N

N

Fluxional compiler: Seamless shift from development
productivity to performance efficiency, in the case of
real-time web applications

Etienne Brodu

» To cite this version:

Etienne Brodu. Fluxional compiler: Seamless shift from development productivity to performance
efficiency, in the case of real-time web applications. Web. Université de Lyon, 2016. English. NNT:
2016LYSEI061 . tel-01783938

HAL Id: tel-01783938
https://theses.hal.science/tel-01783938

Submitted on 2 May 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01783938
https://hal.archives-ouvertes.fr

UNIVERSITE

N°¢ d’ordre NNT : 2016LYSEI061

ElA

THESE DE DOCTORAT DE L’UNIVERSITE DE LYON

Opérée au sein de
L’INSA DE LYON

Ecole Doctorale N° 512
INFOMATHS

Spécialité de Doctorat : Informatique

Soutenue publiquement le 23/06/2016, par :
Etienne Brodu

FLUXIONAL COMPILER : SEAMLESS SHIFT FROM
DEVELOPMENT PRODUCTIVITY TO PERFOR-
MANCE EFFICIENCY, IN THE CASE OF REAL-TIME
WEB APPLICATIONS

Devant le jury composé de :

Gaél THOMAS Professeur des Universités, Telecom SudParis Rapporteur
Frédéric LOULERGUE Professeur des Universités, LIFO Rapporteur
Floréal MORANDAT Maitre de conférences, LaBRI Examinateur
Frédéric OBLE Docteur, Worldline Examinateur
Stéphane FRENOT Professeur des Universités, INSA Lyon Directeur

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés

Département FEDORA — INSA Lyon - Ecoles Doctorales — Quinquennal 2016-2020

SIGLE ECOLE DOCTORALE NOM ET COORODONNEES DU RESPONSABLE
CHIMIE CHIMIE DE LYON M. Stéphane DANIELE
http://www.edchimie-1lyon.fr Institut de Recherches sur la Catalyse et I’Environnement de Lyon
Sec : Renée ELL MELHEM IRCELYON-UMR 5256
Bat Blaise Pascal Equipe CDFA
3¢ étage 2 avenue Albert Einstein
secretariat@edchimie-1lyon.fr 69626 Villeurbanne cedex
Insa : R. GOURDON directeur@edchimie-1lyon.fr
E.E.A. ELECTRONIQUE, ELECTROTECH- M. Gérard SCORLETTI
NIQUE, AUTOMATIQUE Ecole Centrale de Lyon
http://edeea.ec-lyon.fr 36 avenue Guy de Collongue
Sec : M.C. HAVGOUDOUKIAN 69134 ECULLY
Ecole-Doctorale.eea@ec-lyon.fr Tél : 04 72 18 60 97 Fax : 04 78 43 37 17
Gerard.scorletti@ec-1lyon.fr
E2M2 EVOLUTION, ECOSYSTEME, MICRO- Mme Gudrun BORNETTE
BIOLOGIE, MODELISATION CNRS UMR 5023 LEHNA
http://e2m2.universite-lyon.fr Université Claude Bernard Lyon 1
Sec : Safia AIT CHALAL Bat Forel
Bat Darwin -UCB Lyon 1 43 bd du 11 novembre 1918
Tél : 04 72 43 28 91 69622 VILLEURBANNE Cédex
Insa : H. CHARLES Tél : 06 07 53 89 13
Safia.ait-chalal@univ-1lyonl.fr e2m2@univ-1yon1.fr
EDISS INTERDISCIPLINAIRE SCIENCES- Mme Emmanuelle CANET-SOULAS
SANTE INSERM U1060, CarMeN lab, Univ. Lyon 1
http://www.ediss-1lyon.fr Batiment IMBL
Sec : Safia AIT CHALAL 11 avenue Jean Capelle INSA de Lyon
Hoépital Louis Pradel -Bron 69621 Villeurbanne
Tél : 04 72 68 49 09 Tél : 04 72 68 49 09 Fax : 04 72 68 49 16
Insa : M. LAGARDE Emmanuelle.canet@univ-1lyonl.fr
Safia.ait-chalal@univ-1lyonl.fr
INFOMATHS INFORMATIQUE ET MATHEMA- Mme Sylvie CALABRETTO
TIQUES LIRIS — INSA de Lyon
http://infomaths.univ-1lyon1.fr Bat Blaise Pascal
Sec : Renée EL. MELHEM 7 avenue Jean Capelle
Bat Blaise Pascal 69622 VILLEURBANNE Cedex
3¢ étage Tél : 04 72 43 80 46 Fax 04 72 43 16 87
infomaths@univ-1lyon1.fr Sylvie.calabretto@insa-lyon.fr
Matériaux MATERIAUX DE LYON M. Jean-Yves BUFFIERE
http://ed34.universite-lyon.fr INSA de Lyon
Sec : M. LABOUNE MATEIS
PM: 71 70 Fax : 87 12 Batiment Saint Exupéry
Bat. Saint Exupéry 7 avenue Jean Capelle
Ed.materiaux@insa-lyon.fr 69621 VILLEURBANNE Cedex
Tél : 04 72 43 71 70 Fax 04 72 43 85 28
Ed.materiaux@insa-1lyon.fr
MEGA MECANIQUE, ENERGETIQUE, GENIE M. Philippe BOISSE
CIVIL, ACOUSTIQUE INSA de Lyon
http://mega.universite-lyon.fr Laboratoire LAMCOS
Sec : M. LABOUNE Batiment Jacquard
PM: 71 70 Fax : 87 12 25 bis avenue Jean Capelle
Bat. Saint Exupéry 69621 VILLEURBANNE Cedex
mega@insa-lyon.fr Tél : 04 72 43 71 70 Fax : 04 72 43 72 37
Philippe.boisse@insa-1lyon.fr
ScSo ScSo! Mme Isabelle VON BUELTZINGLOEWEN

http://recherche.univ-1lyon2.fr/scso/

Sec : Viviane POLSINELLI, Brigitte DUBOIS
Insa : J.Y. TOUSSAINT
viviane.polsinelli@univ-1lyon2.fr

Université Lyon 2

86 rue Pasteur

69365 LYON Cedex 07

Tél : 04 78 77 23 86 Fax : 04 37 28 04 48

1ScSo :CHlistthize dsiéargespible 3 Madrénseehttprithdsebinsistymn. iipebivatiogieo SBtivsEphlespiedfSociologie, Anthropologie
© [E. Brodu], [2016], INSA Lyon, tous droits réservés

http://www.edchimie-lyon.fr
secretariat@edchimie-lyon.fr
directeur@edchimie-lyon.fr
http://edeea.ec-lyon.fr
Ecole-Doctorale.eea@ec-lyon.fr
Gerard.scorletti@ec-lyon.fr
Safia.ait-chalal@univ-lyon1.fr
e2m2@univ-lyon1.fr
http://www.ediss-lyon.fr
Safia.ait-chalal@univ-lyon1.fr
Emmanuelle.canet@univ-lyon1.fr
http://infomaths.univ-lyon1.fr
infomaths@univ-lyon1.fr
Sylvie.calabretto@insa-lyon.fr
http://ed34.universite-lyon.fr
Ed.materiaux@insa-lyon.fr
Ed.materiaux@insa-lyon.fr
http://mega.universite-lyon.fr
mega@insa-lyon.fr
Philippe.boisse@insa-lyon.fr
http://recherche.univ-lyon2.fr/scso/
viviane.polsinelli@univ-lyon2.fr

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés

Abstract

Most of the now popular web services started as small projects cre-
ated by few individuals, and grew exponentially. Internet supports this
growth because it extends the reach of our communications world wide,
while reducing their latency. During its development, an application
must grow exponentially, otherwise the risk is to be outpaced by the
competition.

In the beginning, it is important to verify quickly that the service
can respond to the user needs: Fuail fast. Languages like Ruby or Java
became popular because they propose a productive approach to iterate
quickly on user feedbacks. A web application that correctly responds
to user needs can become viral. Eventually, the application needs to
be efficient to cope with the traffic increase.

But it is difficult for an application to be at once productive and ef-
ficient. When the user base becomes too important, it is often required
to switch the development approach from productivity to efficiency. No
platform conciliates these two objectives, so it implies to rewrite the
application into an efficient execution model, such as a pipeline. It is
a risk as it is a huge and uncertain amount of work. To avoid this risk,
this thesis proposes to maintain the productive representation of an
application with the efficient one.

Javascript is a productive language with a significant community.
It is the execution engine the most deployed, as it is present in every
browser, and on some servers as well with Node.js. It is now considered
as the main language of the web, ousting Ruby or Java. Moreover, the
Javascript event-loop is similar to a pipeline. Both execution mod-
els process a stream of requests by chaining independent functions.
Though, the event-loop supports the needs in development productiv-
ity with its global memory, while the pipeline representation allows an
efficient execution by allowing parallelization.

This thesis studies the possibility for an equivalence to transform an
implementation from one representation to the other. With this equiv-
alence, the development team can follow the two approaches concur-
rently. It can continuously iterate the development to take advantage
of their conflicting objectives.

This thesis presents a compiler that allows to identify the pipeline
from a Javascript application, and isolate its stages into fluxions. A
fluxion is named after the contraction between function and flux. It
executes a function for each datum on a stream. Fluxions are inde-
pendent, and can be moved from one machine to the other, so as to
cope with the increasing traffic. The development team can begin with
the productivity of the event-loop representation. And with the trans-
formation, it can progressively iterate to reach the efficiency of the
pipeline representation.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés

Résumé

La plupart des grands services web commencerent comme de simples
projets, et grossirent exponentiellement. Internet supporte cette crois-
sance en étendant les communications et réduisant leur latence. Pen-
dant son développement, une application doit croitre exponentielle-
ment, sans quoi elle risque de se faire dépasser par la compétition.

Des le début, il est important de s’assurer de répondre aux be-
soins du marché : Fail fast. Des langages comme Ruby ou Java sont
devenus populaires en proposant la productivité nécessaire pour itérer
rapidement sur les retours utilisateurs. Une application web qui répond
correctement aux besoins des utilisateurs peut étre adoptée de maniere
virale. Mais a terme, une application doit étre efficace pour traiter cette
augmentation de trafic.

Il est difficile pour une application d’étre a la fois productive et
efficace. Quand 'audience devient trop importante, il est souvent né-
cessaire de remplacer ’approche productive pour un modele plus effi-
cace. Aucune plateforme de développement ne permet de concilier ces
deux objectifs, il est donc nécessaire de réécrire 'application vers un
modele plus efficace, tel qu'un pipeline. Ce changement représente un
risque. Il implique une quantité de travail conséquente et incertaine.
Pour éviter ce risque, cette these propose de maintenir conjointement
les représentations productives et efficaces d’'une méme application.

Javascript est un langage productif avec une communauté impor-
tante. C’est 'environnement d’exécution le plus largement déployé puis-
qu’il est omniprésent dans les navigateurs, et également sur certains
serveurs avec Node.js. Il est maintenant considéré comme le langage
principal du web, détronant Ruby ou Java. De plus, sa boucle éve-
nementielle est similaire a un pipeline. Ces deux modeles d’exécution
traitent un flux de requétes en chainant des fonctions les unes apres
les autres. Cependant, la boucle évenementielle permet une approche
productive grace a sa mémoire globale, tandis que le pipeline permet
une exécution efficace du fait de sa parallélisation.

Cette these étudie la possibilité pour une équivalence de transformer
une implémentation d’une représentation vers 'autre. Avec cette équi-
valence, 'équipe de développement peut suivre les deux approches si-
multanément. Elle peut itérer continuellement pour prendre en compte
les avantages des deux approches.

Cette these présente un compilateur qui permet d’identifier un pipe-
line dans une application Javascript, et d’isoler chaque étape dans une
fluxion. Une fluxion est nommée par contraction entre fonction et flux.
Elle exécute une fonction pour chaque datum sur le flux. Les fluxions
sont indépendantes, et peuvent étre déplacées d’'une machine a 'autre
pour amortir 'augmentation du trafic. L’équipe de développement peut
commencer a développer avec la productivité de la boucle évenemen-
tielle. Et avec la transformation, elle peut itérer pour progressivement
atteindre l'efficacité du pipeline.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés

ACKNOWLEDGMENTS

I would like to expressly thank

Stéphane Frénot, Frédéric Oblé, and Fabien Cellier who had the
patience and determination to tutor me during the last three years
despite my stubbornness and clumsiness.

I would like to kindly thank my parents and family.
Had you not trusted me to dismantle stuffs and fix computers,
I would never have followed this path.

Q

A huge thank to my coworkers, at Worldline and Dice.
We shared some office spaces, but more than that, some memorable
pieces of fun together.

A huge thank to my friends who supported me, and are still talking to
me even if I was available to hang out barely one hour a week.

Y

Thanks to you that is reading this.
I hope this work will prove worthy of your time.

And finally, I would like to thank matter, time, and all the physical
constants to be what they are. Without you, nothing could be.

Thanks to all of you.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés

Contents

1 Introduction

1.1
1.2
1.3
1.4

Web development
Performance requirements
Problematic and proposal
Thesis organization

2 Context And Objectives

2.1

2.2

3.1

3.2

3.3

3.4

3.5

4.1

4.2

The Web as a Platform
2.1.1 The Language of the Web.
2.1.2 Highly Concurrent Web Servers
An Economical Problem
2.2.1 Disrupted Web Development
2.2.2 Seamless Web Development

Software Design, State Of The Art

Definitions
3.1.1 Productivity
3.1.2 Efficiency o
3.1.3 Adoption
Productivity Focused Platforms
3.2.1 Modular Programming
3.2.2 Steering Back Toward Efficiency
3.2.3 Efficiency Limitations
3.24 Summary
Efficiency Focused Platforms
3.3.1 Concurrency
3.3.2 Steering Back Toward Producitivity
3.3.3 Productivity Limitations
3.3.4 Summary
Compromise Between Productivity And Efficiency . . .
3.4.1 Abstraction of Tasks Organization
3.4.2 Limitation
3.4.3 Summary . . .o
Discontinuous Developments

Seamless Shift From Productivity To Efficiency

Proposition o oo
4.1.1 Continuous Development
4.1.2 Equivalence
Execution Models
4.2.1 Event-Driven Execution Model
4.2.2 Fluxional Execution Model

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 2

4.2.3 Examples.
4.3 Conclusion,

5 Implementations
5.1 Step 1 - Due Compiler
5.1.1 Dues
5.1.2 From Continuations to Dues
5.1.3 Due Compiler
5.2 Step 2 - Fluxional Compiler
5.2.1 Fluxions Identification
5.2.2 Fluxions Isolation
5.2.3 Realtestcase
5.2.4 Limitations

6 Conclusion
6.1 Summary
6.1.1 Models
6.1.2 Equivalence
6.2 Overall Evaluation
6.2.1 Trading Productivity for Efficiency
6.2.2 Adoption
6.3 Perspectives L
6.3.1 Just-in-time Compilation
6.3.2 Evaluation of the perspective
6.3.3 Final Thoughts

A Appendices
A.1 Due evaluation results
A .2 Fluxion Compiler Evaluation results
A.2.1 Original
A.2.2 Modified

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés

List of Figures

2.1 Javascript timeline 15
2.2 Event-driven execution model 16
2.3 Pipeline execution model 18
2.4 Comparison of the two memory models 18
3.1 Balance between Efficiency and Productivity 27
3.2 TIOBE ranking 31
3.3 Languages Ranks from number of Github projects. . . . 32
3.4 StackOverflow Tags evolution 32
3.5 Module Counts per package manager 33
4.1 Comparison of the two memory models 61
4.2 Rupturepoint. 62
4.3 Sequential scheduling 64
4.4 Causal scheduling 64
4.5 Message passing memory update 65
4.6 Sequential execution 65
4.7 Equivalence between handlers and tasks 66
4.8 Distribution of the global memory abstraction with mes-

sage PasSSINgo 66
4.9 Chain of continuations 67
4.10 Syntax of a high-level language to represent a program in

the fluxional form 68
4.11 Screenshot from the grumpy console 70
4.12 The fluxional execution model in details 72
5.1 Roadmap 75
5.2 Simple transformation 7
5.3 Composition transformation 78
5.4 Transformation of a tree of continuations into a chain of

Due 80
5.5 Results of the Due compiler evaluation 82
5.6 Compilation chain 83
5.7 Rupture point interface 83
5.8 Variable management from Javascript to the high-level

fluxional language 84

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 4

List of Tables

3.1 Productivity of Modular Programming Platforms
3.2 Adoption of Modular Programming Platforms
3.3 Efficiency of Modular Programming Platforms
3.4 Summary of Modular Programming Platforms
3.5 Efficiency of Concurrent and Parallel Programming Plat-
forms
3.6 Adoption of Concurrent and Parallel Programming Plat-
forms
3.7 Productivity of Concurrent, Parallel and Stream Program-
ming Platforms 00000
3.8 Summary of Concurrent and Parallel Programming Plat-
forms
3.9 Productivity of Compilation and Runtime Platforms
3.10 Efficiency of Compilation and Runtime Platforms
3.11 Adoption of Compilation and Runtime Platforms
3.12 Summary of Compilation and Runtime Platforms
3.13 Summary of the state of theart

6.1 Summary of the proposed solution
6.2 Summary of the perspective

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 5

30
34
35
36

41

45

47

49
23
o4
95
56
o8

IHlustrations credils

Ayib Makmun http://bit.ly/original-mac
XKCD 934 https://xkcd.com/934/
Dennis Salvatier http://bit.ly/dennis-salvatier-superman .
Martin David http://bit.ly/martin-david-server
Robert Wucher http://bit.ly/robert-wucher-chip
Benoit Hediard http://bit.ly/benoit-hediard-software

Justin Mezzell http://bit.ly/justin-mezzell-curiosity . .
Grumpy Cat coffee company http://drinkgrumpycat.com . . .

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 6

15
17
19
25
42
69

CHAPTER 1

INTRODUCTION

1.1 Web development
1.2 Performance requirements
1.3 Problematic and proposal
1.4 Thesis organization

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 7

O © 0o oo

O CHAPTER 1. INTRODUCTION

When the 7 years old I was laid amazed eyes on

the first family computer, my life goal became to
know everything there is to know about computers.
This thesis is a mild achievement. It compiles my
PhD work on a Fluzional compiler to bring seamless
shift from development productivity to performance

efficiency, in the case of real-time web applications. ® —
This work is the fruit of a collaboration between
:) FoEEEEE e
the Worldline company and the Inria DICE team /— —\

(Data on the Internet at the Core of the Economy)
from the CITI laboratory (Centre d'Innovation en
Télécommunications et Intégration de services) at
INSA de Lyon. For Worldline, this work falls within a larger work
named Liquid IT, on the future of the cloud infrastructure and devel-
opment. As defined by Worldline, Liquid IT aims at decreasing the
time to market of a web application. It allows the development team
to focus on application specifications rather than technical optimiza-
tions and eases maintenance. The purpose of this PhD work, was to
separate development productivity from performance efficiency, to al-
low a continuous development from prototyping phase, until runtime
on thousands of clusters. On the other hand, the DICE team focuses
on the consequences of technology on economical and social changes at
the digital age. This work studies the relation between the economi-
cal and the technological constraints driving the development of web
applications.

1.1 WEB DEVELOPMENT

1.2

Internet allows very quick releases of a minimal viable product (MVP).
In a matter of hours, it is possible to release a prototype and start gath-
ering a user community around. “Release early, release often”, and
“Fail fast” are the punchlines of the web entrepreneurial community.
It is crucial for the prosperity of a project to quickly validate that the
proposed solution meets the needs of its users. Indeed, the lack of mar-
ket need is the first reason for startup failure.! Often the development
team quickly concretises an MVP and iterates on it using a feature-
driven and monolithic approach thanks to imperative languages like
Java or Ruby.

PERFORMANCE REQUIREMENTS

If the application successfully complies with users requirements, its
user base might grow with its popularity. The application is scalable
when it can efficiently respond to this growth. However, it is diffi-
cult to develop scalable applications with the feature-driven approach

http://bit.ly/startup-failures

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés]

http://bit.ly/startup-failures

O CHAPTER 1. INTRODUCTION

mentioned above. Eventually this growth requires to discard the ini-
tial monolithic approach to adopt a more efficient processing model
instead. Many of the most efficient models distribute the application
on a cluster of commodity machines.

Once split, the application parts are connected by an asynchronous
messaging system. Many tools have been developed to express and
manage these parts and their communications. However, these tools
impose specific interfaces and languages, different from the initial mono-
lithic approach. It requires the development team either to be trained
or to hire experts, and to start over the initial code base. This shift
causes the development team to spend development resources in back-
ground without adding visible value for the users. It is a risk for the
evolution of the project as the second and third reasons for startup
failures are running out of cash, and missing the right competences.

1.3 PROBLEMATIC AND PROPOSAL

These shifts are a risk for the economical evolution of a web applica-
tion by disrupting the continuity of its development process. The main
question addressed by this thesis is how to avoid these shifts, so as to
allow a continuous development? It implies the reconciliation between
the productivity required in the early stage of development and the
efficiency required with the growth of popularity. To answer this ques-
tion, this thesis explores a solution based on the equivalence between
two different programming models. On one hand, there is the asyn-
chronous, functional programming model, embodied by the Javascript
event-loop. On the other hand, there is the distributed, dataflow pro-
gramming model, embodied by the pipeline architecture.

This thesis contains two main contributions. The first contribu-
tion is an equivalence allowing to split a program into a pipeline of
stages depending on a common memory store. The second contribu-
tion is an improvement from the first equivalence to enforce isolation
between the stages of this pipeline. With these two contributions,
this thesis presents the implementation of a compiler to transform the
modular representation of an application into a pipeline representation.
The modular representation allows develoment productivity, while the
pipeline representation carries its execution efficiently. A development
team shall then use these two representations to continuously iterate
over the implementation of an application, and reach the best compro-
mise between productivity and efficiency.

1.« THESIS ORGANIZATION

This thesis is organized in six main chapters. Chapter 2 introduces the
context for this thesis and explains in greater details its objectives. It
presents the challenge to build web applications at a world wide scale,

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 9

O CHAPTER 1. INTRODUCTION

without jamming the organic evolution of its implementation. It con-
cludes drawing a first answer to this challenge. Chapter 3 presents the
works surrounding this thesis, and how they relate to it. It defines the
notions outlined in chapter 2 to help the reader understand better the
context. It finally presents clearly the problematic addressed in this
thesis. Chapter 4 introduces the proposition of this thesis, and the
articulation of the contributions. Chapter 5 presents the implementa-
tions of the two contributions. Finally, chapter 6 concludes this thesis.
It evaluates this implementation at the light of the previous works, and
draws the possible perspectives.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 10

CHAPTER 2

CONTEXT AND OBJECTIVES

2.1 The Web as a Platform
2.1.1 The Language of the Web.
2.1.2 Highly Concurrent Web Servers
2.2 An Economical Problem
2.2.1 Disrupted Web Development
2.2.2 Seamless Web Development

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 11

2.1

2.1.1

© CHAPTER 2. CONTEXT AND OBJECTIVES

The web allows applications to grow a user base very quickly. The
developement of a web application needs to follow this rapid pace to
assure performance efficiency. But the languages often fail to grow with
the project they initially supported very efficiently.

The inadequacy of the languages to support the growth of web
applications leads to wasted development efforts, and additional costs.
The objective of this thesis is to avoid these efforts and costs. It intends
to provide a continuous development from the initial prototype up to
the releasing and maintenance of the complete product.

This chapter presents the general context for this work, and defines
the scope of this thesis. Section 2.1 presents the motivations that led
the web to become a software platform, and the context of web devel-
opment. It presents Javascript, one of the most important language in
web development. Then, it presents the challenges of developing web
servers for large audiences. Section 2.2 states the problem tackled by
this thesis, and its objectives.

THE WEB AS A PLATFORM

Similarly to operating systems, the Web browser
started as a software product with extension capabil-

ities that transformed it into a platform. The Web IMA ANDTIHM

spreads the scalability of software distribution world MP]‘C AIPC'

wide with a near zero latency. It eventually became AND SNCE YOU DO

the main distribution medium, and the wider market mmwm

there can possibly be for software. It led the Web to PRETIY INDISTINGUISHARLE.

become a major platform, replacing operating systems. ()
Now, with web applications, the distribution

medium is so transparent that owning a software prod-

uct to have an easier access is no longer relevant. It

stimulates a disruptive business model based on an in-

stantaneous and free access for the user, while claim-

ing value for their data. This thesis focuses not on this
buisness model, but rather on the technologies that
brought it.

THE LANGUAGE OF THE WEB

In the 80’s, reducing development time became more profitable than
reducing hardware costs. Higher-level languages replaced lower-level
languages. The economical gain in development time brought by pro-
ductive languages compensated the decrease in performance. Most of
the now popular programming languages were released at this time,
Python in 1991, Ruby in 1993, Java in 1994, PHP and Javascript in
1995.

With the democratisation of programming, the involvement of a
community became critical for the adoption, evolution and maturation

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 192

© CHAPTER 2. CONTEXT AND OBJECTIVES

of a language. Communities adopt a language because it allows to
quickly experiment and enter business sectors. The industry adopts
a language because it responds to business needs and its community
represents a hiring pool. The community support and the industrial
needs are reinforcing each other in a loop.

Java thrived in the software industry, but lost the hype that drove
the community innovation and creativity. Now, it struggles to keep up
with the latest trends in software development. On the contrary, Ruby
on Rails emerged from an industrial context, but is now open source,
and backed by a strong community that makes it evolve and mature.
Other languages like Python and PHP, emerged within a strong com-
munity, and were later adopted by the industry for web development.
Django, the Python web frameworks, is used to develop many web ap-
plications in industrial contexts. The Wordpress publishing platform
is another example of an economical success with PHP.

The web acts as a catalyst in the interaction
between the community and the industry. Because
of its position in the web, Javascript is slowly be- —_

i i AV DOES
coming the main language for web development. Wi Sup sucke
THE UGLY DUCKLING WHY DO S0 many

BOPLE sgem 1o ‘

HATE JAvASCRIpT2

WHY JAVASCRIPT

o
v)
O
@)
<
m
O

66 There are only two kinds of lan-
guages: the ones people complain
about and the ones nobody uses”

a (Il

— B. Stroustrup® =
WHY JAVASCRIpT
STILL Sucks

= JAASCRIPT MAKES
BAD DEVELOPF?EW””W

Javascript was released as a scripting engine in

Netscape Navigator around September 1995 and IS JAVASCRIPT
later in its concurrent, Internet Explorer. The dif- s ERE_I(D—:SIE
ferences between the two implementations forced ﬂ:‘(\)‘/ASC‘?/PrTH-\
Web pages to be designed for a specific browser. ﬁﬁié”“*%ggg}g
This competition was fragmenting the Web. To =S==

stop this fragmentation, Netscape submitted Java- ===
script to ECMA International for standardization

in November 1996. ECMA International released

ECMAScript — or ECMA-262 — the first standard

for Javascript in June 1997.

The initial release of Javascript was designed by Brendan Eich
within 10 days, and targeted unexperienced developers. For these rea-
sons, the language was considered poorly designed and unattractive by
the developer community.

But this situation evolved drastically since. All web browsers in-
clude a Javascript interpreter, making Javascript the most ubiqui-
tous runtime [56]. This position became an incentive to make it fast

Thttp://bit.ly/stroustrup-quote

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 13

http://bit.ly/stroustrup-quote

© CHAPTER 2. CONTEXT AND OBJECTIVES

(V8, ASM.js) and convenient (ES6, ES7). Any Javascript code in the
browser is open, allowing the community to pick, improve and repro-
duce the best techniques 2. Javascript is distributed freely, with all the
tools needed to reproduce and experiment on the largest communica-
tion network in history. And since 2009, it came back on the server?
with Node.js. This omnipresence became an advantage. It allows to
develop and maintain the whole application with the same language.
All these reasons made the popularity of the Web and Javascript.

THE RISE OF JAVASCRIPT

66 When JavaScript was first introduced, I dismissed
it as being not worth my attention. Much later,

I took another look at it and discovered that hid-
den in the browser was an excellent programmaing

language.”™
— Douglas Crockford*

Javascript was initially used for short interactions on web pages.
Nowadays, there are a lot of web-based applications replacing desktop
applications, like mail client, word processor, music player, graphics
editor...

ECMA International stimulated this progression by releasing sev-
eral versions to give Javascript a more complete and solid base as a
programming language. Moreover, Asynchronous Javascript And XML
(Ajax) allows to dynamically reload the content inside a web page,
hence improving the user experience [64]. It allows Javascript to de-
velop richer applications inside the browser, from user interactions to
network communications. The community released some frameworks
to assist the development of these larger applications. Prototype® and
DOJOS are early famous examples, and later jQuery” and underscore®.

