N

N

Quality Evaluation in Fixed-point Systems with
Selective Simulation
Riham Nehmeh

» To cite this version:

Riham Nehmeh. Quality Evaluation in Fixed-point Systems with Selective Simulation. Signal and
Image processing. INSA de Rennes, 2017. English. NNT: 2017ISAR0020 . tel-01784161

HAL Id: tel-01784161
https://theses.hal.science/tel-01784161
Submitted on 3 May 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01784161
https://hal.archives-ouvertes.fr

These

S

UNIVERSITE
BRETAGNE

THESE INSA Rennes

sous le sceau de I'Université Bretagne Loire
pour obtenir le titre de

DOCTEUR DE L'INSA RENNES
Spécialité : Traitement du signal et de I'image

Quality Evaluation in
Fixed-point Systems
with Selective Simulation

présentée par

Riham NEHMEH

ECOLE DOCTORALE : MATISSE
LABORATOIRE : [ETR

Thierry Michel

Ingénieur de recherche ST Microlectronics Crolles / Membre Invité

Thése soutenue le 13.06.2017
devant le jury composé de :

Eric Martin
Professeur a I'Université de Bretagne Sud / Président
Michel Paindavoine

Professeur a I'Université de Bourgogne / Rapporteur
Lionel Lacassagne

Professeur a I'Université de Paris VI / Rapporteur
Fabienne Nouvel

Maitre de conférences HDR a I'INSA Rennes / Examinatrice
Andrei Banciu

Ingénieur de recherche ST Microlectronics Crolles / Co-encadrant
Daniel Ménard

Professeur a 'INSA de Rennes / Directeur de thése

INSA 4

Quality Evaluation in Fixed-point Systems
with Selective Simulation

Riham Nehmeh

UNIVERSIT ‘
BRETAGN

LOIR RENNES

En partenariat avec

Lys

lite.augmented

Contents

Contents
List of Figures
List of Tables

1 Introduction
1.1 Scopeofthe Thesis
1.2 Objectives and Contributions of the Thesis

1.3 Outlineofthe Thesis e e e

2 State Of The Art
2.1 Fixed-Point representation L oo
2.1.1 Number representationol
2.1.2 Floating-point representation
2.1.3 Fixed-point representationl
2.1.4 Comparison between fixed-point and floating-point arithmetic
2.2 Floating-point to fixed-point conversion
2.2.1 Integer word-length optimization

2.2.2 Fractional word-length optimization

2.3.1 ID.Fixtooldescription
232 Tooldescription

2.4 Conclusion e

3 Selective Simulation Framework

jii

vii

ix

10
16
16
25
29
30
31

32

35

ii CONTENTS
3.1 Introduction 35
3.2 Context and motivationso 36

32,1 Overflow 36
322 Un-smoothError 38
3.3 Selective simulation 42
3.3.1 Indexdimension o 44
3.3.2 Selective simulation technique 44
3.3.3 Performance of the proposed approach 48
34 Systemlevelevaluation 49
35 Conclusion e 51
Selective simulation in presence of overflow 53
4.1 Introduction 53
4.1.1 Advanced fixed-point conversionflow 53
4.1.2 Ilustration withanexample 54
4.2 Variable selection for integer word-length optimization 54
4.3 Quality Evaluation in the Presence of Overflow 58
4.3.1 Index classification (1T7) 58
432 Indexselection (T5) e 61
43.3 Selective simulation (73) 62
4.4 Experimentandresults Lo 63
4.4.1 Global Positioning System 64
4.4.2 Orthogonal Frequency-Division Multiplexing Transmission Chain 65
443 Fastoverflow effectanalysis, 67
45 Conclusion e 69
Integer word-length optimization 71
5.1 Introduction 71
5.2 Word-length Optimization problem 71
5.3 Stateoftheart. L 74
5.3.1 Deterministic algorithm 74
5.3.2 Randomalgorithms 77
5.4 IWL optimization algorithm L L. 78

CONTENTS

iii

54.1 Initialphase
5.4.2 Construction and refinement phases
5.5 Experimentsandresults
5.5.1 Costreduction
5.5.2 Optimization time enhancement

5.6 Conclusion e

6 Quality Evaluation in Presence of Decision Error
6.1 Introduction L
6.2 Techniques for Quality Evaluation
6.2.1 Singlenoise sourcemodel Lo oL
6.2.2 Identifying un-smooth operations
6.2.3 Quantization noise effect evaluation
6.2.4 Hybridtechnique
6.3 Framework for quality evaluation in presence of decisionerrors
6.3.1 Index classification (17)o
6.3.2 Index selection (15) e
6.3.3 Selective simulation (7T3)
6.4 EXperiments it e e e e e e e e e
6.4.1 Edge detection application Lo
6.4.2 Experimental setup
6.4.3 Results of the experiments

6.5 Conclusion e e e e
7 Conclusions and Perspectives
8 Résumé francais

Bibliography

79
79
82
82
84
85

87
87
87
87
88
89
91
92
92
95
95
97
97
98
101
104

105

107

112

1.1

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13

3.1
3.2
33
34
3.5
3.6
3.7

3.8

List of Figures

DSP System DesignFlow L o 2
Floating-point representation of a signed-number 8
Fixed-point representation of a signed-number L. 9
Dynamic range evolution depending on the total number of bits [1] 12
Quantization process withrounding L. 13
Quantization process with truncation, 13
SQNR evolution depending on the dynamic range of input signal [1] 14
Classification of the approaches for the dynamic range determination (from [2]) . 17
Range determination methodology using Extreme Value Theory. 22
Compute the range of a variable fromits PDF. 23
Probabilistic range determination methodology [3] 23

Classification of the approaches used to analyze the effects of the quantization noise 26

Simulation-based computation of quantizationerror 26
Detailed flow of the EDA tool ID.Fix [4] 30
Probability density function of variablexz 37
Probability density function of integer word-length of variablex 38
Overflow occurrence with respect to IWL allocated forz 39
Quantizationnoisemodel 39
Behaviour of a decision error operator in presence of perturbation. 40
Decision error due to input quantization 41

Variation of total decision error probability with respect to the quantization noise
power for different signal power ss =0s.o 42

Total decision error probability for 16-QAM and BPSK constellations from [5] . 43

vi

LIST OF FIGURES

39

3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2

5.3
54

5.5

6.1
6.2
6.3

Decision flow diagram for conditional simulation 44
One dimensional index of a sampled signal. 45
Three dimensional index in video processing application. 45

Proposed framework for quality evaluation associated with fixed-point conversion. 46

Selective Simulation 73 48
System with multiple blocks 50
Error propagation from one block to another. 50

Error generation and propagation through two consecutives block. The green in-
dexes are the indexes of errors generated in B;_1. The blue indexes are the indexes
of errors propagated from B¢ — 1 to B;. The red indexes are the indexes of errors

generated in B;. e 51
Advanced fixed-point process integrating integer word-length 54
A variable zrpoausedin GPSsystem L. 57
A variable zo@y, used in an image processing system 57
Example of variable x evolution. 60
Synoptic of a GPS using TDOA technique. 65
Execution time of GPS application according to overflow probability. 66
Synoptic of an OFDM transmission system. 66
Radix-2 64-point FFT with 6 stages. 67
BER vs SNR per bit variation for different IWL configurations. 68
Execution time according to overflow probability. 69
Advanced fixed-point conversion process. 73

Proposed IWL optimization algorithm combined with selective simulation for

overflow effect analysis. 79
Normalized cost according to normalized distance error (6g). 82

Pareto-curves of the normalized cost C,,; according maximum BER degradation

ABERpax(%) for different SNRs. L 83
Optimization time evolutions (s) according to the maximum BER degradation

ABERpax(%) for different SNRs. 84
Abstraction of the Single Noise Sourcemodel. 88
Modelling of a system B composed of smooth and un-smooth oprations [6]. . . . 91

Index Classification step for decision error detection. 93

LIST OF FIGURES vii
6.4 Index Selection step for decision error detection. 96
6.5 Edge detection application considered to evaluate the efficiency of the proposed

approach to eveluate the effect of decisionerror. 97
6.6 Output of the different blocks of the edge detection application for the Lena image.

a) Output of the ComputeGray image, b) Output of the Sobel block, c) Output of

the thresholding operation, d) Output of the Thinning block. 99
6.7 Edge detection application using single noise source model. 99
6.8 Edge detection application using proposed techniquel. 100
6.9 Indexesof Loevaluatedfrom Lq.. 100
6.10 Output of the thinning block for Lena image. a) Fixed-point simulation, b) Pro-

posed approach simulation. c) Difference between the two images. 101
6.11 MCC between both the proposed and fixed-point simulations output and floating

point simulationoutput. 102
6.12 Execution time Gain between the proposed approach and fixed point simulations

with respect to decision error OCCUITence. o v v w e e .. 103
6.13 Execution time withrespectto MCC. 104

LIST OF TABLES ix

List of Tables

2.1 Bit allocation in the binary IEEE 754 floating-point format coding. Numbers in
brackets represent the bit positions. L oo 9

2.2 Dynamic range for different fixed-point and floating-point formats 12

3.1 Overflow probability for different word-lengthwg 38

CHAPTER

Introduction

1.1 Scope of the Thesis

In the last decades, the implementation of Digital Signal Processing (DSP) applications has
been facilitated by the massive advance in semiconductor technology. Using digital signal pro-
cessing applications allowed the emergence of new products with complex algorithms to meet
the users’ demands. The complexity of such applications puts the companies in a challenging
cycle of design and product delivery. Companies have to deliver more value for every unit cost
they charge from consumers due to competition between them. Practically, designers work in an
increasing complexity environment to reduce the time-to-market and minimize the product cost
while satisfying the customer demands.

