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Abstract

Title Contribution to 2D/3D Face Recognition/Authentication .

Abstract 3D face analysis including 3D face recognition and 3D Facial

expression recognition has become a very active area of research in recent

years. Various methods using 2D image analysis have been presented to

tackle these problems. 2D image-based methods are inherently limited by

variability in imaging factors such as illumination and pose. The recent

development of 3D acquisition sensors has made 3D data more and more

available. Such data is relatively invariant to illumination and pose, but

it is still sensitive to expression variation. The principal objective of this

thesis is to propose efficient methods for 3D face recognition/verification

and 3D facial expression recognition. First, a new covariance based me-

thod for 3D face recognition is presented. Our method includes the follo-

wing steps : first 3D facial surface is preprocessed and aligned. A uniform

sampling is then applied on the face surface to localize a set of feature

points, around each point, we extract a matrix as local region descriptor.

Two matching strategies are then proposed, and various distances (geode-

sic and non-geodesic) are applied to compare faces. The proposed method

is assessed on three datasets including GAVAB, FRGCv2 and BU-3DFE.

In the second part of this thesis, we present an efficient approach for 3D

facial expression recognition using kernel methods with covariance ma-

trices. In this contribution, we propose to use Gaussian kernel which maps

covariance matrices into a high dimensional Hilbert space. This enables to

use conventional algorithms developed for Euclidean valued data such as

SVM on such non-linear valued data. The proposed method have been as-

xiii



sessed on two known datasets including BU-3DFE and Bosphorus datasets

to recognize the six prototypical expressions.

Keywords Face analysis, Identification, Verification, Covariance matrix,

Geodesic distances, Face matching, Facial expression, Kernel-SVM, Clas-

sification.
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Titre Contribution à la Reconnaissance/Authentification de Visages

2D/3D.

Résumé L’analyse de visages 3D y compris la reconnaissance des visages

et des expressions faciales 3D est devenue un domaine actif de recherche

ces dernières années. Plusieurs méthodes ont été développées en utilisant

des images 2D pour traiter ces problèmes. Cependant, ces méthodes pré-

sentent un certain nombre de limitations dépendantes à l’orientation du

visage, à l’éclairage, à l’expression faciale, et aux occultations. Récemment,

le développement des capteurs d’acquisition 3D a fait que les données 3D

deviennent de plus en plus disponibles. Ces données 3D sont relative-

ment invariables à l’illumination et à la pose, mais elles restent sensibles

à la variation de l’expression. L’objectif principal de cette thèse est de pro-

poser de nouvelles techniques de reconnaissance/vérification de visages

3D et de reconnaissance d’expressions faciales 3D. Tout d’abord, une mé-

thode de reconnaissance de visages en utilisant des matrices de covariance

comme des descripteurs de régions de visages est proposée. Notre mé-

thode comprend les étapes suivantes : le prétraitement et l’alignement de

visages, un échantillonnage uniforme est ensuite appliqué sur la surface

faciale pour localiser un ensemble de points de caractéristiques. Autours

de chaque point, nous extrayons une matrice de covariance comme un

descripteur de région du visage. Deux méthodes d’appariement sont ainsi

proposées, et différentes distances (géodésiques / non-géodésique) sont

appliquées pour comparer les visages. La méthode proposée est évaluée

sur trois bases de visages GAVAB, FRGCv2 et BU-3DFE. La deuxième par-

tie de cette thèse porte sur la reconnaissance des expressions faciales 3D.

Pour ce faire, nous avons proposé d’utiliser les matrices de covariances

avec les méthodes noyau. Dans cette contribution, nous avons appliqué le

noyau de Gauss pour transformer les matrices de covariances en espace

d’Hilbert. Cela permet d’utiliser les algorithmes qui sont déjà implémen-

tés pour l’espace Euclidean (i.e. SVM) dans cet espace non-linéaire. Des

xv



expérimentations sont alors entreprises sur deux bases d’expressions fa-

ciales 3D (BU-3DFE et Bosphorus) pour reconnaitre les six expressions

faciales prototypiques.

Mots-clés Analyse de visage, Identification, Vérification, Matrice de co-

variance, distance géodésique, Appariement de visage, Expression faciale,

Noyau, SVM, Classification.
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Face analysis including face recognition and facial expression recog-

nition finds applications in various fields such as human-computer

interaction, security systems, etc. Pioneer researchers focused on 2D me-

thods to handle the problem of face recognition and facial expression re-

cognition. These methods have many limitations especially with the pre-

sence of pose and illumination variations which deteriorate the recogni-

tion performance. Since 3D data become more and more available with

the development of the acquisition systems, face analysis systems using

3D date become feasible. In this thesis, we handle the problem of 3D face

recognition and 3D facial expression recognition.

1.1 Face recognition

With the increasing need for efficient security systems, many re-

search investments have been made for recognizing and authenticating

1



2 Chapitre 1. Introduction

human subjects. Traditionally, there are two different methods to reco-

gnize/authenticate human subjects. The first method depends on what

the user knows such as passwords, phone number, birth dates, etc. The

problem with this method of authentication is that these information can

easily be stolen or guessed.

The second method is based on the possession of a physical devise

(e.g. RFID card). This device may be swiped or entered to allow access to

a resource. The problem with this kind of authentication is that the device

could be easily lost, stolen, or broken. These two authentication methods

can be used in a complementary manner in order to obtain a high security

as in the case of the credit card.

The biometric characteristics are an alternative solution to the two pre-

vious authentication methods. They enable reliable and efficient identity

management systems since they are permanent, universal and easy to

access. The use of biometric traits to control a subject’s identity rather

than passwords and tokens is more reliable to improve the security sys-

tems than controlling what he possesses or what he knows. Additionally,

biometry-based procedures obviate to remember a PIN number or carry a

badge.

Among the various human characteristics used in biometric systems,

we can find iris, face, fingerprint, gait or DNA. The system constraints and

requirements should be taken into account as well as the technical, social

and ethical factors (Introna et Nissenbaum 2010). For instance, while fin-

gerprint is the most wide-spread biometric technique, it requires strong

user collaboration. Similarly, iris recognition, although being very accu-

rate, highly depends on the image quality and also requires active partici-

pation of the subjects.

Face recognition can be a good alternative compared to other biometric

techniques. It became an active research area due to its favorable compro-

mise between accessibility and reliability. It allows identification at relati-

vely high distances of unaware subjects that do not have to cooperate.



1.1. Face recognition 3

Given a 2D or 3D image or a video sequence, the face recognition

problem can be briefly interpreted as an identification or a verification of

one or more persons.

A typical face recognition system is composed of four modules :

1. Sensor module : which captures the face data (2D/3D) ;

2. Feature extraction module : which processes the output of the sensor

to extract a discriminatory feature set ;

3. Matching module : in which the extracted features are compared

against the features of the stored scans, and matching scores between

faces are computed ;

4. Decision making module : the recognition is based on the matching

scores between the face to be recognized and the stored face in the

database.

Every face recognition system has two phases of operation. The first

phase is called enrollment in which an individual uses the system for

the first time as presented in Figure 1.1. At the enrollment phase, facial

information of the user is stored by the system, which forms a database

so-called Gallery. In the second phase, given a face to be recognized called

probe, the system sorts all face gallery according to their similarity to the

probe.

Figure 1.1 – Enrolment process.



4 Chapitre 1. Introduction

Figure 1.2 – Identification process.

Figure 1.3 – Verification process.

1.1.1 Face recognition system design

Face recognition systems may process the probe sample either in "veri-

fication" or "identification" scenario. In the verification scenario, the probe

is compared to the claimed template (one to one comparison) for valida-

tion and it is either accepted or rejected. In the identification scenario, it

is compared to all reference faces in the gallery (one to many compari-

son) to answer the question of whom this face belongs to. Figure 1.2 and

Figure 1.3 introduce the identification and the verification scenarios res-

pectively. If the face in the probe is already registered in the reference

database, it is called closed-set identification. Otherwise, it is open-set

identification.
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1.1.2 Performance evaluation of face recognition systems

Each scenario has its own set of performance metrics. In face verifi-

cation, if the match score meets the threshold criteria, the identity claim

is accepted, otherwise, it is rejected. This setting leads to four possible

outcomes (see Figure1.4) :

1. True accept : The person is who he claims to be (genuine) and his

claim is proved.

2. True reject : The person is not who he claims to be (imposter) and

his claim is disproved.

3. False accept : The person is not who he claims to be and his claim is

proved.

4. False reject : The person is who he claims to be and his claim is

disproved.

Threshold based decisions always introduce a tradeoff to be considered.

In the case of face verification, if the threshold is too high, False reject

rate (FRR) might increase since more legitimate claims would be rejec-

ted. If the threshold is too low, acceptance of false claims will be more

likely, increasing False acceptance rate (FAR). This relationship is shown

with Receiver operating characteristic (ROC) graph which represents the

probability of true acceptance versus probability of false acceptance. ROC

curves are also used to measure performances of open-set identification

systems. Instead of true acceptance rate, detection and identification rate

is calculated and plotted against FAR. Detection and identification rate is

the percentage of the probe samples represented in the gallery that are

correctly accepted and identified.

With face identification scenario, the rank performance measure is

used. In rank-1 case, a probe face is identified as the first identity in the list

of subjects sorted in decreasing order of computed similarity scores. Cor-

respondingly, rank-n systems examine the top n matches. Thereby, identi-

fication rate is a function of rank.
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On the other hand, in closed-set face identification, the performance is

computed as a function of rate only and reported on Cumulative match

characteristic (CMC) curves. CMC plots the size of the rank order list

against the identification rate.

Figure 1.4 – Evaluation metrics of face recognition systems.

Despite the the recent advances achieved in face recognition in the

last decades, it still suffers from intra-class variations (variations between

scans of the same subject) due to various factors in real-world scenarios

(e.g. illumination variations, pose changes, expression variations, occlu-

sion, age, poor image quality), and inter-class variations (similarity bet-

ween scans of different subjects). In the Face Recognition Vendor Test 2002

(Phillips et al. 2003), it was demonstrated that using 2D intensity or co-

lor images, a recognition rate higher than 90% could be achieved under

controlled variations. However, with the introduction of aforementioned

variations, the performances deteriorated (Al-Osaimi et al. 2012, Ocegueda

et al. 2013, Tang et al. 2013, Petrovska-Delacrétaz et al. 2008).

After the availability of 3D scanners and 3D face databases, many re-

searchers focused their energies toward 3D face recognition in order to

utilize the more precise information associated with a 3D facial shape

(Bowyer et al. 2006, Mohammadzade et Hatzinakos 2013, Zhao et al. 2011).

Indeed, 3D model retains all the information about the face geometry. Mo-

reover, 3D face recognition also growths to be a further evolution of 2D

recognition problem, because a more accurate representation of the facial
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features leads to a potentially higher discriminating power (Abate et al.

2007). In a 3D face model, facial features are represented by local and

global curvatures that can be considered as the real signature identifying

persons. The 3D facial representation seems to be a promising tool to deal

with many of the human face variations such as illumination (Al-Osaimi

et al. 2012, Smeets et al. 2010) and pose changes (Ocegueda et al. 2013).

Various 3D based methods have been proposed in the literature to ta-

ckle the problem of 3D face recognition. Indeed, some methods perform

very well only on faces with controlled environment where pose, illumi-

nation and other factors are controlled. Some others try also to deal with

the different face variations.

The first aim of this thesis is to propose a 3D face recognition method

that is robust under the different variations.

1.2 Facial expression recognition

Closely related topic to face recognition is the automatic facial ex-

pression recognition which has attracted much attention from behavioral

scientists since the work of Darwin et al. (1998). In his book The Expression

of the Emotions in Man and Animals, Darwin asserted that facial expressions

were universal and innate characteristics. The known psychologist Mehra-

bian (1972) has studied the effect of the verbal and non-verbal messages,

which reported that face to face communication is governed by :

1. 7% (verbal : words account)

2. 55% (facial : expression, posture, gesture)

3. 38% (vocal : tone of the voice accounts)

In the 20th century, two other well-known psychologists Paul Ekman

and Wallace Friesen have developed in (Ekman et Friesen 1971) the Fa-

cial Action Coding System (FACS) which is a detailed technical guide that

explains how to categorize behaviors based on muscles. In 2003, Fasel et

Luettin (2003) presented the sources of facial expressions which include
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mental states, physiological activities and verbal/non-verbal communica-

tions, as shown in Figure 1.5. Mental state is one of the main sources, inclu-

ding felt emotions, conviction and cogitation. Physiological states such as

pain, tiredness also influence unconscious face muscle activities appearing

in forms of expressions. Verbal communication such as illustrators, liste-

ner responses ; and nonverbal communication such as unfelt emotion and

emblems can also cause facial expressions. Different groups of primary

emotions have been presented by psychologists as presented in Table1.1.

Psychologist Categories of emotions
Ekman et Friesen (1971) anger, fear, disgust, sadness, happiness, surprise.
Plutchik (2003) acceptation, anger, anticipation, disgust, fear, happy,

sad, surprise.
Tomkins (1962) anger, interest, contempt, disgust, anxiety, fear,

happy, shame, surprise.
James (1884) fear, grief, love, rage.

Table 1.1 – Emotion categories.

Figure 1.5 – Sources of Facial Expressions (Fasel et Luettin 2003).

Based on this finding, facial expressions have been studied by clini-

cal and social psychologists, medical practitioners. Recently, with the ad-

vances in computer graphics, computer vision and robotics, it has become

a worthwhile topic to study in computer sciences especially for human

computer interaction (HCI) systems (Liu et al. 2009). Among the afo-

rementioned groups of emotions, human computer interaction research

community is focusing on recognizing the six basic expressions defined

by (Ekman et Friesen 1971).
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Facial expression data as well as face data exhibit large inter-class and

intra-class variations which make the FER a difficult task. The second aim

of this thesis is to propose a 3D FER system that efficiently classifies the six

prototypical expressions regardless to their identity. Main contributions of

the thesis are summarized below.
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1.3 Original contribution

The two main contributions conducted in this PhD thesis involve :

3D face recognition using covariance based descriptors in this contri-

bution, we handle the problem of 3D face recognition/verification under

expression, pose and partial occlusion variations. To this end, we pro-

posed a new covariance based method and demonstrate its efficiency as

local descriptors for 3D face recognition. Since covariance matrices are not

elements of an Euclidean space, they are elements of a Lie group, which

has a Riemannian structure. Therefore, matching with covariance matrices

requires the computation of geodesic distances on the manifold using a

proper metric. In this contribution, we have compared the performance

of our recognition system using several distances for covariance matrices

including geodesic distances. Finally, for the recognition step, we conside-

red the two following solutions : (i) the Hungarian solution for matching

unordered sets of covariance descriptors from two 3D faces, and (ii) the

mean of distances between each pair of homologous patches in the two 3D

faces. The proposed face recognition method has been assessed on three

challenging datasets including Gavab, FRGCv2 and BU-3DFE.

3D facial expression recognition on Riemannian manifold in order to

accurately recognize the six prototypical expressions (i.e. Happiness, An-

gry, Disgust, Sadness, Surprise and fear) from 3D facial data regardless

to the face identity, we proposed a new kernel based method on Rie-

mannian manifold. Inspired by the successful use of kernel methods on

Riemanniam manifold in order to embed the non-linear manifold into a

Hilbert space, which make the conventional computer vision and machine

learning algorithms applicable, we applied Gaussian kernel on Sym+
d by

replacing Euclidean distance by a proper geodesic distance on manifold.

Since in our framework, covariance matrices are considered as unordered

set of descriptors, therefore we used a kernel on sets rather than directly
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using Gaussian kernel in the SVM classifier. For this end, we build a global

kernel function so that one can compare two facial expressions by using

the covariance descriptors. The proposed 3D FER method have been as-

sessed on two challenging datasets including Bosphorus and BU-3DFE

datasets.

The rest of this manuscript is laid out as follows :

In chapter 2, we first present the state-of-the-art of 3D face analysis in-

cluding the existing methods proposed to tackle the the problem of face

recognition under different variations (e.g. expression, pose, occlusions).

Second, we review the state-of-the-art methods for 3D facial expression

recognition.

In chapter 3 we present the covariance based method proposed to tackle

the problem of 3D face recognition under different variations.

Chapter 4 is dedicated to the proposed 3D facial expression recognition

method. This method uses kernel methods on Riemannian manifold in or-

der to classify the six prototypical facial expressions.

Chapter 5 summarizes the main contribution results of our thesis, and

gives possible future directions.
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2.1 Introduction

Face recognition is the most commonly used biometric technique, it

has moved to the forefront by offering a good compromise between effec-

tiveness and acceptability. Besides being non-invasive and natural, it holds

the promise of recognition at a distance without the cooperation or know-

ledge of the subject. In a typical face recognition system, given an image,

13
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firstly, face is detected and segmented from the background. Next, several

landmarks are localized and used in the next steps. This is followed by

features extraction and finally the matching process to compare faces. Fi-

gure 2.1 presents an overview of the face recognition system. Since the first

face recognition system has been presented in 1973 by Kanade (1973), it

has become a very popular area in computer vision on account of rapid ad-

vancements in image capture devices, increased computational power and

large variety of its applications. With the increasing popularity, face recog-

nition systems reached recognition rates greater than 80% in constrained

situations even exceeding human performance, especially in the case of

very large galleries. However, Face Recognition Vendor Test (Phillips et al.

