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Motivation

In XVIIth century, owing to major contributions of Isaac Newton, physics saw a huge leap
toward quantification boosting its ongoing transition from the qualitative physics of Aristotle to
quantitative physics as we know it today. In XXth-XXIst centuries, biology is striving to undergo
a similar transformation. This time, however, the success of quantitative neurobiology might
bring us not just the understanding of the fundamental forces of nature, but the understanding
of the very foundation of the cognitive processes, by which, humans learn patterns and develop
quantitative science itself. With the current state of knowledge, we already have strong ideas
about the correlates of processes of learning and memory at the level of interacting brain cells.
However, our understanding of these processes at the molecular level is still in its infancy. To
contribute in filling this gap, in this thesis, we develop a molecular level mathematical model
to study the cellular level basis of learning and memory: the process of synaptic plasticity, in
which the efficiency of communication between neurons changes in response to a pattern of
environmental conditions.
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Abstract

Our brains support various forms of learning in their various subparts. This is for instance the case
of the basal ganglia, a set of subcortical nuclei that is involved in action selection and a specific
form of learning / memory, procedural memory (memory of skills or expertise). At the scale of
single neurons, the most plausible support of learning and memory is synaptic plasticity, the
process by which the efficiency of interneuronal communication changes in response to a pattern
of environmental conditions. A recent focus of research is on spike-timing dependent plasticity
(STDP), whereby the relative timing of activations (spikes) of connected pre- and postsynaptic
neurons, determines the synaptic weight (the efficiency of synaptic connection). Notwithstanding,
the dependence of STDP on underlying signaling pathways is not yet fully understood. To
address this issue, we combine experimental approaches by our collaborators (pharmacology and
electrophysiology) with modeling of the implicated signaling network (described by Ordinary-
Differential Equations). After parameter estimation, the model reproduces much of experimental
data, including the dependence of STDP on the number of paired stimuli of pre- and postsynaptic
neurons and intensive pharmacological exploration (where signaling molecules are perturbed
by chemicals). Furthermore, in opposition to what was widely believed in the neuroscience
community, our model directly indicates that the endocannabinoid system supports bidirectional
changes of the synaptic weight (increase and decrease). Moreover, we study how a range of
factors including glutamate uptake regulates STDP. We expect our model to be a starting point
to the elucidation of the regulation of learning and memory in the basal ganglia at the single
neuron level.
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FS fast-spiking
G-t-LTD presynaptic Gi/o and spike-timing

dependent long-term depression
G-t-LTP presynaptic Gi/o and spike-timing

dependent long-term potentiation
GABA γ-aminobutyric acid
GPCR G protein–coupled receptor
GPe globus pallidus external segment
GPi globus pallidus internal segment
HFS low-frequency stimulation
HFS-LTD HFS-induced long-term depression
I1 inhibitor 1

Abbreviation Meaning

IP3 inositol (1,4,5)-triphosphate
IP3R inositol (1,4,5)-triphosphate recep-

tor
LFS high-frequency stimulation
LFS-LTP LFS-induced long-term potentia-

tion
LTD long-term depression
LTP long-term potentiation
M1R muscarinic receptors
MSN medium-sized spiny neuron
NMDAR N-methyl-D-aspartate receptor
NOS (NO)-synthesizing
PIP2 phosphatidylinositol (4,5)-

bisphosphate
PKA protein kinase A
PLCβ phospholipase Cβ
PP1 protein phosphatase 1
SERCA sarco/endoplasmatic reticulum

Ca2+-ATPase
SNc substantia nigra pars compacta
SNr substantia nigra pars reticulata
STDP spike-timing dependent plasticity
STN subthalamic nucleus
TRPV1 transient receptor potential vanil-

loid type-1
VSCC voltage-sensitive calcium channels
bAP back-propagating action potential
cAMP cyclic adenosine monophosphate
eCB endocannabinoid
mGluR metabotropic glutamate receptor
t-LTD timing-dependent long-term depres-

sion
t-LTP timing-dependent long-term poten-

tiation
DARPP-32 dopamine and cAMP-regulated

phosphoprotein 32 kDA
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Chapter 1

State of the art

1.1 Experimental investigation of synaptic plasticity

1.1.1 Background

Learning new skills and facts is an integral part of normal human experience. However, what
represents learning and memory in the brain is an unsolved problem of neuroscience. From
common sense perspective, one might think that, in order to learn a pattern such as “event A
causes event B”, a learner has to be repeatedly and persistently exposed to an environment with
statistical regularities, where A occurs before and is correlated with B. At the end of the XIXth
century, by repeatedly exposing dogs to an environment with artificial regularities, Ivan Pavlov
managed to make them learn an association between salivation and a previous neutral sound
stimulus. Half a century following Pavlov’s work has brought new tools for questioning the
mechanisms of learning at the level of brain biology. At the time of Pavlov’s work, the invention
of staining technique by Camillo Golgi allowed for visualization of structures in neural tissue
under the microscope. Using this technique, Santiago Ramón y Cajal found that the neural
tissue is organized as a complex net of discrete cells, the neurons. This discovery paved the way
for the idea that networks of neurons, communicating with each other via synaptic connections
support brain functions. In this framework, Cajal saw plasticity of neural networks as a basis for
learning and behavioral plasticity. By the end of the first half of the XXth century, these ideas
were converging into the vision of a central role for synaptic plasticity, the plasticity of synaptic
connections between neurons. In his book “The organization of behavior” Donald Olding Hebb
combined previous ideas by linking plasticity with learning and memory. He formulated a formal
rule describing plasticity in his famous quote: “When an axon of cell A is near enough to excite
B and repeatedly or persistently takes part in firing it, some growth process or metabolic change
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takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased”
(Hebb 1949). A more simplified expression of this idea is attributed to Carla Shatz: “cells that
fire together, wire together” (Shatz 1992). This simple formulation however does not capture the
idea of directionality that is present in Hebb’s postulate; the idea that agrees well with modern
understanding of unidirectional signal transmission at a chemical synapse (fig. 1.1).

Figure 1.1: Synaptic transmission at chemical synapses involves several steps (see text for description). Modified
from Kandel (2013).

The unidirectional signal transmission starts after the electrical activation of a presynaptic neuron
(Hebb’s cell A). The activation produces a spike of membrane potential, an action potential
(AP) (fig. 1.1A). Next, AP propagates without attenuation along the neuron’s axon. Upon its
arrival at the axonal terminal of the presynaptic neuron, the AP activates voltage-sensitive
Ca2+ (calcium) channels (VSCC) in cell’s membrane thus allowing calcium to flow into the
cell. The AP therefore leads to the release of signaling molecules, neurotransmitter, from the
neuron’s axonal terminal to the synaptic cleft (Kandel 2013) (fig. 1.1B), the small gap (20-40 nm
wide) between the membrane of the presynaptic axon and that of a dendrite of the postsynaptic
neuron. In the synaptic cleft, the neurotransmitter binds to receptors at the postsynaptic neuron
(Hebb’s cell B) (fig. 1.1C); the later leads to a transient postsynaptic current. In the case of
excitatory neurotransmission, this current is called excitatory postsynaptic current (EPSC).
The EPSC results in a transient increase (depolarization) of membrane potential called the
excitatory postsynaptic potential (EPSP)(fig. 1.1C). The EPSP/EPSC further propagates with
attenuation from the dendritic synaptic site of its generation toward the soma (the cell body)
of the postsynaptic neuron. If many of these EPSPs reach the soma, sum up and their sum
reaches a threshold value, a postsynaptic AP is generated. Because of this summation principle,
the larger the amplitude of the EPSP at a synapse, the more it contributes to reaching the
threshold of AP generation. The amplitude of an individual EPSP/EPSC therefore can be
used as a measure of the efficiency of a synapse in triggering postsynaptic AP. The increase of
EPSC/EPSP amplitude can be thought of as linked to Hebb’s increase of A’s efficiency in firing
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B.

1.1.2 Classical synaptic plasticity: potentiation and depression

The increase (potentiation) of the amplitude of extracellularly measured EPSP, in response to
brief electrical stimulation was known when Hebb published his book (Eccles and McIntyre
1953). Studying the spinal reflex system of cats, Eccles and McIntyre (1953) used 6000 electrical
stimuli repeated at 400 Hz to induce the potentiation of electrical potential in response to the
stimulation of a dorsal root. However, this type of plasticity persisted only on short time scales
spanning from milliseconds to hundreds of seconds. It is problematic to have this short-term
synaptic plasticity as a support for learning and memory since memory persists for hours, days,
years or even decades. Almost two decades after Hebb’s book was published, working with
rabbit hippocampus, Bliss and Lømo discovered long-term potentiation (LTP), an increase of
the amplitude of EPSPs in response to high-frequency stimulation (HFS, 15 Hz stimulation
during 15 s). (fig. 1.2).

Figure 1.2: Long-term potentiation of population EPSP in respose to HFS (HFS-LTP). In the first 10 min of
control recording, test stimuli are delivered at a low frequency of 0.5 Hz to measure the baseline EPSP amplitude.
Starting from 10th minute, the HFS is delivered at 15 Hz for 15 s (red shading, total 225 stimuli). After the HFS,
0.5-Hz test stimuli are applied during 12 minutes to measure the amplitude of EPSP. Modified from T. Bliss and
Lømo (1973)

This HFS-induced LTP (HFS-LTP) lasted for periods ranging from 30 min to 10 hours (T. Bliss
and Lømo 1973). Using stimulation protocol similar to T. Bliss and Lømo (1973) to study
plasticity in hippocampus, G. S. Lynch, T. Dunwiddie, and Gribkoff (1977) also found the
potentiation of a neuronal input by HFS. G. S. Lynch, T. Dunwiddie, and Gribkoff (1977) studied
HFS-induced plasticity in two separate input pathways to neurons of CA1 hippocampal region
i.e. HFS was applied to either one of two different subsets of presynaptic neurons. After the
application of HFS to the first pathway, the amplitude of potential was increased (LTP). In
the second pathway to which HFS was not applied, the amplitude was persistently decreased
(long-term depression, LTD). When HFS was instead applied to second pathway while the first
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was not stimulated, LTP and LTD were reversed: LTP was observed in the second pathway, and
LTD in the first (G. S. Lynch, T. Dunwiddie, and Gribkoff 1977) (fig. 1.3).

Figure 1.3: HFS results in HFS-LTP in stimulated pathway and LTD in the non-stimulated one; shown by the
amplitude plot of the extracellularly measured population spike. Stimulation at 15 Hz during 15 s delivered
to the Schaffer (A) or commissural (B) afferents at time 0. Schaffer responses indicated by solid circles and
commissural responses by open circles. Modified from G. S. Lynch, T. Dunwiddie, and Gribkoff (1977)

The LTD persisted on the time scales comparable to LTP. The following year, studying dependence
of synaptic responses on the frequency of electrical stimulation, Dunwiddie and Lynch (1978)
found an experimental protocol reliably inducing LTD that has become the protocol of choice for
the years to come. Low-frequency stimulation (LFS) at 1 Hz lasting for 100 s was reliably inducing
LTD (LFS-LTD) in hippocampus. Using this protocol, Barrionuevo, Schottler, and G. Lynch
(1980) demonstrated that sequential application of LFS and HFS to the same neuron resulted in
a sequence of LFS-depression and HFS-LTP. LFS was reliably inducing LFS-depression (as in
Dunwiddie and Lynch (1978)) and reversing the LTP previously induced by HFS (fig. 1.4). Note
that depression induced in Barrionuevo, Schottler, and G. Lynch (1980) lasted only about 15 min
(not a classical LTD). HFS and LFS differ in their contribution to the generation of postsynaptic
APs. HFS generates many EPSPs at high-frequency, thus generates postsynaptic APs with
high probability. HFS-LTP therefore is induced when postsynaptic APs are repeated following
presynaptic APs. Conversely, LFS leads to rare EPSPs, thus rare postsynaptic APs. Therefore,
LFS-LTD is induced when the postsynaptic APs are not correlated with presynaptic ones. The
studies discussed above therefore showed that a pathway actively contributing to the activation of
postsynaptic cell can be potentiated, in agreement with Hebb’s suggestion. Moreover, extending
Hebb’s vision of plasticity, these studies have also suggested that the potentiation might be
reversed or even replaced by depression if the pathway’s contribution becomes weak. Synaptic
plasticity therefore allows for the bidirectinal modification of synapses. To account for this
bidirectionality, Hebb’s rule has to be updated. For this purpose, together with Hebb’s original
formulation, one needs to consider the complementary plasticity rule of Stent (1973): “When
the presynaptic axon of cell A repeatedly and persistently fails to excite the postsynaptic cell
B while cell B is firing under the influence of other presynaptic axons, metabolic change takes
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place in one or both cells such that A’s efficiency, as one of the cells firing B, is decreased” (Stent
1973).

Figure 1.4: Bidirectional plasticity of hippocampal neurons: LFS induces LTD and reverses HFS-induced LTP.
Population dendritic responses (extracellularly recorded potentials from the same dendritic zone) are shown for
four successive periods (from left to right): control, the period following LFS, the period following subsequent
HFS, the period following subsequent LFS. Modified from Barrionuevo, Schottler, and G. Lynch (1980)

1.1.3 Is plasticity necessary and sufficient for learning in vivo?

A causal link between synaptic plasticity and learning and memory has been long hypothesized.
However, until recently, experimental studies suggesting that synaptic plasticity is implicated in
learning and memory did not provide sufficient evidence. Both synaptic plasticity and learning
can be affected pharmacologically (see e.g. RG Morris 1989), however, the limitation of the
method does not allow precisely targeting a subnet of neurons involved in a particular memory
episode. Instead, spatial localization of targeted neurons is imprecisely determined and the
pharmacological intervention might have a broad range of unintended effects. Therefore, it
is hard to prove that the observed correlation between learning and plasticity reflects causal
relationship. Another technique to affect plasticity by using genetically modified organisms
(see e.g. Tsien, Huerta, and Tonegawa 1996) suffers similar problems. Even when the spatial
localization of affected cells is more or less known, genetic modification might have very broad
effects as a result of the activation of compensatory mechanisms during development or during
the time following the injection of a virus. Studies utilizing these two approaches found many
correlational evidence linking the impairment/enhancement of learning and synaptic plasticity
(Martin and R.G.M. Morris 2002). Using multielectrode recording from the hippocampus of
behaving rat, Whitlock (2006) found that HFS induces less LTP if LTP was previously induced
by learning. However, it is impossible to have a final conclusion based on this data. To finally
prove the old idea of the causal link between synaptic plasticity and memory, new more precise
experimental techniques might be needed (Neves, Cooke, and T. V. Bliss 2008).

Owing to recently developed experimental approaches such as optogenetics, a more direct support
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for the idea became available. Nabavi et al. (2014) used fear conditioning to test the relation
between learning and LTD/LTP. They first trained animals to press lever for a reward. Pairing
a conditioned stimulus, CS, (here an optogenetic stimulation) with an aversive unconditioned
stimuli, US, (electrical shock) resulted in the decrease of lever pressing activity (Fig. 1.5A).
Therefore the decrease of lever pressing activity can be considered a conditioned response (CR)
to the CS-US pairing. The authors then checked that CS-US pairings indeed gave rise to LTP
in the amygdala (both in vitro and in vivo). Finally, to test how this LTP observed after
CS-US learning relates to LFS-LTD and HFS-LTP, they applied in sequence optical stimulation
mimicking LFS and HFS protocols to a trained animal. Application of LFS made the animal
“forget” the CS-US learned (Fig. 1.5B), whereas subsequent application of HFS restored learned
response. The explanation for this can be that LFS induces LTD that cancels LTP induced by
learning, whereas HFS induces LTP that restores the LTP removed by LFS. Therefore, Nabavi
et al. (2014) provides a strong support for the idea that the LTP and LTD protocols used in
vitro indeed support behaviorally-significant learning mechanisms in vivo.

Figure 1.5: in vivo experiments; Fear conditioning with optogenetics (see text for details). Modified from Nabavi
et al. (2014).
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1.1.4 Calcium: a molecule of plasticity

In 1989, based on theoretical considerations, John Lisman (1989) has proposed the idea that
bidirectional plasticity (LTD and LTP) can be controlled by the same molecule, calcium.
Specifically, the baseline concentration of intracellular calcium corresponds to no plasticity, a
high elevation of calcium was thought to cause LTP (Hebb in the words of Lisman), whereas a
medium calcium elevation was thought to cause LTD (anti-Hebb in John Lisman (1989)). This
calcium control hypothesis of synaptic plasticity was then studied experimentally. Cho et al.
(2001) tested this hypothesis using LFS stimulation protocol (200 stimuli at 1 Hz) applied to
neurons of perirhinal cortex in slices of rat brain. Their LFS induced LTD when the resting
potential of the postsynaptic neuron was from -70 to -40 mV. However, when the resting
potential was fixed to -10 mV, this same LFS protocol induced LTP. Using this LFS with -10
mV resting potential, they controlled stimulation-dependent increases of calcium by varying the
concentration of intracellular calcium buffer (fig. 1.6). Their results agreed with the prediction of
calcium control hypothesis. Indeed, at high concentrations of intracellular calcium buffer, when
the concentration of calcium was low, no plasticity was induced. When buffer concentration
was decreased that is when calcium concentration was increased to intermediate values, LTD
was induced. When buffer concentration was low, calcium concentration was high and LTP
was induced. Other groups found experimental support for the calcium control hypothesis
using other techniques and plasticity induction paradigms. Cormier, Greenwood, and Connor
(2001) used glutamate iontophoresis to directly induce calcium transients in neurons in slices of
hippocampal CA1 region. Measuring these transients with calcium optical imaging, they found
a relationship between the peak dendritic calcium concentration and synaptic plasticity that
agrees with calcium control hypothesis.

To allow the local control of plasticity at synaptic sites at dendritic spines, it is the local calcium
concentration in the spines that should be considered in the hypothesis. However, in the studies
in support of the calcium control hypothesis, calcium concentration was manipulated more
globally: either at the level of a cell, or at the level of dendrites. At this scale, many of the local
calcium transients are integrated so that the contributions from single spines overlap and smooth
away. In a very recent study, using new plasticity induction paradigm (STDP-like paradigm,
see sec. 1.1.6), Tigaret et al. (2016) tested the calcium control hypothesis at the level of single
dendritic spines. They found no correlation between the amplitude and integral of calcium
transients in spines and the outcome of plasticity. However, they, as well as many others before,
have confirmed the involvement of subcellular components linking calcium to plasticity (more
about it in the following section, sec. 1.1.5). Therefore, these results do not allow to dismiss
the hypothesis. One possible explanation for the absence of correlation between spine calcium
concentration and plasticity is that calcium concentration determines plasticity when LFS/HFS
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are applied, but not for STDP-like protocols; another explanation is suggested by the possibility
of micro- or nano-domains of different calcium concentration inside the single spine (e.g. Higley
and Bernardo L. Sabatini 2008; Griffith, Tsaneva-Atanasova, and Mellor 2016). The recent
theoretical study of Griffith, Tsaneva-Atanasova, and Mellor (2016) suggests that the change of
calcium can be localized to subvolumes around calcium sources without propagating far into
the volume of spine. Calcium contained in these local subvolumes, nanodomains, could be
actually correlated with plasticity, but not the calcium in the whole spine volume (spine-averaged
calcium).

Figure 1.6: Depending on the intracellular calcium concentration: no change, LTD, or LTP can be induced by
LFS delivered to the neuron with resting potential -10 mV. *Significant difference from baseline (p < 0.05).
Modified from Cho et al. (2001).

1.1.5 Plasticity induced by activation timing patterns

The core of both Pavlovian learning and Hebbian learning is the association of coincident
events: conditional and unconditional stimuli, and firing of two connected cells respectively.
Surprisingly, the question of whether a specific timing between these coincident events is required
for plasticity induction was not specifically addressed by the early studies of plasticity. This
question had to wait until the 1990s (Debanne, Gahwiler, and Thompson 1994; Markram et al.
1997; Bell et al. 1997; Bi and Poo 1998). To implement Hebbian learning with the association
of coincidently active cells, a biological system has to (i) somehow detect coincident events,
(ii) communicate coincidence signal to the machinery controlling plasticity at an appropriate
synaptic site. These two requirements might seem problematic to satisfy if one considers spatial
aspects of unidirectional neuronal signal transmission. The synapses of a neuron are located on
its dendrites at sites often distal from the soma. The activation of a single synapse leads to a
small postsynaptic current that attenuates while propagating to the soma. To activate a neuron,
many of these currents must reach the soma, sum up at the axonal hillock and cross the threshold
of AP generation. Therefore the initiation of a postsynaptic AP following presynaptic AP is
caused by the total current resulting from delayed summation of many postsynaptic currents.
When a postsynaptic AP is initiated, which synapses should be given credit for contributing and
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potentiated? If the machinery responsible for synaptic plasticity is localized at the synaptic site,
how can it be informed about presynaptic AP’s success in evoking postsynaptic AP? In 1997,
studying cells from two different brain regions, hippocampus and neocortex, two groups have
published similar results suggesting the existence of a signal that communicates the somatic
occurrence of the postsynaptic AP back to the synaptic site (Magee and Johnston 1997; Markram
et al. 1997). At the time, it was known that action potential not only propagates along the axon
without attenuation, but also propagates back into dendrites with attenuation (Kandel 2013).
Experimentally, therefore, AP induction at the soma might trigger these back-propagating action
potentials (bAPs). Somatic AP can be induced using patch-clamp, whereby a glass micro-pipette
with micro-electrode inside is attached to the cell membrane. With patch-clamp, one can inject
step-like electrical currents into the cell soma; injected current forces triggering of an AP in
the soma; this AP can then back-propagate from the soma into the dendrite. Pairing such
bAPs induced by somatic current injection, with coinciding EPSPs triggered by presynaptic
activation, resulted in strong calcium influx close to the site of stimulated synapse in slices of
rat hippocampus (Magee and Johnston 1997). Both Magee and Johnston (1997) and Markram
et al. (1997) found that repeated pairings of postsynaptic bAPs and presynaptically-triggered
EPSPs were capable of inducing LTP. Magee and Johnston (1997) found that this LTP depended
on intracellular calcium: indeed, LTP was precluded by the pharmacological blockade of two
types of calcium channels, VSCC and N-methyl-D-aspartate receptors (NMDARs). NMDARs
involvement is worth a notice because of their role in excitatory neurotransmission and peculiar
permeability properties. NMDAR together with AMPAR, are synaptic receptors necessary for
the major type of excitatory neurotranmission, the glutamatergic neurotransmission. While
binding of glutamate is sufficient for AMPAR to become permeable to the influx of ions, NMDAR
activation requires more complex conditions. As AMPAR, NMDAR is a channel with a pore
gated by glutamate. However, NMDAR pore is blocked in normal conditions by extracellular
Mg2+ ion (Hille 1992). This Mg2+ block of NMDAR is voltage-dependent and can be removed
by the depolarization of the postsynaptic membrane potential. Therefore, NMDARs are open
when two conditions are satisfied at the same time: i) glutamate is bound to them and ii)
cell is depolarized. These properties endow NMDAR with characteristics of the detector of
coincidence between postsynaptic depolarization resulting from AP back-propagation, and
binding of glutamate resulting from the arrival of presynaptic AP. Magee and Johnston (1997)
have confirmed the importance of bAP by demonstrating that the pairing of presynaptic AP
with non back-propagating AP is ineffective in inducing LTP. Markram et al. (1997) tested the
effects of the time order of coincident EPSPs and APs on synaptic plasticity. In this study,
somatic current injection was used to induce 10-15 trains of 5 APs at 10 Hz separated by 4 s;
trains were simultaneously induced in two mutually connected cells. (fig. 1.7). Importantly, each
AP train in the first cell was triggered 10 ms before the AP train in the second.
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Figure 1.7: Schematic illustration of stimulation protocol of Markram et al. (1997). A. Two bidirectionally
connected cells were stimulated with intracellular electrodes. B. AP-trigering stimuli were delivered to both cells
in short bursts of 5 stimili. These bursts were repeated 10-15 times at 0.25 Hz (with 4 s period). Stimulation of
cell 2 was 10-ms delayed relatively to cell 1 (zoomed).

Because these two cells were mutually connected, this protocol led to an opposite order of
EPSPs and APs in two cells: an AP triggered in the soma of cell 2 systematically occured 10
ms after cell 1 triggered an AP, whereas conversely, each AP in cell 1 was followed after 10 ms
by an AP in cell 2 (fig. 1.8A). The repetition of these trains 10 to 15 times every 4 s (thus a
total of 50 to 75 AP), led to LTP in the second cell where EPSP-AP delay was 10 ms, and to
long-term depression (LTD) of EPSP amplitude in the first cell where EPSP-AP delay was -10
ms (fig. 1.8B). When experiment was repeated with a 100 ms delay instead of 10 ms, no plasticity
was induced (fig. 1.8B). By demonstrating the importance of the timing of EPSP-AP coincidence
for plasticity, this study supported the hypothesis that bAP might be a coincidence signal for
Hebbian plasticity. The LTP they observed was considered Hebbian in the sense of a quasi-causal
order of pre- and postsynaptic activations. According to Hebb’s vision, a synapse is potentiated
if the presynaptic neuron persistently contributes to activation of the postsynaptic one. In the
experimental setting of Markram et al. (1997), the presynaptic stimulation alone produces EPSP
that is not sufficient for activating postsynaptic neuron. Instead, the postsynaptic neuron is
forced to generate AP by somatic current injection. This stimulation however simulates Hebbian
causal relationship between pre- and postsynaptic APs by forcing postsynaptic AP shortly
after presynaptic AP (and therefore EPSP). Moreover, the results of Markram et al. (1997)
contributed to the extension of the Hebb’s vision of plasticity by revealing LTD at reversed
coincidence timings (as it was earlier proposed by Stent (1973)) and quantifying coincidence
timing.

1.1.6 Spike-timing dependent synaptic plasticity (STDP)

Only one year after Markram et al. (1997), Bi and Poo have published a study questioning
how a broader range of the coincidence timings affects plasticity (Bi and Poo 1998). To induce
synaptic plasticity in cultures of dissociated rat hippocampal neurons, Bi and Poo (1998) used an
experimental protocol that was more similar to Markram et al. (1997), than to traditional HFS.
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Figure 1.8: A. Coincidence interval. A 10-Hz train of 5 APs in cell 1 (only the first AP is shown) was shifted by
10 ms in cell 2. An AP was thus triggered in cell 1 10 ms before an AP in cell 2 in a bidirectionally connected
pair of neurons. This resulted in the postsynaptic APs occurring about 10 ms before the onset of the EPSP in
cell 1 [solid squares in B] and about 10 ms after the onset of EPSPs in cell 2 [open squares in B]. B. Interaction
and coincidence intervals. Coincidence interval is represented by data from six bidirectionally coupled neurons.
The data when EPSPs and postsynaptic APs were 100 ms apart are also represented. Modified from Markram
et al. (1997)

Unlike HFS, their protocol comprised very mild stimulation; current pulses were somatically
injected at a low frequency of 1 Hz (compared to the 15 Hz stimulation of T. Bliss and Lømo
(1973)). Like in Markram et al. (1997), postsynaptic and presynaptic stimuli were paired with a
fixed time-delay between them (spike-timing). The stimulation however was even milder than in
Markram et al. (1997); instead of repeating bursts of EPSP-AP pairs, single pairs of EPSP-AP
were periodically repeated (see explanation under fig. 1.9).

Figure 1.9: Schematic illustration of the stimulation protocol of Bi and Poo (1998). A synapse is activated by
stimulation of the presynaptic neuron. With a short delay ∆t, postsynaptic neuron is stimulated. This paired
stimulation of pre- and postsynaptic neurons is repeated each 1 s (at 1 Hz) for 60 times.

With 60 EPSP-AP pairings delivered at 1 Hz, they were able to induce long-term bidirectional
plasticity (both LTP and LTD). The direction of plasticity, LTP or LTD, depended on the
sign of the time delay ∆t = tbAP − tEPSP between EPSP and AP (fig. 1.10 inset shows one
EPSP-AP pair with positive and another one with negative delay). To reflect the dependence of
induced by this protocol LTD and LTP on timing, I will further refer to them as t-LTD and
t-LTP (timing-dependent LTD and LTP) to stress the difference with the timing-independent
plasticity induced by other protocols such as HFS-LTP and LFS-LTD. Before the application of
the plasticity induction protocol, presynaptic-only test stimuli were applied for 10-30 min at
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Figure 1.10: Critical window for the induction of synaptic potentiation and depression. The percentage change of
the EPSC amplitude 20–30 min after the stimulation protocol (60 stimuli at 1 Hz) is plotted against spike-timing.
Spike-timing defined by the time interval (∆t) between the onset of the presynptically triggered EPSP and
the peak of the postsynaptic AP during each cycle of repetitive stimulation, as illustrated by the traces above.
Modified from Bi and Poo (1998).

a low frequency of 0.03–0.06 Hz to evaluate the baseline value of EPSC amplitude. Baseline
evaluation was followed by the induction protocol: 1 min of 60 1-Hz pairings. Next, for another
20-30 min, test stimuli were delivered again to evaluate the resulting change of EPSC amplitude.
During this period EPSC amplitudes were gradually increasing or decreasing, and reaching
stable values by the end of the period. Therefore, this induction protocol triggered a progressive
change in the EPSC amplitude, that reached stable values 20-30 min after the protocol. To
quantify plasticity, the difference between average EPSC amplitude at the end and at the
beginning of the experiment (before and after plasticity inducing protocol) was divided by the
average EPSC amplitude at the beginning. Fig. 1.10 shows the dependence of on spike-timing
(∆t). Similarly to Markram et al. (1997), t-LTD was observed for small negative spike-timing
(-60<∆t<0 ms), t-LTP was observed for small positive spike-timing (0<∆t<40 ms), while large
spike-timing led to no plasticity. Obtaining the data-points for this figure involved a lot of
work for Bi and Poo (1998). First, they had to find a pair of connected cells. Many cells have
to be discarded as they often die during stimulation and search for a pair of cells has to be
repeated. One successful pair of cells that survived an hour-long stimulation gives only one
point of the fig. 1.10, since the whole protocol is too long to be applied twice in sequence to the
same pair of cells. This hard work turned out fruitful and their results greatly influenced further
studies of synaptic plasticity; their experimental protocol became wide-spread for inducing
what we now refer to as spike-timing dependent plasticity (STDP). They have moreover given
some insight on which subcellular components plasticity relies. In their culture of hippocampal
neurons, different sources of calcium were found differently affecting plasticity. When L-type
voltage-sensitive calcium channels (L-type VSCC), were blocked pharmacologically, t-LTD at
negative ∆t was replaced by no plasticity, while t-LTP at postitve ∆t was not affected. When
NMDARs were blocked, both t-LTD and t-LTP were replaced by no plasticity. t-LTD therefore
was VSCC-dependent while t-LTP was both NMDAR- and VSCC-dependent. It is fair to call
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the stimulation protocol of Bi and Poo (1998) classical for STDP induction as most of the
subsequent STDP studies used it with minor modifications. Typically, across various studies
of STDP in different brain regions, only the details of ∆t definition are varied; less frequently
the number of pairings is varied. The classical STDP protocol of Bi and Poo however could
be characterized by three parameters: the timing of AP relatively to EPSP (∆t), the number
of pairings, and the frequency of pairing. Following Bi and Poo (1998), up to now, most of
STDP studies were concerned about the dependence of plasticity on ∆t only. The first glimpse
of the dependence of STDP on another parameter of the protocol, frequency, was contained in
the early study of Markram et al. (1997). Since then, to our knowledge, no more than three
experimental studies on the frequency-dependence of STDP have been published (Markram
et al. 1997; P. Sjostrom, G. Turrigiano, and S. Nelson 2001; S. B. Nelson, P. J. Sjostrom, and
G. G. Turrigiano 2002). Markram et al. (1997) found that the magnitude of LTP increases with
the increase of frequency of the EPSP-AP pairs in slices of rat neocortex. This dependence
was further studied by P. Sjostrom, G. Turrigiano, and S. Nelson (2001). Using patch-clamp
recordings from thick, tufted L5 (layer 5) neurons in rat visual cortex, P. Sjostrom, G. Turrigiano,
and S. Nelson (2001) have characterized the dependence of plasticity on the frequency of pairings
(fig. 1.11).

Figure 1.11: The dependence of STDP on the frequency of pairings for ∆t = ±10. Modified from P. Sjostrom,
G. Turrigiano, and S. Nelson (2001).

They found that the t-LTD at negative spike-timing (∆t = -10 ms) was not dependent on
frequency up to 40 Hz. Since at 40 Hz ∆t = ±10 ms becomes comparable to the period of
pairings, ∆t defined as delay between post- and pre-stimuli is no longer equal to spike-timing
(defined as delay of a post- relatively to the nearest presynaptic stimulus) (for illustration, see
fig. 1.12). Therefore, the results at short ∆t at 40 Hz should be interpreted with care. For
the positive spike-timing, ∆t = 10 ms, the magnitude of t-LTP was found to increase with the
increase of frequency from 10 to 40 Hz (similarly to Markram et al. (1997)). Moreover, the
change of frequency affected the range of ∆t for which t-LTP and t-LTD are induced (fig. 1.13).
At frequency 0.1 to 20 Hz, t-LTD was dominant over t-LTP across all examined ∆t; whereas
only t-LTP or no plasticity were present at high frequencies (40 and 50 Hz). With the increase
of frequency from 0.1 to 50 Hz the range of ∆t of t-LTD first increased, then decreased, and then
t-LTD was completely superseded by t-LTP owing to the expanding range of t-LTP. Therefore,
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the main conclusion from P. Sjostrom, G. Turrigiano, and S. Nelson (2001) is that the presence
across spike-timings of t-LTP and its amplitude at a given spike-timing increases with frequency,
whereas t-LTD is much less affected and tend to be superseded by t-LTP when frequency is
increased.

Figure 1.12: Explanation of the loss of timing-dependence at a high-frequency in the protocol of P. Sjostrom,
G. Turrigiano, and S. Nelson (2001). At 40 Hz, the period is 25 ms. ∆t = ± 10 ms falls roughly in the middle of
the period. In these conditions, timing between two nearest post- and presynaptic stimili is ambiguous and no
longer defined by ∆t

Figure 1.13: The dependence of STDP on both the frequency of pairings and spike-timing. Modified from
P. Sjostrom, G. Turrigiano, and S. Nelson (2001). The range of ∆t at which t-LTP is present expands with the
increase of frequency, whereas t-LTD does not change much. At 40-50 Hz, t-LTP comletely superseeds t-LTD.

1.1.6.1 Diversity of STDP

One year before the seminal study of hippocampal STDP in rats by Bi and Poo (1998), a
similarly extensive exploration of timing-dependence of plasticity was carried out in slices of
cerebellum-like structure of the electric fish Gnathonemus petersii (Bell et al. 1997). Pairing
extracellular pre- and delayed intracellular postsynaptic stimulation (360 pre-post pairings at
1 Hz), Bell et al. (1997) found plasticity dependence on timing inversed compared to the one
found by Bi and Poo (1998). At negative timings, instead of t-LTD, t-LTP was observed. At
positive timings, instead of t-LTP, t-LTD was observed. Being the reverse of Hebbian STDP
of Bi and Poo (1998) this plasticity can be called anti-Hebbian. Following studies of STDP in
various brain regions and across various experimental conditions revealed that the dependence
of STDP on timing (STDP curves) is actually very variable (for review, see Larry F Abbott
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and Sacha B Nelson 2000; Caporale and Dan 2008). Fig. 1.14 summarizes the variety of STDP
curves across studies.

The STDP can vary even in the same brain region and in the same type of synapses dependent
on the stimulation protocol. The classical hippocampal Hebbian STDP of Bi and Poo (1998),
that was observed for synapses from excitatory neurons to excitatory neurons is induced by 60
1-Hz pairings of one pre- with one postsynaptic stimuli (fig. 1.14A1). However, the pairing of
one presynaptic stimuli with two postsynaptic repeated 70–100 times at 5 Hz induces a plasticity
that is noticeably different; it comprises second LTD window at ∆t > 0 (fig. 1.14A2) (Wittenberg
and S. S.-. H. Wang 2006).

The STDP observed at synapses from excitatory neurons to inhibitory neurons is in the sharpest
contrast to classical STDP (compare fig. 1.14A1 to fig. 1.14B). The difference with classical
Hebbian STDP is the most pronounced in the case of anti-Hebbian STDP in cerebellum-like
structure that is inversed compared to classical STDP (fig. 1.14B1) (Bell et al. 1997).