Telecommunication belong to one of the fast growing industries. For example, the number of
mobile networks subscribers (users) passed the staggering number of 6 billion worldwide [7]. This
advance in the telecommunication industry has drawn benefits from the growing semiconductor
technology. As an example, smart phones nowadays include a big combination of telecommunica-
tion, signal processing and other applications. The implementation of all these applications should
comply with the demand of users in terms of quality under strict constraints related to energy, cost
and time.

The cost of modern electronic devices is usually measured in terms of silicon area, power
profile and execution time, which should be kept to a minimum without compromising the system
performance. These goals are conflicting in nature and the designer has to inevitably derive a
trade-off between the system performance and its cost. Therefore, it is very important to make
careful decisions in every design step to ensure the best possible performance of the entire system.
One of the first and major decisions is the choice of the arithmetic operators used to implement
the algorithms, which has a large impact on the cost-performance trade-off. Floating-point and
fixed-point operators are two popular choices available for the implementation of all arithmetic
operations. Fixed-point arithmetic operators are known to take significantly lesser area, shorter
latency and to consume less power. Implementation of telecommunication algorithms usually
have rigorous performance parameters to be achieved and demand high computational power. In
such cases, using fixed-point arithmetic allows satisfying such constraints thanks to its ability in
manipulating data with lower word-length compared to floating-point arithmetic. Thus, digital
signal processing algorithms are implemented into fixed-point architectures and floating-point to

1. Introduction

Functional
requirements

Non-functional

requirements
I

Quality of Service Requirements

Algorithm design /
uco energy consumption, cost
8 : e R
Floating-point @ ()
C code Integer word-length
v determination
\. y,
Fixed-point l
conversion - N
. Fractional word-length
c Fixed- determination
o point C L y
=l
© code k J
C
9]
£
1] o
ot Architecture Combilation
£ synthesis P

v v

IP Blocks FPGA ASIP DSP uC
SoC

Figure 1.1 — DSP System Design Flow

fixed-point conversion is mandatory.

The various stages of the design flow of a digital signal processing application are described
in Figure 1.1. The first step of this cycle is the definition of the requirements by specifying the
functions to be performed by the system as well as the architectural constraints of the system (time,
memory size, energy consumption). The next step is the design and the specification of a complete
description of the algorithm. At this stage, simulations are carried out to ensure that the system
performance is satisfied. These simulations can be performed using tools used to simulate DSP
algorithms such as Matlab/Simulink (Mathworks) [8], Scilab (Inria) [9], Floating-point arith-
metic is used to overcome problems of computation accuracy. Once the algorithm is designed, it is
implemented into an embedded system using a programming language. The architectural solutions
used for the implantation can be software or hardware such as ASIC, FPGA or DSP. Any practical
DSP implementation uses fixed-point arithmetic to reduce the area and power consumption and
obtain a cost-effective hardware. A conversion process from the floating-point description of the
algorithm to a fixed-point implementation that customizes every wordlength in the datapath has to
be realized. This task is the focus of this thesis.

The floating-point to fixed-point conversion process is an optimization problem [10] which
derives the data word-length. This process explores the trade-off between the cost and the appli-
cation quality degradation due to the limited bit-width of fixed-point data types. Moreover, it has
been shown that the conversion process can take up to 30% of the total development time [11, 12].
Thus, an automatic floating-point to fixed-point conversion tool is essential to efficiently optimize

1.1. Scope of the Thesis

the implementation cost while satisfying the performance constraints in the shortest possible time.
Recently, High Level Synthesis tools [13, 14] have emerged. These tools generate register transfer
level (RTL) implementations directly from a C/C++ fixed-point specification of the application.
These tools reduce significantly the development time while allowing a good design space explo-
ration. Thus fixed-point conversion becomes the bottleneck for fast product development.

The conversion process consists of two parts corresponding to the determination of the integer
part word-length and the fractional part word-length. To reduce the complexity of the conversion,
the determination of the integer part and the fractional part word-lengths are handled separately.
The integer word-length (/WL) optimization is based on determining the data dynamic range while
fractional word-length (FWL) optimization consists on the numerical accuracy analysis. The lim-
ited integer and fractional bit-width of the fixed-point data types will introduce an overflow occur-
rence and quantization error respectively which generate a degradation of the application quality.

Range estimation and overflow error The dynamic range estimation determines the minimum
and maximum values and is used to compute the minimum number of bits for the integer part.
Classical range estimation methods compute theoretical absolute bounds that will never be ex-
ceeded in practice to avoid the appearance of overflows. In doing so, the provided ranges are
pessimistic and the implementation cost is largely increased. As the absence of overflows is guar-
anteed, the optimization of the integer part word-length under performance constraints becomes
impossible and the trade-off accuracy-implementation cost is considered only for the fractional
part.

In many applications occasional overflows are acceptable if the probability of occurrence is
small enough and the range estimation method should be able to take this property into account.
Moreover, methods like interval and affine arithmetic do not provide additional information about
the signal variation inside the range making it a poor approximation of the real variation. Sig-
nals that have large variations but have small probabilities for their extreme values are not well
considered.

Different techniques have been proposed to determine the probability density function of any
type of data. They allow determining the dynamic range for a given overflow occurrence probabil-
ity. These techniques are based on Extreme Values Theory [15, 16, 17] or stochastic approaches
like Karhunen-Loeve expansion [18, 19] and Polynomial Chaos Expansion [20].

Stochastic techniques determine the PDF of the system inputs to evaluate the data dynamic
range. In linear time-invariant systems (L77) the Karhunen-Loeve Expansion (KLE) processes
a stochastic discretization of the input in terms of random variables. Using the superposition
property of LTI systems, this technique determines the corresponding description of the output
which take into account the temporal and spatial correlation and thus provides tighter bounds.
The Polynomial Chaos Expansion (PCE) is used for non LTI systems. Compared to KLE, a wider
range of systems are supported but at the detriment of a higher computational complexity. Extreme
Values Theory is used with lightweight simulations to obtain samples of the output that can further
be used to estimate the probability distribution.

In general, these techniques link the overflow probability and the dynamic range. However,

1. Introduction

defining a mathematical expression of the application quality metric is not trivial and complicates
the automation of fixed-point system design. On the one hand, each application has its own quality
metric. For example, the bit error rate is used for communication system and the mean opinion
score can be used for audio applications. On the other hand, a direct correlation between the
application quality metric and the overflow probability is hardly established.

Numerical accuracy analysis and un-smooth error The numerical accuracy analysis is linked
with the notion of quantization noise. This analysis studies the sensitivity of the output to slight
changes at the input by computing an error metric which can be for example the signal-to-
quantization-noise-ratio (SQNR). In fact, several works are focused on optimizing the fractional
part word-length using the quantization noise power as an error metric.

The quantization process can be modeled as a random process with specific characteristics. At
system-level, the single noise source (SNS) [21] can be used to model the total quantization noise
at the output of a system as a sum of various random processes. The characteristics of the random
process are determined from the knowledge of the quantization noise power and its spectral and
distribution functions.

The models describing the quantization noise based on Widrow’s quantization models [22] and
perturbation theory are accurate only when the quantization step size is very small in comparison
to the dynamic range. As the quantization step-size increases, the noise properties deviate from the
analytical predictions and soon become intractable. Such quantizers are referred to as un-smooth

quantizers.

Moreover, existing methods of numerical accuracy analysis evaluate only the power of the
output quantization noise. In some cases, like the evaluation of the performance in systems with
un-smooth operators [5], this limited information is insufficient and the entire probability density
function of the noise should be determined.

As a solution, simulation based approaches are used to overcome the limitation of classical
approaches. In comparison to stochastic approaches, where establishing the link between the
application quality metric and error occurrence probability is not trivial in the general case, sim-
ulation based approaches can be performed on any type of system [8, 23, 24]. However, they are
time consuming and require a large number of samples to obtain an accurate analysis. This results
in a serious limitation on the applicability of simulation based methods especially that the exist-
ing simulation (complete simulation) based approaches simulate all the input samples in every
evaluation of the quality analysis.

1.2 Objectives and Contributions of the Thesis

In this thesis, we aim at accelerating the process of floating-point to fixed-point conversion.
We present our new approach based on a framework using selective simulations to accelerate the
simulation of overflow and un-smooth error effects. This approach can be applied on any C/C++
DSP application to evaluate the degradation due to overflow or un-smooth errors. Compared to

1.3. Outline of the Thesis

complete fixed-point simulation based approaches, where all the input samples are processed,
the proposed approach simulates the application only when an error occurs. Indeed, overflows
and un-smooth errors must be rare events to maintain the system functionality. Consequently,
selective simulation allows reducing significantly the time required to evaluate the application
quality metric.

