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Face recognition

With the increasing need for efficient security systems, many research investments have been made for recognizing and authenticating Chapitre 1. Introduction human subjects. Traditionally, there are two different methods to recognize/authenticate human subjects. The first method depends on what the user knows such as passwords, phone number, birth dates, etc. The problem with this method of authentication is that these information can easily be stolen or guessed.

The second method is based on the possession of a physical devise (e.g. RFID card). This device may be swiped or entered to allow access to a resource. The problem with this kind of authentication is that the device could be easily lost, stolen, or broken. These two authentication methods can be used in a complementary manner in order to obtain a high security as in the case of the credit card.

The biometric characteristics are an alternative solution to the two previous authentication methods. They enable reliable and efficient identity management systems since they are permanent, universal and easy to access. The use of biometric traits to control a subject's identity rather than passwords and tokens is more reliable to improve the security systems than controlling what he possesses or what he knows. Additionally, biometry-based procedures obviate to remember a PIN number or carry a badge.

Among the various human characteristics used in biometric systems, we can find iris, face, fingerprint, gait or DNA. The system constraints and requirements should be taken into account as well as the technical, social and ethical factors [START_REF] Introna | Facial recognition technology a survey of policy and implementation issues[END_REF]. For instance, while fingerprint is the most wide-spread biometric technique, it requires strong user collaboration. Similarly, iris recognition, although being very accurate, highly depends on the image quality and also requires active participation of the subjects.

Face recognition can be a good alternative compared to other biometric techniques. It became an active research area due to its favorable compromise between accessibility and reliability. It allows identification at relatively high distances of unaware subjects that do not have to cooperate. information of the user is stored by the system, which forms a database so-called Gallery. In the second phase, given a face to be recognized called probe, the system sorts all face gallery according to their similarity to the probe. 

Face recognition system design

Face recognition systems may process the probe sample either in "verification" or "identification" scenario. In the verification scenario, the probe is compared to the claimed template (one to one comparison) for validation and it is either accepted or rejected. In the identification scenario, it is compared to all reference faces in the gallery (one to many comparison) to answer the question of whom this face belongs to. 1.1. Face recognition

Performance evaluation of face recognition systems

Each scenario has its own set of performance metrics. In face verification, if the match score meets the threshold criteria, the identity claim is accepted, otherwise, it is rejected. This setting leads to four possible outcomes (see Figure1.4) :

1. True accept : The person is who he claims to be (genuine) and his claim is proved.

True reject :

The person is not who he claims to be (imposter) and his claim is disproved.

False accept :

The person is not who he claims to be and his claim is proved.

False reject :

The person is who he claims to be and his claim is disproved.

Threshold based decisions always introduce a tradeoff to be considered.

In [START_REF] Phillips | Face recognition vendor test 2002. Dans Analysis and Modeling of Faces and Gestures[END_REF], it was demonstrated that using 2D intensity or color images, a recognition rate higher than 90% could be achieved under controlled variations. However, with the introduction of aforementioned variations, the performances deteriorated [START_REF] Al-Osaimi | Spatially optimized data-level fusion of texture and shape for face recognition[END_REF][START_REF] Ocegueda | 3d face discriminant analysis using gauss-markov posterior marginals[END_REF][START_REF] Tang | 3d face recognition using local binary patterns[END_REF][START_REF] Petrovska-Delacrétaz | The iv 2 multimodal biometric database (including iris, 2d, 3d, stereoscopic, and talking face data), and the iv 2-2007 evaluation campaign[END_REF].

After the availability of 3D scanners and 3D face databases, many researchers focused their energies toward 3D face recognition in order to utilize the more precise information associated with a 3D facial shape [START_REF] Bowyer | A survey of approaches and challenges in 3d and multi-modal 3d+ 2d face recognition[END_REF][START_REF] Mohammadzade | Iterative closest normal point for 3d face recognition[END_REF], Zhao et al. 2011).

Indeed, 3D model retains all the information about the face geometry. Moreover, 3D face recognition also growths to be a further evolution of 2D recognition problem, because a more accurate representation of the facial 1.2. Facial expression recognition features leads to a potentially higher discriminating power [START_REF] Abate | 2d and 3d face recognition : A survey[END_REF]. In a 3D face model, facial features are represented by local and global curvatures that can be considered as the real signature identifying persons. The 3D facial representation seems to be a promising tool to deal with many of the human face variations such as illumination [START_REF] Al-Osaimi | Spatially optimized data-level fusion of texture and shape for face recognition[END_REF][START_REF] Smeets | Bibliography 129 Objective 3d face recognition : Evolution, approaches and challenges[END_REF]) and pose changes [START_REF] Ocegueda | 3d face discriminant analysis using gauss-markov posterior marginals[END_REF].

Various 3D based methods have been proposed in the literature to tackle the problem of 3D face recognition. Indeed, some methods perform very well only on faces with controlled environment where pose, illumination and other factors are controlled. Some others try also to deal with the different face variations.

The first aim of this thesis is to propose a 3D face recognition method that is robust under the different variations.

Facial expression recognition

Closely related topic to face recognition is the automatic facial expression recognition which has attracted much attention from behavioral scientists since the work of [START_REF] Darwin | The expression of the emotions in man and animals[END_REF]. [START_REF] Ekman | Constants across cultures in the face and emotion[END_REF] anger, fear, disgust, sadness, happiness, surprise. [START_REF] Plutchik | Emotions and life : Perspectives from psychology, biology, and evolution[END_REF] acceptation, anger, anticipation, disgust, fear, happy, sad, surprise. [START_REF] Tomkins | Affect imagery consciousness : Volume I : The positive affects[END_REF] anger, interest, contempt, disgust, anxiety, fear, happy, shame, surprise. [START_REF] James | What is an emotion ?[END_REF] fear, grief, love, rage.

Psychologist Categories of emotions

Table 1.1 -Emotion categories.

Figure 1.5 -Sources of Facial Expressions [START_REF] Fasel | Automatic facial expression analysis : a survey[END_REF].

Based on this finding, facial expressions have been studied by clinical and social psychologists, medical practitioners. Recently, with the advances in computer graphics, computer vision and robotics, it has become a worthwhile topic to study in computer sciences especially for human computer interaction (HCI) systems [START_REF] Liu | New research advances of facial expression recognition[END_REF]). Among the aforementioned groups of emotions, human computer interaction research community is focusing on recognizing the six basic expressions defined by [START_REF] Ekman | Constants across cultures in the face and emotion[END_REF].

Facial expression data as well as face data exhibit large inter-class and intra-class variations which make the FER a difficult task. The second aim of this thesis is to propose a 3D FER system that efficiently classifies the six prototypical expressions regardless to their identity. Main contributions of the thesis are summarized below.

Chapitre 1. Introduction

Original contribution

The two main contributions conducted in this PhD thesis involve : Hilbert space, which make the conventional computer vision and machine learning algorithms applicable, we applied Gaussian kernel on Sym + d by replacing Euclidean distance by a proper geodesic distance on manifold. Since in our framework, covariance matrices are considered as unordered set of descriptors, therefore we used a kernel on sets rather than directly 1.3. Original contribution using Gaussian kernel in the SVM classifier. For this end, we build a global kernel function so that one can compare two facial expressions by using the covariance descriptors. The proposed 3D FER method have been assessed on two challenging datasets including Bosphorus and BU-3DFE datasets.

3D
The rest of this manuscript is laid out as follows :

In chapter 2, we first present the state-of-the-art of 3D face analysis including the existing methods proposed to tackle the the problem of face recognition under different variations (e.g. expression, pose, occlusions).

Second, we review the state-of-the-art methods for 3D facial expression recognition.

In chapter 3 we present the covariance based method proposed to tackle the problem of 3D face recognition under different variations.

Chapter 4 is dedicated to the proposed 3D facial expression recognition method. This method uses kernel methods on Riemannian manifold in order to classify the six prototypical facial expressions.

Chapter 5 summarizes the main contribution results of our thesis, and gives possible future directions. 

Introduction

Face recognition is the most commonly used biometric technique, it has moved to the forefront by offering a good compromise between effectiveness and acceptability. Besides being non-invasive and natural, it holds the promise of recognition at a distance without the cooperation or knowledge of the subject. In a typical face recognition system, given an image, Chapitre 2. 3D Face analysis-State of the art firstly, face is detected and segmented from the background. Next, several landmarks are localized and used in the next steps. This is followed by features extraction and finally the matching process to compare faces. Figure 2.1 presents an overview of the face recognition system. Since the first face recognition system has been presented in 1973 by [START_REF] Kanade | Picture processing by computer complex and recognition of human faces[END_REF], it has become a very popular area in computer vision on account of rapid advancements in image capture devices, increased computational power and large variety of its applications. With the increasing popularity, face recognition systems reached recognition rates greater than 80% in constrained situations even exceeding human performance, especially in the case of very large galleries. However, Face Recognition Vendor Test [START_REF] Phillips | Face recognition vendor test 2002. Dans Analysis and Modeling of Faces and Gestures[END_REF] found that in real world scenarios where face images can include a wide range of variations, performances degrade very rapidly. As of those variations, we find principally illumination, pose, expression, occlusion and age. Pose and illumination variations are two major sources of degradation in recognition performances. As the pose of a subject or direction of illumination deviates from the frontal, it often causes face image differences that are larger than what conventional face recognition can tolerate.

Extensive efforts have been put to achieve pose/illumination invariant face recognition. Facial shape deformation caused by expression variation is also a grand challenge in face recognition systems.

Facial expressions form a significant part of our nonverbal communications, and understanding them is essential for many applications such as human-computer interaction (HCI), interactive games, computer-based learning, entertainment, etc. The most used expressions are : Happiness, Angry, Disgust, Sadness, Surprise and Fear. In order to build human-like emotionally intelligent HCI devices, researchers are trying to include emotional state in such systems.

The recent development of 3D acquisition sensors has made 3D data more available, and this kind of data comes to alleviate the problems inherent in 2D data such as illumination, pose and scale variations as well as low resolution. 3D face datasets become more and more available, providing the worldwide researchers of face and facial expression recognition community a large scale data for training and evaluating their approaches. In the following, we present the two modes of 3D face data acquisition and different 3D face representations. Next, we review some well-know 3D face datasets and the 3D face preprocessing and alignment steps. [START_REF] Jarvis | Three-dimensional object recognition systems[END_REF], Huang et al. 2003). Two methods for stereo reconstruction algorithms have been also used : photometric stereo [START_REF] Woodham | Photometric method for determining surface orientation from multiple images[END_REF], and multiview stereo [START_REF] Seitz | A comparison and evaluation of multi-view stereo reconstruction algorithms[END_REF][START_REF] Beeler | High-quality single-shot capture of facial geometry[END_REF], Yin et al. 2008[START_REF] Benedikt | Assessing the uniqueness and permanence of facial actions for use in biometric applications[END_REF]. Each technique has its own advantages, limitations and cost. These techniques are used to create 3D point clouds, sampled from the surface of the subject and they can be classified mainly into two types : non-contact scanners which don't require the physical participation of the subject, they can be further divided as passive and active sensors. Contact scanners on the other hand detect the range through physical touch. These scanners are out of our scope due to the inability of utilization in face recognition field. Passive and active range scanning technologies will be described in the following.

-Passive sensing : inspired by human visual system, a number of passive cues have long been known to contain information on 3D face such as shading, perspective, focus, stereo, motion parallax, Chapitre 2. 3D Face analysis-State of the art occluding contours, etc. Assuming that the sensor simply records light that already exists in the scene, 3D scene description is derived from 2D images by analyzing the reflectance proprieties. Main advantages of passive techniques include their ability to recognize non-cooperative persons at a distance. 3D face model is generated from sequence of images and utilized in person identification at 3, 6 meters by [START_REF] Medioni | Non-cooperative persons identification at a distance with 3d face modeling[END_REF]. In [START_REF] Rara | Distant face recognition based on sparse-stereo reconstruction[END_REF], authors have proposed a framework for face recognition at 15 meters based on sparse-stereo reconstruction. The setup consists of a stereo pair of high resolution cameras with adjustable baseline where user can pan, tilt, zoom and focus the cameras to converge the center of the cameras field of views on the subject's nose tip.

Although these advantages, these techniques have a limitation of uniform appearance resulting in low-accuracy reconstruction in their application to faces. In addition, the ambient light (i.e. combination of light reflections from various surfaces to produce a uniform illumination) affects significantly the ability of the system to successfully extract all the desired features unless controlled lighting is used. To overcome the limitations on accuracy, model-based approaches have been proposed in [START_REF] Zhang | Robust and rapid generation of animated faces from video images : A model-based modeling approach[END_REF][START_REF] Fua | Regularized bundle-adjustment to model heads from image sequences without calibration data[END_REF] to constrain face reconstruction in regions of uniform appearance.

Moreover, in order to overcome limitations of uniform appearance of the face allowing accurate reconstruction, active sensing has become widely used for acquisition of face shape due to the increases in digital camera resolution (Kittler et al. 2005).

-Active sensing : various technologies have been proposed which utilize some kind of emission such as laser, infrared structured, Under uncontrolled illumination conditions (i.e. outdoors), active sensor systems suffer from the background lighting problem which can make the projected pattern less visible and cause loss of accuracy. Nevertheless, these systems are more robust when dealing with controlled illumination conditions (i.e. indoors). Moreover, for environments without direct sunlight, 3D data construction of the scene can be achieved within seconds with very high reliability and accuracy [START_REF] El-Hakim | Comparative evaluation of the performance of passive and active 3d vision systems[END_REF].

3D face representations

In this section, we present the main surface representations for 3D face which could be inter-convertible.

-Point cloud representation is the simplest form to represent 3D facial surface. It contains a collection of unstructured coordinates denoted by x, y, z [START_REF] Pears | 3D imaging, analysis and applications[END_REF]. Most of the scanners use this representation in order to store the captured 3D facial information. Sometimes texture attributes are also concatenated to the shape information. In this case, the representation simply becomes x, y, z, p, q, where p and q are spatial coordinates. The disadvantage of this representation is that the neighborhood information is not available as each point is simply expressed as three/five attribute coordinates vector [START_REF] Gokberk | Representation plurality and fusion for 3-d face recognition[END_REF]. Often the point cloud data is fitted to a smooth surface to avoid drastic variations due to noise. -3D Mesh representation uses pre-computed and indexed local information about the 3D surface. It requires more memory and storage space than point cloud representation, but it is more preferred as it is flexible and more suitable for 3D geometric transformations such as translation, rotations and scaling. Each 3D polygonal mesh is expressed as a collection of mesh elements : vertices (points), edges (connectors between vertices) and polygons (shapes formed by edges and vertices). Different methods have been introduced to build a polygonal mesh from point cloud using PCA in [START_REF] Xu | A new attempt to face recognition using 3d eigenfaces[END_REF], and medial axis transform approximation [START_REF] Amenta | The power crust[END_REF]. -Depth image representation is also called 2.5D or range image representations [START_REF] Bowyer | A survey of approaches and challenges in 3d and multi-modal 3d+ 2d face recognition[END_REF]. 2.5D images are a conventional 2D representation, nevertheless, pixels represent the distance between the camera and the observed object. Since it is a 2D representation, many existing 2D image processing approaches can readily be applied to this representation. Datasets description Most of the well-known 3D face datasets were collected using laser-based sensors.