For synapses from inhibitory to excitatory neurons, an inhibitory neurotransmitter leads to
transient inhibitory postsynaptic current (IPSC); this current leads to a transient decrease of
membrane potential (hyperpolarization), an inhibitory postsynaptic potential (IPSP). Because
there is no EPSP/EPSC for inhibitory synapses, the plasticity was evaluated by the change of
the amplitude of IPSC/IPSP (instead of EPSC/EPSP amplitude). With this, Hebbian STDP
with very narrow range of spike-timings (compared to classical STDP) was observed in entorhinal
cortex (fig. 1.14C1) (Haas, Nowotny, and Abarbanel 2006). However, in the hippocampus, the
STDP for this type of synapses was significantly different: the STDP curve was symmetrical
relatively to spike-timing with LTP at small timings at two LTD windows at sides of LTP
(fig. 1.14C2).

How can we explain the diversity of STDP? First possibility can be that different signaling
pathways are activated in different experimental conditions (including different stimulation
conditions). With this, the difference of activated signaling pathways across conditions determines
the difference of STDP curves. Second possibility could be that the molecular mechanism of
plasticity is the same in all cases, that is the same signaling pathways are differently activated
in different conditions; this different activation then leads to different STDP curves. If this
explanation is valid then a unified description of various forms of STDP can be developed based
on the essential features of the plasticity mechanism. Deciding between these two hypotheses is
the central question of this thesis; the present work favors the second possibility and a unified
description of plasticity.
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Figure 1.14: Diversity of temporal windows for STDP induction. A. Windows for excitatory to excitatory
connections. A1. in hippocampus: Bi and Poo (1998), Zhang et al. (1998). in dorsal cochlear nucleus:
Tzounopoulos et al. (2004). A2. in hippocampus: Wittenberg and S. S.-. H. Wang (2006). B. Windows for
excitatory to inhibitory connections. B1. in cerebellum-like structure Bell et al. (1997). B2. in dorsal cochlear
nucleus: Tzounopoulos et al. (2004). C. Windows for inhibitory to excitatory connections. C1. in entorhinal
cortex: Haas, Nowotny, and Abarbanel (2006). C2. in hippocampus: Woodin, Ganguly, and Poo (2003).
Temporal axis is in milliseconds. Modified from Caporale and Dan (2008).

1.1.6.2 Evidence of STDP in vivo

The first studies of STDP were done in vitro, in brain slices or cultures of neurons. However,
if STDP is really to be considered not just an artifact of an experimental preparation, but
as a support for learning and memory, there has to be evidence of it in intact living brain of
an animal. The first evidence of STDP in vivo came from the study of the developing visual
system of a frog (Zhang et al. 1998). Zhang et al. (1998) stimulated two converging inputs
from retina to a tectal neuron of Xenopus tadpoles in vivo. These two inputs, one subthreshold
(leading to EPSP) and another one leading to somatic spike, were pair-stimulated with a fixed
delay. The paired stimuli were repeated for 100 s at 1 Hz similarly to Bi and Poo (1998). By
varying the time delay between the stimulations of the two inputs, Zhang et al. (1998) obtained
STDP-like curve for the EPSP evoked by subthreshold input. This work demonstrated that
STDP might govern changes of synaptic connections in the developing brain of an animal and
therefore potentially have long lasting impact on the adult brain. In a more recent study, Jacob
et al. (2007) studied STDP in vivo in the barel cortex of rat. Stimulations of whiskers were
paired with postsynaptic APs with a delay. They found an STDP dependence on this delay of
similar shape to the one found by Bi and Poo (1998).

In in vivo protocols of STDP induction, EPSP is evoked by sensory stimulation (of a whisker
in Jacob et al. (2007)). This EPSP has potentially very complex composition involving the
activation of many pathways and synapses. This differs noticeably from in vitro protocols where
presynaptic neurons are stimulated electrically in a more controlled fashion. Thus STDP in vivo
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induced by sensory stimulation and STDP in vitro induced by electrical stimulation cannot be
directly compared.

The in vivo STDP study by Schulz, Redgrave, and Reynolds (2010) is closer to in vitro studies.
Schulz, Redgrave, and Reynolds (2010) studied STDP in vivo in cortico-striatal synapses of basal
ganglia (BG) pairing presynaptic electrial stimulation with postsynaptic electical stimulation. The
electical stimulation of the cortex led to the activation of cortical pyramidal cells (presynaptic).
This stimulation was paired with postsynaptic AP induced by in vivo somatic current injection
into a medium-sized spiny neuron of striatum. These pairings were repeated 60 times at low
frequency 0.2 Hz. In order for this protocol to actually induce plasticity, the suppliment of a
sensory input was required. To this end, each pairing was followed 250 ms later by a light flash
to an animal’s eye. With this protocol they obtained anti-Hebbian STDP curve: t-LTD for
-5<∆t<0 ms (pre-before-post pairings), t-LTP for 0<∆t<5 ms (post-before-pre pairings). These
result however relied on disinhibition of visual pathways to dopamine cells and striatum (by
injecting bicuculline to superior colliculus); without this disinhibition no plasticity was induced
by the protocol.

These studies support the existence of STDP in vivo and suggest that it might play a role in
reshaping neural networks and therefore supporting memory and learning (for a review of STDP
in vivo see Dan and Poo (2006)).

With the current experimental support of STDP in vivo, there is still less evidence directly
supporting STDP existence in vivo than in vitro. The conclusions of in vitro findings can not
always be translated in vivo. With this regard, one might criticize the view of STDP as a
foundational principle of learning and memory. However, even if the STDP paradigm fails as a
foundation of learning in vivo, the STDP protocol exposes important aspects of inner workings
of mechanisms underling plasticity such as timing-dependence. Timing-dependence might be a
basis for learning patterns of correlations in sensory inputs. It is therefore important to continue
studying STDP in realistic and artificial conditions to further expose the plasticity mechanisms
and refine our concept of plasticity.

1.1.7 STDP of Basal ganglia

1.1.7.1 Basal ganglia

According to a modern hypothesis, the function of basal ganglia (BG) is linked to the learning
and memory of skills and habits (Packard and Knowlton 2002; Yin and Knowlton 2006; Graybiel
2008). Traditionally, BG were thought to be related only to movement (Kandel 2013). This view
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Figure 1.15: The basal ganglia and surrounding structures. Modified from Kandel (2013)

originated from the link between BG defects and pathologies of movement such as Parkinson
and Huntington diseases. More modern understanding is that basal ganglia might be also
involved in cognition; the later is supported by their link to cognitive diseases such as Tourette
syndrome, obsessive-compulsive disorder (OCD) and attention-deficit/hyperactivity disorder
(ADHD) (Gazzaniga and Bizzi 2009). In the following, I first describe the anatomy of basal
ganglia and then their functional implications.

1.1.7.1.1 Anatomy of basal ganglia

The basal ganglia group a handful of subcortical structures (fig. 1.15):

• The striatum, that is divided into the dorsal striatum (consisting of caudate nucleus and
putamen) and the ventral striatum (nucleus accumbens and olfactory tubercle, not shown
in fig. 1.15),

• The subthalamic nucleus (STN),
• The globus pallidus internal and external segments (GPi and GPe).
• The substantia nigra that further subdivides into two subnuclei: substantia nigra pars

reticulata (SNr) and substantia nigra pars compacta (SNc),

Substantia nigra. The SNr is one of the major output structures of BG. The SNc is a very
specific structure. Among all brain structures, only the SNc and the adjacent ventral tegmental
area contain dopaminergic neurons (cells that release the neurotransmitter dopamine); these
cells project their axons to various structures of the BG and elsewhere in the brain. Death of
dopaminergic cells is observed in Parkinsonian patients and considered as a cause of movement
deficiencies accompanying the disease (Kandel 2013). Dopamine is also considered to be involved
in modulating reward-motivated behavior and reinforcement learning (Schultz 2002).

Globus pallidus. The GPi is another major output structure of BG; The GPe is a part of
internal BG circuitry (fig. 1.16).
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Figure 1.16: The basal ganglia–thalamocortical circuitry. A. The circuitry of the basal ganglia includes the
striatum, the external and internal segments of the globus pallidus (GPe and GPi, respectively), the substantia
nigra pars reticulata (not shown) and pars compacta (SNc), and the subthalamic nucleus (STN). Modified from
Kandel (2013). B. Simplified scheme of basal ganglia circuitry illustrating the balance of the effects of the
activation of direct and indirect pathways. Cortico-striatal synapses shown by yellow-shaded circle. Excitatory
connections are shown in red, inhibitory pathways in blue.
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Subthalamic nucleus. STN is located between the substantia nigra and the thalamus. It
receives its inputs from GPe, cortex, thalamus and brain stem (fig. 1.16). Its output goes to
both GPi and GPe, and to SNr. Cortical inputs to STN are called the hyperdirect pathway.

Striatum. The striatum serves as the main input station of basal ganglia; it receives inputs
from cerebral cortex, thalamus and brain stem (fig. 1.16). Cortical inputs arriving to striatum
are routed through two distinct pathways of BG (fig. 1.16): a direct monosynaptic pathway to
GPi, and an indirect polysynaptic pathway that passes through GPe to both outputs of BG, SNr
and GPi (either directly or through STN). Unlike in hippocampus or cortex, where glutamatergic
excitatory neurons are the major type of neurons (Gulyás et al. 1999; DeFelipe and Fariñas
1992), in the striatum, most neurons are inhibitory. These include three types of GABAergic
neurons (they release the neurotransmitter GABA, γ-aminobutyric acid) (Tepper and Bolam
2004): fast-spiking (FS) interneurons, medium-sized aspiny neurons, and medium-sized spiny
neurons (MSNs). MSNs are the major type of striatal neurons and receive most of the excitatory
input to striatum from cortex. Because the striatum is the major input nucleus of BG, these
cortico-striatal synapses serve as major input synapses of BG. Their input is relayed to the
pathways of basal ganglia downstream of MSN (direct and indirect pathways) and further to the
outputs of BG. The MSNs of direct and indirect pathway express different dopamine receptor
subtypes. In mice, the MSNs of two pathways are segregated: the MSNs of the direct pathway
express D1 dopamine receptor (D1R), whereas the MSNs of the indirect pathway express D2
dopamine receptor (D2R) (Gerfen and Surmeier 2011). In addition to FS interneurons, the
striatum contains two other types of interneurons differentiated by the neurotransmitter that
they release: cholinergic interneurons and (NO)-synthesizing (NOS) interneurons.

1.1.7.1.2 Functions of the basal ganglia

The direct and indirect pathways of BG have opposite effects on the output of BG (fig. 1.16B).

The activation of MSNs belonging to direct pathway imposes inhibition on GPi/SNr. The later
releases the inhibition normally imposed on thalamus by GPi/SNr, thus MSN stimulation via
the direct pathway ultimately activates the thalamus (by releasing its inhibition).

The activation of the MSNs of the indirect pathway inhibits GPe. This releases inhibition
normally imposed by GPe on GPi/SNr. Therefore, the activation of GPi/SNr increases their
inhibition of the thalamus. Therefore, stimulation of MSNs from the indirect pathway imposes
extra inhibition on thalamus.

The excitatory output from thalamus goes to the cortex where it might modulate various brain
functions and be fed back to BG. The later closes the cortex-BG loop. This cortex-BG loop
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might create a possibility for a complex iterative processing of information in the BG. Inside the
loop, the opposite actions of direct and indirect pathways might take part in deciding stop-or-go
about cortical input. One hypothesis is that the balance between the activation of direct and
indirect pathways determines release/inhibition of motor programs (fig. 1.16B) (Gazzaniga
and Bizzi 2009). This release-inhibit idea might be extended to cognitive level by considering
other types of “programs” including skills, habits, thoughts and emotions. The learning of
motor/cognitive programs and strategies for release and inhibition thereof might be supported
by the synaptic plasticity of BG circuits. In the framework of this idea, the synaptic plasticity
of the input synapses between the cortical pyramidal neurons and the MSNs of striatum is
especially important. The later is because the synaptic transmission at these input synapses
gates all the subsequent processing of cortical input by basal ganglia. It is therefore important
to study plasticity of these cortico-striatal synapses.

1.1.7.2 STDP of Basal ganglia

The data accumulated during the last decade shows that synapses from cortex to striatum
undergo various forms of plasticity including STDP. STDP at the major input synapses of BG,
between cortical pyramidal neurons and MSNs, has been extensively studied (see Elodie Fino
and Venance (2010) for review). The STDP of these synapses has peculiar properties: it is
anti-Hebbian in normal conditions, but it can become Hebbian if manipulated experimentally.

1.1.7.2.1 anti-Hebbian STDP at cortico-striatal synapses

Using slices of rat brain in which connections from somatosensory cortex to striatum were
preserved, Elodie Fino, Glowinski, and Venance (2005) studied plasticity at synapses between
cortical layer 5 pyramidal neurons and medium-sized spiny neurons (MSNs) of striatum. To
induce plasticity, several major experimental protocols were applied: LFS, HFS and STDP. In all
three cases, the somatosensory cortex was stimulated with extracellular electrode. MSNs where
recorded intracellularly with patch-clamp. LFS consisted of 600 cortical stimuli at 1 Hz. HFS
was delivered at 100 Hz during 1 s (100 cortical stimuli). In agreement with classical LFS and
HFS experiments in the hippocampus (described in sec. 1.1.2), LFS induced LFS-LTD whereas
HFS induced HFS-LTP. Elodie Fino, Glowinski, and Venance (2005) have applied HFS and LFS
protocols sequentially to the same cell during the same experiment (similarly to Barrionuevo,
Schottler, and G. Lynch (1980), see sec. 1.1.2). LTP induced by HFS was reversed by the
following LFS (to no plasticity). In another experiment, LFS was applied before HFS. In this
case, the LTD induced by LFS was reversed to no plasticity by the following HFS. They thus
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demonstrated the existence of bidirectional plasticity (both LTP and LTD) at cortico-striatal
synapses. Elodie Fino, Glowinski, and Venance (2005) have also applied STDP protocol pairing
the extracellular stimulation of the somatosensory cortex with postsynaptic somatic current
injection in MSN. With 100 such pairings delivered at 1 Hz, for the first time in striatum, they
found anti-Hebbian STDP: t-LTP was observed at negative ∆t (postsynaptic stimulation before
presynaptic one) and t-LTD at positive ∆t; the dependence of plasticity on spike-timing was
therefore reversed (t-LTP in place of t-LTD and t-LTD in place of t-LTP) by comparison to the
classical Hebbian STDP curve of Bi and Poo (1998) (similarly to what was previously found in
cerebellum-like structure of electric fish (Bell et al. 1997), see sec. 1.1.6.1). Note that strong
t-LTP for -20<∆t<0 ms, is induced only in a part of experiments, whereas some experiments
fail to induce t-LTP. This variability of experimental outcome applies to lesser extent to t-LTD
for 10<∆t<30 ms. This variability can be liked to the variability of cell parameters that are
important for plasticity (see sec. 2.7.2).

Figure 1.17: Anti-Hebbian STDP at cortico-striatal synapses. A1. Schematic illustration of the protocol for
pre-before-post pairings (∆t < 0) (left panel). Single pairing of postsynaptic stimulation of MSN followed by
cortical stimulation leads to action potential followed by EPSP in somatic recordings (left panel bottom). The
right panel shows EPSC amplitude potentation 45 min after induction protocol (gray trace 2) compared to
control (black trace 1). A2. Same as A1 but for post-before-pre pairings (∆t < 0). B1. Change of EPSC
amplitude in respose to test stimuli during representative experiment (illustrated at A1). B2. Same as B1, but
for experiment as in A2. C. Spike-timing dependent plasticity curve summarizing all experiments. Modified
from Elodie Fino, Glowinski, and Venance (2005).

1.1.7.2.2 Network context of cortico-striatal plasticity
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Synaptic transmission between the cortex and MSNs in the striatum might be regulated by other
striatal neurons that receive cortical input and project to MSNs. Therefore, because of the local
connections to the MSN, the plasticity at synapses between the cortex and these other neurons
might have important consequences for the processing of cortical input. Using protocol similar
to Elodie Fino, Glowinski, and Venance (2005), 100 pairings of extracellular cortical stimulation
with the intracellular stimulation of NOS neurons, Fino et al. (2009) found asymmetric STDP at
cortico-NOS synapses: t-LTD for -100<∆t<+30 ms and t-LTP for 30<∆t<65 ms. Elodie Fino,
Deniau, and Venance (2008) explored plasticity at synapses between cortex and striatal FS and
cholinergic interneurons: the extracellular stimulation of layer 5 of the somatosensory cortex
activated MSNs, FS and cholinergic interneurons in the following temporal order: first, FS
interneurons, then cholinergic interneurons, and then the MSNs. The synapses to both FS and
cholinergic interneurons were found capable of developing bidirectional plasticity (t-LTP and
t-LTD) in response to a STDP protocol (100 pairings at 1 Hz). STDP at synapses between
cortex and FS interneurons was Hebbian similarly to Bi and Poo (1998). STDP at synapses
between cortex and cholinergic interneurons was partially anti-Hebbian: t-LTD at positive ∆t,
and both t-LTP and t-LTD at negative ∆t. At negative ∆t, the plasticity (t-LTD or t-LTP)
was correlated with the level of excitability of cholinergic interneurons. Striatal STDP therefore
varies depending on the specific conditions in each of striatal cell type. The interconnectedness
of these cells might lead to a non-trivial interdependence of plasticities simultaneously induced
in all cell types.

To find plasticity of a particular cell type not shaded by the influence of another ones, one
can exclude influence of some cell types by pharmacological blockade. Blocking GABAergic
transmission by GABAA receptors blocker, Pawlak and Kerr (2008) studied STDP of cortico-
striatal synapses in slices of rat brain. To induce plasticity, they used low frequency 0.1 Hz and
60 pairings of EPSP induced by extracellular stimulation of cortical layer 5 and AP induced by
postsynaptic current injection. In this setting, in opposition to the anti-Hebbian STDP found by
Elodie Fino, Glowinski, and Venance (2005), they found Hebbian STDP. This dramatic difference
in results was later explained by the state of GABAergic transmission (Elodie Fino, Paille, et al.
2010; Paille et al. 2013). Using protocol similar to Elodie Fino, Glowinski, and Venance (2005),
100 1-Hz pairings, Elodie Fino, Paille, et al. (2010) showed that blocking all GABAA receptors in
rat brain slice reverses STDP curve from Hebbian to anti-Hebbian when all other conditions were
kept the same. It was later shown that it is GABAA receptors located postsynaptically at MSN
that determine Hebbian versus anti-Hebbian STDP (Paille et al. 2013). In normal conditions,
therefore, GABAA signalling contributes to anti-Hebbian plasticity at cortico-striatal synapses.
Another finding of Pawlak and Kerr (2008) was the dependence of cortico-striatal STDP on the
activation of dopamine receptors. Blocking all D1R (not only in MSNs) resulted in disappearance
of both t-LTD and t-LTP. Blocking all the D2R only decreased the extent of t-LTD. Shen et al.
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(2008) confirmed the involvement of D1R and D2R into cortico-striatal plasticity. With the
block of both GABAA and GABAB receptors, Shen et al. (2008) used STDP-like protocol similar
to Markram et al. (1997) (see fig. 1.7) and demonstrated the existence of both t-LTP and t-LTD
in both populations of MSN: D1-MSN and D2-MSN (MSNs of direct and indirect pathways,
see sec. 1.1.7.1.1); t-LTD and t-LTP in D1-MSNs and D2-MSNs were affected by the block of
D1R and D2R respectively. Both dopamine receptors, D1R and D2R are therefore involved in
bidirectional plasticity induced by STDP and STDP-like protocols in both types of MSNs.

1.1.7.2.3 Molecules involved in cortico-striatal STDP

The cortico-striatal STDP induced by timing-dependent protocols depends on GABAergic and
dopaminergic signaling. Understanding these dependencies is therefore important to find out
how the mechanism underlying plasticity is modulated by the activity of other cells. However,
to understand the plasticity mechanism itself, one has to find on which intracellular molecules it
depends.

In the early plasticity studies, it was found that plasticity depends on calcium. This finding
suggests that calcium might control plasticity via the activation of signaling downstream
calcium. For instance, calcium can bind to calmodulin, this, in turn, can lead to the activation
of calcium/calmodulin-dependent protein kinase II (CaMKII). CaMKII is a multi-subunit
holoenzyme that has 12 domains, grouped into two clusters of six (Hudmon and Schulman
2002). CaMKII was experimentally found involved in LTP (Citri and Robert C Malenka 2008;
Hudmon and Schulman 2002). Indeed, a mutant mice defective in α-CaMKII is deficient in both
hippocampal LTP and spatial learning (Silva et al. 1992). Similar deficiencies arise in mutants
with selectively blocked autophosphorylation of CaMKII (Giese et al. 1998).

NMDAR and VSCC are two sources of calcium repeatedly appearing important for plasticity
in a range of studies (see Citri and Robert C Malenka (2008) for review). The coincidence
detection properties of NMDAR led to the idea that NMDAR is responsible for the timing-
dependence of STDP. However, in many cases, blocking NMDAR affects only one part of the
timing-dependence of plasticity (often only t-LTP). For instance, experimental reports have
identified that neocortical t-LTD depends on both NMDAR and cannabinoid receptor type
1 (CB1R) (Sjöström, Gina G. Turrigiano, and Sacha B. Nelson 2003). CB1Rs are located
non-postsynaptically (presumably presynaptically) and activated by two endogenous analogs of
a molecule responsible for the psychoactive effects of marijuana: tetrahydrocannabinol (THC).
These two endogenous analogs of THC, 2-arachidonoylglycerol (2-AG) and anandamide (AEA),
are called endocannabinoids. Endocannabinoids are produced postsynaptically and assumed to
be transfered out from postsynaptic compartment by an unknown mechanism (Castillo et al.
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2012). Upon their exit from the postsynaptic compartment, they reach CB1Rs located on
presynaptic neurons or on astrocytes wrapping the synapse (star-shaped glial cells that, among
other, provide neurons with mechanical support and nutrients). AEA also has another target
with postsynaptic location: transient receptor potential vanilloid type-1 (TRPV1) (Castillo
et al. 2012). TRPV1s are non-selective cation ionic channels; that is they are permeable to all
kinds of positively charged ions (including Ca2+). Whereas endogenously gated by AEA, they
have exogenous agonist capsaicin, a molecule found in hot chili peppers and responsible for the
irritating effects of the peppers. The activation of TRPV1 in peripheral nervous system is linked
to the sense of pain and temperature (Kandel 2013). In general, in the central nervous system,
TRPV1 are known to be involved in LTD (Castillo et al. 2012). AEA and TRPV1 were also
implicated in LFS-LTD in amygdala (Puente et al. 2011).

In the somatosensory cortex, t-LTP depends on NMDAR, whereas t-LTD is independent from
postsynaptic NMDAR and instead requires group-I metabotropic glutamate receptors (mGluR
group-I), VSCC, IP3 receptor-gated stores (Bender 2006) and phospholipase C (PLC) (Nevian
and Sakmann 2006). All these molecules belong to a network of molecular interactions part of
which are linked to calcium and common downstream targets. Unlike NMDAR and AMPAR
which are channels with an ionic pore, mGluR belongs to another class of receptors: the G
protein–coupled receptors (GPCRs), that do not have an ionic pore and activate through another
mechanism. Upon binding of an agonist (glutamate for mGluRs) to the extracellular part of
the GPCR, the receptor undergoes conformational changes that promote binding with trimeric
G protein on the intracellular part of the membrane. G proteins are trimers made of α, β
and γ subunits. After binding of G protein, α subunit dissociates from βγ-dimer; at the same
time, both the dimer (Gβγ) and the monomer of α subunit (Gα) dissociate from the receptor
(Vilardaga et al. 2010). Gα has three major sub-types: Gαq, Gαs, and Gαi. Gαi inhibits the
production of cyclic adenosine monophosphate (cAMP) by adenylyl cyclase, thus inhibiting
cAMP-activated protein kinase A (PKA). On the opposite, Gαs activates adenylyl cyclase thus
PKA. Gαq activates PLCβ that allows the production of diacylglycerol (DAG) and inositol
(1,4,5)-triphosphate (IP3) from phosphatidylinositol (4,5)-bisphosphate (PIP2) (Squire 2008;
Berridge, Bootman, and Roderick 2003). IP3 together with intracellular calcium acts on IP3
receptor (IP3R) located on endoplasmatic reticulum (ER); this leads to calcium-induced calcium
release (CICR) from ER. mGluRs group I are Gαq GPCRs, therefore, their activation leads to
the activation of PLCβ that, through CICR, leads to the increase of intracellular calcium. As
calcium was shown to be important for STDP, the molecules involved in this pathway might
influence STDP via calcium. Another consequence of PLCβ activation is the production of DAG.
DAG is converted to 2-arachidonoylglycerol (2-AG) by diacylglycerol lipase α (DAGLα). Because
DAGLα activity is calcium-dependent, 2-AG production may constitute a coincidence detector
of pre- and post-activity: 2-AG production needs both PLC to produce the substrate of DAGL,
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DAG, and postsynaptic calcium to activate DAGL; PLC can be activated by presynaptic activity
via glutamate release and mGluR-I binding. In turn, large postsynaptic calcium transients are
triggered by VSCC opening due to postsynaptic spikes and/or NMDAR opening resulting from
pre-post activity coincidence. Therefore, the endocannabinoid system seems adequate to support
STDP.

The molecular level components involved in plasticity might differ from brain region to brain
region, so the identification of the molecules involved in cortico-striatal plasticity, and STDP in
particular, requires separate experiments. As in neurons of other brain regions, in striatal MSNs,
large calcium transients are evoked by the coincidence between EPSP and bAP (Carter and
Bernardo L Sabatini 2004). Carter and Bernardo L Sabatini (2004) found that bAP led to calcium
influx via VSCC that was dependent on the level of baseline depolarization. The pairing of
bAP with synaptic stimulation boosted calcium influx via NMDAR. Moreover, endocannabinoid
system was also shown implicated in cortico-striatal plasticity, e.g.: the activation of TRPV1 was
shown to be linked to LFS-LTD (e.g. Grueter, Brasnjo, and Robert C Malenka 2010). Elodie
Fino, Paille, et al. (2010) studied the implication of various molecules in anti-Hebbian STDP
at cortico-striatal synapses. They used an STDP protocol similar to Elodie Fino, Glowinski,
and Venance (2005): 100 1-Hz pairings of extracellular cortical stimulation with somatic current
injection in MSN, and coupled it with pharmacology to selectively switch off or inhibit molecules
of interest. In agreement with what was previously found in hippocampus, they found that
both t-LTD and t-LTP are dependent on postsynaptic calcium. Indeed when the postsynaptic
calcium was immobilized by the addition of calcium buffer into the postsynaptic cell, the STDP
protocol led to no plasticity whatever ∆t.

Figure 1.18: Cortico-striatal t-LTP and t-LTD depend on various molecules. The name of a drug used to affect a
molecule indicated in bracets. The prefix “i-” before the name of a drug stands for intracellular application of a
drug in the postsynaptic neuron (via the patch pipette). Otherwise drug is bath applied to extracellular solution.
ND: not determined. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

As in many previous STDP studies, t-LTP was found dependent on NMDAR, whereas t-LTD
was not (fig. 1.18). t-LTD was found dependent on phospholipase Cβ (PLCβ), on M1 muscarinic
GPCR (M1R), and L- and T-type VSCCs. Note that M1R are also Gαq–coupled GPCR, just like
mGluR group-I, so both receptors are expected to activate the same PLCβ. Moroever, blocking
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mGluR group-I not only removed t-LTD, but even triggered t-LTP in place of t-LTD.

Furthermore, an important result from Elodie Fino, Paille, et al. (2010) is that VSCC are
implicated both in t-LTP and t-LTD in MSNs, as seen from the effect of mibefradil. This is
another significant difference with e.g. cortical or hippocampal STDP where the implication of
VSCC is often restricted to t-LTD (while the implication of NMDAR is restricted to t-LTP), to
the point that some modeling works have assumed that the calcium pool entering via NMDAR
controls t-LTP whereas the calcium pool entering though VSCCs controls t-LTD (Karmarkar and
Buonomano 2002). Such an assumption is ruled out in the striatum by the results of Elodie Fino,
Paille, et al. (2010).

While IP3 leads to CICR from internal calcium stores, including the ER, another mechanism is
responsible for the pumping calcium back into ER: sarco/endoplasmatic reticulum Ca2+-ATPases
(SERCAs) transfer calcium against calcium concentration gradient into ER. This transfer is
done at the expense of ATP degradation (Berridge, Bootman, and Roderick 2003). Therefore,
the refill of ER can be blocked by blocking SERCA. Without the refill, ER gets emptied with
time. As eventually there would be no calcium to release through IP3R, this effectively blocks
CICR. By inhibiting SERCA-pumps, Elodie Fino, Paille, et al. (2010) found that t-LTD was
replaced by no plasticity. t-LTD is therefore CICR-(and calcium-) dependent.

Inhibition of DAGLα (not shown in fig. 1.18) as well as blocking of the 2-AG receptors CB1R
precluded t-LTD, but not t-LTP. These experiments confirm the importance of the pathway
for t-LTD and suggest the following mechanism: activation by mGluR group-I (and/or M1
receptors) activates PLCβ, thus generating DAG and IP3. The former gives rise to 2-AG
and CB1R signaling whereas the latter triggers CICR which amplifies Ca transients. The
activation of CB1R therefore might serve as an entry point for downstream plasticity mechanisms
responsible for t-LTD. In this putative mechanism, the dependence of t-LTD on the various
molecules upstream CB1R is fully explained by their participation to CB1R activation. A scheme
summarizing the experiments is shown on fig. 1.19.

1.1.7.2.4 Endocannabinoid-dependent STDP of cortico-striatal synapses induced
by a low number of pairings

Typical STDP protocol consists of prolonged stimulations that comprise 60-100 pairings. De-
pending on the frequency of pairings, the stimulation alone can last from 1 minute (60 pairing
at 1 Hz) to almost 17 minutes (100 pairings at 0.1 Hz). These number of pairings correspond to
a rather long-duration stimulation. From everyday life experience, it seems that learning might
occur on a much shorter time scale with a single and brief exposure to a stimuli (e.g. learning an
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Figure 1.19: Summary of cortico-striatal t-LTP and t-LTD dependence on subcellular components. Green full
circles symbolize Ca or Ca-dependent steps. Replotted from Elodie Fino and Venance (2010).

association between touching fire and pain from single trial). This kind of learning was reported
in a range of studies (e.g. Rutishauser, Mamelak, and Schuman 2006; Schwartz et al. 2002).
In order for STDP to support such learning, STDP should be present for short time scales,
or equivalently, for small number of pre-post pairings in experimental protocols. By analogy
with experimental protocol single-trial learning can be compared to a single stimulation with
a low number of stimuli. When striatal neurons are monitored over episodes of learning, a
fraction of them shows brief transient responses during the learning of novel instruction (Schultz,
Tremblay, and Hollerman 2003). This brief activation might be controlling learning-related
synaptic plasticity.

Using slices of rat and mice brains preserving cortico-striatal connections, Cui, Paille, et al.
(2015) studied the dependence of cortico-striatal STDP on the number of pairings of the protocol
(reduced compared to Elodie Fino, Glowinski, and Venance (2005)). They observed that the
t-LTD at ∆t>0 progressively disappears when the number of pairings decreases from 100 downto
1 (fig. 1.20). t-LTP at ∆t<0 however shows more complex dependence on the number of pairings.
With the decrease of the number of pairings t-LTP disappears faster than t-LTD (about 50
pairings). However, if the number of pairings decreases further, a form of t-LTP reappears
between 5 and 20 pairings.

Unlike the t-LTP triggered by 50 pairings or more, that depends on the activation of NMDAR
(see above) but not eCB, the t-LTP induced by 5-10 pairings was found eCB-dependent but
not NMDAR-dependent (fig. 1.21). Indeeed, Cui, Paille, et al. (2015) showed that this t-LTP
triggered by 5-10 pairings depends on eCB both through the activation of CB1R and transient
receptor potential vanilloid type-1 (TRPV1).

The existence of a t-LTP relying on the endocannabinoid system challenges the traditional vision
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of endocannabinoid system as a system supporting only LTD (Citri and Robert C Malenka 2008;
Robert C. Malenka and Mark F. Bear 2004). The major difficulty it raises is to understand
how a unique signaling system – the eCB system – can trigger both LTP and LTD. And what
quantity along the signaling pathway controls the orientation of the synapse toward LTD or
its functional inverse LTP? Note that similar questions have been raised for calcium and LTP
and LTD in the hippocampus for many years. The calcium-control hypothesis, that states that
postsynaptic calcium levels and/or time courses decide the outcome of plasticity (LTP or LTD)
has been the topics of many experimental (see e.g. Tigaret et al. 2016) and modeling studies
(Shouval, Mark F Bear, and Leon N Cooper 2002; Shouval, Castellani, et al. 2002; Graupner
and Brunel 2012). However, how eCB controls STDP outcome in the striatum remains to be
deciphered.

To understand theoretically the basis of this new plasticity and its dependence on the parameters
of plasticity induction protocol and subcellular conditions, one has to put together the interactions
between the molecules implicated in this plasticity. The resulting molecular networks can become
complex enough to preclude simple qualitative analysis. To circumvent this limitation, I employed
mathematical modeling and computer simulation of these molecular networks. In the next section,
I will review the modeling efforts in Computational Neuroscience with a special focus on the
modeling of subcellular dynamics and synaptic plasticity.

Figure 1.20: The dependence of cortico-striatal t-LTP and t-LTD on the number of pairings (Npairings). Replotted
from data by Cui, Paille, et al. (2015)

1.2 Modeling synaptic plasticity

1.2.1 Synaptic weight

Before discussing modeling, let me define the key concept of the mathematical studies of synaptic
plasticity, the synaptic weight.

As we have seen in sec. 1.1, multiple measures can be used to evaluate plasticity experimentally.
For instance, one can measure intracellularly or extracellularly the change of the amplitude or the
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Figure 1.21: t-LTP induced by 100 pairings is NMDAR-dependent whereas t-LTP induced by 10 pairings is
eCB-dependent. Plotted from data by Cui, Paille, et al. (2015)

slope of currents or potentials in response to a protocol inducing plasticity. To quantify induced
plasticity, one then computes the ratio of the chosen quantity before and after the application of
a plasticity induction protocol. This ratio is often referred to as the synaptic weight change in
Computational Neuroscience literature and defined as the relative change of EPSC amplitude.
In abstract terms, it is a very simple quantity: a synapse is depressed if the change in weight is
less than 1 and potentiated if it is greater than 1. I denote this abstract synaptic weight as W.
In the following, I will also often refer to a particular experimental definition of the synaptic
weight (denoted Wtotal): Wtotal is the average EPSC amplitude in the last 10 minutes of the
plasticity evaluating phase of the experimental protocol (after the end of the plasticity induction
phase), divided by the average EPSC amplitude before the plasticity induction phase during the
baseline phase.

1.2.2 Modeling neurons and networks

1.2.2.1 Electrical properties of neurons

The early effort to understand quantitatively the excitation of a nerve was at the time of Cajal
and Pavlov. In 1907, Louis Lapicque proposed to model the electrical excitation of nerves by
representing cellular membrane by equivalent electrical circuit with capacitor and resistance
(for the English translation of the original French text see Brunel and van Rossum (2007)).
Electrical excitation of a nerve (AP generation) was assumed when capacitor charges up to a
threshold voltage. This simple model, now called leaky integrate-and-fire, is still actively used in
simulations of neural networks because of its efficiency from computational standpoint. Almost
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fifty years later, the major development in modeling of single neurons happened with the work of
Hodgkin and Huxley (1952). Using joint experimental-theoretical approach, they have developed
the equivalent electrical circuit description of a neuron membrane (fig. 1.22). The total tonic
current through the surface of membrane (I ) was divided to components: sodium (INa) and
potassium currents (IK), and small leakage current (IL) made of chloride and other ions.

