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1

CHAPTER

1

Introduction

1.1 Scope of the Thesis

In the last decades, the implementation of Digital Signal Processing (DSP) applications has
been facilitated by the massive advance in semiconductor technology. Using digital signal pro-
cessing applications allowed the emergence of new products with complex algorithms to meet
the users’ demands. The complexity of such applications puts the companies in a challenging
cycle of design and product delivery. Companies have to deliver more value for every unit cost
they charge from consumers due to competition between them. Practically, designers work in an
increasing complexity environment to reduce the time-to-market and minimize the product cost
while satisfying the customer demands.

Telecommunication belong to one of the fast growing industries. For example, the number of
mobile networks subscribers (users) passed the staggering number of 6 billion worldwide [7]. This
advance in the telecommunication industry has drawn benefits from the growing semiconductor
technology. As an example, smart phones nowadays include a big combination of telecommunica-
tion, signal processing and other applications. The implementation of all these applications should
comply with the demand of users in terms of quality under strict constraints related to energy, cost
and time.

The cost of modern electronic devices is usually measured in terms of silicon area, power
profile and execution time, which should be kept to a minimum without compromising the system
performance. These goals are conflicting in nature and the designer has to inevitably derive a
trade-off between the system performance and its cost. Therefore, it is very important to make
careful decisions in every design step to ensure the best possible performance of the entire system.
One of the first and major decisions is the choice of the arithmetic operators used to implement
the algorithms, which has a large impact on the cost-performance trade-off. Floating-point and
fixed-point operators are two popular choices available for the implementation of all arithmetic
operations. Fixed-point arithmetic operators are known to take significantly lesser area, shorter
latency and to consume less power. Implementation of telecommunication algorithms usually
have rigorous performance parameters to be achieved and demand high computational power. In
such cases, using fixed-point arithmetic allows satisfying such constraints thanks to its ability in
manipulating data with lower word-length compared to floating-point arithmetic. Thus, digital
signal processing algorithms are implemented into fixed-point architectures and floating-point to
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Figure 1.1 – DSP System Design Flow

fixed-point conversion is mandatory.

The various stages of the design flow of a digital signal processing application are described
in Figure 1.1. The first step of this cycle is the definition of the requirements by specifying the
functions to be performed by the system as well as the architectural constraints of the system (time,
memory size, energy consumption). The next step is the design and the specification of a complete
description of the algorithm. At this stage, simulations are carried out to ensure that the system
performance is satisfied. These simulations can be performed using tools used to simulate DSP
algorithms such as Matlab/Simulink (Mathworks) [8], Scilab (Inria) [9], . . .. Floating-point arith-
metic is used to overcome problems of computation accuracy. Once the algorithm is designed, it is
implemented into an embedded system using a programming language. The architectural solutions
used for the implantation can be software or hardware such as ASIC, FPGA or DSP. Any practical
DSP implementation uses fixed-point arithmetic to reduce the area and power consumption and
obtain a cost-effective hardware. A conversion process from the floating-point description of the
algorithm to a fixed-point implementation that customizes every wordlength in the datapath has to
be realized. This task is the focus of this thesis.

The floating-point to fixed-point conversion process is an optimization problem [10] which
derives the data word-length. This process explores the trade-off between the cost and the appli-
cation quality degradation due to the limited bit-width of fixed-point data types. Moreover, it has
been shown that the conversion process can take up to 30% of the total development time [11, 12].
Thus, an automatic floating-point to fixed-point conversion tool is essential to efficiently optimize
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the implementation cost while satisfying the performance constraints in the shortest possible time.
Recently, High Level Synthesis tools [13, 14] have emerged. These tools generate register transfer
level (RTL) implementations directly from a C/C++ fixed-point specification of the application.
These tools reduce significantly the development time while allowing a good design space explo-
ration. Thus fixed-point conversion becomes the bottleneck for fast product development.

The conversion process consists of two parts corresponding to the determination of the integer
part word-length and the fractional part word-length. To reduce the complexity of the conversion,
the determination of the integer part and the fractional part word-lengths are handled separately.
The integer word-length (IWL) optimization is based on determining the data dynamic range while
fractional word-length (FWL) optimization consists on the numerical accuracy analysis. The lim-
ited integer and fractional bit-width of the fixed-point data types will introduce an overflow occur-
rence and quantization error respectively which generate a degradation of the application quality.

Range estimation and overflow error The dynamic range estimation determines the minimum
and maximum values and is used to compute the minimum number of bits for the integer part.
Classical range estimation methods compute theoretical absolute bounds that will never be ex-
ceeded in practice to avoid the appearance of overflows. In doing so, the provided ranges are
pessimistic and the implementation cost is largely increased. As the absence of overflows is guar-
anteed, the optimization of the integer part word-length under performance constraints becomes
impossible and the trade-off accuracy-implementation cost is considered only for the fractional
part.

In many applications occasional overflows are acceptable if the probability of occurrence is
small enough and the range estimation method should be able to take this property into account.
Moreover, methods like interval and affine arithmetic do not provide additional information about
the signal variation inside the range making it a poor approximation of the real variation. Sig-
nals that have large variations but have small probabilities for their extreme values are not well
considered.

Different techniques have been proposed to determine the probability density function of any
type of data. They allow determining the dynamic range for a given overflow occurrence probabil-
ity. These techniques are based on Extreme Values Theory [15, 16, 17] or stochastic approaches
like Karhunen-Loeve expansion [18, 19] and Polynomial Chaos Expansion [20].

Stochastic techniques determine the PDF of the system inputs to evaluate the data dynamic
range. In linear time-invariant systems (LTI) the Karhunen-Loeve Expansion (KLE) processes
a stochastic discretization of the input in terms of random variables. Using the superposition
property of LTI systems, this technique determines the corresponding description of the output
which take into account the temporal and spatial correlation and thus provides tighter bounds.
The Polynomial Chaos Expansion (PCE) is used for non LTI systems. Compared to KLE, a wider
range of systems are supported but at the detriment of a higher computational complexity. Extreme
Values Theory is used with lightweight simulations to obtain samples of the output that can further
be used to estimate the probability distribution.

In general, these techniques link the overflow probability and the dynamic range. However,
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defining a mathematical expression of the application quality metric is not trivial and complicates
the automation of fixed-point system design. On the one hand, each application has its own quality
metric. For example, the bit error rate is used for communication system and the mean opinion
score can be used for audio applications. On the other hand, a direct correlation between the
application quality metric and the overflow probability is hardly established.

Numerical accuracy analysis and un-smooth error The numerical accuracy analysis is linked
with the notion of quantization noise. This analysis studies the sensitivity of the output to slight
changes at the input by computing an error metric which can be for example the signal-to-
quantization-noise-ratio (SQNR). In fact, several works are focused on optimizing the fractional
part word-length using the quantization noise power as an error metric.

The quantization process can be modeled as a random process with specific characteristics. At
system-level, the single noise source (SNS) [21] can be used to model the total quantization noise
at the output of a system as a sum of various random processes. The characteristics of the random
process are determined from the knowledge of the quantization noise power and its spectral and
distribution functions.

The models describing the quantization noise based on Widrow’s quantization models [22] and
perturbation theory are accurate only when the quantization step size is very small in comparison
to the dynamic range. As the quantization step-size increases, the noise properties deviate from the
analytical predictions and soon become intractable. Such quantizers are referred to as un-smooth
quantizers.

Moreover, existing methods of numerical accuracy analysis evaluate only the power of the
output quantization noise. In some cases, like the evaluation of the performance in systems with
un-smooth operators [5], this limited information is insufficient and the entire probability density
function of the noise should be determined.

As a solution, simulation based approaches are used to overcome the limitation of classical
approaches. In comparison to stochastic approaches, where establishing the link between the
application quality metric and error occurrence probability is not trivial in the general case, sim-
ulation based approaches can be performed on any type of system [8, 23, 24]. However, they are
time consuming and require a large number of samples to obtain an accurate analysis. This results
in a serious limitation on the applicability of simulation based methods especially that the exist-
ing simulation (complete simulation) based approaches simulate all the input samples in every
evaluation of the quality analysis.

1.2 Objectives and Contributions of the Thesis

In this thesis, we aim at accelerating the process of floating-point to fixed-point conversion.
We present our new approach based on a framework using selective simulations to accelerate the
simulation of overflow and un-smooth error effects. This approach can be applied on any C/C++
DSP application to evaluate the degradation due to overflow or un-smooth errors. Compared to
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complete fixed-point simulation based approaches, where all the input samples are processed,
the proposed approach simulates the application only when an error occurs. Indeed, overflows
and un-smooth errors must be rare events to maintain the system functionality. Consequently,
selective simulation allows reducing significantly the time required to evaluate the application
quality metric.

As most of the existing works is focused on optimizing the fractional part, we focus on op-
timizing the integer part, which can significantly decrease the implementation cost when a slight
degradation of the application performance is acceptable. Indeed, many applications are tolerant
to overflows if the probability of overflow occurrence is low enough. Thus, we exploit the pro-
posed framework using a new integer part word-length optimization algorithm to accelerate the
optimization of the IWL. Furthermore, we apply the framework of selective simulation to evaluate
the accuracy in fractional word-length optimization of system with un-smooth operators.

The different contributions of this thesis and the associated publications in international con-
ferences and journals are listed below:

— The design and the development of a selective simulation framework to avoid complete
fixed-point simulations to evaluate the application quality metric.
— The exploitation of the selective simulation framework to accelerate the analysis of

overflow effect. This contribution has been published in the DASIP conference [25]
and in the Journal of Signal Processing Systems [26]

— The exploitation of the selective simulation framework to accelerate the analysis of
un-smooth error effect.

— The design and the development of an optimization algorithm for the integer part word-
length. This contribution has been published in ICASSP conference [27] and in the Journal
of Signal Processing Systems [26]

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the fixed-point and
floating-point arithmetic, and compares them in terms of arithmetic aspects as well as software
and hardware implementation. It also describes the steps of the floating-point to fixed-point con-
version and explains the existing methods for both the range estimation and the accuracy analysis.
Furthermore, this chapter provides a description of ID.Fix tool. This tool allows the conversion of
a floating-point C source code into a C code using fixed-point data types.

Chapter 3 explains the problem of evaluating the system when an error (overflow or un-smooth
error) occurs with low probability. It explains the concept of overflow and its relation with integer
part word-length, and the concept of un-smooth error and its relation with the quantization process.
Moreover, a new approach that uses selective simulations to accelerate the simulation of finite
precision effects analysis is presented. This approach can be applied on any C/C ++-based DSP
application using fixed-point arithmetic to evaluate the degradation due to finite word-length.

As a next step, Chapter 4 details the proposed selective simulation approach and explains its
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procedure when applied in the presence of overflow. After presenting the methodology of variables
selection for integer word-length optimization, the implementation of the proposed framework in
C + + is explained. Then, experiments are conducted to verify the effectiveness of the proposed
selective simulation technique.

In Chapter 5, the proposed selective simulation approach is exploited to design a new opti-
mization algorithm for integer part word-length optimization. The fixed-point refinement explores
the trade-off between implementation cost and application quality. The cost and the application
quality of systems using fixed-point arithmetic depend on the word-length of each data. After
presenting the existing algorithms for determining the word-length, the proposed optimization al-
gorithm is explained.

Chapter 6 considers the use of selective-simulation technique to evaluate the effect of un-
smooth errors. The detection of potential un-smooth errors is detailed and then, experiments on an
image processing application are conducted to evaluate the efficiency of the proposed technique.

Finally, in Chapter 7, we conclude this thesis and present several potential research directions
to be developed in future work.
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CHAPTER

2

State Of The Art

Most digital signal processing algorithms manipulate data representing real numbers. The
design of signal processing algorithms rather uses floating-point arithmetic because of its devel-
opment simplicity and its good numerical properties. However, for numerous embedded systems,
fixed-point arithmetic is preferred because of its higher benefit in terms of power consumption,
area and architecture latency. Thus, a conversion from floating-point to fixed-point is required
before the hardware implementation of the algorithm. This chapter first presents and compares
fixed-point and floating-point arithmetics. Then, the steps of the conversion process and the ex-
isting fixed-point conversion methods are detailed. Especially, existing techniques for dynamic
range and accuracy evaluation are presented. Finally, the fixed-point design environment ID.Fix is
described.

2.1 Fixed-Point representation

2.1.1 Number representation

In almost all digital platforms, digital systems use binary number representation and specify
the corresponding rules for performing arithmetic operations (addition, multiplication, etc.). The
exact representation of numbers requires infinite precision. However, only a limited number of
bits can be used in practice. Thus, most of the time, scientific calculations give approximations of
the exact values.

In general, digital signal processing algorithms require high computing capabilities. Therefore,
choosing the right number representation format is critical in the implementation of any digital
signal processing algorithm. Fixed-point and floating-point arithmetics are generally used for
storage and computation purpose.

The effect of limited number of bits for standard arithmetic can be evaluated from two different
perspectives. The first one is concerned with the numerical accuracy, which is determined by the
quantization step of the system. The second aspect is related to the variation of the maximum
dynamic range allowed by the representation. The dynamic range is the domain of possible values
that can be represented for the considered format. It is evaluated as in Equation 2.1, where XMAX

and XMIN are respectively the largest and the smallest magnitude that can be represented by the
coding standard.
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Figure 2.1 – Floating-point representation of a signed-number

DdB = 20log

10

✓
XMAX

XMIN

◆
(2.1)

In the next sections, floating-point and fixed-point representations are described.

2.1.2 Floating-point representation

The floating-point arithmetic is widely used when high precision is required. It represents a
real number composed of a sign s (+ or -), a scale factor (exponent) and a fractional part (mantissa)
as shown in Figure 2.1. The mantissa determines the precision of the represented number and the
exponent defines the power of the base (typically 2 or 10). The latter specifies the position of the
binary point and it is used as an explicit scale factor that changes during computations to code
accurately small and high values.

Let x be a real signed number represented in floating-point with a base B, a sign S, a mantissa
M and an exponent E. The value associated with x in the floating-point representation is given by
the following expression

x = (�1)SMBE (2.2)

Given that several couples of mantissa and exponent can be used to represent a same value, a
standard floating-point format has been introduced to remove this ambiguities. Today, the IEEE
standard for binary floating -point arithmetic (IEEE 745-2008) is used in most CPUs to ensure the
portability of computing software. It specifies the floating-point format and the rounding modes.
It describes not only how the arithmetic operations must be performed, but also the treatment of
possible exceptions (division by zero, overflow, ...). The mantissa and the exponent are encoded
with sign and absolute value representation. The numbers are normalized to ensure a unique
encoding. The mantissa is normalized to represent a value in the interval [1, 2[. As a result, the
value of its most significant bit is implicitly equal to 1 and is not represented. The exponent is
encoded as an unsigned number, so it is coded relatively to a bias b = 2

E�1 � 1 in order to
represent numbers smaller than 1. The bias depends on the number of bits that are allocated for
the representation of the exponent. It is equal to 127 for 32-bit floating-point (single precision)
and 1023 for 64-bit floating-point (double precision). The value of the data x represented in the
binary IEEE 754 floating-point format is
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Representation type (bits) Sign E M Bias

Half Precision 1 [15] 5 [14-10] 10 [9-0] 15

Single Precision 1 [31] 8 [30-23] 23 [22-0] 127

Double Precision 1 [63] 11 [62-52] 52 [51-0] 1023

Table 2.1 – Bit allocation in the binary IEEE 754 floating-point format coding. Numbers in brack-

ets represent the bit positions.

S" bm%1" bm%2" b1" b0" b%1" b%2" b%n+1" b%n"

b bits 

n bits m bits 
Integer 

part 
Fractional 

part 

Figure 2.2 – Fixed-point representation of a signed-number

x = (�1)S ⇤ 2E�b ⇤ (1 +M) (2.3)

The bias b is introduced to represent numbers smaller than 1. The mantissa M and the exponent
E are calculated as follows

M =

mX

i=1

mi2
�i (2.4)

E =

e�1X

i=0

ei2
i (2.5)

The standard defines the single-precision data type on 32-bits and the double precision data
type on 64-bits. More recently, the half-precision format on 16-bits has been proposed. The table
2.1 shows the distribution of bits of the different types represented by the IEEE 754 norm. The
terms WL, M and E represent, respectively, word-length, mantissa and exponent. The standard
also reserves some values to represent the values 0, �1 and +1 and NaN (Not a Number).

The exponent range for normalized numbers is [�126, 127] for single precision format (32
bits) and is [�1022, 1023] for double precision format (64 bits) and [�14, 15] for half precision
format (16 bits).
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2.1.3 Fixed-point representation

The representation of fixed-point format is composed of an integer part and fractional part.
The binary point in fixed-point representation and the number of bits of each part are fixed. Thus,
the scale factor of the associated data is constant and the range of the values that can be represented
does not change during the computation.

Figure 2.2 presents the general representation of a number in fixed-point format composed of
a sign bit S (the most significant bit) and b� 1 bits divided between the integer and the fractional
parts. m and n represent the position of the radix point respectively to the most significant bit
(MSB) and to the least significant bit (LSB). They correspond to the number of bits respectively
for the integer part and for the fractional part if they are positive. The bit sign S is equal to 1 if
the represented value is negative value and to 0 if it is positive. Let Qm.n be the fixed-point format
with m bits for the integer part and n bits for the fractional part. In this representation, each bit of
the integer and fractional parts corresponds to a power of 2. Intuitively, the bits of the integer part
provide the representation of the number with positive powers and the bits of the fractional part
provide the representation of the number with negative powers of 2 (2�1, 2�2,. . ., 2�n).

It should be noted that the sign bit can be removed if the numbers are always positive. More-
over, some parts of the representation can removed leading to a negative value for parameters m
or n. A negative value for m means that the values have an amplitude significantly lower than 1.
The first few bits of the fractional part (power 2�1, 2�2, . . .) have not to be specified since their
values do not vary. Similarly the term n can be negative to represent data for which the step-size
between two consecutive values is higher than 1.

In general, fixed-point numbers are encoded using two’s complement standard. This standard
has some interesting arithmetical properties regarding addition and subtraction operations. It also
allows a unique representation of 0. Thus, the domain of possible values is not symmetric with
respect to the origin, having 2

(m+n) strictly negative values and 2

(m+n) � 1 strictly positive ones.
The value of a fixed-point number x using two’s complement representation is expressed as:

x = �2mS +

m�1X

i=�n

bi · 2i (2.6)

The maximal and minimal values that can be represented depend on the binary point location
and the number of bits used in the fixed-point representation. The definition domain corresponding
to the values that can be represented by the format Qm.n is given in Equation 2.7. Moreover, the
quantization in such arithmetic is uniform and is constant for the entire dynamic scale: q = 2

�n.

D = [�2m; 2

m � 2

�n
] (2.7)

Thus, the finite word-length in the case of fixed-point representation corresponds to a trade-
off between the dynamic range and the precision. On the one hand, increasing the integer part
word-length will result in the extension of the dynamic range. On the other hand, increasing the
fractional word-length part will decrease the quantization step resulting in the enhancement of the
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accuracy.

2.1.4 Comparison between fixed-point and floating-point arithmetic

In this section, a comparison between the floating-point and the fixed-point arithmetic is pre-
sented. This comparison includes both numerical quality and hardware implementation.

2.1.4.1 Numerical quality

At the arithmetic level, the quality of fixed-point and floating-point representation are com-
pared by analysing the dynamic range and the Signal to Quantization Noise Ratio (SQNR).

Dynamic range analysis One of the most important criteria to compare different arithmetic is
the dynamic range. The dynamic range ratio D is defined as the ratio between the largest magni-
tude value XMAX and the smallest magnitude value XMIN of the signal that can be represented
excluding the value 0. It is expressed in decibels as defined in Equation 2.1.

The dynamic range of the floating-point representation having E bits for the exponent can be
determined as in Equation 2.8.

DdB ' 20 log

10

�
2

2K+1

�
with K = 2

E�1 � 1 (2.8)

For the fixed-point representation, the dynamic range is linear with the number of bits b used
in the representation. It is expressed as

DdB = 20 log

10

(2

b�1

) = 20(b� 1) log

10

(2) (2.9)

The coding of a number in fixed-point representation is done by mapping the real value of x by
another value x̂ from the coding domain. When the number exceeds the allowed range of values
defined by the coding standard, i.e. x /2 [x̂min, x̂max], an overflow occurs.

Figure 2.3 shows the evolution of the dynamic range with respect to the number of bits used
in the fixed-point and the floating-point representation. For floating-point, it is considered that
the number of bits allocated to the exponent is E = [

b
4

]. The floating-point arithmetic leads
to an exponential evolution of the dynamic range depending on the number of bits. The fixed-
point arithmetic leads to a linear evolution of the dynamic range depending on the number of
bits. The dynamic range obtained with a fixed-point representation is greater than the dynamic
range of a floating-point representation for number of bits less than 16. This trend is reversed
when the number of bits exceeds 16. For 32-bits data (single precision floating-point data type),
floating-point representation shows a big interest as it provides higher dynamic range compared to
fixed-point representation.

As an example, Table 2.2 presents the dynamic ranges of single precision floating-point repre-
sentation and some fixed-point representations.
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Figure 2.3 – Dynamic range evolution depending on the total number of bits [1]

Representation Dynamic range (dB)

Single precision floating-point (32 bits) 1535

Fixed-point (16 bits) 90.3

Fixed-point (32 bits) 186.63

Fixed-point (64 bits) 379.29

Fixed-point (128 bits) 764.61

Table 2.2 – Dynamic range for different fixed-point and floating-point formats

Quantization noise analysis Another important criterion to compare arithmetic is the numerical
precision. It represents the step between two successive numbers and depends on the quantization
process.

For floating-point number representation, the precision is proportional to the magnitude of the
encoded number. As the number increases, the value of the exponent needed to encode it increases.
Consequently, the quantization step, i.e the distance between two consecutive numbers, increases.

The quantization step q is bounded as follows

2

�(m+1) <
q

|x| < 2

�m (2.10)

where m is the size of the mantissa and |x| is the magnitude of the represented number. This
relation shows how the quantization step is adapted to the magnitude of the number. When the
magnitude of the number is small, the quantization step is also small and the precision is still
good. Similarly, the precision decreases when the magnitude of the number increases. A detailed
analysis of the floating-point quantization noise can be found in [28, 29].
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Figure 2.4 – Quantization process with rounding

For fixed-point numbers, the quantization process generates a loss of precision as only a fi-
nite numbers of possible values can be represented. More specifically, 2b distinct values can be
represented if b bits are used. However, the precision of the system depends on the binary point
position and the number of bits for the fractional part. Given that q is the difference between two
consecutive numbers (quantization step), the value of q depends on the LSB weight 2�n. The
quantization noise is the difference between the real value x and the fixed-point representation x̂

(Equation 2.11).

e(x) = x̂� x (2.11)

Several quantization modes are available such as the round-off and the truncation modes. They
are presented respectively in Figures 2.4 and 2.5 where fQ(x) = x̂. When considering the round-
off mode, the number is coded to the nearest quantization level as presented in Equation 2.12.
In this case, the maximum quantization error is ±1

2

LSB. e(x) has a null mean and belongs to
[� q

2

, q
2

].

x̂ = ui +
q

2

, 8x 2 �i = [ui, ui+1

[ (2.12)

The truncation mode chooses the inferior quantization level for the representation of a number
as in Equation 2.13. Thus, the maximum quantization error of this mode is q and e(x) 2 [0, q].

x̂ = ui, 8x 2 �i (2.13)

Signal-to-Quantization Noise Ratio The signal-to-quantization noise ratio (SQNR) is the
most common criterion used in DSP applications to describe the computational accuracy. The
SQNR is defined as the ratio between the power of the represented signal Px and the power of the
quantization error Pe. It is expressed in dB as

SQNRdB = 10 log

✓
Px

Pe

◆
(2.14)
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Figure 2.5 – Quantization process with truncation

Figure 2.6 – SQNR evolution depending on the dynamic range of input signal [1]

Let Dx be the dynamic range of the signal x, and Kx the ratio equal to
p
P
x

D
x

. Px can be
expressed as

Px = lim

b!1

1

b

b�1X

k=0

x(k)2 = (KxDx)
2 (2.15)

In the case of fixed-point arithmetic, the SQNR is defined by Equation 2.16. The equation
shows that the SQNR is linearly dependent on the signal amplitude.

