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Abstract

Missing data is a widespread characteristic of remote sensing measurements. Various sources are

responsible for this problem such as the instrument sampling or the sensitivity to the atmospheric

conditions (e.g. cloud cover). The scientific problem of reconstructing geophysical fields from

noisy and partial remote sensing observations is a classical problem well studied in the literature.

Data assimilation is one class of popular methods to address this issue. It relies on a state-space

representation of the physical system by two equations: The observation equation which models

the measurement process and the model equation which explicits the physical model driving the

state of the variable in time. In practice, data assimilation is done through the use of classical

stochastic filtering techniques, such as ensemble Kalman or particle filters and smoothers. They

proceed by an online evaluation of the physical model in order to provide a forecast for the state.

The performance of data assimilation heavily relies on the definition of the physical model. The

lack of consistency of the model with respect to the observed data and modeling uncertainties are

therefore severe limitations of this classical framework. In contrast, the amount of observation

and simulation data has grown very quickly in the last decades. Replacing the dynamical model

by realistic statistical simulations of the dynamics has become feasible provided that we explore

implicit data-driven schemes in such historical datasets using robust and well-suited methods.

My thesis focuses on the potential of exploiting the wealth of archived datasets to per-

form data assimilation in a data-driven way and this without having access to explicit model

equations. Following Tandeo et al. (2014) [139], we particularly investigated a model-free and

data-driven methodology. The main contribution of my thesis lies in developing and evaluating

the Analog Data Assimilation, which combines analog methods (nearest neighbors search) and

stochastic filtering methods (Kalman filters, particle filters, Hidden Markov Models). Through

applications to both simplified chaotic models and real ocean remote sensing case-studies (sea

surface temperature, along-track sea level anomalies), we demonstrate the relevance of the ana-
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log data assimilation for the missing data interpolation of highly nonlinear and high-dimensional

dynamical systems from irregularly-sampled and noisy observations.

Driven by the rise of machine learning in the recent years, I dedicated the last part of my

thesis to the development of deep learning models for the detection and tracking of ocean eddies

from multi-source and/or multi-temporal data (e.g., SST-SSH), the general objective being to

outperform expert-based approaches [28,109].

Keywords: Analog Data Assimilation, Spatio-temporal interpolation, Ocean remote sensing

.
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Résumé

L’apparition de données manquantes est un phénomène très répandu des mesures de télédé-

tection spatiale. Diverses sources sont responsables de ce problème, comme l’échantillonnage

des instruments ou la sensibilité aux conditions atmosphériques (ex. couverture nuageuse). Le

problème scientifique de la reconstitution des champs géophysiques à partir d’observations de

télédétection bruitées et partielles est un problème classique bien étudié dans la littérature.

L’assimilation des données est une des méthodes les plus populaires pour résoudre ce problème.

Elle s’appuie sur une représentation espace-état du système physique suivant deux équations :

l’équation d’observation qui modélise le processus de mesure et l’équation de modèle qui ex-

plique le modèle physique qui gouverne la dynamique de l’état de la variable dans le temps. En

pratique, l’assimilation des données se fait par l’utilisation de techniques classiques de filtrage

stochastique, telles que les filtres de Kalman d’Ensemble ou les filtres particulaires. Ils procèdent

à une évaluation séquentielle du modèle physique afin de fournir une prédiction de l’état. La

performance de l’assimilation des données dépend fortement de la définition du modèle physique.

Le manque de cohérence du modèle par rapport aux données observées et les incertitudes de

modélisation sont donc des limites sévères de ce cadre classique. D’un autre côté, la quantité

de données d’observation et de simulation a augmenté très rapidement au cours des dernières

décennies. Remplacer le modèle dynamique par des simulations statistiques réalistes de la dyna-

mique est devenu possible à condition que nous explorions des schémas implicites basés données

(data-driven) dans ces données historiques en utilisant des méthodes robustes et bien adaptées.

Cette thèse se concentre sur le potentiel d’exploitation de la richesse des données archivées

pour effectuer l’assimilation des données de manière pilotée par les données et ce, sans avoir

accès à des équations explicites de modèle. Suivant Tandeo et al. (2014) [139], nous avons par-

ticulièrement étudié une méthodologie sans modèle et guidée par les données. La principale

contribution de ma thèse réside dans le développement et l’évaluation de l’assimilation des don-

nées par analogues, qui combine les méthodes analogues (recherche des plus proches voisins) et

ix
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les méthodes de filtrage stochastiques (filtres de Kalman, filtres particulaires, modèles de Markov

cachés). Des applications aux modèles chaotiques simplifiés et à des études de cas de télédétec-

tion océanographique réelle (température de surface de la mer, anomalies du niveau de la mer),

démontrent la pertinence de l’assimilation des données par analogues pour l’interpolation des

données manquantes de systèmes dynamiques fortement non linéaires et à haute dimension à

partir d’observations irrégulières et bruitées.

Poussé par l’essor de l’apprentissage automatique au cours des dernières années, j’ai consacré

la dernière partie de ma thèse au développement de modèles d’apprentissage profond (Deep

Learning) pour la détection et le suivi des tourbillons océaniques à partir de données multi

sources et/ou multitemporelles (ex., SST-SSH), l’objectif général étant de surpasser les approches

dites expertes [28,109].

Mots clés : Assimilation de données par analogues, interpolation spatio-temporelle, télédé-

tection de l’océan.
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General Introduction

"If you do not know how to ask the right question, you discover nothing"

W. Edward Deming

Introduction and problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Invited conferences and workshop talks . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Introduction and problem statement

The reconstruction of the spatiotemporal dynamics of geophysical systems from noisy and/or

partial observations is a major issue in geosciences. Variational and stochastic data assimilation

schemes are the two main categories of methods considered to address this issue (see [46] for more

details). A key feature of these data assimilation schemes is that they rely on repeated forward

integrations of an explicitly-known dynamical model. This may greatly limit their application

range as well as their computational efficiency. First, thorough and time-consuming studies may

be required to identify explicit representations of the dynamics, especially regarding fine-scale

effects and subgrid-scale processes as for instance in regional geophysical models [71]. Such pro-

cesses typically involve highly nonlinear and local effects [157]. The resulting numerical models

may be computationally intensive and even prohibitive for assimilation problems, for instance

regarding the generation of members with different initial conditions at each time step. Second,

as explained in [153], "with ever-increasing resolution and complexity, the numerical models tend

to be highly nonlinear and also observations become more complicated and their relation to the

1



General Introduction

models more nonlinear". In such situations, standard data assimilation techniques are likely to

fail, including nonlinear particle filters which are prone to the "curse of dimensionality". Third,

difficulties may occur when geophysical dynamics involve uncertain model parameterizations or

space-time switching between different dynamical modes that need to be estimated online [129]

or offline [140]. Dealing with such situations may not be straightforward using classical model-

driven assimilation schemes.

Meanwhile, recent years have witnessed a proliferation of satellite data, in situ monitoring

as well as numerical simulations. Large databases of valuable information has been collected

and represent a major opportunity for oceanic, atmospheric and climate sciences. As pioneered

by [102], the availability of such datasets advocates for the development of analog forecasting

strategies, which make use of "similar" states of the dynamical system of interest to generate

realistic forecasts. Analog forecasting strategies have become more and more popular in oceanic

and atmospheric sciences [111,115], and have benefited from recent advances in machine learning

[163]. They have been applied to a variety of systems and application domains, including among

others, rainfall nowcasting [8], air quality analysis [39], wind field downscaling [69], climate

reconstruction [134] and stochastic weather generators [160].

In this work, we examine the extension of the analog forecasting paradigm for data assimila-

tion issues. Given a representative dataset of the dynamics of the system, this extension that we

call "Analog Data Assimilation" consists of a combination of the implicit analog forecasting of

the dynamics with stochastic filtering schemes, namely Ensemble Kalman and particle filtering

schemes [47]. This idea was first introduced in [139] where the authors demonstrated the rele-

vance of the proposed analog data assimilation for the reconstruction of complex dynamics from

partial and noisy observations. Tandeo et al. derived filtering and smoothing algorithms called

the Analog Ensemble Kalman Filter and Smoother, which combine analog forecasting and the

ensemble Kalman filter and smoother. A similar philosophy was followed independently in [65]

where the authors combine ideas from Takens’ embedding theorem and ensemble Kalman filter-

ing to infer the hidden dynamics from noisy observations. Hamilton et al. called their algorithm

the Kalman-Takens filter.

Whereas these two previous works provide proofs of concept, this thesis further investigates

and evaluates different analog assimilation strategies and their detailed implementation.

2



In addition, experiments on Sea Surface Temperature (SST) and Sea Level Anomaly (SLA)

missing data interpolation are conducted to investigate the challenges present in realistic appli-

cations and to face the curse of dimensionality.

Given that good quality and high resolution SST/SSH maps are crucial to eddy classification

and detection, I dedicated the last part of my thesis to the development of deep learning based

image segmentation architectures. The aim is to have a pixelwise classification of an SSH map

into cyclonic/anticyclonic eddy or absence of eddies. The general objective being to outperform

expert-based approaches [28,109].

This thesis was conducted under the supervision of Prof. Ronan Fablet (LabSTICC, IMT At-

lantique), Dr. Pierre Ailliot (LMBA, University of Western Brittany) and Dr. Bertrand Chapron

(LOPS, Ifremer). I benefited from a short stay at Ocean University of China, where I started

two collaborations with Prof. Ge Chen and Prof. Junyu Dong.

Contributions

The contributions of this thesis are the following:

Presenting a unified framework for the Analog Data Assimilation with new analog

forecasting strategies and new analog-based algorithms

The principal objective of chapter 2 is to introduce the Analog Data Assimilation. A brief

history of analog methods and their recent implication in data assimilation is presented. The

chapter lists the considered analog forecasting strategies, including locally-linear ones that were

not considered in previous works, and evaluates their performance for analog data assimilation.

Secondly, in addition to the ensemble Kalman algorithms, I propose and examine two novel

implementations of the analog forecasting , the first combined with a particle filter and the

second with Hidden Markov Models. Finally, in collaboration with Pierre Tandeo and Phi Viet

Huynh, we provide a unified computational framework, through both a Matlab Toolbox and

a Python Library, to pave the way for practical use and future research (it is available from

https://github.com/ptandeo/AnDA).

Using the Analog Data Assimilation to solve high-dimensional geophysical problems

through the combination of patch-based and EOF-based methods

Chapter 3 and Chapter 4 deal with the challenges of using the AnDA for high-dimensional

3
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General Introduction

problems, more specifically: i) Interpolation of Sea Surface Temperature (SST) from cloud con-

taminated satellite data and ii) Sea Level Anomaly (SLA) mapping from along-track data. We

circumvent the curse of dimensionality by implementing a patch-based version of the AnDA

that breaks the problem into several small subregions, we also used dimensionality reduction

throughout the use of EOF decomposition to decrease the dimensionality of the problem. This

has a direct effect on the quality of the analogs.

Transfer learning of image segmentation using Deep Learning to the detection and

classification of eddies from SSH maps.

Appendix B presents "Eddynet" a deep learning based architectures for automated eddy detec-

tion and classification from Sea Surface Height (SSH) maps provided by Archiving, Validation,

and Interpretation of Satellite Oceanographic (AVISO). Eddynet’s output is a map with the

same size of the SSH map input where pixels have the following labels {’0’: Non eddy, ’1’:

anticyclonic eddy, ’2’: cyclonic eddy, ’3’: land or no data}.

Keras python code, the training datasets and EddyNet weights files are open-source and

freely available on https://github.com/redouanelg/Eddynet
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In this chapter, we present the main ideas behind the state-space model formulation. We

will then use the term data assimilation which is the term commonly used in the geoscience

community for state-space mathematical resolution. Finally, we give a historical overview of the

use of the analog methods.
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Chapter 1. Data Assimilation and Analog methods

1.1 State-Space models

In many problems encountered in science and engineering, one is interested in estimating an

unobserved process {x(t)}t∈J1,··· ,T K given a sequence of observations {y(t)}t∈J1,··· ,T K. Examples

of such situations include target tracking, signal and image processing, climate modeling, fi-

nance, etc... In this section, we review the resolution of such inverse problems using state-space

formulations. We may refer the reader to [32] for a comprehensive introduction to state-space

models from a theoretical/practical point of view.

State-space methods provide a flexible framework to address this issue. They rely on the

definition of two key components. Firstly, the dynamical model states the temporal dynamics

of process {x(t)}t∈J1,··· ,T K, typically Markovian dynamics (as an illustration, we consider here a

first-order Markov process). Secondly, the observation model relates the unknown state x(t)

at a given time t to the observed variable y(t) at the same time. Formally, it resorts to:







x(t) = M (x(t− 1),η(t)) , (1.1)

y(t) = H (x(t)) + ǫ(t). (1.2)

Where M characterizes the dynamical model of the true state x(t), while η(t) is a random

perturbation added to represent model uncertainty. Observation error is considered through the

random noise ǫ(t). Here, for the sake of simplicity, we consider an additive Gaussian noise ǫ with

covariance R in equation 1.2 and the observation operator H = H is assumed linear.

To be fully characterized, this state-space setting also involves the definition of the prior

distribution of x(1). From a Bayesian perspective, the reconstruction of the unknown state

sequence {x(t)}t∈J1,··· ,T K from a partial and/or noisy observation sequence {y(t)}t∈J1,··· ,T K comes

to evaluate filtering and smoothing posteriors, respectively P (x(t)|Y1:t) the probability distri-

bution of state x(t) given all the past and present observations and P (x(t)|Y1:T ) the probability

distribution of state x(t) given all the past, present and future observations, where the notation

Z1:k represents the sequence of states z(t) from time 1 to time k.Fig.1.1 shows an illustration of

the existing conditional dependencies in a state space model

In the following we will present three classical methods for the resolution of state-space

models.
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Figure 1.1 – An illustration of a simple SSM: The random variable Xt is the hidden state at
time t. The random variable Yt is the corresponding observation (or measurement) at time t.
There is only two kind of conditional dependencies, first between the hidden state Xt at time t
and the previous state at time t − 1 (dynamical model). Second, between the measurement Yt

and the hidden state Xt both at time t (observation model).

1.1.1 The Kalman Filter

Here we consider a Linear Gaussian model i.e. we consider an additive Gaussian noise η with

covariance Q in equation 1.1 and the dynamical operator M = M is assumed linear.







x(t) = M (x(t− 1)) + η(t), (1.3)

y(t) = H (x(t)) + ǫ(t). (1.4)

In this particular case where conditional are also normal distributions, the Kalman Filter

(KF) [82] gives recursive expressions for the mean and variance of the filtering distribution

P (x(t)|Y1:t), under the assumption that all parameters in the model are known.

More specifically, the KF recursively estimates:

• x̂t|t the mean state at time t given the previous observations

• Pt|t the corresponding error covariance matrix.

In the following we derive the equations of the Kalman filter. Consider Y1:t to be the vector

of the observations up to and including time t, and to simplify notation we will use zt for z(t).

The KF in this case is the MMSE estimator represented by the conditional expectation of xt

given the known observations Y1:t:

x̂t|t = E[xt|Y1:t] (1.5)

Recall that if v1 and v2 are jointly Gaussian with







v1

v2






∼ N (







µ1

µ2






,







Σ11 Σ12

Σ21 Σ22






), then

v1|v2 ∼ N (µ̃, Σ̃) where:
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µ̃ = µ1 + Σ12Σ−1
22 (v2 − µ2) (1.6)

Σ̃ = Σ11 − Σ12Σ−1
22 Σ21. (1.7)

By taking v1 = xt and v2 = yt, then conditioning by Y1:t−1, Equation 1.5 becomes:

x̂t|t = E[xt|Y1:t−1] + ΣxyΣ−1
yy (yt − E[yt|Y1:t−1]) (1.8)

where:

Σxy = E[(xt − E[xt|Y1:t−1])(yt − E[yt|Y1:t−1])T ] (1.9)

Σyy = E[(yt − E[yt|Y1:t−1])(yt − E[yt|Y1:t−1])T ] (1.10)

Using the observation equation 1.4 we have:

E[yt|Y1:t−1] = HE[xt|Y1:t−1] = Hx̂t|t−1 (1.11)

which makes equation 1.8 becomes:

x̂t|t = x̂t|t−1 + ΣxyΣ−1
yy (yt − Hx̂t|t−1) (1.12)

And using the dynamical equation 1.3 we obtain:

x̂t|t−1 = E[xt|Y1:t−1] = ME[xt−1|Y1:t−1] = Mx̂t−1|t−1 (1.13)

Equations 1.12 and 1.13 define the recursive filter. We will now explicit Kt = ΣxyΣ−1
yy called

the Kalman gain, then find the updating formulas for the covariance error.

From the observation equation 1.4 we can show that:







Σxy = Pt|t−1HT (1.14)

Σyy = HPt|t−1HT + R. (1.15)

This results in the following expression for the Kalman gain:

Kt = Pt|t−1HT (HPt|t−1HT + R)−1 (1.16)
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To find the updating formulas for the covariance error i.e. relationship between Pt|t and

Pt|t−1, we will start by using Equation 1.7, in our case it resorts to:

Pt|t = Pt|t−1 − ΣxyΣ−1
yy Σyx (1.17)

Since Σyx = ΣT
xy, and using Equation 1.14, the previous equation becomes:

Pt|t = Pt|t−1 − KtHPt|t−1 = (I − KtH)Pt|t−1 (1.18)

Besides, using the dynamical equation we can show that

Pt|t−1 = MPt−1|t−1MT + Q (1.19)

Finally the KF algorithm can be summarized in Algorithm 1.

Algorithm 1 The Kalman filter algorithm

1: Input: x1 = xb and P1 = B initial guesses

2: set t = 2

3: Prediction step:

• predict state estimate x̂t|t−1 = Mx̂t−1|t−1

• predict covariance estimate Pt|t−1 = MPt−1|t−1MT + Q

4: Update step:

• Calculate the Kalman gain Kt = Pt|t−1HT (HPt|t−1HT + R)−1

• update state estimate x̂t|t = x̂t|t−1 + Kt(yt − Hx̂t|t−1)

• update covariance estimate Pt|t = (I − KtH)Pt|t−1

5: Set t = t+ 1 then go back to step 3

Despite the attractiveness and the popularity of the classical Kalman Filter (e.g. Apollo

navigation computer which took mankind to the moon), it is a basic model with abiding as-

sumptions, and since nature is nonlinear, the need of more general but still computationally

plausible methods had arisen. In the literature, two main research directions were followed: the

first path considered the use of Monte Carlo methods, especially the particle filter that began

to appear and started to be used in the estimation theory field, we present it in section 1.1.2.

13



Chapter 1. Data Assimilation and Analog methods

While the second group of researchers put their efforts in improving and adapting the KF for

nonlinear problems, two popular extensions emerged: the Extended Kalman filter (EKF) that

simply considers linearization of the nonlinear system around working points, and the Unscented

Kalman Filter (UKF) [81] which selects some representative points from the state distribution,

from which the posterior distribution is then obtained using the propagation of the these repre-

sentative points through the direct use of the nonlinear system. We refer the reader to the book

of Anderson and Moore [1] for a complete description of Kalman filter extensions.

The geoscience community benefited from this variety of research ideas from both sides and

widely adopted an interesting method combining the best of both world: The Ensemble Kalman

Filter (EnKF) that we discuss in section 1.2.1.

On another side, while the previous models were based on a continuous formulation, Hidden

Markov Models (HMM) [126] were introduced as an alternative adapted to discrete systems, we

present HMM and the associated filtering and smoothing algorithms in section 1.1.3.

1.1.2 The Particle Filter

Contrary to the Kalman filters, particle filters do not assume a Gaussian distribution for the

state. The key principle is to estimate the posteriors of the state from a set of particles (or

ensemble members).

Hereinafter, we comply with the notations used in the geoscience community by doing the

following replacements:

• xt|t−1 and Pt|t−1 are now referred to as the forecast state xf (t) and covariance error Pf (t)

• xt|t and Pt|t are now referred to as the analyzed state xa(t) and covariance error Pa(t)

In Algorithm 2, we present one version and probably the most classical of the particle filter,

this version is called the Bootstrap [61] (as known as the sampling importance resampling (SIR)

particle filter).

The literature comprise several other variants of the particle filter, from which we can cite:

firstly, the auxiliary particle filter [124] where the resampling and the prediction step are inverted

to give more sampling "chance" to particles close to the observation, secondly, the rejection par-

ticle filter [141] which assumes knowing an upper bound of the inferred distribution and then

rejects particles that exceed this bound. Although the variety of particle filters, a number of

limitations makes the use of particle filter challenging. Firstly, the presence of outliers could neg-
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Algorithm 2 The Particle filter algorithm

1: Input: xb and B parameters of the prior Gaussian distribution
2: Generate vectors xf

i (1) ∀i ∈ {1, ..., N} using a multivariate Gaussian random generator with
mean vector xb and covariance matrix B. The index i of the state vector corresponds to the
ith realization of the Monte Carlo procedure (called member or particle).

3: Set t = 1
4: Prediction step:

• Apply the model dynamical operator M to sample new particles xf
i (t) ∀i ∈ {1, ..., N}

from previous filtered particles xa
i (t− 1)

• Compute particle weights πi(t) as

πi(t) ∝ φ
(

y(t) − Hxf
i (t); R

)

, (1.20)

where φ (·; R) is a centered multivariate Gaussian distribution with covariance R.

• Normalize weights πi(t) to total one.

5: Resampling step:

• Resample from the multinomial distribution defined by the particles {xf
i (t)} and their

corresponding weights {πi(t)}.

• Compute the analyzed state xa(t) as the sample mean

xa(t) =
1

N

N
∑

i=1

πi(t)x
f
i (t). (1.21)

but one may also consider as filtered state the posterior mode.

