
emission rate in the cavity mode. This constitutes an important figure of merit
to determine the potential Purcell factor achievable with a specific cavity [126].

In general the enhancement of the emission into the cavity mode does not
inhibit the spontaneous emission into the continuum of modes outside the cavity,
to which the emitter decay at a rate γsp. The total lifetime of the emitter is thus
(T1)−1 = Γ + γsp. However, with a very strong Purcell factor FP � 1, (T1)−1 is
mostly determined by the emission into the cavity, much faster than the emission
in the free space continuum. We can calculate the fraction of photons emitted
into the cavity mode, called the mode coupling, as:

β =
Γ

Γ + γsp
=

FP

FP + 1
(1.28)

It is clear from this equation that for FP � 1, β → 1. A high Purcell factor
allows to funnel most of the radiative emission from the atomic transition into
the optical mode of the cavity.

A second important consequence is the mitigation of pure dephasing effects.
We have seen before that the total coherence time of the optical transition is
(T2)−1 = (2T1)−1 + (T ∗2 )−1, which including the Purcell-enhanced coupling to a
cavity mode can be written as γ = Γ+γsp

2
+ γ∗. With a high Purcell factor we

can achieve Γ
2
� γ∗, thus the dephasing rate γ is dominated by the radiative

decay rate Γ. Equivalently, the shortening of the radiative lifetime will cause a
radiative broadening of the transition linewidth beyond the one caused by pure
dephasing. In this condition, the emitted wavepackets are Fourier transform
limited.

From the above discussion, we see how a strong Purcell effect ensures that
the transition primarily interacts with the optical mode of the cavity, thus it
gets effectively isolated from other dissipative processes. Moreover, the cavity
can be engineered to be easily interfaced with external optical modes, used as
input and output ports to realize an efficient interface between the propagating
photons and the QD transition.
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Note that other approaches based on suppressing the QD emission in all
optical modes but one can also be used to interface a QD and propagating
photons. This is achieved by coupling the QD to 1-dimensional waveguide such
as nanowires [25], nanotrumpets [127] or photonic crystal waveguides [128, 129].
In this case, while efficient coupling between the QD and the photons is achieved,
the absence of Purcell effect does not allow for mitigating the pure dephasing
effects.

1.2.4 CQED with a QD in a micropillar

To confine light in solid-state cavities, the three structures most commonly used
are microdisks, photonic crystals and micropillars, which allows to achieve both
the weak and the strong coupling regimes with a single QD emitter [130, 131]. A
microdisk is a semiconductor disk much flattened in one dimension which con-
fines a whispering gallery mode. Using GaAs based microdisks, quality factors
up to few 104 and a Purcell factor up to 42 have been reported [125, 132, 133].
Photonic crystals are structures where a periodic modulation of the reflective
index can be used to create a photonic bandgap. This, associated to artificial
defects placed in the structure, allows the realization of confined optical modes.
Two-dimensional photonic crystal are widely used in conjunction with QDs and
allows to reach very small mode volume for the cavity field, of the order of
0.1λ3, with quality factor of the order of 5 × 104 and Purcell factors up to 28
[134, 135, 136]. However, coupling the light from the photonic crystal cavities
to external fibre or waveguides is challenging, and extraction efficiencies have
been reported up to 44% [137]. A micropillar cavity is constituted by two mir-
rors creating a Fabry-Perot resonator, where additional lateral confinement is
created by shaping the structure in a cylindrical shape. The first demonstration
of the Purcell effect in a micropillar has been reported in 1998 by Gerard et
al. [126]. Mircopillar cavities allows to obtain mode volumes of the order of λ3,
with typical reported quality factors in the weak coupling regime of few 104 and
Purcell factors up to 30 [138, 139, 140, 141].

The device used in this work is based on a micropillar cavity, at the center
of which is placed a single QD, whose structure is modified to allows for the
realization of electrical contacts, and is detailed in the rest of the section.

The micropillar cavity A schematics of the QD-micropillar device is shown
in Fig.1.8.a. The InGaAs QD is located at the centre of a λ-cavity having a
cylindrical shape. The cavity is constituted by a GaAs spacer sandwiched be-
tween a top and a bottom AlGaAs/GaAs Distributed Bragg Reflector (DBR).
The two DBRs induce a vertical confinement of the light in the micropillar, while
the lateral confinement is given by total internal reflection. The resulting three
dimensional confinement of the light allows reaching a strong Purcell effect alto-
gether with an optical mode profile well suited for the external interfacing. The
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micropillar is guiding the photons, which are emitted upwards with a field dis-
tribution having a high overlap with a Gaussian mode. An efficient collimation
or coupling to optical fibres can be obtained.

The parameters g, γ and κ governing the physics of a CQED device, already
introduced before, are shown in Fig.1.8.a for the specific case of a micropillar.
The coupling strength g describes the ratio at which the energy can be coherently
exchanged between an exciton and a cavity photon. The bare QD dephasing rate
γ = γsp

2
+ γ∗ describe the rate at which the coherence of the exciton transition

is lost. It is given by the sum of unwanted spontaneous emission γsp in modes
other than the cavity mode plus the pure dephasing rate γ∗. The total cavity
damping rate κ = κtop +κbottom +κloss describe the photon losses from the cavity.
It is given by the sum of three contributions: κtop and κbottom which account for
photons escaping from the top or bottom mirror, and κloss which accounts for
unwanted leakage through the sidewalls of the cavity. The objective of this QD-
micropillar device is to efficiently interface the propagating photons with the QD
inside the cavity. With a high Purcell effect, the coherent exchange g overcomes
the dephasing rate γ and most of the emission from the QD will happen in the
confined mode of the cavity. When accessing the micropillar from the top, the
total cavity damping rate should be dominated by the losses κtop through the
top mirror. In this way, most of the emission from the QD can be collected from
the top port and symmetrically, if the excitation mode is well overlapped to the
cavity mode, most of the incident light will interact with the QD.

The performances of the QD-micropillar device as a light-matter interface
can be described using three fundamental parameters:

• The cooperativity C = g2

κγ
: quantifies the strength of the coherent processes

to the incoherent ones. It can be related to the Purcell factor as FP = 4γ
γsp
C.

• The output coupling efficiency ηout = κtop
κ
: quantifies fraction of photons

escaping the cavity across the top mirror, from which they can be efficiently
collected.

• The input coupling efficiency ηin: quantifies the spatial overlap between the
free-space optical beam used to excite the device and the confined mode
of the cavity.

A very high cooperativity ensure that the QD primarily interacts with the optical
mode of the cavity and the information can be reversibly transferred between the
light and the matter field. In order to use the device as an emitter, a high output
coupling efficiency is required to be able to collect all the photons emitted from
the cavity. Symmetrically, to use the device as a receiver, a high input coupling
efficiency is needed to be able to couple all the incident photons to the cavity.
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Figure 1.8 – (a) Figures of merit of the physics of the QD-micropillar
device. g is the coupling strength between the QD and the cavity. γ is the
total dephasing rate of the QD. κtop and κbottom describe photon escaping
rates through the top or bottom mirror, while κloss the unwanted sidewall
losses rate. (b) Schematics of an electrically contacted micropillar.

Gated micropillars As mentioned before, the fabrication of QDs embedded
in diode structures allowed to demonstrate the controlled shift of the optical
transition energies though the confined Stark effect, the control of the exciton fine
structure splitting and the reduction of dephasing due to charge noise. While the
realization of bulk contacted structures has been extensively studied [142, 143,
106, 104, 63], the fabrication of electrically controlled QDs coupled to cavities is
very challenging, and few works have been reported.

The first realization of a QD coupled to an electrically contacted microcavity
has been reported in 2007 by Strauf et al. [144], providing a Purcell factor
between 2 and 4 and an extraction efficiency from the cavity of 0.38. The
following year, Bockler et al. [145] reported the electrical control of a QD in a
micropillar, showing a Purcell factor of 10. An analogous device has been used in
2010 by Heindel et al. [146] to demonstrate an electrically driven QD-micropillar
single-photon source, later fabricated also using site controlled QDs [147]. The
performances of these devices however were still not at the level of uncontacted
QD-cavity systems as charge noise was still high. Moreover, a deterministic
fabrication technology for electrically controlled cavity devices were still lacking.

The electrically contacted QD-micropillar cavities used in the present work,
represented in Fig.1.8.b, have been first developed in 2013 by Anna Nowak [148]
and then by Niccolo Somaschi in the current design [44]. The fabrication is
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based on a deterministic in-situ lithography technique, presented in the next
section, which allows the spatial and spectral matching of the QD and the mi-
cropillar cavity as well as the design of electrical contacts. In this device, the
QD is coupled to a micropillar cavity which is fabricated with a p-i-n doping
profile allowing to define a diode structure, used to apply the external bias. The
micropillar cavity is at the center of Fig.1.8.b, and is connected by four 1 di-
mensional ridges to a circular frame surrounding it. This frame allows to define
ohmic gates for electrical connections. As demonstrated in [148], the presence of
the 1-dimensional ridges results in a slightly increased mode volume as compared
to the case of isolated pillars with the same diameter. Moreover, it contributes
to slightly increase the side losses through lateral coupling to the waveguides so
that a lower κtop is necessary to obtain a high ηout. In the following section,
we detail the fabrication procedure for the electrically controlled QD-micropillar
device.

1.3 Realization of an optimal light-matter inter-
face

To achieve a high Purcell effect, a high quality factor and a small mode volume
are needed. Beside the design of an appropriate cavity, a fundamental challenge
is also the spatial and spectral matching of the QD transition to the optical
mode of the cavity. The best coupling is indeed achieved only when the QD is
positioned at the maximum of the cavity electric field and its transition energy
matches the central energy of the cavity mode. Both the spectral and spatial
random distribution of the self-assembled QDs are a major challenge for their
coupling to photonic nanostructures such as a microcavities.

Using complex growth techniques, it is possible to control the spatial position
of the fabricated QDs. Recently, this technique allowed also the coupling of
single QDs to cavities and waveguides [149, 147]. However the optical quality
of these site-controlled QDs is still limited with respect to the self-assembled
ones [150]. The first technique to deterministically couple a photonic crystal to
a self-assembled QD was developed in 2005 [151, 152], and was based on a SEM
or AFM imaging system to locate the QD position and aligning an electronic
lithography to define the cavity around it. With a different approach, it has been
possible to couple a QD to an external cavity realized using the termination of
an optical fibre [153, 154]. This also allows to directly couple the emission
to the fibre. The devices used in this work are fabricated using a cryogenic
photolithography technique first developed in our group in 2008 by Dousse et al
[38]. This technique, now adopted by different groups, allowed to reach both the
weak [38] and strong coupling regimes [39] in a micropillar cavity with a single
self-assembled QD. In the following we detail this fabrication method and the
performances that we can expect from a typical device.
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1.3.1 Deterministic fabrication using in-situ lithography

The fabrication of the QD-micropillar devices, performed in our team, can be
decomposed into three main steps: the growth of the QDs in a planar cavity,
the in-situ optical lithography defining a cavity centred on each QD, and the
etching of the structures. The deterministic spatial and spectral coupling is
possible thanks to the low-temperature far-field optical lithography technique
which is performed in-situ, while characterizing the QD emission.

Growth The first part of the fabrication consists in the growth of a planar
cavity made of two GaAs/Al0.9Ga0.1As λ/4 Bragg mirrors containing a GaAs
λ-cavity. At the centre of this, is placed a low-density layer of self-assembled
InGaAs QDs. The growth is done by Aristide Lemaître by Molecular Beam
Epitaxy (MBE), a technique which allows the epitaxial growth of atomically flat
semiconductor heterostructures, with a thickness control at the level of single
monolayers. The Bragg mirrors are made by alternating layers of GaAs and
Al0.9Ga0.1As, with 30 pairs for the higher reflective bottom mirror, and 20 pairs
for the top one. After the deposition of the bottom mirror and half of the
λ-cavity, the layer of QDs is grown using the Stranski–Krastanov method, as
explained in Section 1.1.1. The QD layer is then covered with the second half
of the λ-cavity and the top mirror. The bottom mirror has a gradual n-doping
profile, while the top mirror a p-doping profile, allowing the realization of ohmic
contacts at the top and the bottom of the structure.

Lithography The second step is the low temperature in-situ lithography, per-
formed by Niccolo Somaschi using the technique developed in the team in 2008
[38]. This part consists in selecting a specific QD from the randomly distributed
ensemble, and to deterministically couple it to the optical mode of a micropillar
cavity, using the setup sketched in Fig.1.9.a. The planar cavity obtained from
the previous step is spin coated with a layer of positive photoresist and placed in
a closed-cycle He cryostat, at a temperature of 8K. The positioning of the sample
is controlled with a 3-axis piezo-controlled stages, while three confocal optical
lines are aligned and focused on the sample with a same microscope objective.
A first line is used for an above-band excitation of the QDs in the sample using
a red laser, having a wavelength between 780nm and 850nm. The Photolumi-
nescence Signal, spectrally filtered by a dichroic mirror to remove the excitation
laser light, is collected using a second line and detected with a spectrometer. A
specific transition of the QD, which for this work corresponds to a neutral ex-
citon state, can be identified by studying the power dependence of its emission
intensity. This allows also to determine the energy at which the cavity mode
must be defined The total intensity of the signal from a specific QD transition
can then be monitored, for a fixed excitation power, as a function of the spatial
position of the sample, controlled by the piezo actuators. The precise location
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Figure 1.9 – (a) Schematic of the in-situ lithography (see details in the
text) (b) Ex-situ etching of the structure defined by the optical lithography.
Step 1: development of the positive photoresist. Step 2: deposition of a
40nm layer of Ni and hard mask. Step 3: lift-off of the residual photoresist.
Step 4: dry etching of the micropillars, as defined by the Ni layer.

of the selected QD can be obtained with a 50nm accuracy by maximizing the
collected intensity.

Having both the position and the emission energy of a specific QD, the third
optical line is used to expose the photoresist in order to define the shape of the
micropillar cavity. The spatial matching is achieved by positioning the sample on
the exact location of the chosen QD, while the spectral matching is achieved by
adjusting the diameter of the micropillar. Indeed, the energy of the fundamental
optical mode of the micropillar cavity decreases for increasing diameters. In the
first generation of the technology [38] the pillar size was adjusted by changing the
exposure time. Indeed, the focused spot size of a green laser, having a wavelength
of 532nm, define a circular area with a typical size of 0.8 µm. However, since the
resist exposure is a non-linear process, the size of the exposed area increases with
the exposure time or the incident laser power. A calibration of the procedure
allowed to identify the exposure conditions to obtain a specific diameter for
the micropillar, which, in turns, identify the energy of its optical mode. This
procedure can be repeated for multiple QDs in a same sample, in order to obtain
multiple QD-micropillar device from each planar cavity.

This technique has later been upgraded to define more complex structures
[148]. By exposing the photoresist while moving the sample, it is possible to
draw arbitrary shapes in the resist, including the 1 dimensional ridges and the
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(a) (b)

Figure 1.10 – Scanning Electron Microscope images. (a) First generation
of deterministically coupled QD-micropillar sample. (b) Second generation
of devices, including electrical control.

surrounding frame used to realize the electrically contacted micropillar cavities
[148, 44].

Etching The last part of the fabrication, performed by Isabelle Sagnes, is the
etching of the structure previously defined using the in-situ lithography. The
processing of the sample during the etching is shown in Fig.1.9.b. This part
begins with the development of the positive photoresist, dissolving the exposed
areas directly above the QD of interest (step 1). A layer of Ni is deposited on the
whole planar structure (step 2). This is followed by a lift-off step to remove the
residual photoresist, allowing to obtain circular Ni shapes of the right diameter
centred on the QD (step 3). Finally a dry etching process is used to remove
all the surrounding material (step 4). The result is a sample with multiple
micropillar cavities, each coupled to a single QD.

Two SEM image of samples obtained with the in-situ lithography technique
are shown in Fig.1.10. Fig.1.10.a shows several single micropillar cavities ob-
tained with the first generation of the technique [38]. Fig.1.10.b instead shows
the most advanced devices, i.e. the electrically contacted micropillars, where the
cavity is placed at the centre of a circular frame. In the same image a bigger
structure to which all the devices are connected can be seen. The bigger planar
area is used to deposit metallic contacts, thanks to which an electrical bias can
be applied. The complex shapes of all the visible structures has been defined
using the same lithographic step, where the sample is moved using computer-
controlled piezoelectric transducers, while keeping the green exposure laser on.
We will see in the following that this last generation of devices achieve a very
high Purcell effect and input and output coupling efficiencies.
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Figure 1.11 – (a) Photoluminescence emission map from the electrically
contacted micropillar, highlighting the strong QD emission precisely local-
ized at the center of the structure. (b) Reflectivity map from the same
device, highlighting the reflectivity dip due to the cavity mode, at the
center of the structure.

After the fabrication is complete, the positioning of the QD at the centre
of the micropillar cavity can be verified by collecting a PL emission map, as
shown in Fig.1.11.a. Here an 850nm laser is used to excite the device, and the
PL intensity at the QD emission energy (≈925nm) is collected as a function
of the sample position. We can clearly identify the cross-shaped structure of
the device. At its centre, the strong peak is due to the signal from the QD,
deterministically positioned to be spatially matched with the cavity.

A similar map of a smaller area at the centre of the device is shows in
Fig.1.11.b. Here we excite with a resonant laser (≈925nm) and we collect the
total reflected intensity, as a function of the sample position. The QD transition
is tuned far from the micropillar mode energy using the external bias, so to
observe the empty cavity. Again the four ridges can be identified, going from
the centre towards the four corners of the figure. The reflected intensity, as
opposite to the previous case, drops at the centre due to the presence of the
micropillar mode. This allows to directly observe the spatial positioning of the
optical cavity, which is also spectrally matched to the QD energy.

1.3.2 Optimal light matter interface

To fully characterize our CQED device, we determine the values of the g, κ and
γ parameters, as presented in Section 1.2.4. This can be done with a theoret-
ical adjustment to a reflectivity spectrum of the device. We first very briefly
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Figure 1.12 – Scheme of a two-sided cavity coupled to a three level
system, described with the input-output formalism.

introduce the theoretical model and then shows the results of the fit.

Theoretical model for the QD-micropillar device The theoretical model
for the device and the simulation that are shown in the following chapters have
been realized in the group of A. Auffeves, by B. Reznychenko and T. Grange,
and is represented in Fig. 1.12. The evolution of the QD-cavity system is
calculated using the master equation presented in Section 1.2.2. To account for
the finite Fine Structure Splitting of the neutral exciton, the QD is modelled as
a three level system in a V configuration, with a single ground state and two
linearly polarized transitions having an energy difference ∆FSS. To account for
the polarization splitting of the micropillar, the cavity as well is modelled with
two linearly polarized optical modes H and V, whose axis are at an angle θ from
the QD axis.

The behaviour of the QD-cavity system both as an emitter and a receiver of
photons, can be described using the input-output formalism. The cavity field â
communicates with two ports, acting as inputs and outputs interfaces, described
by the mode operators b̂out = binÎ +

√
κtopâ and ĉout =

√
κbottomâ where Î is the

identity operator. The excitation laser is modelled as a classical field injected
along the H cavity mode through the input mode b̂in. The measured quantities,
such as the reflectivity, the fluorescence and the second order correlation function
can be calculated using the output field b̂out, which is the optical mode exiting
from the top mirror of the micropillar.

Extraction of the CQED parameters of the device To experimentally
perform a reflectivity measurement, we scan the energy of a CW laser across
the cavity resonance, with the QD transition tuned at the cavity central energy,
and we collect the total reflected intensity. The result is shown in Fig.1.13 for
a typical device, while a more detailed explanation of the experimental proce-
dure and the extraction of the parameters can be found in Section 4.3.2. We
can interpret the observed spectrum as the superposition of the Lorentzian re-
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Figure 1.13 – (a) Low power reflectivity spectrum of the QD-micropillar
device labelled QD3. From the simulation (red line) is possible to extract
the values of g = 19µeV, κ = 90µeV and γ = 0.35µeV.

flectivity dip due to the cavity and the Lorentzian emission line from the QD
transition. The red solid line shows an adjustment of the theoretical model for
the device, presented in the paragraph below. It allows to retrieve a value of
coupling strength g = 19 ± 0.2 µeV, cavity damping rate κ = 90 ± 10 µeV and
QD dephasing rate γ = 0.35± 0.1 µeV. From these three values we can see that,
while close to the limit of strong coupling, we operate here in the weak coupling
regime since g < |γ − κ|/4. Having γ = γsp

2
+ γ∗, we can also observe that

the measured dephasing rate is almost fully accounted for by the spontaneous
emission rate. Recalling that the spontaneous emission lifetime in bulk is about
1 to 1.3 ns, the corresponding decay rate γsp is between 0.5 and 0.6 µeV, thus
the contribution from the pure dephasing rate γ∗ is negligible.

Now, we can retrieve the figures of merit describing the efficiency of our device
as a light-matter interface. We obtain a state of the art value of cooperativity
C = g2

κγ
= 14 ± 7. This cooperativity is much higher than the previous record

value of 2.5 obtained with micropillar cavities [155, 156, 157, 158], and even
surpassing some of the best results obtained with natural atoms, where reported
values of single atoms cooperativities vary between 0.07 and 6 [159, 22, 160, 23].
Neglecting the pure dephasing (γ∗ ≈ 0) the measured cooperativity corresponds
to a Purcell Factor of FP = 2C = 28± 14. From such a high Purcell factor, we
can also calculate a mode coupling β = FP/(FP + 1) in the range 0.93 − 0.98.
The cavity spectrum allows also to retrieve the output coupling efficiency, which
results ηout = 0.64. The input coupling efficiency can be optimized by adjusting
the focused spot size of the excitation laser to closely match the micropillar
diameter. By measuring the mode diameter of the incident and of the emitted
beams, we have obtained values of ηin in the 0.90 to 0.95 range.

From these numbers, we can expect our devices to act both as efficient emit-
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ters of single photons and as an efficient receivers of single photons. An incident
photon will couple 95% of the times to the optical mode of the cavity, and will
interact with the QD with 98% probability before being lost. Symmetrically,
the QD will emit a photon with 98% probability in the cavity mode, and such
photon will be collected from the top 64% of the times. In the following chapters
we will use such near ideal light-matter interface to explore different applications
of the QD-micropillar devices in the field of quantum information science.



Chapter 2

Near optimal sources of single
indistinguishable photons

The availability of a deterministic single-photon emitter is a milestone for the
scaling of most photonic quantum technologies. Fundamentally new applications
in computation, communication and metrology can be realized by encoding the
information on single photons. Although an on-demand generation of nonclas-
sical states of light is required to realize large scale applications, it has been
for long an elusive goal. We study here the emission from the QD-micropillar
devices under different excitation regimes. We shows that our device act as a
very efficient emitter of single photons, with a state of the art brightness and
indistinguishably, opening up new possibilities for the study of large photonic
quantum systems.

In section 2.1, we review the interests and the requirements for single photon
sources in the field of quantum information science, and in section 2.2, we intro-
duce the metrics to describe them. The different single-photon sources available
today are described in section 2.3. In section 2.4, we describe the optical ex-
citation of our QD-micropillar device, and its emission properties are analysed
under non-resonant excitation in section 2.5 and under resonant excitation in
section 2.6. A comparison with the state of the art for single photon sources and
perspectives for this work are given in section 2.7.

2.1 Single photons for quantum technologies

Single photons have early emerged as interesting qubits to encode the quantum
information. They have different degrees of freedom, such as polarization, spatial
or frequency modes, into which the information can be encoded. Single photons
can be easily manipulated and detected and are also highly immune to external
disturbances, thus currently appearing as the only viable option as flying qubits
for long distance quantum information transfer. These advantages gave them

37
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a leading role in many schemes for quantum computation, communications and
metrology. The development of these photonic quantum technologies relies on
the advances into three key areas [108]: sources, linear and nonlinear gates and
detectors. While linear gates [161] and detectors [162] have shown impressive
advances, the lack of deterministic and scalable sources of single photons has
been an important limitation.

An ideal source of single photons is a device which, each time it is trig-
gered, provides a pure single photon Fock state in a well-defined mode of the
electromagnetic field:

|ψ〉 = |1〉 (2.1)

In the simplest case, this equation describes a monochromatic, hence continuous
wave, single photon. Typical applications in the field of quantum information
science require the photons to be spatially and temporally localized, in order to
be processed and detected. This imply both a finite bandwidth as well as the
knowledge of the generation time of the photon, which shouldn’t be random. For
this reasons, continuous wave production of single photons is not analysed here,
and we consider only a pulsed generation regime. To describe a single photon
wave packet, one needs to write the single photon state as a superposition of
different frequencies. Decomposing it in terms of plane waves, having wave
vector k, angular frequency ω = c|k| and polarization ε, we can write it as [84]:

|ψ〉 =
∑
k,ε

ck,ε |1〉k,ε (2.2)

with
∑

k,ε |ck,ε|2 = 1. The fact that such a wave packet is composed of only Fock
states |n〉 with n = 1 defines the single photon character of the state. Indeed, it
is an eigenstate of the total photon number operator n̂ =

∑
k,ε n̂k,ε with eigen-

value of 1. The coefficients ck,ε define the distribution of the field in the wave
packet, thus both the spatial and spectral profile of the photon. The capabil-
ity of a device to produce a state in the form of Eq.2.2 can be translated into
three different properties that can be used to characterize its performances as
a source: brightness, single photon purity and indistinguishability. The bright-
ness describes the efficiency of generating a photon, the single photon purity
describes how well the multi-photon probability has been suppressed and finally
the indistinguishability reveals if all the photons are emitted in a same quantum
state.

2.2 Characterization of a single-photon source

In this section we describe the metrics used to characterize a single photon
source, later on employed to experimentally determine the performances the
QD-micropillar devices.
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2.2.1 Brightness

The brightness B can be defined as the probability P (1) with which, once trig-
gered, the source provides a single photon Fock state. If the efficiency of the
source is limited, it will generate a state composed of vacuum and single photons,
in the form [163]:

|ψ〉 = α |0〉+ β |1〉 (2.3)

where |α|2 = P (0), |β|2 = P (1) and P (0) + P (1) = 1. Here we consider a pure
state but the same is valid also for a mixture of vacuum and single photons.
The experimental value of the brightness B can be measured at any position
of the setup using a single photon detector. The detection probability will be
determined by P (1), and the detected count rate can be written as Rphotons =
ΓlaserP (1). By normalising the detected photon rate Rphotons to the rate at
which the source is triggered, considering that the maximum single photon rate
is limited by the repetition rate of the laser Γlaser, we can estimate the average
number of photons per excitation pulse at the detector. Correcting for any
experimental losses of the setup ηsetup, including the detector efficiency, we can
retrieve the experimental value of the brightness at any location on the optical
setup as:

B =
Rphotons

Γlaserηsetup
(2.4)

We see here that this equation for the brightness corresponds to the probability
that the source generate a single photon Fock state, P (1), which is also the
average photon number 〈n〉 =

∑
n nP (n) of the state.

When the source generates also Fock states contributions with n > 1, the
relation between the count rate on a detector and P (1) is more complex. The
Single Photon Avalanche Diodes (SPADs) that we use are "click" detectors,
incapable of resolving the photon number of the incident state, but only dif-
ferentiating the presence or absence of photons. For such detector, having an
efficiency η, the probability to have a click at the output is [163]:

P (click) =
∞∑
n=1

[1− (1− η)n]P (n) (2.5)

and by writing out the first few terms of the summation, we obtain:

P (click) = ηP (1) + 2η

(
1− 1

2
η

)
P (2) + 3η

(
1− η +

1

3
η2

)
P (3) + ... (2.6)

For unit efficiency (η = 1), this equation gives P (click) =
∑∞

n=1 P (n), implying
that the presence of any non-vacuum state will be equally detected, indepen-
dently of its photon number. On the contrary, for η → 0 we can rewrite Eq.2.6
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to the leading term in η as:

lim
η→0

P (click) ≈ η
∑
n

nP (n) = η〈n〉 (2.7)

thus in the limit of low detection efficiency the detection probability is propor-
tional to the average photon number of the incident state. For higher efficiencies,
the contribution from higher photon number components will be underestimated.
The count rate on the detector is given by Rphotons = ΓlaserP (click). If we include
the detector efficiency η, assumed to be low, into the overall setup efficiency ηsetup

we can experimentally retrieve the average photon number emitted by the source
as:

〈n〉 =
Rphotons

Γlaserηsetup
(2.8)

This assumption of low detection efficiency will be valid in our experiments
despite the use of SPADs having typically η ≈ 0.28 because of the use of an
optical setup of overall low efficiency (some percent). Additionally, in the case
of the single-photon sources studied in this manuscript, where P (n > 1)� P (1)
by at least one order of magnitude, we can consider 〈n〉 ≈ P (1). Both Eq.2.4
and Eq.2.8 then give a faithful estimation of the average photon number, thus
the brightness B = P (1) of the source.

2.2.2 Single photon purity

The single photon purity describes the probability that no more than one photon
is emitted by the source in each wave packet. In general, for a non ideal photon
source, the state of Eq.2.2 is:

|ψ〉 =
∑
k,ε,n

Pk,ε(n) |n〉k,ε (2.9)

where n is not restricted to be 1. The presence of multiple photons, indepen-
dently of their origin and of the mode profile of the wave packet, will degrade
the performances of a device as a single-photon source.

Second order coherence The standard metric to access information about
the photon statistics of the electromagnetic field is the second order correla-
tions function, introduced by Glauber [164], which can be accessed with photon
counting experiments. In term of photon creation and destruction operators the
normalized second order correlation function for a stationary electromagnetic
field can be written as:

g(2)(τ) =
〈â†(0)â†(τ)â(0)â(τ)〉
〈â†(0)â(0)〉〈â†(τ)â(τ)〉

(2.10)
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This function describes the conditional probability of detecting a second photon
after a time τ given a first photon detection event, normalized to the independent
probabilities of detecting two photons. At zero time delay (τ = 0) the above
equation corresponds to the autocorrelation of the signal intensity, thus the
normalized probability of detecting two photons at the same time. It becomes:

g(2)(0) =
〈n̂(n̂− 1)〉
〈n̂〉2

= 1 +
〈(∆n̂)2〉 − 〈n̂〉

〈n̂〉2
(2.11)

where the variance of the photon number n̂ in the field is 〈(∆n̂)2〉 = 〈n̂2〉− 〈n̂〉2.
We see from the above equation that the value of the g(2)(0) is directly linked
to the variance of the photon number in the analysed state, and can be used to
classify the nature of the light based on its photon statistics.

Coherent light A coherent state of light |α〉 shows a normalized correlation
function of any order equal to 1. For such state indeed is possible to factorize
the expectation values for the photon operators [165], which also imply the fact
that each photon detection event is independent to any other. In particular we
have g(2)(0) = 1, thus the probability of detecting two photons at the same time
is the same as for different times.

A coherent state |α〉 is the eigenstate of the photon annihilation operator,
and in the Fock state basis it is given by a Poisson distribution of photon number
states:

|α〉 = e−α
2/2

∞∑
n=0

αn√
n!
|n〉 (2.12)

The Poissonian statistics reflect the random distribution of the detection events
from a coherent state. It has an average number of photons 〈n̂〉 = |α|2 and a
squared variance of (∆n)2 = |α|2 = 〈n̂〉. It is often referred to as classical state,
because its expectation value for the electric field operator shows the oscillatory
dependence expected from a classical electromagnetic wave, and its electric field
fluctuations have the same magnitude as for the vacuum [166]. A laser operated
above threshold generates coherent states of light.

Thermal light A thermal state of light describes the radiation generated by
matter at thermal equilibrium with the environment (the blackbody radiation).
The photon distribution follows the Bose-Einstein statistics, and the photon
numbers probabilities can be calculated as [165]:

P (n) =
〈n〉n

(1 + 〈n〉)1+n
(2.13)

where 〈n〉 is the average photon number for the state and the square of the
variance is given by (∆n)2 = 〈n〉2 + 〈n〉. The photon number variance is higher
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Figure 2.1 – (a) Photon number distribution for a single photon state
(top), a coherent state (middle) and a thermal state (bottom), each having
an average photon number 〈n〉 = 1. (b) Second order correlation function
g(2)(τ) for the same three states as a function of delay τ in units of coher-
ence time τc.

than the one of a coherent state, and the corresponding statistics is defined as
super-Poissonian. Indeed, using Eq.2.11 we can obtain g(2)(0) = 2, implying that
the conditional probability of detecting two photons is higher than the product
of two independent photon detection probabilities. This effect is called photon
bunching.