SQNRdB = 20 log(Dx) + 20 log(Kx)� 10log(Pe) (2.16)

In contrast to the floating-point representation, the fixed-point representation has a quantization
step that is proportional to the amplitude of the signal. The expression of the SQNR for round-off
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quantization mode is presented in [30]. It depends on the number of bits used for the representation
of the mantissa. Figure 2.6 illustrates the evolution of the SQNR with respect to the dynamic
range of a 16-bits data for both floating-point and fixed-point arithmetic. In the case of floating-
point representation the SQNR is almost constant. That is due to the use of an explicit exponent
which allows the adjustment of the SQNR. In the case of fixed-point representation the SQNR is
proportional to the dynamic range. For low dynamic range, the signal in fixed-point representation
is very sensitive to quantization error and the floating-point representation provides a better SQNR.
However, the quantization step of the floating-point representation becomes higher than the fixed-
point representation. Thus, for this case of 16-bits, the fixed-point representation can guarantee a
SQNR higher than the one obtained for floating-point representation, if it is properly scaled. We
should also note that the choice of the number of bits allocated to the mantissa and to the exponent
in the floating-point representation is a trade-off between a high dynamic range and a high SQNR.

2.1.4.2 Comparison of software and hardware implementation

Each software or hardware implementation has its own constraints that determine the choice
of the most suitable arithmetic. In the case of a software implementation, the data word-lengths
are fixed and a limited number of word-length are available in both fixed-point and floating-point
representation. In typical software platforms, the sizes of the integer data types that can embed
fixed-point data are usually a byte (8 bits), half of a word (16 bits), a word (32 bits) and a long
as double word (64 bits). The floating-point numbers are usually in two formats: either single
or double precision accuracy. The half-precision format is supported by some processors. In
addition, it should be noted that some processors support operations on vectorized data with the
SIMD (Single Instruction Multiple Data) concept [31]. Such instructions operate on a set of data
of same size and type collected in a data block of fixed size, which is called a vector. Then, it is
possible to reconfigure the data path according to a standard size (the number of bits is usually a
multiple of four or eight) in order to control the data word-length in fixed-point arithmetic.

In hardware implementation, any word-length is supported for fixed-point arithmetic. More-
over, hardware implementation opens horizons for custom floating-point units [32], [33]. In [34],
specifications of floating-point operators are described using a C++ library of floating-point op-
erators. This results in automating optimal implementations of floating-point operators in the
hardware implementation so that the computing time is small enough to achieve the desired op-
erating frequency. The impact of the number of bits allocated to the floating-point operator in
terms of dynamic range and precision is not as simple as in the case of fixed-point representtaion.
Ultimately, it is difficult to make a choice between fixed-point format and floating-point format
without explicitly exploring all the operations.

The floating-point arithmetic has the advantage of having a greater dynamic range for data
with more than 16-bits and a better SQNR compared to fixed-point arithmetic. Nevertheless,
as the exponent varies for different data, the floating-point arithmetic operations are complex to
perform. For example, the floating-point addition is performed in three steps. First, the two
input data are denormalized in order to have a common format. Then, addition is performed.
Finally, normalization is carried-out to adjust the exponent of the addition output. Thus the cost



16 2. State Of The Art

of a floating-point addition is high compared to the cost of a fixed-point addition. In this case, the
binary position of the two input operands are aligned by shifting the bits and then the two operands
are added.

Low power consumption is one of the major requirements of embedded systems. Floating-
point arithmetic based on the IEEE-754 standard requires the use of at least 32 bits for data
(half-precision is supported by few processors). However, the majority of applications based on
fixed-point arithmetic use data with limited word-length: from 6 to 16 bits for input data and less
than 32 bits for intermediate results. Thus, the widths of buses and memories in the fixed-point
architectures are lower. This leads to lower energy consumption and cost for architectures based
on fixed-point arithmetic, in addition to the fact that operators in fixed-point are less complex.
For example, performing 32-bit fixed-point addition and 16-bit fixed-point multiplication require
0.5pJ and 2.2pJ respectively, while a 64-bit floating-point unit consumes 50pJ [35]. Therefore,
the fixed-point arithmetic is preferred for algorithms implementation in embedded systems. How-
ever, fixed-point arithmetic has the disadvantage of having a lower SQNR, and therefore a lower
numerical accuracy. Thus, it is necessary to pay attention to the numerical accuracy in fixed-point
implementation. The accuracy can be determined either by simulations or by analytical methods
as presented in Section 2.2.2.

in summary, the operations used in embedded applications with fixed-point arithmetic are less
expensive compared to delivering data and instructions to the functional unit of a programmable
floating-point system. However, the limited bit-width results in a degradation of the numerical
accuracy. In addition, using fixed-point format causes overflow occurrence whenever the inte-
ger word-length (IWL) is insufficient to represent the dynamic range variation. Thus, DSP algo-
rithms are implemented into fixed-point architectures and floating-point to fixed-point conversion
is mandatory in order to find the compromise between area and arithmetic precision.

2.2 Floating-point to fixed-point conversion

The conversion of floating-point representation into a fixed-point representation or the refine-
ment of an existing fixed-point specification is an optimization process divided into two main steps.
The first step corresponds to the determination of the integer word-length of each variables. After
the evaluation of the definition domain of each data, where the width (number of bits) must repre-
sent all the possible data values, the position of the binary point is determined while minimizing
the integer part of each data. The second step is the fractional word-length determination, which
defines the numerical accuracy. This section presents the existing techniques for evaluating the
dynamic range and the numerical accuracy in order to determine the word-length of each variable.

2.2.1 Integer word-length optimization

The integer world length determination is a critical step in the fixed-point conversion process.
The number of bits for the integer part of a data x depends on its dynamic range and is linked with
the probability density function f(x) the data x. If the extreme values (maximum and minimum)
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Figure 2.7 – Classification of the approaches for the dynamic range determination (from [2])

of a variable are known, the minimum integer word-length is computed in two’s complement
representation as follows

IWL = dlog
2

(max|x|)e+ ↵ (2.17)

with

↵ =

(
2 for mod(log

2

(xMAX), 1) = 0

1 otherwise
(2.18)

Figure 2.7 presents a classification of the existing techniques used to evaluate the dynamic
range. When the system does not tolerate any computational error (critical system), the integer
part word-length has to cover the entire range of possible values and any overflow occurrence
may lead to a serious quality degradation. In this case, the data bounds should be determined
by techniques that guarantee the absence of overflow occurrence. For example, techniques based
on interval arithmetic satisfy this constraints, but at the expense of an overestimation of the data
bounds. Statistical approaches that determine bounds from a set of simulation results can reduce
the overestimation, but can not ensure the absence of overflow occurrence.

It should be noted that overflows occur when the number of bits of the integer part is not
sufficient. Overflow occurrence degrades the system performance. However, the hardware imple-
mentation cost is unnecessary increased if the number of bits exceeds the needs.

Many applications are tolerant to overflows if the probability of overflow occurrence is low
enough. In this case, determining the number of bits of the integer part is a trade-off between
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the implementation cost and the system performance degradation. This is translated into an opti-
mization problem where the integer word-length of each variable of the system is reduced while
maintaining an overflow probability lower than the accepted probability. The challenge is to esti-
mate the probability density function (PDF) of the data in order to be able to compute the overflow
probability. Firstly, statistical approaches model the data PDF queue from a set of simulation re-
sults. Secondly, stochastic approaches model the variable PDF by propagating the data PDF model
to the inputs inside the application.

2.2.1.1 Dynamic range evaluation without overflow

In the following part, the existing techniques used to determine the dynamic range while avoid-
ing overflow occurrence are presented. These techniques are based on the estimation of the dy-
namic range for each variable using its extreme values.

Simulation based methods The statistical methods allow to estimate the dynamic range of a
variable using its characteristics, determined by floating-point simulations. The simplest estima-
tion of the dynamic range is to determine the maximum absolute value of the samples obtained
during the simulation [36]. However, the quality of the estimation depends on the choice of the
input stimuli and on the total number of samples.

Kim and Sung proposed to use a function of the mean and the standard deviation rather than
the maximum absolute value [37]. This can be more pessimistic, but has the advantage of being
less sensitive to the number of samples. The statistics collected for each variable x are the mean
µ(x) and the standard deviation �(x). The authors then propose to choose a dynamic range R

using the following expression

R(x) = |µ(x)|+ n(x).�(x) (2.19)

where n is an empirical weighting coeffecient [37, 38]. Estimating the dynamic range based
on the average and the standard deviation rather than the maximum absolute value provides a
better estimation of the dynamic range with fewer samples. However, this approach can be applied
only if the distribution of x follows a uni-modal law. This is verified in [37] where the model is
extended by measuring the coefficients of skewness and kurtosis of each variable which allows
the classification of the signal as uni-modal or multi-modal, symmetrical or non-symmetrical with
zero mean or non-zero mean. These classifications are then used to perform the scaling of more
complex signals.

Interval arithmetic Interval arithmetic (IA) methods are based on associating each variable with
an interval instead of a value [39]. The bounds of a variable at the output of an operator are
calculated using the bounds of the input operands and the rule of the corresponding operation. Let
Dx = [x, x] and Dy = [y, y] be the definition intervals of respectively the variables x and y. If
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x and y are not correlated (x and y may take any value of their definition interval independent of
each other), then:

Dx+y = [x+ y, x+ y] (2.20)

Dax = [ax, ax] if a � 0 (2.21)

= [ax, ax] if a < 0 (2.22)

Dx⇤y = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)] (2.23)

D�x = [�x,�y] (2.24)

Dx�y = [x� y, x� y] (2.25)

Dx2 = [min(0, |x|, |x|)2,max(|x|, |x|)2] (2.26)

Interval arithmetic guarantees the absence of overflow in the algorithm if the input data values
are in the definition domain used by the estimator. It computes the variable ranges at the compi-
lation time and is not data dependent. However, the performance of this estimator is low because
the method is conservative. The estimation is based on an analysis that considers the worst case
scenario, which could result in overestimated bounds. Moreover, this method is often pessimistic
because it does not take into account any correlations between the input operands, it considers
that all the signals are independent and may take any value in their given interval. But not all the
values in the interval are truly possible if there is a correlation between the operands. Thus, in this
case, the method will provide overestimated bounds. In addition, it cannot be applied on recursive
systems even in the case of a stable system.

Multi-Interval Arithmetic (MIA) is proposed as an improvement of the IA method [40, 41].
The enhanced method splits each interval into P disjoint subintervals

[xmin, xmax] =

P[

i=1

[xi1 , xi2 ] (2.27)

The operations are performed on smaller intervals and the total dynamic range is determined
by merging all the intermediate intervals. Thus, the dimensions of the final results are reduced
in comparison to the traditional IA method. As IA, MIA guarantees the absence of overflow and
underflow and does not address the correlation problem.

Affine arithmetic One of the proposed solutions to solve the dependency problem in IA is the
affine arithmetic (AA) method [42, 43, 44, 45]. The authors extend the classical IA-based method
by integrating the source and the sign amplitude of all uncertainties ✏i. The uncertainty of a
variable x is represented by a linear expression given by:

x̂ = x
0

+ x
1

✏
1

+ . . .+ xn✏n✏i 2 [�1, 1], (2.28)

✏i is an independent source of uncertainty or error, which is added to the total uncertainty of the
variable x̂. Moreover, each source of uncertainty ✏i is weighted by a partial deviation xi. The
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definition interval of a variable x represented with an affine form is determined as:

x 2 [xmin, xmax] = [x
0

� rx, x0 + rx] (2.29)

(2.30)

with

rx = |x
1

|+ |x
2

| . . .+ |xn| (2.31)

The most important property of the AA method is that a noise coefficient can be shared between
variables, which allows keeping track of the first order correlation (also called spatial dependency)
between them. However, the temporal correlation between the value of a signal and its previous
values is not taken into account. Thus, this technique becomes less effective in the field of Digital
Signal Processing. Similar to IA, the dynamic range is propagated through affine operations. This
step is straightforward for all linear operations as they preserve the affine property for the result as
depicted in Equation 2.32.

x̂ = x
0

+ x
1

✏
1

+ . . .+ xn✏n (2.32)

ŷ = y
0

+ y
1

✏
1

+ . . .+ yn✏n

x̂+ ŷ = x
0

+ y
0

+

nX

i=1

(xi + yi) ✏i

For non-affine operations, the result is no longer a linear function of ✏i, and a linear approx-
imation of the function is used in this case. The non-linear terms are bounded by a constant and
added to the final affine expression. This results in loss of information and oversized bounds. For
example, the multiplication is realized as in Equation 2.33. Other non-affine operations can be be
considered [44].

ẑ = x̂ŷ =

 
x
0

+

nX

i=1

xi✏i

! 
y
0

+

nX

i=1

yi✏i

!
(2.33)

ẑ = (x
0

y
0

) +

nX

i=1

(x
0

yi + y
0

xi) ✏i + zk✏k (2.34)

with zk =

nX

i=1

|xi| ·
nX

i=1

|yi| (2.35)

The number of noise variables increases with each non-linear operator. The independence
between these uncertainties would result in a loss of correlation between the signals and the range
would explode for large computation data-paths.

Lp norm and transfer function based methods In [46, 47], the authors propose a methodology
that calculates the dynamic range for Linear Time-Invariant (LTI) systems. The methodology uses
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the L
1

norm and the concept of transfer function. Let’s consider a linear system S with input x
and output y, the output y at instant n depends on the input x(n), on the Ne precedent input values
x(n� i) and on Ns precedent output values y(n� i) (Equation 2.36).

y(n) =
N

eX

i=0

bix(n� i)�
N

sX

i=1

aiy(n� i) (2.36)

The objective of this approach is to transform the recurrent equation of the system (2.36) so
that the output y is expressed in terms of the input x and its delayed versions. The first technique
uses the impulse response h of the system. Thus, the output is the convolution between the input
x and the impulse response h

y(n) = h(n) ⇤ x(n) (2.37)

By using the L
1

-norm [48], the maximum absolute value of y is

max

n
(|y(n)|)  max

n
(|x(n)|) ·

+1X

m=�1
|h(m)| (2.38)

If the maximal and minimal values of the input are known, the dynamic range can be computed
for every variable in the system. This method can be used for any type of input signal and gives
theoretical bounds for the output guaranteeing the absence of overflow. However, it only takes into
consideration the maximum values and not the signal statistics. This L

1

-norm gives conservative
results.

The second technique uses the frequency response of the filter H(ej⌦). This approach, called
standard Chebychev, determines the maximum absolute value for a given narrow-band input sig-
nal. Thus, the input signal is modeled by a sinusoidal function. The relationship between the
maximum absolute value of y and x is as follows

max

n
(|y(n)|)  max

n
(|x(n)|) ·max

⌦

(|H(ej⌦)|) (2.39)

2.2.1.2 Dynamic range evaluation in presence of overflow

When the signal has high variation in its amplitude throughout the execution, determining the
word-length becomes a difficult task. Ensuring the theoretical range leads to a significant increase
of cost. To reduce the cost and the execution time, the word-length of the integer part can be
reduced so that the interval of variation is not entirely covered. As a consequence the overflow
occurrence is authorized with a constraint regarding their probability of appearance. Variables
that have long tailed PDFs can be approximated with tight intervals that correspond to a desired
coverage probability.

This section presents the methods used to determine the dynamic range for a given overflow
probability. The methods are based on deterministic procedures that provide theoretical results
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Figure 2.8 – Range determination methodology using Extreme Value Theory.

using a description of the input variability.

Extreme value theory The extreme value theory [49] is a statistical analysis based method con-
cerned with the extreme deviations from the mean of the probability density function. Its purpose
is to give a theoretical description of the distribution of the extreme values. This can be used to
model the probability and magnitude of rare events. In [49], the author showed that the maxima
and minima obtained for different realization of a random process follow the Gumbel distribution:

f(x) =
1

�
e

�(x�µ)
� e�e

�(x�µ)
� (2.40)

� =

�x
p
6

⇡
(2.41)

µ = µx � �� (2.42)

where µx and �x are respectively the mean and standard deviation of x. � is the Euler’s
constant (⇡ 0.5772). The Extreme Value Theory has been applied to the range estimation problem
in [16, 15, 50] as shown in Figure 2.8. They use lightweight simulations for statistical data analysis
that provides theoretical probabilities for an overflow event. The program is simulated N times,
which leads to the extraction of N minima and maxima. Then, the parameters of the Gumbel
distribution are estimated using the obtained results. Let Pr be theprobability that x is in the range
[xmin;xmax]. Let P be the overflow probability, which is the complementary event of Pr. The
maximum value xmax is derived from Equation 2.40 and results in [50]
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Figure 2.9 – Compute the range of a variable from its PDF.

xmax = µ� �x ln
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◆◆
. (2.43)

Expression 2.43 determines the definition domain of the data for a given probability of over-
flow P defines by the developer. The larger the number of samples N is, the more accurate the
statistical analysis becomes. The number of samples that should be provided for an application is
determined empirically. If the sample size is not large enough, all the possible execution traces
in the program are not covered. It should be noted that this method can be applied on any kind
of system and outperforms affine arithmetic based methods in the range estimation and the area
reduction especially for non-linear applications [50].

Stochastic methods Stochastic approaches aim at obtaining a complete representation of the
variability of a variable x. The range of all the variables are represented by their PDF and obtained
by propagating the variability characterization through the system. The range of all the variables
is computed from the PDF with respect to a coverage probability as shown in Figure 2.9.

A general methodology to determine the dynamic range for a fixed overflow probability is
presented in Figure 2.10 ( proposed in [3]). This methodology is based on stochastic modeling
of signals to determine the PDF of the output. The first step is to model the input signal by
decomposing it in terms of several stochastic parameters. The second step calculates the stochastic
parameters of the output, which allow to determine its PDF in a next step. It should be noted that
several approaches can be used to determine these parameters. Finally, the dynamic range of the
output is determined according to the authorized probability of overflow.

In [18, 20], a new approach for range estimation is presented. The method takes advantage
of both the random and temporal dimensions that characterize the uncertainty of data in signal
processing applications. The signal is modeled in the form of a stochastic process to determine its
dynamic range. The input signals are modeled as a weighted sum of random variables. Then, the
parameters associated with each input are propagated in the system to obtain the corresponding
output parameters and probability density function. This allows the possibility of obtaining the
dynamic range for a given probability of overflow.

In [18], the proposed method uses the Karhunen-Loeve Expansion (KLE) to decompose the
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Figure 2.10 – Probabilistic range determination methodology [3]

LTI system input, modeled as an arbitrary random process, into k deterministic signals. Each
signal is multiplied by a random variable. Starting from a description of the system behavior the
KL expansions for the random processes corresponding to all variables can be generated. Based
on this, full statistical information about the variables can be obtained by simulating the system
(executing the program)k times. A stochastic process p(t) is expressed as

p(t) =
1X

i=0

p
�ifi(t)µi (2.44)

where fi(t) are the eigenfunctions, �i is the eigenvalues of the covariance function R, and µi

are non-correlated random variables with unity variance and zero mean.

In contrast to the previous range representations, the KLE is a complete statistical description
of the input process that can be used to determine the statistical moments or the entire probability
distribution. Using the superposition property of the LTI systems, it is possible to determine the
corresponding KLE description of the output using a limited number of simulations. However, the
simulation period must be set long enough for the statistics of the responses to reach the steady
state. The method fully considers both the spatial and temporal correlation. It can construct ran-
dom process models from real data or empirical statistics, instead of using oversimplified models
or assumptions.

For non-linear systems, superposition cannot be applied anymore. Thus, the authors of [20]
proposed the use of the Polynomial Chaos Expansion (PCE). The authors show how the PCE of
the input is obtained from the corresponding KLE representation using a projection method. Using
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the PCE arithmetic, the variability of the input can be statically propagated in non-linear systems
and the PCE representation for all the variables can be obtained in any type of system. The PCE
of a 2

nd order stochastic processe X(⇥) is expressed as follow

X(⇥) =

1X

i=0

↵i i(⇣(⇥)) (2.45)

where ↵i are constant coefficients, ⇣ = (⇣
1

, ⇣
2

...⇣d) is a set of d independent second order
random variables and  i(⇣) is multidimensional orthogonal polynomials.

Furthermore, the authors propose a word-length optimization criterion under SNR
constraints[20]. However, when the overflows occur during the computation, this evaluation may
become inaccurate.

In [3], a probabilistic approach for the dynamic range evaluation has been developed using
KLE to represent the variability of the input signal in linear-time invariant systems and PCE in
non linear systems. Compared to the previous method, the variability of the input is statically
propagated through the data-flow graph and the analytical representation of the output is obtained.
The range is further computed from the PDF with respect to a coverage probability.

2.2.2 Fractional word-length optimization

Computation in fixed-point arithmetic has limited accuracy and generates quantization error at
the output. The quantization error is considered as a noise added to the result and evaluated by the
difference between the output in finite and infinite precision [29]. It is therefore necessary to verify
that the behavior of the algorithm using fixed-point arithmetic is modified within a reasonable
limit. Thus, the fractional part is determined based on a trade-off between the needed accuracy
and the circuit cost. There are various metrics to evaluate the numerical accuracy. The most
commonly used metric in digital signal processing domain is the power of the quantization noise
or the signal to quantization noise ratio (SQNR). Let Pb be the quantization noise power and Py

the output signal power, the SQNR in dB is defined by

SQNRdB = 10 log

Py

Pb
(2.46)

An alternative metric can be the error bounds e 2 [emin, emax] [51]. It is used to ensure an
absolute maximal value of the quantization noise. A third metric corresponding to the number of
significant bits associated with a variable [52] can be used. This method estimates the number of
bits of a given variable that are not modified by the surrounding noise and thus represent correctly
the data. For an example of a 16�bit data, the number of significant bits not modified and allowing
a correct representation of the signal is 13 when the quantization noise change the values of the
last three bits.

To determine the quantization noise power at the output of the algorithm two approaches may
be used. The first approach is to determine the statistical parameters of the quantization error
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Figure 2.11 – Classification of the approaches used to analyze the effects of the quantization noise

Figure 2.12 – Simulation-based computation of quantization error

from the fixed-point and floating-point simulations of the algorithm. The second determines the
analytical expression of the quantization noise power by propagating a noise model in the flow
chart of the algorithm. Figure 2.11 presents a classification of the methods used to analyze the
quantization noise.

2.2.2.1 Simulation based methods

The evaluation of the performance of a fixed-point system using simulation methods is based
on evaluating the output of the system using bit-true fixed-point simulation to obtain the value of
the quality criterion associated with the application. The advantage of these methods is their ability
to provide accurate results for any type of system. The accuracy of the fixed-point specification
is evaluated statistically from the signals obtained by simulating the algorithm in fixed-point and
floating-point. The floating-point simulation output is close to the output of infinite precision
simulation because of its low quantization error compared to the one obtained with fixed-point
simulation. Thus, floating-point simulation is considered as the reference and the power of the
quantization noise is directly obtained from the second order moment of the difference between
the two simulations. The approach is presented in Figure 2.12 and the power of the quantization
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noise is evaluated as in Equation 2.47, where y and yfixed are respectively the output results of the
floating-point and fixed-point simulations.

Pb = E[(y � yfixed)
2

] (2.47)

To get accurate results, a high number of samples, denoted Nech, at the input of the algorithm
has to be used. Let Nops be the number of operations defined in the description of the algorithm
and Ni be the number of time that the accuracy is evaluated during the optimization process. A
first estimation of the number of points (Npts) to be calculated, presented in Equation 2.48, shows
the need for an effective simulator to obtain a reasonable simulation time.

Npts = Nech ·Nops ·Ni (2.48)

Various methods have been proposed to emulate the mechanisms of fixed-point arithmetic.
The method presented in [53] can simulate a fixed-point specification, using the concepts of over-
loading operators in C + + language level. The operator overloading makes the implementation
of the fixed-point algorithm significantly longer than a floating-point simulation. The same con-
cepts are implemented in fixed-point simulation using SystemC [54]. In [55], the floating-point
and fixed-point simulation time are compared for some signal processing applications. Let Rsim

be the ratio between the simulation time tsim�fxpt obtained with fixed-point data types and the
simulation time tsim�flpt obtained with floating-point data types

Rsim =

tsim�fxpt

tsim�flpt
(2.49)

The average ratio Rsim is equal to 540 for standard SystemC fixed-point data types and 120

for limited precision SystemC fixed-point data types. The data type pfix is proposed in [56] to
reduce the simulation time of the method described above. It aims at improving the computation
time of fixed-point operations by using efficiently the floating-point data types of the host machine.
The fixed-point simulation time of a fourth order IIR filter with pfix type leads to a ratio Rsim

of 7.5.

The fixed-point simulation can be accelerated by executing it on a more adequate machine
like a fixed-point DSP [57, 58, 55], or an FPGA [59] through hardware acceleration. The method
presented in [58, 55] uses integer types in the machine for a more efficient encoding of the data
in order to reduce the execution time of the simulations. This concept is also used in the sim-
ulator HYBRIS associated with Fridge tool [60]. These methods reduce the execution time of
the fixed-point simulation. However, the effort required to optimize fixed-point data has not been
quantified. Indeed, the optimization techniques described above are relatively complicated, and a
new simulation is required every time the fixed-point specifications change.
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2.2.2.2 Analytical approach

The objective of the analytical procedures is to define a mathematical expression of the accu-
racy metric according to the data word-length. Obtaining this accuracy metric expression can take
time. However, once this expression has been determined, the accuracy can be evaluated from the
mathematical function and this evaluation process is fast.

