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Missing data is a widespread characteristic of remote sensing measurements. Various sources are responsible for this problem such as the instrument sampling or the sensitivity to the atmospheric conditions (e.g. cloud cover). The scientific problem of reconstructing geophysical fields from noisy and partial remote sensing observations is a classical problem well studied in the literature.

Data assimilation is one class of popular methods to address this issue. It relies on a state-space representation of the physical system by two equations: The observation equation which models the measurement process and the model equation which explicits the physical model driving the state of the variable in time. In practice, data assimilation is done through the use of classical stochastic filtering techniques, such as ensemble Kalman or particle filters and smoothers. They proceed by an online evaluation of the physical model in order to provide a forecast for the state.

The performance of data assimilation heavily relies on the definition of the physical model. The lack of consistency of the model with respect to the observed data and modeling uncertainties are therefore severe limitations of this classical framework. In contrast, the amount of observation and simulation data has grown very quickly in the last decades. Replacing the dynamical model by realistic statistical simulations of the dynamics has become feasible provided that we explore implicit data-driven schemes in such historical datasets using robust and well-suited methods.
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Résumé

L'apparition de données manquantes est un phénomène très répandu des mesures de télédétection spatiale. Diverses sources sont responsables de ce problème, comme l'échantillonnage des instruments ou la sensibilité aux conditions atmosphériques (ex. couverture nuageuse). Le problème scientifique de la reconstitution des champs géophysiques à partir d'observations de télédétection bruitées et partielles est un problème classique bien étudié dans la littérature.

L'assimilation des données est une des méthodes les plus populaires pour résoudre ce problème.

Elle s'appuie sur une représentation espace-état du système physique suivant deux équations : l'équation d'observation qui modélise le processus de mesure et l'équation de modèle qui explique le modèle physique qui gouverne la dynamique de l'état de la variable dans le temps. En pratique, l'assimilation des données se fait par l'utilisation de techniques classiques de filtrage stochastique, telles que les filtres de Kalman d'Ensemble ou les filtres particulaires. Ils procèdent à une évaluation séquentielle du modèle physique afin de fournir une prédiction de l'état. La performance de l'assimilation des données dépend fortement de la définition du modèle physique.

Le manque de cohérence du modèle par rapport aux données observées et les incertitudes de modélisation sont donc des limites sévères de ce cadre classique. D'un autre côté, la quantité de données d'observation et de simulation a augmenté très rapidement au cours des dernières décennies. Remplacer le modèle dynamique par des simulations statistiques réalistes de la dynamique est devenu possible à condition que nous explorions des schémas implicites basés données (data-driven) dans ces données historiques en utilisant des méthodes robustes et bien adaptées.

Cette thèse se concentre sur le potentiel d'exploitation de la richesse des données archivées pour effectuer l'assimilation des données de manière pilotée par les données et ce, sans avoir accès à des équations explicites de modèle. Suivant [START_REF] Tandeo | SST spatial anisotropic covariances from METOP-AVHRR data[END_REF] [START_REF] Tandeo | Combining analog method and ensemble data assimilation: application to the lorenz-63 chaotic system[END_REF], nous avons particulièrement étudié une méthodologie sans modèle et guidée par les données. La principale contribution de ma thèse réside dans le développement et l'évaluation de l'assimilation des données par analogues, qui combine les méthodes analogues (recherche des plus proches voisins) et ix Contents les méthodes de filtrage stochastiques (filtres de Kalman, filtres particulaires, modèles de Markov cachés). Des applications aux modèles chaotiques simplifiés et à des études de cas de télédétection océanographique réelle (température de surface de la mer, anomalies du niveau de la mer), démontrent la pertinence de l'assimilation des données par analogues pour l'interpolation des données manquantes de systèmes dynamiques fortement non linéaires et à haute dimension à partir d'observations irrégulières et bruitées.

Poussé par l'essor de l'apprentissage automatique au cours des dernières années, j'ai consacré la dernière partie de ma thèse au développement de modèles d'apprentissage profond (Deep Learning) pour la détection et le suivi des tourbillons océaniques à partir de données multi sources et/ou multitemporelles (ex., SST-SSH), l'objectif général étant de surpasser les approches dites expertes [START_REF] Dudley B Chelton | Global observations of nonlinear mesoscale eddies[END_REF][START_REF] Mason | A new sea surface height-based code for oceanic mesoscale eddy tracking[END_REF].

Mots clés : Assimilation de données par analogues, interpolation spatio-temporelle, télédétection de l'océan.

Introduction and problem statement

The reconstruction of the spatiotemporal dynamics of geophysical systems from noisy and/or partial observations is a major issue in geosciences. Variational and stochastic data assimilation schemes are the two main categories of methods considered to address this issue (see [START_REF] Evensen | Data Assimilation[END_REF] for more details). A key feature of these data assimilation schemes is that they rely on repeated forward integrations of an explicitly-known dynamical model. This may greatly limit their application range as well as their computational efficiency. First, thorough and time-consuming studies may be required to identify explicit representations of the dynamics, especially regarding fine-scale effects and subgrid-scale processes as for instance in regional geophysical models [START_REF] Hong | Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies[END_REF]. Such processes typically involve highly nonlinear and local effects [START_REF] Robert | Downscaling general circulation model output: a review of methods and limitations[END_REF]. The resulting numerical models may be computationally intensive and even prohibitive for assimilation problems, for instance regarding the generation of members with different initial conditions at each time step. Second, as explained in [START_REF] Peter | Nonlinear data assimilation in geosciences: an extremely efficient particle filter[END_REF], "with ever-increasing resolution and complexity, the numerical models tend to be highly nonlinear and also observations become more complicated and their relation to the General Introduction models more nonlinear". In such situations, standard data assimilation techniques are likely to fail, including nonlinear particle filters which are prone to the "curse of dimensionality". Third, difficulties may occur when geophysical dynamics involve uncertain model parameterizations or space-time switching between different dynamical modes that need to be estimated online [START_REF] Ruiz | Estimating model parameters with ensemble-based data assimilation: A review[END_REF] or offline [START_REF] Tandeo | Offline parameter estimation using enkf and maximum likelihood error covariance estimates: Application to a subgrid-scale orography parametrization[END_REF]. Dealing with such situations may not be straightforward using classical modeldriven assimilation schemes.

Meanwhile, recent years have witnessed a proliferation of satellite data, in situ monitoring as well as numerical simulations. Large databases of valuable information has been collected and represent a major opportunity for oceanic, atmospheric and climate sciences. As pioneered by [START_REF] Edward | Atmospheric predictability as revealed by naturally occurring analogues[END_REF], the availability of such datasets advocates for the development of analog forecasting strategies, which make use of "similar" states of the dynamical system of interest to generate realistic forecasts. Analog forecasting strategies have become more and more popular in oceanic and atmospheric sciences [START_REF] Mcdermott | A model-based approach for analog spatio-temporal dynamic forecasting[END_REF][START_REF] Badrinath Nagarajan | An evaluation of analog-based postprocessing methods across several variables and forecast models[END_REF], and have benefited from recent advances in machine learning [START_REF] Zhao | Analog Forecasting with Dynamics-Adapted Kernels[END_REF]. They have been applied to a variety of systems and application domains, including among others, rainfall nowcasting [START_REF] Atencia | A comparison of two techniques for generating nowcasting ensembles. part ii: Analogs selection and comparison of techniques[END_REF], air quality analysis [START_REF] Delle Monache | Analog-based postprocessing methods for air quality forecasting[END_REF], wind field downscaling [START_REF] He-Guelton | Learning-based emulation of sea surface wind fields from numerical model outputs and sar data[END_REF], climate reconstruction [START_REF] Schenk | Reconstruction of high resolution atmospheric fields for northern europe using analog-upscaling[END_REF] and stochastic weather generators [START_REF] Yiou | Anawege: a weather generator based on analogues of atmospheric circulation[END_REF].

In this work, we examine the extension of the analog forecasting paradigm for data assimilation issues. Given a representative dataset of the dynamics of the system, this extension that we call "Analog Data Assimilation" consists of a combination of the implicit analog forecasting of the dynamics with stochastic filtering schemes, namely Ensemble Kalman and particle filtering schemes [START_REF] Evensen | An ensemble Kalman smoother for nonlinear dynamics[END_REF]. This idea was first introduced in [START_REF] Tandeo | Combining analog method and ensemble data assimilation: application to the lorenz-63 chaotic system[END_REF] where the authors demonstrated the relevance of the proposed analog data assimilation for the reconstruction of complex dynamics from partial and noisy observations. Tandeo et al. derived filtering and smoothing algorithms called the Analog Ensemble Kalman Filter and Smoother, which combine analog forecasting and the ensemble Kalman filter and smoother. A similar philosophy was followed independently in [START_REF] Hamilton | Ensemble Kalman filtering without a model[END_REF] where the authors combine ideas from Takens' embedding theorem and ensemble Kalman filtering to infer the hidden dynamics from noisy observations. Hamilton et al. called their algorithm the Kalman-Takens filter.

Whereas these two previous works provide proofs of concept, this thesis further investigates and evaluates different analog assimilation strategies and their detailed implementation.

In addition, experiments on Sea Surface Temperature (SST) and Sea Level Anomaly (SLA) missing data interpolation are conducted to investigate the challenges present in realistic applications and to face the curse of dimensionality.

Given that good quality and high resolution SST/SSH maps are crucial to eddy classification and detection, I dedicated the last part of my thesis to the development of deep learning based image segmentation architectures. The aim is to have a pixelwise classification of an SSH map into cyclonic/anticyclonic eddy or absence of eddies. The general objective being to outperform expert-based approaches [START_REF] Dudley B Chelton | Global observations of nonlinear mesoscale eddies[END_REF][START_REF] Mason | A new sea surface height-based code for oceanic mesoscale eddy tracking[END_REF].

This thesis was conducted under the supervision of Prof. Ronan Fablet (LabSTICC, IMT Atlantique), Dr. Pierre Ailliot (LMBA, University of Western Brittany) and Dr. Bertrand Chapron (LOPS, Ifremer). I benefited from a short stay at Ocean University of China, where I started two collaborations with Prof. Ge Chen and Prof. Junyu Dong.

Contributions

The contributions of this thesis are the following:

Presenting a unified framework for the Analog Data Assimilation with new analog forecasting strategies and new analog-based algorithms

The principal objective of chapter 2 is to introduce the Analog Data Assimilation. A brief history of analog methods and their recent implication in data assimilation is presented. The chapter lists the considered analog forecasting strategies, including locally-linear ones that were not considered in previous works, and evaluates their performance for analog data assimilation.

Secondly, in addition to the ensemble Kalman algorithms, I propose and examine two novel implementations of the analog forecasting , the first combined with a particle filter and the second with Hidden Markov Models. Finally, in collaboration with Pierre Tandeo and Phi Viet Huynh, we provide a unified computational framework, through both a Matlab Toolbox and a Python Library, to pave the way for practical use and future research (it is available from https://github.com/ptandeo/AnDA).

Using the Analog Data Assimilation to solve high-dimensional geophysical problems through the combination of patch-based and EOF-based methods

Chapter 3 and Chapter 4 deal with the challenges of using the AnDA for high-dimensional General Introduction problems, more specifically: i) Interpolation of Sea Surface Temperature (SST) from cloud contaminated satellite data and ii) Sea Level Anomaly (SLA) mapping from along-track data. We circumvent the curse of dimensionality by implementing a patch-based version of the AnDA that breaks the problem into several small subregions, we also used dimensionality reduction throughout the use of EOF decomposition to decrease the dimensionality of the problem. This has a direct effect on the quality of the analogs. • (Pre-thesis project) R. Lguensat, P. Tandeo, R. Fablet and R. Garello, Spatio-temporal interpolation of Sea Surface Temperature using high resolution remote sensing data, OCEANS '14, St. John's, Canada.

Transfer learning of image segmentation using
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• Talk at SEACS workshop on Analog Hidden Markov Models: a discrete formulation of the In this chapter, we present the main ideas behind the state-space model formulation. We will then use the term data assimilation which is the term commonly used in the geoscience community for state-space mathematical resolution. Finally, we give a historical overview of the use of the analog methods.

Chapter 1. Data Assimilation and Analog methods

State-Space models

In many problems encountered in science and engineering, one is interested in estimating an unobserved process {x(t)} t∈ 1,••• ,T given a sequence of observations {y(t)} t∈ 1,••• ,T . Examples of such situations include target tracking, signal and image processing, climate modeling, finance, etc... In this section, we review the resolution of such inverse problems using state-space formulations. We may refer the reader to [START_REF] Chonavel | Statistical signal processing: modelling and estimation[END_REF] for a comprehensive introduction to state-space models from a theoretical/practical point of view.

State-space methods provide a flexible framework to address this issue. They rely on the definition of two key components. Firstly, the dynamical model states the temporal dynamics of process {x(t)} t∈ 1,••• ,T , typically Markovian dynamics (as an illustration, we consider here a first-order Markov process). Secondly, the observation model relates the unknown state x(t) at a given time t to the observed variable y(t) at the same time. Formally, it resorts to:

   x(t) = M (x(t -1), η(t)) , (1.1) 
y(t) = H (x(t)) + ǫ(t). (1.2)
Where M characterizes the dynamical model of the true state x(t), while η(t) is a random perturbation added to represent model uncertainty. Observation error is considered through the random noise ǫ(t). Here, for the sake of simplicity, we consider an additive Gaussian noise ǫ with covariance R in equation 1.2 and the observation operator H = H is assumed linear.

To be fully characterized, this state-space setting also involves the definition of the prior distribution of x(1). From a Bayesian perspective, the reconstruction of the unknown state sequence {x(t)} t∈ 1,• In the following we will present three classical methods for the resolution of state-space models. There is only two kind of conditional dependencies, first between the hidden state X t at time t and the previous state at time t -1 (dynamical model). Second, between the measurement Y t and the hidden state X t both at time t (observation model).

State-Space models

The Kalman Filter

Here we consider a Linear Gaussian model i.e. we consider an additive Gaussian noise η with covariance Q in equation 1.1 and the dynamical operator M = M is assumed linear.

   x(t) = M (x(t -1)) + η(t), (1.3) 
y(t) = H (x(t)) + ǫ(t). ( 1.4) 
In this particular case where conditional are also normal distributions, the Kalman Filter (KF) [START_REF] Emil | A new approach to linear filtering and prediction problems[END_REF] gives recursive expressions for the mean and variance of the filtering distribution P (x(t)|Y 1:t ), under the assumption that all parameters in the model are known.

More specifically, the KF recursively estimates:

• xt|t the mean state at time t given the previous observations

• P t|t the corresponding error covariance matrix.

In the following we derive the equations of the Kalman filter. Consider Y 1:t to be the vector of the observations up to and including time t, and to simplify notation we will use z t for z(t).

The KF in this case is the MMSE estimator represented by the conditional expectation of x t

given the known observations Y 1:t :

xt|t = E[x t |Y 1:t ] (1.5)
Recall that if v 1 and v 2 are jointly Gaussian with

   v 1 v 2    ∼ N (    µ 1 µ 2    ,    Σ 11 Σ 12 Σ 21 Σ 22   ), then v 1 |v 2 ∼ N ( μ, Σ) where:
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   μ = µ 1 + Σ 12 Σ -1 22 (v 2 -µ 2 ) (1.6) Σ = Σ 11 -Σ 12 Σ -1 22 Σ 21 .
(1.7)

By taking v 1 = x t and v 2 = y t , then conditioning by Y 1:t-1 , Equation 1.5 becomes:

xt|t = E[x t |Y 1:t-1 ] + Σ xy Σ -1 yy (y t -E[y t |Y 1:t-1 ]) (1.8)
where:

Σ xy = E[(x t -E[x t |Y 1:t-1 ])(y t -E[y t |Y 1:t-1 ]) T ]
(1.9)

Σ yy = E[(y t -E[y t |Y 1:t-1 ])(y t -E[y t |Y 1:t-1 ]) T ] (1.10)
Using the observation equation 1.4 we have:

E[y t |Y 1:t-1 ] = HE[x t |Y 1:t-1 ] = Hx t|t-1 (1.11)
which makes equation 1.8 becomes:

xt|t = xt|t-1 + Σ xy Σ -1 yy (y t -Hx t|t-1 ) (1.12)
And using the dynamical equation 1.3 we obtain:

xt|t-1 = E[x t |Y 1:t-1 ] = ME[x t-1 |Y 1:t-1 ] = Mx t-1|t-1 (1.13)
Equations 1.12 and 1.13 define the recursive filter. We will now explicit K t = Σ xy Σ -1 yy called the Kalman gain, then find the updating formulas for the covariance error.

From the observation equation 1.4 we can show that:

   Σ xy = P t|t-1 H T (1.14) Σ yy = HP t|t-1 H T + R. (1.15)
This results in the following expression for the Kalman gain:

K t = P t|t-1 H T (HP t|t-1 H T + R) -1 (1.16)

State-Space models

To find the updating formulas for the covariance error i.e. relationship between P t|t and P t|t-1 , we will start by using Equation 1.7, in our case it resorts to:

P t|t = P t|t-1 -Σ xy Σ -1 yy Σ yx (1.17)
Since Σ yx = Σ T xy , and using Equation 1.14, the previous equation becomes:

P t|t = P t|t-1 -K t HP t|t-1 = (I -K t H)P t|t-1 (1.18)
Besides, using the dynamical equation we can show that

P t|t-1 = MP t-1|t-1 M T + Q (1.19)
Finally the KF algorithm can be summarized in Algorithm 1.

Algorithm 1

The Kalman filter algorithm

1: Input: x 1 = x b and P 1 = B initial guesses 2: set t = 2
3: Prediction step:

• predict state estimate xt|t-1 = Mx t-1|t-1

• predict covariance estimate P t|t-1 = MP t-1|t-1 M T + Q 4: Update step:

• Calculate the Kalman gain

K t = P t|t-1 H T (HP t|t-1 H T + R) -1
• update state estimate xt|t = xt|t-1 + K t (y t -Hx t|t-1 )

• update covariance estimate P t|t = (I -K t H)P t|t-1

5: Set t = t + 1 then go back to step 3

Despite the attractiveness and the popularity of the classical Kalman Filter (e.g. Apollo navigation computer which took mankind to the moon), it is a basic model with abiding assumptions, and since nature is nonlinear, the need of more general but still computationally plausible methods had arisen. In the literature, two main research directions were followed: the first path considered the use of Monte Carlo methods, especially the particle filter that began to appear and started to be used in the estimation theory field, we present it in section 1.1.2.
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While the second group of researchers put their efforts in improving and adapting the KF for nonlinear problems, two popular extensions emerged: the Extended Kalman filter (EKF) that simply considers linearization of the nonlinear system around working points, and the Unscented Kalman Filter (UKF) [START_REF] Julier | A new extension of the kalman filter to nonlinear systems[END_REF] which selects some representative points from the state distribution, from which the posterior distribution is then obtained using the propagation of the these representative points through the direct use of the nonlinear system. We refer the reader to the book of Anderson and Moore [START_REF] Brian | Optimal filtering. Reprint of the[END_REF] for a complete description of Kalman filter extensions.

The geoscience community benefited from this variety of research ideas from both sides and widely adopted an interesting method combining the best of both world: The Ensemble Kalman Filter (EnKF) that we discuss in section 1.2.1.

On another side, while the previous models were based on a continuous formulation, Hidden

Markov Models (HMM) [START_REF] Lawrence R Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF] were introduced as an alternative adapted to discrete systems, we present HMM and the associated filtering and smoothing algorithms in section 1.1.3.

The Particle Filter

Contrary to the Kalman filters, particle filters do not assume a Gaussian distribution for the state. The key principle is to estimate the posteriors of the state from a set of particles (or ensemble members).

Hereinafter, we comply with the notations used in the geoscience community by doing the following replacements:

• x t|t-1 and P t|t-1 are now referred to as the forecast state x f (t) and covariance error P f (t)

• x t|t and P t|t are now referred to as the analyzed state x a (t) and covariance error P a (t)

In Algorithm 2, we present one version and probably the most classical of the particle filter, this version is called the Bootstrap [START_REF] Gordon | Novel approach to nonlinear/non-gaussian bayesian state estimation[END_REF] (as known as the sampling importance resampling (SIR) particle filter).

The literature comprise several other variants of the particle filter, from which we can cite: firstly, the auxiliary particle filter [START_REF] Michael | Filtering via simulation: Auxiliary particle filters[END_REF] where the resampling and the prediction step are inverted to give more sampling "chance" to particles close to the observation, secondly, the rejection particle filter [START_REF] Tanizaki | On the nonlinear and nonnormal filter using rejection sampling[END_REF] which assumes knowing an upper bound of the inferred distribution and then rejects particles that exceed this bound. Although the variety of particle filters, a number of limitations makes the use of particle filter challenging. Firstly, the presence of outliers could neg- 

π i (t) ∝ φ y(t) -Hx f i (t); R , ( 1.20) 
where φ (•; R) is a centered multivariate Gaussian distribution with covariance R.

• Normalize weights π i (t) to total one.

5: Resampling step:

• Resample from the multinomial distribution defined by the particles {x f i (t)} and their corresponding weights {π i (t)}.

• Compute the analyzed state x a (t) as the sample mean

x a (t) = 1 N N i=1 π i (t)x f i (t). (1.21) 
but one may also consider as filtered state the posterior mode.

6: Set t = t + 1 then go back to step 4 atively affect the importance sampling and mislead the particles, thus the use of many particles is necessary. Secondly, the curse of dimensionality is a serious problem in particle filtering [START_REF] Bui | An insight into the issue of dimensionality in particle filtering[END_REF].

Actually the need of a large number of particles for a better estimation could be intractable computationally, not to mention that using a very big number of particles means increasing the variance due to the bias-variance trade-off.