2003) found that in real world scenarios where face images can include a

wide range of variations, performances degrade very rapidly. As of those

variations, we find principally illumination, pose, expression, occlusion

and age. Pose and illumination variations are two major sources of degra-

dation in recognition performances. As the pose of a subject or direction

of illumination deviates from the frontal, it often causes face image diffe-

rences that are larger than what conventional face recognition can tolerate.

Extensive efforts have been put to achieve pose/illumination invariant face

recognition. Facial shape deformation caused by expression variation is

also a grand challenge in face recognition systems.

Facial expressions form a significant part of our nonverbal communi-

cations, and understanding them is essential for many applications such

as human-computer interaction (HCI), interactive games, computer-based

learning, entertainment, etc. The most used expressions are : Happiness,

Angry, Disgust, Sadness, Surprise and Fear. In order to build human-like

emotionally intelligent HCI devices, researchers are trying to include emo-

tional state in such systems.

The recent development of 3D acquisition sensors has made 3D data

more available, and this kind of data comes to alleviate the problems in-

herent in 2D data such as illumination, pose and scale variations as well
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as low resolution. 3D face datasets become more and more available, pro-

viding the worldwide researchers of face and facial expression recognition

community a large scale data for training and evaluating their approaches.

Figure 2.1 – Face recognition system.

In the following, we present the two modes of 3D face data acquisition

and different 3D face representations. Next, we review some well-know

3D face datasets and the 3D face preprocessing and alignment steps.

3D face acquisition Different techniques for capturing 3D face/facial

expression data have been employed including the use of single image

reconstruction (Kemelmacher-Shlizerman et Basri 2011, Wang et Lai 2011),

structured light technologies (Jarvis 1993, Huang et al. 2003). Two methods

for stereo reconstruction algorithms have been also used : photometric

stereo (Woodham 1980), and multiview stereo (Seitz et al. 2006, Beeler

et al. 2010, Yin et al. 2008, Benedikt et al. 2010). Each technique has its

own advantages, limitations and cost. These techniques are used to create

3D point clouds, sampled from the surface of the subject and they can be

classified mainly into two types : non-contact scanners which don’t require

the physical participation of the subject, they can be further divided as

passive and active sensors. Contact scanners on the other hand detect the

range through physical touch. These scanners are out of our scope due

to the inability of utilization in face recognition field. Passive and active

range scanning technologies will be described in the following.

— Passive sensing : inspired by human visual system, a number of

passive cues have long been known to contain information on 3D

face such as shading, perspective, focus, stereo, motion parallax,
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occluding contours, etc. Assuming that the sensor simply records

light that already exists in the scene, 3D scene description is deri-

ved from 2D images by analyzing the reflectance proprieties. Main

advantages of passive techniques include their ability to recognize

non-cooperative persons at a distance. 3D face model is generated

from sequence of images and utilized in person identification at 3,

6 meters by Medioni et al. (2007). In (Rara et al. 2009), authors have

proposed a framework for face recognition at 15 meters based on

sparse-stereo reconstruction. The setup consists of a stereo pair of

high resolution cameras with adjustable baseline where user can

pan, tilt, zoom and focus the cameras to converge the center of the

cameras field of views on the subject’s nose tip.

Although these advantages, these techniques have a limitation of

uniform appearance resulting in low-accuracy reconstruction in

their application to faces. In addition, the ambient light (i.e. combi-

nation of light reflections from various surfaces to produce a uni-

form illumination) affects significantly the ability of the system to

successfully extract all the desired features unless controlled ligh-

ting is used. To overcome the limitations on accuracy, model-based

approaches have been proposed in (Zhang et al. 2004, Fua 2000) to

constrain face reconstruction in regions of uniform appearance.

Moreover, in order to overcome limitations of uniform appearance

of the face allowing accurate reconstruction, active sensing has be-

come widely used for acquisition of face shape due to the increases

in digital camera resolution (Kittler et al. 2005).

— Active sensing : various technologies have been proposed which

utilize some kind of emission such as laser, infrared structured,

modulated light. Active systems can easily measure surfaces in

most environments due to their own illumination. These systems

work on two principles : time-of-flight ; and triangulation. Time-of-

flight sensors measure the time taken for the projected illumination
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pattern to return from the object surface. This sensor technology

requires nano-second timing to resolve surface measurements to

millimetre accuracy. A number of commercial time-of-flight sys-

tems are available based on scanning a point or stripe across the

scene. Triangulation systems, on the other hand, use a focused

beam of light to probe the environment and by tracing a line of

sight through illuminated pixel.

Under uncontrolled illumination conditions (i.e. outdoors), active

sensor systems suffer from the background lighting problem which

can make the projected pattern less visible and cause loss of accu-

racy. Nevertheless, these systems are more robust when dealing

with controlled illumination conditions (i.e. indoors). Moreover, for

environments without direct sunlight, 3D data construction of the

scene can be achieved within seconds with very high reliability and

accuracy (El-Hakim et al. 1995).

3D face representations In this section, we present the main surface re-

presentations for 3D face which could be inter-convertible.

— Point cloud representation is the simplest form to represent 3D

facial surface. It contains a collection of unstructured coordinates

denoted by x, y, z (Pears et al. 2012). Most of the scanners use

this representation in order to store the captured 3D facial infor-

mation. Sometimes texture attributes are also concatenated to the

shape information. In this case, the representation simply becomes

x, y, z, p, q, where p and q are spatial coordinates. The disadvantage

of this representation is that the neighborhood information is not

available as each point is simply expressed as three/five attribute

coordinates vector (Gokberk et al. 2008). Often the point cloud data

is fitted to a smooth surface to avoid drastic variations due to noise.

Figure 2.2(b) presents the point cloud representation for a sample

face from the BU-3DFE dataset.
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(a) (b) (c)

(d) (e)

Figure 2.2 – a) Texture map, b) Point cloud, c) Triangular mesh, d) Depth map, e) 3d
rendered as shaded model.

— 3D Mesh representation uses pre-computed and indexed local in-

formation about the 3D surface. It requires more memory and sto-

rage space than point cloud representation, but it is more preferred

as it is flexible and more suitable for 3D geometric transformations

such as translation, rotations and scaling. Each 3D polygonal mesh

is expressed as a collection of mesh elements : vertices (points),

edges (connectors between vertices) and polygons (shapes formed

by edges and vertices). Different methods have been introduced to

build a polygonal mesh from point cloud using PCA in (Xu et al.

2004), and medial axis transform approximation (Amenta et al.

2001). Figure 2.2(c) presents the mesh representation for a sample

face from the BU-3DFE dataset.

— Depth image representation is also called 2.5D or range image re-

presentations Bowyer et al. (2006). 2.5D images are a conventional

2D representation, nevertheless, pixels represent the distance bet-

ween the camera and the observed object. Since it is a 2D represen-

tation, many existing 2D image processing approaches can readily

be applied to this representation. Figure 2.2(d) presents the point

cloud representation for a sample face from the BU-3DFE dataset.
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Datasets description Most of the well-known 3D face datasets were col-

lected using laser-based sensors.

— The BU-3DFE dataset (Yin et al. 2006) contains 3D face scans and as-

sociated texture images of 100 subjects, displaying six prototypical

expressions (anger (AN), disgust (DI), fear (FE), happiness (HA),

sadness (SA), and surprise (SU)) at four different intensity levels.

A neutral expressive face for each subject is also provided in the

dataset. Thus there are a total of 2500 3D faces. The resolution of

the 3D models is comprised between 20,000 and 35,000 polygons,

depending on the size of the subject’s face. Moreover, scans were

accompanied by a set of metadata including the position of 83 fa-

cial feature points on each facial model, as depicted in Figure 2.3.

Examples of 3D faces from this dataset can be seen in Figure 2.5.

— The GAVAB dataset (Moreno et Sanchez 2004) contains 549 three-

dimensional facial surface images corresponding to 61 individuals

(45 male and 16 female). It includes many variations with respect

to the pose of each individual. Each subject in the GAVAB dataset

was scanned 9 times for different poses and facial expressions. The

whole set of individuals are Caucasian and most of them are aged

between 18 to 40 years. There are systematic variations over the

pose and facial expression of each person. In particular, 2 frontal

and 4 rotated images without any facial expressions. There are also

3 frontal images in which the subject presents different and accen-

tuated facial expressions (laugh, smile and a random expression

chosen by the user). Figure 2.6 shows an example of faces taken

from this dataset. In this experiment, we will deal only with ex-

pressive faces to assess the performance of our proposed method

under this facial deformation.

— The FRGCv2 database (Phillips et al. 2005) is one of the most com-

prehensive and popular datasets, containing 4007 3D face scans

of 466 different persons, the data were acquired using a minolta
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910 laser scanner that produces range images with a resolution of

640×480. The scans were acquired in a controlled environment and

exhibit large variations in facial expression and illumination condi-

tions but limited pose variations. The subjects are 57% male and

43% female, with the following age distribution : 65% 18-22 years

old, 18% 23-27and 17% 28 years or over. The database contains an-

notation information, such as gender and type of facial expression.

Figure 2.7 presents faces for the same subject from FRGCv2 dataset.

— The Bosphorus database (Savran et al. 2008) is a multi-expression,

multi-pose 3D face database enriched with realistic occlusions. The

database consists of 4666 scans from 105 subjects and is acquired

with the Inspeck Mega Capturor II 3D scanner (structured-light

technique) leading to 3D point clouds of approximately 35 000

points. Each scan has been manually labelled for 24 facial land-

mark points such as nose tip, inner eye corners, right nose peak,

left nose peak, etc. Subjects are aged between 25 and 35 in various

poses, expressions and occlusion conditions. Only 65 subjects po-

sed all the six prototypical facial expressions (i.e., angry, happiness,

fear, sadness, surprise, and disgust) and neutral. Figure 2.8 presents

seven expressive faces for the same subject from Bosphorus dataset

(6 expressions + 1 neutral scan).

We present in Table 2.1 a description of the aforementioned data-

sets and their characteristics.

Figure 2.3 – The 83 facial points given in the BU-3DFE database (Sandbach et al.
2012).
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(a) (b)

Figure 2.4 – An illustration of 3D facial nosetip detection. Horizontal planes for 3D
facial scan slicing (a). Horizontal facial profile (b).Guo et al. (2016)

3D face preprocessing and alignment 3D face data acquired by a 3D

sensor needs to be processed before feature extraction stage. Generally,

these data include non-facial regions (e.g. hair, clothing, shoulders, etc)

which should be removed. To do so, landmark points (e.g. nose tip, eye

corners) are often localized to detect the facial surface. Authors in Mian

et al. (2006) detected nose tip and cropped face via sphere centered at the

nose tip. Guo et al. (2016) have detected the nosetip to remove undesired

points outside the 3D facial region. First, a set of horizontal planes are

used to slice the 3D facial scan, resulting in a set of horizontal profiles of

the 3D face, as presented in Figure2.4 (Left). Then, a set of probe points

are located on each profile and a circle is placed at each point, resulting in

two intersection points with the horizontal profile, as shown in Figure2.4

(Right). A triangle is formed by the probe point and the two intersection

points. The probe point with the largest altitude h of its associated triangle

along the profile is considered to be a nosetip candidate. Other nose tip

detection methods can be found in (Chew et al. 2009, Segundo et al. 2007,

Colombo et al. 2006, Xu et al. 2006).

Holes are parts of missing data which the sensor couldn’t capture be-

cause of undesired objects such as eyebrows, hand, hair, etc. In order to

recover these holes, two solutions can be applied, interpolation techniques

or using facial symmetry. To deal with small holes, linear interpolation can

be sufficient, otherwise, cubic interpolation is more accurate.
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Facial symmetry is also used to recover large holes using the non-

occluded side of the face. For example, Colombo et al. (2011) proposed a

detection and restoration strategy for the recognition of three dimensional

faces partially occluded by external objects. They considered any part of

the acquired 3D scene that does not look like part of a face and lies bet-

ween the acquisition device and the acquired face to be a generic occlusion

(i.e. hole). Restoration of occluded regions exploits the information provi-

ded by the non-occluded part of the face to recover the whole face, using

an appropriate basis for the space in which non-occluded faces lie.

The cropped data can also be affected by noise caused by imaging

conditions such as illumination and surface texture. This noise can be re-

moved using median filter. The basic idea of the median filtering consists

of simultaneous replacing every pixel of an image with the median of the

pixels contained in a window around the pixel (Yagou et al. 2002).

Once 3D face has been preprocessed, the next step is to deal with pose

differences. Since faces can be captured with different poses, their compa-

rison become difficult and thus, it needs alignment step.

Iterative Closest Point (ICP) algorithm (Besl et McKay 1992, Chen et

Medioni 1991, Zhang 1994) is mostly used to find correspondences bet-

ween two 3D shapes and align them. However, when the pose difference

is high, a good initialization is required to avoid local minimum.
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(DI) (HA) (SA) (SU) (AN) (FE)

Figure 2.5 – Face expressions from BU-3DFE dataset for the same subject. 3D textured
models in first row and 3D shape models in second row.

Figure 2.6 – 3D scans of the same subject from the GAVAB dataset.

Figure 2.7 – 3D scans of the same subject from the FRGCv2 dataset..

(NE) (DI) (HA) (SA)

(SU) (AN) (FE)

Figure 2.8 – Face expressions from Bosphorus dataset for the same subject.
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2.2 3D face recognition- State of the art

In the following, we introduce 3D face challenges and the existing me-

thods proposed to address these issues.

2.2.1 Challenges of 3D face recognition

When acquired in non-controlled conditions, scan data are often af-

fected by many factors : pose expression, occlusion, illumination, weather

and so on. In the following we briefly describe these variations.

Expression challenge

Facial expression variations are reported as one of the main challenges

of face recognition, since it is generated by facial muscle contractions

which result in temporary facial deformations in both facial geometry and

texture. Thus, expressive faces complicate the face recognition by creating

higher intra-class variance than inter-class variance which can dramati-

cally deteriorate the recognition performance as illustrated in Figure 2.8.

Figure 2.9 – Profile faces from GAVAB dataset.

Figure 2.10 – Profile faces from Bosphorus dataset.
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Partial occlusion and pose challenges

Occlusion Variation means that only partial faces are available which

also degrade the face recognition performance. These occlusions can be

classified into two categories :

— External occlusions : caused by the non-availability of 3D facial

data due to external objects such as sunglasses, hats, eyeglasses, or

face may be partially covered by hair, or parts of cheeks due to a bad

angle for laser reflection and other undesired regions. Figure 2.11

presents partial occlusions for 3D faces from Bosphorus dataset.

— Internal occlusion : for a non-frontal pose of the subject, some parts

of the face may not be captured during the scan. These results in

missing data are referred to as internal occlusion. Figure 2.9 pre-

sents right and left profile scan from GAVAB dataset. Figure 2.10

presents six profile faces from Bosphorus dataset.

Although many researchers dealt with expression variations, very few

have attempted occlusion variation problem for 3D face recognition. The

first explorations for partial occlusion challenge was in Brunelli et Poggio

(1993), Pentland et al. (1994), Beymer (1994). Nevertheless, the substantial

facial appearance change caused by pose variation continues to challenge

the state-of-the-art face recognition systems. Essentially, it results from the

complex 3D structure of the human head.

Figure 2.11 – Partial occluded faces from Bosphorus dataset. Texture in first row and
3D shape in second row.
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2.2.2 3D face features

In order to address the aforementioned challenges, various methods

have been proposed in the literature to efficiently describe faces. A 3D

face model captures geometrical information of the facial surface. Various

shape related features can thus be extracted from 3D face models such as :

normals, binormals, tangent vectors or curvatures, all of which describe

shape variations over local patches inspired by differential geometry of

3D surfaces. Therefore, different features have been extracted to deal with

the facial variations. We classify them according to the challenge to be

handled.

Expression-invariant features

Various methods have been proposed to handle the problem of expres-

sion variation. Statistical models have been widely used where the most

popular is the Principal component Analysis (PCA) model. Al-Osaimi

et al. (2009) employed the PCA to learn and model expression deforma-

tions. The generic PCA deformation model is built using non-neutral faces

of distinct persons. The expression deformation templates are used to

eliminate the expressions from non-neutral face scan. A multi-resolution

PCA model has been proposed by ter Haar et Veltkamp (2010), they used

a limited collection of facial landmarks along with neutral and expression

scans. A single morphable identity model and seven isolated morphable

expression models per subject are then built. Expression is then neutra-

lized and coefficients of identity model are utilized for face recognition.

In (Russ et al. 2006), a statistical model is built using the correspondence

information. A PCA shape model can deal with expressions by including

faces with expression in the training data.

Other methods based on the assumption that deformation caused by

expression variation is isometric, meaning that the deformation preserves

lengths along the surface (i.e. surface distances are relatively invariant to

small changes in facial expressions), and therefore help generate features
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that are robust to facial expressions. Drira et al. (2013) proposed a geome-

tric framework for analyzing 3D faces recognition under different varia-

tions. They proposed to represent facial surfaces by radial curves emana-

ting from the nose tips and use elastic shape analysis of these curves to

compare faces. They used the elastic Riemannian metric to measure facial

deformations to handle the large facial expression variation.