As most of the existing works is focused on optimizing the fractional part, we focus on op-
timizing the integer part, which can significantly decrease the implementation cost when a slight
degradation of the application performance is acceptable. Indeed, many applications are tolerant
to overflows if the probability of overflow occurrence is low enough. Thus, we exploit the pro-
posed framework using a new integer part word-length optimization algorithm to accelerate the
optimization of the IWL. Furthermore, we apply the framework of selective simulation to evaluate
the accuracy in fractional word-length optimization of system with un-smooth operators.

The different contributions of this thesis and the associated publications in international con-
ferences and journals are listed below:

— The design and the development of a selective simulation framework to avoid complete
fixed-point simulations to evaluate the application quality metric.
— The exploitation of the selective simulation framework to accelerate the analysis of
overflow effect. This contribution has been published in the DASIP conference [25]
and in the Journal of Signal Processing Systems [26]
— The exploitation of the selective simulation framework to accelerate the analysis of
un-smooth error effect.
— The design and the development of an optimization algorithm for the integer part word-
length. This contribution has been published in ICASSP conference [27] and in the Journal
of Signal Processing Systems [26]

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the fixed-point and
floating-point arithmetic, and compares them in terms of arithmetic aspects as well as software
and hardware implementation. It also describes the steps of the floating-point to fixed-point con-
version and explains the existing methods for both the range estimation and the accuracy analysis.
Furthermore, this chapter provides a description of ID.Fix tool. This tool allows the conversion of
a floating-point C source code into a C code using fixed-point data types.

Chapter 3 explains the problem of evaluating the system when an error (overflow or un-smooth
error) occurs with low probability. It explains the concept of overflow and its relation with integer
part word-length, and the concept of un-smooth error and its relation with the quantization process.
Moreover, a new approach that uses selective simulations to accelerate the simulation of finite
precision effects analysis is presented. This approach can be applied on any C'/C + +-based DSP
application using fixed-point arithmetic to evaluate the degradation due to finite word-length.

As a next step, Chapter 4 details the proposed selective simulation approach and explains its

1. Introduction

procedure when applied in the presence of overflow. After presenting the methodology of variables
selection for integer word-length optimization, the implementation of the proposed framework in
C + + is explained. Then, experiments are conducted to verify the effectiveness of the proposed
selective simulation technique.

In Chapter 5, the proposed selective simulation approach is exploited to design a new opti-
mization algorithm for integer part word-length optimization. The fixed-point refinement explores
the trade-off between implementation cost and application quality. The cost and the application
quality of systems using fixed-point arithmetic depend on the word-length of each data. After
presenting the existing algorithms for determining the word-length, the proposed optimization al-
gorithm is explained.

Chapter 6 considers the use of selective-simulation technique to evaluate the effect of un-
smooth errors. The detection of potential un-smooth errors is detailed and then, experiments on an
image processing application are conducted to evaluate the efficiency of the proposed technique.

Finally, in Chapter 7, we conclude this thesis and present several potential research directions
to be developed in future work.

CHAPTER

State Of The Art

Most digital signal processing algorithms manipulate data representing real numbers. The
design of signal processing algorithms rather uses floating-point arithmetic because of its devel-
opment simplicity and its good numerical properties. However, for numerous embedded systems,
fixed-point arithmetic is preferred because of its higher benefit in terms of power consumption,
area and architecture latency. Thus, a conversion from floating-point to fixed-point is required
before the hardware implementation of the algorithm. This chapter first presents and compares
fixed-point and floating-point arithmetics. Then, the steps of the conversion process and the ex-
isting fixed-point conversion methods are detailed. Especially, existing techniques for dynamic
range and accuracy evaluation are presented. Finally, the fixed-point design environment ID.Fix is
described.

2.1 Fixed-Point representation

2.1.1 Number representation

In almost all digital platforms, digital systems use binary number representation and specify
the corresponding rules for performing arithmetic operations (addition, multiplication, etc.). The
exact representation of numbers requires infinite precision. However, only a limited number of
bits can be used in practice. Thus, most of the time, scientific calculations give approximations of
the exact values.

In general, digital signal processing algorithms require high computing capabilities. Therefore,
choosing the right number representation format is critical in the implementation of any digital
signal processing algorithm. Fixed-point and floating-point arithmetics are generally used for
storage and computation purpose.

The effect of limited number of bits for standard arithmetic can be evaluated from two different
perspectives. The first one is concerned with the numerical accuracy, which is determined by the
quantization step of the system. The second aspect is related to the variation of the maximum
dynamic range allowed by the representation. The dynamic range is the domain of possible values
that can be represented for the considered format. It is evaluated as in Equation 2.1, where X ;4 x
and Xy are respectively the largest and the smallest magnitude that can be represented by the
coding standard.

2. State Of The Art

sl el | e an L e o

. B ct)nen 1 Mantissa

Figure 2.1 — Floating-point representation of a signed-number

2.1

X
Dg4p = 20logy, (MAX)

MIN

In the next sections, floating-point and fixed-point representations are described.

2.1.2 Floating-point representation

The floating-point arithmetic is widely used when high precision is required. It represents a
real number composed of a sign s (+ or -), a scale factor (exponent) and a fractional part (mantissa)
as shown in Figure 2.1. The mantissa determines the precision of the represented number and the
exponent defines the power of the base (typically 2 or 10). The latter specifies the position of the
binary point and it is used as an explicit scale factor that changes during computations to code
accurately small and high values.

Let x be a real signed number represented in floating-point with a base B, a sign .S, a mantissa
M and an exponent E. The value associated with x in the floating-point representation is given by

the following expression

z=(-1)°MB¥ 2.2)

Given that several couples of mantissa and exponent can be used to represent a same value, a
standard floating-point format has been introduced to remove this ambiguities. Today, the IEEE
standard for binary floating -point arithmetic (IEEE 745-2008) is used in most CPUs to ensure the
portability of computing software. It specifies the floating-point format and the rounding modes.
It describes not only how the arithmetic operations must be performed, but also the treatment of
possible exceptions (division by zero, overflow, ...). The mantissa and the exponent are encoded
with sign and absolute value representation. The numbers are normalized to ensure a unique
encoding. The mantissa is normalized to represent a value in the interval [1,2[. As a result, the
value of its most significant bit is implicitly equal to 1 and is not represented. The exponent is
encoded as an unsigned number, so it is coded relatively to a bias b = 2¥~! — 1 in order to
represent numbers smaller than 1. The bias depends on the number of bits that are allocated for
the representation of the exponent. It is equal to 127 for 32-bit floating-point (single precision)
and 1023 for 64-bit floating-point (double precision). The value of the data x represented in the
binary IEEE 754 floating-point format is

2.1. Fixed-Point representation

Representation type (bits) Sign E M Bias
Half Precision 1[15] 5[14-10] 10[9-0] 15

Single Precision 1[31] 8[30-23] 23[22-0] 127
Double Precision 1[63] 11][62-52] 52[51-0] 1023

Table 2.1 — Bit allocation in the binary IEEE 754 floating-point format coding. Numbers in brack-

ets represent the bit positions.

|
| |

|

: ——— mbits o n bits >
i Integer Fractional i
' part part i
e b bits “‘

Figure 2.2 — Fixed-point representation of a signed-number

r=(=1)" %28« (1+ M) (2.3)

The bias b is introduced to represent numbers smaller than 1. The mantissa M and the exponent
E are calculated as follows

M = Z m;2" (2.4)
=1
e—1 .
E = Z ;2 (2.5)
1=0

The standard defines the single-precision data type on 32-bits and the double precision data
type on 64-bits. More recently, the half-precision format on 16-bits has been proposed. The table
2.1 shows the distribution of bits of the different types represented by the IEEE 754 norm. The
terms WL, M and E represent, respectively, word-length, mantissa and exponent. The standard
also reserves some values to represent the values 0, —oo and 0o and Na/N (Not a Number).

The exponent range for normalized numbers is [—126, 127] for single precision format (32
bits) and is [—1022,1023] for double precision format (64 bits) and [—14, 15] for half precision
format (16 bits).

10

2. State Of The Art

2.1.3 Fixed-point representation

The representation of fixed-point format is composed of an integer part and fractional part.
The binary point in fixed-point representation and the number of bits of each part are fixed. Thus,
the scale factor of the associated data is constant and the range of the values that can be represented

does not change during the computation.

Figure 2.2 presents the general representation of a number in fixed-point format composed of
a sign bit S (the most significant bit) and b — 1 bits divided between the integer and the fractional
parts. m and n represent the position of the radix point respectively to the most significant bit
(MSB) and to the least significant bit (LSB). They correspond to the number of bits respectively
for the integer part and for the fractional part if they are positive. The bit sign S is equal to 1 if
the represented value is negative value and to 0 if it is positive. Let Q. be the fixed-point format
with m bits for the integer part and n bits for the fractional part. In this representation, each bit of
the integer and fractional parts corresponds to a power of 2. Intuitively, the bits of the integer part
provide the representation of the number with positive powers and the bits of the fractional part

provide the representation of the number with negative powers of 2 (271,272, ., 27").