6: Set t = t+ 1 then go back to step 4

atively affect the importance sampling and mislead the particles, thus the use of many particles

is necessary. Secondly, the curse of dimensionality is a serious problem in particle filtering [125].

Actually the need of a large number of particles for a better estimation could be intractable

computationally, not to mention that using a very big number of particles means increasing the

variance due to the bias-variance trade-off.

For further reading, we point the reader to the well-detailed survey of Chen [30] for a complete

review of the different variants of the particle filter, their advantages and limitations, and their

convergence guarantees.

1.1.3 Hidden Markov Models

Unlike continuous state space models depicted before, here we’re interested in discrete state

space models i.e. the state has values in a finite set of values. In this case state space models

are commonly known as Hidden Markov Models (HMMs).
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In the discrete setting considered here, x(t) is the state at time t of a discrete random

variable having Np number of possible values, and y(t) the corresponding observation at time t.

Two defining properties give to Hidden Markov Models their name: first, x(t) is supposed to be

hidden from the observer, y(t) is all what he observes at time t. Second, the value of the state at

time t is independent of all values of the state prior to t− 1, this is called the Markov property,

P (x(t+ 1) | x(0),x(1), . . . ,x(t)) = P (x(t+ 1) | x(t)),

using these two properties, HMMs describe the joint probability of the hidden and observed

discrete random variables. We note by Λ = (A,B, π1) the parameters of the HMM where:

• Assuming that P (x(t)|x(t − 1)) is independent of time t, the definition of the time inde-

pendent transition matrix is given by:

A = {aij} = P (x(t) = j|x(t− 1) = i)

• The initial state distribution (i.e. when t = 1) is given by:

π1 = {πi} where πi = P (x(1) = i)

• The observation matrix (called also the emission matrix) gives the probability of a

certain observation at time t for state j and it is expressed as:

B = {bj(y(t))} where bj(Yt) = P (y(t)|x(t) = j)

Given a foreknowledge of an HMM parameters and an observation sequence we can compute the

smoothing posterior marginals P (x(t)| Y1:T ) of all hidden state variables. In the next subsection,

we will introduce briefly The forward-backward algorithm which is a widely used algorithm to

execute this task. Its aim consists of finding the most likely state for any point in time and which

results in an estimation of the underlying dynamics of the state.

The forward-backward algorithm

Given Λ = (A,B, π1) we are interested in evaluating γt(i) = P (x(t) = i|Y1:T ) which can also be

written using Bayes theorem as:

γt(i) =
P (Y1:T ,x(t) = i)

P (Y1:T )
(1.22)
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Using conditional independence properties between Y1:t and Yt+1:T given x(t), we can prove

easily that:

P (Y1:T ,x(t) = i) = P (Y1:t,x(t) = i).P (Yt+1:T |x(t) = i) (1.23)

Let consider the forward variable αt(i) and the backward variable βt(i) defined as:

αt(i) = P (Y1:t,x(t) = i) βt(i) = P (Yt+1:T |x(t) = i) (1.24)

αt(i) is the joint probability of observing Y1:t and being in the state x(t) = i at time t, while

βt(i) is the conditional probability of future observation Yt+1:T assuming being in state x(t) = i

at time t. Thus (1.22) and (1.23) lead us to write:

γt(i) =
αt(i).βt(i)

P (Y1:T )
(1.25)

P (Y1:T ) is a normalization factor that makes γt(i) a probability measure i.e Σ
Np

i=1γt(i) = 1, thus

we can express (1.25) as:

γt(i) =
αt(i).βt(i)

P (Y1:T )
=

αt(i).βt(i)

Σ
Np

i=1αt(i).βt(i)
(1.26)

Thanks to the forward-backward algorithm presented in Algorithm 3 we can obtain γt(i) at each

time step. Choosing the most likely state for the system at time t is straightforward by taking

the index of the state with the larger probability value:

x(t) = arg max
i=1···Np

γt(i) (1.27)

A Matlab implementation of the forward-backward algorithm can be found in the Hidden Markov

Model (HMM) Toolbox written by Kevin Murphy1.

1See http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
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Algorithm 3 Forward-backward algorithm

1: %% Input : Λ = (A,B, π1)

2: %%%%%% ForwardProbabilities %%%%%%

3: α1(i) = πibi(Y1) ∀i ∈ 1 : 1 : Q

4: for t = 2 : 1 : T do

5: for j = 1 : 1 : Np do

6: αt(j) = [Σ
Np

i=1αt−1(i).aij ]bj(Yt)

7: end for

8: end for

9: %%%%%% BackwardProbabilities %%%%%%

10: βT (i) = 1 ∀i ∈ 1 : 1 : Np

11: for t = T − 1 : −1 : 1 do

12: for i = 1 : 1 : Np do

13: βt(i) = Σ
Np

j=1bj(Yt+1).aij .βt+1(j)

14: end for

15: end for

16: %%%%%% GammaProbabilities %%%%%%

17: for i = 1 : 1 : Np do

18: for t = 1 : 1 : T do

19: γt(i) = αt(i).βt(i)

Σ
Np

i=1αt(i).βt(i)

20: end for

21: end for

When the finite discrete state-space model is well defined, HMM inference implementation

is attractive and modulable with its direct calculations of filtering and smoothing posteriors

through dynamic programming. However, the number of finite states and the parametrization

could be an issue in high dimensions, if a state has a large number Np of states, this could affect

much the storage and calculation capacities.

It would be useful to mention two other algorithms for HMM inference. Firstly, Viterbi algo-

rithm which computes the most probable path generated by the observation sequence. Secondly,

Baum-Welch algorithm that aims to iteratively estimate the parameters of the HMM by per-

forming a series of forward-backward algorithm runs. Details about these algorithms can also

be found in [126].
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1.2 Data assimilation in geoscience

Data assimilation is generally defined in geoscience as the use of state space models in order to

assimilate observations/measurements about a geophysical system of interest. We recommend

the book of Asch et al. [6] and the well detailed paper of Carassi et al. [22] for a complete

overview of data assimilation techniques in geoscience.

Two types of data assimilation approaches are extensively studied in the literature: varia-

tional and stochastic ones. Variational data assimilation proceeds by minimizing a cost

function based on a continuous formulation of equations (1.1-1.2) [100], while stochastic data

assimilation schemes rely on the sampling and/or maximization of the posterior likelihood of

the state sequence given the observation series [83]. These classical data assimilation schemes are

regarded as "model-driven", in the sense that they combine observations with forecasts provided

by a numerical model M.

While variational and stochastic schemes are equivalent in the Linear-Gaussian case and

resort to the same optimal solution in a MMSE sense, this not the case in general. One advantage

of stochastic schemes is that they provide not only an estimation of the state of interest but also

its covariance error matrix. Since this thesis fits into the statistical and probabilistic perspective

of data assimilation, hereinafter, the focus will be directed to stochastic data assimilation and its

methods. More specifically, we are interested in sequential stochastic data assimilation methods.

An example of the general procedure of these methods is shown in Figure 1.2, starting from

a background state (first-guess) and a background covariance error, the sequential assimilation

proceeds in two steps: the prediction step uses the transition model (cf. Equation 1.1) to

obtain a forecast state, then the upcoming observation is "assimilated" into the model in the

analysis step. The assimilation is the mathematical resolution of the state-space (1.1)-(1.2).

We present in section 1.2.1 the Ensemble Kalman Filter and Smoother [47] one of the popular

data assimilation algorithms in geoscience, we also present one of the earliest data assimilation

methods that relies on predetermined covariance error matrices instead of dynamical update of

the analyzed state, this algorithm is described in section 1.2.2. These two algorithms are the

main data assimilation algorithms used in this work.
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Figure 1.2 – Weather forecast chain, an example of data assimilation procedure. Illustration
source [144].

1.2.1 Ensemble Kalman filters (EnKF) and smoothers (EnKS) as an example

of stochastic data assimilation

Given the high dimensionality of geophysical problems (Numerical Weather Prediction, Oceanog-

raphy, Hydrology, etc...), the use of classical Kalman filters is prohibited by computationally

expensive matrix inversions (e.g. the error covariance matrix) and storage shortage. Researchers

in the field use therefore several techniques to overcome these limitations, in particular, square

root implementation of the Kalman filter and the ensemble Kalman filter. The second is ap-

pealing from a statistical point of view and was considered in this thesis. In the following, we

present step-by-step the Ensemble Kalman Filter and Smoother.

Ensemble Kalman filters (EnKF) and smoothers (EnKS) [21, 46] are particularly popular

in geoscience as they provide flexible assimilation strategies for high-dimensional states. They

rely on the assumption that the filtering and smoothing posteriors are multivariate Gaussian

distributions, such that the following forward and backward recursions are derived.

We describe here the stochastic EnKF algorithm proposed by [21] in which observations are

treated as random variables.
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1.2. Data assimilation in geoscience

Algorithm 4 The Ensemble Kalman Filter algorithm

1: Input: xb and B parameters of the prior Gaussian distribution

2: Generate vectors xf
i (1) ∀i ∈ {1, ..., N} using a multivariate Gaussian random generator with

mean vector xb and covariance matrix B. The index i of the state vector corresponds to the

ith realization of the Monte Carlo procedure (called member or particle).

3: Set t = 1

4: Prediction step:

• Apply the dynamical operator to each member of the ensemble following (1.1) to gen-

erate xf
i (t)

• The forecast state is represented by the sample mean xf (t) and the sample covariance

Pf (t).

5: Analysis step:

• Following (1.2), N samples of yf
i (t) are generated from a multivariate Gaussian random

generator with mean Hxf
i (t) and covariance R.

• The observations are then used to update the N members of the ensemble as xa
i (t) =

xf
i (t) + Ka(t)(y(t) − yf

i (t)) where Ka(t) = Pf (t)HT (HPf (t)H′ + R)−1 is the Kalman

filter gain

• The filtering posterior distribution is then represented by the sample mean xa(t) and

the sample covariance Pa(t).

6: Set t = t+ 1 then go back to step 4

A classical Ensemble Kalman smoother, closely related to Rauch-Tung-Striebel smoother

(see [35] for more details) is described: Given the forward recursion, the backward recursion

starts from time t = T with filtered state, ∀i ∈ {1, ..., N}, such as xs
i (T ) = xa

i (T ) and Ps(T ) =

Pa(T ). Then, we proceed backward from t = T − 1 to t = 1. At each time t, we compute

xs
i (t) = xa

i (t)+Ks(t)(xs
i (t+1)−xf

i (t+1)) where Ks(t) = Pa(t)MT (Pf (t+1))−1 is the Kalman

smoother gain. Note that we empirically estimate Pa(t)MT as the sample covariance matrix of

the ensemble members as in [122] or [140] in the case of a nonlinear operator H. The smoothing

posterior distribution is represented by the sample mean xs(t) and the sample covariance Ps(t).

The asymptotic behavior of the EnKF is studied in [90]. The authors show that the EnKF

solution converges to the classical Kalman Filter in the linear Gaussian case, however, in the
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Chapter 1. Data Assimilation and Analog methods

non-linear and non-necessarily Gaussian case, the EnKF converges toward a distribution differ-

ent than the optimal filtering distribution. A hybrid scheme was proposed in [119] that combines

ideas from the EnKF and particle filtering schemes, their algorithm called the weighted EnKF

outperforms the classical EnKF in various tests, and with a comparable computational com-

plexity. But despite its limitations, the EnKF keeps attracting research interest given its simple

implementation and its success in different oceanic and atmospheric operational settings.

1.2.2 Optimal Interpolation

Unlike the previous algorithm where data assimilation is done dynamically, Optimal Interpola-

tion (OI) aims at finding the Best Linear Unbiased Estimator (BLUE) of a field x given irregu-

larly sampled observations yo in space and time and a background prior xb. The multivariate OI

equation was derived in [57] for meteorology and numerous applications in oceanography have

been reported since the early work of [17]. Several works used OI to grid sea level anomalies

using along-track data (e.g. [37,92]) and it is the method adopted in CMEMS altimetry product.

Considering the following assumptions

• xb = x + ǫb ǫb is the background error

• yo = Hx + ǫo ǫo is the observational error, H assumed here to be linear is a matrix

mapping x to the observation space.

• Observation and background errors are uncorrelated

• Error covariance matrices B and R respectively for background and observations are as-

sumed to be known.

OI aims to solve the following BLUE problem:

x = xb + K(yo − Hxb) (1.28)

The BLUE formula for the optimal weight matrix K (also called the Kalman gain) is obtained

as:

K = E[(x − xb)(yo − Hxb)T ]E[(yo − Hxb)(yo − Hxb)T ]−1 (1.29)

which can be also written as

K = E[(−ǫb)(ǫo − Hǫb)T ]E[(ǫo − Hǫb)(ǫo − Hǫb)T ]−1 (1.30)
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1.3. Analog forecasting

Since observation and background errors are uncorrelated we can further expand:

K = E[ǫb(ǫb)T ]HT (E[ǫo(ǫo)T ] + HE[ǫb(ǫb)T ]HT )−1 (1.31)

K = BHT (R + HBHT )−1 (1.32)

It is easy to notice that previous equation is the same as the Kalman gain expression of the

classical Kalman filter illustrated in Equation 1.16. It might be also relevant to note that this

result could be also found using the variational formulation called 3D-VAR [101]. It resorts to

minimizing the following cost function:

J(x) = (x − xb)T B−1(x − xb) + (yo − Hx)T R−1(yo − Hx) (1.33)

An advantage of OI over 3D-var is that it gives also Pa the error covariance of the result

(called also the analysis covariance):

Pa = (I − KH)B (1.34)

Equations 1.28, 1.29 and 1.34 represent the full set of OI equations.

In geoscience, an important aspect which makes OI popular is the possibility of using local-

ization i.e. the value of the interpolated field x(s, t) at location s on time t depends on a small

set of observations yo
i∈{1,..N} present in a space-time volume surrounding it. This helps reducing

memory and time constraints but needs modeling efforts and parameter tuning.

1.3 Analog forecasting

Analog forecasting is among the very first data-driven techniques used in weather forecasting.

Its underlying idea consists in looking for one or many similar situations of the current state

that occurred in the past, called analogs, then retrieve the successors in time of these situations

and finally assume that the forecast can be estimated from these successors. Performing analog

forecasting needs mainly an archive of historical data and a distance measure.

Even before the start of wide use of computers, some works considered analog forecasting

for assessing short-term weather variation in the 50’s [44]. Its intuitive and simple formulation
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Chapter 1. Data Assimilation and Analog methods

encouraged its adoption by researchers when the early computers were introduced to this field.

Probably the most popular and application of analog forecasting was the application for atmo-

spheric predictability by Lorenz in 1969 [103], since then the analog forecasting method was

used for several atmospheric, oceanic and climate applications [145], but with the improvements

in model integration capabilities, analog-related research dropped significantly overtaken by

physically-derived models. However, the idea kept living thanks to some few researchers waiting

for the geoscience field to enter the Big data era. In very recent years, the analog forecasting

idea started again to attract researchers from not only geoscience but also from data science

community, this blend of skills represents an opportunity to advance and reevaluate the method.

A well-known debate has always been surrounding the adoption of analog forecasting meth-

ods, the subject of debate relates to the "impossibility" of finding a true analog. Lorenz mentioned

that likelihood of finding perfect analogs is small [102], and this was later confirmed by Van den

Dool, who also derived an expression to calculate the length of the historical data needed to find

a matching analog [151]. In the statistics community, where the analog method is closely related

to the K-Nearest Neighbors (KNN) algorithm, it is known that KNN is plagued by the curse

of dimensionality i.e. fails in high dimensions. Reducing the dimensionality of the problem is a

classical strategy used in statistics and pattern recognition to avoid the curse. Literature in di-

mensionality reduction algorithms is rich, and the most popular algorithm is certainly Principal

Component Analysis (PCA). Back to meteorology, this was used in several research papers such

as Barnett and Preisendorf [12] where they circumvented the high dimensions through the use

of a "climate state vector" which is a projection of a state set of descriptors onto a reduced space

using Empirical Orthogonal Functions (EOF), which is the equivalent of PCA in statistics.

Even if we do not consider it in this thesis, it is worthy to mention another classical use

of analog forecasting methods. Analog post-processing is a way to combine analog methods to

numerical weather models. The steps of the analog post-processing consist in first obtaining

the forecasts using the numerical model, then retrieving the analog of each forecast, and finally

considering the observations corresponding to these analogs to be similar to the observations at

the situations forecasted by the numerical model.

1.4 Discussion and conclusion

Over the recent years, the breakthroughs in data storage and computational capacities motivated

the increase of research efforts in data-driven methods in general and especially in statistical
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1.4. Discussion and conclusion

Figure 1.3 – A sketch of the idea behind analog forecasting

learning methods. The story of the revival of neural networks [143] after the Artificial Intelligence

(AI) winter2 and their ongoing impressive results thanks to a technique called deep learning [93],

were a catalyzing moment that motivated our interest in data-driven methods but for data

assimilation. The next chapter presents the core and most important message this thesis wants

to send: An old and not so complicated data-driven method of the numerical weather prediction

science community, the analog forecasting, can be plugged in a data assimilation scheme. By

learning from historical data, the analog forecasting could mimic the transition equation in a

classical data assimilation formulation. Given the results obtained and described all over this

thesis, we hope that the analog data assimilation would end the analog forecasting winter.

2https://en.wikipedia.org/wiki/AI_winter
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Chapter 2. The Analog Data Assimilation

2.1 Data-driven data assimilation

In the previous chapter we presented the classical model-driven data assimilation. Here, we

propose an assimilation framework which relies on a similar state-space formulation to model-

based data assimilation. Except that, we substitute the explicit dynamical model M in (1.1)

by a "data-driven" dynamical model involving an analog forecasting operator, denoted by A,

namely,

x(t) = A (x(t− 1),η(t)) . (2.1)

Henceforth, the state-space model (2.1-1.2) will be referred to as Analog Data Assimila-

tion (AnDA). A sequential and stochastic data assimilation scheme is used involving different

Monte Carlo realizations of the state at each assimilation time. We sketch the proposed AnDA

methodology for one realization in Figure 2.1.

The analog forecasting operator A requires the existence of a representative dataset of exem-

plars of the considered dynamics. This dataset is referred to as the catalog and denoted by C. The

reference catalog is formed by pairs of consecutive state vectors, separated by the same time lag.

The second component of each pair is referred to as the successor of the first component here-

after. The catalog may be issued from observational data as well as from numerical simulations.

In the last case, one can have a catalog issued from numerical simulations (based on physical

equations), and wants to perform data assimilation without running the model again. This is for

instance useful for operational prediction centers which do not have the computational resources

to integrate a forecast model, but do have access to a large database of numerical simulations

or analysis data of a large prediction center. In this respect, we discuss also the situation where

the catalog comprises noisy versions of the true states.

Given a catalog C, the analog forecasting operator A is stated as an exemplar-based statistical

emulator of the state x from time t to time t+ dt. For any state x(t), we emulate the following

state at time t + dt based on its nearest neighbors in catalog C. Given the analog forecasting

operator, we present associated stochastic assimilation schemes, namely the Analog Ensemble

to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copy-
right Act (17 USC 108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such
as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written
permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center
(http://www.copyright.com). Questions about permission to use materials for which AMS holds the copyright can also be directed to the
AMS Permissions Officer at permissions@ametsoc.org. Additional details are provided in the AMS Copyright Policy statement, available on
the AMS website (http://www.ametsoc.org/CopyrightInformation).
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2.2. Analog forecasting strategies

Figure 2.1 – Key principle of the Analog Data Assimilation (AnDA) framework: It consists
in implicitly representing the dynamics of the system from exemplars of historical datasets.
A catalog with different simulations and/or observations can be considered. Here, we plot the
evolution in time of one Monte Carlo realization. The mean of the observations are shown by a
black asterisk, and their variance by the corresponding error bar.

Kalman Filter/Smoother [139] and the Analog Particle Filter, we also present a discrete HMM-

based version called the Analog Hidden Markov Model.

2.2 Analog forecasting strategies

2.2.1 Analog forecasting operator

Let us consider a kernel function, denoted by g, in the state-space [135]. Among the classical

choices for kernels, we consider here a radial basis function (also referred to as a Gaussian kernel):

g(u, v) = exp
(

−λ‖u− v‖2
)

. (2.2)

with λ a scale parameter, (u, v) variables in the state-space X , and ‖.‖ is the euclidean distance

or another appropriate distance function. Note that the proposed analog forecasting operator

may be applied to other kernels or subspace reduction methods to efficiently retrieve relevant

analog situations. This is discussed in Section 2.5.
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Figure 2.2 – A simplified illustration of the considered analog forecasting strategies in the case
of two analogs (nearest neighbors). Two situations for the state x(t) are shown: (top) a situation
where x(t) lies in the convex hull spanned by catalog exemplars, (bottom) a situation where
x(t) lies farther from its analogs. The second situation is expected to occur more often for high-
dimensional space as well as for states, which are less likely. The latter may model extreme
events or outliers.

Given the considered kernel, the analog forecasting operator A is defined as follows: for a

given state x(t), we denote by ak(x(t)) its kth nearest neighbor (or analog situation) in the

reference catalog of exemplars C, and by sk(x(t)) the known successor of state ak(x(t)). Here-

inafter, we refer by K to the number of nearest neighbors (analogs), and by covw the weighted

covariance. The normalized kernel weight for every pair (ak(x(t)), sk(x(t))) is given by:

ωk (x(t)) =
g (x(t), ak(x(t)))

K
∑

k=1

g (x(t), ak(x(t)))

. (2.3)

Several ideas can be explored to define the analog forecasting operator A. The natural

first option consists in deriving the forecast using the weighted mean of the K successors.