Error power evaluation The existing approaches to calculate the analytic expression of the
quantization noise power are based on the perturbation theory. The finite precision signal is mod-
eled as the sum of the infinite precision signal and a perturbation of a very small amplitude com-
pared to the infinite precision signal amplitude. This perturbation is assimilated to an uniformly
distributed white noise, which is uncorrelated with the signal or any other quantization noise in the
system. Each noise source bi propagates within the system and contributes to the system output
noise. This propagation has to be modeled to obtain an expression of the output quantization noise.
A first-order Taylor series expansion [61, 62] is used to linearize the behavior of the operations in
the presence of an input quantization noise. In [63, 64], the propagation of the quantization noise
is modeled using affine arithmetic. These models based on the perturbation theory are only valid
for smooth operations.

The output noise by is the sum of the contributions of all the Ne noise sources. The second
order moment of by can be expressed as the weighted sum of the statistical parameters of the noise
sources [65]

E(b2y) =
N

eX

i=1

Ki�
2

b
i

+

N
eX

i=1

N
eX

j=1

Lijµb
i

µb
j

(2.50)

The terms µb
i

and �2

b
i

are respectively the mean and the variance of the noise source bi. The
terms Ki and Lij are constant terms. These terms depend on the system located between the
noise source bi and the output. Thus, these terms are evaluated only once to obtain the analytical
expression of the precision.

In [65], Linear Time Invariant systems are considered. The coefficients Ki and Lij are com-
puted from the impulse response of the LTI system between the noise sources and the output. This
method has been extended in [66] to also handle non-linear systems (including recursive systems).

Another method based on affine arithmetic simulation is proposed for LTI systems in [64]. An
affine form is assigned to each noise source. Then, the coefficients Ki and Lij are determined from
the affine form of the output noise. The same method has been proposed for non-LTI systems in
[63]. However, the method might lead to a too huge number of terms when the number of iterations
is large.

In [67, 68], hybrid techniques combining analytical expressions and simulations are proposed.
The coefficients Ki and Lij are computed by solving a linear system of equations having Ki and
Lij as variables.
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Error bounds evaluation Several techniques have been suggested to evaluate the bounds of
the quantization noise. Bit-true simulation is the most extended techniques used to estimate the
quantization noise bounds [69, 70]. It is usually combined with other techniques to reduce the
simulation time. For example, statistical refinement and bit-true simulations are combined in
[50, 71], where the authors apply a technique based on the Extreme Value Theory with Adaptive
Simulated Annealing to determine the quantization noise bounds of the output.

Interval-based methods can be used to evaluate the the errors bounds. Indeed, each error
introduced by quantization process with rounding or truncation modes is bounded. Since the
noise sources are modeled as independent input signals, the techniques used for range analysis
can also be used for the computation of the noise bounds. Interval arithmetic and affine arithmetic
techniques [72] already presented in Section 2.2.1.1 can be used to determine the bounds of the
output error of the system. An interval is associated to each noise source generated during the
quantization process. Then, these intervals are propagated through the system. In [73], the authors
used a Multi-interval arithmetic (Multi-IA) approach to provide refined bounds and reduce the
overestimation of IA.

Interval-based computations can be applied to analyse the precision in both fixed-point [43]
and floating-point [51] systems. However, direct use of these techniques is limited to non-recursive
systems. As mentioned before, the problem with AA is the support of non-affine operations and
its weak treatment of correlation.

A new method is proposed by Wadekar and Parker [74], where perturbation theory is exploited
to evaluate the noise bounds. The authors proposed a propagation model based on Taylor series
decomposition of functions with two inputs. Automatic differentiation is proposed by Gaffar et al.
in [75, 76] for linear or quasi-linear systems. An approach that uses Arithmetic Transformations
(AT) has been proposed in [77, 78]. The AT representation guarantees the accurate propagation
of the polynomial terms due to its canonical form. This approach has been extended to evaluate
systems with feedback loops in [79, 80].

Propability density function One of the essential metrics used to analyze the effect of signal
quantization is the probability density function (PDF) of the quantization noise. In comparison to
the quantization error bounds or quantization noise power, which are suitable for differential oper-
ations, PDF provides more information and allow better analysis of unsmooth operations. In [19],
the quantization noise PDF is determined using the Karhunen-Loeve Expansion representation
of the quantization noise. Using the superposition property and the transfer function of the sys-
tem, the KLE description is computed by propagating the KLE coefficients associated with noise
sources. In [81], the authors propose a stochastic approach based on a combination of Modified
Affine Arithmetic (MAA) and Polynomial Chaos Expansion to determine the output quantization
noise PDF. The advantage of the PCE representation is its applicability to non-linear operations.
The output quantization noise of a smooth system is modeled as a weighted sum of a Gaussian
random variable and a uniform random variable as in [82] and as a generalized Gaussian random
variable in [83]. The effect of quantization noise on an unsmooth operator like signum function
and Quadrature Amplitude Modulation constellations diagrams is studied in [84] and [5].
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When the system include several unsmooth operations, the evaluation of the quantization ef-
fect using purely analytical approaches becomes an issue. In [6], a hybrid approach is proposed.
This approach uses analytical models to accelerate quality evaluation based on simulation. The
idea in the hybrid approach is to simulate parts of the system only when un-smooth errors occur.
Otherwise, analytical results based on perturbation theory are used. This concept will be extended
in our approach and detailed in Chapter 6.

2.3 ID.Fix

The ID.Fix EDA tool has been developed at IRISA/INRIA labs since 2008 [4], and the goal
of this thesis is to extend the capabilities of this tool by providing techniques to evaluate the
application quality when overflows or unsmooth errors occur. The ID.Fix EDA tool allows the
conversion of a floating-point C source code into a C code using fixed-point data types. The tool
is implemented using the GECOS framework [85], a compiler infrastructure that performs source
to source transformations and works with C or C++ code. The signal flow graph of the algorithm
is extracted by inference [86]. The analytical expression of the loss of accuracy obtained at the
output is evaluated by a fully automatic analytical technique developed in [65, 62]. The cost metric
is the sum of individual operator cost. The modular nature of the tool and the GECOS platform
allows to perform experiments with optimization heuristics. The synoptic of ID.Fix infrastructure
is presented in Figure 2.13.

2.3.1 ID.Fix tool description

2.3.1.1 Tool functionality

The purpose of ID.Fix is the fixed-point conversion of a floating-point C source code that
describes the signal processing application. The conversion process defines the optimized fixed-
point format of the operation operands. The integer part word-length is determined to avoid the
overflow occurrence or limit its probability, and the fractional part word-length is determined to
minimize the implementation cost respecting the accuracy constraint Pb

max

. The infrastructure
of ID.Fix is made-up of three main modules corresponding to fixed-point conversion (Fix.Conv),
accuracy evaluation (Acc.Eval) and dynamic range evaluation (Dyn.Eval).

2.3.1.2 Tool inputs

The inputs of the tool for the fixed-point conversion of an application are:
— App.c: The input source code of the application written in C language with floating-point

data types. Only a subset of the C language is supported to describe the application. Cur-
rently, pointers and structures are not supported.

— Pb
max

: Quantization noise power of the application output is expressed in dB. It corre-
sponds to the accuracy constraint for the optimization process of the operators word-length.
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Figure 2.13 – Detailed flow of the EDA tool ID.Fix [4]

The evaluation of this accuracy metric is detailed in Section 2.2.2.
— App.Arch.xml: XML file that defines the architecture model to estimate the implementa-

tion cost during the optimization process. The model includes all the words-length sup-
ported by the architecture and the associated implementation cost.

Pragma directives are also taken as input in order to specify some parameters for fixed-point
conversion (dynamic range, inputoutput word-length, delay operations).

2.3.1.3 The tool output

The output of the tool is the App.fix.cc file containing the source code of the application in
fixed-point types such as Mentor Graphics ac_fixed or SystemC sc_fixed. The fixed-point
specification is optimized according to the types supported by the architecture and the accuracy
constraints.

A given variable var of ac_fixed type is declared with the following expression

ac_fixed< wD, wIP , S, Q, O > var,

where wD is the total number of bits, wIP is the number of bits of the integer part, S is a boolean
type indicating whether the data is signed, Q is the quantification mode and O the overflow mode
(saturation or wrap-around). The advantage of ac_ fixed type is the ability to specify all the fixed-



32 2. State Of The Art

point parameters of a given variable with the format change operations (cast) and data alignment.
However, the fixed-point parameter are static and can not change over time.

2.3.2 Tool description

The fixed-point conversion tool ID.Fix-Conv is developed in the compilation infrastructure
Gecos (Generic Compiler Suite). The front-end of Gecos generates the intermediate representation
on which various transformations are performed. The tool developed within Gecos consists of two
branches. The first one contains necessary transformations for the fixed-point conversion and the
regeneration of the C source code with fixed-point types. From the C source code, an intermediate
representation is generated with the GECOS front-end. This intermediate representation, used for
the fixed-point conversion process, is a Control and Data Flow Graph (CDFG). The CDFG is an
oriented graph where the nodes represent control blocks. Each control structure of the C language
has a specific type of block. The data processing is included in the basic block (control nodes) and
is made-up of a set of operation oi and data di.

The second part generates the Signal Flow Graph (SFG) of the application. The SFG is used
in the dynamic and accuracy evaluation modules. The dynamic and accuracy evaluation are per-
formed on the SFG of the application. The SFG is generated by flattening the CDFG. Consequently
each operation oi is translated into several operations o0j in the SFG. The indexes of all operations
o0j of SFG corresponding to the duplication of the operations oi are grouped in the set Ti.

The operations oi and the data di contributing to the output evaluation are indexed with a
unique index i. This index i is then used to access to the fixed-point specifications associated
with oi and di. Three methods are available for the evaluation of the data dynamic range: interval
arithmetic, L

1

norm and stochastic approach based on Karhunen-Loeve Expansion (KLE). Interval
arithmetic based methods cannot be applied on recursive systems and the flow graph shall not
contain cycle. Methods based on L

1

norm use the transfer function concept and are only valid on
LTI systems. These two methods evaluate the dynamic range ensuring no overflow occurrence.
The third method, which is based on KLE, allows the evaluation of the dynamic range of the LTI
system output according to an overflow probability defined with a pragma. The KLE and L

1

norm
based methods use the system impulse response. Thus, the dynamic range is evaluated through the
SFG of the application and the same software infrastructure is used for the accuracy evaluation.
The ID.Fix-DynEval tool determines the dynamic range of all the data d0j of the SFG. The dynamic
ranges of the data dj of the CDFG are obtained from the dynamic ranges of d0j .

After determining the binary point position, the data word-length are optimized. The data
word-length optimization problem is expressed as the minimization of the implementation cost
under accuracy constraint. The optimization algorithms implemented in the tool correspond to a
greedy algorithm (min + 1bit), and a branch and bound search. The accuracy is evaluated using
the C source code generated by the ID.Fix-accEval module, which allows the quantization noise
power computation according to the word-length and the quantification mode used. The code
is compiled, and the optimization algorithm is called through a Java Native Interface (JNI). The
overall cost of the implementation is obtained from the cost associated to each operation. It is
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calculated using the architecture database and the number of times the operation is performed.
This information is determined by simulating (profiling) a set of input vectors.

The last step generate the App.fix.cc file, which contains the source code of the application
with the fixed-point types determined in the previous steps.

2.4 Conclusion

After the description of floating-point and fixed-point representations, this chapter described
the fixed-point to floating-point conversion process used to implement an application into a fixed-
point architecture. The conversion process is an optimization problem divided into two parts corre-
sponding to the determination of the integer part word-length and the fractional part word-length
under application quality constraints. The fractional part word-length determines the numerical
accuracy of the application, while the integer word-length determines the dynamic range and con-
trols the occurrence of overflows. This chapter presented a review of the existing methods for both
the range estimation and the accuracy analysis.

Based on the surveyed methods, analytical approaches, such as affine and interval arithmetic,
allow fast evaluation of the application quality, but may overestimate the required word-length.
Statistical approaches take into account the possibility of tolerating errors (overflow or un-smooth
error). However, it is not always trivial to find the link between the probability of error occurrence
and the application quality. Simulation based methods can be applied on any type of systems,
but they are time consuming. Thus, reducing their simulation time is a key point in enhancing
their applicability. To overcome the limitation of simulation based methods, a new framework is
proposed in the next chapter. The proposed framework uses selective simulation to accelerate the
evaluation of the application quality.

Most of the work is focused on optimizing the FWL while satisfying the accuracy constraint.
Nevertheless, optimizing the IWL can significantly decrease the implementation cost when a slight
degradation of the application performance is acceptable. Indeed, many applications are tolerant to
overflows if the probability of overflow occurrence is low enough. Thus, the challenge is to provide
an integer word-length optimization technique based on an efficient application quality evaluation.
We propose a new approach and an associated framework using selective simulations to accelerate
the simulation of overflow effects in chapter 3 and 4. Compared to complete fixed-point simulation
based approaches, where all the input samples are processed, the proposed approach simulates the
application only when overflow occurs. Indeed, overflows must be rare events to maintain the
system functionality. Consequently, selective simulation allows reducing significantly the time
required to evaluate the application quality criterion. Then, a new IWL optimization algorithm is
proposed in Chapter 5. This algorithm efficiently exploits selective simulation based technique go
accelerate the optimization of the IWL.

In a second time, we apply the framework of selective simulation to evaluate the accuracy in
the case of fractional word-length optimization for system with un-smooth operations. Fractional
word-length optimization is investigated in chapter 6.
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CHAPTER

3

Selective Simulation
Framework

3.1 Introduction

As shown in the previous chapter, reducing the word-length of fixed-point operations can sig-
nificantly decrease the cost of hardware implementation. The reduction of the integer part word-
length (IWL) can lead to overflows if the data dynamic range is not totally covered. Moreover,
the reduction of the fractional part word-length (FWL) decreases the numerical accuracy and leads
to a quantization noise. When the quantization step is too high, errors are considered un-smooth
and have a high amplitude compared to the signal. Un-smooth errors and overflows have a huge
impact on the quality of the application output. Thus, their probability of occurrence must be low
enough to have an acceptable quality degradation.

In the fixed-point refinement process, the data word-lengths are optimized for a given quality
constraint. Thus, the degradation of the application quality due to overflows or un-smooth errors
should be evaluated at each iteration of the word-length optimization process. Several types of
methods exist to evaluate the quality. Simulation-based methods have the advantage to support
any type of systems. Nevertheless, when the number of iterations is high, the simulation becomes
time consuming.

The probability of overflow and un-smooth error must be low. Thus, only few input samples
lead to an error and contribute to the quality degradation. Existing methods for quality evaluation
simulate the system for all the input samples. In this chapter, we propose a method to overcome the
long simulation time in the case of small probability of overflow or un-smooth error. This method
simulates the system to evaluate the quality only when a rare event (overflow or un-smooth error)
occurs.

In the first section, the problematic of rare events is presented. Then, the framework of the
proposed method is detailed. Finally, the approach is extended for the quality evaluation at the
system level.
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3.2 Context and motivations

To ensure acceptable application quality, overflows and un-smooth errors due to fixed-point
representation should rarely occur. In this section, we explain the concept of overflow and its
relation with the number of bits allocated for the integer part of a fixed-point data. Moreover, we
explain the concept of un-smooth operation and its relation with quantization noise.

3.2.1 Overflow

An overflow occurs when the result of an operation requires a number of bits for the integer
part of a fixed-point data greater than the allocated number of bits. In other words, the resulting
value is out of the range of valid values, i.e. greater than the maximum representable value or
lower than minimum representable value.

The reduction of the number of bits for the integer part of each variable increases the probabil-
ity of overflow. To illustrate the relation between the overflow probability and the number of bits
for the integer part, let’s consider a random variable x of normal distribution with a probability
density function (PDF) depicted in Figure 3.1 and expressed as

f(x) =
1p
2⇡

exp

�x

2

2 (3.1)

The integer word-length of x can be computed with the equation 2.17 given in page 16. For
simplification, a symmetric definition domain for a variable x is considered and obtained by ex-
cluding the minimum value of the initial definition domain. In this case, the integer word-length
of x is computed with

wx = blog
2

|x(n)|c+ 1 + S (3.2)

where S is equal to 1 for signed data and 0 for unsigned data. In the following we consider
S = 1.

Let PIWL(wx = w), be the probability that w bits are required for the integer part of the value
x. This probability is computed with the following expression

PIWL(wx = w) = P (blog
2

(|x|)c+ 2 = w) (3.3)

= P (w � 2  log

2

(|x|) < w � 1) (3.4)

= P (2

w�2  |x| < 2

w�1

) (3.5)

The probability density function fw(w) of the integer word-length of x is given in equation
3.6 and presented in figure 3.2.
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Figure 3.1 – Probability density function of variable x
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Let w
0

be the number of bits allocated for the integer part of the variable x during computation.
Each sample of x having an IWL higher than w

0

leads to an overflow. The probability of overflow
occurrence is computed using fw(w) or f(x) as follows:

Povf (w0

) = P (wx > w
0

) (3.9)

=

+1X

w=w0+1

fw(w) (3.10)

=

Z �2

w0�1

�1
f(x)dx+

Z
+1

2

w0�1
f(x)dx (3.11)

If w
0

decreases, the number of samples leading to an overflow increases and quickly becomes
very large as we can see in Figure 3.3. Table 3.1 provides the overflow probability for several
integer word-length w

0

for the variable x.

The maximum overflow probability that can be tolerated depends on the criticality of the ap-
plication. The more the application is critical the more the maximum overflow probability must
be low or even null.
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Figure 3.2 – Probability density function of integer word-length of variable x

w
0

(bits) Povf (w0

)

1 0.316

2 0.045

3 6.3x10�5

4 1.2x10�15

Table 3.1 – Overflow probability for different word-length w
0

3.2.2 Un-smooth Error

The second case of rare event considered in this work is un-smooth errors. After a presentation
of the model for quantization process (reduction of the number of bits for the fractional part), the
concept of un-smooth error is detailed.

Noise model In general, the effect of quantization process can be modeled as a noise. Using the
Pseudo Quantization Noise model (PQN) [29], the effect of uniform quantization can be modeled
with an additive white noise bx. The quantized signal x̂, is statistically equivalent to the sum of
the original signal x and the noise bx as shown in Figure 3.4. The noise power is determined from
the quantization step-size q and the quantization mode. The noise bx is uniformly distributed and
is statistically uncorrelated with the quantized signal.

The quantization process is called smooth when the assumptions associated with the PQN
model are satisfied. Especially, The quantization step-sizes must be small in comparison to the
dynamic range of the signal. When the quantization step-size is large enough, PQN model is no
longer valid and the quantization process is un-smooth. An operation is called smooth when the
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Figure 3.3 – Overflow occurrence with respect to IWL allocated for x

Figure 3.4 – Quantization noise model

change in the quantized input signal value causes a small change in the operation output.

Error Decision error is a good example of an un-smooth operation. Figure 3.5 shows the be-
haviour of a decision operation defined in equation 3.12 and the effect of the quantization of the
input on the decision.

y = Si if x 2 Ri

R
1

= {x} such as x  a

R
2

= {x} such as x > a

(3.12)

The output of the decision operation is S
1

if the value of the input signal x is less than or
equals to the threshold a and S

2

if the value of x is higher than a. The fixed-point conversion of
x leads to x̂ and adds a quantization noise e that perturbs the signal x. Let q be the maximum
distortion e 2 [�q; q]. When x has a value x

2

sufficiently far from the boundary (|(|x
2

� a) > q),
the perturbation q is not large enough to make the signal cross the decision boundary. In this case,
the outputs of both finite and infinite precision are S

2

and no decision error occurs. However, the
perturbed signal may cross the boundary when x has a value x

1

such that |(|x
1

� a) < q. This
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Figure 3.5 – Behaviour of a decision error operator in presence of perturbation.

may lead to an output S
2

instead of S
1

, which represents a decision error.

un-smooth error probability To study the un-smooth error probability, we consider a system
with one un-smooth operation U as shown in Figure 3.6. The decision error probability, due to
an additive quantization noise, can be computed by comparing the fixed-point output ŷ with the
output obtained in infinite precision y.

Let’s consider an instance of the input signal. The fixed-point signal x̂(n) is obtained by
adding the quantization noise bx(n) to the input x(n) as follow

x̂(n) = x(n) + bx(n) (3.13)

When the value of the signal x is close to the decision boundary and the quantization noise is
large enough, the perturbation can drift the input signal to cross the boundary leading to a wrong
output (error). An error occurs when x(n) and x̂(n) respectively leads to different values Si and
Sj with respect to the decision boundary. If x(n) belongs to the region Ri, the probability Pi,j of
having a decision error, is defined with the following expression

Pi,j = P (x̂ 2 Rj |x 2 Ri) (3.14)

The total error probability Pi,j can be expressed as

Pi,j = P (x 2 Ri \ x̂ 2 Rj) + P (x 2 Rj \ x̂ 2 Ri) (3.15)

In [21], the author evaluates Pe, the total decision error probability at the output of a decision
operation having L regions with the following expression
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Figure 3.6 – Decision error due to input quantization

Pe = 1�
LX

i=1

Pi,i (3.16)

and with
Pi,j =

Z

R
i

Z

R
j

fx(x)fb(b� x)db.dx (3.17)

Pi,j is the probability of the decisions y = Si (x 2 Ri) and ŷ = Sj (x̂ 2 Rj). The term
fb(b) and fx(x) are the probability density functions of respectively the noise bx and the infinite
precision signal x.

Let’s consider a decision operation with two decision outputs S
1

and S
2

and two input regions
R

1

=]�1, 0] and R
2

=]0,+1[. The input signal follows a normal distribution with a zero mean

and a standard deviation equal to �s. The PDF of the input signal is equal to fx(x) =
1p
2⇡
exp

� x

2

2�2
s .

From [82], a normal distribution for the quantization noise fb can be considered when this noise

results from the contribution of several quantization processes. Its PDF is fb(x) = 1

�
p
2⇡

exp

� x

2

2�2 .
Hence, the total decision error probability is evaluated as in equation 3.18, where P is computed
as in equation 3.19.

Pe = P
1,2 + P

2,1 = 2.P (3.18)

The probability P is equal to

P =

0Z

�1

+1Z

0

fx(x)fb(b� x)db.dx (3.19)

P =

0Z

�1

+1Z

0

1

2⇡��s
e
� x

2

2�
s

2 e�
(b�x)2

2�2 db.dx (3.20)

P =

tan

�1

(

�
�
s

)

2⇡
(3.21)
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Figure 3.7 – Variation of total decision error probability with respect to the quantization noise

power for different signal power ss = �s.

Figure 3.7 shows the variation of the error probability Pe with respect to the quantization
noise power pn(dB) = 10log

10

� for three signals of different power. When the quantization
noise deviation increases, the perturbation due to fixed-point conversion increases and the error
probability at the output increases. When the power of the signal decreases the perturbation due
to quantization noise has more effect at the output and leads to higher rate of decision error. If
the quantization noise deviation is equal to 0.1, the error probability is 3% when the signal power
is equal to 1. This probability decreases with the decrease of � and becomes very low for a
sufficiently low quantization noise power.

Decision operations are widely used in digital communication systems to detect the transmitted
symbol. In [5], the authors evaluate the decision error on the 16-QAM and BPSK constellations.
The error is detected by the comparison between the results in finite precision and in infinite
precision. The source signals are generated such that the QAM symbols are uniformly distributed.
The quantization noise and the channel noise are assumed to be a normal distribution with a zero
mean and a standard deviation equals respectively to 1 and �q. Figure 3.8 shows the error rate
versus the quantization noise power. When the quantization noise power decreases the error rate
decreases for both demodulation schemes.
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Figure 3.8 – Total decision error probability for 16-QAM and BPSK constellations from [5]

3.3 Selective simulation

The typical way to analyze the decision error and overflow effects on the application qual-
ity is to use fixed-point simulations. The advantage of such approaches is their capability to be
performed on any kind of systems. Complete simulation-based approaches, which are often used
in fixed-point optimization, lead to long execution times [6, 66]. They use specific data types to
emulate the finite word-length effects on floating-point based machines and require a huge num-
ber of samples to obtain an accurate evaluation. Moreover, these approaches are exhaustive in the
sense that all the input samples are simulated for each quality evaluation process. This is a great
challenge for digital hardware design that aims to optimize the implementation cost and reduce
the time-to-market.