Since 2004, the Web Hypertext Application Technology Working
Group? worked on the fifth version of the HTML standard. The name
is misleading, it is really about giving Javascript superpowers like ge-
olocation, storage, audio, video, and many mores. The simultaneous
releases of HTML5, ECMAScript 5 and V8, around 2009, represent

a milestone in the development of web-based applications. Javascript

2http://bit.ly/coding-horror-view-source

3True hipsters used Server-Side Javascript before it was cool. http://bit.ly/
mdn-server-side-javascript

4http://bit.ly/crockford-quote

Shttp://prototypejs.org/

Shttps://dojotoolkit.org/

"https://jquery.com/

8http://underscorejs.org/

https://whatwg.org/

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 14

http://bit.ly/coding-horror-view-source
http://bit.ly/mdn-server-side-javascript
http://bit.ly/mdn-server-side-javascript
http://bit.ly/crockford-quote
http://prototypejs.org/
https://dojotoolkit.org/
https://jquery.com/
http://underscorejs.org/
https://whatwg.org/

©) CHAPTER 2. CONTEXT AND OBJECTIVES

S§§
£ o
& &
(\ &

(‘(\Q& s o < 0 A 0
& G‘\? (\Q& y\@’ k) © K &(” R\ Lo
¥« S ORS < S SRS

ARG ¥ A O o
R\ ol N NS\ \s
O SO S

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Figure 2.1 - Javascript timeline

became the de facto programming language to develop on this rising
application platform that is the Web!?. The main events in the history
of Javascript presented in the previous chapters are summariezed in
figure 2.1.

Javascript is now widely
used on the web, in open
source projects, and in the
software industry. With
the increasing importance of
client web applications, Java-
script is assuredly one of the
most important language in
the times to come. Especially
that Javascript now allows to
build the server side of web applications as well. The next section
presents the realities and technical challenges to assure the performance
of web applications against billions of users.

POhttp://blog.codinghorror.com/javascript-the-lingua-franca-of-
the-web/

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 15

http://blog.codinghorror.com/javascript-the-lingua-franca-of-the-web/
http://blog.codinghorror.com/javascript-the-lingua-franca-of-the-web/

© CHAPTER 2. CONTEXT AND OBJECTIVES

Event-loop

loop

[)&

4

memory

Figure 2.2 - Event-driven execution model

2.1.2 HIGHLY CONCURRENT WEB SERVERS

Since the web allows an application to scale world wide with near zero
latency, the software industry needed innovative solutions to cope with
large network traffic.

The Internet allows communication at an unprecedented scale. There
is more than 16 billions connected devices, and it is growing fast!!
[92]. A large web application like google search receives about 40,000
requests per seconds'?. Such a Web application needs to be highly
concurrent to manage this amount of simultaneous requests. In the
2000s, the limit to break was 10 thousands simultaneous connections
with a single commodity machine!3. In the 2010s, the limit is set at
10 millions simultaneous connections'*. With the growing number of
connected devices on the internet, concurrency is a very important
property in the design of web applications.

EVENT-DRIVEN EXECUTION MODEL

Javascript is often associated with an event-driven paradigm to react to
concurrent user interactions. This paradigm proved to be very efficient
as well for a web application to react to concurrent requests. In 2009,
Joyent released Node.js to build real-time web applications with this
paradigm.

The event-driven execution model is presented in figure 2.2. At
reception, each request from a client queues an event waiting to be
processed. A loop unqueues these events one at a time, and runs the
appropriate handler to process them. To process an event, a handler
can query external resources, which respond asynchronously by queuing
additional events. For each query, the querying handler specifies a
new handler - called a continuation - to process the additional event.
Alternatively, a handler can respond directly to the client, ending this
chain of asynchronous events.

Hhttp://bit.ly/cisco-connection-counter
Zhttp://bit.ly/google-search-statistics
Bhttp://bit.ly/cl10k-problem
Mhttp://bit.ly/cl1@m-problem

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 16

http://bit.ly/cisco-connection-counter
http://bit.ly/google-search-statistics
http://bit.ly/c10k-problem
http://bit.ly/c10m-problem

© CHAPTER 2. CONTEXT AND OBJECTIVES

This execution model allows high concurrency. It is required to
respond to a high number of users simultaneously. Additionally, this
concurrency needs to be scalable to adapt to the growth of audience.

SCALABILITY

The traffic of a popular web ap-
plication such as Google search re-
mains stable, while the traffic of a
less popular web application is much

more uncertain. Moreover, the load =m o

of the web application grows with its =

user base. The available resources EE — o

need to increase as well to meet this L =m

load. For stable traffic, this growth 88 —— ©
as ==

is steady enough to plan the increase
of resources ahead of time. But for
unstable traffic, it is erratic and chal-
lenging to meet.

An application is scalable, if it is able to spread over resources
proportionally as a reaction to its load to use these resources efficiently.
It is a desirable property, as it helps to meet the growth, without
spending time to manually spread the application on available resources
to react to this erratic growth.

TIME-SLICING AND PARALLELISM

Concurrency is achieved differently on hardware with a single or
several processing units. On a single processing unit, the tasks are
executed sequentially, interleaved in time. While on several process-
ing units, the tasks are executed simultaneously, in parallel. Parallel
executions uses more processing units to reduce computing time over
sequential execution.

If the tasks are independent, they can be executed in parallel as
well as sequentially. This parallelism is scalable, as the independent
tasks can stretch the computation on the resources so as to meet the
required performance. However, the tasks within an application need to
coordinate together to modify the application state. This coordination
limits the parallelism and imposes to execute some tasks sequentially.
It limits the scalability. The type of possible concurrency, sequential
or parallel, is defined by the interdependencies between the tasks. The
pipeline execution model avoid interdependencies between the tasks to
assure their parallel execution.

PIPELINE EXECUTION MODEL

The pipeline execution model, presented in figure 2.3, is composed
of isolated stages communicating by message passing to leverage the
parallelism of a multi-core hardware architectures. It is well suited for
streaming application, as the stream of data flows from stage to stage.
Each stage has an independent memory to hold its own state. As the

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 17

© CHAPTER 2. CONTEXT AND OBJECTIVES

Pipeline 7
Stage
ﬁ@%
" More Stages

memory

Figure 2.3 - Pipeline execution model

Event Ioop P\pe\me
: task task task
0%0%0 @w@w@
global memory : memory memory memory

Figure 2.4 - Comparison of the two memory models

stages are independent, the state coordination between the stages are
communicated along with the stream of data.

The execution model of each stage is organized in a similar fashion
than the event-driven execution model presented previously. It receives
and queues messages from upstream stages, processes them one after
the other, and outputs the result to downstream stages. The pipeline
architecture is different as each task is executed on an isolated stage.
Whereas in the event-driven execution model, all handlers share the
same queue, loop and memory store. This difference is illustrated in
figure 2.4. The isolation of memory in the pipeline execution model
impacts the productivity of its programming model.

The event-driven requires a global memory to assure development
productivity. Whereas the pipeline execution model assures the isola-
tion between the tasks to assure efficiency. The former presents limited
scalability, whereas the latter does not. This thesis argues that there
exists an equivalence between the event-driven model and the pipeline
execution model. Before introducing this equivalence, the next sec-
tion details further the incompatibility between the two programming
model and the resulting economical consequences.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 18

© CHAPTER 2. CONTEXT AND OBJECTIVES

2.2 AN ECONOMICAL PROBLEM

With Software as a Service (SaaS), the software industry is in charge
of both development and execution of the software. Conducting the
two at world wide scale is challenging, because they imply opposed
economical constraints.

2.2.1 DISRUPTED WEB DEVELOPMENT

The economical constraints to meet are very different in the beginning
and during the maturation of a web application. In the early steps
the constraints hold on the development productivity. The team needs
to reduce development costs, and to release a first version as soon as
possible. On the contrary, during the maturation of the application,
the constraints hold on the performance efficiency. The application
needs to be highly concurrent to meet the load of usage.

The team needs to revise its approach to meet these different con-
straints. Which leads to disruptions in the evolution of the application.

Around 2004, manufacturers reached what they
called the Power-wall. The speed of sequential ex-
ecution on a processing unit plateaued!®. There- : Y
fore, the performance of sequential programming ; \
plateaued as well. They started to arrange transis- N
tors into several processing units to keep increasing
overall performance efficiency. Parallel program-
ming became the only option to achieve high con-
currency, but the memory isolation it requires lim-
its the productivity. This Power-wall leads to a
rupture between efficiency and productivity.

The best practices for productivity in software development advo-
cate to gather features logically into distinct modules. This modularity
allows a developer to understand and contribute to an application one
module at a time, instead of understanding the whole application. It
allows to develop and maintain a large code-base by a multitude of
developers bringing small, independent contributions.

This modularity avoids a different problem than the isolation re-
quired by parallelism. The former intends to structure code to improve
maintainability, while the latter improves performance through paral-
lel execution. These two organizations are conflicting in the design of
the application. The next paragraph presents the disruptions in the
development of a web application implied by this conflict.

The development team opt for a popular and accessible language
to be productive in the beginning of the project. It is only after a cer-
tain threshold of user load that the economical constraint on efficiency
exceeds the one on productivity. The development team then shifts to
an organization providing parallelism.

Bhttp://bit.ly/dennard-scaling

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 19

http://bit.ly/dennard-scaling

© CHAPTER 2. CONTEXT AND OBJECTIVES

This shift brings two risks. The development team needs to rewrite
the code base to adapt it to a completely different paradigm. The
application risks to fail because of this challenge. And after this shift,
the development is less productive. The development team cannot
react as quickly to user feedbacks to adapt the application to the market
needs. The application risks to fall in obsolescence.

The risks implied by this rupture proves that there is economically
a need for a solution that continuously follows the evolution of a web
application. The solution proposed in this thesis would allow develop-
ers to iterate continuously on the implementation. They would focus
progressively on productivity then efficiency.

2.2.2 SEAMLESS WEB DEVELOPMENT

This thesis is conducted in the frame of a larger work on LiquidIT
within the Worldline company. Worldline develops and hosts real-time
streaming Web services. The company identified that one of its need
was to increase the time to market for its products. Worldline defines
LiquidIT as a concept of flexible and cost-effective IT services that
can be provisioned, built and configured in real time, allowing end-
to-end financial transparency. 1t precisely intends to provide business
agility, investment-free charging models, flexibility and ease of use.
This thesis intends to allow the developer to focus solely on business
logic, and leave the technical constraints of performance scalability to
automated tools. The objective of this work is to avoid the disruption
in development.

This thesis focuses on web applications processing streams of re-
quests from users in soft real-time. Such applications receive requests
from clients through the HT'TP protocol and must respond within a fi-
nite window of time. They are generally organized as sequences of tasks
to modify the input stream of requests to produce the output stream
of responses. The stream of requests flows through the tasks, and is
not stored. On the other hand, the state of the application remains in
memory to impact the future behaviors of the application. This state
might be shared by several tasks within the application, which would
imply coordination between them.

As presented in the previous section, such applications are often
implemented with the event-driven programming model or the pipeline
programming model. This thesis develops an equivalence to map these
two models, despite their differences.

Both programming models encapsulate the execution in tasks as-
sured to have an exclusive access to the memory. However, they use two
different models to provide this exclusivity. Contrary to the pipeline
architecture, the event-loop provides a common memory store allowing
the best practice of software development to improve maintainability.

These two organizations are incompatible which results ruptures
in the development. It represents additional development efforts and
important costs. This thesis argues that it is possible to lift these

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 20

© CHAPTER 2. CONTEXT AND OBJECTIVES

efforts and costs. To do so, it proposes an equivalence between the
two organizations to allow the development to be continuous. It briefly
introduces this equivalence in the next paragraph, and details it further
in the chapter 4 and 5.

In the beginning of a project, the team focuses on productivity,
maintainability and evolution, discarding the efficient and scalable per-
formance concerns. The team adopts the event-driven execution model
and always sticks with the productive model. And as the project gather
audience and the performance concerns become more and more critical.
The equivalence allows to transform an application expressed in the
event-driven execution model into the pipeline execution model. The
generated pipeline expression allows the execution engine to adapt itself
to any parallelism, from a single core, to a distributed cluster. Without
giving the productive model up, the development team takes advantage
of the different concerns of the two execution models, productivity and
efficiency.

X

This thesis proposes to provide an equivalence between the two
memory models for streaming web applications. The goal of concil-
iating these two concerns is not new. The next chapter presents all
the previous results needed to understand this work, up to the latest
advances in the field.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 21

CHAPTER 3

SOFTWARE DESIGN, STATE OF
THE ART

3.1 Definitions 24
3.1.1 Productivity 24
3.1.2 Efficiencyo o 25
3.1.3 Adoption 27
3.2 Productivity Focused Platforms 28
3.2.1 Modular Programming 28
3.2.2 Steering Back Toward Efficiency 30
3.2.3 Efficiency Limitations 34
3.24 Summary 35
3.3 Efficiency Focused Platforms 36
3.3.1 Concurrency 36
3.3.2 Steering Back Toward Producitivity 41
3.3.3 Productivity Limitations 45
3.3.4 Summary 48
3.4 Compromise Between Productivity And Efficiency 50
3.4.1 Abstraction of Tasks Organization 50
3.4.2 Limitation 0. 95
3.4.3 Summary . . .o ... 5}
3.5 Discontinuous Developments 56

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 29

66

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

A designer is responsible for producing the great-
est benefit for any given investment of time, tal-
ent, money, and other resources.”

— K. Sullivan, W. Griswold, Y. Cai, B. Hallen [160]

With the growth of Software as a Service (SaaS) on the web, the
same company carries both development and exploitation of an appli-
cation at scale of unprecedented size. It revealed the importance of
previously unknown economic constraints. To assure the continuous
growth and sustainability of an application, it needs to address two
contradictory goals : development productivity and performance effi-
ciency. These goals need to be enforced by the platform supporting
the application to build good development habits for the developers.
A platform designates any solution that allows to build an application
on top of it, including programming languages, compilers, interpreters,
frameworks, runtime libraries and so on.

The productivity of a platform is the degree to which developers
can quickly produce new and modify existing softwares. It impacts
the maintainability of the applications and relies on the modularity
enforced by its platform. 75% of your budget is dedicated to software
maintenance.' Especially, higher order programming is crucial to build
and compose modules productively. It relies either on mutable state,
or immutable state, but hardly on a combination of both.

However, neither mutable nor immutable state allows performance
efficiency. Mutable state leads to synchronization overhead at a coarser-
grain level, while immutable state leads to communication overhead at
a finer-grain level. Efficiency relies on a combination of synchronization
at a fine-grain level, and immutable message passing at a coarse-grain
level. This combination breaks the modularity, hence the productiv-
ity of an application. A company has no choice but to commit huge
development efforts to get efficient performances.

Moreover, a balance between productivity and efficiency is required
for a platform to enter a virtuous circle of adoption. The productiv-
ity is required to be appealing to gather a community to support the
ecosystem around the platform. This community is appealing for the
industry as a hiring pool. Additionally, the efficiency is required to
be adopted by the industry to be economically viable. And the indus-
trial relevance provides the reason for this ecosystem to exist and the
community to gather.

This chapter presents a broad view of the state of the art in the
compromises between productivity and efficiency. It defines software
productivity, efficiency, and adoption in section 3.1 and all the under-
lying concepts, such as higher order programming and state mutability.
It then analyzes different platforms according to their focus. platforms
focusing on productivity are addressed in section 3.2, those focusing on

http://www.castsoftware.com/glossary/software-maintainability

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 23

http://www.castsoftware.com/glossary/software-maintainability

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

efficiency in section 3.3 and those focusing on a compromise between
the two in section 3.4.

3.1 DEFINITIONS

The continuous growth and sustainability of a platform relies on three
criteria: Productivity, Efficiency and Adoption. This section defines
these tree criteria and their underlying concepts.

3.1.1 PRODUCTIVITY

The productivity of a platform is the degree to which developers can
quickly produce new and modify existing software. To support produc-
tivity, a platform needs to enforce modularity directly in the design of
applications. Productivity leads to maintainability.

Measuring productivity precisely is highly difficult. The measure-
ment varies more between developers than between platforms [149].
Instead of measuring directly the productivity of a platform, this the-
sis infers productivity by measuring modularity.

MODULARITY

Modularity is about encapsulating subproblems and composing them
to allow greater design to emerge. It allows to limit the understanding
required to contribute to a module [157]. And it reduces development
time by allowing developers to implement different modules simultane-
ously [181, 26].

The criteria to define modules to improve productivity are high
cohesion enforced by encapsulation and low coupling enforced by com-
position [157]. Cohesion defines how strongly the features inside a
module are related. Coupling defines the strength of the interdepen-
dences between modules.

X

The criteria for productivity are the encapsulation and composition
allowed by a platform. Encapsulation relies on the definition of bound-
aries, and the protection of data. Composition relies on higher-order
programming and lazy evaluation. The next paragraphs define these
requirements.

o Encapsulation (Boundary definition, Data protection)

— increases Cohesion

» Composition (Higher-order programming, Lambda Expressions)

— decreases Coupling

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 24

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

ENCAPSULATION

Modular Programming draws clear
interfaces around a piece of imple-
mentation so that the execution re-

: o THE EVOLUTION OF
mains enclosed inside [47]. At a fine

v vl okl ottt ode SORTWME MCHTETRE
[50], and at a coarser level, it struc- 1990's
tures the implementation [51] into SPAGHETTI-ORIENTED
modules, or layers. I

. (aka Copy & Paste)

Modular programming encapsu-
lates a specific d(?sign choice .in each SoGeis
module, so that it is responsible for SACHAORIENTED
one and only one concern. It iso- ARCHITECTURE
lates its evolution from impacting the EAEHC LI
rest Of the implemen‘tation [1387]_657 .2..6.I.6.;.s. ...
100]. Examples of such S.eparatlon AOLLORIENTED
of concerns are the separation of the ARCHITECTURE
form and the content in HTML / (aka Microservices)
CSS, or the OSI model for the net- = s
work stack. WLt WL AT
PROBABLY PIZZA-ORIENTED ARCHITECTURE

COMPOSITION —

Higher-order programming introduces
lambda expressions, functions ma-
nipulable like any other primary value. They can be stored in variables,
or be passed as arguments. It replaces the need for most modern ob-
ject oriented programming design patterns ? with Inversion of Control
[104], the Hollywood Principle [163], or Monads [176]. Higher-order
programming helps loosen coupling, thus improves productivity [83].
In languages allowing mutable state, lambda expressions are imple-
mented with closure to preserve the lexical scope [162]. A closure is the
association of a function and a reference to the lexical context from its
creation. It allows this function to access variable from this context,
even when invoked outside the scope of this context.

3.1.2 EFFICIENCY

The efficiency of a software project is the relation between the usage
made of available resources and the delivered performances. For an ap-
plication to perform efficiently, its platform needs to enforce scalability
directly in its design.

Scalability relies on the parallelism allowed by the commutativity
of operations execution [36]. An operation is a sequence of statements.
Operations are commutative if the order of their executions is irrele-
vant for the correctness of their results. Commutativity assures the
independence of operations.

2http://bit.ly/oop-patterns

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 925

http://bit.ly/oop-patterns

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

INDEPENDENCE

The independence, and commutativity of an operation depends on its
accesses to shared state. If the operation doesn’t rely on any shared
state, it is independent. The independence of operations allows to
execute them in parallel, hence to increase performance proportionally
to occupied resources [7, 74]. But if they rely on shared state, they need
to coordinate the causal scheduling and atomicity of their executions
to avoid conflicting accesses. This scheduling between the operations
can be defined in two ways.

Synchronization Operations are scheduled sequentially to have the
exclusivity on a shared state, or

Message-passing Operations communicate their local modifications
of the state to other operations as immutable messages.

Because of the latency associated with message-passing, the atom-
icity of operations is challenged.

ATOMICITY

An operation is atomic if it happens in a single bulk. Beginning and end
are indistinguishable for an external observer. It assures the developer
of the invariance of the memory during the operation. It relies either on
the causal scheduling of operations — synchronization — or exclusivity
of their memory accesses — message-passing.

sRANULARITY

If the operations access the state too frequently, the communication
overhead of message passing exceeds the performance gains of par-
allelism. Whereas if operations access the state too rarely, the syn-
chronization required for sharing state limits the possible parallelism.
These two extremes are inefficient. Operations tend to share state more
closely at a fine-grain level and more loosely at a coarser-grain level.
Therefore, efficiency requires the combination of fine-level state shar-
ing to avoid communication overhead, and coarse-level independence
to allow parallelization [76, 75, 130, 73]. The threshold determining
frequent or rare access to the state determines the granularity level
between synchronization and parallelization of tasks.

X

The criteria to analyze the performance efficiency of platforms are
the synchronization available at a fine-level, and the message-passing
available at a coarse-level.

o Fine-level Synchronization

— avoids communication overhead

o Coarse-level Message-passing

— allows parallelism

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 2

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

3.1.3 ADOPTION

An application is sustainable only if the platform used to build it gen-
erates reinforcing interactions between a community of passionate and
the industry. A platform needs to present a balance between produc-
tivity and efficiency to be adopted by both the community and the
industry. The productivity is required for a platform to be appealing
to gather a community to support the ecosystem around it. And the
efficiency is required to be economically viable and needed by the in-
dustry, and to provide the reason for this ecosystem to exist. The web
acts as a tremendous catalyst fueling these interactions.

X

The criteria to analyze the adoption of platforms are the support
of the community, and the industrial need.

o Community Support

— grows an ecosystem

¢ Industrial Need

— gives a goal for this ecosystem to grow

X

Adoption requires a balance between efficiency and productivity.
This incentive to balance between productivity and efficiency is illus-
trated in figure 3.1. This figure is used throughout this chapter to
graphically represent all the platforms analyzed.

1 references section 3.2.1, the productivity focused platforms.

- references section 3.2.2; their steering back toward efficiency.

‘ references section 3.3.1, the efficiency focused platforms.

‘ references section 3.3.2, their steering back toward productivity.

5 references section 3.4, the platforms with a balance between pro-
ductivity and efficiency. Moreover, the platforms are rated for each

criterion on a scale from 0 to (&): @, ﬂ, (2} 9, (1}

S ENNRICENCE

Productivity

Efficiency 3
[®

Figure 3.1 - Balance between Efficiency and Productivity

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 27

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

Productivity

Efficiency

3.2 PRODUCTIVITY FOCUSED PLATFORMS

66 It is becoming increasingly important to the data-
processing industry to be able to produce [pro-
gramming systems/ at a faster rate, and in a way
that modifications can be accomplished easily and
quickly.”

— W. Stevens, G. Myers, L. Constantine [157].

In order to improve and maintain a software system, it is important
to holds in mind a mental representation of its implementation [153].
As the system grows in size, the mental representation becomes more
and more difficult to grasp. Therefore, it is crucial to decompose the
system into smaller subsystem easier to grasp individually.

The modular programming paradigms is precisely designed for this
purpose. It is presented in section 3.2.1 with the programming models
oriented toward productivity. The implementations of these models are
addressed in section 3.2.2. The consequences of modularity on perfor-
mance are addressed in section 3.2.3. Finally, section 3.2.4 summarizes
these three previous sections.

3.2.1 MODULAR PROGRAMMING

IMPERATIVE PROGRAMMING

Imperative programming is the very first programming paradigm, as it
evolves directly from the hardware architectures. It allows to express
the suite of operation to carry sequentially on the computing processor.
Most imperative languages provide encapsulation with modules but not
higher-order programming. The main implementations of Imperative
Programming are Fortran, Algol, Cobol and C.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 928

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

OBJECT ORIENTED PROGRAMMING

The very first Object-Oriented Programming (OOP) language was Small-
talk [66]. It defined the core concepts as message passing and encap-
sulation 3. Nowadays, the emblematic figures in the software industry
are C++ [159] and Java [68]. They provide encapsulation with Classes,
and allow mutable structures for performance reasons. They recently
introduced higher-order programming with lambda expressions.

FUNCTIONAL PROGRAMMING

The definition of pure Functional Programming resides in manipulat-
ing only expressions and replacing state mutability, with immutable
message-passing. The absence of state mutability makes a function
side-effect free, hence their execution can be scheduled in parallel. The
most important pure Functional Programming languages are Scheme
[147], Miranda [171], Haskell [98] and Standard ML [126]. They provide
encapsulation, higher-order programming and lazy evaluation.

MULTI-PARADIGM

The functional programming concepts are also implemented in most
mainstream languages along with mutable states and object-oriented
concepts. Major recent programming languages now commonly present
higher-order functions, including Java 8 and C++ 11. The main multi-
paradigm languages are Javacript, Python, Ruby and Scala [135]. These
multi-paradigms languages combine the different paradigms to help de-
veloper building applications that are more maintainable, and favorable
to evolution [99, 172].

X

These different programming models present different approaches
to provide productivity, as recapped in table 3.1. The imperative pro-
gramming model is less productive than the other, as it is the oldest
one. The two following - Object-Oriented, and Functional Program-
ming - adopted different approaches to improve upon it. And finally,
the last one selected improvements from the two diverging approaches
as the development practices evolved.

3http://bit.ly/mail-alan-key-meaning-oop

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 29

http://bit.ly/mail-alan-key-meaning-oop

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

Productivity

Model

Efficiency

Implementations

Imperative
Programming

Fortran, Algol, Cobol and C

@ | Composition
@® | Encapsulation

@ | Productivity

Object-Oriented
Programming

Functional
Programming

Scheme [147], Miranda [171],
Haskell [98] and Standard ML
[126]

Multi Paradigm

Javacript, Python, Ruby and
Scala [135]

Table 3.1 — Productivity of Modular Programming Platforms

3.2.2 STEERING BACK TOWARD EFFICIENCY

As stated previously, adoption relies on productivity as well as effi-
ciency. Industrial actors often supply resources to improve the effi-
ciency of major productive languages. The performance improvement
on the V8 Javascript execution engine is a good example*. The increas-
ing adoption of Javascript can be explained both by its productivity,
and by its increased efficiency.

4http://bit.ly/V8-optimization

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 30

http://bit.ly/V8-optimization

Percentages

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

w,,v w ALY oy

)
T A M\/ ‘d"‘\AA 5 VO&'
~ ..~A.~ A
2002 2004 2006 2008 2010 2012 2014

Figure 3.2 - TIOBE ranking

COMMUNITY

As of December 2015, Javascript ranks 8th according to the TIOBE
Programming Community index, and was the most rising language in
2014. This index measures the popularity of a programming language
with the number of results on many search engines. And it ranks 7th
on the PYPL. The PYPL index is based on Google trends to measure
the number of requests on a programming language.

From these indexes, the major programming languages are Java,
C++, C, C# and Python. These languages are still widely used by
their communities and in the industry.

Online collaboration tools give an indicator of the number of de-
velopers and projects using certain languages. Javascript is the most
used language on Github® and the most cited language on StackQuver-
flouS. Tt represents more than 320,000 repositories on Github. The
second language is Java with more than 220,000 repositories. It is cited
in more than 960,000 questions on StackQuverflow while the second is
Java with around 940,000 questions. And according to a survey by
StackOverflow, it is currently the language the most popular’. More-
over, the Javascript package manager, npm, has the most important
and impressive package repository growth.

5the most important collaborative development platform.
Sthe most important Q&A platform for developers.
"http://bit.ly/stackoverflow-developer-survey-2015

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 31

@ Javascript
@ Java
eC
@ C++
@® Csharp
Python
PHP
@ Visual Basic .NET
@® Assembler
® Ruby

http://bit.ly/stackoverflow-developer-survey-2015

@

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

1 @ Javascript
Java
5 []
® Ruby
3 ©® PHP
4 ® Python
® CSS
5_
= @ C++
& 6 @® Csharp
\ / ° c
74 © ObjectiveC
8 @ Perl
9
10 rrrTrTTTTT TTTTT T T T T T T rrrTprTTrTTTTTT T
200 2010 2012 2014
Figure 3.3 - Languages Ranks from number of Github projects
1,000,000 3 @ Javascript
C
900,000 ¢
@ C++
800,000 ® Java
700,000 ©® PHP
600,000 ® Ruby
9 ® Python
@ 500,000 ® sal
400,000
300,000
200,000
100,000
0 T 1

2010 2012 2014

Figure 3.4 - StackOverflow Tags evolution

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 32

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

220,000 7 @® npm (node.js)
200,000 @® Maven Central (Java)
180,000 ® Rubygems.org
® GoDoc (Go)
12010100 @ Packagist (PHP)
140,000 PyPI (Python)
é 120,000 @ nuget (NET)
§ 100,000 - ® CPAN (Perl)
80,000 /
60,000
40,000 e
20,000 _.. — ’7%
04— T TrTTTT ‘_I—‘—‘—ﬁ I
2012 2014 2016
Figure 3.5 - Module Counts per package manager
INDUSTRY

The industrial actors avoid to disclose their activities believing it grants
them an edge on the competition. The previous metrics represent the
visible activity but are barely representative of the software indus-
try. The trends on job opportunities give some additional hints on
the situation. Javascript is the third most wanted skill, according to
Indeed?®, right after SQL and Java.? Moreover, according to breaz.io'?,
Javascript developers get more opportunities than any other develop-

ers. Javascript is increasingly adopted in the software industry.

X

Multi paradigm languages like Javascript are the most widely used
by the community and the industry, as presented in table 3.2. OOP
and Imperative Programming remains strong in the industry, but are
slightly less active in the community. As detailed previously, the
main OOP languages are steering toward the multi-paradigm approach.
With lambda, for example. Functional Programming is not well rep-
resented. It comes mainly from the academy, and failed to penetrate
the academy nor the industry.