Antibunched light Photon number states |n〉 are eigenvalues of the photon
number operator, thus they show a zero variance (∆n)2 = 0. While for the
vacuum state |0〉 the second order correlation is zero, for a state with n ≥ 1 we
can obtain from Eq.2.11 that g(2)(0) = 1 − 1

n
. This violates the classical limit

for the second order correlation function, determined by the Cauchy–Schwarz
inequality. Considering Eq.2.10 as the statistical average of real quantities, we
must have 〈n(0)〉2 ≤ 〈n(0)2〉, which imply g(2)(0) ≥ 1 [165]. For this reason
photon number states, among others, are defined as nonclassical states of light.
For a single photon |1〉 we have g(2)(0) = 0, which means that two coincident
photons cannot be detected, and is reflecting the particle nature of the light.
This effect is called photon antibunching.

A general superposition of photon number states can gives rise to any value
of g(2)(0), both below and above 1. By calculating its expectation value on a
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generic wave packet ρ we obtain:

g(2)(0) =
Tr[ρn̂(n̂− 1)]

Tr[ρn̂]2
=

∑∞
n=0 n(n− 1)P (n)(∑∞

n=0 nP (n)
)2 =

=
2P (2) + 6P (3) + 12P (4) + ...

(P (1) + 2P (2) + 3P (3) + ...)2
(2.14)

We can see that the g(2)(0) relates the probability of observing multi-photon
Fock components P (n > 1) to the average photon number 〈n〉 =

∑
n nP (n)

of the state. This quantity can then be used to find an upper bound for the
multi-photon probability. We can write [167]:

P (n > 1) =
∞∑
n=2

P (n) ≤ 1

2

∞∑
n=0

n(n− 1)P (n) (2.15)

where we have used the fact that n(n − 1) ≥ 2 for every n ≥ 2. Rewriting the
last equation in terms of the g(2)(0) we obtain:

P (n > 1) ≤ 1

2
〈n〉2g(2)(0) (2.16)

We see that a g(2)(0) = 0 can be obtained with a state made by vacuum and
single photons only.

Measurement of the second order correlation function In a pulsed
regime, it is convenient to consider a discrete version of the second order corre-
lation function, where each pulse is treated as a whole. Each instant of time t
then corresponds to the signal triggered by a different excitation pulse. Assum-
ing that the initial condition of the source is the same at each excitation cycle,
only the relative temporal delay between two pulses is relevant. In this condition,
we can consider the operators â(0) and â(τ) of Eq.2.10 as the pulse-integrated
destruction operators separated by an integer number of pulses.

To experimentally access the value of the second order correlation function,
a Hanbury-Brown and Twiss (HBT) configuration is used [168]. In such an
intensity interferometer, the signal is sent to a beam splitter and a correlation
measurement is performed on the two outputs using single photon detectors, as
represented in Fig.2.2. An autocorrelation measurement can be turned into a
cross correlation between the two optical modes into which the original signal
has been split. The field operators at the inputs (â0, â1) and at the outputs (b̂0,
b̂1) of the beam splitter are related by the beam splitter transformation as [166]:(

b̂0

b̂1

)
=

(√
T
√
R√

R −
√
T

)(
â0

â1

)
(2.17)
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Figure 2.2 – Hanbury-Brown and Twiss interferometer for the measure-
ment of the g(2)(τ). The signal is sent to a beam splitter, whose second
input is the vacuum. A correlation measurement is performed on the two
outputs. The right curve shows a typical correlation curve where an his-
togram of the coincidences event between the two detectors is plotted as a
function of time delay

Using these relations we can express a measurement on the outputs as a function
of the input modes. Considering that we have the signal at the input port â0

and the vacuum at the input port â1, we find that:

g
(2)
in (τ) =

〈â†0(0)â†0(τ)â0(τ)â0(0)〉
〈â†0(0)â0(0)〉〈â†0(τ)â0(τ)〉

=
TR〈b̂†0(0)b̂†1(τ)b̂1(τ)b̂0(0)〉
T 〈b̂†0(0)b̂0(0)〉R〈b̂†1(τ)b̂1(τ)〉

(2.18)

This means that the g(2)(0) of the input signal can be measured on the two
outputs of the beam splitter and is insensitive to imperfections in the R and T
coefficients. The experimental value of the second order correlation function at
zero time delay g(2)(0), is retrieved by normalizing the number of detected coin-
cidences from a same excitation pulse, to the number of coincidences triggered
by different pulses, thus uncorrelated events. Using two SPADs detectors, this
corresponds to the conditional probability that both detectors click, divided by
the product of the individual probabilities that each detector click:

g(2)(0) =
P01(click, click)

P0(click)P1(click)
(2.19)

As shown by Stevens et al. [169], this can be calculated to be:

g(2)(0) =

∑∞
n=2 [1− (1− η0T )n − (1− η1R)n + (1− η0T − η1R)n]P (n)

[
∑∞

n=1[1− (1− η0T )n]P (n)] [
∑∞

n=1[1− (1− η1R)n]P (n)]

=
2P (2) + 6P (3)(1− 1

2
η0T − 1

2
η1R) + ...[

P (1) + 2P (2)(1− 1
2
η0T ) + ...

] [
P (1) + 2P (2)(1− 1

2
η1R) + ...

] (2.20)
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where η0 and η1 are the efficiencies of the two detectors measuring the modes b̂0

and b̂1. In the limit of low detection efficiency we see that Eq.2.20 reduces to
the form of Eq.2.14, thus gives the correct value of the second order correlation
function:

lim
η0,η1→0

g(2)(0) =
2P (2) + 6P (3) + ...

(P (1) + 2P (2) + ...)2
= g(2)(0) (2.21)

Moreover, for a typical single-photon source, we have that P (n > 2)� P (2)�
P (1), and independently of the efficiencies of the detectors we can approximate
Eq.2.20 to:

g(2)(0) ≈ 2P (2)

P (1)2
≈ g(2)(0) (2.22)

As already mentioned for the case of the brightness, we work here in a regime
where both these approximations are valid.

2.2.3 Indistinguishability

Applications in quantum information science require to perform conditional op-
erations depending on the state of two photons. These operations are typically
implemented by linear optical quantum gates, where an effective photon-photon
interaction is achieved by means of quantum interference effects. For these inter-
ferences to happens, the single photons must be indistinguishable. In the ideal
case then all photons emitted by the source are in a same pure quantum state
as in Eq.2.2. For a real source however, coupling to the environment can cause
a fast decay of the coherence of the transition, as explained in Section 1.1.3 for
the specific case of QDs. The emission must then be described by a statistical
mixture of pure photon wave packets |ψi〉:

ρ =
∑
i

ci |ψi〉 〈ψi| (2.23)

The indistinguishability is reduced due to the fact that different emission pro-
cesses from a same source generates different photon wave packets. The degree
of indistinguishability of the emitted photons is given by the degree of purity
Tr[ρ2] of the state of Eq.2.23 generated by the source.

Interference of single photons The indistinguishability between two pho-
tons can experimentally be measured through a quantum interference experiment
first demonstrated by Hong, Ou and Mandel in 1987 [170]. This effect, at the
hearth of many quantum information processing schemes, is depicted in Fig.2.3.
When impinging on a beam splitter, the wave packet of a single photon is split
into a transmitted and a reflected part, which differs by a ±π/2 phase difference
[171]. If a single photon is sent on each entrance, out of the four possible out-
comes of the process, the two probability amplitudes for the two photons to exit
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(a) (b) (c) (d)

Figure 2.3 – Hong-Ou-Mandel interference between two single photons.
The four figures represents the four possible outcomes of two photons im-
pinging of a beam splitter: (a) the first reflected and the second trans-
mitted, (b) both transmitted, (c) both reflected, (d) the first transmitted
and the second reflected. When the two photons are indsitinguishable the
cases (b) and (c) destructively interfere.

from different ports will destructively interfere. As a result both photons will
always exits from the same port. If the two interfering photons are described by
a same quantum state, we can write the state at the input and at the output of
the beam splitter as:

|1, 1〉 BS−−→ (|2, 0〉 − |0, 2〉) /
√

2 (2.24)

In this case no coincidences can be measured at the two outputs. If the two
photon are distinguishable in some degrees of freedom, such as a different spectral
profile and coherence length, the interference will not be complete. For two
distinguishable photons labelled a and b, we can write the input and output
states as:

|1a, 1b〉
BS−→ 1√

2
(|2ab, 0〉 − |0, 2ab〉) + |1a, 1b〉 − |1b, 1a〉 (2.25)

In this case there will be the possibility for the two photons to exit from different
outputs and coincidences can be detected. The visibility of this quantum inter-
ference effect is proportional to the mean wave packet overlap M between the
two incident photon states. For two mixed states, we have M = Tr[ρiρj], which
becomes M = | 〈ψi|ψj〉 |2 if the two photon states are pure [172]. Studying the
Hong-Ou-Mandel (HOM) interference we can then estimate the indistinguisha-
bility of the photons.

Experimental measurement of the indistinguishability In this work, we
study the HOM interference of two photons emitted at different times by the
same device. This allows us to access the indistinguishability of the emission
from the source as M = Tr[ρ2]. The experimental configuration used to do this
is shown in Fig.2.4.a. Each excitation pulse is split using an unbalanced Mach-
Zender into two pulses separated by a controlled temporal delay δt. The source
is then excited twice every τlaser, which is the period determined by the repetition
rate of the laser Γlaser = 1/τlaser. The signal coming from the source, triggered by
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Figure 2.4 – Hong-Ou-Mandel interferometer for the measurement of the
indistinguishability. (a) Experimental setup. Each laser pulse is split to
excite twice the sample. The emitted photons (A and B) are sent to a
Mach-Zender where they can interfere on the last beam splitter (BSHOM).
A correlation measurement is performed using two SPADs. (b) The two
photons (A and B) are probabilistically distributed into three time bins (t1,
t2 and t3). (c) Expected correlation histograms for the case M=0 (left) and
M=1 (right).

each pulse, is then directed towards a second Mach-Zender interferometer whose
delay is adjusted to match the temporal separation δt between two subsequent
excitations. In this way two emitted photons (A and B) can be temporally
overlapped on the last beam splitter (BSHOM), where they can interfere according
to the HOM effect. A correlation measurement on the two outputs of this last
beam splitter produces the five peaks structure shown in Fig.2.4.c, repeated
every τlaser.

To understand such correlations histogram, we can analyse in more details
what happens to the emitted photons going through the second Mach-Zender
(right part of Fig.2.4.a). Upon arrival on the first beam splitter (considered to
be ideal, with R = T = 0.5), each photon wave packet is split into two parts,
one of which acquires a relative delay of δt by the time they reach the second
beam splitter. Since the delay δt is much larger than the coherence time of a
photon, which is dictated by the radiative lifetime of the emitter, no interference
can be observed between the two parts of a single photon wave packet. We can
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effectively consider them as routed between either the short or the long arm of
the interferometer. The two photons (A and B) directed towards the detectors
can thus be distributed into 3 time bins (t1, t2 and t3) equally spaced by δt,
as shown in Fig.2.4.b. Coincidences can be detected at relative delays τ of 0,
δt and 2δt with relative probabilities of 1:2:1. The HOM interference can take
place when the photon A is sent through the long arm and the photon B through
the short arm (leading to a relative delay of τ = 0), which happens with 25%
probability. The other events, ruled by classical probabilities, happens when
both photons take the same arm (giving τ = δt) or when A takes the short
and B the long one (giving τ = 2δt), and can be used as a reference. In the
classical case of fully distinguishable photons, when no quantum interference can
take place (M = 0), the symmetry of the correlation measurement with respect
to the zero delay events leads to the histogram of Fig.2.4.c (left), with relative
peak areas of 1:2:2:2:1. In case of perfect interference (M = 1) between the
two photons, the peak at zero delay vanishes, leading an histogram with relative
peak areas of 1:2:0:2:1 as in Fig.2.4.c (right). The visibility of the two-photon
interference can be extracted by comparing these two situations as:

VHOM =
C⊥ − C‖
C⊥

(2.26)

and by considering an non-ideal beam splitter BSHOM with reflectivity and trans-
mission coefficients R and T , the experimental value of the mean wave packet
overlap can be obtained as [108]:

M = VHOM
(R2 + T 2)

2RT
(2.27)

Alternatively, the side peaks can be used as a reference to extract the value
of the mean wave packet overlap from a single measurement. Including the effect
of a non-zero g(2)(0), the expected areas for the peaks, normalized to the total
number of excitation cycles, are [173]:

A−2δt = R2

A−δt = 2RT + 2R2g(2)(0)

A0 = T 2 +R2 − 2RTM(1− ε)2 + 4RTg(2)(0)

A+δt = 2RT + 2T 2g(2)(0)

A+2δt = T 2

(2.28)

where R and T are the reflection and transmission coefficients of BSHOM and
(1− ε) is the classical interference visibility of the last Mach-Zender, accounting
for imperfect mode overlap between the two interfering arms of the interfer-
ometer. Relating the zero-delay peak area (A0) to the lateral ones (A±δt), the
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experimental value of the mean wave packet overlap M is [44, 174]:

M =
1

(1− ε)

[
2g(2)(0) +

R2 + T 2

2RT
− A0

A−δt + A+δt

(
2 + g(2)(0)

(R2 + T 2)

RT

)]
(2.29)

In the following experimental work, we will use this second relation to extract
the mean wave packet overlap.

2.3 Available single-photon sources

In the following we discuss the two classes of sources currently used, compatible
with the above requirements: nonlinear crystals, which can behave as heralded
single-photon sources and single quantum emitters, which can behave as on-
demand single-photon sources [163].

2.3.1 Spontaneous Parametric Down Conversion sources

For a long time, Spontaneous Parametric Down Conversion (SPDC) sources
have been the most commonly used for quantum optics experiments. These
sources are typically based on the χ(2) nonlinear optical susceptibility of some
materials, where the nonlinear interaction with an incident pump beam creates
two frequency down-converted beams, called signal and idler, as represented in
Fig.2.5.a. This down-conversion process, stimulated by vacuum fluctuations,
leads to the decay of a pump photon (from a mode âp) into a correlated photon
pair (in two modes âs and âi). The two produced photons must satisfy the
phase-maching conditions to conserve the energy and momentum of the original
photon, which altogether define the joint spectral amplitude of the pair. This
first requirement for SPDC sources implies a spatial and spectral filtering to
control the shape of the output state, limiting the effective useful conversion
efficiency. We assume here that the joint spectral amplitude of the produced
pair can be engineered to be in a single spatial and spectral mode [175], without
noticeable loss of performances. In the parametric approximation of a classical
pump beam, the interaction Hamiltonian corresponds to a two-mode squeezing
Hamiltonian [176]:

ĤPDC = ~(λ∗â†sâ
†
i + λâsâi) (2.30)

where λ ∝ χ(2)Ep is a parameter proportional to the nonlinear susceptibility χ(2)

of the crystal and the field amplitude of the pump Ep. The output state of the
SPDC process can be calculated by applying the evolution operator associated
to Eq.2.30 to the initial vacuum state as [166]:

|ψSPDC〉 = exp[−iĤPDCt/~] |0, 0〉 = sech(λ)
∞∑
n=0

tanhn(λ) |n, n〉s,i (2.31)
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Figure 2.5 – (a) Schematic of a SPDC source. A pump laser is sent
through a χ(2) nonlinear crystal. The pump photons are downconverted
into the signal and idler beams. Spatial and spectral filtering is applied
to the downconverted beams, and one of the two is used to herald the
presence of a photon in the twin beam. (b) Figure reproduced from [44].
Measured heralded second order correlation function g(2)(0) as a function
of the source brightness, defined as the average photon number in the signal
mode.

where |n, n〉 represents the product of two n-photon Fock state in the signal
and idler modes. It corresponds to a two-mode squeezed vacuum state. If we
measure the photon statistics at only one of the two output modes, it shows a
thermal distribution of photon number states, where the probability of observing
n photons is P = 〈n〉n/(〈n〉+ 1)n+1. For small λ however it can be rewritten as
[163, 177]:

|ψSPDC〉 =
√

1− |λ|2
∞∑
n=0

λn |n, n〉

=
√

1− |λ|2
(
|0, 0〉+ λ |1, 1〉+ λ2 |2, 2〉+ ...

)
(2.32)

The probability of generating a pair of n-photon Fock state is P (n) = (1 −
|λ|2)|λ|2n, and the ratio P (n + 1)/P (n) = |λ|2 is linearly dependent on the
pump power. For small incident power |λ| � 1 then the probability of creating
multi-photon pairs is very small, thus it is possible to probabilistically generate
single photon states by collecting one of the two output modes and using the
other mode as an heralding signal. While SPDC devices cannot be on-demand,
they are employed as heralded sources. Due to the fact that there is a perfect
correlation between the photon number in the idler and in the signal modes, the
detection of a single photon in one of the two can be used to herald the presence
of the twin photon. The performances of such source depends both on the pump
power and the efficiency of the detectors.

The measurement operation performed by a detector is described by its
Positive-Operator-Valued Measure elements. For a detector having no Pho-
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ton Number Resolving (PNR) capability and an efficiency η, the probability of
detecting a signal is [163]:

P (click) =
∞∑
n=1

[1− (1− η)n]P (n) (2.33)

For η = 1, a successful detection on the idler mode will herald on the signal
mode the state:

|ψherald
SPDC〉 ≈

1

|λ|
(
λ |1, 1〉+ λ2 |2, 2〉+ ...

)
(2.34)

Neglecting higher photon-number contributions, the second order correlation
function can be calculated from g(2)(0) = 2P (2)/P (1)2, as detailed in Section
2.2.2. For the state of Eq.2.34, this gives g(2)(0) = 2|λ|2, thus a small g(2)(0) can
be obtained for a low incident power. In this condition however, most of the time
the output of the SPDC process will be the vacuum state |0〉 and the heralding is
not successful. Typically to obtain a g(2)(0) ≤ 0.05, thus a photodetection signal
dominated by single photons, the brightness is limited to 1% [44], as shown in
Fig.2.5.b.

To overcome the limitations imposed by the presence of multi-photon compo-
nents a PNR detector can be used, which can discriminate the detection events
due to single photons. In this case the probability of detecting n photons from
the incident distribution is given by [163]:

P (n) =
∞∑
m=n

(
m
n

)
(1− η)m−nηn |m〉 〈m| (2.35)

which for η = 1 corresponds to a perfect n-photon projection P (n) = |n〉 〈n|
and can thus be used to filter only the events where a single photon has been
emitted. As shown by A. Christ and C. Silberhorn [175], in the ideal case of
perfect PNR detection, the heralding of a single photon with unit fidelity can be
achieved. In this case, the pump power can be increased to decrease the vacuum
contribution, but the heralding efficiency is fundamentally limited to 25% due
to the thermal photon statistics of the state generated by the SPDC source.
The realization of a pure deterministic single-photon source, having efficiency
> 99%, would require a multiplexed setup of at least 17 SPDC sources [175],
thus is demanding from the experimental point of view.

2.3.2 Single Quantum Emitters

Single quantum emitters can be used as on-demand sources of single photon Fock
states. They are based on the spontaneous emission process, triggered by vacuum
fluctuations, of an electronic transition between two discrete energy levels, which
can only generate a single photon state. Let’s consider an atomic two-level
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system, having an excited state |e〉 and a ground state |g〉. The spontaneous
emission process cause an exponential decay of the excited state population,
whose rate can be calculated using the Fermi golden rule:

Γi→f =
2π

~
|〈f |Ĥi|i〉|2ρ(Ef ) (2.36)

where |i〉 and |f〉 are the initial and final state of the system and ρ(Ef ) the
available density of final states. In the rotating wave approximation, the electric
dipole Hamiltonian describing the interaction between such transition and the
electromagnetic field can be written as [84, 83, 178]:

Ĥi = ~
∑
k,ε

gk,ε(σa
†
k,ε + σ†ak,ε) (2.37)

where σ = |g〉 〈e| and σ† = |e〉 〈g| are the atomic lowering and raising operators,
â†k,ε and âk,ε are the field creation and destruction operators (for a specific mode
k, ε) and gk,ε is the atom-field coupling factor. Assuming the initial state of the
system to be |i〉 = |e, 0〉, where we have the atom in the excited state |e〉 and
the field in the vacuum state |0〉, the perturbation described by Eq.2.37 only
couples final states in the form |f〉 = |g, 1k,ε〉. The radiation part of the final
state is thus always is the form of a single photon state 1, whose specific mode
profile will be determined by the accessible density of final states ρ(Ef ) and their
coupling to the initial state gk,ε:

|ψsp(t→∞)〉 =
∑
k,ε

ck,ε |g, 1k,ε〉 = |g〉 ⊗
∑
k,ε

ck,ε |1k,ε〉 (2.38)

Once the electron has decayed to the ground state |g〉, no other emission can
take place, until it is excited again to |e〉.

Different types of quantum emitters are explored: natural atoms [182] and
ions [183], molecules [184] and solid-state emitters [48]. Atoms and ions may
appears as ideal candidates. They have many transitions which can be isolated
and used for the production of single photons. Moreover any particle of a same
species generates identical photons, thus multiple sources of indistinguishable
photons can be realized [185]. An important limitation though is that atoms
require very complex experimental setups in order to be isolated and trapped,
and cannot be stored for long times. This makes it challenging to realize scal-
able devices. Solid-state sources instead are easier to manipulate and can be
miniaturized and integrated. On the contrary, they are inevitably coupled to

1The result obtained with the Fermi golden rule corresponds to the first order of a perturba-
tion expansion in the atom-field coupling. Considering higher orders will include contributions
from multi-photon spontaneous emissions, which are typically negligible. Two-photon sponta-
neous emission has been studied in situation where the first-order transition is forbidden by
selection rules or suppressed by a cavity [179, 180, 181].
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|e〉

|g〉

Figure 2.6 – Single quantum emitter. A two-level system is prepared to
its excited state and the spontaneous emission process is used to generate
a single photon. No photon can be emitted until the system is reinitialized
to the excited state.

their environment, which can strongly affect the source properties. Quantum
dots [108], colour centres in diamonds [186], carbon nanotubes [187] and local-
ized states in 2D materials [188] are examples of different systems being studied
as single-photon sources. Currently InGaAs QDs, such as the one of this work,
shows the best performances.

A fundamental obstacle for any single quantum emitter is the difficulty of
collecting the emitted photons. The common strategy is to couple their tran-
sitions to cavities or waveguides. By doing so it is not only possible to collect
the emission more efficiently, but also to shape the spatial and spectral profile
of the emitted photons. An important advantage of InGaAs QDs is in that III-
V semiconductor fabrication techniques allows realizing high quality photonic
structures, which can be used to produce efficient optical interfaces. As shown
in Section 1.3, the fabrication used for the devices analysed here allows obtain-
ing a single QD deterministically coupled to a micropillar cavity and a strong
Purcell effect [38]. The high mode coupling achieved, on one side strongly reduce
the effect of the environment, on the other side allows to funnel the emission
into the confined mode defined by the optical cavity (see Section 1.2.4). We
thus expect it to behave as a very efficient source of single and indistinguishable
photons. Beside micropillars, also microdisks and photonic crystals cavities are
explored to efficiently collect the emission from a QD. Microdisk cavities can be
evanescently coupled to fibres [189] and photonic crystals can be engineered to
provide out-of-plane directional emission to be coupled to a fibre [190]. An alter-
native approach is to couple the QD emission to the propagating modes defined
by a waveguide. This has been experimentally demonstrated using photonic
crystal waveguides by Lund-Hansen et al. [128] and using photonic nanowires
by Claudon et al. [25]. The waveguide modes realize a broadband 1 dimen-
sional continuum whose spatial and spectral matching to the QD transition is
not as stringent as for a cavity, and in addition a very high mode coupling up
to β =0.95 to a single propagating mode of the waveguide can be achieved [25].
An appropriate design of the waveguide allows a very high extraction efficiency,
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above 0.9 for off-chip approaches [191].
In the rest of this chapter we experimentally characterize the performances of

our QD-micropillar device as a single-photon source, using the metric presented
in section 2.2, under different optical excitation regimes.

2.4 Excitation regimes of the QD-micropillar de-
vice

The excitation of the QD with an optical field can be done using different
schemes, represented in Fig.2.7. Electron-hole pair can be created either in
the bulk continuum outside the QD, with an above band excitation, or directly
into the QD. In the following we define as non-resonant excitation the direct ex-
citation of a higher excited state of the QD, while resonant excitation the direct
pumping of the fundamental exciton state.

Above-band excitation For above-band excitations, the energy of the inci-
dent laser is tuned to be higher than the GaAs bandgap (about 1.5 eV), creating
electron-hole pairs in the bulk material (see scheme in Fig. 2.7). The charge
carriers from the continuum will be trapped at random times in the wetting
layer, from which they will eventually fall inside the QD. The captured elec-
trons and holes first populate higher excited states of the QD and then rapidly
relax through a non-radiative processes towards the fundamental exciton state
[192]. This non-radiative relaxation is assisted by optical phonon scattering and
happens on a typical timescale of 30 to 50 ns [193, 194, 195].

While easy to implement, this excitation scheme has multiple drawbacks.
First of all, it doesn’t give a direct control over the number of carriers created.
By increasing the excitation power, multiple electron-hole pair can be formed in
the bulk, which by relaxing into the QD will fill up the available energy levels
before a radiative recombination can happen (which is typically at the timescale
of 1 ns for the spontaneous emission of a QD). Moreover, electrons and holes are
independently captured from the bulk GaAs, and the QD can be easily loaded
with single charges. Thus any exciton complexes can be obtained: single exciton
(X) and biexciton (XX) when one or two electron-hole pairs are present in the
QD as well as charged excitons (CX) with an odd number of carriers. This
process is also sensitive to the quality of the wetting layer, where defects at the
interfaces can create trapping centres for the carriers. In the explanation above,
we have assumed that the radiative recombination in the QD is the slowest
process. However, if the typical time for the capture process is comparable
or longer than the radiative lifetime of the exciton in the QD, an additional
electron-hole pair can be recaptured after a first one has radiatively recombined
[196, 197, 198]. This will lead to the emission of multiple single photons at
the neutral exciton energy, which is strongly detrimental for the realization of a
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Figure 2.7 – Optical pumping of a QD. For an above band (AB) excitation
electron-hole pairs are created in the bulk GaAs and then non-radiatively
decay to the fundamental exciton state. For non-resonant (NR) and res-
onant (R) excitations, the excitonic states are created directly inside the
QD.

single-photon source. This excitation technique then is not suited to obtain an
efficient single photon emission from a QD.

Non-resonant excitation For a non-resonant excitation, the laser energy is
lower than the wetting layer bandgap, and a discrete resonance inside the QD is
directly pumped. The presence of these sharp resonances can be due either to
higher excited states of an exciton in the QD or to phonon assisted absorption
processes [199, 200]. In the first case, the laser directly creates an excited state
of the exciton, when then energies of the two matches [201, 202]. Alternatively,
if the distance between the pump laser and the energy of a lower-lying electronic
level in the QD corresponds to an integer number of optical phonons, such
discrete level of the QD can be efficiently populated thanks to a multi-phonon
emission process [193, 203, 195]. In both cases, the excitation is followed by a fast
non-radiative relaxation towards the fundamental exciton state, as explained for
the above-band excitation. The first excitation mechanism allowed to observe
Rabi oscillations of the excited exciton state in the QD [201, 202]. However,
the coherent manipulation of an excited exciton state is limited to a very short
timescale. The non-radiative relaxation, happening on a 50 ps timescale, causes
an incoherent population transfer to the fundamental exciton state. In general
then, with a non-resonant excitation, the fundamental exciton state cannot be
coherently manipulated.

Using this pumping scheme, charges are created by pairs directly inside the
QD, avoiding the addition of a single electron or a single hole. This excitation
method is independent of the wetting layer quality. Since no recapture process
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can happen, the fundamental exciton state cannot be excited multiple times.
Moreover, the total number of pair created is limited by the number of available
discrete states below the excitation energy. By controlling the excitation power,
it is then possible to create one or two electron-hole pair, and their sequential
recombination will lead to the emission of a single photon at the energy of the
fundamental exciton state [75]. To calculate the power dependence of the emis-
sion from the exciton state, we assume each incident photon to independently
create an electron-hole pair. Following from this simple assumption, the proba-
bility of generating n pairs using a laser pulse having an average photon number
〈n〉 is given by:

P (n) =
〈n〉n

n!
e−〈n〉 =

1

n!

(
P

P0

)n
e
− P
P0 (2.39)

where P and P0 are respectively the incident power and the saturation power
for the transition. Considering the radiative cascade in the QD, the emis-
sion intensity from the single exciton state is proportional to the probability
of creating at least one electron-hole pair and can be simply calculated as
IX = I0(1 − P (0)) = I0(1 − e−P/P0). It clearly shows a saturation behaviour:
when the incident power is high enough, every excitation will create at least
one electron-hole pair. The probability of obtaining a single photon will then
be determined by the quantum efficiency of the X transition. This technique
allows also to easily isolate the QD emission from the laser light, as they have
different energy and spectral filtering can be used to remove the scattered laser.
This non-resonant excitation is used in section 2.5 to study the emission from
the QD-micropillar device.

Resonant excitation For a strictly resonant excitation, the laser energy is
fixed at the energy of the fundamental exciton state. When exciting resonantly
a two-level system with a coherent light field, the state of the system undergoes
the well-known Rabi oscillations. In the ideal case of a closed system, under con-
tinuous wave driving, the occupation probability for the excited state is evolving
in time according to:

Pe(t) = sin2

(
Ω t

2

)
(2.40)

where Ω = 2g is the Rabi frequency of the driving field. The first maximum
of this function is achieved after a time t = π/Ω, when all the population is
transferred to the excited state. By tailoring laser pulses so as to met this
condition, we can deterministically bring the QD into the excited state and with
a minimum amount of pump power. Such transfer is called π pulse excitation.

The resonant excitation of neutral and charged excitons has been used to
observe Rabi oscillations in QDs both outside [204, 205, 206] and inside a cavity
[207, 208]. This technique do not suffer from any incoherent relaxation process
to populate the exciton state. However it is more difficult to isolate the QD



2.5. PERFORMANCES FOR NON-RESONANT EXCITATION 57

emission, as it is at the same energy as for the excitation laser. The emission
properties of the QD-micropillar device under resonant excitation are presented
in section 2.6.

2.5 Performances for non-resonant excitation

2.5.1 Experimental setup

The experimental setup used for the characterization of the QD-micropillar de-
vices under non-resonant excitation is represented in Fig.2.8. The sample is
kept at 8 K in a gas exchange closed-cycle helium cryostat. A pulsed titanium-
sapphire laser of tunable energy, providing 3 ps pulses with a repetition rate
of 82 MHz is used to optically excite the QD. The laser can be sent through a
pulse multiplication stage, used only for the indistinguishability measurements
as explained later on, where each pulse is split into two pulses with a controlled
delay δt between them. The laser pulses are then coupled to a single mode
optical fibre, in order to be transferred to a confocal setup mounted on top of
the cryostat. Once collimated again in free space, the excitation pulses are di-
rected towards the sample where a microscope objective (with NA of 0.75) is
used both to focus the laser on top of the micropillar cavity and also to collect
the photoluminescence from the QD. A non-polarizing beam splitter cube (BS)
is used to split and collect the signal coming from the sample. The collected
signal (Signal) is then coupled to a second single mode fiber and transferred
to the analysis stage. To precisely control the polarization of the incident and
collected light and correct for any birefringence of the optical setup, a half wave
plate (HWP) and a quarter wave plate (QWP) are inserted into the common
path between the BS and the sample.

Depending on the analysis to be performed, the signal from the sample can
be directed towards three different stages, as shown in the right part of Fig.2.8.b,
each used to study one of the previously described property of a single-photon
source. A measurement of the emission spectrum and the total intensity emitted
from the source, thus the brightness, can be done using a spectrometer and a
CCD. To study the single photon purity and the indistinguishability we use re-
spectively a Hanbury-Brown and Twiss interferometer and an Hong-Ou-Mandel
interferometer.

2.5.2 Spectroscopy of a single QD

To measure the emission spectrum from the sample, we send the collected signal
into a spectrometer, where it is spectrally dispersed by a grating and detected
using a CCD camera placed at one spectrometer output (see Fig.2.8).

By collecting emission spectra while sweeping the voltage, we can observe the
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Figure 2.8 – Experimental setup for non-resonant excitation. A pulsed
laser is used to excite the sample. The collected signal can be directed
towards different analysis stages.

effect of the external bias on the QD states. A typical measurement, performed
with an above-band laser excitation at 840 nm, is shown in Fig.2.9, where we
observe several emission lines. A very strong signal is coming from the neutral
exciton transition, the one targeted during the in-situ lithography, being in close
resonance with the cavity mode. All other transitions instead are very dim,
being far detuned from the fundamental cavity mode. By increasing the applied
bias we can decrease all the emission energies, as expected from the quantum
confined Stark effect. The energy shift ∆E of each transition indeed follows the
behaviour of an electric dipole under an external electric field [63]:

∆E = −pF − αF 2 (2.41)

where p is the permanent electric dipole moment in the vertical direction, α is
the polarizability and F the applied electric field. The quadratic behaviour is
clearly visible for all transitions. A small but non-zero permanent electric dipole
is also expected as the pyramidal shape of the self-assembled QDs normally leads
to a different centre of mass position of the electron and hole wavefunctions along
the growth direction [209, 210], corresponding to the direction along which the
bias is applied. The right part of Fig.2.9 shows a close-up of the neutral exciton
transition being shifted across the cavity resonance. The Purcell effect can be
observed as a strong increase of the emission intensity from the QD, when its
energy matches the one of the cavity. The voltage required to achieve this
resonance condition will also depends on the incident excitation power, but in
general we can rely on the observation of the strongest signal, thus the highest
Purcell Factor, to adjust the external bias.