It should be noted that the sign bit can be removed if the numbers are always positive. More-
over, some parts of the representation can removed leading to a negative value for parameters m
or n. A negative value for m means that the values have an amplitude significantly lower than 1.
The first few bits of the fractional part (power 271, 272, ...) have not to be specified since their
values do not vary. Similarly the term n can be negative to represent data for which the step-size
between two consecutive values is higher than 1.

In general, fixed-point numbers are encoded using two’s complement standard. This standard
has some interesting arithmetical properties regarding addition and subtraction operations. It also
allows a unique representation of 0. Thus, the domain of possible values is not symmetric with
respect to the origin, having 2("+") strictly negative values and 2(™+") — 1 strictly positive ones.
The value of a fixed-point number = using two’s complement representation is expressed as:

m—1
r=-2"5+ Y b2 (2.6)

1=—n

The maximal and minimal values that can be represented depend on the binary point location
and the number of bits used in the fixed-point representation. The definition domain corresponding
to the values that can be represented by the format), ,, is given in Equation 2.7. Moreover, the
quantization in such arithmetic is uniform and is constant for the entire dynamic scale: ¢ = 27".

D =[-2m;2™ — 27" 2.7)

Thus, the finite word-length in the case of fixed-point representation corresponds to a trade-
off between the dynamic range and the precision. On the one hand, increasing the integer part
word-length will result in the extension of the dynamic range. On the other hand, increasing the
fractional word-length part will decrease the quantization step resulting in the enhancement of the

2.1. Fixed-Point representation

accuracy.

2.14 Comparison between fixed-point and floating-point arithmetic

In this section, a comparison between the floating-point and the fixed-point arithmetic is pre-
sented. This comparison includes both numerical quality and hardware implementation.

2.1.4.1 Numerical quality

At the arithmetic level, the quality of fixed-point and floating-point representation are com-
pared by analysing the dynamic range and the Signal to Quantization Noise Ratio (SQNR).

Dynamic range analysis One of the most important criteria to compare different arithmetic is
the dynamic range. The dynamic range ratio D is defined as the ratio between the largest magni-
tude value X 74 x and the smallest magnitude value X ;7 of the signal that can be represented
excluding the value 0. It is expressed in decibels as defined in Equation 2.1.

The dynamic range of the floating-point representation having E bits for the exponent can be
determined as in Equation 2.8.

Dyp ~ 20logy (2°51Y) with K =28"1-1 (2.8)

For the fixed-point representation, the dynamic range is linear with the number of bits b used
in the representation. It is expressed as

Dap = 201log;(2°71) = 20(b — 1) log;,(2) (2.9)

The coding of a number in fixed-point representation is done by mapping the real value of x by
another value Z from the coding domain. When the number exceeds the allowed range of values
defined by the coding standard, i.e. © ¢ [Zin, Tmaz], an overflow occurs.

Figure 2.3 shows the evolution of the dynamic range with respect to the number of bits used
in the fixed-point and the floating-point representation. For floating-point, it is considered that
the number of bits allocated to the exponent is £ = [%]. The floating-point arithmetic leads
to an exponential evolution of the dynamic range depending on the number of bits. The fixed-
point arithmetic leads to a linear evolution of the dynamic range depending on the number of
bits. The dynamic range obtained with a fixed-point representation is greater than the dynamic
range of a floating-point representation for number of bits less than 16. This trend is reversed
when the number of bits exceeds 16. For 32-bits data (single precision floating-point data type),
floating-point representation shows a big interest as it provides higher dynamic range compared to

fixed-point representation.

As an example, Table 2.2 presents the dynamic ranges of single precision floating-point repre-
sentation and some fixed-point representations.

12 2. State Of The Art

T T T
1500 —— Fixed-point arithmetic /1
— Floating-point arithmetic

1000 - / b

Dynamic in dB

/
5001 /

_ 1
10 15 20 25 30
Number of bits

Figure 2.3 — Dynamic range evolution depending on the total number of bits [1]

Representation Dynamic range (dB)

Single precision floating-point (32 bits) | 1535

Fixed-point (16 bits) 90.3

Fixed-point (32 bits) 186.63
Fixed-point (64 bits) 379.29
Fixed-point (128 bits) 764.61

Table 2.2 — Dynamic range for different fixed-point and floating-point formats

Quantization noise analysis Another important criterion to compare arithmetic is the numerical
precision. It represents the step between two successive numbers and depends on the quantization
process.

For floating-point number representation, the precision is proportional to the magnitude of the
encoded number. As the number increases, the value of the exponent needed to encode it increases.

Consequently, the quantization step, i.e the distance between two consecutive numbers, increases.

The quantization step ¢ is bounded as follows

g=(m+1) o 4 g=m (2.10)
]
where m is the size of the mantissa and |z| is the magnitude of the represented number. This
relation shows how the quantization step is adapted to the magnitude of the number. When the
magnitude of the number is small, the quantization step is also small and the precision is still
good. Similarly, the precision decreases when the magnitude of the number increases. A detailed
analysis of the floating-point quantization noise can be found in [28, 29].

2.1. Fixed-Point representation

13

Y futx)
o €x)

s » i i g } H 3 g P : »
U X; Wiyp 7 “ 7/ ,(S

: i
X 21 Ui Uiy X

4

Figure 2.4 — Quantization process with rounding

For fixed-point numbers, the quantization process generates a loss of precision as only a fi-
nite numbers of possible values can be represented. More specifically, 2 distinct values can be
represented if b bits are used. However, the precision of the system depends on the binary point
position and the number of bits for the fractional part. Given that ¢ is the difference between two
consecutive numbers (quantization step), the value of ¢ depends on the LSB weight 27", The
quantization noise is the difference between the real value x and the fixed-point representation &
(Equation 2.11).

e(z) =t —=x (2.11)

Several quantization modes are available such as the round-off and the truncation modes. They
are presented respectively in Figures 2.4 and 2.5 where fg(x) = Z. When considering the round-
off mode, the number is coded to the nearest quantization level as presented in Equation 2.12.
In this case, the maximum quantization error is j:%LSB. e(r) has a null mean and belongs to

[7%%]'
&=+ % Vo € Ay = [ug, iz (2.12)

The truncation mode chooses the inferior quantization level for the representation of a number
as in Equation 2.13. Thus, the maximum quantization error of this mode is ¢ and e(x) € [0, q|.

T=wu;, Vel (2.13)

Signal-to-Quantization Noise Ratio The signal-to-quantization noise ratio (SONR) is the
most common criterion used in DSP applications to describe the computational accuracy. The
SQNR is defined as the ratio between the power of the represented signal P, and the power of the
quantization error P,. It is expressed in dB as

Py
SQNR;p = 10log <P> (2.14)

e

14

2. State Of The Art

90 T T T T T T T T T
80 1
60 - -
m L _
- 50
£
X a0} -
Z
3
30 1
20 1
10 1
ok i
Fixed-point arithmetic with N=16
— Floating-point arithmetic with E=4, M=1
-10 1 L L 1 1 I I I I
-50 -40 -30 -20 -10 0 10 20 30 40 50

Dynamic range in dB

Figure 2.6 — SQNR evolution depending on the dynamic range of input signal [1]

Let D, be the dynamic range of the signal x, and K, the ratio equal to DLI?. P, can be

expressed as

(=

-1
2(k)® = (K, Dy)? (2.15)
0

1
P, = lim

b—oo b

e
Il

In the case of fixed-point arithmetic, the SQNR is defined by Equation 2.16. The equation
shows that the SQNR is linearly dependent on the signal amplitude.

SQNR;p = 20log(D,) + 20log(K,) — 10log(F.) (2.16)

In contrast to the floating-point representation, the fixed-point representation has a quantization
step that is proportional to the amplitude of the signal. The expression of the SQNR for round-off

2.1. Fixed-Point representation

quantization mode is presented in [30]. It depends on the number of bits used for the representation
of the mantissa. Figure 2.6 illustrates the evolution of the SQNR with respect to the dynamic
range of a 16-bits data for both floating-point and fixed-point arithmetic. In the case of floating-
point representation the SQNR 1is almost constant. That is due to the use of an explicit exponent
which allows the adjustment of the SQNR. In the case of fixed-point representation the SQNR is
proportional to the dynamic range. For low dynamic range, the signal in fixed-point representation
is very sensitive to quantization error and the floating-point representation provides a better SQNR.
However, the quantization step of the floating-point representation becomes higher than the fixed-
point representation. Thus, for this case of 16-bits, the fixed-point representation can guarantee a
SQNR higher than the one obtained for floating-point representation, if it is properly scaled. We
should also note that the choice of the number of bits allocated to the mantissa and to the exponent
in the floating-point representation is a trade-off between a high dynamic range and a high SQNR.