-The BU-3DFE dataset [START_REF] Yin | A 3d facial expression database for facial behavior research. Dans Automatic face and gesture recognition[END_REF]) contains 3D face scans and associated texture images of 100 subjects, displaying six prototypical expressions (anger (AN), disgust (DI), fear (FE), happiness (HA), sadness (SA), and surprise (SU)) at four different intensity levels.

A neutral expressive face for each subject is also provided in the dataset. Thus there are a total of 2500 3D faces. The resolution of the 3D models is comprised between 20,000 and 35,000 polygons, depending on the size of the subject's face. Moreover, scans were accompanied by a set of metadata including the position of 83 facial feature points on each facial model, as depicted in Figure 2.3.

Examples of 3D faces from this dataset can be seen in Figure 2.5.

-The GAVAB dataset [START_REF] Moreno | Gavabdb : a 3d face database[END_REF] -The FRGCv2 database [START_REF] Phillips | Overview of the face recognition grand challenge. Dans Computer vision and pattern recognition[END_REF] We present in Table 2.1 a description of the aforementioned datasets and their characteristics. (Right). A triangle is formed by the probe point and the two intersection points. The probe point with the largest altitude h of its associated triangle along the profile is considered to be a nosetip candidate. Other nose tip detection methods can be found in [START_REF] Chew | Nose tip detection on a three-dimensional face range image invariant to head pose[END_REF][START_REF] Segundo | Automatic 3d facial segmentation and landmark detection[END_REF][START_REF] Colombo | 3d face detection using curvature analysis[END_REF][START_REF] Xu | Combining local features for robust nose location in 3d facial data[END_REF].

Holes are parts of missing data which the sensor couldn't capture because of undesired objects such as eyebrows, hand, hair, etc. In order to recover these holes, two solutions can be applied, interpolation techniques or using facial symmetry. To deal with small holes, linear interpolation can be sufficient, otherwise, cubic interpolation is more accurate. Facial symmetry is also used to recover large holes using the nonoccluded side of the face. For example, [START_REF] Colombo | Threedimensional occlusion detection and restoration of partially occluded faces[END_REF] proposed a detection and restoration strategy for the recognition of three dimensional faces partially occluded by external objects. They considered any part of the acquired 3D scene that does not look like part of a face and lies between the acquisition device and the acquired face to be a generic occlusion (i.e. hole). Restoration of occluded regions exploits the information provided by the non-occluded part of the face to recover the whole face, using an appropriate basis for the space in which non-occluded faces lie.

The cropped data can also be affected by noise caused by imaging conditions such as illumination and surface texture. This noise can be removed using median filter. The basic idea of the median filtering consists of simultaneous replacing every pixel of an image with the median of the pixels contained in a window around the pixel [START_REF] Yagou | Mesh smoothing via mean and median filtering applied to face normals[END_REF].

Once 3D face has been preprocessed, the next step is to deal with pose differences. Since faces can be captured with different poses, their comparison become difficult and thus, it needs alignment step.

Iterative Closest Point (ICP) algorithm [START_REF] Besl | Method for registration of 3-d shapes[END_REF][START_REF] Chen | Object modeling by registration of multiple range images[END_REF][START_REF] Zhang | Iterative point matching for registration of free-form curves and surfaces[END_REF]) is mostly used to find correspondences between two 3D shapes and align them. However, when the pose difference is high, a good initialization is required to avoid local minimum.

(DI) (HA) (SA) (SU) (AN) (FE)
Figure 2.5 -Face expressions from BU-3DFE dataset for the same subject. 3D textured models in first row and 3D shape models in second row. In the following, we introduce 3D face challenges and the existing methods proposed to address these issues.

Challenges of 3D face recognition

When acquired in non-controlled conditions, scan data are often affected by many factors : pose expression, occlusion, illumination, weather and so on. In the following we briefly describe these variations.

Expression challenge

Facial expression variations are reported as one of the main challenges 

Partial occlusion and pose challenges

Occlusion Variation means that only partial faces are available which also degrade the face recognition performance. These occlusions can be classified into two categories :

-External occlusions : caused by the non-availability of 3D facial data due to external objects such as sunglasses, hats, eyeglasses, or face may be partially covered by hair, or parts of cheeks due to a bad angle for laser reflection and other undesired regions. Figure 2.11 presents partial occlusions for 3D faces from Bosphorus dataset.

-Internal occlusion : for a non-frontal pose of the subject, some parts of the face may not be captured during the scan. These results in missing data are referred to as internal occlusion. Figure 2.9 presents right and left profile scan from GAVAB dataset. 

3D face features

In order to address the aforementioned challenges, various methods have been proposed in the literature to efficiently describe faces. A 3D face model captures geometrical information of the facial surface. Various shape related features can thus be extracted from 3D face models such as : normals, binormals, tangent vectors or curvatures, all of which describe shape variations over local patches inspired by differential geometry of 3D surfaces. Therefore, different features have been extracted to deal with the facial variations. We classify them according to the challenge to be handled. 

Expression-invariant features

Pose-invariant and partial occlusion invariant features

In order to handle partial occlusion problem, authors in (Drira et al. 

Similarity comparison

In order to measure the dissimilarity between 3D faces, various methods apply matching between their probe and gallery features using different metrics. Authors in [START_REF] Zhang | 3d face recognition based on multiple keypoint descriptors and sparse representation[END_REF] proposed to use multiple keypoint descriptors (MKD) and the sparse representation-based classification (SRC). Each 3D face scan is represented as a set of descriptor vectors extracted from keypoints by meshSIFT. Descriptor vectors of gallery samples form the gallery dictionary. Given a probe 3D face scan, its descriptors are extracted at first and then its identity can be determined by using a multitask SRC. The proposed approach does not require a prealignment between two face scans and is quite robust to the problems of missing data, occlusions and expressions.

In order to reduce large storage space and expensive computational cost in developing 3D face matching, [START_REF] Yu | Sparse 3d directional vertices vs continuous 3d curves : Efficient 3d surface matching and its application for single model face recognition[END_REF] proposed a 3D directional vertices approach to represent and match 3D face surfaces by much fewer sparsely distributed vertices. To do so, authors extracted ridge and valley curves on a 3D surface along which the surface bends sharply.

The recognition accuracy of the proposed method gives higher recognition performance compared to benchmark method presented in Mahoor et [START_REF] Mahoor | Face recognition based on 3d ridge images obtained from range data[END_REF].

Other methods extract landmarks from the face surface, which are less sensitive to expression variation. To compute the similarity between faces, they apply matching between the extracted landmarks. Although ICP is a powerful estimation tool of the similarity between two faces, it has a serious drawback. ICP-based methods treat the 3D shape of the face as a rigid object so they are not able to handle changes in expression [START_REF] Abate | 2d and 3d face recognition : A survey[END_REF]).

Discussion

Although local features have proved a good accuracy for face description, they have several limitations. For instance, 3D faces often exhibit large inter-class and intra-class variability that cannot be captured with a single feature type. This triggers the need for combining different modalities or feature types. However, different shape features often have different dimensions, scales and variation range, which makes their aggregation difficult without normalizing or using blending weights.

The main challenge is to build a 3D face recognition system robust against the several variations such as expression, pose, illumination, occlusion and other disruptions. This allows maximizing inter-class variations and minimizing intra-class variations. The expressions are textually defined by [START_REF] Pandzic | Mpeg-4 facial animation. The standard, implementation and applications[END_REF] as shown in Table 2.2. Analyzing the expression of a human face requires a number of steps, the main two steps are :

-Facial feature extraction and selection : discriminative features are extracted and used to describe the facial expression. These features should be robust against the different variations such as illumination and pose. This step can be followed by a feature selection phase in order to choose relevant features to construct the model.

The selected features will then feed a classifier in the next step.

-Facial expression recognition : the most used techniques are machine learning classifiers in order to accurately distinguish between the expressions.

Figure 2.15 presents the general FER system.

Figure 2.15 -General FER system.

Expression classification challenge

The recognition of facial expressions has attracted a great amount of researchers in the past decade. Detailed surveys of previous work can be found in [START_REF] Fang | 3d facial expression recognition : A perspective on promises and challenges[END_REF][START_REF] Spreeuwers | Fast and accurate 3d face recognition using registration to an intrinsic coordinate system and fusion of multiple region[END_REF][START_REF] Zeng | A survey of affect recognition methods : Audio, visual, and spontaneous expressions[END_REF][START_REF] Sandbach | Static and dynamic 3d facial expression recognition : A comprehensive survey[END_REF][START_REF] Shan | Facial expression recognition based on local binary patterns : A comprehensive study[END_REF][START_REF] Tian | Handbook of face recognition, chapter facial expression analysis[END_REF]. Most of these previous works were developed for 2D data (Fasel et 

Expression Textual Description

Neutral All face muscles are relaxed. Eyelids are tangent to the iris. The mouth is closed and lips are in contact.

Anger

The inner eyebrows are pulled downward and together. The eyes are wide open. The lips are pressed against each other or opened to expose the teeth.

Sadness

The inner eyebrows are bent upward. The eyes are slightly closed. The mouth is relaxed.

Surprise

The eyebrows are raised. The upper eyelids are wide open, he lower relaxed. The jaw is opened.

Hapiness

The eyebrows are relaxed. The mouth is open and the mouth corners pulled back toward the ears.

Disgust

The eyebrows and eyelids are relaxed. The upper lip is raised and curled, often asymmetrically.

Fear

The eyebrows are raised and pulled together. The inner eyebrows are bent upward. The eyes are tense and alert. 

3D FER methods

Various methods have been proposed to analyze 3D FER to distinguish between the six prototypical expressions and AUs. We can classify them according to the used features into four categories as follows :

Distance-based features

Distance-based-features is one of the most known features used for 3D 

Patch-based features

The second category of 3D FER methods extract features on patches.

it has also been widely used in expression recognition systems. They are used to capture information about the shape of the face over a small local region around either every point in the mesh, or around landmarks or feature points. [START_REF] Wang | 3d facial expression recognition based on primitive surface feature distribution[END_REF] computed a set of parameters for a smooth polynomial patch fitted to the local surface at each point in the mesh, which were subsequently used as inputs to rules that allowed the labeling of the surface at each point with primitives defining the type of curvature feature. intensity and range value. These patches have then been compared to reference models representing the six prototypical expressions using ICP.

In [START_REF] Derkach | Local shape spectrum analysis for 3d facial expression recognition[END_REF], authors proposed spectral methods as local shape descriptors. To do so, they proposed the use of Graph Laplacian features which result from the projection of local surface patches into a common basis obtained from the Graph Laplacian eigenspace as presented in Figure2.17.

Morphable models

The morphable models vary their shape in accordance with an unknown facial shape. They are also known as deformable models. Another Chapitre 2. 3D Face analysis-State of the art

Discussion

Conclusion

In this chapter, we first presented the 3D face acquisition techniques, the different 3D facial surface representations, and some available 3D face datasets. Second, we presented the different challenges of 3D face recognition which destruct the recognition performance so called variations (e.g. expression, pose, partial occlusion, etc). To alleviate these issues, various methods have been proposed, we reviewed the state-of-the-art methods proposed to handle these variations. Next, we introduced the limitation of the existing approaches for 3D face recognition.

We also presented the challenge of 3D facial expression recognition and we review the most interesting state-of-the-art methods proposed to tackle this problem. In this survey, we made the choice to categorize existing approaches according to the used features into four categories : distance based, patch based, morphable models and 2D based features. Finally, we discussed the limitations of the the existing methods to deal with the large inter-class and intra-class variabilities of the facial expressions.

In the next chapters, we present our proposed method to handle these issues and to efficiently combine heterogeneous features to construct a robust 3D face/facial expression recognition system.

Chapitre 3. 3D Face Recognition Using Covariance Based Descriptors descriptors enable the fusion and the encoding of different types of features and modalities into a compact representation. The covariance descriptors are symmetric positive definite matrices which can be viewed as an inner product on the tangent space of (Sym + d ) the manifold of Symmetric Positive Definite (SPD) matrices. In this chapter, we study geodesic distances on the Sym + d manifold and use them as metrics for 3D face matching and recognition. We evaluate the performance of the proposed method on three well-known datasets including the FRGCv2, the GAVAB and the BU-3DFE datasets and demonstrate its superiority compared to other state-of-the-art methods in both identification and verification scenarios.

The reminder of this chapter is organized as follows. First, we present in Section 3.1 the covariance descriptors for 3D face recognition as well as the space of SPD matrices. In Section 3.2, the distance metrics used to compare covariance matrices as dissimilarity measure between 3D faces are reviewed. In Section 3.3, we present the two matching strategies applied in our proposed method to compare faces. Experimental results and comparative evaluation obtained on three well-known datasets are reported and discussed in Section 3.4. Hierarchical covariance description is presented in Section 3.5. Finally, conclusions are given in Section 3.6. This chapter explores the usage of covariance matrices of features as discriminant representation for 3D face recognition problems. Our idea is to represent a 3D face with a set of m landmarks selected from its surface.

Each landmark has a region of influence, which we characterize by the covariance of its geometric features instead of directly using the features themselves. These features, each of which captures some properties of the local geometry, can be of different type, dimension or scale. Covariance matrices provide a mean for their aggregation into a compact representation, which is then used for computing distances between 3D faces.

Covariance features extraction : Given a probe face (face to be recognized) F 1 and a gallery face (face in the database) F 0 , we uniformly sample m feature points {p 1 , . . . , p m } from the gallery F 0 . The m feature points of F 0 are the center of m patches of radius r, and form a paving of the face. We then align F 1 and F 0 by a coarse and fine registration using the Iterative Closest Point (ICP) [START_REF] Besl | Method for registration of 3-d shapes[END_REF][START_REF] Chen | Object modeling by registration of multiple range images[END_REF][START_REF] Zhang | Iterative point matching for registration of free-form curves and surfaces[END_REF]. After that, we select, from F 1 , N ≤ m feature points {q 1 , . . . , q N }, which are closest enough to the m points of F 0 . In order to do so, we define a distance threshold δ = 0.1r, and for each point p i , we select its closest point q i in the probe F 1 . The point q i is considered as a probe feature point only if the Euclidean distance p iq i < δ. The selected feature points q j are the centers of the N patches in the probe face, and are used to com-Chapitre 3. 3D Face Recognition Using Covariance Based Descriptors pute the similarity between F 0 and F 1 . Figure 3.1 presents gallery feature points, and their respective extracted probe features points (in green). The probe is a left profile face after alignment which contains an occluded part.

Red feature points on the occluded part are then ignored in the covariance description. Around each feature point, we extract a set of patches P = {P i , i = 1 . . . N} from a 3D face. Each patch P i defines a region around a feature point p i = (x i , y i , z i ) t . For each point p j in P i , we compute a feature vector f j , of dimension d, which encodes the local geometric and spatial properties of the point. In our implementation, we considered the following feature vector :

f j = x j , y j , z j , k 1 , k 2 , D j (3.1)
Where :

x j , y j and z j are the three-dimensional coordinates of the point p j .

k 1 and k 2 are respectively the min and max principal curvatures.

-D j is the distance of p j from the origin defined by x 2 j + y 2 j + z 2 j .