A polarization-dependent spectroscopic analysis can also be used to study
the polarization splitting for the cavity and for the QD states. We expect both
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Figure 2.9 – Voltage dependence of the emission spectrum under above-
band excitation (840 nm) for the device labelled QD3. (a) Collected in-
tensity as a function of the emission energy and applied bias. (b) Bottom
panel: close-up of the same data around the resonance condition. The top
panel shows the emission spectrum at -0.95 V (black), -1.15 V (red) and
-1.25 V (blue).

the micropillar cavity and the QD to have a slight ellipticity in their in-plane
section. The fundamental mode of the micropillar can then be decomposed into
two linearly polarized modes slightly split in energy, and similarly the neutral
exciton will shows a finite Fine Structure Splitting (FSS) between the energy
of the two linearly polarized exciton eigenstates, as explained in Section 1.1.2.
This is reflected into the polarization dependence of the emission from the sam-
ple. To measure the orientation of both the cavity and exciton eigenstates, the
bias is now adjusted in order to detune the QD line away from the cavity so as
to clearly distinguish the different contributions to the spectrum. As shown in
Fig.2.10.a for the device named QD1, the shift in the cavity mode emission for
two orthogonal polarizations is clearly visible, while the shift of the exciton is
much smaller. Rotating the half wave plate on top of the sample (HWP) we can
collect the emission spectra as a function of the polarization. A fit of multiple
Lorentzian peaks to these spectra allows us to retrieve the energies and the axis
of the cavity and exciton eigenstates. As it is shown in Fig.2.10.b, both shows
a non-zero splitting. Additionally, we can observe that the exciton eigenstates
are not aligned to the cavity polarization axis, but they are rotated of about
35̊ with respect to each other. This condition is required to observe the reso-
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(a) (b)

Figure 2.10 – Figure reproduced from [20]. Polarization dependence of
the emission spectra measured from device labelled QD1. (a) Emission
spectra for linear polarization aligned along the H and V cavity modes.
(b) Polarization dependence of the emission from of the cavity and of the
exciton. From this measurement a relative angle of about 35̊ between the
two.

nance fluorescence from the neutral exciton state, as explained later in Section
2.6.3. The axis orientation is resulting from the fabrication of the lateral ridges
connecting the micropillar cavity to the surrounding circular frame at 45̊ from
the crystallographic orientation of the sample. The exciton FSS is preferentially
aligned along the [110] and [1 -1 0] crystal axis of the GaAs substrate, as pre-
viously reported in literature [63, 211], while the cavity polarization splitting is
determined by the elongation along the lateral ridges. As a result this configu-
ration turns out to be useful to resonantly excite the QD, as will be explained
later in Section 2.6.3.

2.5.3 Brightness of the source

Brightness of a QD in a micropillar For a QD coupled to a micropillar,
the intrinsic brightness can be calculated from the characteristics of the device
as:

B = pXβηout (2.42)

For our devices pX is the occupation probability for the exciton state (as in this
case we consider the emission from the exciton state) at the end of each excitation
cycle, β is the mode coupling between the exciton and the micropillar and ηout

is the output coupling efficiency from the top mirror, as explained in section
1.2.4. Generally pX describe the efficiency in the preparation of the radiating
state of the atomic system, β the probability that the emission is collected by
the photonic structure and ηout the efficiency in extracting the photons from it.
When each of the three terms is equal to 1, we obtain a deterministic source,
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Figure 2.11 – (a) Time dependence of the emission at the energy of the
neutral exciton state. (b) Saturation curve of the emission from the same
transition, for the device labelled QD1 under non-resonant excitation.

providing a single photon at every excitation cycle, a situation never reached so
far.

The definition of Eq.2.42 corresponds to the brightness at the first lens, just
outside the source. As such it does not take into account additional signal
processing which could be required in order to actually use the emitted photons,
like spectral, spatial or polarization filtering, the coupling to an optical fibre or
any losses introduced by optical elements. The specific implementation of an
experimental setup can further reduce the effective brightness of the source, and
it often needs to be taken into account for a useful estimation of B. This will be
the case in Sec.2.6, where a cross-polarization configuration is used, limiting the
amount of photons which can be collected thus reducing the effective brightness.

Measured brightness The same configuration used in the previous section
can also be used to spectrally filter only the emission at the energy of the neutral
exciton transition, observed at 925 nm when on resonance with the optical mode
of the cavity. To do so the signal is directed to the second output of the spec-
trometer, where is being spatially filtered in the Fourier plane by the mechanical
slits at the output. The resulting signal, in a narrow spectral range around 925
nm, is then detected by a Single Photon Avalanche Diode (SPAD).

The time dependence of the emission can be measured by collecting the
detection events from the SPAD as a function of the delay with respect to the
excitation laser pulses. The resulting histogram is shown in Fig.2.11.a, obtained
using an ID Quantique detector having a time resolution of about 30 ps. A fit
to a single exponential decay function gives a radiative lifetime of 150 ps for the
exciton state. Considering a typical lifetime of 1.3 ns for an InGaAs QD in bulk,
from the shortening of the radiative lifetime we can calculate a Purcell factor
FP = 8.6.
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Such a Purcell factor corresponds to a mode coupling β = 0.90, implying a
dominant fraction of emission from the QD being funnelled into the cavity mode.
Considering an output coupling efficiency of ηout = 0.7, which is determined
from the reflectivity spectrum as explained in Chapter 4.3.2, we have a photon
extraction efficiency from the QD-cavity device of βηout = 0.63. The maximum
possible brightness is then B = βηoutpX = 0.63 and can be achieved for a unit
occupation probability of the exciton state pX = 1. This condition can be met at
saturation, as explained in Section 2.4, if no state other than the neutral exciton
can be populated following the excitation pulse.

To experimentally measure the brightness, we monitor the number of de-
tected counts per second by the SPAD as a function of the excitation power. By
carefully characterising every elements of the optical setup used for non-resonant
excitation, the overall efficiency was estimated to be 0.25%, including the de-
tector efficiency. Using this value we can relate the count rate measured at the
detector to the count rate expected on the first lens (here the objective used to
collect the photoluminescence). Dividing such number by the laser repetition
rate Γlaser = 82 MHz, we obtain the experimental value of the brightness as
B =

Rphotons
ηsetupΓlaser

. The result is plotted in Fig.2.11.b, where we see that the signal
from the exciton clearly shows a saturation behaviour. At the maximum tested
power, we detect 0.125 MHz on the SPAD, which corresponds to a 50MHz count
rate at the fist lens, giving a brightness of 0.61. The dashed line in Fig.2.11.b
shows a fit to the saturation equation B

(
1− e−P/Psat

)
which gives a brightness

at saturation of B = 0.65± 0.07. This is compatible with the theoretical maxi-
mum value of 0.63 estimated before. As such, it is also consistent with pX = 1,
suggesting the absence of blinking effects which could limit the brightness by re-
ducing the probability of being in an exciton state due to single charges randomly
loaded into the QD.

The very high brightness achieved here is close to the record values of 80% ob-
tained with isolated micropillars cavities [41], showing that the use of connected
devices do not significantly alter the optical mode of the cavity.

2.5.4 Single photon purity

To study the single photon purity from the neutral exciton line, we use the
external bias to keep the selected transition in resonance with the cavity mode
energy, where the highest Purcell effect is observed. The signal from the sample is
then sent towards a free space beam splitter cube, and the two outputs from this
cube to two different spectrometers, which are used to spectrally filter only the
emission from the neutral exciton transition. Each spectrometer output is then
detected by a PerkinElmer SPAD (having 350 ps resolution and 30% efficiency
at 925 nm), and a correlation measurement performed between the two SPADs
signals using a PicoQuant correlator. A typical measurement, obtained for a
high excitation power of 2.5 times the saturation power Psat, where the device
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Figure 2.12 – Second order correlation of the emission from the device
QD1. (a) Correlation histogram of the g(2)(τ) for an excitation power
Pin = 2Psat. (b) Measured g(2)(0) as a function of the excitation power.
(c) Temporal dependence of the g(2)(τ) for long delays.

has the maximum brightness, is shown in Fig.2.12.a and c. The plots shows the
histogram of the detected coincidences, binned with a 128 ps time resolution, as
a function of the time delay between the detection events. The series of peaks
spaced by 12.2 ns represents the QD emission triggered by different excitation
pulses of the laser, while between adjacent peaks we can observe a negligible
background. At zero time delay, where we observe the detection events on both
SPADs arising from a same excitation pulse, the plot shows a very small area
for the peak. The total number of counts in each peak is integrated in a 1 ns
range. As explained in Section 2.2.2, by normalizing the area of the central peak
to the average area of the peaks at non-zero delay, we can retrieve the value
of the second order correlation function at zero time delay, which for Fig.2.12.a
is g(2)(0) = 0.024 ± 0.007. Such a strong antibunching demonstrate the single
photon character of the emission from the QD transition. The g(2)(0) has been
measured for different values of the excitation power, and the results are plotted
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in Fig.2.12.b. It shows an almost constant g(2)(0) = 0.013, with a slight increase
only well beyond the saturation.

Fig.2.12.c shows the measurement of Fig.2.12.a for a longer delay, evidencing
the absence of any dependence at long time scale. This confirms that no blinking
effect is observed in the QD. Such a stability for the long time scale of g(2)(τ) is
a first indication of the charge noise suppression obtained with the gated device.

2.5.5 Indistinguishable photon emission

In order to measure the indistinguishability of the photons emitted by the device,
we perform here a Hong-Ou-Mandel (HOM) experiment with free space optics
on the collected signal, where two photons, emitted one after the other, are
temporally overlapped and can interfere on a beam splitter, as explained in
Section 2.2.3.

Each laser excitation pulse is now split into two pulses of equal intensity 3
ns apart, using a free space delay line. As a result the sample is excited twice
every 12.2 ns. The collected signal is then sent to one entrance of a Mach-
Zender interferometer, where the delay between the two arms is set to 3 ns, in
order to match the delay between two subsequent excitations. The detection is
performed as for the HBT experiment. The two outputs of the last beam splitter
of this interferometer are spectrally filtered using two different spectrometers,
and detected by two SPADs, as was done in the previous section for the g(2)(0).
The resulting histogram of a correlation measurement between these two SPADs
is shown in Fig.2.13.a.

As described in Section 2.2.3, the measurement shows a structure of five
peaks, here spaced by 3 ns, repeated every 12.2 ns, the period dictated by the
laser repetition rate. The reduced number of coincidences detected at zero time
delay reflects the quantum interference between single photons. The experimen-
tal value of the mean wave packet overlap between two subsequent photons can
be extracted using Eq.2.29, which relates the area of the zero delay peak to the
lateral ones (at a relative delay of ±3 ns). Due to the specific delay chosen here,
the outmost peaks of each group are superimposed to the adjacent ones. Since
the overlap between different signals is not negligible, to extract the area of the
individual peaks we fit a double-sided exponential decay to each of them, shown
by the grey lines in Fig.2.13.a. We also measure a reflectance and transmittance
coefficients of R = 0.45 and R = 0.50 for the beam splitter cube where the
two photons interfere, and a classical interference visibility in the HOM setup
of (1 − ε) = 0.95 using a CW laser. From the measurement here presented, we
retrieve a value of mean wave packet overlap of M = 0.78, when corrected using
the previously measured g(2)(0) = 0.024. The photons emitted by the source are
thus significantly indistinguishable even at saturation, where the device shows a
very high brightness of 0.65.

The measurement of M is repeated for different excitation powers and the
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Figure 2.13 – Indistinguishability of the photons emitted by the device
QD1 under non-resonant excitation. (a) Correlation histogram obtained
from the HOM experiment for Pin = 2Psat. (b) Measured mean wave
packet overlap as a function of the excitation power.

resulting values are plotted in Fig.2.13.b. Here we see that the indistinguishabil-
ity does not depend on the saturation of the transition, and we always observe
a mean wave packet overlap in the range from 0.7 to 0.8, even well beyond the
saturation value of the QD transition, where the device shows the maximum
brightness.

This is a strong indication that the electrical noise is effectively cancelled
through the application of an external bias. Gazzano et al. [41] have previously
showed that highly indistinguishable photons (with M ≈ 0.8) from micropillar
cavities can be obtained under non-resonant excitation by introducing a second
weak CW pump at 850 nm. This was attributed to a stabilization of the charge
environment operated by the second laser. The use of an electrically contacted
structure lifts the requirement for a two colour excitation scheme, which still is
not effective at high excitation power. By tilting the band of the p-i-n struc-
ture, it is possible to sweep away uncontrolled charges from the intrinsic region,
where the QD is located, so as to suppress the main source of spectral diffu-
sion. This is consistent with previous studies of gated devices, which already
allowed to observe transform-limited linewidth [106, 212]. In particular, it has
been demonstrated using spectroscopy measurements that in bulk samples the
charge noise takes place mainly at low frequency, below 50 kHz [105], having
a negligible effect at the ns timescale separating the two photons that we are
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probing with this experiment.
In these conditions, one could reasonably expect that the effect of the envi-

ronment becomes negligible on the indistinguishability of the emitted photons.
The high Purcell effect obtained with the micropillar cavity efficiently suppress
the phonon-assisted single photon emissions at 8 K [100], while the gated struc-
ture suppress the charge noise at high frequency. Still, all the measurements we
have performed did not allowed to observe a mean wave packet overlap above
0.8 under non-resonant excitation.

The maximum value of indistinguishability that we observe is indeed limited
by the non-resonant excitation scheme. While a transform limited linewidth as-
sure the same decay profile for the emitted photon wave packets, the rise time
cannot be coherently controlled. By creating charges in a higher excited state of
the QD, a fast non-radiative carrier relaxation to the fundamental exciton state,
assisted by phonons, takes place with a typical timescale of tens of picoseconds
[195]. This process, required to populate the fundamental QD level, introduces
an uncontrolled time-jitter in the emission time of the photons. In the high
Purcell regime, this uncertainty in the creation of the fundamental exciton state
becomes comparable to the radiative lifetime of the exciton state itself. As a
consequence the HOM interference of two photons is limited by the random vari-
ations in their arrival time, which makes the two photons distinguishable. This
effect has been theoretically studied by Kiraz et al. [87], which have shown that
the incoherent excitation of a QD is a fundamental limitation to the obtention
of highly indistinguishable photons with high brightness for a QD in an opti-
cal cavity. For the high Purcell effect measured here, they predict a maximum
indistinguishability around 80%, which is consistent with the limit we observe
under non-resonant excitation.

Following this discussion, we expect to be able to observe fully indistin-
guishable photons using a coherent excitation scheme, by directly exciting the
fundamental exciton state.
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Figure 2.14 – Figure from [87]. Expected indistinguishability (1 − p34)
and mode coupling (β) as a function of the Purcell effect (FP ) for a QD
coupled to a cavity under non-resonant excitation.

2.6 Resonant fluorescence

While embedding the QD in a gated microcavity allows to strongly suppress all
dephasing effects due to the coupling with the solid-state environment, a full
control of the photon wave packet requires also a resonant excitation scheme.
Here we presents the excitation technique and the emission properties of the
device under resonant pumping.

2.6.1 Experimental setup

For the resonant excitation scheme a spectral filtering to separate the excitation
laser from the signal cannot be used, since they both have the same energy. In
a previous work by Ates et al. [207], the resonant fluorescence under continuous
wave excitation from a QD in a micropillar cavity has been isolated using a
lateral excitation geometry, where the pump laser was focused on the sidewall
of the micropillar, while the emission was collected from the top. Since we are
working in a reflectivity configuration, where both the excitation and collection
are performed through the same top mirror, this spatial filtering of the laser
cannot be used either. To suppress the scattered laser light we employ here a
cross-polarization configuration, as used by He et al. [208], where excitation and
collection are performed along orthogonal polarizations.

The new setup is shown in Fig.2.15, and consists in the same confocal layout
as the one of Fig.2.8, where the beam splitter is now replaced by a polarizing
beam splitter (PBS). The 3 ps pulses of the titanium-sapphire tunable laser are
first spectrally shaped using a monochromator and an optional etalon filter, and
then directed towards the sample using the excitation fibre. The incident light is
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Figure 2.15 – (a) Experimental setup for resonant excitation experiments.
(b) Fibered Hanbury-Brown and Twiss interferometer. (c) Fibered Hong-
Ou-Mandel interferometer.

linearly polarized using a polariser (Pol) and the PBS. The signal coming from
the sample along the orthogonal polarization is then diverted by the PBS and
filtered with an additional polariser (Pol), before being coupled to the collection
fibre. This configuration allowed to achieve a maximum laser extinction ratio
of about 1 × 105 under pulsed excitation. Like for the non-resonant case, the
polarization of the incident light (always orthogonal to the collected one) can be
chosen by finely adjusting a half wave plate (HWP) and a quarter wave plate
(QWP) placed between the PBS and the sample. The signal can be directed
to the same analysis stages as before, but now their implementation is slightly
different as no additional spectral filtering is required, and will be detailed later
on.

2.6.2 Resonant spectroscopy

A careful adjustment of the excitation condition is fundamental in order to
efficiently suppress the background of the collected signal, coming from the exci-
tation laser. As the QD must be excited through the optical mode of the cavity,
the incident pulses must be matched to the constraints imposed by the cavity.

First of all, the excitation spectrum must be narrow enough to be contained
within the Lorentzian cavity linewidth, here of about 120 µeV . For this reason
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a spectral filtering is applied to the Gaussian pulses provided by the laser, in
order to achieve a controlled temporal profile of 15 ps or longer. This allows to
minimize the amount of laser light directly reflected back by the cavity.

Secondly, we have seen that the fundamental optical mode of the micropillar
is split in energy by 70 µeV into two linearly polarized modes. If the polariza-
tion of the incident laser does not match one of the two linear cavity axes, a
polarization rotation induced by the cavity splitting will lead to a high amount
of laser light being coupled back into the orthogonal polarization. To avoid this
effect, the angles of the wave plates must be finely adjusted so that the linear po-
larization of the laser corresponds to that of the cavity modes and is maintained
upon reflection from the cavity.

We define here the H and V polarizations to correspond respectively to the
higher and lower energy modes of the cavity. In the following the laser energy
is fixed at the higher cavity mode energy and its polarization to H. A measure-
ment of the photoluminescence emission in the V polarization, under resonant
continuous-wave excitation, is shown in Fig.2.16, as a function of the emission
energy and applied bias. When the QD transition is detuned from the cavity
mode energy, if the wave plates are optimally aligned, the background from the
scattered laser light is negligible. By tuning the exciton transition in resonance
with the cavity mode energy and laser, an increase of more than two orders of
magnitude is observed in the collected signal. This is the signature of the reso-
nance fluorescence, emitted by the QD into the polarization orthogonal to the
excitation one. The polarization rotation, thanks to which we can excite along
H and collect a signal along V, is possible owing to the fact that the exciton
has a finite Fine Structure Splitting (FSS), and our excitation does not match
any of the two QD axis. To understand how this scheme allows the coherent
excitation of the QD we analyse in more details the emission mechanism in cross
polarization in the next section.

2.6.3 Coherent manipulation of the exciton transition

When exciting resonantly a two-level system with a coherent light field, the state
of the system undergoes the well known Rabi oscillations, where the occupation
probability for the excited state is oscillating in time. By tailoring the laser pulses
such that at the end of an excitation pulse all the population is transferred to the
excited state, we can deterministically excite the QD with a minimum amount
of pump power. Such transfer is called π pulse excitation.

In our case, as we are exciting along the H cavity mode, the Rabi rotation will
happen between the ground state |G〉 of the QD and an exciton state |H〉 linearly
polarized along the H cavity axis. As shown in Fig.2.10 both the micropillar
cavity and the QD present a slight ellipticity in their in-plane section, which
results for device QD1 in a polarization splitting of 70 µeV for the former and
a FSS of ∆FSS = 15 µeV for the latter. The two linearly polarized exciton
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Figure 2.16 – Voltage dependence of the emission spectrum under reso-
nant excitation, for the device QD1. (a) Collected intensity as a function
of the emission energy and applied bias. (b) Emission spectrum at -0.35
V (black) and -0.15 V (red), showing the broadening of the transition and
the strong increase in the collected intensity.

eigenstates, here called |X〉 and |Y 〉, are not aligned to the H and V cavity axis,
but at an angle θ = 35̊ for the device under consideration. The two exciton
states |H〉 and |V 〉, linearly polarized along the H and V cavity axis, can then
be written as a superposition of the exciton eigenstates as:

|H〉 = cos θ |X〉+ sin θ |Y 〉 (2.43)
|V 〉 = − sin θ |X〉+ cos θ |Y 〉 (2.44)

To simplify the discussion we consider here θ = 45̊ . In this case, by exciting
along the H cavity mode with a spectrum broader than ∆FSS, we create a
superposition of the exciton eigenstates given by |H〉 = (|X〉+ |Y 〉) /

√
2. The

free temporal evolution of such state gives |ψ(t)〉 =
(
|X〉+ ei∆FSSt/~ |Y 〉

)
/
√

2.
After a characteristic time given by π~

∆FSS
, we see that |ψ(t)〉 present a maximal

overlap with the state |V 〉 = (|X〉 − |Y 〉) /
√

2. In this condition the exciton
state can efficiently decay by emitting a photon in the V mode of the cavity,
which is the one being collected. In absence of other dephasing processes, the
loss of coherence only comes from the radiative decay of the exciton into the H
and V cavity modes. We thus expect the emitted photons to have a transform
limited linewidth and no uncertainty in their emission time, as the population
of the exciton state is coherently controlled.

The amount of light emitted with the V polarization, thus the brightness
that we observe, will be determined by an interplay between the polarization
rotation process and the spontaneous emission rate. As soon as the |H〉 state is
populated, spontaneous emission into the H cavity mode can take place, while
the emission into the V mode is delayed by the exciton precession. The higher
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the value of ∆FSS, the faster the process of polarization rotation will be, hence
the population transfer from the |H〉 to |V 〉. On the contrary, in absence of FSS,
no signal will be emitted in the V cavity mode. When ∆FSS = 0 the two linear
exciton eigenstates are degenerate, and no polarization rotation takes place.

The device QD1 shows a ∆FSS = 15 µeV which corresponds to a precession
semi-period of about 140 ps. This time is comparable to the radiative lifetime
of the exciton, assumed to be the same for the emission into both H and V
polarizations. As a consequence we expect that the emitted photons will have
a higher probability of being emitted into the H mode than into the V mode of
the cavity. Considering that we have an output coupling efficiency ηout = 0.7
and a mode coupling β = 0.96, supposing a unit occupation probability of the
exciton px = 1 at the π pulse, by collecting both polarization we would achieve
a theoretical maximum brightness of B = βηoutpX = 0.67. Using the cross
polarization setup here described, where we collect only one polarization, the
brightness is limited to 33%. In the best case indeed the QD will emit the same
amount of light in both polarizations. This would be the case for a charged
exciton, whose transitions are circularly polarized, thus equally coupled to both
H and V cavity modes. For a neutral exciton as measured here, this condition
cannot be met because of the finite time delay to go from the H to the V polarized
state. The exciton precession process as well as a non-unity flip probability for
the exciton at the π pulse, are additional limiting factors which reduces the
brightness below 33%.

2.6.4 Pulsed resonance fluorescence

To experimentally study the coherent excitation process presented in the previ-
ous section, we now probe the sample using spectrally shaped pulses sent through
the H cavity mode, and collect the Resonance Fluorescence (RF) emitted along
the V cavity mode.

The presence of the polarization precession process can be experimentally
tested by measuring the time dependence of the incident pulses and of the emit-
ted signal. Using a SPAD with 30 ps resolution, we cannot access the Rabi
oscillations in time, but we can observe the 140 ps delay expected in the V
polarized emission. The result is shown in Fig.2.17.a for another device QD3,
excited with laser pulses of about 50 ps. The red line shows the time dependence
of the wave packet emitted by the QD in the V cavity mode. By tuning the QD
out of resonance, we can collect the residual scattered laser light, which high-
lights the time dependence of the incident pulse (black line). We clearly observe
a time delay between the excitation and the emission, consistent with what is
predicted from the value of ∆FSS.

The presence of Rabi oscillation is investigated indirectly through power de-
pendent measurements, since the oscillatory behaviour is too fast to be resolved
by our detectors. We want to access the evolution of the occupation probability,
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Figure 2.17 – Temporal and power dependence of the resonance fluores-
cence, for the device QD3, excited with 50 ps laser pulses. (a) Temporal
profile of the incident laser (black) and emitted wavepacket (red). (b)
Plot the total emission intensity as a function of the square root of the
excitation power, revealing the presence of Rabi oscillations.

which is oscillating during the laser pulses. The interaction time t between the
exciton and the laser is fixed by the temporal duration of the laser pulses. By
changing the excitation power, we can vary the Rabi frequency Ω in such a way
to control the occupation probability for the exciton state at the end of the pulse.
The coherent drive is followed by the polarization precession process described
in the previous section, which eventually leads to the spontaneous emission of a
photon into the V polarized mode of the cavity. In a first approximation, the
probability of detecting a photon emitted by the QD will be proportional to
the probability of finding the exciton in the V exciton state at the end of the
excitation pulse. By monitoring the total emission intensity as a function of the
excitation power, we can monitor the Rabi oscillation between the exciton and
the ground state of the QD due to the laser field.

The time-integrated RF intensity, as a function of the square root of the
excitation power, is shown in Fig.2.17.b for a different device, called QD3. We
observe the signature of the Rabi oscillations in the collected signal. A full 2π
oscillation is present, where the signal follows an harmonic evolution across a
maximum to a minimum value again. We have experimental deviations from the
ideal Rabi oscillations due to multiple factors. First of all, for higher excitation
power the signal to background ratio rapidly degrades. The RF from the QD
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Figure 2.18 – Rabi oscillations as a function of the average incident
photon number (top scale) and incident power (bottom scale), for the
same data shown in Fig.2.17.b. The π pulse is obtained for only 6 average
incident photons per pulse.

cannot exceed the value reached at the π pulse, while the amount of scattered
laser leaking through the polarization filtering scheme keeps increasing, and
eventually dominates the signal. Secondly, the short radiative lifetime of the
transition, of about 150 ps, is responsible for the damping of the oscillations
through spontaneous emission. Using a very short pulse (�150 ps) allows to
achieve a reasonably good visibility in the Rabi oscillations. On the contrary, by
increasing the pulses duration the decay of coherence due to radiative emission
becomes important on the timescale of the excitation pulse itself, leading to
a saturation behaviour for longer pulses. Finally, the shape of the oscillations
is determined by the laser pulses used to drive the transition, which do not
corresponds to an ideal single frequency perturbation suddenly switched on. As
the laser pulses have a close to Gaussian shape, they will cause a temporal
modulation of the Rabi frequency during the excitation.

The measurement of the Rabi oscillations is reported in Fig.2.18 as a func-
tion of the power incident on the device Pin (bottom scale). The value of Pin

can be converted into the average number of photons per excitation pulse as
〈nin〉 = Pin

Γlaser~ωlaser
, where Γlaser and ωlaser are respectively the laser repetition

rate and frequency. The result is shown in the upper scale. The π pulse excita-
tion is obtained for only about 6 incident photons per pulse, measured outside
the micropillar cavity. The count rate detected on a SPAD from the RF at π
pulse excitation is 0.38 MHz. Correcting for the total efficiency of the resonant
excitation setup of 2.9%, we expect a 13 MHz count rate on the first lens, which
gives a brightness of B = 0.16± 0.02.
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As previously demonstrated in the thesis work of Valerian Giesz [174], the
extremely low photon number required to flip the exciton state together with the
high brightness is possible owing to the ideal light-matter interface provided by
the QD-micropillar device. The very high input coupling efficiency (ηin ≈ 1) and
cooperativity (C = 13) ensure that every photon sent on the cavity has a high
probability of interacting with the QD transition. Symmetrically, a high output
coupling efficiency (ηout = 0.7) allows to collect most of the emitted photons [20].
The lowest number of photon required to have a π pulse excitation is obtained
for a longer pulse, having a better spectral matching with the optical transition
of the QD. However, in the following we use an excitation pulse duration of
about 15 ps, to minimize the possibility of having multiple excitation of the QD
during a same pulse (the effect of the excitation pulse duration is analysed in
more details in section 4.4.3).

2.6.5 Emission of highly indistinguishable single photons

To study the single photon emission from the signal collected in cross polariza-
tion, the second order correlation function is now measured using a fibre-based
HBT experiment. As shown in Fig.2.15.b, it consists in a fiber beam splitter
whose exits are directly detected by two fiber-coupled SPADs, and a correla-
tion measurement is performed between the two outputs as before. A typical
result, obtained from the device QD1 at an excitation power corresponding to
75% of the π pulse, is shown in Fig.2.19.a, from which we can retrieve a value
g(2)(0) = 0.125. This values changes from pillar to pillar, and by optimizing
the setup alignment is normally in the range between 0.03 to 0.10. The signif-
icant amount of coincidences detected at zero time delay can be attributed to
an imperfect polarization filtering of the excitation laser. The incident pulses
have a spectrum larger than the exciton linewidth, thus there will be a certain
component of the incident laser directly reflected back by the cavity, which has a
noticeable effect even for the low incident power used at the π pulse. To get rid
of the unwanted scattered laser and further improve the signal to background
ratio, we have introduced an etalon filter having a bandwidth of 15 µeV and a
transmission of 70% in the collected signal. By carefully adjusting its tilt angle
with respect to the optical beam, is possible to centre its transmission windows
to the emission energy of the QD. Repeating the previous measurement with the
spectral filtering centred on the ZPL of the exciton, we obtain the result shown
in Fig.2.19.b. From such measurement we can calculate now a vanishing value
of g(2)(0) = 0.003±0.001, demonstrating an extremely high purity for the single
photon emission.

I have developed a new fibre-based HOM experiment to substitute the pre-
vious free space one, which was showing some limitations due to the imperfect
spatial overlap of the incident photons. To measure the indistinguishability
of the single photons emitted in cross polarization then, the signal is directed
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Figure 2.19 – Measurement of the g(2)(τ) under resonant excitation with-
out (left) and with (right) spectral filtering to remove the residual laser,
for the signal emitted by the device QD1.

towards the fibre-based HOM setup shown in Fig.2.15.c. The single photons
emitted by the sample are passing through a polariser (Pol) and an half wave
plate (HWP) in order to fix their polarization to be diagonal. A polarising beam
splitter (PBS) is then used to project the photons with equal probability into
one of the two outputs, either with an H or a V polarization. The polarization
of two photons exiting from different outputs is then restored using polarization
controllers (PC) composed of a quarter wave plate and a half wave plate. One
of the two photons is passing through a fibre delay line of 2.2 ns, adjusted to the
delay of the double excitation. Finally, the two photons are coupled to a fibre
beam splitter (BS) where they can interfere. The output are detected by fibre-
coupled SPADs, and a correlation measurement is performed between them.
This configuration produce the same 5 peaks structure explained before, this
time with no overlapping peaks, and can be analysed using the same formulas.
The fibre beam splitter used here in the HOM allows to overcome any possible
limitation due to an imperfect spatial overlap of the two interfering photons.
The experimental challenge is to ensure a precise control of the polarization of
each photon, which can be achieved by precisely tuning the wave plates and
making sure that the optical fibre are well attached to the optical table. Thanks
to this fibred HOM interferometer we measure a classical interference visibility
(1− ε) = 0.998, with reflectance and transmittance coefficients of R = 0.508 and
T = 0.492.

The correlation histogram obtained from the HOM interference of two suc-
cessively emitted photons is shown in Fig.2.20.a, for the device QD2. We observe
a vanishing peak at zero time delay, reflecting the strong quantum interference
effect between the photons. As before, we fit a double-sided exponential decay
to each peak in order to retrieve each area. Using Eq.2.29 we obtain mean wave
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Figure 2.20 – (a) Indistinguishability measurement under resonant ex-
citation for the emission from the device QD1, for an incident power cor-
responding to 0.75π. (b) HOM interference between two photons having
perpendicular (top) and parallel (bottom) polarization.

packet overlapM = 0.995, corrected for the previously measured g(2)(0) = 0.003.
To highlight the strength of the quantum interference effect between the

photons, the same experiment is repeated after making them distinguishable,
by acting on the wave plates in the HOM interferometer. The result is shown
in Fig.2.20.b, where in the top panel the two photons have orthogonal polar-
izations, while in the bottom panel they have parallel polarizations. When the
two photons are fully distinguishable, we obtain the same number of zero-delay
coincidences as for the side peaks. Calculating the mean wave packet overlap
for the case of the top panel, we obtain M = 0.006. On the contrary, the coin-
cidences at zero time delay completely vanishes when the two photons are fully
indistinguishable.