The tool used to evaluate the application quality is a key stage in the world-length optimization
process. In this context, we propose a new approach using selective simulations to accelerate the
simulation of finite precision effect analysis. This approach can be applied on any application
described in C language and based on repetitive processing on a set of input data. An index is
associated with each input data. The index concept is detailed in section 3.3.1. The proposed
approach simulates the application only when an overflow or an un-smooth error occurs. Indeed,
errors must be rare events to maintain the system functionality. Selective simulation can reduce
significantly the time required to evaluate the application quality criteria. Compared to analytical
approaches, which are not trivial to be applied on all fixed-point systems, selective simulation
approach maintains the advantage of simulation-based approaches by supporting any application
described in C language. Compared to classical simulation approaches, which simulate all the
input samples and lead to long execution time, selective simulation accelerates the evaluation of
application quality. In the following, the proposed approach is described for the block level.

The decision flow diagram, presented in Figure 3.9, describes the decision making process.
This decision tree is executed for each index of the input data. For each iteration of the optimiza-
tion process a different word-length configuration is tested and a new evaluation of the quality is
performed. In a given iteration, each operation is checked if it leads to an error for the tested word-
length. If at least one operation encounters an error, then the system is simulated for the selected
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Figure 3.9 – Decision flow diagram for conditional simulation

index. If the output is not susceptible to generate an error, the output of the reference simulation
is valid and there is no need to perform simulation.

The proposed approach for quality analysis associated with the fixed-point conversion flow
is presented in Figure 3.12. The inputs of the proposed framework are the C source code of
the considered application (SUT: System Under Test) and an associated testbench. This testbench
includes the input stimuli provided by the system designer. He/she is in charge of selecting relevant
stimuli to guarantee complete test coverage of the SUT. In the SUT C source code, pragmas can
be used to specify the set of variables Sv, containing Nv variables for which their fixed-point
conversion effects on the application quality are studied.

3.3.1 Index dimension

The representation and dimension(s) of the index depends on the studied application. In the
following, we explain the effect of number of dimensions on the index format.

One dimension In digital signal processing systems, the input are sampled at equidistant time
points, which corresponds to the sampling period. When the input signal x is sampled with a
period Te, the index n corresponds to the nth sample as shown in Figure 3.10.

Two dimensions Two dimension indexes can be considered like in the case of matrices such
as the pixel of an image. In this case, the index is represented by (i, j) where i and j indicate
respectively the row and column.

Three dimensions The index can be represented as a three-dimensional object (k, i, j) as in the
case of video processing applications, where k, i and j indicates respectively the frame number,



3.3. Selective simulation 45

Figure 3.10 – One dimensional index of a sampled signal.

Figure 3.11 – Three dimensional index in video processing application.

the row and the column as shown in Figure 3.11.

3.3.2 Selective simulation technique

The proposed approach for selective simulation is made-up of four steps: Code Instrumen-
tation (T

0

), Index Classification (T
1

), Index Selection (T
2

) and Selective Simulation (T
3

). This
approach is designed to be exploited by an iterative optimization algorithm for word-length re-
finement. This optimization process is made-up of Nv variables. At each iteration, the selective
simulation technique is performed several times to evaluate the application quality.

T
0

and T
1

are applied as an introductory step for the optimization algorithm. These steps are
executed only once and their results are used for different iterations of the optimization process.
At each iteration, the system is evaluated Nv times to test the effect of the finite precision of each
variable and T

2

and T
3

are executed in each quality evaluation. The four steps of this approach
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Figure 3.12 – Proposed framework for quality evaluation associated with fixed-point conversion.

are detailed in the following. The classical fixed-point simulations, where all the input indexes are
simulated, are referred to as complete simulations. In the following, the term "error" refers to an
overflow or un-smooth error.

Code instrumentation (T
0

) The first step T
0

instruments the SUT C source code and generates
different C++ files required by this module to analyze the finite precision effects. A similar in-
strumentation technique was used in [37] for dynamic range evaluation. The operator overloading
concept associated with C++ object-oriented language is used to collect information and simulate
finite precision effects. Currently this transformation is not automated, and the C source codes
are modified manually, but the Gecos [87] source-to-source transformation tool can be used to
carry-out this C source instrumentation step.

Index classification (T
1

) The index classification step aims at identifying the indexes of potential
errors for each variable x of the set Sv. It is carried-out by a complete simulation (floating-point)
of the SUT system for the NN input samples. The instrumented SUT C code is executed to process
all the input samples and information are collected during the code execution. The indexes of the
different values of x collected during the simulation are separated into NI

x

intervals depending on
the number of bits of the integer part or the fractional part. NI

x

is a trade off between the amount
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of data stored in the database and the size of the exploration space for the optimization process.
For a variable x, member of the set Sv, the index n corresponds to a potential error if the following
condition is satisfied

���vx(n)� vlimit
x

��� > NI
x

(3.22)

where vx(n) is the configuration tested for variable x(n). it corresponds to IWL in the case
of overflow occurrence and FWL in the case of un-smooth error. These criteria are detailed in
chapter 4 for the case of overflow and in chapter 6 for un-smooth error. vlimit

x is the maximum
value considered for vx(n) in the case of overflow and the minimum value considered for vx(n)
in the case of un-smooth error.

The indexes of the potential errors are stored in the three dimensional structure T . The size
of T depends on Nv, the number of variables, NI

x

, the number of intervals considered for each
variable x and the number of indexes to be stored for each interval of the variable x. The index n

is stored in Tx,j,k where k indicates the rank of the index n in the interval Ij associated with the
variable x considering the indexes of potential errors already recorded. The value of j is defined
as follows

j(x(n)) =
���vlimit

x � vx(n)
��� . (3.23)

Index selection (T
2

) The second step aims at identifying the indexes which have to be simulated
for a given configuration for each variable of the set Sv. Let vtest be the Nv-length vector con-
taining the tested intervals for the different variables of the set Sv. For the case of overflow, v is
computed from the word-length of the integer part of each variable of the set Sv as detailed in sec-
tion 4.3.2. For the case of un-smooth errors, v is computed from the deviation of the quantization
error associated to each variable of the set Sv as detailed in section 6.3.2.

The list of indexes Lsim that have to be simulated for the configuration vtest is obtained as
follows

Lsim(v) =
N

v[

i=1

�i with �i =

(S
�v

i

j=0

Tx
i

,j if �v
i

> 0

� otherwise
(3.24)

�v
i

represents the number of intervals that has to be simulated for analyzing the effects of the
errors for the ith variable when the configuration vtest

i is tested. �v
i

is obtained with the following
expression

�v
i

= |vlimit
i � vtest

i | (3.25)

Selective simulation (T
3

) This step determines the SUT output values when error occurs. The
SUT is simulated for the indexes of Lsim only. No error occurs for indexes not included in Lsim.
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Figure 3.13 – Selective Simulation T
3

Thus no degradation on the application quality occurs and the output of the complete simulation
done in step T

1

is used. The selective simulation step is illustrated in Figure 3.13.

When an error occurs, it may be necessary to simulate several consecutive indexes. If an error
occurs at index n of an internal variable x, the SUT output y has to be computed for all the values
of k for which y(n + k) depends on x(n) with k 2 N. In non-recursive systems, where none of
the variables depends on its previous samples, the maximum value of k is equal to the number of
delay operations along the path between x and y. In recursive systems, the output y(n + k) has
to be computed while the effect of x(n) on y(n + k) is not negligible. The maximum value of k
depends on the length of the impulse response of the system having y as output and x as input. In
the experiments, only non-recursive systems without delays have been considered.

3.3.3 Performance of the proposed approach

Our approach aims at accelerating the evaluation of error effects with respect to Complete
Simulation Technique (CST) where all the NN input samples are simulated. The time taken for
the quality evaluation process is of interest when comparing the two techniques.

3.3.3.1 Complete simulation technique

A complete simulation is a fixed-point simulation of the NN input samples. Let’s consider that
the quality metric is evaluated Ne times during the optimization process. The global execution
time of the optimization process depends on the number of input samples NN and the number of
evaluation Ne. It can be expressed as
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tgcst = Ne · tcst (3.26)

= Ne ·NN · tsim (3.27)

where tcst represents the execution time of one evaluation using complete simulation and tsim
represents the execution time taken by one sample simulation.

3.3.3.2 Selective simulation technique

In the proposed selective simulation technique, the application is only simulated for indexes
in the list Lsim. The number of errors, and thus the size of list Lsim, varies from one evaluation
to another depending on the tested configurations. The global execution time of the optimization
process using the proposed approach tgsst is obtained with the following expression

tgsst = ts1 +
N

eX

i=1

tisst (3.28)

where ts1 is the execution time of index classification T
1

, tisst represents the execution time
of the ith evaluation using selective simulation. tisst depends on the number of occurrence of the
error for the ith evaluation and can be computed with the following expression

tisst = tis2 +N i
L.tsim (3.29)

where tis2 is the execution time of index selection T
2

and N i
L is the number of indexes in the

set Lsim for the ith evaluation. In an optimization process, a high number of iterations is needed
to converge into the final solution. Thus, the execution time ts1 of the first step becomes negligible
and the global execution time ccan be computed with the following expression

tgsst ⇡
N

eX

i=1

tisst (3.30)

3.3.3.3 Accuracy of selective simulation technique

Selective simulation technique is designed to reduce the time of the application quality evalu-
ation process. It is of high importance that the proposed technique maintains the accuracy of the
complete simulation technique.

When the finite word-length does not generate any error, the outputs of the fixed-point simu-
lation and the reference (floating-point) simulation are the same. The output of the floating-point
simulation of all the input samples is stored in a database during step T

1

. This output corresponds
to the case where no error occurs. In step T

2

, the indexes, for which an error occurs, are identified.
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Figure 3.14 – System with multiple blocks

The proposed technique simulates the system with finite precision for these samples and use the
output from the floating-point simulation database for the other samples.

For the complete simulation, a fixed-point simulation of the system under test is carried-out
for all the input samples. In this case, the outputs for the samples without error are the same as the
floating-point outputs, and the outputs for the samples with error occurrence are the same as the
proposed technique. Thus, the proposed technique and complete simulation technique leads to the
same quality metric evaluation.

3.4 System level evaluation

In the previous part, the selective simulation technique has been detailed and is able to handle
a block of an application. In order to handle a complete application, a system level evaluation
has to be considered. In a system decomposed into several blocks, errors at the output are due to
different contributions of errors generated by different blocks. We consider a system S, as shown
in figure 3.14. The system is decomposed into four blocks, with two inputs x

1

and x
2

and one
output y. The errors at the output of B

1

are propagated through B
2

. The errors at the output of B
2

and B
3

are propagated through B
4

.

The errors at the output of each block Bi come from two sources as shown in Figure 3.15. The
first source corresponds to the errors generated inside the block. The second source correspond to
the errors generated inside previous blocks and propagated through the considered block. Let G be
the function that determine the indexes of errors generated inside the block from the block variables
word-length (wB

i

) Let P be the function that determines the indexes of the errors propagated from
the previous blocks.

The proposed selective simulation technique is applicable on systems with more than one
block. The index classification step is done for each block separately. Then, the index selection
step determines the list of errors at the output of each block taking into account the errors generated
inside the block and the propagated errors. For each block Bi, the set of indexes to be simulated
Li is the union of the list of indexes of errors Lg

i generated inside the block Bi and the set of
indexes of errors Li�1

i propagated from the previous block Bi�1

. Each block Bi is simulated for
the indexes in the list Li during the selective simulation step.
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Figure 3.15 – Error propagation from one block to another.

Figure 3.16 – Error generation and propagation through two consecutives block. The green indexes

are the indexes of errors generated in Bi�1

. The blue indexes are the indexes of errors propagated

from Bi� 1 to Bi. The red indexes are the indexes of errors generated in Bi.

Figure 3.16 shows the generation and the propagation of errors. The input yi�2

of block Bi�1

is considered without errors. Let Li�1

be the set of indexes for which an error is generated at the
output yi�1

of the block Bi�1

. These errors are propagated through block Bi and give the set of
indexes corresponding to the propagated errors Li�1

i . In addition to Li�1

i , the computation in Bi

generates errors at indexes of the Lg
i . The set of indexes of the output of Bi corresponding to an

error is Li = Li�1

i [ Lg
i .

3.5 Conclusion

The problem of evaluating the application quality metric when an overflow or an un-smooth
error occurs with low probability is addressed in this chapter. This chapter begins by explaining
the rare event aspect of overflow and un-smooth errors. Overflow and un-smooth errors have high
amplitude with respect to the signal amplitude and therefore a huge impact on the application
quality metric. In the world-length optimization process, the quality metric is evaluated for each
word-length configuration. However, not all input indexes lead to an error. Thus, the output of
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most indexes does not change in comparison with reference simulation. Classical simulation ap-
proaches, which use complete simulation technique, simulate the system for all the input indexes.
This imposes serious limitation in terms of design time.

This chapter introduces a new approach to accelerate the quality evaluation by selectively
simulating the system at the indexes leading to errors. Thus, the effort for fixed-point simulation
is greatly reduced. The proposed technique is performed with four steps. The first two steps are
pre-processing steps, which are done only one time. The latest two select the indexes of errors and
selectively simulate the system at these indexes. This will give the same results as those obtained
with a classical simulation, but this approach reduce significantly the simulation time.
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CHAPTER

4

Selective simulation in
presence of overflow

4.1 Introduction

In the previous chapter, we presented the proposed selective simulation framework that aims
at accelerating the evaluation of application quality. This chapter details the procedure and ex-
plains the framework specificities when applied in the presence of overflow. After presenting the
methodology of variable selection for integer world length optimization, the implementation of the
framework in C + + is explained when overflow occurrence is considered. Finally, experiments
are conducted to verify the effectiveness of the proposed selective simulation technique.

4.1.1 Advanced fixed-point conversion flow

Figure 4.1 presents the advanced fixed-point process, where stages related to dynamic range
evaluation and integer WL optimization are emphasized. The first stage corresponds to the dy-
namic range evaluation, which computes the minimal and maximal values of each variables. In-
terval arithmetic [39] or affine arithmetic [44] can be used to provide bounds which ensure no
overflow. Otherwise, simulation based approach can be used as an alternative to obtain the min-
imal and maximal values of the studied variables. The second stage corresponds to the variable
selection stage for Integer WL optimization. The aim of this stage is to select the variables for
which the IWL will be optimized.

The third stage is the WL optimization stage, where the integer WL and the fractional WL
are determined. The IWL optimization process requires to evaluate the effect of overflow on
the application quality metric. The execution time of application quality evaluation significantly
affects the duration of the optimization process. In this context, the proposed selective simulation
technique is designed to be exploited by an IWL optimization strategy. In contrast to classical
simulation approaches, where all the samples are simulated, the decision to perform fixed-point
simulation to evaluate the system is subject to the signal conditions in the proposed selective
simulation approach. This leads to lower number of evaluations, and thus accelerate the process
of IWL optimization.
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Figure 4.1 – Advanced fixed-point process integrating integer word-length

The input of our fixed-point conversion flow is a C code. To limit the modification of the
original floating-point C program, the operator overloading concept of C++ language is used. New
data classes for tracing the range of the signal or to simulate overflow mechanism are proposed
and the possible overflow is named as SigOvf. Thus, it is only necessary to change the type of
the considered variables from float to the new C++ class.

4.1.2 Illustration with an example

To illustrate the different stages of the advanced fixed-point conversion flow presented in figure
4.1, the example presented in Listing 4.1 is used. This simple C code to compute a 3

rd-order
polynomial. The input x and the output y are two signals of N = 100000 indexes such that
y = x + 0.333x3. In the following sections, the application of the proposed class on the code to
accelerate the simulation is shown.

4.2 Variable selection for integer word-length optimization

The aim of this stage is to select the variables for which the IWL will be optimized during
the WL optimization process. Given that overflow may significantly degrades the application
quality metric, the overflow probability must be kept in reasonable bounds. Consider a variable
having an integer WL that ensures no overflow equal to wIA. If reducing the integer WL of this
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1 # d e f i n e N 100000

2 f l o a t Xin [N] = { . . , . . } ;

3 f l o a t Yout [N ] ;

4 vo id ComputePoly ( ) {

5 f l o a t Ytmp ;

6 f l o a t Coeff1 , Coef f2 ;

7 Coef f1 = 1 ;

8 Coef f2 = 0 . 3 3 3 ;

9 f o r ( i n t i n d i c e = 0 ; i n d i c e < N; i n d i c e ++) {

10 Ytmp = Coef f1 + Coef f2 *Xin [ i ]* Xin [ i ] ;

11 Yout [ i ] = Xin [ i ]* Ytmp ;

12 }

Listing 4.1 – Floating-point C code to compute a 3

rd-order polynomial

variable by a single bit significantly increases the overflow probability and degrades unacceptably
the application quality, then it is a waste of time to consider the variable in the optimization process.

Determining whether IWL reduction is worth considering for a variable x is decided by an-
alyzing the overflow probability, Povf . Let Povf (w) be the overflow probability of a variable x

for which the integer word-length is set to w. In the case of signed number, the expression of the
overflow probability Povf (w) is as follows

Povf (w) =

Z �2

w

�1
fx(x)dx+

Z
+1

2

w�1

fx(x)dx, (4.1)

where fx(x) is the probability density function of variable x. In the case of unsigned number,
the expression of the overflow probability Povf (w) is as follows

Povf (w) =

Z
+1

2

w+1�1

fx(x)dx, (4.2)

The determination of the overflow probability requires the knowledge of the probability density
function fx(x) or more specifically the tail of the probability density function. As detailled in
Section 2.2.1.2, stochastic approaches can be used to determine the probability density function
(PDF) of the data from the system input statistical characteristics [18, 19]. Other techniques use
Extreme Values Theory to determine the data PDF tail [15, 17].

The discrete probability density function fw(wx) of wx can be also used to compute the over-
flow probability Povf (w). The term wx corresponds to the integer WL required to represent the
value x. By considering fw(wx), the expression of the overflow probability Povf (w) is as follows

Povf (w) =
1X

w
x

=w

fw(wx). (4.3)
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1 c l a s s h i s t o g {

2 p r i v a t e :

3 s t d : : s t r i n g name ; / / V a r i a b l e name

4 i n t valIWL [ N e l t ] ; / / Tab le o f o c c u r r e n c e o f each i w l .

5 i n t countIWL ; / / T o t a l number o f i w l o c c u r r e n c e s

6 i n t wIA ; / / IWL r e q u i r e d t o a v o i d o v e r f l o w

7 p u b l i c :

8 / / c l a s s methods

9 . . .

10 } ;

Listing 4.2 – Definition of histog C++ class

1 h i s t o g & h i s t o g : : o p e r a t o r = ( f l o a t v )

2 i n t i n d e x ;

3 i n d e x = compteIWL ( x ) + N e l t � wIA ;

4 i f ( i n d e x < 0) i n d e x = 0 ;

5 valIWL [ i n d e x ] + + ;

6 countIWL ++;

7 r e t u r n * t h i s ;

8 }

Listing 4.3 – Overloading of the affectation operation for histog C++ class

As an alternative to analytical approaches that computes fx(x), we propose a simulation-based
method that estimates the PDF fw(wx) by analyzing the input data set. The main advantage of the
proposed approach is its implementation simplicity. Although the results of the proposed method
depends on the input data set, selecting a suitable data set that reflects the real input overcomes
this challenge. Given that w(x) are integer values, the probability density function fw(wx) can be
computed easily from data collected during simulation. To collect the data during simulation, a
C++ class histog is defined as presented in Listing 4.2 and the data are collected when a value is
affected to a histog object. For each value of the variable x, the integer WL w(x) is computed
and the bin associated to this value w(x) is incremented as presented in Algorithm 4.3. A similar
technique is proposed in the Matlab fixed-point designer tool [8].

To illustrate the results obtained with this C++ class, two variables are considered. The first
one is a variable xTDOA used in the computation of mobile position in a Global Position System.
For the considered variable the dynamic range is 32 bits. Figure 4.2(a) shows the PDF fw(wx) of
the variable xTDOA. It has a long-tailed distribution, which gives the possibility to reduce the IWL
without huge loss in the quality. This is illustrated in Figure 4.2(b) that shows the probability of
overflow in terms of the integer word length wTDOA allocated to the variable xTDOA. Reducing
the integer WL by 10 bits leads to overflow probability equal to 0.3%. This probability increases to
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(a) Discrete probability density function f
w

(w
x

) of the

integer WL

(b) Overlow probability P
ovf

(w)

Figure 4.2 – A variable xTDOA used in GPS system

(a) Discrete probability density function f
w

(w
x

) of the

integer WL

(b) Overlow probability P
ovf

(w)

Figure 4.3 – A variable xCGL used in an image processing system

5% with the reduction of 17 bits. Thus, this variable is considered as a good candidate for integer
WL reduction.

The second variable is the output image xCGL of a block computing the grey image from an
input RGB image. Figure 4.3(a) shows the PDF fw(wx) of of the variable xCGL. The distribution
has short-tail, which does not give freedom to reduce the number of bits of the integer part. Re-
ducing the integer part comes at the expense of a high quality degradation. For example, reducing
of 1 bits gives an overflow probability of 2% while reducing of 2 bits increases the overflow prob-
ability to 8.5%. Thus, this variable is not a good candidate to be selected for the study of integer
word length optimization. The margin of reducing the number of bits of the integer part is limited
to 1 bit in this example. Otherwise, the quality degradation does not respect the required quality
constraint.

In order to automate the selection of the variables considered in the optimization process,
we evaluate the variable in terms of IWL reduction. For a variable x, we define �w(P ) as the
difference between wIA, the integer WL that guarantees no overflow, and wP , the minimal number
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of bits that can be used while the probability of overflow Povf (wP ) lower than P .

�w(P ) = wIA � wP , (4.4)

with

wP = min(w) such asPovf (w) < P (4.5)

A variable x is considered as a good candidate for IWL reduction if �w(P ) is greater than a
value�min

w for a maximal probability of overflow of Pmax

ovf . The values�min

w and Pmax

ovf depend on
the application. They are defined by the user and classical values are around 2 bits for �min

w and
1% for Pmax

ovf .

4.3 Quality Evaluation in the Presence of Overflow

In this section, the specificities of the selective simulation framework, presented in chapter 3,
are presented in the case of overflow analysis. Subsequently, the steps T

1

to T
3

of the selective
simulation technique are detailed in the context of overflow analysis.

4.3.1 Index classification (T
1

)

The aim of the Index Classification step is to identify the indexes of potential overflows for
each variable x of the set Sv, which is the set of considered variables. These indexes will be used
in step T

3

to selectively simulate the system. The value wx(n) corresponds to the IWL of the
variable x at index n. The index n corresponds to a potential overflow if the following condition
is satisfied

wx(n) > wmax
x �NI

x

, (4.6)

where NI
x

is the number of interval recorded for the variable x. wmax
x is the maximum number

of bits, recorded through simulation of all indexes, needed to represent the integer part of x. It must
be noted that wmax

x  wIA
x , where wIA

x is the IWL obtained using interval arithmetic. The IWL
of the variable x at index n, wx(n), represents the number of bits required to code the integer part
of the value x(n) and is computed as:

wx(n) = dlog
2

(|x(n)|)e+ ↵ (4.7)

↵ =

(
2 for mod(log

2

(x(n)), 1) = 0

1 otherwise
(4.8)
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1 c l a s s SigOvf {

2 p r i v a t e :

3 s t d : : s t r i n g name ; / / V a r i a b l e name

4 d o ub l e v a l ; / / F l o a t i n g�p o i n t v a l u e

5 i n t iwlMax ; / / Maximal IWL c o n s i d e r e d

6 i n t iwlMin ; / / Minimal IWL c o n s i d e r e d

7 u n s i g n e d i n t l i s t S i z e M a x ; / / Maximal number o f e l e m e n t i n t h e l i s t

8 s t d : : v e c t o r < L i s t I n d e x *> v e c t L i s t I n d e x ; / / v e c t o r o f l i s t o f i n s t a n t

9 p u b l i c :

10 . . . / / C l a s s methods

Listing 4.4 – Definition of SigOvf C++ class

The index n of the potential overflows is stored in the structure Tx,j,k, where k indicates the
rank of the index n in the interval Ij associated with the variable x considering the indexes of
potential errors already recorded. The value of j is defined as follows:

j(x(n)) = wmax
x �wx(n) (4.9)

4.3.1.1 Implementation with SigOvf C++ class

The variable range is collected during the simulation of the SigOvf C++ class. This class
computes the range of the variable at the current index and evaluates the corresponding number of
bit. Then, the class searches in the structure T its suitable rank.