2.1.4.2 Comparison of software and hardware implementation

Each software or hardware implementation has its own constraints that determine the choice
of the most suitable arithmetic. In the case of a software implementation, the data word-lengths
are fixed and a limited number of word-length are available in both fixed-point and floating-point
representation. In typical software platforms, the sizes of the integer data types that can embed
fixed-point data are usually a byte (8 bits), half of a word (16 bits), a word (32 bits) and a long
as double word (64 bits). The floating-point numbers are usually in two formats: either single
or double precision accuracy. The half-precision format is supported by some processors. In
addition, it should be noted that some processors support operations on vectorized data with the
SIMD (Single Instruction Multiple Data) concept [31]. Such instructions operate on a set of data
of same size and type collected in a data block of fixed size, which is called a vector. Then, it is
possible to reconfigure the data path according to a standard size (the number of bits is usually a
multiple of four or eight) in order to control the data word-length in fixed-point arithmetic.

In hardware implementation, any word-length is supported for fixed-point arithmetic. More-
over, hardware implementation opens horizons for custom floating-point units [32], [33]. In [34],
specifications of floating-point operators are described using a C++ library of floating-point op-
erators. This results in automating optimal implementations of floating-point operators in the
hardware implementation so that the computing time is small enough to achieve the desired op-
erating frequency. The impact of the number of bits allocated to the floating-point operator in
terms of dynamic range and precision is not as simple as in the case of fixed-point representtaion.
Ultimately, it is difficult to make a choice between fixed-point format and floating-point format
without explicitly exploring all the operations.

The floating-point arithmetic has the advantage of having a greater dynamic range for data
with more than 16-bits and a better SQNR compared to fixed-point arithmetic. Nevertheless,
as the exponent varies for different data, the floating-point arithmetic operations are complex to
perform. For example, the floating-point addition is performed in three steps. First, the two
input data are denormalized in order to have a common format. Then, addition is performed.
Finally, normalization is carried-out to adjust the exponent of the addition output. Thus the cost

2. State Of The Art

of a floating-point addition is high compared to the cost of a fixed-point addition. In this case, the
binary position of the two input operands are aligned by shifting the bits and then the two operands
are added.

Low power consumption is one of the major requirements of embedded systems. Floating-
point arithmetic based on the IEEE-754 standard requires the use of at least 32 bits for data
(half-precision is supported by few processors). However, the majority of applications based on
fixed-point arithmetic use data with limited word-length: from 6 to 16 bits for input data and less
than 32 bits for intermediate results. Thus, the widths of buses and memories in the fixed-point
architectures are lower. This leads to lower energy consumption and cost for architectures based
on fixed-point arithmetic, in addition to the fact that operators in fixed-point are less complex.
For example, performing 32-bit fixed-point addition and 16-bit fixed-point multiplication require
0.5pJ and 2.2pJ respectively, while a 64-bit floating-point unit consumes 50pJ [35]. Therefore,
the fixed-point arithmetic is preferred for algorithms implementation in embedded systems. How-
ever, fixed-point arithmetic has the disadvantage of having a lower SQNR, and therefore a lower
numerical accuracy. Thus, it is necessary to pay attention to the numerical accuracy in fixed-point
implementation. The accuracy can be determined either by simulations or by analytical methods
as presented in Section 2.2.2.

in summary, the operations used in embedded applications with fixed-point arithmetic are less
expensive compared to delivering data and instructions to the functional unit of a programmable
floating-point system. However, the limited bit-width results in a degradation of the numerical
accuracy. In addition, using fixed-point format causes overflow occurrence whenever the inte-
ger word-length (/WL) is insufficient to represent the dynamic range variation. Thus, DSP algo-
rithms are implemented into fixed-point architectures and floating-point to fixed-point conversion
is mandatory in order to find the compromise between area and arithmetic precision.

2.2 Floating-point to fixed-point conversion

The conversion of floating-point representation into a fixed-point representation or the refine-
ment of an existing fixed-point specification is an optimization process divided into two main steps.
The first step corresponds to the determination of the integer word-length of each variables. After
the evaluation of the definition domain of each data, where the width (number of bits) must repre-
sent all the possible data values, the position of the binary point is determined while minimizing
the integer part of each data. The second step is the fractional word-length determination, which
defines the numerical accuracy. This section presents the existing techniques for evaluating the
dynamic range and the numerical accuracy in order to determine the word-length of each variable.

2.2.1 Integer word-length optimization

The integer world length determination is a critical step in the fixed-point conversion process.
The number of bits for the integer part of a data = depends on its dynamic range and is linked with
the probability density function f(z) the data x. If the extreme values (maximum and minimum)

2.2. Floating-point to fixed-point conversion

17

Dynamic range evaluation

/\

with overflow probability No overflow
Stochastic Statistical Statisﬁcal/\
approaches approaches approaches Interval based
/\ approaches
Karhunen-Loéve Polynomial chaos Extrem value Statistical Moment /’\

expansion expansion theory based approach Interval Affine Abstract
. ' i Arithmetic Arithmetic Interpretation

f(z)

Cost/quality ; v
tradeoff Bounds Certified bounds

= |]
| ¥ | 1 xr

Data probability density function

Low cost Critical systems
electronic devices

Figure 2.7 — Classification of the approaches for the dynamic range determination (from [2])

of a variable are known, the minimum integer word-length is computed in two’s complement
representation as follows

Iyt = [logg(maz|x|)] + « 2.17)
with
L] 2 for mod(logg(xwx), 1)=0 (2.18)
1 otherwise

Figure 2.7 presents a classification of the existing techniques used to evaluate the dynamic
range. When the system does not tolerate any computational error (critical system), the integer
part word-length has to cover the entire range of possible values and any overflow occurrence
may lead to a serious quality degradation. In this case, the data bounds should be determined
by techniques that guarantee the absence of overflow occurrence. For example, techniques based
on interval arithmetic satisfy this constraints, but at the expense of an overestimation of the data
bounds. Statistical approaches that determine bounds from a set of simulation results can reduce
the overestimation, but can not ensure the absence of overflow occurrence.

It should be noted that overflows occur when the number of bits of the integer part is not
sufficient. Overflow occurrence degrades the system performance. However, the hardware imple-
mentation cost is unnecessary increased if the number of bits exceeds the needs.

Many applications are tolerant to overflows if the probability of overflow occurrence is low
enough. In this case, determining the number of bits of the integer part is a trade-off between

2. State Of The Art

the implementation cost and the system performance degradation. This is translated into an opti-
mization problem where the integer word-length of each variable of the system is reduced while
maintaining an overflow probability lower than the accepted probability. The challenge is to esti-
mate the probability density function (PDF) of the data in order to be able to compute the overflow
probability. Firstly, statistical approaches model the data PDF queue from a set of simulation re-
sults. Secondly, stochastic approaches model the variable PDF by propagating the data PDF model
to the inputs inside the application.

2.2.1.1 Dynamic range evaluation without overflow

In the following part, the existing techniques used to determine the dynamic range while avoid-
ing overflow occurrence are presented. These techniques are based on the estimation of the dy-
namic range for each variable using its extreme values.

Simulation based methods The statistical methods allow to estimate the dynamic range of a
variable using its characteristics, determined by floating-point simulations. The simplest estima-
tion of the dynamic range is to determine the maximum absolute value of the samples obtained
during the simulation [36]. However, the quality of the estimation depends on the choice of the
input stimuli and on the total number of samples.

Kim and Sung proposed to use a function of the mean and the standard deviation rather than
the maximum absolute value [37]. This can be more pessimistic, but has the advantage of being
less sensitive to the number of samples. The statistics collected for each variable x are the mean
u(x) and the standard deviation o(x). The authors then propose to choose a dynamic range R
using the following expression

R(z) = |p(@)| + n(x).0(x) (2.19)

where n is an empirical weighting coeffecient [37, 38]. Estimating the dynamic range based
on the average and the standard deviation rather than the maximum absolute value provides a
better estimation of the dynamic range with fewer samples. However, this approach can be applied
only if the distribution of = follows a uni-modal law. This is verified in [37] where the model is
extended by measuring the coefficients of skewness and kurtosis of each variable which allows
the classification of the signal as uni-modal or multi-modal, symmetrical or non-symmetrical with
zero mean or non-zero mean. These classifications are then used to perform the scaling of more
complex signals.

Interval arithmetic Interval arithmetic (/A) methods are based on associating each variable with
an interval instead of a value [39]. The bounds of a variable at the output of an operator are
calculated using the bounds of the input operands and the rule of the corresponding operation. Let
D, = [z,7] and D, = [y, 7] be the definition intervals of respectively the variables x and y. If

2.2. Floating-point to fixed-point conversion

19

x and y are not correlated (xz and y may take any value of their definition interval independent of
each other), then:

Dyyy = [z+y,T+7 (2.20)
D, = |az, aT] if a>0 2.21)
= [aT, ax] if a<0 (2.22)

Dyy = [min(zy, 2y, Ty, 7Y), maz(zy, 2y, Ty, TY)] (2.23)
D_, =[-7, —g] (2.24)
Dyy=z—-7,7 -y (2.25)
Dy2 = [min(0, ||, [7])?, maz(|z|, [7])? (2.26)

Interval arithmetic guarantees the absence of overflow in the algorithm if the input data values
are in the definition domain used by the estimator. It computes the variable ranges at the compi-
lation time and is not data dependent. However, the performance of this estimator is low because
the method is conservative. The estimation is based on an analysis that considers the worst case
scenario, which could result in overestimated bounds. Moreover, this method is often pessimistic
because it does not take into account any correlations between the input operands, it considers
that all the signals are independent and may take any value in their given interval. But not all the
values in the interval are truly possible if there is a correlation between the operands. Thus, in this
case, the method will provide overestimated bounds. In addition, it cannot be applied on recursive
systems even in the case of a stable system.