We characterize each face patch by the covariance matrix X i :

X i = 1 n n ∑ j=1 ( f j -µ)( f j -µ) T (3.2)
Where µ is the mean of the feature vectors f j j=1...n computed in the patch P i , and n is the number of points in P i . The diagonal entries of X i represent the variance of each feature and the non-diagonal entries represent their respective co-variations. Using covariance matrices as a region descriptors has several advantages, such as the ability of efficiently combining multiple features into a single descriptor and the invariance with respect to the ordering of points and number of feature vectors used for their computation. The size of covariance matrices does not depend on the size of the region from which they were extracted, but of the size of feature vectors, therefore, they can be computed from variable sized regions. Furthermore, covariance matrices are low dimensional compared to joint feature histograms.

An important aspect to consider is that building covariance-based descriptors requires local features that are correlated to each other otherwise covariance matrices become diagonal and will not provide additional benefits compared to using the individual features. Therefore, the parameters selected in the feature vector f j need to be carefully selected, and could vary from one database to another. In Section 3.4, we have performed extensive performance simulations on two databases in order to select the best collection of parameters among the six which are defined in Equation (3.1).

Covariance matrices, however, lie on the manifold of Symmetric Positive Definite (SPD) tensors (Sym + d ). Therefore, matching with covariance matrices requires the computation of geodesic distances on the manifold using proper metrics. Several geodesic distances on the Sym + d manifold have been studied.

Once we have chosen the appropriate metric, the next step is to establish covariance matches between 3D faces and compute a global similarity measure. Two different strategies are proposed. The first strategy is to compute optimal match using a Hungarian solution for matching unordered set of covariance matrices. The total cost of matching is used as a Chapitre 3. 3D Face Recognition Using Covariance Based Descriptors measure of dissimilarity between the pair of 3D faces. The second strategy is to compute a mean distance by integrating the chosen metric over the pairs of homologous regions, after spatial registration of the 3D faces. The space of SPD matrices : Let M = Sym + d be the space of all d × d symmetric positive definite matrices and thus non-singular covariance matrices. Sym + d is a non-linear Riemannian manifold, i.e. a differentiable manifold in which each tangent space T X at X has an inner product •, • X∈M that smoothly varies from point to point. The inner product induces a norm for the tangent vectors y ∈ T X such that y 2 = y, y X . The shortest curve connecting two points X and Y on the manifold is called a geodesic.

The length d(X, Y) of the geodesic between X and Y is a proper metric that measures the dissimilarity between the covariance matrices X and Y.

Let y ∈ T X and X ∈ M. There exists a unique geodesic starting at X and shooting in the direction of the tangent vector y. The exponential map exp X : T X → M maps elements y on the tangent space T X to points Y on the manifold M. The length of the geodesic connecting X to Y is given by d(X, exp X (y)) = y X . Figure 3.2 depicts an example of two-dimensional manifold embedded in R 3 . 

Distances between covariance matrices

The space of covariance matrices M = Sym + d is a special type of homogeneous space which carries a natural Riemannian structure. More precisely, following the classification given in [START_REF] Moakher | A differential geometric approach to the geometric mean of symmetric positive-definite matrices[END_REF], M is the Riemannian global symmetric space associated with the Lie algebra. Therefore, we can define a geodesic in the Riemannian space M, or equivalently the space of Hermitian forms, as the shortest curve on M, under the well chosen Riemannain metric or inner product, between two elements of the space M. Since 3D face recognition task only requires a notion of distance between points on the manifold M, we investigate in this chapter the computation using geodesic and non-geodesic distances as a comparative study.

Geodesic distances

In this section, we present the mathematical proprieties of three wellknwon geodesic distances which we used to compare covariance matrices.

The affine-invariant distance

The Riemannian metric of the tangent space T X at a point X is given as y, z X = trace X -1 2 yX -1 zX -1 2 . The exponential map associated to the Riemannian metric exp X

(y) = X 1 2 exp X -1 2 yX -1 2 X 1 2 is a global
diffeomorphism (a one-to-one, onto, and continuously differentiable mapping in both directions). Thus, its inverse is uniquely defined at every point on the manifold : log

X (Y) = X 1 2 log X -1 2 YX -1 2 X 1 2 .
The symbols exp and log are the ordinary matrix exponential and logarithm operators, while exp X and log X are manifold-specific operators, which depend on the point X ∈ Sym + d . The tangent space of Sym + d is the space of d × d symmetric matrices and both the manifold and the tangent spaces are of dimension m = d(d + 1)/2. For symmetric matrices, the ordinary matrix exponential and loga-3.2. Distances between covariance matrices 53 rithm operators can be computed in the following way. Let X = UDU T be the eigenvalue decomposition of the symmetric matrix X. The exponential series is defined as : exp

(X) = ∑ ∞ k=0 X k k! = U exp (D) U T
, where exp (D) is the diagonal matrix of the eigenvalue exponentials. Similarly, the logarithm is given by log

(X) = ∑ ∞ k=1 -1 k-1 k (X -I) k = U log (D) U T .
The exponential operator is always defined, whereas the logarithms only exist for symmetric matrices with strictly positive eigenvalues. The geodesic distance between two points on Sym + d is then given by :

d 2 ainv (X, Y) = log X (Y) , log X (Y) X = trace log 2 X -1 2 YX -1 2 (3.3)

Log Determinant distance

From equation 3.3, it is apparent that computing the geodesic distance can be unattractive as it requires eigenvalue computations or sometimes even matrix logarithms, which for larger matrices causes significant slowdowns. For an application that must repeatedly compute distances between numerous pairs of matrices this computational burden can be excessive [START_REF] Cherian | Efficient similarity search for covariance matrices via the jensenbregman logdet divergence[END_REF]. Driven by such computational concerns, Cherian 

d ld (X, Y) = log det X + Y 2 - 1 2 log(det(X.Y)) (3.4)
It is easy to see that d ld is symmetric, non-negative, and definite. Moreover, it is invariant under congruence transformations, (d ld (AXA T , AYA T ) = d ld (X, Y) for invertible A), and under inversion

(d ld (X, Y) = d ld (X -1 , Y -1
).

Log Euclidean distance

The log-Euclidean framework [START_REF] Arsigny | Logeuclidean metrics for fast and simple calculus on diffusion tensors[END_REF] by : d(X, Y) = mlog(X)mlog(Y) I = log(X)log(Y) I where I is the norm induced by , . Note that here mlog I is the inverse-exponential map at the identity matrix which is equal to the usual matrix logarithm in this case.

To compare SPD matrices there are many other distances that can be used.

Other distances

In this section we present other distances which have been proposed

to compare covariance matrices.

Alpha divergence distance

Geometry and various divergence functions mostly related to Alphadivergence through a unified approach based on convex functions, One of 

d α (P, Q) = 4 (1 -α 2 ) log det( 1-α 2 P + 1+α 2 Q) det(P) (1-α) 2 det(Q) (1+α) 2 (3.5)
where P and Q are two unnormalized distributions and α ∈ (-∞, +∞)

α-divergence is zero if p = q and positive otherwise, As α approaches 0, α-divergence specializes to Kullback-Leibler (KL)-divergence from q to p.

Kullback distance

The Kullback-Leibler distance [START_REF] Kullback | Information theory and statistics[END_REF] is perhaps the most frequently used information-theoretic distance measure from a viewpoint of theory, it is a special case of α-divergence where α approaches zero :

lim α→0 [q p] = KL [q p] (3.6)
Let P and Q be probability measures on a set X with densities p and q with respect to a dominating measure λ . The relative entropy of P with respect to Q is defined as :

D KL (P Q) = λ p log p q (3.7)
Relative entropy is also known as Kullback-Leibler divergence, information gain, information divergence, and the Kullback-Leibler Information 

d M (r, c) = de f min P∈(r,c) P, M (3.9) 
is called an optimal transportation problem between r and c given cost M. The optimum of this problem, d M (r, c), is a distance [START_REF] Villani | Optimal transport : old and new[END_REF] whenever the matrix M is itself a metric matrix. In Our case the optimal transportation distance between SPD matrices A and B is defined by :

d ot (A, B) = trace(A) + trace(B) -2trace((A 1 2 BA 1 2 ) 1 2 ) (3.10)
Table 3.1 presents a comparison of computational complexities between affine-invariant, log-Euclidean, kullback metrics on covariance matrices and d ld metric. This comparison further proves the computational speed of d ld metric comparing with its counterparts defined above.

3.3. 3D face matching using SPD matrices gallery 3D face F 0 and a patch center q j , j = 1..., N represented by the covariance matrix Y j in a probe 3D face F 1 . Let c ij = c p i , q j denotes the cost of matching these two points. This cost is defined as the distance between the two covariance matrices X i and Y j .

57 Metric D 2 (X, Y) Flops Gradient (∇ X ) Affine-invariant trace log 2 X -1 2 YX -1 2 4d 3 2X -1 log(XY -1 ) Log-Euclidean log(X) -log(Y) I 8 3 d 3 2X -1 (logX -logY) KL 1 2 trace(P/Q + P/Q -2eye(size(P))) 8 3 d 3 Y -1 -X -1 YX -1 d ld log det X+Y 2 -1 2 log(det(X.Y)) d 3 (X + Y) -1 -1 2 X -1
Given the set of costs c ij between all pairs of points p i on the gallery face F 0 and q j on the probe face F 1 , we define the total cost of matching the two 3D faces using two different ways :

Optimal match The total cost of matching is defined by :

Cost 1 = m ∑ i=1 c p i , q ϕ(i) , (3.11) 
Minimizing Cost 1 , subject to the constraint that the matching is one-to-one, gives the best permutation ϕ(i). This is an assignment problem, which can be solved using the Hungarian algorithm [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF][START_REF] Munkres | Algorithms for the assignment and transportation problems[END_REF]. The input to the assignment problem is a cost matrix with entries c ij . The result is a permutation ϕ(i) such that Equation (3.11) is minimized. Finally, once the permutation ϕ is computed, we use the total cost of matching, defined by Equation (3.11), as a measure of dissimilarity between the pair of 3D models.

Chapitre 3. 3D Face Recognition Using Covariance Based Descriptors Mean of distances An alternative matching cost, simpler than optimal matching consists in computing the mean of distances between each pair of homologous regions. Figure 3.4 presents homologous covariance matrices extracted form a probe and a gallery face. So Equation (3.11) becomes :

Cost 2 = 1 N N ∑ j=1 c p j , q j , (3.12)
where N is the number of homologous patches.

The two matching strategies are presented in Figure 3.5. 

Experimental results

We present results from different experiments in which we evaluate the performance of the proposed covariance descriptors. The performance is measured according to the percentage of the correctly recognized faces.

We have also studied the impact of the chosen distance and the matching procedure on the recognition performance. 

Preprocessing and alignment

After the acquisition step, the input face surface is preprocessed. The preprocessing helps improving the quality of the input face which may contain some imperfections (e.g. holes, spikes) as well as some undesired parts (e.g. clothes, neck, ears, hair, etc.) and so on. It consists of applying successively a set of filters (Figure 3.6). First, a smoothing filter is applied, which reduces spikes in the mesh surface, followed by a cropping filter which cuts and returns parts of the mesh inside an Euclidean sphere.

Finally a filling holes filter is applied, which identifies and fills holes in input meshes. Note that spikes mainly occur in three regions : the eyes, the nose tip and the teeth. To remove these spikes, we apply a median filter on 3D face vertices. The filter starts by sorting the z coordinate within a neighborhood, finding then the median, and finally replacing the original z coordinate with the value of the median.

After preprocessing, we align each probe face to the gallery face using Iterative closest point algorithm (ICP). The aim of ICP based alignment approach is to determine relation and translation parameters iteratively in order to transform one point cloud in the gallery face such that it lies as close as possible to other point cloud on the probe face.

In order to extract features points, we apply a uniform clustering using k-means algorithm as follows : Let {X i }, i = 1, ..., n be the set Chapitre 3. 3D Face Recognition Using Covariance Based Descriptors of n dimensional facial vertices to be clustered into a set of k clusters, C = {c k , k = 1, ..., K}. k-means algorithm finds a partition such that the squared error between the empirical mean of a cluster and the points in the cluster is minimized. Let µ k be the mean of cluster c k . The squared error between µ k and the points in cluster c k is defined as :

J(c k ) = ∑ x i ∈c k x i -µ k 2
The goal of k-means is to minimize the sum of the squared error over all K clusters :

J(C) K ∑ k=1 ∑ x i ∈c k x i -µ k 2
The main steps of k-means algorithm are summarized as follows [START_REF] Dubes | Algorithms for clustering data[END_REF] :

1. Select an initial partition with K clusters ; repeat steps 2 and 3 until cluster membership stabilizes.

2.

Generate a new partition by assigning each pattern to its closest cluster center.

3.

Compute new cluster centers.

The obtained K centers are then used as facial feature points in our proposed method.

Experiments on the FRGCv2 dataset

We have first preprocessed the 3D surfaces and selected m = 40 feature points on each 3D face in the gallery as described in Section 3.4.1. We have then extracted one patch P i around each point p i . Each patch has a radius r = 15% of the radius of the shape's bounding sphere. For each patch, we compute a 5 × 5 covariance matrices computed from the feature vector [x, y, z, k 1 , k 2 ] (details about the impact of the features, the size of the patch radius r and the number of patches m are given in Section 3.4.4).
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Identification scenario In this section, we evaluate the performance of the proposed method in the identification scenario on FRGCv2 dataset. Table 3.2 presents a comparison of recognition performance on the FRGCv2 database using the different proposed distances (Section 3.2) with respect to the two proposed matching methods (Section 3.3). In this experiment, we evaluate "Neutral versus All" identification experiment, where the first 3D face scan with neutral expression from each subject is used as gallery and the remaining face scans are treated as probes. When using the Hungarian algorithm, the highest recognition rate is achieved by the log-Euclidean distance 97.9%, followed by the log-determinant distance which achieves slightly lower rate 96.0%. When using the mean of distances algorithm, the log-determinant distance achieves the highest recognition rate 99.2%. The affine-invariant distance performs 99.1%.

From this experiment, one can notice that when using the geodesic distances (i.e. log-determinant, affine-invariant and log-Euclidean distances), both Hungarian and mean of distances matching techniques behave better than using non-geodesic distances. This demonstrates that the geodesic distances are more discriminative for covariance matrices than the other distances. This is the behavior that one would expect since the nongeodesic distances void one of the benefits of considering the Riemannian structure of the (Sym + d ) manifold. On the other hand, Table 3.2 also shows that using the mean of distances matching technique is more suitable for 3D face recognition. This result shows that the spatial relations between covariance matrices are also an important component in the matching process.

Table 3.3 presents the recognition performance using "Neutral versus non-Neutral" protocol. In this experiment, the best recognition performance is achieved by log-determinant distance when dealing with the two matching algorithms, followed by affine-invariant and log-Euclidean distances. From this comparison, we can also notice that geodesic distances give higher recognition performance comparing to non-geodesic distances. This proves our claim about the robustness of geodesic distances as a dissimilarity metric for 3D face recognition. Verification scenario We further evaluate the proposed method in the verification (authentication) scenario on FRGCv2 dataset. To do so, we plot the Receiver Operating Characteristic (ROC) curves for the "All versus All" experiment as shown in Figure3.7. The horizontal axis of the ROC curve is the False Accept Rate (FAR), while the vertical axis is the Verification Rate (VR) also called true acceptance rate (TAR). They are defined over the square similarity matrix with a dimensionality of 4007 × 4007.