For further reading, we point the reader to the well-detailed survey of Chen [START_REF] Chen | Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond[END_REF] for a complete review of the different variants of the particle filter, their advantages and limitations, and their convergence guarantees. using these two properties, HMMs describe the joint probability of the hidden and observed discrete random variables. We note by Λ = (A, B, π 1 ) the parameters of the HMM where:

Hidden Markov Models

• Assuming that P (x(t)|x(t -1)) is independent of time t, the definition of the time independent transition matrix is given by:

A = {a ij } = P (x(t) = j|x(t -1) = i)
• The initial state distribution (i.e. when t = 1) is given by:

π 1 = {π i } where π i = P (x(1) = i)
• The observation matrix (called also the emission matrix) gives the probability of a certain observation at time t for state j and it is expressed as:

B = {b j (y(t))} where b j (Y t ) = P (y(t)|x(t) = j)
Given a foreknowledge of an HMM parameters and an observation sequence we can compute the smoothing posterior marginals P (x(t)| Y 1:T ) of all hidden state variables. In the next subsection, we will introduce briefly The forward-backward algorithm which is a widely used algorithm to execute this task. Its aim consists of finding the most likely state for any point in time and which results in an estimation of the underlying dynamics of the state.

The forward-backward algorithm

Given Λ = (A, B, π 1 ) we are interested in evaluating γ t (i) = P (x(t) = i|Y 1:T ) which can also be written using Bayes theorem as:

γ t (i) = P (Y 1:T , x(t) = i) P (Y 1:T ) (1.22)

State-Space models

Using conditional independence properties between Y 1:t and Y t+1:T given x(t), we can prove easily that:

P (Y 1:T , x(t) = i) = P (Y 1:t , x(t) = i).P (Y t+1:T |x(t) = i) (1.23)
Let consider the forward variable α t (i) and the backward variable β t (i) defined as: 

α t (i) = P (Y 1:t , x(t) = i) β t (i) = P (Y t+1:T |x(t) = i) (1.24) α t (i)
γ t (i) = α t (i).β t (i) P (Y 1:T ) = α t (i).β t (i) Σ Np i=1 α t (i).β t (i) (1.26) 
Thanks to the forward-backward algorithm presented in Algorithm 3 we can obtain γ t (i) at each time step. Choosing the most likely state for the system at time t is straightforward by taking the index of the state with the larger probability value:

x(t) = arg max i=1•••Np γ t (i) (1.27)
A Matlab implementation of the forward-backward algorithm can be found in the Hidden Markov Model (HMM) Toolbox written by Kevin Murphy for j = 1 : 1 : N p do 6:

α t (j) = [Σ Np i=1 α t-1 (i).a ij ]b j (Y t ) 7:
end for for i = 1 : 1 : N p do 13:

β t (i) = Σ Np j=1 b j (Y t+1
).a ij .β t+1 (j) It would be useful to mention two other algorithms for HMM inference. Firstly, Viterbi algorithm which computes the most probable path generated by the observation sequence. Secondly, Baum-Welch algorithm that aims to iteratively estimate the parameters of the HMM by performing a series of forward-backward algorithm runs. Details about these algorithms can also be found in [START_REF] Lawrence R Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF].
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Data assimilation in geoscience

Data assimilation is generally defined in geoscience as the use of state space models in order to assimilate observations/measurements about a geophysical system of interest. We recommend the book of Asch et al. [START_REF] Asch | Data assimilation: methods, algorithms, and applications[END_REF] and the well detailed paper of Carassi et al. [START_REF] Carrassi | Data Assimilation in the Geosciences -An overview on methods, issues and perspectives[END_REF] for a complete overview of data assimilation techniques in geoscience.

Two types of data assimilation approaches are extensively studied in the literature: variational and stochastic ones. Variational data assimilation proceeds by minimizing a cost function based on a continuous formulation of equations (1.1-1.2) [START_REF] Lorenc | The met. office global three-dimensional variational data assimilation scheme[END_REF], while stochastic data assimilation schemes rely on the sampling and/or maximization of the posterior likelihood of the state sequence given the observation series [START_REF] Kalnay | Atmospheric modeling, data assimilation and predictability[END_REF]. These classical data assimilation schemes are regarded as "model-driven", in the sense that they combine observations with forecasts provided by a numerical model M.

While variational and stochastic schemes are equivalent in the Linear-Gaussian case and resort to the same optimal solution in a MMSE sense, this not the case in general. One advantage of stochastic schemes is that they provide not only an estimation of the state of interest but also its covariance error matrix. Since this thesis fits into the statistical and probabilistic perspective of data assimilation, hereinafter, the focus will be directed to stochastic data assimilation and its methods. More specifically, we are interested in sequential stochastic data assimilation methods.

An example of the general procedure of these methods is shown in Figure 1.2, starting from a background state (first-guess) and a background covariance error, the sequential assimilation proceeds in two steps: the prediction step uses the transition model (cf. Equation 1.1) to obtain a forecast state, then the upcoming observation is "assimilated" into the model in the analysis step. The assimilation is the mathematical resolution of the state-space (1.1)-(1.2).

We present in section 1.2.1 the Ensemble Kalman Filter and Smoother [START_REF] Evensen | An ensemble Kalman smoother for nonlinear dynamics[END_REF] one of the popular data assimilation algorithms in geoscience, we also present one of the earliest data assimilation methods that relies on predetermined covariance error matrices instead of dynamical update of the analyzed state, this algorithm is described in section 1.2.2. These two algorithms are the main data assimilation algorithms used in this work. 

Ensemble Kalman filters (EnKF) and smoothers (EnKS) as an example of stochastic data assimilation

Given the high dimensionality of geophysical problems (Numerical Weather Prediction, Oceanography, Hydrology, etc...), the use of classical Kalman filters is prohibited by computationally expensive matrix inversions (e.g. the error covariance matrix) and storage shortage. Researchers in the field use therefore several techniques to overcome these limitations, in particular, square root implementation of the Kalman filter and the ensemble Kalman filter. The second is appealing from a statistical point of view and was considered in this thesis. In the following, we present step-by-step the Ensemble Kalman Filter and Smoother.

Ensemble Kalman filters (EnKF) and smoothers (EnKS) [START_REF] Burgers | Analysis scheme in the ensemble Kalman filter[END_REF][START_REF] Evensen | Data Assimilation[END_REF] are particularly popular in geoscience as they provide flexible assimilation strategies for high-dimensional states. They rely on the assumption that the filtering and smoothing posteriors are multivariate Gaussian distributions, such that the following forward and backward recursions are derived.

We describe here the stochastic EnKF algorithm proposed by [START_REF] Burgers | Analysis scheme in the ensemble Kalman filter[END_REF] in which observations are treated as random variables.

Data assimilation in geoscience

Algorithm 4 The Ensemble Kalman Filter algorithm 1: Input: x b and B parameters of the prior Gaussian distribution 2: Generate vectors x f i (1) ∀i ∈ {1, ..., N } using a multivariate Gaussian random generator with mean vector x b and covariance matrix B. The index i of the state vector corresponds to the i th realization of the Monte Carlo procedure (called member or particle). • Apply the dynamical operator to each member of the ensemble following (1.1) to gen-

erate x f i (t)
• The forecast state is represented by the sample mean x f (t) and the sample covariance

P f (t).
5: Analysis step:

• Following (1.2), N samples of y f i (t) are generated from a multivariate Gaussian random generator with mean Hx f i (t) and covariance R.

• The observations are then used to update the N members of the ensemble as

x a i (t) = x f i (t) + K a (t)(y(t) -y f i (t)) where K a (t) = P f (t)H T (HP f (t)H ′ + R) -1
is the Kalman filter gain

• The filtering posterior distribution is then represented by the sample mean x a (t) and the sample covariance P a (t).

6: Set t = t + 1 then go back to step 4 A classical Ensemble Kalman smoother, closely related to Rauch-Tung-Striebel smoother (see [START_REF] Cosme | Smoothing problems in a bayesian framework and their linear gaussian solutions[END_REF] for more details) is described: Given the forward recursion, the backward recursion starts from time t = T with filtered state, ∀i ∈ {1, ..., N }, such as x s i (T ) = x a i (T ) and P s (T ) = P a (T ). Then, we proceed backward from t = T -1 to t = 1. At each time t, we compute

x s i (t) = x a i (t) + K s (t)(x s i (t + 1) -x f i (t + 1 
)) where K s (t) = P a (t)M T (P f (t + 1)) -1 is the Kalman smoother gain. Note that we empirically estimate P a (t)M T as the sample covariance matrix of the ensemble members as in [START_REF] Dinh | Stochastic methods for sequential data assimilation in strongly nonlinear systems[END_REF] or [START_REF] Tandeo | Offline parameter estimation using enkf and maximum likelihood error covariance estimates: Application to a subgrid-scale orography parametrization[END_REF] in the case of a nonlinear operator H. The smoothing posterior distribution is represented by the sample mean x s (t) and the sample covariance P s (t).

The asymptotic behavior of the EnKF is studied in [START_REF] Le Gland | Large sample asymptotics for the ensemble Kalman filter[END_REF]. The authors show that the EnKF solution converges to the classical Kalman Filter in the linear Gaussian case, however, in the Chapter 1. Data Assimilation and Analog methods non-linear and non-necessarily Gaussian case, the EnKF converges toward a distribution different than the optimal filtering distribution. A hybrid scheme was proposed in [START_REF] Papadakis | Data assimilation with the weighted ensemble kalman filter[END_REF] that combines ideas from the EnKF and particle filtering schemes, their algorithm called the weighted EnKF outperforms the classical EnKF in various tests, and with a comparable computational complexity. But despite its limitations, the EnKF keeps attracting research interest given its simple implementation and its success in different oceanic and atmospheric operational settings.

Optimal Interpolation

Unlike the previous algorithm where data assimilation is done dynamically, Optimal Interpolation (OI) aims at finding the Best Linear Unbiased Estimator (BLUE) of a field x given irregularly sampled observations y o in space and time and a background prior x b . The multivariate OI equation was derived in [START_REF] Gandin | Objective analysis of meteorological fields[END_REF] for meteorology and numerous applications in oceanography have been reported since the early work of [START_REF] Francis P Bretherton | A technique for objective analysis and design of oceanographic experiments applied to mode-73[END_REF]. Several works used OI to grid sea level anomalies using along-track data (e.g. [START_REF] De | Assimilation of altimeter eddy fields in a limitedarea quasi-geostrophic model[END_REF][START_REF] Py Le Traon | An improved mapping method of multisatellite altimeter data[END_REF]) and it is the method adopted in CMEMS altimetry product.

Considering the following assumptions

• x b = x + ǫ b ǫ b is the background error • y o = Hx + ǫ o ǫ o
is the observational error, H assumed here to be linear is a matrix mapping x to the observation space.

• Observation and background errors are uncorrelated

• Error covariance matrices B and R respectively for background and observations are assumed to be known. OI aims to solve the following BLUE problem:

x = x b + K(y o -Hx b ) (1.28)
The BLUE formula for the optimal weight matrix K (also called the Kalman gain) is obtained as:

K = E[(x -x b )(y o -Hx b ) T ]E[(y o -Hx b )(y o -Hx b ) T ] -1 (1.29)
which can be also written as

K = E[(-ǫ b )(ǫ o -Hǫ b ) T ]E[(ǫ o -Hǫ b )(ǫ o -Hǫ b ) T ] -1
(1.30)
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Since observation and background errors are uncorrelated we can further expand:

K = E[ǫ b (ǫ b ) T ]H T (E[ǫ o (ǫ o ) T ] + HE[ǫ b (ǫ b ) T ]H T ) -1 (1.31) K = BH T (R + HBH T ) -1 (1.32)
It is easy to notice that previous equation is the same as the Kalman gain expression of the classical Kalman filter illustrated in Equation 1. [START_REF] Neill | Tests of different flavours of enkf on a simple model[END_REF]. It might be also relevant to note that this result could be also found using the variational formulation called 3D-VAR [START_REF] Andrew | Analysis methods for numerical weather prediction[END_REF]. It resorts to minimizing the following cost function:

J(x) = (x -x b ) T B -1 (x -x b ) + (y o -Hx) T R -1 (y o -Hx) (1.33)
An advantage of OI over 3D-var is that it gives also P a the error covariance of the result (called also the analysis covariance):

P a = (I -KH)B (1.34) 
Equations 1.28, 1.29 and 1.34 represent the full set of OI equations.

In geoscience, an important aspect which makes OI popular is the possibility of using localization i.e. the value of the interpolated field x(s, t) at location s on time t depends on a small set of observations y o i∈{1,..N } present in a space-time volume surrounding it. This helps reducing memory and time constraints but needs modeling efforts and parameter tuning.

Analog forecasting

Analog forecasting is among the very first data-driven techniques used in weather forecasting.

Its underlying idea consists in looking for one or many similar situations of the current state that occurred in the past, called analogs, then retrieve the successors in time of these situations and finally assume that the forecast can be estimated from these successors. Performing analog forecasting needs mainly an archive of historical data and a distance measure.

Even before the start of wide use of computers, some works considered analog forecasting for assessing short-term weather variation in the 50's [START_REF] Elliott | Extended-Range Forecasting by Weather Types[END_REF]. Its intuitive and simple formulation Chapter 1. Data Assimilation and Analog methods encouraged its adoption by researchers when the early computers were introduced to this field.

Probably the most popular and application of analog forecasting was the application for atmospheric predictability by Lorenz in 1969 [START_REF] Edward | Predictability: A problem partly solved[END_REF], since then the analog forecasting method was used for several atmospheric, oceanic and climate applications [START_REF] Toth | Long-range weather forecasting using an analog approach[END_REF], but with the improvements in model integration capabilities, analog-related research dropped significantly overtaken by physically-derived models. However, the idea kept living thanks to some few researchers waiting for the geoscience field to enter the Big data era. In very recent years, the analog forecasting idea started again to attract researchers from not only geoscience but also from data science community, this blend of skills represents an opportunity to advance and reevaluate the method.

A well-known debate has always been surrounding the adoption of analog forecasting methods, the subject of debate relates to the "impossibility" of finding a true analog. Lorenz mentioned that likelihood of finding perfect analogs is small [START_REF] Edward | Atmospheric predictability as revealed by naturally occurring analogues[END_REF], and this was later confirmed by Van den Dool, who also derived an expression to calculate the length of the historical data needed to find a matching analog [START_REF] Van Den Dool | Searching for analogues, how long must we wait?[END_REF]. In the statistics community, where the analog method is closely related to the K-Nearest Neighbors (KNN) algorithm, it is known that KNN is plagued by the curse of dimensionality i.e. fails in high dimensions. Reducing the dimensionality of the problem is a classical strategy used in statistics and pattern recognition to avoid the curse. Literature in dimensionality reduction algorithms is rich, and the most popular algorithm is certainly Principal Component Analysis (PCA). Back to meteorology, this was used in several research papers such as Barnett and Preisendorf [START_REF] Barnett | Multifield analog prediction of short-term climate fluctuations using a climate state vector[END_REF] where they circumvented the high dimensions through the use of a "climate state vector" which is a projection of a state set of descriptors onto a reduced space using Empirical Orthogonal Functions (EOF), which is the equivalent of PCA in statistics.

Even if we do not consider it in this thesis, it is worthy to mention another classical use of analog forecasting methods. Analog post-processing is a way to combine analog methods to numerical weather models. The steps of the analog post-processing consist in first obtaining the forecasts using the numerical model, then retrieving the analog of each forecast, and finally considering the observations corresponding to these analogs to be similar to the observations at the situations forecasted by the numerical model.

Discussion and conclusion

Over the recent years, the breakthroughs in data storage and computational capacities motivated the increase of research efforts in data-driven methods in general and especially in statistical were a catalyzing moment that motivated our interest in data-driven methods but for data assimilation. The next chapter presents the core and most important message this thesis wants to send: An old and not so complicated data-driven method of the numerical weather prediction science community, the analog forecasting, can be plugged in a data assimilation scheme. By learning from historical data, the analog forecasting could mimic the transition equation in a classical data assimilation formulation. Given the results obtained and described all over this thesis, we hope that the analog data assimilation would end the analog forecasting winter. The Analog Data Assimilation, Monthly Weather Review 2017, AMS holds the copyright. 1Chapter 2. The Analog Data Assimilation

Data-driven data assimilation

In the previous chapter we presented the classical model-driven data assimilation. Here, we propose an assimilation framework which relies on a similar state-space formulation to modelbased data assimilation. Except that, we substitute the explicit dynamical model M in (1.1) by a "data-driven" dynamical model involving an analog forecasting operator, denoted by A, namely,

x(t) = A (x(t -1), η(t)) . (2.1)
Henceforth, the state-space model (2.1-1.2) will be referred to as Analog Data Assimilation (AnDA). A sequential and stochastic data assimilation scheme is used involving different Monte Carlo realizations of the state at each assimilation time. We sketch the proposed AnDA methodology for one realization in The second component of each pair is referred to as the successor of the first component hereafter. The catalog may be issued from observational data as well as from numerical simulations.

In the last case, one can have a catalog issued from numerical simulations (based on physical equations), and wants to perform data assimilation without running the model again. This is for instance useful for operational prediction centers which do not have the computational resources to integrate a forecast model, but do have access to a large database of numerical simulations or analysis data of a large prediction center. In this respect, we discuss also the situation where the catalog comprises noisy versions of the true states.

Given a catalog C, the analog forecasting operator A is stated as an exemplar-based statistical emulator of the state x from time t to time t + dt. For any state x(t), we emulate the following state at time t + dt based on its nearest neighbors in catalog C. Given the analog forecasting operator, we present associated stochastic assimilation schemes, namely the Analog Ensemble to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC 108) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (http://www.copyright.com). Questions about permission to use materials for which AMS holds the copyright can also be directed to the AMS Permissions Officer at permissions@ametsoc.org. Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation). Kalman Filter/Smoother [START_REF] Tandeo | Combining analog method and ensemble data assimilation: application to the lorenz-63 chaotic system[END_REF] and the Analog Particle Filter, we also present a discrete HMMbased version called the Analog Hidden Markov Model.

Analog forecasting strategies 2.2.1 Analog forecasting operator

Let us consider a kernel function, denoted by g, in the state-space [START_REF] Schölkopf | Learning with kernels: support vector machines, regularization, optimization, and beyond[END_REF]. Among the classical choices for kernels, we consider here a radial basis function (also referred to as a Gaussian kernel):

g(u, v) = exp -λ u -v 2 . (2.2)
with λ a scale parameter, (u, v) variables in the state-space X , and . is the euclidean distance or another appropriate distance function. Note that the proposed analog forecasting operator may be applied to other kernels or subspace reduction methods to efficiently retrieve relevant analog situations. This is discussed in Section 2.5.

Chapter 2. The Analog Data Assimilation x(t) lies farther from its analogs. The second situation is expected to occur more often for highdimensional space as well as for states, which are less likely. The latter may model extreme events or outliers.
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Given the considered kernel, the analog forecasting operator A is defined as follows: for a given state x(t), we denote by a k (x(t)) its k th nearest neighbor (or analog situation) in the reference catalog of exemplars C, and by s k (x(t)) the known successor of state a k (x(t)). Hereinafter, we refer by K to the number of nearest neighbors (analogs), and by cov w the weighted covariance. The normalized kernel weight for every pair (a k (x(t)), s k (x(t))) is given by:

ω k (x(t)) = g (x(t), a k (x(t))) K k=1 g (x(t), a k (x(t))) . (2.3)
Several ideas can be explored to define the analog forecasting operator A. The natural first option consists in deriving the forecast using the weighted mean of the K successors.

This approach, that we call here the locally-constant operator, was considered in many analog forecasting related works [START_REF] Hamilton | Ensemble Kalman filtering without a model[END_REF][START_REF] Mcdermott | A model-based approach for analog spatio-temporal dynamic forecasting[END_REF][START_REF] Zhao | Analog Forecasting with Dynamics-Adapted Kernels[END_REF], and is also known in statistics as Nadaraya-Watson kernel
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regression. One can also think about using the weighted mean of the differences between the K analogs and their successors and adding it to the state to derive the forecast. The operator, referred to as locally-incremental, is seen as more physically-sound and relates more closely to a finite-difference approximation of the underlying differential equations. Finally, we introduce in this work a new analog forecasting operator that makes use of local linear regression techniques based on weighted least square estimates. This operator that we call the locally-linear operator is known to make an efficient use of small data sets and to reduce biases [START_REF] William | Robust locally weighted regression and smoothing scatterplots[END_REF]. Note that the locallyconstant and locally-incremental operators are two special cases of the locally-linear operator. Hereinafter, we denote the forecasted state as x f (t + dt). The three analog forecasting operators are defined as follows for two sampling schemes, namely, a Gaussian sampling and a multinomial one. Hereinafter, δ Z (•) denotes a delta function centered on Z.