The measurements of M and g(2)(0) have been repeated for different values
of the input power, as presented in Fig.2.21. The results shows a very high
single photon purity and mean wave packet overlap up to a π pulse excitation,
where the device has the maximum brightness of 16%. Over the whole range
we obtain M > 0.97 (corrected for the g(2)(0)) and g(2)(0) < 0.04. This result
demonstrates that under resonant excitation the QD-micropillar gated device is
acting as a bright source of fully indistinguishable single photons.

Note that using an etalon to filter out the laser, we also filter out the phonon
sidebands. In a following work to which I have participated, we could actually
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Figure 2.21 – Summary of the properties of the QD-micropillar device
QD2 as a single-photon source under resonant excitation, as a function of
the excitation power.

show that M remains very high even without using such etalon. This is because
the very high Purcell effect allows to funnel the QD emission into the ZPL, and
largely suppress phonon sidebands [100].

2.7 Conclusion and perspectives

In this chapter we have shown that the QD-micropillar device, under resonant
excitation, behave as a very bright source of fully indistinguishable single pho-
tons. The performances achievable with our devices are at the state of the art
with respect to both single quantum emitter and parametric sources. Combin-
ing these sources with efficient gates and detectors, makes it possible to scale up
quantum photonic schemes.

Comparison with state of the art sources To compare the results ob-
tained using our QD-micropillar device with other sources, we use the graph of
Fig.2.22, where we plot the measured brightness as a function of the indistin-
guishability, for different single-photon sources showing a g(2)(0) < 0.05. In this
plot is reported the polarized brightness, i.e. we consider only the emission in
a single polarization mode, since for many applications the photons must have
a definite polarization. The ideal device is on the top right corner, providing a
deterministic production of fully indistringuishable photons [44].

The results from SPDC sources are shown by the grey symbols. These de-
vices, presented in Section 2.3.1, allows to reach very high indistinguishability
between the photons emitted within the same pair. However, they are limited by
a very low brightness due to the rapid increase of multi-photon generation event
for higher pump power. To maintain g(2)(0) < 0.05, the brightness is limited
to 0.02 (see Fig.2.5.b). The results from the QD-micropillar devices presented
here are shown by the red symbols. As opposite to the SPDC devices, QD in
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micropillars under non-resonant excitation shows a limited indistinguishability,
between 0.7 and 0.8 at best. However, they allow to reach a very high brightness
owing to the high output coupling efficiency achieved by the micropillar cavi-
ties and a low g(2)(0) at saturation. We observe a polarized brightness in the
range between 0.3 and 0.4, corresponding to an uncorrected brightness (consid-
ering both polarization, as reported in Section 2.5.3) between 0.6 and 0.8. The
implementation of a strictly resonant excitation for the QD-micropillar devices
allows to achieve the same indistinguishability values as for SPDC source but
for a brightness at least one order of magnitude higher. In our case, for an in-
distinguishability above 0.98, we achieved a brightness of 0.16 which is 20 times
higher than that of an SPDC source.

Additional results from other groups using QD-based single-photon sources
are reported with blue symbols, confirming and extending the measurements pre-
sented in this chapter. We can see that under non-resonant excitation different
works have reported indistinguishability values in the 0.8 range [41, 37, 141] and
a record polarized brightness of 0.4 has been achieved using a micropillar cavity
[141]. Under resonant excitation, an indistinguishability above 0.95 has been
obtained with a state of the art brightness above 0.3, using a charged exciton
for a QD in a micropillar cavity, still without using a deterministic fabrication
[140].

Improvement of the device performances For our devices, the brightness
is still limited to 0.16 under resonant excitation, which is the combined result
of the extraction efficiency from the cavity, the cross polarization configuration
and the polarization rotation process operated by a neutral exciton state.

The brightness can be readily improved using a charged exciton state instead
of a neutral exciton. The former indeed is equally coupled to both H and V linear
polarization, and emit the same amount of light in both cavity modes [208].
A second improvement to the brightness can be obtained by decoupling the
spatial mode of the pump and the collection. This allows to substitute the cross
polarization configuration used under resonant excitation with a spatial filtering
of the excitation, in such a way to collect the emission in both polarization
modes. Such technique has been already demonstrated both in planar cavities
[213, 214] and micropillars [207], and offers a way to reach a brightness as high
as the one observed under non-resonant excitation.

Scaling up quantum photonics experiments The improvement of the
brightness of the source is especially important to scale up the size of quantum
optics experiments in terms of number of photons. The probability to success-
fully collect n photons critically depends on the brighness B, as the n-photon
rate scale as Bn. It is clear that the improvement of the source brightness gives
an exponential advantage. To realize a multi-photon experiment, multiple single-
photon sources can be combined. Such approach is still very challenging since it
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Figure 2.22 – Comparison of different single-photon sources providing a
g(2)(0) < 0.05. Grey symbols are SPDC source measured in the group of A.
White [44], red symbols are the results obtained with the QD-micropillar
devices presented in this chapter and blue symbols are results from other
QD-cavity sources reported in literature.

requires the controlled fabrication and operation of multiple devices which are
able to provide identical photons. Alternatively, the stream of indistinguishable
single photons emitted by a single source can be demultiplexed using active op-
tical elements. Moreover, a high degree of indistinguishability must be obtained
for photons emitted at longer timescales, as multiple emission cycle have to be
combined. As shown by Loredo et al. [215], using a QD-micropillar devices it
is possible to measure indistinguishability values above 0.88 for single photons
separated by 463 ns. Fig.2.23 reports the indistinguishability measured under
resonant excitation as a function of the time delay between the emission of the
two interfering photons. We see that it is possible to collect as much as 39 indis-
tinguishable photons, using an excitation rate of 82 MHz. Combined with the
high brightness provided by the micropillar cavities, these devices represents a
viable way to implement large scale photonic protocols.

A demonstration has been given by recent boson sampling experiments im-
plemented with single photons from QD sources. The boson sampling problem
consists in the prediction of the output distribution of a multimode bosonic inter-
ferometer, which is computationally hard on a classical computer as it requires
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Figure 2.23 – Figure reproduced from [215]. Measured indistinguisha-
bility under resonant excitation as a function of the delay between the
emitted photons, measured using the devices QD2 and QD3.

the calculation of permanents [216]. A boson sampling experiment implemented
with single photons and linear optical elements, allows to efficiently simulate the
output distribution of n indistinguishable photons interfering in a photonic cir-
cuit withmmodes. Such realization has the potential to be the first experimental
demonstration of the quantum advantage of a quantum computer, by perform-
ing a specific computational task more efficiently that a classical computer. The
firsts experimental realisations of boson sampling experiments have been real-
ized with parametric sources and integrated optical circuits [217, 218, 219, 220].
These implementations are however limited to few photons by the low sampling
rate achievable with a parametric source. A fundamental improvement, beside
high efficiency circuits and detectors, is in the use of bright solid-state single-
photon emitters, such as the QD-micropillar devices presented in this chapter. A
first demonstration has been given by Loredo et al. [221], using a QD-micropillar
sources provided by our group at C2N, showing a 10 to 100 times speedup for a
3-photon boson sampling experiment. The following work of Wang et al. [222]
then, always using a QD in a micropillar cavity, demonstrated a 105 speedup for
a 5-photon experiment.

Many more experiments aiming at manipulating N photons are on their way
in the group, using the QD-micropillar sources, in collaboration with F. Scia-
rrino, R. Osellame and H. Eisenberg, progressively increasing the number of
photons. Moreover, this new generation of source has led to the creation of
Quandela, spin off company confounded by Niccolo Somaschi, Valerian Giesz
and Pascale Senellart, with whom I conducted this study. The objective is to
make these sources available to a large community of quantum optics scientists.



Chapter 3

Quantum State Tomography of
path-encoded NOON states

Path entangled N-photon states find applications in different fields of quantum
information science, most notably quantum metrology. They gives the possibility
to perform measurement beyond what allowed by the classical limits of precision.
However, both the generation and the characterization of multiparticle states is
experimentally difficult. The tomography of path-entangled particles is still in its
infancy and the reconstruction of spatially entangled indistinguishable photons
hasn’t been addressed yet. In this chapter, we develop a method to perform a
full Quantum State Tomography (QST) of path-entangled NOON states. The
single photons emitted by a QD-micropillar device, presented in the previous
chapter, are used to generate a two-photon path entangled state, and QST is
used to fully reconstruct its density matrix in the spatial mode basis.

In Section 3.1 we summarize the interest for NOON states in the field of
quantum metrology and in Section 3.2 we review the current state of the art.
Then in Section 3.3 we present the method we use to generate the two-photon
NOON state and introduce a new technique to perform the QST. In Section
3.4 we detail the experimental setup we have realized. This setup in analysed
theoretically in Section 3.5 and the experimental results are presented in Section
3.6. We complete the tomographic procedure in 3.7 and the conclusions are
presented in Section 3.8.

3.1 Quantum metrology with NOON states

Quantum entanglement, a central concept in the foundation of quantum me-
chanics, is now used as a tool in a more applied research, which is boosting
all the fields related to quantum information, among which is quantum metrol-
ogy. This field has strongly benefited from the advances in the production and
manipulation of quantum states of light, and has already led to important appli-

81
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cations in many different areas, where the quantum entanglement can be used
to beat the classical limits of precision measurements. These areas include mi-
croscopy [223, 224, 225], lithography [226, 227], biology sensing [228, 229] and
gravitational wave detection [230, 231], but are not limited to the optical do-
mains. The same ideas have also been used for entangled states of matter, using
trapped atoms and ions, to achieve quantum enhanced spectroscopy and atomic
interferometry [232, 233, 234, 235, 236].

A central problem in the field of metrology, of fundamental importance for
physics, is parameter estimation. The prototypical case is an interferometric
measurement, where the parameter of interest is the optical phase. Phase es-
timation is indeed a commonly found problem in many areas of physics, and
extensively treated in literature [232, 237, 238, 239, 240, 241]. As a typical ex-
ample we can consider a Mach-Zender interferometer, as shown in Fig.3.1, where
a classical beam of light is first divided by a beam splitter into two components,
which follow different paths. These two components acquire a relative phase dif-
ference φ and then recombine on a second beam splitter. The value of the phase
φ can be estimated by measuring the intensity at the output ports of the inter-
ferometer, with a precision ∆φ scaling at best as 1/

√
n, where n is the average

number of photons in the beam. This limitation is due to the Poissonian statis-
tics of the photons in the classical beam, implying the absence of correlations
in the detection events. Equivalently, the same precision ∆φ can be obtained
with n repetitions of the same experiment, where a single photon is propagating
and being detected at one output: from the central limit theorem, we know that
by averaging n independent measurements the statistical error scale as 1/

√
n

[232, 237].
This limitation is called Standard Quantum Limit (SQL), or Shot Noise

Limit, and has no fundamental origin, but emerges when no quantum correla-
tions are taken into account. The ultimate bound given by quantum mechanics
is stated by the Heisenberg number-phase uncertainty relation [242]:

∆n∆φ ≥ 1 (3.1)

Using the expected photon number uncertainty for a classical state of light,
∆n =

√
n, the above relation leads to ∆φ ≥ 1/

√
n, which saturates to the

SQL. However, no limitation is imposed to the individual terms of Eq.3.1, thus
we can improve the precision on the phase by increasing the photon number
indetermination. Going back to our interferometer, we can reasonably assume
that the energy fluctuation cannot be bigger than the total energy in the beam,
thus the best situation we can envisage is where ∆n = n [238]. This leads to
the so called Heisenberg Limit of ∆φ = 1/n, considered to be the fundamental
limit for the phase estimation problem [243, 244] 1.

1Both the validity of Eq.3.1 and the assumption of the upper bound ∆n = n are not
general. However, the Heisenberg Limit can be considered an absolute limit for precision
measurements. [243, 245, 246]
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Following the above explanation, it is clear how the engineering of quantum
states of light showing different forms of Eq.3.1 allows to overcome the SQL
by a factor of up to 1/

√
n. This has been first proposed by Caves [247] using

squeezed states, where the fluctuations in the phase quadrature are reduced, at
the expense to higher fluctuations in the amplitude quadrature. Squeezed states
have been extensively studied, not only for proof of principles demonstrations
but also for interferometric applications, but the Heisenberg Limit has not been
achieved yet, as it requires a high degree of squeezing.

An alternative "digital" approach, as called by Dowling [238], is the use of
photon number entangled states, a method rapidly advancing thanks to its close
connection with optical quantum computing. Indeed, a Mach-Zender interfer-
ometer or a Ramsey spectroscope are formally equivalent to a general quantum
logic circuit [248]. Among photon number entangled states, the most promising
are the NOON states [248], which allows to reach a measurement precision at the
Heisenberg Limit with a phase resolution beyond the diffraction limit [249, 250],
independently of the number of photons used. A NOON state is a multi-particle
state defined over two orthogonal modes, given by the superposition of N par-
ticles in one mode A with zero particle in the other mode B, and N particle in
mode B with zero particle in mode A:

|ψNOON〉A,B =
1√
2

(
|N, 0〉A,B + |0, N〉A,B

)
(3.2)

Such a state represents a possible implementation of a Schrödinger cat state,
where the particles, altogether, are in a coherent superposition of two orthogonal
modes, being with the same probability amplitude all in mode A and all in mode
B. In a more technical way, a NOON state is a a maximally entangled state, and
it can be indeed traced back to one of the four Bell states (by using the vacuum
state |0〉 and N particle states |N〉 as basis kets of each subsystem). Mathe-
matically, a maximally entangled state of a bipartite system ρ ∈ (HA ⊗HB) is
a pure state such that the reduced density matrix of either of the two subsys-
tem is maximally mixed, i.e., a multiple of the identity matrix: ρA = ρB = 1

2
1

[251]. This means that a measurement in one of the two subspaces will produce
a completely random outcome, while there is a perfect correlation in the results
obtained by a collective measurement on both. Other notable examples of these
states are the Bell states and the GHZ states, whose entanglement properties
are fundamental to the fields of quantum communication and computation [5].

3.1.1 Emergence of super-precision and super-resolution

We recall here what we mean by precision and resolution. All optical mea-
surements here are repeated measurements, where at each iteration a state is
generated and detected, and the result is obtained by averaging over many iter-
ations. With the ergodic hypothesis, we can assume that this temporal average
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Figure 3.1 – (a) Schematics of a Mach-Zender interferometer. (b) Ob-
served interference fringes for a coherent state (red line) and a 2-photon
NOON state (blue line).

corresponds to the outcome of a measurement on the statistical ensemble ρ de-
scribing our state. The precision of a measurement is defined as its statistical
error. Each iteration will lead to a slightly different outcome. Depending on
the state being measured and the chosen measurement operator, the observed
variance in the measurement outcomes can be different. The resolution of a
measurement instead is the smallest resolvable feature. For an optical system is
defined by the Rayleigh diffraction limit, which is of the order of the wavelength
λ of the photons.

Considering a photonic implementation of a NOON state, the N photons with
which the state is realized can be entangled over different degrees of freedom,
such as their polarization, frequency or spatial modes. In order to use the
quantum advantage in an interferometric protocol as described above, such a
state needs to be spatially entangled, where the two modes A and B of Eq.3.2
correspond to the two arms inside a Mach-Zender interferometer. To understand
how the enhanced resolution and precision emerges, we can observe how different
states of light evolve in the Mach-Zender of Fig.3.1.a. The beam splitter MBS

and phase shift Mφ matrix transformations for the photon modes operators can
be written as [166]:

MBS =
1√
2

(
1 1
1 −1

)
Mφ =

(
1 0
0 eiφ

)
(3.3)

The modes â, b̂ and ĉ of Fig.3.1.a can then be linked by the following transfor-
mations: (

b̂0

b̂1

)
= MφMBS

(
â0

â1

) (
ĉ0

ĉ1

)
= MBS

(
b̂0

b̂1

)
(3.4)

Using these relations, we can calculate the evolution of the input state to the
one inside the Mach-Zender, just before the last beam splitter, and at the exit,
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just after the last beam splitter.
For a classical light beam entering from the top input port, represented by

a coherent state |α〉 with average photon number n = |α|2, and the vacuum on
the other input port, we have:

|α, 0〉
MφMBS−−−−→

∣∣∣∣ α√2
,
eiφα√

2

〉
MBS−−→

∣∣∣∣α(eiφ + 1)

2
,
α(eiφ − 1)

2

〉
(3.5)

where we have used the fact that |α〉 is generated by applying the displacement
operator D̂(α) = exp(αâ†+α∗â) on the vacuum |0〉. The interferometer phase is
typically estimated through the difference of the intensities detected at the two
output ports, Î0 = â†0â0 and Î1 = â†1â1, thus by measuring the expectation value
of the operator:

Ô = â†0â0 − â†1â1 (3.6)

Applying this operator on the final state of Eq.3.5, we obtain for a coherent
state that 〈Ô〉 = |α|2 cos(φ). As expected for a classical beam, the intensity at
the output ports shows sinusoidal oscillations with φ, and is plotted in Fig.3.1.b
for |α|2 = 1 (red line). From estimation theory, we can retrieve the uncertainty
on the phase value calculated using such operator as:

∆φ =
∆O

|∂〈Ô〉/∂φ|
(3.7)

where the variance of the observable is given by (∆O)2 = 〈Ô2〉 − 〈Ô〉2. For the
coherent state here considered, we can calculate (∆O)2 = |α|2 and |∂〈Ô〉/∂φ| =
|α|2| sin(φ)|, thus Eq.3.7 gives ∆φ = 1/|α sin(φ)|. The error reaches a minimum
value when φ is an odd multiples of π/2, corresponding to the maximum slope
observed in the plot of Fig.3.1.b. In such case we have ∆φ = 1/|α| = 1/

√
n,

which corresponds to the Standard Quantum Limit. To compare with the case
of a two-photon NOON state, presented in the following, we can consider an
average photon number of |α|2 = 2. For the coherent state this leads to a
minimum uncertainty of ∆φ = 1/

√
2.

Replacing the coherent state by a single photon |1〉 = â† |0〉, the evolution of
the state is now the following:

|1, 0〉
MφMBS−−−−→ 1√

2
(|1, 0〉+ eiφ |0, 1〉)

MBS−−→ 1

2
(1 + eiφ) |1, 0〉+ (1− eiφ) |0, 1〉 (3.8)

The main difference is in that the state of the two interferometer arms is en-
tangled: the single photon is interfering with itself according to the phase shift
acquired. We can use again Eq.3.6 and 3.7 to estimate the phase and its vari-
ance, obtaining 〈Ô〉 = cos(φ) and a minimum error of ∆φ = 1. No advantage
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is obtained with respect to the classical case, as we have a single particle, not
correlated to any other. Improving the precision would imply repeating the
measurement multiple times, giving no improvement over the SQL.

Finally, we consider the situation where a single photon is entering on each
input of the interferometer. This will lead to the Hong-Ou-Mandel interference
on the first beam splitter, and the state evolves as:

|1, 1〉
MφMBS−−−−→ 1√

2
(|2, 0〉+ e2iφ |0, 2〉)

MBS−−→ 1

2
√

2
(1 + e2iφ)(|2, 0〉+ |0, 2〉) +

1

2
(1− e2iφ) |1, 1〉 (3.9)

Now, inside the interferometer, we obtain a state in the form of Eq.3.2 with N =
2, thus a 2-photon NOON state. The effect of the phase shift is notably different,
showing a doubled dependence, which can be interpreted by associating to the
NOON state an effective de Broglie wavelength of λ/N [252]. This enhanced
phase dependence can be experimentally accessed, but not through the same
observable as the one of Eq.3.6, which would give a value of zero. A common
choice is to perform an intensity correlation measurement on the two outputs of
the interferometer, identified by the operator:

Ô = â†0â
†
1â0â1 (3.10)

Its expectation value on the final state of Eq.3.9 can be calculated to give
〈Ô〉 = 1

2
(1− cos(2φ)), and is plotted in Fig.3.1.b (blue line). It shows a phase

dependence oscillating twice as fast as for the classical case, with unit visibil-
ity. This time the variance results (∆O)2 = (cos(φ) sin(φ))2 and |∂〈Ô〉/∂φ| =
|2 cos(φ) sin(φ)|, so that applying again Eq.3.7, we can retrieve a minimum un-
certainty of ∆φ = 1/2. Such a value corresponds to the Heisenberg Limit, and
indeed we obtain an improvement of 1/

√
2 compared to the classical case for the

same average number of photons |α|2 = 2.
Unfortunately we cannot scale up this simple scheme to increasing photon

number. But, as shown in [238], we can idealize the Mach-Zender as a quantum
logic circuit, where the first beam splitter is a state preparation device, creating a
NOON state on the two arms, and the last beam splitter is a device performing a
collective measurement. Inside our interferometric circuit we have a state which
will evolve under the action of a phase shift operation as |N, 0〉+ eiNφ |0, N〉. A
generalized measurement operator for this situation [248, 7], allowing to exploit
the entangled nature of the NOON state, is Ô = |N, 0〉 〈0, N | + |0, N〉 〈N, 0|,
for which 〈ψNOON| Ô |ψNOON〉 = cos(Nφ). This is the effect commonly referred
to as phase super-resolution, leading to an N-fold enhancement over the reso-
lution dictated by the photon wavelength. By using again Eq.3.7, we can also
retrieve that the phase error scales as 1/N , showing a Heisenberg limited phase
sensitivity.
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While the advantages given by a NOON states with high photon number N
are clear and can find many applications, it is also clear that it is very compli-
cated to generate, manipulate and measure a high dimensional entangled state,
not to mention that any losses (which adversely scales with N) quickly spoils
its quantum properties. In the following section, we review some of the recent
results towards this goal.

3.2 Generating and measuring entangled photons:
state of the art

Following the previous discussion, there is a great interest in the production of
path entangled NOON state with high photon number N . Different theoretical
proposals, based on linear optical elements and postselection, have been put
forward to achieve this objective [253, 254, 255]. All these proposals rely on
probabilistic generation techniques and complex experimental implementations.

Indeed, experimental demonstration of genuine NOON states of light, en-
tangled only in the spatial degrees of freedom, are still limited to 2 photons,
obtained through the HOM interference [256, 223, 257]. Higher path-entangled
photon number states has been obtained only through postselection. A quantum-
enhanced phase measurement with 4 spatially entangled photons was demon-
strated using postselection on NOON-like states in the form

√
3/4(|4, 0〉 +

|0, 4〉)/
√

2 + 1/
√

4 |2, 2〉 [258].
On the contrary, the use of polarization equivalents to the Mach-Zender

scheme, or combination of polarization and spatial degrees of freedom, allowed
to achieve higher dimensionality for maximally entangled states, owing to an eas-
ier experimental manipulation. The current state of the art consists of 10 photon
entanglement in a GHZ state [12], showing a 10-fold enhancement in phase res-
olution using a 10-modes correlation measurements. Polarization NOON states
have been realized with 3 [259] and 4 photons [260]. The higher dimensional
NOON state achieved to date is with 5 photons [261], exploiting the interference
between coherent and single photon light on a beam splitter. This technique
could in principle be used to obtain a path entangled state showing high overlap
with a NOON states for arbitrary value of N [262, 263]. Experimentally though,
it has been realized with polarization entangled photons.

All these experiments have revealed the presence of a NOON state by observ-
ing the expected N-fold enhancement of interference oscillations in correlation
measurement. However, super-resolution is not an ubiquitous feature of quan-
tum states. As it was demonstrated in the work of Resch et al. [264], enhanced
phase resolution can be obtained also without entangled states, by postselection
on the measured coincidence rates. On the contrary, it is not possible to beat the
Standard Quantum Limit of precision measurement. Later on, a bound on the
achievable visibility of super-resolved oscillations using only classical states of
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light in a Mach-Zender interferometer has been derived [265]. Thus, a complete
certification of a NOON state should include the observation of both super-
resolution and super-precision. However, phase sensitivity beyond the Standard
Quantum Limit is even more difficult to achieve with photon number entangled
states, since losses affect them exponentially stronger than coherent states [238].
Any loss in the manipulation or detection of the photons rapidly washes out
the quantum advantage by decreasing the interference fringes resolution. Using
squeezed states of light the possibility of beating the SQL has been established
since many years [266, 267], while for photon number state is was always based
on postselection [258]. Only very recently phase sensitivity below the SQL with-
out postselection has been shown using a 2-photon NOON state [268], encoded
in polarization.

The above discussion highlights the difficulties not only in the generation,
but also in the measurements of highly entangled states. The unambiguous iden-
tification of a quantum state can be obtained with Quantum State Tomography
(QST), a well known method to experimentally reconstruct a density matrix
[269]. Even if hardly scalable, this allows to collect all the physical information
about the measured degrees of freedom of a quantum state. For photonic states,
this technique is very well mastered for the characterization of single and en-
tangled polarization qubits, and indeed it has been used to measure the density
matrix of a polarization NOON state of 2, 3 and 4 photons [270]. However, the
tomography of spatially entangled photons is still in its infancy, as it requires the
precise control of multiple optical phases, increasing rapidly with the number of
particles.

The development of integrated photonics architectures recently allowed the
generation and manipulation of path entanglement on chip, owing to a robust
reconfigurability and phase control [217, 271, 272, 273]. This approach can also
boost more complex metrology applications using multi-modes interferometers
and higher dimensional photonic states [274]. The full tomography of 2 path-
entangled photonic qubit, encoded over 4 modes, has been demonstrated on
chip [271, 272], but not for NOON states. In both cases, it was done for in-
dividually addressable qubit each occupying different spatial modes, thus two
distinguishable photons. The tomography of a spatially entangled two-photon
NOON state has been shown only using an homodyne detection technique [275],
which requires a local oscillator phase stabilized with respect to the signal.

We are interested here in performing a full QST of a 2 photon path-entangled
NOON state, thus two indistinguishable photons occupying two spatial modes,
using only coincidence detection and a simple Mach-Zender layout. The tech-
nique for the generation of such state and the characterization of its density
matrix is devised in the next section.
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3.3 Tomography of a 2 photon NOON state

3.3.1 NOON generation with HOM interference

The most natural way to obtain a two-photon path entangled NOON state is
to perform the Hong-Ou-Mandel experiment with single photons, as shown by
Eq.3.9. When perfectly indistinguishable photons impinge on a 50 : 50 beam
splitter, they interfere and exit in the maximally entangled state

|ψ2002〉 =
1√
2

(
|2, 0〉A,B − |0, 2〉A,B

)
(3.11)

where A and B represent the two output spatial modes of the beam splitter.
Considering the case of non-perfect interference, there will be also the possi-

bility for the two photons to leave the beam splitter from different output ports,
in the state |1, 1〉A,B. This happens when the two impinging photons do not con-
tribute equally to the probability amplitudes at the two outputs. Such a reduced
interference can be due both to a limited indistinguishability of the photons and
to an unbalanced beam splitter. We will neglect for the moment the physical
origin of such an effect, that in both cases produces a |1, 1〉A,B state, limiting the
fidelity to an ideal NOON state.

In the most general case then, the output state of the HOM interference,
given two input single photons, is a mixed state which can be described by a
3 level system, whose basis is constituted by the 3 possible distributions of the
two photons on the two output spatial modes: |2, 0〉A,B,|0, 2〉A,B,|1, 1〉A,B. The
resulting density matrix of the output state ρHOM is identified by:

ρHOM =


〈2, 0|A,B 〈1, 1|A,B 〈0, 2|A,B

|2, 0〉A,B ρ1,1 ρ1,2 ρ1,3

|1, 1〉A,B ρ2,1 ρ2,2 ρ2,3

|0, 2〉A,B ρ3,1 ρ3,2 ρ3,3

 (3.12)

The diagonal terms ρ1,1, ρ3,3 and ρ2,2 respectively describe the probability of ob-
serving both photons on the mode A, both on the mode B or one photon on each
mode. The off-diagonal terms instead describe the coherences between two basis
kets among |2, 0〉A,B, |1, 1〉A,B and |0, 2〉A,B. The case of the ideal state |ψ2002〉
of Eq.3.11 is shown in Fig.3.2, where we can see that the population is equally
distributed between the |2, 0〉A,B and |0, 2〉A,B components, with maximum co-
herences demonstrating the maximal entanglement. To fully characterize the
output state of the HOM interference we need to reconstruct its density matrix,
which can be done using a Quantum State Tomography technique.
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Figure 3.2 – Real part (left) and imaginary part (right) of the density
matrix of the ideal 2-photon NOON state |ψ2002〉.

3.3.2 Quantum tomography of spatially entangled photons

The general idea behind Quantum State Tomography is that, by performing a
set of measurements over an ensemble of identical copies of a quantum system,
it is possible to reconstruct its physical state. A physical state is identified by a
complex density matrix ρ, satisfying three properties: it is Hermitian (ρi,j = ρ∗j,i),
normalized to unit trace (Tr[ρ] =

∑
i ρi,i = 1) and positive semidefinite (thus

it has non-negative eigenvalues). We can see that an n × n density matrix is
completely described by n2− 1 real parameters, due to the hermiticity and nor-
malization conditions [251]. Experimentally however the normalization of the
state has to be tested, thus we need a total of n2 independent measurements to
fully reconstruct the density matrix. The link between a specific set of measure-
ments and the elements of the density matrix is found by decomposing the latter
into a linear combination of hermitian matrices. Since each matrix represents
a projective measurement operator, we can use them to reconstruct the density
matrix of the state.

We follow here the work of James et al. [269] to explain the simplest case of a
single qubit. Considering the identity operator (σ̂0) and the Pauli spin matrices
(σ̂1, σ̂2 and σ̂3), which are given by:

σ̂0 =

(
1 0
0 1

)
σ̂1 =

(
0 1
1 0

)
σ̂2 =

(
0 −i
i 0

)
σ̂3 =

(
1 0
0 −1

)
(3.13)

the 2× 2 density matrix of a two-level system can always be expressed in terms
of the σ̂i as:

ρ̂2×2 =
1

2

(
S0

S0

σ̂0 +
S1

S0

σ̂1 +
S2

S0

σ̂2 +
S3

S0

σ̂3

)
=

1

2S0

(
S0 + S3 S1 − iS2

S1 + iS2 S0 − S3

)
(3.14)
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where Si = Tr[ρ̂2×2σ̂i]. Performing the four measurements identified by σ̂i on
ρ̂2×2 allows to fully reconstruct the state of interest using the measurements out-
comes Si. We can see that S0 is used to normalize all experimental results. This
is simple to understand with respect to the polarization degree of freedom. If the
qubit represents the polarization state of a photon, the tomography is analogous
to the measurement of the Stokes parameters [276]. In this case the σ̂i opera-
tors corresponds to a measurement of the total intensity, the intensity difference
along the two linear, the two diagonal and the two circular polarizations.

To reconstruct the state of two polarization qubits, such as two different
photons, a measurement of all combinations of the Stokes parameter for the
two is required [269]. In the case of the path entangled NOON state we can-
not individually manipulate the photons, being indistinguishable, leading to the
representation of the state by a 3× 3 density matrix.

The tomography procedure can be used for a higher dimensional state such as
a qutrit, a three level system, as the one represented by the density matrix ρ̂HOM

of Eq.3.12. In this case we need a minimum set of 9 measurements to reconstruct
the state: 8 real parameters define a physical 3× 3 density matrix, plus a single
real parameter to normalize the experimentally obtained values [269]. To find a
suitable set of measurements, we can start by writing the density matrix ρ̂HOM

to be reconstructed as:

ρ̂HOM =
1

3

j=8∑
j=0

rjλ̂j (3.15)

where the λ̂j are the eight SU(3) generator plus the identity operator, and the
rj = Tr[ρ̂HOMλ̂j] are the expectation values of the operators λ̂j.

Even if it is not possible to directly measure the expectation values of the
λ̂j operators, they can be expressed as a linear combination of an arbitrary
set, if complete, of physical measurements operators µ̂i [277]. Using a 9 × 9
invertible matrix A we can thus write the 9 measurements as µ̂i =

∑
j Aijλ̂j.