This approach, that we call here the locally-constant operator, was considered in many analog

forecasting related works [65,111,163], and is also known in statistics as Nadaraya-Watson kernel
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2.2. Analog forecasting strategies

regression. One can also think about using the weighted mean of the differences between the

K analogs and their successors and adding it to the state to derive the forecast. The operator,

referred to as locally-incremental, is seen as more physically-sound and relates more closely to a

finite-difference approximation of the underlying differential equations. Finally, we introduce in

this work a new analog forecasting operator that makes use of local linear regression techniques

based on weighted least square estimates. This operator that we call the locally-linear operator is

known to make an efficient use of small data sets and to reduce biases [33]. Note that the locally-

constant and locally-incremental operators are two special cases of the locally-linear operator.

Figure 2.2 shows an illustration of the three analog forecasting operators used in this work.

Hereinafter, we denote the forecasted state as xf (t+dt). The three analog forecasting operators

are defined as follows for two sampling schemes, namely, a Gaussian sampling and a multinomial

one. Hereinafter, δZ(·) denotes a delta function centered on Z.

• Locally-constant analog operator : for the Gaussian case, the forecasted state is sampled

from a Gaussian distribution whose mean mLC and covariance ΣLC are the weighted mean

and the weighted covariance estimated from the K successors and their weights.

xf (t+ dt) ∼ N (mLC ,ΣLC). (2.4)

where mLC =
∑K

k=1 ωk(x(t))sk(x(t)) and ΣLC = covω(sk(x(t))k∈J1,KK). While in the multi-

nomial case, the forecasted state is drawn from the multinomial discrete distribution that

samples the successor sk(x(t)) with a probability of ωk

xf (t+ dt) ∼
K
∑

k=1

ωk (x(t)) δsk(x(t))(·). (2.5)

• Locally-incremental analog operator : instead of considering a weighted mean of the K

successors as in the locally-constant operator, we consider the value of the current state plus

a weighted mean of the K increments τk, i.e. differences between analogs and successors

τk(x(t)) = sk(x(t)) − ak(x(t)). The Gaussian sampling is given by:

xf (t+ dt) ∼ N (mLI ,ΣLI). (2.6)
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where mLI = x(t) +
∑K

k=1 ωk(x(t))τk(x(t)) =
∑K

k=1 ωk(x(t))(x(t) + τk(x(t))) and ΣLI =

covω((x(t) + τk(x(t)))k∈J1,KK) and the multinomial sampling resorts to

xf (t+ dt) ∼
K
∑

k=1

ωk (x(t)) δx(t)+τk(x(t)) (·) . (2.7)

• Locally-linear analog operator : at each current state, we fit a multivariate linear regres-

sion between the K analogs and their corresponding successors using weighted least square

estimates (see [33]). We obtain regression matrix α(x(t)) and intercept β(x(t)) parameters,

and residuals ξk(x(t)) = sk(x(t)) − (α(x(t))ak(x(t)) + β(x(t))). The Gaussian sampling

comes to:

xf (t+ dt) ∼ N (mLL,ΣLL). (2.8)

with mLL = α(x(t))x(t) + β(x(t)) and ΣLL = cov(ξk(x(t))k∈J1,KK), while the multinomial

sampling is given by:

xf (t+ dt) ∼
K
∑

k=1

ωk (x(t)) δmLL+ξk(x(t)) (·) . (2.9)

The choice of one operator over another depends mostly on the computational resource and

the complexity of the application. Locally-constant and locally-increment operators are less time

and memory consuming than the locally-linear operator, and while they can be of comparable

performance in case of a flat regression function, the locally-linear is expected to better deal

with curvier regression functions at the expense however of the requirement of a larger number

of analogs to fit the regression [66]. Note also that the locally-linear and the locally-incremental

are more suitable for samples near or outside the boundary of the select analogs (as depicted

in Figure 2.2), this may be particularly relevant in geoscience applications where chaos and

extreme events are of high interest.

2.2.2 Global and local analogs

The global analog strategy is the direct application of the introduced analog forecasting strate-

gies to the entire state vector. We also introduce a local analog forecasting operator. For a

given state x(t), the analogs ak(xl(t)) in the reference catalog, and their associated successors

sk(xl(t)) for each component l of the state x(t) are defined according to a component-wise

local neighborhood. The evaluation of the kernel function and the computation of the associ-
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ated normalized weights ωk (xl(t)) involve only a portion of the state vector x(t) defining some

component-wise local neighborhood around the lth component of the state vector (typically

{xl−ν(t), . . . ,xl(t) . . . ,xl+ν(t)} with ν the width of the considered component-wise neighbor-

hood).

The idea of using local analogs is motivated by the fact that points tends to scatter far away

from each other in high dimensions, which make the search for skillful analogs nearly impossible.

For instance, [151] has shown that finding a relevant analog at synoptic scale over the Northern

Hemisphere for atmospheric data would require 1030 years of data to match the observational

errors at that time. Conversely, he also hinted that lower degrees of freedom of the states lead

to better analog forecasting performance. Following this analysis, the analog forecasting of the

global state is split as a series of local and low-dimensional analog forecasting operations. Note

that such local analogs also help reducing possibly spurious correlations.

2.3 Analog data assimilation

The analog data assimilation is stated as a sequential and stochastic assimilation scheme, using

Monte Carlo methods. It amounts to estimating the so-called filtering and smoothing posterior

likelihoods, respectively p(x(t)|y(1), . . . ,y(t)) the distribution of the current state knowing past

and current observations and p(x(t)|y(1), . . . ,y(T )) the distribution of the current state knowing

past, current and future observations. We investigate both Ensemble Kalman filter/smoother

and particle filter.

2.3.1 Analog Ensemble Kalman Filter and Smoother (AnEnKF/AnEnKS)

The AnEnKF and AnEnKS equations are equivalent to those of the EnKF and EnKS described

in 1.2.1, except for the update step where we use the analog forecasting operator.
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Algorithm 5 The Analog Ensemble Kalman Filter algorithm

1: Input: xb and B parameters of the prior Gaussian distribution

2: Generate vectors xf
i (1) ∀i ∈ {1, ..., N} using a multivariate Gaussian random generator with

mean vector xb and covariance matrix B. The index i of the state vector corresponds to the

ith realization of the Monte Carlo procedure (called member or particle).

3: Set t = 1

4: Prediction step:

• Apply the analog forecasting A operator to each member of the ensemble following

(2.1) to generate xf
i (t)

• The forecast state is represented by the sample mean xf (t) and the sample covariance

Pf (t).

5: Analysis step:

• Following (1.2), N samples of yf
i (t) are generated from a multivariate Gaussian random

generator with mean Hxf
i (t) and covariance R.

• The observations are then used to update the N members of the ensemble as xa
i (t) =

xf
i (t) + Ka(t)(y(t) − yf

i (t)) where Ka(t) = Pf (t)HT (HPf (t)H′ + R)−1 is the Kalman

filter gain

• The filtering posterior distribution is then represented by the sample mean xa(t) and

the sample covariance Pa(t).

6: Set t = t+ 1 then go back to step 4

A classical Kalman smoother, here, Rauch-Tung-Striebel smoother (see [35] for more details)

is described: Given the forward recursion, the backward recursion starts from time t = T with

filtered state, ∀i ∈ {1, ..., N}, such as xs
i (T ) = xa

i (T ) and Ps(T ) = Pa(T ). Then, we proceed

backward from t = T − 1 to t = 1. At each time t, we compute xs
i (t) = xa

i (t) + Ks(t)(xs
i (t +

1) − xf
i (t+ 1)) where Ks(t) = Pa(t)MT (Pf (t+ 1))−1 is the Kalman smoother gain. Note that

we empirically estimate Pa(t)MT as the sample covariance matrix of the ensemble members

as in [122] or [140] in the case of a nonlinear operator H. The smoothing posterior distribution

is represented by the sample mean xs(t) and the sample covariance Ps(t). We note that the

following way of extending EnKF and EnKS to become analog-based algorithms can be applied

in the same way to other flavors of EnKF such as the square-root ensemble Kalman Filter
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(EnSRF). We chose stochastic ensemble-based Kalman filters and smoothers as an illustration in

this work, even if they are not the first choice in practice for atmospheric and oceanic applications

due to issues related to perturbing observations with noise [16]. Besides, the work of [74] where

the authors address this issue, suggests that the stochastic EnKF worths a reevaluation for

oceanic and atmospheric applications.

2.3.2 Analog Particle Filter (AnPF)

Algorithm 6 The Analog Particle filter algorithm (AnPF)

1: Input: xb and B parameters of the prior Gaussian distribution

2: Generate vectors xf
i (1) ∀i ∈ {1, ..., N} using a multivariate Gaussian random generator with mean

vector xb and covariance matrix B. The index i of the state vector corresponds to the ith realization

of the Monte Carlo procedure (called member or particle).

3: Set t = 1

4: Prediction step:

• Apply the analog forecasting operator A to sample new particles xf
i (t) ∀i ∈ {1, ..., N} from

previous filtered particles xa
i (t− 1)

• Compute particle weights πi(t) as

πi(t) ∝ φ
(

y(t) − Hxf
i (t); R

)

, (2.10)

where φ (·; R) is a centered multivariate Gaussian distribution with covariance R.

• Normalize weights πi(t) to total one.

5: Resampling step:

• Resample from the multinomial distribution defined by the particles {xf
i (t)} and their corre-

sponding weights {πi(t)}.

• Compute the analyzed state xa(t) as the sample mean

xa(t) =
1

N

N
∑

i=1

πi(t)x
f
i (t). (2.11)

but one may also consider as filtered state the posterior mode.

6: Set t = t+ 1 then go back to step 4
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We also implement particle filtering techniques for the proposed analog data assimilation strat-

egy. Given an analog forecasting operator A, we consider an application of the Bootstrap particle

filter [152], Algorithm 6 is similar to what we presented in section 1.1.2 apart from the application

of the analog forecasting operator in the prediction step.

In theory, particle smoothers may also be considered. Different strategies have been proposed

in the past but they showed numerical instabilities in preliminary experiments with the consid-

ered analog forecasting operator. We do not further detail the considered implementation but

discuss these aspects in Section 2.5.

2.3.3 Analog Hidden Markov Models (AnHMM)

The AnHMM is presented here for a complete vision of the AnDA algorithms but not

considered in the experiments shown in this chapter, results relating to AnHMM are to be

found in the next chapter.

Unlike the classic state space formulation where x(t) is a continuous variable, the Analog

Hidden Markov Model setting relies on the discrete state space formed by the set of analogs

Da and successors Ds. Thereby the possible values of x(t) are restricted to S = Da ∪ Ds. The

considered exemplar-based state-space model is stated as a discrete HMM with a large number

of discrete states. We resort to the Analog HMM characterized by its states S and by parameters

Λa = (A,B, π1):














x(t) = sj |x(t− 1) = si ∼ A = {aij}

y(t) = yt|x(t) = sj ∼ B = {bj(yt)}
(2.12)

The parameterization of the transition matrix relies on the determination of transitions

between the states. We consider a sparse parameterization of the transition matrix, where each

state si ∈ S involves K possible transitions as follows:

• We search for the K-nearest neighbors of si in set Da according to a predefined kernel in

the state space.

• Let {sn}n∈I(i) denote the K nearest neighbors (analogs) of si, where I(i) = {i1, i2, · · · , iK}
contains the K indices of these analogs. From catalog C, we retrieve their successors

{sn}n∈F(I(i)). F denotes the operator mapping each analog index to the index of its suc-

cessor.

36



2.4. Numerical Experiments

• the transition probabilities aij = P (Xt = sj |Xt−1 = si) from state si ∈ S to state sj ∈ S
are non-null for successors {sn}n∈F(I(i))

aij ∝















exp (−λ‖si − sik
‖2) if j = F(ik)

0 otherwise

(2.13)

where λ can be thought as a scale parameter.

If we denote by W the cardinal of S, the transition matrix is a W × W matrix with only

W ×K non-null values.

The observation matrix of the HMM directly follows from the observation model P (y(t)|x(t)).

The global observation matrix is a W×T matrix bj(yt) = P (y(t) = yt|x(t) = sj). In the reported

numerical experiments, Gaussian observation models are considered:

bj(yt) ∝ exp(−(yt − Hsj)TR−1(yt − Hsj)

2
) (2.14)

where R is the observation covariance error matrix.

The resolution of the constructed Hidden Markov Model is done through the use of the

Forward-Backward algorithm presented in section 1.1.3.

We may consider higher-order Markovian properties with a view to accounting for longer

time dependencies. For a given time lag δ, it comes to consider the augmented state:

X̂ = (x(t),x(t− 1),x(t− 2), · · · ,x(t− (δ − 1))) (2.15)

Creating the catalog in this case and setting the parameters of the Analog HMM follow the same

steps as aforementioned.

2.4 Numerical Experiments

To evaluate the relevance and performance of the proposed analog data assimilation, we consider

numerical experiments on dynamical systems extensively used in the literature on data assimi-

lation: Lorenz-63 and Lorenz-96 models. The experiments for evaluating the effect of the size of

the catalog, the impact of noisy catalogs and catalogs with parametric model error are conducted

37



Chapter 2. The Analog Data Assimilation

using the Lorenz-63 model. To evaluate the global and local analog forecasting operators we use

the Lorenz-96 model, an extended dynamical nonlinear system with 40 variables.

2.4.1 Chaotic models

We first consider the chaotic Lorenz-63 system. From a methodological point of view, it is

particularly interesting due to its nonlinear chaotic behavior and low dimension. Several works

have used this system, e.g. [5, 31,75,113,122] or [153]. The Lorenz-63 model is defined by

dx1(t)

dt
= σ (x2(t) − x1(t)) ,

dx2(t)

dt
= x1(t) (γ − x3(t)) − x2(t),

dx3(t)

dt
= x1(t)x2(t) − βx3(t).

(2.16)

and behaves chaotically for certain sets of parameters, such as (σ = 10, γ = 28, β = 8/3).

Here, we use the explicit (4,5) Runge-Kutta integrating method (cf. [42]). As in [153] only the

first variable of the Lorenz-63 system (x1) is observed every 8 integration time steps (i.e., with

dt = 0.08). Considering the analogy between the Lorenz-63 and atmospheric time scales, it is

equivalent to a 6-hour time step in the atmosphere.

The Lorenz-96 model is another chaotic model largely used for evaluating data assimilation

techniques in geophysics [2–4,73,118,156]. It is defined by

dxj(t)

dt
= (−xj−2(t) + xj+1(t))xj−1(t) − xj(t) + F. (2.17)

where, j = 1, . . . , n and the boundaries are cyclic, i.e. x−1(t) = xn−1(t), x0(t) = xn(t) and

xn+1(t) = x1(t). The three right-hand side terms in (2.17) simulate respectively an advection,

a diffusion and a forcing term. As in [103], we choose n = 40 and external forcing of F = 8 for

which the model behaves chaotically. Equation (2.17) is solved using Runge-Kutta fourth order

scheme. Observations are taken from half of the state vector (20 observed components randomly

selected) every 4 time steps (i.e., dt = 0.20).

2.4.2 Experimental details

The considered experimental setting is as follows. To avoid divergence of the filtering methods,

we use N = 100 members/particles for the Lorenz-63 and N = 1000 members/particles for
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the Lorenz-96 for both model-driven and data-driven strategies. We use the same covariance

matrix R with a noise observation variance set to 2. To avoid any spin-up effect, the initial state

conditions is chosen as the ground truth mean and a covariance matrix B with noise variance

0.1. To compare the technique performances, we use the Root Mean Square Error (RMSE) on

all the components of the state vector and for all assimilation times. As training dataset for the

catalog and test dataset for RMSE computation, we respectively use 103 and 100 Lorenz times.

The analog forecasting operator involves two free parameters, namely, K the number of

nearest neighbors and λ the scale parameter of the Gaussian kernel in (2.2). Two strategies can

be considered for K: either a predefined number of nearest neighbors, or a predefined threshold

on distance dth to select the analogs which are closer than dth. For the sake of simplicity, we

consider in this work the first alternative and set K to 50. Besides, we use for λ the following

adaptive rule: λ(x(t)) = 1
md(x(t)) , where md(x(t)) is the median distance between the current

state x(t) and its K analogs. Note that a cross-validation procedure could be used to optimize

the choice of K and λ.

2.4.3 Experiments with Lorenz-96 model

Experiment 1: The first numerical experiment consisted only in the application of analog

forecasting (without assimilation) from a catalog. We build a database using Lorenz-96 equa-

tions, then we split the samples randomly to 2/3 for training the analog forecasting operators and

1/3 for test. Finally, we compare the RMSE w.r.t ground truth data as a function of Lorenz-96

time. For local analogs, we consider ν = 2 the width of the considered component-wise neigh-

borhood. Figure 2.3 shows the results of this experiment using the three choices for the analog

forecasting operator A. The locally-linear approach outperforms the two other approaches con-

firming that its forecasts are with lower bias compared to the other approaches. However, it

also involves more parameters which increases the variance of the forecasts. This bias-variance

trade-off supports the greater generalization capabilities of the locally-linear operator, when the

dynamics can well be approximated locally by a linear operator.

Figure 2.3 also compares local and global analog strategies. When using locally-constant

operator, local analogs are always better than global analogs. Searching for nearest neighbors on

40-dimensional vectors results most likely in irrelevant analogs. This affects heavily the locally

constant operator more than the two other operators, since it computes a weighted mean of their

associated successors. The locally-constant operator also limits novelty creation in the dynamics
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Figure 2.3 – Results of the analog forecasting performance as a function of the horizon. Different
analog forecasting methods are plotted: locally-constant (green), locally-incremental (blue) and
locally-linear (red) analog operators with local (straight line) and global (dashed line) analog
strategies. The black dashed line corresponds to a persistent prediction over time.

by always dragging the forecast near the mean of the K successors, and, according to these

experiments, it seems poorly adapted to complex and highly nonlinear systems. Regarding the

locally-incremental and locally-linear strategies, local analogs are more relevant than global ones

for prediction in a near future (less than 0.5 in Lorenz-96 time for locally-linear operator and

less than 0.25 in Lorenz-96 time for locally-incremental).

Experiment 2: We conducted a second experiment for evaluating the impact of analog fore-

casting in data assimilation using the Lorenz-96 model. We run the AnEnKS with 1000 ensemble

members, when only 20 variables are observed every 0.20 time steps. Figure 2.4 shows analog

data assimilation experiments with the locally-linear forecasting method using the Lorenz-96

model. Figures 4a and 4b show the true state and the observations, respectively. The recon-

structed state with global analogs is shown in Fig 4c and the one with local analogs in Fig

4d. The local analog data assimilation experiment clearly outperforms the global analog data

assimilation experiment.
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Figure 2.4 – Lorenz-96 trajectories obtained using analog data assimilation procedures with the
locally-linear forecasting strategy, when only 20 variables are observed every 0.20 time steps.
(top-left) True simulation of the model with 40 variables, (top-right) noisy and partial ob-
servations, (bottom-left) reconstructed state trajectories via the AnEnKS with global analogs,
(bottom-right) reconstructed state trajectories via the AnEnKS with local analogs (taking into
account the 5 (ν = 2) nearest state components). Only the first 10 Lorenz 96 cycles are shown
for better visibility.
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Table 2.1 – RMSE of the reconstruction of Lorenz-96 trajectories using different forecasting
strategies in the analog data assimilation procedures, when only 20 variables are observed every
0.20 time steps. The catalog size corresponds to 103 Lorenz-96 times (equivalent to 13 years)
and the number of members/particles is N=1000.

Gaussian

Method Locally-constant Locally-incremental Locally-linear

AnEnKF 1.826 1.785 1.403
AnPF 3.174 4.224 4.4616

AnEnKS 1.320 1.287 0.970

Multinomial

Method Locally-constant Locally-incremental Locally-linear

AnEnKF 1.814 1.774 1.413
AnPF 2.989 4.412 4.729

AnEnKS 1.313 1.288 1.093

Experiment 3: A third experiment with the Lorenz-96 system was conducted. For the local

analog strategy, we further compare the proposed AnDA algorithms, namely, AnEnKF, AnPF

and the AnEnKS using 1000 ensemble members/particles, in Table.2.1. Two main conclusions

can be drawn: i) EnKF algorithms outperform the particle filter, ii) the locally-linear analog

forecasting operator gives the best reconstruction performance. We noticed that the AnPF suffers

in the 40-dimensional Lorenz-96 system from sample impoverishment and degeneracy. Despite

the additional experiments with different settings, for instance, w.r.t. the number of ensemble

members, the number of analogs as well as using jittering (i.e. perturbing the particles with a

small noise), the AnPF still suffered from the aforementioned issues.

2.4.4 Experiments with Lorenz-63 model

Experiment 1: In the proposed AnDA, the size of the catalog is expected to be a critical

parameter. For Lorenz-63 dynamics, we conducted different AnDA experiments varying the size

of the catalog S = {101, 102, 103, 104} in Lorenz-63 times. We consider the same setting as in [139]

where the locally-constant method with a Gaussian sampling was used for the AnEnKF, then

we compare the three AnDA algorithms using 100 ensemble members/particles. As reported in

Figure 2.5, the RMSE decreases when the size of the catalog increases for all AnDA algorithms.