8http://www.indeed.com

http://bit.ly/indeed-developer-jobs-comparator

Opreaz.io https://breaz.io/ was recently acquired by hired https://hired.
com/.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 33

http://www.indeed.com
http://bit.ly/indeed-developer-jobs-comparator
https://breaz.io/
https://hired.com/
https://hired.com/

3.2.3

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

ge
8
Is =
. & E
g3 % B,
g & 5 S
. S & E .s
Model Implementations O a4 —= <
Imperative Fortran, Algol, Cobol and C O 6 (2]
Programming
Object-Oriented C++ [159] and Java [68] o6 o
Programming
Functional Scheme [147], Miranda [171], (1 2] (1)
Programming Haskell [98] and Standard ML
[126]
Multi Paradigm Javacript, Python, Ruby and) (3]

Scala [135]

Table 3.2 — Adoption of Modular Programming Platforms

EFFICIENCY LIMITATIONS

Eventually, the presented languages are hitting a wall on their way
to performance. They provide global memory abstraction on which to
rely to assure encapsulation and composition. Functional programming
relies on immutable message-passing. It might impact performance at
a fine-grain level because of heavy memory usage. And the synchro-
nization required by mutable state is often hard to develop with [2], or
avoid parallelism [137, 110]. These results are recapped in table 3.3.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf

© [E. Brodu], [2016], INSA Lyon, tous droits réservés 34

3.2

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

< 2
L o
£Z 2%
£ 2 & .
'®m & 8w g S
B2 g EY E
OO0 Bz m O
£ E 8¢ 2 E
Model Implementations L 727082 & 5@
Imperative Fortran, Algol, Cobol and (4) (1) (1)
Programming C
Object-Oriented ~ C++ [159] and Java [68] (4] (1) (1)
Programming
Functional Scheme [147], Miranda (1) (4) (1)
Programming [171], Haskell [98] and
Standard ML [126]
Multi Paradigm Javacript, Python, Ruby (4) (1) (1)

and Scala [135]

Table 3.3 — Efficiency of Modular Programming Platforms

The only solution to provide performance efficiency is to combine
mutable state at a fine-grain level and immutable state at a coarse-grain
level 1. That is to provide both synchronization and message-passing
to allow parallelism. The platforms extending these languages with
concurrent or parallel paradigms to improve efficiency are addressed in
the next section.

SUMMARY

The platforms presented in this section recount the evolution of main-
stream development toward productivity. From Imperative Program-
ming to Multi-Paradigms, languages improved the development pro-
ductivity. This improvement in productivity is steered by the commu-
nity as well as the industry. The community is attracted by the most
productive languages to quickly learn and start new projects. While
the industry makes them more attractive by providing resources to
improve their efficiency. These mainstream languages became heavily
adopted because of the interaction of the industry and the commu-
nity. However, there is inherently a limitation to the efficiency of these
productive languages.

These languages are productive, but this efficiency limitation avoid
an unanimous adoption, as summarized in table 3.4.

Hhttp://bit.ly/joe-duffy-immutability-concurrency

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf

© [E. Brodu], [2016], INSA Lyon, tous droits réservés 35

http://bit.ly/joe-duffy-immutability-concurrency

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

ey
2 B o
QT &
. 2 & <
Model Implementations A <
Imperative Fortran, Algol, Cobol and C (3N 1X2)
Programming
Object-Oriented C++ [159] and Java [68] 00
Programming
Functional Scheme [147], Miranda [171], OO0 0
Programming Haskell [98] and Standard ML
[126]
Multi Paradigm Javacript, Python, Ruby and 06

Scala [135]

Table 3.4 — Summary of Modular Programming Platforms

3.3 EFFICIENCY FOCUSED PLATFORMS

To cope with the limitations the previous section concludes on, both the
academia and the industry suggested solutions discarding productivity
to focus on efficiency. Among these solutions, the concurrent and par-
allel programming paradigms are presented in section 3.3.1 They are
evaluated against the same criteria than the previous section - Produc-
tivity, Efficiency and Adoption. This evaluation illustrates the impact
of this shift of focus on the adoption of these platforms, as presented
in section 3.3.2. Finally, section 3.3.3 presents the limitations of par-
allelism on productivity.

3.3.1 CONCURRENCY

Productivity

Efficiency =

Web servers need to be able to process lots of concurrent operations
in a scalable fashion. Concurrency is the ability to make progress on

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 36

13

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

several operations roughly simultaneously. It implies to draw memory
boundaries to define independent regions, or to define causality in the
execution of tasks. When both boundaries and causality are clearly
defined, the tasks are independent and can be scheduled in parallel to
make progress strictly simultaneously.

The definition of independent tasks allows the fine level synchro-
nization within a task, and coarse level message passing between the
tasks required for performance efficiency. The synchronization of ex-
ecution at a fine level assures the invariance on the shared state, and
avoid communication overhead. The message-passing at a coarser level
assures the parallelism. The two are indispensable for efficiency.

CONCURRENT PROGRAMMING

No matter how great the talent or efforts, some
things just take time. You can’t produce a baby
i one month by getting nine women pregnant.”

— Warren Buffett!?

Concurrent programming provides the mechanisms to assure atom-
icity of concurrent operations. They define the causal scheduling of
execution and assure the invariance of the global memory. There are
two scheduling strategies to execute concurrent tasks on a single pro-
cessing unit, cooperative scheduling and preemptive scheduling.

Cooperative Scheduling allows a concurrent execution to run until
it yields back to the scheduler. Each concurrent execution has an
atomic, exclusive access on the memory.

Preemptive Scheduling allows a limited time of execution for each
concurrent execution, before preempting it. It assures fairness
between the tasks, such as in a multi-tasking operating system.
But the unexpected preemption breaks atomicity, the developer
needs to lock the shared state to assure atomicity and exclusivity.

The event-driven programing model relies on cooperative schedul-
ing, and the multi-threading programming model relies on preemptive
scheduling.

RZhttp://bit.ly/warren-buffet-quote

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 37

http://bit.ly/warren-buffet-quote

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

EVENT-DRIVEN PROGRAMMING

In the event-driven execution model, developers explicitely split the
application into several concurrent tasks called handlers. The execu-
tion model schedules these handlers sequentially with the queue of
events, to assure exclusivity on shared resources, and cooperatively
to assure atomicity. Moreover, they communicate with the resources
asynchronously to avoid waiting. A handler yields execution to the
next handler to complete the communication.

Promises were introduced as an help to nicely chain these concur-
rent handlers [117]. A promise is a placeholder for a future result
allowing to defer operations for when the result is available. It layouts
the concurrent handlers in chains, similarly to a pipeline.

This execution model is very efficient for highly concurrent appli-
cations as it avoids contention. Several platform rely on this execution
model, like TAME [110], Node.js'® and Vert.X!*. As well as some web
servers like Flash [137], Ninja [69] thttpd!'® and Nginx!®.

Though, the event-driven model is limited in performance because
of the global memory. The handlers cannot be scheduled in parallel.
Lock-free data-strincture intends to improve performance by reducing
the atomic portions of operations to a minimum.

LOCK-FREE DATA-STRUCTURES

The wait-free and lock-free data-structures use atomic operations
small enough so that locking is unnecessary [112, 88, 86, 87, 9]. They
provide concurrent implementations of basic data-structures such as
linked list [174, 168], queue [161, 180], tree [143] and stack [85]. They
rely on instructions provided by transactional memories [81] that com-
bine read and write instructions.

Lock-free Data-structures allow parallelization of the concurrent
tasks, but are mostly unavailable on common hardware. Multi-threading
intends to provide parallelization with software protection.

MULTI-THHREADING PROGRAMMING

Threads are small execution containers sharing the same memory
execution context within an isolated process [51], and scheduled in par-
allel with fork/join instructions [144, 61, 114]. They execute statements
synchronously and are preempted to avoid blocking the progression of
other threads. Without protection, the preemption breaks the atomic-
ity and exclusivity of memory accesses. To assure atomicity and exclu-
sivity, hence invariance, multi-threading programming models provide
protection mechanisms, such as semaphores [48], guarded commands
[49], guarded region [80] and monitors [94].

Developers tend to use the global memory extensively, and threads
require to protect each and every shared memory cell. This heavy

Bhttps://nodejs.org/en/
Mhttp://vertx.io/
Bhttp://acme.com/software/thttpd/
https://www.nginx.com/

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 38

https://nodejs.org/en/
http://vertx.io/
http://acme.com/software/thttpd/
https://www.nginx.com/

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

need for synchronization leads to bad performances, and is difficult to
develop with [2].

HYBRID MODELS

Hybrid models intend to join the productivity advantage of syn-
chronous execution from thread, with the efficiency advantage of asyn-
chronous execution from events-driven models. The implementations
of hybrid models are libasync [42], InContext [183], Fibers [2], Capric-
cio [18] and Monadic hybrid concurrency [116]. For example, coopera-
tive threads, or fibers, avoid splitting the execution into atomic tasks
nor use protection mechanisms to assure exclusivity. A fiber yields
the execution to another fiber to avoid blocking the execution during
a long-waiting operation, and recovers it at the same point when the
operation finishes. However, it wasn’t adopted in practice. Hiding
the yielding points effectively hide the preemption. Developers cannot
protect atomicity of operations, which increases the likeliness of race
conditions 7.

LIMITATION OF CONCURRENT PROGRAMMING

The presented concurrent programming paradigms assure sequen-
tiality of execution within a task and the causal ordering between
tasks. Multi-threading imposes heavy protection mechanisms and fails
to avoid contention because of the preemptive scheduling. Hybrid mod-
els try to improve over multi-threading using cooperative scheduling.
But the synchronous execution imposed by these two models is exces-
sive. It impacts performance, and is difficult to manage efficiently.

The causal ordering between tasks proposed by the event-driven ex-
ecution model is sufficient to assure correctness of execution [111, 146].
And it is easier for developer to define causal scheduling than to assure
the consistency of memory with protection mechanisms. But because
of the lack of memory isolation, the concurrent tasks are not sched-
uled in parallel. It impacts efficiency, as detailed in table 3.5. Parallel
programming is the only solution for efficiency, at the expense of devel-
opment efforts to explicitly define the memory isolation of concurrent
tasks and their communications by message passing.

PARALLEL PROGRAMMING

The Flynn’s taxonomy [57] categorizes parallel executions in function of
the multiplicity of their flow of instruction and data. Parallel program-
ming models belong to the category Multiple Instruction Multiple Data
(MIMD), which is further divided into Single Program Multiple Data
(SPMD) [12, 44, 45] and Multiple Program Multiple Data (MPMD)
(31, 29]. SPMD defines a single program replicated on many process-
ing units [41, 103, 30] — it is roughly derived from the multi-threading
programming model presented above. While MPMD defines multiple

"http://bit.ly/deciphering-glyph-unyielding

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 39

http://bit.ly/deciphering-glyph-unyielding

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

parallel tasks in the implementation [70, 59, 58]. The two major the-
oretical models for MPMD parallel programming are the Actor Model
and Communicating Sequential Processes.

ACTOR MODEL

The Actor Model allows to express the causal ordering of compu-
tation as a set of parallel actors communicating by asynchronous mes-
sages [89, 90, 37]. In reaction to a received message, an actor can create
other actors, send messages, and choose how to respond to the next
message. In reality, communications are too slow compared to execu-
tion to be synchronous, and are subject to various faults and attacks
[113]. The Actor model takes these physical limitations into account
[91].

COMMUNICATING SEQUENTIAL PROCESSES

Similar works include the Communicating Sequential Processes (CSP)
[93, 23], and the Kahn Networks [106, 107]. Coroutines are autonomous
programs which communicate with adjacent modules as if they were
input and output subroutines [40]. It defines a pipeline to implement
multi-pass algorithms.

The difference between Actors and Coroutines lie in the definition
of the communication. Actors send messages to named actors, whereas
Coroutines communicate through named channels.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 40

3.3.2

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

SUMMARY OF CONCURRENT AND PARALLEL PROGRAM-
MING MODELS

Compared to parallel programming, the concurrent programming mod-
els are unable to correctly isolate the concurrent tasks and communi-
cate by message-passing to allow parallelism. Hence the parallel pro-
gramming models are more efficient than the concurrent programming
models, as detailed in table 3.5.

= =
L o
£ 25
£ 2 3 o
ER <
Sz 3 B2 Z
90 BEg @ O
g8 3> 3 &=
Model Implementations ~ 2 O0O2 a5 M\
Event-driven TAME [110], Node.js'® and @ (2]
programming Vert. X!?
Lock-free linked list [174, 168], queue @ (2]
Data-Structures [161, 180], tree [143] and
stack [85]
Multi-threading ~ semaphores [48], guarded (1) (1)
programming commands [49], guarded
region [80] and monitors
[94]
Hybrid Models libasync [42], InContext (1) (1)

[183], Fibers [2], Capriccio
[18] and Monadic hybrid
concurrency [116]

Actor Model Erlang [11, 129, 10], Scala
Actors [78], Akka® and
Play?!

Communicating ~ Go??

Sequential

Processes

Table 3.5 — Efficiency of Concurrent and Parallel Programming Plat-
forms

STEERING BACK TOWARD PRODUCITIVITY

When the need for efficiency is higher than the need for productivity,
the adoption is steered by the industry more than the community.
If the industry really needs a platform, it will commit the required
development effort despite low productivity.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 41

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

Productivity

)
N

Efficiency

The platforms for the Mars Rovers or
some banking systems are about 30 years

old, yet the industry continues to maintain o
them. The platform presented in this sec- R
tion emerged from the academia and the in- J[1 o'ﬂ
dustry but are often barely known by the N
larger community of developers. The more PN . ®3

the platform trades productivity for effi-
ciency, the less support it receives from the
community.

CONCURRENT PROGRAMMING

Most programming language implementations support concurrent pro-
gramming. Either with multi-threading or event-driven programming.
These two are highly adopted by both the industry and the community,
as presented in table 3.6.

On the other hand, lock-free data structures and cooperative threads
comes from the academia, similarly to functionnal programming, and
did not encounter significant adoption from the community.

PARALLEL PROGRAMMING

Several platforms were directly inspired by the actors model, like Erlang
[11, 129, 10], Scala Actors [78], Akka®? and Play?!. Scala is a program-
ming language unifying the object model and functional programming.
Akka is a framework based on Scala, following the actor model to build
highly scalable and resilient applications. Play is a web framework
based on top of Akka. And Erlang is a functional language designed
by Ericsson to operate networks of telecommunication devices [11, 129,
10]

Other platforms were inspired by other theoretical model, like Go??,
inspired by Coroutines and CSP. Go is an open source language initi-
ated by Google to build highly concurrent services.

These examples of implementation are largely used in the industry,
but are almost unknown outside of it. They are backed by strongly
passionated but small communities.

Bhttp://akka.io/
Zhttps://www.playframework.com/
25https://golang.org/

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 49

http://akka.io/
https://www.playframework.com/
https://golang.org/

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

Indeed, it is difficult for developers to manage the superposition
of these two organizations, tasks and modules. The organization in
independent tasks is hardly compatible with the modular organiza-
tion presented in the previous section. This superposition makes these
platforms accessible only to an elite in the industry supporting it. To
mitigate this difficulty, various platforms help organizing the tasks,
or adopt the same granularity for modules and tasks to fit the two
organizations.

TASKS ORGANIZATION AND COMMUNICATIONS

To reduce the difficulties of the superposition of tasks and mod-
ules, algorithmic skeletons propose predefined patterns of organization
to fit certain types of problems [38, 46, 124, 67]. Developers focus on
their problem and delegate the communications to specialized skele-
tons. These solutions are hardly used by the community, but are cru-
cial in some industrial contexts. A famous example is the map/reduce
pattern introduced by Google [46].

TASKS GRANULARITY

The Service Oriented Architectures (SOA) allows developers to ex-
press an application as an assembly of services connected to each others.
Some examples of SOA platforms are OSGi?®, EJB?” and Spring?®. It
allows to adjust the granularity of tasks to help developers to better
fit the tasks organization with the modular organization [1].

More recently, Microservices are tackling the same challenge on the
web, with a finer granularity [55, 60, 128]. An example of Microservice
platform is Seneca?”. Microservices are very recent, and it is difficult
to asses their usage in the community nor the industry. But they seem
to be increasingly adopted, both in the industry and in the community.

X

The parallel programming platforms previously presented allow to
build generic distributed systems. In the context of the web, a real-
time application must process high volumes streams of requests within
a certain time. This requirement imposes specific challenges for the
platforms.

26https://www.osgi.org/developer/specifications/
2Thttp://www.oracle.com/technetwork/java/javaee/ejb/index.html
28http://projects.spring.io/spring-framework/
29http://senecajs.org/

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 43

https://www.osgi.org/developer/specifications/
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://projects.spring.io/spring-framework/
http://senecajs.org/

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

STREAM PROCESSING SYSTEMS
DATA-STREAM MANAGEMENT SYSTEMS

Database Management Systems (DBMS) historically processed large
volumes of data, and they naturally evolved into Data-stream Manage-
ment System (DSMS) to process data streams as well. Because of this
legacy, they are in rupture with MPMD platforms presented until now.
They borrow the syntax from SQL to run requests in parallel on con-
tinuous data streams. The computation of these requests spread over a
distributed architecture. Some recent examples are Dryad LINQ [101,
185], Apache Hive [167], Timestream [140], Shark [182].

PIPELINE STREAM PROCESSING

On the other hand, the pipeline architecture is directly inspired by
the Actors Model and CSP. It organizes an application as a network
of event-driven stages connected by explicit queues, the output of one
feeding the input of the next [179]. The event-driven paradigm of a
stage is similar to work like Ninja [69] and Flash [137] previously pre-
sented. But the independence of stages allow to spread the execution on
a parallel architecture. The academic works and industrial implemen-
tations of pipeline architecture are SEDA [179], StreaMIT [166], Spidle
[39], Aspen [173], Pig Latin [136], MEDA [79], CBP [118] and S4 [131]
designed at Yahoo, Piccolo [139], Comet [84], Nectar [72], SEEP [125],
Legion [15], Spark Streaming [187], Naiad [127] designed at Microsoft,
Millwheel [4] designed at Google, Halide [142], Storm [169] by Twitter,
SDG [54], Regent [154] and Neptune [25].

X

Parallel programming emerges mainly from industrial needs and
academic research but is barely supported by the community. The
implementations improve efficiency. But their weak productivity pre-
vents their adoption by the community. As summarized in table 3.6,
the event-driven programming model is the best candidate for a con-
current programming model regarding adoption. It is supported by the
community, and responds to concrete needs in the industry.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés A4

3.3.3

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

o
g
= o
LT
g3 % B,
g & 5 S
. 3 5 g <
Model Implementations O a4 —= <
Event-driven TAME [110], Node.js** and
programming Vert. X3!
Lock-free linked list [174, 168], queue 0® 0 (0
Data-Structures [161, 180], tree [143] and stack
[85]
Multi-threading semaphores [48], guarded (3) (3)
programming commands [49], guarded region
[80] and monitors [94]
Hybrid Models libasync [42], InContext [183], @ @ (0
Fibers [2], Capriccio [18] and
Monadic hybrid concurrency
[116]
Actor Model Erlang [11, 129, 10], Scala (1) (1)

Actors [78], Akka3? and Play3?

Communicating Go3*

(1 (1
Sequential Processes
(2 (2

Skeleton MapReduce

Service Oriented 0OSGi*, EJB3¢ and Spring®” e O 6
Architecture

Microservices Seneca3® ® 6 (3)

Table 3.6 — Adoption of Concurrent and Parallel Programming Plat-
forms

PRODUCTIVITY LIMITATIONS

Parallel programming requires the organization of execution and mem-
ory into independent tasks. This independence imposes different gran-
ularity of state accessibility. At a fine level, the state is shared, while
at a coarser level, it is isolated. It avoids higher-order programming.
Hence, it limits the composition of modules and negatively impacts
productivity.

Without this composition between modules, parallel programming
forces to develop two mental representations — one for the module orga-
nization and one for the task organization — or to abandon the module

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf

© [E. Brodu], [2016], INSA Lyon, tous droits réservés 45

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

organization and productivity altogether. It makes parallel program-
ming accessible only to an elite of developers that are able to be pro-

ductive despite the two mental representations, as presented in table
3.7.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 46

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

=
= .9 B
o B =
= < >
2E B
o, & =
-
Model Implementations O B = A
Event-driven TAME [110], Node.js* and @6 6
programming Vert. X4
Lock-free linked list [174, 168], queue [161, & & @
Data-Structures 180], tree [143] and stack [85]
Multi-threading semaphores [48], guarded 00 (4)
programming commands [49], guarded region
[80] and monitors [94]
Hybrid Models libasync [42], InContext [183], @ @ (4)
Fibers [2], Capriccio [18] and
Monadic hybrid concurrency
[116]
Actor Model Erlang [11, 129, 10], Scala (2N 2] (2]
Actors [78], Akka' and Play*?
Communicating Go* 0O O

Sequential Processes

Data Stream System DryadLINQ [101, 185], Apache @ @) (2]
Management Hive [167], Timestream [140],
Shark [182]

Pipeline Stream SEDA [179], StreaMIT [166], 06 O

Processing Spidle [39], Aspen [173], Pig
Latin [136], MEDA [79], CBP
[118] and S4 [131] designed at
Yahoo, Piccolo [139], Comet
[84], Nectar [72], SEEP [125],
Legion [15], Spark Streaming
[187], Naiad [127] designed at
Microsoft, Millwheel [4] designed
at Google, Halide [142], Storm
[169] by Twitter, SDG [54],
Regent [154] and Neptune [25]

Table 3.7 — Productivity of Concurrent, Parallel and Stream Program-
ming Platforms

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés A7

3.3

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

SUMMARY

The parallel programming platforms presented in this section focus
more on efficiency than productivity. Whereas the concurrent pro-
gramming platforms feature better productivity. But no platform fea-
tures both productivity and efficiency, as presented in table 3.8. More-
over, this lack of versatility impacts adoption. These platforms re-
main inaccessible for the community. Exception for Event-driven and
Multi-threading programming which are among the productive ways
to achieve concurrency.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 48

Model

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

Implementations

Productivity
Efficiency
Adoption

Event-driven
programming

TAME [110], Node.js** and
Vert. X%

Lock-free
Data-Structures

linked list [174, 168], queue [161,
180], tree [143] and stack [85]

Multi-threading
programming

semaphores [48], guarded
commands [49], guarded region
[80] and monitors [94]

Hybrid Models

libasync [42], InContext [183],
Fibers [2], Capriccio [18] and
Monadic hybrid concurrency [116]

Actor Model

Erlang [11, 129, 10], Scala Actors
(78], Akka'® and Play?

Communicating
Sequential Processes

Data Stream System
Management

DryadLINQ [101, 185], Apache
Hive [167], Timestream [140],
Shark [182]

Pipeline Stream
Processing

SEDA [179], StreaMIT [166],
Spidle [39], Aspen [173], Pig Latin
[136], MEDA [79], CBP [118] and
S4 [131] designed at Yahoo,
Piccolo [139], Comet [84], Nectar
[72], SEEP [125], Legion [15],
Spark Streaming [187], Naiad
[127] designed at Microsoft,
Millwheel [4] designed at Google,
Halide [142], Storm [169] by
Twitter, SDG [54], Regent [154]
and Neptune [25]

Table 3.8 — Summary of Concurrent and Parallel Programming Plat-

forms

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 49

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

3.2 COMPROMISE BETWEEN PRODUCTIVITY AND
EFFICIENCY

The platforms previously presented focus on productivity or efficiency.
The previous section concludes that favoring one negatively impacts
the other. Moreover, a balance between productivity and efficiency is
required to be both supported by the community and needed by the
industry, hence to trigger a virtuous circle of adoption. Some platforms
feature an abstraction of the task organization to allow developers to
focus on the modular organization to keep both productivity and effi-
ciency. This abstraction happens either at compile time or at runtime.

Productivity

Efficiency

3.1 ABSTRACTION OF TASKS ORGANIZATION

COMPILERS

66 It is a mistake to attempt high concurrency with-
out help from the compiler.”

— R. Behren, J. Condit, E. Brewer [17]

The idea to bridge the gap between the tasks and modules organi-
zations dates from the initial paper that presented this gap, in 1972 by
D. Parnas [138]. However, the implementation of this idea remains a
work in progress.

PARALLELISM EXTRACTION

To extract parallelism from a sequential implementation, a com-
piler needs to identify the commutative operations to parallelize their
executions [148; 36]. The parallelization of loop iterations has been
thoroughly studied [123, 6, 34, 13, 141], particularly with the polyhe-
dral compilation method [14]. Examples of polyhedral compilers are
AlphaZ [186], Polly [71] and GRAPHITE [170]. To improve perfor-
mance gains outside of loops, some compilers identify parallelism in
the data-flow representation on the whole program [16, 27, 115].

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 50

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

Data processing applications [54] such as web services [150] are often
already organized as data-flow. In higher-order programming, contin-
uous passing style and promises encourage this data-flow organization.
However, the mutable closures required for higher-order programming
remains a challenge to parallelize because they rely on a globally shared
memory [82, 132, 122]. To extract parallelism, compilers rely on static
analysis or notations from the developers.

STATIC ANALYSIS

Compilers analyze the source code of a program to detect commuta-
tive operations in the control flow [5]. The point-to analysis is a static
analysis method. It identifies multiple symbolic names pointing to the
same memory location. That is called aliasing. Hence it idenfities side-
effects [8, 102, 156, 178] between operations, which allows to infer their
commutativity. Another method, the abstract interpretation, is to in-
terpret the possible path of executions with virtual inputs. It allows
to statically reason on the behavior of dynamic programs [119, 155,
63, 77, 145, 62, 19]. It is successfully used for security applications to
detect malicious scripts, or obfuscate code [97, 105, 184, 120, 35, 52]

However, these static analysis methods remains often too imprecise,
and expensive for the performance gain to be profitable in dynamic
languages, such as Javascript [152]. Instead, some compilers rely on
annotations from the developers.

ANNOTATIONS

Some works proposed to rely on annotations from the developer
to identify the shared data structures and infer the commutativity of
operations [175, 54]. Such annotations are especially relevant for accel-
erators such as GPUs or FPGAs, because the development effort yields
huge performance improvements [164]. Examples of such compilers are
OpenMP [43], OpenCL [158], CUDA [134], Cg [121], Brook [24] and
Liquid Metal [96].

COMPILATION LIMITATIONS

For dynamic languages like Javascript, the static analysis is not suf-
ficient to correctly infer the independence of tasks to parallelize them.
Parallel compilers often fall back on relying on annotations provided
by developers. Hence, the burden of detailing the tasks and memory
organizations falls back to the developer. It impacts productivity and
adoption.

RUNTIMES

At runtime, the uncertainties on the independence of tasks are re-
solved. It allows analysis precise enough to detect and distribute the
commutative operations.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 51

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

PARTITIONED GLOBAL ADDRESS SPACE

The Partitioned Global Address Space (PGAS) provides a uniform
access on a distributed memory architecture. It attempts to combine
the efficiency of distributed memory systems, with the productivity of
shared memory systems. Each computing node executes the same pro-
gram, and provides its local memory to be shared with all the other
nodes. The PGAS platform assures the remote accesses and synchro-
nization of memory across nodes. Examples of implementations of the
PGAS model are CoArray Fortran [133], X10 [33], Unified Parallel C
[65], Chapel[28], OpenSHMEM [32], Kokko [53], UPC++ [188], RAJA
[95], ACPdI [3], HPX [108, 109].

DYNAMIC DISTRIBUTION OF EXECUTION

Following SEDA, Leda proposes a model where the independent
stages of the pipeline are defined only by their role in the application
[150, 151]. The execution distribution and module organization are
different. The actual execution distribution is defined automatically
during deployment. This automation manages the execution organiza-
tions to help the developer focus on the modular organization.

PRODUCTIVITY AND EFFICIENCY

The platforms presented in this section intend to merge both produc-
tivity and efficiency in a single platform by bringing parallelism to pro-
ductivity languages. Because they are based on productivity languages,
they feature decent encapsulation, but they limit the use of higher-
order programming between tasks to allow their isolation. Hence, it
degrades composition, as presented in table 3.9.

Despite worse productivity, this parallelization bring good efficiency,
as presented in table 3.11.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 592

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

Model Implementations

® | Composition
@® | Encapsulation
® | Productivity

Polyhedral Compilers AlphaZ [186], Polly [71] and
GRAPHITE [170]

Annotation OpenMP [43], OpenCL [158],
Compilers CUDA [134], Cg [121], Brook
[24] and Liquid Metal [96]

®
©
®

®

Partitioned Global CoArray Fortran [133], X10 [33], & @
Address Space Unified Parallel C [65],
Chapel[28], OpenSHMEM [32],
Kokko [53], UPC++ [188],
RAJA [95), ACPdI [3], HPX
108, 109]

Dynamic Distribution Leda [150, 151] 00 O

Table 3.9 — Productivity of Compilation and Runtime Platforms

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 53

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

= =
e
T 2%
] N <]
=2 B & &
D322 8
O O = T) % O
5 g o = < EE
Model Implementations L rO0R2 &5 &
Polyhedral AlphaZ [186], Polly [71] and @& (4) (4)
Compilers GRAPHITE [170]
Annotation OpenMP [43], OpenCL ® (4) (4]
Compilers [158], CUDA [134], Cg
[121], Brook [24] and Liquid
Metal [96]
Partitioned Global CoArray Fortran [133], X10 @) (4] (4)

Address Space [33], Unified Parallel C [65],
Chapel[28], OpenSHMEM
[32], Kokko [53], UPC++
[188], RAJA [95], ACPdl
[3], HPX [108, 109]

Dynamic Leda [150, 151] (4] (4] (4]
Distribution

Table 3.10 — Efficiency of Compilation and Runtime Platforms

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 54

3.3

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

LIMITATION

The platforms presented in this section come from the need of the
industry to reduce the development commitment required for efficiency.
However, these platforms respond exclusively to academic or industrial
needs, and are barely supported by the community, as presented in
table 3.11.