Figure 1.22: Equivalent electrical circuit representing membrane used by Hodgkin and Huxley (1952). gx and Vx
are conductances and reversal potentials for various current components. Taken from https://de.wikipedia.org/
wiki/Datei:Hodgkin-huxley-circuit.svg

According to Ohm’s law for equivalent circuit the transmembrane current can be computed as:

I = C
dV
dt + gK(V )(V − VK) + gNa(V )(V − VNa) + gL(V − VL) (1.1)

where gx and Vx are conductances and reversal potentials (for which a current component
changes its direction) for various current components (x=Na,K,L); C is membrane capacitance;
V is membrane potential. The difficult part of the study was to determine the dependence of
sodium and potassium conductances on the membrane potential. This part required extensive
experimental work employing the state-of-the-art experimental techniques at the time (patch-
clamp intracellular recording). The conductances of current components were described with
a system of ordinary differential equations (ODE). The parameters of these equations were
then fitted to the experimental data obtained by patch-clamp recordings from giant squid
neuron. After fitting, their model quantitatively reproduced the generation of an action potential.
This work brought Hodgkin and Huxley Nobel Prize in Physiology or Medicine in 1963. This
model became the golden-standard in the modeling of the electrical excitation of neurons. The
extensions of Hodgkin-Huxley model in use today can include great diversity of extra components
of the total transmembrane current. These extra components are now attributed to various ionic
channels (e.g. VSCCs are the source of calcium current component, see sec. 1.1).

Hodgkin and Huxley used Ohm’s law approximation that is not always valid. To model an ionic
current through a semi-permeable membrane two approaches can be utilized (Sterratt 2011;
Hille 1992):

• Ohm’s law provides an approximation for the case when the movement of ions is mostly
determined by electric force, that is diffusion is small because concentrations of ions are
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not too different at both sides of the membrane):

Ix = gx(V − Vx) (1.2)

The conductance gx can be a function of various factors. The reversal potential Vx is
determined by the concentrations of the ion x at both sides of the membrane.

• Goldman-Hodgkin-Katz (GHK) equation that describes more general case when the
movement of ions is determined by both diffusion and electric force, when concentrations
of an ion are noticeably different on two sides of the membrane:

Ix = Pxz
2
x

V F 2

RT

[x]i − [x]o exp(−zxV F/RT )
1− exp(−zxV F/RT ) (1.3)

where Px is permeability that can be a function of various factors, zx is valence of ion x,
[x]i and [x]o are concentrations of ions x inside and outside of the cell respectively, F is
Faraday constant, R is universal gas constant, T is absolute temperature

The reversal potential of a current made of ions x (obtained from GHK when Ix = 0) is given by
the so-called Nernst potential:

Vx = RT

zxF
ln
(

[x]o
[x]i

)

The same Vx is used in Ohm’s law approximation.

1.2.2.2 Models of networks and simple synapses

The Hodgkin-Huxley model was a success of bottom-up approach. It was validated experimentally
so that it can be used to derive simpler models preserving key dynamical features of the original
model (Izhikevich 2007). These simplified models can be then used for simulations at the level
of neural networks.

In parallel to the bottom-up ascent from biophysics to an abstraction, top-down approach was
used by other groups to produce theories of artificial neural networks. McCulloch and Pitts
(1943) studied networks of artificial neurons using the formalism of symbolic logic. The notion
of synaptic weight and plasticity was not yet present in this study.

In the second half of 1950s, after Hebb’s book was published, Rochester et al. (1956) used IBM
704, a state-of-the-art computer at the time, to test Hebb’s theory by simulating neural networks
with plastic connections. They found that pure Hebbian rule (allows potentiation only) is not
sufficient for the formation of cell assemblies predicted by Hebb. Without additional assumptions,
pure Hebbian rule caused synaptic weight to grow without bound (Rochester et al. 1956).
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The next influential development was Franc Rosenblatt’s perceptron (Rosenblatt 1958). The
perceptron is a network of artificial binary neurons with feedforward connectivity inspired by
that of retina (layers of neurons with no connections inside a layer and all-to-all connectivity
between layers). The synapses to the output layer were endowed with modifiable synaptic
weights (called “values” by Rosenblatt). Given a set of weights and an input, the only one
output neuron gets activated (by design of the model). This property allows to use Perceptron
for the classification of input patterns. The id of the activated output neuron can be taken as
the id of the class to which an input belongs. Perceptron’s learning is a biologically implausible
model of learning. However, this model unlike more complex and more biologically plausible
models finds practical applications in pattern recognition and classification. This model led
to the development of a whole class of biologically implausible, but practically useful models
of artificial neural networks or its modern incarnation “Deep Learning” (LeCun, Bengio, and
Hinton 2015). To understand how learning is actually implemented in the brain, new models
have to be developed. A new kind of model of an artificial neural network was proposed by
Hopfield (1982). The network consisted of binary neurons with all-to-all connectivity. The
synaptic weights were allowed to be bidirectionally modified: to depress and potentate or vanish.
Hopfield showed that such networks were capable of storing and retrieving patterns of activity of
neurons (“memories”). From the perspective of Dynamical Systems, “memories” were stored in
the form of attractors in the state space of the model. To store a pattern of activity in Hopfield
networks, synaptic weights have to be decreased for synapses connecting neurons that do not fire
together in the pattern, and increased if neurons either fire together or quiescent together. This
rule is reminiscent of that of Hebb. However, this learning is applied not to ongoing activity
patterns, but rather to a desired one. It is the synapses connecting the neurons that would
fire in correlated fashion with the target pattern that are reinforced rather than those between
neurons whose firing is actually correlated. Synapses are therefore changed not by local synaptic
machinery, but rather by external intervention that is designed to obtain a desired pattern. The
rule therefore does not explain learning of patterns via synaptic modification, but rather gives
recipe to adjust all synapses to store patterns. In order to have higher-level properties of neural
networks truly emerging from elementary synaptic and neuronal dynamics, synaptic weights
should not be set up by an artificial procedure. Instead, they should be set by local learning
rules controlled by events at the scale of single synapses and neurons. To study the development
of selective response of cells in visual cortex to visual stimulus, Bienenstock, L N Cooper, and
Munro (1982) proposed a new model of synaptic plasticity. Their learning rule is now called
BCM (short for Bienenstock, Cooper, Munro). Here the learning rule was local and applied
to ongoing activity. Similarly to Hebbian learning rule, the change of synapse was dictated by
coactivaiton of pre- and postsynaptic neurons. The synaptic weight was modified in proportion
to the product of presynaptic activity and a nonlinear function of postsynaptic activity. The
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addition of this nonlinear function was the major innovation that allowed to stabilize Hebbian
learning (correcting its tendency to increase synaptic weights in an unbounded fashion). As
a result of BCM plasticity rule, a neuron can develop selective response to one of the input
patterns presented in a random sequence (Bienenstock, L N Cooper, and Munro 1982). This
work demonstrated that local simple plasticity rule can lead to a form of self-organization: the
development of neuronal selectivity to a stimulus whereas without plasticity the neuron shows
no preference for any stimuli. These early models suggest that the plasticity of synaptic weights
might allow neurons and neural networks to perform various non-trivial functions (selective
filtering of stimuli, associative retrieval of stored patterns, classification of patterns). However
these models did not consider explicitly coincidence timing requirements of plasticity. Moreover,
the question of how the plasticity is actually implemented in living cells was not addressed.

1.2.3 Modeling synaptic plasticity

1.2.3.1 Phenomenological models of timing-dependent plasticity

Gerstner et al. (1996) proposed a synaptic learning rule based on timing between pre- and
postsynaptic spikes (here “spikes” means the abstract representation of APs). In Kempter,
Gerstner, and Van Hemmen (1999), a presynaptic spike occurring before postsynaptic one led
to an increase of synaptic weight, whereas postsynaptic spike occurring before presynaptic one
led to a decrease of synaptic weight. This weight update rule was described by a function
of spike-timing that was remarkably similar to the STDP curve obtained experimentally in
hippocampal slices by Bi and Poo (1998). With this plasticity rule, Kempter, Gerstner, and
Van Hemmen (1999) modeled 50 excitatory input synapses of a single neuron receiving Poisson
trains as its inputs. The plasticity of synapses led to the normalization of average synaptic
weight: when weights were initially high, the average value of weights decreased after learning,
whereas when initial values were low, the average values of weights increased to the same
steady-state value. When the inputs were split in two groups: a group of inputs correlated
with the output (postsynaptic spikes) and a group of uncorrelated ones, learning specifically
increased the weights of the synapses receiving correlated inputs, and decreased the weights of
those receiving uncorrelated inputs.

Song, Miller, and L. F. Abbott (2000) proposed a plasticity rule and a model similar to that of
Kempter, Gerstner, and Van Hemmen (1999). The spike-timing dependence of this rule provided
a simple approximation of the spike-timing dependence of the plasticity observed experimentally
in hippocampus by Bi and Poo (1998), Zhang et al. (1998). Song, Miller, and L. F. Abbott
(2000) gave the phenomenon of STDP its name. Unlike Kempter, Gerstner, and Van Hemmen
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(1999), the model of Song, Miller, and L. F. Abbott (2000) included inhibitory inputs and a
larger total quantity of inputs (200 inhibitory and 1000 excitatory inputs). These inputs drove
an integrate-and-fire neuron through STDP-modified synapses. When inputs were independent
Poisson trains, the steady-state distribution of synaptic weights was bimodal: most of the
weights had values around the lower and the upper bounds. When inputs had various degrees
of correlation between each other, the weights in groups of inputs with higher correlation took
higher steady-state values. The form of STDP studied by Song, Miller, and L. F. Abbott (2000)
and Kempter, Gerstner, and Van Hemmen (1999) therefore introduced a competition between
synapses based on the degree of correlation between pre- and postsynaptic spiking. Song and
L. F. Abbott (2001) aimed to test if this type of STDP can account for the development of
stimulus-selectivity in neurons. In their model, a random recurrent network of neurons received
a randomly presented input via feedforward synapses endowed with STDP. When STDP came to
an equilibrium, each neuron of the recurrent network had developed selective response to an input
pattern. These studies demonstrated that a simple timing-dependent rule for the modification
of synaptic weight can introduce correlation-based competition between synapses and lead to
the formation of stimulus-selectivity. It is hard however to draw conclusions from these studies
on how the learning of temporal correlations is actually implemented in living-cells. A major
simplification used in these models is that the outcome of an experiment (STDP curve of Bi and
Poo (1998)) is taken as the fixed update rule for synaptic weight. It was experimentally shown
that the STDP outcome is actually dependent on experimental conditions and the parameters of
the stimulation (e.g. frequency, see sec. 1.1.6.1). It is therefore evident that the actual plasticity
update rule should be more complex than a simple fit to one of its outcomes observed in a very
specific condition (i.e. a typical experimental protocol with an artificially regular stimulation
pattern of 60-100 pairings at 1 Hz). To understand theoretically the actual plasticity rule in
terms of its dependence on subcellular components, several pieces of knowledge have to fit
together. First, we have to have experimental data on which of these components are important
for plasticity. Second, we have to have models for these components and their interactions. Third,
we have to have a link between the dynamics of these interacting components and plasticity. In
the following, I first describe the models of subcellular components involved in plasitcity and
then state-of-the-art models of plasticity.

1.2.3.2 Subcellular building blocks for mechanistic models of synaptic plasticity

1.2.3.2.1 Memory inside the cell

In order for subcellular mechanisms to maintain a potentiated or depressed state of a synapse,
there should be a way to store information about the synapse state at the subcellular level.
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Crick (1984) proposed that even in the presence of molecular turnover, a persistent molecular
“memory” can be implemented by a molecule, for which, two stable states exist. Following year,
JE Lisman (1985) proposed a model of simple molecular system capable of storing one bit of
information (e.g. about potentiated vs non-potentiated state of a synapse) as a result of its
bistability. The core component of this system is an autophosphorylating kinase (K1 and K1

* at
fig. 1.23), that, when phosphorylated (K1

* form) becomes capable of phosphorylating its non-
phosphorylated form (K1). Upon coupling with a phosphatase that removes the phosphorylation,
it becomes possible to achieve bistability: either (i) most of the molecules of the kinase end up
phosphorylated or (ii) all molecules remain not phosphorylated. This is achieved as a result of
the positive feedback loop: phosphorylation of the kinase leads to even greater phosphorylation.
If its initial phosphorylation level is low then phosphatase activity wins over and all molecules of
the kinase ends up unphosphorylated. On the contrary, if the initial phosphorylation level is high
enough, autophosphorylation wins over phosphatase activity. If the state of phosphorylation of
the kinase can be controlled by an external stimulus (e.g. a stimulus that activates another kinase
K2 that also contributes to the phosphorylation of K1), then the final binary state of this system
(phosphoryalted/non-phosphorylated) can be controlled by this stimulus. This system acts like a
flip-flop device and is capable of storing one bit of information (if synapse is potentiated or not).

Figure 1.23: Reactions in a bistable switch. The switch itself is constructed from two proteins: kinase-1, which
can exist in either an inactive state (K1) or an active state (K1*), and a phosphatase. The transition between
inactive and active states is due to a phosphorylation reaction that can be catalyzed by active kinase-1 or by the
kinase-2 activated during neuronal stimulation.

1.2.3.2.2 Kinetic formalism

A simple way to represent a chemical reaction is to draw a scheme showing reactants on the left
part of the scheme and products on the right:

A + B
kf−−⇀↽−−kb

A′ + B′ (1.4)

where A, B are concentrations of reactants and A′, B′ are concentrations of products. In general
a reaction can go in both directions with the rate of the forward reaction given by the constant
kf , and the rate of backward reaction by the constant kb. If reactants come close together in
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space and/or collide, one might expect reaction eq. 1.4 to occur with some probability (for
simplicity taken constant and proportional to a rate constant). The chance of reaction occurring
therefore might be determined by the probability of a collision and the probability of the reaction
to occur upon a collision. If the medium where the reaction occurs is perfectly mixed, that is
the concentration of the reactants is uniformly identical in the whole volume of the medium,
then the probability of a collision might be considered constant and proportional to the product
of the concentrations of reactants. Indeed the probability for a molecule of a reactant to occupy
a position in a infinitesimal subvolume is proportional to the concentration of the reactant and
assumed independent from the probability of other reactant to occupy the same spot. Under
this perfect-mixing hypothesis, the probability of the forward reaction and backward reaction
is therefore proportional to kfAB and kbA

′B′ respectively. The appropriate choice of units
for rate constants allows to take kfAB and kbA′B′ as rates of forward and backward reactions
respectively. The later statement expresses the law of mass action (rate/probability of reaction
is proportional to masses/concentrations of reactants). The change of the concentration of
reactants/products over time can be modeled with ordinary differential equations (ODE) as:

dA

dt
= dB

dt
= kbA

′B′ − kfAB

dA′

dt
= dB′

dt
= −kbA′B′ + kfAB

(1.5)

If the assumption of perfect mixing is satisfied, the system of ODE eq. 1.5 can be used to describe
any chemical reaction in a complex molecular network (U S Bhalla and Iyengar 1999). For
instance, if reaction scheme eq. 1.4 is applied twice: for the first reaction, A=E, B=S, A′=ES,
B=0, for the second, A=ES, B=0, A′=E, B′=P, then these two reactions can be compressed
into well known enzyme-substrate biochemical reaction:

E + S k1−−⇀↽−−k2
ES k3−−→ E + P (1.6)

d[E]
dt

= −k1[E][S] + k2[ES] + k3[ES]

d[S]
dt

= −k1[E][S] + k2[ES]

d[ES]
dt

= k1[E][S]− k2[ES]− k3[ES]

d[P ]
dt

= k3[ES]

(1.7)

where [E], [S], [ES] and [P] are concentrations of enzyme, substrate, enzyme-substrate complex
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and product respectively.

If one assumes that [ES] changes are small at the time scale of product formation (d[ES]
dt
≈ 0):

d[P ]
dt

= k3[E]0[S]
KM + [S] . (1.8)

where KM = (k2 + k3)/k1 and the constant [E]0 = [ES] + [E] is the total enzyme concentration.

The activation of a receptor can also be described using the same formalism (Destexhe, Z F
Mainen, and T J Sejnowski 1994; Alain Destexhe, Z. Mainen, and T. Sejnowski 1995; Alain
Destexhe, Zachary F Mainen, and Terrence J Sejnowski 1998). When the agonist (A) binds
to a receptor in closed state (xC), the receptor undergoes conformational changes and enters
activated/open state (xO). The agonist can then unbind allowing the receptor to return to
a closed state. Optionally, one can consider additional states of the receptor to account for
e.g. desensitization/inactivation (xI). fig. 1.24 shows a simple three state scheme of a receptor
activation and desensitization:

xC + A

k 1f

k 1b

xO
k
2fk

2b

xI
k3f

k3b

Figure 1.24: General three-state kinetic scheme

One can choose units for rate constants (kxb, kxf , x = 1, 2, 3) to consider fractions of receptors
in a particular state (or probabilities of states) instead of actual concentrations. With this
approach, one obtains xC + xO + xI = 1 (receptor is in one of the states with certainty; this is
equivalent to a statement that the total concentration of receptors in all states is constant).

The corresponding system of ODEs therefore reads:

dxO
dt

= k1fxCA+ k2bxI − (k1b + k2f )xO
dxI
dt

= k2fxO + k3fxCA− (k2b + k3b)xI

xC = 1− xO − xI

(1.9)

1.2.3.3 Calcium-controlled plasticity

A good theory compresses a variety of experimental data into a concise model that contains all
the particular experimental cases. As we have seen in sec. 1.1, various experimental protocols can
be used to induce plasticity. What if these various experimentally observed forms of plasticity
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express the same fundamental mechanisms? In such a case, we can hope for a unified description
that accounts for all experimental protocols. In the beginning of 2000s, an influential attempt
at such a description was made (Shouval, Mark F Bear, and Leon N Cooper 2002; Shouval,
Castellani, et al. 2002). This attempt was build around the older idea of calcium control
hypothesis of John Lisman (1989). Shouval, Mark F Bear, and Leon N Cooper (2002) noticed
that the calcium-dependence of plasticity is the recurrent finding across many experimental
reports (sec. 1.1.4). They therefore proposed to describe time-evolution of synaptic weight (W )
by a calcium-dependent function:

dW

dt
= 1
τ(C) (Ω(C)−W ) (1.10)

where C is postsynaptic calcium concentration, Ω(C) and τ(C) are taken to match experimental
observations. Ω(C) expresses mathematically the dependence of plasticity on calcium concen-
tration as observed by Cho et al. (2001) and others (see fig. 1.6 in sec. 1.1.4). They assumed
that low calcium concentration leads to no-plasticity, medium leads to synaptic depression and
high calcium concentration leads to synaptic potentiation (see Ω(C) plot on fig. 1.25). Moreover,
they assumed that the time of relaxation τ(C) in eq. 1.10 is also calcium dependent; so that the
synaptic weight changes faster when calcium concentration is higher (see τ(C) plot on fig. 1.25).
To express this hypothesis they used:

Ω(C) = A+ sig(C − α2, β2)− Asig(C − α1, β1)

sig(x, β) = exp(βx)/(1 + exp(βx))

τ(C) = P1

P2 + CP3
+ P4

(1.11)

Figure 1.25: Functions used by Shouval, Mark F Bear, and Leon N Cooper (2002) to express calcium-control
hypothesis (left panel compare to fig. 1.6). The parameters of eq. 1.11: A=0.25, α1 = 0.35, α2 = 0.55, β1 =
80, β2 = 80, P1 = 0.1 sec, P2 = P110˘4, P3 = 3 and P4 = 1 sec. Replotted from Shouval, Mark F Bear, and
Leon N Cooper (2002)

To obtain calcium input for this model, Shouval, Mark F Bear, and Leon N Cooper (2002) used
a simplifying assumption that calcium only comes through NMDAR and has simple linear decay
term. With their simple model, Shouval, Mark F Bear, and Leon N Cooper (2002) qualitatively
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reproduced the dependence of plasticity on the frequency of presynaptic stimulation. Moreover,
using classical STDP protocol with 100 1-Hz pairings, Shouval, Mark F Bear, and Leon N Cooper
(2002) achieved partial agreement with the experimental data on the hippocampal STDP by Bi
and Poo (1998) (compare blue trace on fig. 1.26 and fig. 1.10).

Figure 1.26: STDP curve obtained as a result of the application of simulated STDP protocol with 100 pre-post
pairings to the simple model of Shouval, Mark F Bear, and Leon N Cooper (2002) at 1 Hz (blue), 5 Hz (red) and
10 Hz (green). Modified from Shouval, Mark F Bear, and Leon N Cooper (2002)

One consequence of their model was the appearance of the second t-LTD window for 45<∆t<90
ms that was larger than the first t-LTD window for small negative ∆t. Such STDP was indeed
observed in hippocampus with stimulation at 5 Hz (compare to fig. 1.14A2). Furthermore, the
model captured the tendency of STDP, observed in neurons of visual cortex by P. Sjostrom,
G. Turrigiano, and S. Nelson (2001), to shift toward t-LTP when the frequency of stimulation
is increased (compare fig. 1.26 against fig. 1.11 and fig. 1.13). However, whereas this model
captures some of the aspects of plasticity, it neither explains the biochemical mechanisms behind
calcium-dependence of plasticity nor it provides us with a realistic form of this dependence.

Finding these mechanisms is complicated by the fact that neurons contain multiple molecules
interacting with one another in complex biochemical networks. To find out the molecules crucial
for plasticity, a useful approach is the approach of systems biology: modeling and analysis of
interactions between species of complex molecular networks (Kotaleski and Blackwell 2010).
Many models of this kind have calcium or CaMKII as their output (for review see Manninen et al.
(2010)). Regarding CaMKII based models, the major development was the work of Graupner
and Brunel (2007). This study effectively combined the idea of calcium-control of plasticity
of Shouval, Mark F Bear, and Leon N Cooper (2002) with the idea of molecular “memory”
of JE Lisman (1985). For Lisman’s unspecified autophosphorylating kinase, they considered
CaMKII. Similarly to Lisman’s unspecified kinase, CaMKII is controlled by kinase-phosphatase
system. Graupner and Brunel (2007) linked this kinase-phosphatase system to calcium input by
modeling molecular network in between the two. Calcium input in their model plays the same
role as “external stimulus” played in Lisman’s model: it controls the kinase-phosphatase system
and eventually the final (UP or DOWN) state of autophosphorylating kinase (CaMKII).

Calcium binding to calmodulin produces a calcium/calmodulin complex (CaM) that then can
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Figure 1.27: CaMKII activation by the calcium/calmodulin complex (CaM, blue balls). The CaMKII holoenzyme
consists of a ring of six subunits, each of which can be either dephosphorylated (gray balls) or phosphorylated
(green balls). A,B. Binding: the calcium/calmodulin complex can bind to a dephosphorylated (A) or a
phosphorylated subunit (B) with forward/backward reaction rates k5/k−5 and k9/k−9 respectively. C–E.
Intersubunit phosphorylation steps. C-D. Initiation step: when two calmodulins are bound to two neighbor
subunits (referred to as substrate “sub” and the catalyst, “cat”), the “cat” subunit can phosphorylate the “sub”
subunit (green) with constant k6 (C) or with constant k7 if the “cat” subunit is phosphorylated (D). E. Once
phosphorylated, the “cat” subunit remains active even after calmodulin dissociation thus phosphorylating the
“sub” subunit with constant k8. F. The signaling cascade controlling CaMKII activity. Red arrows indicate
activation relationship. The red arrow on the right corresponds to activation of CaMKII by CaM (through
reactions A and B), the red circular arrow on the right-bottom corresponds to the activation of CaMKII through
autophosphorylation reactions (C-E). CaMKII subunits can be dephosphorylated (desactivated) by protein
phosphatase 1 (PP1) (blue lines indicate inhibition). In turn PP1 is inhibited by the phosphorylated form
of so-called “inhibitor 1”, I1. I1 phosphorylation (and activation as inhibitor) is contributed by PKA and its
dephosphorylation triggered by Calcineurin (CaN). Therefore, PKA activates (disinhibits) CaMKII whereas
CaN desactivates it. Finally because CaN is activated by CaM, CaM indirectly deactivates CaMKII via CaN
but activates it directly via direct interaction. PKA activity depends on cAMP that is produced from ATP by
adenylyl cyclase. Graupner and Brunel (2007) hypothesized that cAMP production is initiated by CaM. This
hypothesis makes PKA activity indirectly dependent on CaM. Modified from Graupner and Brunel (2007).
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phosphorylate a subunit of CaMKII (fig. 1.27A,B). A phosphorylated subunit of CaMKII
can serve as a catalyst for further intramolecular CaMKII phosphorylation (fig. 1.27C-E).
Dephosphorylation of a phosphorylated CaMKII subunit is due to protein phosphatase 1 (PP1)
(fig. 1.27F). The objective of the model by Graupner and Brunel (2007) was to generate a
detailed model of the entire biochemical network implicated in CaMKII phospohorylation. As
Graupner and Brunel (2007) aimed to model STDP of hippocampal neurons, they considered
hippocampus specific pathways controlling PP1 and therefore dephosphorylation of CaMKII. In
hippocampus, PP1 is inhibited by phosphorylated inhibitor 1 (I1) protein. In Graupner and
Brunel (2007), dephosphorylation I1 is controlled by CaM-dependent calcineurin (CaN). The
phosphorylation of I1 is controlled by PKA. For the PKA activation, Graupner and Brunel
(2007) made a hypothesis that hippocampal PKA activation indirectly depends on CaM, which
is not strongly supported by experimental data.

1.2.3.3.1 Essential equations of Graupner and Brunel (2007) model

Calmodulin/calcium complex (CaM) (fig. 1.27) is produced when calmodulin (CM) binds calcium
(C) in cooperative manner (the affinity for calcium increases if other calcium molecules are
already bound):

CM + 4C K1−−⇀↽−− CM(C)1 + 3C K2−−⇀↽−− CM(C)2 + 2C K3−−⇀↽−−
K3−−⇀↽−− CM(C)3 + C K4−−⇀↽−− CM(C)4

Here and in the following Ki = k−i/ki is the dissociation constant, ki and k−i are forward and
backward reaction rates respectively.

Because calmodulin binding to calcium is fast, these reactions quickly reach equilibrium. Thus
even when calcium changes, equilibrium approximation can provide a reasonable estimate of the
concentration of the complex. With this approximation, the concentration of calcium/calmodulin
complex with four calcium ions bound (CaM) can be computed as:

CaM = [CM(C)4] = CaMT

1 +
4∑
i=1

(Ci ·
4∏

j=5−i
Kj)

, (1.12)

where CaMT is total calmodulin concentration.

Note that it is assumed for simplicity that only those calmodulins with four calcium ions
bound (CaM) can activate CaMKII. For simplicity, Graupner and Brunel (2007) considered that
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CaM binding to CaMKII subunits (fig. 1.27) is also in equilibrium. With this approximation,
instead of writing ODEs for each possible CaMKII phosphorylation pattern, one can write
simple expressions for the concentrations of products through concentrations of reactants. This
allows to derive simple formulas for the probabilities that CaM binds to phosphorylated (γ) and
dephosphorylated (γ∗) subunit of CaMKII:

γ = CaM/(CaM +K5)

γ∗ = CaM/(CaM +K9)
(1.13)

The dephosphorylation of a phosphorylated subunit was assumed independent of whether CaM
is bound to it or not. It is modeled according to enzyme-substrate reaction eq. 1.6 (with PP1
as the enzyme, and a subunit of CaMKII as the substrate). The approximation according to
eq. 1.8 allowed to estimate the rate of subunit dephosphorylation (k10) as:

k10 = k12PP1/(KM + CaMKII∗) (1.14)

where KM is Michaelis constant; k12 is the maximal dephosphorylation rate; PP1 is the
concentration of PP1; CaMKII∗ is the total concentration of phosphorylated subunits of
CaMKII computed accross all possible states of phosphorylation of CaMKII:

CaMKII∗ =
13∑
i=0

miyi, (1.15)

where mi is the number of the phosphorylated subunits of CaMKII in state i and yi is the
concentration of CaMKII in state i.

The approximations eq. 1.13 and eq. 1.14 allow to write simple production and degradation
terms for the system of ODEs describing the concentrations of CaMKII molecules with different
numbers of phosphorylated subunits (rewritten from that of Graupner and Brunel (2007)):
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σji =
j∑
k=i

yk

y0 = y000000 = 2CaMKII0 − σ13
1

dy1

dt
= dy100000

dt
= 6k6γ

2y0 − (4k6γ
2 + k7γ + k10)y1 + 2k10σ

4
2

dy2

dt
= dy110000

dt
= (k7γ + k6γ

2)y1 − (3k6γ
2 + k7γ + 2k10)y2 + k10(y5 + σ7

5)
dy3

dt
= dy101000

dt
= 2k6γ

2y1 − 2(k7γ + k6γ
2 + k10)y3 + k10(σ7

5 + 3y8)
dy4

dt
= dy100100

dt
= k6γ

2y1 − 2(k7γ + k6γ
2 + k10)y4 + k10(y6 + y7)

dy5

dt
= dy111000

dt
= k7γ(σ3

2 − y5) + k6γ
2(y2 − 2y5) + k10(2y9 + y10 − 3y5)

dy6

dt
= dy110100

dt
= k6γ

2(σ3
2 − y6) + k7γ(2y4 − 2y6) + k10(−3y6 + σ11

9 + y11)
dy7

dt
= dy110010

dt
= k6γ

2(y2 + 2y4 − y7) + k7γ(y3 − 2y7) + k10(−3y7 + σ11
9 + y11)

dy8

dt
= dy101010

dt
= k6γ

2y3 − 3k7γy8 + k10(y10 − 3y8)
dy9

dt
= dy111100

dt
= k7γ(σ7

5 − y9) + k6γ
2(y5 − y9) + k10(−4y9 + 2y12)

dy10

dt
= dy111010

dt
= k6γ

2y5 + k6γ
2y6 + k7γ(y7 + 3y8 − 2y10) + k10(2y12 − 4y10)

dy11

dt
= dy110110

dt
= k7γ(y6 − 2y11) + k6γ

2y7 + k10(y12 − 4y11)
dy12

dt
= dy111110

dt
= k6γ

2y9 + k7γ(2σ11
9 − y9 − y12) + k10(6y13 − 5y12)

dy13

dt
= dy111111

dt
= k7γy12 − 6k10y13

(1.16)

CaMKII0 denotes the total concentration of CaMKII (made of two clusters of six subunits),
2CaMKII0 therefore stands for the concentration of six-subunit clusters. yi denotes the
concentration of six-subunit clusters in a state of phosphorylation i. The index of i denotes the
various distinguishable combinations of phosphorylated (denoted by 1) and dephosphorylated
(denoted by 0) subunits in six subunit ring of CaMKII. For instance, y5 = y111000, y6 = y110100,
y7 = y110010, and y8 = y101010, all have three phosphorylated subunits (the same level of
activation): m5 = m6 = m7 = m8 = 3. In terms of symmetry, however, these four cannot be
equated. Graupner and Brunel (2007) assumed that PKA activation depends on CaM. Although
its validity is not very clear, this assumption allowed them to describe the effects of both PKA
and CaN on I1 in a unified manner: both PKA-dependent phosphorylation and CaN-dependent
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dephoshorylation rates of I1 were modeled with simple Hill functions of CaM:

νx(CaM) = k0
x + kx

1 + (Kx/CaM)nx (1.17)

where x = CaN,PKA, k0
x is CaM-independent base activity. Finally, they describe the interac-

tion between PP1 and I1:

dI1
dt

= dPP1
dt

− νCaNI1 + νPKAI10

dPP1
dt

= −k11I1 · PP1 + k−11(PP10 − PP1)
(1.18)

where PP10 and I10 are total PP1 and I1 concentrations. Note that their k±13 is k±11 here.

1.2.3.3.2 Graupner and Brunel (2007) model emulates STDP

In the Graupner and Brunel (2007) model the concentration of phosphorylated subunits of
CaMKII (CaMKII∗) can be bistable for a range of calcium concentration that actually defines
two regions of bistability (shaded areas on fig. 1.28).

Figure 1.28: A. Bifurcation diagram (BD) for phosphorylated CaMKII when calcium concentration is considered
as a parameter. B. Calcium transients can pass through different regions at BD thus pushing CaMKII to UP
or DOWN state depending on the instantaneous calcium concentration. For details, see text. Figure at panel
A is obtained with the source code of Graupner and Brunel (2007) https://senselab.med.yale.edu/modeldb/
ShowModel.cshtml?model=114452.

This model can be exposed to sequences of postsynaptic calcium transients evoked in STDP
protocols. As a result of such simulated STDP protocols, with each calcium transient, calcium
raises from its resting state to its peak value, and passes through various regions on bifurcation
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diagram at fig. 1.28B.

Repeated calcium transients of high amplitude push CaMKII towards high phosphorylation
state (UP), while repeated calcium transients of small amplitude push CaMKII towards low
phosphorylation state (DOWN). When calcium returns to its resting value at which both UP
and DOWN states are possible (for which CaMKII∗ is bistable), the outcome of the protocol
(UP or DOWN state) is determined by the state of CaMKII. Accumulation of large numbers of
high amplitude calcium transients during the protocol can push CaMKII into basin of attraction
of UP state, so that when calcium is back at its resting state, CaMKII ends up the UP state.
Because the resting “basal” calcium concentration (roughly 0.1 µM) lies in the leftmost bistable
region (gray in fig. 1.28), a given synapse at rest can either be in the UP state or in the DOWN
state.

A major issue with this model (as with almost all molecular-level models of synaptic plasticity)
is that it displays only two stable states (UP and DOWN) so it cannot be directly used to
reproduce the usual 3 states of STDP: no plasticity, LTP and LTD. To circumvent this issue,
the authors assume that, before the beginning of the STDP protocol, half of the synapses are
initially in the UP state, and half in the DOWN state. If a calcium transient evoked by the
protocol is too small and calcium remains well in the leftmost bistable domain (much lower than
the black trace at fig. 1.28), each synapse remains on its branch of steady state (UP or DOWN),
and the global effect is no change in synaptic weight. If now the calcium transient becomes larger
than the end of the leftmost bistable region but remains smaller than the rightmost bistable
region (black trace at fig. 1.28), the only stable steady state becomes the DOWN state so half of
the synapses (those that were initially UP) undergo a UP-to-DOWN transition. At the level of
the synapse population, this yields an effective LTD. If now the calcium transient is noticeably
larger than the rightmost bistable region (light red trace), the UP synapses remain in their UP
state, but those that were initially DOWN switch to the UP state, thus mimicking an effective
LTP.

Therefore, depending on the amplitude of calcium transients, the concentration of phosphorylated
CaMKII (CaMKII∗) can end up in either UP or DOWN state. This is reminiscent of the
calcium-control hypothesis of Shouval, Mark F Bear, and Leon N Cooper (2002):

• small amplitude calcium transients produce nothing;
• medium calcium transients produce transition from UP to DOWN states thus LTD;
• high calcium transients produce transitions from DOWN state to UP thus LTP.

Moreover, when the population of synapses was exposed to the classical STDP protocol of Bi and
Poo (1998) (60 1-Hz paired pre-then-post or post-then-pre stimuli), the calcium transients (with
suitable parameters) reached intermediate amplitude for small negative (post-than-pre) but were
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much amplified for small positive (pre-than-post) thus emulating the typical Hebbian-STDP
curve for hippocampus, similar to the experimental results of Bi and Poo (1998) (fig. 1.29).

Figure 1.29: Emulation of STDP based on CaMKII bistability. The relative change in the fraction of synapses in
UP state is taken as analogous to synaptic weight. Deterministic stimulation protocol produces the dependence
on spike-timing of the relative change in the fraction of synapses in UP state (red line) of similar shape to
the STDP-curve of Bi and Poo (1998). To achieve a smooth curve better matching to Bi and Poo (1998),
stochastic stimulation (green and blue lines with symbols) and adjustment of a parameter were required (blue
line). Stochastic stimulation results (where the maximal conductance of NMDAR and VSCC are randomly chosen
upon each pre- and postsynaptic spike respectively) are shown for kCaN = 18 1/s (green line with squares, same
value as in deterministic case) and kCaN = 20 1/s (blue line with circles). Modified from Graupner and Brunel
(2007).

Despite of its success in describing hippocampal Hebbian STDP the model of Graupner and
Brunel (2007) cannot be used to describe anti-Hebbian STDP at cortico-striatal synapses because:

1) the model does not account for endocannabinoid system. In Graupner and Brunel (2007),
both t-LTD and t-LTP are NMDAR-CaMKII-dependent, whereas at cortico-striatal
synapses t-LTD is endocannabinoid dependent. Furthermore, the form of t-LTP at cortico-
striatal synapses expressed for low number of stimuli depends on both endocannabinoids
and TRPV1 activation.

2) the model does not consider several calcium sources found important for plasticity at cortico-
striatal synapses and their specific roles. T-type VSCC (along with L-type important for
both t-LTP and t-LTD at cortico-striatal synapses), TRPV1 (important for t-LTP) and
CICR (t-LTD) are absent in Graupner and Brunel (2007). While their model does include
NMDAR, its role is different from that at cortico-striatal synapses where t-LTP is only
NMDAR dependent.