Regarding filtering-only (i.e. no smoothing) AnDA algorithms, the AnPF (blue) outperforms the

AnEnKF (green). This is an expected result since particle filters handle better nonlinear models

and non Gaussian probability distributions, although at a high cost in terms of computational

complexity and execution time. The AnEnKS (red) clearly gives the lowest RMSE. This supports
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Figure 2.5 – Reconstruction of Lorenz-63 trajectories for different catalog sizes in the analog data
assimilation procedures, when only the first component of the state is observed every 0.08 time
steps. (Left) RMSE as a function of the size of the catalog for different analog data assimilation
strategies: AnEnKF (green), AnPF (blue) and AnEnKS (red). For benchmarking purposes,
data assimilation results with true Lorenz-63 equations are given in straight lines. (Right) Time
series of the first component of the true state (black solid line), associated noisy observations
(black asterisks), mean reconstructed series (solid lines) and 10 analyzed members/particles
(dashed lines) with analog data assimilation strategies, namely AnEnKF (green), AnPF (blue)
and AnEnKS (red), using a catalog of 103 Lorenz-63 times (equivalent to 8 years).

the additional benefit of the smoothing step performed by the AnEnKS. The zoom shown in

the right panel of Figure 2.5 highlights how the smoothing step corrects the piece-wise effects

resulting from the filtering step.

Experiment 2: Modeling uncertainty is a critical source of error in data assimilation. In this

experiment we evaluate whether AnDA can manage a situation in which the catalog is composed

by multiple numerical simulations which may have parametric model error. In (2.16), parameters

γ and β define the center of the two attractors whereas σ controls the shape of the trajectories.

In Figure 2.6, we depict trajectories using three set of parameters with different values for σ:

θ1 = (10, 28, 8/3) (red), θ2 = (7, 28, 8/3) (blue) and θ3 = (13, 28, 8/3) (green). We generate three

catalogs with Lorenz-63 trajectories for these three set of parameters, with 103 Lorenz time steps

each. Merging these three catalogs into a global catalog, we apply the proposed AnDA using as

observations the “true” integration resulting from Lorenz-63 model with θ1 parameter values.

As a by-product of the analog strategy, we can infer the underlying model parameterization

from the observed partial observations. The reported experiments (Figure 2.6) apply the AnPF

procedure with the locally-constant analog method and a multinomial sampling scheme using

100 particles. Such a choice was motivated by the desire of keeping track of the particles and
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Figure 2.6 – Identification of Lorenz-63 model parameterizations using a multi-parameterization
catalog in the analog data assimilation, when only the first component of the state is observed
every 0.08 time step. (Left) Examples of Lorenz-63 trajectories generated with three different pa-
rameterizations: θ1 = (10, 28, 8/3) (red), θ2 = (7, 28, 8/3) (blue) and θ3 = (13, 28, 8/3) (green).
(Right) Result of the AnPF on the first Lorenz-63 variable using the 3 catalogs associated with
parameterizations {θi}1,2,3 for 3 × 103 Lorenz-63 times (equivalent to 3 × 8 years) when only
observations from parameterization θ1 = (10, 28, 8/3) are provided. The figure shows the AnPF
particles trajectories (blue), the AnPF result (red) and the true trajectory (green).

their source catalog, which is harder to achieve with the other AnDA algorithms, since the

particles would be elements from the catalog and the AnPF assigns a weight to each particle.

This make it easier to select at each time the particle with the biggest weight and to know from

which catalog it came from.

At every assimilation time step, we determine which parameterization most ensemble mem-

bers come from, and then calculate the proportion of the presence of each parameterization. As

expected, the true parameterization (red, parameterization θ1) is more represented. The pro-

portions for θ1, θ2 and θ3 are respectively around, 60%, 16% and 24% proving the ability of the

methodology to detect the source of the noisy and partial observation (here, only coming from

θ1). In order to analyze more the results, we calculate the RMSE of the reconstruction using:

i) the three catalogs as shown before, ii) only the good catalog, iii) only the two "bad" catalogs.

The RMSEs are respectively i) 1.287, ii) 1.207, iii) 1.424. These results show that having other

catalogs with different parameterization degrade the RMSE but the filter is still performing

well. This experiment gives insights on the problem of the assimilation of variables that may

switch between different dynamical modes. Analog data assimilation can deal with this problem

in a simpler manner than classical data assimilation, through the concatenation of the catalogs

issued from different parameterizations into a single catalog.
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Figure 2.7 – Results of the reconstruction of Lorenz-63 trajectories from noisy catalogs: (Left)
Examples of noisy Lorenz-63 trajectories for different noise levels: ψ2

1 = 0.5 (red), ψ2
2 = 1 (blue)

and ψ2
3 = 2 (green). (Right) Results of the AnEnKS using noisy catalogs corresponding to

103 Lorenz-63 times (equivalent to 8 years) when only observations with variance R = 2 are
provided. We also plot the 95% confidence interval computed from the smoothing covariances.

Experiment 3: Whereas previous experiments consider catalogs produced from noise-free

trajectories, we here evaluate the sensitivity of the AnDA procedures when the catalog may

involve noisy trajectories of the considered system. Acquisition systems typically involve such

noise patterns, which may relate for instance to both environmental constraints and measure-

ment uncertainties. We simulate noisy catalogs for Lorenz-63 dynamics as follows: we artificially

degrade the transition between consecutive states with a Gaussian additive noise. We performed

experiments with different noise variances ψ2 = {0.5, 1, 2} to evaluate the sensitivity of AnDA

procedures with respect to the signal-to-noise ratio. As illustrated in Figure 2.7, the trajec-

tories of these experiments are extremely noisy. Table 2.2 reports the RMSE of the different

AnDA algorithms with the locally-linear analog forecasting operator and 100 ensemble mem-

bers/particles. As expected, the RMSE increases with the the variance of the additive noise.

The AnEnKS clearly outperforms the other AnDA algorithms, which highlights its greater ro-

bustness. Figure 2.7 further illustrates that the AnEnKS is able to correctly track the true state

of the system, even for highly degraded catalogs (ψ2 = 2, green curve). For high signal-to-noise

ratio, i.e. low perturbations (ψ2 = 0.5, red curve), reconstructed trajectories are very close to

the ones obtained with a noise-free catalog.
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Table 2.2 – RMSE of the reconstruction of Lorenz-63 trajectories from noisy catalogs: we vary
the variance of an additive Gaussian noise in the creation of the catalogs and apply analog
data assimilation procedures with the locally-linear operator with a catalog size of 103 Lorenz-
63 times, when only the first component of the state is observed every 0.08 time step with
observation noise variance R = 2.

Method ψ2
1 = 0.5 ψ2

2 = 1 ψ2
3 = 2

AnEnKF 1.926 2.136 2.681
AnPF 1.652 1.961 2.313

AnEnKS 1.233 1.561 2.142

2.5 Conclusions and perspectives

This chapter demonstrates the potential of data-driven schemes for data assimilation. We pro-

pose and evaluate efficient yet simple data-driven forecasting strategies that can be coupled with

classical stochastic filters (namely the Ensemble Kalman filter/smoother and the particle filter).

We set a unified framework that we call analog data assimilation (AnDA). The key features of

the AnDA are twofold: i) it relies on a data-driven representation of the state dynamics, and ii)

it does not require online evaluations of dynamical models based on physical equations. The rele-

vance of the AnDA is tangible when the dynamical system of interest demands tremendous and

time-consuming physical modeling efforts and/or uncertainties are difficult to assess. In case

when large observational or model-simulated datasets of the considered system are available,

AnDA can both support or compete with classical data assimilation schemes. As a proof con-

cept, we demonstrate the relevance of the proposed methodology to retrieve the chaotic behavior

of the Lorenz-63 and Lorenz-96 models. We performed numerical experiments to evaluate critical

aspects of the method, especially the relevant combinations of analog forecasting strategies and

of stochastic filters as well as the exploitation of noisy and noise-free catalogs.

All the reported experiments were carried out using the AnDA Python library (available at

https://github.com/ptandeo/AnDA) and/or the AnDA Matlab Toolbox, which includes the

Lorenz-63 and Lorenz-96 systems. In the spirit of reproducible research, the user can conduct

the different experiments shown in this chapter. Overall, the reported results demonstrate the

relevance of the proposed analog data assimilation methods, even with highly damaged catalogs.

They suggest that AnEnKS combined to locally-incremental or locally-linear analog forecasting

leads to the best reconstruction performance, the locally-incremental version being the most
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robust to noisy settings. Moreover, the flexibility of the analog data assimilation demonstrates

the potential for the identification of hidden underlying dynamics from a series of partial obser-

vations.

The main pillar of our data-driven approach is the catalog. As such, analog data assimilation

deeply relates to the quality and representativity of the catalog. In our experiments, we assumed

that we were provided with large-scale catalogs of complete states of the system of interest.

While catalogs built from numerical simulations fulfill this assumption, observational datasets

(e.g. satellite remote sensing or in situ data) typically involve missing data, which may require

specific strategies to be dealt with in the building of the catalogs. In this respect, local analogs

obviously appear much more flexible than global ones, as partial observations provide relevant

exemplars for the creation of catalogs for local analogs.

The application of analog data assimilation to high-dimensional systems is another future

challenge. As detailed in [151], the number of elements in a catalog shall grow exponentially

with the intrinsic dimension of the state to guarantee the retrieval of analogs at a given pre-

cision. This makes unrealistic the direct application of analog strategies to state space with

an intrinsic dimensionality above 10. As a consequence, global analog forecasting operators are

most likely inappropriate for high-dimensional systems. By contrast, local analogs provide a

means to decompose the analog forecasting of the high-dimensional state into a series of local

and low-dimensional analog forecasting operations. This is regarded as the key explanation for

the much better performance reported for the local analog data assimilation for Lorenz-96 dy-

namics using catalogs of about a million of exemplars (Fig.2.4). For real world applications to

high-dimensional systems, for instance to ocean and atmosphere dynamics, the combination of

such local analog strategies to multiscale decompositions [107] arise as a promising research di-

rection as illustrated in [52]. Such multiscale decompositions are expected to enhance the spatial

redundancy, with a view to building the requested catalogs of millions to hundreds of millions of

exemplars (for an intrinsic dimensionality between 4 and 7, see Appendix A) from observation

or simulation datasets over a few decades. Another important aspect that controls the effective

size of the catalog is the evolution of the system in time. The more nonlinear the dynamics, the

greater the number of requested exemplars in the global catalog to learn the forecast operator

and the spread of the prediction.
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Dealing with high-dimensional fields:

The Multiscale Analog Data

Assimilation
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Chapter 3. Interpolation of missing data in Sea Surface Temperature maps

holds the copyright. Hereinafter, a geophysical field will be noted using capital non-bold letters

(X instead of x) 1

3.1 The Multiscale Analog Data Assimilation

3.1.1 Motivation

As depicted in the conclusion of the previous chapter. Two main features make the direct applica-

tion of AnDA algorithms to spatiotemporal fields poorly efficient: their computational complex-

ity and their ability to jointly capture large-scale and fine-scale structures. Our first application

of the AnDA to ocean geophysical fields is detailed in [96] where we considering datasets from

AMSRE radiometer Sea Surface Temperature (SST) observations. We applied the AnHMM to

infer the interpolated SST maps, and were confronted with the problem of high dimensional-

ity. Since AnDA successful application is affected by the curse of dimensionality, and is limited

to relatively low-dimensional spaces (up to a few tens of dimensions). We explored the use of

dimensionality reduction techniques. A classical and very popular method in geoscience fields

is Empirical Orthogonal Functions (EOF), also known (in signal/image processing com-

munity) as Principal Component Analysis (PCA). PCA-based decompositions are regarded as

relevant representations to encode the spatial patterns exhibited by geophysical fields. Moreover,

searching for analogs of a large region decreases the chance of finding good analogs as depicted

in the experiment with Lorenz96 (Chapter 2), this advocates for considering an equivalent to

the idea of local analogs.

Therefore we directed our efforts to address this issue through the use of patch-based

models that project images onto large sets of patch exemplars and/or dictionaries. Patch-based

techniques are a classical tool used in the image processing/remote sensing community [48,104].

They generally involve small image patches, which help in breaking the spatiotemporal field into

a "puzzle" of local regions (typically 10×10 to 20×20 for 2D images). This has the benefit of

i) making possible the use of parallel computing, and ii) supports the idea of localization that

was shown to be of importance for the analog data assimilation. Combining the analog data

assimilation with patch-based techniques is however not sufficient, and the use of EOF-based

techniques is also critical for a successful application. Concretely, the combination of Patch-

based and EOF-based methods within the AnDA means that we can circumvent the curse of

1
2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or

future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
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3.1. The Multiscale Analog Data Assimilation

dimensionality by applying AnDA several times on the projection of small images patches into

lower dimensions (few tens).

Another important aspect widely known when dealing with the reconstruction of high-

dimensional fields is the difficulties faced when trying to infer fine-scales. Algorithms like Optimal

interpolation fail to retrieve such scales (generally less than 100km), due to the correlation length

of their covariance models. This naturally calls for a multi-scale representation. Formally, we

considered a model where field X was decomposed as follows:

X = X̄ +
J
∑

i=1

dXi + ξ (3.1)

where X̄ refers to the large-scale (low-frequency) component of X, dXi to details at the ith

scale and ξ to unresolved scales. The goal of this chapter is then to show that AnDA could be

a relevant candidate for the reconstruction of fine scales, and shows that AnDA could support

model-based algorithms in order to achieve a better reconstruction of the geophysical field of

interest.

3.1.2 Multi-scale data-driven priors

Let take hereinafter J = 2 in Equation 3.1. The definition of detail fields dX1 and dX2 combines

patch-based and PCA-based representations. For scale i = 1 or 2, let us consider Pi ×Pi patches,

such that P1 > P2 (typically P1 = 40 and P2 = 20). We proceed as follows for the scale i = 1.

Given X̄ in multi-scale decomposition (3.1), each P1 × P1 patch of detail field dX1 is given by

the projection of the associated patch for residual field X − X̄ onto a low-dimensional PCA

decomposition. This PCA decomposition is learnt from P1 × P1 patches of a training dataset

of residual fields X − X̄. We apply the same procedure for detail field dX2 from residual field

X − X̄ − dX1.

Formally, this leads to the following definition of detail fields dX1 and dX2:

dX1 = P1

(

X − X̄
)

dX2 = P2

(

X − X̄ − dX1

) (3.2)

where P1,2 are patch-based PCA image projection operators [38,142]. They result in the decom-

position of any patch Ps around point s at time t of detail field dXi as a linear combination of
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the principal components of the PCA for scale i:

dXi(Ps, t) =
NE
∑

k=1

αi,k(s, t)EOFi,k (3.3)

with EOFi,k the kth principal component of the PCA at scale i and αi,k(s, t) the associated

coefficient for patch Ps at time t. NP CA,i refers to the number of vectors of the PCA basis at scale

i. The spectral properties of PCA decompositions along with the lower patch size at scale i = 2,

i.e. P1 > P2, lead to a scale-space decomposition [106]. Contrary to a wavelet decomposition, we

only implicitly set the considered scale ranges through the number of principal components kept

at each scale. The key interest here is a local adaption with point-specific PCA bases which can

also account for any image geometry (e.g., the presence of land points in the considered region).

Given these definitions for detail fields dX1 and dX2, we considered an analog (data-driven)

formulation of the associated dynamical models (3.10). As stated in the motivation section,

analog dynamical models introduced in Chapter 2 do not directly apply to high-dimensional

fields and we considered patch-based models. We first assumed that we were provided with

representative catalogs C1,2 of patch exemplars of the dynamics of details fields dX1 and dX2.

Each catalog is composed of a set of patch exemplars {dXi (Psk
, tk)}k, referred to hereafter as

analogs, and of their temporal successors {dXi (Psk
, tk + 1)}k. For a given patch Ps and scale

i, the definition of the analog dynamical model leads to the definition of an exemplar-driven

sampling strategy for the distribution of the state at time t, dXi (Ps, t), conditionally to the

state at time t − 1, dXi (Ps, t− 1). Let us denote by ϕi(Ps, t) the vector of the NE coefficients

αi,k(s, t), which represents the projection of dXi(Ps, t) in the lower-dimensional EOF space.

Formally, we considered Gaussian conditional distributions of the form

ϕi(Ps, t)|ϕi(Ps, t− 1) ∼ G (µi (u, Ci) ,Σ (u, Ci)) (3.4)

where G(·) is a Gaussian distribution. Mean µi (u, Ci) is defined as a weighted function of the

successors of the K nearest-neighbor of u in catalog Ci. Similarly, covariance Σ (u, Ci) is issued

from the weighted covariance of the successors of the K nearest neighbors. Theses weights

and the nearest-neighbor search involve a predefined kernel K as detailed below. Let us denote

by (Ak(u),Sk(u)) the analog-successor pair of the kth nearest-neighbor to u in Ci. Following

Chapter 2, we investigate three different analog dynamical models corresponding to different

parameterizations of the above mean and covariance:
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3.1. The Multiscale Analog Data Assimilation

• Locally-constant analog model: mean µi (u, Ci) and covariance Σ (u, Ci) are given by

the weighted mean and covariance of the K successors {Sk(u)}k.

• Locally-incremental analog model: it proceeds similarly to the locally-constant ana-

log model, but for the differences between the successors and the analogs, such that

mean µi (u, Ci) is given by the sum of u and of the weighted mean of the K differences

{Sk(u) − Ak(u)}k. Σ (u, Ci) results in the weighted covariance of these differences.

• Locally-linear analog model: given the K analog-successor pairs {Ak(u),Sk(u)}k, it

first comes to the weighted least-square estimation of the linear regression of the state

at time t given the state at time t − 1. Denoting by Ai(s, t) the estimated local linear

operator, mean µi (u, Ci) is given by Ai(s, t) · dXi (Ps, t− 1) and covariance Σ (u, Ci) by

the weighted covariance of the residuals of the fitted linear regression.

KG (u(t), v(t)) = exp

(

−‖u(t) − v(t)‖2

σ

)

, (3.5)

and a cone kernel KC , recently introduced for dynamical systems in [163]. For any pair of states

u(t), v(t), it leads to

KC (u(t), v(t)) = exp

(

−Lζ (u(t), v(t))

σ

)

(3.6)

Lζ(u(t), v(t)) =
‖ω(t)‖2

[(

1 − ζ cos2 θ
) (

1 − ζ cos2 φ
)]1/2

‖∂tu(t)‖‖∂tv(t)‖ (3.7)

where ω(t) = u(t)−v(t), ∂tu(t) = u(t)−u(t−1), ∂tv(t) = u(t)−u(t−1), cosθ = 〈ω(t), du(t)〉 and

cosφ = 〈ω(t), dv(t)〉. Compared to a classical Gaussian kernel, the cone kernel takes into account

not only the distance between the two states, but also the alignment of their instantaneous

velocities with the difference between the two states. It has been shown in [163] that the cone

kernel may be more appropriate for analog forecasting schemes. For the Gaussian (resp. cone)

kernels, scale parameter σ is locally-adapted to the median value of the distances ‖u(t) − v(t)‖2

(resp. Lζ (u(t), v(t))) to the K nearest neighbors in the catalogs of exemplars. Parameter ν is

set empirically between 0 and 1. In all cases, we take advantage of the considered PCA-based

representation of the patches to compute patch similarities within the associated low-dimensional

spaces, and not in the original patch space.
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3.2 Missing data interpolation in Sea Surface Temperature maps

Satellite-derived products are of key importance for the high-resolution monitoring of the ocean

surface on a global scale. A variety of sensors record observations of geophysical parameters,

such as Sea Surface Temperature (SST) [26], Sea Surface Height (SSH) [27], Ocean Color [11],

Sea surface Salinity (SSS) [86], etc. In all cases, the delivery of L4 gridded products for end-

users involves a number of pre-processing steps from the L1 data acquired and transmitted by

spaceborne sensors. Due to both the space-time sampling geometry of satellite sensors and their

sensitivity to the atmospheric conditions (e.g., rains, aerosols, clouds), ocean remote sensing

data may involve very large missing data rates as illustrated in Fig.3.3. Hence, spatio-temporal

interpolation is of key importance to deliver gap-free gridded sea surface fields for further anal-

ysis.

Optimal interpolation is certainly the state-of-the-art approach for the spatio-temporal in-

terpolation of satellite-derived sea surface geophysical fields [41,45]. Optimal interpolation relies

on the modeling of the covariance of the considered spatio-temporal fields. The choice of the

covariance model is a critical step [20,41,137,139]. Stationary covariance hypotheses are gener-

ally considered, though they might not be verified. For instance, frontal areas as illustrated in

Fig.3.5 may involve time-varying and space-varying anisotropical features. In such cases, consid-

ering mean covariance model typically results in the smoothing out of the fine-scale SST details.

Data assimilation techniques for missing data interpolation may be regarded as another impor-

tant category of model-driven approaches [10,46,137]. A critical aspect of their implementation

lies in the choice of the dynamical model, more precisely the trade-off between its computational

complexity and its ability to correctly represent real sea surface dynamics.

The tremendous amount of satellite observation data pouring from space, along with the

wider availability of reanalysis and/or numerical simulation datasets supports the development of

data-driven approaches as an alternative to model-driven schemes. In this respect, statistical and

machine learning models offer new computational means to account for space-time variabilities

that cannot be completely captured by simplified physical models. The application of Principal

Component Analysis (PCA), also referred to as Empirical Orthogonal Functions (EOF) in the

geoscience field, to remote sensing missing data interpolation [13, 123] may be regarded as an

example of such data-driven schemes, though it proves mainly relevant for large-scale variabilities
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[123]. One may also cite the development of exemplar-based models in image processing and their

applications to missing data interpolation for single-date remote sensing data [48,104].

In this study, we investigate such data-driven and exemplar-based models for the spatio-

temporal interpolation of missing data in ocean remote sensing time series. We aim to exploit

the implicit knowledge conveyed by available multi-annual satellite-derived datasets to improve

the interpolation of high-resolution spatio-temporal sea surface geophysical fields. We rely on

analog data assimilation [65,139] and develop, to our knowledge, the first application of analog

data assimilation to high-dimensional spatio-temporal fields. Our methodological contributions

lie in the introduction of a multiscale analog data assimilation applied to local patch-based

and PCA-constrained representations. We demonstrate the relevance of the proposed scheme

through an application to SST time series. We report significant gain compared to state-of-the-

art approaches, namely optimal interpolation [20,99] and PCA-based interpolation [13,123].