Similar approach have been proposed by Lee et Krim (2017) using de-

formed circular curves. The shortest geodesic distances between the refe-

rence point (e.g. nosetip) and a point on the curve is computed to gene-

rate a matrix or in one-dimensional function. The functions are compared

to each other to measure the similarity between faces. Experiments have

shown that there is little difference in the geodesic distance between the

same face with different expressions (intra-class difference). Whereas, dif-

ferent face models of different people have shown a low similarity due to

the shape of facial curves (inter-class difference).

Another algorithm is proposed by Sun (2015) which measures the mi-

nimum possible distortion when trying to isometrically embed one facial

surface into another. A geodesic polar parametrization of the facial surface

is proposed in (Mpiperis et al. 2007) in which authors have studied local

geometric attributes under this parameterization. They assumed with this

parameterization that the intrinsic surface attributes do not change un-

der isometric deformations. To deal with the open mouth problem, they

modified the parametrization by disconnecting the top and bottom lips.

Berretti et al. (2010a) have encoded the geometric information of the 3D

face surface in the form of a graph. Nodes of the graph represent equal

width iso-geodesic facial stripes which provide a representation of local

morphology of the face.

Moreover, various methods use only regions that are not or not much

affected by expressions. Guo et al. (2016) presented 3D face by a set of

keypoints and their associated local feature descriptors to achieve robust-

ness to expression variations. To measure the dissimilarity between faces,
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authors have computed the number of feature matches, the average dis-

tance of matched features, and the number of closest point pairs after

registration. The global dissimilarity is then obtained by the fusion of the

similarity metrics. Maiti et al. (2014) have extracted the T-region from the

face to get the facial region having minimum variation with expression.

For each region, they have extracted the wavelet coefficients and a dictio-

nary learning using K-SVD. Moeini et al. (2014) have extracted rigid parts

of the face from both the texture and depth image based on 2D facial

landmarks. Gabor filter was then applied to the extracted feature vectors

from texture depth images. Finally, classification is applied using the Sup-

port Vector Machine. Shape index and spherical bands on the human face

are used in (Ming 2015) to segment a group of regions on each 3D facial

point cloud. Then the corresponding facial areas are projected to regional

bounding spheres to obtain regional descriptor.

Lei et al. (2013) divided the 3D facial into three regions according to

their deformations that are caused by facial expressions as follows : rigid

(i.e. nose region), semi-rigid (i.e. eyes-forehead region) and non-rigid (i.e.

mouth region). Only regions which are relatively less influenced by the de-

formations caused by facial expressions (i.e. rigid and semi-rigid regions)

are considered for features extraction and classification.

Li et Da (2012) split the face surface into six regions which are fore-

head, left mouth, right mouth, nose, left cheek and right cheek. In order

to choose the regions to use for matching, authors extracted facial curves

in these regions to map facial deformation.

Pose-invariant and partial occlusion invariant features

In order to handle partial occlusion problem, authors in (Drira et al.

2013) detected the external object parts by comparing the given scan with

a template scan. The template scan is developed using an average of trai-

ning scans that are complete, frontal and have neutral expressions. Next,

the basic matching procedure between a template and a given scan is car-
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ried out using ICP algorithm. The broken curves, caused by the removal of

occluding object are completed with the help of PCA based statistical mo-

del. This model is used to complete the incomplete curves using training

data.

Bellil et al. (2016) proposed a method based on Gappy Wavelet Neural

Network. Occluded regions are then refined by removing wavelet coeffi-

cient above a certain threshold. Alyuz et al. (2013) addressed the problem

of external occlusions. They proposed a registration framework in which a

possible non-occluded model is adaptively selected for each probe face, by

employing non-occluded facial parts. Figure 2.12 presents highly occluded

and correctly classified areas from Bosphorus dataset. For the detection of

distinctive facial features, such as eyes and mouth, they employed the re-

lative geometry information of these features.

Smeets et al. (2013) proposed the local feature based MeshSIFT algo-

rithm to deal with missing 3D data for 3D face recognition. They first

detected salient points on 3D facial surface as mean curvature extrema in

scale space. Next, orientations are assigned to each of these salient points

as presented in Figure 2.13. The neighborhood of each salient point is

then described in a feature vector consisting of concatenated histograms

of shape index and slant angles. Finally, the feature vectors of two 3D facial

surfaces are reliably matched by comparing the angles in feature space.

Figure 2.12 – Highly occluded sample images that are correctly classified by the
proposed masked Fisherfaces approach from the Bosphorus dataset. Top and bottom rows
show the corresponding manually labeled (in green) and automatically detected (in red)

occlusion masks. Alyuz et al. (2013)
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Berretti et al. (2013) handled 3D face recognition issue when just parts

of probe scans are available. They used Scale Invariant Feature Transform

(SIFT) to locate keypoints on depth image along with facial curves that

connected those key-points.

Figure 2.13 – The neighbourhood of a scale space extremum with normals and their
projection onto the tangent plane. Smeets et al. (2013)

To handle the problem of pose variation, various methods applied a

registration step to accurately compares probe and gallery faces. Ratyal

et al. (2015) applied registration to correct the pose of 3D faces using ver-

tical symmetry plane and horizontal nose plane.

Other methods applied landmarking on the face surface to detect the

pose of the face, Perakis et al. (2009) proposed a method that treats the

partial matching problem using a 3D landmark detector to detect the pose

of the facial scan. This information is used to mark areas of missing data

and to roughly register the facial scan with an annotated face model which

exploits the facial symmetry where data are missing. Authors in (Passalis

et al. 2011) have also used facial symmetry to handle the problem of mis-

sing data. Whereas, automatic landmarking has been applied to estimate

the pose and to detect occluded areas.

Model-based methods have been applied to estimate the pose variation

of 3D face as introduced in (Lee et Ranganath 2003). The proposed method

consists of three parts ; an edge model, a color region model, and a wire-

frame model. The first two submodels are used for image analysis and the

third mainly for face synthesis. In order to match the model to face images
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in arbitrary poses, the 3D model can be projected onto different 2D view

planes based on rotation, translation and scale parameters. Therefore, the

pose of an unknown probe face is estimated by model matching, and the

system synthesizes face images of known subjects in the same pose.

2.2.3 Similarity comparison

In order to measure the dissimilarity between 3D faces, various me-

thods apply matching between their probe and gallery features using dif-

ferent metrics. Authors in (Zhang et al. 2014) proposed to use multiple

keypoint descriptors (MKD) and the sparse representation-based classifi-

cation (SRC). Each 3D face scan is represented as a set of descriptor vec-

tors extracted from keypoints by meshSIFT. Descriptor vectors of gallery

samples form the gallery dictionary. Given a probe 3D face scan, its des-

criptors are extracted at first and then its identity can be determined by

using a multitask SRC. The proposed approach does not require a pre-

alignment between two face scans and is quite robust to the problems of

missing data, occlusions and expressions.

In order to reduce large storage space and expensive computational

cost in developing 3D face matching, Yu et al. (2016) proposed a 3D di-

rectional vertices approach to represent and match 3D face surfaces by

much fewer sparsely distributed vertices. To do so, authors extracted ridge

and valley curves on a 3D surface along which the surface bends sharply.

The recognition accuracy of the proposed method gives higher recogni-

tion performance compared to benchmark method presented in Mahoor

et Abdel-Mottaleb (2009).

Other methods extract landmarks from the face surface, which are less

sensitive to expression variation. To compute the similarity between faces,

they apply matching between the extracted landmarks. For instance, Sala-

zar et al. (2014) proposed an approach which learns the locations of a set of

landmarks present in a database to automatically predict the locations of

these landmarks on a newly available scan. The predicted landmarks are
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then used to compute point-to-point correspondences between a template

model and the newly available scan. Elaiwat et al. (2014) have applied

Curvelet transform to detect salient points on the face that can capture

invariant local features around the detected keypoints. Mian et al. (2008)

present a feature-based algorithm for the recognition of textured 3D faces.

They proposed a keypoint detection technique to detect where the shape

variation is high in 3D faces. Next features from a probe and gallery face

are projected to the PCA subspace and matched. The set of matching fea-

tures are used to construct two graphs. The similarity between two faces

is measured as the similarity between their graphs. Guo et al. (2016) ap-

plied The Nearest Neighbor Distance Ratio (NNDR) approach to perform

feature matching as presented in Figure 2.14.

Figure 2.14 – Feature matching results. (a) Faces of an individual with a neutral
expression. (feature matches : 85, false matches : 4) ; (b) Faces of two individuals with a

neutral expression. (feature matches : 6, false matches : 6) ; (c) Faces of an individual
with different expressions. (feature matches : 42, false matches : 13) ; (d) Faces of an

individual with different expressions and hair occlusions.(Guo et al. 2016)

Registration based approaches have been also used to align probe and

gallery faces. The most used is ICP which computes the distance between

the aligned face surfaces and used it as a match score. The two faces with a

lower distance are the more likely to be the same person. Mohammadzade

et Hatzinakos (2013) used the iterative closest normal point method for

finding the corresponding points between a gallery face and input probe

faces. Firstly, they sampled a set of points for each face to find the clo-
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sest normal points. These corresponding points are denoted as the closest

normal points (CNPs). Then, a discriminant analysis method is applied

to the normal vectors at the CNPs of each face for recognition. From this

method, authors proved that the normal vectors contain more discrimi-

natory information than the coordinates of the points of a face. Irfanoglu

et al. (2004) have applied a dense correspondence between faces using

ICP-based approach. To do so, they have aligned faces using dense point

to point matching method by means of a mesh containing points that are

present in all faces. The distance between two different point clouds is

computed using point set distance as an approximation of the volume

between facial surfaces.

Although ICP is a powerful estimation tool of the similarity between

two faces, it has a serious drawback. ICP-based methods treat the 3D shape

of the face as a rigid object so they are not able to handle changes in

expression (Abate et al. 2007).

2.2.4 Discussion

Although local features have proved a good accuracy for face descrip-

tion, they have several limitations. For instance, 3D faces often exhibit

large inter-class and intra-class variability that cannot be captured with a

single feature type. This triggers the need for combining different modali-

ties or feature types. However, different shape features often have different

dimensions, scales and variation range, which makes their aggregation

difficult without normalizing or using blending weights.

The main challenge is to build a 3D face recognition system robust

against the several variations such as expression, pose, illumination, occlu-

sion and other disruptions. This allows maximizing inter-class variations

and minimizing intra-class variations.
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2.3 3D facial expression recognition- State of the art

Similar to face recognition problem, facial expression recognition with

the presence of different intra-class variations (i.e. pose, illumination,

image quality, etc) as well as inter-class variations, has become a very

challenging issue. To overcome this problem, different approaches have

been proposed in the literature, most of these approaches focus on reco-

gnizing six basic expressions include anger (AN), fear (FE), disgust (DI),

sadness (SA), happiness (HA) and surprise (SU) (Ekman et Friesen 1971).

The expressions are textually defined by Pandzic et Forchheimer (2002) as

shown in Table 2.2. Analyzing the expression of a human face requires a

number of steps, the main two steps are :

— Facial feature extraction and selection : discriminative features are

extracted and used to describe the facial expression. These features

should be robust against the different variations such as illumi-

nation and pose. This step can be followed by a feature selection

phase in order to choose relevant features to construct the model.

The selected features will then feed a classifier in the next step.

— Facial expression recognition : the most used techniques are ma-

chine learning classifiers in order to accurately distinguish between

the expressions.

Figure 2.15 presents the general FER system.

Figure 2.15 – General FER system.
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2.3.1 Expression classification challenge

The recognition of facial expressions has attracted a great amount of

researchers in the past decade. Detailed surveys of previous work can be

found in (Fang et al. 2011; 2012, Zeng et al. 2009, Sandbach et al. 2012, Shan

et al. 2009, Tian et al. 2003). Most of these previous works were developed

for 2D data (Fasel et Luettin 2003, Pantic et Rothkrantz 2000, Zeng et al.

2009, Ilbeygi et Shah-Hosseini 2012, Mahersia et Hamrouni 2015, Chakra-

barty et al. 2013). Although the remarkable performance achieved, most

of these works are still sensitive to many variations, particularly illumina-

tion and pose. Recent progress in 3D acquisition techniques has provided

a new alternative to overcome these issues (Yin et al. 2006). 3D data bring

additional information which are more robust to illumination (Al-Osaimi

et al. 2012, Patil et al. 2015) and pose changes (Ocegueda et al. 2013). State-

of-the-art 3D FER methods are often based on a single descriptor which

may fail to handle the large inter-class and intra-class variability of the

human facial expressions.

Expression Textual Description

Neutral
All face muscles are relaxed. Eyelids are tangent to
the iris. The mouth is closed and lips are in contact.

Anger
The inner eyebrows are pulled downward and toge-
ther. The eyes are wide open. The lips are pressed
against each other or opened to expose the teeth.

Sadness
The inner eyebrows are bent upward. The eyes are
slightly closed. The mouth is relaxed.

Surprise
The eyebrows are raised. The upper eyelids are wide
open, he lower relaxed. The jaw is opened.

Hapiness
The eyebrows are relaxed. The mouth is open and
the mouth corners pulled back toward the ears.

Disgust
The eyebrows and eyelids are relaxed. The upper lip
is raised and curled, often asymmetrically.

Fear
The eyebrows are raised and pulled together. The in-
ner eyebrows are bent upward. The eyes are tense
and alert.

Table 2.2 – Basic Facial Expressions (Pandzic et Forchheimer 2002).
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2.3.2 3D FER methods

Various methods have been proposed to analyze 3D FER to distinguish

between the six prototypical expressions and AUs. We can classify them

according to the used features into four categories as follows :

Distance-based features

Distance-based-features is one of the most known features used for 3D

FER. The idea is to compute firstly the distance between certain facial land-

marks from a neutral face. Next, after changing in the facial expression (i.e.

deformation), the new distances between the aforementioned landmarks

can be considered as features. The well known 3D dataset (i.e. BU-3DFE)

provides 83 facial points (landmarks) located manually. These landmarks

are widely used to compute this kind of distance features (Soyel et De-

mirel 2007; 2008b, Li et al. 2010, Tang et Huang 2008, Soyel et Demirel

2009; 2010, Tekguc et al. 2009, Sha et al. 2011, Srivastava et Roy 2009). For

instance, Soyel et Demirel (2008b; 2010) used distance vectors computed

between landmarks on the 3D face to describe facial features as presented

in Figure 2.16(a). Probabilistic neural network is applied for expression

classification. Sha et al. (2011) have extracted features by calculating the

distances among all pairs of available facial landmarks as presented in

Figure 2.16(b). Next, they classified each landmark into eight categories.

The face has been divided into triangles using a subset of the given land-

marks, and histograms have been formed for each triangle of the surface

curvature types. Tang et Huang (2008) proposed an automatic feature se-

lection method based on maximizing the average entropy. Next, they com-

puted Euclidean distances between 83 facial features to a complete pool

of candidate features composed of normalized points in the 3D space. Ex-

pression classification is then performed using a regularized multi-class

AdaBoost classification algorithm. Soyel et Demirel (2007) uses six charac-

teristic distances that are extracted from the distribution of eleven facial

feature points from the given points in the BU-3DFE. This serves as in-
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put to neural network classifier used for recognizing the different facial

expressions. In Srivastava et Roy (2009), the authors computed the ma-

gnitude and the direction of the displacement of the given points in the

BU-3DFE dataset instead of absolute distances. A feature matrix was then

formed by concatenating the different matrices in each of the three spatial

directions in order to form one 2D-matrix.

Patch-based features

The second category of 3D FER methods extract features on patches.

it has also been widely used in expression recognition systems. They are

used to capture information about the shape of the face over a small lo-

cal region around either every point in the mesh, or around landmarks

or feature points. Wang et al. (2006) computed a set of parameters for a

smooth polynomial patch fitted to the local surface at each point in the

mesh, which were subsequently used as inputs to rules that allowed the

labeling of the surface at each point with primitives defining the type of

curvature feature.

Maalej et al. (2011) proposed to represent each facial scan by a num-

ber of patches centered on considered points to describe the change in

facial expression as presented in Figure 2.16(c). A Riemannian framework

was then applied to compute the geodesic path between corresponding

patches. Authors based on the assumption that people smile, or convey

any other expression, the same way, or more appropriately certain re-

gions taking part in a specific expression undergo practically the same

dynamical deformation process. The association of those regions of two

different expressions will deform differently. The geodesic distances bet-

ween patches were labeled with respect to the six prototypical expressions

and used as samples to train and test Multiboost algorithm classifier.

Lemaire et al. (2011) extracted patches around landmarks in the face

through fitting of the Statistical Facial Feature Model, which is expressed

as linear combinations of components of three different variations : shape,
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(a) (b) (c)

Figure 2.16 – Features based on the 83 facial points in BU-3DFE dataset. (a) : Distance
between particular given facial points used in (Tang et Huang 2008, Soyel et Demirel
2008b; 2010).(b) : Distance and curvature features used in (Sha et al. 2011). (c) : 3D

closed curves extracted around the landmarks used in (Maalej et al. 2011).

Figure 2.17 – (a) 3D annotated facial shape model (68 landmarks) ; (b) closed curves
extracted around the landmarks ; (c) example of 8 level curves ; (d) the mesh patch

(Derkach et Sukno 2017).

intensity and range value. These patches have then been compared to re-

ference models representing the six prototypical expressions using ICP.