The class has several private members, as shown in the Listing 4.4. The variables iwlMax

and iwlMin specify the limits of IWL for which overflow effect is analyzed. This will also allow
limiting the size of structure T . The term listSizeMax is the maximum number of index to be
stored in the list of each vector of T . The term vectorSize is the total number of list of T . The
term val is the floating value of the variable.

The class SigOvf overloads arithmetic and relational operators. Hence, basic arithmetic
operations such as addition, subtraction, multiplication, and division are conducted automatically
for SigOvf variables. This property is also applicable for relational operators (” == ”, ”! =

”, ” > ”...). Therefore, any SigOvf variable can be compared to floating-point variables and
constants. The contents, or private members, of a variable declared by the SigOvf class are
updated when the variable is assigned by one of the assignment operators. The example of the
affectation operation is presented in Listing 4.5.
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1 SigOvf& SigOvf : : o p e r a t o r = ( do u b l e d ) {

2 i n t i w l ;

3 v a l = d ;

4 s t d : : v e c t o r < L i s t I n d e x * > : : i t e r a t o r i t V e c t ;

5 i w l = compteIWL ( d ) ;

6 i f ( ( i w l >= iwlMin )&&(i w l <= iwlMax ) ) {

7 i f ( v e c t L i s t I n d e x [ i w l � iwlMin]�> s i z e ( ) < l i s t S i z e M a x ) {

8 v e c t L i s t I n d e x [ i w l � iwlMin]�> push_back ( p t r O v f C o n t e x t�>g e t I n d e x ( ) ) ;

9 }

10 }

11 . . .

12 r e t u r n * t h i s ;

13 }

Listing 4.5 – Part of the code for overloading of the affectation operation for SigOvf C++ class

Figure 4.4 – Example of variable x evolution.

4.3.1.2 Illustration on the 3

rd polynomial example

Let consider the 3

rd polynomial example presented in Section 4.1.2 and aninput variable x

having an IWL computed using interval arithmetic wIA
x equal to 4. The values of x for the first

indexes 0 to 12 are presented in Figure 4.4. In this example, wmax
x recorded as far is 4 bits (wx(6)).

If NI
x

is chosen to be 3, the structure T at index 12 of the variable x, shown in the Figure 4.4, is
as follows:
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1 vo id ComputePoly ( )

2 {

3

4 SigOvf Ytmp(& OvfCtxt , "Ytmp" ) ;

5 SigOvf Yout (& OvfCtxt , " Yout " ) ;

6

7 f l o a t Coeff1 , Coef f2 ;

8 Coef f1 = 1 ;

9 Coef f2 = 1 / 3 ;

10

11 / * **** S c e n a r i o D e t e c t i o n *** * /

12

13 f o r ( i n t i n d i c e = 0 ; i n d i c e < 1000 ; i n d i c e ++)

14 {

15 Ytmp [ i n d i c e ] = Coef f1 + Coef f2 *Xin [ i n d i c e ]* Xin [ i n d i c e ] ;

16 Yout [ i n d i c e ] = Xin [ i n d i c e ]* Ytmp [ i n d i c e ] ;

17

18 OvfCtx t . i n c r e m e n t I n s t a n t ( ) ;

19 }

20

21 }

Listing 4.6 – Code to collect informations for the steps T1 and T2 and for the 3

rd polynomial

example

Tx,0 ={6} with I
0

= [�8,�4[[[4, 8[
Tx,1 ={5} with I

1

= [�4,�2[[[2, 4[ (4.10)

Tx,2 ={3, 7, 11, 12} with I
2

= [�2,�1[[[1, 2[

At index 3, x(3) = 1.6 which gives wx(3) = 2 and j(x(3)) = 2. Thus index 3 2 I
2

. The
listing 4.6 shows the modified 3

rd polynomial code to apply index classification. Each studied
variable is redifined using the type SigOvf , each index is classified and saved in T at the affecta-
tion operator if the condition in Equation 4.6 is satisfied. OvfCtxt determines the size of T and
the index dimensions.

4.3.2 Index selection (T
2

)

The Index selection step aims at identifying the indexes that have to be simulated for a tested
configuration (vector) of IWLs. Let w be the Nv-length vector containing the tested IWLs of the
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different variables of the set Sv, xi 2 Sv. The list of indexes for the configuration w, Lsim(w),
that have to be simulated is obtained as follows:

Lsim(w) =

N
v[

i=1

�i with �i =

(S
�

w

x

i

�1

j=0

Tx
i

,j if �w
x

i

> 0

� otherwise
(4.11)

where�w
x

i

= wmax
x
i

�wtest
x
i

. �w
x

i

represents the number of intervals that has to be simulated
for analyzing the effects of overflow for variable xi with wtest

x
i

as tested IWL. If wtest
x
i

= wmax
x
i

and 8xi 2 SV | 9 wmax
x
i

< wIA
x
i

, then the implementation cost can be reduced without any
degradation of the application quality.

For the example presented in Figure 4.4, Lsim = {6} if the tested IWL wtest
x = wmax

x = 4,
and Lsim = {5, 6} if wtest

x = 3.

In Listing 4.9, OvfList contains all the indexes leading to overflow according to the integer
word-length w1 and w2 allocated to the two studied variables Y tmps and Y outs respectively.

4.3.3 Selective simulation (T
3

)

In the proposed selective simulation technique, the application is only simulated for indexes
in the list Lsim corresponding to overflow occurrence. Two types of data are used to simulate the
effect of overflow. Traditional fixed-point data types can be used to simulate the limitation of the
number of bits for the integer and fractional parts and allow obtaining bit-accurate results. The
proposed class data types are used for fast execution. The operations associated with the fixed-
point data class, such as = , + , � , ⇤ and / are also defined at the class declaration. Then,
fixed-point arithmetic operations, instead of floating-point arithmetic, are conducted automatically
due to the operator overloading capability ofC ++.

A new data class SimOvf have been developed to simulate the effect of overflow more quickly
than traditional fixed-point data types. The declaration part of the SimOvf class is given in the
listing 4.7

As shown in the code, the class SimOvf has several private members, which are the IWL
associated to the variable, the minimal and the maximal values that can be represented according
to the IWL, its name, the floating value of the variable and the selected overflow mode (saturation,
round). The class supports all of the assignment and arithmetic operations. The assignment op-
erator = converts the input data according to the IWL of the left side variable and assigns the
converted data to this variable. The input data, which is the evaluated result at the right side, can
be either a floating-point or a SimOvf data types. If the given IWL of the left side variable does
not provide enough range for representing the input data, the data is modified according to the
fixed-point attributes of the left side variable, such as saturation or wrap-around. The overloading
of the assignment operator = for the SimOvf class is given in the listing 4.8.

For the example presented in Listing 4.1, the modified code to selectively simulate the 3

rd
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1 c l a s s SimOvf{

2 p r i v a t e :

3 s t r i n g Name ; / / Name of t h e v a r i a b l e

4 i n t IWL ; / / I n t e g e r word�l e n g t h

5 f l o a t valMAX / / maximal v a l u e t h a t can be r e p r e s e n t e d

6 f l o a t valMIN / / minimal v a l u e t h a t can be r e p r e s e n t e d

7 enum ModeOvfType modeOvf ; / / o v e r f l o w mode s a t u r a t i o n ( s a t ) o r wrap�a round  -
( wpa )

8

9 p u b l i c :

10 do ub l e v a l u e ;

11 . . . / / C l a s s methods

12 } ;

Listing 4.7 – Definition of the SimOvf C++ class

polynomial example is given in Listing 4.9.

4.4 Experiment and results

Experiments have been conducted on two applications corresponding to a Global Positioning
System (GPS) and an Orthogonal Frequency-Division Multiplexing (OFDM) transmission chain.
For both applications, the quality of the selective simulation approach is evaluated. For each
application, the outputs of the selective simulation and the complete simulation techniques have
been compared to verify the quality of the proposed approach. Throughout the experiments, both
approaches lead rigorously to the same outputs, which verifies the accuracy of our approach to
analyze overflow effect.

4.4.1 Global Positioning System

4.4.1.1 Application description

The first application is a Global Positioning System (GPS). The application, implemented in
C++, aims at obtaining the three-dimensional position of a mobile given the locations of four GPS
satellites and their Signal Time of Arrival (TOAs). The technique used to geolocalise the mobile
user is the hyperbolic position location technique, also known as the Time Difference of Arrival
(TDOA) position location method [88].

Figure 4.5 shows the main stages for determining the mobile position. The input signals of the
system are the vectors x, y and z representing the positions of the four GPS satellites i, j, k and
l in meters and the vector TOA representing the time of arrival of signals sent by each satellite in
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1 SimOvf& SimOvf : : o p e r a t o r = ( d o ub l e v ) {

2 i f ( v >= valMAX ) {

3 i f ( modeOvf== s a t ) {

4 v a l u e = valMAX ;

5 }

6 i f ( modeOvf==wpa ) { / / wrap�a round o v e r f l o w mode

7 v a l u e = fmod ( v , ( valMAX ) )�valMAX ; / / modulo ( v , valMAX ) ;

8 }

9 }

10 e l s e {

11 i f ( v<=valMIN ) {

12 i f ( modeOvf== s a t ) {

13 v a l u e =valMIN ;

14 }

15 i f ( modeOvf==wpa ) {

16 v a l u e = fmod ( v , ( valMIN ) )�valMIN ; / / modulo ( v , valMIN ) ;

17 }

18 }

19 e l s e {

20 v a l u e =v ;

21 }

22 }

23 }

Listing 4.8 – Code for overloading of the assignment operator

Figure 4.5 – Synoptic of a GPS using TDOA technique.

nanoseconds.

The first stage calculates the TDOAs Rij , Rik, Rkj and Rkl forming the vector R. The second
stage evaluates two output signals o

1

and o
2

containing the two possible coordinates of the mobile
position. The correct position is chosen by calculating the TDOAs of each output position in the
last stage. The details of the algorithm can be found in [89].

The overflow effect is studied on the inputs of the system, the outputs of the 3 stages and the
intermediate variables used in stage 2 and 3. 66 variables have been studied. Experiments have
been conducted for 100000 different mobile positions.
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1

2 # d e f i n e N 100000

3 f l o a t Xin [N] = { . . , . . } ;

4

5 vo id ComputePoly ( ) {

6 SimOvf Ytmp_s(& OvfCtxt , w2 , ' s ' ) ; / / w2 : I n t e g e r Word�l e n g t h o f Ytmp

7 SimOvf Yout_s (& OvfCtxt , w3 , ' s ' ) ; / / w3 : I n t e g e r Word�l e n g t h o f Yout

8 f l o a t Coeff1 , Coef f2 ;

9 Coef f1 = 1 ;

10 Coef f2 = 0 . 3 3 3 ;

11

12

13 / * **** Index S e l e c t i o n *** * /

14

15 O v f L i s t = OvfCtx t . S e l e c t i o n I n d e x ( ) ;

16

17 / * **** S e l e c t i v e S i m u l a t i o n *** * /

18 f o r ( i t = O v f L i s t . b e g i n ( ) ; i t != O v f L i s t . end ( ) ; i t ++) {

19 Ytmp_s [* i t ] = Coef f1 + Coef f2 * Xin [* i t ]* Xin [* i t ] ;

20 Yout_s [* i t ] = Xin [* i t ]* Ytmp_s [* i t ] ;

21 }

22 }

Listing 4.9 – Code for selective simulation (step T3) for the 3

rd polynomial example

Floating-point simulation is used as the reference to compute the fixed-point quality degra-
dation. Floating-point simulation is a one time effort that can be considered as a pre-processing
step. The quality degradation is evaluated through the normalized distance error (�d) between the
positions computed by floating and fixed simulation. �d is calculated as follows:

�d =

q
(xovfE � xrefE )

2

+ (yovfE � yrefE )

2

+ (zovfE � zrefE )

2

q
(xrefE )

2

+ (yrefE )

2

+ (zrefE )

2

(4.12)

where (xrefE ,yrefE ,zrefE ) are the reference coordinates of the mobile positions and
(xovfE ,yovfE ,zovfE ) are the coordinates of the mobile positions computed when overflows are con-
sidered.

4.4.1.2 Time improvement

Figure 4.6 shows the durations tcst and tisst, defined in Equations 3.26 and 3.29, with respect to
the overflow probability. The execution time of the position evaluations using complete simulation
technique, tcst, is equal to 4.5 s independently of the overflow occurrence. Evidently, selective
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Figure 4.6 – Execution time of GPS application according to overflow probability.

simulation technique achieves lower execution durations depending on the overflow probability.
As the overflow probability decreases, the improvement in time increases to reach a gain of up to
1200 times.

4.4.2 Orthogonal Frequency-Division Multiplexing Transmission Chain

4.4.2.1 Application description

The second application is an orthogonal frequency-division multiplexing (OFDM) transmis-
sion chain. Due to the high spectral efficiency of OFDM, it is now used in most of the new wired
and wireless communications such as LTE, WiFi, digital television and optical communication
[90]. It is an efficient mechanism for transmitting data over frequency-selective fading channels,
where the channel division makes it possible to avoid difficult equalization schemes at the receiver.

The synoptic of an OFDM transmission system is presented in Figure 4.7. The application
is based on an OFDM modulation with 64 subcarriers, each one being modulated with a BPSK
scheme. From the total of 64 subcarriers, only 52 subcarriers are actually used for the transmission.
The transmitter modulates the input bitstream and then sends it through a noisy channel. The
transmitter is made-up of a mapper, an Inverse Fast Fourier Transform (IFFT) and the cyclic
prefix insertion module. The mapper generates the BPSK constellation for each sub-carrier. The
main block of the transmitter is formed by the 64-point IFFT. Then, a cyclic prefix with a length
of 16 is used in order to avoid the inter-symbol interference. In this experiment, the channel model
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Figure 4.7 – Synoptic of an OFDM transmission system.

Figure 4.8 – Radix-2 64-point FFT with 6 stages.

corresponds to an additive white Gaussian noise. The receiver is made-up of the synchronization
and cyclic prefix removing module, a FFT and the symbol detection. The first module carries-out
the different synchronizations and removes the cyclic prefix, where a perfect synchronization is
considered in our case. Then, the FFT is used to transform the complex time-domain samples into
the frequency domain. For the BPSK modulation, the symbol detection is carried-out by analyzing
the sign of the real part of each FFT output channel. Then, a parallel to serial transformation allows
obtaining the bitstream.

The proposed approach is applied on the FFT part, which is a high computational part and the
most challenging module in the receiver. The radix-2 64-point FFT is implemented with 6 stages
carrying-out the butterfly operations (Figure 4.8). The effect of overflows is considered on the
input of the system and the outputs of the 6 stages, i.e. 7 variables to be studied. The real part
and the complex part of these variables have the same IWL. Experiments have been conducted
with both complete simulation technique and the proposed selective simulation based approach
for a number of indexes NN = 150000. The bit error rate (BER) is the criteria used for evaluating
the application quality. The quality degradation due to overflow is evaluated through the BER
degradation �BER defined as follows:

�BER =

BERovf �BERref

BERref
(4.13)

where BERovf and BERref are the BER obtained with and without overflows respectively.
The BERref is the BER obtained in the case of the IWL corresponds to the IWL computed with
interval arithmetic (wIA). In these experiments, wIA

= [3, 4, 5, 6, 7, 8, 9]
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Figure 4.9 – BER vs SNR per bit variation for different IWL configurations.

4.4.3 Fast overflow effect analysis

4.4.3.1 Quality criteria analysis

Figure 4.9 shows the BER evolution for different IWL configurations according to the signal
to noise ratio (SNR) per bit. wIA is considered as a reference case corresponding to no overflow
occurrence. For the IWL configuration [3, 4, 4, 5, 5, 5, 5, ], the BER curve overlaps the case of no
overflow occurrence. This IWL decreases the cost without any quality degradation, and verifies
that interval arithmetic may over-estimate the IWL. For other configurations, the BER curves are
very close to the one obtained with no overflow occurrence at low SNR per bit. However, the
differences between the curves start to appear for a specific SNR per bit. This SNR per bit is
defined as "point of divergence". In the studied experiments, the point of divergence is 5 dB.
For SNRs per bit greater than the point of divergence, the effect of overflow occurrences on the
application quality criteria (BER) starts to appear. In this interval of SNRs per bit, the trade
off between the cost, due to IWL configuration, and the application quality degradation, due to
overflow probability, can be studied.

For high SNR per bit, the BER due to transmission noise is negligible with respect to the BER
caused by overflow. The curve obtained in the case of no overflow occurrence tends to a zero
BER when the noise power is very small, while the quality curves of other configurations flatten
exhibiting the error-floor phenomenon.



4.5. Conclusion 69

Figure 4.10 – Execution time according to overflow probability.

4.4.3.2 Execution time

The performance of the proposed approach is compared with the complete simulation approach
in terms of execution time (duration). Figure 4.10 shows the durations tcst and tisst, defined in
Equations 3.26 and 3.29, according to the overflow probability. The recorded durations are for
different overflow probabilities, due to different IWL configurations. At the level of optimization,
a tested IWL corresponds to one evaluation. This would give orders of magnitude in the case of
optimization algorithm where high number of iterations are needed.

For the complete simulation technique, the execution time of any evaluation tcst is equal to
10 s, which is independent of the overflow probability. However, the proposed approach needs
significantly less time to evaluate the overflow effect. For low overflow probabilities, the gain in
terms of acceleration is huge, where a gain of up to 1000 time is recorded. Naturally, when the
overflow occurrence increases, the execution time increases. This increase is proportional to the
number of overflows, as Figure 4.10 shows. In general, a small degradation of application quality
is acceptable. Thus, quality evaluations are limited to the interval of low overflow probability and
the gain in term of execution time will remain significant.

4.5 Conclusion

In this chapter, the implementation of the selective simulation framework in C++ is explained.
The framework is tested on two application, GPS and the FFT part of the OFDM receiver. The
experimental results show significant acceleration of the simulations, where the execution time is
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reduced up to 1000 time with respect to complete simulation based approach. Moreover, the cost
analysis on some SNRs per bit shows the possibility of reducing the implementation cost. In the
next chapter, we present the proposed integer world length optimization algorithm that exploits the
proposed selective simulation technique.
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CHAPTER

5

Integer word-length
optimization

5.1 Introduction

In the previous chapter, we explained the implementation of our proposed framework to ac-
celerate the process of quality evaluation when overflows occur. Results obtained by testing the
framework on two applications show the effectiveness of the proposed framework.

In this chapter, we use this framework to optimize the world-length of systems that uses fixed-
point arithmetic. Especially, we focus on the optimization of the integer part word-length. The
optimization problem is translated into the exploration of the trade-off between implementation
cost and application quality. The cost and quality of fixed-point systems depend on the data word-
lengths. The choice of fixed-point formats for each variable has to be done carefully to assure a
good trade-off between the cost and the quality. After presenting the world-length optimization
problem, we explain the existing algorithms to solve this optimization process. Then, we present
our proposed algorithm and the conducted experiments to show the effectiveness of our algorithm.

5.2 Word-length Optimization problem

The floating-point to fixed-point conversion process has been mathematically formulated as an
optimization problem [10]. Let C be the total cost function. Classical metrics for implementation
cost are area, clock period, latency and power consumption. Let � be the quality metric function.
Considering an application with quality �, the implementation cost C is reduced through minimiz-
ing the word-length, while maintaining the degradation of the application quality�� lower than a
maximal value��

max

. The word-length optimization problem can be expressed as follows

min (C(wd)) such as �� (wd) < ��
max

, (5.1)

where wd is a N -length vector containing the word-length of each data, and N is the number
of variables for which their word-length are optimized.

Fixed-point conversion aims at choosing a fractional part word-length wf , which delivers a



72 5. Integer word-length optimization

sufficiently large computation accuracy, and an integer part word-length w that limits overflow
occurrence. To determine the data word-length wd = w+wf , a trade-off between high numerical
accuracy and overflow occurrence has to be investigated.

In classical fixed-point conversion techniques, the integer part word-length is computed such
that no overflow occurs. Thus, determining the data word-length consists of two steps. First, the
dynamic range of the different data is evaluated, and the number of bits for the integer part is
computed.

Secondly, the number of bits for the fractional part is optimized such that the quantization
noise is sufficiently low to maintain the application quality. Only the effect of quantization noise
is considered and the optimization problem can be formulated as follows:

min (C(wd)) such as �� (wf ) < ��
max

, (5.2)

where wf is a N -length vector containing the FWL of each variable. In this case, only the
quality degradation due to quantization noise is studied.

Advanced fixed-point conversion techniques take into account the effect of overflows on the
quality criteria. Both the IWL and FWL are minimized under quality constraints, and the opti-
mization problem can be formulated as follows:

min (C(wd)) such as �� (wf ,w) < ��
max

, (5.3)

where w is a N -length vector containing the IWL of each variable.

To obtain a reasonable complexity for the fixed-point conversion process, the determination of
the IWL and the FWL are handled separately. Thus, the optimization process presented in equation
5.3 is split into two optimization processes: one for the FWL as presented in equation 5.2 and one
for the IWL as presented in equation 5.4, it can be expressed as follows:

min (C(wd)) such as �� (w) < ��0
max

(5.4)

where ��0
max

is a new application quality degradation constraint such that the quality degra-
dation is budgeted between the two optimization processes.

For the two optimization processes presented in equations 5.4 and 5.2, the evaluation of the
cost requires the knowledge of the global word-length wd. To overcome this problem, the fixed-
point conversion process, presented in Figure 5.1, is applied. First, the dynamic range is evaluated
guaranteeing no overflow, and a maximal value for each integer part word-length wIA is obtained
thanks to interval arithmetic technique. Let wIA be a N -length vector representing the integer
word-lengths of each data obtained with interval arithmetic technique. Secondly, the FWLs of
all the variables are optimized, where wIA is used to calculate the implementation cost. Third,
the IWLs are optimized taking into account the overflow effect on the application quality, and the
optimized FWLs obtained in the previous step are used to calculate the implementation cost.
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Figure 5.1 – Advanced fixed-point conversion process.

Optimization Variables A signal processing system consists of hundreds of fixed-point oper-
ations. For example, a 64 � point FFT signal processing algorithm has 960 fixed-point opera-
tions including addition and multiplication with constants. The integer and the fractional parts
are chosen such that the fixed-point format accommodates the dynamic range of all signals and
has enough precision. Moreover, it is possible to have flexible data while working on flexible
architectures such as an FPGA, ASIC or modern-day DSP architectures with SIMD support. To
solve the word-length optmization problem, the choice of word-lengths for each of the fixed-point
operations has to be assigned optimally. Let M be the number of signals in the system. If for each
of these signals, N different word-length configurations can be assigned, there can be NM differ-
ent word-length combinations. This is referred to as the multiple word-length assignment (MWL)
paradigm for fixed-point refinement. The complexity of evaluating the cost-quality trade-off for
each of these combinations is practically impossible.

Assigning the same word-length format for each signal reduces the complexity of the word-
length optimization problem. This is the popular uniform word-length assignment (UWL)
paradigm for fixed-point refinement. In this approach, all the computations are carried out with
the same word-length. In other words, all the signals and operators in the system are assigned
with the same fixed-point format. This approach for fixed-point design of signal processing sys-
tems was predominantly used for implementation on fixed-width data-path architectures. Then,
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the integer and fractional parts of the fixed-point format is chosen such that the dynamic range of
all signals are accommodated and there is enough precision for all signals. If the uniform word-
length paradigm were to be used, the number of word-length combinations that are tested before
reaching optimality is N , where N is the number of word-length configurations realizable on the
given architecture. Although UWL paradigm significantly reduce the complexity of the problem
, it may lead to overestimation of some world-lengths, and thus the implementation cost. A sig-
nal that requires a large world-length may affect the world-length(s) of other signal(s) if they can
tolerate less accuracy.

5.3 State of the art

Fixed-point word-length optimization can be broadly approached in two directions depending
on the optimization criteria. It could either be a cost minimization problem under an accuracy con-
straint or an accuracy maximization problem under a given cost constraint. The baseline principle
for any product design is that the end product meets the design requirements. Improvement in its
quality is generally secondary to its functional correctness. Keeping this point of view, the cost
minimization problem rather than the accuracy maximization problem is considered in this thesis.

The word-length optimization problem is known to be combinatorial in nature, and arriving
at an optimal solution to this problem is known to be NP-hard in complexity [91]. Given that
every additional optimization variable causes an exponential increase in the combinatorial search
space, the scale of the word-length optimization problem can easily grow beyond manageable
limits. Such problems are usually solved by using heuristic guidelines iteratively. However, every
iteration of the optimization process can be very time consuming as it requires the evaluation or
estimation of the numerical accuracy and the total cost for every tested world-length.