Multi-Interval Arithmetic (MIA) is proposed as an improvement of the IA method [40, 41].
The enhanced method splits each interval into P disjoint subintervals

-

[xh) xiz] (2.27)

[xmina xma:c]

=1

The operations are performed on smaller intervals and the total dynamic range is determined
by merging all the intermediate intervals. Thus, the dimensions of the final results are reduced
in comparison to the traditional IA method. As IA, MIA guarantees the absence of overflow and
underflow and does not address the correlation problem.

Affine arithmetic One of the proposed solutions to solve the dependency problem in IA is the
affine arithmetic (AA) method [42, 43, 44, 45]. The authors extend the classical IA-based method
by integrating the source and the sign amplitude of all uncertainties €;. The uncertainty of a
variable x is represented by a linear expression given by:

T=mo+ z1€61 + ... + Tpene; € [—1,1], (2.28)

€; is an independent source of uncertainty or error, which is added to the total uncertainty of the
variable £. Moreover, each source of uncertainty ¢; is weighted by a partial deviation x;. The

2. State Of The Art

definition interval of a variable x represented with an affine form is determined as:

M [Cﬂmm, xmaac] = [1'0 — Tz, Lo + Tac] (229)
(2.30)

with
re = |z1| + 22| ...+ |20 (2.31)

The most important property of the AA method is that a noise coefficient can be shared between
variables, which allows keeping track of the first order correlation (also called spatial dependency)
between them. However, the temporal correlation between the value of a signal and its previous
values is not taken into account. Thus, this technique becomes less effective in the field of Digital
Signal Processing. Similar to IA, the dynamic range is propagated through affine operations. This
step is straightforward for all linear operations as they preserve the affine property for the result as
depicted in Equation 2.32.

T=x9+T1€61 + ...+ Tpe, (2.32)
U =190 +yie1 + ...+ Ynen

For non-affine operations, the result is no longer a linear function of ¢;, and a linear approx-
imation of the function is used in this case. The non-linear terms are bounded by a constant and
added to the final affine expression. This results in loss of information and oversized bounds. For
example, the multiplication is realized as in Equation 2.33. Other non-affine operations can be be
considered [44].

Z=2ay= (xo + ZZL‘ZEZ> (yg + Z ym) (2.33)
i=1

=1
n
2 = (woyo) + Z (zoyi + Yoxi) € + 2kep, (2.34)
=1
n n
with 2= |l - > _|uil (2.35)
=1 =1

The number of noise variables increases with each non-linear operator. The independence
between these uncertainties would result in a loss of correlation between the signals and the range
would explode for large computation data-paths.

L, norm and transfer function based methods In [406, 47], the authors propose a methodology
that calculates the dynamic range for Linear Time-Invariant (LT7) systems. The methodology uses

2.2. Floating-point to fixed-point conversion

the L1 norm and the concept of transfer function. Let’s consider a linear system S with input x
and output y, the output y at instant n depends on the input z(n), on the N, precedent input values
x(n — i) and on N precedent output values y(n — i) (Equation 2.36).

Ne N
y(n) = Z biz(n —1) — Z a;y(n — 1) (2.36)
=0 i=1

The objective of this approach is to transform the recurrent equation of the system (2.36) so
that the output y is expressed in terms of the input x and its delayed versions. The first technique
uses the impulse response h of the system. Thus, the output is the convolution between the input
x and the impulse response h

y(n) = h(n) * z(n) (2.37)

By using the L;-norm [48], the maximum absolute value of y is

+oo
max(|y(n)|) < max(|z(n)]) - Y [h(m)] (2.38)
n n
m=—00
If the maximal and minimal values of the input are known, the dynamic range can be computed
for every variable in the system. This method can be used for any type of input signal and gives
theoretical bounds for the output guaranteeing the absence of overflow. However, it only takes into
consideration the maximum values and not the signal statistics. This Lj-norm gives conservative
results.

The second technique uses the frequency response of the filter H (e/*?). This approach, called
standard Chebychev, determines the maximum absolute value for a given narrow-band input sig-
nal. Thus, the input signal is modeled by a sinusoidal function. The relationship between the
maximum absolute value of ¢ and x is as follows

max(ly(n)]) < max(a(n)]) - max(|H () (2.39)

2.2.1.2 Dynamic range evaluation in presence of overflow

When the signal has high variation in its amplitude throughout the execution, determining the
word-length becomes a difficult task. Ensuring the theoretical range leads to a significant increase
of cost. To reduce the cost and the execution time, the word-length of the integer part can be
reduced so that the interval of variation is not entirely covered. As a consequence the overflow
occurrence is authorized with a constraint regarding their probability of appearance. Variables
that have long tailed PDFs can be approximated with tight intervals that correspond to a desired
coverage probability.

This section presents the methods used to determine the dynamic range for a given overflow
probability. The methods are based on deterministic procedures that provide theoretical results

22

2. State Of The Art

Overflow Applicatio Input
Probability n Signa
Desc&iptio l
Simulation

l N maxima and minima

Gumble
Distribution
Parameters
Determination

\ 4

Range
Determination

l

Estimated Bounds

Figure 2.8 — Range determination methodology using Extreme Value Theory.

using a description of the input variability.

Extreme value theory The extreme value theory [49] is a statistical analysis based method con-
cerned with the extreme deviations from the mean of the probability density function. Its purpose
is to give a theoretical description of the distribution of the extreme values. This can be used to
model the probability and magnitude of rare events. In [49], the author showed that the maxima
and minima obtained for different realization of a random process follow the Gumbel distribution:

—(o—p —(z=p)
flz) = ;e(e (2.40)
_ 026 (2.41)
T
t= o — By (2.42)

where p, and o, are respectively the mean and standard deviation of x. + is the Euler’s
constant (= 0.5772). The Extreme Value Theory has been applied to the range estimation problem
in[16, 15, 50] as shown in Figure 2.8. They use lightweight simulations for statistical data analysis
that provides theoretical probabilities for an overflow event. The program is simulated N times,
which leads to the extraction of N minima and maxima. Then, the parameters of the Gumbel
distribution are estimated using the obtained results. Let P, be theprobability that x is in the range
[Tmin; Tmaz). Let P be the overflow probability, which is the complementary event of P,. The
maximum value x,,4, is derived from Equation 2.40 and results in [50]

2.2. Floating-point to fixed-point conversion

Outputy

Overflow probability
P(x > Min or x> Max)

Input x

Xmin Xmax

Figure 2.9 — Compute the range of a variable from its PDF.

1 1
Tmaz = b — 0z In <1n <-Pr)> =pu—0zln <ln <1—P>) . (2.43)

Expression 2.43 determines the definition domain of the data for a given probability of over-
flow P defines by the developer. The larger the number of samples N is, the more accurate the
statistical analysis becomes. The number of samples that should be provided for an application is
determined empirically. If the sample size is not large enough, all the possible execution traces
in the program are not covered. It should be noted that this method can be applied on any kind
of system and outperforms affine arithmetic based methods in the range estimation and the area
reduction especially for non-linear applications [50].

Stochastic methods Stochastic approaches aim at obtaining a complete representation of the
variability of a variable x. The range of all the variables are represented by their PDF and obtained
by propagating the variability characterization through the system. The range of all the variables
is computed from the PDF with respect to a coverage probability as shown in Figure 2.9.

A general methodology to determine the dynamic range for a fixed overflow probability is
presented in Figure 2.10 (proposed in [3]). This methodology is based on stochastic modeling
of signals to determine the PDF of the output. The first step is to model the input signal by
decomposing it in terms of several stochastic parameters. The second step calculates the stochastic
parameters of the output, which allow to determine its PDF in a next step. It should be noted that
several approaches can be used to determine these parameters. Finally, the dynamic range of the
output is determined according to the authorized probability of overflow.

In [18, 20], a new approach for range estimation is presented. The method takes advantage
of both the random and temporal dimensions that characterize the uncertainty of data in signal
processing applications. The signal is modeled in the form of a stochastic process to determine its
dynamic range. The input signals are modeled as a weighted sum of random variables. Then, the
parameters associated with each input are propagated in the system to obtain the corresponding
output parameters and probability density function. This allows the possibility of obtaining the
dynamic range for a given probability of overflow.

In [18], the proposed method uses the Karhunen-Loeve Expansion (KLE) to decompose the

24

2. State Of The Art

Overflow Application Input
Probability Description Signal

!