3.3 Problem statement and related work

3.3.1 Model-driven approaches

As previously mentioned, model-driven approaches are the state-of-the-art techniques for the

spatio-temporal interpolation of missing data in ocean remote sensing observations [41, 46]. In

particular, optimal interpolation relates to the following formulation:

X ∝ G(Xb,Γ) (3.8)

Y (t, s) = X(t, s) + ǫ(t, s), ∀s ∈ Ωt (3.9)

where G(Xb,Γ) is a spatio-temporal Gaussian field with mean background field Xb and covari-

ance function Γ, and ǫ the observation noise assumed to be Gaussian. Ωt refers to the region

domain for which observations are truly available at time t. Given a series of observation fields Y

and a known covariance function Γ, optimal interpolation leads to an analytical MAP (Maximum

A Posteriori) solution for field X, equivalent to the minimization of a reweighted least-square

criterion w.r.t. the covariance of noise ǫ. The choice of the covariance function Γ is a critical

step. Exponential and Gaussian covariance models [20, 137] are the most classical choices with

both constant parameters as well as space-time-varying parameterization [138].
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When dealing with high-dimensional fields, such as ocean remote sensing observations, the

numerical computation of the solution of the optimal interpolation may not be feasible, as it

involves the inversion of a very large covariance matrix. Sequential approaches, such as ensem-

ble Kalman techniques [46], are then considered. They may be restated as data assimilation

formulations. Considering a discrete setting, they amount to the following model for field X:

X(t) = M (X(t− 1), η(t− 1)) (3.10)

where M is referred to as the dynamical model and η is a random perturbation. Model (3.8) may

be restated according to this formulation with a linear model M and a Gaussian process η derived

from the considered Gaussian field with covariance Γ. Other parameterizations of the dynamical

model may be derived from fluid dynamics equations, including for instance advection-diffusion

models [10]. Ensemble Kalman schemes [46] are the state-of-the-art techniques to numerically

solve for the reconstruction of spatio-temporal field X given partial observation field Y un-

der model (3.10). Using a sample-based representation of Gaussian distributions, they provide

forward-backward filtering schemes to approximate the optimal interpolation solution. We let

the reader refer to [46] and reference therein for additional details on stochastic data assimila-

tion. We may also point out variational data assimilation [10, 89], which exploits a continuous

formulations of Model (3.10) and involves a gradient-based minimization of the observation error

under model (3.10).

A typical example of the optimal interpolation of an SST field from a series of partial ob-

servations is reported in Fig.3.3. An important limitation of model-driven approaches lies in

modeling uncertainties. Due to the autocorrelation structure of sea surface geophysical struc-

tures and the observation sampling rate, optimal interpolation results to accurate reconstruction

of the spatio-temporal fields for spatial scales larger than 100km. However, finer scales are sig-

nificantly filtered out (see Fig.3.3). This property directly relates to the correlation length of the

covariance model (here, 100km). This correlation is a trade-off between the spatial resolution of

the observation fields (here, 5km) and the size of the gaps.

As detailed below, we explore data-driven approaches to take advantage of available ob-

servation or simulation datasets with a view to improving the reconstruction of the fine-scale

structures of sea surface fields.
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3.3.2 Data-driven approaches

With the increasing availability of representative observation datasets, data-driven models be-

come more and more appealing to solve inverse image problems, including missing data inter-

polation. Initially mostly investigated for computer vision and computer graphics applications,

such as synthesis, inpainting and super-resolution issues [36, 43], they have also gained inter-

est for applications to remote sensing data [48, 104]. Patch-based and exemplar-based models

have emerged as powerful representations to project images onto large sets of patch exemplars

and/or dictionaries. Non-local means and non-local priors [19, 121] are state-of-the-art exam-

ples of such models for image reconstruction issues. Developments for multivariate time series

have also recently been investigated, especially exemplar-driven data assimilation referred to

in the geoscience field as analog data assimilation [65, 97, 139]. Two main features make the

direct application of these exemplar-based strategies to spatiotemporal fields poorly efficient:

their computational complexity and their ability to jointly capture large-scale and fine-scale

structures. Patch-based techniques generally involve small image patches (typically, from 3x3 to

11x11 patches for 2D images), which cannot resolve large structures, with a typical scale greater

than the width of the patches. In addition, the considered minimization schemes involve repeated

iterations over the entire set of exemplars, which may make them extremely computationally-

demanding for applications to spatio-temporal data. By contrast, analog data assimilation pro-

vides an efficient sequential scheme, but remains limited to relatively low-dimensional space (up

to a few tens of dimensions in [65,139]).

PCA-based models are popular in the geoscience field. They have also gained interest for ap-

plication to missing data interpolation, especially DINEOF approaches [13, 123]. These involve

two key steps: i) the estimation of basis functions, which provide a lower-dimensional repre-

sentation of the variability spanned by the considered spatial or spatio-temporal data, ii) the

interpolation of the missing data from projections onto the basis functions. VE-DINEOF [123]

has recently improved compared to the original DINEOF scheme [13]. In both cases, applications

to ocean remote sensing data, especially SST, were considered. Applied on a global or regional

scale, the lower-dimensional PCA-based representation is mostly relevant to recover large-scale

structures and not as appropriate to reconstruct fine-scale details. Overall, PCA-based decom-

positions are regarded as relevant representations to encode the spatial patterns exhibited by

geophysical fields. It may be noted that PCA representations are also often used in patch-based

image processing (see for instance [38,142]).
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3.4 Application of the patch-based AnDA

We proceed to the resolution of model (3.1). We might consider a direct discrete gradient-

based numerical resolution as the considered parameterization for model (3.1) can be regarded

as a spatio-temporal Markov Random field [48, 56]. This would however lead to an extremely-

demanding computational scheme. We prefered to exploit the multi-scale nature of our model to

develop a coarse-to-fine strategy and cast the global minimization problem as series of smaller

problems, which can be solved more efficiently. More precisely, we proceeded as follows. We

first solved for the reconstruction of large-scale component X̄ using optimal interpolation with

covariance model Γ. We then successively solved for the reconstruction of detail fields dX1 and

dX2. This step runs independent resolution along the temporal dimension for each patch position

using sequential data assimilation algorithms, namely an analog Ensemble Kalman Smoother

(AnEnKS) and an HMM-based analog smoother (AnHMM). The independent solutions com-

puted for each patch position were recombined using averaging. To reduce the computational

complexity, we did not process all possible patch positions, but only overlapping patches (5-pixel

overlapping in both directions) with a 35x35 (resp. 15x15) spatial sampling for P1 × P1 patches

(resp. P2 × P2). To remove potential block artifacts, we apply a PCA-based decomposition-

reconstruction onto 10 × 10 patches. As initialization for the analog data assimilation iterations,

we use a VE-DINEOF solution [123].

All implementations were run under Matlab. We used [45] for optimal interpolation, and

Analog Data Assimilation toolbox [97].

3.5 Results

3.5.1 Experimental setting

Considered case-study: To perform a qualitative and quantitative evaluation of the proposed

framework, we used a reference gap-free L4 SST time series from which we create a SST with

missing data using real missing data masks. As reference SST, we used OSTIA product delivered

daily by the UK Met Office [41] with a 0.05◦ spatial resolution (approx. 5km) from January 2007

to April 2016. The OSTIA analysis combines satellite data provided by infrared sensors (AVHRR,

AATSR, SEVIRI), microwave sensors (AMSRE, TMI) and in situ data from drifting and moored
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buoys. For the missing data mask series, we studied an infrared sensor, more specifically METOP,

which may involve very high missing data rates as illustrated in Fig.3.3 & 3.5.

As a case-study region, we selected an area off South Africa. This highly dynamic ocean

region involves complex fine-scale SST structures (e.g., filaments, fronts) as shown in Fig.3.3.

Our evaluation focused on the interpolation of the SST fields for year 2015, other years being

used to build a catalog of exemplars for the analog frameworks.

Parameter setting of the proposed approaches: We performed interpolation experi-

ments with both AnHMM and AnEnKF/KS schemes. We exploited a three-scale model: the

global scale (entire region), 40x40 patches and 20x20 patches. At each scale, each patch was en-

coded by its PCA-based decomposition using a 10-component PCA. As initialization for missing

data areas, we used an optimal interpolation on the global scale. The parameterizations of the

optimal interpolation and of the DINEOF scheme were those used for comparison purposes as

detailed below. In the analog setting, the number of neighbors was varied from 10 to 110 and

we compared Gaussian and Cone kernels.

Comparison to state-of-the-art approaches: For comparison purposes, we consider an

optimal interpolation, which is the interpolation technique used in most operational products

(e.g., [41]), VE-DINEOF [123], a PCA-based technique, and a direct region-level application of

the analog data assimilation. Their parameter settings were as follows:

• Optimal interpolation (OI): we used a Gaussian kernel with a spatial correlation length

of 100km and a temporal correlation length of 3 days. These parameters were empirically

tuned for the considered dataset using a cross-validation experiment. We used the optimal

interpolation package from [45]. The considered parameter setting was consistent with

previous work [41, 137] and stressed the strong temporal correlation of SST field [137]. In

our case-study, a direct implementation of the OI would have required a large memory:

for a missing data rate of ∼70%, the interpolation onto the considered 300 × 600 grid

would have required the inversion of a system of 5T.104 equations with T the temporal

correlation. Given the considered spatial correlation length of 100km, we achieved an

optimal interpolation onto a coarser grid with a resolution of 25km and applied a bicubic

interpolation onto the targeted high-resolution grid (5km resolution).

• VE-DINEOF interpolation: we exploited a direct implementation of VE-DINEOF scheme

[123] on the regional scale using 200 PCA components, which amounted to 99.27% of the

total variance of the dataset. This VE-DINEOF setting is referred to as G-VE-DINEOF.
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We also considered a multi-scale version of the VE-DINEOF procedure using the same

three-scale decomposition as the multi-scale analog data assimilation. As for MS-AnEnKS

and MS-AnHMM, we used two detail components corresponding to 40x40 patches and

20x20 patches. At each scale, i.e. the coarse region scale and the two detail scale, we

exploited 10-dimensional PCA decomposition (NP CA,1 = NP CA,2 = 10). The resolution

of this multi-scale VE-DINEOF, referred to as MS-VE-DINEOF, applies a coarse-to-fine

strategy, such that at each scale, the VE-DINEOF iteratively updated the missing data

area from the projection of overlapping patches onto the 10-dimensional PCA basis;

• Global AnEnKS interpolation: to evaluate the relevance of the proposed multi-scale de-

composition, we tested a direct application of the AnEnKS at the region scale, referred to

as G-AnEnKS. Similarly to G-VE-DINEOF, we considered 200 PCA components, which

amounted to 99.27% of the total variance of the dataset. From numerical experiments, the

best parameter setting combined a locally-incremental analog forecasting with K = 100

neighbors and a Gaussian kernel.

It may be noted that variational interpolation techniques, based on the minimization of reg-

ularization norms [15], cannot be expected to lead to relevant results given the large missing

data rates in the considered dataset (above 70% on average) and were not considered in our

experiments.

Qualitative and quantitative evaluation: to assess the quality of the different interpo-

lation schemes, we first achieved a quantitative analysis according to root mean square error

(RMSE) statistics for the SST reconstructed SST fields, the associated gradient fields, and the

detail fields of a 4-scale dyadic wavelet decomposition of the SST fields. We also computed

radially-averaged power spectral densities to analyze the fine-scale patterns of the reconstructed

field. In addition, we performed a qualitative analysis of these fields with a focus on the recon-

struction of fine-scale structures.

3.5.2 Interpolation performance

We shall begin with the results of our numerical experiments. We first present the quantita-

tive evaluation of interpolation performance, including a comparison to state-of-the-approaches.

Second, we further illustrate this performance using interpolation examples. Third, we report

a sensitivity analysis of the best analog assimilation setting. We also include an evaluation of
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interpolation performance when the creation of the catalogs of exemplars involve observation

datasets with missing data.

Quantitative comparison to state-of-the-art approaches: We first report the overall

RMSE statistics of the considered interpolation approaches, namely OI, G-VE-DINEOF, MS-

VE-DINEOF, MS-AnHMM, G-AnEnKS and MS-AnEnKS, in Tab.3.1. The multi-scale Analog

schemes are a clear improvement over the OI and VE-DINEOF reconstruction, with a relative

gain in SST RMSE up to 50% for MS-AnEnKS at the finest scale (dX2). MS-AnHMM also

leads to a significant improvement but is clearly outperformed by MS-AnEnKS. It may be

noted that the direct application of the analog data assimilation, G-AnEnKS, to field X does

not lead to very significant improvement. This is regarded as a direct benefit of the multi-

scale decomposition, which greatly increases the representativity of the collected catalogs of

exemplars. No such difference is reported for the application of global and multi-scale VE-

DINEOF schemes, which further stresses the relevance of the analog dynamical prior exploited

by MS-AnEnKS. The analysis of the RMSE statistics at different scales of a dyadic wavelet

decomposition indicates that the improvement mainly refers to the third and fourth dyadic

scales (i.e., spatial scales greater than 20km). Most of the improvement is brought about by

the resolution of component dX1 (about 40% of relative gain w.r.t. OI), when component dX2

accounts for about 10% of relative gain w.r.t. OI. The RMSE time series (Fig.3.1) lead to similar

observations. Interestingly, AnEnKS depicts a lower time variability of the RMSE compared to

OI and VE-DINEOF (standard deviation of 0.06 vs. 0.13), the later being more sensitive to

larger missing data rates. This is viewed as a benefit of the exemplar-based time regularization

conveyed by the analog framework.

Qualitative analysis of interpolation results from examples: To complement this

global analysis, we report interpolation results for two dates, corresponding to relatively low

(∼ 60%) and greater (∼ 90%) missing data rates, respectively in Fig. 3.5 and Fig. 3.3. For these

two examples, we visually compare OI, MS-VE-DINEOF and MS-AnEnKS interpolations to the

groundtruth both for the SST field and the gradient magnitude fields. In Fig.3.3, MS-AnEnKS

clearly outperforms OI and MS-VE-DINEOF (SST (resp. SST gradient) RMSE of 0.20 (resp.

0.24) vs. 0.42 (resp. 0.40) and 0.41 (resp. 0.40)). We also highlight areas in which the improve-

ments in the reconstruction of local SST details may be noticed. Visually, the improvement is

more noticeable on the gradient amplitude. Whereas OI and MS-VE-DINEOF lead to relatively

coarse SST structures, MS-AnEnKS results in finer front details, which are visually more similar
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to the groundtruth. This is further emphasized by the analysis of the power spectral densities of

the different fields (Fig. 3.6, left). OI clearly underestimates the spectral energy below 100km,

as expected from the associated spatio-temporal smoothing with a spatial correlation length

of 100km. A similar underestimation is observed for MS-VE-DINEOF for scales ranging be-

tween 70km and 150km. By contrast, MS-AnEnKS nicely matches the spectral signature of the

groundtruth up to 20km. These results appear consistent with the previous observation that

the improvement brought about by the analog assimilation was mainly noticeable in terms of

RMSE for scales greater than 20km. The white noise plateau observed from 20km and below

for the reference SST field may indicate that the OSTIA field conveys little information for

scales lower than 20km for this particular date. This is further illustrated by the analysis of a

one-dimensional transect at 36.525oS accross a strong SST front in Fig.3.4. The MS-AnEnKS

interpolation clearly leads to a better estimation of local SST variabilities, where OI and MS-

VE-DINEOF tends to oversmooth strong gradients. Overall, the same observation holds for

the second example (Fig.3.5), though the lower missing data rate (59%) slightly reduces the

differences observed between the different interpolation methods.

We also illustrate the relevance of the post-processing step in the AnEnKS (Fig.3.2). The

spatially-independent assimilation of overlapping patches may result in block artifacts at patch

boundaries as clearly highlighted by the gradient field. The considered EOF-based filtering for

10 × 10 patches successfully removes most of these block artifacts and retrieves a visually con-

sistent gradient field as discussed above. It may be noted that a different implementation of

the analog assimilation using non-sequential iterative scheme for patch-based image process-

ing [19, 48] would be an alternative, however at the expense of an increased computational

complexity. By contrast, the independent assimilation of each spatial patch only involves one

forward and one backward iteration, such that each space-time patch is visited only twice. We

evaluate more precisely the computational complexity of the different interpolation models in

Tab.3.6. MS-VE-DINEOF is clearly involves the lowest computational complexity. In this re-

spect, given relatively similar interpolation performance, VE-DINEOF appears as a relevant

alternative to OI for the interpolation of the coarse-scale component. By contrast, even if MS-

AnHMM significantly reduces the computational complexity of the analog assimilation, the

differences in interpolation performance reported in Tab.3.1 clearly recommend the selection of

the MS-AnHMM as the relevant fine-scale analog assimilation scheme for SST fields.
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Sensitivity analysis for MS-AnEnKS: Given the overall qualitative and quantitative

analysis reported above, we further analyze the MS-AnEnKS setting, especially its sensitivity

to the selected parameter setting. In Tab.3.2 we report RMSE statistics while varying the num-

ber of neighbors in the analog models. Tab.3.3 reports a similar analysis for different kernel

parameterizations. Overall, the best parameterization combines a cone kernel [163] using 100

neighbors and a locally-incremental analog model. It might be noted that the choice of the ker-

nel weakly affects interpolation performance. By contrast, the locally-incremental analog model

significantly improves the RMSE of the locally-linear and locally-constant strategies (Tab.3.4)

by about 10% and 25%. This is in accordance with the conclusions drawn in [97]. The lower

performance of the locally-linear analog model may relate to an unfavourable trade-off between

estimation uncertainty and local adaption. We may point out that all these parameterizations

of the proposed interpolation framework outperforms both OI and MS-VE-DINEOF.

Creation of catalog C from observation datasets: In the experiments reported above,

the catalog of patch exemplars is built from the gap-free SST time series from 2008 to 2014. This

experimental setting is representative of an application context where one aim to exploit pre-

vious reanalyses and/or numerical simulations for the interpolation of upcoming observations.

The key interest of the analog assimilation is to facilitate the implicit synergy between pos-

sibly computationally-expensive high-resolution models and/or reanalyses and satellite-derived

observation datasets. A second application context is also investigated. We may also directly

build the catalog of exemplars from the satellite-derived observation datasets, which involve

missing data. To simulate this experiment, we created a representative catalog from the SST

time series with the METOP missing data mask from 2008 to 2014. We proceeded similarly

to the scheme described for year 2015 in Section 4.4.3. We only retained SST patches with

less than 20% of missing data. We compared the resulting interpolation performance to that

of the first experiment in Tab.3.5. Although lower root mean square error (RMSE) values are

reported for this second experiment (0.22 vs. 0.20 in terms of root mean square error of the

interpolated SST fields), the relative gain compared to OI and VE-DINEOF is still significant

(0.22 vs. respectively 0.40 and 0.41). The qualitative analysis of the interpolated fields leads

to conclusions similar to those drawn for the first experiment. These results further stress the

relevance of the proposed data-driven approach in order to benefit either from high-resolution

simulations and/or re-analyses or real satellite-derived observation datasets. It may be noted
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Figure 3.1 – Time series of the RMSE: OI (black,-), VE-DINEOF (blue,-) and AnEnKS (red,-)
for the estimated SST fields (left) and gradient magnitude fields (right)

Figure 3.2 – Illustration of the postprocessing step for the removal of blocky artifacts: gradient
magnitude field of the an interpolated SST field using MS-AnEnKS before (a) and after (b)
the application of the considered PCA-based postprocessing step with 10×10 patches. We also
report the radially-averaged power spectral density of the interpolated SST fields w.r.t. the true
SST field (GT, black-).

that our multi-scale approach may also allow us to combine observation datasets from different

sensors [48].

3.6 Conclusion

In this chapter, we reported the application of the analog data assimilation framework to high-

dimensional satellite-derived geophysical fields. We demonstrated its relevance with respect to

state-of-the-art techniques, namely optimal interpolation [41] and a PCA-based matrix com-

pletion scheme [13, 123]. Our model significantly outperforms these two techniques in terms of

reconstruction error, especially for fine-scale structures in the range [20km, 200km]. The con-

sidered case-study involves real missing data patterns from the METOP-AVHRR sensor. It is
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Table 3.1 – Comparison of global interpolation performance: RMSE of OI, G-VE-DINEOF, MS-
VE-DINEOF, G-AnEnKS and MS-AnEnKS: we report RMSE statistics in terms of the SST
fields, the gradient magnitude of the SST fields and of the detail coefficients for a four-level
dyadic wavelet decomposition (noted wav). For MS-ANEnKS, we report both the interpolation
performance at intermediate scale i = 1 (MS-ANEnKS|dX1), i.e. with dX2 = 0 in (3.1), and
at scale i = 2 (MS-ANEnKS|dX2). We let the reader refer the main text for details on the
associated parameter setting of the different interpolation models.

Criterion SST ‖∇‖ wav=1 wav=2 wav=4 wav=8

OI 0.4157 0.3986 0.0053 0.0212 0.0897 0.1897
G-VE-DINEOF 0.4064 0.3967 0.0124 0.0221 0.0873 0.1969

MS-VE-DINEOF 0.4052 0.3765 0.0052 0.0192 0.0803 0.1697
G-AnEnKS 0.3842 0.3922 0.0120 0.0219 0.0967 0.1902

MS-AnHMM dX2 0.3350 0.3529 0.0057 0.0208 0.0838 0.1711

MS-AnEnKS
dX1 0.2536 0.3349 0.0057 0.0212 0.0848 0.1622
dX2 0.2009 0.2357 0.0053 0.0173 0.0579 0.1067

Table 3.2 – Influence of the number of analogs on MS-AnEnKS performance: RMSE of MS-
AnEnKS interpolation w.r.t. the number of analogs for the three considered analog strategies.