When dealing with log-determinant distance, our method provides 96.7% VR at 0.1% FAR using the mean of distances matching method and 96.2% using the optimal match one as shown in Figure3.7(a). With the Affine invariant distance, our method gives slightly lower VR comparing with the its performance using log-determinant distance as shown in Figure3.7(b).

Table3.5 presents a comparison of verification rates at FAR=0.1% on the FRGCv2 dataset with state-of-the-art results. From this comparison we can see that our method is slightly lower but still close to the best of ones in the literature in the verification scenario.

Note that FRGCv2 contains mostly frontal scans with high quality, so the missing data issues are not treated in this dataset, therefore, many existing methods achieved good performance. In order to evaluate the efficiency of our method against other variations such as pose changes, we have evaluated it on the GAVAB dataset as presented in the next Section. 

Experiments on GAVAB dataset

For the experiment on GAVAB dataset, we use m = 50 feature points and 6 × 6 covariance matrices computed from the feature vector

[x, y, z, k 1 , k 2 , D].
Table 3.6 presents the recognition performance of the proposed method using the different distances presented in Section 3.2. In this experiment, the first frontal facial scan of each subject was used as gallery while the others were treated as probes. The reported results are obtained using the optimal match when dealing on expressive faces. The best recognition rate is obtained by geodesic distances (i.e. log-determinant, affine invariant and log-Euclidean distances respectively). Table 3.6 -Recognition rates on the GAVAB dataset using the optimal match method.

highest recognition rates, followed by the alpha divergence, KL divergence, optimal transportation, and the log-Euclidean respectively. From this comparison, we can see that the log-determinant distance gives the highest recognition rate with expressive scans, whereas the affine-invariant distance performs quite well with pose scans. This behavior also demonstrates that the geodesic distances are more efficient for covariance matrices than the other distances. Note that it is also possible to combine the results from each distance, i.e. using vote or training method to further improve the recognition rate. Comparing with Table 3.6, we can clearly see that the second matching method (i.e. Mean of distances) is more suitable comparing to the optimal match method. This performance is obtained due to the homologous matching that is applied only between complete regions, whereas occluded regions are excluded from the matching process (see Figure3.1).

Table 3.8 compares the results of our method to results from state-ofthe-art methods following the same protocol. We calculated rank-one face recognition rates which show the matching accuracies for different categories of probe faces : including the results with and without expression and 3.7 -Recognition rates on the GAVAB dataset using mean of distances matching method.
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pose variations. The highest recognition rate achieved by each method is highlighted.

From this comparison, we can see that our method outperforms the majority of the other state-of-the-art approaches in terms of the recognition rate. From Table 3.8, we can see that for frontal neutral probes, our method provides high recognition rate (100%) similarly as in [START_REF] Drira | Rim. 3d face recognition under expressions, occlusions, and pose variations[END_REF], Huang et al. 2012[START_REF] Tabia | Covariance descriptors for 3d shape matching and retrieval[END_REF], note that this rate is obtained by the log-determinant, the affine-invariant and the alpha divergence distances. For expressive faces, our method with the log-determinant distance provides the highest recognition rate with non-neutral expressions faces (100%) and its performance surpasses all the other methods. The results on (Neutral+Expressive) faces also demonstrate that the proposed method efficiently outperforms the other methods, since we achieve an accuracy of (100%). With looking down faces, our method provides a good recognition rate (99.18%) which is better than the results given by Huang et al.

(2012) and [START_REF] Mahoor | Face recognition based on 3d ridge images obtained from range data[END_REF] and slightly lower than the result of [START_REF] Drira | Rim. 3d face recognition under expressions, occlusions, and pose variations[END_REF]. Our method also gives the highest recognition rate (98.36%) on looking up faces similarly as in [START_REF] Drira | Rim. 3d face recognition under expressions, occlusions, and pose variations[END_REF], and 97.81% with overall faces. Note that, the performance decreases on left or right sides scanned faces which include many occluded regions, but still outperforms state-of-the-art methods on right side scanned faces.

The experimental results on the GAVAB dataset clearly demonstrate that the proposed method can deal with large pose changes and even partial occlusions.

Effects of the features, the patch size and the number of patches

In this section, we study the performance of the proposed method with respect to the main parameters of the recognition system. First, we studied the impact of the local features that are selected to form the feature vector f (see Equation (3.1)). In Table 3.9, for various choices of feature vectors, we present the performance results on the GAVAB and the FRGCv2 da- D] 65.10% 78.6% f = [x, y, z, k 1 , k 2 , D] 97.81% 98.5%

Features GAVAB FRGCv2

f = [x, y, z] 95.08% 92.7% f = [k 1 , k 2 ] 53.16% 79.0% f = [x, y, z, k 1 ] 96.72% 95.6% f = [x, y, z, k 2 ] 95.08% 93.4% f = [x, y, z, k 1 , k 2 ] 94.84% 99.2% f = [x, y, z, D] 97.18% 92.8% f = [k 1 , k 2 ,
Table 3.9 -Effects of the various geometric features on the performance of our face recognition method. Reported results are on both FRGCv2 and GAVAB datasets over all faces.

tasets over all faces, using the best performing geodesic distance and the best matching technique, i.e. log-determinant distance and the mean of distances matching algorithm. We can clearly see that the performance of the covariance method highly depends on the chosen features. Although the combination of the six features performs the best in the GAVAB dataset, this experiment shows that the performance of our recognition system does not necessarily improves with the number of selected features. For instance, as shown in Table 3.9, co-varying [x, y, z] features gives slightly better performance than co-varying the [x, y, z, k 1 , k 2 ] features. This beha- vior can be explained by the fact that some feature types are almost orthogonal (i.e. their correlation is low). Thus, their covariance matrix is almost diagonal and therefore not sufficiently discriminative.

We also analyze how the recognition performance of the proposed method varies with respect to the number of sample points. In this experiment, we set the patch radius r = 15% of the cropped face's bounding sphere and we vary the number of sample points between 30 to 80. We use the best performing distance and matching technique. Results are summarized in Figure 3.8(a). It shows that the performance over all faces becomes stable when the number of sample points is larger than 40 for the FRGCv2 and 50 for the GAVAB dataset. This is predictable since small number of points will result in a coarse representation of the 3D face.

We also analyzed how the recognition performance of the proposed method varies with respect to the patch radius r. For this end, we set the number of sample points m = 40 for the FRGCv2 and m = 50 for the GA-VAB dataset and vary the patch radius between 10% to 25% of the total radius of the cropped face's bounding sphere. Please note that in this setting the patches may overlap. Figure 3.8(b) shows that the performance remains stable when r varies between 15% and 20%. The performance starts to drop when choosing values outside this interval. Note that, similar to all local descriptor, this behavior was predictable since very small patches do not capture sufficient geometric properties of the shapes. Large patches on the other hand capture only coarse features, which may not be sufficiently discriminative.

Chapitre 3. 3D Face Recognition Using Covariance Based Descriptors

Hierarchical covariance description

In this section we present an extension of the covariance matching method proposed in our previous work presented above, in which we demonstrated the usefulness of covariance matrices as local descriptors for 3D face recognition. Here, we further focus on the issue of face recognition under facial expression variation. To do so, we propose to represent a 3D face using a set of feature points, around each of which we consider three description levels starting from a small region to a bigger overlapped region as presented in Figure 3.9. We use a covariance based descriptor to represent each region. The performance of the proposed method has been evaluated on the BU-3DFE, the GAVAB and the FRGCv2 datasets. The advantage of covariance descriptors is that the size of covariance matrices does not depend on the size of the region from which they were extracted, but of the size of feature vectors, therefore, they can be com- Formally, we uniformly sample m = 30 feature points and 6 × 6 covariance matrices computed from the feature vector :

f j =[x, y, z, k1, k2, D].
Next, around each feature point, we extract three covariance descriptors with respect to three patch radius (

r 1 = 10% × R, r 2 = 20% × R, r 3 = 30% × R),
where R is the radius of the cropped face's bounding sphere. To compare probe and gallery faces, we compute the mean of distances which measures their dissimilarity as follows :

Given the set of costs c ij between all pairs of points p i on the gallery face F 0 and q j on the probe face F 1 , we define the total cost of matching the two 3D faces by computing the mean of distances between each pair of homologous regions over the three levels as follows :

Cost = 1 n n ∑ i=1 1 m m ∑ j=1 c p j , q j (3.13)
Where m is the number of sampled feature points, n is the number of levels.

Finally, the class of each probe face is the identity of the gallery face which minimizes the matching cost.

Results on GAVAB, BU-3DFE and FRGCv2 datasets

To evaluate our method performance we present a Cumulative Match Characteristic curve (CMC) which plots the recognition rate versus the rank number. The rank-1 recognition rate is the percentage of all probes for which the best match in the gallery belongs to the same person, which is a popular evaluation criterion for face identification. The percentage of the best and the secondbest correct matches is the rank-2 recognition rate and so on for higher Chapitre 3. 3D Face Recognition Using Covariance Based Descriptors ranks. To obtain the recognition rate, we compute the ratio of the correctly classified query images to the total number of query images.

Figure 3.11 reports the CMC curves of the proposed method on BU-3DFE dataset using two protocols (i.e. Neutral versus Expressive and Lowintensity versus High-intensity). We can clearly see that the recognition performance with respect to the rank number increases faster using the first protocol. This behavior can be explained by the fact that gallery faces are neutral which is a helpful for face identification. In the other hand, using the second protocol (i.e. Low intensity versus High intensity), gallery faces are expressive and this is more binding for the matching task.

Table 3.10 shows the rank-1 recognition performance using different protocols on the three datasets. From these results, it appears that the matching of the hierarchical covariance levels combination gives higher recognition performance compared to the use of each level individually.

This behavior can be explained by the fact that small patches do not capture sufficient geometric properties of the shapes. Large patches on the other hand capture only coarse features, which may not be sufficiently discriminative. The combination of the three patch levels captures both fine and coarse features and therefore provides a more accurate representation. 

Dataset

98.25%

Table 3.10 -Face recognition rates using hierarchical covariance method on the three datasets.

In comparison to the state-of-the-art methods reported in Table3. When dealing with BU-3DFE dataset (see Table3.11), our proposed method achieves higher rank-1 recognition rate using "Low-intensity versus High-intensity" identification protocol compared to Lei et 

Conclusion

In this chapter, a new approach for comparing 3D faces using covariance matrices of features instead of the features themselves is proposed.

We studied various distances for dissimilarity measure between two covariance matrices and proposed two different ways for 3D face matching.

Covariance matrices provide an elegant way for combining multiple heterogeneous features without normalization or joint probability estimation.

Therefore, analyzing 3D faces with covariance matrices has several advantages compared to individual descriptors. First, covariance matrices enable the fusion of multiple heterogeneous features of arbitrary dimension without normalization, blending weights, or joint probability distribution estimation. Also, spatial relationships can be naturally encoded in the covariance matrices. Moreover, covariance matrices are compact, compared to histogram-based representations, and can be efficiently computed. Finally, although we have experimented in our work with only three types of features, our approach is generic and thus various types of features can be added to the framework. An important aspect to consider is that building covariance-based descriptors requires local features that are correlated to each other otherwise covariance matrices become diagonal and will not provide additional benefits compared to using the individual features instead of their covariance.

We also proposed a hierarchical covariance description for 3D face matching and recognition, under expression variations. We represented a 3D face using a set feature points, around each of which we considered three description levels. The levels start from a small region to a bigger overlapped region. We used a covariance based descriptor to represent each region. The log-determinant geodesic distance is used for the face matching. Experimental results on BU-3DFE, GAVAB and FRGCv2 datasets showed that the use of the three hierarchical levels improves the recognition performance compared to the use of each level individually. This performance can be explained by the fact that each hierarchical level captures some specific characteristics which are complementary.

Chapitre 4. 3D Facial Expression Recognition Using Kernel Methods on Riemannian Manifold

The majority of work conducted in this area has been done using 2D data.

Most of these systems are still highly sensitive to the different variations such as illumination, occlusions and other changes in facial appearance like makeup and facial hair.

Furthermore, 2D FER systems are very sensitive to pose variation, therefore it is necessary to maintain a consistent facial pose (preferably a frontal one) in order to achieve a good recognition performance. Sym + d , a special type of Riemannian manifolds. Therefore, matching with covariance matrices requires the computation of geodesic distances on the manifold using proper metrics. In the previous chapter, we have shown how such geodesic distances can be computed in an efficient way.

The proposed covariance description for 3D FER

Once the 3D face mesh has been preprocessed (see Section 3.4.1 in the previous Chapter), we uniformly select m feature points over the whole 3D surface. The feature points are the center of m patches from a paving of the face. Each point has a region of influence, which we characterize by the covariance of its geometric features instead of directly using the features themselves. Each feature captures some properties of the local geometry. They can be of different type, dimension or scale.

Let P = {P i , i = 1 . . . m} be the set of patches extracted from a 3D face. Each patch P i defines a region around a feature point p i = (x i , y i , z i ) t .

For each point p j in P i , we compute a feature vector f j , of dimension d, which encodes the local geometric and spatial properties of the point. In our implementation, we considered the following feature vector :

f j = x j , y j , z j , k 1 , k 2 , D j ,
where x j , y j and z j are the three-dimensional coordinates of the point p j . k 1 and k 2 are respectively the min and max principal curvatures. D j is the distance of p j from the origin defined by x 2 j + y 2 j + z 2 j . We characterize each face patch by the covariance matrix X i :

X i = 1 n ∑ n j=1 ( f j -µ)( f j -µ) T ,
where µ is the mean of the feature vectors f j j=1...n computed in the patch P i , and n is the number of points in P i . The diagonal entries of X i represent the variance of each feature and the non-diagonal entries represent their respective co-variations.

Covariance matrices lie on the (Sym + d ) which lacks Euclidean structures such as norm and inner product. This makes impossible the application of conventional clustering algorithms in their original forms. In the next section, we review the existing strategies to classify manifold valued data.

Classification on Riemannian manifold

Support vector machine (SVM) classifier [START_REF] Cortes | Support-vector networks[END_REF] is a supervised machine learning method which is popular for addressing binary classification problems.

Given a set of labeled feature vectors {x i , y i } N i=1 where x i ∈ R d and y i ∈ {-1, +1}, a SVM aims to find a classifier that has the minimum generalization error on the test set. This is related to finding maximum margin hyperplan. For non-linear separable classes, a mapping (R d → H) is usually applied to map the feature vectors x i ∈ R d to a higher dimensional space where classes may be more close to linearly separable. This produces a kernel Hilbert space H with an inner product (kernel function) K(x i , x j ) = Φ(x i ), Φ(x j ) . For extension of a binary SVM to a multiclass SVM, one-against-all or one-against-one strategies can be applied (Hsu et Lin 2002).