Input Modeling

DFG l

Output Model Determination

PDF Estimation

Range
Determination

Estimated Bounds

Figure 2.10 — Probabilistic range determination methodology [3]

LTI system input, modeled as an arbitrary random process, into &k deterministic signals. Each
signal is multiplied by a random variable. Starting from a description of the system behavior the
KL expansions for the random processes corresponding to all variables can be generated. Based
on this, full statistical information about the variables can be obtained by simulating the system

(executing the program)k times. A stochastic process p(t) is expressed as

p(t) = > VAifilt)wi (2.44)
=0

where f;(t) are the eigenfunctions,)\; is the eigenvalues of the covariance function R, and y;

are non-correlated random variables with unity variance and zero mean.

In contrast to the previous range representations, the KLE is a complete statistical description
of the input process that can be used to determine the statistical moments or the entire probability
distribution. Using the superposition property of the LTI systems, it is possible to determine the
corresponding KLE description of the output using a limited number of simulations. However, the
simulation period must be set long enough for the statistics of the responses to reach the steady
state. The method fully considers both the spatial and temporal correlation. It can construct ran-
dom process models from real data or empirical statistics, instead of using oversimplified models
or assumptions.

For non-linear systems, superposition cannot be applied anymore. Thus, the authors of [20]
proposed the use of the Polynomial Chaos Expansion (PCE). The authors show how the PCE of
the input is obtained from the corresponding KLE representation using a projection method. Using

2.2. Floating-point to fixed-point conversion

the PCE arithmetic, the variability of the input can be statically propagated in non-linear systems
and the PCE representation for all the variables can be obtained in any type of system. The PCE
of a 2"? order stochastic processe X (0) is expressed as follow

X(0) =) oy ¥(((0)) (2.45)
=0

where «; are constant coefficients, { = ((1,(2...(4) is a set of d independent second order
random variables and W, (() is multidimensional orthogonal polynomials.

Furthermore, the authors propose a word-length optimization criterion under SNR
constraints[20]. However, when the overflows occur during the computation, this evaluation may
become inaccurate.

In [3], a probabilistic approach for the dynamic range evaluation has been developed using
KLE to represent the variability of the input signal in linear-time invariant systems and PCE in
non linear systems. Compared to the previous method, the variability of the input is statically
propagated through the data-flow graph and the analytical representation of the output is obtained.
The range is further computed from the PDF with respect to a coverage probability.

2.2.2 Fractional word-length optimization

Computation in fixed-point arithmetic has limited accuracy and generates quantization error at
the output. The quantization error is considered as a noise added to the result and evaluated by the
difference between the output in finite and infinite precision [29]. It is therefore necessary to verify
that the behavior of the algorithm using fixed-point arithmetic is modified within a reasonable
limit. Thus, the fractional part is determined based on a trade-off between the needed accuracy
and the circuit cost. There are various metrics to evaluate the numerical accuracy. The most
commonly used metric in digital signal processing domain is the power of the quantization noise
or the signal to quantization noise ratio (SQNR). Let P, be the quantization noise power and P,
the output signal power, the SQNR in dB is defined by

SQNR;p = 10log Ly (2.46)
by

An alternative metric can be the error bounds e € [ein, €maz] [51]. It is used to ensure an
absolute maximal value of the quantization noise. A third metric corresponding to the number of
significant bits associated with a variable [52] can be used. This method estimates the number of
bits of a given variable that are not modified by the surrounding noise and thus represent correctly
the data. For an example of a 16—bit data, the number of significant bits not modified and allowing
a correct representation of the signal is 13 when the quantization noise change the values of the
last three bits.

To determine the quantization noise power at the output of the algorithm two approaches may
be used. The first approach is to determine the statistical parameters of the quantization error

2. State Of The Art

Analysis of
quantization effects

/

\\
Analytical

approaches

Simulation based
approaches

e / \

Optimized Fixed- 52 : - = Probability Density . s
point Data Types Deta Types Exror Power Metric g Error Bound Metric

Mixed approaches

N /S \

Hardware Emulation Bit-level Mapping Interval Arithmetic Affine Arithmetic
optimization Perturbation Theory Karhunen-Loave Polynomial (1A) (A
Expansion (KLE) ~ Chaos Expansion
(PCE)
% ¥ Impulse Response AA-based
Hyboid A pproach Determination Simulation

Figure 2.11 — Classification of the approaches used to analyze the effects of the quantization noise

—> Fixed-point simulation

Quantization
noise
evaluation

Input =

Floating-point simulation

A 4

Figure 2.12 — Simulation-based computation of quantization error

from the fixed-point and floating-point simulations of the algorithm. The second determines the
analytical expression of the quantization noise power by propagating a noise model in the flow
chart of the algorithm. Figure 2.11 presents a classification of the methods used to analyze the
quantization noise.

2.2.2.1 Simulation based methods

The evaluation of the performance of a fixed-point system using simulation methods is based
on evaluating the output of the system using bit-true fixed-point simulation to obtain the value of
the quality criterion associated with the application. The advantage of these methods is their ability
to provide accurate results for any type of system. The accuracy of the fixed-point specification
is evaluated statistically from the signals obtained by simulating the algorithm in fixed-point and
floating-point. The floating-point simulation output is close to the output of infinite precision
simulation because of its low quantization error compared to the one obtained with fixed-point
simulation. Thus, floating-point simulation is considered as the reference and the power of the
quantization noise is directly obtained from the second order moment of the difference between
the two simulations. The approach is presented in Figure 2.12 and the power of the quantization

Multi-IA (MIA)

2.2. Floating-point to fixed-point conversion

noise is evaluated as in Equation 2.47, where y and y ¢;,q are respectively the output results of the
floating-point and fixed-point simulations.

Py = E[(y — Yfizea)®] (2.47)

To get accurate results, a high number of samples, denoted N, at the input of the algorithm
has to be used. Let N,,s be the number of operations defined in the description of the algorithm
and NV; be the number of time that the accuracy is evaluated during the optimization process. A
first estimation of the number of points (V) to be calculated, presented in Equation 2.48, shows
the need for an effective simulator to obtain a reasonable simulation time.

Npts = Nech ' Nops ' Nz (248)

Various methods have been proposed to emulate the mechanisms of fixed-point arithmetic.
The method presented in [53] can simulate a fixed-point specification, using the concepts of over-
loading operators in C' + + language level. The operator overloading makes the implementation
of the fixed-point algorithm significantly longer than a floating-point simulation. The same con-
cepts are implemented in fixed-point simulation using SystemC [54]. In [55], the floating-point
and fixed-point simulation time are compared for some signal processing applications. Let Rg;,
be the ratio between the simulation time ¢, f4p¢ Obtained with fixed-point data types and the
simulation time %y, f1,,+ Obtained with floating-point data types

o
Ryim = —m—fopt (2.49)

The average ratio Ry, is equal to 540 for standard SystemC fixed-point data types and 120
for limited precision SystemC fixed-point data types. The data type pfix is proposed in [56] to
reduce the simulation time of the method described above. It aims at improving the computation
time of fixed-point operations by using efficiently the floating-point data types of the host machine.
The fixed-point simulation time of a fourth order IIR filter with pf£ix type leads to a ratio R,
of 7.5.

The fixed-point simulation can be accelerated by executing it on a more adequate machine
like a fixed-point DSP [57, 58, 55], or an FPGA [59] through hardware acceleration. The method
presented in [58, 55] uses integer types in the machine for a more efficient encoding of the data
in order to reduce the execution time of the simulations. This concept is also used in the sim-
ulator HYBRIS associated with Fridge tool [60]. These methods reduce the execution time of
the fixed-point simulation. However, the effort required to optimize fixed-point data has not been
quantified. Indeed, the optimization techniques described above are relatively complicated, and a
new simulation is required every time the fixed-point specifications change.

2. State Of The Art

2.2.2.2 Analytical approach

The objective of the analytical procedures is to define a mathematical expression of the accu-
racy metric according to the data word-length. Obtaining this accuracy metric expression can take
time. However, once this expression has been determined, the accuracy can be evaluated from the
mathematical function and this evaluation process is fast.

Error power evaluation The existing approaches to calculate the analytic expression of the
quantization noise power are based on the perturbation theory. The finite precision signal is mod-
eled as the sum of the infinite precision signal and a perturbation of a very small amplitude com-
pared to the infinite precision signal amplitude. This perturbation is assimilated to an uniformly
distributed white noise, which is uncorrelated with the signal or any other quantization noise in the
system. Each noise source b; propagates within the system and contributes to the system output
noise. This propagation has to be modeled to obtain an expression of the output quantization noise.
A first-order Taylor series expansion [61, 62] is used to linearize the behavior of the operations in
the presence of an input quantization noise. In [63, 64], the propagation of the quantization noise
is modeled using affine arithmetic. These models based on the perturbation theory are only valid
for smooth operations.

The output noise b, is the sum of the contributions of all the IV, noise sources. The second
order moment of b, can be expressed as the weighted sum of the statistical parameters of the noise
sources [65]

Ne Ne. N.
E(M) =Y Kiop + > Y Lijin, i, (2.50)
=1 i=1 j=1

The terms p, and Uli— are respectively the mean and the variance of the noise source b;. The
terms K; and L;; are constant terms. These terms depend on the system located between the
noise source b; and the output. Thus, these terms are evaluated only once to obtain the analytical
expression of the precision.