1.3 Summary

The efficiency of interneuronal signal transmission changes in the process of synaptic plasticity.
A form of synaptic plasticity dependent on temporal patterns of activations (spikes) of connected
neurons, spike-timing dependent plasticity (STDP), depends on the various components of
subcellular networks of biochemical reactions. The overall shape of STDP as well as the
implicated biochemical signaling pathways involved in STDP vary across the brain regions.
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In basal ganglia, at synapses from cortical pyramidal neurons (presynaptic) to medium-sized
spiny neurons of striatum (postsynaptic), two molecular components appear to be crucial for
synaptic plasticity: CaMKII, downstream of the postsynaptic signaling pathway starting from
calcium, and presynaptic CB1R activation, downstream of the postsynaptic signaling pathways
starting from calcium and GPCR-mediated synthesis of endocannabinoids (eCB). A model
aiming at reproducing these major features of cortico-striatal STDP has to include major
sources of calcium: VSCC, NMDAR, TRPV1, CICR, and pathways leading to the production of
endocannabinoids: 2-AG and AEA. Moreover, such a model has to provide the link between the
plasticity and CaMKII and CB1R activation. Finding this link for CB1R is crucial to understand
eCB-t-LTP, the new form of endocannabinoind-dependent STDP observed at cortico-striatal
synapses for short durations of stimulation with low number of stimuli. More generally, such a
model would provide valuable hints of how endocannabinoids can support bidirectional STDP
(both depression and potentiation). To develop a mathematical model of cortico-stratal STDP,
in the following chapter, I will start from adapting the Graupner and Brunel (2007) model
of hippocampal NMDAR-CaMKII-dependent STDP to cortico-striatal synapses. This model
requires that calcium input is precisely detailed. I therefore modelled the major sources of
calcium that were found important for cortico-striatal STDP (NMDAR, L- and T-type VSCC,
TRPV1, and CICR). To study the endocannabinoid-dependent plasticity (eCB-t-LTD and
especially the new eCB-t-LTP), I modelled the activation of cannabinoid receptor type 1 (CB1R)
by postsynaptically produced endocannabinoids. I then exposed the model containing all these
striatum specific components to the stimulation protocol that induces STDP in experiments.
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Chapter 2

A mathematical model of
cortico-striatal STDP

2.1 In a nut shell

I developped a model that couples the model of Graupner and Brunel (2007) with calcium sources
important for cortico-striatal STDP (NMDAR, L- and T-type VSCC, TRPV1, and CICR) and
endocannabinoid signaling. This model is first calibrated to reproduce the NMDAR-dependence
of anti-Hebbian STDP at cortico-striatal synapses. In this calibrated model, activation of the
endocannabinoid system depends on the parameters of the STDP stimulation protocol. Moreover,
the spike timing-dependence of CB1R activation in the model is related to the spike timing-
dependence of eCB-dependent plasticity in experiments. To describe this relation, I introduced a
phenomenological hypothesis of endocannabinoid-control of plasticity: a low activation of CB1R
leads to no plasticity, a medium activation of CB1R leads to LTD, medium-to-high activation
of CB1R leads to no plasticity, whereas a high activation of CB1R leads to LTP. With this
phenomenological hypothesis, the model qualitatively reproduces both eCB-t-LTD and the
recently discovered form of plasticity, eCB-t-LTP. I then used the model to provide model-based
predictions that were confirmed in the lab of our experimental collaborators (Laurent Venance
Lab, CIRB, Collège-de-France, Paris, France), thereby validating the model. Using the validated
model, I studied the dependence of plasticity on the patterns of neuronal activation beyond
the typical artificially regular STDP protocol. Furthermore, I extended the validated model to
study modulation of cortico-striatal STDP by glutamate clearance from the synaptic cleft and
by dopamine.
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2.2 Towards the model

2.2.1 CaMKII-dependent plasticity at cortico-striatal synapses

The model of Graupner and Brunel (2007) provided a connection between calcium, CaMKII and
STDP in hippocampal synapses. In other brain regions, however, the molecular mechanisms of
plasticity can be different from that found in hippocampus.

An important molecule in Graupner and Brunel (2007), inhibitor 1 (PPP1R1A) is the major
isoform in hippocampal neurons, but not in striatal MSN. MSN are indeed enriched with
another isoform called, dopamine and cAMP-regulated phosphoprotein Mr 32,000 (DARPP-32 or
PPP1R1B). DARPP-32 is therefore known to control plasticity in MSNs instead of I1 (Yger and
Girault 2011). Moreover, since DARPP-32 is also connected to dopamine signaling, it represents
a crosstalk between Ca-NMDAR signaling and dopamine signaling. However, the mechanisms
by which DARPP-32 are implicated in Ca-NMDAR signaling are the same as I1. Similarly to
I1 in hippocampus, DARPP-32 phosphorylation on threonine 34 (Thr-34) inhibits PP1 (Yger
and Girault 2011) and therefore activates phosphorylation of CaMKII and synaptic plasticity.
Just like I1, DARPP-32 phosphorylation on Thr-34 is controlled by the calcineurin PKA couple.
However, compared to hippocampal neurons, activation of PKA by calcium in MSN is more
established. At basal calcium, PKA in MSN is inhibited by DARPP-32 phosphorylation on its
Thr-75 site. Dephosphorylation of DARPP-32 Thr-75 site is controlled by PP2A so that PP2A
activation leads to PKA activation by disinhibition. Hippocampal neurons usually express high
levels of the B56 subunit of PP2A that is not activated by calcium. However MSNs express
large amounts of the B72 regulatory subunit of PP2A in place of B56. This striatum-specific
regulatory subunit provides B72-PP2A with calcium-activation properties (Ahn et al. 2007).
Therefore, calcium elevations in MSNs are expected to activate PP2A thus PKA. Modeling
studies therefore suggested that dopamine and calcium cooperate to phosphorylate DARPP-32
(Nair, Upinder S. Bhalla, and Kotaleski 2016; Gutierrez-Arenas, Eriksson, and Kotaleski 2014;
Lindskog et al. 2006; Nakano et al. 2010; Fernandez et al. 2005). Because this phosphorylation
leads to CaMKII-activation and can trigger CaMKII-dependent synaptic plasticity through
inhibition of PP1, the calcium-dopamine synergy supports theories of reinforcement learning
where the dopamine signal is considered as a signal controlling calcium-dependent plasticity
(Dayan and Balleine 2002). Note that dopamine signaling in the postsynaptic neurons (the MSN)
is out of the focus of the current work. I however use the above data as a support that PKA is
indeed activated by calcium in MSNs.

The original model of Graupner and Brunel (2007) that was developed for hippocampus used
nPKA = 8 as cooperativity exponent for PKA activation by Ca (eq. 1.17), and two regions of
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bistability (fig. 1.28). In the striatum, experimental data suggests lower value for nPKA (Ahn
et al. 2007). I therefore lowered the value of nPKA to 3. With this modification of the model and
readjustment of its parameters, the model still exhibits the first region of bistability (the one that
includes basal Ca concentration) but has lost the second one (compare fig. 2.1 with fig. 1.28).
In the MSN, NMDAR is known to control t-LTP but, to our knowledge, NMDAR-dependence
for t-LTD has never been described. A bifurcation diagram with a single bistability zone for
NMDAR-dependent STDP thus appears sufficient.

Figure 2.1: Bifurcation diagram (BD) for phosphorylated CaMKII when calcium concentration is considered as a
parameter. Parameters modified from that of the original model: nPKA lowered from 8 to 3, CaM0=0.07052
µM, kCaN0=0.05, kCaN = 20.5, KdPKA=0.159, kPKA0=0.0025, kPKA=4.67

2.2.2 Spatial constrains

Due to the small volume of a dendritic spine, molecules can be present in small amounts.
Therefore, the resulting fluctuations of concentrations can render inapplicable the approximation
of perfect mixing described in sec. 1.2.3.2.2. The stochastic reaction-diffusion simulations of
Oliveira, Kim, and Blackwell (2012) suggest that the colocalization of PKA and adenylate cyclase
(AC) can amplify the phosphorylation of DARPP-32 on Thr-34. However, the overall shape of
the transients of DARPP-32 phosphorylated on Thr-34 in response to a pulse of dopamine is
similar to the case with no colocalization (see fig. 4C of Oliveira, Kim, and Blackwell (2012)).
Therefore perfect mixing appears to be still effectively valid approximation. Moreover, spatially
detailed stochastic model would require a greater number of parameters, some of which are
often difficult to constrain experimentally: diffusion coefficients for mobile molecules, degree
of clustering/colocalization among immobile ones. Therefore, for the sake of simplicity, in this
thesis, I will use the assumption of perfect mixing.

2.2.3 Calcium sources

To provide calcium-dependent models of plasticity with calcium input one needs to model the
major sources of cytosolic calcium. In doing so, one has to consider that the concentration of
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calcium is significantly higher outside the cell than inside the cell. Because of this, the movement
of calcium ions is set by both diffusion and electrical force. Therefore, the GHK description
should be preferred over Ohm’s law (see sec. 1.2.2.1). The later statement is true if perfect
mixing is assumed. However, a possibility of a local violation of this perfect mixing assumption
should be considered unless proven otherwise. In this case, locally in a subvolume of a dendritic
spine, the concentration of calcium might be comparable to that outside the cell.

In sec. 1.1, VSCC and NMDAR were presented as the two major sources of postsynaptic calcium
involved in synaptic plasticity. However, other sources can also play a role. As we have seen
in sec. 1.1.7.2.3, that at cortico-striatal synapses, t-LTD is dependent on CICR from internal
calcium stores. Moreover, eCB-t-LTP at these synapses depends on the activation of TRPV1 that
are also calcium permeable. A component of calcium current might be contributed by calcium
permeable AMPAR (Carter and Bernardo L Sabatini (2004)). Carter and Bernardo L Sabatini
(2004), however demonstrated that in the conditions relevant for STDP, when presynaptic
stimulation is paired with postsynaptic depolarization, the NMDAR contribution to calcium
dominates over that of AMPAR. Thus, for the sake of simplicity, I ignored calcium influx through
AMPAR. Hence, for the modeling of the cortico-striatal STDP, I included four sources of calcium:
NMDAR, VSCC, CICR and TRPV1.

2.2.3.1 NMDAR

When open, NMDAR are permeable to Na+, K+ and to lesser extent to Ca2+ ions. The total
current is well described by Ohm’s law approximation (sec. 1.2.2.1) (e.g. Koch (1999)). A simple
way to model the calcium component of the total current is by approximating it by a fraction
of total current (Ohm’s law approximation). Alternatively, one can model calcium current
component according to GHK. Assuming that the concentration of Mg2+ is fixed in the given
environment, one has to focus on the variations of membrane potential and the concentration of
glutamate in the synaptic cleft. In this case, NMDAR conductance (gNMDAR) can be described
with (Alain Destexhe, Zachary F Mainen, and Terrence J Sejnowski 1998):

gNMDAR = gmaxNMDARP
open
NMDAR

P open
NMDAR = B(V )ONMDAR

(2.1)

where gmaxNMDAR is the maximal conductance, ONMDAR is the fraction of NMDAR in the open
state when no Mg2+ is present in extracellular medium (ONMDAR can be interpreted as the
probability of NMDAR to be in open state). P open

NMDAR is the fraction/probability of NMDAR in
open state when Mg2+ is present in extracellular medium.
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P open
NMDAR multiplied by a constant factor can be used to compute permeability instead of

conductance (if GHK is used instead of Ohm’s law). For simplicity, I used the simplest kinetic
model of NMDAR with only two states: open and closed (obtained by eliminating the state xI
in fig. 1.24, or fixing xI = 0 in eq. 1.9). The non-linear function B(V ) describing magnesium
block is given by (Jahr and Stevens 1990):

B(V ) = 1
1 + [Mg2+] exp(−0.062V )/3.57 (2.2)

2.2.3.2 VSCC

Because calcium concentration outside of the cell at rest is much higher than that inside, to
describe calcium current, GHK description is to be preferred over the simpler Ohm’s law. Thus
one has to have an estimation of calcium concentration inside of a spine and outside of a cell.
One also has to describe the dependence of permeability on membrane potential (voltage). Based
on the dependence of steady state current on membrane potential, VSCCs are subdivided to
several types (Hille 1992; Koch 1999). I considered the models of L- and T-type VSCC because
both were found involved in cortico-striatal STDP (sec. 1.1.7.2.3).

Ca2+ L-type v1.3 channels in striatal neurons can be described by (Wolf et al. 2005):

PCaLv1.3 = pCaLv1.3 · (mCaLv1.3)2 · hCaLv1.3

dhCaLv1.3

dt
= h∞CaLv1.3(V )− hCaLv1.3

τhCaLv1.3/q
h
CaLv1.3

dmCaLv1.3

dt
= m∞CaLv1.3(V )−mCaLv1.3

τmCaLv1.3(V )/qmCaLv1.3

m∞CaLv1.3(V ) = 1

1 + exp(V−m
half
CaLv1.3

mslopeCaLv1.3
)

h∞CaLv1.3(V ) = 1

1 + exp(V−h
half
CaLv1.3

hslopeCaLv1.3
)

mα
CaLv1.3(V ) = cαCaLv1.3(V − VCaLv1.3)

exp(V−VCaLv1.3
kαCaLv1.3

)− 1

mβ
CaLv1.3(V ) = cβCaLv1.3 exp(V/kβCaLv1.3)

τmCaLv1.3(V ) = 1
mα
CaLv1.3(V ) +mβ

CaLv1.3(V )

(2.3)

Here PCaLv1.3 and pCaLv1.3 are permeability and its maximum value respectively, mCaLv1.3 and
hCaLv1.3 gating variables describing the voltage-dependent kinetics of the channel, V is membrane
potential. xyCaLv1.3 where x = q, c, k, h,m, y = h,m, half, slope, β, α and τhCaLv1.3 are parameters
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chosen to match experiments. A more detailed description of all parameters can be found
(Appendix B).

Ca2+ T-type channels were not included in base version of the model (their inclusion is does
not alter our key results, but increases complexity); they were only modeled in simulations
comparing GHK vs. Ohm’s law (for details see Appendix A.4.1, and Appendix C.1).

2.2.3.3 CICR

As a result of CICR, the concentration of intracellular calcium can oscillate. A simple two-
variable model of IP3R-mediated calcium oscillations was developed by Li and Rinzel (1994).
However in the famous Li and Rinzel (1994) model, IP3 concentration was considered constant
(a parameter). This is hardly suitable in our case, since we need to account for the kinetics of
DAG and IP3 that will give rise to 2-AG production and CICR, respectively. De Pittà et al.
(2009) extended the model of Li and Rinzel (1994) to account for glutamate binding to mGluR
and the kinetics of IP3 and DAG. De Pittà et al. (2009) aimed at modeling astrocytes; however,
the same CICR related pathways are present in neurons. Therefore, I appled the model to
neurons. The equations of De Pittà et al. (2009) read:

dIP3
dt

= νprod − νdegr
dhCICR
dt

= a2d2
IP3 + d1

IP3 + d3
(1− hCICR)− a2C · hCICR

νprod = νglu + νPLCδ

νglu = νβHill(G,KR +KPHill(C,Kπ, 1), 1)

νPLCδ = νδ
1 + IP3/κd

Hill(C,Kδ, 2)

νdegr = ν3K + r5P IP3

ν3K = ν̃3KCaMKII∗ · Hill(IP3, K3, n3)

JIP3R = rC(m∞n∞h)3(CER − C)

m∞ = Hill(IP3, d1, 1)

n∞ = Hill(C, d5, 1)

JSERCA = νERHill(C, kER, 2)

Jleak = rl(CER − C)

(2.4)

with the Hill function defined as

Hill(x,K, n) = xn

xn +Kn
. (2.5)
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C and CER are calcium concentrations in the cytosol and inside the ER respectively. C and CER
are altered by the calcium fluxes from and to ER. JIP3R is the calcium flux through IP3R (it flows
out of ER); JSERCA is the calcium flux caused by SERCA pumps (it flows into ER, opposite to
JIP3R); Jleak is the calcium leak flux out of ER. JIP3R is caused by the activation of IP3R (with
maximal permeability rC) by both calcium and IP3. IP3 (and DAG) production (with the rate
νprod) is due to calcium-activated PLCδ (with the rate νPLCδ) and GPCR-mediated activation
of PLCβ (with glutamate-dependent rate νglu). νglu compresses the pathway starting from the
activation of mGluR and leading to the activation of PLCβ. Glutamate (G) binding to mGluR
leads to dissociation of α subunit from G protein. Gαq activates PLCβ that allows the production
of diacylglycerol (DAG) and inositol (1,4,5)-triphosphate (IP3) from phosphatidylinositol (4,5)-
bisphosphate (PIP2). These steps are summarized as a single glutamate-dependent rate of
IP3/DAG production, νglu (linearity of mGluR activation to PLCβ activation is assumed). For
the description of other parameters, see Appendix B. For full description of this model, see
De Pittà et al. (2009).

The rate of IP3 degradation, νdegr is determined by the activity of IP3 3-kinase (IP3-3K) (with
rate ν3K) and inositol polyphosphate 5-phosphatase (with maximal rate r5P ). To describe the
phosphorylation of IP3-3K catalyzed by phosphorylated CaMKII, De Pittà et al. (2009) used
the following approximation to describe CaMKII∗:

CaMKII∗ ∝ Hill(C,KD, 4) (2.6)

If one uses the forth order Hill function on the right-hand side of eq. 2.6 in place of CaMKII∗

in eq. 2.4 then ν̃3K can be interpreted as a constant that lumps together a constant converting
the Hill function to actual CaMKII∗ and a constant related to IP3 dependence of IP3-3K. This
is however a very simple model of CaMKII∗ compared to that of Graupner and Brunel (2007).
Therefore, to interface the model of De Pittà et al. (2009) with that of Graupner and Brunel
(2007), I computed the concentration of active CaMKII according to the model of Graupner
and Brunel (2007) (eq. 1.15) and then I used it in eq. 2.4 instead of approximation used by
De Pittà et al. (2009) (eq. 2.6). I changed the value and units of ν̃3K to account for the fact that
CaMKII∗ in Graupner and Brunel (2007) represents actual concentration of phosphorylted
CaMKII subunits (not a fraction as in De Pittà et al. (2009)).

2.2.3.4 TRPV1

TRPV1 conductance/permeability depends on the concentration of eCB agonist AEA and voltage
(Castillo et al. 2012; Matta and Ahern 2007). Matta and Ahern (2007) have proposed a model
of TRPV1 that reproduced: the dependence on voltage, temperature and agonist/antagonist
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modulation of TRPV1. According to this model the probability of TRPV1 to be in its open
state (P open

TRPV 1) can be modeled as:

P open
TRPV 1 = 1

1 + 1+J+K+Q+JK+JQ+KQ+JKQ
L(1+JD+KC+QP+JKCD+JQDP+KQCP+JKQDCP )

Q = AEA

KD

J = J0 exp(zFV
RT

)

K = exp(−(∆H − T∆S)/RT )

(2.7)

where L, J0, D, C, P are constants fitted to reproduce experiments; ∆S and ∆H change in
entropy and enthalpy respectively; z is valence of ions flowing through TRPV1 (2 for Ca2+); F is
Faraday constant; R is universal gas constant; T is absolute temperature; AEA is anandamide
concentration. One can use P open

TRPV 1 to compute either permeability (if GHK is used) or
conductance (if Ohm’s law is used). I used Ohm’s law and therefore computed conductance.

2.2.3.5 Postsynaptic production of endocannabinoids

2-AG production is thought to occur in the postsynaptic neuron where it is initiated by DAG
production via mGluR- and M1R-activated PLCβ. DAG-Lipase α (DAGLα) then produces
2-AG from DAG. DAG is co-produced together with IP3 by PLCβ and PLCδ (thus follows
the same production dynamics as IP3) and is consumed by DAGLα (yielding 2-AG) and DAG
kinase (DAGK, yielding phosphatidic acid):

dDAG

dt
= νprod(C, IP3, G)− rDGL ·DAGL0 · ϕDAGL ·DAG

DAG+KDAGL

− rDAGK ·DAG (2.8)

where νprod(C, IP3, G) is the term that describes IP3 production dynamics in De Pittà et al.
(2009) (see eq. 2.4); IP3 is IP3 concentration; ϕDAGL represents the fraction of activated DAGLα
and DAGL0 its total (activated + not activated) concentration (see below), rDGL its maximal
rate and KDAGL its Michaelis constant for DAG; rDAGK is the degradation rate by DAGK (that
I assume linear for simplicity). 2-AG dynamics is obtained as the balance between postsynaptic
synthesis (by DAGLα) and presynaptic degradation (by MAG-Lipase) (Piomelli 2003) upon
retrograde transfer:

d2AG
dt

= rDGL · ϕDAGL ·DAG
DAG+KDAGL

− rMAGL2AG (2.9)

where 2AG is 2-AG concentration, rMAGL lumps together both enzyme degradation by MAG-
Lipase and 2-AG spillover out of the synapse.
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How DAGLα is activated in vivo is unknown, except for the calcium-dependence of its activation.
I therefore assumed a simple activation by calcium. Hence, DAGLα dynamics is modeled here
by:

dϕDAGL
dt

= rKC
nK · (1− ϕDAGL)− rP · ϕDAGL (2.10)

where nK , rK , rP are constants.

In vitro experiments suggest that DAGLα activation could be triggered by phosphorylation by a
kinase (Rosenberger, Farooqui, and Horrocks 2007). Therefore, an alternative, more complex,
model of DAGLα activation could be that DAGLα is activated by a calcium-dependent kinase.
If calcium-dependent deactivation of DAGLα by a phosphatase is also assumed, an alternative
model of ϕDAGL can be described with:

dϕDAGL
dt

=
(
rK0 + rK

CnK

KnK
K + CnK

)
(1− ϕDAGL)

−
(
rP0 + rP

CnP

KnP
P + CnP

)
ϕDAGL

(2.11)

where Kx, nx, rx, for which x is K or P (for Kinase and Phosphatase respectively), are constants.
Implementing this mechanism in our model does not appreciably alter the results presented
below.

Finally, to model AEA synthesis, I considered the well-documented 2-step pathway (Starowicz,
Nigam, and Di Marzo 2007):

PE + PC
AT→ NAPE

PLD→ AEA

with PE: phosphatidylethanolamine, PC: phosphatidylcholine, AT: N-acetyltransferase, NAPE:
N-Arachidonyl-Phosphatidyl-ethanolamine and PLD: NAPE-selective phospholipase D. Note
that alternative synthesis pathways might exist, but because their relevance to neurons and
MSNs is not clear yet (Starowicz, Nigam, and Di Marzo 2007), I did not consider them here.
NAPE synthesis was modeled under the assumptions that i) PC and PE are in excess amounts
and ii) half-maximal activation of AT is obtained at Ca2+ concentrations (around 0.2 to 0.5
mM, see Hansen et al. (1998)) that are well above the largest baseline calcium level in the
model (allows to approximate AT-dependent rate by a linear function of calcium). Under those
assumptions,

dNAPE

dt
= υATC − rPLD

NAPE

KPLD +NAPE

where νAT=rAT [PE][PC]/Kact with rAT the maximal rate of AT and Kact its calcium activation
constant. rPLD and KPLD represent PLD enzyme activity and its Michaelis-Menten constant,
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respectively. Likewise, the second step (AEA production) was modeled as

dAEA

dt
= rPLD

NAPE

KPLD +NAPE
− rFAAH

AEA

KFAAH + AEA

where the latter summand represents AEA degradation by FAAH; rFAAH and KFAAH represent
FAAH enzyme activity and its Michaelis-Menten constant, respectively. Now, AEA synthesis
is expected to proceed at a much faster rate than NAPE synthesis, so that NAPE is found
at very low levels in cells (Hillard and Campbell 1997). The corresponding quasi-steady state
assumption on NAPE concentration (dNAPE/dt ≈ 0) then simplifies the expression of AEA
dynamics to a single equation:

dAEA

dt
= νATC − rFAAH

AEA

KFAAH + AEA
(2.12)

2.2.3.6 CB1R activation and desensitization

I modelled CB1Rs activation with a simple three-state kinetic model: activated / open (xCB1R),
desensitized (dCB1R) and inactivated (iCB1R):

dxCB1R

dt
= αCB1R · eCB · iCB1R − (βCB1R + γCB1R)xCB1R

ddCB1R

dt
= −εCB1RdCB1R + γCB1RxCB1R

xCB1R + dCB1R + iCB1R = 1

(2.13)

where eCB = 2AG + 0.10AEA accounts for the fact that AEA is also a partial agonist of
CB1R (Freund, Katona, and Piomelli 2003). I assumed here that AEA is 10-times less efficient
than 2-AG; αCB1R, βCB1R, γCB1R and εCB1R are the rate constants for the transitions between
states. This model is a particular case of kinetic scheme fig. 1.24 with xC = iCB1R, xO = xCB1R,
xI = dCB1R, k1f = αCB1R, k1b = βCB1R, k2f = γCB1R, k2b = 0, k3f = 0, k3b = εCB1R.

I considered that the activation of presynaptic CB1R results in the activation of its downstream
signaling (yCB1R):

yCB1R = kCB1R · xCB1R + C1 (2.14)

yCB1R describes the total endocannabinoid dependent activation of the presynaptic signaling
involved in plasticity and will be referred to as “CB1R activation” below; C1 is a constant that
accounts for presynaptic plasticity modulation by e.g. tonic dopamine (see chapter sec. 2.10.1)
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2.3 Putting it all together

By now, we have separate models of the subcellular components involved in cortico-striatal STDP.
However, to simulate STDP protocols and their pre- and post-stimulations, these components
should be connected to each other and linked to membrane voltage dynamics. To this end, we
have to model: i) glutamate release caused by presynaptic extracellular cortical stimulation and
ii) voltage change of postsynaptic membrane as a result of bAP caused by postsynaptic current
injection. To model the response to electrical stimulation, we have to model electrical currents
through the postsynaptic membrane. We also have to link electrical currents to calcium fluxes,
calcium fluxes to calcium concentration, calcium concentration to calcium-CaMKII-dependent
plasticity and endocannabinoid signaling.

2.3.1 Postsynaptic membrane

I modeled postsynaptic element as a single isopotential compartment with a passive electric
response given by:

Cm
dV

dt
= −gL(V − VL)− IAMPAR(V )− IGABAAR(V )− INMDAR(V,G(t))

− IV SCC(V )− ITRPV 1(V,AEA)− Iact(t)

IV SCC(V ) = ICaLv1.3(V ) + ICaT (V )

(2.15)

where V is membrane potential; Ileak is the leak current; gL and VL are leak conductance
and reversal potential respectively; IAMPAR, IGABAAR, INMDAR, IV SCC and ITRPV 1 are through
AMPAR, GABAAR, NMDAR, VSCC and TRPV1 respectively; ICaLv1.3 and ICaT are the currents
through L-type v1.3 and T-type VSCC respectively (permeabilities modeled according to eq. 2.3
and eq. A.1); both of these currents are modeled according to GHK (eq. 1.3); IAMPAR, IGABAAR,
INMDAR and ITRPV 1 are modeled according to Ohm’s law (eq. 1.2) (see sec. 1.2.2.1); Iact is the
action current accompanying the postsynaptic (somatic) stimulation (back-propagating action
potential on top of a step-like depolarization); G is the glutamate concentration in the synaptic
cleft and AEA denotes anandamide concentration. To compute corresponding conductances, the
fractions of open NMDAR, AMPAR and GABAAR are modeled according to (Alain Destexhe,
Z. Mainen, and T. Sejnowski 1995) with two-state kinetic models and 1.0 mM Mg2+ (fig. 1.24
and eq. 1.9 without xI state). NMDAR conductance is modeled with eqns. 2.1, 2.2. GABAAR
and AMPAR conductances modeled with gx = gmaxx Ox where x=GABAA,AMPAR, Ox is the
probability of open state, gmaxx is maximal conductance.
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Figure 2.2: Our model includes calcium sources important for cortico-striatal STDP (calcium related components
shown in light green). Glutamate related components are shown in red. Binding of glutamate to AMPARs,
NMDARs and mGluR group-I leads to their activation. AMPAR and NMDAR activation triggers EPSCs and
EPSPs. Calcium current through NMDAR alters intracellular calcium concentration. VSCC and TRPV1 also
contribute to intracellular calcium dynamics. TRPV1 current is dependent on cytosolic calcium concentration via
calcium-dependent synthesis of AEA (endocannabinoid related components shown in green). Another contribution
to the calcium concentration comes from CICR. Calcium is released from ER to cytosol via two mechanisms: i)
passive leak, ii) release through IP3R that is coactivated by calcium and IP3. Light purple shows IP3-mediated
activation of IP3R and IP3-degradation pathways. IP3/DAG production pathway is shown in orange. This
pathway requires PLCβ actviation that in turn activates in GPCR-mediated manner. mGluR group-I, GPCR
activated upon binding of glutamate, is therefore controlling CICR. SERCA pumps oppose CICR by pumping
calcium from the cytosol back into ER. Passive leaks of calcium are also considered. Cytosolic calcium resulting
from interplay of aforementioned processes provides input for the model of CaMKII phosphorylation of Graupner
and Brunel (2007) (dark red on the right part of the figure). The concentration of phosphorylated CaMKII
subunits (CaMKII∗) sets the value of the postsynaptic weight Wpost. GABA related components are shown
in light blue. Note that because all electrical currents (through AMPAR, NMDAR, GABA, VSCC, TRPV1)
affect membrane potential and at the same time depend on membrane potential, changes of currents affect each
other globally through membrane potential. The mGluR and calcium mediated activation of PLCβ induces
the production of 2-AG and AEA. 2-AG, and to a lower extent AEA, activates CB1R (xCB1R is the fraction
of non-desensitized CB1R), which then modulates the presynaptic weight, Wpre. Total synaptic weight Wtotal

combines post- and presynaptic components: Wpost and Wpre.
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The total ionic current through TRPV1 was modeled as

ITRPV 1(V,AEA) = gTRPV 1 · V · P open
TRPV 1(V,AEA) (2.16)

where gTPRV 1 is maximal conductance of TRPV1. The mathematical expression for the proba-
bility of TRPV1 to be open was taken from (Matta and Ahern 2007) (see eq. 2.7).

2.3.2 Subcellular dynamics

To model the dynamics of the cytoplasmic concentration of calcium, C, I computed calcium
fluxes in three ways:

• for the currents computed according to GHK (Ix when x=Cav1.3, CaT), I transform a
current (Ix) into a calcium flux (Jx) by multiplying it by a constant factor (ξx):

Jx = ξxIx (2.17)

• for the currents composed of several components (Ix when x=NMDAR, TRPV1) and
computed according to the Ohm’s law, I considered two possibilities when computing
calcium flux resulting from the calcium component of the current:
– either, calcium flux was computed according to eq. 2.17; calcium current component

assumed to have the same shape as the total current (calcium current component
obeys Ohm’s law as well as total current),

– or, calcium flux computed with GHK equation (eq. 1.3) modified to describe flux
instead of current. Permeability replaced by a constant, P̃x, lumping the permeability
(Px) and the constant converting current to flux (ξx):

Jx = P̃xz
2
x

V F 2

RT

[x]i − [x]o exp(−zxV F/RT )
1− exp(−zxV F/RT ) (2.18)

In the base version of the model, Ohm’s law approximation was used. GHK approxi-
mation was only used in the model aiming to explain Hebbian/anti-Hebbian STDP
switch based on the on/off state of postsynaptic GABAARs (see Appendix C.1).

I moreover take into account the dynamics resulting from calcium exchange with internal calcium
stores (Calcium-Induced Calcium Release, CICR). The equation for cytosolic calcium therefore
reads:
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TC(C)dC
dt

= JER + Jch −
C − Cb
τCb

JER = JIP3R − JSERCA + Jleak

Jch = JNMDAR + JV SCC + JTRPV 1

(2.19)

where JNMDAR, JV SCC , JTRPV 1 are calcium fluxes modeled as described above; JIP3R, JSERCA,
Jleak are fluxes that describe CICR according to the model of (De Pittà et al. 2009) (eq. 2.4;eq. 2.6).
In eq. 2.19, Cb is the basal cytosolic calcium level resulting from equilibration with calcium
diffusion out of the cell and τCb is the corresponding time scale. The presence of endogenous
calcium buffer B (considered in quasi-equilibrium with cytosolic calcium at each time point)
results in a calcium-dependent time scaling factor (see sec. A.5):

Tx(x) = 1 + BT

KdB(1 + x/KdB)2 (2.20)

where BT and KdB are constants and x = C or CER. CER, the calcium concentration in the
endoplasmatic reticulum (ER) is given by

TCER(CER)dCER
dt

= −ρER(JIP3R − JSERCA + Jleak) (2.21)

where ρER is the ER to cytoplasm volume ratio.

C provides input to the modified model of CaMKII phosphorylation (sec. 2.2.1).

2.3.3 Stimuli

After each presynaptic spike at time tipre I modelled the time course of glutamate (G) as a single
exponential decay with peak value Gmax, baseline value G0 and clearance rate τG:

G(t) = G0 +Gmax

∑
i

exp
(
−
t− tipre
τG

)
H(t− tipre) (2.22)

where H(x) is the Heaviside function H(x)=1 if x ≥ 0, 0 otherwise.

In several instances, delayed GABA release from FS interneurons following presynaptic cortical
stimulation was simulated with
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GABA(t) = GABA0 +GABAmax
∑
i

exp
(
−
t− tipre −∆GABA

τGABA

)
H(t− tipre −∆GABA) (2.23)

where ∆GABA describes the delay of synaptic transmission from cortex to FS interneurons,
GABA0 is baseline GABA concentration from which GABA is elevated to its peak value
GABAmax following presynaptic stimulus at tipre; τGABA decay time constant of single GABA
elevation. To model postsynaptic action current back-propagating from the soma, I used a sum
of a DC component arising from the step-depolarization and a spike-induced transient that
decays exponentially:

Iact(t) = −DCmax
∑
i

R(t, tipost, DCdur)

− APmax
∑
i

H(t− δ − tipost) exp
(
t− δ − tipost

τbAP

)
,

R(t, t0, L) = H(t− t0)−H(t− t0 − L),

(2.24)

where DCmax and DCdur are the amplitude and the duration of step-current; APmax is the
amplitude of the action current producing bAP, δ is the delay between the outset of the step
depolarization and that of the bAP; τbAP is the time scale for bAP decay. The time difference
between the onset of EPSC and peak depolarization of bAP is given by

∆t = tipost + δ − tipre (2.25)

2.4 Anti-Hebbian t-LTP with Graupner and Brunel
(2007)

With Ohm’s law approximation for calcium fluxes (for details about why it was chosen and
alternative possibilities, see Appendix C.1), simulated STDP protocol with a large number
(60-100) of 1-Hz pairings switches CaMKII from an initial DOWN state (no plasticity) to its
UP state (t-LTP) for ∆t=-15 ms, whereas it remains in the DOWN state for ∆t=+15 ms
(fig. 2.5). Thus the model emulates the timing-dependence of cortico-striatal anti-Hebbian
NMDAR-dependent t-LTP. To explain how this emerges from the model, let us take a closer
look at spike-timing dependence of calcium.

Fig. 2.3 shows the contributions of individual sources to a calcium transient for ∆t=-15 (fig. 2.3A)
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Figure 2.3: Decomposition of a calcium transient into its constituents for ∆t = -15 ms (A) and 15 ms (B). One
of the calcium sources is switched off and the calcium output of the model to single paired stimulus is reported.

and 15 ms (fig. 2.3B). For both ∆t, NMDARs provide the major contribution to cytosolic calcium
and VSCCs the second one. Thanks to the nonlinearity of the NMDAR flux-voltage curve and
high-amplitude voltage transient described above, the calcium flux through NMDAR is transiently
outwards for ∆t=15 ms. This outward direction is because NMDARs are open (glutamate is
present in synaptic cleft) when bAP reaches its peak, i.e. for voltages above NMDAR’s reversal
potential 0 mV, for which, the NMDAR current is outward. As a result, calcium transient is
larger (has both larger width and maximum amplitude) for ∆t=-15 compared to ∆t=+15 ms.
The difference of calcium transients between pre-post and post-pre is less pronounced for ∆t’s
with larger absolute values (|∆t| ≥ 30) (Fig. 2.4B). For large |∆t|, the coincidence of pre- and
post- stimuli is impaired. As a consequence, the amplification of calcium transient due to the
coincidence vanishes and no plasticity is observed at large |∆t|, in agreement with experimental
data. The above difference in the amplitude and width of calcium transients at small |∆t| then
propagates downstream of calcium along the signaling pathway: larger calcium transients cause
larger CaM transients (compare fig. 2.4C1 and C2). The later in turn results in larger CaMKII∗

transients for small post-then-pre ∆t compared to small pre-then-post ones (compare fig. 2.4C1
and C2). As a result of repeated stimulations, CaMKII∗ transients build up with each post-pre
pairing with ∆t = -15 ms (fig. 2.5A) but they are not large enough to build up with pre-post
pairings (fig. 2.5B). When the number of pairings (Npairings) is large enough (more than 50), the
CaMKII∗ transients with ∆t = -15 ms have built up enough to enter the basin of attraction of
the UP state. So when the stimulation ceases, CaMKII∗ remains in the UP state even long
after the end of the stimulation protocol. As we associate UP state of CaMKII with LTP and
DOWN with no plasticity, this means that large number of post-pre pairings with ∆t=-15 ms
lead to a t-LTP state that persists after the simulation (memory) whereas pre-post pairings
trigger no plasticity.