• Locally-constant analog operator: for the Gaussian case, the forecasted state is sampled from a Gaussian distribution whose mean m LC and covariance Σ LC are the weighted mean and the weighted covariance estimated from the K successors and their weights.

x f (t + dt) ∼ N (m LC , Σ LC ). (2.4)
where

m LC = K k=1 ω k (x(t))s k (x(t)) and Σ LC = cov ω (s k (x(t)) k∈ 1,K ).
While in the multinomial case, the forecasted state is drawn from the multinomial discrete distribution that samples the successor s k (x(t)) with a probability of ω k

x f (t + dt) ∼ K k=1 ω k (x(t)) δ s k (x(t)) (•).
(2.5)

• Locally-incremental analog operator: instead of considering a weighted mean of the K successors as in the locally-constant operator, we consider the value of the current state plus a weighted mean of the K increments τ k , i.e. differences between analogs and successors

τ k (x(t)) = s k (x(t)) -a k (x(t))
. The Gaussian sampling is given by:

x f (t + dt) ∼ N (m LI , Σ LI ). (2.6)
where

m LI = x(t) + K k=1 ω k (x(t))τ k (x(t)) = K k=1 ω k (x(t))(x(t) + τ k (x(t))) and Σ LI = cov ω ((x(t) + τ k (x(t))) k∈ 1,K
) and the multinomial sampling resorts to

x f (t + dt) ∼ K k=1 ω k (x(t)) δ x(t)+τ k (x(t)) (•) .
(2.7)

• Locally-linear analog operator: at each current state, we fit a multivariate linear regression between the K analogs and their corresponding successors using weighted least square estimates (see [START_REF] William | Robust locally weighted regression and smoothing scatterplots[END_REF]). We obtain regression matrix α(x(t)) and intercept β(x(t)) parameters, and residuals

ξ k (x(t)) = s k (x(t)) -(α(x(t))a k (x(t)) + β(x(t))
). The Gaussian sampling comes to:

x f (t + dt) ∼ N (m LL , Σ LL ). (2.8) with m LL = α(x(t))x(t) + β(x(t)) and Σ LL = cov(ξ k (x(t)) k∈ 1,K
), while the multinomial sampling is given by:

x f (t + dt) ∼ K k=1 ω k (x(t)) δ m LL +ξ k (x(t)) (•) . ( 2.9) 
The choice of one operator over another depends mostly on the computational resource and the complexity of the application. Locally-constant and locally-increment operators are less time and memory consuming than the locally-linear operator, and while they can be of comparable performance in case of a flat regression function, the locally-linear is expected to better deal with curvier regression functions at the expense however of the requirement of a larger number of analogs to fit the regression [START_REF] Hansen | Econometrics textbook[END_REF]. Note also that the locally-linear and the locally-incremental are more suitable for samples near or outside the boundary of the select analogs (as depicted in Figure 2.2), this may be particularly relevant in geoscience applications where chaos and extreme events are of high interest.

Global and local analogs

The global analog strategy is the direct application of the introduced analog forecasting strategies to the entire state vector. We also introduce a local analog forecasting operator. For a given state x(t), the analogs a k (x l (t)) in the reference catalog, and their associated successors

s k (x l (t))
for each component l of the state x(t) are defined according to a component-wise local neighborhood. The evaluation of the kernel function and the computation of the associ-
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ated normalized weights ω k (x l (t)) involve only a portion of the state vector x(t) defining some component-wise local neighborhood around the l th component of the state vector (typically {x l-ν (t), . . . , x l (t) . . . , x l+ν (t)} with ν the width of the considered component-wise neighborhood).

The idea of using local analogs is motivated by the fact that points tends to scatter far away from each other in high dimensions, which make the search for skillful analogs nearly impossible.

For instance, [START_REF] Van Den Dool | Searching for analogues, how long must we wait?[END_REF] has shown that finding a relevant analog at synoptic scale over the Northern Hemisphere for atmospheric data would require 10 30 years of data to match the observational errors at that time. Conversely, he also hinted that lower degrees of freedom of the states lead to better analog forecasting performance. Following this analysis, the analog forecasting of the global state is split as a series of local and low-dimensional analog forecasting operations. Note that such local analogs also help reducing possibly spurious correlations.

Analog data assimilation

The analog data assimilation is stated as a sequential and stochastic assimilation scheme, using Monte Carlo methods. It amounts to estimating the so-called filtering and smoothing posterior likelihoods, respectively p(x(t)|y(1), . . . , y(t)) the distribution of the current state knowing past and current observations and p(x(t)|y(1), . . . , y(T )) the distribution of the current state knowing past, current and future observations. We investigate both Ensemble Kalman filter/smoother and particle filter.

Analog Ensemble Kalman Filter and Smoother (AnEnKF/AnEnKS)

The AnEnKF and AnEnKS equations are equivalent to those of the EnKF and EnKS described in 1.2.1, except for the update step where we use the analog forecasting operator.

Chapter 2. The Analog Data Assimilation

Algorithm 5

The Analog Ensemble Kalman Filter algorithm 1: Input: x b and B parameters of the prior Gaussian distribution 2: Generate vectors x f i (1) ∀i ∈ {1, ..., N } using a multivariate Gaussian random generator with mean vector x b and covariance matrix B. The index i of the state vector corresponds to the i th realization of the Monte Carlo procedure (called member or particle). • Apply the analog forecasting A operator to each member of the ensemble following

(2.1) to generate x f i (t)
• The forecast state is represented by the sample mean x f (t) and the sample covariance

P f (t).
5: Analysis step:

• Following (1.2), N samples of y f i (t) are generated from a multivariate Gaussian random generator with mean Hx f i (t) and covariance R.

• The observations are then used to update the N members of the ensemble as

x a i (t) = x f i (t) + K a (t)(y(t) -y f i (t)) where K a (t) = P f (t)H T (HP f (t)H ′ + R) -1
is the Kalman filter gain

• The filtering posterior distribution is then represented by the sample mean x a (t) and the sample covariance P a (t).

6: Set t = t + 1 then go back to step 4 A classical Kalman smoother, here, Rauch-Tung-Striebel smoother (see [START_REF] Cosme | Smoothing problems in a bayesian framework and their linear gaussian solutions[END_REF] for more details) is described: Given the forward recursion, the backward recursion starts from time t = T with filtered state, ∀i ∈ {1, ..., N }, such as x s i (T ) = x a i (T ) and P s (T ) = P a (T ). Then, we proceed backward from

t = T -1 to t = 1. At each time t, we compute x s i (t) = x a i (t) + K s (t)(x s i (t + 1) -x f i (t + 1)) where K s (t) = P a (t)M T (P f (t + 1)) -1
is the Kalman smoother gain. Note that we empirically estimate P a (t)M T as the sample covariance matrix of the ensemble members as in [START_REF] Dinh | Stochastic methods for sequential data assimilation in strongly nonlinear systems[END_REF] or [START_REF] Tandeo | Offline parameter estimation using enkf and maximum likelihood error covariance estimates: Application to a subgrid-scale orography parametrization[END_REF] in the case of a nonlinear operator H. The smoothing posterior distribution is represented by the sample mean x s (t) and the sample covariance P s (t). We note that the following way of extending EnKF and EnKS to become analog-based algorithms can be applied in the same way to other flavors of EnKF such as the square-root ensemble Kalman Filter
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(EnSRF). We chose stochastic ensemble-based Kalman filters and smoothers as an illustration in this work, even if they are not the first choice in practice for atmospheric and oceanic applications due to issues related to perturbing observations with noise [START_REF] Neill | Tests of different flavours of enkf on a simple model[END_REF]. Besides, the work of [START_REF] Hoteit | Mitigating observation perturbation sampling errors in the stochastic enkf[END_REF] where the authors address this issue, suggests that the stochastic EnKF worths a reevaluation for oceanic and atmospheric applications.

Analog Particle Filter (AnPF)

Algorithm 6 The Analog Particle filter algorithm (AnPF) 1: Input: x b and B parameters of the prior Gaussian distribution 2: Generate vectors x f i (1) ∀i ∈ {1, ..., N } using a multivariate Gaussian random generator with mean vector x b and covariance matrix B. The index i of the state vector corresponds to the i th realization of the Monte Carlo procedure (called member or particle). • Apply the analog forecasting operator A to sample new particles x f i (t) ∀i ∈ {1, ..., N } from previous filtered particles x a i (t -1)

• Compute particle weights π i (t) as

π i (t) ∝ φ y(t) -Hx f i (t); R , ( 2.10) 
where φ (•; R) is a centered multivariate Gaussian distribution with covariance R.

• Normalize weights π i (t) to total one.

5: Resampling step:

• Resample from the multinomial distribution defined by the particles {x f i (t)} and their corresponding weights {π i (t)}.

• Compute the analyzed state x a (t) as the sample mean .11) but one may also consider as filtered state the posterior mode.

x a (t) = 1 N N i=1 π i (t)x f i (t). ( 2 
6: Set t = t + 1 then go back to step 4

Chapter 2. The Analog Data Assimilation

We also implement particle filtering techniques for the proposed analog data assimilation strategy. Given an analog forecasting operator A, we consider an application of the Bootstrap particle filter [START_REF] Peter | Particle filtering in geophysical systems[END_REF], Algorithm 6 is similar to what we presented in section 1.1.2 apart from the application of the analog forecasting operator in the prediction step.

In theory, particle smoothers may also be considered. Different strategies have been proposed

in the past but they showed numerical instabilities in preliminary experiments with the considered analog forecasting operator. We do not further detail the considered implementation but discuss these aspects in Section 2.5.

Analog Hidden Markov Models (AnHMM)

The AnHMM is presented here for a complete vision of the AnDA algorithms but not considered in the experiments shown in this chapter, results relating to AnHMM are to be found in the next chapter.

Unlike the classic state space formulation where x(t) is a continuous variable, the Analog Hidden Markov Model setting relies on the discrete state space formed by the set of analogs 

       x(t) = s j |x(t -1) = s i ∼ A = {a ij } y(t) = y t |x(t) = s j ∼ B = {b j (y t )} (2.
12)

The parameterization of the transition matrix relies on the determination of transitions between the states. We consider a sparse parameterization of the transition matrix, where each state s i ∈ S involves K possible transitions as follows:

• We search for the K-nearest neighbors of s i in set D a according to a predefined kernel in the state space.

• Let {s n } n∈I(i) denote the K nearest neighbors (analogs) of s i , where

I(i) = {i 1 , i 2 , • • • , i K }
contains the K indices of these analogs. From catalog C, we retrieve their successors

{s n } n∈F (I(i))
. F denotes the operator mapping each analog index to the index of its successor.

Numerical Experiments

• the transition probabilities a ij = P (X t = s j |X t-1 = s i ) from state s i ∈ S to state s j ∈ S are non-null for successors {s n } n∈F (I(i))

a ij ∝        exp (-λ s i -s i k 2 ) if j = F(i k ) 0 otherwise (2.13)
where λ can be thought as a scale parameter.

If we denote by W the cardinal of S, the transition matrix is a W × W matrix with only

W × K non-null values.
The observation matrix of the HMM directly follows from the observation model P (y(t)|x(t)).

The global observation matrix is a W ×T matrix b j (y t ) = P (y(t) = y t |x(t) = s j ). In the reported numerical experiments, Gaussian observation models are considered:

b j (y t ) ∝ exp(- (y t -Hs j ) T R -1 (y t -Hs j ) 2 ) (2.14)
where R is the observation covariance error matrix.

The resolution of the constructed Hidden Markov Model is done through the use of the Forward-Backward algorithm presented in section 1.1.3.

We may consider higher-order Markovian properties with a view to accounting for longer time dependencies. For a given time lag δ, it comes to consider the augmented state:

X = (x(t), x(t -1), x(t -2), • • • , x(t -(δ -1))) (2.15)
Creating the catalog in this case and setting the parameters of the Analog HMM follow the same steps as aforementioned.

Numerical Experiments

To evaluate the relevance and performance of the proposed analog data assimilation, we consider numerical experiments on dynamical systems extensively used in the literature on data assimi- 

Chaotic models

We first consider the chaotic Lorenz-63 system. From a methodological point of view, it is particularly interesting due to its nonlinear chaotic behavior and low dimension. Several works have used this system, e.g. [START_REF] Jeffrey | A monte carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts[END_REF][START_REF] Tm Chin | An ensemble-based smoother with retrospectively updated weights for highly nonlinear systems[END_REF][START_REF] Hoteit | A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography[END_REF][START_REF] Robert N Miller | Advanced data assimilation in strongly nonlinear dynamical systems[END_REF][START_REF] Dinh | Stochastic methods for sequential data assimilation in strongly nonlinear systems[END_REF] or [START_REF] Peter | Nonlinear data assimilation in geosciences: an extremely efficient particle filter[END_REF]. The Lorenz-63 model is defined by

dx 1 (t) dt = σ (x 2 (t) -x 1 (t)) , dx 2 (t) dt = x 1 (t) (γ -x 3 (t)) -x 2 (t), dx 3 (t) dt = x 1 (t)x 2 (t) -βx 3 (t).
(2.16)

and behaves chaotically for certain sets of parameters, such as (σ = 10, γ = 28, β = 8/3).

Here, we use the explicit (4,5) Runge-Kutta integrating method (cf. [START_REF] John | A family of embedded runge-kutta formulae[END_REF]). As in [START_REF] Peter | Nonlinear data assimilation in geosciences: an extremely efficient particle filter[END_REF] only the first variable of the Lorenz-63 system (x 1 ) is observed every 8 integration time steps (i.e., with dt = 0.08). Considering the analogy between the Lorenz-63 and atmospheric time scales, it is equivalent to a 6-hour time step in the atmosphere.

The Lorenz-96 model is another chaotic model largely used for evaluating data assimilation techniques in geophysics [2-4, 73, 118, 156]. It is defined by

dx j (t) dt = (-x j-2 (t) + x j+1 (t)) x j-1 (t) -x j (t) + F. (2.17)
where, j = 1, . . . , n and the boundaries are cyclic, i.e. x -1 (t) = x n-1 (t), x 0 (t) = x n (t) and

x n+1 (t) = x 1 (t). The three right-hand side terms in (2.17) simulate respectively an advection, a diffusion and a forcing term. As in [START_REF] Edward | Predictability: A problem partly solved[END_REF], we choose n = 40 and external forcing of F = 8 for which the model behaves chaotically. Equation (2.17) is solved using Runge-Kutta fourth order scheme. Observations are taken from half of the state vector (20 observed components randomly selected) every 4 time steps (i.e., dt = 0.20).

Experimental details

The considered experimental setting is as follows. , where md(x(t)) is the median distance between the current state x(t) and its K analogs. Note that a cross-validation procedure could be used to optimize the choice of K and λ.

Experiments with Lorenz-96 model

Experiment 1: The first numerical experiment consisted only in the application of analog forecasting (without assimilation) from a catalog. We build a database using Lorenz-96 equations, then we split the samples randomly to 2/3 for training the analog forecasting operators and 1/3 for test. Finally, we compare the RMSE w.r.t ground truth data as a function of Lorenz-96 time. For local analogs, we consider ν = 2 the width of the considered component-wise neighborhood. Figure 2.3 shows the results of this experiment using the three choices for the analog forecasting operator A. The locally-linear approach outperforms the two other approaches confirming that its forecasts are with lower bias compared to the other approaches. However, it also involves more parameters which increases the variance of the forecasts. This bias-variance trade-off supports the greater generalization capabilities of the locally-linear operator, when the dynamics can well be approximated locally by a linear operator. by always dragging the forecast near the mean of the K successors, and, according to these experiments, it seems poorly adapted to complex and highly nonlinear systems. Regarding the locally-incremental and locally-linear strategies, local analogs are more relevant than global ones for prediction in a near future (less than 0.5 in Lorenz-96 time for locally-linear operator and less than 0.25 in Lorenz-96 time for locally-incremental).

Experiment 2:

We conducted a second experiment for evaluating the impact of analog forecasting in data assimilation using the Lorenz-96 model. We run the AnEnKS with 1000 ensemble members, when only 20 variables are observed every 0.20 time steps. members, the number of analogs as well as using jittering (i.e. perturbing the particles with a small noise), the AnPF still suffered from the aforementioned issues.

Experiments with Lorenz-63 model

Experiment 1: In the proposed AnDA, the size of the catalog is expected to be a critical parameter. For Lorenz-63 dynamics, we conducted different AnDA experiments varying the size of the catalog S = {10 1 , 10 2 , 10 3 , 10 4 } in Lorenz-63 times. We consider the same setting as in [START_REF] Tandeo | Combining analog method and ensemble data assimilation: application to the lorenz-63 chaotic system[END_REF] where the locally-constant method with a Gaussian sampling was used for the AnEnKF, then we compare the three AnDA algorithms using 100 ensemble members/particles. As reported in Figure 2.5, the RMSE decreases when the size of the catalog increases for all AnDA algorithms.

Regarding filtering-only (i.e. no smoothing) AnDA algorithms, the AnPF (blue) outperforms the AnEnKF (green). This is an expected result since particle filters handle better nonlinear models and non Gaussian probability distributions, although at a high cost in terms of computational complexity and execution time. The AnEnKS (red) clearly gives the lowest RMSE. This supports their source catalog, which is harder to achieve with the other AnDA algorithms, since the particles would be elements from the catalog and the AnPF assigns a weight to each particle. This make it easier to select at each time the particle with the biggest weight and to know from which catalog it came from.

At every assimilation time step, we determine which parameterization most ensemble members come from, and then calculate the proportion of the presence of each parameterization. As expected, the true parameterization (red, parameterization θ 1 ) is more represented. The proportions for θ 1 , θ 2 and θ 3 are respectively around, 60%, 16% and 24% proving the ability of the methodology to detect the source of the noisy and partial observation (here, only coming from θ 1 ). In order to analyze more the results, we calculate the RMSE of the reconstruction using: i) the three catalogs as shown before, ii) only the good catalog, iii) only the two "bad" catalogs.

The RMSEs are respectively i) 1.287, ii) 1.207, iii) 1.424. These results show that having other catalogs with different parameterization degrade the RMSE but the filter is still performing well. This experiment gives insights on the problem of the assimilation of variables that may switch between different dynamical modes. Analog data assimilation can deal with this problem in a simpler manner than classical data assimilation, through the concatenation of the catalogs issued from different parameterizations into a single catalog. Experiment 3: Whereas previous experiments consider catalogs produced from noise-free trajectories, we here evaluate the sensitivity of the AnDA procedures when the catalog may involve noisy trajectories of the considered system. Acquisition systems typically involve such noise patterns, which may relate for instance to both environmental constraints and measurement uncertainties. We simulate noisy catalogs for Lorenz-63 dynamics as follows: we artificially degrade the transition between consecutive states with a Gaussian additive noise. We performed experiments with different noise variances ψ 2 = {0.5, 1, 2} to evaluate the sensitivity of AnDA procedures with respect to the signal-to-noise ratio. As illustrated in Figure 2.7, the trajectories of these experiments are extremely noisy. Table 2

Numerical Experiments

.2 reports the RMSE of the different

AnDA algorithms with the locally-linear analog forecasting operator and 100 ensemble members/particles. As expected, the RMSE increases with the the variance of the additive noise.

The AnEnKS clearly outperforms the other AnDA algorithms, which highlights its greater robustness. Figure 2.7 further illustrates that the AnEnKS is able to correctly track the true state of the system, even for highly degraded catalogs (ψ 2 = 2, green curve). For high signal-to-noise ratio, i.e. low perturbations (ψ 2 = 0.5, red curve), reconstructed trajectories are very close to the ones obtained with a noise-free catalog. 

Conclusions and perspectives

This chapter demonstrates the potential of data-driven schemes for data assimilation. We propose and evaluate efficient yet simple data-driven forecasting strategies that can be coupled with classical stochastic filters (namely the Ensemble Kalman filter/smoother and the particle filter).

We set a unified framework that we call analog data assimilation (AnDA). The key features of the AnDA are twofold: i) it relies on a data-driven representation of the state dynamics, and ii) it does not require online evaluations of dynamical models based on physical equations. The relevance of the AnDA is tangible when the dynamical system of interest demands tremendous and time-consuming physical modeling efforts and/or uncertainties are difficult to assess. In case when large observational or model-simulated datasets of the considered system are available, AnDA can both support or compete with classical data assimilation schemes. As a proof concept, we demonstrate the relevance of the proposed methodology to retrieve the chaotic behavior of the Lorenz-63 and Lorenz-96 models. We performed numerical experiments to evaluate critical aspects of the method, especially the relevant combinations of analog forecasting strategies and of stochastic filters as well as the exploitation of noisy and noise-free catalogs.

All the reported experiments were carried out using the AnDA Python library (available at https://github.com/ptandeo/AnDA) and/or the AnDA Matlab Toolbox, which includes the Lorenz-63 and Lorenz-96 systems. In the spirit of reproducible research, the user can conduct the different experiments shown in this chapter. Overall, the reported results demonstrate the relevance of the proposed analog data assimilation methods, even with highly damaged catalogs.

They suggest that AnEnKS combined to locally-incremental or locally-linear analog forecasting leads to the best reconstruction performance, the locally-incremental version being the most

Conclusions and perspectives

robust to noisy settings. Moreover, the flexibility of the analog data assimilation demonstrates the potential for the identification of hidden underlying dynamics from a series of partial observations.

The main pillar of our data-driven approach is the catalog. As such, analog data assimilation deeply relates to the quality and representativity of the catalog. In our experiments, we assumed that we were provided with large-scale catalogs of complete states of the system of interest.

While catalogs built from numerical simulations fulfill this assumption, observational datasets (e.g. satellite remote sensing or in situ data) typically involve missing data, which may require specific strategies to be dealt with in the building of the catalogs. In this respect, local analogs obviously appear much more flexible than global ones, as partial observations provide relevant exemplars for the creation of catalogs for local analogs.

The application of analog data assimilation to high-dimensional systems is another future challenge. As detailed in [START_REF] Van Den Dool | Searching for analogues, how long must we wait?[END_REF], the number of elements in a catalog shall grow exponentially with the intrinsic dimension of the state to guarantee the retrieval of analogs at a given precision. This makes unrealistic the direct application of analog strategies to state space with an intrinsic dimensionality above 10. As a consequence, global analog forecasting operators are most likely inappropriate for high-dimensional systems. By contrast, local analogs provide a means to decompose the analog forecasting of the high-dimensional state into a series of local and low-dimensional analog forecasting operations. This is regarded as the key explanation for the much better performance reported for the local analog data assimilation for Lorenz-96 dynamics using catalogs of about a million of exemplars (Fig. 2.4). For real world applications to high-dimensional systems, for instance to ocean and atmosphere dynamics, the combination of such local analog strategies to multiscale decompositions [START_REF] Mallat | A theory for multiresolution signal decomposition: the wavelet representation[END_REF] arise as a promising research direction as illustrated in [START_REF] Fablet | Data-driven assimilation of irregularly-sampled image time series[END_REF]. Such multiscale decompositions are expected to enhance the spatial redundancy, with a view to building the requested catalogs of millions to hundreds of millions of exemplars (for an intrinsic dimensionality between 4 and 7, see Appendix A) from observation or simulation datasets over a few decades. Another important aspect that controls the effective size of the catalog is the evolution of the system in time. The more nonlinear the dynamics, the greater the number of requested exemplars in the global catalog to learn the forecast operator and the spread of the prediction.