Consider the optimization problem presented in equation 5.1, where wd is a discrete vector
that represents the word-length of each variable. In this problem, the relation between the quality,
�(wd), and the cost, C(wd), is not necessarily monotone. In this regards, the search for optimal
data width is a problem of discrete optimization under constraint and multivariate. This class is
called combinatorial optimization problems. Although combinatorial optimization problems are
easy to identify and resolve by listing all the solutions, the time required to solve the problem is
often prohibitive and optimization algorithms in reasonable time are needed. In the rest of this sec-
tion, different classes of available algorithms to solve this optimization problem are summarized.
These techniques have been widely used to solve the fractional word-length optimization problem
as depicted in Equation 5.2.

5.3.1 Deterministic algorithm

Exhaustive search The method proposed in [70] performs an exhaustive search in a subspace of
the search space. The algorithm begins with the minimal word-length combination (MWC), which
is obtained by decreasing its word-length until the accuracy constraint is fulfilled considering all
the other variables with their maximal word-length (32 bits as example), as depicted in Algorithm
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1. To simplify the notation, the vector of the total word-length wd is named w

Algorithm 1 Determination of minimal word-length combination
wmax

= 32

wmax  [wmax, . . . wmax . . . wmax

]

for all 1  k  N do
w wmax

while �(w)  �min do
wk = wk � 1

end while
wmin

= wk + 1

end for

With the MWC, the accuracy constraint may not be fulfilled. Thus, a bit is temporarily added
to a variable and the accuracy constraints is tested. If this constraint is not fulfilled, then the
total number of bits added to the MWC and distributed to various variables is incremented. The
procedure is repeated as long as the accuracy constraint is not satisfied.

This method does not take into account the actual implementation cost of selected operations
to increase the word-length. Thus, the word-length of some expensive operations may be increased
at the expense of less expensive operations.

Greedy search A greedy algorithm is an iterative algorithm that makes locally optimal choice
at each iteration (stage) with the hope of finding a global optimum. In many problems, a greedy
strategy does not in general produce an optimal solution, but nonetheless a greedy heuristic may
yield locally-optimal solutions that approximate a global optimal solution in a reasonable time.

min + 1 bit is a greedy algorithms that uses sequential search [92]. The main idea is to add 1

bit to the variable that leads to the best performance at the current stage. min+b bits is a gener-
alized form of min + 1 bit that is used to avoid local maxima and converge more rapidly, where b

bits are distributed in total at each stage. Other min + 1 bit variants are the algorithms max - 1 bit
and max - b bit [93]. These algorithms start with the combination of maximum word-length wmax.
Algorithms min + 1 bit and max - 1 bit ensure that solutions are 1-optimal, while min+b bits and
max - b bits variants do not guarantee anything. The algorithm max - 1 bit is presented in Algo-
rithm 2.

If a solution at a distance d is found, the number of evaluations is Nd. In the worst case, the
number of steps is equal to:

NX

k=1

(wmax �wmin

) (5.5)

To improve the search for the best direction in every step of the greedy algorithm, it is possible
to compute a metric qk for each direction k and to select the one leading the best direction. This
metric, computed with the function fdir in Algorithm 2, can be the ratio of the gain in quality
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and the increased in cost. Moreover, greedy algorithms can be used in cooperation with other
algorithms [94] to enhance the solution.

A modified greedy algorithm is proposed in [95]. The algorithm limits the number of explored
solutions at each stage to K. This means that the procedure at a specific stage ends when the
number of tested solutions reaches the limit K. Moreover, the algorithm memorizes all the solu-
tions leading to cross the quality constraint, which ensures that all tested possibilities in different
iterations are taken into account, and not only those that are on the way. The result is better, or at
worst equal to that obtained with a classical greedy algorithm.

Algorithm 2 Max� 1 bit
w wmax

while �(w)  �min do
for all 1 < k  N do

qk  fdir(wk)

end for
i = argmax qk

wi  wi � 1

end while

Heuristic process A heuristic process was proposed by W. Sung in [70]. The goal is to limit the
number of iterations in order to reduce the number of quality and cost evaluations. Reducing the
number of iterations is crucial when simulation-based techniques are used to evaluate the accuracy.
In the proposed algorithm, all word-lengths (of variables to be optimized) are simultaneously
increased starting with the MWC until the quality constraint is satisfied. This step normally takes
a few simulations. The next step is equivalent to the max-1 bit algorithm, where one word-length
is reduced at each iteration starting by the most expensive operation. This step is repeated as long
as the constraint is satisfied and it requires N quality evaluations. The procedure assumes that the
solution is near the MWC, but this assumption is not always valid.

Local search Local search algorithms are used to find a local minimum from a starting point.
The algorithm begins from a starting solution and iteratively moves to a neighboring solution. In
a word-length optimization problem, two configurations are considered neighbors of distance d

if the difference between their word-lengths is at most equal to d. The optimal solution is called
d� optimal.

A local search can stop after a fixed number of iterations or when the best solution found by
the algorithm has not been improved after a given number of iterations. In the second case, the
solution may not be the best in the search space. Thus, local search algorithms are then sub-optimal
algorithms.
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Tabu search Tabu search (TS), first introduced by Glover [96, 97], is a heuristic procedure to
find good solutions to combinatorial optimization problems. This technique is usually combined
with other methods. In many cases, the coupling of the greedy algorithm with tabu search allows
a better local search and avoids unnecessary moving. A tabu list T is defined to contain all the
solutions from the last t iterations. Let x be the current solution and N(x) its neighborhood. N(x)

contains all the possible moving from x. At each step, the procedure moves to the solution in
N(x) leading to the best improvement of the objective function. Then, the tabu list and the best
solution are updated. The solution is removed from the tabu list T . The tabu list avoids returning
to the local optimum from which the procedure has recently escaped.

In [98] a hybrid heuristic procedure, which selectively increments or decrements the word-
length to converge to an optimized solution, is explored. The ratio of the gradient of the cost and
the gradient of the accuracy is used to choose the best solution for the next iteration. The direction
is reversed to a decrement mode when the solution leads to an accuracy higher than the constraint.
The variables that doesn’t contribute to the right direction are moved to the tabu list.

Branch and Bound The branch and bound algorithm (BaB) is an implicit enumeration method.
It is based on the knowledge of the problem properties, which allows to list the potentially good
solutions to be tested. This algorithm is a general method that can be applied individually or in
combination with other methods.

In [99], the BaB algorithm is used directly, but this is only valid for small and medium sized
problems, due to its exponential complexity. In [100] a methodology is proposed to reduce the
search space taking into account the capability of the targeted architecture. The minimum cost
and the maximal quality of each branch is evaluated. The branches having a minimal cost higher
than the cost of the current solution or a maximum quality not satisfying the quality constraint are
ignored.

Integer Linear Programming In this type of techniques, the optimization problem is relaxed
into an integer linear programming (ILP) or mixed integer linear programming (MILP) by formu-
lating the cost and constraint(s) functions in a linear form. Then, a heuristic search is used to solve
the problem as the ILP (and MILP) is NP-hard. The most widely used technique to solve ILP is
BaB. This solution is proposed in [101, 102]. It leads to a long optimization time when the num-
ber of variables is high. Thus, this technique is rather used to compare the efficiency of different
optimization algorithms on simple applications.

5.3.2 Random algorithms

Random algorithms have also been used for solving the word-length optimization problem. At
each iteration of the optimization algorithm, the solutions are generated randomly and the best are
kept for the next iteration.



78 5. Integer word-length optimization

Simulated annealing Simulated annealing (SA) technique is widely used in word-length opti-
mization. In [103], the word-length optimization problem is formulated as a mixed integer linear
problem and SA is used to find the solution. The error power and the implementation cost are
evaluated every time the values of the variables change (movement). The various movements can
be thought of as generating different states in a Markov-chain. At each step, the SA heuristic
considers some neighbouring state s0 of the current state s, and probabilistically decides between
moving the system to state s0 or staying in state s. These probabilities ultimately lead the system
to move to states of lower energy. Typically this step is repeated until the system reaches a state
that is good enough for the application, or until a given computation budget has been exhausted.
A probability is assigned to the solution generated by the movement depending on the quality of
the solution obtained, which is a sort of recommendation on whether or not to jump to the new
solution. In [104], an adaptive simulated annealing procedure is proposed along with the use of
minimum word-length. However, this procedure can take long period of time in very large designs.

Genetic algorithm Genetic Algorithms (GAs) are adaptive heuristic search algorithms based on
the evolutionary ideas of natural selection and genetics. As such, they represent an intelligent
exploitation of a random search used to solve optimization problems. GAs exploit historical in-
formation to direct the search into the region of better performance within the search space. The
population of individuals within the search space represents the possible solutions to a given prob-
lem. Each solution is coded as a finite length vector of components, or variables. The solutions
are similar to chromosomes and the variables are analogous to genes. Thus a solution is composed
of several variables. A fitness score is assigned to each solution representing the abilities of an
individual to ‘compete’. The individual with the optimal (or generally near optimal) fitness score
is sought. The GA aims to use selective ‘breeding’ of the solutions to produce ‘offspring’ better
than the parents by combining information from the chromosomes. Once the solution is obtained,
the survivability of the solution depends on its performance. In [105], genetic algorithms have
been adapted for word-length determination of the Least Mean Square (LMS) filter. In [98], a hy-
brid technique using a gradient based heuristic approach with the GA approach is proposed. This
technique leads to faster convergence.

5.4 IWL optimization algorithm

Numerous algorithms have been proposed to solve the fractional word-length optimization
problem as depicted in Equation 5.2. However, optimizing the integer world-length (IWL) is
rarely tackled. Moreover, simulation-based approaches are usually time consuming. Thus, a time
efficient technique is needed to evaluate the application quality degradation due to overflow.

In this section, an algorithm is proposed to solve the integer word-length optimization problem
as depicted in Equation 5.4. This algorithm exploits the selective simulation technique, proposed
in Chapter 4, to accelerates the evaluation of the application quality degradation due to overflow.
The solution wIA obtained from interval arithmetic or affine arithmetic is used as a starting point,
and an iterative procedure is applied to converge to an optimized solution.
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Figure 5.2 – Proposed IWL optimization algorithm combined with selective simulation for over-

flow effect analysis.

The IWL optimization is carried-out with a greedy based algorithm that minimizes the imple-
mentation cost as long as the performance degradation constraint is satisfied. Figure 5.2 presents
the proposed optimization algorithm combined with the proposed selective simulation based ap-
proach for overflow effect evaluation. The proposed algorithm consists of three phases: initial
phase, construction phase and refinement phase. The first phase leads to an initial solution for
which the performance degradation is still null. In the second phase, which corresponds to the
construction phase, a steepest descent algorithm (max-1 bit) is used for finding a sub-optimal so-
lution wmx1. Then a local search using Tabu search algorithm is applied to refine the solution in
the third phase. At each iteration, the best direction is selected and the corresponding variable is
modified to converge on an optimized solution. The phases of the IWL optimization algorithm are
detailed in the following.

5.4.1 Initial phase

The aim of the initial phase is to find a starting solution for the construction phase. This phase
starts with the solution obtained with interval arithmetic (IA) wIA. As IA overestimates the IWL,
one or several IWLs may exist for a variable k that are lower than wIA

k and with null overflow
probability Pov. These IWL configurations are detected using the Index Selection (IS) step, where
the number of overflow occurrence is null (the list Lsim contains no element). The initial phase of
the algorithm is presented in Algorithm 3, where the IWL wk of each variable is decreased until
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obtaining the minimum IWL with null Pov, i.e. quality degradation is null. The solution obtained
in this phase is winit.

Algorithm 3 Initial phase

w wIA

for all 1  k  N do
while Pov(w) = 0 do

wk = wk � 1

end while
winit

k = wk + 1

end for

5.4.2 Construction and refinement phases

The construction phase is based on a steepest descent greedy algorithm (max-1 bit), i.e. the
IWL of each variable is reduced while satisfying the performance criterion. Starting from winit,
this phase allows obtaining a sub-optimal solution. Then, a refinement around this solution is
applied to improve the quality of the solution in the refinement phase. The latter is carried-out with
a Tabu-search algorithm. The combination of greedy algorithm and Tabu search may achieve better
local search and avoid unnecessary movements [98]. The proposed algorithm for construction and
refinement phases is presented in Algorithm 4.

Criterion for direction selection At each iteration of the algorithm, the IWL of specific variable
is modified to move toward the final solution. To select the best direction, a criterion has to be
defined. We consider a criterion that computes the gradient of the application quality as follows:

f�
r

⇣
wk±,wk

⌘
=

�
�
wk±�� �

�
wk
�

kwk± �wkk (5.6)

where wk
= [w
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, ..., wk, ...wN�1

] and wk±
= [w

1

, ..., wk + d, ...wN�1

] are the word-length
vectors before and after a possible modification at position k respectively. The term d represents
the direction and is equal to 1 for steepest ascent algorithm (min+1) and �1 for steepest descent
algorithm (max-1).

To improve the decision of the best direction selection, the cost due to the IWL modification
is taken into account. This will give a good trade-off between the implementation cost C and the
application quality. The new criterion selects the direction which minimizes the cost increase and
maximizes the application quality increase as follows:
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Algorithm 4 Tabu search in IWL optimization
1: T  ; {Empty list of tabu variables}

2: wopt  ;
3: d �1 {set the direction for steepest descent}

4: while |T | < N do
5: for all 1  k 62 T  N do {calculate criterion}

6: wk±
= wk

+ d

7: if Pov(wk±
) � Pmax

ov _ w±
k /2Wk then

8: T  T [ {k}
9: else

10: rk  fr
�
wk±,wk

�

11: end if
12: end for
13: if |T | < N then
14: if d > 0 then
15: j  argmaxrk {Steepest ascent alg. }

16: wj  wj + 1

17: if ��(w)  ��
max

then
18: d �1
19: T  T [ {j}
20: end if
21: else
22: j  argminrk {Steepest descent alg. }

23: wj  wj � 1

24: if ��(w) > ��
max

then
25: d 1

26: end if
27: end if
28: end if
29: end while
30: wopt  w

31: return wopt

Algorithm description At each iteration, the procedure moves to one of the neighbourhood of
the current solution w according to the value of d. The Tabu list T is the set of variables no longer
used. This list is updated at each iteration to avoid useless or infinite loops. The next position of
w for each variable k not belonging to T is calculated in line 6 of Algorithm 4. Let Wk, be the set
of valid values for the variable k. For each variable k, the set of valid values is bounded by winit

k
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as maximum and 1 as minimum. If the next position w±
k of the variable k does not belong to Wk

or leads to an overflow probability greater than the maximum value Pmax

ov , the variable k is added
to the Tabu list T as shown in line 8. If the movement is valid, the criterion for direction search
associated with this variable is evaluated. The index selection step allows the evaluation of the
overflow probability as shown in Figure 5.2. This would result in avoiding unneeded simulations
when overflow occurrence is too high, which leads to a gain of time.

Line 13 verifies whether the set T is complete or not. If the set is not complete, the variable
with the best criterion is selected ( lines 14 to 29). Then, its IWL is increased or decreased by
one bit, depending on the selected direction. When ��(w) exceeds the constraint ��

max

, the
direction d is reversed. The iterative process stops when the set T is complete.

5.5 Experiments and results

In this section, the efficiency of our approach for IWL optimization is evaluated through several
experiments. First, the cost and quality trade-off is analyzed to show that cost reduction can be
obtained with IWL optimization. Secondly, the optimization time is analyzed and compared with
the classical approach. The proposed approach is tested on the GPS application presented in
section 4.4.1 and on the OFDM transmission chain presented in section 4.4.2.

5.5.1 Cost reduction

5.5.1.1 GPS application

We study the trade-off between the system cost and the degradation of the application quality
criteria. For the GPS application, to simplify, the cost is computed as the sum of the number of
bits of the integer part assigned for each studied variable, and then normalized to the cost obtained
by IA.

Figure 5.3 shows the variation of the normalized cost in the GPS application with respect to
the normalized distance error �d. The curve starts with a significant reduction of the cost (25%) for
a slight degradation of the application quality. Then, more degradation of the application quality
is required to achieve higher cost reduction. Afterwards, the cost reduction comes with high price
in terms of application quality degradation.

5.5.1.2 OFDM receiver

Experiments have been also conducted for the OFDM application presented in section 4.4.2.
The IWL optimization algorithm has been applied on the FFT part, of the OFDM receiver. The
energy consumption metric is used for calculating the implementation cost C. A library of charac-
terized operators for FPGA target [106] is used to compute the cost according to the word-length
wd. The FWL is fixed to 8 bits for all the variables to calculate wd. The performance degradation
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Figure 5.3 – Normalized cost according to normalized distance error (�d).

Figure 5.4 – Pareto-curves of the normalized cost Copt according maximum BER degradation

�BER
max

(%) for different SNRs.

is evaluated through the Bit Error Rate (BER) degradation4BER.

The IWL optimization is carried-out for different BER degradation constraints corresponding
to the term ��0

max

in equation 5.4. The optimized cost Copt, obtained by our IWL optimization
algorithm, is normalized to the cost obtained with interval arithmetic. Figure 5.4 represents the
curves of the normalized cost as function of the maximum BER degradation. The curves evolve
by levels leading to a step curve due to the integer values of the IWL.
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The obtained curves are Pareto curves decomposed into three parts. The first part of each curve
can be assimilated as a line characterized by a very high slope. The slope of the curve depends
on the probability density function (PDF) of the application input data. In this example, the input
data follows a platykurtic distribution [107] and the short tails of the PDF determines the very
high slope. This part shows that the implementation cost can be significantly reduced compared
to the starting solution wIA, with a very low BER degradation. The pessimistic solution obtained
with interval arithmetic explains this phenomena. The second part of each curve corresponds to
the "bend". This zone is the interest of the designer, since it represents a good trade-off between
the cost and the quality. For the three SNR chosen as example, the implementation cost is reduced
between 16% and 18% with a low BER degradation. In the third part, the implementation cost can
be reduced but comes at a price of a high BER degradation.

5.5.2 Optimization time enhancement

Comparisons between three algorithms have been carried-out to verify the time efficiency of
the proposed algorithm. Opt+Ssim corresponds to the proposed optimization algorithm described
in Section 5.4, where the selective simulation technique is used to evaluate the overflow effects as
detailed in the previous chapter. Mx1+Csim is a classical steepest descent algorithm (max-1) that
uses complete simulation technique to evaluate the overflow effects. It represents the reference
case, where all the samples are simulated. Opt+Csim combines our IWL optimization algorithm
and complete simulations. For the three algorithms, the starting solution is wIA obtained by
interval arithmetic.

Figure 5.5 shows the evolution of the optimization time of the three algorithms for differ-
ent SNR per bit with respect to the BER degradation constraint �BER

max

. Results show that
Mx1+Csim, the reference algorithm, is the most time consuming. Using Opt+Csim reduces the
optimization time up to 2.8 times. However, Opt+Ssim accelerates significantly the optimization
time, where an acceleration factor between 72 and 617 is reported with respect to Mx1+Csim.
Moreover, Opt+Ssim reduces the optimization time between 43 and 176 times with respect to
Opt+Csim. These results emphasize the efficiency of the proposed optimization algorithm, espe-
cially when it is combined with selective simulation technique.

For different SNR per bit, the number of iterations in the optimization algorithms increases
when the BER degradation constraint is relaxed i.e. high �BER

max

. This results in an increase
of the optimization times of the three algorithms. Moreover, the increase of �BER

max

results in
higher overflow occurrence. This increases the number of indices to be simulated (size of Lsim)
in the case of Opt+Ssim and thus increases the simulation time of each iteration., and relatively
higher optimization times are observed.

For the different possibilities of SNR per bit and �BER
max

, our algorithm provides a so-
lution leading to the same or a better cost in comparison with Mx1+Csim while accelerating the
optimization time.
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Figure 5.5 – Optimization time evolutions (s) according to the maximum BER degradation

�BER
max

(%) for different SNRs.

5.6 Conclusion

In this chapter, we have presented the world-length optimization problem. In contrast to clas-
sical fixed-point conversion, advanced conversion techniques take into account the effect of over-
flows on the quality criteria. The fixed point conversion is formulated as an optimization problem,
which appears to be a combinatorial problem with high complexity. Thus, heuristic algorithms are
used to solve this problem to meet time constraints and minimize the cost.

After presenting the existing approaches for solving the world length optimization problem,
we present our proposed IWL optimization algorithm that uses the selective simulation technique
to evaluate the overflow effects on application quality. This algorithm does not only reduce the
cost, but also allows overcoming the long execution time of classical simulation based algorithms.
Through experiments applied on the FFT part of an OFDM chain, the proposed algorithm results
in a significant reduction of cost with acceptable degradation of quality criteria. At the same
time, results show important enhancement in the optimization time, where the acceleration factor
reaches up to 617 with respect to max-1 bit.
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CHAPTER

6

Quality Evaluation in
Presence of Decision Error

6.1 Introduction

In the previous chapters, the work was focused on the study of overflow effects and the use of
selective-simulation technique to reduce the execution time of the quality evaluation in presence
of overflows. This chapter considers the use of selective-simulation technique in the presence
of decision errors. Firstly, the model of single noise source is presented and the effect of un-
smooth operation is explained. Secondly, the adaptation of selective-simulation technique in the
presence of decision error is detailed. Finally, we present the experiments and results that show
the effectiveness of the proposed technique.

6.2 Techniques for Quality Evaluation

The reduction of the number of bits in a fixed-point system leads to a quantization error. When
the size of the system grows, the number of operations and noise sources increase, which results in
a longer time to evaluate the quantization noise power of the system output. Moreover, the increase
in the number of noise sources leads to an increase in the number of variables to be optimized
resulting in a higher complexity for word-length optimization process, and thus the evaluation of
fixed-point precision accuracy has to be carried out more often.

6.2.1 Single noise source model

The pseudo-quantization noise (PQN) model, also called quantization noise model of Widrow
[22], defines a statistically equivalent random process to the uniform quantization of a signal x.
In this model, the effect of uniform quantization of a signal x can be represented by an additive
white noise bx. The addition of bx to the signal x results in x̂, which is statistically equivalent to
the signal obtained after the uniform quantization of the signal x. Thus, the errors generated by
the fixed-point operation can be considered as a random process. The Single Noise Source (SNS),
described in [21], model extends the PQN model by modelling the total quantization noise in a
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Figure 6.1 – Abstraction of the Single Noise Source model.

sub-system. The SNS model determines the statistics of the quantization noise at the output of the
sub-system due to the use of fixed-point operations. The total quantization noise at the output of a
fixed-point sub-system is the result of the noise generated by the fixed-point operations in the sub-
system and the noise generated in previous sub-systems and propagated through the sub-system
under consideration.

Consider a sub-system B, as shown in Figure 6.1, with input x̂ = x+bx and output ŷ = y+by
implemented using fixed-point operations. The input x and the output y of the infinite precision
sub-system are perturbed by the quantization noise bx and by due to fixed-point implementation.
The PQN model requires that the signal and the quantization noise are uncorrelated. Therefore,
the input and output quantization noise (bx and by) are uncorrelated respectively with the input and
the output signal (x and y). In the SNS block, the noise bx is propagated through the sub-system
giving the propagated noise btx. The noise bg is the noise generated within the sub-system due to
fixed-point operations. The noise by is the sum of btx and bg.

6.2.2 Identifying un-smooth operations

Concept of un-smooth operation The concept of smoothness of an operation is the basis of
the perturbation theory. As defined in [108], a deterministic function is said to be smooth if this
function is continuous and differentiable to any desired degree over an open set in which the
function inputs belong to. An operation O is called smooth over its inputs, or briefly smooth, if
its instantaneous transfer function is smooth. In [108], it has been shown that differentiability of
order 3 is always sufficient in order to model the quantization effects. The smooth or un-smooth
character of an operation does not make sense when its inputs correspond to logical signals. Basic
operations such as adders or multipliers are smooth. Moreover, according to [108], an operation
is un-smooth on a given domain if its characteristic function is not of class C1 on this domain.
According to these definitions, the decision operations with arithmetic inputs and logical outputs
are un-smooth operations, but they can be treated as smooth on a particular definition domain
where the inputs belong to the same decision region. The un-smooth regions contain the inputs
that produce different decisions by adding an infinitely small perturbation.
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In terms of quantization, we may consider an operation as un-smooth if the deviation of its
observed quantization error statistics is sufficiently important compared to the error statistics de-
termined by the PQN model. The applicability of the PQN model to study the quantization process
can be deduced by comparing the dynamic range D of the input signal and the quantization step-
size q. If q is much smaller than D, it is possible to model the errors due to quantization using
the PQN model. When the quantization size is large and comparable to the dynamic range of the
signal, the operation becomes un-smooth. In this case, the properties of the quantization error
including the noise shape, its additivity properties and its independence with input signal statistics
are no more valid.