The experimental results of these operators are given by:

ni = N Tr[ρ̂HOMµ̂i] = N
j=8∑
j=0

AijTr[ρ̂HOMλ̂j] = N
j=8∑
j=0

Aijrj (3.16)

where N ∈ R is a scaling factor depending on the experimental conditions.
Casting the density matrix ρ̂HOM and the expectation values rj in form of

column vectors having 9 elements (called ρk for the former and rj for the latter),
we can invert Eq.3.15 to express the rj as a function of the density matrix
elements ρk. We obtain rj =

∑
k Bjkρk, where the elements of the 9×9 invertible

matrix B are given Bjk = 〈ψj| λ̂k |ψj〉, where ψj are the basis kets of the density
matrix ρ̂HOM. Inserting this relation into Eq.3.16 we obtain:

ni = N
∑
j,k

AijBjkρk (3.17)
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Since we are not interested in the exact form of A and B, we can define a 9× 9
matrix M = N (A ·B), in order to rewrite Eq.3.17 as:

ni =

j=8∑
j=0

Mijρj (3.18)

We obtain a linear relation between the measurements results and the density
matrix elements through the matrix M . Inverting Eq.3.18 allows to fully recon-
struct ρHOM using the measurement set µ̂i:

ρi =

j=8∑
j=0

M−1
ij nj (3.19)

For Eq.3.19 to be valid, a complete set of measurements for which the matrixM
is invertible needs to be identified. In the following we exhibit a set of 9 different
correlation measurements, giving access to a set of 9 equations in the form of
Eq.3.18, from which we can retrieve the matrix M and its inverse.

We can understands the use of correlation measurements by considering the
density matrix of the two-photon state of Eq.3.12, where the elements of ρHOM

corresponds to all possible second order coherences of the field of the two photons
on the two spatial modes, expressed as ρij = 〈â†nA â

†2−n
B âmA â

2−m
B 〉 where n,m =

0, 1, 2 [270]. We can thus expect to be able to access them using two-photon
correlation measurements, which can be expressed in the same form (when n =
m). Indeed, it has been demonstrated explicitly for two orthogonal polarization
modes of a single spatial mode that is possible to measure all Nth order coherences
using only SU(2) transformations and N-fold coincidences [278]. This is the
technique which was applied to reconstruct the density matrix of polarization
NOON states [270], where the SU(2) transformations were implemented using
phase retarders and waveplates and the photons were detected using cascaded
SPADs. This scheme can in principle be transposed to path encoding, to analyse
two orthogonal spatial modes of a single polarization mode. For instance, we
can see that the same transformation applied by a half waveplate to the H and
V polarizations, when oriented at 22.5̊ with respect to H, is applied by a beam
splitter on its two input paths: in both cases balanced superposition of the two
input modes is obtained at the output.

The most general transformation of SU(2) can be written as:(
eiφ sin θ eiφ cos θ

cos θ − sin θ

)
(3.20)

and can be obtained using a lossless beam splitter with variable reflectivity√
R = sin θ followed by a phase shifter of φ [279]. Experimentally, a variable

beam splitter can be realized by a Mach-Zender interferometer, allowing to im-
plement the same transformation. Still, this would imply the introduction of a
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second optical phase, which must be thoroughly controlled. Such a dual optical
phase control in free space or in fibre optics is experimentally demanding. For
this reason, we have developed an alternative approach based on the introduction
of an ancillary spatial mode, which allows for the use of a single phase to per-
form the full tomography for an arbitrary N photon number. The experimental
implementation of the setup is described in the next Section.

3.4 The tomography setup

The experimental setup to generate the two-photon state and complete the QST
protocol can be divided into 3 parts:

• a state generation part, where identical copies of the quantum state ρHOM to
be measured are generated using a single-photon source and an HOM inter-
ferometer;

• a state transformation part, where the required unitary transformations are
applied to the state in order to access all the elements of its density matrix;

• a state detection part, where projective measurements are performed using
SPADs.

For the state preparation, we use the single photons emitted by a QD-micropillar
device under resonant excitation, as presented in Chapter 2. The experimental
configuration in shown in Fig.3.3. Using a cross polarization configuration, we
collect highly indistinguishable single photons, which are transferred to a fibre
based HOM interferometer, where successively emitted photons are temporally
overlapped using a delay line (see Fig.3.3). This is analogous to what was already
explained in Section 2.2.3, with the difference that here the laser pulses are not
doubled, but we use the photons generated by subsequent excitations. The
HOM interferometer is implemented using a polarizing beam splitter (PBS), to
split the single free space input beam, and a fibre beam splitter (BSHOM), to
recombine the two arms of the interferometer. One of the two arms contain a
fibre delay line of 12.2 ns, adjusted to the repetition rate of the excitation laser.
The input photons polarization is fixed using a polariser (Pol) and an half wave
plate (HWP) oriented at 45̊ with respect to the optical axis of the polarizing
beam splitter. Each photon has then 50% probability of going through either
the short arm (the one without delay) or the long arm (the one with delay) of
the interferometer. The polarization of the two photons is restored to be equal
using polarization controllers (PC) composed of a quarter wave plate and a half
wave plate. When a photon takes the long arm and the subsequent one takes
the short arm, the two photons arrive at the same time at BSHOM, where they
interfere. Due to the probabilistic routing of the photons, we expect to create
a NOON state with a probability of 1

4
, while with a probability of 3

4
the two
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Figure 3.3 – Experimental setup for the generation of the NOON state.
The single photons emitted by the QD-micropillar device are sent to a
HOM interferometer, to probabilistically prepare the state ρHOM on the
two modes â0 and â1 at the outputs of the fiber beam splitter BSHOM.

photons will not temporally overlap, so only one photon will propagate through
the tomography setup. Considering only the 2 photon subspace of the outcome of
the HOM interference, the resulting state is described by the 3×3 density matrix
ρHOM of Eq.3.12, which we want to reconstruct. Such a state is encoded over the
two spatial modes â0 and â1, which are the two output ports of the fibre beam
splitter BSHOM in Fig.3.3. To collect all tomographic measurements we employ
2 different experimental configurations that are explained in the following.

3.4.1 Measurement of the populations of the state

A first experimental configuration, shown in Fig.3.4, is used to retrieve the three
populations of ρHOM. Here no transformation is applied to the state, and co-
incidence detection is directly performed on ρHOM. A correlation measurement
between the two modes â0 and â1 is represented by the operator R̂0,1 = â†0â

†
1â0â1.

Such two-photon measurement effectively implements the projector |1, 1〉 〈1, 1|,
as the state measured is not build on more than two photons. This gives access
to the density matrix element ρ2,2, the population of the |1, 1〉 state. Simi-
larly, an autocorrelation measurement on one optical mode â0 or â1 is given by
R̂0,0 = â†0â

†
0â0â0 or R̂1,1 = â†1â

†
1â1â1 and implement the projectors 2 |2, 0〉 〈2, 0| or

2 |0, 2〉 〈0, 2|. These two measurements provides the remaining populations ρ1,1

and ρ3,3 of the |2, 0〉 and |0, 2〉 states.
Experimentally, the population of the |1, 1〉 state can be easily obtained by

directing the outputs of the HOM interferometer to two SPADs and measuring
the detected coincidence rate R0,1, which corresponds to the standard experi-
mental configuration used to measure the indistinguishability of two photons.
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BSHOM

a0

a1

Figure 3.4 – Experimental configuration for the measurement of the pop-
ulation terms of ρHOM. Coincidence detection is performed on the two
modes â0 and â1. Photon number resolution is achieved by demultiplexing
each mode into two SPADs.

Retrieving the populations of the states |2, 0〉 and |0, 2〉 is less straightforward,
since they corresponds to the probability of observing a two-photon state respec-
tively on the mode â0 and on the mode â1. Using a photon number resolving
detector would give the possibility to get direct access to these probabilities.
On the contrary, single-photon avalanche diodes (SPADs) cannot discriminate
the number of incident photons, as they always produce a single output pulse.
Still, it has been demonstrated that is possible to resolve the photon number of
a multi-photon state by spatially or temporally demultiplexing the state on two
or more SPADs [280, 281, 282]. Following this idea, we use here a beam splitter
to divide an incident pulse containing up to 2 photons onto two SPADs, and
measure the detected coincidences. We can easily verify that, doing this, we can
retrieve the result of an autocorrelation measurement on the incident pulse. For
the general case of a balanced beam splitter with two input modes b̂0 and b̂1,
and two output modes b̂3 and b̂4, the beam splitter input-output relations for
the fields operators are given by:(

b̂3

b̂4

)
=

1√
2

(
1 1
1 −1

)(
b̂0

b̂1

)
(3.21)

Thus, the operator for the correlation measurement performed on the output
modes (b̂3 and b̂4) using the input mode basis (b̂0 and b̂1) is:

R̂ = b̂†3b̂
†
4b̂3b̂4 =

1

4

(
b̂†0b̂
†
0b̂0b̂0 − b̂†0b̂

†
0b̂1b̂1 − b̂†1b̂

†
1b̂0b̂0 + b̂†1b̂

†
1b̂1b̂1

)
(3.22)

where we have used the commutation relations for the creation and annihilation
operators ([b̂†i , b̂

†
j] = [b̂i, b̂j] = 0). If the state at the inputs of the beam splitter

has vacuum on mode b̂1, only the first term of Eq.3.22 will give a non-zero
contribution to the expectation value of such operator. As we see, up to a
proportionality factor, the result corresponds to the intended autocorrelation
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Figure 3.5 – Experimental setup to retrieve the coherence terms of ρHOM.
A transformation is applied to the state using a split Mach-Zender inter-
ferometer, and coincidence detections are performed on the output modes
â3, â4 and â5.

measurement on the input mode b̂0. Applying this procedure to the two modes
â0 and â1, as represented in the dashed boxes of Fig.3.4, we can access the values
of R̂0,0 and R̂1,1.

3.4.2 Measurement of the coherences of the state

In order to retrieve also the coherence terms of the density matrix ρHOM of
Eq.3.12, a second experimental configuration is used, shown in Fig.3.5. Here we
employ a split Mach-Zender layout, where the two output modes â0 and â1 of
the HOM beam splitter (BSHOM) are recombined on a second fibre beam splitter
(BS2). An ancillary mode â2 is introduced and entangled to the mode â1 using
a free space beam splitter (BS1), placed inside one arm of the interferometric
setup. The free space path inside the interferometer is not optically stabilized,
generating an optical phase difference (φ) between the two arms which vary
slowly with time. This free space path contains also a polarization control stage
(PC), needed to correct for any changes in the light polarization which happens
during the propagation inside the fibres. By doing so we can be sure that the
interference happening on the last beam splitter BS2 is not limited by any po-
larization mismatch in the light coming from the two different input ports. A
total of three output spatial modes are monitored using SPADs, by collecting
time-tagged photon detection events: the two output ports â3 and â4 of the
Mach-Zender interferometer, plus the second output â5 of the cube BS1 placed
inside one of its arms. This allows us to perform correlation measurements be-
tween any of the possible combinations of those modes, thus any R̂i,j = â†i â

†
j âiâj

with i, j = 3, 4, 5. Adding a beam splitter on any of the three output modes,
we can also retrieve the result of an autocorrelation measurements where i = j,
employing the same technique presented before for R̂0,0 and R̂1,1 (see Eq.3.21
and 3.22).
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Each correlation measurements, for a specific value of φ, gives access to a
different linear combination of the elements of the density matrix ρHOM . In
order to retrieve the remaining 6 coherence terms (ρ1,2, ρ1,3, ρ2,1 ρ2,3, ρ3,1, ρ3,2)
we need to perform 6 independent measurements, in addition to the 3 used to
retrieve the populations terms. There are different possible sets of correlations
that we can use to fully reconstruct the density matrix. Our set of choice for
this second experimental configuration is given by R̂3,3(φ), R̂3,4(φ) and R̂3,5(φ),
each performed for two different values of the phase φ.

We can qualitatively understand how such a measurements scheme works
with an analogy to the tomography of polarization-entangled photons. The re-
construction of the density matrix of the polarization state of two entangled
photons, requires to perform correlation measurements between non-orthogonal
polarizations, where the two photons are detected along any combination of lin-
ear, diagonal and circular polarization. Mapping the spatial modes â0 and â1

to the polarization modes H and V , the above experimental configuration es-
sentially mimics such correlation measurements. Detection on the output paths
â3 and â4 accounts for the projection onto the (H ± e−iφV )/

√
2 polarizations.

Thus while correlations like R0,1 or R0,0 would corresponds to detection on lin-
ear polarization basis, R3,3 or R3,4 would represents detection on diagonal or
circular basis, depending on the value of φ. Correlations such as R3,4 – without
the additional cube BS1 – evidencing a cos 2φ dependence have already been
demonstrated to confirm the NOON nature of a two-photon state [283]. Yet
a complete polarization tomography must also include correlations such as Ri,5

with i = 3, 4, between modes before and after the transformations applied by
the last beam splitter BS2. These would correspond in the polarization anal-
ogy to correlations between linearly polarized photon V and diagonal or circular
polarizations.

In the next section the mathematical derivation of the density matrix is
presented in more details.

3.5 Theoretical description of the tomography

3.5.1 Description of the setup

In order to complete the quantum state tomography protocol, we model the
experimental setup, presented in the previous section, in terms of unitary trans-
formations. In such a way, we can determine the expected results as a function
of the input state, hence use Eq.3.19 to retrieve the density matrix elements.
As a first step, we consider pure input states to derive the relation between the
measurements and the density matrix elements. The relations we obtain are
then valid for any mixed state, whose density matrix is a linear superposition of
pure-state density matrices weighted by the corresponding state probabilities.
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A general pure input state can be expressed in terms of photon creator op-
erators acting on the vacuum state [284] as:

|ψin〉 = f(â†i ) |0〉 (3.23)

using a polynomial function in the form f(â†i ) =
∑

n

∏
i(â
†
i )
n. Given the unitary

operation Û implemented by the optical setup, the output state is:

|ψout〉 = Ûf(â†i ) |0〉 = Ûf(â†i )Û
†U |0〉 = f(Û â†i Û

†) |0〉 = f(b̂†i ) |0〉 (3.24)

where we have used the fact that an input vacuum state Û |0〉 will results in
an output vacuum state |0〉. The explicit form of |ψout〉 in terms of the photon
creation operators b̂i = U †âiU acting on the output modes can be obtained using
the following linear transformation:

b̂i =
n∑
j=1

Si,j âj (3.25)

where S, also called scattering matrix, is the matrix representation of the setup
transformation Û on the optical mode basis, relating the input to the output
operators. By combining the local transformations acting on subsets of the
optical modes, here implemented by beam splitters and phase shifters as shown in
Eq.3.3, we can obtain the full form of the matrix S [285]. Thus using Eq.3.25 we
can obtain |ψout〉 from any |ψin〉. Finally, applying the measurements operators
on the output state we can retrieve both the expected single photon count rates
Ri on the ith detector and the expected coincidence rates Ri,j between the ith
and the jth detector:

Ri = Ni 〈ψout| â†i âi |ψout〉 (3.26a)
Ri,j = Nij 〈ψout| â†i â

†
j âiâj |ψout〉 (3.26b)

The constants Ni = N ξi and Nij = N ξiξj are experimental scaling factors
that include the production rate N of the input state and the efficiency ξi of
the detectors (while the losses of the setup are already accounted for in the
transformation U as detailed later).

As explained in the next section presenting the experimental results, to cor-
rect for fluctuations of the signal during the measurement, the coincidences will
be normalized by the uncorrelated detection events. These uncorrelated events
corresponds to single photon detections triggered by different excitation pulses,
i.e. coincidences detected at delays τ 6= 0. We thus calculate the ratio of the
coincidences detected at zero time delay, due to the NOON state probabilisti-
cally generated 1

4
of the times, to the ones coming from single photons entering

for different delays in either one of the two input of the HOM beam splitter.
The zero-time delay coincidences due to the NOON state can be calculated by
considering an input state in the form

|ψNOON
in 〉 = α |2, 0〉+β |1, 1〉+γ |0, 2〉 =

(
α

(â†0)2

√
2

+ βâ†0â
†
1 + γ

(â†1)2

√
2

)
|0〉 (3.27)
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and using the measurement of Eq.3.26b on the resulting output state we obtain a
coincidence rate of RNOON

i,j = Nij 〈ψNOON
out | â†i â

†
j âiâj |ψNOON

out 〉. For the uncorrelated
detections instead we should consider that a single photon is entering in either
one of the two input of the HOM beam splitter with the same probability. The
input state we consider for the tomography is then an equal mixture of the two
possibilities:

|ψ±in〉 =
|1, 0〉 ± |0, 1〉√

2
=

1√
2

(
â†0 ± â

†
1

)
|0〉 (3.28)

and using Eq.3.26a we obtain the resulting count rate on a detector as R±i =
1
2
(R+

i +R−i ) where R+
i = Ni 〈ψ+

out| â
†
i âi |ψ+

out〉 and R−i = Ni 〈ψ−out| â
†
i âi |ψ−out〉. The

uncorrelated coincidence rate between two detectors will be given by R±i ×R±j .
The normalized correlation measurements are thus described by:

Ri,j =
RNOON
i,j

R±i ×R±j
(3.29)

We use this relation now to obtain the expression of the correlation mea-
surements presented in the previous section (R0,0, R0,1, R1,1, R3,3(φ), R3,4(φ),
R3,5(φ), R4,5(φ)) as a function of the density matrix elements. Here, we consider
pure states for clarity. The density matrix of Eq.3.12 can then be rewritten,
considering a pure input state in the form of Eq.3.27, as:

ρHOM =


〈2, 0| 〈1, 1| 〈0, 2|

|2, 0〉 |α|2 αβ∗ αγ∗

|1, 1〉 βα∗ |β|2 βγ∗

|0, 2〉 γα∗ γβ∗ |γ|2

 (3.30)

where the link between the different matrix elements and the basis kets of the
state appears: the three real elements on the diagonal identify the populations,
while the non-diagonal terms identify the coherences between different compo-
nents of the state.

In the case of the three measurements performed to retrieve the populations
of ρHOM (see Section 3.4.1), no transformation is applied to the state, thus the
matrix S is the identity matrix. As expected, the results are:

R0,0 = 2|α|2 R1,1 = 2|γ|2 R0,1 = |β|2 (3.31)

For the measurement of the coherences of ρHOM (see Section 3.4.2), we need
to model the transformation applied by the experimental setup of Fig.3.5. It
can be done using the schematic representation shown in Fig.3.6. In this mode
diagram, each spatial mode is represented by a solid line, which undergoes either
a beam splitter transformation or a phase shift. Equivalently, it can be seen as
a quantum logic circuit composed of only Hadamard gates and a phase gate.
The blocks labelled ηi with i = 1, 2, 3 represent additional beam splitters used to
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Figure 3.6 – Mode diagram corresponding to the split Mach-Zender setup
of Fig.3.5. The input state in encoded over the modes â0 and â1, while
the ancillary mode â2 is fed with vacuum. Correlations are performed on
the output modes â3, â4 and â5. The HOM beam splitter is shown for
completeness but not part of the transformation matrix S. The greyed
elements represents losses, introduced as beam splitter transformations
having reflectivity η0, η1 and η2.

describe the optical losses of the experiment, related to fibre to fibre or free space
to fibre coupling. Using this approach we can keep the global transformation of
the setup unitary, at the cost of including more optical modes. While needed
to account for the observations and to retrieve the tomography results shown in
the next section, the losses ηi are neglected in the following in order to simplify
the equations. Here we consider three input modes: two over which the state
is encoded (â0, â1) plus an ancillary one â2. Combining the one and two modes
transformations (with specific form given in Eq.3.3), respectively given by a
phase shift φ and two beam splitters BS1 and BS2 having reflectivities R1 and
R2, we can express the inputs in terms of the output modes (â3, â4, â5) using:

â0

â1

â2

 = S−1

â3

â4

â5

 (3.32)

where, for the specific setup of Fig.3.6 the transformation matrix is:

S−1 =

 √1− R2 eiφ
√

1− R1

√
R2 eiφ

√
R1

√
R2√

R2 −eiφ
√

1− R1

√
1− R2 −eiφ

√
R1

√
1− R2

0
√
R1 −

√
1− R1

 (3.33)

which using R1 = 0.4 and R2 = 0.5, as measured from the experimental setup,
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becomes:

S−1 =


1√
2

√
3
10
eiφ eiφ√

5

1√
2
−
√

3
10
eiφ − eiφ√

5

0
√

2
5

−
√

3
5

 (3.34)

Using this transformation, we retrieve the explicit form of the output states
|ψout〉 for any |ψin〉, and from 3.29 we find the results of the phase-dependent
measurements Ri,j(φ) performed on the output modes as a function of the ele-
ments of Eq.3.30:

R3,4 =
8

25
|α|2 − 24

125
e−2iφαγ∗ − 24

125
e2iφγα∗ +

72

625
|γ|2 (3.35)

R3,5 =
8

125
|β|2 +

8

125

√
6

5
e−iφβγ∗ +

8

125

√
6

5
eiφγβ∗ +

48

625
|γ|2 (3.36)

R4,5 =
8

125
|β|2 − 8

125

√
6

5
e−iφβγ∗ − 8

125

√
6

5
eiφγβ∗ +

48

625
|γ|2 (3.37)

R3,3 =
1

50
|α|2 +

1

25

√
3

10
e−iφαβ∗ +

3

250
e−2iφαγ∗+

1

25

√
3

10
eiφβα∗ +

3

125
|β|2 +

3

125

√
3

10
e−iφβγ∗+

3

250
e2iφγα∗ +

3

125

√
3

10
eiφγβ∗ +

9

1250
|γ|2 (3.38)

Up to now we have used a pure state for a clearer observation of which terms
of the density matrix contribute to the expected results. The same relations
however are valid for a mixed input state. Is is sufficient to make a simple corre-
spondence between the elements of Eq.3.30 and Eq.3.12 to obtain the expressions
for the general case.

A complete set of correlation measurements for the reconstruction of ρHOM

is obtained for:

Rset(φ1, φ2) =
(
R0,0, R0,1, R1,1

R3,3(φ1), R3,4(φ1), R3,5(φ1)

R3,3(φ2), R3,4(φ2), R3,5(φ2)
) (3.39)

As later shown in Section 3.7.1, for |φ1 − φ2| 6= 0, π
2
, π, the linear transformation

matrix M relating the measurements vector Rset(φ1, φ2) to the vectorial form of
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the density matrix elements ρvec = (ρ1,1, ρ1,2, ρ1,3, ρ2,1, ρ2,2, ρ2,3, ρ3,1, ρ3,2, ρ3,3)
is invertible, so that:

ρvec = M−1Rset(φ1, φ2) (3.40)

where Rset(φ1, φ2) are the experimentally measured values of the set Rset(φ1, φ2).
This linear tomography procedure allows a simple reconstruction of the density
matrix from the experimentally measured correlations.

Before showing the experimental results, we discuss in the next sections the
expected coincidence rates from the above calculations.

3.5.2 Expected results

Using the formulas derived in the previous section, we can now plot the expected
values of the following measurements:

R0,0, R1,1, R0,1, R3,3(φ), R3,4(φ), R3,5(φ), R4,5(φ) (3.41)

for any input density matrix ρHOM. For the following simulations we use the
complete model of the experimental setup, represented in Fig.3.6, including the
losses, which have been experimentally measured to be η0 = 0.02, η2 = 0.7
while η2 ≈ 0 is negligible. Note that R4,5(φ) is not necessary to obtain a com-
plete measurement set for the linear tomography but included here for clarity.
This allows to better understand how the different measurements are sensitive
to the different elements of the density matrix. The first three measurements
(R0,0, R0,1, R1,1) of course do not depend on the value of the phase φ, as they
are performed before the Mach-Zender interferometer. Still, they are also repre-
sented altogether as a function of φ for convenience.

The ideal case of a maximally entangled state |ψ2002〉 = 1√
2

(|2, 0〉 − |0, 2〉)
corresponds to the real density matrix ρHOM of Fig.3.7.b, and the simulated
experimental results are shown in Fig.3.7.a with solid lines. As expected R0,1

is 0 and both R0,0 and R1,1 are equal to 1, since the population is equally
distributed between |2, 0〉 and |0, 2〉 states. The coincidences R3,3(φ) and R3,4(φ)
correspond to coincidences at the outputs of the split Mach-Zender where the 2-
photon NOON state is interfering. Their phase dependence shows a π oscillation
period, revealing the attended super-resolution, with a phase inversion between
the two. This situation is equivalent to the one described in Eq.3.9: the output
of the Mach-Zender oscillate between a separable |1, 1〉 state and a 2-photon
NOON state. Thus the maximum probability of observing a photon on each exits
(measured by R3,4(φ)) corresponds to the minimum probability of observing both
photons on the same exit (measured by R3,3(φ)), and the situation is inverted
with a phase shift of π/2. The contrast between the maximum and minimum of
such an interference depends on the intensity of the coherences between the |2, 0〉
and |0, 2〉 terms of ρHOM. If all the coherence terms are zero, no φ dependence
is observed. This situation corresponds to the real density matrix of Fig.3.7.c,
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Figure 3.7 – (a) Phase dependence of the expected correlation rates for
different form of the state ρHOM. Solid lines are for the ideal 2-photon
NOON state |ψ2002〉 shown in (b). Dotted lines are for the mixture of
|2, 0〉 and |0, 2〉 states shown in (c). Dashed lines are for the pure state
shown in (d), where the kets |2, 0〉 and |0, 2〉 have a relative phase shift of
π/4 with respect to (b).

representing the state ρ2002 = 1
2
(|2, 0〉 〈2, 0|+|0, 2〉 〈0, 2|) and the expected results

are shown by the dotted lines in Fig.3.7.a. Now the values of R3,3 and R3,4

(overlapping red and blue dotted lines) are averaging the previous oscillatory
behaviour (solid red and blue lines), while no difference is observed on the other
measurements. We can notice that the maximum visibility is not 100% even
in the case of the ideal state of Fig.3.7.b, which is due to the presence in our
experimental configuration of optical losses and an additional beam splitter cube
BS1. These limitations are already accounted for, leading the maximum visibility
of almost 50%.

To show the phase sensitivity of the setup, we now introduce a π
4
phase

shift between the two kets of the maximally entangled state |ψ2002〉, leading to
the state 1√

2

(
|2, 0〉 − e−iπ/4 |0, 2〉

)
. The corresponding density matrix is shown

in Fig.3.7.d, where the coherence terms are shared among the real (left) and
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Figure 3.8 – (a) Comparison of the correlation rates expected from the
ideal 2-photon NOON state |ψ2002〉 (solid lines) of panel (b) and the im-
perfect NOON state |ψ11〉 (dashed lines) of panel (c).

imaginary (right) part of the matrix. The expected results from this state are
shown in Fig.3.7.a using dashed lines. Again, no difference is observed except for
the values of R3,3 and R3,4, which both experience an horizontal shift of π

8
in units

of optical phase difference φ. This highlights how the horizontal position gives
access to the imaginary part of the coherence terms of the density matrix (i.e.,
the inner phase of the 2-photon NOON state). Moreover, we can observe again
that an optical phase shift of φ in the interferometer corresponds to a 2φ phase
shift between the |2, 0〉 and |0, 2〉 basis kets, giving the twofold improvement in
phase resolution.

To complete the analysis, we now consider the case of a non-maximally en-
tangled state, by including a non-zero population of the |1, 1〉 component in the
density matrix. Starting from the ideal NOON state |ψ2002〉 (shown again in
Fig.3.8.b) and moving 4% of the population to the |1, 1〉 ket, we can obtain the
pure state |ψ11〉 = cos(0.2)√

2
(|2, 0〉 − |0, 2〉)− sin(0.2) |1, 1〉 whose density matrix is

shown in Fig.3.8.c. The simulated results are plotted in Fig.3.8.a (dashed lines)
along with the results from the ideal NOON state already shown before (solid
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Figure 3.9 – (a) Expected correlation rates for different forms of non-
ideal NOON states. Solid lines are for the pure state |ψ11〉, shown in panel
(b). Dotted lines are for the mixed state ρ11, shown in panel (c). Dashed
lines are for the pure state shown in panel (d), analogous to the state in
(b) but with a phase shift of π/4 on the ket |1, 1〉.

lines), for a comparison. Now the value of R0,1 is increased by the population
of the |1, 1〉 component, while R0,0 and R1,1 are decreased by the same amount.
The dependence on φ of R3,4 is affected through the decreased populations of the
|2, 0〉 and |0, 2〉 components. R3,4 shows the same cos(2φ) dependence as R3,3,
but slightly altered by a cos(φ) modulation. The most interesting feature is in
R3,5 and R4,5, which now show a cos(φ) dependence reflecting the interference
of the one photon component. Analogously to what observed in the previous
case, the visibility of such an interference effect depends on the intensity of the
coherence terms relating the |1, 1〉 ket with the other components of the density
matrix.

This can be verified in Fig.3.9.a, where we plot again the results from the pure
state |ψ11〉 of Fig.3.8.c (whose density matrix is shown also in Fig.3.9.b) using
solid lines, this time together with the mixed state ρ11 = 0.96 |ψ2002〉 〈ψ2002| +
0.04 |1, 1〉 〈1, 1| (dotted lines) whose density matrix is shown in Fig.3.9.c. With
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a same population for the |1, 1〉 ket, but no coherence relating it to the other
states, the cos(φ) dependence of R3,5 and R4,5 is averaged out in the dotted lines.
An effect is observed also on R3,3, where the cos(φ) modulation is suppressed.

Finally, the dashed lines of the Fig.3.9.a show the results from the pure state
cos(0.2)√

2
(|2, 0〉 − |0, 2〉) − sin(0.2)e−π/4 |1, 1〉 (density matrix of Fig.3.9.d). The

difference of this last state with the one of Fig.3.9.c is again a phase shift of π/4
of the |1, 1〉 component. Such a shift is reflected in an horizontal translation of
R3,5 and R4,5, this time of π/4 in units of optical phase shift φ. We can thus say
that these last two measurements allows to access the coherences of the |1, 1〉
ket with respect to the other two states |2, 0〉 and |0, 2〉. We see that they do not
provide any enhanced phase resolution, as opposite to the coherences between
the kets |2, 0〉 and |0, 2〉.

To summarize, the above examples gave a practical understanding of how
the different measurements are linked to the different elements of the density
matrix: R0,0, R1,1 and R0,1 to the population terms, R3,3 and R3,4 to the co-
herence terms between |2, 0〉 and |0, 2〉, R3,5 and R4,5 to the coherence terms of
|1, 1〉. To reconstruct the density matrix we combine the above measurements,
using different tomography reconstruction techniques, as shown in the following
sections.

3.6 Experimental results

We now presents the experimental implementation of the tomography approach.
The QD-micropillar source of single photon is excited resonantly and the emit-
ted photons are collected under resonant excitation, in order to obtain highly
indistinguishable photons as explained in Chapter 2. By careful alignment of the
experimental setup we can repeatedly obtain a value of g(2)(0) = 0.03± 0.01 in
the emission from the device QD3, used to perform the measurements presented
here.

3.6.1 Populations

As presented in Section 3.4, to retrieve the population terms we use the ex-
perimental setup shown in Fig.3.4. To access the |1, 1〉 component we perform
the cross correlation measurement R̂0,1 = â†0â

†
1â0â1 between the two outputs of

the HOM beam splitter. The result of this measurement is shown in Fig.3.10.a,
where the number of detected coincidences is plotted as a function of the time
delay between the two detected photons. Each peak represents the coincidences
arising from different laser pulses, except for the zero time delay ones, which
are triggered by a same excitation pulse. The limited number of coincidences
at zero time delay reflects a high degree of indistiguishability, meaning a small
value of the population term ρ2,2. The first sidepeaks, at delays ±12.2ns, shows
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Figure 3.10 – Measured correlation histogram for R̂0,1. (a) Raw mea-
surement, showing the detected coincidences as a function of the delay. (b)
Integrated coincidences counts arising from each laser excitation pulse, nor-
malized to the average area of uncorrelated peaks (at delays ≥ 2×12.2ns).

a reduced height due to the probabilistic routing in the HOM of photons emitted
with a temporal separation of 12.2 ns. This reduced height can be theoretically
predicted [215], however those peaks are not used in the following analysis. In
order to remove errors due to signal fluctuation during the measurement, which
are expected from mechanical instabilities changing the laser spot-source over-
lap, the number of coincidences is normalized. After background subtraction
(typically 5 counts in the measurements of Fig.3.10 and Fig.3.11), the detected
counts are integrated in a temporal area of 1 ns around each peak, and the
normalization is performed with respect to the average area of peaks at delays
τ ≥ 2×12.2 ns, representing uncorrelated detection events triggered by different
excitation pulses. This normalization results in the plot of Fig.3.10.b. The total
number of counts in the peak at zero time delay corresponds to the normalized
coincidence rate R0,1 that we use for the tomography.