Part II

Dealing with high-dimensional fields:

The holds the copyright. Hereinafter, a geophysical field will be noted using capital non-bold letters (X instead of x)1 

The Multiscale Analog Data Assimilation

Motivation

As depicted in the conclusion of the previous chapter. Two main features make the direct application of AnDA algorithms to spatiotemporal fields poorly efficient: their computational complexity and their ability to jointly capture large-scale and fine-scale structures. Our first application of the AnDA to ocean geophysical fields is detailed in [START_REF] Lguensat | Using archived datasets for missing data interpolation in ocean remote sensing observation series[END_REF] where we considering datasets from AMSRE radiometer Sea Surface Temperature (SST) observations. We applied the AnHMM to infer the interpolated SST maps, and were confronted with the problem of high dimensionality. Since AnDA successful application is affected by the curse of dimensionality, and is limited to relatively low-dimensional spaces (up to a few tens of dimensions). We explored the use of Another important aspect widely known when dealing with the reconstruction of highdimensional fields is the difficulties faced when trying to infer fine-scales. Algorithms like Optimal interpolation fail to retrieve such scales (generally less than 100km), due to the correlation length of their covariance models. This naturally calls for a multi-scale representation. Formally, we considered a model where field X was decomposed as follows:

X = X + J i=1 dX i + ξ (3.1)
where X refers to the large-scale (low-frequency) component of X, dX i to details at the i th scale and ξ to unresolved scales. The goal of this chapter is then to show that AnDA could be a relevant candidate for the reconstruction of fine scales, and shows that AnDA could support model-based algorithms in order to achieve a better reconstruction of the geophysical field of interest.

Multi-scale data-driven priors

Let take hereinafter J = 2 in Equation 3.1. The definition of detail fields dX 1 and dX 2 combines patch-based and PCA-based representations. For scale i = 1 or 2, let us consider P i ×P i patches, such that P 1 > P 2 (typically P 1 = 40 and P 2 = 20). We proceed as follows for the scale i = 1.

Given X in multi-scale decomposition (3.1), each P 1 × P 1 patch of detail field dX 1 is given by the projection of the associated patch for residual field X -X onto a low-dimensional PCA decomposition. This PCA decomposition is learnt from P 1 × P 1 patches of a training dataset of residual fields X -X. We apply the same procedure for detail field dX 2 from residual field

X -X -dX 1 .
Formally, this leads to the following definition of detail fields dX 1 and dX 2 :

dX 1 = P 1 X -X dX 2 = P 2 X -X -dX 1 (3.2)
where P 1,2 are patch-based PCA image projection operators [START_REF] Deledalle | Image denoising with patch based PCA: local versus global[END_REF][START_REF] Tasdizen | Principal Neighborhood Dictionaries for Nonlocal Means Image Denoising[END_REF]. They result in the decomposition of any patch P s around point s at time t of detail field dX i as a linear combination of Chapter 3. Interpolation of missing data in Sea Surface Temperature maps the principal components of the PCA for scale i:

dX i (P s , t) = N E k=1 α i,k (s, t)EOF i,k (3.3)
with EOF i,k the k th principal component of the PCA at scale i and α i,k (s, t) the associated coefficient for patch P s at time t. N P CA,i refers to the number of vectors of the PCA basis at scale i. The spectral properties of PCA decompositions along with the lower patch size at scale i = 2,

i.e. P 1 > P 2 , lead to a scale-space decomposition [START_REF] Mallat | A wavelet tour of signal processing[END_REF]. Contrary to a wavelet decomposition, we only implicitly set the considered scale ranges through the number of principal components kept at each scale. The key interest here is a local adaption with point-specific PCA bases which can also account for any image geometry (e.g., the presence of land points in the considered region).

Given these definitions for detail fields dX 1 and dX 2 , we considered an analog (data-driven) formulation of the associated dynamical models (3.10). As stated in the motivation section, analog dynamical models introduced in Chapter 2 do not directly apply to high-dimensional fields and we considered patch-based models. We first assumed that we were provided with representative catalogs C 1,2 of patch exemplars of the dynamics of details fields dX 1 and dX 2 .

Each catalog is composed of a set of patch exemplars {dX i (P s k , t k )} k , referred to hereafter as analogs, and of their temporal successors {dX i (P s k , t k + 1)} k . For a given patch P s and scale i, the definition of the analog dynamical model leads to the definition of an exemplar-driven sampling strategy for the distribution of the state at time t, dX i (P s , t), conditionally to the state at time t -1, dX i (P s , t -1). Let us denote by ϕ i (P s , t) the vector of the N E coefficients α i,k (s, t), which represents the projection of dX i (P s , t) in the lower-dimensional EOF space.

Formally, we considered Gaussian conditional distributions of the form

ϕ i (P s , t)|ϕ i (P s , t -1) ∼ G (µ i (u, C i ) , Σ (u, C i )) (3.4)
where G(•) is a Gaussian distribution. Mean µ i (u, C i ) is defined as a weighted function of the successors of the K nearest-neighbor of u in catalog C i . Similarly, covariance Σ (u, C i ) is issued from the weighted covariance of the successors of the K nearest neighbors. Theses weights and the nearest-neighbor search involve a predefined kernel K as detailed below. Let us denote by (A k (u), S k (u)) the analog-successor pair of the k th nearest-neighbor to u in C i . Following

Chapter 2, we investigate three different analog dynamical models corresponding to different parameterizations of the above mean and covariance:
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• Locally-constant analog model: mean µ i (u, C i ) and covariance Σ (u, C i ) are given by the weighted mean and covariance of the K successors {S k (u)} k .

• Locally-incremental analog model: it proceeds similarly to the locally-constant analog model, but for the differences between the successors and the analogs, such that mean µ i (u, C i ) is given by the sum of u and of the weighted mean of the K differences

{S k (u) -A k (u)} k . Σ (u, C i ) results
in the weighted covariance of these differences.

• 

K G (u(t), v(t)) = exp - u(t) -v(t) 2 σ , (3.5) 
and a cone kernel K C , recently introduced for dynamical systems in [START_REF] Zhao | Analog Forecasting with Dynamics-Adapted Kernels[END_REF]. For any pair of states u(t), v(t), it leads to

K C (u(t), v(t)) = exp - L ζ (u(t), v(t)) σ (3.6) L ζ (u(t), v(t)) = ω(t) 2 1 -ζ cos 2 θ 1 -ζ cos 2 φ 1/2 ∂ t u(t) ∂ t v(t) (3.7)
where

ω(t) = u(t)-v(t), ∂ t u(t) = u(t)-u(t-1), ∂ t v(t) = u(t)-u(t-1), cosθ = ω(t)
, du(t) and cosφ = ω(t), dv(t) . Compared to a classical Gaussian kernel, the cone kernel takes into account not only the distance between the two states, but also the alignment of their instantaneous velocities with the difference between the two states. It has been shown in [START_REF] Zhao | Analog Forecasting with Dynamics-Adapted Kernels[END_REF] that the cone kernel may be more appropriate for analog forecasting schemes. For the Gaussian (resp. cone) kernels, scale parameter σ is locally-adapted to the median value of the distances u(t)v(t) 2 (resp. L ζ (u(t), v(t))) to the K nearest neighbors in the catalogs of exemplars. Parameter ν is set empirically between 0 and 1. In all cases, we take advantage of the considered PCA-based representation of the patches to compute patch similarities within the associated low-dimensional spaces, and not in the original patch space.

Missing data interpolation in Sea Surface Temperature maps

Satellite-derived products are of key importance for the high-resolution monitoring of the ocean surface on a global scale. A variety of sensors record observations of geophysical parameters, such as Sea Surface Temperature (SST) [START_REF] Chelton | Global Microwave Satellite Observations of Sea Surface Temperature for Numerical Weather Prediction and Climate Research -ProQuest[END_REF], Sea Surface Height (SSH) [START_REF] Chelton | Satellite Altimetry[END_REF], Ocean Color [START_REF] Baith | Data analysis system developed for ocean color satellite sensors[END_REF],

Sea surface Salinity (SSS) [START_REF] Klemas | Remote Sensing of Sea Surface Salinity: An Overview with Case Studies[END_REF], etc. In all cases, the delivery of L4 gridded products for endusers involves a number of pre-processing steps from the L1 data acquired and transmitted by spaceborne sensors. Due to both the space-time sampling geometry of satellite sensors and their sensitivity to the atmospheric conditions (e.g., rains, aerosols, clouds), ocean remote sensing data may involve very large missing data rates as illustrated in Fig. 3.3. Hence, spatio-temporal interpolation is of key importance to deliver gap-free gridded sea surface fields for further analysis.

Optimal interpolation is certainly the state-of-the-art approach for the spatio-temporal interpolation of satellite-derived sea surface geophysical fields [START_REF] Donlon | The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system[END_REF][START_REF] Escudier | Improvement of coastal and mesoscale observation from space: Application to the northwestern Mediterranean Sea[END_REF]. Optimal interpolation relies on the modeling of the covariance of the considered spatio-temporal fields. The choice of the covariance model is a critical step [START_REF] Buongiorno Nardelli | Evaluation of different covariance models for the operational interpolation of high resolution satellite Sea Surface Temperature data over the Mediterranean Sea[END_REF][START_REF] Donlon | The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system[END_REF][START_REF] Tandeo | Linear Gaussian state-space model with irregular sampling: application to sea surface temperature[END_REF][START_REF] Tandeo | Combining analog method and ensemble data assimilation: application to the lorenz-63 chaotic system[END_REF]. Stationary covariance hypotheses are generally considered, though they might not be verified. For instance, frontal areas as illustrated in Fig. 3.5 may involve time-varying and space-varying anisotropical features. In such cases, considering mean covariance model typically results in the smoothing out of the fine-scale SST details.

Data assimilation techniques for missing data interpolation may be regarded as another important category of model-driven approaches [START_REF] Ba | Multi-resolution missing data interpolation in SST Image Series[END_REF][START_REF] Evensen | Data Assimilation[END_REF][START_REF] Tandeo | Linear Gaussian state-space model with irregular sampling: application to sea surface temperature[END_REF]. A critical aspect of their implementation lies in the choice of the dynamical model, more precisely the trade-off between its computational complexity and its ability to correctly represent real sea surface dynamics.

The tremendous amount of satellite observation data pouring from space, along with the wider availability of reanalysis and/or numerical simulation datasets supports the development of data-driven approaches as an alternative to model-driven schemes. In this respect, statistical and machine learning models offer new computational means to account for space-time variabilities that cannot be completely captured by simplified physical models. The application of Principal Component Analysis (PCA), also referred to as Empirical Orthogonal Functions (EOF) in the geoscience field, to remote sensing missing data interpolation [START_REF] Beckers | EOF Calculations and Data Filling from Incomplete Oceanographic Datasets[END_REF][START_REF] Ping | An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data[END_REF] may be regarded as an example of such data-driven schemes, though it proves mainly relevant for large-scale variabilities 3.3. Problem statement and related work [START_REF] Ping | An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data[END_REF]. One may also cite the development of exemplar-based models in image processing and their applications to missing data interpolation for single-date remote sensing data [START_REF] Fablet | Missing data super-resolution using non-local and statistical priors[END_REF][START_REF] Lorenzi | Inpainting strategies for reconstruction of missing data in VHR images[END_REF].

In this study, we investigate such data-driven and exemplar-based models for the spatiotemporal interpolation of missing data in ocean remote sensing time series. We aim to exploit the implicit knowledge conveyed by available multi-annual satellite-derived datasets to improve the interpolation of high-resolution spatio-temporal sea surface geophysical fields. We rely on analog data assimilation [START_REF] Hamilton | Ensemble Kalman filtering without a model[END_REF][START_REF] Tandeo | Combining analog method and ensemble data assimilation: application to the lorenz-63 chaotic system[END_REF] and develop, to our knowledge, the first application of analog data assimilation to high-dimensional spatio-temporal fields. Our methodological contributions lie in the introduction of a multiscale analog data assimilation applied to local patch-based and PCA-constrained representations. We demonstrate the relevance of the proposed scheme through an application to SST time series. We report significant gain compared to state-of-theart approaches, namely optimal interpolation [START_REF] Buongiorno Nardelli | Evaluation of different covariance models for the operational interpolation of high resolution satellite Sea Surface Temperature data over the Mediterranean Sea[END_REF][START_REF] Li | Spatial interpolation methods applied in the environmental sciences: A review[END_REF] and PCA-based interpolation [START_REF] Beckers | EOF Calculations and Data Filling from Incomplete Oceanographic Datasets[END_REF][START_REF] Ping | An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data[END_REF].

Problem statement and related work

Model-driven approaches

As previously mentioned, model-driven approaches are the state-of-the-art techniques for the spatio-temporal interpolation of missing data in ocean remote sensing observations [START_REF] Donlon | The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system[END_REF][START_REF] Evensen | Data Assimilation[END_REF]. In particular, optimal interpolation relates to the following formulation:

X ∝ G(X b , Γ) (3.8) Y (t, s) = X(t, s) + ǫ(t, s), ∀s ∈ Ω t (3.9)
where G(X b , Γ) is a spatio-temporal Gaussian field with mean background field X b and covariance function Γ, and ǫ the observation noise assumed to be Gaussian. Ω t refers to the region domain for which observations are truly available at time t. Given a series of observation fields Y and a known covariance function Γ, optimal interpolation leads to an analytical MAP (Maximum A Posteriori) solution for field X, equivalent to the minimization of a reweighted least-square criterion w.r.t. the covariance of noise ǫ. The choice of the covariance function Γ is a critical step. Exponential and Gaussian covariance models [START_REF] Buongiorno Nardelli | Evaluation of different covariance models for the operational interpolation of high resolution satellite Sea Surface Temperature data over the Mediterranean Sea[END_REF][START_REF] Tandeo | Linear Gaussian state-space model with irregular sampling: application to sea surface temperature[END_REF] are the most classical choices with both constant parameters as well as space-time-varying parameterization [START_REF] Tandeo | SST spatial anisotropic covariances from METOP-AVHRR data[END_REF].

Chapter 3. Interpolation of missing data in Sea Surface Temperature maps When dealing with high-dimensional fields, such as ocean remote sensing observations, the numerical computation of the solution of the optimal interpolation may not be feasible, as it involves the inversion of a very large covariance matrix. Sequential approaches, such as ensemble Kalman techniques [START_REF] Evensen | Data Assimilation[END_REF], are then considered. They may be restated as data assimilation formulations. Considering a discrete setting, they amount to the following model for field X:

X(t) = M (X(t -1), η(t -1)) (3.10)
where M is referred to as the dynamical model and η is a random perturbation. Model (3.8) may be restated according to this formulation with a linear model M and a Gaussian process η derived from the considered Gaussian field with covariance Γ. Other parameterizations of the dynamical model may be derived from fluid dynamics equations, including for instance advection-diffusion models [START_REF] Ba | Multi-resolution missing data interpolation in SST Image Series[END_REF]. Ensemble Kalman schemes [START_REF] Evensen | Data Assimilation[END_REF] are the state-of-the-art techniques to numerically solve for the reconstruction of spatio-temporal field X given partial observation field Y under model (3.10). Using a sample-based representation of Gaussian distributions, they provide forward-backward filtering schemes to approximate the optimal interpolation solution. We let the reader refer to [START_REF] Evensen | Data Assimilation[END_REF] and reference therein for additional details on stochastic data assimilation. We may also point out variational data assimilation [START_REF] Ba | Multi-resolution missing data interpolation in SST Image Series[END_REF][START_REF] Le-Dimet | Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects[END_REF], which exploits a continuous formulations of Model (3.10) and involves a gradient-based minimization of the observation error under model (3.10).

A typical example of the optimal interpolation of an SST field from a series of partial observations is reported in Fig. 3.3. An important limitation of model-driven approaches lies in modeling uncertainties. Due to the autocorrelation structure of sea surface geophysical structures and the observation sampling rate, optimal interpolation results to accurate reconstruction of the spatio-temporal fields for spatial scales larger than 100km. However, finer scales are significantly filtered out (see Fig. 3.3). This property directly relates to the correlation length of the covariance model (here, 100km). This correlation is a trade-off between the spatial resolution of the observation fields (here, 5km) and the size of the gaps.

As detailed below, we explore data-driven approaches to take advantage of available observation or simulation datasets with a view to improving the reconstruction of the fine-scale structures of sea surface fields.

Data-driven approaches

With the increasing availability of representative observation datasets, data-driven models become more and more appealing to solve inverse image problems, including missing data interpolation. Initially mostly investigated for computer vision and computer graphics applications, such as synthesis, inpainting and super-resolution issues [START_REF] Criminisi | Region filling and object removal by exemplarbased image inpainting[END_REF][START_REF] Efros | Image Quilting for Texture Synthesis and Transfer[END_REF], they have also gained interest for applications to remote sensing data [START_REF] Fablet | Missing data super-resolution using non-local and statistical priors[END_REF][START_REF] Lorenzi | Inpainting strategies for reconstruction of missing data in VHR images[END_REF]. Patch-based and exemplar-based models have emerged as powerful representations to project images onto large sets of patch exemplars and/or dictionaries. Non-local means and non-local priors [START_REF] Buades | A non-local algorithm for image denoising[END_REF][START_REF] Peyré | Non-local Regularization of Inverse Problems[END_REF] are state-of-the-art examples of such models for image reconstruction issues. Developments for multivariate time series have also recently been investigated, especially exemplar-driven data assimilation referred to in the geoscience field as analog data assimilation [START_REF] Hamilton | Ensemble Kalman filtering without a model[END_REF][START_REF] Lguensat | The analog data assimilation[END_REF][START_REF] Tandeo | Combining analog method and ensemble data assimilation: application to the lorenz-63 chaotic system[END_REF]. Two main features make the direct application of these exemplar-based strategies to spatiotemporal fields poorly efficient: their computational complexity and their ability to jointly capture large-scale and fine-scale structures. Patch-based techniques generally involve small image patches (typically, from 3x3 to 11x11 patches for 2D images), which cannot resolve large structures, with a typical scale greater than the width of the patches. In addition, the considered minimization schemes involve repeated iterations over the entire set of exemplars, which may make them extremely computationallydemanding for applications to spatio-temporal data. By contrast, analog data assimilation provides an efficient sequential scheme, but remains limited to relatively low-dimensional space (up to a few tens of dimensions in [START_REF] Hamilton | Ensemble Kalman filtering without a model[END_REF][START_REF] Tandeo | Combining analog method and ensemble data assimilation: application to the lorenz-63 chaotic system[END_REF]).

PCA-based models are popular in the geoscience field. They have also gained interest for application to missing data interpolation, especially DINEOF approaches [START_REF] Beckers | EOF Calculations and Data Filling from Incomplete Oceanographic Datasets[END_REF][START_REF] Ping | An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data[END_REF]. These involve two key steps: i) the estimation of basis functions, which provide a lower-dimensional representation of the variability spanned by the considered spatial or spatio-temporal data, ii) the interpolation of the missing data from projections onto the basis functions. VE-DINEOF [START_REF] Ping | An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data[END_REF] has recently improved compared to the original DINEOF scheme [START_REF] Beckers | EOF Calculations and Data Filling from Incomplete Oceanographic Datasets[END_REF]. In both cases, applications to ocean remote sensing data, especially SST, were considered. Applied on a global or regional scale, the lower-dimensional PCA-based representation is mostly relevant to recover large-scale structures and not as appropriate to reconstruct fine-scale details. Overall, PCA-based decompositions are regarded as relevant representations to encode the spatial patterns exhibited by geophysical fields. It may be noted that PCA representations are also often used in patch-based image processing (see for instance [START_REF] Deledalle | Image denoising with patch based PCA: local versus global[END_REF][START_REF] Tasdizen | Principal Neighborhood Dictionaries for Nonlocal Means Image Denoising[END_REF]).

Application of the patch-based AnDA

We proceed to the resolution of model (3.1). We might consider a direct discrete gradientbased numerical resolution as the considered parameterization for model (3.1) can be regarded as a spatio-temporal Markov Random field [START_REF] Fablet | Missing data super-resolution using non-local and statistical priors[END_REF][START_REF] Freeman | Markov Random Fields for Super-Resolution[END_REF]. This would however lead to an extremelydemanding computational scheme. We prefered to exploit the multi-scale nature of our model to develop a coarse-to-fine strategy and cast the global minimization problem as series of smaller problems, which can be solved more efficiently. More precisely, we proceeded as follows. We first solved for the reconstruction of large-scale component X using optimal interpolation with covariance model Γ. We then successively solved for the reconstruction of detail fields dX 1 and dX 2 . This step runs independent resolution along the temporal dimension for each patch position using sequential data assimilation algorithms, namely an analog Ensemble Kalman Smoother (AnEnKS) and an HMM-based analog smoother (AnHMM). The independent solutions computed for each patch position were recombined using averaging. To reduce the computational complexity, we did not process all possible patch positions, but only overlapping patches (5-pixel overlapping in both directions) with a 35x35 (resp. 15x15) spatial sampling for P 1 × P 1 patches (resp. P 2 × P 2 ). To remove potential block artifacts, we apply a PCA-based decompositionreconstruction onto 10 × 10 patches. As initialization for the analog data assimilation iterations, we use a VE-DINEOF solution [START_REF] Ping | An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data[END_REF].