Identifying Un-smooth operation In a practical scenarios, a fixed-point arithmetic based sys-
tem consists of a number of quantization operations. Analytical estimation obtained using the PQN
model may be incorrect when applied to the quantization of an un-smooth operation. Therefore, it
is important to classify the operations as smooth or un-smooth based on the characteristics of the
signal to be quantized and the quantization step. In [109], a technique based on the calculation of
the characteristic function to check the applicability of the PQN model in the case of any operation
of uniform quantization is proposed. This technique identifies the bounds of the quantization step
so that the PQN model can be applied to model the error behavior. The implementation using
fixed-point arithmetic leads to the quantization of the operation inputs. The effect of the quantiza-
tion of the input is covered by the quantizer at the output of the operation from which the signal
comes. Therefore, a quantizer is associated with each signal. The effect of quantization of the
input has an impact on the behavior of the error at the output of the operation under consideration.
However, repeated quantization does not fundamentally change the dynamics. Thus, the technique
works with the statistics of double precision data to evaluate the smoothness of each quantisation
operation.

6.2.3 Quantization noise effect evaluation

Two approaches are used to evaluate the effect of the quantization noise at the output of a fixed-
point system.The first one is simulation based approach which consists in evaluating the metric by
simulating the system in fixed point precision and comparing the output with the reference output
corresponding to the floating-point simulation. However, this approach requires a large simulation
time to explore the fixed-point design space. For this reason, a second approach is proposed to
deal with this problem. This approach consists in evaluating the precision metric using analytical
methods by propagating a noise model within the system.

6.2.3.0.1 Analytical techniques for smooth operations Analytical techniques usually uses
the combination of two models. On one hand, the PQN model to evaluate the quantization nosie
stastistics at the output of fixed-point quantizer. On the other hand, the noise propagation model
based on the perturbation theory to determine the influence of the fixed-point representation of the
input on the computations.
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PQN model works properly as long as the quantization step remains small compared with the
dynamics of the signal as in the case of fixed-point arithmetic operations. In the case of un-smooth
operations, quantization errors are very large and often comparable to the dynamics of the quan-
tized signal. In this case, PQN model are no more valid and therefore the quantized signal will
be far from the true value. The Min() and Max() operations are good examples for such kind of
un-smooth operations. These operations are used to determine the minimum and maximum values
respectively from data inputs. The statistical prediction of the outcome of minimum value and
maximum value operation in spite of the knowledge of signal statistics is difficult when there are
more than two inputs, and the analytical modelling of its fixed-point behavior becomes challeng-
ing.

Moreover, the analytical approaches based on the perturbation theory use Taylor series devel-
opments to evaluate the application quality. Thus, they require that the function associated with the
operation to be differentiable on its domain. When the operation associated function is continuous
but not differentiable, such as the absolute value function, the magnitude of the error output of the
operation due to the input noise is of the same order of magnitude as that of the input noise. Thus,
it is possible to obtain a propagation model for the noise, and technique based on perturbation
theory are applicable. When the operation associated function is not continuous, the magnitude of
the output error of the operation related to the input noise is not of the same order of magnitude as
that of the input noise. Thus, the technique based on perturbation theory can no longer be used.

6.2.3.0.2 Simulation-based techniques for un-smooth operations Consider the conditional
operation O with input c and output y and with Ndec decision boundaries. The output y has a value
equal to yk if the input c 2 Ek , where k 2 [1, Ndec]. Let c and y be the infinite precision values
of respectively the input and the output. ec and ey are the input and output quantization errors
respectively. These errors are the difference between the finite and infinite values. The output
error depends on the decision of the operation in both finite and infinite precisions as follows:

ey =

(
ŷk � yk if ĉ 2 Ek, c 2 Ek

ŷl � yk if ĉ 2 El, c 2 Ek 8k 6= l
(6.1)

In the first case in Equation 6.1, the operation decisions in finite and infinite precisions are the
same. In the second case, the operation decisions in finite and infinite precisions are different and
a decision error occurs. The amplitude of the error ey is high and its propagation in the rest of the
system can not be treated with the analytical approaches based on perturbation theory.

In [5] an analytical model for the decision operations is proposed. The model determines the
probability density of the error ey. The expression of the PDF depends on the input c distribution
of the decision operation and the distribution of the input quantization noise ec. The expression of
the PDF was developed in the case where the input c and the noise ec are Gaussian. This approach
evaluates finely the performance of an application containing a decision operation at its output.
However, when the decision operation is located in the middle of the application, the propagation
of the error ey within the application and the evaluation of the correlation between the errors
become a complex task. Under such circumstances, using fixed-point simulation to evaluate the
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Figure 6.2 – Modelling of a system B composed of smooth and un-smooth oprations [6].

performance of fixed-point systems is inevitable.

During fixed-point simulation, all operations are simulated using a fixed-point library. When
the use of fixed-point does not lead to a decision error at the output of the un-smooth operations
there is no need to carry-out a complete simulation of the entire system to evaluate the quality of
the system. It is important to determine whether an operation does encounter an error at its output
for each input samples. This will lead to selectively simulate the system, which will result in gain
of time.

6.2.4 Hybrid technique

The analytical techniques can greatly reduce the evaluation time, but are limited in terms of
supported systems. Performance evaluation techniques based on simulation can be applied on all
types of systems but lead to higher evaluation time. If the system under consideration consists of
only smooth operations, it is possible to avoid performing fixed-point simulation by using ana-
lytical techniques. However, the presence of even one un-smooth operation or sub-system whose
fixed-point behavior cannot be captured makes the use of fixed-point simulation for the entire sys-
tem inevitable. In such situations, an un-smooth operation becomes an obstacle for taking the
benefit of analytical models. Hybrid techniques using both analytical and simulation approaches
are a good solution to deal with this probem.

In [21], a mixed approach combining analytical and simulation approaches is proposed. The
goal is to use techniques based on simulation only when un-smooth errors occur and use the
analytical results in other cases. This approach uses the system modeling illustrated in the example
presented in Figure 6.2 and explained in the following.

System modeling Consider the system B presented in Figure 6.2. This system is composed
of No decision operations Oi and Nb subsystems Bk, each integrating only smooth operations.
The subsystems Bk are grouped together into clusters Ci if they are not separated by decision
operations. The fixed point behavior of each Ci is modeled by a single noise source bgi. The
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statistical parameters of bgi are calculated from the analytical model of cluster Ci.

The system obtained after the clustering phase forms a graph Gsys(Vsys, Esys). The nodes
set Vsys contains the clusters Ci and the operations Oi. The edges Esys represent the signals
connecting the operations and the clusters. In the considered example, the subsystems B

0

to B
3

are grouped together to form the cluster C
0

. A noise source bg0 is added at the output of the cluster.
Similarly, the subsystems B

5

and B
6

are grouped within the cluster C
1

and the noise source bg1 is
associated with this cluster. The subsystem B

4

forms the cluster C
2

.

In this hybrid approach, an analytical model is associated to each cluster. The objective of
the hybrid approach is to obtain, the system output values for the Np samples of each input Im.
For each input sample Im(n) , the entire graph is covered. At each iteration of the optimization
process, each decision operation Oi is processed in two steps. First, for each decision operation
Oi, the possibility of a decision error is analyzed by studying the value of each input sample and
the boundaries of the noise associated with this input. If the input value is far enough from the
decision boundaries with respect to the limits of the noise, then there is no decision error. This
condition is satisfied if the definition domain of the sum of the noise and the considered input value
xi(n) is included in the decision region containing the input. If xi(n) is susceptible to generate
a decision error, a random value is generated from a random process corresponding to the SNS
model of the noise bgi(n). Then, the sum xi(n) + bgi(n) is evaluated. If bgi(n) have generated a
decision error, the rest of the graph is performed by simulation.

6.3 Framework for quality evaluation in presence of decision errors

Given the importance of the hybrid techniques and its ability to significantly accelerate the per-
formance evaluation by reducing the number of simulations in comparison with simulation-based
techniques, the proposed approach presented in 6.3 is based on the same concept : the system is
simulated only when decision errors occur. It uses the system modelling proposed in [21] and
described in the previous section. Our approach allows automating the quality evaluation by us-
ing the selective simulation framework described in Chapter 3. In this section, the specificities of
the selective simulation framework, presented in chapter 3, are presented for the case of decision
error analysis. For fractional word-length optimization, the proposed framework handles decision
errors. The framework is applied to detect the indexes of decision error and simulate the applica-
tion only when a decision error occurs. Subsequently, the steps T

1

, T
2

and T
3

are detailed for the
decision error analysis context.

6.3.1 Index classification (T
1

)

The Index Classification step is illustrated in Figure 6.3. This step decides whether an error
can occur at the output of the decision operation considering the reference signal at the input of
the operation. In the first step, index classification, a reference floating point simulation of the
entire system is performed. Then, for each decision operation Oi and for each input sample n,
the possibility of a decision error is analyzed by studying the value xi(n) of the input xi and the
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Figure 6.3 – Index Classification step for decision error detection.

boundaries of the noise bxi associated with this input. The index n corresponds to a potential error
If the value xi(n) is close enough to one of the decision boundaries taking into account the limits
of the noise. This condition, is satisfied if xi(n) is in the domain� corresponding to the interval of
the noise bxi in the worst case as shown in Figure 6.3. This is evaluated by calculating the distance
�a between the value of xi(n) and the decision boundaries aj . Let �min be the minimal distance
between the value of x and all the decision boundaries aj associated to the decision operation Oi

�a = min

j

�
�a

j

�
(6.2)

Let �max be the maximal distance for which the value xi(n) is still in �. The index n corre-
sponds to a potential error if the following condition is satisfied:

�a < �max (6.3)

If �a is greater than this threshold, the decision error probability is considered to be null . This
term �max is the parameter set by the developer and depends on the quantization noise bounds in
the worst case.

The algorithm for the evaluation in this step is provided in Algorithm 5. First the reference
samples corresponding to the index under consideration are obtained from the data-base. Then the
distance �n of each value x(n) from the different decision boundaries aj is evaluated, if the value
of �a(n) is in the interval [0, �max], then the index n is susceptible to decision error and it is saved
in the structure Tx as shown in Figure 6.3.

The indexes n are classified and stored in the table according to their distance. This distance is
expressed in terms of number of bits of precision. The rank k to access to the table Tx is determined
with the following expression
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1 c l a s s SigDec {

2 p r i v a t e :

3 f l o a t w_min ;

4 f l o a t w_max ;

5 f l o a t v a l u e ;

6 Contex tDec& _ c o n t e x t ; / * Link t o t h e s t r u c t u r e T and s i m u l a t i o n c o n t e x t * /

7 p u b l i c :

8 SigDec ( f l o a t _va lue , f l o a t _w_max , f l o a t _w_min , Contex tDec& _C o n t e x t ) ;

9 vo id Save_Index ( c o n s t d oub l e& a ) c o n s t ;

10 . . .

11 f r i e n d boo l o p e r a t o r < ( c o n s t d ou b l e& a , c o n s t SigDec& x ) ;

12 f r i e n d boo l o p e r a t o r > ( c o n s t d ou b l e& a , c o n s t SigDec& x ) ;

13 f r i e n d boo l o p e r a t o r <= ( c o n s t d ou b l e& a , c o n s t SigDec& x ) ;

14 f r i e n d boo l o p e r a t o r >= ( c o n s t d o u b l e& a , c o n s t SigDec& x ) ;

15 . . .

16 } ;

Listing 6.1 – Definition of SigDec C++ class

k = max (blog
2

(�n)c � blog
2

(�min)c, 0) (6.4)

where �min is the minimal considered distance. Thus all the distance lower than �min are
stored in the same vector Tx,0

Algorithm 5 Save eventual error index in Index Classification
Input: x(n) : input sample

�n = minj (|x(n)� aj |)
if �n  �min then

Tx,0,k0  n

k
0

++ // Incrementation of the list index k
0

else
if �n < �max then

j = max (blog
2

(�n)c � blog
2

(�min)c, 0)
Tx,j,k

j

 n

kj ++ // Incrementation of the list index kj

end if
end if
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6.3.1.1 Implementation with SigDec C++ class

To simulate the application performance in presence of un-smooth error, two new classes are
developed: Class SigDec allows determining the input indexes of un-smooth errors, and Class
SimDec, described in Section 6.3.3, simulates the system at these indexes.

Currently, our approach is developed for relational operators (” > ”, ” >= ”, ” < ”, ” <= ”)
and thus we support comparison with a threshold.

The class SigDec has several private members, as shown in the Listing 6.1. The variables
wmin and wmax specify the limits of FWL for which the value is considered near the decision
boundaries, i.e. may lead to an error. value is the floating value of the variable. A link to the
structure T is available.

The class overloads relational operators (” > ”, ” >= ”, ” < ”, ” <= ”). Therefore, any
SigDec variable can be compared to floating-point variables and constants. The type SigDec is
attributed to the floating variables involved in the comparison expression. The variables precision
are collected during the simulation and the simulated index is stored in the suitable rank in the
structure T as shown in Algorithm 5.

The operator overloading do not change the original value. It evaluates the difference between
the floating value and the decision border, then calculate the number of bits of the difference to
determine the suitable rank of the index using the Equation 6.4.

6.3.2 Index selection (T
2

)

After saving the index of potential errors in step T
1

, step T
2

, illustrated in Figure 6.4, deter-
mines if an error occurs according to the tested word-lengths. Index Selection step save the time of
checking every input samples if it leads to a decision error or not. The deviation d of the quantiza-
tion noise at the input of the decision operation Oi can be determined from the tested word-length
with an analytical approach for smooth sub-systems. d represents the maximum distance allowed
from the boundary under which a decision error occurs. Any value xi(n) with a distance �a lower
than di will lead to a decision error. The rank kd , equal to blog

2

(d)c, is the maximal rank toler-
ated. All the index n in T of rank k lower than kd lead to a decision error and are saved in the
simulation list Lgen. This process is descried in Algorithm 6.

Algorithm 6 Detect error index in Index Selection
Input: x(n) : input sample

kd = blog
2

(d)c
for ALL k < kd do

Lgen  Lgen [ Tx,j
end for

The error propagated from previous block(s) are evaluated at this stage and the corresponding
indexes are stored in the list Lpropag. The propagated list are added to the simulation list Lsim
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Figure 6.4 – Index Selection step for decision error detection.

Lsim  Lgen [ Lpropag (6.5)

6.3.3 Selective simulation (T
3

)

The nominal reference value of the signal would be perturbed by quantization noise due to
smooth fixed-point quantization. A random value is generated from a random process to mimic
the SNS model and assigned to bxi, the deviation of the noise depends on the precision allocated
to the variable xi . If the perturbation is large enough to generate an error at the output of the
decision operation, then the system is simulated and SimMode is set to true. Otherwise, It is set
to false. If a decision error occurs at output of Oi, all the blocks using a result resulting from the
output of Oi must be processed by simulation.The simulation is performed in floating point and the
fixed-point behavior of the blocks representing the simulated cluster is modeled by adding a noise
source. This makes it possible to avoid performing fixed-point simulations, which are always more
expensive in terms of execution time. Selective simulation is executed at each quality evaluation
after defining a specific fractional word-length for each variable xi. The process is described in
Procedure 7.

Unlike the hybrid technique proposed in [21], our approach does not require to check each
decision operation and at each quality evaluation if it leads to decision error or not. The system is
browsed once in Index classification step. Then, at each quality evaluation only the sturcture T is
browsed.

6.3.3.1 Implementation with SigDec C++ class

A new data class SimDec have been developed to simulate the effect of decision error faster
than traditional fixed-point data types. The declaration part of the class is given in the Listing 6.2.
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Algorithm 7 Selective Simulation
x(n) = GetReferenceSample(n)

if n 2 LSim then
SimMode = TRUE

for ALL SMOOTH operation do
OUTSMOOTH = OUTDATABASE

end for
else

SimMode = FALSE

OUTSY STEM = OUTDATABASE

end if

1 c l a s s SimDec{

2 p r i v a t e :

3 f l o a t high_E ;

4 f l o a t low_E ;

5 u n s i g n e d i n t a c c e p t e d _ d e v i a t i o n ;

6 v e c t o r <my_index > Lsim ;

7 . . .

8 p u b l i c :

9 SimDec ( f l o a t _High_E , f l o a t _low_E , Contex tDec& _ c o n t e x t ) ;

10 vo id L s i m _ g e n e r a t i o n ( ) ;

11 v e c t o r <my_index > get_Ls im ( ) ;

12 . . .

13 } ;

Listing 6.2 – Definition of SimDec C++ class

The variable accepted_deviation determines the maximum distance from the decision boundary
under which an error occurs. All the indexes for which any variable leads to an error is stored in
the simulation list Lsim. The class contains a method to generate Lsim.

6.4 Experiments

6.4.1 Edge detection application

To show the effectiveness of the proposed approach, the results obtained by applying our
approach on a synthetic example are presented. This approach aims at accelerating the quality
evaluation process compared to the traditional approach based on fixed-point simulation. Thus,
the presented results show the output equivalence between the proposed technique and fixed-point
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Figure 6.5 – Edge detection application considered to evaluate the efficiency of the proposed ap-

proach to eveluate the effect of decision error.

simulation and the execution time acceleration. In addition, the simulation time of our proposed
technique is compared with that of the hybrid technique [6] and SNS model [110].

The application is a synthetic example that detects and tidy up the edge of an image by applying
an edge detector and thinning operator. The flow graph of the considered application is shown in
figure 6.5. The input is a color image defined by the three channel RGB (Red, Blue, Green).
The color image is transformed into a gray image by the ComputeGray block to work on a single
channel. Then, Sobel edge detector [111] followed by thresholding and morphological Thinning
are applied successively on the gray image in order to identify the edges. Identifying edges in
the image helps in object identification, motion tracking and image enhancement. It is also often
performed on blurred images in order to sharpen or restore image quality [112].

The Sobel edge detector computes an approximation of the gradient in the vertical and hori-
zontal direction. Thresholding aims at extracting the edges from the gradient values. This process
leads to a binary image where white pixel represent the edges. The threshold is defined by the user
and aims at selecting the pixels corresponding to the edges.

Thinning is used to remove selected foreground pixels from binary images. This morpholog-
ical operation can be used for skeletonization. In this mode, it is commonly used to tidy up the
output of edge detectors by reducing all lines to single pixel thickness. The ComputeGray and So-
bel blocks are smooth while thresholding and Thinning blocks are un-smooth. Nevertheless, given
that the thinning block process binary images, i.e. images whose pixels have only two possible
intensity values and produces another binary image as output. Hence, a reduction of the number
of bit can not be investigated. Thus, the thinning block does not generate un-smooth errors. Fig-
ure 6.6 shows the output of the four blocks for the Lena image. For a better visualization of the
images, the color of the thresholding and thinning outputs are reversed. Black pixel represent the
edges.

6.4.2 Experimental setup

A double precision simulation is carried out and the output of the blocks are stored. These
results are considered as the reference. Using selective simulation approach, if an error occurred
at the output of the threshold, the Thinning block has to be carried out only on the errors indexes.
That will result in saving processing time when the threshold values are the same as the values
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Figure 6.6 – Output of the different blocks of the edge detection application for the Lena image.

a) Output of the ComputeGray image, b) Output of the Sobel block, c) Output of the thresholding

operation, d) Output of the Thinning block.

Figure 6.7 – Edge detection application using single noise source model.

obtained with reference simulation.

The tested image is Lena from the standard image processing test suite. The input image is
filtered using a Gaussian low-pass filter to emulate the blurring effect. The edges of the blurred
image are detected using the example shown in Figure 6.5.

The effect of finite precision due to fixed-point arithmetic is modelled with the SNS model as
shown in Figure 6.7. A noise source is inserted at the input of the thresholding operation to emulate
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Figure 6.8 – Edge detection application using proposed techniquel.

Figure 6.9 – Indexes of L
2

evaluated from L
1

.

the quantization noise generated by the ComputeGray and Sobel blocks. A white Gaussian noise
is considered.

The proposed technique is applied as shown in Figure 6.8. After simulating the first two blocks
using infinite precision, a quantization noise is added to the output of the Sobel block to emulate
the effect of fixed-point computation. The threshold and thinning blocks are simulated one time
for index classification.

According to the tested word-length w, the bounds of the noise are computed and the deviation
d is deducted. Index selection selects all the indexes leading to a potential error and store it in the
simulation list. L

1

contains all the indexes for which the threshold operation should be simulated
and L

2

contains the indexes of error propagating and leading to an error in the thinning block. The
quality of the output is evaluated by simulating the threshold and thinning block for the indexed
stored in L

1

and L
2

respectively. The indexes in L
2

are evaluated from L
1

as shown in Figure 6.9.
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6.4.2.1 Quality metric

To analyze the effect of error decision on the edge detector application, the image obtained
when decision errors occur and the reference image are compared and the Matthews correlation
coefficient (MCC) is computed. The MCC is well suited to analyze the quality of binary classi-
fication i.e. classification in two classes CP and CN . It is a correlation coefficient between the
observed and predicted binary classifications (Predicted/Actual). This metric takes into account
the number of true positives TP (CP /CP ), the number of true negatives TN (CN/CN ), the num-
ber of false positives FP (CP /CN ) and the number of false negatives FN (CN/CP ). The MCC is
computed with the following formula.

MCC =

TP ⇥ TN � FP ⇥ FNp
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(6.6)

The MCC represents the correlation between the reference and predicted binary classifications.
A coefficient equal to 1 means a perfect prediction and a value of 0 means that the prediction is
equivalent to a random prediction.

6.4.3 Results of the experiments

6.4.3.1 Quality criteria

Figure 6.10 shows the output obtained by both proposed approach and fixed-point simulation
for computation carried-out on 8-bit data. By comparing the image at the output of the two ap-
proaches, the two images are very close to each other. The difference between the two images
is also shown in the Figure 6.10. In order to have a better understanding, the plots in Figure
6.11 show the MCC between the output of both fixed-point and proposed approach simulations
in comparison with the infinite precision simulation for different probabilities of the decision er-
ror occurring after thresholding. The results in both cases are of the same order with very little
difference for various decision error probabilities. This validates the statistical equivalence of the
proposed approach with fixed-point simulation in this experiment.

When the precision is decreased, the decision errors increase and thus the output of fixed-
point simulation is more deteriorated. This can be observed by calculating the MCC between the
outputs of both floating-point and fixed-point simulations as shown in Figure 6.11. The same as
for an overflow, a decision error corresponds to a noise with high power. Thus, when the number
of error is high the performance of the output image is unacceptable. The simulations in this
experiment are conducted for a minimum MCC between fixed-point and floating point simulation
outputs equal to 0.88 corresponding to a maximum decision error equal to 0.37%. Thus, in this
experiment, decision error can be considered as rare event.
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Figure 6.10 – Output of the thinning block for Lena image. a) Fixed-point simulation, b) Proposed

approach simulation. c) Difference between the two images.

6.4.3.2 Execution time

The execution time of the quality evaluation process is evaluated using fixed-point simulation
and the proposed approach for different computation precision (word-length w). Figure 6.12 shows
the gain in time recorded when using our approach compared to the fixed-point simulation using
Lena as input image. The gain in time is presented with respect to the decision error occurrence.
As the number of bits increases, the decision error decreases and the image representation tends to
be closer to the reference one. Therefore, the input indexes leading to decision error and needed
to be simulated to evaluate the quality of the application decrease. Thus, the gain in time increases
by several orders of magnitude with respect to the fixed-point simulation. In this experiment, the
results lead to an acceleration up to 1000 .

In the word-length optimization process, several iterations are needed to obtain the optimized
solution. To evaluate the effectiveness of the proposed approach, a steepest descent greddy algo-
rithm (max-1 bit) is applied in order to find an optimized precision of the threshold block input
image. To simplify, a uniform word-length strategy is used. Thus, the optimization process is
made-up of one variable. The performance criteria evaluated is the MCC (M ) between the re-
sulted output and floating point simulation output. The algorithm, shown in Algorithm 8 starts
with an initial word-length w

0

= 16bits. Then, the word-length w of the threshold block input
image is reduced at each iteration while satisfying the performance criterion i.e M is higher or
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Figure 6.11 – MCC between both the proposed and fixed-point simulations output and floating

point simulation output.

equal to the targeted MCC (Mmin). Starting from w
0

, the quality of the output image is evalu-
ated at each iteration. When the target MCC is reached, the iterations stop and the precision w is
allocated to the variable.