Number of analogs (K) 10 20 30 40 50 60 70 80 90 100 110

Locally-constant 0.2746 0.2778 0.2822 0.2852 0.2884 0.2904 0.2926 0.2948

Locally-Linear 0.2449 0.2369 0.2325 0.2301 0.2288 0.2280 0.2278 0.2271 0.2266 0.2266

Locally-incremental 0.2119 0.2113 0.2083 0.2051 0.2030 0.2028 0.2020 0.2012 0.2009 0.2009 0.2011

Table 3.3 – Influence of the kernel on MS-AnEnKS performance: RMSE of the interpolated SST
fields using different kernel parameterizations using a Gaussian kernel and a cone kernel [163].

Gaussian Cone ζ=0.995 Cone ζ=0.5 Cone ζ=0

0.2030 0.2028 0.2036 0.2009

Table 3.4 – MS-AnEnKS performance depending on the selected analog model: we let the reader
refer to Tab.3.1 for the description of the considered evaluation criteria

Criterion SST ‖∇‖ wav=1 wav=2 wav=3 wav=4

Locally-constant 0.2725 0.3214 0.0063 0.0208 0.0783 0.1529

Locally-Linear 0.2245 0.2730 0.0059 0.0186 0.0637 0.1265

Locally-Incremental 0.2009 0.2357 0.0053 0.0173 0.0579 0.1067

Table 3.5 – Influence of missing data in catalogs C1,2: we let the reader refer to Tab.3.1 for the
description of the considered evaluation criteria.

Criterion SST ‖∇‖ wav=1 wav=2 wav=3 wav=4

Catalogs C1,2 built from gap-free 2008-2014 data 0.2009 0.2357 0.0053 0.0173 0.0579 0.1067

Catalogs C1,2 built from 208-2015 dataset with missing data 0.2230 0.2643 0.0056 0.0194 0.0653 0.1212
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Table 3.6 – Computational complexity of the interpolation models evaluated in Tab.3.1

Method OI MS-VE-DINEOF MS-AnHMM MS-AnEnKS

Exe. time ≈ 3.5h ≈ 0.5h ≈1.2h ≈ 3h

Figure 3.3 – Reconstruction of a SST field on June, 30, 2015 with a large missing data rate
(87%): (a) first row, reference SST field (groundtruth (GT)), its associated gradient magnitude,
observed field; second row, interpolated fields by OI, MS-AnEnKS, MS-VE-DINEOF; third row,
gradient magnitude of the fields depicted in the second row.
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Figure 3.4 – Analysis of a SST transect at 36.525o S for the interpolation results depicted in Fig.
3.3: we depict a one-dimensional profile at latitude 36.525o S (c) for both the SST (bottom) and
the SST gradient magnitude (top) for the reference SST field (black,-) as well as OI (magenta,-),
MS-VE-DINEOF (blue,-) and MS-AnEnKS (red,-) interpolated SST fields.

68



3.6. Conclusion

Figure 3.5 – Reconstruction of an SST field on February, 19, 2015 with a relatively low missing
data rate (56%): see Fig.3.3 for details.

therefore representative of the irregular space-time sampling of the sea surface associated with in-

frared satellite sensors. The relative gain in the mean interpolation RMSE of about 50% stresses

the potential of data-driven computational models in the exploitation of large-scale observation

datasets to improve the reconstruction of geophysical fields from partial satellite-derived ob-

servations. We have made our case-study dataset available as a supplementary material to our

paper with a view to favoring the benchmarking of interpolation methods for satellite-derived

geophysical products2.

As demonstrated by our experimental evaluation, the first key feature of the proposed model

is the use of a multi-scale decomposition. Whereas a classic model-driven interpolation (OI)

applies to the coarse-scale component, the reconstruction of the fine-scale components exploit

the analog data assimilation [97]. A critical aspect of analog methods is the availability of a

representative catalog of exemplars. In this respect, the considered multi-scale decomposition

is regarded as a crucial means to stationarize the fine-scale spatial variabilities depicted by

sea surface geophysical fields and make more relevant exemplar-based representations of these

variabilities. Wavelet analysis is generally the classic scheme to derive a multi-scale decompo-

sition [106]. Here, we exploited PCA-based representations for different patch sizes, so that we

naturally combined a multi-scale decomposition to a low-dimensional representation of the spa-

2The Python code used for the creation of the considered SST data is available at:
https://github.com/rfablet/SSTData_TCI_rfablet
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Figure 3.6 – Spectral analysis of interpolation results depicted in Fig.3.3 and 3.5: we report
the radially-averaged power spectral densities of the reference SST field (black,-) as well as OI
(magenta,-), MS-VE-DINEOF (blue,-) and MS-AnEnKS (red,-) interpolated SST fields for June,
30, 2015 (left) and February, 19, 2015 (right).
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tial variabilities on each scale. Such PCA-based representations also efficiently deal with complex

image geometries (e.g., the presence of land areas in the considered ocean case-study region).

It may be noted that Model (3.1) could be straightforwardly extended to a greater number of

scales. For the considered case-study however, numerical experiments did not lead to significant

improvements with 3 or 4 detail scales.

We believe that this study opens new research avenues for the development of new data-driven

models for the reconstruction of upper ocean dynamics from satellite-derived observations, in

the same way that data-driven schemes have led to major advances in other imaging domains

such as photography, microscopy, astronomy.... The exploitation of analogs for interpolation may

be interpreted in a climatological sense, the key idea being that previously observed fine-scale

geophysical variabilities will probably occur again, though not necessarily with the same seasonal

timing. The application to other sea surface tracers, such as ocean color, is then natural [133]. The

proposed multi-scale analog assimilation also seems particularly appealing for the downscaling

of low-resolution satellite-derived products, such as sea surface salinity [150] and sea surface

height [51]. From a methodological point of view, multimodal extensions would be of interest

to account for multi-sensor observations as well synergies between different tracers [48,59]. The

next chapter of this thesis (Chapter 4) presents an application of the MS-AnDA method to Sea

Surface Height.

Analog strategies are particularly appealing when large and representative observation datasets

are available, as illustrated in the case-study considered here. By contrast, one may question

their relevance in addressing scarce observation datasets as well as extreme events, which are

by essence rare events. In this context, the creation of catalogs of analogs from realistic high-

resolution numerical simulations [63,131], which are becoming increasingly available, appears to

be a relevant path to be further investigated.
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Note: This chapter is submitted for publication as: R. Lguensat, P. Viet, M. Sun, G. Chen, T.

Fenglin, B. Chapron, R. Fablet. "Data-driven Interpolation of Sea Level Anomalies using Analog

Data Assimilation". It is presented as it is with small modifications, except for the motivation

section.

4.1 Motivation

In this chapter, we build on the findings and the conclusions drawn from our previous work

on SST. Here, we address a more challenging problem: The interpolation of Sea Level Anomaly

(SLA) fields from along-track altimeter data. It is challenging because of the high rate of missing

data, that are in this case not resulting from cloud coverage or weather conditions, but from

the way the altimeter measures the height of the sea surface (SSH). Along-track data are data

collected from altimeter passes on its orbit around the globe, moreover, two altimeters (or more)

at the same time are needed to perform a relevant reconstruction using Optimal Interpolation.

Meanwhile, high resolution SSH fields are available using numerical simulations, we therefore

wanted to investigate the use of these numerical simulations as a catalog for the reconstruction

of high resolution altimeter-derived fields.

This part of my thesis was done in collaboration with Dr. Miao Sun, Prof. Ge Chen and Dr.

Tian Fenglin from the Marine Information Technology lab in Ocean University of China, where

I spent one month as a visiting PhD student. Our first attempt in using AnDA for this problem

is described in [95], where we used the global multiscale G-MS-AnDA and reached a slight im-

provement over Optimal Interpolation. In this chapter, we investigate the use of the patch-based

version of the multiscale AnDA. Contrarily to the application on SST fields depicted in Chapter

3, we use a two-scale model (X̄ and dX1) since dX2 did not bring significant improvement and

makes time execution and the calculations heavier. We dropped the cone kernel given it’s weak

influence on the result. While in the previous chapter, we assumed an independence between

the scales (X̄ and dX1), this chapter investigates the use of inter-scale dependencies and also

the use of additional variables as predictors, here, the SST-SSH relationship.
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4.2 Introduction

The past twenty years have witnessed a deluge of ocean satellite data, such as sea surface height,

sea surface temperature, ocean color, ocean current, sea ice, etc. This has helped building big

databases of valuable information and represents a major opportunity for the interplay of ideas

between ocean remote sensing community and the data science community. Exploring machine

learning methods in general and non-parametric methods in particular is now feasible and is

increasingly drawing the attention of many researchers [25,62,80,88,162].

More specifically, analog forecasting [102] which is among the earliest statistical methods

explored in geoscience benefits from recent advances in data science. In short, analog forecasting

is based on the assumption that the future state of a system can be predicted throughout the

successors of past (or simulated) similar situations (called analogs). The amount of currently

available remote sensing and simulation data offers analog methods a great opportunity to catch

up their early promises. Several recent works involving applications of analog forecasting meth-

ods in geoscience fields contribute in the revival of these methods, recent applications comprise

the prediction of soil moisture anomalies [111], the prediction of sea-ice anomalies [34], rainfall

nowcasting [8], stochastic weather generators [160], etc. One may also cite methodological devel-

opments such as dynamically-adapted kernels [163] and novel parameter estimation schemes [72].

Importantly, analog strategies have recently been extended to address data assimilation issues

within the so-called analog data assimilation (AnDA) [97], where the dynamical model is stated

as an analog forecasting model and combined to state-of-the-art stochastic assimilation proce-

dures such as Ensemble Kalman filters. The application to high-dimensional fields in Chapter 3

provides the methodological background for this study.

Producing time-continuous and gridded maps of Sea Surface Height (SSH) is a major chal-

lenge in ocean remote sensing with important consequences on several scientific fields from

weather and climate forecasting to operational needs for fisheries management and marine op-

erations (e.g. [67]). The reference gridded SSH product commonly used in the literature is dis-

tributed by the Copernicus Marine and Environment Monitoring Service (CMEMS) (formerly

distributed by AVISO). This product relies on the interpolation of irregularly-spaced along-track

data using an Optimal Interpolation (OI) method [17,92]. While OI is relevant for the retrieval

of horizontal scales of SSH fields greater than ≈ 100km, its Gaussian assumptions cause the

small scales of the SSH fields to be smoothed. This limitation makes it impossible to resolve
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finer-scale processes (typically from a few tens of kilometers to ≈ 100km) which may be revealed

by along-track altimetric data. This has led to a variety of research studies to improve the re-

construction of the altimetric fields. One may cite both methodological alternatives to OI, for

instance locally-adapted convolutional models [51] and variational assimilation schemes using

model-driven dynamical priors [149], as well as studies exploring the synergy between different

sea surface tracers, especially the synergy between SSH and SST (Sea Surface Temperature)

fields and Surface Quasi-Geostrophic dynamics [51,77,78,85,146,148].

In this work, we build upon our recent advances in analog data assimilation and its ap-

plication to high-dimensional fields [50, 97]. We develop an analog data assimilation model for

the reconstruction of SLA fields from along-track altimeter data. It relies on a patch-based and

EOF-constrained representation of the SLA fields. Using OFES numerical simulations [110,132],

we design an Observation System Simulation Experiment (OSSE) for a case-study in the South

China sea using real along-track sampling patterns of spaceborne altimeters. Using the resulting

groundtruthed dataset, we perform a qualitative and quantitative evaluation of the proposed

scheme, including comparisons to state-of-the-art schemes.

4.3 Data: OFES (OGCM for the Earth Simulator)

An Observation System Simulation Experiment (OSSE) based on numerical simulations is con-

sidered to assess the relevance of the proposed analog assimilation framework. Our OSSE uses

these numerical simulations as a groundtruthed dataset from which simulated along-track data

are produced. We describe further the data preparation setup in the following sections.

4.3.1 Model simulation data

The Ocean General Circulation Model (OGCM) for the Earth Simulator (OFES) is considered

in this study as the true state of the ocean. The simulation data is described in [110, 132]. The

coverage of the model is 75◦S-75◦N with a horizontal resolution of 1/10◦. 34 years (1979-2012)

of 3-daily simulation of SSH maps are considered, we proceed to a subtraction of a temporal

mean to obtain SLA fields. In this study, our region of interest is located in the South China

Sea (105◦E to 117◦E, 5◦N to 25◦N). This dataset is split into a training dataset corresponding

to the first 33 years (4017 SLA maps) and a test dataset corresponding to the last year of the

time series (122 SLA maps).
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Figure 4.1 – An example of a ground-truth SLA field in the considered region and its associated
simulated pseudo-along track.

4.3.2 Along track data

We consider a realistic situation with a high rate of along track data. More precisely we use

along-track data positions registered in 2014 where 4 satellites (Jason2, Cryosat2, Saral/AltiKa,

HY-2A) were operating. Data is distributed by Copernicus Marine and Environment Monitoring

Service (CMEMS).

From the reference 3-daily SLA dataset and real along-track data positions, we generate

simulated along-track data from the sampling of a reference SLA field: more precisely, for a

given along-track point, we sample the closest position of the 1/10◦ regular model grid at the

closest time step of the 3-daily model time series. As we consider a 3-daily assimilation time step

(see Section 4.3.1 for details), we create a 3-daily pseudo-observation field, to be fed directly to

the assimilation model. As sketched in Figure 4.2, for a given time t, we combine all along-track

positions for times t− 1,t and t+ 1 to create an along-track pseudo-observation field at time t.

We denote by s3dAT the simulated 3-daily time series of along-track pseudo-observation fields.

An example of these fields is given in Figure 4.1.
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Figure 4.2 – Sketch of the creation of simulated along-track data at a given time t

4.4 Analog reconstruction for altimeter-derived SLA

4.4.1 Patch-based state-space formulation

As stated in the introduction of this chapter, OI may be considered as an efficient model-based

method to recover large-scale structures of SLA fields. Following the findings in Chapter 3, this

suggests to consider the following two-scale additive decomposition:

X = X̄ + dX + ξ (4.1)

where X̄ is the large-scale component of the SLA field, typically issued from an optimal inter-

polation, dX the fine-scale component of the SLA field we aim to reconstruct and ξ remaining

unresolved scales.

The reconstruction of field dX involves a patch-based and EOF-based representation. It

consists in regarding field dX as a set of P × P overlapping patches (e.g. 2◦ × 2◦). This set of

patches is referred to as P, and we denote by Ps the patch centered at position s. After building

a catalog CP of patches from the available dataset of residual fields X − X̄, we proceed to an

EOF decomposition of each patch in the catalog. The reconstruction of field dX(Ps, t) at time t

is then stated as the AnDA of the coefficients of the EOF decomposition in the EOF space given

an observation series in the patch space. Formally, dX(Ps, t) decomposes as a linear combination
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of a number NE of EOF basis functions with the largest variances:

dX(Ps, t) =
NE
∑

k=1

αk(s, t)EOFk (4.2)

with EOFk referring to the kth EOF basis and αk(s, t) to the corresponding coefficient for patch

Ps at time t. Let us denote by ϕ(Ps, t) the vector of the NE coefficients αk(s, t), which represents

the projection of dX(Ps, t) in the lower-dimensional EOF space.

4.4.2 Patch-based analog dynamical models

We detail in this section the application of the AnDA framework as presented in Chapter 3 for

the sequential reconstruction of fine-scale dX. The proposed patch-based analog assimilation

scheme involves a dynamical model stated in the EOF space. As in the previous Chapter we

consider the following Gaussian conditional distribution

ϕ(Ps, t)|ϕ(Ps, t− 1) ∼ G(µ(s, t),Σ(s, t)) (4.3)

We consider the three analog forecasting operators presented in Chapter 2, namely, the locally-

constant, the locally incremental and the locally-linear. The calculation of the weights associated

to each analog-successor pair relies on a Gaussian kernel KG (Equation 3.5). The search for

analogs in the NE-dimensional patch space (in practice, NE ranges from 5 to 20) ensures a

better accuracy in the retrieval of relevant analogs compared to a direct search in the high-

dimensional space of state dX. It also reduces the computational complexity of the proposed

scheme.

Another important extension of the current study is the possibility of exploiting auxiliary

variables with the state vector Φ in the analog forecasting models. Such variables may be con-

sidered in the search for analogs as well as regression variables in locally-linear analog setting.

Regarding the targeted application to the reconstruction of SSH fields and the proposed two-

scale decomposition (Equation 4.1), two types of auxiliary variables seem to be of interest: the

low-resolution component X̄ to take into account inter-scale relationship [51], and Sea Surface

Temperature (SST) with respect to the widely acknowledged SST-SSH synergies [51,78,85,146].

We also apply patch-level EOF-based decompositions to include both types of variables in the

considered analog forecasting models (Equation 4.3).
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4.4.3 Numerical resolution

Given the proposed analog assimilation model, the proposed scheme first relies on the creation of

patch-level catalogs from the training dataset. This step requires the computation of a training

dataset of fine scale data dXtraining, this is done by subtracting a large-scale component X̄training

from the original training dataset. Here, we consider the large-scale component of training data

to be the result of a global1 EOF-based reconstruction using a number of EOF components

that retains 95% of the dataset variance, which accounts for horizontal scales up to ∼ 100km.

This global EOF-based decomposition provides a computationally-efficient means for defining

large-scale component X̄. This EOF-based decomposition step is followed by the extraction

of overlapping patches for all variables of interest, namely X̄training, dXtraining and potential

auxiliary variables, and the identification of the EOF basis functions from the resulting raw

patch datasets. This leads to the creation of a patch-level catalog CP from the EOF-based

representations of each patch.

Given the patch-level catalog, the algorithm applied for the mapping SLA fields from along-

track data, referred to as MS-AnDA, involves the following steps:

• the computation of the large-scale component X̄, here, we consider the result of optimal

interpolation (OI) projected onto the global EOF basis functions.

• the decomposition of the case study region into overlapping P × P patches, here, 20 × 20

patches

• For each patch position s, the application of an analog data assimilation scheme, namely the

Analog Ensemble Kalman Smoother (AnEnKS) [97], for patch Ps of field dX. As stated in

(4.3), the assimilation is performed in the EOF space, i.e. for EOF decomposition Φ(Ps, t),

using the operator derived from EOF-based reconstruction (4.2) and decomposition (4.1)

as observation model H and the patch-level training catalog described in the previous

section. In the analog forecasting setting, The search for analogs is restricted to patch

exemplars in the catalog within a local spatial neighborhood (typically a patch-level 8-

neighborhood), except for patches along the seashore for which the search for analogs is

restricted to patch exemplars at the same location.

1By global, we mean here an EOF decomposition over the entire case study region, by contrast to the patch-level
decomposition considered in the analog assimilation setting.
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Figure 4.3 – Sketch of the proposed patch-based Multiscale Analog Data Assimilation (MS-
AnDA). The left block details the construction of the patch-based catalogs from the training
dataset. The right block illustrates the process of obtaining the large-scale component of the
SLA reconstructed field. The orange dashed rectangle represents the application of the AnDA
using the catalog and the fine-scale observations. Finally, the green dashed rectangle shows the
final addition operation that yields the reconstructed SLA field.

• the reconstruction of fields dX from the set of assimilated patches {dX(Ps, ·)}s. This re-

lies on a spatial averaging over overlapping patches (here, a 5-pixel overlapping in both

directions). In practice, we do not apply the patch-level assimilation to all grid positions.

Consequently, the spatial averaging may result in blocky artifacts. We then apply a patch-

wise EOF-based decomposition-reconstruction with a smaller patch-size (here, 17 × 17

patches) to remove these blocky artifacts.

• the reconstruction of fields X as X̄ + dX.

4.5 Results

We evaluate the proposed MS-AnDA approach using the OSSE presented in Section 4.3. We

perform a qualitative and quantitative comparison to state-of-the-art approaches. We first de-

scribe the parameter setting used for the MS-AnDA as well as benchmarked models, namely OI,

an EOF-based approach [123] and a direct application of AnDA at the region level. We then
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report numerical experiments for noise-free and noisy observation data as well the relevance of

auxiliary variables in the proposed MS-AnDA scheme.

4.5.1 Experimental setting

We detail below the parameter setting of the models evaluated in the reported experiments,

including the proposed MS-AnDA scheme:

• MS-AnDA: We consider 20 × 20 patches with 15-dimensional EOF decompositions (NE =

15), which typically accounts for 99% of the data variance for the considered dataset. The

postprocessing step exploits 17×17 patches and a 15-dimensional EOF decomposition. Re-

garding the parametrization of the AnEnKS procedure, we experimentally cross-validated

the number of nearest neighbors K to 50, the number of ensemble members nensemble to

100 and the observation covariance error (in meters, hereinafter) to R = 0.001.

• Optimal Interpolation: We apply an Optimal Interpolation to the processed along-track

data. It provides the low-resolution component for the proposed MS-AnDA model and a

model-driven reference for evaluation purposes. The background field is a null field. We use

a Gaussian covariance model with a spatial correlation length of 100km and a temporal

correlation length of 15 days (± 5 timesteps since our data is 3-daily). These choices result

from a cross-validation experiment.

• VE-DINEOF: We apply a second state-of-the-art interpolation scheme using a data-driven

strategy solely based on EOF decompositions, namely VE-DINEOF [123]. We implement

a patch-based version of VE-DINEOF to make it comparable to the proposed MS-AnDA

setting. Given the same EOF decomposition as in MS-AnDA, the patch-level VE-DINEOF

iterates patchwise EOF projection-reconstruction of the detail field dX. This scheme is

initialized from the along-track pseudo-observation field for along-track data positions and

X̄ for missing data positions. After each projection-reconstruction, we only update missing

data areas. We run this iterative process until convergence.