All implementations were run under Matlab. We used [START_REF] Escudier | Improvement of coastal and mesoscale observation from space: Application to the northwestern Mediterranean Sea[END_REF] for optimal interpolation, and Analog Data Assimilation toolbox [START_REF] Lguensat | The analog data assimilation[END_REF].

Results

Experimental setting

Considered case-study: To perform a qualitative and quantitative evaluation of the proposed framework, we used a reference gap-free L4 SST time series from which we create a SST with missing data using real missing data masks. As reference SST, we used OSTIA product delivered daily by the UK Met Office [START_REF] Donlon | The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system[END_REF] with a 0.05 • spatial resolution (approx. 5km) from January 2007

to April 2016. The OSTIA analysis combines satellite data provided by infrared sensors (AVHRR, AATSR, SEVIRI), microwave sensors (AMSRE, TMI) and in situ data from drifting and moored

Results

buoys. For the missing data mask series, we studied an infrared sensor, more specifically METOP, which may involve very high missing data rates as illustrated in Fig. 3.3 & 3.5.

As a case-study region, we selected an area off South Africa. This highly dynamic ocean region involves complex fine-scale SST structures (e.g., filaments, fronts) as shown in Fig. 3.3.

Our evaluation focused on the interpolation of the SST fields for year 2015, other years being used to build a catalog of exemplars for the analog frameworks.

Parameter setting of the proposed approaches: We performed interpolation experiments with both AnHMM and AnEnKF/KS schemes. We exploited a three-scale model: the global scale (entire region), 40x40 patches and 20x20 patches. At each scale, each patch was encoded by its PCA-based decomposition using a 10-component PCA. As initialization for missing data areas, we used an optimal interpolation on the global scale. The parameterizations of the optimal interpolation and of the DINEOF scheme were those used for comparison purposes as detailed below. In the analog setting, the number of neighbors was varied from 10 to 110 and we compared Gaussian and Cone kernels.

Comparison to state-of-the-art approaches:

For comparison purposes, we consider an optimal interpolation, which is the interpolation technique used in most operational products (e.g., [START_REF] Donlon | The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system[END_REF]), VE-DINEOF [START_REF] Ping | An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data[END_REF], a PCA-based technique, and a direct region-level application of the analog data assimilation. Their parameter settings were as follows:

• Optimal interpolation (OI): we used a Gaussian kernel with a spatial correlation length of 100km and a temporal correlation length of 3 days. These parameters were empirically tuned for the considered dataset using a cross-validation experiment. We used the optimal interpolation package from [START_REF] Escudier | Improvement of coastal and mesoscale observation from space: Application to the northwestern Mediterranean Sea[END_REF]. The considered parameter setting was consistent with previous work [START_REF] Donlon | The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system[END_REF][START_REF] Tandeo | Linear Gaussian state-space model with irregular sampling: application to sea surface temperature[END_REF] and stressed the strong temporal correlation of SST field [START_REF] Tandeo | Linear Gaussian state-space model with irregular sampling: application to sea surface temperature[END_REF]. In our case-study, a direct implementation of the OI would have required a large memory:

for a missing data rate of ∼70%, the interpolation onto the considered 300 × 600 grid would have required the inversion of a system of 5T.10 4 equations with T the temporal correlation. Given the considered spatial correlation length of 100km, we achieved an optimal interpolation onto a coarser grid with a resolution of 25km and applied a bicubic interpolation onto the targeted high-resolution grid (5km resolution).

• VE-DINEOF interpolation: we exploited a direct implementation of VE-DINEOF scheme [START_REF] Ping | An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data[END_REF] on the regional scale using 200 PCA components, which amounted to 99.27% of the total variance of the dataset. This VE-DINEOF setting is referred to as G-VE-DINEOF. It may be noted that variational interpolation techniques, based on the minimization of regularization norms [START_REF] Bertalmio | Navier-Stokes, fluid dynamics, and image and video inpainting[END_REF], cannot be expected to lead to relevant results given the large missing data rates in the considered dataset (above 70% on average) and were not considered in our experiments.

Qualitative and quantitative evaluation: to assess the quality of the different interpolation schemes, we first achieved a quantitative analysis according to root mean square error (RMSE) statistics for the SST reconstructed SST fields, the associated gradient fields, and the detail fields of a 4-scale dyadic wavelet decomposition of the SST fields. We also computed radially-averaged power spectral densities to analyze the fine-scale patterns of the reconstructed field. In addition, we performed a qualitative analysis of these fields with a focus on the reconstruction of fine-scale structures.

Interpolation performance

We shall begin with the results of our numerical experiments. We first present the quantitative evaluation of interpolation performance, including a comparison to state-of-the-approaches.

Second, we further illustrate this performance using interpolation examples. Third, we report a sensitivity analysis of the best analog assimilation setting. We also include an evaluation of 

Qualitative analysis of interpolation results from examples:

To complement this global analysis, we report interpolation results for two dates, corresponding to relatively low (∼ 60%) and greater (∼ 90%) missing data rates, respectively in Fig. 3.5 and Fig. We also illustrate the relevance of the post-processing step in the AnEnKS (Fig. 3.2). The spatially-independent assimilation of overlapping patches may result in block artifacts at patch boundaries as clearly highlighted by the gradient field. The considered EOF-based filtering for 10 × 10 patches successfully removes most of these block artifacts and retrieves a visually consistent gradient field as discussed above. It may be noted that a different implementation of the analog assimilation using non-sequential iterative scheme for patch-based image processing [START_REF] Buades | A non-local algorithm for image denoising[END_REF][START_REF] Fablet | Missing data super-resolution using non-local and statistical priors[END_REF] would be an alternative, however at the expense of an increased computational complexity. By contrast, the independent assimilation of each spatial patch only involves one forward and one backward iteration, such that each space-time patch is visited only twice. We evaluate more precisely the computational complexity of the different interpolation models in Tab.3.6. MS-VE-DINEOF is clearly involves the lowest computational complexity. In this respect, given relatively similar interpolation performance, VE-DINEOF appears as a relevant alternative to OI for the interpolation of the coarse-scale component. By contrast, even if MS-AnHMM significantly reduces the computational complexity of the analog assimilation, the differences in interpolation performance reported in Tab.3.1 clearly recommend the selection of the MS-AnHMM as the relevant fine-scale analog assimilation scheme for SST fields.

Results

Sensitivity analysis for MS-AnEnKS:

Given the overall qualitative and quantitative analysis reported above, we further analyze the MS-AnEnKS setting, especially its sensitivity to the selected parameter setting. In Tab.3.2 we report RMSE statistics while varying the number of neighbors in the analog models. Tab.3.3 reports a similar analysis for different kernel parameterizations. Overall, the best parameterization combines a cone kernel [START_REF] Zhao | Analog Forecasting with Dynamics-Adapted Kernels[END_REF] using 100 neighbors and a locally-incremental analog model. It might be noted that the choice of the kernel weakly affects interpolation performance. By contrast, the locally-incremental analog model significantly improves the RMSE of the locally-linear and locally-constant strategies (Tab.3.4) by about 10% and 25%. This is in accordance with the conclusions drawn in [START_REF] Lguensat | The analog data assimilation[END_REF]. The lower performance of the locally-linear analog model may relate to an unfavourable trade-off between estimation uncertainty and local adaption. We may point out that all these parameterizations of the proposed interpolation framework outperforms both OI and MS-VE-DINEOF.

Creation of catalog C from observation datasets:

In the experiments reported above, the catalog of patch exemplars is built from the gap-free SST time series from 2008 to 2014. This experimental setting is representative of an application context where one aim to exploit previous reanalyses and/or numerical simulations for the interpolation of upcoming observations.

The key interest of the analog assimilation is to facilitate the implicit synergy between possibly computationally-expensive high-resolution models and/or reanalyses and satellite-derived observation datasets. A second application context is also investigated. We may also directly build the catalog of exemplars from the satellite-derived observation datasets, which involve missing data. To simulate this experiment, we created a representative catalog from the SST time series with the METOP missing data mask from 2008 to 2014. We proceeded similarly to the scheme described for year 2015 in Section 4.4.3. We only retained SST patches with less than 20% of missing data. We compared the resulting interpolation performance to that of the first experiment in Tab.3.5. Although lower root mean square error (RMSE) values are reported for this second experiment (0.22 vs. 0.20 in terms of root mean square error of the interpolated SST fields), the relative gain compared to OI and VE-DINEOF is still significant (0.22 vs. respectively 0.40 and 0.41). The qualitative analysis of the interpolated fields leads to conclusions similar to those drawn for the first experiment. These results further stress the relevance of the proposed data-driven approach in order to benefit either from high-resolution simulations and/or re-analyses or real satellite-derived observation datasets. It may be noted that our multi-scale approach may also allow us to combine observation datasets from different sensors [START_REF] Fablet | Missing data super-resolution using non-local and statistical priors[END_REF].

Conclusion

In this chapter, we reported the application of the analog data assimilation framework to highdimensional satellite-derived geophysical fields. We demonstrated its relevance with respect to state-of-the-art techniques, namely optimal interpolation [START_REF] Donlon | The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system[END_REF] and a PCA-based matrix completion scheme [START_REF] Beckers | EOF Calculations and Data Filling from Incomplete Oceanographic Datasets[END_REF][START_REF] Ping | An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data[END_REF]. Our model significantly outperforms these two techniques in terms of reconstruction error, especially for fine-scale structures in the range [20km, 200km]. The considered case-study involves real missing data patterns from the METOP-AVHRR sensor. It is As demonstrated by our experimental evaluation, the first key feature of the proposed model is the use of a multi-scale decomposition. Whereas a classic model-driven interpolation (OI) applies to the coarse-scale component, the reconstruction of the fine-scale components exploit the analog data assimilation [START_REF] Lguensat | The analog data assimilation[END_REF]. A critical aspect of analog methods is the availability of a representative catalog of exemplars. In this respect, the considered multi-scale decomposition is regarded as a crucial means to stationarize the fine-scale spatial variabilities depicted by sea surface geophysical fields and make more relevant exemplar-based representations of these variabilities. Wavelet analysis is generally the classic scheme to derive a multi-scale decomposition [START_REF] Mallat | A wavelet tour of signal processing[END_REF]. Here, we exploited PCA-based representations for different patch sizes, so that we naturally combined a multi-scale decomposition to a low-dimensional representation of the spa- 
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tial variabilities on each scale. Such PCA-based representations also efficiently deal with complex image geometries (e.g., the presence of land areas in the considered ocean case-study region).

It may be noted that Model (3.1) could be straightforwardly extended to a greater number of scales. For the considered case-study however, numerical experiments did not lead to significant improvements with 3 or 4 detail scales.

We believe that this study opens new research avenues for the development of new data-driven models for the reconstruction of upper ocean dynamics from satellite-derived observations, in the same way that data-driven schemes have led to major advances in other imaging domains such as photography, microscopy, astronomy.... The exploitation of analogs for interpolation may be interpreted in a climatological sense, the key idea being that previously observed fine-scale geophysical variabilities will probably occur again, though not necessarily with the same seasonal timing. The application to other sea surface tracers, such as ocean color, is then natural [START_REF] Saulquin | Regional Objective Analysis for Merging High-Resolution MERIS, MODIS/Aqua, and SeaWiFS Chlorophyll-a Data From 1998 to 2008 on the European Atlantic Shelf[END_REF]. The proposed multi-scale analog assimilation also seems particularly appealing for the downscaling of low-resolution satellite-derived products, such as sea surface salinity [START_REF] Umbert | New blending algorithm to synergize ocean variables: The case of SMOS sea surface salinity maps[END_REF] and sea surface height [START_REF] Fablet | Improving mesoscale altimetric data from a multi-tracer convolutional processing of standard satellite-derived products[END_REF]. From a methodological point of view, multimodal extensions would be of interest to account for multi-sensor observations as well synergies between different tracers [START_REF] Fablet | Missing data super-resolution using non-local and statistical priors[END_REF][START_REF] Gaultier | On the inversion of submesoscale tracer fields to estimate the surface ocean circulation[END_REF]. The next chapter of this thesis (Chapter 4) presents an application of the MS-AnDA method to Sea Surface Height.

Analog strategies are particularly appealing when large and representative observation datasets are available, as illustrated in the case-study considered here. By contrast, one may question their relevance in addressing scarce observation datasets as well as extreme events, which are by essence rare events. In this context, the creation of catalogs of analogs from realistic highresolution numerical simulations [START_REF] Gula | Submesoscale Cold Filaments in the Gulf Stream[END_REF][START_REF] Sasaki | SSH Wavenumber Spectra in the North Pacific from a High-Resolution Realistic Simulation[END_REF], which are becoming increasingly available, appears to be a relevant path to be further investigated. 

Motivation

In this chapter, we build on the findings and the conclusions drawn from our previous work on SST. Here, we address a more challenging problem: The interpolation of Sea Level Anomaly (SLA) fields from along-track altimeter data. It is challenging because of the high rate of missing data, that are in this case not resulting from cloud coverage or weather conditions, but from the way the altimeter measures the height of the sea surface (SSH). Along-track data are data collected from altimeter passes on its orbit around the globe, moreover, two altimeters (or more) at the same time are needed to perform a relevant reconstruction using Optimal Interpolation.

Meanwhile, high resolution SSH fields are available using numerical simulations, we therefore wanted to investigate the use of these numerical simulations as a catalog for the reconstruction of high resolution altimeter-derived fields.

This part of my thesis was done in collaboration with Dr. Miao Sun, Prof. Ge Chen and Dr.

Tian Fenglin from the Marine Information Technology lab in Ocean University of China, where I spent one month as a visiting PhD student. Our first attempt in using AnDA for this problem is described in [START_REF] Lguensat | Spatio-Temporal Interpolation Of Altimeter-Derived SSH Fields Using Analog Data Assimilation: A Case-Study In The South China Sea[END_REF], where we used the global multiscale G-MS-AnDA and reached a slight improvement over Optimal Interpolation. In this chapter, we investigate the use of the patch-based version of the multiscale AnDA. Contrarily to the application on SST fields depicted in Chapter 3, we use a two-scale model ( X and dX 1 ) since dX 2 did not bring significant improvement and makes time execution and the calculations heavier. We dropped the cone kernel given it's weak influence on the result. While in the previous chapter, we assumed an independence between the scales ( X and dX 1 ), this chapter investigates the use of inter-scale dependencies and also the use of additional variables as predictors, here, the SST-SSH relationship.

Introduction

The past twenty years have witnessed a deluge of ocean satellite data, such as sea surface height, sea surface temperature, ocean color, ocean current, sea ice, etc. This has helped building big databases of valuable information and represents a major opportunity for the interplay of ideas between ocean remote sensing community and the data science community. Exploring machine learning methods in general and non-parametric methods in particular is now feasible and is increasingly drawing the attention of many researchers [START_REF] Anastase Alexandre Charantonis | Inverse method for the retrieval of ocean vertical profiles using self organizing maps and hidden markov models -application on ocean colour satellite image inversion[END_REF][START_REF] Babacar Gueye | Neural approach to inverting complex system: Application to ocean salinity profile estimation from surface parameters[END_REF][START_REF] Jouini | Reconstruction of satellite chlorophyll images under heavy cloud coverage using a neural classification method[END_REF][START_REF] David J Lary | Machine learning in geosciences and remote sensing[END_REF][START_REF] Zhang | Deep learning for remote sensing data: A technical tutorial on the state of the art[END_REF].

More specifically, analog forecasting [START_REF] Edward | Atmospheric predictability as revealed by naturally occurring analogues[END_REF] which is among the earliest statistical methods explored in geoscience benefits from recent advances in data science. In short, analog forecasting is based on the assumption that the future state of a system can be predicted throughout the successors of past (or simulated) similar situations (called analogs). The amount of currently available remote sensing and simulation data offers analog methods a great opportunity to catch up their early promises. Several recent works involving applications of analog forecasting methods in geoscience fields contribute in the revival of these methods, recent applications comprise the prediction of soil moisture anomalies [START_REF] Mcdermott | A model-based approach for analog spatio-temporal dynamic forecasting[END_REF], the prediction of sea-ice anomalies [START_REF] Comeau | Predicting regional and pan-arctic sea ice anomalies with kernel analog forecasting[END_REF], rainfall nowcasting [START_REF] Atencia | A comparison of two techniques for generating nowcasting ensembles. part ii: Analogs selection and comparison of techniques[END_REF], stochastic weather generators [START_REF] Yiou | Anawege: a weather generator based on analogues of atmospheric circulation[END_REF], etc. One may also cite methodological developments such as dynamically-adapted kernels [START_REF] Zhao | Analog Forecasting with Dynamics-Adapted Kernels[END_REF] and novel parameter estimation schemes [START_REF] Horton | Global optimization of an analog method by means of genetic algorithms[END_REF].

Importantly, analog strategies have recently been extended to address data assimilation issues within the so-called analog data assimilation (AnDA) [START_REF] Lguensat | The analog data assimilation[END_REF], where the dynamical model is stated as an analog forecasting model and combined to state-of-the-art stochastic assimilation procedures such as Ensemble Kalman filters. The application to high-dimensional fields in Chapter 3 provides the methodological background for this study.

Producing time-continuous and gridded maps of Sea Surface Height (SSH) is a major challenge in ocean remote sensing with important consequences on several scientific fields from weather and climate forecasting to operational needs for fisheries management and marine operations (e.g. [START_REF] Hardman-Mountford | Relating sardine recruitment in the northern benguela to satellite-derived sea surface height using a neural network pattern recognition approach[END_REF]). The reference gridded SSH product commonly used in the literature is distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS) (formerly distributed by AVISO). This product relies on the interpolation of irregularly-spaced along-track data using an Optimal Interpolation (OI) method [START_REF] Francis P Bretherton | A technique for objective analysis and design of oceanographic experiments applied to mode-73[END_REF][START_REF] Py Le Traon | An improved mapping method of multisatellite altimeter data[END_REF]. While OI is relevant for the retrieval of horizontal scales of SSH fields greater than ≈ 100km, its Gaussian assumptions cause the small scales of the SSH fields to be smoothed. This limitation makes it impossible to resolve Chapter 4. Analog Spatio-Temporal Interpolation of Sea Level Anomalies from Altimeter-derived Data finer-scale processes (typically from a few tens of kilometers to ≈ 100km) which may be revealed by along-track altimetric data. This has led to a variety of research studies to improve the reconstruction of the altimetric fields. One may cite both methodological alternatives to OI, for instance locally-adapted convolutional models [START_REF] Fablet | Improving mesoscale altimetric data from a multi-tracer convolutional processing of standard satellite-derived products[END_REF] and variational assimilation schemes using model-driven dynamical priors [START_REF] Ubelmann | Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping[END_REF], as well as studies exploring the synergy between different sea surface tracers, especially the synergy between SSH and SST (Sea Surface Temperature) fields and Surface Quasi-Geostrophic dynamics [START_REF] Fablet | Improving mesoscale altimetric data from a multi-tracer convolutional processing of standard satellite-derived products[END_REF][START_REF] Isern-Fontanet | Potential use of microwave sea surface temperatures for the estimation of ocean currents[END_REF][START_REF] Isern-Fontanet | On the Transfer Function between Surface Fields and the Geostrophic Stream Function in the Mediterranean Sea[END_REF][START_REF] Klein | Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height[END_REF][START_REF] Turiel | The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines[END_REF][START_REF] Turiel | Tracking oceanic currents by singularity analysis of Microwave Sea Surface Temperature images[END_REF].

In this work, we build upon our recent advances in analog data assimilation and its application to high-dimensional fields [START_REF] Fablet | Data-driven Models for the Spatio-Temporal Interpolation of satellite-derived SST Fields[END_REF][START_REF] Lguensat | The analog data assimilation[END_REF]. We develop an analog data assimilation model for the reconstruction of SLA fields from along-track altimeter data. It relies on a patch-based and EOF-constrained representation of the SLA fields. Using OFES numerical simulations [START_REF] Masumoto | A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of ofes (ogcm for the earth simulator)[END_REF][START_REF] Sasaki | An eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on the earth simulator[END_REF],

we design an Observation System Simulation Experiment (OSSE) for a case-study in the South China sea using real along-track sampling patterns of spaceborne altimeters. Using the resulting groundtruthed dataset, we perform a qualitative and quantitative evaluation of the proposed scheme, including comparisons to state-of-the-art schemes.

Data: OFES (OGCM for the Earth Simulator)

An Observation System Simulation Experiment (OSSE) based on numerical simulations is considered to assess the relevance of the proposed analog assimilation framework. Our OSSE uses these numerical simulations as a groundtruthed dataset from which simulated along-track data are produced. We describe further the data preparation setup in the following sections.

Model simulation data

The Ocean General Circulation Model (OGCM) for the Earth Simulator (OFES) is considered in this study as the true state of the ocean. The simulation data is described in [START_REF] Masumoto | A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of ofes (ogcm for the earth simulator)[END_REF][START_REF] Sasaki | An eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on the earth simulator[END_REF]. The coverage of the model is 75 

Along track data

We consider a realistic situation with a high rate of along track data. More precisely we use along-track data positions registered in 2014 where 4 satellites (Jason2, Cryosat2, Saral/AltiKa, HY-2A) were operating. Data is distributed by Copernicus Marine and Environment Monitoring Service (CMEMS).

From the reference 3-daily SLA dataset and real along-track data positions, we generate simulated along-track data from the sampling of a reference SLA field: more precisely, for a given along-track point, we sample the closest position of the 1/10 • regular model grid at the closest time step of the 3-daily model time series. As we consider a 3-daily assimilation time step (see Section 4.3.1 for details), we create a 3-daily pseudo-observation field, to be fed directly to the assimilation model. As sketched in Figure 4.2, for a given time t, we combine all along-track positions for times t -1,t and t + 1 to create an along-track pseudo-observation field at time t.