The balance between efficiency and productivity is not sufficient for
a community of passionates to arise. To be largely adopted, the plat-
form need grow with its community. That implies allowing novices to
start learning and experimenting at small scale. It incites the commu-
nity to start projects, and grow them organically to build businesses.
The context of web development is particularly adapted for this growth.

.=!
3
= =
=. £ &
222 %
: 35 %3T T
Model Implementations Oar 2 > <
Polyhedral AlphaZ [186], Polly [71] and (0 (3 (0
Compilers GRAPHITE [170]
Annotation OpenMP [43], OpenCL [158], @& & (2]
Compilers CUDA [134], Cg [121], Brook

[24] and Liquid Metal [96]

@

Partitioned Global — CoArray Fortran [133], X10 (1 (3]
Address Space [33], Unified Parallel C [65],

Chapel[28], OpenSHMEM [32],

Kokko [53], UPC++ [188],

RAJA [95], ACPdI [3], HPX

108, 109]

Dynamic Leda [150, 151] 0O 0 o0
Distribution

Table 3.11 — Adoption of Compilation and Runtime Platforms

SUMMARY

This section observed that a platform cannot trade productivity against
efficiency without massively losing the community required to trigger
the adoption, as detailed in table 3.12. Indeed, in both the static
compilation approach and the dynamic runtime approach, reducing
productivity eventually avoids the community to learn, and tweak with
the platform. Hence, as the adoption cannot rise from the community,
it breaks the reinforcing loop between industry and community.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf

© [E. Brodu], [2016], INSA Lyon, tous droits réservés 55

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

Yet, the dynamic runtime approach has not been exhaustively ex-
plored.

Model Implementations

® | Productivity
@ | Efficiency
® | Adoption

Polyhedral Compilers AlphaZ [186], Polly [71] and
GRAPHITE [170]

Annotation Compilers OpenMP [43], OpenCL [158],
CUDA [134], Cg [121], Brook [24]
and Liquid Metal [96]

®
)
®

Partitioned Global CoArray Fortran [133], X10 [33], @ @ @
Address Space Unified Parallel C [65], Chapel[28],
OpenSHMEM [32], Kokko [53],
UPC++ [188], RAJA [95], ACPdl
[3], HPX [108, 109]

Dynamic Distribution Leda [150, 151] OO0

Table 3.12 — Summary of Compilation and Runtime Platforms

3.5 DISCONTINUOUS DEVELOPMENTS

The previous sections presented a broad view of platforms and their
balance between productivity and efficiency. It established that the
platforms favoring one eventually sacrifice the other. Moreover, the
adoption of these platforms proves that none of these compromises are
sustainable. Indeed, as presented in table 3.13, no platforms provides
productivity, efficiency and adoption.

e
2 b o
° T &
, e E T
Model Implementations A <
Imperative Fortran, Algol, Cobol and C (3N 1X2)
Programming
Object-Oriented C++ [159] and Java [68] 000
Programming

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 56

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

Functional Scheme [147], Miranda [171], (11 X1)
Programming Haskell [98] and Standard ML
[126]
Multi Paradigm Javacript, Python, Ruby and 006
Scala [135]
Event-driven TAME [110], Node.js*® and &0 6
programming Vert. X5
Lock-free linked list [174, 168], queue [161, & @& @
Data-Structures 180], tree [143] and stack [85]
Multi-threading semaphores [48], guarded OO0 6
programming commands [49], guarded region

[80] and monitors [94]

Hybrid Models libasync [42], InContext [183], 00
Fibers [2], Capriccio [18] and
Monadic hybrid concurrency [116]

Actor Model Erlang [11, 129, 10], Scala Actors @ @& @
[78], Akka®! and Play®?

Communicating Go™ (2 N5 X 1)

Sequential Processes

Data Stream System DryadLINQ [101, 185], Apache 60
Management Hive [167], Timestream [140],
Shark [182]

Pipeline Stream SEDA [179], StreaMIT [166], O60

Processing Spidle [39], Aspen [173], Pig Latin
[136], MEDA [79], CBP [118] and
S4 [131] designed at Yahoo,
Piccolo [139], Comet [84], Nectar
[72], SEEP [125], Legion [15],
Spark Streaming [187], Naiad
[127] designed at Microsoft,
Millwheel [4] designed at Google,
Halide [142], Storm [169] by
Twitter, SDG [54], Regent [154]
and Neptune [25]

Polyhedral Compilers AlphaZ [186], Polly [71] and OO0
GRAPHITE [170]

Phttps://nodejs.org/en/
SOhttp://vertx.io/
Slhttp://akka.io/
52https://www.playframework.com/
%https://golang.org/

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 57

https://nodejs.org/en/
http://vertx.io/
http://akka.io/
https://www.playframework.com/
https://golang.org/

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

Annotation Compilers OpenMP [43], OpenCL [158], (3 N4 N?2)
CUDA [134], Cg [121], Brook [24]
and Liquid Metal [96]

Partitioned Global CoArray Fortran [133], X10 [33], @ @ @
Address Space Unified Parallel C [65], Chapel[28],
OpenSHMEM [32], Kokko [53],
UPC++ [188], RAJA [95], ACPdl
(3], HPX [108, 109]

Dynamic Distribution Leda [150, 151] 0O00

Table 3.13 — Summary of the state of the art

X

This chapter concludes on similar ground
than the 1972 paper from D. Parnas [138]. Pro-

ductivity requires modularity through encapsu- Adoption

lation and composition. It requires higher-order recOires
programming which relies on a global mem-

ory abstraction as explained in section 3.2.3. Productivity Efficiency
Whereas efficiency requires a balance between l

fine-grain level shared state with synchroniza- ‘

. . . . Modularity

tion and coarse-grain level independence with

message-passing. This discontinuity between l

fine-grain level and coarse-grain level avoids the Composition
global memory abstraction, hence productivity.

The absence of a global memory abstraction re- l
serves efficient platforms for an elite of devel-
opers. No platform can support simultaneously
productivity and efficiency. Nonetheless, a plat- -
form needs to be adopted both by the indus- memory #Z
try and the community to be sustainable. D.

Parnas then suggested the use of compilation

techniques to bridge the gap between these two

extremes.

However, more than this problem of immediate incompatibility, the
problem holds on the evolution of the implementation. No platform is
able to follow a project from the early beginning until the industrial
maturation of the project. All the platforms tend to be stuck in a
compromise between these two goals, and cannot follow the evolution
required for this compromise. These compromises are rigidly defined,
while the need of the application is constantly evolving. They lack the
possibility to follow the organic evolution of a project. Therefore, a
project needs to change platform to change its priority, which leads to
economical consequences.

Higher-order
programming

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 58

Parallelism

Y

v
Isolated
memory

CHAPTER 3. SOFTWARE DESIGN, STATE OF THE ART

To avoid these consequences, platforms would need to support pro-
ductivity to allow the community to experiment, and organically start
projects. And then continuously shift toward efficiency as the project
evolves, and requires it. This thesis now explores this possibility.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 59

CHAPTER %

4

SEAMLESS SIHIFT FROM
PRODUCTIVITY TO EFFICIENCY

4.1 Proposition 61
4.1.1 Continuous Development 62
4.1.2 Equivalence 62
4.2 Execution Models 66
4.2.1 Event-Driven Execution Model 66
4.2.2 Fluxional Execution Model 68
4.2.3 Examples. oL 69
4.3 Conclusion e 73

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 60

4 CHAPTER %. SEAMLESS SHIFT FROM PRODUCTIVITY TO EFFICIENCY

Event Ioop P\pe\me

task task task

ﬂ% @%@%@

Figure 41 - Comparison of the two memory models

The evolution of the economical constraints of a web application
requires to continuously shift from productivity to efficiency. The in-
compatibility between the two organizations forces platforms to pro-
pose a compromise between the two. And it makes it impossible for
these platforms to follow the evolution of a web application. Hence, it
implies technological ruptures during this evolution. Huge developing
efforts are pulled to translate manually from one organization into the
other, and later to maintain the implementation.

.1 PROPOSITION

This thesis proposes a platform allowing a seamless shift of focus to
follow the development of a web application from the productivity re-
quired in the early beginning until the efficiency required during mat-
uration. Developers start a project without compromises on produc-
tivity, as the language targets the productive event-driven execution
model. Then, they continuously transform their implementation to
target the more efficient pipeline architecture.

Node.js implements Javascript with an event driven execution model
to implement web applications with decent performances. However,
the performance of this execution model is limited by the sequentiality
of execution required to preserve exclusivity of memory accesses. The
pipeline execution model oversteps this performance limitation. It en-
forces memory isolation between stages allowing the parallel execution
required for efficiency. But this isolation limits the productivity be-
cause it avoids higher-order programming. The difference between the
two execution models is reminded in figure 4.1, from figure 2.4.

Despite this difference, these two execution models present an in-
teresting similarity. They both organize the execution as a sequence of
tasks causally scheduled. This thesis proposes an equivalence between
these two execution models based on this similarity. Following this
equivalence, it proposes a compiler that distributes the global mem-
ory into isolated stages of the pipeline. Concretely, it transforms a
mono-threaded, event-driven application to run on a parallel pipeline
architecture.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 61

4 CHAPTER %. SEAMLESS SHIFT FROM PRODUCTIVITY TO EFFICIENCY

%.1.1 CONTINUOUS DEVELOPMENT

This transformation allows a continuity of compromises between pro-
ductivity and efficiency to seamlessly follow the shift of focus during
development.

At first, the focus remains on the productivity of development rather
than the efficiency of execution. The development begins with the
event-driven model to take advantage of the productivity of the global
memory abstraction. The execution resulting from the transformation
is as efficient as the original event-driven execution model.

During the maturation of the appli-
cation, the focus continuously shifts to-
wards efficiency. The transformation
distributes the global memory into iso-
lated stages as much as possible. It al-

sooqodaoc TR handler

ST Call stack

lows developers to identify the depen-

dencies in this global memory avoid- — \' U © | |[}o Asynchronous
ing the distribution. They can identify

these dependencies, and arrange the im- .- Data-flow

execution

plementation accordingly to allow par-
allelism. It helps developers to enforce
efficiency through continuous iteration,
instead of disruptive shifts of technology.

..lioie Continuation

2.1.2 EQUIVALENCE ’
The equivalence between these two ex- Figure 4.2 - Rupture point
ecution models is broken down in two
steps. The first step identifies the stages
in the control flow, by detecting rupture points between them. The sec-
ond step enforces memory isolation between these stages, and replaces
synchronization with message passing to preserve the invariance.

EXECUTION INDEPENDENCE

In the pipeline architecture, each stage has its own thread of execution
independent from the others. Whereas in the event-driven execution
model, the handlers are executed sequentially. Despite this difference,
the execution of a handler is as independent as the execution of a stage
of a pipeline. The call stacks of two handlers are isolated, as illustrated
in figure 4.2. Indeed, a handler holds the execution until its call stack
is empty, when all synchronous function calls terminates. Only then it
yields the execution to the event-loop, which schedule the next handler.
A rupture point separates the call stacks of two handlers.

For simplification, the figures 4.2 illustrates a rupture point with
only two interleaving chains of handlers but there could be many more.
Each chain is roughly comparable to a thread in multi-thread program-
ming. The two chains in figure 4.2 are

—>—>%and

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 62

julod ainidny

4 CHAPTER %. SEAMLESS SHIFT FROM PRODUCTIVITY TO EFFICIENCY

e
And in figures 4.3, 4.4, 4.5 and 4.6, the two chains - A and B - are

—>—>—>and
O

RUPTURE POINTS

A rupture point is a call of a loosely coupled function. It is an asyn-
chronous call without subsequent synchronization with the caller. This
asynchronous function call is equivalent to a data-flow between two
stages in the pipeline architecture. The parent sends a message to the
child handler containing the result of the asynchronous function call it
initiated. The event-driven execution model expects callback to send
the message and continue the execution once the asynchronous call
completes.

CALLBACKS, LISTENERS AND CONTINUATIONS

A callback is a function passed as a parameter to a function call. It
is not inherently asynchronous. Only two kinds of callbacks are asyn-
chronous, listeners and continuations. They are invoked to continue
the execution with data not yet available synchronously, in the caller
context. Listeners listen to a stream of events, hence are invoked mul-
tiple times. Whereas continuations are invoked only once to continue
the execution after an asynchronous operation completes. The two
corresponding types of rupture points are start and post.

Start rupture points (listeners) are on the border between the
application and the outside, continuously receiving incoming user re-
quests. These rupture points indicate the input of a data stream in
the program, and the beginning of a chain of fluxions to process this
stream.

Post rupture points (continuations) represent a continuity in the
execution flow after an asynchronous operation yielding a unique result,
such as reading a file, or a database.

The rupture points are further detailed in section 5.2.1.

The detection of rupture points allows to retrieve the data-flow and
the stages for a pipeline architecture from the implementation following
the event-loop model. The implementation of this detection is fully
addressed in the next chapter, in sections 5.1.3 and 5.2.1. However,
these stages still require a global memory to communicate. They can’t
be executed in parallel without breaking the invariance.

INVARIANCE

A global memory requires the sequential scheduling of handlers to as-
sure exclusivity of access, as illustrated in figure 4.3. The global mem-
ory is the only reason for this sequential execution. The causal schedul-
ing of independent tasks communicating by messages, is sufficient to
assure the correctness of the execution. And it allows the parallelism,
as illustrated with the two chains in figure 4.4. If the handlers didn’t

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 63

4 CHAPTER %. SEAMLESS SHIFT FROM PRODUCTIVITY TO EFFICIENCY

i

-
pr

‘_‘
»

execution
global memory

execution
e_gh |
. Lq .

-
-

Figure 4.3 - Sequential scheduling Figure 4.4 - Causal scheduling

rely on the global memory, they could be executed in parallel, as long
as their causalities are respected. Following some rules, it is possi-
ble to replace their global memory usage with message-passing, and
parallelize their execution.

TRANSFORMATION RULES
SCOPE

If an handler uses a variable between the reception of two messages,
then it needs to store it independently of the global memory. The
reliance on this memory imposes the handler to not be reentrant. There
cannot be several instances of its execution. The stream of incoming
messages must be processed sequentially.

STREAM

The variables defined after the start rupture point are available
only in the current chain. If two handlers causally related rely on
the same memory region, the causal relation assures the exclusivity
of access. Therefore, the global memory can be replaced by sending
the updated memory in the data-flow. As illustrated in figure 4.5,
the upstream handler communicates the memory update to the

downstream handler . And each handler has access only to its own
memory.

The variables defined before the start rupture point are available
for the concurrent executions of different handlers in the chain, and
might require synchronization, as explained in the next paragraph.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 64

4 CHAPTER %. SEAMLESS SHIFT FROM PRODUCTIVITY TO EFFICIENCY

l

-
=

94_ :

|memow|

execution
e ‘—K’_ 6 o |
; < :
execution
memory

s

it

|memow|
i

Figure 4.5 - Message passing memory update Figure 4.6 - Sequential execution

SHARE

If the downstream handler modifies a variable defined before a start
rupture point, it is not possible to send it in the data-flow. The up-
stream handler cannot be notified in time of this modification. Indeed,
the upstream handler might already be processing the next message
in the stream. Moreover, if two handlers not causally related rely on
the same memory region, they can access it in any order. They need
to be scheduled sequentially to maintain the exclusivity of access, as
illustrated in figure 4.6. The handlers and rely on the same

memory, and are scheduled sequentialy. Whereas the handler is
independent, and can be executed in parallel.

X

By distributing the global memory following these rules, the sequen-
tial scheduling can be loosen while preserving invariance to parallelize
the execution. This distribution - hence the parallelization - only de-
pends on the memory dependencies between handlers. Of course, at
first, the dependencies will remain tight as the focus is on productivity.
But, developers can continuously iterate on implementation to loosen
the dependencies and improve efficiency.

The implementation of the distribution of the global memory is
fully addressed in next chapter, in section 5.2.2.

Concretely, this transformation turns handlers from the event-driven
execution models into stages of the pipeline, as illustrated in figure
4.7. And it distributes the global memory into these different stages,
as illustrated in figure 4.8. The details of these two execution models
important for this transformation are presented in the next section.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 65

Figure 4.7 - Equivalence between handlers and tasks

2.2

2.2.1

4 CHAPTER %. SEAMLESS SHIFT FROM PRODUCTIVITY TO EFFICIENCY

Event-loop Event-loop

Pipeline Pipeline

St Stage

More Stages

memory

tion with message passing

EXECUTION MODELS

The event-driven execution model and the pipeline execution model
were already briefly presented in chapter 2, section 2.1.2, page 16. The
next paragraphs dive into the details of each execution model in regard
of the transformation.

EVENT-DRIVEN EXECUTION MODEL

The event-driven execution model processes a queue of asynchronous
events by scheduling handlers cooperatively. To respond to an event,
the associated handler can directly respond to the source of the event.
Or it can request an external resource, and chain another handler to
later process the initial event with the resource response, as illustred
in figure 4.9. The developer defines each handler as a continuation and
defines their causality using the continuation passing style [177, 83].

CONTINUATION PASSING STYLE

A continuation is a function passed as an argument to a function call.
The continuation is invoked after the completion of the callee, to con-
tinue the execution. In the event-driven execution model, the contin-
uation is invoked as a new handler, to avoid blocking the caller until
its completion. At its invocation, the continuation retrieves both the
caller context and the result of the callee through a closure. Listing
4.1 illustrates an example of continuation in Node.js.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 66

memory

ﬁ—bl.l

More Stages

Figure 4.8 - Distribution of the global memory abstrac-

4 CHAPTER %. SEAMLESS SHIFT FROM PRODUCTIVITY TO EFFICIENCY

more handlers

SIS @ @

N Al

Figure 4.9 - Chain of continuations

callee(input, function continuation(error, result) {
if (error)
throw error;

[

console.log(result);

6 1);

Listing 4.1 - Example of a continuation

Asynchronous continuations cannot be composed to chain their ex-
ecution like synchronous functions, as illustrated in listing 4.2. This
nested construction is sometime difficult to follow. Promises improve
continuations to allow this composition. They allow to arrange a se-
quence of asynchronous operations in a chain, similar to a pipeline.

1
2 callee(input, function continuation(error, result) {
3 if (error)

| throw error;

6 nestedCallee(result, function continuation(error, nestedResult) {
7 if (error)
8 throw error;

10 superNestedCallee(nestedResult, function continuation(error,
superNestedResult) {
11

12 }
13 1D

Listing 4.2 - Example of a sequence of continuations

PROMISE

A Promise is used as a placeholder for the eventual outcome of a de-
ferred (and possibly asynchronous) operation. Listing 4.3 illustrates a
simple promise. In Javascript, promises expose a then method which
expects a continuation to continue the execution with the result of the
deferred operation. This method allows to chain Promises one after
the other, as illustrated in listing 4.4.

var promise = callee(input)

[

promise.then(function onSuccess(result) {
console.log(result);

}, function onError(error) {

6 throw error;

s

~

Listing 4.3 - Example of a Promise

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 67

1
2
3
4
6

8

%.2.2

4 CHAPTER %. SEAMLESS SHIFT FROM PRODUCTIVITY TO EFFICIENCY

callee_promise_1(input)
.then(callee_promise_2, onError)

3 .then(callee_promise_3, onError)

.then(console.log, onError);

function onError(error) {
throw error;

}
Listing 4.4 - Example of a chain of Promises

Promises allow to easily arrange the execution flow in parallel or
in sequence according to the required causality. Programmers are en-
couraged to arrange the computation as series of steps to process in-
coming events and yield outcoming events. In this sense, Promises are
an intermediate step toward the pipeline execution model. The first
implementation of this equivalence is a compiler to encapsulate con-
tinuations into Promises. It actually identifies and extract the pipeline
underlying the continuation passing style.

FLUXIONAL EXECUTION MODEL

The fluxional execution model is inspired by the pipeline architecture.
It is the target for the transformation presented in this thesis. It ex-
ecutes programs written in the fluxional language, whose grammar is
presented in figure 4.10. It intends to provide scalability to web appli-
cations with a granularity of parallelism at the function level.

The functions of an application (program) are encapsulated in au-
tonomous execution containers named fluzions (fx).

(program) = (flx) | (flx) eol (program)
(fix) = flx (id) (tags) (ctx) eol (streams) eol (fn)
(tags) = & (list) | empty string
(streams) | null | (stream) | (stream) eol (streams)
(stream) |= (type) (dest) [(msg)]
(dest) [(list)
(et = {{list))
(msg) = [(list)]
(list) E (id) | (id) , (list)
(type) = >> | >
(id) [Identifier
(fn) [Source language with (stream) placeholders

Figure 410 - Syntax of a high-level language to represent a program in the
fluxional form

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 68

4 CHAPTER %. SEAMLESS SHIFT FROM PRODUCTIVITY TO EFFICIENCY

FLUXION

A fluzion (flx) is named by a unique identifier (id) to receive messages,
and might be part of one or more groups indicated by tags (tags). A
fluzion is composed of a processing function (fn), and a local memory
called a context (ctx).

At a message reception, the flurion modifies its context, and sends
messages to downstream fluzions on its output streams (streams). The
context stores the state on which a fluxion relies between two message
receptions, similarly to the actors model. The messaging system queues
the output messages for the event loop to process them later by calling
the downstream fluzions.

In addition to message passing, the execution model allows fluzions
to communicate by sharing state between their contexts. The fluxions
that need this synchronization are grouped with the same tag, and
loose their independence.

STREAMS

There are two types of streams, start and post, which correspond to
the nature of the rupture point producing the stream. A start rupture
point starts a chain of continuations, while a post rupture point is a
continuation in a chain. Start streams are indicated with a double
arrow (>>) and post streams with a simple arrow (->).

2%.2.3 EXAMPLES

ILLUSTRATION OF THE FLUXIONAL EXECTION MODEL

Even if the fluxional execution model is not designed to
directly develop applications, a first application was de-
veloped with it, to test it. This application doesn’t use
the transformation, nor the continuous development ad-
vocated in this thesis. Nonetheless, it is related here to
illustrate the basic functioning of the fluxional execution
model.

The application is accessible online at http://grumpy.
etnbrd.com, and the source code is available at https:
//github.com/etnbrd/grumpy. And the network of fluxions structur-
ing the applications can be monitored in realtime at http://grumpy.
etnbrd.com/console, as illustrated in figure 4.11. The application al-
lows to post anonymous grumbles into chat rooms. Additionally, a
room can subscribe to the grumbles from another room. The reader
is invited to play with this application and the monitoring console to
quickly grasp an understanding of the fluxional execution model.

The network of fluxions is organized into five layers of stages, tra-
versed by the stream of request from left to right. The first and last
layers are the input and output, connecting the application with the
clients. The second layer contains the fluxions receiving and formating
the request, before passing them to the next layer. The fluxion in the

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 69

http://grumpy.etnbrd.com
http://grumpy.etnbrd.com
https://github.com/etnbrd/grumpy
https://github.com/etnbrd/grumpy
http://grumpy.etnbrd.com/console
http://grumpy.etnbrd.com/console

4 CHAPTER %. SEAMLESS SHIFT FROM PRODUCTIVITY TO EFFICIENCY

@ egister
@ Post
@ followers
@ follow

input filter g filter outp

— .Leadf/f

Figure 411 - Screenshot from the grumpy console

third layer is a simple filter before posting grumbles. It is an example
of a fluxion modifying a message from the stream. Finally, each room
is instantiated as a new fluxion in the fourth layer, storing the received
grumbles in its context.

The left panel logs the requests received by the application, and the
path of each request can be traced from stage to stage.

The socket descriptor is stuck with the network interface, hence, it
cannot be serialized to flow from one fluxion to another. Instead, the
first and last fluxions share their memory, and each request flows with
an id to associate it with its socket descriptor.

This example application was developed before the implementation
of the isolation of fluxions in the fluxional execution model. So it was
possible to share their memory by simply sending a memory reference
between two fluxions, without grouping them. This explains the direct
link between the input and output fluxions.

The example illustrated in the next paragraphs explains in more
details the transformation, and the grouping required for fluxion shar-
ing memory. And it explains the impact of the memory dependencies
on parallelism and scalability.

ILLUSTRATION OF THE APPLICATION TRANSFORMATION

The transformation from continuation passing style to the fluxion ex-
ecution model is now illustrated with a simple web application.

1 var app = require('express’')(),
2 fs = require(’'fs'),
count = 0;

5 app.get('/', function handler(req, res)({

6 fs.readFile(__filename, function reply(err, data) {
7 count += T1;

8 res.send(err || template(count, data));

9 s

10 });

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 70

12

19
20

21

4 CHAPTER %. SEAMLESS SHIFT FROM PRODUCTIVITY TO EFFICIENCY

app.listen(8080);

Listing 4.5 - Example web application

The example application in listing 4.5 reads a file, and sends it
back along with a request counter. The handler function, line 5 to
10, receives the input stream of requests. The count variable at line 3
counts the requests, and needs to be saved between two messages re-
ceptions. The template function formats the output stream to be sent
back to the client. The app.get and res.send functions, lines 5 and
8, interface the application with the clients. Between these two inter-
face functions, there is a chain of three functions to process the client
requests : app.get >> handler -> reply. This chain of functions is
transformed into a pipeline, expressed in the high-level fluxional lan-
guage in listing 4.6. The transformation process between the source
and the fluxional code is explained in chapter 5, section 5.2.1.

flx main & grp_res
>> handler [res]

var app = require('express’') (),
fs = require('fs'),
count = 0;

app.get('/', >> handler);
app.listen(8080);

flx handler
-> reply [res]
function handler(req, res) {
fs.readFile(__filename, -> reply);

}

s flx reply & grp_res {count, template}

7 => null
function reply(error, data) {
count += 1;
res.send(err || template(count, data));

}

Listing 4.6 - Example application expressed in the high-level fluxional
language

The execution is illustrated in figure 4.12. The dashed arrows be-
tween fluxions represent the message streams as seen in the fluxional
application. The plain arrows represent the operations of the messaging
system during the execution. These steps are indicated by numeroted
circles. The program registers its fluxions in the messageing system,
(D. The fluxion reply has a context containing the variable count and
template. When the application receives a request, the first fluxion
in the stream, main, queues a start message containing the request,
(2). This first message is to be received by the next fluxion handler,
(3, and triggers its execution, (4). The fluxion handler sends back a
message, (5), to be enqueued, (6). The system loops through steps (3)
to (6) until the queue is empty. This cycle starts again for each new
incoming request causing another start message.

The chain of functions from listing 4.5 is expressed in the fluxional
language in listing 4.6. The fluxion handler doesn’t have any depen-
dencies, so it can be executed in a parallel event-loop. The fluxions
main and reply belong to the group grp_res, indicating their depen-
dency over the variable res. The group name is chosen arbitrarily.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 71

4 CHAPTER %. SEAMLESS SHIFT FROM PRODUCTIVITY TO EFFICIENCY

grp_res

reply

count

template

input m ..
@ start —EZIJ

messaging

system E@ @ exec @ post

messaging
system

uonezijeliss

................... @dequeue @enqueue

M = e

I @ register

program

Figure 412 - The fluxional execution model in details

All the fluxions inside a group are executed sequentially on the same
event-loop, to protect the shared variables against concurrent accesses.
The variable res is created and consumed within a chain of post
stream. Therefore, it is exclusive to one request and cannot be prop-
agated to another request. It doesn’t prevent the whole group from
being replicated. However, the fluxion reply depends on the variable
count created upstream the start stream, which prevents this replica-
tion. If it did not rely on this variable, the group grp_res would be
stateless, and could be replicated to cope with the incoming traffic.
This execution model allows to parallelize the execution of an ap-
plication as a pipeline, as with the fluxion handler. And some parts
are replicated, as could be the group grp_res. This parallelization im-
proves the efficiency of the application. Indeed, as a fluxion contains
its state and expresses its dependencies, it can be migrated. It allows
to adapt the number of fluxions per core to adjust the resource usage

in function of the desired throughput.