In (Derkach et Sukno 2017), authors proposed spectral methods as lo-

cal shape descriptors. To do so, they proposed the use of Graph Laplacian

features which result from the projection of local surface patches into a

common basis obtained from the Graph Laplacian eigenspace as presen-

ted in Figure2.17.

Morphable models

The morphable models vary their shape in accordance with an unk-

nown facial shape. They are also known as deformable models. Another

methods used morphable models to extract facial expression features have

been proposed. Ramanathan et al. (2006) proposed a Morphable Expres-

sion Model to model different expressions for a subject using his 3D face
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surface. To do so, authors identified the corresponding points between

expressive faces by reducing the energy function between points. These

morphing parameters are used for emotion recognition and classification.

Mpiperis et al. (2008) proposed an elastically deformable model for

establishing point correspondences among faces. This correspondence ex-

ploits both surface-to-model and model-to-surface distances during the

model deformation as presented in Figure 2.18.

Rudovic et al. (2013) proposed a method for head-pose invariant fa-

cial expression recognition using a Coupled Scaled Gaussian Process Re-

gression (CSGPR) model for head pose normalization. Next, they learned

independently the mappings between the facial points in each pair of (dis-

crete) non-frontal poses, and the frontal pose. Finally, they performed their

coupling in order to capture dependencies between them.

A combination between 2D and 3D features is applied in (Huynh

et al. 2016). To do so, authors proposed a convolutional neural network

for 2D+3D feature-based FER. The proposed network consists of two

CNNs, frontal view texture and 3D shape model. The network consists

of three convolutional layers including max pooling as well as normaliza-

tion layers, and two fully connected layers.

Furthermore, there are also a few FER systems that can process 3D dy-

namic sequences (i.e. 3D videos or 4D data). Shao et al. (2015) proposed an

algorithm to videos retrieved by widespread and standard low-resolution

RGB-D sensors, such as Kinect. After preprocessing, both RGB and depth

image sequences, sparse features are learned from spatio-temporal local

cuboids. Conditional Random Fields classifier is then employed for trai-

ning and classification.

2D based features

Other methods map the 3D data into a 2D representation either to be

able to directly apply 2D traditional techniques, or to reduce the high di-

mensionality of 3D faces. Authors in (Vretos et al. 2011) used depth images
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(a) (b) (c)

Figure 2.18 – Fitting base-mesh to a surface. a : base-mesh, b : original surface, c :
base-mesh fitted to the surface (Mpiperis et al. 2008).

of a 3D facial point cloud with Zernike moments. SVM are used in order

to classify the six prototypical expressions. In order to tackle the problem

of high modality using 3D faces, authors in (Azazi et al. 2015) transfor-

med the 3D faces into the 2D plane using conformal mapping. Second,

differential evolution based optimization algorithm is proposed to define

the minimum and most relevant facial features for expression classifica-

tion. The optimal features are selected from a pool of Speed Up Robust

Features (SURF) descriptors of all the prospective facial points. Finally

SVM is applied for the classification. Rosato et al. (2008) applied regis-

tration of vertex correspondence to convert the 3D meshes to 2D planar

meshes. This mapping simplify the problem scope and allows for faster,

more lightweight computations than the iterative-based approaches.

Lemaire et al. (2013) proposed Differential Mean Curvature Maps

(DMCMs) to capture both global and local facial surface deformations cau-

sed by facial expressions. These DMCMs are directly extracted from a set

of 2D maps by calculating the mean curvatures. Histograms of Oriented

Gradients are applied to regions of DMCMs and to extract facial features.

Multiclass-SVM classification algorithm is then performed to classify the

six prototypical expressions. A few works have shown that salient key-

points and local descriptors can be effectively used to describe 3D facial

expression. Berretti et al. (2010b) computed SIFT descriptors on a set of

facial landmarks of depth images, and then selected the subset of most re-
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levant features to characterize different facial expressions. SVM is applied

for the classification.

Table 2.3 summarizes the existing approaches in 3D FER.

2.3.3 Discussion

3D face expressions often exhibit large inter-class and intra-class va-

riabilities which require a robust representation to accurately distinguish

between them. The state-of-the-art methods presented above use mostly

local features in order to feed a classifier to recognize the six prototypi-

cal expressions. Methods used distance-based features generally use the 83

manually located points (landmarks) when dealing with BU-3DFE dataset,

otherwise, manual annotation is required to precisely position landmarks.

Although the good performance achieved by these methods, they are not

full automatic since they require additional information about facial land-

marks. Moreover, when dealing with automatic landmarking, distance-

based features heavily rely on the accuracy of the landmark detection

which may not be sufficiently discriminative. Methods using morphable-

based features on the other hand are sensitive to inter-class and intra-class

variability which decrease the recognition performance. 2D mapping al-

lows applying 2D traditional methods for 3D FER problem. However, this

mapping may lose some geometric characteristics of 3D facial expression

and makes the FER task more subtle. Consequently, the challenge is to

describe 3D facial expressions using robust features which must capture

as accurately as possible facial surface deformations to enable the facial

expression analysis.
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2.4 Conclusion

In this chapter, we first presented the 3D face acquisition techniques,

the different 3D facial surface representations, and some available 3D face

datasets. Second, we presented the different challenges of 3D face recog-

nition which destruct the recognition performance so called variations (e.g.

expression, pose, partial occlusion, etc). To alleviate these issues, various

methods have been proposed, we reviewed the state-of-the-art methods

proposed to handle these variations. Next, we introduced the limitation of

the existing approaches for 3D face recognition.

We also presented the challenge of 3D facial expression recognition

and we review the most interesting state-of-the-art methods proposed

to tackle this problem. In this survey, we made the choice to categorize

existing approaches according to the used features into four categories :

distance based, patch based, morphable models and 2D based features. Fi-

nally, we discussed the limitations of the the existing methods to deal with

the large inter-class and intra-class variabilities of the facial expressions.

In the next chapters, we present our proposed method to handle these

issues and to efficiently combine heterogeneous features to construct a

robust 3D face/facial expression recognition system.
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In this chapter, we propose a new 3D face recognition method based on

covariance descriptors. Unlike feature-based vectors, covariance-based
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descriptors enable the fusion and the encoding of different types of fea-

tures and modalities into a compact representation. The covariance des-

criptors are symmetric positive definite matrices which can be viewed as

an inner product on the tangent space of (Sym+
d ) the manifold of Sym-

metric Positive Definite (SPD) matrices. In this chapter, we study geodesic

distances on the Sym+
d manifold and use them as metrics for 3D face mat-

ching and recognition. We evaluate the performance of the proposed me-

thod on three well-known datasets including the FRGCv2, the GAVAB and

the BU-3DFE datasets and demonstrate its superiority compared to other

state-of-the-art methods in both identification and verification scenarios.

The reminder of this chapter is organized as follows. First, we present

in Section 3.1 the covariance descriptors for 3D face recognition as well

as the space of SPD matrices. In Section 3.2, the distance metrics used to

compare covariance matrices as dissimilarity measure between 3D faces

are reviewed. In Section 3.3, we present the two matching strategies ap-

plied in our proposed method to compare faces. Experimental results and

comparative evaluation obtained on three well-known datasets are repor-

ted and discussed in Section 3.4. Hierarchical covariance description is

presented in Section 3.5. Finally, conclusions are given in Section 3.6.
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3.1 Covariance descriptors for 3D face recognition

Recently the image analysis community has shown a growing interest

in characterizing image patches with the covariance matrix of local des-

criptors rather than the descriptors themselves. Covariance methods have

been successfully used for object detection and tracking (Tuzel et al. 2008),

texture (Tuzel et al. 2006) and image classification (Wang et al. 2012). Mo-

tivated by their success in image analysis, we propose a 3D face recogni-

tion method based on covariance descriptors as an extension of covariance

based descriptors presented in (Tabia et al. 2014) for 3D shape retrieval.

This chapter explores the usage of covariance matrices of features as dis-

criminant representation for 3D face recognition problems. Our idea is to

represent a 3D face with a set of m landmarks selected from its surface.

Each landmark has a region of influence, which we characterize by the

covariance of its geometric features instead of directly using the features

themselves. These features, each of which captures some properties of the

local geometry, can be of different type, dimension or scale. Covariance

matrices provide a mean for their aggregation into a compact representa-

tion, which is then used for computing distances between 3D faces.

Covariance features extraction : Given a probe face (face to be recogni-

zed) F1 and a gallery face (face in the database) F0, we uniformly sample m

feature points {p1, . . . , pm} from the gallery F0. The m feature points of F0

are the center of m patches of radius r, and form a paving of the face. We

then align F1 and F0 by a coarse and fine registration using the Iterative

Closest Point (ICP) (Besl et McKay 1992, Chen et Medioni 1991, Zhang

1994). After that, we select, from F1, N ≤ m feature points {q1, . . . , qN},

which are closest enough to the m points of F0. In order to do so, we define

a distance threshold δ = 0.1r, and for each point pi, we select its closest

point qi in the probe F1. The point qi is considered as a probe feature point

only if the Euclidean distance ‖pi − qi‖ < δ. The selected feature points qj

are the centers of the N patches in the probe face, and are used to com-
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pute the similarity between F0 and F1. Figure 3.1 presents gallery feature

points, and their respective extracted probe features points (in green). The

probe is a left profile face after alignment which contains an occluded part.

Red feature points on the occluded part are then ignored in the covariance

description.

Figure 3.1 – Feature points extracted from probe face under pose variation.

Around each feature point, we extract a set of patches P = {Pi, i =

1 . . . N} from a 3D face. Each patch Pi defines a region around a feature

point pi = (xi, yi, zi)
t. For each point pj in Pi, we compute a feature vector

f j, of dimension d, which encodes the local geometric and spatial pro-

perties of the point. In our implementation, we considered the following

feature vector :

f j =
[
xj, yj, zj, k1, k2, Dj

]
(3.1)

Where :

— xj, yj and zj are the three-dimensional coordinates of the point pj.

— k1 and k2 are respectively the min and max principal curvatures.

— Dj is the distance of pj from the origin defined by
√

x2
j + y2

j + z2
j .

We characterize each face patch by the covariance matrix Xi :

Xi =
1
n

n

∑
j=1

( f j − µ)( f j − µ)T (3.2)
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Where µ is the mean of the feature vectors
{

f j
}

j=1...n computed in

the patch Pi, and n is the number of points in Pi. The diagonal entries

of Xi represent the variance of each feature and the non-diagonal entries

represent their respective co-variations. Using covariance matrices as a

region descriptors has several advantages, such as the ability of efficiently

combining multiple features into a single descriptor and the invariance

with respect to the ordering of points and number of feature vectors used

for their computation. The size of covariance matrices does not depend

on the size of the region from which they were extracted, but of the size

of feature vectors, therefore, they can be computed from variable sized

regions. Furthermore, covariance matrices are low dimensional compared

to joint feature histograms.

An important aspect to consider is that building covariance-based des-

criptors requires local features that are correlated to each other otherwise

covariance matrices become diagonal and will not provide additional be-

nefits compared to using the individual features. Therefore, the parame-

ters selected in the feature vector f j need to be carefully selected, and

could vary from one database to another. In Section 3.4, we have per-

formed extensive performance simulations on two databases in order to

select the best collection of parameters among the six which are defined

in Equation (3.1).

Covariance matrices, however, lie on the manifold of Symmetric Posi-

tive Definite (SPD) tensors (Sym+
d ). Therefore, matching with covariance

matrices requires the computation of geodesic distances on the manifold

using proper metrics. Several geodesic distances on the Sym+
d manifold

have been studied.

Once we have chosen the appropriate metric, the next step is to esta-

blish covariance matches between 3D faces and compute a global simila-

rity measure. Two different strategies are proposed. The first strategy is to

compute optimal match using a Hungarian solution for matching unor-

dered set of covariance matrices. The total cost of matching is used as a
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measure of dissimilarity between the pair of 3D faces. The second stra-

tegy is to compute a mean distance by integrating the chosen metric over

the pairs of homologous regions, after spatial registration of the 3D faces.

Figure 3.3 presents an overview of the proposed method.

The space of SPD matrices : Let M = Sym+
d be the space of all d × d

symmetric positive definite matrices and thus non-singular covariance ma-

trices. Sym+
d is a non-linear Riemannian manifold, i.e. a differentiable ma-

nifold in which each tangent space TX at X has an inner product 〈·, ·〉X∈M
that smoothly varies from point to point. The inner product induces a

norm for the tangent vectors y ∈ TX such that ‖y‖2 = 〈y, y〉X. The shortest

curve connecting two points X and Y on the manifold is called a geodesic.

The length d(X, Y) of the geodesic between X and Y is a proper metric

that measures the dissimilarity between the covariance matrices X and Y.

Let y ∈ TX and X ∈ M. There exists a unique geodesic starting at X and

shooting in the direction of the tangent vector y. The exponential map

expX : TX 7→ M maps elements y on the tangent space TX to points Y on

the manifoldM. The length of the geodesic connecting X to Y is given by

d(X, expX(y)) = ‖y‖X. Figure 3.2 depicts an example of two-dimensional

manifold embedded in R3.

Figure 3.2 – Two-dimensional manifoldM embedded in R3.



3.1. Covariance descriptors for 3D face recognition 51

Fi
g

u
r

e
3

.3
–

O
ve

rv
ie

w
of

th
e

pr
op

os
ed

3D
fa

ce
re

co
gn

iti
on

m
et

ho
d.



52 Chapitre 3. 3D Face Recognition Using Covariance Based Descriptors

3.2 Distances between covariance matrices

The space of covariance matrices M = Sym+
d is a special type of ho-

mogeneous space which carries a natural Riemannian structure. More pre-

cisely, following the classification given in Moakher (2005), M is the Rie-

mannian global symmetric space associated with the Lie algebra. There-

fore, we can define a geodesic in the Riemannian spaceM, or equivalently

the space of Hermitian forms, as the shortest curve onM, under the well

chosen Riemannain metric or inner product, between two elements of the

spaceM. Since 3D face recognition task only requires a notion of distance

between points on the manifold M, we investigate in this chapter the

computation using geodesic and non-geodesic distances as a comparative

study.

3.2.1 Geodesic distances

In this section, we present the mathematical proprieties of three well-

knwon geodesic distances which we used to compare covariance matrices.

The affine-invariant distance

The Riemannian metric of the tangent space TX at a point X is gi-

ven as 〈y, z〉X = trace
(

X−
1
2 yX−1zX−

1
2

)
. The exponential map associated

to the Riemannian metric expX(y) = X
1
2 exp

(
X−

1
2 yX−

1
2

)
X

1
2 is a global

diffeomorphism (a one-to-one, onto, and continuously differentiable map-

ping in both directions). Thus, its inverse is uniquely defined at every

point on the manifold : logX(Y) = X
1
2 log

(
X−

1
2 YX−

1
2

)
X

1
2 . The symbols

exp and log are the ordinary matrix exponential and logarithm operators,

while expX and logX are manifold-specific operators, which depend on

the point X ∈ Sym+
d . The tangent space of Sym+

d is the space of d × d

symmetric matrices and both the manifold and the tangent spaces are of

dimension m = d(d + 1)/2.

For symmetric matrices, the ordinary matrix exponential and loga-
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rithm operators can be computed in the following way. Let X = UDUT

be the eigenvalue decomposition of the symmetric matrix X. The expo-

nential series is defined as : exp (X) = ∑∞
k=0

Xk

k! = U exp (D)UT, where

exp (D) is the diagonal matrix of the eigenvalue exponentials. Similarly,

the logarithm is given by log (X) = ∑∞
k=1

−1k−1

k (X− I)k = U log (D)UT.

The exponential operator is always defined, whereas the logarithms only

exist for symmetric matrices with strictly positive eigenvalues. The geode-

sic distance between two points on Sym+
d is then given by :

d2
ainv (X, Y) = 〈logX (Y) , logX (Y)〉X

= trace
(

log2
(

X−
1
2 YX−

1
2

))
(3.3)

Log Determinant distance

From equation 3.3, it is apparent that computing the geodesic distance

can be unattractive as it requires eigenvalue computations or sometimes

even matrix logarithms, which for larger matrices causes significant slow-

downs. For an application that must repeatedly compute distances bet-

ween numerous pairs of matrices this computational burden can be exces-

sive Cherian et al. (2011). Driven by such computational concerns, Cherian

et al. (2011),Chebb et Moakher (2012),Sra (2012) introduced a symmetrized

log-determinant based matrix divergence.

The greatest advantage of this metric against the affine-invariant metric

is its computational speed, it requires only computation of determinants,

which can be done rapidly via 3 Cholesky factorizations for (X +Y , X and

Y), each at a cost of 1
3 d3 flops (Golub et Van Loan 2012). Computing the

affine-invariant on the other hand requires generalized eigenvalues, which

can be done for positive-definite matrices in approximately 4d3 flops.

Let X, Y ∈ Sym+
d of d× d symmetric positive definite matrices which

have positive eigenvalues. The log-determinant distance between X and Y

is defined by :
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dld(X, Y) =

√
log
(

det
(

X + Y
2

))
− 1

2
log(det(X.Y)) (3.4)

It is easy to see that dld is symmetric, non-negative, and de-

finite. Moreover, it is invariant under congruence transformations,

(dld(AXAT, AYAT) = dld(X, Y) for invertible A), and under inversion

(dld(X, Y) = dld(X−1, Y−1).