Since manifolds (i.e. Sym + d ) lack a vector space structure and other Euclidean structures such as norm and inner product, popular techniques developed for Euclidean spaces do not apply such as machine learning al-Chapitre 4. 3D Facial Expression Recognition Using Kernel Methods on Riemannian Manifold gorithms including support vector machines (SVM), principal component analysis (PCA) and clustering [START_REF] Tabia | Covariance-based descriptors for efficient 3d shape matching, retrieval, and classification[END_REF][START_REF] Jayasumana | Kernel methods on riemannian manifolds with gaussian rbf kernels[END_REF].

To overcome this problem, one can neglect the non-linear geometry of manifold-valued data and apply Euclidean methods directly. As a result, this approach often yields poor accuracy and undesirable effects [START_REF] Pennec | A riemannian framework for tensor computing[END_REF][START_REF] Arsigny | Logeuclidean metrics for fast and simple calculus on diffusion tensors[END_REF]. Recently, this problem has been addressed in two ways :

Approximation using tangent space : which can be achieved by flattening the manifold to approximate it onto tangent space. [START_REF] Tuzel | Pedestrian detection via classification on riemannian manifolds[END_REF] proposed to train several weak classifiers on the tangent spaces and com- 

3D facial expression recognition

Once covariance matrices have been extracted and the geodesic distance has been defined, the expression recognition task can be reduced to covariance classification. However, the non-linear structure of Sym makes the classification of covariance matrices using conventional algorithms such as SVM unsuitable. To overcome this issue, we apply a Gaussian radial basis function (RBF) which maps the covariance matrices to an infinite dimensional Hilbert space. This intuitively, yields a very rich representation. In R d , the Gaussian kernel can be expressed as :

K G (x i , x j ) = exp( x i -x j 2 /2σ 2 ), (4.1) 
which makes use of the Euclidean distance between two data points x i and x j . To define a kernel on a Riemannian manifold, we would like to replace the Euclidean distance by a more accurate geodesic distance on the manifold.

The advantage of computing positive definite kernels on a Riemannian manifold of the SPD matrices is that it directly allows us to make use of algorithms developed for R d while still accounting for the geometry of the manifold.

In the following, we use K(:, :), H and Φ (X) to denote the kernel func- tion, the reproducing kernel Hilbert space, generated by K, and the feature vector in H to which X is mapped, respectively. In this chapter, the function Φ is not explicitly expressed and solely the Gaussian kernel is used by changing the Euclidean distance by the distance on the Riemannian manifold defined by Equation (3.3) :

K(X i , X j ) = exp(-d g (X i , X j ) 2 /2σ 2 ), (4.2) where Φ is a mapping from M to H such that d g (X i , X j ) = Φ(X i ) -Φ(X j ) H .
Given a set of labeled samples {(X i , y i )} N i=1 where X i ∈ M and the labels y i ∈ {-1, 1}, the basic idea of SVM is to construct a hyperplane or set of hyperplanes, which is/are used for feature classification. A good 

h(X) = b + N ∑ i=1 α i y i Φ(X i ), Φ(X) . (4.
3)

The kernel K(:, :) is defined by K(X i , X j ) = Φ(X i ), Φ(X) .

Since covariance matrices are considered in this work as local descriptors, we propose to apply the SVM algorithm to this local representation.

For this end, we build a global kernel function so that one can compare two 3D facial expressions by using the covariance descriptors.

In order to do so, we propose to use the matching kernel method proposed in [START_REF] Wallraven | Recognition with local features : the kernel recipe[END_REF], which satisfies the Mercer condition and thus is suitable for our application.

Given two expressive faces represented by two sets of covariance matrices S 1 = {X i } i=1..n and S 2 = X j j=1..n , we first compute a matrix of similarity scores between S 1 and S 2 . Common choices for the similarity measure, called also the minor kernel, are the RBF-kernel given by Equation 4.1. The kernel value can then be computed as the average over the best matching scores of the elements in S 1 and S 2 as :

K(S 1 , S 2 ) = 1 2 K (S 1 , S 2 ) + K (S 2 , S 1 ) , (4.4) 
where

K(S 1 , S 2 ) = 1 |S 1 | |S 1 | ∑ i=1 max j=1..|S 2 | K(X i , X j ).
Our manifold kernel SVM classification method can easily be extended to the multi-class case with standard one-versus-one or one-versus-all procedures.

4.4. Experimental results

4.4 Experimental results

In order to demonstrate the performance of the proposed method, we have first preprocessed the 3D surfaces. Then, we have uniformly sampled m = 30 feature points. Around each feature point p i , we extract one patch P i of radius r = 15% of the radius of the cropped face's bounding sphere. For each patch, we extract 6 × 6 covariance matrices computed from the feature vector : [x, y, z, k 1 , k 2 , D]. We then demonstrate the use of our kernel-based method for the task of FER with the proposed kernel SVM on Sym + d as described in Section 4.3.

Experimental results on BU-3DFE dataset

To evaluate our approach, we perform a 10 fold-cross validation, where BU-3DFE subjects are ten times randomly divided into two parts ; a training set consisting of 90 subjects, and a test set consisting of the rest 10 subjects. We then use our manifold kernel SVM in a multi-class (oneagainst-all) setting. Results hereinafter are averaged across the ten-folds. From Table 4.1, we can see that our method gives higher performance on happiness and surprise expressions. This is due to the distinctive large Chapitre 4. 3D Facial Expression Recognition Using Kernel Methods on Riemannian Manifold deformations they make on face surfaces. The difference between sadness and anger expressions is more subtle and thus explains their confusion. This performance is achieved due to the discrimination power of the covariance descriptors and the accurate classification of the manifold kernel SVM.

To give more insight about the efficiency of our proposed method and the confused expressions, we presented in 

Experimental results on Bosphorus dataset

As a second experiment, we further evaluated our proposed method on Bosphorus dataset. To this end, we followed the same experimental protocol of [START_REF] Azazi | Towards a robust affect recognition : Automatic facial expression recognition in 3d faces[END_REF] : we applied 10 fold-cross validation technique over 420 faces from 60 subjects (7 expressions for each subject). Note that 60 subjects are selected randomly from 65 subjects. Results are averaged in Table 4.5.

From Table 4 

System evaluation

In this section, we evaluate the performance of the proposed method with respect to the main parameters of the proposed approach when dea- ling with BU-3DFE and Bosphorus datasets. We study the effect of the number of sampled points as well as the effect of the patch size, and the position of the sampled points on the classification performance. In the first experiment, we set the patch radius r = 15% of the cropped face's bounding sphere and we vary the number of sample points m between 10 to 40. The reported results in Figure 4.6 show that the performance over all faces becomes stable when the number of sample points is larger than 30. This is predictable since small number of points will result in a coarse representation of the 3D face.

We also analyzed how the classification performance of the proposed method varies with respect to the patch radius r . For this end, we set the number of sample points m = 30, and vary the patch radius between 10% to 25% of the total radius of the cropped face's bounding sphere. Please note that in this setting, the patches may overlap. Figure 4.7 shows that the performance remains stable when r varies between 15% and 20%. The performance starts to drop when choosing values outside this interval.

Note that, similar to all local descriptor, this behavior was predictable since very small patches do not capture sufficient geometric properties of the shapes. Large patches on the other hand capture only coarse features, which may not be sufficiently discriminative.

Furthermore, we also study how the classification performance varies with respect to the position of the m uniformly sampled points. For this end, we apply a uniform sampling using k-means algorithm, for seven times. We hence obtain seven different distributions of feature points. In this experiment, we set the number of sampled points m=30, and the patch radius r = 15%. From Figure 4.8, we can see that the classification perfor-Chapitre 4. 3D Facial Expression Recognition Using Kernel Methods on Riemannian Manifold mance is almost stable with respect to different positions of the sampled points.

Conclusion

In this chapter, we proposed a novel method for 3D facial expression recognition that uses the local covariance descriptor and kernel-based classifier on Riemannian manifold. Since covariance matrices fuse different types of features, their description power are very interesting for FER where expressions exhibit large intra-class variability. This description considers covariance matrices as an unordered set of descriptors and therefore we used a kernel on sets rather than directly using Gaussian kernel in the SVM classifier. For this end, we build a global kernel function so that one can compare two facial expressions. The Gaussian kernel is then used to map the covariance matrices into a high dimensional Hilbert space. This mapping allows to extend the standard kernel methods, originally introduced for the analysis on Euclidean spaces, to the non-linear Riemannian manifold of covariance matrices. Moreover, Gaussian kernel utilized in our proposed method helps understand the inherent structure of the 3D facial data to enhance the 3D FER accuracy. Reported results on BU-3DFE and Bosphorus datasets show that our method efficiently succeed to classify facial expressions independently to the face identity, and demonstrate its superiority compared to state-of-the-art methods.

Conclusion

Summary

In this thesis we presented two main contributions to 3D face analysis including 3D face recognition/verification and 3D facial expression recognition. In the first contribution, we proposed a 3D face recognition method based on covariance matrices of descriptors rather than the descriptors themselves. We demonstrated the efficiency of our proposed method to tackle the problem of expression variation as well as pose and partial occlusions. This robustness is achieved due to the ability of covariance descriptors to efficiently combine multiple features into a single descriptor and the invariance with respect to the ordering of points and number of feature vectors used for their computation. Moreover, the size of covariance matrices does not depend on the size of the region from which they were extracted, but of the size of feature vectors, therefore, they can be computed from variable sized regions. Furthermore, covariance matrices are low dimensional compared to joint feature histograms.

Since covariance matrices are elements of the non-linear manifold of SPD matrices, their comparison requires the computation of geodesic distances on the manifold using proper metrics. Therefore, we assessed six distances (geodesic and non-geodesic) to match covariance matrices, and demonstrated that geodesic distances are more suitable to match 3D faces using their covariance descriptors.

In the matching process, we have assessed two different strategies after spatial registration of the 3D faces. The first strategy is to compute Chapitre 5. Conclusion optimal match using a Hungarian solution for matching unordered set of covariance matrices. The total cost of matching is used as a measure of dissimilarity between the pair of 3D faces. The second strategy is to compute a mean distance by integrating the chosen metric over the pairs of homologous regions.

We have also proposed an extension of the our covariance-based 3D face recognition method using hierarchical description. To do so, we represented a 3D face using a set feature points, around each of which we consider three description levels starting from a small region to a bigger overlapped region, each region is represented by a covariance matrix.

Experimental results showed that the use of the three hierarchical levels improves the recognition performance compared to the use of each level individually. This performance can be explained by the fact that each hierarchical level captures some specific characteristics which are complementary. In comparison to the previously published methods on the three challenging datasets (i.e. GAVAB, FRGCv2, BU-3DFE), our method achieves a superior performance in terms of recognition performance.

In the second contribution, we proposed a new method for 3D facial expression classification regardless to the face identity using covariance descriptors and kernel methods on Riemannian manifold. We proved that covariance descriptors are very interesting for FER where expressions exhibit large intra-class variability. This description considers covariance matrices as an unordered set of descriptors and therefore we used a kernel on sets rather than directly using Gaussian kernel in the SVM classifier. For this end, we build a global kernel function so that one can compare two facial expressions. The Gaussian kernel is then used to map the covariance matrices into a high dimensional Hilbert space. This mapping allows to ex- Since 3D data provide naturally more information on the geometric proprieties of the facial shape, 3D FER methods are preferable than their 2D counterparts, especially because of their invariance against illumination changes. In the other hand, our covariance based method is generic.

The covariance matrices can be computed from different type of features including 2D ones and its performance depends on the used features.

An important aspect of our 3D FER is that it is applicable to real situations due to the automatic feature points extraction. On the other hand, most state-of-the-art methods use a predefined set of manually selected points or landmarks, which makes these methods difficult to use in practice.

Perspectives

Further work can be conducted in order to enhance our proposed methods for 3D face recognition and 3D facial expression recognition, future directions are also presented as follows :

1. In this thesis, we proposed to extract covariance descriptors around a set of feature points (i.e. landmarks). These landmarks are extracted after a uniform sampling using k-means algorithm. However, according to the purpose of facial analysis, different parts of the face possess different levels of importance. For example, the eyes and nose are the most robust parts for the face recognition task. On the other hand, if the purpose of facial analysis is facial expression recognition, then the mouth region will naturally provide important information that has to be taken into account for classification. In either cases, landmarking salient points in our method allows to reduce the number of covariance descriptors per face and may provide more robust results.

2. In our 3D FER contribution, we applied the global kernel presented in [START_REF] Wallraven | Recognition with local features : the kernel recipe[END_REF] in order to compare the unordered set of covariance descriptors, our method is generic so that other kernel methods can also be applied which should satisfy Mercer condition. A. Annexes mally separate data. In the case of two linearly separable classes, there exists an infinite number of hyperplanes for separating the data. The aim of SVM is to find the optimal hyperplane that separates data with maximizing the distance between the two classes (i.e. maximizing the margin).

The nearest points, which are used only for the determination of the hyperplane, are called support vectors.

We can distinguish between two models of SVM according to the separability of data, linear-SVM and non-linear-SVM. The linear-SVM are the simplest because they are linearly separable as presented in FigureA.3.

In the non-linear-SVM, the data are transformed to be represented in a large space where they are linearly separable (See FigureA.4). To evaluate the classification, the most used technique is 10-cross validation which we applied in this thesis. 

A.5 Measuring biometric system performance

The performance of a biometric system in the verification or identification scenarios can be evaluated based on the match scores obtained by the used matching algorithm. In the case of face recognition system, for a set of test faces, let id be the number of identities and sam be the number of face samples per identity, the total number of samples is N T = id * sam.

By comparing each of N T samples against the remaining N T -1 samples, a total of 1 2 N T (N T -1) similarity match scores can be computed. This comparison is referred to as all versus all protocol. In computing the match scores for an all versus all protocol, two classes of match scores are generated namely genuine and impostor match scores. Genuine match scores denote the scores generated when comparing two face samples belonging to the same individual. Impostor scores denote the scores generated when matching two face samples belonging to different individuals.

The verification performance is typically evaluated by assessing the false acceptance rate (FAR) and the false reject rate (FRR). As presented before in Figure1.4, the FAR denotes the percentage of impostor scores that exceed a numerical threshold and are incorrectly classified as matches. The FRR denotes the percentage of genuine scores that are below a threshold and are incorrectly classified as non-matches. Graphically, the FAR and FRR are often expressed by a Receiver Operating Characteristic (ROC) curve. In this thesis, we plot the true acceptance rate (TAR) versus FAR by varying the threshold to evaluate our verification system.