Yet, the parallelization is limited by the dependencies between flux-
ions. A developer can ignore these dependencies at first, to focus on
productivity. And then continuously tune the implementation to re-
move these dependencies and improve efficiency. This continuous tun-
ing avoids the disruptive shifts of technology required by current plat-

forms.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 79

output

4 CHAPTER %. SEAMLESS SHIFT FROM PRODUCTIVITY TO EFFICIENCY

.3 CONCLUSION

This chapter presented the proposition of this thesis : an equivalence
between the event-driven execution model and the pipeline execution
model for web applications. The equivalence intends to allows devel-
opers to control simultaneously productivity, and efficiency of their
implementation. Because it allows them to continuously have two rep-
resentations, developers can then choose their compromize, depending
on what they are after. This compromize evolves with the implemen-
tation.

The equivalence is based on the event-driven and fluxional execution
models presented respectively in section 4.2.1 and 4.2.2. It relies on the
similar pipeline organization shared by these two models. It detects the
rupture points between the stages to extract the pipeline organization
from an event-driven implementation. Then, it isolates these stages so
as to allow parallel execution.

We published this work at three occasions. The core idea of these
contribution was briefly presented as a poster in December 2014 at
Middleware [21], and then more thouroughly presented in April 2015
at Symposium for Application Computing in the track Practical Aspect
of Parallel Programming [22]. In the meantime, an intermediate step
was presented in April 2015, at the AWeS Workshop at the Eurosys
Conference [20]. The implementations presented in these papers are
reminded in the next section.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 73

CHAPTER D

P>

IMPLEMENTATIONS

5.1 Step 1 - Due Compiler, 75
5.1.1 Dues 75
5.1.2 From Continuations to Dues it
5.1.3 Due Compiler 79
5.2 Step 2 - Fluxional Compiler 82
5.2.1 Fluxions Identification 82
5.2.2 Fluxions Isolation 84
5.2.3 Realtestcase 85
5.2.4 Limitations 88

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 74

<> CHAPTER 5. IMPLEMENTATIONS

The transformation allowed by the equivalence from an event-driven
program into a distributed network of fluxions is implemented incre-
mentally into two compilers, as presented in figure 5.1. Each compilers
is divided into two steps, the identification of the rupture points sepa-
rating the stages of the pipeline, and the isolation of these stages.

step 1 step 2
rupture points stages
identification isolation
[J > @ > @
Continuation Due Fluxion
global memory outlined stages isolated stages

with global memory

Stage Independence

Figure 51 - Roadmap

The first compiler focuses on the identification of simple chains of
causality between continuations to transform these chains into Promises.
However, promises are more expressive than the simple chaining of
causal sequentiality. Moreover, they impose a different convention
than continuations on how to hand back the outcome and errors of the
deferred computation. This difference brings unnecessary complexity
to the identification of chains. To rule out this difference between con-
tinuations and Promises, before introducing the first compiler, section
5.1 introduces a simpler specification to Promise, called Due.

The second compiler detects all the chains of causality between
continuations and encapsulate them in fluxions. It isolates the fluxions
when possible to allow the parallelism required for efficiency. This
second compilers is introduced in section 5.2.

3.1 STEP1-DUE COMPILER

3.1.1 DUES

A Due is an object used as placeholder for the eventual outcome of
a deferred operation. They are essentially similar to ECMAScript
Promises!, except for the convention to hand back outcomes. They
use the error-first convention, like Node.js, as illustrated line 5 in list-
ing 5.1. The implementation of Dues and its tests are available online?,

Thttp://www.ecma-international.org/ecma-262/6.0/#sec-promise-

objects
2https://www.npmjs.com/package/due

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 75

http://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects
http://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects
https://www.npmjs.com/package/due

<> CHAPTER 5. IMPLEMENTATIONS

USAGE

1 var my_fn_due = require('due’).mock(my_fn);
var due = my_fn_due(input);

due.then(function continuation(error, result) {
6 if (lerror) {

7 console.log(result);

8 } else {

9 throw error;

10 }

11 });

Listing 5.1 - Example of a due

In listing 5.1, the function my_fn_due synchronously returns a due
as a placeholder for its outcome. The then method of the due allows
to define a continuation to continue the execution after retrieving the
outcome, like line 5. If the deferred operation is synchronous, the Due
settles during its creation and the then method immediately calls this
continuation. If the deferred operation is asynchronous, this continua-
tion is called during the Due settlement.

CREATION

I Due.mock = function(my_fn) {

2 return function mocked_fn() {

3 var _args = Array.prototype.slice.call(arguments),
4 _this = this;

6 return new Due(function(settle) {
7 _args.push(settle);

8 my_fn.apply(_this, _args);

9 b

10 }

11}

Listing 5.2 - Creation of a due

In listing 5.1, line 1, the mock method wraps the original function
my_fn in a Due-compatible function mocked_fn. The mock method is
detailed in listing 5.2 to illustrate the creation of a Due. It returns a
Due compatible function, mocked_fn, line 2. That is a function that
returns a Due, instead of expecting a continuation.

At the execution of mocked_fn the Due to be returned is created line
6, with the original function passed as argument. The original function
my_fn is executed during the creation of the Due. The settle function
provided is passed as a continuation line 7 for the original function to
settle the returned Due. When the original function completes, it calls
settle to settle the Due and save the outcome. This outcome can then
be retrieved with the continuation provided by the then method.

COMPOSITION

Dues arrange the execution flow as a chain of actions to carry on
inputs. The composition of Dues in a chain is illustrated in listing 5.3.
It is similar to the composition of Promises explained in the previous
chapter, section 4.2.1, page 67.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 76

<> CHAPTER 5. IMPLEMENTATIONS

var Due = require('due’);

Due.mock (my_fn_1),
Due.mock (my_fn_2),
Due.mock (my_fn_3);

1
2

3 var my_fn_due_1
4 my_fn_due_2
my_fn_due_3

7 my_fn_due_1(input)
8 .then(my_fn_due_2)
9 .then(my_fn_due_3)
10 .then(console.log);

Listing 5.3 - Dues are chained like Promises

The then method of the current Due returns an intermediary Due
that settles when the Due returned by the passed continuation settles.
For example, in listing 5.3 the Due returned by the then method line 8
settles when the Due returned by its continuation my_fn_due_2 settles.
It allows to chain continuations one after the other like a pipeline,
instead of the nested composition of continuations.

5.1.2 FROM CONTINUATIONS TO DUES

The equivalence between continuations and Dues allows the transfor-
mation of a nested imbrication of continuations into a chain of Dues.
To preserve the semantic, this transformation imposes limitations on
the execution order, the execution linearity and the scopes of the vari-
ables used in the operations.

EXECUTION ORDER

The transformation of a simple continuation is illustrated in figure
5.2 It applies on function calls similar to the abstraction (5.1). It wraps
the function fn into the function fngue to return a Due, as presented in
section 5.1.1 And it relocates the continuation in a call to the method
then. The result is similar to the abstraction (5.2). The differences
are highlighted in bold font.

fn(larguments|, continuation) (5.1) — fnaue([arguments]).then(continuation) (5.2)

Figure 5.2 - Simple transformation

The execution order is different whether continuation is called
synchronously, or asynchronously. If fn is synchronous, it calls the
continuation within its execution. It might execute statements after
executing continuation, before returning. If fn is asynchronous, the
continuation is called after the end of the current execution, after fn.
The transformation erases this difference in the execution order. In
both cases, the transformation relocates the execution of continuation
after the execution of fn. For synchronous fn, the execution order

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 77

<> CHAPTER 5. IMPLEMENTATIONS

changes ; the execution of statements at the end of fn and the contin-
uation switch. To preserve the execution order, the function fn must
be asynchronous, or execute the continuation as the last instruction.

EXECUTION LINEARITY

The transformation of a chain of continuations into a chain of Dues
is illustrated in figure 5.3. It transforms a nested imbrication of con-
tinuations similar to the abstraction (5.3) into a flatten chain of calls
encapsulating them, as abstraction (5.4).

declare variable

fnlaue([arguments))

fnl([arguments], cont1{ .then(cont1{
declare variable < result variable < result
fn2([arguments], cont2{ N return fn2qye([arguments))
print variable 3
H .then(cont2{
}) (5.3) print variable

H (5:4)

Figure 5.3 - Composition transformation

The essence of control flow is to control the execution order to be
different from the linearity expressed in the source file. The equivalence
must take into account these disruptions when modifying the source.

A call inside a loop yields multiple Dues because of the repetition,
while only one can be returned to continue the chain. The others would
be discarded. Similarly, a function definition is not executed in situ. It
breaks the execution linearity, and prevents a call nested within it to
return the Due expected to continue the chain in the parent. Therefore,
the composition transformation doesn’t apply on chain of Dues nested
inside loops or function definitions. The equivalence breaks such chains
into simple transformation.

On the other hand, conditional branching leaves the semantic intact
in a chain of Dues. If the nested asynchronous function is not called
due to branching, the execution of the chain stops as expected. The
transformation to a chain of Dues doesn’t impact the semantic.

VARIABLE SCOPE

In abstraction (5.3), the definitions of contl and cont2 are over-
lapping. The variable declared in contl is accessible in cont2 to be
printed. In abstraction (5.4), however, definitions of contl and cont2

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 78

<> CHAPTER 5. IMPLEMENTATIONS

are not overlapping, they are siblings. The variable is not accessible
to cont2. It must be relocated in a parent function to be accessible
by both contl and cont2. The detection of such variables requires to
infer their scope to know when the equivalence breaks overlappings.
Most languages derived from imperatives, like C/C++, Python, Ruby
or Java present a lexical scope, which defines variables scopes stat-
ically. In Javascript, however, the statements with and eval modify
the scope dynamically. The equivalence excludes programs using these
statements to keep a lexical scope and be able to infer variable scope
statically.

3.1.3 DUE COMPILER

The Due compiler automates the application of this equivalence on
existing Javascript projects. The compilation process is made of two
important steps, the identification of the continuations, and the gener-
ation of chains. The compiler is available online to reproduce the tests
at compiler-due.apps.zone52.org, and the code is available online at
https://github.com/etnbrd/due-compiler.

IDENTIFICATION OF CONTINUATIONS

The first compilation step is to identify the continuations and their
imbrications. The compiler transforms only in situ continuations -
these are lambdas. Modifiying continuations that are named functions
break the correctness of the application. The modifications operated by
the compiler modify the behavior. The modified continuations might
be used elsewhere, where the modifications are not expected, hence
impact the semantic.

To detect continuations, the compiler looks for callbacks. Not all
detected callbacks are continuations, whereas the equivalence is appli-
cable only on the latter. A continuation is a callback invoked only
once, asynchronously. This definition is only semantical. There is
no syntactical difference between a synchronous and an asynchronous
callee. And it is impossible to assure a callback to be invoked only once,
because the implementation of the callee is often statically unavailable.

To recognize the two, the compiler would need to have a deep un-
derstanding of the semantic of the application. Because of the highly
dynamic nature of Javascript, this understanding is either unsound,
limited, or complex. For example, the node.js method fs.readFile is
asynchronous. Its argument is a continuation. But it can be overridden
by developers to point to its synchronus counter parts. This example
is very unlikely, but it shows the limitation.

The compiler identifies callbacks and leaves the identification of
compatible continuations among these callbacks to the developer.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 79

compiler-due.apps.zone52.org
https://github.com/etnbrd/due-compiler

<> CHAPTER 5. IMPLEMENTATIONS

GENERATION OF CHAINS

Continuations structure the execution flow as a tree, whereas a
chain of Dues arranges it sequentially. A parent continuation can exe-
cute several children, while a Due allows to chain only one. The second
compilation step is to identify the trees of continuations, and trim the
extra branches to transform them into chains.

If a continuation has more than one child, the compiler tries to find
a single legitimate child to form the longest chain possible. A legitimate
child is a unique continuation which contains another continuation to
chain. If there are several continuations that continue the chain, none
are the legitimate child. And the non legitimate children start new
chains of Dues. In figure 5.4, the continuation cont2 is a legitimate
child, whereas cont3 and cont4 are not because they are siblings, and
none have children. The compiler cannot decide to continue the chain
with cont3 or cont4, so it leaves them as is.

This step transforms each tree of continuations into several chains
of continuations that translate into sequences of Dues.

calleri([args], function contl | calleri([args])

O{ 2 .then(function cont1(){
- @ 5 ©
3 caller2([args], function . return caller2([args])
cont2(){ B ()
. ®) 6 })
5 caller3(Largs], function 7 .then(function cont2(){
cont3(){ R
f C) 9 caller3([args], function
' 2 cont3(){
8 @) 10 ®
9 caller4([args], function . 1y
cont4 (){ . ’
10 <> 13 caller4([args], function
L 3 cont4 (){
12 1D » @
e @ 15 1)
14 3) 16 })
Listing 5.4 - Nested calls of .)
continuations Listing 5.5 - Chain of Due

Figure 5.4 - Transformation of a tree of continuations into a chain of Due

X

Because Dues are placeholders for a single outcome, they don’t
allow to express the recurrence of streaming data. Concretely, a Due is
created for each datum in the stream. Therefore, continuations don’t
represent the whole streaming pipeline underlying in the application.
Listeners are the callbacks starting the streaming pipeline. There is a
need for an abstraction for both continuations and listeners.

Moreover, the Dues rely on a shared memory to communicate. They
don’t enforce the memory isolation required for parallelism.

The Due compiler is an intermediary step toward the fluxional com-
piler presented in section 5.2. This second compiler forms a pipeline
with both listeners and continuations, and isolate the stages.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 80

<> CHAPTER 5. IMPLEMENTATIONS

EVALUATION

The Due compiler was evaluated against a set of Javascript projects
likely to contain continuations. Because the compilation requires user
interaction to detect continuations, the test set was limited to a min-
imum of about 50 projects to conduct the test in a reasonable time.
All the projects in the set were selected from the Node Package Man-
ager (npm?®) database to restrict the set to Node.js projects . They
all depends on the web framework express, but not on the most com-
mon Promises libraries such as Bluebird, () or Async. They use the
test frameworks mocha in its default configuration. These tests are
used to validate the compilation results. The test set finally con-
tains 52 projects. This subset cannot represent the wide possibilities
of Javascript, but represents a majority of common cases.

Over the 52 packages the compiler was tested on, 43 packages were
incompatible with the compiler and 9 packages were compiled with
success.

Each project passes its own tests before compilation. During the
compilation, the compatible continuations were manually identified
among the detected callbacks. The compilation result of each project
is then tested again with its unmodified test. The compilation result
should pass the tests as well as the original project. This validation
assures the compiler to work as expected in most common cases.

Of the 52 projects tested, more than a half, does not contain any
compatible continuations. These projects use continuations, but the
compiler discards them, because they are not declared in situ. The
other projects were rejected by the compiler because they contain with
or eval statements. 9 projects compiled successfully. The compiler did
not fail to compile any project of the initial test set.

Over the 9 successfully compiled projects, the compiler detected
172 callbacks. 56 of them were manually identified as compatible con-
tinuations. The false positives are mainly the listeners that the web
applications register to react to user requests. Listeners represent the
initiation of stream of data, and are addressed in the next section.

One project contains 20 continuations, the others contains between
1 and 9 continuations each. On the 56 continuations, 36 are single.
The other 20 continuations belong to imbrications of 2 to 4 continua-
tions. The result of this evaluation proves the compiler to be able to
successfully transform imbrications of continuations.

On the 52 projects composing the test set

29 (55.77%) do not contain any compatible continuations,

10 (19.23%) are not compilable because they contain with or eval
statements,

4 (7.69%) fail their tests before the compilation, and

3https://www.npmjs.com/
4 At the time of this work, npm was still exclusive to Node.js packages. It is now
open to every Javascript packages.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés]1

https://www.npmjs.com/

<> CHAPTER 5. IMPLEMENTATIONS

Successful compilation (17.31%)

Failed to test (7.69%) i

Presence of eval or with statements (19.23%)

No Detected Continuations (55.77%)

Figure 5.5 - Results of the Due compiler evaluation

9 (17.31%) compile successfully.

2.2 STEP 2 - FLUXIONAL COMPILER

The second contribution of this thesis is the equivalence between a
global memory abstraction and a distributed memory. It tackles the
problems arising from the replacement of the global memory synchro-
nizations with message passing.

This equivalence is implemented as a compiler, improving upon the
previous one. The compiler transforms a Javascript application into a
network of independent parts communicating by message streams and
executed in parallel.

Like the previous compiler, this compiler is organized into two main
steps. The first step is the identification of the rupture points between
fluxions, addressed in section 5.2.1. The second step is the isolation
between the fluxions, addressed in section 5.2.2. The compiler is tested
on a real-case, to expose its limits in section 5.2.3.

5.2.1 FLUXIONS IDENTIFICATION

The source language for this transformation is of higher-order to allow
the modularity required for productivity. Moreover, it is implemented
as an event-loop to impose the developer to define the causality be-
tween asynchronous operations. The compiler transforms a Node.js
application into a fluxional application compliant with the execution
model described in section 4.2.2. The chain of compilation is described
in figure 5.6.

The compiler uses the estools® suite to parse (esprima), analyze
(escope), manipulate (estraverse and esquery) and generate (escodegen)
source code from an Abstract Syntax Tree (AST). It is tailored for —
but not limited to — web applications using Ezpress®, the most used

Shttps://github.com/estools
Shttp://expressjs.com/

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés]9

https://github.com/estools
http://expressjs.com/

<> CHAPTER 5. IMPLEMENTATIONS

—_—
ipeline
Analyzer P .
representation
AN
Pipeliner flx source
_—
scopes
escope)
representation

Figure 5.6 - Compilation chain

AN
source esprima

Node.js web framework. The compiler extracts an AST from the source
with esprima. From this AST, the Analyzer step identifies the rupture
points between the different application parts. This first step outputs
a pipeline representation of the application. In this pipeline represen-
tation, the stages are not yet independent and encapsulated into flux-
ions. From the AST, escope produces a representation of the memory
scopes. The Pipeliner step, explained in section 5.2.2, analyzes the
pipeline representation and the scopes representation to distribute the
shared memory into independent groups of fluxions.

DETECTION

In Node.js, 1/O operations are asynchronous functions and indicate
rupture points between two application parts. Figure 5.7 shows a code
example of a rupture point with the illustration of the execution of the
two application parts isolated into fluxions. The two application parts
are the caller of the asynchronous function call on one hand, and the
callback provided to the asynchronous function call on the other hand.

1 asyncCall(arguments, function callback(result){ @ 1

0]

upstream fluxion downstream fluxion
Main thread 1/O thread Main thread
arguments evaluation

asyncCall execution J
Following statements @

: result
asynchronous operation o

callback execution @ 'T'

Figure 5.7 - Rupture point interface

v

Similarly as in the Due compiler, the detection of asynchronous
callees is done by the developer. It uses a list of common asynchronous
callees, like the express and file system methods. This list can be
augmented to match asynchronous callees individually for any applica-
tion. To identify the callee, the analyzer walks the AST to find a call
expression matching this list.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 83

<> CHAPTER 5. IMPLEMENTATIONS

After the identification of the callee, the callback needs to be iden-
tified as well to be encapsulated in the downstream fluxion. For each
asynchronous call detected, the compiler tests if one of the arguments
is of type function. The callback functions declared in situ are triv-
ially detected in the AST. The compiler discard callbacks not declared
in situ, to avoid altering the semantic by moving or modifying their
definitions.

3.2.2 FLUXIONS ISOLATION

As a rupture point occurs between an asynchronous caller and a call-
back defined in situ, it eventually breaks the chain of scopes. If the
caller and the callback are separated, it breaks the closure of the call-
back. The callback in the downstream fluxion cannot access the scope
of its parent as expected. The pipeliner step replaces the need for
this closure, allowing application parts to be isolated, and to rely only
on independent memory stores and message passing. It determines
the distribution using the scope representation, which represents the
variables” dependencies between application parts. Depending on this
representation, the compiler can replace the broken closures in three
different ways. We present these three alternatives in figure 5.8.

flx main
varaiQ; var a = 0;
var ¢ = 0; var ¢ = 0;
et(>> onReq);
function L < M:req
f1x onReq <«
2 b: reg.count; var b = req.count; @
unction N read(-> add); “Fv.b
a+t=b+c LS flx add o grp_c
function
a+=b +c+yv;
c = updt; update(a, -> end); "= updt
f1x end

<
‘ c = updt; ‘@

Figure 5.8 - Variable management from Javascript to the high-level flux-
ional language

SCOPE

If a variable is modified inside only one application part in the
current post chain, then the pipeliner adds it to the context of its
fluxion.

In figure 5.8, the variable a is updated in the function add. The
pipeliner step stores this variable in the context of the fluxion add.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés ’4

<> CHAPTER 5. IMPLEMENTATIONS

STREAM

If a modified variable is read by some downstream application parts,
then the pipeliner makes the upstream fluxion add this variable to the
message stream to be sent to the downstream fluxions. It is impossible
to send variables to upstream fluxions, without causing inconsistencies.
If the fluxion retro propagates the variable for an upstream fluxion to
read, the upstream fluxion might use the old version while the new
version is on its way.

In figure 5.8, the variable b is set in the function onReq, and read
in the function add. The pipeliner step makes the fluxion onReq send
the updated variable b, in addition to the variable v, in the message
sent to the fluxion add.

Exceptionally, if a variable is defined inside a post chain, like b, then
this variable can be streamed inside this post chain without restriction
on the order of modification and read. Indeed, in the current post
chain, the execution of the upstream fluxion is assured to end before
the execution of the downstream fluxion, because of their causality.
Therefore, no reading of the variable by the upstream fluxion happens
after the modification by the downstream fluxion.

SHARE

If a variable is needed for modification by several application parts,
or is read by an upstream application part, then it needs to be syn-
chronized between the fluxions. The pipeliner groups all the fluxions
sharing this variable with the same tag. And it adds this variable to
the contexts of each fluxions.

In figure 5.8, the variable c is set in the function end, and read in
the function add. As the fluxion add is upstream of end, the pipeliner
step groups the fluxion add and end with the tag grp_c to allow the
two fluxions to share this variable.

3.2.3 REAL TEST CASE

The compiler is tested on a real application, gifsockets-server”. This
test proves the possibility for an application to be compiled into a
network of independent parts. It shows the current limitations of this
isolation and the modifications needed on the application to circumvent

them.
I var express = require('express’'),
2 app = express(),
3 routes = require(’'gifsockets-middleware’),
4 getRawBody = require('raw-body');

6 function bodyParser(limit) {

7 return function saveBody(req, res, next) {

8 getRawBody (req, {

9 expected: req.headers['content-length'],
10 limit: limit

11 }, function (err, buffer) {

"https://github.com/twolfson/gifsockets-server

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés]5

https://github.com/twolfson/gifsockets-server

12

13

15
16
17
18

19

1

2
3

1
5

18
19
0

2
2

<> CHAPTER 5. IMPLEMENTATIONS

req.body = buffer;
next () ;
s
1
3

app.post('/image/text', bodyParser (1 = 1024 % 1024), routes.
writeTextToImages) ;
app.listen(8000);

Listing 5.6 - Simplified version of gifsockets-server

This application, simplified in listing 5.6, is a real-time chat using
gif-based communication channels. It was selected from the evaluation
set of the Due compiler because it is simple enough to illustrate this
evaluation. The server transforms the received text into a gif frame,
and pushes it back to a never-ending gif to be displayed on the client.

On line 18, the application registers two functions to process the
requests received on the url /image/text. The closure saveBody, line 7,
returned by bodyParser, line 6, and the method routes.writeText-
ToImages from the external module gifsockets-middleware, line 3.
The closure saveBody calls the asynchronous function getRawBody to
get the request body. Its callback handles the errors, and calls next to
continue processing the request with the next function, routes.write-
TextTolImages.

COMPILATION

The compilation result is in listing 5.7. The function call app.post,
line 18, is a rupture point. However, its callbacks, bodyParser and
routes.writeTextToImages are not declared in situ. They are evalu-
ated as functions only at runtime. As precised previously, the compiler
discards these callbacks to avoid altering the semantic.

flx main & express {req}
>> anonymous_1000 [req, next]

var express = require('express’'),
app = express(),
routes = require('gifsockets-middleware'),

getRawBody = require('raw-body');

function bodyParser(limit) {
return function saveBody(req, res, next) {
getRawBody (req, {
expected: req.headers['content-length’'],
limit: limit
}, >> anonymous_1000 [req, next]);
1
3

app.post('/image/text', bodyParser (1 * 1024 * 1024), routes.
writeTextToImages) ;
app.listen(8000);

flx anonymous_1000
-> null
function (err, buffer) {
req.body = buffer;
next () ;
3

Listing 5.7 - Compilation result of gifsockets-server

The compiler detects a rupture point : the function getRawBody
and its anonymous callback, line 11. It encapsulates this callback in a

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 36

<> CHAPTER 5. IMPLEMENTATIONS

fluxion named anonymous_1000. The callback is replaced with a stream
placeholder to send the message stream to this downstream fluxion.
The variables req and next are appended to this message stream, to
propagate their value from the main fluxion to the anonymous_1000
fluxion.

When anonymous_1000 is not isolated from the main fluxion, as
if they belong to the same group, the compilation result works as ex-
pected. The variables used in the fluxion, req and next, are still shared
between the two fluxions. In this situation fluxions are quite similar to
Dues regarding memory sharing. Our goal is to isolate the two fluxions,
to be able to safely parallelize their executions.

ISOLATION

In listing 5.7, the fluxion anonymous_1000 modifies the object req,
line 23, to store the text of the received request, and it calls next to
continue the execution, line 24. req is an alias to a memory location
used in multiple places in code. Therefore, these operations produce
side-effects that should propagate in the whole application, but the
isolation prevents this propagation. Isolating the fluxion anonymous_-
1000 produces runtime exceptions. The next paragraph details how
this situation is handled to allow the application to be parallelized.

VARIABLE REQ

The variable req is read in fluxion main, lines 10 and 11. Then
its property body is associated to buffer in fluxion anonymous_1000,
line 23. The compiler is unable to identify the aliases of this variable.
However, the side effect resulting from this association impacts a vari-
able in the scope of the next callback, routes.writeTextToImages. In
this test case, the application is modified manually to explicitly prop-
agate this side-effect to the next callback through the function next.
The modifications of this function are explained further in the next
paragraph.

CLOSURE NEXT

The function next is a closure provided by the express Router
to continue the execution with the next function to handle the client
request. Because it indirectly relies on the variable req, it is impossible
to isolate its execution with the anonymous_1000 fluxion. Instead, we
modify express, so as to be compatible with the fluxional execution
model. We explain the modifications below.

1 flx anonymous_1000
2 -> express_dispatcher
function (err, buffer) {
4 req.body = buffer;
5 next_placeholder(req, -> express_dispatcher);

}

€
g8 flx express_dispatcher & express {req}
9 -> null

10 function (modified_req) {

11 merge (req, modified_req);

12 next();

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés]7

<> CHAPTER 5. IMPLEMENTATIONS

Listing 5.8 - Simplified modification on the compiled result

In listing 5.6, the function next is a continuation allowing the
anonymous callback, line 11, to call the next function to handle the
request. To isolate the anonymous callback into anonymous_1000, next
is replaced by a rupture point. This replacement is illustrated in list-
ing 5.8. The express Router registers a fluxion named express_-
dispatcher, line 8, to continue the execution after the fluxion anony-
mous_1000. This fluxion is in the same group express as the main flux-
ion, hence it has access to the original variable req, and to the original
function next. The call to the original next function is replaced by
a placeholder to push the stream to the fluxion express_dispatcher,
line 5. The fluxion express_dispatcher receives the stream from the
upstream fluxion anonymous_1000, merges back the modification in the
variable req to propagate the side effects, and finally calls the original
function next to continue the execution, line 12.

After the modifications detailed above, the server works as ex-
pected. The isolated fluxion correctly receives, and returns its seri-
alized messages. The client successfully receives a gif frame containing
the text.

2.2 LIMITATIONS

The static analysis used for this compiler presents some limitations. It
is unable to analyze code with dynamic behaviors. Higher-order pro-
gramming leads to more productivity partly beacuse it rely on such
dynamic behavior to extend expressivity. Precisely, it allows more
levels of indirections.

LEVELS OF INDIRECTIONS

The indirection is an abstraction between the value, and its manip-
ulation. In listing 5.9, the variables a and b point both to the same
memory object. The function fn introduces a level of indirection be-
tween the real object a and its manipulation handle, b;

1 var a = {
f_< 3

1

5 fn(b) {
}

fn(a);

Listing 5.9 - One level of Indirection

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 38

<> CHAPTER 5. IMPLEMENTATIONS

UNCERTAINTIES

The indirection is trivial to resolve in listing 5.9. It only needs to
have access to the definition of a and of fn. However, in listing 5.10,
the array handlers introduces a new level of indirection. The static
analysis now needs to have access to the definition of i and of the
handlers. If these definition are provided by an external input, they
are not available statically, hence, they add uncertainties during the
analysis.

1 var a = {
s,
1 handlers = [

6 1,
i=7;

9 handlers[i](a);
handlers[i+1](a);

Listing 5.10 - Two levels of indirection

These examples are extremely simplified. A real application con-
tains enough indirections for the static analysis to be overwhelmed by
uncertainties, and to be unable to resolve the variables. If a variable
is left unresolved, it is impossible to assure its scope and its aliases.
Therefore, the compiler is unable to isolate it into a fluxion, or to
distribute its modification by messages.