Log Euclidean distance

The log-Euclidean framework Arsigny et al. (2006) proposed by Ar-

signy et. al. defines a class of Riemannian metrics called log-Euclidean

metrics. The geodesic distances associated with log-Euclidean metrics are

called log-Euclidean distances. Let � be an operation on SPD matrices de-

fined as X � Y = exp(log(X) + log(Y)). Any inner product 〈, 〉 defined

on TIS++
n = {log(X)|X ∈ S++

n } = Sn extended to the Lie group (S++
n ,

�) by left or right multiplication is a bi-invariant Riemannian metric. The

corresponding geodesic distance between X ∈ S++
n and Y ∈ S++

n is given

by : d(X, Y) = ‖mlog(X)−mlog(Y)‖I = ‖ log(X)− log(Y)‖I where ‖ ‖I is

the norm induced by 〈, 〉. Note that here mlogI is the inverse-exponential

map at the identity matrix which is equal to the usual matrix logarithm in

this case.

To compare SPD matrices there are many other distances that can be

used.

3.2.2 Other distances

In this section we present other distances which have been proposed

to compare covariance matrices.

Alpha divergence distance

Geometry and various divergence functions mostly related to Alpha-

divergence through a unified approach based on convex functions, One of
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important features of the considered family of divergences is that they can

give some guidance for the selection and even development of new diver-

gence measures if necessary. Moreover, these families of divergences are

generally defined on unnormalized finite measures (not necessary norma-

lized probabilities). This allows us to analyze patterns of different size to

be weighted differently, e.g. images with different sizes or documents of

different length. Such measures play also an important role in the areas of

neural computation, pattern recognition, learning, estimation, inference,

and optimization Cichocki et Amari (2010). The α-divergence between SPD

matrices is defined by :

dα(P, Q) =
4

(1− α2)
log

det( 1−α
2 P + 1+α

2 Q)

det(P)
(1−α)

2 det(Q)
(1+α)

2

(3.5)

where P and Q are two unnormalized distributions and α ∈ (−∞,+∞)

α-divergence is zero if p = q and positive otherwise, As α approaches 0,

α-divergence specializes to Kullback-Leibler (KL)-divergence from q to p.

Kullback distance

The Kullback-Leibler distance Kullback (1997) is perhaps the most fre-

quently used information-theoretic distance measure from a viewpoint of

theory, it is a special case of α-divergence where α approaches zero :

lim
α→0

[q‖p] = KL [q‖p] (3.6)

Let P and Q be probability measures on a set X with densities p and q

with respect to a dominating measure λ . The relative entropy of P with

respect to Q is defined as :

DKL(P‖Q) = λ

(
p log

p
q

)
(3.7)

Relative entropy is also known as Kullback-Leibler divergence, informa-

tion gain, information divergence, and the Kullback-Leibler Information
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Criterion (KLIC). In our experiments kullback distance between SPD ma-

trices becomes :

KL =

√
1
2

trace(P/Q + P/Q− 2eye(size(P))) (3.8)

Optimal transportation distance

Optimal transportation distances Villani (2008) are a fundamental fa-

mily of parameterized distances for histograms. Despite their appealing

theoretical properties, excellent performance in retrieval tasks and intui-

tive formulation, Optimal transportation distances and their application

to computer vision hold a special place among other distances in the pro-

bability simplex. Given a d× d cost matrix M, the cost of mapping r to c

using a transportation matrix (or joint probability) P can be quantified as :

〈P, M〉 The following problem :

dM(r, c) =de f min
P∈(r,c)

〈P, M〉 (3.9)

is called an optimal transportation problem between r and c given cost

M. The optimum of this problem, dM(r, c), is a distance Villani (2008)

whenever the matrix M is itself a metric matrix. In Our case the optimal

transportation distance between SPD matrices A and B is defined by :

dot(A, B) =
√

trace(A) + trace(B)− 2trace((A
1
2 BA

1
2 )

1
2 ) (3.10)

Table 3.1 presents a comparison of computational complexities bet-

ween affine-invariant, log-Euclidean, kullback metrics on covariance ma-

trices and dld metric. This comparison further proves the computational

speed of dld metric comparing with its counterparts defined above.



3.3. 3D face matching using SPD matrices 57

Metric D2(X, Y) Flops Gradient (∇X)

Affine-invariant trace
(

log2
(

X−
1
2 YX−

1
2

))
4d3 2X−1log(XY−1)

Log-Euclidean ‖ log(X)− log(Y)‖I
8
3 d3 2X−1(logX− logY)

KL
√

1
2 trace(P/Q + P/Q− 2eye(size(P))) 8

3 d3 Y−1 − X−1YX−1

dld

√
log
(
det

(X+Y
2

))
− 1

2 log(det(X.Y)) d3 (X + Y)−1 − 1
2 X−1

Table 3.1 – Comparison of computational complexities of dld metric and other metrics
between SPD matrices. Cherian et al. (2013)

3.3 3D face matching using SPD matrices

Similar to local features, covariance matrices computed on 3D surfaces

can be used as local descriptors for matching two faces. Let us consider

a patch center pi, i = 1, ..., m represented by a covariance matrix Xi in a

gallery 3D face F0 and a patch center qj, j = 1..., N represented by the

covariance matrix Yj in a probe 3D face F1. Let cij = c
(

pi, qj
)

denotes

the cost of matching these two points. This cost is defined as the distance

between the two covariance matrices Xi and Yj.

Given the set of costs cij between all pairs of points pi on the gallery

face F0 and qj on the probe face F1, we define the total cost of matching

the two 3D faces using two different ways :

Optimal match The total cost of matching is defined by :

Cost1 =
m

∑
i=1

c
(

pi, qϕ(i)

)
, (3.11)

Minimizing Cost1, subject to the constraint that the matching is one-to-one,

gives the best permutation ϕ(i). This is an assignment problem, which can

be solved using the Hungarian algorithm (Kuhn 1955, Munkres 1957). The

input to the assignment problem is a cost matrix with entries cij. The result

is a permutation ϕ(i) such that Equation (3.11) is minimized. Finally, once

the permutation ϕ is computed, we use the total cost of matching, defined

by Equation (3.11), as a measure of dissimilarity between the pair of 3D

models.
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Mean of distances An alternative matching cost, simpler than optimal

matching consists in computing the mean of distances between each pair

of homologous regions. Figure 3.4 presents homologous covariance ma-

trices extracted form a probe and a gallery face. So Equation (3.11) be-

comes :

Cost2 =
1
N

N

∑
j=1

c
(

pj, qj
)

, (3.12)

where N is the number of homologous patches.

The two matching strategies are presented in Figure 3.5.

Figure 3.4 – Covariance matrices extracted from probe and gallery faces.

Figure 3.5 – The two matching strategies between covariance matrices.

3.4 Experimental results

We present results from different experiments in which we evaluate

the performance of the proposed covariance descriptors. The performance

is measured according to the percentage of the correctly recognized faces.

We have also studied the impact of the chosen distance and the matching

procedure on the recognition performance.
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Figure 3.6 – Automatic 3D face preprocessing.

3.4.1 Preprocessing and alignment

After the acquisition step, the input face surface is preprocessed. The

preprocessing helps improving the quality of the input face which may

contain some imperfections (e.g. holes, spikes) as well as some undesired

parts (e.g. clothes, neck, ears, hair, etc.) and so on. It consists of applying

successively a set of filters (Figure 3.6). First, a smoothing filter is applied,

which reduces spikes in the mesh surface, followed by a cropping filter

which cuts and returns parts of the mesh inside an Euclidean sphere.

Finally a filling holes filter is applied, which identifies and fills holes in

input meshes. Note that spikes mainly occur in three regions : the eyes,

the nose tip and the teeth. To remove these spikes, we apply a median filter

on 3D face vertices. The filter starts by sorting the z coordinate within a

neighborhood, finding then the median, and finally replacing the original

z coordinate with the value of the median.

After preprocessing, we align each probe face to the gallery face using

Iterative closest point algorithm (ICP). The aim of ICP based alignment

approach is to determine relation and translation parameters iteratively in

order to transform one point cloud in the gallery face such that it lies as

close as possible to other point cloud on the probe face.

In order to extract features points, we apply a uniform clustering

using k-means algorithm as follows : Let {Xi}, i = 1, ..., n be the set
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of n dimensional facial vertices to be clustered into a set of k clusters,

C = {ck, k = 1, ..., K}. k-means algorithm finds a partition such that the

squared error between the empirical mean of a cluster and the points in

the cluster is minimized. Let µk be the mean of cluster ck. The squared

error between µk and the points in cluster ck is defined as :

J(ck) = ∑
xi∈ck

‖xi − µk‖2

The goal of k-means is to minimize the sum of the squared error over

all K clusters :

J(C)
K

∑
k=1

∑
xi∈ck

‖xi − µk‖2

The main steps of k-means algorithm are summarized as follows

(Dubes et Jain 1988) :

1. Select an initial partition with K clusters ; repeat steps 2 and 3 until

cluster membership stabilizes.

2. Generate a new partition by assigning each pattern to its closest clus-

ter center.

3. Compute new cluster centers.

The obtained K centers are then used as facial feature points in our

proposed method.

3.4.2 Experiments on the FRGCv2 dataset

We have first preprocessed the 3D surfaces and selected m = 40 feature

points on each 3D face in the gallery as described in Section 3.4.1. We have

then extracted one patch Pi around each point pi. Each patch has a radius

r = 15% of the radius of the shape’s bounding sphere. For each patch,

we compute a 5× 5 covariance matrices computed from the feature vector

[x, y, z, k1, k2] (details about the impact of the features, the size of the patch

radius r and the number of patches m are given in Section 3.4.4).
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Identification scenario In this section, we evaluate the performance of

the proposed method in the identification scenario on FRGCv2 data-

set. Table 3.2 presents a comparison of recognition performance on the

FRGCv2 database using the different proposed distances (Section 3.2) with

respect to the two proposed matching methods (Section 3.3). In this expe-

riment, we evaluate "Neutral versus All" identification experiment, where

the first 3D face scan with neutral expression from each subject is used as

gallery and the remaining face scans are treated as probes. When using the

Hungarian algorithm, the highest recognition rate is achieved by the log-

Euclidean distance 97.9%, followed by the log-determinant distance which

achieves slightly lower rate 96.0%. When using the mean of distances algo-

rithm, the log-determinant distance achieves the highest recognition rate

99.2%. The affine-invariant distance performs 99.1%.

From this experiment, one can notice that when using the geodesic dis-

tances (i.e. log-determinant, affine-invariant and log-Euclidean distances),

both Hungarian and mean of distances matching techniques behave bet-

ter than using non-geodesic distances. This demonstrates that the geo-

desic distances are more discriminative for covariance matrices than the

other distances. This is the behavior that one would expect since the non-

geodesic distances void one of the benefits of considering the Riemannian

structure of the (Sym+
d ) manifold. On the other hand, Table 3.2 also shows

that using the mean of distances matching technique is more suitable for

3D face recognition. This result shows that the spatial relations between

covariance matrices are also an important component in the matching pro-

cess.

Table 3.3 presents the recognition performance using "Neutral versus

non-Neutral" protocol. In this experiment, the best recognition perfor-

mance is achieved by log-determinant distance when dealing with the

two matching algorithms, followed by affine-invariant and log-Euclidean

distances. From this comparison, we can also notice that geodesic dis-

tances give higher recognition performance comparing to non-geodesic
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Distance Hungarian algorithm Mean of distances
Log-determinant 96.0% 99.2%
Affine-invariant 90.0% 99.1%
Log-Euclidean 97.9% 98.7%
Alpha divergence 91.0% 98.9%
KL divergence 70.4% 92.9%
Optimal transportation 64.1% 78.5%

Table 3.2 – Recognition rates on FRGCv2 dataset using the different distance metrics
presented in Section 3.2. Reported results are obtained using Neutral vs All protocol.

Distance Hungarian algorithm Mean of distances
Log-determinant 97.4% 97.6%
Affine-invariant 97.2% 97.2%
Log-Euclidean 96.7% 96.9%
Alpha divergence 88.0% 90.1%
KL divergence 68.4% 72.9%
Optimal transportation 62.1% 63.6%

Table 3.3 – Recognition rates on FRGCv2 dataset using the different distance metrics
presented in Section 3.2. Reported results are obtained using Neutral vs Non-Neutral

protocol.

distances. This proves our claim about the robustness of geodesic dis-

tances as a dissimilarity metric for 3D face recognition.

Table 3.4 presents a comparison of our method to several state-of-the-

art methods using the two protocols, i.e. Neutral versus All, Neutral ver-

sus non-Neutral. From this table, we can see that our method outperforms

the other state-of-the-art methods. This performance can be explained by

the fact that covariance matrices provide an elegant way for combining

multiple heterogeneous features without normalization or joint probabi-

lity estimation. This combination significantly boosts the performance of

our approach.
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Method Neutral vs. All Neutral vs. non-Neutral
Queirolo et al. (2010) 98.4% -
Spreeuwers (2011) 99.0% -
Wang et al. (2010) 98.3% -
Drira et al. (2013) 97.0% -
Mian et al. (2008) - 92.1%
Huang et al. (2012) 97.6% 95.1%
Faltemier et al. (2008) 98.1% 95.0%
Alyuz et al. (2010) 97.5% 96.4%
Ratyal et al. (2015) 98.9% -
Al-Osaimi et al. (2008) 93.7% -
Our method 99.2% 97.4%

Table 3.4 – Comparison with state-of-the-art methods on the FRGCv2 dataset.

Verification scenario We further evaluate the proposed method in the

verification (authentication) scenario on FRGCv2 dataset. To do so, we plot

the Receiver Operating Characteristic (ROC) curves for the "All versus All"

experiment as shown in Figure3.7. The horizontal axis of the ROC curve

is the False Accept Rate (FAR), while the vertical axis is the Verification

Rate (VR) also called true acceptance rate (TAR). They are defined over

the square similarity matrix with a dimensionality of 4007× 4007.

When dealing with log-determinant distance, our method provides

96.7% VR at 0.1% FAR using the mean of distances matching method

and 96.2% using the optimal match one as shown in Figure3.7(a). With

the Affine invariant distance, our method gives slightly lower VR compa-

ring with the its performance using log-determinant distance as shown in

Figure3.7(b).

Table3.5 presents a comparison of verification rates at FAR=0.1% on

the FRGCv2 dataset with state-of-the-art results. From this comparison

we can see that our method is slightly lower but still close to the best of

ones in the literature in the verification scenario.

Note that FRGCv2 contains mostly frontal scans with high quality, so

the missing data issues are not treated in this dataset, therefore, many

existing methods achieved good performance. In order to evaluate the

efficiency of our method against other variations such as pose changes, we

have evaluated it on the GAVAB dataset as presented in the next Section.
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(b) Affine-Invariant distance
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Figure 3.7 – ROC curves for all versus All verification experiment.

3.4.3 Experiments on GAVAB dataset

For the experiment on GAVAB dataset, we use m = 50 feature

points and 6 × 6 covariance matrices computed from the feature vector

[x, y, z, k1, k2, D].

Table 3.6 presents the recognition performance of the proposed method

using the different distances presented in Section 3.2. In this experiment,

the first frontal facial scan of each subject was used as gallery while the

others were treated as probes. The reported results are obtained using the

optimal match when dealing on expressive faces. The best recognition rate

is obtained by geodesic distances (i.e. log-determinant, affine invariant and

log-Euclidean distances respectively).

Table 3.7 presents the recognition performance using the different dis-

tances presented in Section 3.2. The mean of distances matching method

shows that the log-determinant and the affine-invariant distances give the
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Method All vs. All
Queirolo et al. (2010) 96.5%
Spreeuwers (2011) 94.6%
Wang et al. (2010) 98.1%
Drira et al. (2013) 93.9%
Huang et al. (2012) 94.2%
Faltemier et al. (2008) 93.2%
Our method 96.7%

Table 3.5 – Comparison of verification rates at FAR=0.1% on the FRGCv2 dataset with
state-of-the-art results.

Distance Neutral Neutral+Expressive Expressive Looking down Looking up

Log-determinant 100% 97.54% 97.26% 96.72% 95.08%
Affine-invariant 100% 97.95% 97.81% 96.72% 95.90%
Alpha Divergence 95.08% 92.21% 91.80% 90.98% 90.16%
KL divergence 91.80% 90.16% 89.61% 88.52% 85.24%
Optimal transportation 91.39% 87.97% 89.61% 86.06% 83.60%
Log-Euclidean 100% 96.72% 95.08% 91.80% 93.44%

Table 3.6 – Recognition rates on the GAVAB dataset using the optimal match method.

highest recognition rates, followed by the alpha divergence, KL diver-

gence, optimal transportation, and the log-Euclidean respectively. From

this comparison, we can see that the log-determinant distance gives the hi-

ghest recognition rate with expressive scans, whereas the affine-invariant

distance performs quite well with pose scans. This behavior also demons-

trates that the geodesic distances are more efficient for covariance matrices

than the other distances. Note that it is also possible to combine the results

from each distance, i.e. using vote or training method to further improve

the recognition rate. Comparing with Table 3.6, we can clearly see that the

second matching method (i.e. Mean of distances) is more suitable compa-

ring to the optimal match method. This performance is obtained due to

the homologous matching that is applied only between complete regions,

whereas occluded regions are excluded from the matching process (see

Figure3.1).