In [65], Linear Time Invariant systems are considered. The coefficients K; and L;; are com-
puted from the impulse response of the LTI system between the noise sources and the output. This
method has been extended in [66] to also handle non-linear systems (including recursive systems).

Another method based on affine arithmetic simulation is proposed for LTI systems in [64]. An
affine form is assigned to each noise source. Then, the coefficients K; and L;; are determined from
the affine form of the output noise. The same method has been proposed for non-LTI systems in
[63]. However, the method might lead to a too huge number of terms when the number of iterations
is large.

In [67, 68], hybrid techniques combining analytical expressions and simulations are proposed.
The coefficients K; and L;; are computed by solving a linear system of equations having K; and
L;j as variables.

2.2. Floating-point to fixed-point conversion

Error bounds evaluation Several techniques have been suggested to evaluate the bounds of
the quantization noise. Bit-true simulation is the most extended techniques used to estimate the
quantization noise bounds [69, 70]. It is usually combined with other techniques to reduce the
simulation time. For example, statistical refinement and bit-true simulations are combined in
[50, 71], where the authors apply a technique based on the Extreme Value Theory with Adaptive
Simulated Annealing to determine the quantization noise bounds of the output.

Interval-based methods can be used to evaluate the the errors bounds. Indeed, each error
introduced by quantization process with rounding or truncation modes is bounded. Since the
noise sources are modeled as independent input signals, the techniques used for range analysis
can also be used for the computation of the noise bounds. Interval arithmetic and affine arithmetic
techniques [72] already presented in Section 2.2.1.1 can be used to determine the bounds of the
output error of the system. An interval is associated to each noise source generated during the
quantization process. Then, these intervals are propagated through the system. In [73], the authors
used a Multi-interval arithmetic (Multi-IA) approach to provide refined bounds and reduce the
overestimation of IA.

Interval-based computations can be applied to analyse the precision in both fixed-point [43]
and floating-point [5 1] systems. However, direct use of these techniques is limited to non-recursive
systems. As mentioned before, the problem with AA is the support of non-affine operations and

its weak treatment of correlation.

A new method is proposed by Wadekar and Parker [74], where perturbation theory is exploited
to evaluate the noise bounds. The authors proposed a propagation model based on Taylor series
decomposition of functions with two inputs. Automatic differentiation is proposed by Gaffar et al.
in [75, 76] for linear or quasi-linear systems. An approach that uses Arithmetic Transformations
(AT) has been proposed in [77, 78]. The AT representation guarantees the accurate propagation
of the polynomial terms due to its canonical form. This approach has been extended to evaluate
systems with feedback loops in [79, 80].

Propability density function One of the essential metrics used to analyze the effect of signal
quantization is the probability density function (PDF) of the quantization noise. In comparison to
the quantization error bounds or quantization noise power, which are suitable for differential oper-
ations, PDF provides more information and allow better analysis of unsmooth operations. In [19],
the quantization noise PDF is determined using the Karhunen-Loeve Expansion representation
of the quantization noise. Using the superposition property and the transfer function of the sys-
tem, the KLE description is computed by propagating the KLE coefficients associated with noise
sources. In [81], the authors propose a stochastic approach based on a combination of Modified
Affine Arithmetic (MAA) and Polynomial Chaos Expansion to determine the output quantization
noise PDF. The advantage of the PCE representation is its applicability to non-linear operations.
The output quantization noise of a smooth system is modeled as a weighted sum of a Gaussian
random variable and a uniform random variable as in [82] and as a generalized Gaussian random
variable in [83]. The effect of quantization noise on an unsmooth operator like signum function
and Quadrature Amplitude Modulation constellations diagrams is studied in [84] and [5].

2. State Of The Art

When the system include several unsmooth operations, the evaluation of the quantization ef-
fect using purely analytical approaches becomes an issue. In [6], a hybrid approach is proposed.
This approach uses analytical models to accelerate quality evaluation based on simulation. The
idea in the hybrid approach is to simulate parts of the system only when un-smooth errors occur.
Otherwise, analytical results based on perturbation theory are used. This concept will be extended
in our approach and detailed in Chapter 6.

2.3 ID.Fix

The ID.Fix EDA tool has been developed at IRISA/INRIA labs since 2008 [4], and the goal
of this thesis is to extend the capabilities of this tool by providing techniques to evaluate the
application quality when overflows or unsmooth errors occur. The ID.Fix EDA tool allows the
conversion of a floating-point C source code into a C code using fixed-point data types. The tool
is implemented using the GECOS framework [85], a compiler infrastructure that performs source
to source transformations and works with C or C++ code. The signal flow graph of the algorithm
is extracted by inference [86]. The analytical expression of the loss of accuracy obtained at the
output is evaluated by a fully automatic analytical technique developed in [65, 62]. The cost metric
is the sum of individual operator cost. The modular nature of the tool and the GECOS platform
allows to perform experiments with optimization heuristics. The synoptic of ID.Fix infrastructure
is presented in Figure 2.13.

2.3.1 ID.Fix tool description

2.3.1.1 Tool functionality

The purpose of ID.Fix is the fixed-point conversion of a floating-point C source code that
describes the signal processing application. The conversion process defines the optimized fixed-
point format of the operation operands. The integer part word-length is determined to avoid the
overflow occurrence or limit its probability, and the fractional part word-length is determined to
minimize the implementation cost respecting the accuracy constraint P, . The infrastructure

of ID.Fix is made-up of three main modules corresponding to fixed-point conversion (Fix.Conv),
accuracy evaluation (Acc.Eval) and dynamic range evaluation (Dyn.Eval).

2.3.1.2 Tool inputs

The inputs of the tool for the fixed-point conversion of an application are:

— App.c: The input source code of the application written in C language with floating-point
data types. Only a subset of the C language is supported to describe the application. Cur-
rently, pointers and structures are not supported.

— B, ...+ Quantization noise power of the application output is expressed in dB. It corre-
sponds to the accuracy constraint for the optimization process of the operators word-length.

2.3. ID.Fix

31

A —
47 Application C
Accuracy constraint P E source code
maz

ID.Fix-AccEval

: App.c
i
ID.Fix E l Simulator
: = éé
i 3 =
i generation
i
i BApp.sfg.xml
L
i £1 Graphe flot de signal
=
| B
|
i P, Dynamic Range
E CDFG dy i E.% | Evaluation Simulation
i range evaluation T
E Dyn.xml ID.Fix-DynEval
d Dynamique GFS
i
|
E Binary-Point Accuracy
Determination = i
! § 3 Evaluation
I
I w
I
i
I
|
]

- ComputePb.c
Function to compute
output quantization noise power
Fixed-point C
code generation

C#++ Code with
ac_fixed
data types

Architecture
model

é;% App.fix.cc

Figure 2.13 — Detailed flow of the EDA tool ID.Fix [4]

The evaluation of this accuracy metric is detailed in Section 2.2.2.

— App.Arch.xml: XML file that defines the architecture model to estimate the implementa-
tion cost during the optimization process. The model includes all the words-length sup-
ported by the architecture and the associated implementation cost.

Pragma directives are also taken as input in order to specify some parameters for fixed-point

conversion (dynamic range, inputoutput word-length, delay operations).

2.3.1.3 The tool output

The output of the tool is the App . £ix. cc file containing the source code of the application in
fixed-point types such as Mentor Graphics ac_fixed or SystemC sc_fixed. The fixed-point
specification is optimized according to the types supported by the architecture and the accuracy
constraints.

A given variable var of ac__fixed type is declared with the following expression
ac_fixed<wp,wrp, S, Q,0 > var,
where wp is the total number of bits, wyp is the number of bits of the integer part, S is a boolean

type indicating whether the data is signed, Q is the quantification mode and O the overflow mode
(saturation or wrap-around). The advantage of ac_ fixed type is the ability to specify all the fixed-

32

2. State Of The Art

point parameters of a given variable with the format change operations (cast) and data alignment.
However, the fixed-point parameter are static and can not change over time.

2.3.2 Tool description

The fixed-point conversion tool ID.Fix-Conv is developed in the compilation infrastructure
Gecos (Generic Compiler Suite). The front-end of Gecos generates the intermediate representation
on which various transformations are performed. The tool developed within Gecos consists of two
branches. The first one contains necessary transformations for the fixed-point conversion and the
regeneration of the C source code with fixed-point types. From the C source code, an intermediate
representation is generated with the GECOS front-end. This intermediate representation, used for
the fixed-point conversion process, is a Control and Data Flow Graph (CDFG). The CDFG is an
oriented graph where the nodes represent control blocks. Each control structure of the C language
has a specific type of block. The data processing is included in the basic block (control nodes) and
is made-up of a set of operation o; and data d;.

The second part generates the Signal Flow Graph (SFG) of the application. The SFG is used
in the dynamic and accuracy evaluation modules. The dynamic and accuracy evaluation are per-
f