We denote by s3dAT the simulated 3-daily time series of along-track pseudo-observation fields.

An example of these fields is given in Figure 4 As stated in the introduction of this chapter, OI may be considered as an efficient model-based method to recover large-scale structures of SLA fields. Following the findings in Chapter 3, this suggests to consider the following two-scale additive decomposition:

X = X + dX + ξ (4.1)
where X is the large-scale component of the SLA field, typically issued from an optimal interpolation, dX the fine-scale component of the SLA field we aim to reconstruct and ξ remaining unresolved scales. 

Patch-based analog dynamical models

We detail in this section the application of the AnDA framework as presented in Chapter 3 for the sequential reconstruction of fine-scale dX. 

We consider the three analog forecasting operators presented in Chapter 2, namely, the locallyconstant, the locally incremental and the locally-linear. The calculation of the weights associated to each analog-successor pair relies on a Gaussian kernel K G (Equation 3.5). The search for analogs in the N E -dimensional patch space (in practice, N E ranges from 5 to 20) ensures a better accuracy in the retrieval of relevant analogs compared to a direct search in the highdimensional space of state dX. It also reduces the computational complexity of the proposed scheme.

Another important extension of the current study is the possibility of exploiting auxiliary variables with the state vector Φ in the analog forecasting models. Such variables may be considered in the search for analogs as well as regression variables in locally-linear analog setting.

Regarding the targeted application to the reconstruction of SSH fields and the proposed twoscale decomposition (Equation 4.1), two types of auxiliary variables seem to be of interest: the low-resolution component X to take into account inter-scale relationship [START_REF] Fablet | Improving mesoscale altimetric data from a multi-tracer convolutional processing of standard satellite-derived products[END_REF], and Sea Surface Temperature (SST) with respect to the widely acknowledged SST-SSH synergies [START_REF] Fablet | Improving mesoscale altimetric data from a multi-tracer convolutional processing of standard satellite-derived products[END_REF][START_REF] Isern-Fontanet | On the Transfer Function between Surface Fields and the Geostrophic Stream Function in the Mediterranean Sea[END_REF][START_REF] Klein | Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height[END_REF][START_REF] Turiel | The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines[END_REF].

We also apply patch-level EOF-based decompositions to include both types of variables in the considered analog forecasting models (Equation 4.3). Given the patch-level catalog, the algorithm applied for the mapping SLA fields from alongtrack data, referred to as MS-AnDA, involves the following steps:

• the computation of the large-scale component X, here, we consider the result of optimal interpolation (OI) projected onto the global EOF basis functions.

• the decomposition of the case study region into overlapping P × P patches, here, 20 × 20 patches

• For each patch position s, the application of an analog data assimilation scheme, namely the Analog Ensemble Kalman Smoother (AnEnKS) [START_REF] Lguensat | The analog data assimilation[END_REF], for patch P s of field dX. As stated in (4.3), the assimilation is performed in the EOF space, i.e. for EOF decomposition Φ(P s , t), • the reconstruction of fields dX from the set of assimilated patches {dX(P s , •)} s . This relies on a spatial averaging over overlapping patches (here, a 5-pixel overlapping in both directions). In practice, we do not apply the patch-level assimilation to all grid positions.

using
Consequently, the spatial averaging may result in blocky artifacts. We then apply a patchwise EOF-based decomposition-reconstruction with a smaller patch-size (here, 17 × 17 patches) to remove these blocky artifacts.

• the reconstruction of fields X as X + dX.

Results

We evaluate the proposed MS-AnDA approach using the OSSE presented in Section 4.3. We perform a qualitative and quantitative comparison to state-of-the-art approaches. We first describe the parameter setting used for the MS-AnDA as well as benchmarked models, namely OI, an EOF-based approach [START_REF] Ping | An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data[END_REF] and a direct application of AnDA at the region level. We then Chapter 4. Analog Spatio-Temporal Interpolation of Sea Level Anomalies from Altimeter-derived Data report numerical experiments for noise-free and noisy observation data as well the relevance of auxiliary variables in the proposed MS-AnDA scheme.

Experimental setting

We detail below the parameter setting of the models evaluated in the reported experiments, including the proposed MS-AnDA scheme:

• • VE-DINEOF: We apply a second state-of-the-art interpolation scheme using a data-driven strategy solely based on EOF decompositions, namely VE-DINEOF [START_REF] Ping | An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data[END_REF]. We implement a patch-based version of VE-DINEOF to make it comparable to the proposed MS-AnDA setting. Given the same EOF decomposition as in MS-AnDA, the patch-level VE-DINEOF iterates patchwise EOF projection-reconstruction of the detail field dX. This scheme is initialized from the along-track pseudo-observation field for along-track data positions and X for missing data positions. After each projection-reconstruction, we only update missing data areas. We run this iterative process until convergence. The patch-based experiments were run on Teralab infrastructure using a multi-core virtual machine (30 CPUs, 64G of RAM). We used the Python toolbox for patch-based analog data assimilation [START_REF] Fablet | Data-driven Models for the Spatio-Temporal Interpolation of satellite-derived SST Fields[END_REF] (available at github.com/rfablet/PB_ANDA). Optimal Interpolation was implemented on Matlab using [START_REF] Escudier | Improvement of coastal and mesoscale observation from space: Application to the northwestern Mediterranean Sea[END_REF]. Throughout the experiments, two metrics are used to assess the performance of the considered interpolation methods: i) daily and mean Root Mean Square Error (RMSE) series between the reconstructed SLA fields X and the groundtruthed ones, ii)

daily and mean correlation coefficient between the fine-scale component dX of the reconstructed SLA fields and of the groundtruthed ones. We first perform an idealized noise-free experiment, where the along-track observations are noise-free. The observation covariance error takes the value R = 0.001. The interpolation performances for this experiment are illustrated in Table 4.1. Our MS-AnDA algorithm significantly outperforms OI. More specifically, the locally-linear MS-AnDA results in the best reconstruction among the competing methods. We suggest that this improvement comes from the reconstruction of fine-scale features learned from the archived model simulation data. 

SLA reconstruction from noise-free along-track data

Conditioning by auxiliary variables

We further explore the flexibility of the analog setting to the use of additional geophysical variable information as explained in Section 4.4.2. Intuitively, we expect SLA fields to involve inter-scale dependencies as well as synergies with other tracers. The use of auxiliary variables provide the means for evaluating such dependencies and their potential impact on reconstruction performance. We consider two auxiliary variables that are used in the locally-linear analog forecasting model: i) to account for the relationship between the large-scale and fine-scale component, we may consider variable X, ii) considering potential SST-SSH synergies, we consider SST fields. Overall, we consider four parameterization of the regression variables used in MS-AnDA:

the sole use of dX (MS-AnDA-dX); the joint use of dX and SST fields (MS-AnDA-dX+SST); the joint use of dX and X (MS-AnDA-dX+ X), the joint use of dX and the groudntruthed version of X denoted by XGT , (MS-AnDA-dX+ XGT ). The later provides a lower-bound for the reconstruction performance, assuming the low-resolution component is perfectly estimated. We report mean RMSE and correlation statistics for these four MS-AnDA parameterizations in Table 4.5 for the noisy case-study. Considering MS-AnDA-dX as reference, these results show a very slight improvement when complementing dX with SST information. Though limited, we report a greater improvement when adding the low-resolution component X. Interestingly, a significantly greater improvement is obtained when adding the true low-resolution information.

The mean results are in accordance with [START_REF] Fablet | Improving mesoscale altimetric data from a multi-tracer convolutional processing of standard satellite-derived products[END_REF], which reported that large-scale SLA information was more informative than SST to improve the reconstruction of the SLA at finer scales.

Though mean statistics over one year leads to rather limited improvement, daily RMSE time series (Figure 4.8) reveal that for some periods, for instance between day 130 and 150, relative improvements in terms of RMSE may reach 10% with the additional information brought by the large-scale component. In this respect, it may noted that MS-AnDA-dX+ X always perform better than MS-AnDA-dX.

Table 4.5 -MS-AnDA reconstruction performance using noisy along-track data for different choices of the regression variables in the locally-linear analog forecasting model: MS-AnDA-dX using solely dX, MS-AnDA-dX+SST using both dX and SST, MS-AnDA-dX + X using both dX and X, and MS-AnDA-dX + XGT using dX and the true large-scale component XGT . 
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Conclusions and Perspectives

We can't plan life. All we can do is be available for it.

Lauryn Hill 

Conclusion

In this thesis, we studied the extension of analog forecasting methods to data assimilation issues, and have set the foundations of the Analog Data Assimilation. By seizing the opportunity offered by the increasing amount of geophysical information, our method rely on the exploitation of the available large-scale observation and/or simulation/reanalysis dataset using nearest neighbors schemes to improve the analysis of new observations. The Analog Data Assimilation can be either seen as a data-driven alternative to classical data assimilation in case the latter is difficult to perform, or as a support to classical data assimilation in situations where both can be exploited.

Different tests were performed all along this thesis on different types of datasets, from toy models (Lorenz-63 and Lorenz-96) to realistic datasets (Sea Surface Temperature (SST) and Sea Level Anomaly (SLA)). We have shown the relevance of our method and its potential.

In particular, we highlight the benefit of using weighted local linear techniques as an analog Chapter 5. Conclusions and Perspectives forecasting operator which resorts to the best reconstruction. Experiments conducted on either satellite-derived fields or numerical simulation data illustrate that the resulting reconstructed fields are with higher resolution than the classical Optimal Interpolation algorithm.

Since the analog forecasting depends highly on the K-Nearest Neighbors algorithm, the curse of dimensionality was our biggest challenge. we have shown that breaking the geophysical region field of interest into small subregions using patch-based representation helps in reducing the complexity of our algorithm. Moreover, projecting the patches series using EOF-based representations using few tens of coefficients, yields to a settings where analog forecasting is simple and efficient.

The flexible framework we offer has the advantage of accounting auxiliary variable with less implementation effort. We therefore have shown that considering inter-scale dependencies for the Sea Level Anomaly (SLA) has more benefit than considering synergies of SLA and SST data.

Perspectives and Future Work

The Analog data assimilation and its applications

We believe that this thesis opens new research avenues for the analysis, reconstruction and understanding of the dynamics of geophysical systems using data-driven techniques. Such techniques will benefit from the increasing availability of large-scale historical observational and/or simulated datasets.

Beyond the wide range of possible applications, future research should further investigate methodological issues. First of all, our study demonstrates the relevance of the analog particle filter, but as mentioned in Chapter 2, the AnPF suffers from degeneracy and sample impoverishment. We may point out that complementary experiments with particle smoother schemes (not shown) resulted in numerical instabilities. The derivation of the Analog Particle Smoother then remains an open question. In addition to advanced particle filters as proposed in [START_REF] Michael | Filtering via simulation: Auxiliary particle filters[END_REF][START_REF] Peter | Nonlinear data assimilation in geosciences: an extremely efficient particle filter[END_REF], one might also benefit from the straightforward applications of the analog procedure in reverse time, which is not generally possible for model-driven schemes. A second direction for future work lies in the design of the kernel used by the analog forecasting operators. Whereas we considered a Gaussian kernel, other kernels have been proposed in the literature, for instance using Procrustes distance instead of the Euclidean distance [START_REF] Mcdermott | A model-based approach for analog spatio-temporal dynamic forecasting[END_REF] or different weighing strategies [START_REF] Delle Monache | Kalman filter and analog schemes to postprocess numerical weather predictions[END_REF]. The explicit Chapter 5. Conclusions and Perspectives consistent reconstruction, the use of nonlinear dimensionality reduction algorithm instead of the EOF/PCA, etc.. While this thesis work was ocean science oriented, it can be clearly seen that the Analog Data Assimilation is domain-free and could be applied to any dynamical system where an archived dataset is available and where the dynamics present a "repeatability" behavior. To support this claim, we applied successfully the AnDA to two non ocean related applications: the interpolation of dynamical textures sequences [START_REF] Lguensat | Non-parametric ensemble kalman methods for the inpainting of noisy dynamic textures[END_REF], and the retrieval of missing data in motion capture series [START_REF] Lguensat | An exemplar-based hidden markov model framework for nonlinear state-space models[END_REF]. Although we focused on the problem of the interpolation of missing data, applying the AnDA might be relevant to other inverse problems (e.g. denoising, deconvolution).

Machine Learning for dynamical systems

Data-driven approaches are starting to reach a good level of maturity with interesting applications in geoscience and satellite remote sensing [START_REF] Chapman | Reconstruction of subsurface velocities from satellite observations using iterative self-organizing maps[END_REF][START_REF] Anastase Alexandre Charantonis | Inverse method for the retrieval of ocean vertical profiles using self organizing maps and hidden markov models -application on ocean colour satellite image inversion[END_REF]. Motivated by the increasing and challenging amount of data, researchers from the data science and statistical learning fields are tempted to explore the large avenue of ideas that is finally open to them.

While we placed our faith in analog methods in this thesis, and results were delightfully encouraging. We call for investigating other techniques for emulating the underlying governing equations from data. Examples comprise, but are not limited to, sparsity-promoting techniques [START_REF] Steven L Brunton | Discovering governing equations from data by sparse identification of nonlinear dynamical systems[END_REF][START_REF] Samuel H Rudy | Data-driven discovery of partial differential equations[END_REF], deep learning techniques [START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF][START_REF] Rahul G Krishnan | Deep kalman filters[END_REF], manifold learning [START_REF] Talmon | Manifold learning for latent variable inference in dynamical systems[END_REF], etc. A review work on data-driven methods for dynamical systems would be highly appreciated. Hybrid methods that combine data-driven and model-driven strategies could certainly be of interest.

Deep Learning for detection and classification of eddies from SSH maps

In Appendix B, we describe an example of an ocean remote sensing problem that could be tackled It goes without saying that Deep Learning methods are revolutionizing the machine learning and computer vision fields. However, the astonishing promised impact of these methods did not reach yet the geoscience and remote sensing community. This can be explained by the "blackbox" nature of these methods that makes it hard for geoscientists to relate results to theoretical physical and equations-based models. A non negligible effort should then be deployed to improve physical understanding of neural networks based methods.
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B.2 Problem statement and related work

Ocean mesoscale eddies can be defined as rotating water masses, they are omnipresent in the ocean and carry critical information about large-scale ocean circulation [START_REF] Dudley B Chelton | Global observations of nonlinear mesoscale eddies[END_REF][START_REF] William R Holland | The role of mesoscale eddies in the general circulation of the ocean-numerical experiments using a wind-driven quasi-geostrophic model[END_REF]. Eddies transport different relevant physical quantities such as carbon, heat, phytoplankton, salt, etc. This movement helps in regulating the weather and mixing the ocean [START_REF] James | The nature and consequences of oceanic eddies[END_REF]. Detecting and studying eddies helps also considering their effects in ocean climate models [START_REF] Julien | Parameterization of subgrid stirring in eddy resolving ocean models. part 1: Theory and diagnostics[END_REF]. With the development of altimeter missions and since the availability of two or more altimeters at the same time, merged products of Sea Surface Height (SSH) reached a sufficient resolution to allow the detection of mesoscale eddies [START_REF] James H Faghmous | A daily global mesoscale ocean eddy dataset from satellite altimetry[END_REF][START_REF] Pascual | Improved description of the ocean mesoscale variability by combining four satellite altimeters[END_REF]. SSH maps allow us distinguish two classes of eddies: i) anticyclonic eddies that are recognized by their positive SLA (Sea Level Anomaly which is SSH anomaly with regard to a given mean) and ii) cyclonic eddies that are characterized by their negative SLA.

In recent years, several studies were conducted with the aim of detecting and classifying eddies in an automated fashion [START_REF] James H Faghmous | Eddyscan: A physically consistent ocean eddy monitoring application[END_REF]. Two major families of methods prevail in the literature, namely, physical parameter-based methods and geometrical contour-based methods. The most popular representative of physical parameter-based methods is the Okubo-Weiss parameter method [START_REF] Okubo | Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences[END_REF][START_REF] Weiss | The dynamics of enstrophy transfer in two-dimensional hydrodynamics[END_REF]. The Okubo-Weiss parameter method is however criticized for its expert-based and region-specific parameters and also for its sensitivity to noisy SSH maps [START_REF] Dudley B Chelton | Global observations of large oceanic eddies[END_REF]. Other methods were since then developed using other techniques such as wavelet decomposition [START_REF] Turiel | Wavelet filtering to extract coherent vortices from altimetric data[END_REF], winding angle [START_REF] Sadarjoen | Geometric methods for vortex extraction[END_REF], etc. Geometric-based methods rely on considering the eddies as elliptic shapes and use closed contour techniques, the most popular method remains Chelton et al. method [START_REF] Dudley B Chelton | Global observations of nonlinear mesoscale eddies[END_REF] (hereinafter called CSS11). Methods that combines ideas from both worlds are called hybrid methods (e.g. [START_REF] Isern-Fontanet | Identification of marine eddies from altimetric maps[END_REF][START_REF] Yi | Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly[END_REF]). Machine learning methods were also used in the past to propose a solution to the problem [START_REF] Castellani | Identification of eddies from sea surface temperature maps with neural networks[END_REF][START_REF] Hai | Automatic eddy extraction from sst imagery using artificial neural network[END_REF], recently they are again getting an increasing attention [START_REF] Mohammad D Ashkezari | Oceanic eddy detection and lifetime forecast using machine learning methods[END_REF][START_REF] Huang | Deepeddy: A simple deep architecture for mesoscale oceanic eddy detection in sar images[END_REF].

We propose in this work to benefit from the advances in deep learning to address ocean 

B.5.2 Ghost eddies

The presence of ghost eddies is a frequent problem encountered in eddy detection and tracking algorithms [START_REF] James H Faghmous | A daily global mesoscale ocean eddy dataset from satellite altimetry[END_REF]. Ghost eddies are eddies that are found by the detection algorithm then disappear between consecutive maps before reappearing again. To point out the position of the missed ghost eddies, PET14 uses linear temporal interpolation between centers of detected eddies and stores the positions of the centers of ghost eddies. Using EddyNet we check if the pixels of ghost eddy centers correspond to actual eddy detections. We found that EddyNet assigns the centers of ghost eddies to the correct eddy classes 55% of the time for anticyclonic eddies, and 45% for cyclonic eddies. EddyNet could be a relevant method to detect ghost eddies that are missed out by conventional methods. Post-processing by constraining the eddies to verify additional criteria and tracking the eddies was omitted in this work and could also be developed in future work.

Beyond the illustrative aspect of this contribution, we offer to the oceanic remote sensing community an easy and powerful tool that can save handcrafting model efforts. Any user can employ his own eddy segmentation "ground truth" and train the model from scratch if he/she has the necessary memory and computing resources, or simply use EddyNet provided weights as an initialization then perform fine-tuning using his/her dataset. One can also think of averaging results from classical contour-based methods and EddyNet. In the spirit of reproducibility, Python code is available at https://github.com/redouanelg/eddynet, and we also share the training and testing data used for this work to encourage competing methods and, especially, other deep learning architectures. Motivé par l'essor du machine learning récemment, la dernière partie de cette thèse est consacrée à l'élaboration de modèles deep learning pour la détection et de tourbillons océaniques à partir de données de sources multiples et/ou multitemporelles (ex: SST-SSH), l'objectif général étant de surpasser les approches dites expertes.
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Abstract

Reconstructing geophysical fields from noisy and partial remote sensing observations is a classical problem well studied in the literature. Data assimilation is one class of popular methods to address this issue, and is done through the use of classical stochastic filtering techniques, such as ensemble Kalman or particle filters and smoothers. They proceed by an online evaluation of the physical model in order to provide a forecast for the state. Therefore, the performance of data assimilation heavily relies on the definition of the physical model. In contrast, the amount of observation and simulation data has grown very quickly in the last decades. This thesis focuses on performing data assimilation in a data-driven way and this without having access to explicit model equations. The main contribution of this thesis lies in developing and evaluating the Analog Data Assimilation (AnDA), which combines analog methods (nearest neighbors search) and stochastic filtering methods (Kalman filters, particle filters, Hidden Markov Models). Through applications to both simplified chaotic models and real ocean remote sensing case-studies (sea surface temperature, along-track sea level anomalies), we demonstrate the relevance of AnDA for missing data interpolation of nonlinear and highdimensional dynamical systems from irregularly-sampled and noisy observations.

Driven by the rise of machine learning in the recent years, the last part of this thesis is dedicated to the development of deep learning models for the detection and tracking of ocean eddies from multi-source and/or multi-temporal data (e.g., SST-SSH), the general objective being to outperform expert-based approaches.

Keywords: Data Assimilation, Analog forecasting, Analog Data Assimilation, Sea Surface Temperature, Ocean Remote Sensing, Sea Surface Temperature, Sea Level Anomaly, Deep Learning
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 11 Figure 1.1 -An illustration of a simple SSM: The random variable X t is the hidden state at time t. The random variable Y t is the corresponding observation (or measurement) at time t.There is only two kind of conditional dependencies, first between the hidden state X t at time t and the previous state at time t -1 (dynamical model). Second, between the measurement Y t and the hidden state X t both at time t (observation model).
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 12 Figure 1.2 -Weather forecast chain, an example of data assimilation procedure. Illustration source [144].
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 21 The analog forecasting operator A requires the existence of a representative dataset of exemplars of the considered dynamics. This dataset is referred to as the catalog and denoted by C. The reference catalog is formed by pairs of consecutive state vectors, separated by the same time lag.
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 21 Figure 2.1 -Key principle of the Analog Data Assimilation (AnDA) framework: It consists in implicitly representing the dynamics of the system from exemplars of historical datasets. A catalog with different simulations and/or observations can be considered. Here, we plot the evolution in time of one Monte Carlo realization. The mean of the observations are shown by a black asterisk, and their variance by the corresponding error bar.
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 2 Figure 2.2 shows an illustration of the three analog forecasting operators used in this work.
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 34 Set t = 1 Prediction step:

D

  a and successors D s . Thereby the possible values of x(t) are restricted to S = D a ∪ D s . The considered exemplar-based state-space model is stated as a discrete HMM with a large number of discrete states. We resort to the Analog HMM characterized by its states S and by parameters Λ a = (A, B, π 1 ):

Figure 2 .