• G-AnDA: With a view to evaluating the relevance of the patch-based decomposition, we

also apply AnDA at the region scale, referred to as G-AnDA. It relies on an EOF-based

decomposition of the detail field dX. We use 150 EOF components, which accounts for

more than 99% of the total variance of the SSH dataset. From cross-validation experiments,

the associated AnEnKS procedure relies on a locally-linear analog forecasting model with
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K = 500 analogs, nensemble = 100 ensemble members and an observation covariance error

set to R = 0.001

The patch-based experiments were run on Teralab infrastructure using a multi-core virtual

machine (30 CPUs, 64G of RAM). We used the Python toolbox for patch-based analog data

assimilation [50] (available at github.com/rfablet/PB_ANDA). Optimal Interpolation was im-

plemented on Matlab using [45]. Throughout the experiments, two metrics are used to assess

the performance of the considered interpolation methods: i) daily and mean Root Mean Square

Error (RMSE) series between the reconstructed SLA fields X and the groundtruthed ones, ii)

daily and mean correlation coefficient between the fine-scale component dX of the reconstructed

SLA fields and of the groundtruthed ones.

4.5.2 SLA reconstruction from noise-free along-track data

Table 4.1 – SLA Interpolation performance for a noise-free experiment: Root Mean Square
Error (RMSE) and correlation statistics for OI, VE-DINEOF, G-AnDA and MS-AnDA w.r.t.
the groundtruthed SLA fields. See Section 4.5.1 for the corresponding parameter settings.

Criterion RMSE Correlation

OI 0.026 ± 0.007 0.81 ± 0.08

VE-DINEOF 0.023 ± 0.007 0.85 ± 0.07

G-AnDA 0.020 ± 0.006 0.89 ± 0.04

MS-AnDA

Locally-constant 0.014 ± 0.005 0.95 ± 0.03

Locally-Increment 0.014 ± 0.005 0.95 ± 0.03

Locally-Linear 0.013 ± 0.005 0.96 ± 0.02

We first perform an idealized noise-free experiment, where the along-track observations are

noise-free. The observation covariance error takes the value R = 0.001. The interpolation per-

formances for this experiment are illustrated in Table 4.1. Our MS-AnDA algorithm significantly

outperforms OI. More specifically, the locally-linear MS-AnDA results in the best reconstruction

among the competing methods. We suggest that this improvement comes from the reconstruc-

tion of fine-scale features learned from the archived model simulation data. Figure 4.4a reports

interpolated SSH fields and their gradient fields which further confirm our intuition. MS-AnDA
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interpolation shows an enhancement of the gradients and comes out with some fine-scale eddies

that were smoothed out in OI and VE-DINEOF. This is also confirmed by the Fourier power

spectrum of the interpolated SLA fields in Figure 4.4b.
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Figure 4.4 – Reconstructed SLA fields using noise-free along-track observation using OI, DI-
NEOF, G-AnDA, MS-AnDA on February 24th 2012: from left to right, the first row shows the
ground truth field, the simulated available along-tracks for that day, the ground thruth gradient
field. The second and third rows show each of the reconstruction and their corresponding gra-
dient filed, from left to right, OI, VE-DINEOF, G-ANDA and MS-AnDA. The Fourier power
spectrum of the competing methods is also included
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Figure 4.5 – Reconstructed SLA fields using noise-free along-track observation using OI, DI-
NEOF, G-AnDA, MS-AnDA on August 22nd 2012: from left to right, the first row shows the
ground truth field, the simulated available along-tracks for that day, the ground truth gradient
field. The second and third rows show each of the reconstruction and their corresponding gra-
dient filed, from left to right, OI, VE-DINEOF, G-ANDA and MS-AnDA. The Fourier power
spectrum of the competing methods is also included
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Figure 4.6 – Reconstructed SLA fields using noise-free along-track observation using OI, DI-
NEOF, G-AnDA, MS-AnDA on December 17th 2012: from left to right, the first row shows the
ground truth field, the simulated available along-tracks for that day, the ground truth gradient
field. The second and third rows show each of the reconstruction and their corresponding gra-
dient fields, from left to right, OI, VE-DINEOF, G-ANDA and MS-AnDA. The Fourier power
spectrum of the competing methods is also included
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4.5.3 SLA reconstruction from noisy along-track data

We also evaluated the proposed approach for noisy along-track data. Here, we run two exper-

iments with an additive zero-mean Gaussian noise applied to the simulated along-track data.

We consider a noise covariance of R = 0.01 (Experiment A) and of R = 0.03 (Experiment B)

which is more close to the instrumental error of conventional altimeters. Given the resulting

noisy along-track dataset, we apply the same methods as for the noise-free case study.

We run MS-AnDA using different values for R. For Experiment A, Table 4.2 shows that

the minimum is reached using the true value of the error R = 0.01. While for Experiment B,

Table 4.3 shows that the minimum is counter-intuitively reached again using value of the error

R = 0.01.

Our algorithm is then compared with the results of the application of the competing algo-

rithms considered in this work. Results are shown in Table 4.4. MS-AnDA still outperforms OI

in terms of RMSE and correlation statistics in both experiments. The locally-linear version of

MS-AnDA depicts the best reconstruction performance. We report an example of the reconstruc-

tion in Figure 4.7. Similarly to the noise-free case study, MS-AnDA better recovers finer-scale

structures in Fig.4.7.a compared with OI, VE-DINEOF and G-AnDA. In Fig.4.7.b, MS-AnDA

also better reconstructs a larger-scale North-East structure, poorly sampled by along-track data

and hence poorly interpolated by OI.

Table 4.2 – Impact of variance of observation error R in AnDA interpolation performance using
noisy along-track data (R=0.01): RMSE of AnDA interpolation for different values of parameter
R. For the same dataset, OI RMSE is 0.039.

R 0.1 0.05 0.03 0.01 0.005 0.001 0.0001

rmseMS−AnDA 0.035 0.030 0.028 0.025 0.025 0.029 0.044

Table 4.3 – Impact of variance of observation error R in AnDA interpolation performance using
noisy along-track data (R=0.03): RMSE of AnDA interpolation for different values of parameter
R. For the same dataset, OI RMSE is 0.066.

R 0.1 0.05 0.03 0.01 0.005 0.001 0.0001

rmseMS−AnDA 0.038 0.036 0.035 0.0349 0.037 0.046 0.076
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Table 4.4 – SLA Interpolation performance for noisy along-track data: Root Mean Square Error
(RMSE) and correlation statistics for OI, VE-DINEOF, G-AnDA and MS-AnDA w.r.t. the
groundtruthed SLA fields. See Section 4.5.1 for the corresponding parameter settings.

Criterion RMSE Correlation

R=0.01 OI 0.039 ± 0.005 0.64 ± 0.09

VE-DINEOF 0.035 ± 0.005 0.68 ± 0.09

G-AnDA 0.030 ± 0.005 0.78 ± 0.06

MS-AnDA

Locally constant 0.026 ± 0.005 0.82 ± 0.05

Increment 0.028 ± 0.005 0.81 ± 0.05

Local Linear 0.0245 ± 0.005 0.83 ± 0.05

R=0.03 OI 0.066 ± 0.006 0.41 ± 0.09

VE-DINEOF 0.060 ± 0.006 0.45 ± 0.09

G-AnDA 0.039 ± 0.006 0.67 ± 0.09

MS-AnDA

Locally constant 0.035 ± 0.006 0.688 ± 0.064

Increment 0.036 ± 0.006 0.656 ± 0.07

Local Linear 0.032 ± 0.006 0.708 ± 0.063

4.5.4 Conditioning by auxiliary variables

We further explore the flexibility of the analog setting to the use of additional geophysical

variable information as explained in Section 4.4.2. Intuitively, we expect SLA fields to involve

inter-scale dependencies as well as synergies with other tracers. The use of auxiliary variables

provide the means for evaluating such dependencies and their potential impact on reconstruc-

tion performance. We consider two auxiliary variables that are used in the locally-linear analog

forecasting model: i) to account for the relationship between the large-scale and fine-scale compo-

nent, we may consider variable X̄, ii) considering potential SST-SSH synergies, we consider SST

fields. Overall, we consider four parameterization of the regression variables used in MS-AnDA:

the sole use of dX (MS-AnDA-dX); the joint use of dX and SST fields (MS-AnDA-dX+SST);

the joint use of dX and X̄ (MS-AnDA-dX+X̄), the joint use of dX and the groudntruthed

version of X̄ denoted by X̄GT , (MS-AnDA-dX+X̄GT ). The later provides a lower-bound for the

reconstruction performance, assuming the low-resolution component is perfectly estimated.
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(a)

(b)

Figure 4.7 – (Noisy observation) Reconstruction of SLA fields using OI, DINEOF, G-AnDA &
MS-AnDA on day 225th (a) & 228th (b)
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We report mean RMSE and correlation statistics for these four MS-AnDA parameterizations

in Table 4.5 for the noisy case-study. Considering MS-AnDA-dX as reference, these results show

a very slight improvement when complementing dX with SST information. Though limited, we

report a greater improvement when adding the low-resolution component X̄. Interestingly, a

significantly greater improvement is obtained when adding the true low-resolution information.

The mean results are in accordance with [51], which reported that large-scale SLA informa-

tion was more informative than SST to improve the reconstruction of the SLA at finer scales.

Though mean statistics over one year leads to rather limited improvement, daily RMSE time

series (Figure 4.8) reveal that for some periods, for instance between day 130 and 150, relative

improvements in terms of RMSE may reach 10% with the additional information brought by

the large-scale component. In this respect, it may noted that MS-AnDA-dX+X̄ always perform

better than MS-AnDA-dX.

Table 4.5 – MS-AnDA reconstruction performance using noisy along-track data for different
choices of the regression variables in the locally-linear analog forecasting model: MS-AnDA-dX
using solely dX, MS-AnDA-dX+SST using both dX and SST, MS-AnDA-dX + X̄ using both
dX and X̄, and MS-AnDA-dX + X̄GT using dX and the true large-scale component X̄GT .

MS-AnDA model RMSE Correlation

R=0.01 MS-AnDA-dX 0.025 ± 0.005 0.83 ± 0.05

MS-AnDA-dX+SST 0.024 ± 0.005 0.83 ± 0.05

MS-AnDA-dX + X̄ 0.023 ± 0.005 0.84 ± 0.05

MS-AnDA-dX + X̄GT 0.021 ± 0.004 0.87 ± 0.04

R=0.03 MS-AnDA-dX 0.032 ± 0.006 0.708 ± 0.06

MS-AnDA-dX+SST 0.031 ± 0.006 0.710 ± 0.06

MS-AnDA-dX + X̄ 0.029 ± 0.006 0.717 ± 0.06

MS-AnDA-dX + X̄GT 0.026 ± 0.005 0.730 ± 0.05

4.6 Discussion and conclusion

This work sheds light on the opportunities that data science methods are offering to improve

altimetry in the era of "Big Data". Assuming the availability of high-resolution numerical simula-
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Figure 4.8 – (Noisy observation R = 0.01) Daily RMSE time series of PB-AnDA SLA recon-
structions using noisy along-track data for different choices of the regression variables in the
locally-linear analog forecasting model: MS-AnDA-dX (light blue), MS-AnDA-dX+SST (or-
ange) and MS-AnDA-dX + X̄ (green)

tions, we show that Analog Data Assimilation (AnDA) can outperform the Optimal Interpolation

method and retrieve smoothed out structures resulting from the sole use of OI both with idealized

noise-free and more realistic noisy observations for the considered case study. Importantly, the

reported experiments point out the relevance for combining OI for larger scales (above 100km)

whereas the proposed patch-based analog setting successfully applies to the finer-scale range

below 100km. This is in agreement with the recent application of the analog data assimilation

to the reconstruction of cloud-free SST fields (Chapter 3). We also demonstrate that AnDA

can embed complementary variables in a simple manner through the regression variables used

in the locally-linear analog forecasting operator. In agreement with our recent analysis [51], we

demonstrate that the additional use of local SST and large-scale SLA information may further

improve the reconstruction performance for fine-scale structures.

Analog data assimilation can be regarded as a means to fuse ocean models and satellite-

derived data. We regard this study as a proof-of-concept, which opens research avenues as

well as new directions for operational oceanography. Our results advocate for complementary

experiments at the global scale or in different ocean regions for a variety of dynamical situations

with a view to further evaluating the relevance of the proposed analog assimilation framework.

Such experiments should evaluate the sensitivity of the assimilation with respect to the size

of the catalog. The scaling up to the global ocean also suggests investigating computationally-

efficient implementation of the analog data assimilation. In this respect, the proposed patch-

based framework intrinsically ensures high parallelization performance. From a methodological

point of view, a relative weakness of the analog forecasting models may be their low physical
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(a)

(b)

Figure 4.9 – (Noisy observation) Reconstruction of SLA fields using MS-AnDA with different
multivariate regression models on day 51th (a) & 54th (b)
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(a)

(b)

Figure 4.10 – (Noisy observation) Reconstruction of SLA fields using MS-AnDA with different
multivariate regression models on day 57th & 237th (b)
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interpretation compared with physically-derived priors [149]. The combination of such physically-

derived parameterizations to data-driven strategies appear as a promising research direction.
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We can’t plan life. All we can do is be available for it.

Lauryn Hill
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5.1 Conclusion

In this thesis, we studied the extension of analog forecasting methods to data assimilation issues,

and have set the foundations of the Analog Data Assimilation. By seizing the opportunity offered

by the increasing amount of geophysical information, our method rely on the exploitation of the

available large-scale observation and/or simulation/reanalysis dataset using nearest neighbors

schemes to improve the analysis of new observations. The Analog Data Assimilation can be either

seen as a data-driven alternative to classical data assimilation in case the latter is difficult to

perform, or as a support to classical data assimilation in situations where both can be exploited.

Different tests were performed all along this thesis on different types of datasets, from toy

models (Lorenz-63 and Lorenz-96) to realistic datasets (Sea Surface Temperature (SST) and

Sea Level Anomaly (SLA)). We have shown the relevance of our method and its potential.

In particular, we highlight the benefit of using weighted local linear techniques as an analog

97



Chapter 5. Conclusions and Perspectives

forecasting operator which resorts to the best reconstruction. Experiments conducted on either

satellite-derived fields or numerical simulation data illustrate that the resulting reconstructed

fields are with higher resolution than the classical Optimal Interpolation algorithm.

Since the analog forecasting depends highly on the K-Nearest Neighbors algorithm, the curse

of dimensionality was our biggest challenge. we have shown that breaking the geophysical region

field of interest into small subregions using patch-based representation helps in reducing the

complexity of our algorithm. Moreover, projecting the patches series using EOF-based represen-

tations using few tens of coefficients, yields to a settings where analog forecasting is simple and

efficient.

The flexible framework we offer has the advantage of accounting auxiliary variable with less

implementation effort. We therefore have shown that considering inter-scale dependencies for

the Sea Level Anomaly (SLA) has more benefit than considering synergies of SLA and SST

data.

5.2 Perspectives and Future Work

5.2.1 The Analog data assimilation and its applications

We believe that this thesis opens new research avenues for the analysis, reconstruction and

understanding of the dynamics of geophysical systems using data-driven techniques. Such tech-

niques will benefit from the increasing availability of large-scale historical observational and/or

simulated datasets.

Beyond the wide range of possible applications, future research should further investigate

methodological issues. First of all, our study demonstrates the relevance of the analog particle

filter, but as mentioned in Chapter 2, the AnPF suffers from degeneracy and sample impoverish-

ment. We may point out that complementary experiments with particle smoother schemes (not

shown) resulted in numerical instabilities. The derivation of the Analog Particle Smoother then

remains an open question. In addition to advanced particle filters as proposed in [124,153], one

might also benefit from the straightforward applications of the analog procedure in reverse time,

which is not generally possible for model-driven schemes. A second direction for future work lies

in the design of the kernel used by the analog forecasting operators. Whereas we considered a

Gaussian kernel, other kernels have been proposed in the literature, for instance using Procrustes

distance instead of the Euclidean distance [111] or different weighing strategies [40]. The explicit
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derivation of the mapping associated with a kernel as considered in [163] may also be a promis-

ing alternative to state the analog data assimilation in a kernel-derived lower-dimensional space.

The theoretical characterization of the asymptotic behavior of analog data assimilation schemes

is also an interesting avenue of research. Similarly to the theoretical analysis of ensemble Kalman

filters and particle filters [90], the derivation of convergence conditions, possibly associated with

reconstruction bounds, would be of key interest to bound the reconstruction performance of the

proposed analog schemes with respect to their model-driven counterpart.

For ocean related applications, the results obtained in this thesis call for exploring more

research directions that combine the analog strategies with model-derived and/or statistical pri-

ors. SST for example is generally assumed to consider an advection-diffusion prior model drifted

by the SSH, this information could be used in constraining the local analog regression for the

reconstruction of SST. Statistical priors can also be injected into AnDA schemes. In particular,

priors on the spatial covariances and the marginal distributions of high resolution details, as

done with SST in [49], are expected to result in more geophysically plausible reconstructions.

Investigating more synergies between ocean variables can also be of interest [146, 148], an in-

teresting case might be the exploration of relationships between observable and non observable

variables. For example we can think of exploiting 4D numerical simulations (3D + depth) to

retrieve variables such as vertical velocities or mixed layer depth from satellite-derived observa-

tions of ocean surface variables. Preparing the inversion of the future altimetry mission SWOT

(CNES/NASA) is a perfect context to carry on such research plans. SWOT mission promises

an unprecedented coverage around the globe. More specifically, the large swath is expected to

provide a large number of data, urging for the inspection of the potential improvements that this

new mission will bring compared to classical along-track data. In the context of analog data as-

similation, the interest of SWOT data may be two-fold. First, regarding the observation model,

SWOT mission will both significantly increase the number of available observation data and en-

able the definition of more complex observation models exploiting for instance velocity-based or

vorticity-based criterion. Second, SWOT data might also be used to build representative patch-

level catalogs of exemplars. Future work should investigate these two directions using simulated

SWOT test-beds [58].

Another future research path would be the investigation of the influence of data on the

AnDA for remote sensing applications. More specifically, addressing questions we did not an-

swer here, examples comprise the calculation of the number of years of data needed to reach a
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consistent reconstruction, the use of nonlinear dimensionality reduction algorithm instead of the

EOF/PCA, etc..

While this thesis work was ocean science oriented, it can be clearly seen that the Analog Data

Assimilation is domain-free and could be applied to any dynamical system where an archived

dataset is available and where the dynamics present a "repeatability" behavior. To support this

claim, we applied successfully the AnDA to two non ocean related applications: the interpolation

of dynamical textures sequences [98], and the retrieval of missing data in motion capture series

[94]. Although we focused on the problem of the interpolation of missing data, applying the

AnDA might be relevant to other inverse problems (e.g. denoising, deconvolution).

5.2.2 Machine Learning for dynamical systems

Data-driven approaches are starting to reach a good level of maturity with interesting appli-

cations in geoscience and satellite remote sensing [24, 25]. Motivated by the increasing and

challenging amount of data, researchers from the data science and statistical learning fields are

tempted to explore the large avenue of ideas that is finally open to them.

While we placed our faith in analog methods in this thesis, and results were delightfully

encouraging. We call for investigating other techniques for emulating the underlying govern-

ing equations from data. Examples comprise, but are not limited to, sparsity-promoting tech-

niques [18,128], deep learning techniques [55,87], manifold learning [136], etc. A review work on

data-driven methods for dynamical systems would be highly appreciated. Hybrid methods that

combine data-driven and model-driven strategies could certainly be of interest.

5.2.3 Deep Learning for detection and classification of eddies from SSH maps

In Appendix B, we describe an example of an ocean remote sensing problem that could be tackled

using Deep Learning techniques. Detecting and classifying eddies from SSH maps is a classical

example where geometry-based techniques are competing with physical-based techniques. In our

work, instead of using geometry-based techniques we treat the problem under a computer vision

perspective. We implemented and compared several neural network architectures that are used

in image segmentation tasks. Initial results shown in Appendix B are encouraging and calls for

considering and putting more efforts into Deep Learning techniques.

It goes without saying that Deep Learning methods are revolutionizing the machine learning

and computer vision fields. However, the astonishing promised impact of these methods did not
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reach yet the geoscience and remote sensing community. This can be explained by the "black-

box" nature of these methods that makes it hard for geoscientists to relate results to theoretical

physical and equations-based models. A non negligible effort should then be deployed to improve

physical understanding of neural networks based methods.
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d
ix

Operational count of the AnDA

applied for high-dimensional

applications

This appendix aims at giving an estimate of the operations involved when applying the AnDA for

a realistic large-scale application. We discuss the computational cost of the analog forecasting,

which is specific to the AnDA. The later directly relates to the cost of the K-Nearest Neighbor

(K-NN) step.

In case of large-scale catalogs, an exhaustive search strategy is not suitable and the use of

space-partitioning data structures, the most popular ones being K-d trees [14] and Ball trees

[117], appears necessary. These structures speed up the K-NN search, at the expense of an

approximate search for nearest neighbors. Let us denote by D the dimension of the system of

interest. Making a choice between K-d trees or ball trees depends mostly on the dimensionality of

the system. K-d trees are known to perform well in dimensions D < 20, while ball trees are more

suitable to dimensions higher than 20 but come with a high cost of space-partitioning [158]. In

this appendix we focus on the use of K-d trees, which are natural candidates for local analogs with

a small component-wise local neighborhood ν or using a preliminary dimensionality reduction

algorithm (such as Empirical Orthogonal Functions). A comparison between K-d trees and ball

trees is out of the scope of this work.