Table 3.8 compares the results of our method to results from state-of-

the-art methods following the same protocol. We calculated rank-one face

recognition rates which show the matching accuracies for different catego-

ries of probe faces : including the results with and without expression and
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pose variations. The highest recognition rate achieved by each method is

highlighted.

From this comparison, we can see that our method outperforms the

majority of the other state-of-the-art approaches in terms of the recogni-

tion rate. From Table 3.8, we can see that for frontal neutral probes, our

method provides high recognition rate (100%) similarly as in (Drira et al.

2013, Huang et al. 2012, Tabia et al. 2014), note that this rate is obtained

by the log-determinant, the affine-invariant and the alpha divergence dis-

tances. For expressive faces, our method with the log-determinant distance

provides the highest recognition rate with non-neutral expressions faces

(100%) and its performance surpasses all the other methods. The results

on (Neutral+Expressive) faces also demonstrate that the proposed method

efficiently outperforms the other methods, since we achieve an accuracy

of (100%). With looking down faces, our method provides a good recog-

nition rate (99.18%) which is better than the results given by Huang et al.

(2012) and Mahoor et Abdel-Mottaleb (2009) and slightly lower than the

result of Drira et al. (2013). Our method also gives the highest recogni-

tion rate (98.36%) on looking up faces similarly as in (Drira et al. 2013),

and 97.81% with overall faces. Note that, the performance decreases on

left or right sides scanned faces which include many occluded regions,

but still outperforms state-of-the-art methods on right side scanned faces.

The experimental results on the GAVAB dataset clearly demonstrate that

the proposed method can deal with large pose changes and even partial

occlusions.

3.4.4 Effects of the features, the patch size and the number of patches

In this section, we study the performance of the proposed method with

respect to the main parameters of the recognition system. First, we studied

the impact of the local features that are selected to form the feature vector

f (see Equation (3.1)). In Table 3.9, for various choices of feature vectors,

we present the performance results on the GAVAB and the FRGCv2 da-
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Features GAVAB FRGCv2
f = [x, y, z] 95.08% 92.7%
f = [k1, k2] 53.16% 79.0%
f = [x, y, z, k1] 96.72% 95.6%
f = [x, y, z, k2] 95.08% 93.4%
f = [x, y, z, k1, k2] 94.84% 99.2%
f = [x, y, z, D] 97.18% 92.8%
f = [k1, k2, D] 65.10% 78.6%
f = [x, y, z, k1, k2, D] 97.81% 98.5%

Table 3.9 – Effects of the various geometric features on the performance of our face
recognition method. Reported results are on both FRGCv2 and GAVAB datasets over all

faces.

tasets over all faces, using the best performing geodesic distance and the

best matching technique, i.e. log-determinant distance and the mean of

distances matching algorithm. We can clearly see that the performance of

the covariance method highly depends on the chosen features. Although

the combination of the six features performs the best in the GAVAB data-

set, this experiment shows that the performance of our recognition system

does not necessarily improves with the number of selected features. For

instance, as shown in Table 3.9, co-varying [x, y, z] features gives slightly

better performance than co-varying the [x, y, z, k1, k2] features. This beha-

vior can be explained by the fact that some feature types are almost ortho-

gonal (i.e. their correlation is low). Thus, their covariance matrix is almost

diagonal and therefore not sufficiently discriminative.

We also analyze how the recognition performance of the proposed

method varies with respect to the number of sample points. In this ex-

periment, we set the patch radius r = 15% of the cropped face’s bounding

sphere and we vary the number of sample points between 30 to 80. We use

the best performing distance and matching technique. Results are summa-

rized in Figure 3.8(a). It shows that the performance over all faces becomes

stable when the number of sample points is larger than 40 for the FRGCv2

and 50 for the GAVAB dataset. This is predictable since small number of

points will result in a coarse representation of the 3D face.

We also analyzed how the recognition performance of the proposed

method varies with respect to the patch radius r. For this end, we set the
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Figure 3.8 – Effect of the patch radius and the number of patches on the recognition
performance of the proposed covariance based method. The reported results are on both

FRGCv2 and GAVAB datasets over all faces.

number of sample points m = 40 for the FRGCv2 and m = 50 for the GA-

VAB dataset and vary the patch radius between 10% to 25% of the total

radius of the cropped face’s bounding sphere. Please note that in this set-

ting the patches may overlap. Figure 3.8(b) shows that the performance

remains stable when r varies between 15% and 20%. The performance

starts to drop when choosing values outside this interval. Note that, simi-

lar to all local descriptor, this behavior was predictable since very small

patches do not capture sufficient geometric properties of the shapes. Large
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patches on the other hand capture only coarse features, which may not be

sufficiently discriminative.
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3.5 Hierarchical covariance description

In this section we present an extension of the covariance matching

method proposed in our previous work presented above, in which we

demonstrated the usefulness of covariance matrices as local descriptors for

3D face recognition. Here, we further focus on the issue of face recognition

under facial expression variation. To do so, we propose to represent a

3D face using a set of feature points, around each of which we consider

three description levels starting from a small region to a bigger overlapped

region as presented in Figure 3.9. We use a covariance based descriptor to

represent each region. The performance of the proposed method has been

evaluated on the BU-3DFE, the GAVAB and the FRGCv2 datasets.

Figure 3.9 – Hierarchical covariance extraction. Green circles refer to grand patches,
black for average patches and red for small patches.

Figure 3.10 – Overview of the proposed hierarchical covariance method.

The advantage of covariance descriptors is that the size of covariance

matrices does not depend on the size of the region from which they were

extracted, but of the size of feature vectors, therefore, they can be com-
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puted from variable sized regions (three different patch sizes) as shown

in Figure 3.10. Covariance matrices however are not elements of an Eu-

clidean space ; they are elements of a Lie group, which has a Riemannian

structure. Therefore, matching with covariance matrices requires the com-

putation of geodesic distances on the manifold using a proper metric. In

this contribution, we have applied log-determinant distance.

Formally, we uniformly sample m = 30 feature points and 6× 6 cova-

riance matrices computed from the feature vector : f j=[x, y, z, k1, k2, D].

Next, around each feature point, we extract three covariance descrip-

tors with respect to three patch radius (r1 = 10% × R, r2 = 20% × R,

r3 = 30% × R), where R is the radius of the cropped face’s bounding

sphere. To compare probe and gallery faces, we compute the mean of dis-

tances which measures their dissimilarity as follows :

Given the set of costs cij between all pairs of points pi on the gallery

face F0 and qj on the probe face F1, we define the total cost of matching

the two 3D faces by computing the mean of distances between each pair

of homologous regions over the three levels as follows :

Cost =
1
n

n

∑
i=1

(
1
m

m

∑
j=1

c
(

pj, qj
))

(3.13)

Where m is the number of sampled feature points, n is the number of

levels.

Finally, the class of each probe face is the identity of the gallery face

which minimizes the matching cost.

Results on GAVAB, BU-3DFE and FRGCv2 datasets To evaluate our

method performance we present a Cumulative Match Characteristic curve

(CMC) which plots the recognition rate versus the rank number. The rank-

1 recognition rate is the percentage of all probes for which the best match

in the gallery belongs to the same person, which is a popular evaluation

criterion for face identification. The percentage of the best and the second-

best correct matches is the rank-2 recognition rate and so on for higher
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ranks. To obtain the recognition rate, we compute the ratio of the correctly

classified query images to the total number of query images.

Figure 3.11 reports the CMC curves of the proposed method on BU-

3DFE dataset using two protocols (i.e. Neutral versus Expressive and Low-

intensity versus High-intensity). We can clearly see that the recognition

performance with respect to the rank number increases faster using the

first protocol. This behavior can be explained by the fact that gallery faces

are neutral which is a helpful for face identification. In the other hand,

using the second protocol (i.e. Low intensity versus High intensity), gal-

lery faces are expressive and this is more binding for the matching task.

Table 3.10 shows the rank-1 recognition performance using different

protocols on the three datasets. From these results, it appears that the

matching of the hierarchical covariance levels combination gives higher

recognition performance compared to the use of each level individually.

This behavior can be explained by the fact that small patches do not cap-

ture sufficient geometric properties of the shapes. Large patches on the

other hand capture only coarse features, which may not be sufficiently

discriminative. The combination of the three patch levels captures both

fine and coarse features and therefore provides a more accurate represen-

tation.

Dataset Protocol Level 1 Level 2 Level 3 All levels
GAVAB Neutral-Vs-Expressive 98.00% 99.45% 98.90% 100%
FRGCv2 Neutral-Vs-Non-Neutral 97.1% 97.4% 96.9% 97.6%
BU-3DFE Neutral-Vs-Expressive 93.85% 94.15% 93.70% 95.40%
BU-3DFE Low int-Vs-High int 97.25% 97.60% 96.90% 98.25%

Table 3.10 – Face recognition rates using hierarchical covariance method on the three
datasets.

In comparison to the state-of-the-art methods reported in Table3.4 and

Table3.8, when dealing with the FRGCv2 dataset (Neutral versus non-

Neutral protocol) and the GAVAB dataset (Neutral versus Expressive pro-

tocol), we can see that our hierarchical covariance method outperforms

the state-of-the-art methods with 97.6% and 100% respectively.
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(a) Neutral-Vs-Expressive protocol
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(b) Low intensity-Vs-High intensity protocol
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Figure 3.11 – The CMC curves of our proposed method on BU-3DFE dataset. Reported
results are obtained using the three hierarchical covariance levels individually and on

their combination.

When dealing with BU-3DFE dataset (see Table3.11), our proposed me-

thod achieves higher rank-1 recognition rate using "Low-intensity versus

High-intensity" identification protocol compared to Lei et al. (2013)’s me-

thod (i.e. 98.25% vs 97.70%). When dealing with "Neutral versus All" pro-

tocol, our method outperforms Lei et al. (2016)’s method (i.e. 95.70% vs

93.25%). This performance is achieved due to the accurate facial descrip-

tion obtained by covariance descriptors and reinforced by the hierarchical

representation.
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Method Neutral vs. All Low intensity vs. High intensity
Lei et al. (2016) 93.25% -
Lei et al. (2013) - 97.70%
Our method 95.70% 98.25%

Table 3.11 – Comparison with state-of-the-art methods on the BU-3DFE dataset.

3.6 Conclusion

In this chapter, a new approach for comparing 3D faces using cova-

riance matrices of features instead of the features themselves is proposed.

We studied various distances for dissimilarity measure between two co-

variance matrices and proposed two different ways for 3D face matching.

Covariance matrices provide an elegant way for combining multiple hete-

rogeneous features without normalization or joint probability estimation.

Therefore, analyzing 3D faces with covariance matrices has several advan-

tages compared to individual descriptors. First, covariance matrices en-

able the fusion of multiple heterogeneous features of arbitrary dimension

without normalization, blending weights, or joint probability distribution

estimation. Also, spatial relationships can be naturally encoded in the co-

variance matrices. Moreover, covariance matrices are compact, compared

to histogram-based representations, and can be efficiently computed. Fi-

nally, although we have experimented in our work with only three types of

features, our approach is generic and thus various types of features can be

added to the framework. An important aspect to consider is that building

covariance-based descriptors requires local features that are correlated to

each other otherwise covariance matrices become diagonal and will not

provide additional benefits compared to using the individual features ins-

tead of their covariance.

We also proposed a hierarchical covariance description for 3D face mat-

ching and recognition, under expression variations. We represented a 3D

face using a set feature points, around each of which we considered three

description levels. The levels start from a small region to a bigger over-

lapped region. We used a covariance based descriptor to represent each
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region. The log-determinant geodesic distance is used for the face mat-

ching. Experimental results on BU-3DFE, GAVAB and FRGCv2 datasets

showed that the use of the three hierarchical levels improves the recog-

nition performance compared to the use of each level individually. This

performance can be explained by the fact that each hierarchical level cap-

tures some specific characteristics which are complementary.
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In this chapter, we handle the problem of 3D facial expression recogni-

tion regardless to the face identity. We focus on the six prototypical

expressions (i.e. Happiness, Angry, Disgust, Sadness, Surprise and fear).
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The majority of work conducted in this area has been done using 2D data.

Most of these systems are still highly sensitive to the different variations

such as illumination, occlusions and other changes in facial appearance

like makeup and facial hair.

Furthermore, 2D FER systems are very sensitive to pose variation, the-

refore it is necessary to maintain a consistent facial pose (preferably a

frontal one) in order to achieve a good recognition performance.

Due to the development of 3D image capturing technologies, the ac-

quisition of 3D data is becoming a more feasible task. The 3D data bring

a more effective solution in addressing the issues faced by its 2D counter-

part. State-of-the-art 3D FER methods are often based on a single descrip-

tor which may fail to handle the large inter-class and intra-class variability

of the human facial expressions.

In this chapter, we explore, for the first time, the usage of covariance

matrices of descriptors instead of the descriptors themselves in 3D FER.

Since covariance matrices are elements of the non-linear manifold of SPD

matrices, we particularly look at the application of manifold-based clas-

sification to the problem of 3D FER. We have performed comprehensive

experiments on two well-known datasets, and demonstrate the superiority

of our proposed method compared to the state-of-the-art methods.

The rest of this chapter is organized as follows. In Section 4.1, cova-

riance descriptors for 3D FER are addressed. We explain in Section 4.2

how to classify covariance matrices on manifold using conventional classi-

fication algorithm. In Section 4.3, the classification of 3D facial expressions

using kernel-SVM on Riemannian manifold is addressed. Experimental re-

sults on BU-3DFE and Bosphorus datasets are reported and evaluated in

Section 4.4. Conclusions end the chapter.
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4.1 Covariance descriptors for 3D FER

In this section, we first discuss the advantages of covariance descriptors

for 3D FER task comparing to the use of local features. Second, we present

our proposed covariance description which we use for the classification of

the six prototypical expressions.

4.1.1 Covariance descriptors versus local features for 3D FER

Proposed methods often use 3D local features which capture the geo-

metrical and topological properties of the face surface to distinguish bet-

ween expressions or Action Units Fang et al. (2011; 2012), Zeng et al.

(2009), Sandbach et al. (2012), Shan et al. (2009), Tian et al. (2003). One

of the main strengths of local features is their flexibility in terms of type

of analysis that can be performed with. Wang et al. (2006) proposed to

extract geometric based features to describe facial expressions. These fea-

tures have been estimated using the principle curvature information calcu-

lated on the 3D triangulated mesh model of a face. A linear discriminant

analysis classifier has been used for features classification. Soyel et De-

mirel (2008a; 2010) used distance vectors computed between landmarks

on the 3D face to describe facial features, and used probabilistic neural

network for expression classification. Shao et al. (2015) proposed to learn

sparse features from spatio-temporal local cuboids extracted from the face.

They applied conditional random fields classifier to train and classify the

expressions.

The use of local features in 3D facial expression recognition, howe-

ver, has several limitations. For instance, 3D face expressions often exhibit

large inter-class and intra-class variability that cannot be captured with a

single feature type. This triggers the need for combining different modali-

ties or feature types. However, different shape features often have different

dimensions, scales and variation range, which makes their aggregation

difficult without normalizing or using blending weights.
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Covariance matrices successfully have been used as region descrip-

tors (Krizaj et al. 2013, Tabia et al. 2014, Tabia et Laga 2015). The use of

covariance matrices has several advantages. First, they provide a natural

way for fusing multi-modal features, eventually of different dimensions,

without normalization or joint distribution estimation. Second, covariance

matrices extracted from different regions have the same size, which is si-

gnificantly compact compared to the features themselves and to their sta-

tistics. This enables comparing any regions without being restricted to a

constant window size or specific feature dimension. Covariance matrices,

however, lie on the manifold of Symmetric Positive Definite (SPD) tensors

Sym+
d , a special type of Riemannian manifolds. Therefore, matching with

covariance matrices requires the computation of geodesic distances on the

manifold using proper metrics. In the previous chapter, we have shown

how such geodesic distances can be computed in an efficient way.

4.1.2 The proposed covariance description for 3D FER

Once the 3D face mesh has been preprocessed (see Section 3.4.1 in the

previous Chapter), we uniformly select m feature points over the whole

3D surface. The feature points are the center of m patches from a paving

of the face. Each point has a region of influence, which we characterize

by the covariance of its geometric features instead of directly using the

features themselves. Each feature captures some properties of the local

geometry. They can be of different type, dimension or scale.

Let P = {Pi, i = 1 . . . m} be the set of patches extracted from a 3D

face. Each patch Pi defines a region around a feature point pi = (xi, yi, zi)
t.

For each point pj in Pi, we compute a feature vector f j, of dimension d,

which encodes the local geometric and spatial properties of the point. In

our implementation, we considered the following feature vector :

f j =
[
xj, yj, zj, k1, k2, Dj

]
,

where xj, yj and zj are the three-dimensional coordinates of the point

pj. k1 and k2 are respectively the min and max principal curvatures. Dj is
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the distance of pj from the origin defined by
√

x2
j + y2

j + z2
j . We characte-

rize each face patch by the covariance matrix Xi :

Xi =
1
n ∑n

j=1( f j − µ)( f j − µ)T,

where µ is the mean of the feature vectors
{

f j
}

j=1...n computed in the

patch Pi, and n is the number of points in Pi. The diagonal entries of

Xi represent the variance of each feature and the non-diagonal entries

represent their respective co-variations.