The results of this subsection depend on the transient outflux of calcium via NMDAR for
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Figure 2.4: Transients of calcium (B), CaM (C) and phosphorylated CaMKII (CaMKII∗) (D) depending on
spike timing. A single pre-before-post pairing with ∆t=-15 ms (A1) leads to a larger calcium transient than a
single post-before-pre pairing with ∆t=+15 ms (A2) (compare B1 and B2). Larger calcium transient (B1) leads
to a larger CaM transient (compare C1 and C2) and to a larger CaMKII∗ transient (compare D1 and D2).
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Figure 2.5: The model reproduces NMDAR-t-LTP with large numbers of pairings. The oncentration of
phosphorylated (active) CaMKII depends on the number of pairings, Npairings. With spike-timing ∆t=-15 (A)
and +15 (B) ms, 1 Hz pairings were delivered to the model with CaMKII initially in its DOWN state (low
phosphorylation). The model reproduces NMDAR-t-LTP of basal ganglia: t-LTP for post-before-pre pairings
(A), nothing for pre-before-post pairings (B).

pre-before-post pairing; that is the results depend on the validity of Ohm’s law approximation
for NMDAR (and TRPV1) calcium current. In order for this approximation to be valid, calcium
concentration should be not too different on both sides of the membrane. In recent modeling
study, Griffith, Tsaneva-Atanasova, and Mellor (2016) simulated calcium diffusion in a spine in
response to EPSP-bAP pairing. The calcium concentration in the nanodomain around NMDAR
was more than 20 times larger than the concentration of calcium averaged over spine volume
(see their Fig.1C). In their model, during EPSP-bAP pairing, high calcium concentrations were
contained in nanodomains around NMDARs and VSCCs (their Fig.1B). Therefore, the calcium
concentration in such a nanodomain can be closer that outside the cell than to spine average;
thus rendering Ohm’s law approximation applicable. I took these results as a support for our
model. We currently lack experimental data to directly support the idea that nanodomain
calcium concentration is comparable to that outside the cell.

I have also evaluated a possibility of an alternative explanation of anti-Hebbian STDP. This
was based on the model featuring postsynaptic GABAAR activation and NMDAR and TRPV1
calcium currents modeled with GHK. This alternative model however did not provide a reasonable
explanation for Anti-Hebbian STDP. More calcium for post-before-pre than for pre-before-post
pairings without GABA can be switched to less calcium for post-before-pre than for pre-before-
post; however, Hebbian STDP, can be only switched to LTD or no plasticity for pre-before-post
and LTD for post-before-pre because calcium amplitudes are decreased in the model with GABA.
Hebbian → anti-Hebbian switch can be achieved if one either decreases plasticity thresholds
with GABA signaling, or increases calcium currents (by increasing ξx and permeabilities, see
eq. 2.17;eq. 2.18). This however is not supported experimentally. In Paille et al. (2013), it
was proposed that by shifting the balance of NMDAR and VSCC calcium fluxes, depolarizing
GABA current might provide an explanation for Hebbian-anti-Hebbian switch. The depolarizing
effect of GABA could be present at distal synapses if bAP attenuation is strong enough (with
depolarization from bAP, membrane potential should stay below the reversal potential of GABA,
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-60 mV). Indeed, the recent work of Jędrzejewska-Szmek et al. (2016) suggests that the reversal
of the polarity of STDP due to GABA might occur only at distal synapses (their fig. 6C). Our
model however does not account for spatial effects and assumes little or no attenuation of bAP.
Therefore, to obtain calcium-dependence on ∆t corresponding to anti-Hebbian STDP, I used the
simpler model without GABA and with Ohm’s law approximation for NMDAR and TRPV1
currents (I thus favored nanodomain hypothesis). For details, see Appendix C.1.

However, regardless of the way anti-Hebbian STDP is achieved, what matters for the calcium-
controlled plasticity is calcium transients themselves; the way they were generated is of less
crucial importance for our work. Thus, even if the part of the model generating calcium transients
may turn out disputable, our modeling of plasticity downstream calcium transients can be still
correct.

2.5 Introducing endocannabinoid-dependent plasticity
to the model

The data of Cui, Paille, et al. (2015) and Fino, Paille, Cui, et al. (2010) (figs. 1.20, 1.21, 1.19)
can be summarized in the following table:

Table 2.1: Short summary of the experimental data by Cui, Paille, et al. (2015) and Fino, Paille, Cui, et al.
(2010)

Npairings pre-post post-pre Long delay (> 30-40 ms)

10 no plasticity eCB-t-LTP no plasticity
100 eCB-t-LTD NMDAR-t-LTP no plasticity

With the model described so far, NMDAR-CaMKII-dependent plasticity allows to account for
NMDAR-t-LTP and its dependence on the number of post-pre pairings. In the following, I will
introduce both eCB-t-LTD and eCB-t-LTP (sec. 1.1.7.2.4).

Fig. 2.6 illustrates the model output regarding endocannabinoid signaling. The CB1 receptor
is mostly activated by 2-AG, whose production is DAGLα-dependent and therefore calcium-
dependent. As we have seen before, calcium transients are wider and of higher amplitude for
post-pre pairings with small negative ∆t than for pre-post pairings with small positive ∆t, and
higher for smaller |∆t| than for large. As a consequence, the fraction of calcium-activated DAGLα
is significant only for small values of |∆t| (<25 ms) and larger for post-pre than for pre-post
pairings (fig. 2.6B). Therefore, the differences in calcium transients also propagate downstream
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to DAGLα activation. The differences of DAGLα activation propagate to 2-AG and ultimately
to CB1R activation. At the end of the pathway, the calcium transients resulting from repeated
pairings (fig. 2.6A) give rise to CB1R transients that depend on ∆t too (fig. 2.6C). Therefore
the above dependence of the calcium transients on ∆t, are conserved along the eCB pathway
and ultimately create a spiking-dependence in CB1R activation transients. But the presence
of the signaling pathway in addition to periplasmic calcium channels has an effect that goes
beyond the propagation of the timing dependence of calcium transients. Indeed, within a wide
parameter range, the amplitude of the calcium peaks triggered by each paired stimulation has a
very specific envelope (fig. 2.6A): for the first 10–20 pairings, the amplitude of calcium peaks
increases, then it decreases until it reaches constant amplitude after 50 pairings. During those
first 10–20 pairings, repeated activation of mGluRs progressively increases the quantity of IP3 in
the cytoplasm, which contributes an extra influx of calcium to the cytosol, from the endoplasmic
reticulum. This boost of cytoplasmic calcium however progressively disappears when Npairings

increases above 30-40 pairings because of the depletion of calcium in the endoplasmic reticulum.
This dependence of the amplitude of the successive calcium peaks on Npairings (first increase, then
decrease) is transmitted to the amplitude of eCB transients and, ultimately, to CB1R activation
(yCB1R). The envelope is even more marked at the level of CB1R activation because of CB1R
desensitization that amplifies the decay above 20 pairings (fig. 2.6C).

For all ∆t, the amplitude of the CB1R activation (yCB1R) peaks first increases for the first 10–20
pairings, then decreases to converge to constant amplitude. As a result, yCB1R reaches large
values only for short post-pre pairings (∆t around -15 ms) while even short pre-post pairings
(0 < ∆t < 10 ms) do not give rise to such large amplitude peaks.

This peculiar dynamics of yCB1R brings a plausible explanation to the bidirectional features of
eCB-dependent plasticity. To express the difference between the presynaptic eCB-dependent
and postsynaptic NMDAR-CaMKII-dependent plasticity mechanisms, I will consider separately
two components of synaptic weight: a postsynaptic weight Wpost (proportional to the fraction
of active CaMKII, CaMKII∗) and a presynaptic weight Wpre (to be related to eCB). In the
experiments, eCB-t-LTP is observed for small Npairings and small negative ∆t, i.e. where the
peaks of yCB1R in our model exhibit the highest amplitudes across various (Npairings, ∆t) pairs.
On the other hand, eCB-t-LTD or no plasticity is observed in the experiments in conditions
where the peaks of yCB1R in the model are of moderate or low amplitude, respectively. Therefore,
a potential mecanism emerges whereby Wpre would depend on the magnitude of yCB1R so that
whenever yCB1R reaches moderate amounts – i.e. when it is located between two threshold
values, Θstart

LTD and Θstop
LTD - Wpre drops (LTD); whereas Wpre rises (LTP) if yCB1R is larger than a

third threshold, Θstart
LTP (see the dashed lines in fig. 2.6C1,C2 and summary in fig. 2.63D. Wpre

remains unchanged outside those ranges, i.e. if yCB1R < Θstart
LTD or if Θstop

LTD < yCB1R < Θstart
LTP .
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Figure 2.6: Spike-timing dependence in the endocannabinoid-signaling part of the model. A-C. Cytoplasmic
calcium and CB1R activation for post-pre (first column) or pre-post pairings (second column). D. Schematic of
our phenomenological model for eCB plasticity.
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Combining this mechanism with the shape of yCB1R evolution upon Npairings indeed explains the
main characteristics of corticostriatal STDP:

1. With short pre-post pairings (10<∆t<40 ms), yCB1R reaches the LTD range (between
Θstart
LTD and Θstop

LTD (fig. 2.6C2) during most of the 100 pairings: each pairing thus reduces
Wpre. Since pre-post pairings do not alter CaMKII-dependent Wpost (fig. 2.5B), the net
result is a reduction of Wtotal, i.e. the expression of eCB-t-LTD.

2. For few (5 to 30) post-pre-pairings, the amplitude of successive yCB1R peaks overcomes
Θstart
LTP for 5 to 30 post-pre-pairings, resulting in an increase of Wpre sufficient for LTP. Since

more than 50 post-pre pairings are needed to alter Wpost (fig. 2.5A), the change of Wtotal is
due to Wpre alone; the induced t-LTP is thus eCB-t-LTP (fig. 2.6C1).

3. Above 30 post-pre pairings, the amplitude of yCB1R transients gets back below Θstart
LTP so

that the above Wpre increase is no more triggered, thus explaining why eCB-t-LTP is
not expressed for Npairings > 30. However, when Npairings>50, the accumuation of active
CaMKII described above (fig. 2.5) increases Wpost, which triggers a sharp rise of Wtotal,
reflecting NMDAR-t-LTP.

In conclusion, the mechanism proposed to account for eCB-STDP is the following: eCB-t-LTD
requires moderate levels of CB1R activation, which can be reached with pre-post pairings.

eCB-t-LTP demands higher levels of CB1R activation that are reached only with 5–30 post-
pre pairings, where every component of the model contributes maximally to CB1R activation
(maximal cytosolic calcium influx from NMDAR, VSCC, TRPV1 and maximal calcium efflux
from internal stores, combined with a small CB1R desensitization).

Beyond 30 post-pre pairings, calcium efflux from the internal calcium stores decreases while
in parallel CB1R desensitization increases. CB1R activation becomes insufficient to maintain
the elevation of the synaptic weight, so that eCB-t-LTP vanishes.

In the next section, I will formally express these mechanisms.

2.6 Formal introduction of synaptic plasticity and synap-
tic weights

As explained above, I quantify the total synaptic weight, Wtotal as the product of a presynaptic
and a postsynaptic components:

Wtotal = WpreWpost. (2.26)
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A detailed biophysical modeling of the CB1R-dependent plasticity hypothesis described above
is not feasible due in particular to the current lack of experimental data on the presynaptic
signaling pathways relating eCB signaling to plasticity. Therefore, I chose to use a simple
phenomenological mechanism. Essentially, I adapted the mechanism developed to describe the
control of plasticity by calcium concentrations in Shouval, Mark F Bear, and Leon N Cooper
(2002), assuming instead that it is the amount of CB1R activation that controls the presynaptic
weight:

Ω(yCB1R) =


1− ALTD if Θstart

LTD < yCB1R < Θstop
LTD

1 + ALTP if Θstart
LTP < yCB1R

1 otherwise

(2.27)

where the function Ω sets the direction of plasticity: LTD, LTP or no plasticity, yCB1R is
defined by eq. 2.14 (sec. 2.2.3.6); the Θ’s are the threshold levels of yCB1R determining plasticity
induction; ALTD and ALTP are parameters determining the rate of LTD and LTP induction
respectively. I also define “Wpre change” (appears on fig. 2.6) as Ω(yCB1R)-1. The dynamics of
the presynaptic weight Wpre is then given by:

dWpre

dt
= Ω(yCB1R)−Wpre

τWpre(zCB1R) = Ω(kCB1RxCB1R + C1)−Wpre

τWpre(kCB1RxCB1R + C2) ,

τWpre(zCB1R) = P1

P P3
2 + zCB1RP3

+ P4,

(2.28)

τWpre describes the time scale of presynaptic plasticity changes; zCB1R = kCB1R · xCB1R + C2

describes the effects of CB1R activation dependent presynaptic signaling on τWpre ; C2 is a
constant that accounts for the modulation of plasticity time scales; P1–P4 are constants chosen
to yield rapid changes of Wpre for large 2AG values and very slow changes at very low 2AG.
This was chosen as a simple/parsimonious system to implement memory of the synaptic change,
i.e. to ensure that the changes of Wpre triggered during the pairing protocol will persist after the
protocol end. To account for experimental observation that the presynaptic weight ranges from
about 50 to 300%, Wpre was clipped to 3.0 (hard bound).

For Wpost, I refer to the NMDAR signaling pathway. The molecular steps along this pathway
are well characterized from glutamate to CaMKII activation but the downstream molecular
mechanisms, leading from CaMKII activation to changes of the synaptic weights are still unclear,
especially in MSNs. Therefore, I adopt the hypothesis, already used in (Graupner and Brunel
2007) and others before, that the long-term (steady state) increase of Wpost is proportional to the
fraction of activated (phosphorylated) CaMKII. I assume that Wpost increases linearly with the
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concentration of phosphorylated CaMKII subunits (CaMKII∗). Since the largest postsynaptic
LTP observed experimentally was about 450%, I set:

Wpost = 1 + 3.5 CaMKII∗

CaMKII∗max
(2.29)

The system of ODE eqns. 2.4, 2.8, 2.9, 2.10, 2.12, 2.13, 2.15, 2.16, 2.19, 2.20, 2.21, 2.22, 2.24,
2.25, 2.26, 2.27, 2.28, 2.29 is integrated numerically (see Apendix A) until the synaptic weights
reach stable values (typically observed for t ≈ 15 min after the end of the stimulation protocol).
I use the final value of the pre- and postsynaptic weights to compute the total synaptic weight
change due to the stimulation protocol. Note that I also take into account that the experimental
precision on the spike-timing delay (δt) is around 2 to 5 ms. To emulate this, the simulation
results were averaged (blurred) over this time window using convolution of Wpre and Wpost with
a normalized Gaussian function with zero mean and s.d. = 3 ms.

2.7 Fitting model to data

The work that I am going to present next is a product of collaboration with experimental lab.
We used joint experimental-modeling approach to tackle the validity of the model and guide
experiments based on the model’s predictions. On the experimental part, the work was done in
the Electrophysiology lab of Laurent Venance (CIRB, Collège-de-France, Paris) where striatal
eCB-t-LTP was first discovered. Most of the data on eCB-STDP (including that needed for the
validation of the model’s predictions) was acquired by Yihui Cui, Hao Xu, and Vincent Paille.

2.7.1 The model fits the data

I then tested whether the model is able to reproduce the experimental data on cortico-striatal
STDP outcome when both ∆t and Npairings are varied. The values of a large part of the
parameters implicated in intracellular dynamics, eCB dynamics or electrophysiology in the model
are restricted by previous experimental measurements (see Appendix B). To estimate the values
of the parameters for which we lack previous experimental constraints, I used the experimental
data shown in fig. 2.7 and in Cui, Paille, et al. (2015), that is, I optimized those parameter
values so that the model emulates the synaptic weight changes triggered by STDP protocols with
various spike timings ∆t and numbers of paired stimulations Npairings (data points at fig. 2.7).
For more details on fitting, see Appendix A. The changes of the total synaptic weight for the
whole range of ∆t and Npairings are illustrated in fig. 2.7A by the model-generated color-coded
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map.

In agreement with the experiments, the outcome of plasticity in the model can be split along
three domains:

• a first LTP domain for -3<∆t<-25 ms and 3<Npairings<40,

• a second LTP domain for -10<∆t<-25 ms and Npairings>50, and

• a LTD domain for 10<∆t<25 ms and Npairings>20.

Note that the model correctly accounts for the presence of a plasticity gap for 40–60 post-pre
pairings that isolates the two LTP domains in agreement with experimental observations (Cui,
Paille, et al. 2015) and that the expression of plasticity does not change when Npairings>100
(fig. 2.8A). To compare model and experimental data on a quantitative basis, fig. 2.7A2,A3 also
show the average weight change for -25<∆t<-10 ms or 10<∆t<25 ms. Even quantitatively,
modeling results (full lines) are in agreement with the experimental data (full circles). Likewise,
fig. 2.7A4,A5 show the weight change for STDP protocols with 10 or 100 pairings and ∆t ranging
from -40 to 40 ms, i.e. cross-sections of the color-coded map along the vertical dashed lines.
Again, model (full lines) matches experiments (full circles). Quantitative agreement is found for
the amplitude and the sign of plasticity, as well as for the dependence of plasticity on spike timing.
To our knowledge, this model is the first mathematical model able to account for the outcome of
the plasticity when both ∆t and Npairings are varied. I ran simulations of model variants where
parts of the signaling pathways were removed (in silico knock-out). In the NMDAR signaling
knockout, I removed the whole signaling pathway downstream of NMDAR, i.e. calmodulin and
CaMKII. Since Wpost relies entirely on CaMKII activation, the NMDAR signaling knockout
corresponds to a situation where the contribution of Wpost is absent and only Wpre contributes to
Wtotal. As expected, the post-pre NDMAR-dependent LTP is absent in this NMDAR signaling
knockout model, but pre-post t-LTD and post-pre t-LTP (observed with low numbers of pairings:
5<Npairings<35) are preserved (fig. 2.7B). Comparison with experimental data where NMDAR
was blocked confirms the match between model and experiments (fig. 2.7B). Simulations of the
CB1R in silico knockout model, where CB1R activation remains null whatever eCB levels are
shown in fig. 2.7C. Because Wpre depends on CB1R activation, the CB1R in silico knockout
model actually reflects the case were only Wpost contributes to Wtotal. In this case, the only
remaining plasticity domain is the LTP expressed for post-pre pairings (Npairings>50). Again,
averaging over -25<∆t<-10 ms and 10<∆t<25 ms with 10 or 100 pairings evidences the match
of the model with experimental data in which CB1R was inhibited with AM251 (fig. 2.7C).
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Figure 2.7: The mathematical model matches the experimental data. A. Changes of the total synaptic weight
Wtotal (LTP and LTD) when Npairings and ∆t vary. A1. Color-coded changes of Wtotal in the (Npairings, ∆t)
space. The color bar indicates the color code. The background map shows the simulation results whereas the
color-coded points (same color-code as the simulations) are experimental results. The average changes with
Npairings of Wtotal integrated over short positive or short negative ∆t are shown in (A2) and (A3), respectively.
Cross-sections of the two-dimensional map (A1) along the Npairings-axis are shown as changes of Wtotal with ∆t,
for Npairings=10 (A4) or 100 (A5) pairings at 1 Hz. In (A2-A5), full black lines represent the simulation results
whereas the full black circles show experimental results. B,C. Corresponding results obtained with variants of
the mathematical model where NMDAR-signaling (B) or eCB-signaling (C) were knocked-out in silico. The 2D
maps (B1, C1) use the same color code and symbols as (A1). The average changes of Wtotal over short positive
or short negative spike timings ∆t (B2,C2) and (B3,C3), respectively, use the same symbols as (A1-2).
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2.7.2 Robustness of the model

I then analyzed how much the model outcome was sensitive to variations of the parameters.

Figure 2.8: Robustness of the model. A. Output of the model for more than 100 pairings and (upper panel) the
sharp threshold mechanism for eCB-plasticity given by (eq. 2.27). B. Output of the model when the sharp eCB
plasticity is replaced by a smooth function given by eq. 2.30 with ks=2 (upper panel). C. Sensitivity analysis of
the model parameters. The parameters are ranked according to their standardized linear-regression coefficient
(SRC, see Appendix A) that measures the sensitivity of the model output to variations of the parameter.

First, I changed the sharp thresholds for eCB-dependent plasticity for smooth thresholds. The
sharp thresholding mechanism described by the function Ω above (eq. 2.27) was opted for its
simplicity in the absence of further supporting information. Smooth thresholding mechanisms
can be used instead with no major alteration of the main results. This can be demonstrated by
replacing the function Ω (eq. 2.27) in eq. 2.28 by a smooth equivalent function whose graph is
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depicted in fig. 2.8B:

Ω(yCB1R) = 1 + ALTD (Hill(yCB1R − y0, kω(yCB1R), 2)− 1) + ALTP

1 + exp
(ΘstartLTP −yCB1R

0.0013ks

)
kω(yCB1R) = 0.004ks + 0.01ks

(
1− |yCB1R − y0|

y0 −Θstart
LTD

)2

R(yCB1R,Θstart
LTD,Θ

stop
LTD −Θstart

LTD)

y0 = 0.5(Θstop
LTD + Θstart

LTD)

(2.30)

where the function R is rectangle function defined in eq. 2.24; ks is a constant that determines
the degree of smoothness (larger ks corresponds to smoother Ω).

In spite of the smooth thresholds (even when smoothing is very substantial, ks = 3), the model
output is very similar to that obtained with sharp thresholds (compare the color map of fig. 2.8B
with that of fig. 2.7A1). Therefore, our choice of a sharp thresholding for eCB-dependent
plasticity is not crucial for the model output.

I further undertook sensitivity analysis of the model (explained in Appendix A). As expected, the
most sensitive parameters were those related to reactions that are known from pharmacological
experiments to be indeed crucial to STDP (fig. 2.8C): the total amount of calmodulin or CaMKII,
post-synaptic calcium buffering (Elodie Fino, Paille, et al. 2010; Cui, Paille, et al. 2015), TRPV1
and NMDA channels (Elodie Fino, Paille, et al. 2010; Cui, Paille, et al. 2015), DAG-Lipase
activity (Cui, Paille, et al. 2015) or FAAH and MAG-Lipase activity (see below). The model was
also found sensitive to the dynamics of CB1R desensitization, in agreement with the importance
of CB1R desensitization in the decay of eCB-LTP above 15–20 post-pre stimulations. The model
was also sensitive to the value of the threshold for eCB-LTP induction (whether smooth or sharp).
I suspect that this could explain the dispersion of the amplitudes of eCB-t-LTP (fig. 2.7A4).
More surprising is the sensitivity of the model to the dynamics of glutamate in the synaptic
cleft (decay rate τG). Alterations of the dynamics of glutamate release and uptake can thus be
expected to play an important role in the control of STDP at the cortico-striatal synapse. This
aspect is further studied in sec. 2.10.2.

2.8 Model predicts new data

In the Laurent Venance’s Lab (CIRB, Collège-de-France, Paris, France), our collaborators tested
several predictions of the model. In many cases, they found a good match between experiments
and model’s predictions. In the following, I will present the results of modeling against the
corresponding new experimental data from Laurent Venance’s lab.
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2.8.1 Frequency-dependence of plasticity

In addition to spike timing and number of pairings, STDP is also known to depend on the pairing
frequency. All the above results were obtained at 1 Hz. I tested the frequency dependence of
eCB-LTP, i.e. the plasticity induced by a low number of pairings. fig. 2.9A shows the prediction
of the model for Npairings=10. When frequency increases above 1 Hz, the eCB-t-LTP triggered
by post-pre stimulations (∆t<0) persists and is even observed for an increasingly large ∆t range.
The model also predicts the expression of another t-LTP, triggered by 10 pre-post stimulations
(∆t>0) for frequency larger than 2 Hz. To test the validity of these model predictions, our
experimental collaborators explored 10 STDP pairings for 0.1, 2.5 and 4 Hz (besides 1 Hz). 10
post-pre pairings at 0.1 Hz were able to induce t-LTP (133± 14, n=10, p=0.0386) (fig. 2.9B),
which was not significantly different from eCB-t-LTP induced with 10 pairings at 1 Hz (p=0.1538)
(fig. 2.9C). This result is not predicted by the model, for which the t-LTP induced by 10 post-pre
pairings vanishes quickly below 1 Hz. At frequencies >1 Hz, they observed t-LTP for 10 post-pre
pairings at 2.5 Hz (161± 15, n=23, p=0.0004) and 4 Hz (165± 14, n=22, p=0.0001), but also
for pre-post pairings at 2.5 Hz (130 ± 14, n=12, p=0.0490 for ∆t<+50 ms; 119 ± 9, n=20,
p=0.060 for ∆t<+100 ms) and 4 Hz (139± 13, n=10, p=0.0150). Moreover, the ∆t range for
t-LTP induction was considerably enlarged for post-pre pairings: from -30<∆t<0 ms at 1 Hz
to -100<∆t<0 ms at 2.5 or 4 Hz. Note that for pre-post pairings, t-LTP could be observed for
∆t<+50 ms (fig. 2.9D and E). Therefore, when the frequency of the pairings was increased to
2.5 or 4 Hz, experimental results show a very good match with the prediction of the model:
first a symmetric Hebbian plasticity, i.e. the induction of t-LTP not only for post-pre but also
for pre-post pairings, and, secondly an enlargement of the range of ∆t in which plasticity was
observed.

I then investigated the signaling pathways involved in those two t-LTP (fig. 2.10A). In experiments,
our collaborators (Cui, Prokin, et al. 2016) observed that for 2.5 and 4 Hz STDP, post-pre
t-LTP was not prevented with AM251 (CB1R blocker) (150 ± 11, n=6, p=0.0069) or with
D-AP5 (NMDAR blocker) (135± 12, n=11, p=0.013) but was precluded with a mixture of both
AM251 and D-AP5 (96± 3, n=9, p=01800). Similarly, for pre-post pairings at 2.5 and 4 Hz,
t-LTP was still observed with AM251 (149± 15, n=7, p=0.0178) but was prevented with D-AP5
(134± 27, n=5, p=0.2684) or a mixture of AM251 and D-AP5 (88± 11, n=3, p=0.4090). The
mathematical model with Npairings=10 does not show such a mixed NMDAR- and eCB-LTP
(both t-LTP are purely eCB-dependent). Remarkably, however, the t-LTP in the model becomes
mixed for Npairings>12. For 15 pairings (at 4 Hz), for instance (fig. 2.10B), the post-pre LTP
in the model depends both on CB1R and NMDAR. Therefore, model predictions confirmed by
experiments suggest that at frequencies above 1 Hz, the t-LTP triggered by 10–15 post-pre or
pre-post pairings becomes both eCB and NMDAR-dependent.
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Figure 2.9: Model predicts the frequency dependence of eCB-t-LTP. A. Color-coded changes of Wtotal in the
(∆t, frequency) parameter space for 10 pairings. Except the pairing frequency, all parameters are the same as
in fig. 2.7. B-E. Graphs summarizing the recent experimental data from our collaborators (Cui, Prokin, et al.
2016): STDP occurs for 10 pairings at 0.1 Hz (B), 1 Hz (C), 2.5 Hz (D) and 4 Hz (E); each grey empty circle
represent the synaptic efficacy changes 45–50 min after pairings protocols for a single neuron; the black circles
represent the averages of plasticity.
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Figure 2.10: Both CB1R and NMDAR are involved in symmetric hebbian plasticity induced with 10 pairings at
4 Hz. A. Data from our collaborators (Cui, Prokin, et al. 2016). Summary bar graphs illustrate that symmetric
Hebbian plasticity (t-LTP) induced with post-pre and pre-post were not prevented by AM251 (CB1R blocker) or
D-AP5 (NMDAR blocker) (except for pre-post pairings) but were precluded by the application of both antagonists
AM251+D-AP5; Error bars represent SEM. *p<0.05. ns: not significant. B. The mathematical model predicts
similar behavior for Npairings = 15 (at 4 Hz). Except the pairing frequency, all parameters are the same as in
fig. 2.7 (values given in Appendix B).

2.8.2 MAG-Lipase regulates 2-AG and therefore eCB-STDP

To substantiate the causal role of the amplitude of 2-AG transients in activating CB1R and
therefore bidirectional eCB-plasticity, one can boost the endogenous levels of 2-AG during STDP
protocols. Indeed, if the amplitude of CB1R activation controls the expression of eCB-STDP, the
outcome of a given STDP protocol should change if one modifies the amount of CB1R activated
by this very same STDP protocol. For this purpose, I inhibited MAG-lipase (MAGL), the major
enzyme responsible for 2-AG degradation (Piomelli 2003), to increase the endogenous level of
2-AG.

I utilized the model to select three scenarios in which it should be possible in silico, by inhibiting
MAGL, to 1) increase the magnitude of an existing eCB-t-LTP, 2) induce an eCB-t-LTP for a
protocol that normally induces neither eCB-t-LTP nor NMDAR-t-LTP (i.e. 50 post-pre pairings;
fig. 2.7A and Cui, Paille, et al. (2015)) and 3) convert an eCB-LTD (induced with 100 presynaptic
stimulations without postsynaptic simulations) into eCB-LTP.

First, I tested the possibility to increase the eCB-t-LTP magnitude by inhibiting MAGL. For
this purpose, I chose the minimal pairing protocol for which eCB-t-LTP is detected, that is five
post-pre pairings (fig. 2.11) (fig. 2.7A3 and fig. 1.20).

Five pairings appears the lowest number of pairings needed to induce significant eCB-t-LTP as
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Figure 2.11: MAGL inhibition increases eCB-t-LTP magnitude induced by 5 pairings. A. Model prediction for
eCB-LTP amplitude induced by Npairings=5 post-pre pairings with ∆t=-15 ms. A1. MAGL and DAG-Kinase
inhibition (red line) were simulated by fixing the value of the maximal rates of each enzyme to 0 and 5%,
respectively, of their default values listed in Appendix B (control model, black line). A2. Summary bar graph
of the t-LTP amplitude predicted by the model for Npairings=5 post-pre pairings, ∆t=-15 ms. B. Summary
of experimental data from Laurent Venance’s lab. t-LTP induced by 5 post-pre pairings in control conditions
and with JZL184 treatment (MAGL inhibitor). B2. Summary bar graph illustrates that t-LTP magnitude was
increased by MAGL inhibition (JZL184) while prevented by CB1R inhibition (JZL184+AM251).
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illustrated by the average STDP (134± 13%, p=0.0190, n=17) (fig. 2.11B); The model faithfully
predicted eCB-t-LTP for such number of pairings (fig. 2.7A and fig. 2.11A). In the model,
I introduced noncompetitive inhibition of the MAGL by decreasing its maximal rate rMAGL.
Simulation of the model with 5 post-pre pairings under MAGL inhibition predicts that such
an inhibition increases the net level of 2-AG produced during the protocol and the amplitude
of eCB-LTP (fig. 2.11A). As predicted by the model, inhibition of the MAGL with JZL184
significantly increased the magnitude of eCB-t-LTP (182± 17%, p=0.0048, n=6; p=0.0294 when
compared to 5 post-pre pairings in control conditions) (fig. 2.11B). Our collaborators confirmed
that this amplification was CB1R-mediated since no plasticity was observed when CB1R were
blocked by AM251 (96± 8%, p=0.6123, n=5) (fig. 2.11B).

Second, I tested the possibility to induce eCB-t-LTP by inhibiting MAGL. Indeed, the model
predicts that MAGL inhibition may turn a STDP protocol that yields no plastic change in control
conditions into eCB-t-LTP. For this purpose, I chose a STDP pairing for which I detected no
plasticity in control conditions: i.e. the “plasticity gap” around 50 post-pre pairings (fig. 2.7A3)
(the zone between 40 and 60 pre-post pairings that separates the two LTP domains). In silico,
the control STDP protocol (50 pairings with ∆t=-15 ms) does not trigger any plasticity but
when MAG lipase is inhibited, eCB-t-LTP emerges (fig. 2.12A). Experimentally, as previously
reported (Cui, Paille, et al. 2015), STDP protocols with 50 post-pre pairings failed to induce any
plasticity in control conditions as illustrated by the average STDP (101± 7%, p=0.9030, n=13)
(fig. 2.12B). As predicted by the model, it was found that 50 post-pre pairings under inhibition
of MAGL with JZL184 induced t-LTP (139± 15%, p=0.0248, n=9) (fig. 2.12B). This t-LTP was
eCB-mediated since suppressed by AM251 (93± 4%, p=0.3365, n=5) (fig. 2.12B2). Therefore,
by acting on the 2-AG levels, we were able to trigger eCB-t-LTP for an activity pattern, which
does not generate LTP in control conditions.

The third model prediction is that amplifying 2-AG production during STDP may even eliminate
the need for a coincidence between presynaptic and postsynaptic activity to express eCB-LTP.
In silico, pre-post pairing coincidence is needed for the model to express plasticity. Indeed, a
protocol with 100 presynaptic stimulations only (i.e. in the absence of postsynaptic stimulation),
does not change Wtotal in the model (fig. 2.13A). However, if I decrease the maximal rates of
MAGL and DAG kinase activity (the major source of DAG consumption in the model), I obtain
a robust eCB-t-LTP, even in the absence of any postsynaptic stimulation. Experimentally, 100
presynaptic stimulations (without postsynaptic pairing) induced LTD (76± 9%, p=0.0337, n=8),
which was CB1R-mediated since prevented with AM251 (102±7%, p=0.8108, n=4) (fig. 2.13B1);
note that this LTD was not predicted by the model. In agreement with the model, when 2-AG
levels were amplified by MAGL inhibition with JZL184, 100 pre-synaptic stimulations triggered
LTP (143±17%, p=0.0299, n=11) instead of LTD in control conditions (fig. 2.13B2). This t-LTP
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Figure 2.12: MAGL inhibition unveils eCB-t-LTP expression with 50 pairings. A. Model prediction for the
plasticity induced by Npairings=50 post-pre pairings. A1. In control (full black line), the synaptic weight is
unchanged by 50 post-pre pairings for 0>∆t>-25 ms. Amplified eCB production due to MAGL inhibition (full
red line), uncovers a large-amplitude t-LTP. In the model, MAGL inhibition was emulated by setting its maximal
rate to 40% of its default value Appendix B. A2. Summary bar graph of the t-LTP amplitude predicted by the
model for Npairings=50 post-pre pairings at ∆t =-15 ms. B. 50 post-pre pairings induced t-LTP with MAGL
inhibition but not in control. B1. Summary of synaptic weight along time induced by 50 post-pre pairings in
control conditions and with JZL184 treatment. B2. Summary bar graph illustrates that MAGL inhibition allowed
t-LTP to be expressed, which was CB1R-mediated since prevented by AM251. *p<0.05. ns: non-significant.

was eCB-mediated since it was prevented when JZL184 was co-applied with AM251 (93± 4%,
p=0.1509, n=5) (fig. 2.13C2).

To summarize, manipulating the activity of the MAGL was sufficient to 1) control the magnitude
of eCB-t-LTP, 2) induce eCB-t-LTP or 3) even to reverse eCB-LTD into eCB-t-LTP. These
experimental validations of the model predictions thus support our model hypothesis that 2-AG
levels control eCB plasticity in a bidirectional way, with large 2-AG levels yielding eCB-t-LTP
and lower levels eCB-t-LTD.