The true acceptance rate (also called recall, sensitivity) of a classifier is estimated as :

TAR ≈

Positives correctly classified Total positives (A.1)

The false acceptance rate (also called false alarm rate) of the classifier is :

FAR ≈ Negatives incorrectly classified Total negatives (A.2)
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 334 Given a 2D or 3D image or a video sequence, the face recognition problem can be briefly interpreted as an identification or a verification of one or more persons.A typical face recognition system is composed of four modules : 1. Sensor module : which captures the face data (2D/3D) ; 2. Feature extraction module : which processes the output of the sensor to extract a discriminatory feature set ; Matching module : in which the extracted features are compared against the features of the stored scans, and matching scores between faces are computed ; Decision making module : the recognition is based on the matching scores between the face to be recognized and the stored face in the database. Every face recognition system has two phases of operation. The first phase is called enrollment in which an individual uses the system for the first time as presented in Figure 1.1. At the enrollment phase, facial

Figure 1 . 1 -

 11 Figure 1.1 -Enrolment process.

Figure 1 . 3 -

 13 Figure 1.3 -Verification process.

  Figure 1.3 introduce the identification and the verification scenarios respectively. If the face in the probe is already registered in the reference database, it is called closed-set identification. Otherwise, it is open-set identification.

  the case of face verification, if the threshold is too high, False reject rate (FRR) might increase since more legitimate claims would be rejected. If the threshold is too low, acceptance of false claims will be more likely, increasing False acceptance rate (FAR). This relationship is shown with Receiver operating characteristic (ROC) graph which represents the probability of true acceptance versus probability of false acceptance. ROC curves are also used to measure performances of open-set identification systems. Instead of true acceptance rate, detection and identification rate is calculated and plotted against FAR. Detection and identification rate is the percentage of the probe samples represented in the gallery that are correctly accepted and identified. With face identification scenario, the rank performance measure is used. In rank-1 case, a probe face is identified as the first identity in the list of subjects sorted in decreasing order of computed similarity scores. Correspondingly, rank-n systems examine the top n matches. Thereby, identification rate is a function of rank. Chapitre 1. Introduction On the other hand, in closed-set face identification, the performance is computed as a function of rate only and reported on Cumulative match characteristic (CMC) curves. CMC plots the size of the rank order list against the identification rate.

Figure 1 . 4 -

 14 Figure 1.4 -Evaluation metrics of face recognition systems.

  face recognition using covariance based descriptors in this contribution, we handle the problem of 3D face recognition/verification under expression, pose and partial occlusion variations. To this end, we proposed a new covariance based method and demonstrate its efficiency as local descriptors for 3D face recognition. Since covariance matrices are not elements of an Euclidean space, they are elements of a Lie group, which has a Riemannian structure. Therefore, matching with covariance matrices requires the computation of geodesic distances on the manifold using a proper metric. In this contribution, we have compared the performance of our recognition system using several distances for covariance matrices including geodesic distances. Finally, for the recognition step, we considered the two following solutions : (i) the Hungarian solution for matching unordered sets of covariance descriptors from two 3D faces, and (ii) the mean of distances between each pair of homologous patches in the two 3D faces. The proposed face recognition method has been assessed on three challenging datasets including Gavab, FRGCv2 and BU-3DFE. 3D facial expression recognition on Riemannian manifold in order to accurately recognize the six prototypical expressions (i.e. Happiness, Angry, Disgust, Sadness, Surprise and fear) from 3D facial data regardless to the face identity, we proposed a new kernel based method on Riemannian manifold. Inspired by the successful use of kernel methods on Riemanniam manifold in order to embed the non-linear manifold into a

Figure 2 . 1 -

 21 Figure 2.1 -Face recognition system.

3D

  face acquisition Different techniques for capturing 3D face/facial expression data have been employed including the use of single image reconstruction (Kemelmacher-Shlizerman et Basri 2011, Wang et Lai 2011), structured light technologies

  modulated light. Active systems can easily measure surfaces in most environments due to their own illumination. These systems work on two principles : time-of-flight ; and triangulation. Time-offlight sensors measure the time taken for the projected illumination pattern to return from the object surface. This sensor technology requires nano-second timing to resolve surface measurements to millimetre accuracy. A number of commercial time-of-flight systems are available based on scanning a point or stripe across the scene. Triangulation systems, on the other hand, use a focused beam of light to probe the environment and by tracing a line of sight through illuminated pixel.

Figure 2 Figure 2

 22 Figure 2.2(b) presents the point cloud representation for a sample face from the BU-3DFE dataset.

  Figure 2.2(c) presents the mesh representation for a sample face from the BU-3DFE dataset.

  Figure 2.2(d) presents the point cloud representation for a sample face from the BU-3DFE dataset.

  contains 549 threedimensional facial surface images corresponding to 61 individuals (45 male and 16 female). It includes many variations with respect to the pose of each individual. Each subject in the GAVAB dataset was scanned 9 times for different poses and facial expressions. The whole set of individuals are Caucasian and most of them are aged between 18 to 40 years. There are systematic variations over the pose and facial expression of each person. In particular, 2 frontal and 4 rotated images without any facial expressions. There are also 3 frontal images in which the subject presents different and accentuated facial expressions (laugh, smile and a random expression chosen by the user).

  Figure 2.6 shows an example of faces taken from this dataset. In this experiment, we will deal only with expressive faces to assess the performance of our proposed method under this facial deformation.
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 23 Figure 2.3 -The 83 facial points given in the BU-3DFE database (Sandbach et al. 2012).
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 24 Figure 2.4 -An illustration of 3D facial nosetip detection. Horizontal planes for 3D facial scan slicing (a). Horizontal facial profile (b).Guo et al. (2016)
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  Description of the 3D face datasets.
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 26 Figure 2.6 -3D scans of the same subject from the GAVAB dataset.
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 2728 Figure 2.7 -3D scans of the same subject from the FRGCv2 dataset..
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 2 3D face recognition-State of the art 25 2.2 3D face recognition-State of the art

  of face recognition, since it is generated by facial muscle contractions which result in temporary facial deformations in both facial geometry and texture. Thus, expressive faces complicate the face recognition by creating higher intra-class variance than inter-class variance which can dramatically deteriorate the recognition performance as illustrated in Figure 2.8.
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 29 Figure 2.9 -Profile faces from GAVAB dataset.

Figure 2 .

 2 Figure 2.10 -Profile faces from Bosphorus dataset.

  Figure 2.10 presents six profile faces from Bosphorus dataset.Although many researchers dealt with expression variations, very few have attempted occlusion variation problem for 3D face recognition. The first explorations for partial occlusion challenge was in[START_REF] Brunelli | Face recognition : Features versus templates[END_REF],[START_REF] Pentland | View-based and modular eigenspaces for face recognition[END_REF],[START_REF] Beymer | Face recognition under varying pose[END_REF]. Nevertheless, the substantial facial appearance change caused by pose variation continues to challenge the state-of-the-art face recognition systems. Essentially, it results from the complex 3D structure of the human head.

Figure 2 .

 2 Figure 2.11 -Partial occluded faces from Bosphorus dataset. Texture in first row and 3D shape in second row.

  Various methods have been proposed to handle the problem of expression variation. Statistical models have been widely used where the most popular is the Principal component Analysis (PCA) model. Al-Osaimi et al. (2009) employed the PCA to learn and model expression deformations. The generic PCA deformation model is built using non-neutral faces of distinct persons. The expression deformation templates are used to eliminate the expressions from non-neutral face scan. A multi-resolution PCA model has been proposed by ter Haar et Veltkamp (2010), they used a limited collection of facial landmarks along with neutral and expression scans. A single morphable identity model and seven isolated morphable expression models per subject are then built. Expression is then neutralized and coefficients of identity model are utilized for face recognition.In[START_REF] Russ | 3d face recognition using 3d alignment for pca[END_REF]), a statistical model is built using the correspondence information. A PCA shape model can deal with expressions by including faces with expression in the training data.Other methods based on the assumption that deformation caused by expression variation is isometric, meaning that the deformation preserves lengths along the surface (i.e. surface distances are relatively invariant to small changes in facial expressions), and therefore help generate features Chapitre 2. 3D Face analysis-State of the art that are robust to facial expressions.[START_REF] Drira | Rim. 3d face recognition under expressions, occlusions, and pose variations[END_REF] proposed a geometric framework for analyzing 3D faces recognition under different variations. They proposed to represent facial surfaces by radial curves emanating from the nose tips and use elastic shape analysis of these curves to compare faces. They used the elastic Riemannian metric to measure facial deformations to handle the large facial expression variation.Similar approach have been proposed by[START_REF] Lee | 3d face recognition in the fourier domain using deformed circular curves[END_REF] using deformed circular curves. The shortest geodesic distances between the reference point (e.g. nosetip) and a point on the curve is computed to generate a matrix or in one-dimensional function. The functions are compared to each other to measure the similarity between faces. Experiments have shown that there is little difference in the geodesic distance between the same face with different expressions (intra-class difference). Whereas, different face models of different people have shown a low similarity due to the shape of facial curves (inter-class difference). Another algorithm is proposed by Sun (2015) which measures the minimum possible distortion when trying to isometrically embed one facial surface into another. A geodesic polar parametrization of the facial surface is proposed in (Mpiperis et al. 2007) in which authors have studied local geometric attributes under this parameterization. They assumed with this parameterization that the intrinsic surface attributes do not change under isometric deformations. To deal with the open mouth problem, they modified the parametrization by disconnecting the top and bottom lips. Berretti et al. (2010a) have encoded the geometric information of the 3D face surface in the form of a graph. Nodes of the graph represent equal width iso-geodesic facial stripes which provide a representation of local morphology of the face. Moreover, various methods use only regions that are not or not much affected by expressions. Guo et al. (2016) presented 3D face by a set of keypoints and their associated local feature descriptors to achieve robustness to expression variations. To measure the dissimilarity between faces, authors have computed the number of feature matches, the average distance of matched features, and the number of closest point pairs after registration. The global dissimilarity is then obtained by the fusion of the similarity metrics. Maiti et al. (2014) have extracted the T-region from the face to get the facial region having minimum variation with expression.For each region, they have extracted the wavelet coefficients and a dictionary learning using K-SVD.[START_REF] Moeini | Expression-invariant face recognition via 3d face reconstruction using gabor filter bank from a 2d single image[END_REF] have extracted rigid parts of the face from both the texture and depth image based on 2D facial landmarks. Gabor filter was then applied to the extracted feature vectors from texture depth images. Finally, classification is applied using the Support Vector Machine. Shape index and spherical bands on the human face are used in (Ming 2015) to segment a group of regions on each 3D facial point cloud. Then the corresponding facial areas are projected to regional bounding spheres to obtain regional descriptor.[START_REF] Lei | An efficient 3d face recognition approach based on the fusion of novel local lowlevel features[END_REF] divided the 3D facial into three regions according to their deformations that are caused by facial expressions as follows : rigid (i.e. nose region), semi-rigid (i.e. eyes-forehead region) and non-rigid (i.e. mouth region). Only regions which are relatively less influenced by the deformations caused by facial expressions (i.e. rigid and semi-rigid regions) are considered for features extraction and classification.[START_REF] Li | Efficient 3d face recognition handling facial expression and hair occlusion[END_REF] split the face surface into six regions which are forehead, left mouth, right mouth, nose, left cheek and right cheek. In order to choose the regions to use for matching, authors extracted facial curves in these regions to map facial deformation.

2013)

  detected the external object parts by comparing the given scan with a template scan. The template scan is developed using an average of training scans that are complete, frontal and have neutral expressions. Next, the basic matching procedure between a template and a given scan is car-Chapitre 2. 3D Face analysis-State of the art ried out using ICP algorithm. The broken curves, caused by the removal of occluding object are completed with the help of PCA based statistical model. This model is used to complete the incomplete curves using training data.[START_REF] Bellil | Gappy wavelet neural network for 3d occluded faces : detection and recognition[END_REF] proposed a method based on Gappy Wavelet Neural Network. Occluded regions are then refined by removing wavelet coefficient above a certain threshold.[START_REF] Alyuz | 3-d face recognition under occlusion using masked projection[END_REF] addressed the problem of external occlusions. They proposed a registration framework in which a possible non-occluded model is adaptively selected for each probe face, by employing non-occluded facial parts. Figure2.12 presents highly occluded and correctly classified areas from Bosphorus dataset. For the detection of distinctive facial features, such as eyes and mouth, they employed the relative geometry information of these features. Smeets et al. (2013) proposed the local feature based MeshSIFT algorithm to deal with missing 3D data for 3D face recognition. They first detected salient points on 3D facial surface as mean curvature extrema in scale space. Next, orientations are assigned to each of these salient points as presented in Figure 2.13. The neighborhood of each salient point is then described in a feature vector consisting of concatenated histograms of shape index and slant angles. Finally, the feature vectors of two 3D facial surfaces are reliably matched by comparing the angles in feature space.
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 212 Figure2.12 -Highly occluded sample images that are correctly classified by the proposed masked Fisherfaces approach from the Bosphorus dataset. Top and bottom rows show the corresponding manually labeled (in green) and automatically detected (in red) occlusion masks.[START_REF] Alyuz | 3-d face recognition under occlusion using masked projection[END_REF] 

Figure 2 .

 2 Figure 2.13 -The neighbourhood of a scale space extremum with normals and their projection onto the tangent plane. Smeets et al. (2013)

  For instance,[START_REF] Salazar | Fully automatic expression-invariant face correspondence[END_REF] proposed an approach which learns the locations of a set of landmarks present in a database to automatically predict the locations of these landmarks on a newly available scan. The predicted landmarks are then used to compute point-to-point correspondences between a template model and the newly available scan.[START_REF] Elaiwat | A. 3-d face recognition using curvelet local features[END_REF] have applied Curvelet transform to detect salient points on the face that can capture invariant local features around the detected keypoints. Mian et al. (2008) present a feature-based algorithm for the recognition of textured 3D faces. They proposed a keypoint detection technique to detect where the shape variation is high in 3D faces. Next features from a probe and gallery face are projected to the PCA subspace and matched. The set of matching features are used to construct two graphs. The similarity between two faces is measured as the similarity between their graphs. Guo et al. (2016) applied The Nearest Neighbor Distance Ratio (NNDR) approach to perform feature matching as presented in Figure 2.14.

Figure 2 .

 2 Figure 2.14 -Feature matching results. (a) Faces of an individual with a neutral expression. (feature matches : 85, false matches : 4) ; (b) Faces of two individuals with a neutral expression. (feature matches : 6, false matches : 6) ; (c) Faces of an individual with different expressions. (feature matches : 42, false matches : 13) ; (d) Faces of an individual with different expressions and hair occlusions.(Guo et al. 2016)
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 3 3D facial expression recognition-State of the art 35 2.3 3D facial expression recognition-State of the art Similar to face recognition problem, facial expression recognition with the presence of different intra-class variations (i.e. pose, illumination, image quality, etc) as well as inter-class variations, has become a very challenging issue. To overcome this problem, different approaches have been proposed in the literature, most of these approaches focus on recognizing six basic expressions include anger (AN), fear (FE), disgust (DI), sadness (SA), happiness (HA) and surprise (SU) (Ekman et Friesen 1971).

  Luettin 2003, Pantic et Rothkrantz 2000, Zeng et al. 2009, Ilbeygi et Shah-Hosseini 2012, Mahersia et Hamrouni 2015, Chakrabarty et al. 2013). Although the remarkable performance achieved, most of these works are still sensitive to many variations, particularly illumination and pose. Recent progress in 3D acquisition techniques has provided a new alternative to overcome these issues (Yin et al. 2006). 3D data bring additional information which are more robust to illumination (Al-Osaimi et al. 2012, Patil et al. 2015) and pose changes (Ocegueda et al. 2013). Stateof-the-art 3D FER methods are often based on a single descriptor which may fail to handle the large inter-class and intra-class variability of the human facial expressions.

FER.