Covariance matrices lie on the (Sym+
d ) which lacks Euclidean struc-

tures such as norm and inner product. This makes impossible the appli-

cation of conventional clustering algorithms in their original forms. In the

next section, we review the existing strategies to classify manifold valued

data.

4.2 Classification on Riemannian manifold

Support vector machine (SVM) classifier (Cortes et Vapnik 1995) is a

supervised machine learning method which is popular for addressing bi-

nary classification problems.

Given a set of labeled feature vectors {xi, yi}N
i=1 where xi ∈ Rd and

yi ∈ {−1,+1}, a SVM aims to find a classifier that has the minimum

generalization error on the test set. This is related to finding maximum

margin hyperplan. For non-linear separable classes, a mapping (Rd → H)

is usually applied to map the feature vectors xi ∈ Rd to a higher dimen-

sional space where classes may be more close to linearly separable. This

produces a kernel Hilbert spaceH with an inner product (kernel function)

K(xi, xj) =
〈
Φ(xi), Φ(xj)

〉
. For extension of a binary SVM to a multiclass

SVM, one-against-all or one-against-one strategies can be applied (Hsu et

Lin 2002).

Since manifolds (i.e. Sym+
d ) lack a vector space structure and other Eu-

clidean structures such as norm and inner product, popular techniques

developed for Euclidean spaces do not apply such as machine learning al-
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gorithms including support vector machines (SVM), principal component

analysis (PCA) and clustering (Tabia et Laga 2015, Jayasumana et al. 2015).

To overcome this problem, one can neglect the non-linear geometry of

manifold-valued data and apply Euclidean methods directly. As a result,

this approach often yields poor accuracy and undesirable effects (Pennec

et al. 2006, Arsigny et al. 2006). Recently, this problem has been addressed

in two ways :

Approximation using tangent space : which can be achieved by flatte-

ning the manifold to approximate it onto tangent space. Tuzel et al. (2008)

proposed to train several weak classifiers on the tangent spaces and com-

bining them through boosting for pedestrian detection. Authors in (Wang

et al. 2012) modeled a set of 2D images by a single covariance matrix. Next,

they applied Log-Euclidean distance to map each covariance matrix from

the Riemannian manifold to a Euclidean space for image set classification.

Figure 4.1 – The problem of image set (i.e. S) classification is formulated as classifying
its covariance matrix C on the Riemannian manifoldM. (Wang et al. 2012)

Yun et al. (2013) applied a two-layer mapping for the manifold points,

by first using the logarithmic mapping under the log-Euclidean metric,

and then by using a Radial Basis Function. Similar strategy has been ap-

plied in (Yun et Gu 2016), in which authors encoded three layer levels of

features using covariance descriptors to address the problem of classifying

activities in video. SVM classifier under the one-against-all strategy by ex-

ploiting the Riemannian geometry is then applied for the classification.

Approximation using Reproducing kernel Hilbert space : exploiting a

positive definite kernel function to embed the manifold into a RKHS. Au-
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thors in (Jayasumana et al. 2015) used covariance matrices for pedestrian

detection, visual object categorization, texture recognition and image seg-

mentation. To be able to utilize algorithms developed for linear spaces on

non-linear manifold, they applied Gaussian radial basis function (RBF)-

based positive definite kernels on manifolds which embed the manifold

with a corresponding metric in a high dimensional reproducing kernel

Hilbert space. Since the Gaussian RBF defined with any given metric is

not always positive definite, authors presented a unified framework for

analyzing the positive definiteness of the Gaussian RBF on a generic me-

tric space. They then used the proposed framework to identify positive

definite kernels on two specific manifolds (i.e. Riemannian manifold of

SPD matrices and the Grassmann manifold).

In (Hamm et Lee 2008), authors have treated each subspace as a point

in the Grassmann space, and have performed feature extraction and clas-

sification in the same space. In the same way, Harandi et al. (2013) have

proposed to model the actions by subspaces elements of a Grassmann ma-

nifold. Then, they embed this manifold into reproducing kernel of Hilbert

spaces in order to tackle the problem of action classification on such ma-

nifolds. Different kernels to embed Grassmannian manifold into a Hilbert

space and represent each entity (image set, video) using a single subspace

have been introduced in Harandi et al. (2014b).

Vemulapalli et al. (2013) developed extrinsic classifiers for features that

lie on Riemannian manifolds using the kernel learning approach. Based

on the log-Euclidean framework, they have shown how geodesic distance

functions can be learned for Sym+
d matrices by learning Mahalanobis dis-

tance functions in the logarithm domain. Figure4.2 depicts the difference

between Vemulapalli et al. (2013)’s method and tangent space or poor

choice of kernels. Deng et al. (2017) have applied local covariance descrip-

tor and Riemannian kernel sparse coding. SPD matrices are mapped to

the RKHS, and the log-Euclidean Gaussian kernel sparse coding method

is applied to identify the faces.
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In both cases, Euclidean based techniques can be applied to the embed-

ded data, since Hilbert spaces obey Euclidean geometry. Recent studies,

however, report superior results with RKHS embedding over flattening the

manifold using its tangent spaces (Hamm et Lee 2008, Vemulapalli et al.

2013). Intuitively, this can be attributed to the fact that a tangent space is a

first order approximation to the true geometry of the manifold, whereas,

being higher-dimensional, an RKHS has the capacity of better capturing

the non-linearity of the manifold (Harandi et al. 2014b).

Figure 4.2 – Tangent-space mapping or poorly-chosen kernel can often result in a bad
classifier (right). Good classification using a learned mapping which uses the classifier

cost in the optimization (left). (Vemulapalli et al. 2013)

Based on the above discussion, we take advantages of recent works

on kernel methods on manifold-valued data (Harandi et al. 2014a;b, Ta-

bia et Laga 2015) and explore, for the first time, their usage in 3D FER.

Since covariance matrices are considered in this work as local descriptors,

we propose to apply the SVM algorithm to this local representation. For

this end, we build a global kernel function so that one can compare two

3D facial expressions by using the covariance descriptors. The proposed

3D FER method has been evaluated on the two well known datasets, na-

mely the BU-3DFE and the Bosphorus. Figure 4.3 presents an overview

of the proposed method. In the next section, we give more details about

the classification of 3D facial expressions on Riemannian manifold of SPD

matrices.

4.3 3D facial expression recognition

Once covariance matrices have been extracted and the geodesic dis-

tance has been defined, the expression recognition task can be reduced

to covariance classification. However, the non-linear structure of Sym+
d
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HA Level1 HA Level2 HA Level3 HA Level4

SA Level1 SA Level2 SA Level3 SA Level4

AN Level1 AN Level2 AN Level3 AN Level4

SU Level1 SU Level2 SU Level3 SU Level4

FE Level1 FE Level2 FE Level3 FE Level4

DI Level1 DI Level2 DI Level3 DI Level4

Figure 4.4 – The four levels of the six expression variations for the same person from
BU-3DFE dataset.
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makes the classification of covariance matrices using conventional algo-

rithms such as SVM unsuitable. To overcome this issue, we apply a Gaus-

sian radial basis function (RBF) which maps the covariance matrices to

an infinite dimensional Hilbert space. This intuitively, yields a very rich

representation. In Rd, the Gaussian kernel can be expressed as :

KG(xi, xj) = exp(‖xi − xj‖2/2σ2), (4.1)

which makes use of the Euclidean distance between two data points xi

and xj. To define a kernel on a Riemannian manifold, we would like to

replace the Euclidean distance by a more accurate geodesic distance on

the manifold.

The advantage of computing positive definite kernels on a Riemannian

manifold of the SPD matrices is that it directly allows us to make use of

algorithms developed for Rd while still accounting for the geometry of the

manifold.

In the following, we use K(:, :),H and Φ (X) to denote the kernel func-

tion, the reproducing kernel Hilbert space, generated by K, and the feature

vector in H to which X is mapped, respectively. In this chapter, the func-

tion Φ is not explicitly expressed and solely the Gaussian kernel is used

by changing the Euclidean distance by the distance on the Riemannian

manifold defined by Equation (3.3) :

K(Xi, Xj) = exp(−dg(Xi, Xj)
2/2σ2), (4.2)

where Φ is a mapping from M to H such that dg(Xi, Xj) =∥∥Φ(Xi)−Φ(Xj)
∥∥
H.

Given a set of labeled samples {(Xi, yi)}N
i=1 where Xi ∈ M and the

labels yi ∈ {−1, 1}, the basic idea of SVM is to construct a hyperplane

or set of hyperplanes, which is/are used for feature classification. A good

separation is achieved by the hyperplane that has the largest distance to

the nearest training data point of any class, called support vectors. The
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class of a test point is determined by the position of the mapping Φ(X) in

H relative to the separating hyperplane. SVM is known to possess good

generalization properties and to perform well in high-dimensional feature

spaces. The mapping Φ is generally non-linear and the decision function

is based on the sign of :

h(X) = b +
N

∑
i=1

αiyi 〈Φ(Xi), Φ(X)〉 . (4.3)

The kernel K(:, :) is defined by K(Xi, Xj) = 〈Φ(Xi), Φ(X)〉.

Since covariance matrices are considered in this work as local descrip-

tors, we propose to apply the SVM algorithm to this local representation.

For this end, we build a global kernel function so that one can compare

two 3D facial expressions by using the covariance descriptors.

In order to do so, we propose to use the matching kernel method pro-

posed in (Wallraven et al. 2003), which satisfies the Mercer condition and

thus is suitable for our application.

Given two expressive faces represented by two sets of covariance ma-

trices S1 = {Xi}i=1..n and S2 =
{

Xj
}

j=1..n, we first compute a matrix of

similarity scores between S1 and S2. Common choices for the similarity

measure, called also the minor kernel, are the RBF-kernel given by Equa-

tion 4.1. The kernel value can then be computed as the average over the

best matching scores of the elements in S1 and S2 as :

K(S1, S2) =
1
2
[
K̂ (S1, S2) + K̂ (S2, S1)

]
, (4.4)

where K̂(S1, S2) =
1
|S1|

|S1|

∑
i=1

max
j=1..|S2|

K(Xi, Xj).

Our manifold kernel SVM classification method can easily be exten-

ded to the multi-class case with standard one-versus-one or one-versus-all

procedures.
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4.4 Experimental results

In order to demonstrate the performance of the proposed method, we

have first preprocessed the 3D surfaces. Then, we have uniformly sam-

pled m = 30 feature points. Around each feature point pi, we extract one

patch Pi of radius r = 15% of the radius of the cropped face’s bounding

sphere. For each patch, we extract 6 × 6 covariance matrices computed

from the feature vector : [x, y, z, k1, k2, D]. We then demonstrate the use of

our kernel-based method for the task of FER with the proposed kernel

SVM on Sym+
d as described in Section 4.3.

4.4.1 Experimental results on BU-3DFE dataset

To evaluate our approach, we perform a 10 fold-cross validation, where

BU-3DFE subjects are ten times randomly divided into two parts ; a trai-

ning set consisting of 90 subjects, and a test set consisting of the rest 10

subjects. We then use our manifold kernel SVM in a multi-class (one-

against-all) setting. Results hereinafter are averaged across the ten-folds.

Table 4.1 reports the resulting confusion matrix where the columns re-

present the predicted expressions and the rows represent the actual ex-

pression. The recognition accuracy of each expression is presented in bold,

remaining values present the percentage of miss-classified items.

Expression HA FE DI AN SA SU
HA 97.75 0.75 0 0 0 1.5
FE 4.7 91.67 3.63 0 0 0

DI 2.56 2.77 94.67 0 0 0

AN 0 0 1.5 88.00 10.5 0

SA 0 0 2.41 7.66 85.33 4.6
SU 0 0 0.75 0.92 0 98.33
Table 4.1 – Confusing matrix of facial expression recognition (%) on BU-3DFE

dataset : Happiness (HA), Fear (FE), Disgust (DI), Anger (AN), Sadness (SA), Surprise
(SU).

From Table 4.1, we can see that our method gives higher performance

on happiness and surprise expressions. This is due to the distinctive large
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deformations they make on face surfaces. The difference between sadness

and anger expressions is more subtle and thus explains their confusion.

Table 4.2 presents the comparison results of our method performance

with respect to the state-of-the-art ones. The results are reported on the

BU-3DFE dataset following the same evaluation protocol over the six facial

expressions.

Overall the dataset, Soyel et Demirel (2010) achieve 93.23% using pro-

babilistic neural network for expression classification. Berretti et al. (2010b)

applied SIFT descriptor and SVM for classification and achieved 77.53%.

Huynh et al. (2016), on the other hand, used Convolutional neural net-

work and achieved 92.73%. Azazi et al. (2015) used a pool of Speed Up

Robust Features descriptors and yielded an average recognition accuracy

of 85.81%.

Method HA FE DI AN SA SU Overall
Soyel et Demirel (2010) 94.1 90.0 93.9 91.7 90.8 98.9 93.23
Mpiperis et al. (2008) 99.2 97.9 100 83.6 62.4 100 90.51

Berretti et al. (2010b) 86.9 63.6 73.6 81.7 64.6 94.8 77.53

Huynh et al. (2016) 100 86.7 95.2 91.3 87.5 95.7 92.73

Azazi et al. (2015) 93.50 73.67 90.83 78.67 83.67 94.50 85.81

Our method 97.75 91.67 94.67 88.00 85.33 98.33 92.62

Table 4.2 – Comparison of classification rates (%) with state-of-the-art method on
BU-3DFE dataset.

Method Modality Landmark Classifier
Soyel et Demirel (2010) 3D mesh 83 manual NN
Mpiperis et al. (2008) 3D mesh Global registration ML
Berretti et al. (2010b) 2D 27 manual SVM
Huynh et al. (2016) 2D+3D - CNN
Azazi et al. (2015) 2D 20 using SURF SVM
Our method 3D mesh 30 automatic SVM

Table 4.3 – Protocol comparison with state-of-the-art method on BU-3DFE dataset.

It should be noted that Soyel et Demirel (2010) testing setup is different

from ours as shown in Table 4.3. Soyel and Demirel’s method provides

results using 83 manually annotated facial landmarks, while our approach

automatically extracts the set of feature points. Notes that the proposed

approach outperforms Soyel et Demirel (2010)’s one when dealing with

these three different expressions : (HA, FE, DI). Our approach gives a
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better performance compared to Mpiperis et al. (2008)’s approach when

dealing with the following expressions : (AN, SA). With respect to Huynh

et al. (2016)’s work, our approach performs better when dealing with FE

and SU expressions. From the reported results, one can also notice that for

all the methods, the happiness and the surprise expression are the easiest

to be recognized, whereas the sadness and anger expressions are more

challenging.

Moreover, the comparison with state-of-the-art methods demonstrates

that our method gives challenging results (92.62% overall recognition rate).

This performance is achieved due to the discrimination power of the co-

variance descriptors and the accurate classification of the manifold kernel

SVM.

To give more insight about the efficiency of our proposed method and

the confused expressions, we presented in Table 4.4 a comparison between

the items of our confusion matrix with those of Huynh et al. (2016). From

this table, we can see that AN and SA expressions are the more confusing

with each other, which is similar to the finding of Huynh et al. (2016) and

Azazi et al. (2015)’s methods. Our method on the other hand has success-

fully distinguished between FE and SU expressions compared with Huynh

et al. (2016)’s method which easily confused to classify FE expression into

SU.

According to the above comparisons with state-of-the-art methods, we

can clearly see that our method performance is steadier over the six ex-

pressions as presented in Figure4.5. This strengthens our first claim about

the robustness of covariance representation with respect to intra-class fa-

cial expression variabilities as well as its efficiency in capturing inter-class

ones.
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Figure 4.5 – Recognition rate comparison on BU-3DFE dataset over the six
prototypical expressions.

4.4.2 Experimental results on Bosphorus dataset

As a second experiment, we further evaluated our proposed method

on Bosphorus dataset. To this end, we followed the same experimental

protocol of Azazi et al. (2015) : we applied 10 fold-cross validation tech-

nique over 420 faces from 60 subjects (7 expressions for each subject). Note

that 60 subjects are selected randomly from 65 subjects. Results are avera-

ged in Table 4.5.

From Table 4.5, we can see that happiness and surprise expressions

have the best recognition rate, whereas, sadness and fear expressions are

more challenging. This behavior is similar to that observed on BU-3DFE

Expression HA FE DI AN SA SU NE
HA 93.00 2.50 4.50 0 0 0 0

FE 5.00 81.00 1.00 0 3.50 9.50 0

DI 3.25 3.75 85.25 0 1.75 0 6.00

AN 0 0 7.25 86.25 3.50 0 3.00

SA 0 0 9.25 0 79.75 1.50 9.50

SU 1.50 8.00 0 0 0 90.50 0

NE 0 0 0 10.75 1.75 0 87.50

Table 4.5 – Confusing matrix of facial expression recognition (%) on Bosphorus
dataset : Happiness (HA), Fear (FE), Disgust (DI), Anger (AN), Sadness (SA), Surprise

(SU), Neutral (NE).
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Table 4.6 presents a comparison of our recognition performance with

state-of-the-art methods. We can clearly see that our method gives the hi-

ghest recognition performance (86.17%) followed by Azazi et al. (2015)

with 84.10%. Chun et al. (2013) on the other hand employed the depth

images and the 2D texture images and obtained 76.98%. Note that in Chun

et al. (2013)’s method, landmarks were located manually (see Table 4.7).