Moreover, it leads the compiler to ignore the rupture points not
defined in situ, because their modifications could impact the semantic.
The reason for this precaution, is that the compiler is unable to assure
where the function is used, and the scope of its variables. Therefore,
it is unable to assure that the modification will conserve the semantic.

DYNAMIC RESOLUTION

In a web application, this variable i might be part of the user
request, which is available only at runtime. It eventually introduces an
uncertainty.

This dynamic resolution of variables is precisely what increase ex-
pressiveness. Trying to resolve them statically is equivalent to restrict
expressiveness. No static analysis can overstep these limitations. Only
a dynamic analysis could analyze the resolved indirections during run
time to overstep these limitations correctly.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 89

CHAPTER O

CONCLUSION

6.1 Summary
6.1.1 Models
6.1.2 Equivalence
6.2 Overall Evaluation
6.2.1 Trading Productivity for Efficiency
6.2.2 Adoption
6.3 Perspectiveso
6.3.1 Just-in-time Compilation
6.3.2 Evaluation of the perspective
6.3.3 Final Thoughts

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 90

Q CHAPTER 6. CONCLUSION

The web brought a new economic model allowing a tremendous
number of business opportunities. To seize these opportunities, a team
needs to develop a web application, and grow a business around it.
The economical incentives around the technical development changes
completely during the growth of this business. In the beginning, the
development needs to be productive, to quickly release a product and
iterate with the user feedbacks. When the project matures, the exe-
cution needs to be efficient, to cope with the load of a large user base
while limiting the hardware costs.

These two development concerns are incompatible. No platform can
provide both performance efficiency, and development productivity at
the same time. The platforms at the state of the art propose only com-
promises between the two. This thesis presented a platform allowing
a progressive compromise to fit the economical incentives throughout
the evolution of the project.

This chapter summarizes the contributions of this thesis, and eval-
uates the proposed solution. It finally concludes on the perspectives
beyond this thesis.

6.1 SUMMARY

This thesis presented an equivalence between the event-driven execu-
tion model and the pipeline execution model. This equivalence was
implemented into two compilers. The first compiler allows to identify
the rupture point to form chains of stages from programs targeting the
event-driven execution model. The resulting chains still depends on a
common memory store. The second compiler, stemming from the first
one, identifies the entry points of these chains - start rupture points -
and enforces isolation to form a parallel pipeline.

With these two contributions, it is possible to transform the mod-
ular representation of an application into a pipeline representation.
The modular representation allows development productivity, while
the pipeline representation executes efficiently. A development team
shall then use these two representations to continuously iterate over
the implementation of an application, and reach the most satisfying
compromise between productivity and efficiency.

The next paragraphs summarizes the two execution models, and
the steps of this equivalence from one model to the other.

G.1.1 MODELS

EVENT-DRIVEN EXECUTION MODEL

The event-driven execution model is targeted by productive pro-
gramming languages. It processes a queue of asynchronous events by
scheduling handlers cooperatively. Each handler can asynchronously
request resources and define handlers to receive the resource response.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 91

6.1.2

Q CHAPTER 6. CONCLUSION

Event Ioop P\pe\me
: task task task
0%0%0 @w@w@
global memory : memory memory memory

The handlers are chained by these asynchronous requests using con-
tinuation passing style. Apart from the resource response, the down-
stream handler gets access to the environment of its creation through
a closure.

They are organized similarly to a pipeline, each handler being a
stage, with the data flowing from one stage to the other. However,
the handlers still share a common memory store. It allows the higher-
order programming required for productivity. But it also avoids the
parallelism required for efficiency.

FLUXIONAL EXECUTION MODEL

The fluxional execution model is targeted by a more efficient pro-
gramming language. It executes an application expressed as a network
of independent application parts called fluxions. The fluxions com-
municate by messages, and form a pipeline similarly to the handlers
of the event-driven execution model. They are executed in parallel to
distribute the computation across several cores and increase the perfor-
mance efficiency. They rely on isolated memory store, called context
to allow this parallel execution. When several fluxions need to rely on
the same memory store, they are grouped, and executed sequentially.
When they are independent, they are isolated to increase performance
efficiency.

The similarity between the event-driven execution model and the
fluxional execution model leads to the equivalence presented in the next
paragraph. With this equivalence, the versatility of fluxions allows
to progressively adapt the implementation from a productive, single
event-loop, toward an efficient pipeline.

EQUIVALENCE

The equivalence describes the transformation from an application tar-
geting the event-driven execution model to execute them in parallel in
the fluxional execution model. This transformation involves two steps:
the extraction and isolation of the stages to form the pipeline.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 92

Q CHAPTER 6. CONCLUSION

STAGE EXTRACTION

The first step is the identification and extraction of the stages. The
equivalence identifies rupture points between stages. A rupture point
is an asynchronous call without subsequent synchronization with the
caller. It indicates a rupture in the synchronous control-flow, and the
boundaries between two handlers. The upstream handler is the one
calling the asynchronous call, the downstream handler is the callback
provided to the asynchronous call.

There are two kinds of rupture points: start and post. Start rupture
points directly receives the input stream, and start the execution of the
chain of stages for each new datum in the stream. Post rupture points
indicates a continuity in the chain of stages.

The difficulty in this compilation step is to identify the asynchronous
functions indicating the stages. Because of the dynamic behaviors of
Javascript, it is impossible to statically detect these functions. The
compiler implemented from the equivalence is currently unable to reli-
ably detect them. Instead the compiler rely on the developer to provide
a list of asynchronous function names to extract.

STAGE ISOLATION

The second step is the identification of the memory interdependen-
cies between stages. It intends to isolate the stages so they can be
executed in parallel. The common memory is replaced by message-
passing, following some rules to preserve consistency.

o If a stage needs to hold a variable from one request to the other,
this variable is stored in its context.

o If a downstream stage needs to read a variable from an upstream
stage, the variable is sent as part of the message communication.

o If two stages needs to share a variable, they are grouped on the
same execution node to safely share parts of their context. Their
are executed sequentially to avoid conflicting accesses.

The difficulty in this step is to identify the memory dependencies
between stages. The dynamic behaviors of Javascript makes it im-
possible to statically identify aliasing in the memory. The compiler
implemented from the equivalence is currently unable to identify these
interdependencies. It relies on manual manipulations to complete the
transformation.

X

These difficulties are details in further details in the next section.
It then presents some perspectives to overcome these limitations.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 93

Q CHAPTER 6. CONCLUSION

6.2 OVERALL EVALUATION

The equivalence presented in chapter 4 is implemented in a the fluxional
compiler, presented in section 5.2. This implementation is evaluated
against the criteria presented in chapter 3, Productivity, Efficiency and
Adoption.

6.2.1 TRADING PRODUCTIVITY FOR EFFICIENCY

The equivalence intends to disrupt as less as possible the way developer
build web applications. The goal is to avoid degrading the productivity,
hence the adoption, of the proposed platform. Therefore, the produc-
tivity is intended to be the same as the original event-driven platform.

However, in the current state, the compiler implementation is un-
able to operate the transformation without an external help. The static
analysis is unable to correctly detect the aliasing of the memory in
Javascript. It avoids developers to use Higher-Order Programming,
hence impacts composition. This limitation avoids to improve the cur-
rent trade-off of productivity for efficiency. Indeed, to gain efficiency,
developers need to commit efforts to indicate the stages of the pipeline,
and assure their dependency.

The manual transformation process yields a distributed application,
similarly as the other efficient platforms. And the chapter 3 showed
that such applications achieve very good performance efficiency. But
the productivity limitation remains. It avoids the current implemen-
tation to propose a satisfying compromise between productivity and
efficiency. So, the current implementation actually trades productivity
for efficiency, similarly to many platform in the state of the art. The
perspectives to overcome this limitation are addressed later in section
6.3.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 94

Q CHAPTER 6. CONCLUSION

6.2.2 ADOPTION

6.3

As observed in the chapter 3, trading productivity for efficiency dras-
tically reduces adoption. Because the current implementation presents
the same limitation than the efficient platforms, its adoption is not
expected to be different.

Yet, both productivity and efficiency are required for the platform
to be adopted by new developers as well as large businesses. Only
at this condition, will it reinforce the loop between community and
industry. So the current implementation is not expected to be widely
adopted, as presented in the table 6.1.

Composition
Encapsulation
— Productivity
Fine-grain level
synchronization
Coarse-grain
level message
passing

— Efficiency
Community
support

Model

@ | Industrial need
@ | — Adoption

®
®
®

Fluxional Compiler

Table 6.1 — Summary of the proposed solution

The limitation of static analysis avoids the equivalence to be fully
implemented to address the problematic. Hence, this evaluation holds
only on the implementation, and not on the equivalence.

When saying that it is a mistake to attempt high concurrency with-
out help from the compiler, R. von Behren et al. [17] implies that the
language alone cannot achieve high concurrency. It is necessary to
rely on additional tools, such as a compiler to reach the best compro-
mise between productivity and efficiency. The evaluation of this thesis
concludes that static analysis is unable to reach this compromise for
the current multi-paradigm languages using higher-order programming.
Yet, there exist alternatives to static analysis to reach this compromise.
The next paragraph presents some interesting perspectives of this work
to further address this problematic.

PERSPECTIVES

As stated previously, static analysis impacts productivity to favor ef-
ficiency. Though, an interesting perspective to continue this work is
to implement the equivalence as a just-in-time compiler. Indeed, the
dynamic analysis allowed at run time is more prone to overcome the
limitation identified with static analysis.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf

© [E. Brodu], [2016], INSA Lyon, tous droits réservés 95

Q CHAPTER 6. CONCLUSION

6.3.1 JUST-IN-TIME COMPILATION

Most Javascript interpreters compile some parts of the code at run
time to improve performances. During this compilation, the levels of
indirections are mostly resolved. The code is translated directly into
lower-level instructions.

Implementing the equivalence in a just-in-time (JIT) compiler could
leverage this dynamic resolution. It could analyze the scope of variables
resolved dynamically, and isolate the stages accordingly.

RUPTURE POINT DETECTION

The asynchronous functions identifying rupture points are not part
of Javascript. They are special functions provided by the interpreter.
With the compiler communicating with the interpreter at run time,
detecting rupture points becomes trivial. The interpreter notifies the
compiler when an asynchronous function is called. The compiler then
identifies the rupture point and isolates it to possibly execute it re-
motely.

DOMINATOR TREE

To debug the memory in dynamic languages like Javascript, one
can use a dominator tree. It is a tree generated at run time indi-
cating the parenting relations between memory objects. With such a
tree, the analysis of interdependencies between stages becomes trivial.
Each stage can be isolated in a fluxion, and deployed accordingly to its
dependencies.

CLOSURE SERIALIZATION

Closures are required to allow higher-order programming. But the
static compiler is unable to manipulate closures, as illustrated in section
5.2.3. Closures are generated dynamically by the interpreter. With the
compiler communicating with the interpreter, the former can manipu-
lates and serialize them at run time. It can then send closures between
fluxions, like any other objects. It enables the use of higher-order
programming within the fluxional execution model. Hence, it would
allow, to some extent, to improve the compromise between productiv-
ity and efficiency. Indeed, the developer is free to use the higher-order
programming to compose modules, with a global memory abstraction.
Yet, the execution could distribute this global memory abstraction ac-
cording to the detected interdependencies.

DYNAMIC GROUPING

With the dynamic detection of stages and their dependencies, and
the manipulation of closures, fluxions can be registered during the exe-
cution of the application. To assure they meet their dependencies, the
fluxions are deployed according to their groups. Two fluxions belong to

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 96

Q CHAPTER 6. CONCLUSION

the same group if they need to share access to some variables. There-
fore, they need to be deployed on the same event-loop to share their
memory.

SAFE-CHECKING

It is required to safe-check that the compiled code is consistent with
the remaining execution. As an example, just-in-time compilers check
the type to assure that a compiled function remains conform to the
input and output types of its call site. Similarly, it is required to check
that the deployment of fluxions doesn’t cause inconsistencies.

If a fluxion ready to be deployed belongs to two different groups,
these two groups needs to be gathered on the same event-loop. If they
were previously deployed on two different event-loops, they need to be
moved with their context to be on the same event-loop. Moreover,
to assure consistency, they need to be moved when receiving the re-
quest that triggered the fluxion ready to be deployed. So that when
this new fluxion is executed at this message reception it has access to
the contexts of the two groups. For this purpose, the compiler put
the execution on hold, and sends a control message downstream to or-
der the move of the fluxions. In this example, the message inquired
the distributed interpreters to stop execution, pack the fluxions and
their contexts, and send them back to another remote interpreter. To
assure consistency, the execution resumes only when all the fluxions
are gathered in the same event-loop, with access to the whole shared
memory.

X

The perspectives described in the previous paragraphs overcome
the limitations of the current implementation of the compiler. They
describe the further implementation of the equivalence, as if I were to
continue this work.

6.3.2 EVALUATION OF THE PERSPECTIVE

This second evaluation admits that the JIT compilation resolves all the
indirections in the memory. Then, the fluxional JIT compiler doesn’t
need to rely on human interaction. Therefore, the expected productiv-
ity is the same as the productivity language used as source.
Naturally, the performance efficiency of the implementation is, at
first, the same of this productivity language, as the development is
focused on productivity. Some development efforts are required to
improve the efficiency. The result from the compiler helps the developer
find the bottle necks, and reduce the effort for this shift. With the help
from the compiler, the effort for this shift is expected to be less than the
current required effort. Instead of redesigning the architecture of the
application to immediately isolate components, it is possible to modify
them to progressively loosen their dependencies. As illustrated in table

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 97

6.3.3

Q CHAPTER 6. CONCLUSION

6.2, this envisioned platform is expected to yield both productivity and
efficiency, not at the same time, but when they are required the most.

Moreover, during this decomposition and after, developers can still
rely on higher-order programming, even between isolated application
parts. In the current state of the art, there is no known platform to
offer higher-order programming between distributed parts. This pos-
sibility is therefore unknown, and could actually yield to an unrivaled
compromise between productivity and efficiency.

Following the insight along this thesis, a platform bringing both
productivity and efficiency simultaneously would be greatly adopted.
But it requires to be observed in real conditions before drawing this
conclusion.

> — g

=€ 28 g kS

S) o >
g 2 & —~z E D & > 4 §
2 8 9 g N & @ = = —_
= =2 ©F2 B3 . = Y
S 7 3 29 &g o 8 =2 E o
2 2 2 WE 2 F = E 88*573
SDf Ltizid fiiS

o— fao]

Model O@m T Zro2&8T oz 2171
Fluxional Runtime e 0 0

Table 6.2 — Summary of the perspective

FINAL THOUGHTS

During this thesis, I progressively changed my vision of our everyday
world. As a final note in this thesis, for what it is worth, I would like
to share this vision.

Nearly 3 decades ago, the IT industry understood that trading the
execution efficiency for development productivity could reduce devel-
opment time and thus, the final cost. Hardware performance could
compensate the loss of execution efficiency. But the new challenge
to build available web services at a world wide scale requires efficiency
again. Moreover, the IT industry has an important impact on the ecol-
ogy with its increasing carbon footprint. As explained all along this
thesis, I believe that it is time to take into account both productivity
and efficiency.

Yet, programming cannot be reserved to experts anymore. As dig-
italization permeates into every aspects of our lives, it is of crucial
importance that programming be available for everyone. Productiv-
ity cannot be traded back for efficiency. This thesis intends to bring a
modest reconciliation between two economical concerns for a web appli-
cation, the efficiency of execution and the productivity of development.
But it still feels like developers are an elite, and are comparable to the
copyist monks before the invention of printing.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf

© [E. Brodu], [2016], INSA Lyon, tous droits réservés 098

Q CHAPTER 6. CONCLUSION

Yet, some examples show that a shift might actually already be
happening. The platforms Squarespace! and the soon to come Grid?
allow everyone to launch a store-front on the web without any required
programming knowledge. It illustrates that technology needs to be at
the service of social evolution, and not stuck in an ivory tower, as an
unreachable field reserved to academics.

Internet disrupted the way we learn and share knowledge. In this
continuity, I believe that in the time to come, programming will be
made available for everybody. Additionally as reading and writing,
programming will be a prerequisite to communicate with peers. It will
allow to express dynamic behaviors, and not only static ones, as Bret
Viktor already envisioned3. I believe that this shift will disrupt the
way to see, live and interact with our surroundings and with peers. A
way we could barely imagine today.

This shift of communication might come with the increasing impor-
tance of machine learning and artificial intelligence. Indeed, it allows
to easily define complex behaviors, and extend our communication pos-
sibilities. For example, the services of M*, Jam®, Magic®, and the likes,
teams up artificial intelligence with operators to become the new su-
per assistant of everyone. These autonomous behaviors meld into the
human to human interaction to help both parties. And with the ad-
vent of the Internet of things and blockchains smart contracts, it is
not far-fetched to imagine our everyday world similarly infused with
artificial interactions. Because of Artificial Intelligence, these complex
behaviors will become so common that it will completely dissolve the
barrier between human and machine interactions.

I use the following metaphor to explain my vision on artificial intel-
ligence. Programming defines precise rules and behaviors to be followed
by the machine, similarly to using a chisel to sculpt rocks. On the other
hand, machine learning feels like copying an existing object by mold-
ing it. It injects a neural network into a mold of known behaviors to
extend it to unknown behaviors. It is becoming way easier to program
face recognition and natural language processing than to write a kernel
module. Artificial Intelligence might helps developers in:

o providing more complex building blocks, and

o choosing among the available building blocks.

Ultimately, programming is animating matter, by organizing it so as
to reproduce a limited part of our consciousness. I believe that even-
tually, infused with this consciousness, our surrounding will become
autonomous and reactive. We will no longer interact only with peers
but also with our surroundings. It will become barely recognizable if a

Thttp://www.squarespace.com/
2https://thegrid.io/
Shttps://vimeo.com/115154289
‘http://bit.ly/M-facebook
Shttps://hellojam.fr/
Shttps://getmagicnow.com/

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 99

http://www.squarespace.com/
https://thegrid.io/
https://vimeo.com/115154289
http://bit.ly/M-facebook
https://hellojam.fr/
https://getmagicnow.com/

Q CHAPTER 6. CONCLUSION

behavior is originating from a person, or some machine learning algo-
rithm embodied in our environment. From this point on, I believe our
interactions will meld to form an inextricable mesh. The distinction
between a person and artificial intelligence will dissolve. And more
importantly this distinction will have no importance for us. It will feel
completely natural to ask a car to go fetch groceries. And to not for-
get butter, this time. Similarly to the way our cells gathered to form a
greater form of life capable of walking, talking, and thinking, this mesh
will be able to do things we cannot even possibly imagine yet.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 100

BIBLIOGRAPITY

[1] Sebastian Adam and Joerg Doerr. “How to better align BPM &
SOA - Ideas on improving the transition between process design
and deployment”. In: CEUR Workshop Proceedings. Vol. 335.
2008, pp. 49-55.

[2] A Adya, J Howell, and M Theimer. “Cooperative Task Manage-
ment Without Manual Stack Management.” In: USENIX Annual
Technical Conference (2002).

[3] Yuichiro Ajima, Takafumi Nose, Kazushige Saga, Naoyuki Shida,
and Shinji Sumimoto. “ACPdI”. In: Proceedings of the First In-
ternational Workshop on FExtreme Scale Programming Models
and Middleware - ESPM ’15. New York, New York, USA: ACM
Press, Nov. 2015, pp. 11-18. DOI: 10.1145/2832241.2832242.

[4] T Akidau and A Balikov. “MillWheel: Fault-Tolerant Stream
Processing at Internet Scale”. In: Proceedings of the VLDB En-
dowment 6.11 (2013).

[5] Frances E. Allen. “Control flow analysis”. In: ACM SIGPLAN
Notices 5.7 (July 1970), pp. 1-19. DOI: 10.1145/390013.808479.

[6] SP Amarasinghe, JAM Anderson, MS Lam, and CW Tseng. “An
Overview of the SUIF Compiler for Scalable Parallel Machines.”
In: PPSC (1995).

[7] Gene M. Amdahl. “Validity of the Single Processor Approach
to Achieving Large Scale Computing Capabilities”. In: AFIPS
Spring Joint Computer Conference, 1967. AFIPS °67 (Spring).
Proceedings of the. Vol. 30. 1967, pp. 483-485. DOI: doi: 10.
1145/1465482.1465560.

[8] LO Andersen. “Program analysis and specialization for the C
programming language”. In: (1994).

9] James H. Anderson and Mohamed G. Gouda. The wvirtue of
Patience: Concurrent Programming With And Without Waiting.
1990.

[10] Joe Armstrong. Programming Erlang. Pragmatic Programmers,
2007, p. 519. DOI: 10.1017/S0956796809007163.

[11] Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike
Williams. Concurrent Programming in ERLANG. 1993.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 101

http://dx.doi.org/10.1145/2832241.2832242
http://dx.doi.org/10.1145/390013.808479
http://dx.doi.org/10.1017/S0956796809007163

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

BIBLIOGRAPHY

Michel Auguin and Francois Larbey. “OPSILA: an advanced
SIMD for numerical analysis and signal processing”. In: Micro-
computers: developments in industry, business, and education.
1983, pp. 311-318.

U Banerjee. Loop parallelization. 2013.

Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma,
and Olivier Temam. “Putting Polyhedral Loop Transformations
to Work”. In: LCPC ’04 Languages and Compilers for Parallel
Computing. Lecture Notes in Computer Science 2958.Chapter
14 (2004). Ed. by Lawrence Rauchwerger, pp. 209-225. DOTI:
10.1007/b95707.

Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken.
“Legion: Expressing Locality and Independence with Logical
Regions”. In: Proceedings of the International Conference on
High Performance Computing Networking Storage and Analysis
SC 12 (Nov. 2012), pp. 1-11. DO1: 10.1109/SC.2012.71.

Micah Beck, Richard Johnson, and Keshav Pingali. “From con-
trol flow to dataflow”. In: Journal of Parallel and Distributed
Computing 12.2 (1991), pp. 118-129. DOIL: 10 . 1016 /0743 -
7315(91)90016-3.

JR von Behren, J Condit, and EA Brewer. “Why Events Are a
Bad Idea (for High-Concurrency Servers).” In: HotOS (2003).

Rob von Behren, Jeremy Condit, Feng Zhou, George C. Nec-
ula, and Eric Brewer. “Capriccio: Scalable Threads for Internet
Services”. In: ACM SIGOPS 37.5 (2003), p. 268. DOI: 10.1145/
1165389.945471.

M Bodin and A Charguéraud. “A trusted mechanised JavaS-
ript specification”. In: Proceedings of the J1st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages
(2014).

E Brodu, S Frénot, and F Oblé. “Toward automatic update from
callbacks to Promises” In: AWeS (2015).

Etienne Brodu, Stéphane Frénot, Fabien Cellier, and Frédéric
Oblé. “A compiler providing incremental scalability for web ap-
plications”. In: Proceedings of the Posters € Demos Session on
- Middleware Posters and Demos ’'14. New York, New York,
USA: ACM Press, Dec. 2014, pp. 35-36. DOI: 10.1145/2678508.
2678526.

Etienne Brodu, Stéphane Frénot, and Frédéric Oblé. “Trans-
forming Javascript Event-Loop Into a Pipeline”. In: Symposium
on Applied Computing, track Practical Aspect of Parallel Pro-
gramming (Dec. 2015). DOT: 10.1145/2851613.2851745. arXiv:
1512.07067.

S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. “A Theory of
Communicating Sequential Processes”. In: Journal of the ACM
31.3 (June 1984), pp. 560-599. DOT: 10.1145/828.833.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 102

http://dx.doi.org/10.1007/b95707
http://dx.doi.org/10.1109/SC.2012.71
http://dx.doi.org/10.1016/0743-7315(91)90016-3
http://dx.doi.org/10.1016/0743-7315(91)90016-3
http://dx.doi.org/10.1145/1165389.945471
http://dx.doi.org/10.1145/1165389.945471
http://dx.doi.org/10.1145/2678508.2678526
http://dx.doi.org/10.1145/2678508.2678526
http://dx.doi.org/10.1145/2851613.2851745
http://arxiv.org/abs/1512.07067
http://dx.doi.org/10.1145/828.833

= BIBLIOGRAPHY

[24] T Buck, T Foley, and D Horn. “Brook for GPUs: stream com-
puting on graphics hardware”. In: ... on Graphics (TOG) (2004).

[25] T Buddhika and S Pallickara. “NEPTUNE: Real Time Stream
Processing for Internet of Things and Sensing Environments”.
In: granules.cs.colostate.edu ().

[26] Marcelo Cataldo, Patrick A. Wagstrom, James D. Herbsleb,
and Kathleen M. Carley. “Identification of coordination require-
ments”. In: Proceedings of the 2006 20th anniversary conference
on Computer supported cooperative work - CSCW ’06. New
York, New York, USA: ACM Press, Nov. 2006, p. 353. DOI:
10.1145/1180875.1180929.

[27] Bryan Catanzaro, Shoaib Kamil, and Yunsup Lee. “SEJITS:
Getting productivity and performance with selective embedded
JIT specialization”. In: Programming Models for Emerging Ar-
chitectures (2009), pp. 1-10. DOI: 10.1.1.212.6088.

28] B.L. Chamberlain, D. Callahan, and H.P. Zima. “Parallel Pro-
grammability and the Chapel Language”. In: International Jour-
nal of High Performance Computing Applications 21.3 (Aug.
2007), pp. 291-312. DOI: 10.1177/1094342007078442.

[29] F Chan, J N Cao, A T S Chan, and M Y Guo. “Programming
support for MPMD parallel computing in ClusterGOP”. In: IFE-
ICE Transactions on Information and Systems E87D.7 (2004),
pp- 1693-1702.

[30] K. Mani Chandy and Carl Kesselman. “Compositional C++:
Compositional parallel programming”. In: Languages and Com-
pilers for Parallel Computing. Vol. 757. 2005, pp. 124-144. DOT:
10.1007/3-540-48319-5.

[31] Chi-Chao Chang, G. Czajkowski, T. Von Eicken, and C. Kessel-
man. “Evaluating the Performance Limitations of MPMD Com-
munication”. In: ACM/IEEE SC 1997 Conference (SC°97) (1997),
pp. 1-10. DOT: 10.1109/SC.1997.10040.

[32] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole,
Jeff Kuehn, Chuck Koelbel, and Lauren Smith. “Introducing
OpenSHMEM?”. In: Proceedings of the Fourth Conference on
Partitioned Global Address Space Programming Model - PGAS
'10. New York, New York, USA: ACM Press, Oct. 2010, pp. 1-3.
DOI: 10.1145/2020373.2020375.

[33] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christo-
pher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von
Praun, and Vivek Sarkar. “X10”. In: Proceedings of the 20th an-
nual ACM SIGPLAN conference on Object oriented program-
ming systems languages and applications - OOPSLA ’05. Vol. 40.
10. New York, New York, USA: ACM Press, Oct. 2005, p. 519.
DOI: 10.1145/1094811.1094852.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 103

http://dx.doi.org/10.1145/1180875.1180929
http://dx.doi.org/10.1.1.212.6088
http://dx.doi.org/10.1177/1094342007078442
http://dx.doi.org/10.1007/3-540-48319-5
http://dx.doi.org/10.1109/SC.1997.10040
http://dx.doi.org/10.1145/2020373.2020375
http://dx.doi.org/10.1145/1094811.1094852

= BIBLIOGRAPHY

[34] Chun Chen, Jacqueline Chame, and Mary Hall. “CHiLL: A
framework for composing high-level loop transformations”. In:
U. of Southern California, Tech. Rep (2008), pp. 1-28. DOI:
10.1001/archneur.64.6.785.

[35] Andrey Chudnov and David A. Naumann. “Inlined Information
Flow Monitoring for JavaScript™ In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications
Security (Oct. 2015), pp. 629-643. DOI: 10 . 1145/ 2810103 .
2813684.

[36] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich,
Robert T. Morris, and Eddie Kohler. “The scalable commuta-
tivity rule”. In: Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles - SOSP ’13. New York,
New York, USA: ACM Press, Nov. 2013, pp. 1-17. DOIL: 10.
1145/2517349.2522712.

[37) William Douglas Clinger. “Foundations of Actor Semantics”.
eng. In: (May 1981).

[38] M. L. Cole. Algorithmic skeletons : A structured approach to the
management of parallel computation. eng. 1988.

[39] Charles Consel, Hedi Hamdi, Laurent Réveillere, Lenin Singar-
avelu, Haiyan Yu, and Calton Pu. “Spidle: a DSL approach to
specifying streaming applications”. In: Proceedings of the 2nd
international conference on Generative programming and com-
ponent engineering - GPCE ’03 (2003), pp. 1-17.

[40] Melvin E. Conway. “Design of a separable transition-diagram
compiler”. In: Communications of the ACM 6.7 (July 1963),
pp. 396-408. DOT: 10.1145/366663. 366704

[41] David E. Culler, A. Dusseau, Seth Copen Goldstein, Arvind Ki-
ishnamurthy, Steven Lumetta, Thorsten Von Eicken, and Kather-
ine Yelick. “Parallel programming in Split-C”. English. In: (),
pp- 262-273. DOI: 10.1109/SUPERC.1993.1263470.