 2 Figure 2.3 also compares local and global analog strategies. When using locally-constant operator, local analogs are always better than global analogs. Searching for nearest neighbors on 40-dimensional vectors results most likely in irrelevant analogs. This affects heavily the locally constant operator more than the two other operators, since it computes a weighted mean of their associated successors. The locally-constant operator also limits novelty creation in the dynamics

Figure 2 . 3 -

 23 Figure 2.3 -Results of the analog forecasting performance as a function of the horizon. Different analog forecasting methods are plotted: locally-constant (green), locally-incremental (blue) and locally-linear (red) analog operators with local (straight line) and global (dashed line) analog strategies. The black dashed line corresponds to a persistent prediction over time.

Figure 2 .

 2 4 shows analog data assimilation experiments with the locally-linear forecasting method using the Lorenz-96 model. Figures 4a and 4b show the true state and the observations, respectively. The reconstructed state with global analogs is shown in Fig 4c and the one with local analogs in Fig 4d. The local analog data assimilation experiment clearly outperforms the global analog data assimilation experiment.

40 Figure 2 . 4 -

 4024 Figure 2.4 -Lorenz-96 trajectories obtained using analog data assimilation procedures with the locally-linear forecasting strategy, when only 20 variables are observed every 0.20 time steps. (top-left) True simulation of the model with 40 variables, (top-right) noisy and partial observations, (bottom-left) reconstructed state trajectories via the AnEnKS with global analogs, (bottom-right) reconstructed state trajectories via the AnEnKS with local analogs (taking into account the 5 (ν = 2) nearest state components). Only the first 10 Lorenz 96 cycles are shown for better visibility.

1 Figure 2 . 5 -Experiment 2 :Figure 2 . 6 -

 125226 Figure2.5 -Reconstruction of Lorenz-63 trajectories for different catalog sizes in the analog data assimilation procedures, when only the first component of the state is observed every 0.08 time steps. (Left) RMSE as a function of the size of the catalog for different analog data assimilation strategies: AnEnKF (green), AnPF (blue) and AnEnKS (red). For benchmarking purposes, data assimilation results with true Lorenz-63 equations are given in straight lines. (Right) Time series of the first component of the true state (black solid line), associated noisy observations (black asterisks), mean reconstructed series (solid lines) and 10 analyzed members/particles (dashed lines) with analog data assimilation strategies, namely AnEnKF (green), AnPF (blue) and AnEnKS (red), using a catalog of 10 3 Lorenz-63 times (equivalent to 8 years).

2 Figure 2 . 7 -

 227 Figure 2.7 -Results of the reconstruction of Lorenz-63 trajectories from noisy catalogs: (Left) Examples of noisy Lorenz-63 trajectories for different noise levels: ψ 2 1 = 0.5 (red), ψ 2 2 = 1 (blue) and ψ 2 3 = 2 (green). (Right) Results of the AnEnKS using noisy catalogs corresponding to 10 3 Lorenz-63 times (equivalent to 8 years) when only observations with variance R = 2 are provided. We also plot the 95% confidence interval computed from the smoothing covariances.
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 3 Interpolation of missing data in Sea Surface Temperature mapsThe ocean is a mighty harmonist. William Wordsworth 3.1 The Multiscale Analog Data Assimilation . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.2 Multi-scale data-driven priors . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Missing data interpolation in Sea Surface Temperature maps . . . . . . . . . . . 3.3 Problem statement and related work . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Model-driven approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Data-driven approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Application of the patch-based AnDA . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.2 Interpolation performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Note: Some results described in this chapter have been published as: Fablet, Viet and Lguensat, Data-driven models for the Spatio-Temporal Interpolation of Satellite derived SST fields, IEEE Chapter 3. Interpolation of missing data in Sea Surface Temperature maps

  dimensionality reduction techniques. A classical and very popular method in geoscience fields is Empirical Orthogonal Functions (EOF), also known (in signal/image processing community) as Principal Component Analysis (PCA). PCA-based decompositions are regarded as relevant representations to encode the spatial patterns exhibited by geophysical fields. Moreover, searching for analogs of a large region decreases the chance of finding good analogs as depicted in the experiment with Lorenz96 (Chapter 2), this advocates for considering an equivalent to the idea of local analogs.Therefore we directed our efforts to address this issue through the use of patch-based models that project images onto large sets of patch exemplars and/or dictionaries. Patch-based techniques are a classical tool used in the image processing/remote sensing community[START_REF] Fablet | Missing data super-resolution using non-local and statistical priors[END_REF][START_REF] Lorenzi | Inpainting strategies for reconstruction of missing data in VHR images[END_REF].They generally involve small image patches, which help in breaking the spatiotemporal field into a "puzzle" of local regions (typically 10×10 to 20×20 for 2D images). This has the benefit of i) making possible the use of parallel computing, and ii) supports the idea of localization that was shown to be of importance for the analog data assimilation. Combining the analog data assimilation with patch-based techniques is however not sufficient, and the use of EOF-based techniques is also critical for a successful application. Concretely, the combination of Patchbased and EOF-based methods within the AnDA means that we can circumvent the curse of3.1. The Multiscale Analog Data Assimilationdimensionality by applying AnDA several times on the projection of small images patches into lower dimensions (few tens).

Chapter 3 .

 3 Interpolation of missing data in Sea Surface Temperature mapsWe also considered a multi-scale version of the VE-DINEOF procedure using the same three-scale decomposition as the multi-scale analog data assimilation. As for MS-AnEnKS and MS-AnHMM, we used two detail components corresponding to 40x40 patches and 20x20 patches. At each scale, i.e. the coarse region scale and the two detail scale, we exploited 10-dimensional PCA decomposition (N P CA,1 = N P CA,2= 10). The resolution of this multi-scale VE-DINEOF, referred to as MS-VE-DINEOF, applies a coarse-to-fine strategy, such that at each scale, the VE-DINEOF iteratively updated the missing data area from the projection of overlapping patches onto the 10-dimensional PCA basis;• Global AnEnKS interpolation: to evaluate the relevance of the proposed multi-scale decomposition, we tested a direct application of the AnEnKS at the region scale, referred to as G-AnEnKS. Similarly to G-VE-DINEOF, we considered 200 PCA components, which amounted to 99.27% of the total variance of the dataset. From numerical experiments, the best parameter setting combined a locally-incremental analog forecasting with K = 100 neighbors and a Gaussian kernel.

3. 5 .

 5 schemes are a clear improvement over the OI and VE-DINEOF reconstruction, with a relative gain in SST RMSE up to 50% for MS-AnEnKS at the finest scale (dX 2 ). MS-AnHMM also leads to a significant improvement but is clearly outperformed by MS-AnEnKS. It may be noted that the direct application of the analog data assimilation, G-AnEnKS, to field X does not lead to very significant improvement. This is regarded as a direct benefit of the multiscale decomposition, which greatly increases the representativity of the collected catalogs of exemplars. No such difference is reported for the application of global and multi-scale VE-DINEOF schemes, which further stresses the relevance of the analog dynamical prior exploited by MS-AnEnKS. The analysis of the RMSE statistics at different scales of a dyadic wavelet decomposition indicates that the improvement mainly refers to the third and fourth dyadic scales (i.e., spatial scales greater than 20km). Most of the improvement is brought about by the resolution of component dX 1 (about 40% of relative gain w.r.t. OI), when component dX 2 accounts for about 10% of relative gain w.r.t. OI. The RMSE time series (Fig.3.1) lead to similar observations. Interestingly, AnEnKS depicts a lower time variability of the RMSE compared to OI and VE-DINEOF (standard deviation of 0.06 vs. 0.13), the later being more sensitive to larger missing data rates. This is viewed as a benefit of the exemplar-based time regularization conveyed by the analog framework.

3 . 3 .

 33 For these two examples, we visually compare OI, MS-VE-DINEOF and MS-AnEnKS interpolations to the groundtruth both for the SST field and the gradient magnitude fields. In Fig.3.3, MS-AnEnKS clearly outperforms OI and MS-VE-DINEOF (SST (resp. SST gradient) RMSE of 0.20 (resp. 0.24) vs. 0.42 (resp. 0.40) and 0.41 (resp. 0.40)). We also highlight areas in which the improvements in the reconstruction of local SST details may be noticed. Visually, the improvement is more noticeable on the gradient amplitude. Whereas OI and MS-VE-DINEOF lead to relatively coarse SST structures, MS-AnEnKS results in finer front details, which are visually more similar Chapter 3. Interpolation of missing data in Sea Surface Temperature maps to the groundtruth. This is further emphasized by the analysis of the power spectral densities of the different fields (Fig.3.6, left). OI clearly underestimates the spectral energy below 100km, as expected from the associated spatio-temporal smoothing with a spatial correlation length of 100km. A similar underestimation is observed for MS-VE-DINEOF for scales ranging between 70km and 150km. By contrast, MS-AnEnKS nicely matches the spectral signature of the groundtruth up to 20km. These results appear consistent with the previous observation that the improvement brought about by the analog assimilation was mainly noticeable in terms of RMSE for scales greater than 20km. The white noise plateau observed from 20km and below for the reference SST field may indicate that the OSTIA field conveys little information for scales lower than 20km for this particular date. This is further illustrated by the analysis of a one-dimensional transect at 36.525 o S accross a strong SST front in Fig.3.4. The MS-AnEnKS interpolation clearly leads to a better estimation of local SST variabilities, where OI and MS-VE-DINEOF tends to oversmooth strong gradients. Overall, the same observation holds for the second example (Fig.3.5), though the lower missing data rate (59%) slightly reduces the differences observed between the different interpolation methods.

Figure 3 . 1 -Figure 3 . 2 -

 3132 Figure 3.1 -Time series of the RMSE: OI (black,-), VE-DINEOF (blue,-) and AnEnKS (red,-) for the estimated SST fields (left) and gradient magnitude fields (right)

Chapter 3 .Figure 3 . 3 -

 333 Figure 3.3 -Reconstruction of a SST field on June, 30, 2015 with a large missing data rate (87%): (a) first row, reference SST field (groundtruth (GT)), its associated gradient magnitude, observed field; second row, interpolated fields by OI, MS-AnEnKS, MS-VE-DINEOF; third row, gradient magnitude of the fields depicted in the second row..

  Figure 3.3 -Reconstruction of a SST field on June, 30, 2015 with a large missing data rate (87%): (a) first row, reference SST field (groundtruth (GT)), its associated gradient magnitude, observed field; second row, interpolated fields by OI, MS-AnEnKS, MS-VE-DINEOF; third row, gradient magnitude of the fields depicted in the second row..
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 34 Figure 3.4 -Analysis of a SST transect at 36.525 o S for the interpolation results depicted in Fig. 3.3: we depict a one-dimensional profile at latitude 36.525 o S (c) for both the SST (bottom) and the SST gradient magnitude (top) for the reference SST field (black,-) as well as OI (magenta,-), MS-VE-DINEOF (blue,-) and MS-AnEnKS (red,-) interpolated SST fields.
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 35 Figure 3.5 -Reconstruction of an SST field on February, 19, 2015 with a relatively low missing data rate (56%): see Fig.3.3 for details.

Figure 3 . 6 -

 36 Figure 3.6 -Spectral analysis of interpolation results depicted in Fig.3.3 and 3.5: we report the radially-averaged power spectral densities of the reference SST field (black,-) as well as OI (magenta,-), MS-VE-DINEOF (blue,-) and MS-AnEnKS (red,-) interpolated SST fields for June, 30, 2015 (left) and February, 19, 2015 (right).
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 4 Analog Spatio-Temporal Interpolation of Sea Level Anomalies from Altimeter-derived Data 4.6 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Note: This chapter is submitted for publication as: R. Lguensat, P. Viet, M. Sun, G. Chen, T. Fenglin, B. Chapron, R. Fablet. "Data-driven Interpolation of Sea Level Anomalies using Analog Data Assimilation". It is presented as it is with small modifications, except for the motivation section.
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 41 Figure 4.1 -An example of a ground-truth SLA field in the considered region and its associated simulated pseudo-along track.
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 4244441 Figure 4.2 -Sketch of the creation of simulated along-track data at a given time t
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 4443 Analog Spatio-Temporal Interpolation of Sea Level Anomalies from Altimeter-derived Data Numerical resolution Given the proposed analog assimilation model, the proposed scheme first relies on the creation of patch-level catalogs from the training dataset. This step requires the computation of a training dataset of fine scale data dX training , this is done by subtracting a large-scale component Xtraining from the original training dataset. Here, we consider the large-scale component of training data to be the result of a global 1 EOF-based reconstruction using a number of EOF components that retains 95% of the dataset variance, which accounts for horizontal scales up to ∼ 100km. This global EOF-based decomposition provides a computationally-efficient means for defining large-scale component X. This EOF-based decomposition step is followed by the extraction of overlapping patches for all variables of interest, namely Xtraining , dX training and potential auxiliary variables, and the identification of the EOF basis functions from the resulting raw patch datasets. This leads to the creation of a patch-level catalog C P from the EOF-based representations of each patch.

  the operator derived from EOF-based reconstruction (4.2) and decomposition(4.1) as observation model H and the patch-level training catalog described in the previous section. In the analog forecasting setting, The search for analogs is restricted to patch exemplars in the catalog within a local spatial neighborhood (typically a patch-level 8neighborhood), except for patches along the seashore for which the search for analogs is restricted to patch exemplars at the same location.

Figure 4 . 3 -

 43 Figure 4.3 -Sketch of the proposed patch-based Multiscale Analog Data Assimilation (MS-AnDA). The left block details the construction of the patch-based catalogs from the training dataset. The right block illustrates the process of obtaining the large-scale component of the SLA reconstructed field. The orange dashed rectangle represents the application of the AnDA using the catalog and the fine-scale observations. Finally, the green dashed rectangle shows the final addition operation that yields the reconstructed SLA field.

  MS-AnDA: We consider 20 × 20 patches with 15-dimensional EOF decompositions (N E = 15), which typically accounts for 99% of the data variance for the considered dataset. The postprocessing step exploits 17×17 patches and a 15-dimensional EOF decomposition. Regarding the parametrization of the AnEnKS procedure, we experimentally cross-validated the number of nearest neighbors K to 50, the number of ensemble members n ensemble to 100 and the observation covariance error (in meters, hereinafter) to R = 0.001. • Optimal Interpolation: We apply an Optimal Interpolation to the processed along-track data. It provides the low-resolution component for the proposed MS-AnDA model and a model-driven reference for evaluation purposes. The background field is a null field. We use a Gaussian covariance model with a spatial correlation length of 100km and a temporal correlation length of 15 days (± 5 timesteps since our data is 3-daily). These choices result from a cross-validation experiment.

•

  G-AnDA: With a view to evaluating the relevance of the patch-based decomposition, we also apply AnDA at the region scale, referred to as G-AnDA. It relies on an EOF-based decomposition of the detail field dX. We use 150 EOF components, which accounts for more than 99% of the total variance of the SSH dataset. From cross-validation experiments, the associated AnEnKS procedure relies on a locally-linear analog forecasting model with 4.5. Results K = 500 analogs, n ensemble = 100 ensemble members and an observation covariance error set to R = 0.001
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 4444546 Figure 4.4 -Reconstructed SLA fields using noise-free along-track observation using OI, DI-NEOF, G-AnDA, MS-AnDA on February 24 th 2012: from left to right, the first row shows the ground truth field, the simulated available along-tracks for that day, the ground thruth gradient field. The second and third rows show each of the reconstruction and their corresponding gradient filed, from left to right, OI, VE-DINEOF, G-ANDA and MS-AnDA. The Fourier power spectrum of the competing methods is also included
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 47 Figure 4.7 -(Noisy observation) Reconstruction of SLA fields using OI, DINEOF, G-AnDA & MS-AnDA on day 225 th (a) & 228 th (b)

Figure 4 . 8 -Figure 4 . 9 -Figure 4 .

 48494 Figure 4.8 -(Noisy observation R = 0.01) Daily RMSE time series of PB-AnDA SLA reconstructions using noisy along-track data for different choices of the regression variables in the locally-linear analog forecasting model: MS-AnDA-dX (light blue), MS-AnDA-dX+SST (orange) and MS-AnDA-dX + X (green)

using

  Deep Learning techniques. Detecting and classifying eddies from SSH maps is a classical example where geometry-based techniques are competing with physical-based techniques. In our work, instead of using geometry-based techniques we treat the problem under a computer vision perspective. We implemented and compared several neural network architectures that are used in image segmentation tasks. Initial results shown in Appendix B are encouraging and calls for considering and putting more efforts into Deep Learning techniques.

2. 3 41 2. 5 Fig. 3 . 3 : 68 3. 5 69 3. 6 70 4. 1 77 4. 2 78 4. 3 81 4. 4 B. 2 .

 3415336856967017727838142 Fig. 3.3: we depict a one-dimensional profile at latitude 36.525 o S (c) for both the SST (bottom) and the SST gradient magnitude (top) for the reference SST field (black,-) as well as OI (magenta,-), MS-VE-DINEOF (blue,-) and MS-AnEnKS (red,-) interpolated SST fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

  eddy detection and classification. Our proposed deep learning based method requires a training database consisting of SSH maps and their corresponding eddy detection and classification results. In this work, we train our deep learning methods from the results of the py-eddy-tracker SSH-based approach (hereinafter PET14) [109], the algorithm developed by Mason et al. is closely related to CSS11 but has some significant differences such as not allowing multiple local extremum in an eddy. An example of a PET14 result is given in Figure B.1 which shows eddies B.6. Conclusion EddyNet and EddyNet_S are then compared regarding the use of the classical ReLU+BN and the use of SELU. We also compare the use of overlap based metric represented by the Dice Loss (Equation B.3), with the classical Categorical Cross-Entropy (CCE). Table B.1 compares the four combination in terms of global accuracy and mean dice coefficient (original not soft) averaged on 50 random sets of 360 SSH 120 × 120 maps from 2012. Training EddyNet_S takes nearly half the time needed for training EddyNet. Comparison regarding the training loss function shows that training with the dice loss results in a higher dice coefficient for our two classes of interest (cyclonic and anticyclonic) in both EddyNet and EddyNet_S; dice loss yields a better overall mean dice coefficient than training with CCE loss. Regarding the effect of the activation function, we obtained better metrics with EddyNet at the cost of a longer training procedure. Visually Eddynet and EddyNet_S give close outputs as can be seen in Figure B.4.

B. 6 ConclusionFigure B. 5 -

 65 Figure B.5 -Detection of ghost eddies: [left] SSH map with ghost eddies centers: anticyclonic (red dots), cyclonic (blue dots). [center] PET14 segmentation. [right] EddyNet segmentation: anticyclonic (green), cyclonic (brown), non eddy (blue)

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Generate vectors x f i (1) ∀i ∈ {1, ..., N } using a multivariate Gaussian random generator with mean vector x b and covariance matrix B. The index i of the state vector corresponds to the i th realization of the Monte Carlo procedure (called member or particle).

	3: Set t = 1
	4: Prediction step:
	• Apply the model dynamical operator M to sample new particles x f i (t) ∀i ∈ {1, ..., N } from previous filtered particles x a i (t -1) • Compute particle weights π i (t) as

1.1. State-Space models Algorithm 2 The Particle filter algorithm 1: Input: x b and B parameters of the prior Gaussian distribution 2:

  1 .

	Chapter 1. Data Assimilation and Analog methods
	Algorithm 3 Forward-backward algorithm
	1: %% Input : Λ = (A, B, π 1 )
	2: %%%%%% F orwardP robabilities %%%%%%
	3: α 1 (i) = π i b i (Y 1 ) ∀i ∈ 1 : 1 : Q
	4: for t = 2 : 1 : T do
	5:
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t L i n e a r r e g r e s s i o n Figure 2.2 -A simplified illustration of the considered analog forecasting strategies in the case of two analogs (nearest neighbors). Two situations for the state x(t) are shown: (top) a situation where x(t) lies in the convex hull spanned by catalog exemplars, (bottom) a situation where

  The Analog Data Assimilation using the Lorenz-63 model. To evaluate the global and local analog forecasting operators we use the Lorenz-96 model, an extended dynamical nonlinear system with 40 variables.

lation: Lorenz-63 and Lorenz-96 models. The experiments for evaluating the effect of the size of the catalog, the impact of noisy catalogs and catalogs with parametric model error are conducted Chapter 2.

  Numerical Experimentsthe Lorenz-96 for both model-driven and data-driven strategies. We use the same covariance matrix R with a noise observation variance set to 2. To avoid any spin-up effect, the initial state conditions is chosen as the ground truth mean and a covariance matrix B with noise variance 0.1. To compare the technique performances, we use the Root Mean Square Error (RMSE) on all the components of the state vector and for all assimilation times. As training dataset for the catalog and test dataset for RMSE computation, we respectively use 10 3 and 100 Lorenz times.The analog forecasting operator involves two free parameters, namely, K the number of nearest neighbors and λ the scale parameter of the Gaussian kernel in (2.2). Two strategies can be considered for K: either a predefined number of nearest neighbors, or a predefined threshold on distance d th to select the analogs which are closer than d th . For the sake of simplicity, we

To avoid divergence of the filtering methods, we use N = 100 members/particles for the Lorenz-63 and N = 1000 members/particles for 2.4. consider in this work the first alternative and set K to 50. Besides, we use for λ the following adaptive rule: λ(x(t)) = 1 md(x(t))

Table 2 .