Let Ndata be the size of the catalog (the number of samples from where to look for analogs),

and K the number of nearest neighbors to be retrieved. Let us recall that ν is the size of the

local neighborhood used for the search for local analogs. [151] derived a relationship between
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the local neighborhood size and the amount of the data needed to find an analog with a given

precision. With the assumption that the components of the states follow a multivariate Gaussian

distribution and have the same variance sd2, finding K samples that have a distance lower than

ǫ for all the components of the neighborhood with a probability of 95%, needs the number of

data to be on average:

• Global analogs:

Nglobal ≥ K
ln(0.05)
ln(1 − αD)

≃ 3K
αD

, (A.1)

• Local analogs:

Nlocal ≥ K
ln(0.05)

ln(1 − α2ν+1)
≃ 3K
α2ν+1

, (A.2)

where α is the integral of the standard Gaussian probability density function from −ǫ/(
√

2sd)

to ǫ/(
√

2sd).

We present now the operational count for one ensemble member (or particle) involved in the

forecasting, for both global and local analogs. In each case, we distinguish the computational

cost of the creation of the K-d trees and the search of K nearest neighbors.

• Global analogs:

– Creation of the K-d tree: O(DNglobal log(Nglobal))

– Search for K global analogs: O(KD log(Nglobal))

• Local analogs

– Creation of D K-d trees (for every dimension in D): O(D(2ν + 1)Nlocal log(Nlocal))

– Search forK local analogs of component-wise neighborhood ν:O(DK(2ν+1) log(Nlocal))

Note that using local analogs requires constructing a Kd-tree for every dimension in D.

Construction of the Kd-trees can be done offline (1 "big" Kd-tree for the global strategy and D

"small" Kd-trees for the local strategy), then the cost of these construction can be amortized

over the high number of queries that needs to be answered during analog data assimilation.

However, in terms of memory storage, storing a global Kd-tree could be prohibitive, contrarily

to small local Kd-trees that can be created, used, then freed for the creation of the next Kd-tree

of the next dimension (if there is no sufficient memory to stock D small local Kd-trees). Keep

in mind that we need to have (2ν + 1) << D for local analogs to be of relevance.
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Let us take an example using the Lorenz 96 model: D = 40, ν = 2. Looking for K = 50

analogs, with an α = 0.15 we would need Nglobal ≈ 1035 which is very prohibitive, however we

would only need Nlocal ≈ 2.106 samples using local analogs.
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B.1 Introduction

Going "deeper" with artificial neural networks (ANNs) by using more than the original three

layers (input, hidden, output) started the so-called deep learning era. The developments and

discoveries which are still ongoing are producing impressive results and reaching state-of-the-art

performances in various fields [60]. In particular, Convolutional Neural Networks (CNN) sparked-

off the deep learning revolution in the image processing community and are now ubiquitous

in computer vision applications. This has led numerous researchers from the remote sensing

community to investigate the use of this powerful tool for tasks like object recognition, scene

classification, etc... (see [162,164] and references therein).

By standing on the shoulders of recent achievements in deep learning for image segmentation

we present "EddyNet", a deep neural network for automated eddy detection and classification

from Sea Surface Height (SSH) maps provided by the Copernicus Marine and Environment

Monitoring Service (hereinafter denoted by AVISO-SSH). EddyNet is inspired by ideas from

widely used image segmentation architectures, in particular U-shaped architectures such as U-

Net [127]. We investigate the use of Scaled Exponential Linear Units (SELU) [84] instead of the

classical ReLU + Batch Normalization (R+BN) and show that we greatly speed up the training

process while reaching comparable results. We adopt a loss function based on the Dice coefficient

(also known as the F1 measure) and illustrate that we reach better scores for the two most

relevant classes (cyclonic and anticyclonic) than with using the categorical cross-entropy loss.

We also supplement dropout layers to our architecture that prevents EddyNet from overfitting.

Our work joins the emerging cross-fertilization between the remote sensing and machine

learning communities that is leading to significant contributions in addressing the segmentation

of remote sensing images [9,105,154]. To the best of our knowledge, the present work is the first

to propose a deep learning based architecture for pixel-wise classification of eddies, dealing with

the challenges of this particular type of data.

This paper is organized as follows: Section II presents the eddy detection and classification

problem and related work. Section III describes the data preparation process. Section IV presents

the architecture of EddyNet and details the training process. Section V reports the different

experiments considered in this work and discusses the results. Our conclusion and future work

directions are finally stated in Section VI.
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B.2 Problem statement and related work

Ocean mesoscale eddies can be defined as rotating water masses, they are omnipresent in the

ocean and carry critical information about large-scale ocean circulation [28, 70]. Eddies trans-

port different relevant physical quantities such as carbon, heat, phytoplankton, salt, etc. This

movement helps in regulating the weather and mixing the ocean [112]. Detecting and studying

eddies helps also considering their effects in ocean climate models [91]. With the development of

altimeter missions and since the availability of two or more altimeters at the same time, merged

products of Sea Surface Height (SSH) reached a sufficient resolution to allow the detection of

mesoscale eddies [53, 120]. SSH maps allow us distinguish two classes of eddies: i) anticyclonic

eddies that are recognized by their positive SLA (Sea Level Anomaly which is SSH anomaly

with regard to a given mean) and ii) cyclonic eddies that are characterized by their negative

SLA.

In recent years, several studies were conducted with the aim of detecting and classifying

eddies in an automated fashion [54]. Two major families of methods prevail in the literature,

namely, physical parameter-based methods and geometrical contour-based methods. The most

popular representative of physical parameter-based methods is the Okubo-Weiss parameter

method [116,155]. The Okubo-Weiss parameter method is however criticized for its expert-based

and region-specific parameters and also for its sensitivity to noisy SSH maps [29]. Other methods

were since then developed using other techniques such as wavelet decomposition [147], winding

angle [130], etc. Geometric-based methods rely on considering the eddies as elliptic shapes and

use closed contour techniques, the most popular method remains Chelton et al. method [28]

(hereinafter called CSS11). Methods that combines ideas from both worlds are called hybrid

methods (e.g. [79, 159]). Machine learning methods were also used in the past to propose a

solution to the problem [23,64], recently they are again getting an increasing attention [7, 76].

We propose in this work to benefit from the advances in deep learning to address ocean

eddy detection and classification. Our proposed deep learning based method requires a training

database consisting of SSH maps and their corresponding eddy detection and classification re-

sults. In this work, we train our deep learning methods from the results of the py-eddy-tracker

SSH-based approach (hereinafter PET14) [109], the algorithm developed by Mason et al. is

closely related to CSS11 but has some significant differences such as not allowing multiple local

extremum in an eddy. An example of a PET14 result is given in Figure B.1 which shows eddies
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Figure B.1 – A snapshot of a SSH map from the Southern Atlantic Ocean with the detected
eddies by PET14 algorithm: anticyclonic eddies (red), cyclonic eddies (green)

identified in the southwest Atlantic (see [108]). The outputs of the eddy tracker algorithm pro-

vide the center coordinates of each classified eddy along with its speed and effective contours.

Since we aim for a pixelwise classification, i.e., each pixel is classified, we transform the out-

puts into segmentation maps such as the example shown in Figure B.2. We consider here the

speed contour which corresponds to the closed contour that has the highest mean geostrophic

rotational current. The speed contour can be seen as the most energetic part of the eddy and is

usually smaller than the effective radius. The next section describes further the data preparation

process that yields the training database of pixelwise classification maps.

B.3 Data preparation

As stated in the previous section, we consider PET14 outputs as a training database for our deep-

neural-network based algorithms. We use 15 years (1998-2012) of daily detected and classified

eddies. The corresponding SSH maps (AVISO-SSH) are provided by the Copernicus Marine

Environment Monitoring Service (CMEMS). The resolution of the SSH maps is 0.25◦.

Due to memory constraints, the input image of our architectures is 128 × 128 pixels. The

first 14 years are used as a training dataset and the last year (2012) is left aside for testing our

architecture. We consider the Southern Atlantic Ocean region depicted in Figure B.1 and cut
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Figure B.2 – Example of a SSH-Segmentation training couple, anticyclonic (green), cyclonic
(brown), non eddy (blue)

the top region where no eddies were detected. Then we randomly sample one 128 × 128 patch

from each SSH map, which leaves us with 5100 training samples. A significant property of this

type of data is that its dynamics are slow, a single eddy can live for several days or even more

than a year. In addition to the fact that a 128 × 128 patch can comprise several examples of

cyclonic and anticyclonic eddies, we believe that data augmentation (adding rotated versions of

the patches to the training database for example) is not needed; we observed experiments (not

shown here) that even resulted in performance degradation. The next step consists of extracting

the SSH 128×128 patches from AVISO-SSH. For land pixels or regions with no data we replaced

the standard fill value by a zero; this helps to avoid outliers and does not affect detection since

eddies are located in regions with non zero SSH. The final and essential step is the creation of

the segmentation masks of the training patches. This is done by creating polygon shapes using

the speed contour coordinates mapped onto the nearest lattices in the AVISO-SSH 0.25◦ grid.

Pixels inside each polygon are then labeled with the class of the polygon representing the eddy

{’0’: Non eddy/land/no data, ’1’: anticyclonic eddy, ’2’: cyclonic eddy}. Figure B.2 shows an

example of a couple {SSH map, segmentation map} from the training dataset.
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B.4 Our proposed method

B.4.1 EddyNet architecture

The EddyNet architecture is based on the U-net architecture [127]. It starts with an encoding

(downsampling) path with 3 stages, where each stage consists of two 3 × 3 convolutional layers

followed by either a Scaled Exponential Linear Unit (SELU) activation function [84] (referred

to as EddyNet_S) or by the classical ReLU activation + Batch Normalization (referred to as

EddyNet), then a 2 × 2 max pooling layer that halves the resolution of the input. The decoding

(upsampling) path uses transposed convolutions (also called deconvolutions) [161] to return to

the original resolution. Like U-net, Eddynet benefits from skip connections from the contracting

path to the expanding path to account for information originating from early stages. Preliminary

experiments with the original architecture of U-Net showed a severe overfitting given the low

number of training samples compared to the capacity of the architecture. Numerous attempts

and hyperparameter tuning led us to finally settle on a 3-stage all-32-filter architecture as shown

in Figure B.3. EddyNet has the benefit of having a small number of parameters compared to

widely used architecture, thus resulting in low memory consumption. Our neural network can

still overfit the data which shows that it can capture the nonlinear inverse problem of eddy

detection and classification. Hence, we add dropout layers before each max pooling layer and

before each transposed convolutional layer; we chose these positions since they are the ones

involved in the concatenations where the highest number of filters (64) is present. Dropout

layers helped to regularize the network and boosted the validation loss performance. Regarding

EddyNet_S, we mention three essential considerations: i) The weight initialization is different

than with EddyNet, we detail this aspect in the experiment section. ii) The theory behind

the SELU activation function stands on the self-normalizing property which aims to keep the

inputs close to a zero mean and unit variance through the network layers. Classical dropout

that randomly sets units to zero could harm this property; [84] propose therefore a new dropout

technique called AlphaDropout that addresses this problem by randomly setting activations on

the negative saturation value. iii) SELU theory is originally derived for Feed Forward Networks,

applying them to CNNs needs careful setting. In preliminary experiments, using our U-net like

architecture with SELU activations resulted in a very noisy loss that even explodes sometimes.

We think this could be caused by the skip connections that can violate the self-normalizing

136



B.4. Our proposed method

Figure B.3 – EddyNet architecture

property desired by the SELU, and hence decided to keep Batch Normalization in EddyNet_S

after each of the maxpooling, transposed convolution and concatenation layers.

B.4.2 Loss metric

While multiclass classification problems in deep learning are generally trained using the categor-

ical cross-entropy cost function, segmentation problems favor the use of overlap based metrics.

The dice coefficient is a popular and largely used cost function in segmentation problems. Con-

sidering the predicted region P and the groundtruth region G, and by denoting |P | and |G| the

sum of elements in each area, the dice coefficient is twice the ratio of the intersection over the

sum of areas:

DiceCoef(P,G) =
2|P ∩G|
|P | + |G| . (B.1)

A perfect segmentation result is given by a dice coefficient of 1, while a dice coefficient of 0

refers to a completely mistaken segmentation. Seeing it from a F1-measure perspective, the dice

coefficient is the harmonic mean of the precision and recall metrics.

The implementation uses one-hot encoding vectors, an essential detail is that the loss function

of EddyNet uses a soft and differentiable version of the dice coefficient which considers the output
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of the softmax layer as it is without binarization:

softDiceCoef(P,G) =
2
∑

i pi ∗ gi
∑

i pi +
∑

i gi
, (B.2)

where the pi are the probabilities given by the softmax layer 0 ≤ pi ≤ 1, and the gi are either 1

for the correct class and 0 either. We found later that a recent study used another version of a

soft dice loss [114]; a comparison of both versions is out of the scope of this work.

Since we are in the context of a multiclass classification problem, we try to maximize the

performance of our network using the mean of three one-vs-all soft dice coefficients of each class.

The loss function that our neural network aims to minimize is then simply:

Dice Loss = 1 − softMeanDiceCoef (B.3)

Table B.1 – Metrics calculated from the results of 50 random sets of 360 SSH patches from the
test dataset, we report the mean value and put the standard variation between parenthesis.

Anticyclonic Cyclonic Non Eddy

#Param Epoch time Train loss Dice Coef Mean Dice Coef Global Accuracy

177,571 Dice Loss 0.708 (0.002) 0.677 (0.001) 0.929 (0.001) 0.772 (0.001) 88.60% (0.10%)
EddyNet ∼12 min

CCE 0.695 (0.003) 0.651 (0.001) 0.940 (0.001) 0.762 (0.001) 89.92% (0.07%)

∼7 min Dice Loss 0.694 (0.003) 0.665 (0.001) 0.933 (0.001) 0.764 (0.001) 88.98% (0.09%)
EddyNet_S

CCE 0.682 (0.002) 0.653 (0.002) 0.939 (0.001) 0.758 (0.001) 89.83% (0.08%)

B.5 Experiments

B.5.1 Assessment of the performance

Keras framework with a Tensorflow backend is considered in this work. EddyNet is trained on

a Nvidia K80 GPU card using ADAM optimizer and mini-batches of 16 maps. The weights

were initialized using truncated Gaussian distributed weights of zero mean and {2/number of

input units} variance [68] for EddyNet, while we use weights drawn from a truncated Gaussian

distribution of zero mean and {1/number of input units} variance for EddyNet_S. The training

dataset is split into 4080 images for training and 1020 for validation. We also use an early-

stopping strategy to stop the learning process when the validation dataset loss stops improving

in five consecutive epochs. EddyNet weights are then the ones resulting in the lowest validation

loss value.
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EddyNet and EddyNet_S are then compared regarding the use of the classical ReLU+BN

and the use of SELU. We also compare the use of overlap based metric represented by the Dice

Loss (Equation B.3), with the classical Categorical Cross-Entropy (CCE). Table B.1 compares

the four combination in terms of global accuracy and mean dice coefficient (original not soft)

averaged on 50 random sets of 360 SSH 120 × 120 maps from 2012. Training EddyNet_S takes

nearly half the time needed for training EddyNet. Comparison regarding the training loss func-

tion shows that training with the dice loss results in a higher dice coefficient for our two classes

of interest (cyclonic and anticyclonic) in both EddyNet and EddyNet_S; dice loss yields a better

overall mean dice coefficient than training with CCE loss. Regarding the effect of the activation

function, we obtained better metrics with EddyNet at the cost of a longer training procedure.

Visually Eddynet and EddyNet_S give close outputs as can be seen in Figure B.4.

B.5.2 Ghost eddies

The presence of ghost eddies is a frequent problem encountered in eddy detection and tracking

algorithms [53]. Ghost eddies are eddies that are found by the detection algorithm then disappear

between consecutive maps before reappearing again. To point out the position of the missed ghost

eddies, PET14 uses linear temporal interpolation between centers of detected eddies and stores

the positions of the centers of ghost eddies. Using EddyNet we check if the pixels of ghost eddy

centers correspond to actual eddy detections. We found that EddyNet assigns the centers of

ghost eddies to the correct eddy classes 55% of the time for anticyclonic eddies, and 45% for

cyclonic eddies. EddyNet could be a relevant method to detect ghost eddies that are missed out

by conventional methods. Figure B.5 illustrates two examples of ghost eddy detection.

B.6 Conclusion

This work investigates the use of recent developments in deep learning based image segmenta-

tion for an ocean remote sensing problem, namely, eddy detection and classification from Sea

Surface Height (SSH) maps. We propose EddyNet, a deep neural network architecture inspired

from architectures and ideas widely adopted in the computer vision community. We transfer

successfully the knowledge gained to the problem of eddy classification by dealing with various

challenges. Future work involves investigating the use of temporal volumes of SSH and deriv-

ing a 3D version inspired by the works of [114]. Adding other surface information such as Sea

Surface Temperature might also help improving the detection. Another extension would be the
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(a)

(b)

Figure B.4 – Examples of the eddy segmentation results using Eddynet and EddyNet_S: anti-
cyclonic eddies (green), cyclonic (brown), non eddy (blue)
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(a)

(b)

Figure B.5 – Detection of ghost eddies: [left] SSH map with ghost eddies centers: anticyclonic
(red dots), cyclonic (blue dots). [center] PET14 segmentation. [right] EddyNet segmentation:
anticyclonic (green), cyclonic (brown), non eddy (blue)

application of EddyNet over the globe, and assessing its general capacity over other regions.

Post-processing by constraining the eddies to verify additional criteria and tracking the eddies

was omitted in this work and could also be developed in future work.

Beyond the illustrative aspect of this contribution, we offer to the oceanic remote sensing

community an easy and powerful tool that can save handcrafting model efforts. Any user can

employ his own eddy segmentation "ground truth" and train the model from scratch if he/she

has the necessary memory and computing resources, or simply use EddyNet provided weights as

an initialization then perform fine-tuning using his/her dataset. One can also think of averag-

ing results from classical contour-based methods and EddyNet. In the spirit of reproducibility,

Python code is available at https://github.com/redouanelg/eddynet, and we also share the

training and testing data used for this work to encourage competing methods and, especially,

other deep learning architectures.
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Résumé 

Reconstruire des champs géophysiques à partir d'observations 

bruitées et partielles est un problème classique bien étudié dans la 

littérature. L'assimilation de données est une méthode populaire pour 

aborder ce problème, et se fait par l'utilisation de techniques 

classiques, comme le filtrage de Kalman d’ensemble ou des filtres 

particulaires qui procèdent à une évaluation online du modèle physique 

afin de fournir une prévision de l'état. La performance de l'assimilation 

de données dépend alors fortement de du modèle physique. En 

revanche, la quantité de données d'observation et de simulation a 

augmenté rapidement au cours des dernières années. Cette thèse 

traite l'assimilation de données d'une manière data-driven et ce, sans 

avoir accès aux équations explicites du modèle. Nous avons 

développé et évalué l'assimilation des données par analogues (AnDA), 

qui combine la méthode des analogues et des méthodes de filtrage 

stochastiques (filtres Kalman, filtres à particules, chaînes de Markov 

cachées). Des applications aux modèles chaotiques simplifiés et à des 

études de cas de télédétection réelle (température de surface de la 

mer, anomalies du niveau de la mer), nous démontrons la pertinence 

d'AnDA pour l'interpolation de données manquantes des systèmes 

dynamiques non linéaires et à haute dimension à partir d'observations 

irrégulières et bruyantes.  

 

Motivé par l'essor du machine learning récemment, la dernière partie 

de cette thèse est consacrée à l'élaboration de modèles deep learning 

pour la détection et de tourbillons océaniques à partir de données de 

sources multiples et/ou multitemporelles (ex: SST-SSH), l'objectif 

général étant de surpasser les approches dites expertes. 

 
 
Mots clés : Assimilation de données, prédiction par analogues, 

Assimilation de données par analogues, Télédétection de l’océan, 

Température de la surface de l’océan, Elévation du niveau de la mer, 

Apprentissage profond 

 

 

 

 

 

Abstract 

Reconstructing geophysical fields from noisy and partial remote 

sensing observations is a classical problem well studied in the 

literature. Data assimilation is one class of popular methods to address 

this issue, and is done through the use of classical stochastic filtering 

techniques, such as ensemble Kalman or particle filters and 

smoothers. They proceed by an online evaluation of the physical model 

in order to provide a forecast for the state. Therefore, the performance 

of data assimilation heavily relies on the definition of the physical 

model. In contrast, the amount of observation and simulation data has 

grown very quickly in the last decades. This thesis focuses on 

performing data assimilation in a data-driven way and this without 

having access to explicit model equations. The main contribution of this 

thesis lies in developing and evaluating the Analog Data Assimilation 

(AnDA), which combines analog methods (nearest neighbors search) 

and stochastic filtering methods (Kalman filters, particle filters, Hidden 

Markov Models). Through applications to both simplified chaotic 

models and real ocean remote sensing case-studies (sea surface 

temperature, along-track sea level anomalies), we demonstrate the 

relevance of AnDA for missing data interpolation of nonlinear and high-

dimensional dynamical systems from irregularly-sampled and noisy 

observations.  

 

Driven by the rise of machine learning in the recent years, the last part 

of this thesis is dedicated to the development of deep learning models 

for the detection and tracking of ocean eddies from multi-source and/or 

multi-temporal data (e.g., SST-SSH), the general objective being to 

outperform expert-based approaches. 

 
 
Keywords: Data Assimilation, Analog forecasting, Analog Data 

Assimilation, Sea Surface Temperature, Ocean Remote Sensing, Sea 

Surface Temperature, Sea Level Anomaly, Deep Learning 
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