[42] Frank Dabek and Nickolai Zeldovich. “Event-driven program-
ming for robust software”. In: Proceedings of the 10th workshop
on ACM SIGOPS European workshopn workshop (July 2002),
pp. 186—-189. DOI: 10.1145/1133373.1133410.

[43] L. Dagum and R. Menon. “OpenMP: an industry standard API
for shared-memory programming”. English. In: IEFEE Compu-
tational Science and Engineering 5.1 (1998), pp. 46-55. DOI:
10.1109/99.660313.

[44] F. Darema, D.A. George, V.A. Norton, and G.F. Pfister. “A
single-program-multiple-data computational model for EPEX /-
FORTRAN”. In: Parallel Computing 7.1 (Apr. 1988), pp. 11-24.
DOI: 10.1016/0167-8191(88)90094-4.

[45] Frederica Darema. “The SPMD Model: Past , Present and Fu-
ture”. In: Parallel Computing. 2001, p. 1. DOI: 10.1007/3-540-
45417-9_1.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 104

http://dx.doi.org/10.1001/archneur.64.6.785
http://dx.doi.org/10.1145/2810103.2813684
http://dx.doi.org/10.1145/2810103.2813684
http://dx.doi.org/10.1145/2517349.2522712
http://dx.doi.org/10.1145/2517349.2522712
http://dx.doi.org/10.1145/366663.366704
http://dx.doi.org/10.1109/SUPERC.1993.1263470
http://dx.doi.org/10.1145/1133373.1133410
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1016/0167-8191(88)90094-4
http://dx.doi.org/10.1007/3-540-45417-9_1
http://dx.doi.org/10.1007/3-540-45417-9_1

= BIBLIOGRAPHY

[46] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified
Data Processing on Large Clusters”. In: Proc. of the OSDI -
Symp. on Operating Systems Design and Implementation. Vol. 51.
1. 2004, pp. 137-149. DOI: 10.1145/1327452.1327492. arXiv:
10.1.1.163.5292.

[47) E W Dijkstra. Notes on structured programming. 1970.

(48] Edsger Dijkstra. “Over de sequentialiteit van procesbeschrijvin-
gen”. In: ().

[49] Edsger W. Dijkstra. “Guarded commands, nondeterminacy and
formal derivation of programs”. In: Communications of the ACM
18.8 (Aug. 1975), pp. 453-457. DOI: 10.1145/360933.360975.

[50] Edsger W. Dijkstra. “Letters to the editor: go to statement con-
sidered harmful”. In: Communications of the ACM 11.3 (Mar.
1968), pp. 147-148. DOI: 10.1145/362929.362947.

[51] Edsger W. Dijkstra. “The structure of the “THE”-multiprogramming
system”. In: Communications of the ACM 11.5 (May 1968),
pp. 341-346. DOL: 10.1145/363095.363143.

[52] Julian Dolby. “A History of JavaScript Static Analysis with
WALA at IBM”. In: (2015).

[53] H. Carter Edwards and Daniel Sunderland. “Kokkos Array performance-
portable manycore programming model”. In: Proceedings of the
2012 International Workshop on Programming Models and Ap-
plications for Multicores and Manycores - PMAM °12. New
York, New York, USA: ACM Press, Feb. 2012, pp. 1-10. DoTI:
10.1145/2141702.2141703.

[54] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kaly-
vianaki, and Peter Pietzuch. “Making state explicit for impera-
tive big data processing”. In: USENIX ATC (2014).

[55] JI Fernandez-Villamor. “Microservices-Lightweight Service De-
scriptions for REST Architectural Style.” In: Proceedings of the
2nd International Conference on Agents and Artificial Intelli-
gence, ICAART 2010 (2010).

[56] D Flanagan. JavaScript: the definitive guide. 2006.

[57] Michael J. Flynn. “Some Computer Organizations and Their
Effectiveness”. English. In: IEEFE Transactions on Computers C-
21.9 (Sept. 1972), pp. 948-960. DOL: 10.1109/TC. 1972.5009071.

[58] Tan Foster, Carl Kesselman, and Steven Tuecke. “The Nexus
Approach to Integrating Multithreading and Communication”.
In: Journal of Parallel and Distributed Computing 37.1 (Aug.
1996), pp. 70-82. DOI: 10.1006/jpdc.1996.0108.

[59] LT. Foster and K M Chandy. “Fortran M: A Language for Mod-
ular Parallel Programming”. In: Journal of Parallel and Dis-
tributed Computing 26.1 (Apr. 1995), pp. 24-35. DOIL: 10.1006/
jpdc.1995.1044.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 105

http://dx.doi.org/10.1145/1327452.1327492
http://arxiv.org/abs/10.1.1.163.5292
http://dx.doi.org/10.1145/360933.360975
http://dx.doi.org/10.1145/362929.362947
http://dx.doi.org/10.1145/363095.363143
http://dx.doi.org/10.1145/2141702.2141703
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1006/jpdc.1996.0108
http://dx.doi.org/10.1006/jpdc.1995.1044
http://dx.doi.org/10.1006/jpdc.1995.1044

= BIBLIOGRAPHY

[60] M Fowler and J Lewis. Microservices. 2014.

[61] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. “The
implementation of the Cilk-5 multithreaded language”. In: ACM
SIGPLAN Notices 33.5 (May 1998), pp. 212-223. DOI: 10.1145/
277652.277725. arXiv: 9809069v1 [arXiv:gr-qcl.

[62] P Gardner and G Smith. “JuS: Squeezing the sense out of
javascript programs”. In: JSTools@ ECOOP (2013).

[63] PA Gardner, S Maffeis, and GD Smith. “Towards a program
logic for JavaScript™. In: ACM SIGPLAN Notices (2012).

[64] JJ Garrett. “Ajax: A new approach to web applications”. In:
(2005).

[65] Tarek El-Ghazawi and Lauren Smith. “UPC: unified parallel C”.
In: Proceedings of the 2006 ACM/IEEE conference on Super-
computing - SC ’06. New York, New York, USA: ACM Press,
Nov. 2006, p. 27. DOI: 10.1145/1188455.1188483.

[66] Adele Goldberg. Smalltalk-80 : the interactive programming en-
vironment. 1984, xi, 516 p.

[67] Horacio Gonzélez-Vélez and Mario Leyton. “A survey of algo-
rithmic skeleton frameworks: high-level structured parallel pro-
gramming enablers”. In: Software: Practice and Experience 40.12
(Nov. 2010), pp. 1135-1160. DOI: 10.1002/spe.1026.

[68] J Gosling. The Java language specification. 2000.

[69] Steven D. Gribble, Matt Welsh, Rob Von Behren, Eric a. Brewer,
David Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill,
A. Joseph, R. H. Katz, Z. M. Mao, S. Ross, and B. Zhao. “Ninja
architecture for robust Internet-scale systems and services”. In:
Computer Networks 35.4 (2001), pp. 473-497. DOI: 10.1016/
S$1389-1286(00)00179-1.

[70] Andrew S. Grimshaw. “An Introduction to Parallel Object-Oriented
Programming with Mentat”. In: (Apr. 1991).

[71] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Sim-
biirger, Armin Grofllinger, and Louis-Noél Pouchet. “Polly -
Polyhedral optimization in LLVM”. In: Proceedings of the First
International Workshop on Polyhedral Compilation Techniques
(IMPACT °11) (2011), None.

[72] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan a
Thekkath, Yuan Yu, and Li Zhuang. “Nectar : Automatic Man-
agement of Data and Computation in Datacenters™ In: Tech-
nology (2010), pp. 1-8.

(73] NJ Gunther. “A New Interpretation of Amdahl’s Law and Ge-
ometric Scalability”. In: arXiv preprint cs/0210017 (2002).

[74] NJ Gunther. “A simple capacity model of massively parallel
transaction systems”. In: CMG-CONFERENCE- (1993).

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 106

http://dx.doi.org/10.1145/277652.277725
http://dx.doi.org/10.1145/277652.277725
http://arxiv.org/abs/9809069v1
http://dx.doi.org/10.1145/1188455.1188483
http://dx.doi.org/10.1002/spe.1026
http://dx.doi.org/10.1016/S1389-1286(00)00179-1
http://dx.doi.org/10.1016/S1389-1286(00)00179-1

= BIBLIOGRAPHY

[75] NJ Gunther. “Understanding the MP effect: Multiprocessing in
pictures”. In: In other words (1996).

[76] JL Gustafson. “Reevaluating Amdahl’s law”. In: Communica-
tions of the ACM (1988).

[77) B Hackett and S Guo. “Fast and precise hybrid type inference
for JavaScript”. In: ACM SIGPLAN Notices (2012).

(78] Philipp Haller and Martin Odersky. “Actors That Unify Threads
and Events”. In: Coordination 2007, Lncs 4467 (2007), pp. 171-
190. DOI: 10.1007/978-3-540-72794-1_10.

[79] Biao Han, Zhongzhi Luan, Danfeng Zhu, Yinan Ren, Ting Chen,
Yongjian Wang, and Zhongxin Wu. “An improved staged event
driven architecture for master-worker network computing”. En-
glish. In: CyberC 2009 - International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discoveryi (Oct.
2009), pp. 184-190. DOT: 10.1109/CYBERC. 2009.5342202.

[80] P.B. Hansen and J. Staunstrup. “Specification and Implemen-
tation of Mutual Exclusion”. English. In: IEEE Transactions
on Software Engineering SE-4.5 (Sept. 1978), pp. 365-370. DOT:
10.1109/TSE.1978.233856.

[81] Tim Harris, James Larus, and Ravi Rajwar. “Transactional Mem-
ory, 2nd edition”. en. In: Synthesis Lectures on Computer Archi-
tecture 5.1 (Dec. 2010), pp. 1-263. DOI: 10.2200/S00272ED1V01Y201006CACO11.

[82] Williams Ludwell Harrison. “The interprocedural analysis and
automatic parallelization of Scheme programs”. In: Lisp and
Symbolic Computation 2.3-4 (Oct. 1989), pp. 179-396. DOI: 10.
1007/BF01808954.

[83] CT Haynes, DP Friedman, and M Wand. “Continuations and
coroutines”. In: LFP ’84 Proceedings of the 1984 ACM Sympo-
stum on LISP and functional programming (1984), pp. 293-298.
DOI: 10.1145/800055.802046.

[84] B He, M Yang, Z Guo, R Chen, and B Su. “Comet: batched
stream processing for data intensive distributed computing”. In:

Proceedings of the 1st ACM symposium on Cloud computing.
2010.

[85] Danny Hendler, Nir Shavit, and Lena Yerushalmi. “A scalable
lock-free stack algorithm”. In: Proceedings of the sixteenth an-
nual ACM symposium on Parallelism in algorithms and archi-
tectures - SPAA ’04. New York, New York, USA: ACM Press,
June 2004, p. 206. DOI: 10.1145/1007912.1007944.

[86] M. Herlihy. “A methodology for implementing highly concurrent
data structures”. In: ACM SIGPLAN Notices 25.3 (Mar. 1990),
pp. 197-206. DOL: 10.1145/99164.99185.

[87] Maurice Herlihy. “Wait-free synchronization”. In: ACM Trans-
actions on Programming Languages and Systems 13.1 (Jan.
1991), pp. 124-149. pOI: 10.1145/114005.102808.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 107

http://dx.doi.org/10.1007/978-3-540-72794-1_10
http://dx.doi.org/10.1109/CYBERC.2009.5342202
http://dx.doi.org/10.1109/TSE.1978.233856
http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011
http://dx.doi.org/10.1007/BF01808954
http://dx.doi.org/10.1007/BF01808954
http://dx.doi.org/10.1145/800055.802046
http://dx.doi.org/10.1145/1007912.1007944
http://dx.doi.org/10.1145/99164.99185
http://dx.doi.org/10.1145/114005.102808

[93]

[94]

[95]

[96]

(98]

[99]

[100]

BIBLIOGRAPHY

Maurice P. Herlihy. “Impossibility and universality results for
wait-free synchronization”. In: Proceedings of the seventh an-
nual ACM Symposium on Principles of distributed computing -
PODC ’88. New York, New York, USA: ACM Press, Jan. 1988,
pp. 276-290. DOI: 10.1145/62546.62593.

C Hewitt, P Bishop, and R Steiger. “A universal modular actor
formalism for artificial intelligence”. In: Proceedings of the 3rd
international joint conference on Artificial intelligence (1973).

Carl Hewitt. “Viewing control structures as patterns of passing
messages”. In: Artificial intelligence (1977).

Carl Hewitt and Jr Baker Henry. “Actors and Continuous Func-
tionals,” in: (Dec. 1977).

Martin Hilbert and Priscila Lépez. “The world’s technological
capacity to store, communicate, and compute information.” In:
Science (New York, N.Y.) 332.6025 (Apr. 2011), pp. 60-65. DOT:
10.1126/science.1200970.

C. A. R. Hoare. “Communicating sequential processes”. In: Com-
munications of the ACM 21.8 (Aug. 1978), pp. 666-677. DOL:
10.1145/359576.359585.

C. A. R. Hoare. “Monitors: an operating system structuring
concept”. In: Communications of the ACM 17.10 (Oct. 1974),
pp- H49-557. DOI: 10.1145/355620.361161.

R D Hornung and J A Keasler. “The RAJA Portability Layer :
Overview and Status” In: (2014).

Shan Huang, Amir Hormati, David Bacon, and Rodric Rabbah.
“Liquid Metal: Object-Oriented Programming Across the Hard-
ware/Software Boundary”. In: ECOOP 2008 — Object-Oriented
Programming. 2008, pp. 76-103. DOI: 10.1007/978-3-540-
70592-5_5.

YW Huang, F Yu, C Hang, and CH Tsai. “Securing web ap-
plication code by static analysis and runtime protection”. In:

Proceedings of the 13th international conference on World Wide
Web. (2004).

Paul Hudak, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil,
Will Partain, John Peterson, Simon Peyton Jones, Philip Wadler,
Brian Boutel, Jon Fairbairn, Joseph Fasel, Maria M. Guzman,
Kevin Hammond, and John Hughes. “Report on the program-
ming language Haskell”. In: ACM SIGPLAN Notices 27.5 (May
1992), pp. 1-164. DOT: 10.1145/130697.130699.

John Hughes. “Why functional programming matters”. In: The
computer journal 32.April 1989 (1989), pp. 1-23. DOI: 10.1093/
comjnl/32.2.98.

Walter Hiirsch and Cristina Videira Lopes. Separation of Con-
cerns. Tech. rep. NU-CCS-95-03. 1995.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 108

http://dx.doi.org/10.1145/62546.62593
http://dx.doi.org/10.1126/science.1200970
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1145/355620.361161
http://dx.doi.org/10.1007/978-3-540-70592-5_5
http://dx.doi.org/10.1007/978-3-540-70592-5_5
http://dx.doi.org/10.1145/130697.130699
http://dx.doi.org/10.1093/comjnl/32.2.98
http://dx.doi.org/10.1093/comjnl/32.2.98

= BIBLIOGRAPHY

[101] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Den-
nis Fetterly. “Dryad: distributed data-parallel programs from
sequential building blocks”. In: ACM SIGOPS Operating Sys-
tems Review. Vol. 41. No. 3. (2007), pp. 59-72. DOI: 10.1145/
1272996.1273005.

[102] Dongseok Jang and Kwang-Moo Choe. “Points-to analysis for
JavaScript”. In: Proceedings of the 2009 ACM symposium on
Applied Computing SAC 09 (2009), p. 1930. DOI: 10. 1145/
1529282.1529711.

[103] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wal-
lach. “CRL: High-Performance All-Software Distributed Shared
Memory”. In: ACM SIGOPS Operating Systems Review 29.5
(Dec. 1995), pp. 213-226. DOI: 10.1145/224057.224073.

[104] Ralph E. Johnson and Brian Foote. “Designing Reusable Classes
Abstract Designing Reusable Classes”. In: Journal of Object-
Oriented Programming 1 (1988), pp. 22-35.

[105] N Jovanovic, C Kruegel, and E Kirda. “Pixy: A static analysis
tool for detecting web application vulnerabilities”. In: Security
and Privacy, 2006 IEEE Symposium on. (2006).

[106] Gilles Kahn. “The semantics of a simple language for parallel
programming”. In: In Information Processing’74: Proceedings of
the IFIP Congress 74 (1974), pp. 471-475.

[107] Gilles Kahn and David Macqueen. Coroutines and Networks of
Parallel Processes. en. Tech. rep. 1976, p. 20.

[108] Hartmut Kaiser. “HPX — A Task Based Programming Model in
a Global Address Space”. In: PGAS 2014. New York, New York,
USA: ACM Press, Oct. 2014, pp. 1-11. DOI: 10.1145/2676870.
2676883.

[109] Hartmut Kaiser, Thomas Heller, and Daniel Bourgeois. Higher-
level Parallelization for Local and Distributed Asynchronous Task-
Based Programming. 2015.

[110] MN Krohn, E Kohler, and MF Kaashoek. “Events Can Make
Sense.” In: USENIX Annual Technical Conference (2007).

[111] L Lamport. “Time, clocks, and the ordering of events in a dis-
tributed system”. In: Communications of the ACM (1978).

[112] Leslie Lamport. “Concurrent reading and writing”. In: Com-
munications of the ACM 20.11 (Nov. 1977), pp. 806-811. DOTI:
10.1145/359863.359878.

[113] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzan-
tine Generals Problem”. In: ACM Transactions on Program-
ming Languages and Systems 4.3 (July 1982), pp. 382-401. DOT:
10.1145/357172.357176.

[114] Charles E. Leiserson. “The Cilk++ concurrency platform”. In:
Journal of Supercomputing 51.3 (Mar. 2010), pp. 244-257. DOL:
10.1007/s11227-010-0405-3.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 109

http://dx.doi.org/10.1145/1272996.1273005
http://dx.doi.org/10.1145/1272996.1273005
http://dx.doi.org/10.1145/1529282.1529711
http://dx.doi.org/10.1145/1529282.1529711
http://dx.doi.org/10.1145/224057.224073
http://dx.doi.org/10.1145/2676870.2676883
http://dx.doi.org/10.1145/2676870.2676883
http://dx.doi.org/10.1145/359863.359878
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1007/s11227-010-0405-3

= BIBLIOGRAPHY

[115] Feng Li, Antoniu Pop, and Albert Cohen. “Automatic Extrac-
tion of Coarse-Grained Data-Flow Threads from Imperative Pro-
grams”. English. In: IEEE Micro 32.4 (July 2012), pp. 19-31.
DOI: 10.1109/MM.2012.49.

[116] Peng Li and Steve Zdancewic. “Combining events and threads
for scalable network services implementation and evaluation
of monadic, application-level concurrency primitives”. In: ACM
SIGPLAN Notices 42.6 (June 2007), p. 189. DOI: 10. 1145/
1273442.1250756.

[117] B Liskov and L Shrira. Promises: linguistic support for efficient
asynchronous procedure calls in distributed systems. 1988.

[118] Dionysios Logothetis, Christopher Olston, Benjamin Reed, Kevin
C. Webb, and Ken Yocum. “Stateful bulk processing for incre-
mental analytics”. In: International Conference on Management
of Data (2010), pp. 51-62. DOI: 10.1145/1807128.1807138.

[119] S Maffeis, JC Mitchell, and A Taly. “An operational semantics
for JavaScript”. In: Programming languages and systems (2008).

[120] S Maffeis, JC Mitchell, and A Taly. “Isolating JavaScript with
filters, rewriting, and wrappers”. In: Computer Security-ESORICS
2009 (2009).

[121] WR Mark and RS Glanville. “Cg: A system for programming
graphics hardware in a C-like language”. In: ... Transactions on
Graphics (.. (2003).

[122] Nicholas D Matsakis. “Parallel Closures A new twist on an old
idea”. In: HotPar’12 Proceedings of the 4th USENIX conference
on Hot Topics in Parallelism (2012), pp. 5-5.

[123] Christophe Mauras. “Alpha : un langage equationnel pour la
conception et la programmation d’architectures paralleles syn-
chrones”. PhD thesis. Jan. 1989.

[124] McCool Michael D. “Structured parallel programming with de-
terministic patterns”. In: HotPar 10, 2nd USENIX Workshop
on Hot Topics in Parallelism (2010), pp. 14-15.

[125] M Migliavacca and D Eyers. “SEEP: scalable and elastic event
processing”. In: Middleware’10 Posters and Demos Track. (2010).

[126] R. Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML - Revised. 1997, p. 128.

[127] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Is-
ard, Paul Barham, and Martin Abadi. “Naiad”. In: Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles - SOSP 13 (Nov. 2013), pp. 439-455. DOI: 10.1145/
2517349.2522738.

[128] Dmitry Namiot and Manfred Sneps-Sneppe. On Micro-services
Architecture. en. Aug. 2014.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 110

http://dx.doi.org/10.1109/MM.2012.49
http://dx.doi.org/10.1145/1273442.1250756
http://dx.doi.org/10.1145/1273442.1250756
http://dx.doi.org/10.1145/1807128.1807138
http://dx.doi.org/10.1145/2517349.2522738
http://dx.doi.org/10.1145/2517349.2522738

= BIBLIOGRAPHY

[129] Jay Nelson. “Structured programming using processes”. In: Pro-
ceedings of the 2004 ACM SIGPLAN workshop on Erlang - ER-
LANG ’04. New York, New York, USA: ACM Press, Sept. 2004,
pp- H4-64. DOIL: 10.1145/1022471.1022480.

[130] R Nelson. “Including queueing effects in Amdahl’s law”. In:
Communications of the ACM (1996).

[131] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand
Kesari. “S4: Distributed stream computing platform”. In: Pro-
ceedings - IEEE International Conference on Data Mining, ICDM.
2010, pp. 170-177. DOL: 10.1109/ICDMW.2010.172.

[132] Jens Nicolay. “Automatic Parallelization of Scheme Programs
using Static Analysis”. PhD thesis. 2010.

[133] Robert W. Numrich and John Reid. “Co-array Fortran for par-
allel programming”. In: ACM SIGPLAN Fortran Forum 17.2
(Aug. 1998), pp. 1-31. DOI: 10.1145/289918.289920.

[134] C Nvidia. “Compute unified device architecture programming
guide”. In: (2007).

[135] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Sebastian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel
Schinz, Erik Stenman, and Matthias Zenger. “An Overview of
the Scala Programming Language”. In: System Section 2 (2004),
pp- 1-130.

[136] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi
Kumar, and Andrew Tomkins. “Pig Latin: A Not-So-Foreign
Language for Data Processing”. In: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data -
SIGMOD 08 (June 2008), p. 1099. DOI: 10.1145/1376616.
1376726.

[137] Vivek S Pai, Peter Druschel, and Willy Zwaenepoel. Flash : An
Efficient and Portable Web Server. 1999. DOI: 10.1.1.119.6738.

[138] D. L. Parnas. “On the criteria to be used in decomposing sys-
tems into modules”. In: Communications of the ACM 15.12
(1972), pp. 1053-1058. DOI: 10.1145/361598.361623.

[139] R Power and J Li. “Piccolo: Building Fast, Distributed Pro-
grams with Partitioned Tables.” In: OSDI (2010).

[140] Z Qian, Y He, C Su, Z Wu, and H Zhu. “Timestream: Reliable
stream computation in the cloud” In: Proceedings of the 8th

ACM European Conference on Computer Systems (EuroSys ’13)
(2013).

[141] C Radoi, SJ Fink, R Rabbah, and M Sridharan. “Translating
imperative code to MapReduce”. In: Proceedings of the 201/

ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications (2014).

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 111

http://dx.doi.org/10.1145/1022471.1022480
http://dx.doi.org/10.1109/ICDMW.2010.172
http://dx.doi.org/10.1145/289918.289920
http://dx.doi.org/10.1145/1376616.1376726
http://dx.doi.org/10.1145/1376616.1376726
http://dx.doi.org/10.1.1.119.6738
http://dx.doi.org/10.1145/361598.361623

[142]

[143]

[144]

[145]

[146]

[147)

[148]

[149]

[150]

[151]

152]

[153]

BIBLIOGRAPHY

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Frédo
Durand, Connelly Barnes, and Saman Amarasinghe. “Halide:
A Language and Compiler for Optimizing Parallelism, Locality,
and Recomputation in Image Processing Pipelines”. In: Proceed-
ings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (2013), pp. 519-530. DOT:
10.1145/2491956.2462176.

Arunmoezhi Ramachandran and Neeraj Mittal. “A Fast Lock-
Free Internal Binary Search Tree”. In: Proceedings of the 2015
International Conference on Distributed Computing and Net-
working - ICDCN ’15. New York, New York, USA: ACM Press,
Jan. 2015, pp. 1-10. DOI: 10.1145/2684464.2684472.

K.H. Randall. “Cilk: Efficient Multithreaded Computing”. PhD
thesis. 1998.

Veselin Raychev, Martin Vechev, and Manu Sridharan. “Effec-
tive Race Detection for Event-driven Programs”. In: SIGPLAN
Not. 48.10 (Nov. 2013), pp. 151-166. DOI: 10.1145/2544173.
2509538.

DP Reed. “” Simultaneous” Considered Harmful: Modular Par-
allelism.” In: HotPar (2012).

J Rees and W Clinger. “Revised report on the algorithmic lan-
guage scheme”. In: ACM SIGPLAN Notices 21.12 (Dec. 1986),
pp. 37-79. DOI: 10.1145/15042.15043.

MC Rinard and PC Diniz. “Commutativity analysis: A new
analysis framework for parallelizing compilers”. In: ACM SIG-
PLAN Notices (1996).

H. Sackman, W. J. Erikson, and E. E. Grant. “Exploratory
Experimental Studies Comparing Online and Offline Program-
ming Performance”. In: Communi 11.1 (1968), pp. 3-11. pOI:
10.1145/362851.362858.

Tiago Salmito, Ana Lucia de Moura, and Noemi Rodriguez. “A
Flexible Approach to Staged Events”. English. In: 2013 /2nd
International Conference on Parallel Processing (Oct. 2013),
pp- 661-670. DOI: 10.1109/ICPP.2013.80.

Tiago Salmito, Ana Lucia de Moura, and Noemi Rodriguez. “A
stepwise approach to developing staged applications”. In: The
Journal of Supercomputing (Jan. 2014). DOI: 10.1007/s11227~
014-1110-4.

O. Shivers. “Control-flow analysis of higher-order languages”.
PhD thesis. 1991, pp. 1-186.

Herbert A. Simon. “The architecture of complexity” In: Pro-
ceedings of the American Philosophical Societyty 6.106 (1962),
pp. 467-482. DOI: 10.1109/MCS. 2007 .384127. arXiv: 0205649
[cond-mat].

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 112

http://dx.doi.org/10.1145/2491956.2462176
http://dx.doi.org/10.1145/2684464.2684472
http://dx.doi.org/10.1145/2544173.2509538
http://dx.doi.org/10.1145/2544173.2509538
http://dx.doi.org/10.1145/15042.15043
http://dx.doi.org/10.1145/362851.362858
http://dx.doi.org/10.1109/ICPP.2013.80
http://dx.doi.org/10.1007/s11227-014-1110-4
http://dx.doi.org/10.1007/s11227-014-1110-4
http://dx.doi.org/10.1109/MCS.2007.384127
http://arxiv.org/abs/0205649
http://arxiv.org/abs/0205649

[154]

[155]
[156]

[157]

[158]

[159]
[160]

[161]

[162]

163]

[164]

[165]

[166]

BIBLIOGRAPHY

Elliott Slaughter, Wonchan Lee, Sean Treichler, and Michael
Bauer. “Regent : A High-Productivity Programming Language
for HPC with Logical Regions”. In: SC (2015). DOI: 10.1145/
2807591.2807629.

GD Smith. “Local reasoning about web programs”. In: (2011).

M Sridharan, J Dolby, and S Chandra. “Correlation tracking
for points-to analysis of JavaScript”. In: ECOOP 2012-Object-
Oriented Programming. 2012.

W. P. Stevens, G. J. Myers, and L. L. Constantine. “Structured
design”. English. In: IBM Systems Journal 13.2 (1974), pp. 115
139. DOI1: 10.1147/sj.132.0115.

John E. Stone, David Gohara, and Guochun Shi. “OpenCL: A
Parallel Programming Standard for Heterogeneous Computing
Systems”. In: Computing in Science & Engineering 12.3 (May
2010), pp. 66-73. DOI: 10.1109/MCSE. 2010. 69.

B Stroustrup. “The C++ programming language”. In: (1986).

Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and
Ben Hallen. “The structure and value of modularity in soft-
ware design”. In: ACM SIGSOFT Software Engineering Notes
26.5 (Sept. 2001), p. 99. DOT: 10.1145/503271.503224.

H. Sundell and P. Tsigas. “Fast and lock-free concurrent pri-
ority queues for multi-thread systems”. In: Proceedings Inter-
national Parallel and Distributed Processing Symposium 00.C
(2003), p. 11. DOI: 10.1109/IPDPS.2003.1213189.

Gerald Jay Sussman and Jr Steele, Guy L. “Scheme: A in-
terpreter for extended lambda calculus”™ In: Higher-Order and
Symbolic Computation 11 (1998), pp. 405-439. DOT: 10.1023/A:
1010035624696.