2.9 Beyond STDP. Spike-pattern-dependent plasticity

A typical STDP protocol of repeated paired electrical stimulation is fully characterized by:

1) the delay between each post- and presynaptic stimulations within a pairing, ∆t;
2) the frequency at which each pairing (1) is repeated;
3) the number of pairings (1) delivered at a frequency (2), Npairings.

Across both experimental and theoretical STDP related studies, most of the attention is given
to the dependence of plasticity on ∆t. The dependence of STDP on the frequency is rarely
considered (to my knowledge, no more than three experimental studies). The dependence of
STDP on the Npairings below 60 was only recently addressed (Cui, Paille, et al. 2015).

Besides being artificially regular, most of the STDP protocols consist in varying spike-timing
only. Thus the STDP results observed experimentally are likely just scratching the surface of
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Figure 2.13: MAGL inhibition shifts eCB-LTD into eCB-LTP, induced by 100 presynaptic stimulations. A.
Model prediction for the changes in synaptic weight induced by 100 presynaptic stimulations. A1. MAGL and
DAG-Kinase inhibition were obtained by fixing the value of the maximal rates of each enzyme to 0 and 5%,
respectively, of their default values listed in Appendix B. A2. Summary bar graph of the LTP amplitude predicted
by the model for 100 presynaptic stimulations in the absence of postsynaptic stimulations. B1. Summary of
LTD induced with 100 presynaptic stimulations. This 2-AG-mediated LTD was prevented by AM251 (n=7). B1.
MAGL inhibition by JZL184 shifts eCB-LTD, induced by 100 presynaptic stimulations, into eCB-t-LTP. *p<0.05.
ns: non-significant.
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the plasticity mechanisms: exposing plasticity outcome in a very specific artificial conditions
(and likely not physiologically relevant ones). Neurons in vivo receive patterned inputs far
more complex than sequences of artificially regular 60-10 periodic spike trains with a fixed
delay between them. These inputs are nonstationary (frequency changes over time, sometimes
abruptly) and can depend on both the environment and the brain state. The input can therefore
contain many spikes in one period of time and none in another.

To understand how learning is actually implemented in the brain at the level of single cells, that
is how a plasticity rule acting at the level of single synapse can support unsupervised learning
of statistical regularities in the incoming patterns, one has to consider learning rules that can
accommodate for the features of the input: in terms of STDP protocol, all its three parameters
(∆t, Npairings, frequency) should be varied either independently (due to a mix of many small
unrelated inputs and intrinsic noise) or in a coordinated manner (reflecting patterns of the
world).

Having extensively validated our detailed model against the experimental data, we can examine
plasticity outcomes when the model is exposed to more realistic inputs beyond classical STDP
protocols. Starting from classical STDP protocol, I first studied the simple cases of the dependence
of plasticity outcome on each parameter of the protocol independently. I then proceeded to
study more complex cases when parameters are varied in a correlated fashion. In the previous
section, I have studied plasticity dependence on both ∆t and Npairings when frequency was fixed,
and the dependence on ∆t and frequency when Npairings was fixed. In the following, I will first
examine how plasticity varies when Npairings and frequency change, at a fixed ∆t. For a given
pair (Npairings, frequency), I will search for different families of STDP curves. I will then focus on
the plasticity evoked by more realistic spike-patterns, whereby all the parameters, ∆t, Npairings

and frequency are varied simultaneously over time.

2.9.1 The dependence of STDP on the frequency and the number
of pairings

To illustrate the dependence of plasticity on Npairings and frequency, I selected two values of
∆t=-15 ms (close to the maximum of t-LTP for 10 and 100 1-Hz pairings, see fig. 2.7) and
∆t=+20 ms (close to the maximum of t-LTD for 10 and 100 1-Hz pairings, see fig. 2.7). For
these two ∆t, fig. 2.14 shows how Wtotal depends on both frequency and Npairings. For both ∆t,
the border of the LTP region has hyperbolic-like shape. This property is preserved across a
wide range of ∆t’s for which the region of LTP found (not shown). Consider a protocol with
a given (Npairings, frequency) pair. If this protocol does not induce LTP (e.g. with Npairings<10
and frequency<1 Hz, i.e. both below magenta triangle at fig. 2.14), then according to fig. 2.14,
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increasing Npairings or frequency will eventually end up triggering LTP. Note however that fig. 2.14
evidences threshold values for Npairings and frequency, below which the two parameters (Npairings

and frequency) must be simultaneously increased to get LTP. For ∆t=-15 ms (fig. 2.14A), LTP
expression needs frequencies>0.5 Hz and Npairings>2, while for ∆t=+20 ms (fig. 2.14B), LTP
will not be induced if frequencies<1.2 Hz or Npairings<3. For instance, with ∆t=+20 ms and
1-Hz protocol, it is impossible to induce LTP whatever Npairings.

Figure 2.14: Dependence of STDP on both the frequency and the number of pairings (Npairings) for ∆t=-15 ms
(A) and ∆t=+20 ms (B). Red color corresponds to t-LTP, blue to t-LTD. Protocols with frequency and below
10 pairings at 1 Hz (magenta triangle) do not induce induce t-LTP. If the frequency is too low (below 0.5 Hz for
∆t=-15 ms and 1.2 Hz for ∆t=+20), it is impossible to induce LTP whatever the number of pairings. To induce
LTP, both Npairings and frequency should be sufficiently large. eCB-t-LTD (dark blue) is expressed only at low
frequencies for sufficiently large Npairings (B). The yellow stars locate a typical STDP protocol (100 paitings at 1
Hz).

To understand why the increase of Npairings and that of frequency play similar roles in promoting
LTP, let us consider the time-evolution of the variables controlling plasticity: CaMKII∗ and
yCB1R (CB1R activation) (fig. 2.15). Pairings evoke calcium transients. A transient of calcium
evokes a transient of CaMKII∗ (or yCB1R). These transients have a decay time that is larger
than that of calcium transient. Let us consider two consecutive calcium transients. If by the
time the second calcium transient arrives, the increase of CaMKII∗ (or yCB1R) evoked by the
first calcium transient has not decayed to its resting value, then the new peak adds up on top
of the previous one (from the first transient). If transients are repeated, CaMKII∗ (or yCB1R)
builds up with each calcium transient (with each pairing) (fig. 2.15A,B). The blue traces on
fig. 2.15A,B show the build up for the 1-Hz protocols with increasing Npairings. If this build up
is sustained long enough (blue traces with Npairings>50 at fig. 2.15A1), then, by the end of the
stimulation protocol, plasticity is induced (the plasticity outcome is denoted by bold text at
fig. 2.15). Another way to strengthen this build up is to increase frequency (orange and red
traces). This reduces the time between transients, thus, the time a transient has to decay before
another transient arrives. Therefore, repeated transients build up faster (compare orange and
blue traces at fig. 2.15A1).
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Figure 2.15: Illustration of the similar role played by the frequency and Npairings in t-LTP induction. A. Transients
of CaMKII∗ evoked by protocols with various combinations of Npairings and frequency for ∆t=-15 ms (A1) and
+20 ms (A2). A2. The same protocols as (A1) but for ∆t=20 ms do not induce NMDAR-CaMKII-t-LTP. B.
Transients of CB1R activation (yCB1R) evoked by protocols with various Npairings and frequency for ∆t=-15 ms
(B1) or 20 ms (B2). C. Resulting dynamics of Wpre. For details, see text.
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The partitioning of the (Npairings, frequency) plane into LTP and LTD regions depends on
spike-timing. In other words, each point on the (Npairings, frequency) plane corresponds to a
potentially STDP curve. I then studied how the shape of the spike-timing dependence of pre-
and postsynaptic components of STDP curve depends on the location in the (Npairings, frequency)
plane. To this end, I computedWpre andWpost for protocols with different values of (∆t, Npairings,
frequency) and clustered the resulting STDP curve into regions of similar shapes. I discretized
the 2D parameter plane (Npairings, frequency) as a Cartesian grid of MNxMf points. MN and Mf

are the number of points of Npairings and frequency respectively, M=MNMf is the total number
of points on 2D grid. To reflect equal importance of Wpre and Wpost, I concatenate vectors with
coordinates Wprej = Wpre(∆tj) and Wpostj = Wpost(∆tj):

W = (Wpre1, ...,WpreN ,Wpost1, ...WpostN) ∈ R2N , (2.31)

where j is the index numerating points on chosen grid of ∆t, N is the number of points at
which ∆t was discretized. W depends on both Npairings, frequency and combines Wpre and Wpost

without data loss (components can be always retrieved back) and without giving preference to
either one (both taken with the same scaling).

I first examine the deviation of STDP curves from the STDP curve with 100 1-Hz pairings.
To this end, I compute mean squared displacement of Wi from Wr where r corresponds to
(Npairingsr, frequencyr) = (100, 1):

MSDW = 1
M

M∑
i=1

(Wi −Wr)2

The dependence of MSDW on Npairings and frequency is shown at fig. 2.16. STDP curves with
similar MSDW tend to be clustered on (Npairingsi, frequencyi)-plane.

Figure 2.16: Color-coded mean squared displacement (MSD) of STDP curves from the STDP curve for 100
1-Hz pairings. MSD is similar for proximal values of frequency and the number of pairings; that is STDP
curves similarly distant from the STDP curve for 100 paitings at 1 Hz, tend to be clustered on (Npairingsi,
frequencyi)-plane.

97
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI115/these.pdf 
© [I. Prokin], [2016], INSA Lyon, tous droits réservés



Visual analysis of fig. 2.16 suggests there are about 11 clusters of distances from the reference
STDP curve.

I then checked if the STDP curves with similar MSDW belong to classes of similar STDP curves.
I used Wi to reveal the characteristic types of STDP curves using K-Means clustering algorithm
applied to Wi. This algorithm first randomly assigns Wi data points to K clusters. Second,
centroid (mean) is computed for each cluster. Third, every point is reassigned to the cluster whose
centroid is closest to that point. Next, the second and the third steps are repeated until a there is
no further change in the assignment of the data points (for short description and implementation
details see sklearn website http://scikit-learn.org/stable/modules/clustering.html). I set the
number of clusters K to 11, close to 10 as suggested by the number of clusters at fig. 2.16. K=11
is selected for the illustration purposes, a lower value of K leads to visually different STDP
curves included in the same cluster, while higher values make algorithm too sensitive to small
differences in STDP curves so that globally similar STDP curves are attributed to different
clusters. The resulting partitioning of the STDP curves into K=11 regions of similar shapes is
shown in fig. 2.17. The shape of the typical STDP for every region is very variable (see inset
plots on fig. 2.17). This variability of STDP in the model agrees with in vitro experiments
presented in sec. 1.1.7.2.1. In vivo, neurons generate and receive trains of AP that are far from
the regular ones used in STDP protocols. Thus, the question arises: are the STDP protocols
used in experiments adequate for deciphering how plasticity actually operates in vivo. In vivo,
the parameters of spike-trains (the spike-timing, the frequency and the number of pairings)
all change with time at the same time. This corresponds to the parameters’ values jumping
across various regions with various plasticity outcomes. Even a small variation of the parameters
can allow the parameters to explore several different STDP clusters (when the mean values
of parameters are close to borders between clusters). Therefore, based on the knowledge of
how plasticity operates under artificial conditions, it is not obvious how one can predict the
plasticity outcome with in vivo-like spiking patterns. Therefore, to understand the functional
implication of plasticity in vivo, it is important to study it under more realistic patterns of
pre- and postynaptic spiking. For a modeling study, one would need a model that like the one
presented here, can account for the variability of STDP curves when stimulation changes. Many
of the phenomenological models of STDP take single fixed STDP curve as a fixed update rule
for synaptic weight (e.g. a fit to an STDP curve of Bi and Poo (1998)). Whereas such single
STDP curve is obtained for a very specific experimental stimulation conditions (e.g. 60 1-Hz
pairings in Bi and Poo (1998)), models that take it as weight update rule are often exposed
to spiking patterns outside the range for which they were fitted (e.g. Kempter, Gerstner, and
Van Hemmen 1999; Song, Miller, and L. F. Abbott 2000; Song and L. F. Abbott 2001). This
approach can provide insights on how simple timing-dependent rules can affect e.g. the dynamics
of networks. However, to provide the full description of STDP, a model has to account for the
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variability of STDP curves.

Figure 2.17: Spike-timing dependence of pre- and postsynaptic components depends on the frequency and the
number of pairings. Colored regions in the center show 11 clusters of STDP curves with similar shapes found by
K-Means clustering. Arrows point to medians of all STDP curves in a cluster. Insets (origins of arrows) show the
average (across all STDP curves in a cluster) dependence of Wpre (red line) and Wpost (blue line) on spike-timing,
∆t. STDP is actually very variable even inside clusters of similar STDP. Yellow star and magenta triangle show
protocols with 100 and 10 1-Hz pairings respectively.

2.9.2 Irregular spiking

2.9.2.1 Spike-timing jitter

I start the study of the plasticity under more realistic spike-patterns by introducing stochasticity
in the form of a slight deviation from typical STDP protocol. The first motivation for this is
to evaluate the robustness of the results presented above. The second motivation is to have a
toggle on the continuum of possible spiking patterns from completely artificial to more realistic
ones, that can be used to evaluate the position of spiking patterns of a typical experimental
STDP protocol on this artificial to realistic axis. Fulfilling the second motivation would allow
us to evaluate how much currently used experimental protocols can tell us about the actual
implementation of learning.

In the experiments reproduced with the model, spike-timing is not expected to be as precise as
it is in the model. Because the step current of long duration (30 ms compared to 2 ms of single
AP) is used for intracellular stimulation, postsynaptic potential is slowly approaching threshold
of AP generation. Typically an AP is generated close to the end of the step current. However,
depending on the state of postsynaptic potential, the threshold of AP generation can be reached
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earlier. Thus the actual postsynaptic timing tipost
(actual) = tipost

(desired) − η± η, where η=δ/2=3/2
ms, and tipost

(desired) is tipost (postsynaptic timing in eq. 2.25).
Because the timings postsynaptic spikes are variable with time, the spike-timing (∆t) varies as
well. To account for this, I introduce uniformly distributed jitter into postsynaptic timing (and
therefore ∆t). The probability-density of the jitter is given by:

f(∆tjitter) =


1

2∆tmaxjitter
if |∆tjitter| < ∆tmaxjitter,

0 otherwise
(2.32)

New postsynaptic timings become:

tipost = tipost
(old) + ∆tijitter,

where ∆tjitter is postsynaptic jitter sampled from density eq. 2.32. The equation for the new
∆t’s is then reads:

∆ti = tipost + δ − tipre = ∆t(old) + ∆tijitter, (2.33)

where ∆t(old) = tipost
(old) + δ − tipre

(old).

Fig. 2.18 shows an example of how regular STDP protocol (fig. 2.18A) is transformed by applying
jitter to it (fig. 2.18B). Jitter affects both ∆t and periodicity (frequency) of a postsynaptic spike
train.

Figure 2.18: A. Schematic illustration of typical STDP protocol when frequency and ∆t are constant. B. Jitter
of the ∆t applied to the STDP protocol in A produces a protocol in which both ∆t and frequency of the
postsynaptic spike train are varied with each new pairing i.

I first modeled jitter with various ∆tmaxjitter the typical STDP stimulation protocol with 100 pairings
at 1 Hz (fig. 2.19).
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Figure 2.19: eCB-STDP is more robust to jitter than CaMKII-STDP with paired stimuli at 1 Hz. Transients of
CaMKII∗ (A) and CB1R activation (yCB1R) (B) evoked by 100 1-Hz pairings for ∆t=-15 ms (red) and +20
ms (blue) for increasing ∆tmaxjitter (1-3).
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Jitter with ∆tmaxjitter > 3 ms is sufficient to prevent the occurrence of NMDAR-CaMKII-t-LTP
(CaMKII end up in DOWN state, see fig. 2.19A). However, eCB-t-LTP for small Npairings can
occur up to ∆tmaxjitter=5 ms (CB1R activation, yCB1R reaches values above LTP threshold, Θstart

LTP ,
see fig. 2.19B1-2). Therefore, at 1-Hz, eCB-t-LTP is more robust than NMDAR-CaMKII-t-LTP.
eCB-t-LTD is even more robust and can occur even for ∆tmaxjitter up to 100 ms (yCB1R takes values
between Θstart

LTD and Θstop
LTD). This prediction is confirmed experimentally by our collaborators

(fig. 2.20). In their experiments, eCB-t-LTP with 10 pairings at 1 Hz (brown full circles) can
be induced with larger jitter than NMDAR-CaMKII-t-LTP with 100 1-Hz pairings (grey full
circles). This result qualitatively reproduces the dependence of these two forms of plasticity on
jitter in the model (brown and black solid lines respectively).

Figure 2.20: Experiments confirm model’s prediction that eCB-t-LTP is more robust to jitter than NMDAR-
CaMKII-t-LTP. Full circles correspond to experimental data points with the protocol with 10 (brown-filled)
and 100 (gray-filled) pairings. Data from Laurent Venance’s lab (Cui et al., unpublished). -30<∆t<0 ms in
experiments and ∆t=-15 ms in the model. Solid line shows average over 30 runs of the model, shaded area
around the lines shows standard error of mean.

To explain why at 1 Hz eCB-t-LTP is more robust than NMDAR-CaMKII-t-LTP, I examine the
dependence of peak of CaMKII∗ and yCB1R transients on spike-timing (fig. 2.21). At 1-Hz, the
NMDAR-CaMKII-t-LTP is induced only for short negative ∆t’s that correspond to peaks of
CaMKII∗ transients with maximal amplitude. Many successive CaMKII∗ transients of high
amplitude (Npairings>50) are required for NMDAR-CaMKII-t-LTP. The protocol with ∆t=-15
ms, corresponds to the maximal peak CaMKII∗ transient evoked by a single pairing (center
of red shaded region at fig. 2.21). Jitter with ∆tmaxjitter samples ∆t from the range around the
maximum of CaMKII∗ peak amplitude (-15-∆tmaxjitter, -15+∆tmaxjitter) (part of the black curve
in red shaded region on fig. 2.21A). Larger ∆tmaxjitter corresponds to wider range of sampled ∆t
around the maximum, thus to values of CaMKII∗ lower than the maximum (fig. 2.21A1-4).
With this sampling, many of the repeated pairings fail to deliver CaMKII∗ transients with
maximal amplitude. Consequently, the build up of CaMKII∗ after many pairings is insufficient
to induce LTP.
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In the protocol without jitter, with ∆t=+20 ms (blue dashed line at fig. 2.21), the peak amplitude
of a CaMKII∗ transient is lower than that with |∆t|>50 ms. With jitter and ∆t=+20 ms,
large ∆tmaxjitter=100 ms would lead to sampling more of large ∆t (part of the curve in blue shaded
region at fig. 2.21A3), thus to higher peaks of CaMKII∗ than that for the protocol with the
same ∆t=+20 ms and no jitter. Most of these larger peaks, however, are lower than maximum
and do not build up high enough for LTP (fig. 2.19A4).

In fig. 2.21, the elevation of the maximum yCB1R peak (for ∆t=-15 ms) compared to its baseline
values (for |∆t| > 50 ms) is higher than that of CaMKII∗ (compare the black curve in fig. 2.21A
and B). Because of this, a random sampling of peaks from a wide range of ∆t from the curve
on fig. 2.21A,B would give higher variance of yCB1R peaks than of CaMKII∗ peaks. This
means that for ∆t=-15 ms, with the increase of jitter (the range of sampled ∆t’s), the change of
the sampled peaks (decrease) will be more pronounced for yCB1R than for CaMKII∗, i.e. the
quantity of points located in red shaded region and close to the maximum of the black curves is
smaller for yCB1R than for CaMKII∗ (fig. 2.21A3,B3). Even for moderate jitter, many sampled
yCB1R peaks have low amplitude compared to maximum (fig. 2.21B1,2). However, peaks of close
to maximum amplitude contribute substantially to the build up of yCB1R (see e.g. fig. 2.19B2).
This large contribution of single yCB1R peak was required in the model to achieve high build
up of yCB1R with low Npairings around 10; that is required to reproduce eCB-t-LTP. On the
contrary, the contribution of each single peak of CaMKII∗ had to be kept small because the
NMDAR-CaMKII-t-LTP is observed only for Npairings>50. The difference of amplitude of single
peaks explains higher robustness of yCB1R to jitter than that of CaMKII∗ for the protocol
with 1-Hz stimulation: even if some of the yCB1R peaks are low, the highest peaks will still
support high build up; on the contrary, if each peak has to be close to its maximum to induce
plasticity, with jitter many peaks fail to contribute substantially to the build up, and the build
up is prevented.

The differences of peaks induced by stimulation with ∆t=-15 ms and ∆t=+20 ms are caused by
the particular shape of the dependence of CaMKII∗ (and yCB1R) peaks on ∆t. Therefore, the
effect of increasing jitter is determined by the shape of the dependence of the peak amplitude of
a CaMKII∗ (and yCB1R) transient on spike-timing.

Jitter with ∆tmaxjitter � 2∆t (� 30 in example at fig. 2.21) renders positive and negative ∆t’s
almost indistinguishable (see fig. 2.21A3,B3). If ∆tmaxjitter increases even more (and becomes
comparable to 1/frequency), the periodicity of spike-trains becomes noticeably impaired. When
∆tmaxjitter ' 0.5/frequency, the periods (inter-spike intervals) of spike-trains become poorly defined
(the variance of the period is comparable to its mean, i.e. the period varies from about 0 to
2/frequency).

103
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI115/these.pdf 
© [I. Prokin], [2016], INSA Lyon, tous droits réservés



Figure 2.21: The explanation of the effect of jitter on the variables controlling the plasticity outcome. The
amplitude of CaMKII∗ (A) and CB1R activation yCB1R (B) transient in response to a single pairing depends
on spike-timing, ∆t, that in turn depends on maximum jitter ∆tmaxjitter (shown with shading). ∆t=-15 (+20) ms is
marked by red (blue) dashed line.
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The effect of jitter on plasticity however changes with frequency (compare fig. 2.19 and fig. 2.22).
With 100 pairings at frequencies>1Hz and no jitter, CaMKII-t-LTP induction is no more
restricted to short negative ∆t around -15 ms, but also induced for large ∆t (see STDP curves in
clusters above yellow star at fig. 2.17A). This means that even for large ∆t, peaks of CaMKII∗

are sufficient for high build up of CaMKII∗. Therefore, when more of large ∆t’s are sampled with
the increase of jitter, NMDAR-CaMKII-t-LTP persists. Moreover, for short positive ∆t, if jitter
becomes sufficiently high, most of the sampled peaks have higher amplitude than without jitter
(compare peak amplitudes in blue regions at fig. 2.21A1 and fig. 2.21A3); therefore, NMDAR-
CaMKII-t-LTP, that is absent with ∆t=+20 ms without jitter, can be induced with the increase
of jitter to ∆tmaxjitter=100 ms (fig. 2.22A4). Thus, at larger frequencies, the persistence of NMDAR-
CaMKII-t-LTP at high ∆tmaxjitter is explained by the increased amplitude of peaks of CaMKII∗ at
large ∆t. This is not the case for eCB-plasticity: unlike for CaMKII∗, the yCB1R peaks at large
∆t are much smaller than at short ∆t (fig. 2.21A,B), thus the small increase of frequency that
is sufficient to promote NMDAR-CaMKII-t-LTP at large ∆t does not promote eCB-plasticity.
Therefore, eCB-STDP dependence on ∆tmaxjitter is similar for the protocols with 1 and 1.25 Hz
(compare fig. 2.19B and fig. 2.22B). Hence at higher frequencies, NMDAR-CaMKII-t-LTP is
present for wider range of ∆t and more robust to jitter than eCB-t-LTP.

With ∆tmaxjitter larger than 50 ms, positive and negative ∆t become essentially indistinguishable
(see fig. 2.21A3,B3). In this case, one expects to obtain a symmetric STDP curve with timing-
dependence that flattens out with further increase of jitter (∆t� ∆tmaxjitter because the sampled
∆t’s are too much spread around the ∆t mean). In our model, the timing-dependent part of the
amplitude of CaMKII∗ and yCB1R is restricted to |∆t|<50 ms. This suggests that spike-timing
based learning can only play a significant role for ∆tmaxjitter<50 ms. To verify this, I examined
the dependence of the spike-timing dependence of plasticity on ∆tmaxjitter for protocols with 10 or
100 pairings at 1 or 1.25 Hz (fig. 2.23, red color corresponds to LTP and blue LTD). Indeed,
when jitter is high, ∆tmaxjitter>50 ms, the spike-timing dependence of Wtotal disappears (all points
along a vertical line have similar color) in all four cases presented at fig. 2.23. Unlike for the case
when jitter is low, it is impossible to induce LTP by tuning ∆t of the noisy input (pre) to that
of the noisy output (post). To induce LTP, an efficient strategy is the same as in deterministic
case with no jitter (see sec. 2.9.1), that is to increase the frequency and the number of pairings
(fig. 2.23B2). Let us now examine the case of moderate jitter 15<∆tmaxjitter<50 ms and 1Hz; with
enough jitter, the timing-dependence of STDP flattens (e.g. ∆tmaxjitter=20 ms at fig. 2.23A1). For
moderate ∆tmaxjitter, the timing-dependence can be restored by increasing the frequency (compare
the extent along ∆tmaxjitter-axis of blue and red domains at fig. 2.23A1 and at fig. 2.23B1).

For low jitter (∆tmaxjitter<3 ms) that is inherent to experimental conditions, the outcome of our
model is robust. For higher jitter at a low frequency, our model correctly predicts the outcome of
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Figure 2.22: eCB-STDP is less robust to jitter than CaMKII-STDP with paired stimuli at 1.25 Hz. With 100
pairings at frequencies>1Hz, NMDAR-CaMKII-t-LTP is induced for large ∆t, but not for short ones (see clusters
above yellow star at fig. 2.17A). High jitter samples more of large ∆t thus leads to t-LTP.
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Figure 2.23: The dependence of mean STDP on both spike-timing (∆t) and jitter (∆tjitter). Color codes Wtotal

averaged over 30 runs of the model for each pair of ∆t and ∆tjitter. A. Protocols with the frequency of 1 Hz
with 10 (A1) and 100 (A2) pairings. B. As A, but for the larger frequency of 1.25 Hz with 10 (B1) and 100
(B2) pairings.
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experiments where jitter of various degrees is intentionally introduced into spike-timing: eCB-t-
LTP is more robust than NMDAR-t-LTP at low frequency (1 Hz). However, even slight increase
of frequency in the model can reverse this pattern of robustness: NMDAR-t-LTP becomes instead
more robust than eCB-t-LTP. Simulations suggest that at low frequency, spike-timing based
learning (both LTP and LTD) is supported by eCB-plasticity rather than NMDAR-CaMKII-
plasticity. Our model also suggests that in order for timing-dependent plasticity to be functional
in vivo, most of the inter-spike intervals for both pre- and postsynaptic neurons should be larger
than 50 ms. If this was found in an experimental in vivo learning paradigm, this would suggest
that the observed type of learning might rely on spike-timing dependent plasticity.

2.10 Modulation of STDP

2.10.1 Modulation of STDP by dopamine

Dopamine signaling plays an important role in multiple neurological diseases and in reinforcement
learning (Schultz 2002; Kandel 2013). However, we currently do not understand the precise
mechanisms of dopamine modulation of plasticity at synapses from cortical neurons to MSN.
Therefore, implementing the detailed dopamine signaling in MSN is an important future direction
of the present work. This would require the modeling of dopamine and cAMP-regulated
phosphoprotein 32 kDa (DARPP-32) and signaling pathways coupling it to other postsynaptic
components of the model. Modulation by dopamine might potentially have very broad effects by
affecting multiple subcellular components and their interactions. These include endocannabinoid
signaling and eCB-LTD (Mathur and Lovinger 2012; Giuffrida et al. 1999; Kreitzer 2005).
However, whether dopamine modulates the recently discovered eCB-LTP is not known. The
model of eCB-LTP, and, more generally, of bidirectional eCB plasticity, is the major contribution
of the present work. Our joint modeling-experimental approach highlights that in addition
to NMDAR-CaMKII-dependent plasticity, eCB-dependent plasticity has several interesting
properties that can make it a good candidate mechanism to support learning:

• eCB-dependent plasticity is robust when the synapse is exposed to slightly irregular spiking
at low frequencies.

• Moreover, eCB-plasticity can be expressed using short-duration stimuli. Thus, eCB-
dependent plasticity seems suitable to support fast learning in vivo (such as single trial
learning).

For these reasons, to understand learning in basal ganglia, the modulation of bidirectional eCB-
plasticity might be at least as important as that of NMDAR-CaMKII-plasticity. Postsynaptic
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dopamine signaling can potentially modulate eCB-plasticity via the modulation of the pathways
of postsynaptic eCB synthesis. However, a more direct dopamine control of this plasticity
might be achieved by the modulation of presynaptic pathways downstream of CB1R. Indeed,
presynaptic cortical neurons of cortico-striatal synapses are known to express D2-type dopamine
receptors (D2R) (H. Wang and Pickel 2002; Bamford et al. 2004). Our experimental collaborators
confirmed that eCB-t-LTP can indeed be controlled by dopamine acting on presynaptic D2Rs
(see below). To account for these new experiments with the model, in the absence of quantitative
data on presynaptic signaling pathways, I have introduced modulation of presynaptic plasticity
by tonic dopamine in a simplest possible way, that is I assume that linear combination of D2R
activation by dopamine and CB1R activation by endocannabinoids controls presynaptic plasticity.
This choice is supported by the fact that both D2R and CB1R are GPCR of the same type
(Gi/o), that is they likely share the same signaling downstream of G-protein.

2.10.1.1 A brief summary of new experimental results

In the lab of Laurent Venance, our collaborators investigated the regulation of eCB-STDP by
dopamine using experimental techniques including: Electrophysiology, Pharmacology, Lesioning,
Opto-Genetics. The detailed description of their experiments is given in Appendix C.3. In the
following, I will briefly summarize their key results.

They showed that eCB-t-LTD (induced with a large number of pairings) is affected by the block
of D1R or D2R or both (see tbl. 2.2). Note that our collaborators did not examine the location
of these D1 and D2 receptors.

They also found that the form of plasticity, eCB-t-LTP (induced with a low number of pairings),
requires activation of D2R (see tbl. 2.2). These D2Rs were found located presynaptically (for
the detailed description, see Appendix C.3).

Table 2.2: Summary of experiments on the involvement of various types of dopamine receptors in endocannabinoid-
dependent plasticity

Condition 10 post-pre 100 pre-post

Control eCB-t-LTP eCB-t-LTD
D1R & D2R blocked t-LTD t-LTP

D1R blocked eCB-t-LTP no plasticity
D2R blocked t-LTD t-LTP

Altogether their experiments indicate that eCB-t-LTP induced by a low number of post-pre
pairings depends on presynaptic D2R, but does not depend on D1R, whereas eCB-t-LTD induced
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by 100 pre-post pairings is mediated by both D1R and D2R with unknown location.

2.10.1.2 Investigation of the interaction between dopamine and eCB-t-LTP with
the model

In eqns. 2.27, 2.28, I used linear functions (yCB1R and zCB1R) of the CB1R open probability
(xCB1R) to describe the activation of CB1R downstream signaling. This description can be
extended to account for the presynaptic D2R signaling. Both D2R and CB1R are GPCR
with Gi/o downstream signaling. If we hypothesize that D2R is co-localized with CB1R in the
presynaptic neurons, D2R and CB1R can be sharing the same Gi/o downstream signaling. With
this, the previous assumption of CB1R control of plasticity can be generalized: instead of CB1R,
Gi/o can be postulated controlling presynaptic plasticity. This new model would indeed be more
general because it can be reduced to the previous model when the changes of Gi/o activation
are determined only by the changes of CB1R activation (when other factors provide constant
contributions). To describe the Gi/o control of plasticity, in the absence of specific experimental
data, I combine CB1R activation and D2R activation linearly (as was done previously). Instead
of CB1R activation only (variables yCB1R and zCB1R), I consider the activation of Gi/o signaling
that combines both CB1R and D2R activation. Variables yG (instead of yCB1R) and zG (instead
of zCB1R) are postulated to control Wpre and τWpre respectively:

yG = kCB1R · xCB1R + γ1 ·DA+ C1,

zG = kCB1R · xCB1R + γ2 ·DA+ C2,
(2.34)

where DA is the concentration of (tonic) dopamine, γ1 and γ2 quantify the effect of D2R activation
on Ω and τWpre respectively, and C1 and C2 summarize the effects of other Gi/o-GPCR pathways
(beyond CB1R and D2R) on Ω and τWpre respectively. I then replaced yCB1R and zCB1R by yG
and zG in the equation for Ω and τWpre (eq. 2.27).

With the model modified according to eq. 2.34 (fig. 2.24A), without changing parameters outside
of the presynaptic plasticity mechanism, I reproduced the data on plasticity dependence on
dopamine acting on presynaptic D2 (tbl. 2.2, fig. C.4;fig. C.6). To this end, I decreased kCB1R

from 3000 to 2400 to reflect the decreased relative contribution of CB1R to Gi/o signaling when
the contribution of dopamine is added. I have manually adjusted parameters to preserve key
results of the model (compare colormap at fig. 2.7 to fig. 2.24B):

Θstop
LTD = 0.053 (changed from 0.047), Θstart

LTP = 0.085 (from 0.086), ALTD = 1.82 (from 0.65),
ALTP = 24 (from 13.54), kCB1R = 2400 (from 3000), C1 = 1.26 · 10−2 (from 0.7 · 10−2),
C2 = 0.42 · 10−3 (from 0.7 · 10−3). New parameters added: DA = 0.01µM, γ1 = 0.84 · kDA,
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γ2 = 0.028 · kDA.

The efficiency of D2 receptor, kDA, equals to 1.0, sets the D2R activation in control conditions.
Lower (higher) values of kDA correspond to the decrease (increase) of D2R activation.

Fig. 2.24C illustrates the changes undergone by the two eCB-controlled domains when the
level of presynaptic D2R signaling decreases progressively from 100% to 0% of its control value
(kDA decreases from 1.0 to 0.0). The bottom row shows that eCB-t-LTP (3<Npairings<30 and
-10<∆t<-25ms) is drastically altered by a reduction of presynaptic D2R signaling: the amplitude
of eCB-t-LTP first decreases, then eCB-t-LTP is replaced by eCB-t-LTD. This model behavior
matches the experimental results reported above (tbl. 2.2, fig. C.4A and fig. C.6A). The top row
illustrates how eCB-t-LTD (sub-domain exemplified for Npairings>70 and +10<∆t<+25 ms) is
not affected by the decrease of presynaptic D2R signaling in the model. This model prediction
was not yet verified experimentally. It cannot be compared against experimental results presented
above (tbl. 2.2, fig. C.4) showing that t-LTD induced by 100 pairings is replaced by t-LTP
when D2Rs are blocked. This is because the current version of the model can only account for
the presynaptic D2R signaling, whereas the location of D2R involved in STDP induced by 100
pairings was not yet experimentally determined. It is as well not known if t-LTP induced by 100
pairings with the nonspecific block of D2R relies on pre- or postsynaptic pathways.

In control conditions (fig. 2.24D, red line), the combination of the effect of CB1R activation by
eCBs (released upon the STDP stimulation protocol) and that of D2R by (tonic) dopamine,
build up to yield yG levels (red) that overcome the LTP threshold (Θstart

LTP ), thus resulting in the
observed LTP. However, with D2R activation blocked (fig. 2.24D, blue line), the contribution
of D2R to yG disappears and yG cannot reach Θstart

LTP anymore, thus effectively preventing the
expression of eCB-t-LTP. Nevertheless, yG still crosses the LTD range (between Θstart

LTD and
Θstop
LTD) with LTD accumulating in proportion to the time spent in this range. As a result,

eCB-t-LTD is expressed instead of eCB-t-LTP. This is in agreement with the aforementioned
experimental data (tbl. 2.2, fig. C.4A and fig. C.6A) in which the prolonged inhibition or deletion
of D2R switched eCB-t-LTP into t-LTD. Therefore, according to the model, the switch from
eCB-t-LTP to eCB-t-LTD observed when presynaptic D2R are blocked is due to the reduction of
the synergistic effect of D2R on the presynaptic Gαi/o-GPCR pathway that needs to be present
in addition to the activation of the presynaptic Gi/o-GPCR pathway by CB1R to reach the
activation threshold for the expression of eCB-t-LTP. Thus, the presynaptic cortical D2R not
only allow the expression of eCB-t-LTP, they even control the polarity (LTP vs LTD) of the
plasticity induced by a low numbers of pairings.