To access |2, 0〉 and |0, 2〉 components we perform the two autocorrelation
measurements R̂0,0 = â†0â

†
0â0â0 and R̂1,1 = â†1â

†
1â1â1 by demultiplexing each

output of the HOM beam splitter into two SPADs, as represented in Fig.3.4. The
results of these two measurements are shown in Fig.3.11.a and 3.11.b. We see
that this time we have a high number of coincidences at zero time delay, implying
a big population for the |2, 0〉 and |0, 2〉 components. The same normalization
as for the previous measurement is applied, where the counts are integrated into
a 1 ns area and normalized with respect to the uncorrelated peaks areas. The
results are shown in Fig.3.11.c and 3.11.d, from which we can retrieve the values
of the coincidences rates R0,0 and R1,1.
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Figure 3.11 – Measured correlation histogram for R̂0,0 and R̂1,1. (a) and
(b) shows raw measurements respectively for R̂0,0 and R̂1,1. (c) and (d)
shows the same histograms normalized to uncorrelated detection events,
as explained in the text.
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3.6.2 Coherences

To access the coherences we employ the setup shown in Fig.3.5, which allows us
to perform the phase dependent correlation measurements R̂i,j = â†i â

†
j âiâj for

i, j = 3, 4, 5.
The unitary transformation implemented by this part of the setup (and there-

fore the results of the correlation measurements R̂i,j performed on the output
modes) depends also on the value of the phase difference (φ) between the two
arm of the interferometer. Here, this phase shift is not stabilized, but we pe-
riodically determine its value. To this end, an electronically controlled shutter
(indicated as Shutter in Fig.3.3) is placed in front of one entrance of the HOM
beam splitter (BSHOM). By closing this shutter, we can have a single photon
propagating through the split Mach-Zender setup of Fig.3.5. This corresponds
to the situation described by Eq.3.8, and the probability amplitudes of the pho-
ton through the two arms will interfere on the final beam splitter BS2 according
to the value of the phase shift φ. The difference in the count rate detected at
the two outputs â3 and â4 of the interferometer will oscillate as cos(φ), with a
maximum visibility limited by the experimental losses and the presence of BS1.
Such signal is detected every 10 s, with 100 ms integration time, and the time
trace of the results, normalized between 1 and -1, is shown in Fig.3.12.a. The
acquisition performed between two subsequent phase estimation is then assigned
a specific value of φ between 0 and π, in steps of π/19, according to the mea-
sured intensity difference. A total of 4164 acquisitions of 10 seconds each are
performed and their distribution depending on the assigned phase is shown in
the histogram of Fig.3.12.b, revealing a reasonably uniform dispersion.
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Figure 3.12 – (a) Sample of the measured intensity difference between the
outputs â3 and â4 due to single photon interference, used for the estimation
of the interferometer phase. (b) Histogram of the total acquisition time
for each phase value.
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Figure 3.13 – (a) Experimental results for R̂3,4(φ) as a function of the
delay between detections and interferometer phase. (b) R̂3,4(φ) normalized
to uncorrelated detection peaks.

As an example of the phase-dependent correlations measured with this tech-
nique, we present the result of R̂3,4(φ), shown in the 2D plots of Fig.3.13.a (raw)
and b (normalized). The detected coincidences are plotted as a function of the
time delay (horizontal axis) and the interferometer phase (vertical axis). Each
horizontal line corresponds then to a correlation histogram for a specific value
of the phase φ. By normalizing the measurements to the uncorrelated peaks,
we obtain the plot of Fig.3.13.b. Here the phase dependence of the detected
coincidences at zero time delay is well visible, and shows a full 2π oscillation
in a range of a π optical phase shift. The first sidepeaks, at ±12.2 ns delays,
also shows a phase dependence, but in this case it doesn’t have the twofold res-
olution of the zero-delay peaks. They reflect instead the interference of single
photons propagating individually in the Mach-Zender setup, as also reported
elsewhere [286]. However, we are interested here only in the phase dependence
of the zero time delay peak, which is reflecting the NOON state interference.
The normalized values of these zero-delay coincidences are plotted in Fig.3.14 as
a function of φ, for all the phase-dependent measurements performed, with error
bars calculated considering a Poissonian noise on the detected count rates. The
correlations R3,3 and R3,4 shows a clear harmonic oscillation over a phase range
of π. This is exactly what is expected from the enhanced phase sensitivity of the
2-photon NOON state, here detected by measuring one or two outputs of the
split Mach-Zender setup. The correlations R3,5 and R4,5 instead are performed
between one of these two outputs and the additional beam splitter inside one of
the Mach-Zender arms. They share an almost constant value, but we can still
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observe that R4,5 is statistically higher that R3,5 for values of φ close to 0, a
situation which is reversed towards π.
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Figure 3.14 – Experimental values of the normalized zero-delay coinci-
dences for the correlations R̂3,3(φ), R̂3,4(φ), R̂3,5(φ) and R̂4,5(φ) as a func-
tion of the interferometer phase φ. Error bars calculated from Poissonian
noise on the detected coincidences counts.
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3.7 Tomographic reconstruction

3.7.1 Linear tomography

We show here that a complete measurement set is given by the following choice
of nine measurements:

Rset(φ1, φ2) =
(
R0,0, R0,1, R1,1

R3,3(φ1), R3,4(φ1), R3,5(φ1)

R3,3(φ2), R3,4(φ2), R3,5(φ2)
) (3.42)

for |φ1 − φ2| 6= 0, π
2
, π, allowing the linear reconstruction of the density matrix

as shown by Eq.3.40. We immediately see that the experimental procedure is
yielding more measurements than required: the distribution of the acquisitions
in 20 different phase bins leads to 20 possible choices for the values of φ1 and φ2,
from 0 to π in steps of π

19
. Each possible couple (φ1, φ2) thus defines a different

measurement set that can be considered for the tomography. Looking at the
plot of Fig.3.7.a some possible choices already appear unsuitable. Given the π
periodicity of the measurements, we cannot use the couple φ1 = 0 and φ2 = π, as
they both contains the same information. Also, looking at the couple of points
φ1 = π

4
and φ2 = 3π

4
, the R3,3 and R3,4 measurements shows no difference for a

pure (solid line) or mixed (dotted line) state, and effectively they turn out to be
only sensitive to the imaginary part of the coherences.

0 π

2 π
0

0.5

1

|ϕ1-ϕ2|

|D
et
[M

]
2

(a) (b)

0 π

2 π
0

1

|ϕ1-ϕ2|

S
en
si
ti
vi
ty
to
no
is
e

Figure 3.15 – (a) Determinant of the matrix M normalized to 1, as a
function of |φ1 − φ2|, showing zeros for integer multiples of π/2. (b) Esti-
mated noise sensitivity of the calculated density matrix elements, showing
singular points for the zeros of the determinant of M.

To address more analytically the choice of phases, we make a simple study of
the matrix M (defined in Eq.3.40). The only requirement for the completeness
of the measurement set is to have an invertible matrix [269], thus we can look
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for the zeros of its determinant. This is shown in Fig.3.15.a, where the value of
the determinant of M is traced as a function of |φ1 − φ2|. It reveals that the
matrix cannot be inverted when the difference between the angles is a multiple
of π

2
, as previously mentioned. Additionally we can make a basic estimation of

the sensitivity to noise as a guide in the choice of phases. Each density matrix
element is given by a linear combination of the measurements in Rset(φ1, φ2),
defined by the corresponding row of M−1. We empirically take as an estimator
for their noise sensitivity the square root of the sum of the modulus of each
elements in the defining row, corresponding to the assumption of a Poisson noise.
The results are shown in Fig.3.15.b as a function of |φ1 − φ2|. In agreement with
the plot of Fig.3.15.a, the noise sensitivity of the reconstructed density matrix
elements diverges at either 0 and π or at π

2
. The optimal choice providing the

lowest uncertainty would be then |φ1 − φ2| = π
4
or 3π

4
.

Following the above discussion we proceed with the linear tomographic re-
construction of ρlin for φ1 = 0 and φ2 = 5π

19
(the closest to π

4
among the mea-

sured values). The real and imaginary part of the resulting matrix are shown in
Fig.3.16, both in numeric and graphical form. This density matrix shows strong
overlap with what could be expected for the output state of an HOM interfer-
ence of highly indistinguishable photons, having large coherences between the
|2, 0〉 and |0, 2〉 kets and small population for the |1, 1〉 component. We note
however that it shows small deviations from a physical density matrix. More
specifically, it is not exactly normalized (the trace is Tr[ρlin] = 1.034) and one
of its eigenvalues (0.917, 0.121 and −0.004) is negative. To assess the overlap
of the reconstructed state with the ideal NOON state |ψ2002〉 we can normalize
the unphysical state by its trace, so as to derive a meaningful value of fidelity of
F = 0.85.

The fact that the linear tomography procedure is very sensitive to experimen-
tal noise, and can produce unphysical properties in the resulting matrix, is well
know [269]. To overcome these limitations a Maximum Likelihood Estimation
is normally employed.

3.7.2 Maximum likelihood tomography

In order to avoid any violation of the physical properties of the density matrix
obtained from the linear tomography, we now apply a Maximum Likelihood Es-
timation (MLE) method, following the work of James et al. [269]. This allows
to find the most probable physical matrix accounting for the observed measure-
ments. First, we define a 3× 3 density matrix ρphys having the 3 mathematical
properties of a physical state: normalization, positivity and Hermiticity. Such a
matrix can be written as:

ρphys =
T †T

Tr(T †T )
(3.43)
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Figure 3.16 – Numerical and graphical representations of the den-
sity matrix ρlin reconstructed from the linear tomography procedure for
(φ1, φ2) = (0, 5π

19 ).

where the matrix T is defined as function of 9 real parameters:

T =

 t1 0 0
t4 + i t5 t2 0
t6 + i t7 t8 + i t9 t3

 (3.44)

We now proceed to find the best estimate for the 9 parameters ti. To do so we
maximize a likelihood function describing the probability of obtaining the ob-
served measurements as a function of the elements of ρphys, expressed in terms
of ti. Assuming a statistical noise with Poissonian distribution for the measure-
ments, the joint probability of obtaining the set of 9 measurements of Eq.3.42
is:

P (t1, ..., t9) =
9∏

ν=1

exp
(
−(Rν −Rν)

2

σ2
ν

)
(3.45)

where Rν are the elements of Rset(φ1, φ2), calculated for ρphys, and Rν the corre-
sponding experimental values, having σν =

√
Rν . Using the minimize function

of the Mathematica software, we can find the global minimum of − log(P ), al-
lowing us to maximize the likelihood function of Eq.3.45.

Applying the MLE procedure to the same set of measurements as for the
linear tomography, with φ1 = 0 and φ2 = 5π

19
, we obtain the density matrix shown

in Fig.3.17.a and b. This matrix has a trace of 1 and non-negative eigenvalues
(0.891, 0.109, 0) and the imaginary part is almost negligible. We now have a valid
physical state, showing a fidelity to the ideal NOON state |ψ2002〉 of F = 0.89.
The phase dependence of the expected results for the reconstructed state ρphys is
plotted in Fig.3.17.c (solid lines), for a comparison with the experimental values
(points). The left part of the plot is well accounted for by ρphys, which can be
understood since φ1, φ2 ∈ [0, π

2
]. On the contrary, the right part of the plot is

slightly deviating from the measured behaviour.
From the discussion at the beginning of the section, it appears interesting

to study in more details the effect of the choice of the measurement set on the
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Figure 3.17 – Numerical (a) and graphical (b) representation of the den-
sity matrix ρphys obtained using MLE tomography with the standard set
of 9 measurements for (φ1, φ2) = (0, 5π

19 ). (c) Expected correlation rates
from the density matrix ρphys (solid lines) along with experimental values
(points).



116 CHAPTER 3. NOON STATE TOMOGRAPHY

0 π
4

π
2

3 π
4 π

0

π
4

π
2

3 π
4

π

ϕ1

ϕ
2

F

0

0.2

0.4

0.6

0.8

1.0
●

● ● ● ● ● ● ●
●

■
■ ■ ■ ■ ■ ■ ■

■

0 π
4

π
2

0.2

0.4

0.6

0.8

1.0

|ϕ1-ϕ2|

(a) (b)

Figure 3.18 – (a) Fidelity to the ideal 2-photon N00N state |ψ2002〉 of the
matrix ρphys deduced from MLE tomography as a function of the chosen
values of φ1 and φ2. (b) Average value of the fidelity (blue dots) and its
standard deviation (black squares) as a function of |φ2 − φ1|, extracted
from panel (a).

resulting matrix. We have thus calculated the density matrix for any possible
couple of phases (φ1, φ2), and its fidelity to the ideal state |ψ2002〉 is shown
in Fig.3.18.a, as a function of φ1 and φ2. The plot is symmetric with respect
to the diagonal φ1 = φ2, where the matrix cannot be computed. Noticeable
fluctuations appears in the fidelity value and can be attributed to experimental
noise or limited statistics, which can affects the outcome of the MLE procedure
differently depending on the specific phase values (φ1, φ2) chosen. It is also
possible to observe a drop of the fidelity in the vicinity of (φ1, φ2) = (π

4
, 3π

4
) as

expected from what was predicted from Fig.3.15. Starting from this plot, we
have calculated the average value of the fidelity F and its standard deviation
σF , as a function of |φ2 − φ1| (see Fig.3.18.b). No dependence is evidenced on
both as long as |φ2 − φ1| 6= 0 and |φ2 − φ1| 6= π/2, where the noise produce a
threefold increase of the standard deviation σF . Away from these two points we
have F = 0.87 and σF = 0.06.

3.7.3 Overcomplete tomography

Both tomography techniques making use of a complete set of 9 measurements,
presented up to now, are naturally affected by the choice of the measurement
set and experimental noise. Having much more than 9 measurements available
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Figure 3.19 – Numerical and graphical representation of the density ma-
trix ρover obtained using the overcomplete set of 79 measurements.

owing to our experimental procedure, it is natural to extend the MLE technique
to use the overcomplete set of 79 measurements. These 79 measurements are
composed by the three phase independent correlations R0,0, R1,1 and R0,1, plus
the four correlations R3,3(φ), R3,4(φ), R3,5(φ) and R4,5(φ) each performed for 19
different values of φ, from 0 to 18π/19 Note that such an overcomplete set could
in principle be extended by repeating the correlations for additional values of φ
with an active control of the phase.

The likelihood function of Eq.3.45 can be straightforwardly extended, to in-
clude the 79 terms defining the probability of observing the whole overcomplete
set of measurements. The density matrix ρover resulting from the maximization
the new likelihood function is shown in Fig.3.19. We obtain a fidelity to the
NOON state |ψ2002〉 of 0.91, which is also compatible with the average fidelities
of Fig.3.18.b, within their standard deviation. The matrix is indeed dominated
by the |2, 0〉 and |0, 2〉 components, which are highly coherent, revealing the spa-
tial entanglement created through the HOM interference. A small population of
the |1, 1〉 component is presents, as expected from the non-perfect indistinguisha-
bility measured on the two interfering single photons, limiting the fidelity to the
ideal state. The coincidence rates expected from the newly reconstructed state
ρover are plotted in Fig.3.20, along with the experimentally measured values.
There is a very good agreement between the two on the full φ scale. Noticeably,
the very small phase dependence of R3,5 and R4,5 is well reproduced, reflecting
the non zero coherences between the |1, 1〉 and |2, 0〉 or |0, 2〉 components.

The data we retrieve by the overcomplete tomography appears very reliable.
Being able to observe the full φ dependence, we can mitigate the effect of the
noise, which significantly depends on the choice of the measurement set. Al-
though we have not mathematically proved it, this result suggests that it would
be favourable to distribute a limited statistics over an overcomplete set, instead
of increasing the statistics of a standard tomographic set of measurements.
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Figure 3.20 – Expected correlation rates from the density matrix ρover
(solid lines) along with experimental values (points).

3.7.4 Hidden differences method

We have seen that the state measured at the output of the HOM interference,
while showing genuine spatial entanglement, has a finite fidelity of F = 0.91 to
an ideal 2 photon NOON state. This can be mainly ascribed to the presence of
a population of the |1, 1〉 component. It is of practical interest to identify the
source of such a limitation, which could be either due to the setup or the single-
photon source, allowing to characterize the performances of both. In particular,
we can identify the two main causes which affect the creation of a maximally
entangled 2 photon state: an unbalanced reflection and transmission coefficients
of the HOM beam splitter, or a partial distinguishability of the two impinging
photons.

On one hand, two perfectly indistinguishable photons interfering on a beam
splitter where |R| 6= |T |, will result in a |1, 1〉 population:

|1, 1〉 HOM−−−→
√

2RT (|2, 0〉 − |0, 2〉) + (R− T ) |1, 1〉 (3.46)

On the other hand, with a perfect beam splitter, where |R| = |T |, two distin-
guishable photons will create a |1, 1〉 population as they will propagate indepen-
dently:

|1a, 1b〉
HOM−−−→ 1√

2
(|2ab, 0〉 − |0, 2ab〉) + |1a, 1b〉 − |1b, 1a〉 (3.47)

Interestingly enough, none of these mechanism could create an unbalance be-
tween the |2, 0〉 and |0, 2〉 populations, neither can reduce the coherences of the
state.

In the present experiment, the single-photon source is operated under reso-
nant excitation without any spectral filtering of the zero phonon line, in order
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to increase the brightness in the rather lossy setup. Under these conditions, we
can expect two different origins for the distinguishability of the photons. First,
the phonon sideband emission, which contribute to the emission spectrum in
the absence of spectral filtering as presented in Chapter 2, is being collected.
This slightly reduce the indistinguishability of the single photon emitted by the
QD [100]. Second, by employing a cross polarization scheme for the resonant
excitation, there is a small fraction of residual laser light that is not completely
filtered and is effectively distinguishable from the single photons.

The most interesting difference between Eq.3.46 and Eq.3.47 is in the last
terms of the equations, describing the situation in which the two photons exits
from two different output ports of the HOM beam splitter. In the first case,
the two photons are indistinguishable, while in the second case they are distin-
guishable in some degrees of freedom, like spectral profile or polarization, here
represented by the indices a and b. However our setup cannot access any degrees
of freedom other than the spatial modes over which the detection measurements
are performed. Thus seems that the two situations described by Eq.3.46 and by
Eq.3.47 cannot be told apart, as we cannot access the information carried by
the modes a and b.

This is not the case: as demonstrated by Adamson and coworkers [287, 288],
in such situations the presence of distinguishing information in hidden degrees
of freedom can be detected using a more refined analysis. To understand how
such information can be extracted, we briefly outline their demonstration. We
begin by considering a state of two photons, which must be symmetric under
particle exchange, where they are distinguishable only in some hidden degrees
of freedom, experimentally not accessible. Separating the state into two part,
one for the visible and one for the hidden degrees of freedom, they can be both
either symmetric or antisymmetric, so that the whole state respect the bosonic
symmetrization of the wave function. The visible degrees of freedom of the state,
with which we operate, will be described by the reduced density matrix ρvis

obtained from the global state ρ by tracing over the hidden degrees of freedom:

ρvis = Trhid[ρ] (3.48)

Now, separating the symmetric (S) and antisymmetric (A) subspaces of ρvis, it
can be demonstrated that there are no coherences between the two, thus ρvis can
be written as:

ρvis =

(
ρSvis 0
0 ρAvis

)
(3.49)

We see that the visible degrees of freedom gives access to ρSvis and ρAvis, but not
to the coherences between them. Measuring a population in the antisymmetric
space ρAvis, where the two photons are assumed to be indistinguishable, imply
the presence of an hidden degree of freedom where the two particles are distin-
guishable, in order not to violate the global symmetry of the state.
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In our case the visible degrees of freedom are the spatial modes, for which we
introduce the 4-state basis {|2, 0〉 , |0, 2〉 , |ψ+〉 , |ψ−〉}, where |ψ±〉 = |1a,1b〉±|1b,1a〉√

2
are the symmetric and antisymmetric state of two possibly distinguishable pho-
tons, a and b, on each path. Now the symmetric subspace of ρvis is spanned
by {|2, 0〉 , |0, 2〉 , |ψ+〉}, while the antisymmetric one by |ψ−〉, and the 4 × 4
density matrix ρvis reads in this basis:

ρvis =


ρ20,20 ρ20,ψ+ ρ20,02 0
ρψ+,02 ρψ+,ψ+ ρ02,ψ+ 0
ρ02,20 ρψ+,02 ρ02,02 0

0 0 0 ρψ−,ψ−

 (3.50)

The tomography method presented before is repeated to reconstruct a matrix in
the form of ρvis from the experimental data. The mathematical model developed
in section 3.5 is extended to a pure input state of the form

|ψin〉 =
(
αâ†0,aâ

†
0,b + βâ†0,aâ

†
1,b + γâ†0,bâ

†
1,a + δâ†1,aâ

†
1,b

)
|0〉 (3.51)

and calculating the results of correlations measurements given by

Ri,j = 〈ψout| â†i,aâ
†
j,bâj,bâi,a + â†i,bâ

†
j,aâj,aâi,b |ψout〉 (3.52)

we determine the new relations between the density matrix elements of ρvis and
the experimental results Ri,j. We also formally verify that, as expected, no
measurement is sensitive to the coherence terms between the symmetric and
antisymmetric part of ρvis, even when considered non-zero. We then apply the
MLE method to find the best estimate for a physical density matrix ρvis, ac-
counting for the overcomplete set of measurements.

To understand how it is experimentally possible to discriminate the presence
of population in the symmetric or antisymmetric subspaces, we can observe the
simulations shown in Fig.3.21. In the left plot (Fig.3.21.a), solid lines shows
the expected results from the state |ψ11〉 previously presented in Fig.3.9.b. In
the basis of the visible degrees of freedom introduced above, such state can
be written as |ψ+

11〉 = cos(0.2)√
2

(|2, 0〉 − |0, 2〉) − sin(0.2) |ψ+〉 where we have a
population of the |1, 1〉 component in the symmetric subspace. Moving this
population to the antisymmetric subspace, thus considering a state |ψ−11〉 =
cos(0.2)√

2
(|2, 0〉 − |0, 2〉)− sin(0.2) |ψ−〉, we obtain the result shown by the dashed

lines. No phase dependence is observed anymore on the measurements R3,5

and R4,5. As can be expected, in this condition no interference is happening
between the two photons, being distinguishable, when they recombine on the
last beam splitter. A small effect is also observed on R3,3 and R3,4, which can
be clarified by looking at Fig.3.21.b. Here we show with solid lines the expected
results from the mixed state ρ11 of Fig.3.9.c, which in the new basis reads ρ+

11 =
0.96 |ψ2002〉 〈ψ2002|+0.04 |ψ+〉 〈ψ+|, where the |1, 1〉 component has no coherence
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Figure 3.21 – (a) Expected correlation rates for the state of Fig.3.9.c
(solid lines), where the |1, 1〉 population is in the symmetric subspace, and
same state but with the |1, 1〉 population in the antisymmetric subspace.
(b) Expected correlation rates for Fig.3.9.d, with |1, 1〉 population in the
symmetric (solid lines) and antisymmetric (dashed lines) subspaces.

with the rest of the state. Moving this population to the antisymmetric subspace,
thus considering the state ρ−11 = 0.96 |ψ2002〉 〈ψ2002|+ 0.04 |ψ−〉 〈ψ−|, we see from
the dashed lines that R3,3 is lowered and R3,4 is raised. Since now the two photon
are distinguishable, they will no more show an HOM-like bunching, due to which
they previously exited from the same ports.

The matrix ρvis deduced from the 79 experimental measurements following
this analysis is shown in Fig.3.22. By comparing it with the 3×3 matrix ρover of
Fig.3.19, we see that the two are equivalent, if we consider |1, 1〉 to be given by
the sum of ρψ+,ψ+ and ρψ−,ψ− . Thus the method of the hidden differences allows
effectively to discriminate the |1, 1〉 population of the state into a symmetric and
an antisymmetric part. Now, looking at Fig.3.22, in ρvis most of the population of
the |1, 1〉 component appears in the antisymmetric part ρψ−,ψ− , with a negligible
contribution to the symmetric part ρψ+,ψ+ . Following the previous discussion, we
can ascribe most of the NOON state imperfection to a partial distinguishability
of the single photons coming from the source, and not to imperfections in the
HOM beam splitter.

Furthermore, we have shown that the second order correlation function on
the signal from the source, g(2)(0) = 0.03, gives a lower bound on the measured
population of |1, 1〉. Having obtained ρψ+,ψ+ + ρψ−,ψ− = 0.047, means that most
of the inferred photon distinguishability is due to contribution from residual
background laser.
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Figure 3.22 – Density matrix ρvis showing the distinguishable and indis-
tinguishable parts of the two-photon state. Grey elements are not accessi-
ble from our visible degrees of freedom.

3.8 Conclusions and perspectives

In this chapter we have shown that using a simple Mach-Zender setup and co-
incidence detection measurements we can perform a full Quantum State To-
mography of a two-photon path-encoded NOON state. We can thus certify the
presence of a NOON state even in the absence of a precision beyond the stan-
dard quantum limit. Moreover this coincidence-based scheme is simpler than
an homodyne detection, since it does not require a local oscillator matched to
the single photon fields. We have explored different types of tomography re-
constructions, observing that an overcomplete approach allows a more robust
and precise reconstruction of the state. The results highlights the spatial en-
tanglement between the two photons at the output of the HOM interference,
and we achieve a high fidelity to an ideal 2-photon NOON state owing to the
high indistinguishability of the photons emitted by the QD-micropillar device.
Using the method of hidden differences is also possible to identify the sources
of imperfections lowering the fidelity, distinguishing between limitations due to
the source or the experimental setup. This can be an important diagnostic tool
for many applications in the field of quantum information.

It is interesting to extend the tomography method presented here to NOON
states for any photon number N. Is has been shown that using Photon Number
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Resolving detectors is possible to access all N th order coherence of the field
[278, 270], thus we can expect that our scheme can be simply extended by
employing PNR detectors, to implement N th order photon correlations.

We analyse explicitly the case of a N = 3 photon NOON state. The density
matrix ρ̂3003 of the 3 indistinguishable photons distributed over the 2 modes
â0 and â1 has 16 elements to be accessed, and its Fock state basis is given by
{|3, 0〉 , |2, 1〉 , |1, 2〉 , |0, 3〉}. We can use an ideal PNR detector to perform a
correlation measurement Ĉn,m

i,j = |n〉 〈n| ⊗ |m〉 〈m| between n photons on the
mode i and m photons on the mode j. Direct detection of the state using the
PNR detectors allows to retrieve the four populations from:

Ĉ3,0
0,1 , Ĉ

2,1
0,1 , Ĉ

1,2
0,1 Ĉ

0,3
0,1 (3.53)

Following the same procedure as for the two-photon NOON state, we can now
collect phase-dependent correlation measurements by placing PNR detectors at
the three outputs of the split Mach-Zender setup. Performing each measurement
for two different values (φ1 and φ2) of the interferometer phase φ, 6 additional
correlations are sufficient for the reconstruction of the density matrix ρ̂3003. We
find that the measurement set:

Ĉ3,0
3,4(φ), Ĉ0,3

3,4(φ), Ĉ2,1
3,4(φ), Ĉ2,1

3,5(φ), Ĉ1,2
4,5(φ), Ĉ2,1

4,5(φ) (3.54)

for |φ1 − φ2| 6= k π
2
, k π

3
, together with the four population measurements, allows

the linear reconstruction of the density matrix.
In general, the density matrix of an N photon 2-path state has (N + 1)2

elements, given that we have N + 1 possible distributions of N indistinguishable
photons over 2 modes. Introducing an ancillary mode, we obtain 3 accessible
output modes over which the photons can be distributed. The distribution of
N photons over 3 modes gives us (N + 2)(N + 1)/2 possible configurations.
Detecting each of these possible photon output distribution for two different
values of the interferometer phase already gives more measurements than the
(N + 1)2 density matrix elements. The tomographic problem is then reduced
to the identification of two possible values of phases giving a complete set of
measurements.

The generation of path entangled NOON states for high photon number
has not been experimentally demonstrated yet. To this end, the interference
between a single photon state and a coherent state on a beam splitter could
allows to obtain a path entangled state showing high overlap with a NOON
states for arbitrary value of N [262, 263]. Combining this generation technique
with the tomography protocol presented in this chapter is a viable method for
the demonstration of path entangled NOON state for arbitrary photon number
N, using a simple experimental setup.
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Chapter 4

Giant optical nonlinearity and Fock
state filtering

A strong limitation for many optical quantum information processing schemes is
the use of linear optical gates, which are intrinsically probabilistic. Deterministic
operations could be achieved using the nonlinear interaction between a single
photon and a single atom. With this objective, we study in this chapter the
nonlinear optical response of the QD-micropillar device and measure how it
affects the photon statistics of the incident optical field. We shows that our
device act as a very efficient receiver of single photons, providing an almost ideal
light-matter interface which could be directly exploited to realize photon-photon
gates.

In Section 4.1, we describe how the nonlinear behaviour of a CQED device can
be used to realize a quantum gate and in Section 4.2, we review the current state
of the field. In Section 4.3, the experimental setup is presented and in Section
4.4, it is used to study the optical nonlinear response of the device and the
photon blockade effect. In Section 4.5, we highlight the behaviour of the device
as a single photon Fock state filter and in Section 4.6, we perform additional
measurements to quantify the suppression of multi-photon states. Conclusions
and perspectives for this work are given in Section 4.7.

4.1 Towards deterministic quantum gates

Single photons are ideal information carriers due to the fact that they are hardly
disturbed by the environment. For the same reason though, it is also difficult
to engineer effective photon-photon interactions, a fundamental requirement to
process the quantum information. A long-standing goal for different areas of
physics is the implementation of nonlinear optical effects at the level of single
light quanta, where a single photon can affect the propagation of another one
[289].

125



126 CHAPTER 4. FOCK STATE FILTERING

|e〉

|g〉

Figure 4.1 – Nonlinearity of a two-level system: the absorption of a single
photon saturates the transition. Being in the excited state, the two-level
system does not interact with additional photons

In the field of quantum information processing the manipulation of single
photon is of fundamental importance. As both single and two qubit gates are
required, an effective interaction between photons is necessary. In linear optical
quantum computing schemes, this is achieved by postselection on the quantum
interference effect between photons on beam splitters. The resulting effective in-
teractions are probabilistic, making it difficult to scale up the number of qubits
and operations in the presence of losses. Efficient gates could otherwise be re-
alized with strong nonlinear optical effects in matters [290, 291], mediating the
photon-photon interaction. Achieving an effective nonlinear interaction between
single photons could leads to the realization of deterministic gates. The inter-
est is however not limited to the quantum domain, as also classical photonic
transistor could be used for fast and energy efficient optical signal processing
[292].

A two-level system, such as the optical transition of an atomic system, shows
an ideal nonlinear response: it can only absorbs or emits a single photon at one
time. If the atom-photon interaction is strong enough, a single atom can then be
used as a nonlinear medium: a first photon fully saturates the transition, so that
the response to a second photon will be drastically different, as represented in
Fig. 4.1. This scheme can be applied either to a natural atom or to an artificial
one such as a QD, owing to the anharmonicity of its energy spectrum, which
allows to isolate a specific transition. A device based on this principle, to provide
a deterministic photon-photon interaction needs to implement a perfect atom-
photon interface. Moreover, it must be operated with photonic wave packets and
without postselection. Cavity QED (CQED) appears then as an ideal platform to
achieve this objective. It allows both to strongly enhance the interaction between
the cavity photons and the atom and also to engineer an efficient interface with
the propagating light outside the cavity.

4.1.1 Single photon nonlinear optics with CQED

To understand the optical response of the atom-cavity device to the incident
light, we can study its reflectivity spectrum. The general description of a CQED
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device has been presented in Chapter 1, where we have introduced the master
equation and the input output formalism used to simulate the experimental re-
sults presented in this work. With a semiclassical approach, where the quantum
fluctuations are neglected, it is possible to analytically calculate the complex re-
flection coefficient r(ω) as a function of the excitation energy ω. In a stationary
regime, thus continuous wave excitation, and for low incident power, far from
the atom saturation threshold, it can be shown that [117, 293]:

r(ω) = 1− κtop

κ
2
− i
(
ω − ωc − g2

(ω−ωa+iγ)

) (4.1)

where ω is the energy of the excitation laser while ωc and ωa are the energy
of the cavity and the atom resonance. As presented in section 1.2.4, g is the
coupling strength between the cavity and the transition, γ = γsp

2
+ γ∗ is the

total dephasing rate of the atom and κ = κtop + κbottom + κloss is the cavity
damping rate. Using Eq. 4.1, we can calculate the reflectivity R = |r(ω)|2 of the
atom-cavity system to understand how the coupling between the two introduce
a nonlinear behaviour.