Richard E Sweet. “The Mesa programming environment”. In:
ACM SIGPLAN Notices. Vol. 20. 7. 1985, pp. 216-229. DOTI:
10.1145/17919.806843.

David Tarditi, Sidd Puri, and Jose Oglesby. “Accelerator: using
data parallelism to program GPUs for general-purpose uses”. In:
Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems 34.5
(Oct. 2006), pp. 325-335. DOI: 10.1145/1168918.1168898.

P. Tarr, H. Ossher, W. Harrison, and Jr. Sutton, S.M. “N de-
grees of separation: multi-dimensional separation of concerns”.
In: Proceedings of the 1999 International Conference on Soft-
ware Engineering (IEEE Cat. No.99CB37002) (1999), pp. 107
119. DOI: 10.1145/302405.302457.

William Thies, Michal Karczmarek, and Saman Amarasinghe.
“Streamlt: A language for streaming applications”. In: Compiler
Construction LNCS 2304 (2002), pp. 179-196. DOI: 10.1007/3-
540-45937-5.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 113

http://dx.doi.org/10.1145/2807591.2807629
http://dx.doi.org/10.1145/2807591.2807629
http://dx.doi.org/10.1147/sj.132.0115
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1145/503271.503224
http://dx.doi.org/10.1109/IPDPS.2003.1213189
http://dx.doi.org/10.1023/A:1010035624696
http://dx.doi.org/10.1023/A:1010035624696
http://dx.doi.org/10.1145/17919.806843
http://dx.doi.org/10.1145/1168918.1168898
http://dx.doi.org/10.1145/302405.302457
http://dx.doi.org/10.1007/3-540-45937-5
http://dx.doi.org/10.1007/3-540-45937-5

[167]

[168]

[169)]

[170]

[171]

[172]

[173]

174]

175

BIBLIOGRAPHY

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao,
Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and
Raghotham Murthy. “Hive”. In: Proceedings of the VLDB En-
dowment 2.2 (Aug. 2009), pp. 1626-1629. DOI: 10.14778/1687553.
1687609.

Shahar Timnat, Anastasia Braginsky, Alex Kogan, and FErez
Petrank. “Wait-free linked-lists”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). Vol. 7702 LNCS.
2012, pp. 330-344. DOT: 10.1007/978-3-642-35476-2_23.

Ankit Toshniwal, Jake Donham, Nikunj Bhagat, Sailesh Mittal,
Dmitriy Ryaboy, Siddarth Taneja, Amit Shukla, Karthik Ra-
masamy, Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson,
Krishna Gade, and Maosong Fu. “Storm@ twitter”. In: Proceed-
ings of the 2014 ACM SIGMOD international conference on
Management of data - SIGMOD ’14. New York, New York, USA:
ACM Press, June 2014, pp. 147-156. DOI: 10.1145/2588555.
2595641.

Konrad Trifunovic, Albert Cohen, David Edelsohn, Feng Li, To-
bias Grosser, Harsha Jagasia, Razya Ladelsky, Sebastian Pop,
Jan Sjodin, and Ramakrishna Upadrasta. GRAPHITE Two Years
After: First Lessons Learned From Real-World Polyhedral Com-
pilation. en. Jan. 2010.

D Turner. “An overview of Miranda”. In: ACM SIGPLAN No-
tices 21.12 (Dec. 1986), pp. 158-166. DOI: 10 . 1145/ 15042 .
15053.

D. A. Turner. “The semantic elegance of applicative languages”.
In: Proceedings of the 1981 conference on Functional program-
ming languages and computer architecture - FPCA °81. New
York, New York, USA: ACM Press, Oct. 1981, pp. 85-92. DOTI:
10.1145/800223.806766.

Gautam Upadhyaya, Vijay S. Pai, and Samuel P. Midkiff. “Ex-
pressing and exploiting concurrency in networked applications
with aspen” In: Proceedings of the 12th ACM SIGPLAN sym-
posium on Principles and practice of parallel programming -
]7POFU)’07(Bﬂar.2007),p.13.D(H:1@.1145/1229428.1229433

John D. Valois. “Lock-free linked lists using compare-and-swap”.
In: Proceedings of the fourteenth annual ACM symposium on
Principles of distributed computing - PODC °95. New York, New
York, USA: ACM Press, Aug. 1995, pp. 214-222. DOT: 10.1145/
224964.224988.

Hans Vandierendonck, Sean Rul, and Koen De Bosschere. “The
Paralax infrastructure: automatic parallelization with a helping
hand”. In: Proceedings of the 19th international conference on
Parallel architectures and compilation techniques. New York,
New York, USA: ACM Press, Sept. 2010, pp. 389-399. DOI:
10.1145/1854273.1854322.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 114

http://dx.doi.org/10.14778/1687553.1687609
http://dx.doi.org/10.14778/1687553.1687609
http://dx.doi.org/10.1007/978-3-642-35476-2_23
http://dx.doi.org/10.1145/2588555.2595641
http://dx.doi.org/10.1145/2588555.2595641
http://dx.doi.org/10.1145/15042.15053
http://dx.doi.org/10.1145/15042.15053
http://dx.doi.org/10.1145/800223.806766
http://dx.doi.org/10.1145/1229428.1229433
http://dx.doi.org/10.1145/224964.224988
http://dx.doi.org/10.1145/224964.224988
http://dx.doi.org/10.1145/1854273.1854322

= BIBLIOGRAPHY

[176] Philip Wadler. “The essence of functional programming”. In:
Proceedings of the 19th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages - POPL "92. New York,
New York, USA: ACM Press, Feb. 1992, pp. 1-14. DOI: 10.1145/
143165.143169.

[177] M Wand. “Continuation-based multiprocessing”. In: Proceedings
of the 1980 ACM conference on LISP and functional program-
ming (1980).

[178] S Wei and BG Ryder. “State-sensitive points-to analysis for
the dynamic behavior of JavaScript objects” In: ECOOP 2014
Object-Oriented Programming (2014).

[179] M Welsh, D Culler, and E Brewer. “SEDA: an architecture for
well-conditioned, scalable internet services”. In: ACM SIGOPS
Operating Systems Review (2001).

[180] Martin Wimmer, Jakob Gruber, Jesper Larsson Traff, and Philip-
pas Tsigas. “The lock-free k-LSM relaxed priority queue”. In:
Proceedings of the 20th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming - PPoPP 2015. New
York, New York, USA: ACM Press, Jan. 2015, pp. 277-278. DOI:
10.1145/2688500.2688547.

[181] Sunny Wong, Yuanfang Cai, Giuseppe Valetto, Georgi Sime-
onov, and Kanwarpreet Sethi. “Design Rule Hierarchies and
Parallelism in Software Development Tasks”. In: 2009 IEEE/ACM
International Conference on Automated Software Engineering.
IEEE, Nov. 2009, pp. 197-208. DOI: 10.1109/ASE.2009.53.

[182] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin,
Scott Shenker, and Ton Stoica. “Shark”. In: Proceedings of the
2013 international conference on Management of data - SIG-
MOD ’13. New York, New York, USA: ACM Press, June 2013,
p- 13. DOI: 10.1145/2463676.2465288.

[183] Sunghwan Yoo, Hyojeong Lee, Charles Killian, and Milind Kulka-
rni. “InContext : Simple Parallelism for Distributed Applica-
tions Categories and Subject Descriptors”. In: HPDC. New York,
New York, USA: ACM Press, June 2011, p. 97. DOI: 10.1145/
1996130.1996144.

[184] D Yu, A Chander, N Islam, and I Serikov. “JavaScript instru-
mentation for browser security”. In: ACM SIGPLAN Notices
(2007).

[185] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar Er-
lingsson, Pradeep Kumar Gunda, Jon Currey, Frank McSherry,

Kannan Achan, and Christophe Poulain. “Some sample pro-
grams written in DryadLINQ". In: Microsoft Research (2009).

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 115

http://dx.doi.org/10.1145/143165.143169
http://dx.doi.org/10.1145/143165.143169
http://dx.doi.org/10.1145/2688500.2688547
http://dx.doi.org/10.1109/ASE.2009.53
http://dx.doi.org/10.1145/2463676.2465288
http://dx.doi.org/10.1145/1996130.1996144
http://dx.doi.org/10.1145/1996130.1996144

= BIBLIOGRAPHY

[186] Tomofumi Yuki, Gautam Gupta, Daegon Kim, Tanveer Pathan,
and Sanjay Rajopadhye. “AlphaZ: A system for design space ex-
ploration in the polyhedral model”. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 7760 LNCS
(2013), pp. 17-31. DOI: 10.1007/978-3-642-37658-0_2.

[187] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, and Ankur
Dave. “Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing”. In: NSDI’12 Proceedings
of the 9th USENIX conference on Networked Systems Design
and Implementation (Apr. 2012), pp. 2-2. po1: 10.1111/7.
1095-8649.2005.00662.x. arXiv: EECS-2011-82.

[188] Yili Zheng, Amir Kamil, Michael B. Driscoll, Hongzhang Shan,
and Katherine Yelick. “UPC++: A PGAS Extension for C++".
In: 2014 IEEFE 28th International Parallel and Distributed Pro-
cessing Symposium. 2014, pp. 1105-1114. DOI: 10.1109/IPDPS.
2014.115.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 116

http://dx.doi.org/10.1007/978-3-642-37658-0_2
http://dx.doi.org/10.1111/j.1095-8649.2005.00662.x
http://dx.doi.org/10.1111/j.1095-8649.2005.00662.x
http://arxiv.org/abs/EECS-2011-82
http://dx.doi.org/10.1109/IPDPS.2014.115
http://dx.doi.org/10.1109/IPDPS.2014.115

APPENDIX A

APPENDICES

A.1 Due evaluation results L. 118
A.2 Fluxion Compiler Evaluation results 122
A.2.1 Originalo 123
A.2.2 Modified 124

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 117

() APPENDIX A. APPENDICES

A.l DUE EVALUATION RESULTS

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 118

() APPENDIX A. APPENDICES

On the 64 projects composing the test set for the Due compiler,
29 (45.3%) do not contain any compatible continuations,

10 (15.6%) are not compilable because they contain with or eval
statements,

5 (7.8%) use less common asynchronous libraries we didn’t filter pre-
viously,

4 (6.3%) are not syntactically correct,

4 (6.3%) fail their tests before the compilation,
3 (4.7%) are not tested, and

10 (14.0%) compile successfully.

The compiler do not fail to compile any project.
The following tables details the results of the evaluation.
29 projects contain no compatible continuation.

app-json-fetcher

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 119

() APPENDIX A. APPENDICES

oauth-express

webs-weeia

10 projects contain eval or with statements.

swac-odm

4 projects fail their tests before the compilation.

express-orm-mvc

ord. zeke. xxx

9 projects successfully compile.

express-user-couchdb

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 120

() APPENDIX A. APPENDICES

timbits

tingo-rest

The compiler detected 172 callbacks, 52 of them turned out to be
compatible continuations.

continuations chains length

name total compiled 1 2 3 4
express-user-couchdb 40 20 9 21 1
express-endpoint 19 22
gifsockets-server 3 I R
heroku-bouncer 7 33
moonridge 31 6 22
redis-key-overview 4 96 1
slack-integrator 6 3 11
timbits 34 s 8
tingo-rest 12 44
total 172 54 36 5 2 1

The following table presents the name of the callee for each contin-
uations, grouped by package

] ruleFn
express-endpoint
parseParams

config.validateUser

createSession

db.destroy

db.get
express-user-couchdb db.insert

db.view

getUserName

lookupUser

req.session.destroy

ensureValidToken
heroky-bouncer oauth.getOAuthAccessToken

request.post

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 121

O APPENDIX A. APPENDICES
doc.remove
doc.save

moonridge model. findById

mongoose.connect

populateWithClientQuery

execstderr

]) fs.unlink

redis-key-overview)]
fs.writeFile

request.post

res.sendfile

config.payload
slack-integrator sendPayload

request

loadTimbits
res.render

timbits timbit. test
timbits.pantry.fetch

request

req.collection.findOne

req.collection.insert
tingo-rest

req.collection.update

req.collection.remove

A.2 FLUXION COMPILER EVALUATION RESULTS

The following listings shows the complete modifications operated on
the test application gifsockets-server. The whole code is available
online!.

Thttps://github.com/etnbrd/flx-compiler/tree/master/test-
set/gifsockets-server-master

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 1929

https://github.com/etnbrd/flx-compiler/tree/master/test-set/gifsockets-server-master
https://github.com/etnbrd/flx-compiler/tree/master/test-set/gifsockets-server-master

() APPENDIX A. APPENDICES

A.2.1 ORIGINAL

1 var express = require('express’');

2 var Gifsocket = require('gifsockets');

3 var bodyParser = require('./utils/body-parser’);
1 var routes = require(’'./routes’');

D

6 function GifServer (port) {

8 var gifsocket = new Gifsocket ({
9

10 width: 600,

11 height: 380

12 s

13

14

15 var app = express();

18 app.use(’'/public’', express['static']l(__dirname + '/../public’'));
19

20

21 app.use(function saveConnections (req, res, next) {
22 req.gifsocket = gifsocket;

23 next () ;

24 s

25

26

27 app.get('/', routes.index);

28

29

30 app.get('/image.gif', routes.openImage);

31

32 app.post('/image/text', bodyParser (1 = 1024 * 1024),
33 routes.writeTextToImages);

34 app.post('/image/json', bodyParser (10 * 1024 % 1024),
35 routes.writeJsonTolImages);

36

37

38

39 app.post('/image/close’', routes.closeOpenlImages);

42 app.all('*', routes[4047);

45 this.app = app;

46 3}

47 GifServer .prototype = {

18 listen: function (port) {

50 this._app = this.app.listen(port);

51 3,

52 destroy: function (cb) {

53 this._app.close(cb || function () {});
54 }

55 };

5¢€

5

57 module.exports = GifServer;

Listing A1 - Original application file
(gifsockets-server-master/server/app-vanilla.js)

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 123

A2

16

W oW W W W WNNNNDNNNN
T W N = O O w1 O G W N

36

39
40
41
42
43
44

15

() APPENDIX A. APPENDICES

MODIFIED

The modified code is the low-level javascript code compiled and mod-
ified from the high-level fluxionnal language. It is not meant to be
written nor read directly as is, and is related here only to acknowledge
the modifications.

var flx = require('flx');

var uuid = 0;

var express = require('express’');
var Gifsocket = require(’'gifsockets');
var bodyParser = function () {

var getRawBody = require(’'raw-body’');

module.exports = function getRawBodyFn(limit) {
return function saveBody(req, res, next) {
getRawBody (req, {
expected: req.headers['content-length'],

limit: limit
}, function placeholder () {

req.__flx_uuid__ = ++uuid;
flx.post(flx.m('express-dispatcher’, {
reason: 'update’,
body: {
uuid: wuuid,
req: req,
res: res,
next: next
}
)

return flx.start(flx.m('anonymous-1000", {
_args: arguments,

_sign: {
req: req,
res: res,
next: next

}

s
s
};
3
return module.exports;
}('./utils/body-parser');

var routes = function () {

var exports = {};
var module = {exports: exports};
var GifsocketMiddleware = require('gifsockets-middleware');
var gifsocketMw = GifsocketMiddleware ({

width: 600,

height: 380

s

Object.getOwnPropertyNames (gifsocketMw) . forEach(function (key) {
exports[key] = gifsocketMw[key];

s
var fs = require('fs');
var jade = require(’'jade’);

function renderView(filepath, locals) {
var file = fs.readFileSync(filepath, 'utf8');

return jade.render(file, locals);
3
var indexHtml = renderView(__dirname + '/../views/index.jade', {});
exports.index = function (req, res) {
res.send(indexHtml);
3
var pageNotFoundHtml = renderView(__dirname + '/../views/404. jade’,

O

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 124

66

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134

APPENDIX A. APPENDICES

exports[404] = function (req, res) {
res.status (404);
res.send(pageNotFoundHtml) ;
1
return module.exports;
}('./routes’);

function GifServer(port) {

var gifsocket = new Gifsocket ({
width: 600,
height: 380
5
var app = express();
app.use('/public’', express['static'l(__dirname + '/../public'));
app.use(function saveConnections(req, res, next) {
req.gifsocket = gifsocket;
next () ;
s
app.get('/', routes.index);
app.get('/image.gif', routes.openImage);
app.post('/image/text', bodyParser (1 = 1024 * 1024), routes.
writeTextToImages) ;
app.post('/image/json', bodyParser (10 * 1024 % 1024), routes.
writeJsonTolImages);
app.post('/image/close’, routes.closeOpenImages);

app.all(’'x', routes[404]);
this.app = app;

GifServer.prototype = {

listen: function (port) {
this._app = this.app.listen(port);

3,

destroy: function (cb) {
this._app.close(cb || function () {
s

}

module.exports = GifServer;

flx.register ('anonymous -1000", function capsule(msg) {

msg._args[1] = new Buffer(msg._args[1]);
var args = [msg._args[0], msg._args[1]];

return (function (err, buffer) {

if (err) {
msg._sign.res.writeHead (500, { 'content-type': 'text/plain' });
return msg._sign.res.end('Content was too long');

3
msg._sign.req.body = buffer;

this.next(msg._sign.req, msg._sign.res);

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 125

136

137 }.apply(this, args));

138}, {

139

140

141 }, 'minion');

142
Listing A.2 - Modified application file
(gifsockets-server-master/server/app.js)

APPENDIX A. APPENDICES

var Route = require('./route’)
6 , utils = require(’'../utils’)
7 , methods = require('methods’)
8 , debug = require('debug’')('express:router’)
9 , parse = require(’'connect’).utils.parselrl
10 , flx = require('flx');
11
12
13
14
15
16 exports = module.exports = Router;
17
18
19
20
21
22
23
24
25 function Router (options) {
26 options = options || {};
27 var self = this;
28 this.map = {};
29 this.params = {};
30 this._params = [];
31 this.caseSensitive = options.caseSensitive;
32 this.strict = options.strict;
33 this.middleware = function router(req, res, next){
34 self . _dispatch(req, res, next);
35 };
36
37 console.log('ROUTER I'!l");
38
39 flx.register ('express-dispatcher’, function(msg) {
40
41 console.log ('~ ")
42 console.log(’ FLX DISPATCHER');
43
44 if (msg.reason) {
45 this.requests[msg.body.uuid] = msg.body;
46 } else {
47 var req = this.requestsimsg.req.__flx_uuid__].req,
48 res = this.requests[msg.req.__flx_uuid__].res
49
50 req.body = new Buffer(msg.req.body);
51
52 this.requests[msg.req.__flx_uuid__1.next();
53
5¢
55
56
57 }
58
59
60
61 ¥, {

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf

© [E. Brodu], [2016], INSA Lyon, tous droits réservés 126

63

N

© 0 ~ ~ ~1 ~ ~ ~ ~ ~ ~I
= O © o [C

00
N

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

requests:

)

{3

Router .prototype.

if ('function’
this._params.

APPENDIX A. APPENDICES

function(name,

param = fn){

typeof name) {
push(name) ;

return;
¥
var params = this._params
, len = params.length
, ret;
for (var i = 0; i < len; ++i) {
if (ret = params[il(name, fn)) {
fn = ret;
3
3

if ('function'’

I= typeof fn) {

throw new Error('invalid param() call for ' + name + ', got ' + fn);
¥
(this.params[name] = this.params[name] || []).push(fn);
return this;
3
Router .prototype._dispatch = function(req, res, next, dispatch_index){
var params = this.params
, self = this;
debug('dispatching %s %s (%s)', req.method, reqg.url, req.originalUlrl);
(function pass(i, err){
var paramCallbacks
, paramIndex = 0
, paramVal
, route
, keys
, key;
function nextRoute(err) {
pass(req._route_index + 1, err);
3
req.route = route = self.matchRequest(req, i);

console.log(’

ROUTE >> ', route);

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf

© [E. Brodu], [2016], INSA Lyon, tous droits réservés

127

() APPENDIX A. APPENDICES

136

137

138 if (!route && 'OPTIONS' == req.method) return self._options(req, res,
next);

139

140

141 if (!route) return next(err);

142 debug ('matched %s %s', route.method, route.path);

143

144

145

146 req.params = route.params;

147 keys = route.keys;

148 i=0;

149

150 console.log(’' >> ' + 1i);

151

152

153 function param(err) {

154 paramIndex = 0;

155 key = keys[i++];

156 paramVal = key && req.params[key.namel;

157 paramCallbacks = key && params[key.namel;

158

159 try {

160 if ('route’ == err) {

161 nextRoute () ;

162 } else if (err) {

163 i = 0;

164 callbacks(err);

165 } else if (paramCallbacks && undefined !== paramVal) {

166 paramCallback () ;

167 } else if (key) {

168 param() ;

169 } else {

170 i = 0;

171 callbacks ();

172 }

173 } catch (err) {

174 param(err);

175 }

176 T

177

178 param(err);

179

180

181 function paramCallback(err) {

182 var fn = paramCallbacks[paramIndex++];

183 if (err || !fn) return param(err);params

184 fn(req, res, paramCallback, paramVal, key.name);

185 }

186

187

188 function callbacks(err) {

189

190 i = dispatch_index || 1i;

191

192 var fn = route.callbacks[i++];

193

194 console.log('FN >> " i ' - " fn);

195

196 try {

197 if ('route’ == err) {

198 nextRoute () ;

199 } else if (err && fn) {

200 if (fn.length < 4) return callbacks(err);

201 fn(err, req, res, callbacks);

202 } else if (fn) {

203 if (fn.length < 4) return fn(req, res, callbacks);

204 callbacks () ;

205 } else {

206 nextRoute(err);

207 }

208 } catch (err) {

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 128

() APPENDIX A. APPENDICES

209 callbacks(err);

210 }

211 3

212 »o);

213 };

214

215

216

217

218

219

220

221

222

223

224 Router .prototype._options = function(req, res, next){
225 var path = parse(req).pathname

226 , body = this._optionsFor(path).join(',");
227 if (!body) return next();

228 res.set('Allow’, body).send(body);
229 };

230

231

232

233

234

235

236

237

238

239 Router .prototype._optionsFor = function(path){
240 var self = this;

241 return methods.filter(function(method){

242 var routes = self.map[method];

243 if (!'routes || 'options’' == method) return;
244 for (var i = 0, len = routes.length; i < len; ++i) {
245 if (routes[i].match(path)) return true;
246 }

247 }) .map(function(method){

248 return method. toUpperCase();

249 1)

250 };

251

252

253

254

255

256

257

258

259

260

261

262

263 Router .prototype.matchRequest = function(req, i, head){
264 var method = req.method.toLowerCase ()

265 , url = parse(req)

266 , path = url.pathname

267 , routes = this.map

268 ,i=1 1] 0

269 , route;

270

271

272 if (!'head && 'head’ == method) {

273 route = this.matchRequest(req, i, true);
274 if (route) return route;

275 method = 'get';

276 }

277

278

279 if (routes = routes[method]) {

280

281

282 for (var len = routes.length; i < len; ++i) {

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 129

O APPENDIX A. APPENDICES

283 route = routes[i];

284 if (route.match(path)) {

285 req._route_index = i;

286 return route;

287 }

288 }

289 }

290 };

291

292

293

294

295

296

297

298

299

300

301

302

303

304 Router .prototype.match = function(method, url, i, head){
305 var req = { method: method, url: url }
306 return this.matchRequest(req, i, head);
307 };

308

309

310

311

312

313

314

315

316

317

318

319 Router.prototype.route = function(method, path, callbacks){
320 var method = method. toLowerCase ()

321 , callbacks = utils.flatten([].slice.call(arguments, 2));

322

323

324 if (!path) throw new Error('Router#’ + method + '() requires a path');

325

326

327 callbacks.forEach(function(fn){

328 if ('function' == typeof fn) return;

329 var type = {}.toString.call(fn);

330 var msg = '.' + method + '() requires callback functions but got a ' +
type;

331 throw new Error(msg);

332 3

333

334

335 debug ('defined %s %s', method, path);

336 var route = new Route(method, path, callbacks, {

337 sensitive: this.caseSensitive,

338 strict: this.strict

339 1D

340

341

342 (this.map[method] = this.mapl[method]l || []).push(route);

343 return this;

344 3}

345

346 Router.prototype.all = function(path) {

347 var self = this;

348 var args = [].slice.call(arguments);

349 methods . forEach(function(method){

350 self.route.apply(self, [method].concat(args));

351 1);

352 return this;

353 };

354

355 methods.forEach(function(method){

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 130

APPENDIX A. APPENDICES

356 Router .prototypelmethod] = function(path){

3 var args = [method].concat([].slice.call(arguments));
358 this.route.apply(this, args);
359 return this;

360 };
361 1});

Listing A.3 - Modified express router file
(gifsockets-server-master/node_modules/express/lib/router/index. js)

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés 131

¢ INSA

FOLIO ADMINISTRATIF
THESE DE L'UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON

€l

Nom : BRODU Date de soutenance : 23/06/2016
Prénoms : Etienne
Titre :

FLUXIONAL COMPILER : SEAMLESS SHIFT FROM DEVELOPMENT PRODUC-
TIVITY TO PERFORMANCE EFFICIENCY, IN THE CASE OF REAL-TIME WEB
APPLICATIONS

Nature : DOCTORAT Numéro d’ordre : 2016LY SEIXXXX
Ecole doctorale : INFOMATHS

Spécialité : Informatique

Résumé :

La plupart des grands services web commencerent comme de simples projets, et grossirent exponentiellement. Des
le début, il est important de s’assurer de répondre aux besoins du marché. Des langages comme Ruby ou Java sont
devenus populaires en proposant la productivité nécessaire pour itérer rapidement sur les retours utilisateurs. Une
application web qui répond correctement aux besoins des utilisateurs peut étre adoptée de maniere virale. Cela lui
demande d’étre efficace pour traiter cette augmentation de trafic

Il est difficile pour une application d’étre a la fois productive et efficace. Quand I'audience devient trop im-
portante, il deviens nécessaire de réécrire I'application vers un modele plus efficace, tel qu’un pipeline. Cette
transformation représente un risque. Pour éviter ce risque, cette thése propose de maintenir conjointement les
représentations productives et efficaces d’'une méme application.

Javascript est un langage productif avec une communauté importante. Sa boucle événementielle est similaire a
un pipeline. Ces deux modeles d’exécution traitent un flux de requétes en chainant des fonctions les unes apres les
autres. Cependant, la boucle évenementielle permet une approche productive grace a sa mémoire globale, tandis
que le pipeline permet une exécution efficace du fait de sa parallélisation.

Cette these étudie la possibilité pour une équivalence de transformer une implémentation d’une représentation
vers l'autre. Avec cette équivalence, I’équipe de développement peut suivre les deux approches simultanément. Elle
peut itérer continuellement pour prendre en compte les avantages des deux approches.

Cette these présente un compilateur qui permet d’identifier un pipeline dans une application Javascript, et
d’isoler chaque étape dans une fluxion. Elle exécute une fonction pour chaque datum sur le flux. Les fluxions sont
indépendantes, et peuvent étre déplacées d’'une machine a 'autre pour amortir I’'augmentation du trafic. L’équipe
de développement peut commencer a développer avec productivité. Et avec la transformation, elle peut itérer pour
progressivement atteindre Iefficacité.

Mots-clés : Javascript, Web, Fluxions

Laboratoire (s) de recherche : CITI

Directeur de thése: Stéphane FRENOT

Président de jury : Gaél THOMAS ou Frédéric LOULERGUE
Composition du jury :

Gaél THOMAS

Frédéric LOULERGUE

Floréal MORANDAT

Frédéric OBLE

Stéphane FRENOT

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI061/these.pdf
© [E. Brodu], [2016], INSA Lyon, tous droits réservés

	Introduction
	Web development
	Performance requirements
	Problematic and proposal
	Thesis organization

	Context And Objectives
	The Web as a Platform
	The Language of the Web
	Highly Concurrent Web Servers

	An Economical Problem
	Disrupted Web Development
	Seamless Web Development

	Software Design, State Of The Art
	Definitions
	Productivity
	Efficiency
	Adoption

	Productivity Focused Platforms
	Modular Programming
	Steering Back Toward Efficiency
	Efficiency Limitations
	Summary

	Efficiency Focused Platforms
	Concurrency
	Steering Back Toward Producitivity
	Productivity Limitations
	Summary

	Compromise Between Productivity And Efficiency
	Abstraction of Tasks Organization
	Limitation
	Summary

	Discontinuous Developments

	Seamless Shift From Productivity To Efficiency
	Proposition
	Continuous Development
	Equivalence

	Execution Models
	Event-Driven Execution Model
	Fluxional Execution Model
	Examples

	Conclusion

	Implementations
	Step 1 - Due Compiler
	Dues
	From Continuations to Dues
	Due Compiler

	Step 2 - Fluxional Compiler
	Fluxions Identification
	Fluxions Isolation
	Real test case
	Limitations

	Conclusion
	Summary
	Models
	Equivalence

	Overall Evaluation
	Trading Productivity for Efficiency
	Adoption

	Perspectives
	Just-in-time Compilation
	Evaluation of the perspective
	Final Thoughts

	Appendices
	Due evaluation results
	Fluxion Compiler Evaluation results
	Original
	Modified