Whereas the above exploration of the model considered reduced activation of the dopaminergic
system, hyperdopaminergy in the striatum is as well of interest since it is often observed in drug
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addiction (Volkow et al. 2009). I then used the mathematical model to explore the effects of
increased dopamine levels on the STDP. Fig. 2.24A shows model prediction when the level of tonic
dopamine is increased threefold with respect to the control case of Fig. 2.24B. The induction of
eCB-t-LTP is hardly altered by hyperdopaminergy. The main modification is that eCB-t-LTP can
be induced by larger Npairings so the eCB-t-LTP domain fuses with the NMDAR-CaMKII-t-LTP
domain. In contrast, hyperdopaminergy has a drastic effect on eCB-t-LTD in the model: the
whole eCB-t-LTD domain actually disappears so pre-post pairings fail to induce any plasticity
whatever Npairings or ∆t. With large D2R activation, for the range of ∆t previously corresponding
to eCB-t-LTD domain, baseline yG remains located above Θstop

LTD, but below Θstart
LTP , which is too

large to induce LTD but too small to trigger LTP. Therefore, the prediction of our mathematical
model is that hyperdopaminergy (via activation of presynaptic cortical D2R), besides preventing
the induction of eCB-t-LTD, should considerably extend the domain of expression of eCB-t-LTP.
These predictions however have not yet been tested experimentally.

2.10.2 Modulation of STDP by glutamate uptake

Glutamatergic neurotransmission is the major type of excitatory synaptic transmission in the
brain. Upon its release from a presynaptic neuron to synaptic cleft, glutamate binds to glutamate
receptors on a postsynaptic dendritic spine; this enables activation of the receptors. Therefore,
the activation of the postsynaptic glutamate receptors can be impacted by the dynamics of
glutamate in the synaptic cleft. For instance, glutamate dissociation from AMPAR determines
the decay phase of EPSC (Clements et al. 1992). Prolonged exposure to glutamate leads
to AMPAR desensitization and consequent decrease of EPSC amplitudes (Goubard, Elodie
Fino, and Venance 2011). Among many potential consequences of altered excitatory synaptic
transmission, synaptic plasticity might become no longer inducible or, on the contrary, become
inducible abnormally easy. From engineering perspective, a process as sensitive as glutamate
dynamics would better be tightly regulated to avoid instabilities. Indeed, cells implement several
mechanisms to control the dynamics of glutamate. First, the AMPAR glutamate receptors
quickly desensitize when exposed to glutamate, thus over-activation is prevented (M. V. Jones
and Westbrook 1996). Second, the excess glutamate is removed from the synaptic cleft by
glutamate transporters on neurons and astrocytes (Danbolt 2001; Rothstein et al. 1994).

When the major type of astrocytic glutamate transporters (fig. 2.25), EAAT2 (excitatory amino
acid carrier 2, so-called GLT-1) is blocked pharmacologically, the characteristics of EPSC could
be potentially altered (see scheme of glutamate transmission at fig. 2.26).

Our experimental collaborators in the lab of Laurent Venance have studied how the clearance of
glutamate by astrocytic glutamate transporters EAAT2 affects cortico-striatal STDP combining
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Figure 2.24: A. Scheme of the model extended with presynaptic D2R signaling (based on the original model in
fig. 2.2). B. Model prediction for changes of the total synaptic weight Wtotal (LTP and LTD) triggered by STDP
protocols with varying Npairings and ∆t (at 1Hz frequency). The color bar gives the color code. The eCB-t-LTP
domain (3<Npairings<40, -10<∆t<-25 ms) and the eCB-t-LTD domain (Npairings>70, +10<∆t<+25 ms) are
boxed with blue dashed or red full lines, respectively. C. Progressive alterations of the eCB-t-LTD (top row) or
eCB-t-LTP (bottom row) domains when the activation of presynaptic dopamine receptors D2R is progressively
reduced from 100% to 0% of the control shown in (B). D. Temporal evolution of the variable yG, that summarizes
presynaptic Gαi/o-GPCR activation during an STDP protocol consisting of 10 pairings at 1Hz and ∆t=-15ms.
In the model, LTD is triggered when yG is in a range defined by the thresholds Θstart

LTD and Θstop
LTD whereas LTD is

triggered when yG>Θstart
LTP . D2R activation was 100% (red full line) or 0% (blue full line). E. Model prediction

for changes of W total upon hyperdopaminergy, i.e. with a threefold increase of tonic dopamine compared to the
control case shown in (B). All other parameters were as in (B).
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Figure 2.25: Classification of Excitatory Amino-Acid Transporters (EAATs).

Figure 2.26: Glutamate concentration in synaptic cleft is regulated by the astrocytic glutamate uptake by EAAT2
(dark red). Alteration of this process could alter synaptic plasticity controlled by the glutamate dependent
pathways (red).

Pharmacology and Electrophysiology techniques. The experimental results in this subsection are
the product of the Ph.D. project of Silvana Valtcheva.

2.10.2.1 Blocking glutamate uptake by EAAT2 causes AMPAR-mediated depo-
larization

Valtcheva and Venance (2016) found that EAAT2 block by dihydrokainic acid (DHK) applied
during 5 min leads to pronounced depolarization of membrane potential of MSNs. This depolar-
ization was fully reversed after 15-min washout of DHK (fig. 2.27A1). The depolarization was
almost fully prevented by the block of AMPAR, but not NMDAR (see fig. 2.27B1).

A plausible interpretation of these data is that the depolarization is due to tonic AMPAR
current induced by extra glutamate not cleared from the synaptic cleft. The AMPAR-mediated
depolarization of the resting potential can have large influence on the induction of plasticity.
Indeed, the depolarization affects voltage-dependent conductances. Our collaborators therefore
tested if plasticity can be induced by this depolarization alone. Without application of any
stimulation protocol, depolarization during 5 min of DHK application followed by 15 min of DHK
washout led to no plasticity (data not shown). Potentially, however, the depolarization can have
pronounced effects on plasticity induction when a stimulation protocol is applied together with
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Figure 2.27: Blocking EAAT2 leads to depolarization of membrane potential of MSNs in both experiment (1) and
model (2). A1. EAAT2 block with dihydrokainic acid (DHK) induces depolarization. Current-clamp recording
of MSN showed that a brief application of DHK (300 µM during 5 min) induced significant depolarization.
This DHK-induced depolarization was reversed 15 min after the begining of DHK washout. B1. DHK-induced
depolarization (black bar) was prevented by the block of AMPAR current (green bar), but not NMDAR one
(blue bar). With the block of all glutamate transmission, AMPAR, NMDAR and mGluR, extra depolarization
vanished. Drugs used: D-AP5 to block NMDARs (50µM, n=6), CNQX to block AMPARs (20 µM, n=8)
and MCPG to block mGluR type-I (500µM). A2. Model of single synapse with conductances scaled by the
factor 1500 reproduces depolarization when the level of synaptic glutamate is first exponentially increased
during 5 min (simulating action of DHK) and then exponentially decreased (with time constant three times
smaller than that of increase) during 15 min (simulating washout of DHK). In the model, NMDAR, AMPA
and mGluR blocks were simulated by setting gNMDAR, gAMPA and νβ to 5% of their value in EAAT2 block
condition (see text). Plots A1 and B2 modified from Valtcheva and Venance (2016). MSN image modified from
http://www.neuroscience.ubc.ca/images/MSN.jpg.
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the block of EAAT2. I therefore aimed to simulate the depolarizing effect of EAAT2 blockade
with the model. EAAT2 blockade is expected to yield abnormally high concentrations of
extracellular glutamate. In such conditions, AMPARs are known to desensitize rapidly (Goubard,
Elodie Fino, and Venance 2011). Therefore, to account for AMPAR desensitization, I replaced
simple two state model of AMPAR with three state model (fig. 1.24). Specifically, fig. 1.24
was taken with k1f = αAMPA, k1b = βAMPA, k2f = γAMPA, k2b = 0, k3f = 0, k3b = εAMPA (for
numerical values of parameters see Appendix B). Parameters of this new model were chosen
to preserve the same EPSC amplitudes in response to presynaptic stimuli at 1 Hz. This model
however cannot be directly used to account for the AMPAR-mediated depolarization. It has
a single electrical compartment interfaced with a network of chemical reactions in a dendritic
spine that is linked to plasticity (see sec. 2.3). The model can be interpreted as cell consisting
of a soma and a single spine with a synapse. In normal conditions, this simple approach in
modeling electrical signaling is reasonable because the model is fitted to somatic recordings.
Another reason is that we do not have the data on STDP curves measured at the level of
MSNs dendrites (these dendrites are too thin to allow for dendritic patch-clamp recordings).
Whereas this rough simplification of electrical signaling provides sufficient input to simulate
chemical signaling and plasticity at a representative spine, it is not sufficient to account for
AMPAR-current contributed by all synapses. To model the current contributed by all synapses
when EAAT2 are blocked, the simplest modification of the model is to scale synaptic currents by
the estimated number of activated glutamatergic synapses into an MSN. According to different
sources, the number of cortico-striatal synapses (Nsynapses) varies from 5000 to 10000 per cell
(Kincaid, Zheng, and Wilson 1998). Moreover, the number of synapses activated by single
cortical stimulus is not known. I used a modest estimate on it: Nsynapses=1500. I have scaled
synaptic conductances: g(new)

x = g(old)
x · Nsynapses where x = AMPA,NMDA. I then exposed

the model to slow glutamate transient designed to mimic baseline glutamate elevation caused
the block of EAAT2 during 5 min followed by the decay of glutamate concentration (G) caused
by 15-min washout of EAAT2 blocker.

G(t) =

Gm(1− exp(−t/τG1)) if t < τG1

0.95 ·Gm exp(1− t/τG2) if t ≥ τG2

where τG1=5 min, τG2=15 min. Constant Gm was selected to simulate voltage transient at
(fig. 2.27A1) and to yield maximal membrane potential around -55 mV as observed experimentally.
With Gm=0.05 µM , the model faithfully reproduces slow voltage transient and its pharmacology
(compare fig. 2.27A1 and B1, and A2 and B2). I will use this value in the next subsection to
compare the model to STDP experiments.
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2.10.2.2 STDP is dramatically altered by the block of EAAT2

During the block of EAAT2s, Valtcheva and Venance (2016) applied STDP induction protocol
with 100 pairings at 1 Hz. First, baseline EPSC amplitudes were recorded for 10 min. Then
EAAT2 antagonist DHK was applied during 5 min. After that, the membrane potential closely
approached its maximal value (see fig. 2.27A1). At this moment, STDP protocol was applied
followed by the start of DHK washout. Synaptic efficacy changes were evaluated 60 minutes after
the end of STDP protocol (in the last 10 min of the recording). With this protocol, only t-LTD
was induced with short -70<∆t<+70 ms, but only t-LTP was induced with large |∆t| > 70 ms
(fig. 2.28A).

Figure 2.28: EAAT2 blockade dramatically alters STDP: only t-LTD is induced with short ∆t, only t-LTP is
induced with large ∆t. A. Experimental STDP curve obtained with the blockade of EAAT2 (Modified from
figure 1j in Valtcheva and Venance (2016)). t-LTP is observed for large |∆t|>70 ms, t-LTD is observed for short
|∆t|<70 ms. B. Same as A but obtained with adjusted model (see text).

Thus, STDP curve became quasi-symmetric: positive and negative ∆t with the similar absolute
value yield similar plasticity outcomes. For large ∆t, this is similar to STDP curves observed
with the model without EAAT2 block when the frequency is high (see STDP curve in purple
and magenta clusters in fig. 2.17). Valtcheva and Venance (2016) have tested which subcellular
components are involved in this new STDP. According to Valtcheva and Venance (2016), t-LTP
at large ∆t depends on NMDAR signaling. t-LTD at short ∆t does not depend on NMDAR, on
mGluR nor on endocannabinoid signaling.

As stated above, the single compartment isopotential model with a single synapse cannot be
used to simulate depolarization caused by AMPAR currents from many synapses. However,
the reverse statement is also true, the isopotential model with electrical signaling scaled to
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simulate many synapses cannot be used to generate input to chemical signaling at a single spine.
I therefore, use the original model (single synapse) with the following modifications:

1) AMPAR desensitization kinetics was modeled the same as with the scaled model (see
subsection above).

2) I changed the glutamate baseline to the value Gm estimated with the scaled model while
simulating EAAT2 block (in subsection above).

3) I changed resting membrane potential VL from -70 to -55 mV mimicking depolarization
induced by EAAT2 block. This accounts for extra current contributed by synapses not
modeled explicitly. I have verified that this modification alone does not induce any plasticity
in agreement with experiments (not shown). Note that this was the key modification for
reproducing the data on fig. 2.28A.

4) To simulate involvement of extrasynaptic NMDAR (see Valtcheva and Venance (2016)),
NMDAR with GluN2B subunit, I have added an extra NMDAR current modeled with
eq. 2.1 where all indexes “NMDA” replaced with “GluN2B” and parameters kept to the
same values. This equivalent to increasing only the conductance of NMDAR. Note that
kinetics of NMDAR-GluN2B was exactly the same as NMDAR kinetics (same as in control
model). With a fixed conductance, slower kinetics for NMDAR-GluN2B did not alter the
outcome of plasticity with EAAT2 block. Therefore, according to the model, what counts
for this plasticity outcome is the increase of NMDAR calcium current, not its kinetics.

5) I assumed that elevated glutamate also results in increased spiking of FS interneurons. I
have therefore added GABA release (eq. 2.23) and the activation of GABAAR (two state
kinetic model).

After the adjustment of parameters of GABA and endocannabinoid signaling, and the increase
conductance of NMDAR (to simulate NMDAR-GluN2B activation) (see Appendix B), the
modified model qualitatively reproduces the shape of STDP curve under the block of EAAT2
(compare fig. 2.28A and B).

To explain how STDP curve changes its shape from that in control conditions to that with EAAT2
block, I will consider timing-dependence of the amplitude of single transient of CaMKII∗ and
presynaptic Gi/o activation (yG) (fig. 2.29). For generality, I will be referring to presynaptic
Gi/o spike-timing dependent plasticity, G-t-LTP and G-t-LTD, rather than just eCB-t-LTP and
eCB-t-LTD. Consider the range of protocols with various ∆t and fixed frequency and Npairings.
In each of these protocols, a pairing evokes transients of CaMKII∗ and yG. If pairings are
repeated the transients build up: the peak values are higher after each transient. If by the end of
the protocol transients build up high enough, plasticity is induced. For each ∆t, I compared the
amplitudes of CaMKII∗ (fig. 2.29A) and yG (fig. 2.29B) transients evoked by single pairings in
control (black line) and with the block of EAAT2 (blue line). For most ∆t, these amplitudes are
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higher with EAAT2 block than in control. With repeated pairings, these higher amplitudes build
up to higher final value. Therefore, for |∆t|>50 ms, for which, the build up was high in control,
but not sufficient for plasticity, the extra build up with EAAT2 block leads to the crossing the
threshold for plasticity induction (NMDAR-t-LTP for large ∆t). This is similar to the case when
the build up is increased by other means, e.g. by the slight increase of stimulation frequency.
Compare the frequency dependence of STDP in control shown in fig. 2.30A and when EAAT2
block is simulated fig. 2.30B. With EAAT2 block, one thus can expect that with spike-timing
jitter, STDP outcome should be similar to that in control when frequency is increased. Indeed,
as it was shown in sec. 2.9.2.1, in control conditions, the increase of jitter results in sampling
more of large |∆t| (for which CaMKII-t-LTP is induced). Fig. 2.31A shows experimental results
when large uniform jitter with ∆tjitter = 500 ms was applied to STDP protocol with ∆tSTDP=0
ms with 100 pairings at 1 Hz. This essentially random protocol was applied in control conditions
(fig. 2.31A1) and with the block of EAAT2 (fig. 2.31A2). Model reproduces both of these
experimental results (fig. 2.31B).

Figure 2.29: The amplitudes of CaMKII∗ (A) and yG (B) transients in response to a single pairing depending
on ∆t in control (black) and with EAAT2 block (light blue).

Figure 2.30: Frequency-dependence of STDP in control (A) and with EAAT2 block (B) for the simulated
stimulation protocol with 100 pairings.
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Figure 2.31: Changes of synaptic weight in time when the STDP protocol with 100 pairings at 1 Hz with jitter
applied to postsynaptic spiking. ∆tmaxjiiter = 500 ms, reference ∆t=0 ms (the actual spike timing is not defined,
see sec. 2.9.2.1). A. Experimental data of 60 min of STDP protocol, stimulation is applied during 100 s shown
by arrow (Modified from Valtcheva and Venance (2016)). A1. In control. A2. With EAAT2 block. B. The
model simulated experiments in A1 (black solid line), and A2 (light blue solid line).

120
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI115/these.pdf 
© [I. Prokin], [2016], INSA Lyon, tous droits réservés



Chapter 3

Discussion

3.1 Comparison to STDP models

The work in this thesis fits the tradition of reductionist thinking that at the level of single
neurons, learning is supported by synaptic plasticity that is in turn supported by biochemical
reactions at the subcellular level. One can model one of these levels and use the model to explain
the hierarchically higher phenomena. Depending on the chosen level, computational models of
plasticity and in particular STDP can be divided in two groups. Models in the first group aim
at predicting the consequences of STDP on e.g. neuronal receptive fields, network dynamics
(Song and L. F. Abbott 2001; Clopath et al. 2010; Costa et al. 2015) or feature extraction
(Sprekeler, Michaelis, and Wiskott 2007; Bellec et al. 2016). In those models, the function
describing the changes of synaptic weight with spike timing is usually given as hypothesis of
the model. Within the second group, modeling starts from the level of biochemical reactions,
i.e. signaling pathways implicated in plasticity. This modeling aims at understanding how the
function describing weight changes with spike timing emerges from those signaling pathways
(see e.g. Graupner and Brunel (2010) for a review). In a number of models in this second
group, intracellular signaling is restricted to cytoplasmic calcium variation, thus implementing
calcium-control hypothesis (Shouval, Mark F Bear, and Leon N Cooper 2002; Shouval, Castellani,
et al. 2002). The mathematical models that consider signaling downstream of calcium usually
account for a single intracellular signaling pathway (i.e. a single coincidence detector), most often
NMDAR-CaMKII (Rubin 2005; Graupner and Brunel 2007; Urakubo et al. 2008). Noticeable
exceptions are for instance Karmarkar and Buonomano (2002) and Paille et al. (2013), where
the calcium pool entering via NMDAR controls t-LTP whereas the calcium pool entering though
VSCCs controls t-LTD, thus implementing two coincidence detectors. However those models do
not consider the signaling pathways beyond calcium entry through NMDAR and VSCC. In the
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model developed here, calcium entering through NMDARs and VSCCs fills the same calcium
pool. However, the model implements a second coincidence detector via a pathway starting
from postsynaptic mGluR5 activation and leading to the activation of presynaptic cannabinoid
receptors type 1 (CB1Rs) by postsynaptically produced endocannabinoids (eCBs). To my
knowledge, this is the first model to incorporate two detailed signaling pathways to account for
STDP: NMDAR-CaMKII (with calmodulin, PKA, CaN and PP1) for t-LTP and the eCB system
for t-LTD and t-LTP. In the model, the eCB system comprises mGluR5, PLCβ, DAGL, MAGL,
DAG-Kinase, calcium-induced calcium release (IP3R channels, SERCA pumps), IP3 dynamics
(PLCδ, PI3K), VSCC, TRPV1 and CB1R. Owing to this very fine grained description, the model
was able to account for STDP outcomes under various pharmacological interventions when all
three parameters of STDP stimulation protocol were varied, that is, not only spike timing ∆t,
but also Npairings and frequency. This capacity has allowed the exploration of a novel form of
plasticity, endocannabinoid and spike timing dependent long-term potentiation, eCB-t-LTP,
induced by a low number of post-pre pairings at 1 Hz (Cui, Paille, et al. 2015; Cui, Prokin, et al.
2016).

3.2 Assumptions and limitations

3.2.1 Postsynaptic plasticity

The model of postsynaptic hippocampal CaMKII-dependent plasticity of Graupner and Brunel
(2007) was adapted to describe cortico-striatal synapses and it is thus inherits some limitations of
that model. Compared to hippocampus, in striatum, CaMKII-dependent plasticity is supported
by striatum-specific signaling pathways. Because of this, some assumptions of Graupner and
Brunel (2007) can be more applicable to cortico-striatal synapses than to hippocampal ones,
whereas the validity of other assumptions can be disputable for cortico-striatal synapses. The
activation of PKA by calcium is more established in striatum than in hippocampus, thus the
assumption of calcium-dependence of PKA activation could be more applicable to cortico-striatal
synapses than to hippocampal synapses. On the other hand, I1 that is present in hippocampus
and controls CaMKII in Graupner and Brunel (2007), is absent in MSNs. Another isofrom,
DARPP-32 is expressed instead of I1. I kept the equations describing I1, assuming that DARPP-
32 participates in CaMKII-plasticity similarly to I1 in hippocampus. To verify or falsify this
assumption, a detailed modeling of DARPP-32 and related pathways would be required.

After modification to describe cortico-straital synapses, the model of NMDAR-CaMKII-dependent
plasticity of Graupner and Brunel (2007) reproduced anti-Hebbian NMDAR-CaMKII-dependent
t-LTP. This result however relayed on the assumption that calcium concentration in nanodomain
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around NMDAR is much higher than the average concentration in the spine (this is supported by
the recent modeling work of Griffith, Tsaneva-Atanasova, and Mellor (2016)). More generally, our
result relied on the assumption that pre-before-post pairings produce smaller calcium transients
than post-before-pre pairings. Regarding the calcium-controlled plasticity, knowing calcium
transients is sufficient to determine the outcome of plasticity; the question of how these transients
were generated is of less crucial importance for plasticity outcome. Thus, even if the part of
the model generating calcium transients may turn out disputable, our modeling of plasticity
downstream calcium transients can be still correct.

3.2.2 Presynaptic plasticity

To reproduce eCB-t-LTD and the new form of plasticity eCB-t-LTP, I had to extend the
model with endocannabinoid signaling. I added pathways from postsynaptic eCB synthesis to
presynaptic CB1 endocannabinoid receptor (CB1R) activation. To describe the relation between
CB1R activation in the model and eCB plasticity observed experimentally, I introduced the
hypothesis of endocannabinoid control of plasticity similar to the calcium control hypothesis
used by others before. I have assumed that similarly to calcium control of both LTD and
LTP in calcium control hypothesis, the activation of CB1R downstream signaling controls both
eCB-LTD and eCB-LTP. I have further assumed that the total outcome of plasticity is given by
the combination of pre- and postsynaptic plasticity: for simplicity, the total synaptic weight is
taken as a product of pre- and postsynaptic weight. This choice proved sufficient for the model
to reproduce key experimental findings on cortico-striatal plasticity (fig. 2.7) and to predict new
experiments (figs. 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.20). We however do not know how this
presynaptic plasticity mechanism is actually implemented. To answer this, new quantitative
data on presynaptic plasticity mechanisms would be required.

3.2.3 Presynaptic plasticity modulation by D2R activation by tonic
dopamine

To reproduce the dependence of eCB-t-LTP induced by a low number of pairings on dopamine
acting on presynaptic D2R, I assumed that the two Gi/o-GPCR pathways, D2R and CB1R,
co-localize in the presynaptic neurons. Based on this assumption, I have postulated that the
effects of CB1R and D2R on presynaptic plasticity add up linearly. With this and without the
modification of parameters outside of presynaptic plasticity mechanism, the model qualitatively
reproduced the effects of the pharmacological block of presynaptic D2R. Rephrased in more
general terms, the assumption postulates that the dependence of plasticity change on the
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activation of CB1R signaling is controlled by the activation of D2R signaling. To find out if
(and how) such mechanism is implemented, more quantitative data on presynaptic dopamine
signaling would be needed.

3.2.4 Presynaptic plasticity modulation by EAAT2 block

To simulate the block of astrocytic glutamate transporters, EAAT2, I assumed that the major
effect of this block is a depolarization of postsynaptic resting membrane potential. Our collabo-
rators aimed to test if reversal of this depolarization can reverse STDP to its form in EAAT2
block conditions. By shifting the baseline voltage back to its resting value by injecting a constant
postsynaptic current, they observed no change of plasticity in disagreement with the model.
However, the recordings and current injection were performed at a soma. Whereas the reversal
of depolarization at soma can be confirmed by somatic recordings, the reversal of depolarization
in dendrites and especially their distal parts can not be measured (because of the very thin
dendrites of MSN). Current injected at soma is diluted while flowing into the dendrites. Thus,
the somatic current poorly controls the voltage in the dendrites, a well known issue of so-called
poor space-clamp (Williams and Mitchell 2008). This can account for no difference between the
two conditions. Therefore, these data do not discredit the modeling result that the effects of
EAAT2 block are mostly explained by the depolarization of membrane potential. To invalidate
or confirm this explanation, another experiment can be performed in the future. Membrane
potential can be manipulated by changing the concentrations of ions in the extracellular solution.
In this case, it is guaranteed that resting potential is uniformly set everywhere and in all cells.

Compared to the control, in the model with EAAT2 block, I have increased eCB-LTP threshold.
This is supported by the following argument. When EAAT2s blocker is bath applied, the
concentration of glutamate increases at all synapses. Therefore, the tonic AMPAR current is
expected to be present not only in MSNs, but in all other neurons with glutamatergic synapses;
these include presynaptic cortical afferents. Similarly to its effects in MSNs, tonic AMPAR
current can be expected to cause depolarization in these neurons. Depolarization increases
calcium current via VSCC at axonal terminals of cortical afferents. The extra calcium can
increase presynaptic calcineurin activation. According to the data of our collaborators, eCB-t-
LTD relies on calcineurin activation (see figure 10 and supplementary figure 1 in Cui, Prokin,
et al. (2016)). This can shift LTD-LTP balance toward LTD, or equivalently, LTP becomes
harder to induce. This later was simulated with the increase of LTP threshold.
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3.3 Parameters, fitting and predictions

The base version of resulting model contained 36 Ordinary Differential Equations (ODE) and
about 130 parameters among which about 50 were poorly constrained experimentally i.e. “free”
parameters. A common view that with so many parameters a model can be fitted to produce
almost any output is expressed by the quote attributed to John von Neumann (Dyson 2004):

“With four parameters I can fit an elephant, and with five I can make him wiggle his
trunk.”

This joke expresses tradition in physics in describing the fundamental laws of nature with simple
models with the minimal number of parameters. In general, however, fitting any data regardless
of the equations of the model cannot be achieved even with a high number of parameters. A
simple example is fitting a weighted sum of increasing functions to a decreasing function. With
positive weights (parameters), no matter how many terms in the sum are taken and whatever
parameters, one can never fit a decreasing function. This simple example illustrates two types
of constraints: i) structure of the model and ii) the bounds on its parameters. Whereas the
approach minimizing the number of parameters is sensible when one describes a simple system or
a complex system that is reduced to its average behavior, it is not sufficient when it is desired to
simulate the details of the dynamics of a complex system. First intuition is that in an ideal case,
all the parameter values should be fixed by experiments. As it is often unfeasible in practice, one
can try to constrain as many parameters as possible, and then, fit the remaining ones to obtain
a desired outcome of the model. However, this strategy can be more harmful for the ability
of a model to predict new data, than the alternative strategy, where all model parameters are
collectively fitted to an experimental outcome of interest, independently of direct experimental
measurements of individual parameter values (Gutenkunst et al. 2007; Machta et al. 2013).
The later is true if the model’s outcome of interest has sloppy parameter sensitivities; that
is the outcome is sensitive only to a handful of parameters combinations (stiff directions in
parameter space), whereas other parameter combinations can range widely with little effect on
the outcome (sloppy directions in parameter space). This pattern of parameter sensitivities is
considered as a key feature of systems biology models (Gutenkunst et al. 2007). Our model shows
sloppy-like behavior with regard to 50 “free” parameters (fig. 2.8). Indeed, the model’s outcome
is highly sensitive to only 4-10 parameters out of 50. With sloppy sensitivities, constraining
sloppy combinations of parameters that weakly impact a model’s outcome constrains the region
of parameter space, and therefore, the range of available outcomes after fitting. When remaining
parameters are fitted, the movement along stiff directions is restricted by previously constrained
parameter combinations that are not relevant for the outcome. Therefore, the resulting fit is
likely to be worse than the one obtained from fitting all the parameters at the same time. On
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the other hand, with the collective fit for sloppy models, most of the parameters are expected to
be not identifiable. However, the predictions can be still valid. The ability to predict new data
not incorporated into the model during fitting can be used to check if overfitting took place.
The fitted sloppy model should be evaluated not based on the match between its parameters
to experiments, but by its ability to predict new data not used during fitting. With this
regard, our model performed well in reproducing much of extra experimental data. With the
same parameter set as used for fitting data in fig. 2.7, the model has qualitatively reproduced
frequency-dependence of plasticity (figs. 2.9, 2.10) and various experiments on MAG-Lipase
inhibition (figs. 2.11, 2.12, 2.13). Moreover, the model qualitatively reproduced STDP outcomes
with jitter applied to spike-timing (fig. 2.20). Further, without modifying of parameters outside of
presynaptic plasticity mechanism, the model has reproduced the experiments on the modulation
of plasticity by dopamine acting on the presynaptic D2 receptor (fig. 2.24). Moreover, with
restricted modification of parameters, the model reproduced the effects of the blockade of
astrocytic glutamate transporters EAAT2 on STDP (fig. 2.28). The overall conclusion is that
the model was proven credible not only in its ability to reproduce experimental data, but also in
its ability to predict variety of data not used during fitting.

3.4 Modulation of plasticity and its key components

Owing to the assumption that effects of CB1R and tonic D2R activation on plasticity add
up, eCB-LTP is expressed if the sum of the CB1R and tonic D2R activation is high enough
(above LTP threshold). In other words, with increased D2R activation by dopamine (tonic), a
lower activation of CB1R can suffice to induce plasticity by the pairing protocol. Equivalently,
the effective threshold for plasticity induction is decreased by the increase of presynaptic D2R
activation.

The change of plasticity by the simulated block of EAAT2 can be explained by changes of
several crucial components of the model. The simulated EAAT2 block led to changes of the
spike-timing dependence of CaMKII∗ and yG transients evoked by a single pairing. The
shape of this dependence was only slightly affected, whereas for most of the spike-timings, the
amplitudes of these transients have been increased. With repeated pairings, these transients
with larger amplitudes build up to larger values (compared to control) by the end of the protocol.
These larger values become sufficient to cross the thresholds for plasticity induction for large
spike-timings.

Taken together these findings suggests that the modulation of plasticity is due to the modulation
of the build up and the thresholds. With this regard, the key features of the model are:
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i) The spike-timing dependence of CaMKII∗ and yG transients evoked by a single pairing
(the dependence of build up on spike-timing).

ii) Thresholds for plasticity induction (how much of the build up is needed for plasticity
induction).

iii) Decay time-course of CaMKII∗ and yG transients ( 1
Decay time is about the minimal frequency

needed for the build up).
iv) Envelope of the peaks of repeated CaMKII∗ and yG transients (determines the dependence

of the build up and therefore plasticity on the number of pairings when the frequency is
fixed); If the envelope is raising-then-decaying-then-steady, t-LTP at a small number of
pairings can be observed (around the maximum of the envelope).

The importance of these four points is supported by the sensitivity analysis (fig. 2.8). Indeed,
the parameters that are the most crucial for plasticity are:

• the total amount of CaMKII and CaM (postsynaptic LTP threshold),
• baseline calcium (both CaMKII∗ and yG),
• calcium and glutamate dynamics time constants and CB1R activation rates (decay times

of both CaMKII∗ and yG),
• presynaptic LTP threshold,
• composition of calcium sources (dependence on spike-timing).

To develop a reduced version of our model while keeping its crucial properties, one can limit
the subset of considered parameters to the plasticity thresholds and the parameters crucial for
spike-timing dependence and time-course of CaMKII∗ and yG.

3.5 Variability of plasticity and plasticity in in vivo-like
conditions

In agreement with experiments, I found that spike timing dependence of plasticity is actually
very variable when both the number of stimuli and their frequency are varied. This suggests,
that some of the differences reported in experimental literature might be explained by the used
stimulation protocols. This also supports the possibility of a unified description of various forms
of plasticity based on a model of a similar kind to the one developed here. As the dependence on
the spike-timing is just one aspect of plasticity, focusing on a more general problem of plasticity
and its dependence on spiking patterns (with varied spike-timing, frequency and the number
of pairings) might provide us with a better understanding of the learning at the level of single
cells. In a sensory system, spiking patterns experienced by a synapse should reflect statistical
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regularities of the natural world. Does the plasticity implement learning of these regularities
or the prediction of incoming sequences of spiking patterns? Can we develop an unsupervised
local learning rules for pattern recognition and feature extraction that are similar to the ones
implemented in the brain? To answer such questions, one would need a model that, like the one
developed here, can account for plasticity changes when the synapse is exposed to in vivo-like
spiking patterns.

3.6 Future directions

Dopamine signaling plays an important role in multiple neurological diseases and in reinforcement
learning (Schultz 2002; Kandel 2013). However, we currently do not understand the precise
mechanisms of dopamine modulation of plasticity at synapses from cortical neurons to MSN.
Therefore, implementing the detailed dopamine signaling in MSN is an important future direction
of the present work. This would require the modeling of DARPP-32 and signaling pathways
coupling it to other postsynaptic components of the model. Modulation by dopamine might
potentially have very broad effects by affecting multiple subcellular components and their
interactions. These include endocannabinoid signaling (Mathur and Lovinger 2012; Giuffrida et
al. 1999; Kreitzer 2005), dopamine-calcium interactions (Nair, Upinder S. Bhalla, and Kotaleski
2016; Gutierrez-Arenas, Eriksson, and Kotaleski 2014; Lindskog et al. 2006; Nakano et al. 2010;
Fernandez et al. 2005) and ARPP-21 signaling (Nair, Upinder S. Bhalla, and Kotaleski 2016).
Another future direction can be in evaluating the model’s performance at learning patterns. First,
this can include recordings of spontaneous spiking patterns in vivo and during learning related
behavior, when input-output spikes should be respectively correlated and not correlated. These
patterns can then be used with our model to decipher how behaviorally relevant patterns are
processed by the synaptic plasticity; that is answering what is the input-output transformation
that is promoted by the learning at the level of single synapses (what is extracted from input
patterns by single-synapse learning). While these data are not available, a simpler scenario
can be implemented. One can consider the model of a single neuron driven by multiple inputs
via synapses endowed with our model of plasticity. The stream of inputs can be designed to
have random parts and repeated motifs with the same statistics as that of the random parts.
What are the conditions for the plasticity to learn these non random sequences and represent
them in the output spiking? Answering this question with a detailed and validated model might
give guidance for studies of how pharmacological interventions can affect not only the plasticity
expression in simple cases, but also how they can affect the function of plasticity in learning.
Having this understanding with the detailed model might allow for the reduction of this model
to produce an unsupervised learning rule qualitatively similar to the one implemented in the
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brain. Moreover, the reduction of the model can allow its analytical treatment. Furthermore,
the reduced model will be faster to simulate and therefore more suitable for the simulations
evaluating the effects of plasticity at the network level. It might become possible to use the
reduced model for new unsupervised learning algorithms with artificial neural networks. Unlike
learning procedures currently used for supervised learning in artificial networks, such as gradient
descent, unsupervised learning rule based on our model would be local to a synapse. For this
reason, it would be easier to implement it in hardware compared to e.g. gradient descent.
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Appendix A

Extra methods

A.1 Parameters

The values of a large part of the parameters implicated in intracellular dynamics, eCB dynamics
or electrophysiology in the model are restricted by previous experimental measurements (see
sec. B). To estimate the values of the parameters for which we lack previous experimental
constraints, I used the experimental data shown in fig. 2.7 and in Cui, Paille, et al. (2015),
that is, I optimized those parameter values so that the model emulates the synaptic weight
changes triggered by STDP protocols with various spike timings ∆t and numbers of paired
stimulations Npairings. For each set of parameters, I have computed Wtotal for (∆t, Npairings,
frequency) corresponding to experimental data points at fig. 2.7. I then defined mean squared
displacement of Wtotal in model from that in experiments (MSDexp

mod). The automated parameter
optimization to minimize this MSDexp

mod was implemented using various algorithms included in
PyGMO python module (primarily Differential Evolution and Particle Swarm Optimization). A
complimentary approach was to hand-tune the parameters from the set found with PyGMO to
better match to experiments.

A.2 Model implementation

The version of the model described in Cui, Prokin, et al. (2016) is freely available online:
https://github.com/iprokin/Cx-Str-STDP
or
https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=187605.
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Simulation control, plotting, and data manipulation were implemented in python. Computation-
ally heavy part of solving ODE is implemented in FORTRAN.