 2 1 -RMSE of the reconstruction of Lorenz-96 trajectories using different forecasting strategies in the analog data assimilation procedures, when only 20 variables are observed every 0.20 time steps. The catalog size corresponds to 10 3 Lorenz-96 times (equivalent to 13 years) and the number of members/particles is N=1000.

	Gaussian			
	Method	Locally-constant Locally-incremental Locally-linear
	AnEnKF	1.826	1.785	1.403
	AnPF	3.174	4.224	4.4616
	AnEnKS	1.320	1.287	0.970
	Multinomial		
	Method	Locally-constant Locally-incremental Locally-linear
	AnEnKF	1.814	1.774	1.413
	AnPF	2.989	4.412	4.729
	AnEnKS	1.313	1.288	1.093

Experiment 3: A third experiment with the Lorenz-96 system was conducted. For the local analog strategy, we further compare the proposed AnDA algorithms, namely, AnEnKF, AnPF and the AnEnKS using 1000 ensemble members/particles, in Table

.

2.1. Two main conclusions can be drawn: i) EnKF algorithms outperform the particle filter, ii) the locally-linear analog forecasting operator gives the best reconstruction performance. We noticed that the AnPF suffers in the 40-dimensional Lorenz-96 system from sample impoverishment and degeneracy. Despite the additional experiments with different settings, for instance, w.r.t. the number of ensemble

Table 2 .

 2 2 -RMSE of the reconstruction of Lorenz-63 trajectories from noisy catalogs: we vary the variance of an additive Gaussian noise in the creation of the catalogs and apply analog data assimilation procedures with the locally-linear operator with a catalog size of 10 3 Lorenz-63 times, when only the first component of the state is observed every 0.08 time step with observation noise variance R = 2.

	M ethod ψ 2 1 = 0.5 ψ 2 2 = 1 ψ 2 3 = 2
	AnEnKF	1.926	2.136	2.681
	AnPF	1.652	1.961	2.313
	AnEnKS	1.233	1.561 2.142

Table 3 .

 3 1 -Comparison of global interpolation performance: RMSE of OI, G-VE-DINEOF, MS-VE-DINEOF, G-AnEnKS and MS-AnEnKS: we report RMSE statistics in terms of the SST fields, the gradient magnitude of the SST fields and of the detail coefficients for a four-level dyadic wavelet decomposition (noted wav). For MS-ANEnKS, we report both the interpolation performance at intermediate scale i = 1 (MS-ANEnKS|dX 1 ), i.e. with dX 2 = 0 in (3.1), and at scale i = 2 (MS-ANEnKS|dX 2 ). We let the reader refer the main text for details on the associated parameter setting of the different interpolation models.

	Criterion		SST	∇	wav=1 wav=2 wav=4 wav=8
	OI		0.4157	0.3986	0.0053	0.0212	0.0897	0.1897
	G-VE-DINEOF	0.4064	0.3967	0.0124	0.0221	0.0873	0.1969
	MS-VE-DINEOF	0.4052	0.3765	0.0052	0.0192	0.0803	0.1697
	G-AnEnKS	0.3842	0.3922	0.0120	0.0219	0.0967	0.1902
	MS-AnHMM dX 2	0.3350	0.3529	0.0057	0.0208	0.0838	0.1711
		dX 1 0.2536	0.3349	0.0057	0.0212	0.0848	0.1622
	MS-AnEnKS	dX 2 0				

.2009 0.2357 0.0053 0.0173 0.0579 0.1067Table 3 .

 3 2 -Influence of the number of analogs on MS-AnEnKS performance: RMSE of MS-AnEnKS interpolation w.r.t. the number of analogs for the three considered analog strategies.

	Number of analogs (K) 10	20	30	40	50	60	70	80	90	100	110
	Locally-constant	0.2746 0.2778 0.2822 0.2852 0.2884 0.2904 0.2926 0.2948		
	Locally-Linear		0.2449 0.2369 0.2325 0.2301 0.2288 0.2280 0.2278 0.2271	0.2266	0.2266
	Locally-incremental	0.2119 0.2113 0.2083 0.2051 0.2030 0.2028 0.2020 0.2012 0.2009 0.2009 0.2011

Table 3 .

 3 [START_REF] Jeffrey L Anderson | Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter[END_REF] -Influence of the kernel on MS-AnEnKS performance: RMSE of the interpolated SST fields using different kernel parameterizations using a Gaussian kernel and a cone kernel[START_REF] Zhao | Analog Forecasting with Dynamics-Adapted Kernels[END_REF].

	Gaussian Cone ζ=0.995 Cone ζ=0.5 Cone ζ=0
	0.2030	0.2028	0.2036	0.2009

Table 3 .

 3 4 -MS-AnEnKS performance depending on the selected analog model: we let the reader refer to Tab.3.1 for the description of the considered evaluation criteria

	Criterion	SST	∇	wav=1 wav=2 wav=3 wav=4
	Locally-constant	0.2725 0.3214 0.0063 0.0208 0.0783 0.1529
	Locally-Linear	0.2245 0.2730 0.0059 0.0186 0.0637 0.1265
	Locally-Incremental 0.2009 0.2357 0.0053 0.0173 0.0579 0.1067

Table 3 .

 3 5 -Influence of missing data in catalogs C 1,2 : we let the reader refer to Tab.3.1 for the description of the considered evaluation criteria.

	Criterion

Catalogs C 1,2 built from 208-2015 dataset with missing data 0.2230 0.2643 0.0056 0.0194 0.0653 0.1212

  • S-75 • N with a horizontal resolution of 1/10 • . 34 years (1979-2012) of 3-daily simulation of SSH maps are considered, we proceed to a subtraction of a temporal mean to obtain SLA fields. In this study, our region of interest is located in the South China Sea (105 • E to 117 • E, 5 • N to 25 • N). This dataset is split into a training dataset corresponding to the first 33 years (4017 SLA maps) and a test dataset corresponding to the last year of the time series (122 SLA maps).4.3. Data: OFES (OGCM for the Earth Simulator)
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	Chapter 4. Analog Spatio-Temporal Interpolation of Sea Level Anomalies from
			Altimeter-derived Data
		Al o n g -t r a c k ma s k s	
		t t +1	
		t -1	
	Gr o u n d t r u t h S S H ma p a t t i me t	Co mb i n e d a l o n g -t r a c k s ma s k	S i mu l a t e d Al o n g -t r a c k p s e u d o -o b s e r v a t i o n a t t i me t

  The reconstruction of field dX involves a patch-based and EOF-based representation. It consists in regarding field dX as a set of P × P overlapping patches (e.g. 2 • × 2 • ). This set of patches is referred to as P, and we denote by P s the patch centered at position s. After building a catalog C P of patches from the available dataset of residual fields X -X, we proceed to an EOF decomposition of each patch in the catalog. The reconstruction of field dX(P s , t) at time t is then stated as the AnDA of the coefficients of the EOF decomposition in the EOF space given an observation series in the patch space. Formally, dX(P s , t) decomposes as a linear combination 4.4. Analog reconstruction for altimeter-derived SLA of a number N E of EOF basis functions with the largest variances: referring to the k th EOF basis and α k (s, t) to the corresponding coefficient for patch P s at time t. Let us denote by ϕ(P s , t) the vector of the N E coefficients α k (s, t), which represents the projection of dX(P s , t) in the lower-dimensional EOF space.

	N E		
	dX(P s , t) =	α k (s, t)EOF k	(4.2)
	k=1		
	with EOF k		

  The proposed patch-based analog assimilation scheme involves a dynamical model stated in the EOF space. As in the previous Chapter we

	consider the following Gaussian conditional distribution
	ϕ(P

s , t)|ϕ(P s , t -1) ∼ G(µ(s, t), Σ(s, t)) (

Table 4 .

 4 1 -SLA Interpolation performance for a noise-free experiment: Root Mean Square Error (RMSE) and correlation statistics for OI, VE-DINEOF, G-AnDA and MS-AnDA w.r.t. the groundtruthed SLA fields. See Section 4.5.1 for the corresponding parameter settings.

	Criterion	RMSE	Correlation
		OI	0.026 ± 0.007	0.81 ± 0.08
	VE-DINEOF	0.023 ± 0.007	0.85 ± 0.07
		G-AnDA	0.020 ± 0.006	0.89 ± 0.04
		Locally-constant	0.014 ± 0.005	0.95 ± 0.03
	MS-AnDA	Locally-Increment 0.014 ± 0.005	0.95 ± 0.03
		Locally-Linear	0.013 ± 0

.005 0.96 ± 0.02

  

Table 4 .

 4 4 -SLA Interpolation performance for noisy along-track data: Root Mean Square Error (RMSE) and correlation statistics for OI, VE-DINEOF, G-AnDA and MS-AnDA w.r.t. the groundtruthed SLA fields. See Section 4.5.1 for the corresponding parameter settings.

	Criterion	RMSE	Correlation
	R=0.01	OI	0.039 ± 0.005	0.64 ± 0.09
	VE-DINEOF	0.035 ± 0.005	0.68 ± 0.09
	G-AnDA	0.030 ± 0.005	0.78 ± 0.06
		Locally constant 0.026 ± 0.005	0.82 ± 0.05
	MS-AnDA	Increment	0.028 ± 0.005	0.81 ± 0.05
		Local Linear	0.0245 ± 0.005 0.83 ± 0.05
	R=0.03	OI	0.066 ± 0.006	0.41 ± 0.09
	VE-DINEOF	0.060 ± 0.006	0.45 ± 0.09
	G-AnDA	0.039 ± 0.006	0.67 ± 0.09
		Locally constant 0.035 ± 0.006	0.688 ± 0.064
	MS-AnDA	Increment	0.036 ± 0.006	0.656 ± 0.07
		Local Linear	0.032 ± 0.006	0.708 ± 0.063

  RésuméReconstruire des champs géophysiques à partir d'observations bruitées et partielles est un problème classique bien étudié dans la littérature. L'assimilation de données est une méthode populaire pour aborder ce problème, et se fait par l'utilisation de techniques classiques, comme le filtrage de Kalman d'ensemble ou des filtres particulaires qui procèdent à une évaluation online du modèle physique afin de fournir une prévision de l'état. La performance de l'assimilation de données dépend alors fortement de du modèle physique. En revanche, la quantité de données d'observation et de simulation a augmenté rapidement au cours des dernières années. Cette thèse traite l'assimilation de données d'une manière data-driven et ce, sans avoir accès aux équations explicites du modèle. Nous avons développé et évalué l'assimilation des données par analogues (AnDA), qui combine la méthode des analogues et des méthodes de filtrage stochastiques (filtres Kalman, filtres à particules, chaînes de Markov cachées). Des applications aux modèles chaotiques simplifiés et à des études de cas de télédétection réelle (température de surface de la mer, anomalies du niveau de la mer), nous démontrons la pertinence d'AnDA pour l'interpolation de données manquantes des systèmes dynamiques non linéaires et à haute dimension à partir d'observations irrégulières et bruyantes.

See http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html

https://en.wikipedia.org/wiki/AI_winter
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The Python code used for the creation of the considered SST data is available at: https://github.com/rfablet/SSTData_TCI_rfablet

By global, we mean here an EOF decomposition over the entire case study region, by contrast to the patch-level decomposition considered in the analog assimilation setting.
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Results

SLA reconstruction from noisy along-track data

We also evaluated the proposed approach for noisy along-track data. Here, we run two experiments with an additive zero-mean Gaussian noise applied to the simulated along-track data.

We consider a noise covariance of R = 0.01 (Experiment A) and of R = 0.03 (Experiment B) which is more close to the instrumental error of conventional altimeters. Given the resulting noisy along-track dataset, we apply the same methods as for the noise-free case study.

We run MS-AnDA using different values for R. For Experiment A, Table 4.2 shows that the minimum is reached using the true value of the error R = 0.01. While for Experiment B, Table 4. [START_REF] Jeffrey L Anderson | Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter[END_REF] shows that the minimum is counter-intuitively reached again using value of the error R = 0.01.

Our algorithm is then compared with the results of the application of the competing algorithms considered in this work. Results are shown in Table 4 

Perspectives and Future Work

derivation of the mapping associated with a kernel as considered in [START_REF] Zhao | Analog Forecasting with Dynamics-Adapted Kernels[END_REF] may also be a promising alternative to state the analog data assimilation in a kernel-derived lower-dimensional space.

The theoretical characterization of the asymptotic behavior of analog data assimilation schemes is also an interesting avenue of research. Similarly to the theoretical analysis of ensemble Kalman filters and particle filters [START_REF] Le Gland | Large sample asymptotics for the ensemble Kalman filter[END_REF], the derivation of convergence conditions, possibly associated with reconstruction bounds, would be of key interest to bound the reconstruction performance of the proposed analog schemes with respect to their model-driven counterpart.

For ocean related applications, the results obtained in this thesis call for exploring more research directions that combine the analog strategies with model-derived and/or statistical priors. SST for example is generally assumed to consider an advection-diffusion prior model drifted by the SSH, this information could be used in constraining the local analog regression for the reconstruction of SST. Statistical priors can also be injected into AnDA schemes. In particular, priors on the spatial covariances and the marginal distributions of high resolution details, as done with SST in [START_REF] Fablet | Joint Interpolation of Multisensor Sea Surface Temperature Fields Using Nonlocal and Statistical Priors[END_REF], are expected to result in more geophysically plausible reconstructions.

Investigating more synergies between ocean variables can also be of interest [START_REF] Turiel | The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines[END_REF][START_REF] Turiel | Tracking oceanic currents by singularity analysis of Microwave Sea Surface Temperature images[END_REF], an interesting case might be the exploration of relationships between observable and non observable variables. For example we can think of exploiting 4D numerical simulations (3D + depth) to retrieve variables such as vertical velocities or mixed layer depth from satellite-derived observations of ocean surface variables. Preparing the inversion of the future altimetry mission SWOT (CNES/NASA) is a perfect context to carry on such research plans. SWOT mission promises an unprecedented coverage around the globe. More specifically, the large swath is expected to provide a large number of data, urging for the inspection of the potential improvements that this new mission will bring compared to classical along-track data. In the context of analog data assimilation, the interest of SWOT data may be two-fold. First, regarding the observation model, SWOT mission will both significantly increase the number of available observation data and enable the definition of more complex observation models exploiting for instance velocity-based or vorticity-based criterion. Second, SWOT data might also be used to build representative patchlevel catalogs of exemplars. Future work should investigate these two directions using simulated SWOT test-beds [START_REF] Gaultier | The Challenge of Using Future SWOT Data for Oceanic Field Reconstruction[END_REF].

Another future research path would be the investigation of the influence of data on the AnDA for remote sensing applications. More specifically, addressing questions we did not answer here, examples comprise the calculation of the number of years of data needed to reach a

List of Figures This appendix aims at giving an estimate of the operations involved when applying the AnDA for a realistic large-scale application. We discuss the computational cost of the analog forecasting, which is specific to the AnDA. The later directly relates to the cost of the K-Nearest Neighbor (K-NN) step.

In case of large-scale catalogs, an exhaustive search strategy is not suitable and the use of space-partitioning data structures, the most popular ones being K-d trees [START_REF] Louis | Multidimensional binary search trees used for associative searching[END_REF] and Ball trees [START_REF] Stephen | Five balltree construction algorithms[END_REF], appears necessary. These structures speed up the K-NN search, at the expense of an approximate search for nearest neighbors. Let us denote by D the dimension of the system of interest. Making a choice between K-d trees or ball trees depends mostly on the dimensionality of the system. K-d trees are known to perform well in dimensions D < 20, while ball trees are more suitable to dimensions higher than 20 but come with a high cost of space-partitioning [START_REF] Ian H Witten | Data Mining: Practical machine learning tools and techniques[END_REF]. In this appendix we focus on the use of K-d trees, which are natural candidates for local analogs with a small component-wise local neighborhood ν or using a preliminary dimensionality reduction algorithm (such as Empirical Orthogonal Functions). A comparison between K-d trees and ball trees is out of the scope of this work.

Let N data be the size of the catalog (the number of samples from where to look for analogs), and K the number of nearest neighbors to be retrieved. Let us recall that ν is the size of the local neighborhood used for the search for local analogs. [START_REF] Van Den Dool | Searching for analogues, how long must we wait?[END_REF] derived a relationship between Appendix A. Operational count of the AnDA applied for high-dimensional applications the local neighborhood size and the amount of the data needed to find an analog with a given precision. With the assumption that the components of the states follow a multivariate Gaussian distribution and have the same variance sd 2 , finding K samples that have a distance lower than ǫ for all the components of the neighborhood with a probability of 95%, needs the number of data to be on average:

• Global analogs:

• Local analogs:

where α is the integral of the standard Gaussian probability density function from -ǫ/( √ 2sd)

to ǫ/( √ 2sd).

We present now the operational count for one ensemble member (or particle) involved in the forecasting, for both global and local analogs. In each case, we distinguish the computational cost of the creation of the K-d trees and the search of K nearest neighbors.

• Global analogs:

- Note that using local analogs requires constructing a Kd-tree for every dimension in D.

Construction of the Kd-trees can be done offline (1 "big" Kd-tree for the global strategy and D "small" Kd-trees for the local strategy), then the cost of these construction can be amortized over the high number of queries that needs to be answered during analog data assimilation.

However, in terms of memory storage, storing a global Kd-tree could be prohibitive, contrarily to small local Kd-trees that can be created, used, then freed for the creation of the next Kd-tree of the next dimension (if there is no sufficient memory to stock D small local Kd-trees). Keep in mind that we need to have (2ν + 1) << D for local analogs to be of relevance. 

B.1 Introduction

Going "deeper" with artificial neural networks (ANNs) by using more than the original three layers (input, hidden, output) started the so-called deep learning era. The developments and discoveries which are still ongoing are producing impressive results and reaching state-of-the-art performances in various fields [START_REF] Goodfellow | Deep learning[END_REF]. In particular, Convolutional Neural Networks (CNN) sparkedoff the deep learning revolution in the image processing community and are now ubiquitous in computer vision applications. This has led numerous researchers from the remote sensing community to investigate the use of this powerful tool for tasks like object recognition, scene classification, etc... (see [START_REF] Zhang | Deep learning for remote sensing data: A technical tutorial on the state of the art[END_REF][START_REF] Zhu | Deep learning in remote sensing: a review[END_REF] and references therein).

By standing on the shoulders of recent achievements in deep learning for image segmentation we present "EddyNet", a deep neural network for automated eddy detection and classification from Sea Surface Height (SSH) maps provided by the Copernicus Marine and Environment

Monitoring Service (hereinafter denoted by AVISO-SSH). EddyNet is inspired by ideas from widely used image segmentation architectures, in particular U-shaped architectures such as U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. We investigate the use of Scaled Exponential Linear Units (SELU) [START_REF] Klambauer | Selfnormalizing neural networks[END_REF] instead of the classical ReLU + Batch Normalization (R+BN) and show that we greatly speed up the training process while reaching comparable results. We adopt a loss function based on the Dice coefficient (also known as the F1 measure) and illustrate that we reach better scores for the two most relevant classes (cyclonic and anticyclonic) than with using the categorical cross-entropy loss.

We also supplement dropout layers to our architecture that prevents EddyNet from overfitting.

Our work joins the emerging cross-fertilization between the remote sensing and machine learning communities that is leading to significant contributions in addressing the segmentation identified in the southwest Atlantic (see [START_REF] Mason | Subregional characterization of mesoscale eddies across the brazil-malvinas confluence[END_REF]). The outputs of the eddy tracker algorithm provide the center coordinates of each classified eddy along with its speed and effective contours.

Since we aim for a pixelwise classification, i.e., each pixel is classified, we transform the outputs into segmentation maps such as the example shown in Figure B.2. We consider here the speed contour which corresponds to the closed contour that has the highest mean geostrophic rotational current. The speed contour can be seen as the most energetic part of the eddy and is usually smaller than the effective radius. The next section describes further the data preparation process that yields the training database of pixelwise classification maps.

B.3 Data preparation

As stated in the previous section, we consider PET14 outputs as a training database for our deep- 

B.4.2 Loss metric

While multiclass classification problems in deep learning are generally trained using the categorical cross-entropy cost function, segmentation problems favor the use of overlap based metrics.

The dice coefficient is a popular and largely used cost function in segmentation problems. Considering the predicted region P and the groundtruth region G, and by denoting |P | and |G| the sum of elements in each area, the dice coefficient is twice the ratio of the intersection over the sum of areas:

A perfect segmentation result is given by a dice coefficient of 1, while a dice coefficient of 0 refers to a completely mistaken segmentation. Seeing it from a F1-measure perspective, the dice coefficient is the harmonic mean of the precision and recall metrics.

The implementation uses one-hot encoding vectors, an essential detail is that the loss function of EddyNet uses a soft and differentiable version of the dice coefficient which considers the output SSH maps of the softmax layer as it is without binarization:

where the p i are the probabilities given by the softmax layer 0 ≤ p i ≤ 1, and the g i are either 1 for the correct class and 0 either. We found later that a recent study used another version of a soft dice loss [START_REF] Milletari | V-net: Fully convolutional neural networks for volumetric medical image segmentation[END_REF]; a comparison of both versions is out of the scope of this work.

Since we are in the context of a multiclass classification problem, we try to maximize the performance of our network using the mean of three one-vs-all soft dice coefficients of each class.

The loss function that our neural network aims to minimize is then simply:

Dice Loss = 1 -softMeanDiceCoef (B.3) 

B.5 Experiments

B.5.1 Assessment of the performance

Keras framework with a Tensorflow backend is considered in this work. EddyNet is trained on a Nvidia K80 GPU card using ADAM optimizer and mini-batches of 16 maps. The weights were initialized using truncated Gaussian distributed weights of zero mean and {2/number of input units} variance [START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF] for EddyNet, while we use weights drawn from a truncated Gaussian