Algorithm 8 Optimization algorithm
w  w

0

while MCC > MCCmin do
w = w � 1

end while
w = w + 1

Comparisons are conducted for fixed point simulation, SNS model, hybrid technique and the
proposed approach. Several Mmin are tested. Figure 6.13 shows the gain in terms of time obtained
with the proposed approach, SNS model and the hybrid technique with respect to the fixed point
simulation with respect to the target MCC. When Mmin decreases, the number of iterations to
obtain the optimal precision increases and the execution time grows. The gain obtained with
respect to fixed point simulation increases with the number of iterations. Our approach records a
gain up to 2000 for Mmin equal to 0.88 given an output of MCC M = 0.886. While this gain
reaches 110 using the SNS model and 1900 using the hybrid technique for the same MCC. Thus,
our approach leads to a gain in time up to 90 with respect to SNS model and a gain between 1.1

and 1.5 with respect to the hybrid technique.
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Figure 6.12 – Execution time Gain between the proposed approach and fixed point simulations

with respect to decision error occurrence.

Figure 6.13 – Execution time with respect to MCC.

6.5 Conclusion

Decision error operations are un-smooth operations that cannot be described by analytical
techniques. Simulation-based techniques have the advantage of being applied on all systems.
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However, they leads to high execution time. The problem of evaluating fixed-point systems in
presence of decision errors is presented in this chapter. After presenting the concept of un-smooth
operations and the single noise source model, we explains the implementation of the framework
proposed in Chapter 3 to accelerate the simulation of fixed-point system in presence of decision
error. The proposed approach uses the SNS model to evaluate the impact of finite precision on
smooth blocks while performing simulation of the decision error operations during fixed-point
simulation. The approach is tested on an edge detector application and compared with fixed-
point simulation, SNS model and an existing hybrid technique. The experimental results show
significant acceleration of the simulations, where the execution time is reduced up to 1000 with
respect to fixed-point simulation for one iteration. The gain in time increase when applying a max-
1 bit optmization algorithm and reaches a value up to 2000 with respect to fixed-point simulation,
up to 90 time with respect to SNS model and up to 1.5 times with respect to hybrid technique.





CHAPTER

7

Conclusions and
Perspectives

In this thesis, we aim at accelerating the process of floating-point to fixed-point conversion.
Floating-point and fixed-point operators are two popular choices available for the implementation
of arithmetic operations. Fixed-point arithmetic operators are known to take significantly lesser
area, shorter latency and are known to consume lesser power. Implementation of telecommuni-
cation algorithms usually have rigorous performance parameters to be achieved and demand high
computational power. In such cases, using fixed-point arithmetic allows satisfying such constraints
thanks to its ability to manipulate data with lower world-length compared to floating-point arith-
metic. Thus, DSP algorithms are implemented into fixed-point architectures and floating-point to
fixed-point conversion is mandatory.

In Chapter 2, floating-point and fixed-point representations are explained, and then compared
in terms of arithmetic properties and hardware and software implementations. Then, the con-
version from floating-point to fixed-point is explained. Methods used in the state of the art to
determine the integer and fractional part world-lengths are presented.

Based on the state of art, the effects of overflow or un-smooth errors are not handled by an-
alytical methods. These effects can be evaluated by traditional fixed-point simulation based ap-
proaches, but at the expense of long simulation time. Thus, a new framework that is based on
selective simulation is presented in Chapter 3. We explained the problem of evaluating the system
when an error (overflow or un-smooth error) occurs with low probability.

Then, we explained the concept of overflow and its relation with integer-world length, and
the concept of unsmooth error and its relation with the quantization process. Moreover, a new
approach that uses selective simulations to accelerate the simulation of finite precision effects
analysis is presented. This approach can be applied on C based DSP applications using fixed-
point arithmetic to evaluate the degradation due to overflow or un-smooth errors.

In Chapter 4, we detailed the proposed selective simulation approach when applied in the pres-
ence of overflow. After presenting the methodology of variable selection for integer world length
optimization, the implementation of the proposed framework in C++ is explained. Then, experi-
ments were conducted to verify the effectiveness of the proposed selective simulation technique.
Results showed significant acceleration of the evaluation time. This evaluation time is reduced
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up to 1000 time with respect to complete simulation based approach. These results show the
effectiveness of the proposed approach.

Then, in Chapter 5, the proposed selective simulation approach is exploited to design a new al-
gorithm for integer world-length optimization. This optimization problem is translated into the ex-
ploration of the trade-off between implementation cost and application quality. The cost and qual-
ity of systems implemented using fixed-point arithmetic depends on the assigned word-lengths.
After presenting the existing algorithms to optimize the world-length, the proposed IWL opti-
mization algorithm,which exploits the selective simulation technique used to evaluate the overflow
effects on application performance, is detailed. This algorithm does not only reduce the cost, but
also allows overcoming the long execution time of classical simulation based algorithms. Through
experiments applied on the FFT part of an OFDM chain, the proposed algorithm results in a sig-
nificant reduction of cost with acceptable degradation of quality criteria. At the same time, results
show huge enhancement in the optimization time, where the acceleration factor reaches up to 617.

In Chapter 6, the proposed selective simulation framework is exploited in a hybrid technique
to evaluate the performance of a fixed-point system containing decision operations. After pre-
senting the methodology, experiments were conducted on an image processing application. The
experimental results show significant acceleration of the simulations, where the execution time
is reduced up to 1000 with respect to fixed-point simulation for one iteration. The gain in time
increase when applying a max-1 bit optmization algorithm and reaches a value up to 2000 with
respect to fixed-point simulation, up to 90 with respect to SNS model and up to 1.5 with respect to
hybrid technique.

The work we have done in this thesis can be considered as a step towards the automation of
fixed-point system design. The proposed approaches and algorithms have succeeded to overcome
the limitation of simulation based approaches by accelerating its performance.

As a direct follow-up, the proposed approach should be tested on more systems to analyze
its efficiency on different types of applications. The implementation of our approach does not
consider recursive systems or systems with delays. It would be interesting to extend our imple-
mentation to suits such type of systems and test its performance on them.

The aim of the work done in this thesis is to enhance existing tools. This work can be integrated
in the ID.fix tool, presented in Section 2.3 which is based on the compiler infrastructure GECOS.
This will allow the conversion of the floating-point C source code into a fixed-point C-code. The
GECOS tool can be used to automate the instrumentation of the C-source code.
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CHAPTER

8

Résumé français

Contexte général

Au cours des dernières décennies, l’implémentation des applications de traitement numérique
du signal a été facilitée par le progrès des technologies des semi-conducteurs. Le traitement
numérique du signal permet de mettre en œuvre de nombreuses applications s’interfaçant avec
le monde réel. Au niveau de l’industrie, la complexité grandissante de ces applications augmente
la difficulté de la conception. Pour faire face à la concurrence entre les entreprises, ces dernières
sont obligées de fournir plus de valeur pour chaque coût unitaire qu’elles facturent aux consom-
mateurs. Pratiquement, les concepteurs doivent travailler dans un environnement de complexité
croissante pour réduire le temps de mise sur le marché (Time-to-Market) et minimiser le coût du
produit tout en satisfaisant les exigences du client.

Le secteur des télécommunication est l’une des industries en croissance rapide. Par exem-
ple, le nombre d’abonnés aux réseaux mobiles (utilisateurs) a dépassé le nombre de 6 milliards
dans le monde. L’industrie des télécommunications a bénéficié des progrès des technologies des
semi-conducteurs. A titre d’exemple, les smartphones de nos jours intègrent une combinaison
d’algorithmes de télécommunications, de traitement du signal et de la vidéo. L’implémentation de
toutes ces applications doit répondre à la demande des utilisateurs en terme de qualité du résultat
en sortie de l’application.

Le coût d’implémentation d’un appareil électronique moderne est habituellement évalué en
termes de surface de silicium, de consommation d’énergie et de temps d’exécution. Ce coût doit
être maintenu au minimum sans compromettre les performances du système. Ces objectifs sont
contradictoires et le concepteur doit inévitablement décider d’un compromis entre la qualité et le
coût. Par conséquent, il est très important de prendre des décisions pertinentes à chaque étape de
la conception afin d’assurer la meilleure performance possible de l’ensemble du système. Une des
décisions importantes est le choix de l’arithmétique utilisée pour mettre en œuvre ces algorithmes.
Ce choix a un impact important sur le compromis entre le coût et la qualité. Les arithmétiques
en virgule flottante et en virgule fixe sont les deux alternatives les plus communément utilisées.
Les opérateurs utilisant l’arithmétique en virgule fixe conduisent à une surface, une latence et
une consommation d’énergie nettement plus faible. Les algorithmes de télécommunication et de
traitement du signal possèdent des exigences fortes en termes de performance et de consomma-
tion d’énergie. Dans de tels cas, l’utilisation de l’arithmétique virgule fixe permet de satisfaire
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ces contraintes grâce à sa capacité à manipuler des données de taille plus faible par rapport à
l’arithmétique en virgule flottante. Ainsi, les algorithmes de traitement numérique du signal sont
implémentés au sein d’architectures en virgule fixe et une conversion de virgule flottante en virgule
fixe est indispensable.

Le processus de conversion en virgule fixe est un problème d’optimisation ayant pour objectif
la détermination de la largeur (nombre de bits) de chaque donnée. Ce problème d’optimisation
permet d’explorer le compromis entre le coût et la qualité du résultat en sortie de l’application.
En outre, le processus de conversion en virgule fixe est long. Celui-ci peut prendre jusqu’à 30%

du temps de développement total. Ainsi, un outil de conversion automatique de virgule flottante
en virgule fixe est essentiel pour optimiser efficacement le coût de l’implémentation et réduire
les temps de développement. Depuis quelques années, des outils efficaces de synthèse de haut
niveau sont disponibles. Ces outils génèrent des architectures au niveau RTL directement à partir
d’une spécification de l’application en C ou C ++ et utilisant des types en virgule fixe. Ces outils
réduisent considérablement le temps de développement tout en permettant une bonne exploration
de l’espace de conception. Ainsi, la conversion en virgule fixe devient le goulet d’étranglement du
développement rapide des produits.

Le processus de conversion de virgule flottante en virgule fixe est composé de deux parties
correspondant à la détermination du nombre de bits pour la partie entière et du nombre de bits
pour la partie fractionnaire. Pour réduire la complexité de la conversion, les optimisations de la
partie entière et de la partie fractionnaire sont traitées séparément. L’analyse de la précision des
calculs est liée à la notion de bruit de quantification et correspond à l’étude d’une métrique de
qualité de l’application traduisant la sensibilité de la sortie à la présence de faibles perturbations
liées à ces bruits de quantification. De nombreux travaux de recherche se sont concentrés sur
l’optimisation de la partie fractionnaire en utilisant la puissance du bruit de quantification comme
critère de qualité. Le nombre de bits minimal est un compromis entre le coût de l’implantation et
la précision des calculs réalisés.

Description de notre travail

La première étape du processus de conversion en virgule fixe correspond à l’évaluation de
la dynamique des différentes données. Cette évaluation de la dynamique permet de déterminer
le nombre de bits minimal pour la partie entière d’une donnée à partir de ses valeurs maximales
et minimales. Pour éviter l’apparition de débordements, les méthodes classiques d’évaluation de
la dynamique calculent des limites théoriques absolues qui ne seront jamais dépassées dans la
pratique. Ces méthodes fournissent des estimations pessimistes ce qui aboutit à une augmenta-
tion du coût de l’implantation. Comme l’absence de débordements est garantie, l’optimisation
de la partie entière sous contrainte de qualité devient impossible et le compromis précision-coût
d’implantation est exploré uniquement pour la partie fractionnaire.

Dans de nombreuses applications, des débordements occasionnels sont acceptables si leur
probabilité d’occurrence est suffisamment faible. La méthode d’évaluation de la dynamique
doit être en mesure de prendre en compte cette propriété. Des méthodes comme l’arithmétique
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d’intervalle et l’arithmétique affine ne fournissent pas d’informations supplémentaires sur la ré-
partition du signal dans l’intervalle de définition. Les signaux ayant de grandes variations et une
faible probabilité pour les extremums ne sont pas bien pris en compte par les techniques basées
sur l’arithmétique d’intervalle ou affine.

Différentes techniques ont été proposées pour estimer la fonction de densité de probabil-
ité de tout type de données. Elles permettent de déterminer la dynamique pour une probabilité
d’occurrence de débordement donnée. Ces techniques sont basées sur la théorie des Valeurs Ex-
trêmes [15, 16, 17] ou des approches stochastiques comme la décomposition de Karhumen-Loeve
(KLE) [18, 19] et la décomposition polynomial du Chaos (PCE) [20].

Les techniques stochastiques permettent d’estimer la FDP des données du système pour en
déduire ensuite la dynamique des données. Dans les systèmes linéaires invariant dans le temps
(LIT), la décomposition de Karhumen-Loeve (KLE) permet une discrétisation stochastique des
données. En utilisant les propriétés de superposition des systèmes LIT, il est possible de déterminer
la décomposition associée à la sortie. Cette technique prend en compte la corrélation temporelle
et spatiale permettant d’améliorer l’estimation de la dynamique. La décomposition polynomial du
Chaos (PCE) est utilisée pour les systèmes non LIT. Par rapport au KLE, une gamme plus étendue
de systèmes est supportée, mais au détriment d’une plus grande complexité de calcul. Par ailleurs,
la théorie des valeurs extrêmes est utilisée pour estimer la queue de la distribution associée à une
donnée à partir d’un ensemble de simulations.

En général, ces techniques relient la probabilité de débordement et la dynamique. Cependant,
la définition d’une expression mathématique des critères de qualité de l’application complique
l’automatisation de la conception des systèmes en virgule fixe. D’une part, chaque application
possède ses propres critères de qualité, tels que, par exemple, le taux d’erreur binaire pour le
système de communication ou le MOS (Mean Opinion Score) pour les applications audio. D’autre
part, une expression liant les critères de qualité de l’application et la probabilité de débordement
de chaque donnée est difficile à établir.

L’erreur associée à la quantification d’une donnée est modélisée comme un bruit blanc additif
et de distribution uniforme. Au niveau système, le modèle de source de bruit unique (SNS) permet
de modéliser le bruit de quantification en sortie d’un sous-système comme la somme des différents
bruit de quantification.

Les techniques basées sur les modèles de Widrow et la théorie de la perturbation ne sont valides
que lorsque le pas de quantification est très petit par rapport à la dynamique. Au fur et à mesure
que le pas de quantification augmente, les propriétés du bruit de quantification s’éloignent des
prédictions analytiques et deviennent rapidement intraitables. Tels quantificateurs sont désignés
sous le nom de quantificateurs non lisses et peuvent conduire à la présence d’erreurs de décision.

En outre, les méthodes existantes d’analyse de la précision numérique évaluent uniquement la
puissance du bruit de quantification en sortie. Dans certains cas, comme l’évaluation de la qualité
dans des systèmes avec des opérateurs de décision, cette information limitée s’avère insuffisante
et la fonction de densité de probabilité totale du bruit doit être utilisée.

Les approches basées sur la simulation sont une alternative. Elles sont utilisées pour surmon-
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ter la limitation des approches classiques. En comparaison avec les approches stochastiques, où
l’établissement du lien entre les critères de qualité de l’application et la probabilité d’occurrence
d’erreur n’est pas trivial dans le cas général, une approche basée sur la simulation peut être exé-
cutée sur tout type de système [8, 23, 24] et permettent facilement d’évaluer la métrique de qualité.
Cependant, ces méthodes prennent du temps et nécessitent un grand nombre d’échantillons pour
obtenir une analyse précise. Il en résulte une sérieuse limitation de l’applicabilité des méthodes
basées sur la simulation.

Les effets des débordements ou des erreurs de décision peuvent être évalués par des approches
de simulation en virgule fixe. Ces approches peuvent être appliquées à tout type de système. Mais
ces approches deviennent moins favorables en raison de leur long temps d’exécution. Néanmoins,
les approches de simulation en virgule fixe sont exhaustives lorsque tous les échantillons d’entrée
sont simulés pour chaque évaluation de l’analyse des effets des débordements.

Dans cette thèse, nous visons à accélérer le processus d’évaluation de la métrique de qualité.
Nous proposons un nouvel environnement logiciel (framework) utilisant des simulations sélectives
pour accélérer la simulation des effets des débordements et des erreurs de décision. Cette approche
peut être appliquée à toutes les applications de traitement du signal développées en langage C. Par
rapport aux approches classiques basées sur la simulation en virgule fixe, où tous les échantillons
d’entrée sont traités, l’approche proposée simule l’application uniquement en cas d’erreur. En ef-
fet, les dépassements et les erreurs de décision doivent être des événements rares pour maintenir
la fonctionnalité du système. Par conséquent, la simulation sélective permet de réduire consid-
érablement le temps requis pour évaluer les métriques de qualité des applications. La simulation
sélective permet de réduire considérablement le temps requis pour évaluer les critères de qualité
des applications

La majeure partie des travaux est basée sur l’optimisation de la partie fractionnaire, cependant,
l’optimisation du nombre de bits pour la partie fractionnaire peut diminuer de manière significative
le coût de l’implantation lorsqu’une légère dégradation de la qualité de l’application est accept-
able. En effet, de nombreuses applications sont tolérantes aux débordements si la probabilité
d’occurrence de ces débordements est suffisamment faible. Ainsi, nous exploitons ce framework
avec un nouvel algorithme d’optimisation des largeurs de données pour accélérer l’optimisation
de la partie entière. En outre, nous appliquons la simulation sélective pour évaluer la qualité au
cours de l’optimisation de la partie fractionnaire pour des systèmes comportant des opérateurs de
décision.

Nous avons débuté nos travaux en examinant les méthodes existantes pour l’évaluation de la
qualité des systèmes en virgule fixe. Cela nous a permis de comprendre les approches proposées
et connaître les avantages et inconvénients de chaque technique. Nous avons étudié le problème
d’évaluation de la qualité en sortie d’un système en virgule fixe en présence d’erreurs rares et
de grandes amplitudes (débordement et erreur de décision). A cet égard, nous avons proposé une
approche basée sur la technique de simulation sélective pour accélérer la simulation de l’évaluation
de la qualité des applications pendant le processus d’optimisation de la largeur des données. En
plus, nous avons proposé et développé un framework pour cette approche.

Dans un second temps, nous avons détaillé l’approche de simulation sélective proposée et ex-
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pliqué sa procédure lorsqu’elle est appliquée pour évaluer la qualité en présence de débordement.
Nous avons développé le framework en C++ et vérifié l’efficacité de la technique proposée en
effectuant des expérimentations sur des applications de traitement du signal.

Ensuite nous avons proposé un algorithme d’optimisation de la partie entière qui exploite
l’approche de simulation sélective proposée. Cet algorithme permet, non seulement de minimiser
le coût, mais aussi de réduire considérablement le temps d’exécution. Nous avons testé l’efficacité
de cet algorithme à travers des expérimentations sur le module FFT d’une chaîne de transmission
numérique OFDM.

Finalement, nous avons adapté le framework pour accélérer l’évaluation de la qualité au cours
de l’optimisation de la partie fractionnaire pour les systèmes en virgule fixe comportant des opéra-
teurs de décision. L’approche proposée utilise le modèle de source de bruit unique pour évaluer
l’effet de la précision finie sur les opérations de décision tout en effectuant la simulation lorsqu’une
erreur de décision est présente. Intégré dans un algorithme d’optimisation heuristique, nous avons
testé l’efficacité de l’approche sur une application de détection des contours au sein d’une image.
Les expérimentations ont montré une réduction significative du temps d’exécution par rapport à la
simulation en virgule fixe complète.
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Résumé 
 

 
Le temps de mise sur le marché et les coûts d’implantation sont 
les deux critères principaux à prendre en compte dans 
l’automatisation du processus de conception de systèmes 
numériques. Les applications de traitement du signal utilisent 
majoritairement l’arithmétique virgule fixe en raison de leur coût 
d’implantation plus faible. Ainsi, une conversion en virgule fixe 
est nécessaire. Cette conversion est composée de deux parties 
correspondant à la détermination du nombre de bits pour la 
partie entière et pour la partie fractionnaire. Le raffinement d’un 
système en virgule fixe nécessite d’optimiser la largeur des 
données en vue de minimiser le coût d’implantation tout en 
évitant les débordements et un bruit de quantification excessif. 
   
Les applications dans les domaines du traitement d'image et du 
signal sont tolérantes aux erreurs si leur probabilité ou leur 
amplitude est suffisamment faible. De nombreux travaux de 
recherche se concentrent sur l'optimisation de la largeur de la 
partie fractionnaire sous contrainte de précision. La réduction 
du nombre de bits pour la partie fractionnaire conduit à une 
erreur d’amplitude faible par rapport à celle du signal. La théorie 
de la perturbation peut être utilisée pour propager ces erreurs à 
l'intérieur des systèmes à l'exception du cas des opérations un-
smooth, comme les opérations de décision, pour lesquelles une 
erreur faible en entrée peut conduire à une erreur importante en 
sortie.  
 
De même, l'optimisation de la largeur de la partie entière peut 
réduire significativement le coût lorsque l'application est 
tolérante à une faible probabilité de débordement. Les 
débordements conduisent à une erreur d’amplitude élevée et 
leur occurrence doit donc être limitée. Pour l'optimisation des 
largeurs des données, le défi est d'évaluer efficacement l'effet 
des erreurs de débordement et de décision sur la métrique de 
qualité associée à l'application. L’amplitude élevée de l'erreur 
nécessite l'utilisation d’approches basées sur la simulation pour 
évaluer leurs effets sur la qualité. 
Dans cette thèse, nous visons à accélérer le processus 
d'évaluation de la métrique de qualité. Nous proposons un 
nouvel environnement logiciel utilisant des simulations 
sélectives pour accélérer la simulation des effets des 
débordements et des erreurs de décision. Cette approche peut 
être appliquée à toutes les applications de traitement du signal  
développées en langage C. Par rapport aux approches 
classiques basées sur la simulation en virgule fixe, où tous les 
échantillons d'entrée sont traités, l'approche proposée simule 
l'application uniquement en cas d'erreur. En effet, les 
dépassements et les erreurs de décision doivent être des 
événements rares pour maintenir la fonctionnalité du système. 
Par conséquent, la simulation sélective permet de réduire 
considérablement le temps requis pour évaluer les métriques 
de qualité des applications. 
 
De plus, nous avons travaillé sur l'optimisation de la largeur de 
la partie entière, qui peut diminuer considérablement le coût 
d’implantation lorsqu'une légère dégradation de la qualité de 
l'application est acceptable. Nous exploitons l’environnement 
logiciel proposé auparavant à travers un nouvel algorithme 
d'optimisation de la largeur des données. La combinaison de 
cet algorithme et de la technique de simulation sélective permet 
de réduire considérablement le temps d’optimisation.   
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Abstract 
 
 
Time-to-market and implementation cost are high-priority 
considerations in the automation of digital hardware design. 
Nowadays, digital signal processing applications use fixed-point 
architectures due to their advantages in terms of 
implementation cost. Thus, floating-point to fixed-point 
conversion is mandatory. The conversion process consists of 
two parts corresponding to the determination of the integer part 
word-length and the fractional part world-length. The refinement 
of fixed-point systems requires optimizing data word-length to 
prevent overflows and excessive quantization noises while 
minimizing implementation cost.  
 
Applications in image and signal processing domains are 
tolerant to errors if their probability or their amplitude is small 
enough. Numerous research works focus on optimizing the 
fractional part word-length under accuracy constraint. Reducing 
the number of bits for the fractional part word-length leads to a 
small error compared to the signal amplitude. Perturbation 
theory can be used to propagate these errors inside the 
systems except for unsmooth operations, like decision 
operations, for which a small error at the input can leads to a 
high error at the output.  
 
Likewise, optimizing the integer part word-length can 
significantly reduce the cost when the application is tolerant to a 
low probability of overflow. Overflows lead to errors with high 
amplitude and thus their occurrence must be limited. For the 
word-length optimization, the challenge is to evaluate efficiently 
the effect of overflow and unsmooth errors on the application 
quality metric. The high amplitude of the error requires using 
simulation based-approach to evaluate their effects on the 
quality.    
 
In this thesis, we aim at accelerating the process of quality 
metric evaluation. We propose a new framework using selective 
simulations to accelerate the simulation of overflow and un-
smooth error effects. This approach can be applied on any C 
based digital signal processing applications. Compared to 
complete fixed-point simulation based approaches, where all 
the input samples are processed, the proposed approach 
simulates the application only when an error occurs. Indeed, 
overflows and unsmooth errors must be rare events to maintain 
the system functionality. Consequently, selective simulation 
allows reducing significantly the time required to evaluate the 
application quality metric.  
 
Moreover, we focus on optimizing the integer part, which can 
significantly decrease the implementation cost when a slight 
degradation of the application quality is acceptable. Indeed, 
many applications are tolerant to overflows if the probability of 
overflow occurrence is low enough. Thus, we exploit the 
proposed framework in a new integer word-length optimization 
algorithm. The combination of the optimization algorithm and 
the selective simulation technique allows decreasing 
significantly the optimisation time.   
 
  
 
  