I used the following tools to implement the model:

• gfortran (GNU Fortran compiler, part of GCC) for fast numerical integration, and
• python2.7 for simulation control and data manipulation and visualization, including:

– pandas, NumPy, SciPy, scikit-learn for data analysis and manipulation (Pandas:
Python Data Analysis Library 2012; E. Jones, Oliphant, Peterson, et al. 2001; Pe-
dregosa et al. 2011),

– fork of python’s multiprocessing library included in pathos module (McKerns and
Aivazis 2010) for parallel computing,

– PyGMO for numerical optimization (a powerful library developed by ESA, http:
//esa.github.io/pygmo/),

– matplotlib and pandas for plotting (Hunter 2007),
• f2py (part of NumPy python module) to interface FORTRAN code with python.

I implemented Ordinary Differential Equations (ODEs) of the model in FORTRAN95. To
numerically integrate the ODEs, I used the original FORTRAN77 implementation of the LSODA
solver from the ODEPACK library https://people.sc.fsu.edu/~jburkardt/f77_src/odepack/
odepack.html (the same solver that is used in SciPy). I first compiled ODEPACK as shared
library. This library was then used to compile FORTRAN module for python2.7 with f2py
and gfortran. At both stages of compilation, I have used maximum compiler optimization level
“-Ofast” that produces fastest running code. I verified that this setting does not alter the results
of the integration; lower optimization levels “-O3”, “-O2” produced equivalent results. The
absolute and relative tolerances of LSODA were both equal to 10–7. Initial conditions were set to
the steady-state of each variable in the absence of stimulation (ODEs were integrated for 100-300
s of modelled time). Numerical integration proceeded until the synaptic weights reach stable
values (typically observed around t ≈ 5 min after the end of the stimulation protocol), and I kept
the final value of the pre- and postsynaptic weights to compute the total synaptic weight change
due to the stimulation protocol. To assure that LSODA solver does not skip a pairing as a result
of the variable time-step, the solver was supplied with an array of singularity points, the points
where the components of vector-function representing Right-Hand Side (RHS) of ODE system has
discontinuities; in our case, the points when pre- and post- stimuli were delivered to the model.
As an alternative to solvers from ODEPACK, I implemented Euler method in FORTRAN95. I
verified that the results of integration do not depend on the choice of the method. LSODA was
used to obtain all results presented in this thesis, except for fig. C.1 where Euler method was
used. This choice was made to mitigate the tendency of LSODA to increase integration step
size and interpolate solution between steps when the RHS vector-function changes slow. This
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problem arises when calcium is modeled with Ohm’s law to compute steady state (slow changes).
When using this approximation, calcium has to have hard lower limit 0 (at fig. C.1, note sharp
slope change of steady state calcium concentration at about 25 mV). This creates a singularity
point with timing that is not known in advance. In steady-state computation, variables change
slowly. Consequently, LSODA increases step size and therefore it skips the singularity point
and interpolates calcium to negative values. Hence, simpler Euler method is a better choice in
this particular case. This problem however does not arise in simulated STDP protocols because
voltage goes above 25 mV only at pairings; for pairings, singularity points are supplied to the
solver, therefore the integration is carried out correctly.

A.3 Sensitivity analysis

I quantified the model sensitivity to variations of the M=50 parameters pk, k = 1 . . .M whose
values are not experimentally constrained, “free parameters”, listed in fig. 2.8C. To this end, I
generated N=2500 random parameter vectors pj =

{
pjk
}
j = 1 . . .N by randomly sampling each

component pk independently from an uniform distribution ranging from 0.1 to 1.9 of its best-fit
value pref,k given in sec. B. I partitioned the (∆t, Npairings)-plane of fig. 2.7A1 (below) as a grid
of N points and measured the mean squared distance D for each vector pj as:

D(pj) =

√√√√ 1
2N

N∑
i=1

[
(Wpre(i|pj)−Wpre(i|pref))2 + (Wpost(i|pj)−Wpost(i|pref))2

]

where Wpre (i|pj) denotes the value of the presynaptic weight at point i of the (∆t, Npairings)-grid
when the values of the free parameters are given by the vector pj, and pref denotes the best-fit
values. I then fitted the resulting points with linear regression

D(p) = pTb + b0

using ordinary least squares. Here b = (b1,. . . ,bM) is the vector of regression coefficients and b0
a constant. Note that I did not adapt the parameters of numerical integration of the model to
each set of randomly chosen parameters. Parameters that led to integration failure were thus
not taken into account. These rejections did not compromise uniformity of the distribution. I
then computed for each parameter pk its standardized linear-regression coefficient (SRC )

SRCk = bk
V ar (pk)
V ar (D)
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where Var(pk) = 0.27pref,k2. SRCk is a measure of sensitivity of parameter k (Saltelli et al. 2002):
when pk varies away from its best-fit value, the distance between the resulting model output and
the reference output of fig. 2.7A1 is proportional to SRCk.

A.4 Extra components of the model

A.4.1 VSCC T-type

Ca2+ T-type channels can be described by (Wolf et al. 2005):

PCaT = pCaT · (mCaT )3 · hCaT
dhCaT
dt

= h∞CaT (V )− hCaT
τhCaT (V )/qhCaT

dmCaT

dt
= m∞CaT (V )−mCaT

τmCaT (V )/qmCaT
m∞CaT (V ) = 1

1 + exp(V−m
half
CaT

mslopeCaT

)

h∞CaT (V ) = 1

1 + exp(V−h
half
CaT

hslopeCaT

)

(A.1)

Here PCaT and pCaT are permeability and its maximum value respectively, mCaT and hCaT gating
variables describing the voltage-dependent kinetics of the channel, V is membrane potential.
xyCaT where x = q, h,m, y = h,m, half, slope are parameters chosen to match experiments. A
more detailed description of all parameters can be found (sec. B). The functions τhCaT (V ) and
τhCaT (V ) were obtained by linear interpolation from the experimental data of McRory et al.
(2001); see the model of Wolf et al. (2005) and the data of McRory et al. (2001) (their fig. 6B,E).

Table A.1: Experimentally determined voltage-dependence of kinetic parameters of T-type calcium channel (data
taken from the source code of the model of Wolf et al. (2005) from https://senselab.med.yale.edu/modeldb/
showModel.cshtml?model=112834&file=/nacb_msp/cat.mod)

V (mV) τhCaT (ms) τhCaT (ms)

-65 382 20.2
-60 208 20.2
-55 162 13.1
-50 129 8.7
-45 119 6.8
-40 107 5.6
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V (mV) τhCaT (ms) τhCaT (ms)

-35 107 4.4
-30 107 3.8
-25 108 3.6
-20 109 3.3
-15 109 3.6
-10 110 3.6
-5 110 3.3
. . . . . . . . .
10 110 3.3

A.5 Fast calcium buffering approximation

Calcium (C) binding to endogenous buffer (B) leads to formation of calcium-buffer complex
(CaB). This can be described with

C + B k+−−⇀↽−−k−
CaB

Corresponding system of ODE reads:

d[Ca]
dt

= R + J,

d[CaB]
dt

= −R,

d[Ca]
dt

+ d[CaB]
dt

= J,

R = k−[CaB]− k+[C ·B],

(A.2)

where kx are reaction rates and J accounts for total calcium flux.

Equilibrium approximation (fast buffering) R = 0 implies that

B = KdB[CaB]/C, (A.3)

where KdB = k−/k+.
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Total concentration of buffer (BT constant) is

CaB +B = BT .

This equation together with eq. A.3 gives

CaB = BT/(1 +KdB/C).

Taking derivative gives:
dCaB

dt
= BT

KdB(1 + C/KdB)2
dCa

dt
.

Plugging this dCaB
dt

in the third equation of system eq. A.2 gives

TC(C)d[Ca]
dt

= J,

Tx(x) = 1 + BT

KdB(1 + x/KdB)2 .

Expanding total calcium flux J = JER + Jch − C−Cb
τCb

gives eq. 2.19.
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Appendix B

Parameters

In the tables B.1 and B.2 below, groups of parameters corresponding to various components of
the model are separated with alternating color. “Name in code” shows name of a parameter in
“pars” dictionary in python code and inside “pars” structure in FORTRAN code. If a group of
parameters includes parameter “on”, its value controls if this component is enabled (when 1) or
disabled (when 0). In the later case, values of all other parameters in group are irrelevant. After
a table, list of reference for parameters values is given.
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Table B.2: Parameters with EAAT2 block modified from control

Name Name in code Values Units Reference

αAMPAR AMPA, Alpha 1.02 1/(µM·s) Adapted from Alain Destexhe,
Z. Mainen, and T. Sejnowski
1995

βAMPAR AMPA, Beta 10 1/s Adapted from Alain Destexhe,
Z. Mainen, and T. Sejnowski
1995

εAMPAR AMPA, Epsilon 0.6 1/s Adapted from Alain Destexhe,
Z. Mainen, and T. Sejnowski
1995

γAMPAR AMPA, Gamma 180 1/s Adapted from Alain Destexhe,
Z. Mainen, and T. Sejnowski
1995

gAMPA AMPA, gAMPA 6 nS Estimated from experimental
data

ALTD ECb, LTDMax 1 — Estimated from experimental
data

θstartLTP ECb, LTPstart 0.1118 — Estimated from experimental
data

— GABAA, gGABAA 20 nS Estimated from experimental
data

— GABAA, on True — —
— GABA_release, on True — —
G0 Glu_release, BaseLevel 0.05 µM Estimated from our experi-

mental data
ξV SCC I_to_Ca_flux, VDCC 81.48 µM/pCol set to match Ca2+ amplitudes

Carter and Bernardo L Saba-
tini 2004

gNMDA NMDA, gNMDA 1.8 nS Estimated from experimental
data ( gAMP A

gNMDA
= 0.3)

gNMDA NMDA_NR2B, gN-
MDA

10 nS Estimated from experimental
data

— NMDA_NR2B, on 1 — —
VL mem, EL -55 mV Directly measured in our ex-

periments
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Appendix C

Other results

C.1 Anti-Hebbian t-LTP with Graupner and Brunel
(2007)

In the calcium-control hypothesis, no plasticity, LTD and LTP are caused by low, medium
and high calcium concentration transients respectively. With this hypothesis applied to the
hippocampal Hebbian STDP (fig. 1.10), NMDAR-CaMKII-dependent t-LTP, that is seen at
small positive ∆t, should be caused by a high calcium concentration. That is calcium influx
via NMDAR must be highest at small positive ∆t compared to that at any other ∆t (and the
lowest at small negative ∆t where hippocampal t-LTD is observed).

To explain this dependence of calcium influx through NMDAR on ∆t, a simple qualitative
explanation is often evoked. NMDAR requires coincidence of both glutamate binding (for the
opening of NMDAR’s pore) and depolarization (to remove Mg2+ block of the pore). At positive
∆t, glutamate is released from presynaptic neuron before the bAP arrives from postsynaptic
soma; that is before the bAP delivers depolarization to synaptic site. Hence, glutamate binds
to NMDAR before the time of the peak of depolarization (from bAP). Consequently, by the
time peak depolarization arrives, NMDAR pore is ready to open due to previous glutamate
binding. Therefore, when pre-before-post stimulus is delivered, NMDARs conductance noticeably
increases causing high current and therefore high calcium influx. On the contrary, for negative
∆t, depolarization from bAP arrives first and has started to vanish by the time glutamate binds.
Thus, when glutamate binds, NMDAR is partly blocked by Mg2+. Therefore, calcium influx in
response to post-before-pre stimulus should be small.

However, this simple explanation implicitly assumes that depolarization and NMDAR conduc-
tance are linked by a monotonically increasing function (a higher depolarization leads to a higher
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NMDAR conductance). If Ohm’s law approximation is used for the calcium flux, the assumption
is only true for a small range of membrane potential. In fact, the dependence of the steady-state
current on voltage (so-called I-V curve) and therefore of calcium flux on voltage is highly
nonlinear. This issue is even more pronounced for VSCC calcium channels, for which I-V curves
are highly non-monotonic. The calcium influx through VSCC can be comparable to that through
NMDARs. Therefore, along with NMDARs, VSCCs can substantially contribute to the outcome
of calcium-controlled plasticity. The later can be especially pronounced when depolarization from
bAP mostly stays in the range where VSCC current is maximal. To summarize, calcium current
influx through NMDAR and VSCC depends on the combination of several factors: glutamate
dynamics in the synaptic cleft (NMDAR), depolarization and calcium concentration inside of a
spine and outside of the cell (both NMDAR and VSCC).

Applying calcium control hypothesis to cortico-striatal synapses, one would expect that the
NMDAR-CaMKII-dependent t-LTP observed at negative ∆t is caused by a higher calcium
concentration than t-LTD at positive ∆t. This t-LTD in turn should be caused by lower calcium
concentration than for negative ∆t but still higher than for ∆t at which no plasticity is observed.
This however contradicts the intuition arising from the simple idea described above. Below, I
discuss how a higher calcium flux can be delivered by a post-before-pre stimulus compared to
that of pre-before-post.

Without applying any stimulation protocols to the model, I studied the dependence of the
steady state of the model on membrane potential. This is similar to the experimental method of
obtaining I-V curves, whereby resting potential is manipulated by injecting a constant external
current. The experimenter then waits for steady state and measures resulting trans-membrane
current for each value of resting potential.

Fig. C.1A shows the dependence of steady state calcium fluxes on resting potential (voltage)
in the model. These plots are equally valid when GABAAR current is included or not as
GABAAR current only affects the voltage that in this case is fixed externally (fig. 2.2). I tested
two alternative models for NMDAR and TRPV1 calcium fluxes, depending on either GHK
or Ohm’s law was used. When both NMDAR and TRPV1 calcium fluxes are modeled with
GHK (fig. C.1A1), their steady dependence on voltage is described with monotonic function;
the steady state calcium concentration takes its resting value at resting potential (-70 mV); it
increases with the increase of voltage until it reaches its maximal value around -20 mV; with
the further increase of voltage, it decreases back to its resting value at about 40 mV (dashed
curve at fig. C.1B). When Ohm’s law approximation is used to describe both NMDAR and
TRPV1 calcium fluxes (fig. C.1A2), steady state calcium concentration decreases below the
resting level for voltages above 10 mV (solid curve). This is due to the fact that NMDAR
flux reverses its direction in the model (influx to outflux) at large voltages (V>0) (fig. C.1A2),
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Figure C.1: A. The dependence of steady state calcium fluxes (normalized to their maximums) on the resting
membrane potential (voltage). For each value of voltage, the glutamate concentration in the synaptic cleft is
fixed to 10 µM, the model is simulated until steady-state is reached. NMDAR and TRPV1 calcium currents were
modeled either with Ohm’s law (A2) or with GHK (A1). In these two models, for low voltages, the steady-state
calcium concentration (B) is lower for the model with GHK (dashed line) than for the model with Ohm’s law
(solid line). However, for high voltages (above 0), the steady-state calcium concentration is higher for the model
with GHK than for that with Ohm’s law. C, Right. Voltage transient in the model in response to single pairing
with ∆t = ±15 ms (blue/red). C, Left, The glutamate-controlled NMDAR opening probability (ONMDAR)
for the two ∆t. Whereas voltage-transients are similar in both cases, the maximum of glutamate-dependent
probability of NMDAR opening, ONMDAR, happens at a higher voltage for ∆t=-15 ms compared to ∆t=+15 ms
(higher voltage at red full circle than at blue star). However, for ∆t=+15 ms, the decay phase of ONMDAR that
follows the maximum (when NMDAR are still conductive) occurs at higher voltages (including the bAP peak)
compared to ∆t=+15 ms.
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thus yielding less steady-state calcium (fig. C.1C). Fig. C.1C,right shows voltage transient in
response to a single pre-post pairing for ∆t = −15 ms (post-before-pre pairing) and ∆t = +15
ms (pre-before-post). For both cases, pairing of bAP and EPSP leads to voltage transients of
similar shape and amplitude. However, the relative timing of glutamate release and the voltage
transient differ (fig. C.1C,left). For ∆t = +15 ms, glutamate release opens NMDAR during
the voltage peak, i.e. the voltage range corresponding to calcium outflux (blue trace fig. C.1C).
Calcium thus exits the cell through NMDA during the voltage peak. Whereas, for ∆t=-15 ms,
NMDAR opens after the voltage peak (fig. C.1B) and the possibility of calcium outflux. As a
result, the global calcium influx for ∆t=-15 ms is larger than for ∆t=+15 ms.

In the framework of calcium-control hypothesis, this timing-dependence of calcium corresponds
to anti-Hebbian STDP. Experiments of Paille et al. (2013) (sec. 1.1.7.2.2) demonstrate that anti-
Hebbian versus Hebbian STDP at cortico-striatal synapses is decided by the state of postsynaptic
GABAAR. Thus, implementing postsynaptic GABAAR seems to be a good starting point to
explain difference of calcium influx required to obtain anti-Hebbian STDP. Cortical stimulation
during STDP protocol causes not only direct activation of MSN, but also indirect (therefore
delayed) inhibition of MSN through direct activation of Fast Spiking (FS) interneurons. Thus,
in response to a single cortical stimulus, the corresponding EPSP in the MSN should be followed
by the IPSP caused by delayed GABAAR activation. The delay is determined by the time
required for synaptic transmission through one more synapse (from cortex to FS interneurons
and then to MSN, compared to the direct cortex to MSN transmission). Whereas GABAAR does
not change directly steady state dependence of calcium fluxes on voltage, GABAAR activation
affects voltage transients. This could change the region of the flux-voltage curves (fig. C.1A)
that voltage transients explore during the STDP protocol, thus the total influx of calcium in
the MSN. This idea delineates a potential mechanism for the GABAAR-mediated plasticity
switch (antiHebbian↔Hebbian) that still matches the calcium-control hypothesis: in control
conditions (GABAAR not blocked), the calcium influx is larger for negative ∆t than for positive
∆t (anti-Hebbian) whereas GABAAR blockade alters the voltage trace in such a way that calcium
influx becomes larger for positive ∆t than for negative ∆t (Hebbian). However, even after
thorough numerical exploration and automated parameter optimization (see sec. A), I was not
able to find an experimentally realistic set of parameters in support of this mechanism. In the
model with GHK, calcium amplitude dependence on ∆t corresponds to Hebbian plasticity: more
calcium for pre-before-post (LTP) than for post-before-pre pairings (LTD). The addition of
delayed GABA release (2-4 ms after glutamate release) produces almost no change of voltage
transient for post-before-pre pairings with short ∆t (LTD is kept). Indeed, in this case, AMPAR
current (and therefore GABAAR) appears after the peak of voltage transient for voltages <-30
mV (see fig. C.1C, red curve after red full circle). For these voltages close to reversal potential
of GABA in MSNs (-60 mV), deviation from this reversal potential (driving force) and therefore
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GABAAR current is small; hence, voltage transient is almost not altered.

Instead, for short pre-before-post parings, delayed GABAAR current coincides with the peak of
voltage transient. For this reason, the driving force of GABA and GABAAR current are maximal.
Hence, the amplitude of voltage transient is noticeably decreased. With GHK, this lower voltage
decreases calcium influx via the major source, NMDAR (LTP is replaced by either LTP or if
calcium transient reduced further by no plasticity). More calcium for post-before-pre than for
pre-before-post pairings without GABA can be switched to less calcium for post-before-pre than
for pre-before-post; however, Hebbian STDP, can be only switched to LTD or no plasticity for
pre-before-post and LTD for post-before-pre because calcium amplitudes are decreased in the
model with GABA. Hebbian → anti-Hebbian switch can be achieved if one either decreases
plasticity thresholds with GABA signaling, or increases calcium currents (by increasing ξx

and permeabilities, see eq. 2.17;eq. 2.18). Currently, such a change to thresholds or calcium
currents is not supported experimentally. Therefore, I chose to use Ohm’s law approximation
to obtain calcium-dependence on ∆t corresponding to anti-Hebbian STDP. This choice can
be supported by the existence of the nano-domains of high calcium concentration (Higley and
Bernardo L. Sabatini 2008). If calcium concentration in proximity of NMDAR and TRPV1
is close to that outside the cell, then Ohm’s law approximation is valid. In recent modeling
study, Griffith, Tsaneva-Atanasova, and Mellor (2016) simulated calcium diffusion in a spine in
response to EPSP-bAP pairing. The calcium concentration in the nanodomain around NMDAR
was more than 20 times larger than the concentration of calcium averaged over spine volume
(see their Fig.1C). Whereas it is still not sufficient to make the local calcium concentration
comparable to that outside of the cell, it suggest the possibility of higher compartmentalization of
calcium concentration inside the spine. In their model, during EPSP-bAP pairing, high calcium
concentrations were contained in nanodomains around NMDARs and VSCCs (their Fig.1B).
Note that as in our model, they have used Ohm’s law approximation for NMDAR calcium
flux. This means that the EPSP-bAP triggered influx of extracellular calcium into NMDAR
nanodomain was lower than it would have been with GHK model. With GHK, therefore, the
difference between nanodomain concentration and the spine-volume averaged concentration could
have been even higher in their model. The higher the local concentration of calcium (the closer to
that outside of the cell) renders the Ohm’s law approximation more applicable. We currently lack
experimental data to directly support the idea of nanodomain calcium concentration comparable
to that outside the cell. However, regardless of the way anti-Hebbian STDP is achieved, what
matters for the calcium-controlled plasticity is calcium transients themselves; the way they
were generated is of less crucial importance for our work. Thus, even if the part of the model
generating calcium transients may turn out disputable, our modeling of plasticity downstream
calcium transients can be still correct.
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C.2 Preliminary work: a more realistic spiking

High jitter impairs regularity of both ∆t and period. Spike-trains in vivo can have impaired
periodicity (varied Inter Spike Interval, ISI), but individual spikes can still be well correlated
with output spikes (∆t is almost not impaired). These spike-trains can as well have low average
frequency over large time scales, altered with short periods of high-frequency spiking. This
situation can be partially modeled by using two delayed (with the delay ∆t) correlated Poisson
trains as pre- and postsynaptic spike trains. The degree at which periodicity is impaired can be
controlled if Poisson trains with refractory period are used. I simulated this situation with 200
pre- and postsynaptic homogeneous Poisson stimuli with expected frequency 0.5 Hz (expected
200 stimuli per 400-s-long stimulation). Pre- and postsynaptic spike trains were generated by
removing spikes from the same “parent” sample of Poisson process. The expected frequency of
the “parent” Poisson process was adjusted so that the expected frequency of the two “children”
processes was 0.5 Hz after spike removal. The percentage of shared spikes between presynaptic
Poisson spike train and ∆t-shifted postsynaptic one was taken as a measure of “correlation”
between the two trains. Let p be the probability of spike generation by “parent” Poisson at a
single time step of numerical simulation. To generate “child” process, I remove spikes from a
sample of “parent” process with probability, q. Then, the probability of finding a spike at a time
step in the “child” process will be p′ = p(1− q). The expected fraction of the shared pulses for
the two samples is given by R = (1− q)2, expected frequency is given by p′/h=0.5 Hz, where h
is the time step of numerical integration.

In this setting, the refractory period of the Poisson processes plays a crucial role since many of
the time intervals between two successive presynaptic spikes will be comparable to the refractory
period (by definition of a Poisson process). So when the refractory period is small, e.g. close to
the pre-post pairing, the time interval between two successive presynaptic spikes, say tn+1

pre − tnpre
will be of the same order as the spike timing defined as ∆t = tnpost − tnpre. If tnpre < tnpost < tn+1

pre (a
case that very frequently recurs), this definition of does not make much sense anymore since it
does not take into account the spike timing between tnpost and tn+1

pre . Yet this latter spike timing is
likely to be short enough to impact the synaptic weight if tn+1

pre − tnpre thus the refractory period
is short.

In these conditions, the outcome of plasticity is determined neither by the spike-timing (defined
as ∆t = tnpost − tnpre) nor by the correlation between the pre- and postsynaptic Poisson trains.
However, if the refractory period is larger or equal to 50 ms (at the time scale where CaMKII∗

and yCB1R almost do not depend on ∆t), STDP has pronounced dependence on ∆t even in the
case when only 10% of pre- and postsynaptic spikes overlap at each ∆t. These results suggest that
in order for timing-dependent plasticity to be functional in vivo, the distribution of inter-spike
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intervals (ISI) should be mostly contained in ISI>50 ms i.e. a frequency < 20 Hz. If this was
found in vivo, this would suggest that learning might rely on spike-timing dependent plasticity.
Moreover, modeling suggests that eCB-dependent plasticity, but not NMDAR-CaMKII-plasticity
determines the STDP outcome in these more realistic conditions: no matter what refractory
period (the degree of periodicity) was used (from highly irregular with 10 ms to close to periodic
with 200 ms), STDP outcome in these conditions was completely determined by eCB-dependent
presynaptic plasticity.

C.3 Experimental investigation of eCB-t-LTP regulation
by dopamine

In the lab of Laurent Venance, our collaborators investigated the regulation of eCB-STDP by
dopamine using experimental techniques including: Electrophysiology, Pharmacology, Lesioning,
Opto-Genetics.

C.3.1 Dopamine is required during for eCB-t-LTP induction with a
low number of pairings

Our experimental collaborators first examined whether eCB-t-LTP is affected in rat model of
Parkinson’s disease (hypodopaminergic rats). They performed unilateral lesion of the substantia
nigra pars compacta (SNc) - the main source of dopaminergic innervation in the basal ganglia -
by injecting 6-hydroxy-dopamine (6-OHDA). This treatment effectively destroys dopaminergic
fibers of the SNc that deliver dopamine to the cortico-striatal synapse. As a control, they used
sham-operated animals with saline injection. In adult sham-operated rats, 10 post-pre pairings
induced t-LTP that was impaired in 6-OHDA treated rats (fig. C.2A). In 6-OHDA treated rats,
t-LTP can be restored by treatment with dopamine precursor L-DOPA, a drug commonly used
to treat Parkinson’s disease (fig. C.2B). This restored t-LTP is CB1R-dependent since it is
prevented by CB1R blocker (fig. C.2B).

Our collaborators then used more direct optogenetic approach to test if dopamine was required
during the few pairings of the induction phase of eCB-t-LTP. During eCB-t-LTP induction
protocol, they performed selective opto-inhibition of dopaminergic neurons in mice expressing
archeorhodopsin-3 specifically in dopaminergic neurons (fig. C.3). In the protocol with 15
post-pre pairing, this opto-inhibition prevented the induction of t-LTP (fig. C.3B).

Therefore, eCB-t-LTP induction depends on dopamine during short stimulation and is impaired
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Figure C.2: eCB-t-LTP inducible with a low number of pairings is impaired when rat dopamine neurons are
lesioned by 6-OHDA. A. 10 post-pre pairings induced eCB-t-LTP in sham-operated rats (control) (n=9) while no
plasticity was observed in 6-OHDA-lesioned rats (n=9). B. Chronic L-DOPA treatment allowed to recover t-LTP
(n=7) induced with 10 post-pre pairings; the treatment consisted in twice daily injection of L-DOPA (10mg/kg)
for 10 days, two weeks after 6-OHDA lesion. The recovered t-LTP was CB1R-dependent since prevented by
CB1R blocker AM251 (3µM, n=6) in 6-OHDA-lesioned rats treated with L-DOPA.

in the rat model of Parkinson’s disease.

Figure C.3: Induction of eCB-LTP with a low number of pairings requires dopamine release during the STDP
paired-activity paradigm. A. Spontaneous firing of dopaminergic neurons recorded in cell-attached mode in
DAT-Cre+/- :: Arch3-GFP+/+ mice with and without light (left traces). B. 15 post-pre pairings induced t-LTP
(n=8) in DAT-Cre+/- :: Arch3-GFP+/- mice without opto-stimulation (LED Off), while opto-stimulation (LED
On) during STDP pairings prevents t-LTP induction (n=6). This illustrates that eCB-t-LTP requires DA release
during STDP pairings.

C.3.2 D2, but not D1 dopamine receptors are involved in eCB-t-LTP
induced by a low number of pairings

Our collaborators then asked which types of dopamine receptors are involved in the eCB-t-LTP
and where these receptors are located. In the dorsal striatum, the principal subtypes of dopamine
receptors are D1 and D2 receptors (Gerfen and Surmeier 2011). They first questioned which
dopaminergic receptor subtype was involved in eCB-t-LTP induced by 10 post-pre pairings.
A mixture of D1R and D2R antagonists efficiently prevented the induction of eCB-t-LTP
(fig. C.4A1). Block of D1R did not affect eCB-t-LTP, whereas blocking D2R prevented t-LTP
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(fig. C.4A2). They then compared dopamine-dependence of eCB-t-LTP induced by 10 post-pre
pairings to that of eCB-t-LTD induced by 100 pre-post pairings. Just like eCB-t-LTP, eCB-t-
LTD was prevented with mixture of D1R and D2R antagonists. Unlike eCB-t-LTP, however,
eCB-t-LTD was prevented by the block of D1R, but also by the block of D2R. Block of D2R
not simply prevented eCB-t-LTD, but replaced it with t-LTP (its dependence on pre- and
postsynaptic pathways remains unknown). Those experiments are summarized in tbl. 2.2 (see
main text).

Altogether these experiments indicate that eCB-t-LTP induced by a low number of post-pre
pairings is D2R-mediated but does not depend on D1R whereas eCB-t-LTD induced by 100
pre-post pairings is mediated by both D1R and D2R with unknown location.

Figure C.4: eCB-t-LTP is D2R-activation dependent (but not D1R) whereas eCB-t-LTD relies on both D1R-
and D2R. A. 10 post-pre pairings (-30<∆t<0ms) induced t-LTP is D2R-activation dependent. Summary of
STDP experiments showing that eCB-t-LTP induced with 10 post-pre pairings (n=10) is prevented with the
co-application of antagonists of D1R and D2R, SCH23390 (4µM) and sulpiride (10µM) (n=9) (A1), and with
the D2R antagonist, sulpiride (10µM, n=8) but t-LTP was left unaffected by the sole application of the D1R
antagonist, SCH23390 (4µM, n=9) (A2). B. t-LTD induced with 100 pre-post pairings (0<∆t<+30ms) is both
D1R- and D2R-activation dependent. Summary of STDP experiments showing that t-LTD induced with 100
pre-post pairings is replaced by t-LTP with a mixture of D1R and D2R antagonists, SCH23390 (4µM) and
sulpiride (10µM) (n=7) (B1) and impaired with either SCH23390 (4µM, n=8) or sulpiride (10µM, n=7) (B2);
moreover, with sulpiride the t-LTD is replaced by t-LTP.
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C.3.3 What is the location of D2R involved in eCB-t-LTP induced
by a low number of pairings?

Next, out collaborators aimed to reveal the location of D2R required for the induction of
eCB-t-LTP with 10 post-pre pairings. D2R are expressed at different locations in the striatum:
postsynaptically in D2R-expressing MSNs (Gerfen and Surmeier 2011; Calabresi et al. 2014) and
presynaptically in cholinergic interneurons (ChAT interneurons) (Hersch et al. 1995), nigrostriatal
dopaminergic neurons (Sesack, Aoki, and Pickel 1994) and glutamatergic cortical afferents (H.
Wang and Pickel 2002; Bamford et al. 2004) (fig. C.5A). To identify the D2R involved in the eCB-
t-LTP, they opted for the following strategy: they selectively genetically-ablated D2R-expressing
MSN (fig. C.5E) or cholinergic interneurons (fig. C.5D), selectively ablated dopaminergic cells
(fig. C.5B1 trace labeled 6-ODHA) in the medial forebrain bundle (MFB) and specifically
knocked-out the D2Rs expressed at cortico-striatal glutamatergic afferents, and then examined
if eCB-t-LTP could still be expressed.

They first questioned the postsynaptic localization of the D2R involved in eCB-t-LTP at the
level of the MSNs (fig. C.5C). Due to the segregation of expression of D1- and D2Rs among
MSNs in mice (D1R and D2R in MSNs of the direct and indirect pathways, respectively)(Gerfen
and Surmeier 2011; Calabresi et al. 2014), roughly half of the MSNs are expected to be D2R-
expressing neurons. If eCB-t-LTP is due to D2R-MSNs, one would expect to induce eCB-t-LTP
in ~50% of the (randomly chosen) recorded MSNs. This was not the case in the experiments of
our collaborators. Indeed, eCB-t-LTP was successfully induced in 83% (n=27) of the (randomly
chosen) recorded MSNs. To confirm that eCB-t-LTP is due to D2R-MSNs, they used transgenic
D1-eGFP mice to induce eCB-t-LTP specifically in D1-eGFP+ MSNs (D1-MSNs) or non-D1-
eGFP+ MSNs (D2-MSNs) (fig. C.5C). In both types of MSNs, t-LTP was observed (compare
fig. C.5C1 and C2) Therefore, postsynaptic D2Rs in MSNs are likely not involved in eCB-t-LTP.

To further test the involvement of the D2R-MSNs, they selectively ablated these neurons. To
do this, they expressed the diphteria toxin receptor (DTR) specifically in the D2R-expressing
MSNs by putting the DTR gene under the control of the A2AR promoter (the expression of
A2AR is specific to D2R-expressing MSNs). Injection of the diphtheria toxin in the striatum was
then used to ablate the D2R-expressing MSNs. With the ablation of D2R-MSNs, t-LTP was
still induced by 15 post-pre pairings (fig. C.5E). These results show that eCB-t-LTP does not
depend on postsynaptic D2R-activation but thus should rely on the activation of presynaptically
located D2R.

Using the same kind of genetic strategies, our collaborators then selectively ablated striatal
cholinergic interneurons to test if D2Rs on these neurons are involved in eCB-t-LTP (fig. C.5D).
With ablation of cholinergic interneurons, t-LTP was still induced by 15 post-pre pairing
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Figure C.5: eCB-t-LTP induced by a low number of pairings does not depend on D2R expressed by: MSNs
belonging to the indirect pathway, striatal cholinergic interneurons or nigro-striatal dopaminergic neurons. A.
Schematic view of the location of the D2Rs in striatum, which have been reported to be expressed in striato-nigral
MSNs, cholinergic interneurons, SNc dopaminergic and cortical glutamatergic afferents. B1. 10 post-pre pairings
induced t-LTP in sham-operated (n=7) rats whereas t-LTP was impaired in 6-OHDA-lesioned rats (n=7). B2.
In 6-OHDA-lesioned rats, t-LTP was rescued with a D2R agonist, quinpirole (10 µM, n=6). C. t-LTP induced
with 15 post-pre pairings is observed in both striato-nigral (D1R-eGFP positive neurons, D1R-eGFP+, n=6)
(C1) and striato-pallidal (D1R-eGFP negative neurons, non-D1R-eGFP+, n=7) (C2) MSNs. D. t-LTP was
induced with 15 post-pre pairings in mice with ablated cholinergic interneurons (ChAT-Cre+/- :: iDTR+/- mice).
t-LTP observed in ChAT-ablated mice was D2R-mediated because it was prevented with sulpiride (10 µM, n=6).
E. In mice in which D2R-expressing striatal neurons were ablated (A2A-Cre+/- :: iDTR+/- : Drd1a-GFP+/- mice
injected with diphteria toxin stereotaxically in the dorsal striatum) t-LTP was induced with 15 post-pre pairings
(n=7).
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(fig. C.5D). These results indicate that eCB-t-LTP does not depend on D2R-activation located
in cholinergic interneurons.

Taken together the results above suggest that among all possible locations of D2R that might be
implicated in eCB-t-LTP depicted at fig. C.5A, the only location left unexplored is terminals of
cortical afferents to MSNs (shown with orange circle at fig. C.5A). To check this last location,
our collaborators selectively knocked-out the D2Rs expressed at cortico-striatal glutamatergic.

In these knockouts, no t-LTP was observed with 15 post-pre pairings (fig. C.6). Instead, a
significant t-LTD was observed. These results indicate that eCB-t-LTP depends on the activation
of presynaptic D2R located on cortico-striatal pyramidal cells.

Figure C.6: eCB-t-LTP induced by a low number of pairings is dependent on D2R expressed by cortical pyramidal
cells. Experiments of plasticity expression in knock-out mice for D2Rs expressed at cortico-striatal glutamatergic
afferents. A. 15 post-pre pairings failed to induce significant t-LTP in D2Rf/f mice injected with AAV-cre-GFP
in somatosensory cerebral cortex (n=8). B. As a control, t-LTP was induced with 15 post-pre pairings in D2Rf/f

mice injected with AAV-GFP (n=5).
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