  Figure 2.16(b). Next, they classified each landmark into eight categories.The face has been divided into triangles using a subset of the given landmarks, and histograms have been formed for each triangle of the surface curvature types.[START_REF] Tang | 3d facial expression recognition based on automatically selected features[END_REF] proposed an automatic feature selection method based on maximizing the average entropy. Next, they computed Euclidean distances between 83 facial features to a complete pool of candidate features composed of normalized points in the 3D space. Expression classification is then performed using a regularized multi-class AdaBoost classification algorithm.[START_REF] Soyel | Facial expression recognition using 3d facial feature distances[END_REF] uses six characteristic distances that are extracted from the distribution of eleven facial feature points from the given points in the BU-3DFE. This serves as in-

Figure 2

 2 Figure 2.16 -Features based on the 83 facial points in BU-3DFE dataset. (a) : Distance between particular given facial points used in (Tang et Huang 2008, Soyel et Demirel 2008b; 2010).(b) : Distance and curvature features used in (Sha et al. 2011). (c) : 3D closed curves extracted around the landmarks used in (Maalej et al. 2011).

Figure 2 .

 2 Figure 2.17 -(a) 3D annotated facial shape model (68 landmarks) ; (b) closed curves extracted around the landmarks ; (c) example of 8 level curves ; (d) the mesh patch (Derkach et Sukno 2017).

Figure 2 . 18 -

 218 Figure 2.18 -Fitting base-mesh to a surface. a : base-mesh, b : original surface, c :base-mesh fitted to the surface[START_REF] Mpiperis | Bilinear models for 3-d face and facial expression recognition. Information Forensics and Security[END_REF]).

3D

  face expressions often exhibit large inter-class and intra-class variabilities which require a robust representation to accurately distinguish between them. The state-of-the-art methods presented above use mostly local features in order to feed a classifier to recognize the six prototypical expressions. Methods used distance-based features generally use the 83 manually located points (landmarks) when dealing with BU-3DFE dataset, otherwise, manual annotation is required to precisely position landmarks.Although the good performance achieved by these methods, they are not full automatic since they require additional information about facial landmarks. Moreover, when dealing with automatic landmarking, distancebased features heavily rely on the accuracy of the landmark detection which may not be sufficiently discriminative. Methods using morphablebased features on the other hand are sensitive to inter-class and intra-class variability which decrease the recognition performance. 2D mapping allows applying 2D traditional methods for 3D FER problem. However, this mapping may lose some geometric characteristics of 3D facial expression and makes the FER task more subtle. Consequently, the challenge is to describe 3D facial expressions using robust features which must capture as accurately as possible facial surface deformations to enable the
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 1 Covariance descriptors for 3D face recognition 473.1 Covariance descriptors for 3D face recognitionRecently the image analysis community has shown a growing interest in characterizing image patches with the covariance matrix of local descriptors rather than the descriptors themselves. Covariance methods have been successfully used for object detection and tracking[START_REF] Tuzel | Pedestrian detection via classification on riemannian manifolds[END_REF], texture[START_REF] Tuzel | Region covariance : A fast descriptor for detection and classification[END_REF]) and image classification[START_REF] Wang | Covariance discriminative learning : A natural and efficient approach to image set classification[END_REF]. Motivated by their success in image analysis, we propose a 3D face recognition method based on covariance descriptors as an extension of covariance based descriptors presented in[START_REF] Tabia | Covariance descriptors for 3d shape matching and retrieval[END_REF] for 3D shape retrieval.
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 31 Figure 3.1 -Feature points extracted from probe face under pose variation.

Figure 3 . 3

 33 Figure 3.3 presents an overview of the proposed method.

Figure 3 .

 3 Figure 3.2 -Two-dimensional manifold M embedded in R 3 .
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 33 Figure 3.3 -Overview of the proposed 3D face recognition method.

  et al. (2011),[START_REF] Chebb | Means of hermitian positivedefinite matrices based on the log-determinant divergence function[END_REF],Sra (2012) introduced a symmetrized log-determinant based matrix divergence.The greatest advantage of this metric against the affine-invariant metric is its computational speed, it requires only computation of determinants, which can be done rapidly via 3 Cholesky factorizations for (X + Y , X and Y), each at a cost of 1 3 d 3 flops (Golub et Van Loan 2012). Computing the affine-invariant on the other hand requires generalized eigenvalues, which can be done for positive-definite matrices in approximately 4d 3 flops. Let X, Y ∈ Sym + d of d × d symmetric positive definite matrices which have positive eigenvalues. The log-determinant distance between X and Y is defined by : Chapitre 3. 3D Face Recognition Using Covariance Based Descriptors

Chapitre 3 .

 3 3D Face Recognition Using Covariance Based Descriptors Criterion (KLIC). In our experiments kullback distance between SPD ma-Optimal transportation distances Villani (2008) are a fundamental family of parameterized distances for histograms. Despite their appealing theoretical properties, excellent performance in retrieval tasks and intuitive formulation, Optimal transportation distances and their application to computer vision hold a special place among other distances in the probability simplex. Given a d × d cost matrix M, the cost of mapping r to c using a transportation matrix (or joint probability) P can be quantified as : P, M The following problem :
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 34 Figure 3.4 -Covariance matrices extracted from probe and gallery faces.
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 35 Figure 3.5 -The two matching strategies between covariance matrices.
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 436 Figure 3.6 -Automatic 3D face preprocessing.

Chapitre 3 Figure 3 . 7 -

 337 Figure 3.7 -ROC curves for all versus All verification experiment.

Chapitre 3 Figure 3 . 8 -

 338 Figure 3.8 -Effect of the patch radius and the number of patches on the recognition performance of the proposed covariance based method. The reported results are on both FRGCv2 and GAVAB datasets over all faces.
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 39 Figure 3.9 -Hierarchical covariance extraction. Green circles refer to grand patches, black for average patches and red for small patches.
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 3 Figure 3.10 -Overview of the proposed hierarchical covariance method.
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 5 Hierarchical covariance description 73 puted from variable sized regions (three different patch sizes) as shown in Figure3.10. Covariance matrices however are not elements of an Euclidean space ; they are elements of a Lie group, which has a Riemannian structure. Therefore, matching with covariance matrices requires the computation of geodesic distances on the manifold using a proper metric. In this contribution, we have applied log-determinant distance.

  when dealing with the FRGCv2 dataset (Neutral versus non-Neutral protocol) and the GAVAB dataset (Neutral versus Expressive protocol), we can see that our hierarchical covariance method outperforms the state-of-the-art methods with 97.6% and 100% respectively.

Figure 3 .

 3 Figure3.11 -The CMC curves of our proposed method on BU-3DFE dataset. Reported results are obtained using the three hierarchical covariance levels individually and on their combination.
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 4441 Due to the development of 3D image capturing technologies, the acquisition of 3D data is becoming a more feasible task. The 3D data bring a more effective solution in addressing the issues faced by its 2D counterpart. State-of-the-art 3D FER methods are often based on a single descriptor which may fail to handle the large inter-class and intra-class variability of the human facial expressions.In this chapter, we explore, for the first time, the usage of covariance matrices of descriptors instead of the descriptors themselves in 3D FER.Since covariance matrices are elements of the non-linear manifold of SPD matrices, we particularly look at the application of manifold-based classification to the problem of 3D FER. We have performed comprehensive experiments on two well-known datasets, and demonstrate the superiority of our proposed method compared to the state-of-the-art methods.The rest of this chapter is organized as follows. In Section 4.1, covariance descriptors for 3D FER are addressed. We explain in Section 4.2 how to classify covariance matrices on manifold using conventional classification algorithm. In Section 4.3, the classification of 3D facial expressions using kernel-SVM on Riemannian manifold is addressed. Experimental results on BU-3DFE and Bosphorus datasets are reported and evaluated in Section Conclusions end the chapter. 4.1. Covariance descriptors for 3D FER 81 Covariance descriptors for 3D FER In this section, we first discuss the advantages of covariance descriptors for 3D FER task comparing to the use of local features. Second, we present our proposed covariance description which we use for the classification of the six prototypical expressions.4.1.1 Covariance descriptors versus local features for 3D FERProposed methods often use 3D local features which capture the geometrical and topological properties of the face surface to distinguish between expressions or Action Units[START_REF] Fang | 3d facial expression recognition : A perspective on promises and challenges[END_REF][START_REF] Spreeuwers | Fast and accurate 3d face recognition using registration to an intrinsic coordinate system and fusion of multiple region[END_REF],[START_REF] Zeng | A survey of affect recognition methods : Audio, visual, and spontaneous expressions[END_REF],[START_REF] Sandbach | Static and dynamic 3d facial expression recognition : A comprehensive survey[END_REF],[START_REF] Shan | Facial expression recognition based on local binary patterns : A comprehensive study[END_REF],[START_REF] Tian | Handbook of face recognition, chapter facial expression analysis[END_REF]. One of the main strengths of local features is their flexibility in terms of type of analysis that can be performed with.[START_REF] Wang | 3d facial expression recognition based on primitive surface feature distribution[END_REF] proposed to extract geometric based features to describe facial expressions. These features have been estimated using the principle curvature information calculated on the 3D triangulated mesh model of a face. A linear discriminant analysis classifier has been used for features classification.Soyel et Demirel (2008a; 2010) used distance vectors computed between landmarks on the 3D face to describe facial features, and used probabilistic neural network for expression classification.[START_REF] Shao | 3d dynamic facial expression recognition using low-resolution videos[END_REF] proposed to learn sparse features from spatio-temporal local cuboids extracted from the face.They applied conditional random fields classifier to train and classify the expressions.The use of local features in 3D facial expression recognition, however, has several limitations. For instance, 3D face expressions often exhibit large inter-class and intra-class variability that cannot be captured with a single feature type. This triggers the need for combining different modalities or feature types. However, different shape features often have different dimensions, scales and variation range, which makes their aggregation difficult without normalizing or using blending weights. Chapitre 4. 3D Facial Expression Recognition Using Kernel Methods on Riemannian Manifold Covariance matrices successfully have been used as region descriptors (Krizaj et al. 2013, Tabia et al. 2014, Tabia et Laga 2015). The use of covariance matrices has several advantages. First, they provide a natural way for fusing multi-modal features, eventually of different dimensions, without normalization or joint distribution estimation. Second, covariance matrices extracted from different regions have the same size, which is significantly compact compared to the features themselves and to their statistics. This enables comparing any regions without being restricted to a constant window size or specific feature dimension. Covariance matrices, however, lie on the manifold of Symmetric Positive Definite (SPD) tensors

  bining them through boosting for pedestrian detection. Authors in[START_REF] Wang | Covariance discriminative learning : A natural and efficient approach to image set classification[END_REF]) modeled a set of 2D images by a single covariance matrix. Next, they applied Log-Euclidean distance to map each covariance matrix from the Riemannian manifold to a Euclidean space for image set classification.
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 41 Figure 4.1 -The problem of image set (i.e. S) classification is formulated as classifying its covariance matrix C on the Riemannian manifold M. (Wang et al. 2012)

Figure 4 .

 4 Figure 4.2 -Tangent-space mapping or poorly-chosen kernel can often result in a bad classifier (right). Good classification using a learned mapping which uses the classifier cost in the optimization (left). (Vemulapalli et al. 2013)
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 43 presents an overview of the proposed method. In the next section, we give more details about the classification of 3D facial expressions on Riemannian manifold of SPD matrices.
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 44 Figure 4.4 -The four levels of the six expression variations for the same person from BU-3DFE dataset.
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 45 Figure 4.5 -Recognition rate comparison on BU-3DFE dataset over the six prototypical expressions.
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 46 Figure 4.6 -Effect of the number of patches on the classification performance of the proposed method on BU-3DFE and Bosphorus datasets.
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 47 Figure 4.7 -Effect of the patch radius on the classification performance of the proposed method. The reported results are on both BU-3DFE and Bosphorus datasets.
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 48 Figure 4.8 -Effect of the position of the sampled points on the classification performance of the proposed method on BU-3DFE dataset.

  tend the standard kernel methods, originally introduced for the analysis on Euclidean spaces, to the non-linear Riemannian manifold of covariance matrices. Moreover, Gaussian kernel utilized in our experiments helps understand the inherent structure of the 3D facial data to enhance the 3D FER 5.1. Summary 103 accuracy. Reported results on BU-3DFE and Bosphorus datasets show that our method efficiently succeed to classify facial expressions independently to the face identity. Average recognition rate attained on BU-3DFE 92.62%, and 86.17% on Bosphorus dataset. The reported results demonstrate the superiority of our proposed method compared to state-of-the-art ones.
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 34 Since Bosphorus and BU-3DFE datasets provide 2D face scans for each 3D facial shape, a multi-modal (2D+3D) covariance based method can be applied. This combination may improve the FER performance thanks to the elegant way for combining multiple heterogeneous features without normalization provided by covariance matrices. This thesis deals with recognizing static 3D facial expressions using two well-known 3D datasets. Recently, 4D datasets of dynamic 3D facial samples have become available (i.e. BU-4DFE (Yin et al. 2008), Hi4D-ADSIP (Matuszewski et al. 2012) and D3DFACS (Petrovska-5.2. Perspectives 105 Delacrétaz et al. 2008)). These datasets encode temporal cues that are indicative of more complex expressions and give the most accurate representation of facial articulations by including temporal information of dynamic facial movements. Furthermore, since 3D dynamic facial scans help to handle the low intensity of expressions, 4D FER is more similar to the real life which can be a future direction of our work. Our covariance based method can also deal with 4D FER since several studies have successfully extended the use of covariance descriptors to the temporal dimension in action and gesture recognition (e.g. (Bhattacharya et al. 2016, Sanin et al. 2013)).5. In this thesis, we only handled the six prototypical expressions to understand the human emotions. In our future work, we can further investigate the ability of recognizing the action units of a face. These action units refer a measuring of specific facial muscle movements, and are automatically related to their contraction. Thus recognizing the action units can be useful for further understanding the behaviors and the appearance of the face.

Figure A. 3 -

 3 Figure A.3 -Linearly separable data separated by a straight line.

Figure A. 4 -

 4 Figure A.4 -(a) : Non-linearly separable data separated by a curved line, (b) : Plan separation after a transformation of the data into a 3D plane.

  

  

  Introduction mental states, physiological activities and verbal/non-verbal communications, as shown in Figure 1.5. Mental state is one of the main sources, inclu-

	ding felt emotions, conviction and cogitation. Physiological states such as
	pain, tiredness also influence unconscious face muscle activities appearing
	in forms of expressions. Verbal communication such as illustrators, liste-
	ner responses ; and nonverbal communication such as unfelt emotion and
	emblems can also cause facial expressions. Different groups of primary
	emotions have been presented by psychologists as presented in Table1.1.

In his book The Expression of the Emotions in Man and Animals, Darwin asserted that facial expressions were universal and innate characteristics. The known psychologist Mehrabian (1972) has studied the effect of the verbal and non-verbal messages, which reported that face to face communication is governed by : 1. 7% (verbal : words account) 2. 55% (facial : expression, posture, gesture) 3. 38% (vocal : tone of the voice accounts) In the 20th century, two other well-known psychologists Paul Ekman and Wallace Friesen have developed in (Ekman et Friesen 1971) the Facial Action Coding System (FACS) which is a detailed technical guide that explains how to categorize behaviors based on muscles. In 2003, Fasel et Luettin (2003) presented the sources of facial expressions which include Chapitre 1.
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[START_REF] Pandzic | Mpeg-4 facial animation. The standard, implementation and applications[END_REF]
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 2 3 summarizes the existing approaches in 3D FER.
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-3D FER state-of-the-art methods.