The bare cavity reflectivity spectrum, which is a Lorentzian dip centred on
the cavity resonance, is strongly modified by the presence of a two-level atom.
This can be seen Fig. 4.2, showing the reflectivity spectrum of an ideal CQED
device in the strong (a) and weak (b) coupling regime. The calculations are
shown for a symmetric cavity, with κtop = κbottom = κ/2, in absence of pure
dephasing, thus γ∗ = 0, and with the atomic transition in exact resonance with
the cavity mode ωa = ωc. In both situations, the response at zero detuning
changes from highly transmissive (R ≈ 0, dashed line) for an empty cavity to
highly reflective (R ≈ 1, solid line) when the cavity field is coupled to an atomic
transition. The light-atom coupling is regulated by the intensity of the light:
when the transition is saturated, it gets effectively decoupled from the light field,
drastically changing the optical response of the device [117]. The underlying
mechanism for the two situation of Fig.4.2 is slightly different, as in the strong
coupling regime the nonlinear response is determined by the Jaynes-Cummings
ladder, while in the weak coupling regime is determined by the anharmonic
spectrum of the atom [294]. The case of the strong coupling regime can be
understood by looking at the energy level diagram of Fig.1.6. If the incident
field cause a transition between the ground state and one of the dresses state of
the first manifold of the Jaynes-Cummings hamiltonian, no additional photons
can be absorbed because a different energy is required for any transition to
the second manifold. In the weak coupling regime instead the cavity does not
significantly alter the energy level spacings of the atom. Once the two-level atom
has been excited, no other absorption can take place. In both cases however,
the two-level system can only absorbs or emits a single photon, thus it can
deterministically prevent the propagation of multi-photon states. The transport
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Figure 4.2 – Calculated reflectivity spectrum of a CQED device (with
a symmetric cavity, where κtop = κbottom) in the strong coupling regime
(a) and weak coupling regime (b). Panel (c) shows the 1D atom situa-
tion, where the destructive interference between the laser and atom fields
destructively interfere in the forward direction, leading to a deterministic
reflection of a photon.

of light through the cavity then happens on a single photon basis, a phenomenon
called photon blockade [295].

In the weak coupling regime, the presence of the emitter changes the response
of the cavity by introducing a strongly reflective peak in an otherwise transmit-
tive cavity (see Fig.4.2.b). This can be understood as the destructive interference
in the forward direction between the incident field and the field radiated by the
atom (see Fig.4.2.c). The incident photons then can only be reflected in the
backwards direction, if the transition is not saturated. Moreover, as a two-level
system can only radiate a single photon field, its contribution to the reflected
light will be strongly antibunched. Such effect is the essence of the 1D atom
situation [296]. As shown in the works of Hofmann et al. [297] and Auffèves et
al. [117], it is possible to achieve a regime where the saturation of the atomic
transition occurs at the intensity level of a single incident photon per lifetime,
realizing a giant optical nonlinearity.

This effect can be used to realize photon-photon gates using different pro-
tocols [298]. For example, in a two pulse scheme, a first control photon can be
used to switch the reflectivity of the device by saturating the transition, so that
a second signal photon is deterministically transmitted. Such a strong nonlin-
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earity can also be used to generate nonclassical state of light from an incident
Poissonian pulse: only the single photon part of the incident light gets reflected
back. However, the efficiency of photon-photon gates based on the photon block-
ade effect operated by a two-level system shows limitations. In particular, the
achievable effective interaction time and bandwidth between the two photons is
constrained by the lifetime of the transition [294], as we also observe in more
details in Section 4.4.3. To overcome these limitations a lambda system is re-
quired, giving a viable way for the realization of deterministic photon-photon
gates.

In the following section, we review recent works for the realization of effective
photon-photon interactions with CQED.

4.2 State of the art

The experimental study of the nonlinear response of an atom-cavity system
has been pioneered by the observation of the phase shift induced by a single
natural atom on cavity photons [299]. The photon blockade effect has then been
demonstrated both in the strong [300] and in the weak [301] coupling regimes.
The development of the manipulation of atomic states and the realization of
high quality atom-cavity interfaces, allowed recently to demonstrate different
quantum functionalities using CQED with natural atoms. Photon filters have
been reported [159, 160], where the nonlinear response of the atom is used to
reflect only a single photon from an incident pulse, in a situation analogous to the
one-dimensional atom regime, transforming the classical statistics of the laser
into a highly nonclassical one. In the strong coupling regime, the deterministic
operation of quantum gates has been demonstrated, realizing controlled phase
flip and CNOT gates [23, 302, 22]. Recently these operations have reached the
few-photon level. In the work of Shomroni et al. [22] a gate pulse containing 3
photon on average is used to switch an atom-cavity device from 64% reflective to
90% transmissive for a second target photon, demonstrating an optical routing
of single photons.

Obtaining the same results in solid-state devices would give the potential
for a scalable and integrated fabrication of deterministic quantum gates. The
photon blockade effect in the solid-state has first been observed through the
generation of nonclassical states of light using a QD strongly coupled to a pho-
tonic crystal cavity [303, 304, 305]. By directly exciting the first manifold of the
Jaynes–Cummings ladder or the second one through a two-photon resonance,
it is possible to observe either photon antibunching or photon bunching in the
photoluminescence signal, with g(2)(0) values ranging from 0.75 to 1.5. This
reveals the individual or pairwise absorption and emissions of the photons. The
same devices have also been used to demonstrate proof-of-principle optical gates.
The use of two laser excitations allowed to show ultrafast and energy-efficienct
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optical transistors [306, 307, 308], where a weak control signal (as low as few
hundred photons) can switch the reflection or transmission of an intense target
signal. A CNOT gate between a photon and a neutral exciton [309] and a quan-
tum phase switch [158] between a photon and a spin have also been reported.
Here, the polarization state of an incident photon is coherently rotated depend-
ing on the QD state. These works employed a cross-polarization configuration,
which allows to postselect on the photons that effectively entered the cavity, to
eventually show that the photon statistics of laser pulses injected in the cavity
is strongly modified by the nonlinear response of the device.

Recently the study of the nonlinear optical response of a QD has been ex-
tended to the weak coupling regime, under CW excitation [310, 311]. Javadi et
al. [310] demonstrated the saturation of a QD neutral exciton transition coupled
to a photonic-crystal waveguide for a critical photon number of 0.81 photons per
lifetime, inside the waveguide. They observe an 8% change in the transmission
of the waveguide (30% after correction for spectral diffusion and blinking) and
a transition from a bunched to a Poisson statistics for the transmitted light.
Bennett et al. [311] reported the modification of the photon statistics of a light
beam reflected from a QD-micropillar device. They show the transition between
sub-Poissonian (g(2)(0) ≈ 0.75) to super-Poissonian (g(2)(0) ≈ 1.75) by tuning
the QD transition in a slightly off resonant condition. Snijders et al. [312] in-
stead studied the transmission from a polarization-degenerate micropillar cavity
coupled to a QD. They shows that appropriate polarization postselection allows
to completely cancels the light which has not interacted with the QD, in order
to collect only the field modified by the exciton transition. They can observe
strong photon bunching, with g(2)(0) values up to 40.

All the works here mentioned however employed either a CW excitation
regime or a strong postselection, due to the limited input and output coupling
with the optical modes of the photonic crystals used. While a CW excitation al-
lows to overcome bandwidth limitations of the devices, it is not compatible with
quantum information protocols where single photons must be individually pro-
cessed. In a pulsed regime on the contrary, a polarization postselection scheme
is useful to suppress the uncoupled scattered light in the detection, but it is not
compatible with the realization of a deterministic gate.

The strongest nonlinearity previously observed without postselection in solid-
state emitters has been demonstrated in our group in 2012 by Loo et al. [155],
using a QD strongly coupled to a micropillar cavity. Such work was based on
micropillars not electrically contacted, where a pulsed excitation regime allowed
to achieve a nonlinear threshold of 8 incident photons per pulse, and an absolute
reflectivity variation of 10%, as represented in Fig.4.3.a. While showing a very
high input coupling efficiency, the system was still limited by a small output
coupling efficiency ηout = 0.16 and a dephasing rate γ = 10µeV of the QD
transition, responsible for a higher nonlinearity threshold and limited switching
in the reflectivity value. Fig.4.3.b describe the attainable performances with
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Figure 4.3 – Non-linearity of a QD-micropillar device in the strong cou-
pling regime, figure reproduced from [155]. (a) Pulsed reflectivity mea-
surement showing a nonlinearity threshold for 8 average incident photon
per pulse. (b) Calculated power-dependence of the reflectivity for different
values of the output coupling efficiency ηout.

such system. While a very high output coupling efficiency allows to minimize the
incident photon number required to saturate the QD, the contrast in reflectivity
between the unsaturated and saturated conditions is still fundamentally limited
by the presence of dephasing.

Using the electrically contacted QD-micropillar devices presented in Section
1.3, it is possible to achieve a very high cooperativity, which ensures a high atom-
photon interaction strength, and very high input and output coupling efficiencies,
which optimally interface the propagating photons with the device. Owing to
the near-ideal 1D atom situation, we expect to be able to observe an optical
nonlinear response at the very few photon level and the effect of the photon
blockade in the reflected field.

4.3 Reflectivity measurements

4.3.1 Experimental setup

We want to study here the effect of the QD-micropillar device on the optical
field that is interacting with it, without applying any kind of postselection. The
experimental setup, shown in Fig.4.4.a, is the same as the one used in Section
2.6 to study the resonant fluorescence from the QD, with the notable difference
that this time we do not collect the signal emitted in cross polarization, but
the light which is directly reflected along the same polarization as the incident
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Figure 4.4 – (a) Experimental setup for the measurements of the reflected
field. (b) The signal is detected with a single SPAD to retrieve the average
reflected photon number 〈nout〉. In (c) and (d) the signal is divided on two
or three SPADs to retrieve the values of the the second and third order
intensity correlation functions g(2)(0) and g(3)(0, 0).

one. Introducing a fibre beam splitter (BS) before the excitation/collection
fibre allows using such a simple configuration to perform polarized reflectivity
measurements. The excitation laser (Laser), either CW or pulsed, is injected in
one input of the beam splitter. One of the two outputs is coupled to a calibrated
photodiode, to monitor the input power (Pin), while the second output is coupled
to the fibre going towards the sample. Once collimated in free space, the laser is
first going through a polarizing beam splitter (PBS) and a polarization control
stage (PC) composed of a quarter and a half wave plate, in order to be able
to select a well defined polarization. Then, the free space beam is focused with
an objective onto the micropillar cavity, to a diffraction limited spot size closely
matching the pillar diameter. The signal coming from the optical mode of the
micropillar is collected using the same fibre as for the excitation. This means
that the PBS define a single polarization mode, and the fibre defines a single
spatial mode, being used both for the incident and for the reflected field. Finally,
the reflected signal (Signal) can be read from the unused input port of the fibre
beam splitter BS.

As already explained in the previous chapters, the fundamental mode of
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the micropillar can be decomposed into two linearly polarized modes, H and
V, slightly split in energy. To avoid any polarization rotation induced by the
cavity modes splitting, we align the polarization of the excitation (same as the
collection) along one of the two modes, in the following considered to be H
polarized mode.

Depending on the analysis to be performed, the signal coming from the source
can be directed towards different detectors configurations. To measure the total
reflected intensity, the signal is directed towards a single fibre-coupled SPAD
(Fig.4.4.b). To measure higher order correlation of the field, we can demultiplex
the signal to multiple SPADs as explained before. Here we employ a balanced
fiber beam splitter and two SPADs to measure the second order correlation
function (Fig.4.4.c), or two cascaded 33:66 and 50:50 beam splitters and 3 SPADs
to measure the third order correlation function (Fig.4.4.d).

4.3.2 Extraction of the device parameters

A complete characterization of the device parameters defining its physical prop-
erties, as anticipated in Section 1.3.2, can be performed by measuring the reflec-
tivity spectrum of the device.

To experimentally obtain a reflectivity spectrum, a narrowband frequency-
tunable continuous wave laser, having 1MHz linewidth, is used to excite the
device along the linear polarization H. The laser wavelength is slowly swept
across the optical mode of the micropillar, and the total reflected intensity is
collected using the configuration shown in Fig.4.4.b. The absolute reflectivity R
is then calculated by normalizing the reflected intensity to the incident power.
By monitoring the time evolution of the laser energy, we can convert the time
dependence of the reflected intensity to the energy dependence of the absolute
reflectivity. The result is shown in Fig.4.5 for the device QD3.

The electrical control allows to spectrally tune the QD transition. When the
QD is far detuned from the cavity mode, we can measure the reflectivity spectra
of the empty micropillar cavity. The result is shown in Fig.4.5.a, along with the
fit of the empty cavity reflectivity. The total width of the cavity corresponds to
the value of the total cavity damping rate of κ = 90µ ± 10eV , corresponding
to a quality factor of about Q = ωc

κ
≈ 14, 000. From the minimum value of

reflectivity at the resonance energy of the cavity ωc around 5%, we can also
extract the top mirror output coupling efficiency ηtop = κtop

κ
. From Eq.4.1 we

see that for an empty cavity, thus g = 0, we obtain:

Rmin(ωc) =
∣∣∣1− 2

κtop

κ

∣∣∣2 (4.2)

which leads to ηout = 0.64. This formula actually gives two possible values for
ηout, but we can discard the lower one given the high brightness experimentally
observed in the same device operated as a single-photon source. As we have a
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Figure 4.5 – Experimental (symbols) and simulated (lines) reflectivity of
the device QD3 as a function of the incident laser energy. (a) Reflectiv-
ity spectrum of the empty cavity when the exciton is spectrally detuned
through bias application. (b) Reflectivity spectrum with the exciton res-
onance at the cavity mode energy, for an incident power of Pin = 14pW
(red points), Pin = 0.84nW (red points) and Pin = 2nW (black points).
The black line shows the simulation for the lowest power.

much higher reflective bottom mirror in the micropillar, the fact that we have an
output coupling efficiency lower that 1 is due to the presence of sidewall losses,
which effectively acts as a transmission port for the cavity. A very high input
coupling efficiency ηin ≥ 95% has been determined by measuring the diameters
of the input and output modes, assuming both to have a Gaussian profile.

By tuning the QD transition in exact resonance with the cavity mode, we
observe the appearance of a very intense peak due the light resonantly scattered
by the QD, as shown in Fig.4.5.b. At very low excitation power (red points),
when the transition is not saturated, the signal at the cavity resonance energy
ωc reaches a reflectivity value of almost 90% of the maximum cavity reflectivity,
demonstrating a highly coherent response of the QD. By increasing the power,
the contribution from the light scattered by the QD decreases, due to the sat-
uration of the exciton transition (blue points). Eventually, at very high power
(black points), when the transition is fully saturated we reach again the empty
cavity condition, where the reflectivity value at the cavity energy ωc is minimum.

With a theoretical adjustment of the reflectivity spectrum of the combined
QD-cavity device given by Eq.4.1, at the minimum excitation power where the
transition is not saturated, we can extract the remaining parameters of the
device. The theoretical model as well as the fits shown by the solid lines in
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Fig.4.5 have been developed and performed by Bogdan Reznychenko and Alexia
Auffeves. The coupling strength between the exciton and the cavity, of g =
19 ± 0.2µeV , is mainly determined by the peak width, and the total exciton
dephasing rate γ = γsp

2
+ γ∗ = 0.35 ± 0.1µeV is mainly determined by the

peak height. Considering that for a QD in bulk GaAs medium the exciton
spontaneous emission rate γsp is in the range of 0.5− 0.6µeV (corresponding to
a lifetime between 1 and 1.3ns), from the deduced value of total dephasing rate
we can assume an almost negligible pure dephasing γ∗. The same theoretical
adjustment also provides the exciton fine structure splitting ∆FSS = 3±1µeV and
the relative orientation between the QD dipoles and the cavity axis θ = 15± 5̊ .

The device operates in the weak coupling regime, having g < |κ − γ|/4,
with a state of the art value of cooperativity C = g2

κγ
= 14 ± 7, corresponding

to a Purcell Factor FP = 2C = 28 ± 14. From such a high cooperativity we
can also calculate a mode coupling β = 2C/(2C + 1) in the range 0.93 − 0.98.
The high values of β, ηin and ηout shows that the device is very close to the
ideal one-dimensional atom situation. An incident photon will couple 95% of
the times to the optical mode of the cavity, and will interact with the QD with
98% probability before being lost. Symmetrically, the QD will emit a photon
with 93− 98% probability in the cavity mode, and such photon will be collected
from the top 64% of the times.

The quality of this light-matter interface is reflected in the fast saturation and
high contrast observed on the exciton transition when increasing the excitation
power, as shown in Fig.4.5. An important figure of merit in this situation is the
critical intracavity photon number nc = γγsp

4g2
, which is a measure of the number

of photons per lifetime inside the cavity at which the saturation of the QD begins
to affect the response of the device [155, 120]. We obtain here a record critical
intracavity photon number of only nc ≈ 10−4 for the onset of the nonlinearity in
a CW measurement, with a switching in the absolute reflectivity value as high
as 85% when the transition is fully saturated.

4.4 Interaction with coherent wavepackets

4.4.1 Optical nonlinearity at the single photon level

In the previous section, we have experimentally characterized the device param-
eters, describing its physical properties under low power CW operation. Nev-
ertheless, to be operated as a quantum gate, the device needs to interact with
spatially localized photons, thus we are interested in characterizing its response
to light wave packets, for which we can define an average number of photons.
As we will see, the achievable performances in this case are also affected by the
properties of the incident wave packets. In the following, we probe the cavity
with coherent light pulses of controlled temporal profile and power, coming from
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Figure 4.6 – (a) Measured continuous-wave reflectivity spectrum for the
unsaturated (black points) and saturated (grey points) QD transition, su-
perimposed to a Gaussian pulse of 125 ps FWHM (red line) representing
the excitation pulse. (b) Reflectivity under pulsed excitation, as a function
of the incident power. The red lines shows linear fits to the first five and
following five experimental points. Their intersection gives the estimation
for the onset of the nonlinearity effect.

a tunable pulsed titanium-sapphire laser.
Using the external bias, the QD transition is kept in resonance with the cav-

ity mode at the energy ωc. The laser frequency ωlaser is fixed at the value of ωc,
and the 3 ps pulses of the laser are spectrally shaped using a monochromator to
closely match the exciton radiative lifetime of 125 ps (see Fig.4.6.a). This excita-
tion scheme allows to probe the central region of the reflectivity spectra as shown
in Fig.4.6.a, where the nonlinear behaviour is determined by the saturation of
the exciton transition. As before, the total reflected intensity is detected with a
single fiber coupled SPAD, using the configuration of Fig.4.4.b. As explained in
Section 2.2.1, in the limit of low detection efficiency, from the measured count
rate Rphotons we can retrieve the output average photon number per pulse as

〈nout〉 =
∑
n

nP (n) =
Rphotons

Γlaserηsetup
(4.3)

where Γlaser is the repetition rate of the laser, and ηsetup the total efficiency of the
setup. From the incident power Pin instead, we can retrieve the average photon
number per pulse sent on the device as 〈nin〉 = Pin

Γlaser~ωlaser
. The reflectivity is
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calculated by normalizing the total reflected intensity to the incident one, thus
from R = 〈nout〉

〈nin〉 , and is shown in Fig.4.6.b as a function of the average photon
per excitation pulse 〈nin〉.

In the low photon number regime the strong coherent response of the exciton
is dominating the reflected signal, resulting in a very high reflectivity of Rmax =
68 ± 2%. This value is lower than the one obtained in the CW case due to
the finite spectral width of the incident laser pulses. The measured value of
reflectivity gradually decrease by increasing the excitation power, and for high
photon number it saturates at Rmin = 8±1%, which corresponds to the minimum
reflectivity obtained from the empty cavity using the 125 ps laser pulses. This
60% change in the absolute value of reflectivity corresponds to a contrast of
(Rmax − Rmin)/Rmin ≈ 7.5, an strong improvement over previous solid-state
implementations, where the best contrasts were limited around 1.1 [155, 310].
To extract the threshold for the onset of the nonlinearity effect, we consider the
intersection of two linear fits to the values in the low and intermediate 〈nin〉
regions (first five and following five data points), shown by the red lines in
Fig.4.6.b. The threshold defined in this way is observed for an average incident
photon number of only 〈nin〉 = 0.3± 0.1, a value 25− 40 times smaller than the
previous state of the art [155]. We stress that, contrary to many work evaluating
the photon number inside the device, this value of the reported photon number
is the one outside the cavity, sent onto the device.

Under pulsed excitation, the optical nonlinearity of the exciton transition
shows an extremely low threshold at the single photon limit and a very high
contrast, demonstrating that the device is acting as a very efficient interface be-
tween the propagating wave packets and the QD inside the cavity. The fact that
each incident photon have a high probability of interacting with the transition
is a central feature for the realization of deterministic photon gates and filters,
where we want an efficient reflection of the single photon component.

4.4.2 Antibunching of the reflected field

The observation of such a strong nonlinearity is a consequence of the system
being close to the one dimensional atom situation. This means not only that
each incident photon interacts with the transition, but also that the fluorescence
is coherently reflected. Being the field radiated by a two-level system, which can
only scatter single photons, we expect to observe antibunching in such reflection.
We thus study now the photon statistics of the reflected field.

The excitation scheme is exactly the same as the one used in the previous
section, but this time we measure the second order correlation function g(2)(τ) of
the reflectivity, using the configuration shown in Fig.4.4.c. The collected signal
is split with a 50:50 fibre beam splitter into two fibre-coupled SPADs, and a
correlation measurement is performed on the detection events. As explained
in section 2.2.2, we can access the second order correlation function from the
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Figure 4.7 – Nonlinear response and photon blockade from the QD-
micropillar device QD3. (a) Top panel shows the nonlinearity curve as in
Fig.4.6, while the bottom panel shows the measured g(2)(0) as a function of
the excitation power. For an unsaturated transition a strong antibunching
is observed. Solid lines shows simulations using the parameters extracted
from the CW measurement of Fig.4.5. Dashed lines shows simulations in-
cluding the effect of a power-dependent electron tunneling out of the QD
(see main text). (b) Measurement of the second order correlation function
for an incident photon number of about 0.1.
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normalized value of the detected coincidences at zero time delay g(2)(0), which
for low detection efficiency is given by:

g(2)(0) =
2P (2) + 6P (3) + ...

〈nout〉2
(4.4)

At very low excitation power we observe a clear antibunching (see Fig.4.7.b,
obtained for 〈nin〉 ≈ 0.02), which is not present at high power. A detailed study
of the measured value of the g(2)(0) as a function of the average incident photon
per excitation pulse 〈nin〉 is shown in Fig.4.7.a (bottom panel), along with the
nonlinearity curve (top panel), which was presented the previous section. The
behaviour of the two curves closely matches. In the low photon number regime,
the strong response from the QD introduces a large fraction of antibunched light,
and indeed for 〈nin〉 ≤ 0.1, we measure a value of g(2)(0) ≈ 0.35, meaning that
the reflected light intensity is dominated by single photons. The measurement
of antibunched light in the reflection demonstrate the photon blockade effect
induced by the transition. The absorption of a first photon from the incident
pulse by the QD, prevents the absorption of any other photons from the pulse as
long as the QD is in the excited state, thus for a time determined by the exciton
radiative lifetime. The emission from the exciton is then efficiently collected
from the top mirror, while the part of the pulse which has not interacted with
the QD is transmitted according to the spectrum of the empty cavity. This
result, obtained without any postselection, contrasts with previous studies of
the photon blockade effect in solid-state devices, where limited antibunching of
g(2)(0) ≈ 0.6 − 0.9 was reported even after removing the laser light which had
not entered the cavity [310, 158, 313].

When increasing the incident photon number the value of the g(2)(0) increases
up to 1, meaning that the beam statistics evolves from sub-Poissonian to Poisso-
nian. At high power indeed, the QD is fully saturated, and most of the incident
pulse does not interact with the transition. The reflected laser is dominating the
measured signal, and we are effectively observing an empty cavity.

The black lines in Fig.4.7 shows the calculated reflectivity and g(2)(0), re-
sulting from the parameters determined with the CW reflectivity measurements
of Fig.4.5. The simulations are performed by A. Auffeves and B. Reznychenko
using the model presented in section 1.3.2, using a Gaussian temporal profile
for the incident pulses. There is a good overall agreement with the measured
values, especially for the nonlinearity threshold and contrast. However, we can
experimentally observe a slightly sharper transition in the experimental data for
〈nin〉 ≥ 1. There are various phenomena which can account for this difference: a
deviation in the incident pulse from a Gaussian profile used in the simulations, a
mechanical instability of the experimental setup resulting in effective fluctuation
of the input coupling efficiency with the micropillar, or finally a power-dependent
electron tunnelling out of the QD. These three hypothesis have been explored,
but the effect of the first two, while can reasonably be present, is not strong
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enough to explain the observed deviation. On the contrary a power-dependent
electron tunnelling out of the QD allows to reproduce well the experimental
data. This implies that if an electron has successfully escaped, upon excitation
the QD will be in a charged state at a detuned frequency from the cavity, thus
there will be no atomic transition at the neutral exciton energy. This is taken
into account as a reduction of the occupation probability of the exciton state
with increasing power, and the results are shown with dashed lines in Fig.4.7.
The new expected values for the reflectivity and the second order correlation
function (R′ and g(2)(0)

′
) have been determined from the previously calculated

ones (R and g(2)(0)) using the following equations:

R′ = RpX +Rc(1− pX) (4.5a)

g(2)(0)
′
= g(2)(0)pX + g(2)

c (0)(1− pX) (4.5b)

where pX is the probability for the QD to be in the neutral exciton state and Rc

and g(2)
c (0) = 1 are respectively the reflectivity and the second order correlation

function expected from the empty cavity. With a phenomenological dependence
of pX = 1

1+(〈nin〉/N0)2
where N0 = 3, it is possible to faithfully reproduce the

experimental observation for the whole power range explored in Fig.4.7. The
threshold of N0 = 3 photons additionally tells us that this reduction of the
occupation probability for the exciton state does not affect the low incident
photon number regime, which is the one to which we are mainly interested in
the following.

4.4.3 Influence of the excitation pulse duration

The nonlinearity contrast and threshold, as well as the maximum antibunch-
ing observable, depend not only on the device characteristics but also on the
wavepacket used to probe it. To understand how it is affected, we study here
the optical nonlinearity of the QD-micropillar device for different temporal width
of the excitation pulses. This study is performed on a different device, named
QD4, presenting the following parameters: ηtop = 0.64, g = 19µeV , κ = 100µeV ,
γ = 0.5µeV . The exciton fine structure splitting is ∆FSS = 10µeV and relative
orientation of QD and cavity axis is θ = 20̊ . The resulting cooperativity is
C ≈ 7, meaning a mode coupling β ≈ 0.93.

The results for reflectivity and g(2)(0) are shown in Fig.4.8, obtained with
excitation pulses of 55ps (panel a), 95ps (panel b) and 125ps (panel c). In
the bottom row, the black circles shows the value of the g(2)(0) measured on the
reflected field having H polarization, as was done for Fig.4.7.a. The red diamonds
instead, shows the value of the g(2)(0) measured on the field emitted along the
orthogonal V polarization, obtained using the cross polarization configuration
described in section 2.6.
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Figure 4.8 – Power dependence of the reflectivity (top row) and g(2)(0)
(bottom row) for different duration of the excitation pulses: 55ps (a),
95ps (b) and 125ps (c). The g(2)(0) is measured both on the directly
reflected field (black circles) and in a cross polarization configuration (red).
Measurements performed on device QD4.

The measured reflectivity shows that the nonlinearity contrast (reflectivity
difference between the saturated and unsaturated conditions) increases and the
nonlinearity threshold (value of 〈nin〉 for which the reflectivity begins to decrease)
decreases when using longer pulses. In the low photon number regime, we have
a higher value of the reflectivity, in the central region a steeper decrease, and in
the high photon number regime we have a lower value of the reflectivity. This
can be simply understood as a longer pulse will have a narrower spectrum.

By reducing the spectral width of the excitation pulse we observe a twofold
improvement: first, a smaller amount of light will be reflected back by the cavity,
independently the QD response, and second, there will be a more efficient inter-
action of the light which entered the cavity with the exciton transition. This is
shown in Fig.4.9, where the spectrum of the measured reflected signal is plotted
for three different excitation pulse lengths of 25 ps, 35 ps and 55 ps at a same
excitation power, with (red line) and without (black line) the QD transition
tuned at the cavity mode energy. In each case the laser central wavelength is
tuned to the cavity resonance. The longer the pulse, the narrower the spectrum,
thus the higher is the contribution of the QD to the total reflected intensity. In
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the limit of a CW excitation, we achieve the best contrast possible determined
by the physical parameters of the QD-micropillar device, as we have seen in the
measurement of Fig.4.5.

A better contrast could also imply a higher antibunching, as there will be
a bigger fraction of single photons, coming from the QD, with respect to the
Poisson light, coming from the laser reflected by the cavity. This effect can be
studied by observing the measured g(2)(0) on the reflected field (black circles in
Fig.4.8) in the low incident photon number regime, where the QD transition is
not saturated. Indeed, going from Fig.4.8.a to Fig.4.8.b, we observe a strong
decrease in the minimum value for the g(2)(0), going from 0.62 to 0.45. However,
going from Fig.4.8.b to Fig.4.8.c, the minimum value of the g(2)(0) increases
again to 0.60. Here the stronger response of the QD is compensated for longer
pulses by the excitation dynamics of the QD leading to the degradation of the
g(2)(0). The longer the pulse, the higher the probability of multiple single-photon
emissions during the same excitation, because the transition has a higher chance
of emitting a photon and being reexcited before the end of the incident pulse.
This effect can indeed be verified by measuring the g(2)(0) in a cross polarization
configuration, which is shown by the red diamonds in Fig.4.8. The polarization
filtering allows suppressing the reflected laser in order to analyse the emission
of the exciton transition only. The g(2)(0) shows a different behaviour now:
the minimum value, measured in the low incident photon number regime, is
monotonically increasing with the excitation pulses duration. Here we measure
respectively 0.03, 0.07 and 0.16. This reflects the higher chance of multiple
single photon emission during a single excitation cycle for longer pulses. At
higher excitation power all values of the g(2)(0) increase up to one. This is
explained by two effects. First, the g(2)(0) is expected to increase when going
beyond π pulse excitation, as it reflects the oscillatory behaviour of the Rabi
oscillations under pulsed excitation as recently reported [314]. Additionally, an
imperfect polarization filtering leads to the leak of scattered laser light into the
detectors, becoming significant for high excitation powers.

An optimal trade-off between nonlinearity contrast and g(2)(0), giving the
strongest antibunching in the reflected field, has been obtained for an excitation
pulse length close the QD lifetime, leading also to the experimental results of
Fig.4.7 in the case of device QD3.

These considerations can be ultimately traced back to the time-energy uncer-
tainty relation. As we study a two-level system, there is a single timescale given
by the radiative lifetime of the exciton transition which defines the properties of
our device. If the excitation pulse is shorter than this lifetime, its spectrum will
not show a good overlap with the transition. On the contrary, if the pulse is nar-
rower than the transition bandwidth, it will be long enough to trigger multiple
excitations. This effect, as theoretically demonstrated by the work of Rosen-
blum et al. [294], puts a limit of 64% in the efficiency of a photon routing device
based on the photon blockade effect using a two-level system. To overcome such



4.5. FILTERING SINGLE PHOTON FOCK STATES 143

1 3 3 8 . 8 1 3 3 9 . 2
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 3 3 8 . 8 1 3 3 9 . 2 1 3 3 8 . 8 1 3 3 9 . 2

 Q D  o f f  r e s o n a n c e         Q D  o n  r e s o n a n c e

No
rm

aliz
ed 

int
ens

ity

E n e r g y  ( m e V )

2 5 p s  p u l s e 3 5 p s  p u l s e

E n e r g y  ( m e V )

5 5 p s  p u l s e

E n e r g y  ( m e V )

Figure 4.9 – Reflected intensity from the device QD4 as a function of
the energy under pulsed excitation, for different temporal durations of the
laser pulses. The black lines shows the empty cavity response, while the
red lines the case with the exciton at the cavity mode energy. The longer
the pulse, the higher the contribution from the QD to the total reflected
intensity.

a limitation, a lambda system or a 4 level system would be needed, where the
photon to be routed are not required to interact with the system within the
lifetime of a single transition.

4.5 Filtering single photon Fock states

In this section we analyse in more detail the reflected intensity from the device
and its second order correlation function. In the low photon number regime,
where the QD transition is not saturated and a strong antibunching is observed,
we interpret the behaviour of the device as a single photon Fock state filter.

4.5.1 Temporal evolution of the reflected wavepackets

An interesting insight on the processes leading to the reflection of light from
the QD-micropillar device is given by the temporal evolution of the reflected
wavepackets. In order to measure this time dependence, we send the collected
signal to a single SPAD having time resolution of≈ 30ps, and record the detected
counts as a function of the delay with respect to the excitation pulse. The result
relative to device QD4 is shown in Fig.4.10.a, for the two cases of the empty
cavity (black dashed line), and when the QD transition is brought in resonance
with the cavity (red solid line) through proper bias application. Here we use
excitation pulses of about 55 ps.
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If the exciton transition is far detuned from the cavity mode, we expect to
measure the time dependence of the laser pulses being reflected back by the
cavity, which is what is shown by the dashed line in Fig.4.10.a. This peak is
in reality composed of two contributions, which cannot be distinguished due to
the finite temporal resolution of our detectors. The reflectivity profile of the
cavity is resulting from the destructive interference of the light directly reflected
from the top mirror and the light reflected from the bottom mirror after being
entered the cavity. Having an extended spectral width in the incident pulse,
we can expect that this destructive interference is not equally effective for all
the spectral components of the pulse. In the time domain this result in the
temporal separation between two contributions. It can be seen in the simulation
of Fig.4.10.b, performed by our collaborator Bogdan Reznychenko, where it is
considered a short Gaussian incident pulse having a duration of 20 ps, shorter
than the cavity lifetime of 42 ps. The first reflected peak (A1) corresponds to the
light directly reflected from the top mirror before any destructive interference
with the light which entered the cavity can take place. The second peak (A2)
is due to the light exiting the cavity after the end of the excitation pulse, when
no more interference is possible and shows a decay time corresponding to the
lifetime of the cavity photons.