Wang et al. (2013) used curvature based descriptors with LBP, and achie-

ved 76.56%. Vretos et al. (2011) achieved 60.53% using Zernike moments.

More specifically, our method gives the highest classification perfor-

mance compared to the other state-of-the-art methods when dealing with

AN, SA and NE expressions. Furthermore, compared to Azazi et al. (2015),

our method gives better performance on AN, SA, SU and NE expressions.

Our approach gives better performance compared to Wang et al. (2013)’s

approach when dealing with HA, FE, DI, AN, and SA expressions. Note

that Wang et al. (2013) and Vretos et al. (2011) didn’t use Neutral expres-

sion (See table 4.7). Finally, compared to Vretos et al. (2011)’s method,

our method gives better recognition performance over the six prototypical

expressions.

To further study the efficiency of our method, we present in Table 4.8 a

comparison between items of our confusion matrix with those of the best

state-of-the-art performed method in Table 4.6 (i.e. Azazi et al. (2015)). This

comparison shows that both methods confused in recognizing NE and AN

expressions with each other, as well as FE and SU expressions. SA expres-

sion on the other hand is confused with DI and NE expressions. Although

the two methods in comparison give quite similar confused expressions,

our method has lower error compared to Azazi et al. (2015)’s method. This

explains why our method delivers the highest overall performance.

4.4.3 System evaluation

In this section, we evaluate the performance of the proposed method

with respect to the main parameters of the proposed approach when dea-
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Method HA FE DI AN SA SU NE Overall
Azazi et al. (2015) 97.50 86.25 90.00 82.50 67.50 83.75 81.25 84.10

Chun et al. (2013) - - - - - - - 76.98

Wang et al. (2013) 92.50 62.80 70.60 63.50 74.50 95.60 - 76.56

Vretos et al. (2011) 92.30 43.10 58.50 70.80 50.80 47.70 - 60.53

Our method 93.00 81.00 85.25 86.25 79.75 90.50 87.50 86.17

Table 4.6 – Comparison of classification rates (%) with state-of-the-art method on
Bosphorus dataset.

Method Modality Landmark Expressions Classifier
Azazi et al. (2015) 2D automatic 7 SVM with EPE
Chun et al. (2013) 2D+3D manual 6 SVM+NN
Wang et al. (2013) 2D+3D automatic 6 SVM
Vretos et al. (2011) 2D automatic 6 SVM
Our method 3D mesh automatic 7 SVM

Table 4.7 – Protocol comparison with state-of-the-art method on Bosphorus dataset.

ling with BU-3DFE and Bosphorus datasets. We study the effect of the

number of sampled points as well as the effect of the patch size, and the

position of the sampled points on the classification performance. In the

first experiment, we set the patch radius r = 15% of the cropped face’s

bounding sphere and we vary the number of sample points m between 10

to 40. The reported results in Figure 4.6 show that the performance over

all faces becomes stable when the number of sample points is larger than

30. This is predictable since small number of points will result in a coarse

representation of the 3D face.

We also analyzed how the classification performance of the proposed

method varies with respect to the patch radius r . For this end, we set the

number of sample points m = 30, and vary the patch radius between 10%
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Figure 4.6 – Effect of the number of patches on the classification performance of the
proposed method on BU-3DFE and Bosphorus datasets.
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Figure 4.7 – Effect of the patch radius on the classification performance of the proposed
method. The reported results are on both BU-3DFE and Bosphorus datasets.
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Figure 4.8 – Effect of the position of the sampled points on the classification
performance of the proposed method on BU-3DFE dataset.

to 25% of the total radius of the cropped face’s bounding sphere. Please

note that in this setting, the patches may overlap. Figure 4.7 shows that

the performance remains stable when r varies between 15% and 20%. The

performance starts to drop when choosing values outside this interval.

Note that, similar to all local descriptor, this behavior was predictable since

very small patches do not capture sufficient geometric properties of the

shapes. Large patches on the other hand capture only coarse features,

which may not be sufficiently discriminative.

Furthermore, we also study how the classification performance varies

with respect to the position of the m uniformly sampled points. For this

end, we apply a uniform sampling using k-means algorithm, for seven

times. We hence obtain seven different distributions of feature points. In

this experiment, we set the number of sampled points m=30, and the patch

radius r = 15%. From Figure 4.8, we can see that the classification perfor-
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mance is almost stable with respect to different positions of the sampled

points.

4.5 Conclusion

In this chapter, we proposed a novel method for 3D facial expression

recognition that uses the local covariance descriptor and kernel-based

classifier on Riemannian manifold. Since covariance matrices fuse dif-

ferent types of features, their description power are very interesting for

FER where expressions exhibit large intra-class variability. This descrip-

tion considers covariance matrices as an unordered set of descriptors and

therefore we used a kernel on sets rather than directly using Gaussian ker-

nel in the SVM classifier. For this end, we build a global kernel function

so that one can compare two facial expressions. The Gaussian kernel is

then used to map the covariance matrices into a high dimensional Hilbert

space. This mapping allows to extend the standard kernel methods, ori-

ginally introduced for the analysis on Euclidean spaces, to the non-linear

Riemannian manifold of covariance matrices. Moreover, Gaussian kernel

utilized in our proposed method helps understand the inherent structure

of the 3D facial data to enhance the 3D FER accuracy. Reported results on

BU-3DFE and Bosphorus datasets show that our method efficiently suc-

ceed to classify facial expressions independently to the face identity, and

demonstrate its superiority compared to state-of- the-art methods.
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5.1 Summary

In this thesis we presented two main contributions to 3D face analysis

including 3D face recognition/verification and 3D facial expression recog-

nition. In the first contribution, we proposed a 3D face recognition me-

thod based on covariance matrices of descriptors rather than the descrip-

tors themselves. We demonstrated the efficiency of our proposed method

to tackle the problem of expression variation as well as pose and partial

occlusions. This robustness is achieved due to the ability of covariance

descriptors to efficiently combine multiple features into a single descrip-

tor and the invariance with respect to the ordering of points and number

of feature vectors used for their computation. Moreover, the size of cova-

riance matrices does not depend on the size of the region from which they

were extracted, but of the size of feature vectors, therefore, they can be

computed from variable sized regions. Furthermore, covariance matrices

are low dimensional compared to joint feature histograms.

Since covariance matrices are elements of the non-linear manifold of

SPD matrices, their comparison requires the computation of geodesic dis-

tances on the manifold using proper metrics. Therefore, we assessed six

distances (geodesic and non-geodesic) to match covariance matrices, and

demonstrated that geodesic distances are more suitable to match 3D faces

using their covariance descriptors.

In the matching process, we have assessed two different strategies af-

ter spatial registration of the 3D faces. The first strategy is to compute

101
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optimal match using a Hungarian solution for matching unordered set of

covariance matrices. The total cost of matching is used as a measure of

dissimilarity between the pair of 3D faces. The second strategy is to com-

pute a mean distance by integrating the chosen metric over the pairs of

homologous regions.

We have also proposed an extension of the our covariance-based 3D

face recognition method using hierarchical description. To do so, we re-

presented a 3D face using a set feature points, around each of which we

consider three description levels starting from a small region to a big-

ger overlapped region, each region is represented by a covariance matrix.

Experimental results showed that the use of the three hierarchical levels

improves the recognition performance compared to the use of each le-

vel individually. This performance can be explained by the fact that each

hierarchical level captures some specific characteristics which are com-

plementary. In comparison to the previously published methods on the

three challenging datasets (i.e. GAVAB, FRGCv2, BU-3DFE), our method

achieves a superior performance in terms of recognition performance.

In the second contribution, we proposed a new method for 3D facial

expression classification regardless to the face identity using covariance

descriptors and kernel methods on Riemannian manifold. We proved that

covariance descriptors are very interesting for FER where expressions ex-

hibit large intra-class variability. This description considers covariance ma-

trices as an unordered set of descriptors and therefore we used a kernel on

sets rather than directly using Gaussian kernel in the SVM classifier. For

this end, we build a global kernel function so that one can compare two

facial expressions. The Gaussian kernel is then used to map the covariance

matrices into a high dimensional Hilbert space. This mapping allows to ex-

tend the standard kernel methods, originally introduced for the analysis

on Euclidean spaces, to the non-linear Riemannian manifold of covariance

matrices. Moreover, Gaussian kernel utilized in our experiments helps un-

derstand the inherent structure of the 3D facial data to enhance the 3D FER
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accuracy. Reported results on BU-3DFE and Bosphorus datasets show that

our method efficiently succeed to classify facial expressions independently

to the face identity. Average recognition rate attained on BU-3DFE 92.62%,

and 86.17% on Bosphorus dataset. The reported results demonstrate the

superiority of our proposed method compared to state-of- the-art ones.

Since 3D data provide naturally more information on the geometric

proprieties of the facial shape, 3D FER methods are preferable than their

2D counterparts, especially because of their invariance against illumina-

tion changes. In the other hand, our covariance based method is generic.

The covariance matrices can be computed from different type of features

including 2D ones and its performance depends on the used features.

An important aspect of our 3D FER is that it is applicable to real situa-

tions due to the automatic feature points extraction. On the other hand,

most state-of-the-art methods use a predefined set of manually selected

points or landmarks, which makes these methods difficult to use in prac-

tice.
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5.2 Perspectives

Further work can be conducted in order to enhance our proposed me-

thods for 3D face recognition and 3D facial expression recognition, future

directions are also presented as follows :

1. In this thesis, we proposed to extract covariance descriptors around

a set of feature points (i.e. landmarks). These landmarks are extrac-

ted after a uniform sampling using k-means algorithm. However,

according to the purpose of facial analysis, different parts of the face

possess different levels of importance. For example, the eyes and

nose are the most robust parts for the face recognition task. On the

other hand, if the purpose of facial analysis is facial expression re-

cognition, then the mouth region will naturally provide important

information that has to be taken into account for classification. In

either cases, landmarking salient points in our method allows to re-

duce the number of covariance descriptors per face and may provide

more robust results.

2. In our 3D FER contribution, we applied the global kernel presented

in (Wallraven et al. 2003) in order to compare the unordered set of

covariance descriptors, our method is generic so that other kernel

methods can also be applied which should satisfy Mercer condition.

3. Since Bosphorus and BU-3DFE datasets provide 2D face scans for

each 3D facial shape, a multi-modal (2D+3D) covariance based me-

thod can be applied. This combination may improve the FER per-

formance thanks to the elegant way for combining multiple hete-

rogeneous features without normalization provided by covariance

matrices.

4. This thesis deals with recognizing static 3D facial expressions using

two well-known 3D datasets. Recently, 4D datasets of dynamic 3D

facial samples have become available (i.e. BU-4DFE (Yin et al. 2008),

Hi4D-ADSIP (Matuszewski et al. 2012) and D3DFACS (Petrovska-
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Delacrétaz et al. 2008)). These datasets encode temporal cues that are

indicative of more complex expressions and give the most accurate

representation of facial articulations by including temporal informa-

tion of dynamic facial movements. Furthermore, since 3D dynamic

facial scans help to handle the low intensity of expressions, 4D FER

is more similar to the real life which can be a future direction of our

work. Our covariance based method can also deal with 4D FER since

several studies have successfully extended the use of covariance des-

criptors to the temporal dimension in action and gesture recognition

(e.g. (Bhattacharya et al. 2016, Sanin et al. 2013)).

5. In this thesis, we only handled the six prototypical expressions to

understand the human emotions. In our future work, we can further

investigate the ability of recognizing the action units of a face. These

action units refer a measuring of specific facial muscle movements,

and are automatically related to their contraction. Thus recognizing

the action units can be useful for further understanding the beha-

viors and the appearance of the face.
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A.1 Hungarian algorithm

The Hungarian algorithm is a combinatorial optimization algorithm

that solves the assignment problem in polynomial time. It was proposed

by Harold Kuhn (Kuhn 1955, Munkres 1957). The assignment problem

deals with assigning machines to tasks, workers to jobs, soccer players to

positions, and so on. The goal is to determine the optimum assignment

that, for example, minimizes the total cost or maximizes the team effec-

tiveness. In our contribution, we apply it to find the best permutation

between probe and gallery faces which minimizes the cost of matching

using their covariance matrices so that we can classify the probe face to

the nearest gallery face.

Figure A.1 – The assignment problem to match probe and gallery faces using their
covariance descriptors.

A.2 Iterative closest point (ICP)

Besl et McKay (1992) proposed the ICP method, which computes a ri-

gid transformation and aligns a data point set to a model point set. The

alignment is performed by minimizing the value reported by an objective

function that adds the sum of squared distances between pairs of nearest

neighbors with one element in the model shape and the other in the ali-

gned data shape. Figure A.2 shows the steps of the alignment process. In
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this thesis, we applied ICP to align probe faces to gallery faces in order to

make them of the same position.

Figure A.2 – Steps of aligning one point cloud to the other using Iterative Closest
Point algorithm

A.3 Principal curvatures

Principal curvatures are one of the most used features on 3D shape

analysis. On a 2D plane or 3D surface, the curvature at a particular point

measures how the curve bends by different amounts in different directions

at that point. It is given by the inverse radius of the osculating circle at that

point. To compute the 3D surface curvature, only two angles are selected :

the ones giving the maximal and minimal curvature values known as first

(k1) and second (k2) principal curvatures (Creusot et al. 2013). Table A.1

presents the surface classes according to their curvatures.

k1 < 0 k1 = 0 k1 > 0
k1 < 0 Concave ellipsoid Concave cylinder Hyperboloid surface
k1 = 0 Concave cylinder Plane Convex cylinder
k1 > 0 Hyperboloid surface Convex cylinder Convex ellipsoid

Table A.1 – Surface classes

A.4 Support Vector Machine (SVM)

SVM is a supervised machine learning method which is popular for

addressing binary classification problems using functions that can opti-
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mally separate data. In the case of two linearly separable classes, there

exists an infinite number of hyperplanes for separating the data. The aim

of SVM is to find the optimal hyperplane that separates data with maxi-

mizing the distance between the two classes (i.e. maximizing the margin).

The nearest points, which are used only for the determination of the hy-

perplane, are called support vectors.

We can distinguish between two models of SVM according to the sepa-

rability of data, linear-SVM and non-linear-SVM. The linear-SVM are the

simplest because they are linearly separable as presented in FigureA.3.

In the non-linear-SVM, the data are transformed to be represented in a

large space where they are linearly separable (See FigureA.4). To evaluate

the classification, the most used technique is 10-cross validation which we

applied in this thesis.

Figure A.3 – Linearly separable data separated by a straight line.

(a) (b)

Figure A.4 – (a) : Non-linearly separable data separated by a curved line, (b) : Plan
separation after a transformation of the data into a 3D plane.



A.5. Measuring biometric system performance 111

A.5 Measuring biometric system performance

The performance of a biometric system in the verification or identifi-

cation scenarios can be evaluated based on the match scores obtained by

the used matching algorithm. In the case of face recognition system, for a

set of test faces, let id be the number of identities and sam be the number

of face samples per identity, the total number of samples is NT = id ∗ sam.

By comparing each of NT samples against the remaining NT − 1 samples,

a total of 1
2 NT (NT − 1) similarity match scores can be computed. This

comparison is referred to as all versus all protocol. In computing the match

scores for an all versus all protocol, two classes of match scores are ge-

nerated namely genuine and impostor match scores. Genuine match scores

denote the scores generated when comparing two face samples belonging

to the same individual. Impostor scores denote the scores generated when

matching two face samples belonging to different individuals.

The verification performance is typically evaluated by assessing the

false acceptance rate (FAR) and the false reject rate (FRR). As presented

before in Figure1.4, the FAR denotes the percentage of impostor scores that

exceed a numerical threshold and are incorrectly classified as matches. The

FRR denotes the percentage of genuine scores that are below a threshold

and are incorrectly classified as non-matches. Graphically, the FAR and

FRR are often expressed by a Receiver Operating Characteristic (ROC)

curve. In this thesis, we plot the true acceptance rate (TAR) versus FAR by

varying the threshold to evaluate our verification system.

The true acceptance rate (also called recall, sensitivity) of a classifier is

estimated as :

TAR ≈ Positives correctly classified
Total positives

(A.1)

The false acceptance rate (also called false alarm rate) of the classifier is :

FAR ≈ Negatives incorrectly classified
Total negatives

(A.2)
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To evaluate the identification performance, a set of Nprobe probe

samples is compared against a set of Ngal gallery samples. This results

Nprobe sets of match scores, with each set containing Ngal match scores.

The match scores in each set are sorted in descending order.

In closed-set identification, the ordered score sets from the Nprobe are

used to estimate the probability that the correct matching identity pertai-

ning to a probe is observed within the top K ranks. These probabilities

are typically expressed visually through the Cumulative Match Characte-

ristic (CMC) curve. Unlike the ROC curve, which is generated by looking

at genuine and impostor scores all-at-once, the data in the CMC curve is

obtained based on the explicit ordering of genuine and impostor scores

for each face probe.

A.6 Cross validation

In order to evaluate the classification performance using k-cross va-

lidation approach, the data is divided into (k=10 in the case of 10-cross

validation) for testing and training partitions. Accordingly, k iterations of

training and validation are performed so that in each iteration, one fold is

used for validation and k− 1 folds are used for training.
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