Table 3

 3 

	.1 -Comparison of computational complexities of d ld metric and other metrics
	between SPD matrices. Cherian et al. (2013)
	3.3 3D face matching using SPD matrices
	Similar to local features, covariance matrices computed on 3D surfaces
	can be used as local descriptors for matching two faces. Let us consider
	a patch center p

i , i = 1, ..., m represented by a covariance matrix X i in a

Table 3 .

 3 2 -Recognition rates on FRGCv2 dataset using the different distance metrics presented in Section 3.2. Reported results are obtained using Neutral vs All protocol.

	Distance	Hungarian algorithm Mean of distances
	Log-determinant	97.4%	97.6%
	Affine-invariant	97.2%	97.2%
	Log-Euclidean	96.7%	96.9%
	Alpha divergence	88.0%	90.1%
	KL divergence	68.4%	72.9%
	Optimal transportation	62.1%	63.6%
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 33 Recognition rates on FRGCv2 dataset using the different distance metrics presented in Section 3.2. Reported results are obtained using Neutral vs Non-Neutral protocol.

Table 3 .

 3 

	Method	Neutral vs. All Neutral vs. non-Neutral
	Queirolo et al. (2010)	98.4%	-
	Spreeuwers (2011)	99.0%	-
	Wang et al. (2010)	98.3%	-
	Drira et al. (2013)	97.0%	-
	Mian et al. (2008)	-	92.1%
	Huang et al. (2012)	97.6%	95.1%
	Faltemier et al. (2008)	98.1%	95.0%
	Alyuz et al. (2010)	97.5%	96.4%
	Ratyal et al. (2015)	98.9%	-
	Al-Osaimi et al. (2008)	93.7%	-
	Our method	99.2%	97.4%

4 presents a comparison of our method to several state-of-theart methods using the two protocols, i.e. Neutral versus All, Neutral versus non-Neutral. From this table, we can see that our method outperforms the other state-of-the-art methods. This performance can be explained by the fact that covariance matrices provide an elegant way for combining multiple heterogeneous features without normalization or joint probability estimation. This combination significantly boosts the performance of our approach.

Table 3 .

 3 4 -Comparison with state-of-the-art methods on the FRGCv2 dataset.

Table 3 .

 3 7 presents the recognition performance using the different distances presented in Section 3.2. The mean of distances matching method shows that the log-determinant and the affine-invariant distances give the

	Method	All vs. All
	Queirolo et al. (2010)	96.5%
	Spreeuwers (2011)	94.6%
	Wang et al. (2010)	98.1%
	Drira et al. (2013)	93.9%
	Huang et al. (2012)	94.2%
	Faltemier et al. (2008)	93.2%
	Our method	96.7%

Table 3 .

 3 5 -Comparison of verification rates at FAR=0.1% on the FRGCv2 dataset with state-of-the-art results.

	Distance	Neutral Neutral+Expressive Expressive Looking down Looking up
	Log-determinant	100%	97.54%	97.26%	96.72%	95.08%
	Affine-invariant	100%	97.95%	97.81%	96.72%	95.90%
	Alpha Divergence	95.08%	92.21%	91.80%	90.98%	90.16%
	KL divergence	91.80%	90.16%	89.61%	88.52%	85.24%
	Optimal transportation 91.39%	87.97%	89.61%	86.06%	83.60%
	Log-Euclidean	100%	96.72%	95.08%	91.80%	93.44%

Table 3 .

 3 8 -Comparison with state-of-the-art methods on the GAVAB dataset.

Protocol Level 1 Level 2 Level 3 All levels

  

	GAVAB	Neutral-Vs-Expressive	98.00% 99.45% 98.90%	100%
	FRGCv2	Neutral-Vs-Non-Neutral 97.1%	97.4%	96.9%	97.6%
	BU-3DFE	Neutral-Vs-Expressive	93.85% 94.15% 93.70%	95.40%
	BU-3DFE	Low int-Vs-High int	97.25% 97.60% 96.90%

Table 3 .

 3 11 -Comparison with state-of-the-art methods on the BU-3DFE dataset.

  Figure 4.3 -Overview of the proposed 3D facial expression recognition method.

	Chapitre 4. 3D Facial Expression Recognition Using Kernel Methods on Riemannian
				Manifold
	HA Level1	HA Level2	HA Level3	HA Level4
	SA Level1	SA Level2	SA Level3	SA Level4
	AN Level1	AN Level2	AN Level3	AN Level4
	SU Level1	SU Level2	SU Level3	SU Level4
	FE Level1	FE Level2	FE Level3	FE Level4
	DI Level1	DI Level2	DI Level3	DI Level4

+ d

  separation is achieved by the hyperplane that has the largest distance to the nearest training data point of any class, called support vectors. The Chapitre 4. 3D Facial Expression Recognition Using Kernel Methods on Riemannian Manifold class of a test point is determined by the position of the mapping Φ(X) in H relative to the separating hyperplane. SVM is known to possess good generalization properties and to perform well in high-dimensional feature spaces. The mapping Φ is generally non-linear and the decision function is based on the sign of :

Table 4 .
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	Expression HA	FE	DI	AN	SA	SU
	HA	97.75 0.75	0	0	0	1.5
	FE	4.7	91.67 3.63	0	0	0
	DI	2.56	2.77 94.67	0	0	0
	AN	0	0	1.5	88.00 10.5	0
	SA	0	0	2.41	7.66 85.33	4.6
	SU	0	0	0.75	0.92	0	98.33

1 reports the resulting confusion matrix where the columns represent the predicted expressions and the rows represent the actual expression. The recognition accuracy of each expression is presented in bold, remaining values present the percentage of miss-classified items.

Table 4

 4 

	.1 -Confusing matrix of facial expression recognition (%) on BU-3DFE
	dataset : Happiness (HA), Fear (FE), Disgust (DI), Anger (AN), Sadness (SA), Surprise
	(SU).

Table 4 .

 4 2 presents the comparison results of our method performance with respect to the state-of-the-art ones. The results are reported on the

	BU-3DFE dataset following the same evaluation protocol over the six facial
	expressions.							
	Overall the dataset, Soyel et Demirel (2010) achieve 93.23% using pro-
	babilistic neural network for expression classification. Berretti et al. (2010b)
	applied SIFT descriptor and SVM for classification and achieved 77.53%.
	Huynh et al. (2016), on the other hand, used Convolutional neural net-
	work and achieved 92.73%. Azazi et al. (2015) used a pool of Speed Up
	Robust Features descriptors and yielded an average recognition accuracy
	of 85.81%.							
	Method	HA	FE	DI	AN	SA	SU	Overall
	Soyel et Demirel (2010) 94.1	90.0	93.9	91.7	90.8	98.9	93.23
	Mpiperis et al. (2008)	99.2	97.9	100	83.6	62.4	100	90.51
	Berretti et al. (2010b)	86.9	63.6	73.6	81.7	64.6	94.8	77.53
	Huynh et al. (2016)	100	86.7	95.2	91.3	87.5	95.7	92.73
	Azazi et al. (2015)	93.50 73.67 90.83 78.67 83.67 94.50	85.81
	Our method	97.75 91.67 94.67 88.00 85.33 98.33	92.62
	Table 4.2 -Comparison of classification rates (%) with state-of-the-art method on
		BU-3DFE dataset.				
	Method	Modality Landmark		Classifier
	Soyel et Demirel (2010) 3D mesh 83 manual		NN
	Mpiperis et al. (2008)	3D mesh Global registration ML
	Berretti et al. (2010b)	2D		27 manual		SVM
	Huynh et al. (2016)	2D+3D	-			CNN
	Azazi et al. (2015)	2D		20 using SURF	SVM
	Our method	3D mesh 30 automatic	SVM

Table 4 . 3 -

 43 Protocol comparison with state-of-the-art method on BU-3DFE dataset.

	It should be noted that Soyel et Demirel (2010) testing setup is different
	from ours as shown in Table 4.3. Soyel and Demirel's method provides
	results using 83 manually annotated facial landmarks, while our approach
	automatically extracts the set of feature points. Notes that the proposed
	approach outperforms Soyel et Demirel (2010)'s one when dealing with
	these three different expressions : (HA, FE, DI). Our approach gives a

Table 4

 4 

	Azazi et al. (2015)'s methods. Our method on the other hand has success-
	fully distinguished between FE and SU expressions compared with Huynh
	et al. (2016)'s method which easily confused to classify FE expression into
	SU.
	According to the above comparisons with state-of-the-art methods, we
	can clearly see that our method performance is steadier over the six ex-
	pressions as presented in Figure4.5. This strengthens our first claim about
	the robustness of covariance representation with respect to intra-class fa-
	cial expression variabilities as well as its efficiency in capturing inter-class
	ones.

.4 a comparison between the items of our confusion matrix with those of Huynh et al. (2016). From this table, we can see that AN and SA expressions are the more confusing with each other, which is similar to the finding of Huynh et al. (2016) and

Table 4 . 4
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	60	HA	FE	DI	AN	SA	SU

-Confusing matrix of our proposed method (left items) compared to Huynh et al. (2016)'s method (right items) on BU-3DFE dataset : Happiness (HA), Fear (FE), Disgust (DI), Anger (AN), Sadness (SA), Surprise (SU).

65 70 75 80 85 90 95 100 Expressions Recognition rate Our method Huynh et al Azazi et al Berretti et al Mpiperis et al

  

  .5, we can see that happiness and surprise expressions have the best recognition rate, whereas, sadness and fear expressions are more challenging. This behavior is similar to that observed on BU-3DFE

	Expression HA	FE	DI	AN	SA	SU	NE
	HA	93.00 2.50	4.50	0	0	0	0
	FE	5.00 81.00 1.00	0	3.50	9.50	0
	DI	3.25	3.75 85.25	0	1.75	0	6.00
	AN	0	0	7.25 86.25 3.50	0	3.00
	SA	0	0	9.25	0	79.75 1.50	9.50
	SU	1.50	8.00	0	0	0	90.50	0
	NE	0	0	0	10.75 1.75	0	87.50

Table 4 .
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	Chapitre 4. 3D Facial Expression Recognition Using Kernel Methods on Riemannian
	Manifold

5 -Confusing matrix of facial expression recognition (%) on Bosphorus dataset : Happiness (HA), Fear (FE), Disgust (DI), Anger (AN), Sadness (SA), Surprise (SU), Neutral (NE).

Table 4 .

 4 6 presents a comparison of our recognition performance with state-of-the-art methods. We can clearly see that our method gives the highest recognition performance (86.17%) followed by[START_REF] Azazi | Towards a robust affect recognition : Automatic facial expression recognition in 3d faces[END_REF] with 84.10%.[START_REF] Chun | Facial expression recognition using extended local binary patterns of 3d curvature[END_REF] on the other hand employed the depth images and the 2D texture images and obtained 76.98%. Note that in[START_REF] Chun | Facial expression recognition using extended local binary patterns of 3d curvature[END_REF]'s method, landmarks were located manually (see Table4.7).[START_REF] Vretos | 3d facial expression recognition using zernike moments on depth images[END_REF] achieved 60.53% using Zernike moments.More specifically, our method gives the highest classification performance compared to the other state-of-the-art methods when dealing with AN, SA and NE expressions. Furthermore, compared to[START_REF] Azazi | Towards a robust affect recognition : Automatic facial expression recognition in 3d faces[END_REF], our method gives better performance on AN, SA, SU and NE expressions.

	Wang et al. (2013) used curvature based descriptors with LBP, and achie-
	ved 76.56%.

Our approach gives better performance compared to

[START_REF] Wang | Learning encoded facial curvature information for 3d facial emotion recognition[END_REF]

's approach when dealing with HA, FE, DI, AN, and SA expressions. Note that

[START_REF] Wang | Learning encoded facial curvature information for 3d facial emotion recognition[END_REF] 

and

[START_REF] Vretos | 3d facial expression recognition using zernike moments on depth images[END_REF] 

didn't use Neutral expression (See table 4.7). Finally, compared to Vretos et al. (

2011

)'s method, our method gives better recognition performance over the six prototypical expressions.

To further study the efficiency of our method, we present in Table

4

.8 a comparison between items of our confusion matrix with those of the best state-of-the-art performed method in

Table 4.6 (i.e. Azazi et al. (2015)

). This

Table 4 .

 4 7 -Protocol comparison with state-of-the-art method on Bosphorus dataset.

	Method	HA	FE	DI	AN	SA	SU	NE	Overall
	Azazi et al. (2015) 97.50 86.25 90.00 82.50 67.50 83.75 81.25	84.10
	Chun et al. (2013)	-	-	-	-	-	-	-	76.98
	Wang et al. (2013) 92.50 62.80 70.60 63.50 74.50 95.60	-	76.56
	Vretos et al. (2011) 92.30 43.10 58.50 70.80 50.80 47.70	-	60.53
	Our method	93.00 81.00 85.25 86.25 79.75 90.50 87.50	86.17
	Table 4.6 -Comparison of classification rates (%) with state-of-the-art method on
			Bosphorus dataset.				
	Method	Modality Landmark Expressions Classifier
	Azazi et al. (2015) 2D		automatic	7		SVM with EPE
	Chun et al. (2013) 2D+3D	manual		6		SVM+NN
	Wang et al. (2013) 2D+3D	automatic	6		SVM	
	Vretos et al. (2011) 2D		automatic	6		SVM	
	Our method	3D mesh automatic	7		SVM	

 [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF][START_REF] Munkres | Algorithms for the assignment and transportation problems[END_REF]. The assignment problem deals with assigning machines to tasks, workers to jobs, soccer players to positions, and so on. The goal is to determine the optimum assignment that, for example, minimizes the total cost or maximizes the team effectiveness. In our contribution, we apply it to find the best permutation between probe and gallery faces which minimizes the cost of matching using their covariance matrices so that we can classify the probe face to the nearest gallery face. the ones giving the maximal and minimal curvature values known as first (k1) and second (k2) principal curvatures [START_REF] Creusot | A machine-learning approach to keypoint detection and landmarking on 3d meshes[END_REF]. Table A.1

presents the surface classes according to their curvatures.

SVM is a supervised machine learning method which is popular for addressing binary classification problems using functions that can opti-

A. Annexes

To evaluate the identification performance, a set of N probe probe samples is compared against a set of N gal gallery samples. This results N probe sets of match scores, with each set containing N gal match scores.

The match scores in each set are sorted in descending order.

In closed-set identification, the ordered score sets from the N probe are used to estimate the probability that the correct matching identity pertaining to a probe is observed within the top K ranks. These probabilities are typically expressed visually through the Cumulative Match Characteristic (CMC) curve. Unlike the ROC curve, which is generated by looking at genuine and impostor scores all-at-once, the data in the CMC curve is obtained based on the explicit ordering of genuine and impostor scores for each face probe.

A.6 Cross validation

In order to evaluate the classification performance using k-cross validation approach, the data is divided into (k=10 in the case of 10-cross