If we bring the exciton transition in resonance with the cavity mode, we
observe for low excitation power the appearance of an additional signal delayed
in time, coming from the light which is now resonantly scattered by the QD.
The experimental results is plotted in Fig.4.10.a with a red solid line, revealing
a two peak shape, and is also accounted theoretically, as shown in Fig.4.10.b
where it is represented by the peak A3. The pulse arising from the QD shows a
delay due to the light-matter interaction, called the Wigner time delay, which is
maximum at resonance. Such a delay, previously measured with a single natural
atom [315], is a consequence of the dispersive behaviour of the two-level system
in the linear response regime. In striking contrast to the other two peaks, which
maintains the Poisson statistics of the incident laser pulses, the light in the peak
A3 is antibunched, being due to the QD exciton emission.

The simulations of Fig.4.10.b, also show that by bringing the QD transition
in spectral resonance with the cavity, the appearance of the peak A3 is linked
to a decrease of the intensity of the peak A2. The intensity difference in the
peak A2 corresponds to the light that has interacted with the QD and has been
converted into the peak A3. In this simulation, a moderate change is observed
because we consider an incident laser pulse of 20 ps, which has a limited spectral
overlap with the transition. On the contrary, by reducing the spectral width of
the excitation pulse we observe a twofold improvement, as explained in the
previous section: first, a smaller amount of light reflected back by the cavity
means a smaller contribution from A1, and second, a more efficient interaction
of the light which entered the cavity with the exciton transition means a higher
contribution from A3, at the expense of A2. The resulting value of g(2)(0) that
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Figure 4.10 –Measured (a) and simulated (b) temporal dependence of the
reflected wave packets from the QD-cavity device QD4. The measurement
is performed with laser pulses of 55 ps, while the simulation with a 20 ps
pulse. Black lines shows the case of the empty cavity, red lines the case
with the exciton at the resonance energy.

we measure on the reflectivity signal (black symbols of Fig.4.8) thus depend on
the ratio of the intensity of the peak A3 to the intensities of the peaks A1 and
A2, which both show a Poisson statistics.

As a last remark, we can use again Fig.4.10.b to understand what happens
when the QD transition gets saturated. When the incident number of photons
per pulse is high enough, the contribution from the peak A3 will saturate to a
maximum value, whose intensity is determined by the interaction efficiency be-
tween the excitation and the transition, as explained in the previous paragraphs.
On the contrary the signals from the peaks A1 and A2, which are determined by
the reflectivity spectrum of the cavity, grows linearly with the incident power.
Eventually the fraction of light coming from the QD becomes negligible with
respect to these two contributions, and the signal reflected by the empty cavity
is recovered.
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4.5.2 Mode reconstruction

In the previous section, we have seen that we can attribute different temporally
separated component of the reflected intensity to different sources, namely the
laser light reflected by the cavity, and the light scattered by the QD transition.
From the CW reflectivity spectrum we have extracted an almost negligible pure
dephasing for our exciton transition, meaning that the QD is mainly acting
as a coherent scatterer. The field reflected by the device is thus the result of
the coherent interference between the laser field and the field re-emitted by the
QD. The interference term is limited by the temporal overlap between these two
contributions. This overlap depends on the pulse length used for the experiment:
the longer the pulse, the larger the overlap. In this section, to analyse the
performances of our device as a single photon filter, we neglect this temporal
overlap and consider the reflected field as a mixture of coherent light reflected
by the cavity, having a Poisson statistics, and single photon light scattered by
the QD, composed of vacuum and single photons. Based on this assumption, we
can use the measured reflectivity and g(2)(0) to quantify the contribution of the
two components and determine an average photon number for each.

In order to do so, we use the formalism of the probability generating func-
tions, following the approach of Goldschmidt et al. [316]. A probability generat-
ing function GX(s) is a power series representation of the probability distribution
of a discrete random variable X, and can be written as:

GX(s) =
k=∞∑
k=0

skP (X = k) (4.6)

where the coefficient of each polynomial term is the probability for the random
variableX to assume the value k. It can be shown that the probability generating
function GX+Y (s) of the distribution of two independent random variables is
given by the product of the two functions GX+Y (s) = GX(s)GY (s).

In our case, the discrete variable is the photon number of the reflected field.
The total average photon number observed is given by 〈nout〉 = µQD +µα, where
the first contribution, µQD, is the average photon number coming from the QD,
and the second one, µα, is the average photon number from the laser. The field
coming from the QD is composed of only vacuum and single photons, thus is
described by the generating function:

GQD(s) = (1− µQD) + sµQD (4.7)

while the field of the laser, a coherent state, is described by a Poisson distribu-
tion:

Gα(s) = e−µα(1−s) (4.8)

The generating function for the total reflected mixture is then:

Gtotal(s) = GQD(s)Gα(s) = (1− µQD(1− s)) e−µα(1−s) (4.9)
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Figure 4.11 – Reconstruction of the reflected field as a mixture of co-
herent and single photon light, as a function of the incident power. (a)
Average photon number for the two components in the reflected field, as
calculated from the measured reflectivity and g(2)(0). (b) Fraction of re-
flected intensity due to the single photons and to the laser pulse.

This function can be expressed in terms of the measured values of the intensity
correlations, as the kth order derivative of Gtotal(s), calculated in s = 1, gives
the kth order correlation function at zero time delay [316]:

g(k)(0) =
G

(k)
total(s = 1)

〈nout〉k
(4.10)

Calculating Eq.4.10 for k = 1 and k = 2 we obtain respectively:

〈nout〉 = µQD + µα (4.11)

g(2)(0) = 2µQDµα + µ2
α (4.12)

which can be used to retrieve the values of µQD and µα in the reflected field,
from the experimentally measured values of reflectivity R = 〈nout〉/〈nin〉 and
second order correlation function g(2)(0), previously shown in Fig.4.7.

The assumption to have only single photons being emitted from the QD is
reasonable in the low photon number regime, where we can neglect the possibility
of multiple excitations. We thus limit this analysis to the region where 〈nout〉 ≤ 1,
and the resulting values for µQD and µα are shown in Fig.4.11.a, respectively
with filled and empty circles. As expected, the coherent light reflected by the
cavity linearly increase with the excitation power. On the contrary, the average
photon number coming from the QD saturates when approaching 〈nout〉 ≈ 1.
Still, it is clear that in this range the reflected field is dominated by the QD
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field. To quantify how much of the detected intensity radiated back is composed
of single photons, we plot in Fig.4.11.b the ratios µQD/〈nout〉 and µα/〈nout〉 as
a function of 〈nin〉 in logarithmic scale. We see that, when the transition is not
saturated and when sending coherent state on the device, 80% of the reflected
intensity is composed of single photons.

The above observations has been performed on the light directly reflected
from the device, without any kind of postselection, and demonstrate that the
QD-micropillar device efficiently acts as a single-photon Fock-state filter.

4.6 Suppression of multi-photon components

To complete the analysis of the previous section, and have a better insight of
the composition of the reflected field, we experimentally measure the third order
correlation function, as presented in this section.

4.6.1 Performing three-photon correlation measurements

We perfomed a generalized HBT experiment by coupling the collected signal
to a fiber beam splitter having a splitting ratio of R : T ≈ 33 : 66, and the
transmission port of this to a second beam splitter having a splitting ratio of
R : T ≈ 50 : 50. In this way we can equally split the signal onto 3 fiber-
coupled SPADs, as depicted in Fig.4.4.d, and perform a three-photon coincidence
detection.

The degree of third order coherence of the field emitted by the source is given
by:

g(3)(τ1, τ2) =
〈â†(t)â†(t+ τ1)â†(t+ τ2)â(t)â(t+ τ1)â(t+ τ2)〉
〈â†(t)â(t)〉〈â†(t+ τ1)â(t+ τ1)〉〈â†(t+ τ2)â(t+ τ2)〉

(4.13)

We consider here for simplicity a single mode field. As already shown in Section
2.2.2 for the second order correlation function, this equation can be conveniently
discretized for our pulsed excitation scheme, considering each operator â†(k) as
being integrated over the kth pulse. At zero time delay, when all operators are
acting on the same light pulse, the above equation can be written as:

g(3)(0, 0) =
〈(â†)3(â)3〉
〈â†â〉3

=
〈n̂(n̂− 1)(n̂− 2)〉

〈n̂〉3
(4.14)

By calculating the expectation values for a generic wavepacket described by a
state ρ, we obtain [169]:

g(3)(0, 0) =
Tr[ρn̂(n̂− 1)(n̂− 2)]

Tr[ρn̂]3
=

∑∞
n=0 n(n− 1)(n− 2)P (n)(∑∞

n=0 nP (n)
)3 (4.15)
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Figure 4.12 – Histogram of the three-photon coincidence detection mea-
surement performed on device QD3. The events on the detectors are plot-
ted as a function of the time delay between two different couples of de-
tectors. The peak at zero-time delay, normalized to the average height of
the uncorrelated peaks at non-zero delays, allows to retrieve the value of
g(3)(0, 0).

where P (n) is the probability of observing n photons. Recalling that the average
photon number of the reflected field is given by 〈nout〉 =

∑∞
n=0 nP (n), we have

for our case:

g(3)(0, 0) =
6P (3) + 24P (4) + ...

〈nout〉3
(4.16)

From this equation, we see that the third-order correlation function is related to
the probability of having more than two photon in the pulse, providing additional
information to the already measured second order correlation function.

Experimentally, we collect all the time-tagged photon detection events on
each of the three detectors, with 256ps resolution. From the data, we then
reconstruct a two dimensional correlation histogram as the one shown in Fig.4.12,
by plotting the number of coincidences detected on the three detectors as a
function of the time delays τ12 and τ23 between two different couples of detectors.
The experimental value of the third order correlation function at zero time delay
g(3)(0, 0) is extracted by normalizing the central peak, giving the number of
coincidences detected from a same light pulse, with respect to the peaks at delays
τ12 6= 0, τ23 6= 0 and τ12 6= τ23, giving the number of uncorrelated coincidences
triggered by different pulses.

The outcome of such measurement is given by the ratio of the conditional
probability of having all detectors to click divided by the product of the individ-
ual detection probabilities. Following the work of Stevens et al. [169], we can
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show that the result is given by:

g(3)(0, 0) =
P123(click, click, click)

P1(click)P2(click)P3(click)
=

6P (3) + 24P (4)
(
1− 1

6
η0 − 1

6
η1 − 1

6
η2

)
+ ...∏3

i=1

(
P (1) + 2P (2)

(
1− 1

6
ηi
)

+ ...
) (4.17)

where η1, η2 and η3 are the efficiencies of the three detectors. In the limit
of low detection efficiency, Eq. 4.17 reduces to the same form of Eq.4.16:

lim
η0,η1,η2→0

g(3)(0, 0) = g(3)(0, 0). The three detectors used here have a detection

efficiency of about 28% while the overall setup transmission is limited to few
percent, so that the low detection efficiency limit is valid. Moreover, it is to be
associated with the fact that most of the field that we want to analyse is com-
ing from the QD, emitting single photons, thus the probability of multiphoton
events is very low. Considering that P (n + 1) � P (n), to the leading terms
Eq.4.17 gives the same result as Eq.4.16, thus g(3)(0, 0) is a faithful estimation
of g(3)(0, 0).

To extract the experimental value of g(3)(0, 0), the detected coincidences of
the histogram of Fig.4.12 are integrated in an area of 5× 5ns around each peak,
and normalized to the average area of the uncorrelated peaks, as explained
before, resulting in the correlation map shown in Fig.4.13. The dashed lines
at τ12 = 0, τ23 = 0 and τ12 = τ23 highlight the peaks for which we have a
zero delay between at least two detectors, and the height of the central peak,
where the three lines cross, gives us the value of g(3)(0, 0). Performing the three
photon correlation measurement on the incident pulse, we obtain the uniform
map of Fig.4.13.d. This corresponds to a value of g(3)(0, 0) = 1, confirming the
Poisson statistics of the incident field. By performing the same measurement
on the reflected field, for an incident average photon number of 〈nin〉 = 0.5, we
obtain the correlation map shown in Fig.4.13.a. Here, we clearly see presence of
an antibunching on the lines corresponding to τ12 = 0, τ23 = 0 and τ12 = τ23,
where g(3)(τ12, τ23) = 0.55. These peaks correspond to a zero time delay between
only two detectors, thus is equivalent to a direct measurement of the second
order correlation function [305], giving g(2)(0) = 0.55. At the centre of the map
instead, we have a zero time delay between all the three detectors, where we
measure a value of g(3)(0, 0) = 0.18. The much lower value of g(3)(0, 0) reveals
that the three photon events are indeed much more suppressed that the two
photon events.

Increasing the power, the antibunching pattern gradually disappear, as shown
in the measurements of Fig.4.13.b and Fig.4.13.c. The former is obtained for
an incident average photon number 〈nin〉 = 1, and gives g(2)(0) = 0.65 and
g(3)(0, 0) = 0.36. The latter instead is obtained for 〈nin〉 = 2.4, and gives
g(2)(0) = 0.9 and g(3)(0, 0) = 0.8. Looking at the sequence of panels of Fig.4.13,
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Figure 4.13 – Plots of the g(3)(τ12, τ23), retrieved by integrating a 5×5ns
area around each peak of the raw histograms as the one of Fig.4.12. Panels
(a), (b) and (c) show the measurements performed on the reflected field re-
spectively for an average incident photon number of 0.55, 1 and 2.4. Panel
(d) instead shows the same measurement performed on the incident field.
The set of measurements highlights the transition from an antibunched to
a Poisson photon distribution in the reflected signal.

from a to d, the transition from a sub-Poisson to a Poisson statistics in the
reflected field, as the QD gets saturated, is clearly visible.

4.6.2 Reconstruction of the photon-number distribution

Having measured the correlation functions up to the third order, we have enough
information to reconstruct the photon number distribution for the field, up to
three photons. We can assume that the probability of observing more than
three photons in the reflected field is negligible, thus P (n ≥ 4) � P (n < 4),
which allows to greatly simplify the relations we have derived up to now. This
assumption is valid throughout most of the analysed range shown in Fig.4.7.a,
since in the low incident photon number regime the reflected field is dominated
by the single photon emission of the QD, while in the high incident photon
number regime the reflectivity is very low, implying a small average photon
number reflected. Anyhow, we are interested in the region before the saturation
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of the QD.
The three experimental configurations of Fig.4.4.b, Fig.4.4.c and Fig.4.4.d

have been used to measure respectively the average photon number 〈nout〉, the
second order correlation g(2)(0) and the third order correlation g(3)(0, 0) of the
field. Neglecting the possibility of having more than three photons, we can set
P (n ≥ 4) = 0 in Eq.4.3, Eq.4.4 and Eq.4.17, leading to the following set of
relations:

〈nout〉 =
3∑

n=0

nP (n) = P (1) + 2P (2) + 3P (3) (4.18a)

g(2)(0) =
2P (2) + 6P (3)

〈nout〉2
(4.18b)

g(3)(0, 0) =
6P (3)

〈nout〉3
(4.18c)

Including the normalization of probabilities:

1 =
3∑

n=0

P (n) = P (0) + P (1) + P (2) + P (3) (4.18d)

we obtain a system of four equations which can be solved to obtain the values
of P (n) for n = 0, 1, 2, 3, starting from the experimental values of 〈nout〉, g(2)(0)

and g(3)(0, 0).
This analysis has been performed for the three experimental measurements

shown in Fig.4.13.a-c. The corresponding photon number distributions are plot-
ted in Fig.4.14.a-c, respectively for 〈nin〉 = 0.5, 1 and 2.4. Each plot shows
the photon number distribution for the incident field, calculated from a Poisson
distribution having average photon number 〈nin〉, with red bars. The photon
number distribution for the reflected field, calculated using the set of equations
4.18, is shown with blue bars. For each measurement, the output photon num-
ber distribution determine the output average photon number 〈nout〉, which are
calculated to be 0.2, 0.5 and 0.7. Having the values of 〈nout〉, we also calculated
a corresponding Poisson distribution of photon, plotted with black circles.

For the lowest excitation power, Fig.4.14.a, the measured output photon dis-
tribution (blue bars) strongly deviates from a Poisson distribution (black circles),
showing that the QD-cavity device is efficiently modifying the light statistics.
Compared to the input field, we observe a slight increase of the vacuum com-
ponent, Pout(0)/Pin(0) ≈ 1.2, and a decrease of the one photon component,
Pout(1)/Pin(1) ≈ 0.7 compatible with the measured ηout = 0.64. On the con-
trary, we have a strong suppression of the two and three photons components,
respectively of Pout(2)/Pin(2) ≈ 0.2 and Pout(3)/Pin(3) ≈ 0.04. Going towards
higher excitation powers, as shown in Fig.4.14.b and Fig.4.14.c, the vacuum com-
ponent increases and the output photon distribution is approaching a Poisson
statistics, due to the progressive saturation of the exciton transition.
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Figure 4.14 – Photon number distribution of the incident field (red bars)
and reflected field (blue bars) for an average incident photon number of 0.55
(a), 1 (b) and 2.4 (c). Black dots shows the equivalent Poisson distribution
for the reflected field.

These results demonstrate that, when the QD is not saturated, the device is
performing as an excellent multi-photon state suppressor, preferentially filtering
single photons and transforming the incident coherent light into a pulse showing
a highly non-classical statistics.

4.7 Conclusions and perspectives

In this chapter, we have demonstrated that the QD-micropillar device shows
a state of the art nonlinear threshold of only 0.3 average incident photon per
excitation pulse. In addition to this, we have observed a dominant single photon
contribution to the directly reflected intensity, showing that the device imple-
ments an efficient single photon Fock state filter, represented in Fig.4.15.a. The
two-level system inside the cavity, here excited by laser pulses, only scatters the
single photon part of the incident coherent state. We observe in the directly
reflected intensity mainly single photons, while the higher Fock components are
transmitted though the lateral waveguides [46].

The light-matter interface provided by the QD-micropillar device is ideally
suited to realize efficient two-photon gates, which can be done with different
approaches. A path encoding gate can be implemented with the neutral exciton
state of the QD, as it is the case for this work. In a two pulse scheme, the presence
of a first photon is used to switch the response of the cavity such that the second
one is reflected. This implementation requires a modification of the current
device geometry, in order to collect both the reflected and the transmitted part
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Figure 4.15 – (a) Schematic of the filtering of single photon Fock states
with a QD-micropillar device. (b) Figure reproduced from [298]. Schemat-
ics for the realization of a polarization encoded quantum gate using a
charge exciton state coupled to a micropillar cavity.

of the field. Right now, the analysis of the cavity losses shows dominant losses
though the 4 lateral waveguides. As a result, the four ridges can be replaced by
a single one coupled to the cavity, where most of the light that is not reflected
will be directed. It can be done with the same fabrication technology currently
used, and no major roadblock is expected. However, such path encoding gate
based on the photon blockade of a two-level system is inherently limited to a 64%
efficiency [294], as we have explained in Section.4.4.3, due to the fact that the
effective interaction between photon is restricted within the radiative lifetime of
the QD exciton state.

A deterministic gate can be obtained instead by using the spin of an ad-
ditional charge carrier trapped into the QD, to realize a polarization encoding
two-photon gate [294, 317, 318]. This does not require a change of geometry,
but the spin-selective transitions of the four level system provided by a charged
exciton state. By applying a transverse magnetic field, is possible to slightly lift
the degeneracy of the CX states, in order to obtain a Λ configuration showing
an H and a V polarized transitions. This is represented in Fig.4.15.b, where we
also consider the two transitions to be equally accelerated by the cavity, and an
output coupling efficiency ηout = 1, such that every emitted photon is exiting
from the top port. By sending a V polarized photon, having the QD initially
in the |⇑〉 state, will lead to the reflection of an H polarized photon, leaving
the QD in the |⇓〉 state. This mechanism, called single-photon Raman interac-
tion, swaps the ground state of the QD and the polarization state of the photon
[319, 320, 321]. Once the QD is in the |⇓〉 state, an incident V polarized photon
will be directly reflected, as it cannot interact with the QD.

This mechanism can be used to realize deterministic spin-photon and photon-



4.7. CONCLUSIONS AND PERSPECTIVES 155

photon gates. The deterministic insertion of a resident spin in the QD can
be realized by engineering the doping profile in the structure [322]. The QD-
micropillar device provides the required efficient light-matter interface to achieve
a high input and output coupling efficiency, as well as a state of the art coop-
erativity. Efficient photon-photon gates can be realized by combining these
techniques in micron-sized device, a fundamental step towards the realization of
deterministic gates.
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Chapter 5

Conclusions and perspectives

Single photons are a central resource for many applications in quantum com-
putation, communication and metrology. Advances in these fields rely on the
improvement of the techniques for the generation, manipulation and detection
of single photons. Additionally, the interfacing of single photons with mate-
rial quantum systems is a fundamental step for the distribution of the quantum
information across a network. A promising strategy is the use of cavity quan-
tum electrodynamics effects to control the interaction between a single atom
and a single photon, in order to realize efficient sources and gates. This has
been largely studied also in the solid state, to interface an artificial atom with
the propagating photons in a scalable platforms, benefiting for instance from
semiconductor technology.

In this work, we have shown that an optimal light-matter interface can be
provided by an electrically controlled QD-micropillar device. We have seen that
such device allows to obtain a state of the art cooperativity, as high as C = 14,
corresponding to a mode coupling β ≈ 0.93 − 0.98, as well as very high input
and output coupling efficiencies respectively in the range of ηin ≈ 0.90−0.95 and
ηout ≈ 0.65−0.70. We have reached a regime very close to the 1-dimensional atom
situation, which allows the QD-micropillar device to optimally perform both as
an emitter and as a receiver of single photons. Its efficiency as an emitter has
been presented in Chapter 2, with the demonstration of a bright source of fully
indistinguishable single photons. The efficiency of the device as a receiver has
been presented in Chapter 4, where we have demonstrated a nonlinear optical
response at the level of a single incident photon. Additionally, we used the single
photons emitted by the source to generate a path entangled NOON state and we
have proposed a novel technique to reconstruct its full density matrix, as shown
in Chapter 3.

The availability of bright sources of single photons can find immediate appli-
cations for quantum computation and communication [48]. In 2017, intermediate
computation protocols such as boson sampling have been shown to benefit from
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orders of magnitude efficiency improvement using QD-based sources [221, 222].
High efficiency sources can also be used to boost QKD protocols [323], and are re-
quired to produce multi-photon entangled states. For instance, the generation of
large cluster states could allow to implement measurement-based quantum com-
puting protocols [324], and with a large improvement in the source efficiency,
even all-optical quantum repeaters [325]. A technical limitation for the transfer
of photons is given by the relatively high losses of standard telecom fibres at
wavelengths around 900 nm, corresponding to the emission typically observed
from InGaAs QDs. Recently however, the efficient quantum frequency conver-
sion to telecom wavelength (1.3 and 1.5 µm) has been demonstrated [326, 327],
an important achievement towards the use of the available optical fiber infras-
tructures for long distance quantum communications.

Beside computation and communication, multi-photon entangled states are
interesting resources also for metrology. Notably, path entangled NOON states
can be used in interferometric protocols to perform Heisenberg-limited sensing.
High NOON states could be realized using the interference of coherent states
and Fock states on a beam splitter [263]. An important aspect in this case, is
the certification of the generation of a maximally entangled state, up to now
limited to the observation of super-resolved fringes. As shown in Chapter 3,
the tomography technique reported in this work could be extended to higher
photon numbers using PNR detectors. This can gives a viable way to perform
the tomography of two-path NOON states for high photon numbers.

The QD-micropillar system represents also a promising building block to
realize a quantum network. While an efficient light-matter interface has been
demonstrated here, additional requirements are needed to implemented a scal-
able network [14]. A first step towards this objective is the fabrication of multiple
devices showing their optical transitions at a same energy. This gives the pos-
sibility of interfacing different devices as well as combining multiple solid-state
single-photon sources in a same multi-photon experiment, which could boost
its performances beyond what can be obtained by demultiplexing the photons
emitted by a single source. The fabrication of identical devices is mostly limited
by the inhomogeneous broadening of the QDs resulting from the self-assembly
fabrication method. The in-situ lithography currently employed already allows
the deterministic coupling of a single micropillar cavity to a specific QD, both
spatially and also spectrally with a precision of ∆λ = 0.5 nm. The electrical
control is further used to finely adjust the transition energy of the QD, allowing
the exact spectral matching between the emitter and the cavity. However, no
active control of the optical mode of the cavity is possible after its fabrication,
and the resulting devices shows different transition energies, depending on the
specific QD targeted during the fabrication phase. To interface multiple devices,
a first strategy is to fabricate all the micropillars with the same diameter. The
QD energies can then be tuned with the electrical control so to match the cavity
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Figure 5.1 – Realization of a simple network using the QD-micropillar
device both as an emitter and as a receiver.

modes. Alternatively, piezoelectric actuators can be used to apply strain to the
micropillars, so to controllably modify both the QD and the cavity mode energy.
This, together with the electrical contacts, allows the independent tuning of the
cavity and of the QD energy. Multiple devices can then be connected using the
single photon Fock state emitted by a QD to excite another one. This allows
to realize cascaded quantum systems and study the interaction of a two-level
system with a quantum light state [328, 329, 35]. Additionally, it can be used
to test the feasibility of a larger scale network of QD-micropillar devices.

A second fundamental step is the control of the charge state of the QD. Using
a trion state instead of a neutral exciton state allows to increase the efficiency
of the device. On one side, this will improve the brightness of the device as a
single photon source, since it overcomes the limitations due to the polarization
rotation process, as described in Section 2.6.3. On the other side, it would allow
to overcome the limitations of a quantum gate based on a two-level system, as
explained in Section 4.4.3. The four level system provided by the spin-selective
transitions of the trion state can be used to implement a polarization encoded
gate, which can be fully deterministic [294]. To place an additional charge
carrier in the QD, the doping profile can be engineered to define a potential
barrier for the holes, in such a way that the application of a bias will favour the
tunneling out of the QD of the electrons only [322]. This can be used to create
a positively charged trion and benefit from the relatively long coherence time of
the hole spin [71]. To complete the in-situ fabrication however, the bias must be
applied during the lithography step, in order to correctly identify the spectral
position of the charged exciton state at a non zero applied bias. This requires a
modification of the fabrication process, where the gates will be defined after the
growth of the planar cavity. Once the charge state of the QD can be controlled,
the spin of the additional charge can be used as a stationary qubit, which can
be optimally interfaced to the propagating photons thanks to the micropillar
cavity. Such device can be used to realize efficient spin-photon entangling gates
[33, 32], generate cluster states through the repeated interactions of independent
photons with a single spin [317]. Finally, by connecting different devices, it is
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also possible to distribute the entanglement between distant spins [35]. Note
that it has been recently shown that it is possible to improve the coherence time
of the electron or hole spin in the QD by manipulating the underlying nuclear
spin bath [330, 331, 332]. Such extended coherence time of the stationary qubit
is an important step towards the implementation of memory-based quantum
repeaters [333].

Overall, the QD-micropillar devices show great potential to implement key
functionalities for the development of a scalable quantum network in the solid-
state.
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Title: Single photon generation and manipulation with semiconductor quantum dot
devices

Keywords: Quantum dots, single photons, quantum optics, Cavity QED

Abstract: Quantum phenomena can nowadays be engineered to realize fundamen-
tally new applications. This is the field of quantum technology, which holds the promise
of revolutionizing computation, communication and metrology. By encoding the infor-
mation in quantum mechanical systems, it appears to be possible to solve classically
intractable problems, achieve absolute security in distant communications and beat the
classical limits for precision measurements. Single photons as quantum information car-
riers play a central role in this field, as they can be easily manipulated and can be
used to implement many quantum protocols. A key aspect is the interfacing between
photons and matter quantum systems, a fundamental operation both for the generation
and the readout of the photons. This has been driving a lot of research toward the re-
alization of efficient atom-cavity systems, which allows the deterministic and reversible
transfer of the information between the flying photons and the optical transition of a
stationary atom. The realization of such systems in the solid-state gives the possibility
of fabricating integrated and scalable quantum devices.

With this objective, in this thesis work, we study the light-matter interface provided
by a single semiconductor quantum dot, acting as an artificial atom, deterministically
coupled to a micropillar cavity. Such a device is shown to be an efficient emitter and
receiver of single photons, and is used to implement basic quantum functionalities. First,
under resonant optical excitation, the device is shown to act as a very bright source of
single photons. The strong acceleration of the spontaneous emission in the cavity and
the electrical control of the structure, allow generating highly indistinguishable photons
with a record brightness. This new generation of single-photon sources can be used to
generate path entangled NOON states. Such entangled states are important resources
for sensing application, but their full characterization has been scarcely studied. We
propose here a novel tomography method to fully characterize path entangled NOON
state and experimentally demonstrate the method to derive the density matrix of a
two-photon path entangled state. Finally, we study the effect of the quantum dot-
cavity device as a non-linear filter. The optimal light matter interface achieved here
leads to the observation of an optical nonlinear response at the level of a single incident
photon. This effect is used to demonstrate the filtering of single photon Fock state from
classical incident light pulses. This opens the way towards the realization of efficient
photon-photon effective interactions in the solid-state, a fundamental step to overcome
the limitations arising from the probabilistic operations of linear optical gates that are
currently employed in quantum computation and communication.



Titre : Génération et manipulation de photons uniques avec boîtes quantiques semi-
conductrices

Mot-clefs : Boîtes quantiques, photons uniques, optique quantique, Cavity QED

Résumé : Les phénomènes quantiques les plus fondamentaux comme la cohérence
quantique et l’intrication sont aujourd’hui explorés pour réaliser de nouvelles technolo-
gies. C’est le domaine des technologies quantiques, qui promettent de révolutionner le
calcul, la communication et la métrologie. En encodant l’information dans les systèmes
quantiques, il serait possible de résoudre des problèmes inaccessibles aux ordinateurs
classiques, de garantir une sécurité absolue dans les communications et de développer
des capteurs dépassant les limites classiques de précision. Les photons uniques, en tant
que vecteurs d’information quantique, ont acquis un rôle central dans ce domaine, car
ils peuvent être manipulés facilement et être utilisés pour mettre en œuvre de nombreux
protocoles quantiques. Pour cela, il est essentiel de développer des interfaces très effi-
caces entre les photons et les systèmes quantiques matériels, tels les atomes uniques, une
fonctionnalité fondamentale à la fois pour la génération et la manipulation des photons.
La réalisation de tels systèmes dans l’état solide permettrait de fabriquer des dispositifs
quantiques intégrés et à large échelle.

Dans ce travail de thèse, nous étudions l’interface lumière-matière réalisée par une
boîte quantique unique, utilisée comme un atome artificiel, couplée de façon déterministe
à une cavité de type micropilier. Un tel dispositif s’avère être un émetteur et un récepteur
efficace de photons uniques. Tout d’abord, sous une excitation optique résonante, nous
montrons comment nos composants sont des sources très brillantes de photons uniques.
L’accélération de l’émission spontanée de la boîte quantique dans la cavité et le contrôle
électrique de la structure permettent de générer des photons très indiscernables avec
une très haute brillance. Cette nouvelle génération de sources de photons uniques peut
être utilisée pour générer des états de photons intriqués en chemin appelés états NOON.
Ces états intriqués sont des ressources importantes pour la détection de phase optique,
mais leur caractérisation optique a été peu étudiée jusqu’à présent. Nous présentons
une nouvelle méthode de tomographie pour caractériser les états de NOON encodés en
chemin et implémentons expérimentalement cette méthode dans le cas de deux photons.
Enfin, nous étudions le comportement de nos composants comme filtres non-linéaires de
lumière. L’interface optimale entre la lumière et la boîte quantique permet l’observation
d’une réponse optique non-linéaire au niveau d’un seul photon incident. Cet effet est
utilisé pour démontrer le filtrage des états Fock à un seul photon à partir d’impulsions
classiques incidentes. Ceci ouvre la voie à la réalisation d’interactions effectives entre
deux photons dans un système à l’état solide, une étape fondamentale pour surmonter
les limitations dues au fonctionnement probabilistes des portes optiques linéaires.
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