78 4.4.1 Patch-based state-space formulation, p.78 ,
Chapter Data interpretation compared with physically-derived priors [149]. The combination of such physicallyderived parameterizations to data-driven strategies appear as a promising research direction. List of Figures 4.5 Reconstructed SLA fields using noise-free along-track observation using: from left to right, the first row shows the ground truth field, the simulated available along-tracks for that day, the ground truth gradient field. The second and third rows show each of the reconstruction and their corresponding gradient filed, from left to right The Fourier power spectrum of the competing methods is also included, Analog Spatio-Temporal Interpolation of Sea Level Anomalies from Altimeter-derived, p.85, 2012. ,
from left to right, the first row shows the ground truth field, the simulated available along-tracks for that day, the ground truth gradient field. The second and third rows show each of the reconstruction and their corresponding gradient fields, from left to right The Fourier power spectrum of the competing methods is also included, Reconstructed SLA fields using noise-free along-track observation using, p.86, 2012. ,
01) Daily RMSE time series of PB-AnDA SLA reconstructions using noisy along-track data for different choices of the regression variables in the locally-linear analog forecasting model: MS-AnDA-dX (light blue), MS-AnDA-dX+SST (orange) and MS-AnDA-dX + ¯ X (green), p.91 ,
the groundtruthed SLA fields. See Section 4.5.1 for the corresponding parameter settings, p.83 ,
the groundtruthed SLA fields. See Section 4.5.1 for the corresponding parameter settings, p.88 ,
Optimal filtering. Reprint of the, 1979. ,
An ensemble adjustment Kalman filter for data assimilation, Monthly Weather Review, vol.129, issue.12, pp.2884-2903, 2001. ,
Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter, Physica D: Nonlinear Phenomena, vol.230, issue.1, pp.99-111, 2007. ,
Localization and sampling error correction in ensemble Kalman filter data assimilation, Monthly Weather Review, vol.140, issue.7, pp.2359-2371, 2012. ,
A monte carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Monthly Weather Review, vol.127, issue.12, pp.2741-2758, 1999. ,
Data assimilation: methods, algorithms, and applications, Fundamentals of Algorithms. SIAM, 2016. ,
DOI : 10.1137/1.9781611974546
URL : https://hal.archives-ouvertes.fr/hal-01402885
Oceanic eddy detection and lifetime forecast using machine learning methods, Geophysical Research Letters, issue.23, pp.43-2016 ,
A Comparison of Two Techniques for Generating Nowcasting Ensembles. Part II: Analogs Selection and Comparison of Techniques, Monthly Weather Review, vol.143, issue.7, pp.2890-2908, 2015. ,
DOI : 10.1175/MWR-D-14-00342.1
Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks, 2016. ,
DOI : 10.1127/1432-8364/2010/0041
URL : https://hal.archives-ouvertes.fr/hal-01360166
Multi-resolution missing data interpolation in SST image series, 2011 18th IEEE International Conference on Image Processing, 2011. ,
DOI : 10.1109/ICIP.2011.6115733
URL : https://hal.archives-ouvertes.fr/hal-01196960
Data analysis system developed for ocean color satellite sensors, Eos, Transactions American Geophysical Union, vol.82, issue.18, pp.202-202, 2001. ,
DOI : 10.1029/01EO00109
URL : https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/01EO00109
Multifield Analog Prediction of Short-Term Climate Fluctuations Using a Climate State vector, Journal of the Atmospheric Sciences, vol.35, issue.10, pp.1771-1787, 1978. ,
DOI : 10.1175/1520-0469(1978)035<1771:MAPOST>2.0.CO;2
EOF Calculations and Data Filling from Incomplete Oceanographic Datasets*, Journal of Atmospheric and Oceanic Technology, vol.20, issue.12, pp.1839-1856, 2003. ,
DOI : 10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2
Navier-stokes, fluid dynamics, and image and video inpainting, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, pp.355-362, 2001. ,
DOI : 10.1109/CVPR.2001.990497
URL : http://www.ima.umn.edu/preprints/jun01/1772.pdf
Tests of different flavours of enkf on a simple model, Quarterly Journal of the Royal Meteorological Society, vol.139, issue.675, pp.1505-1519, 2013. ,
A technique for objective analysis and design of oceanographic experiments applied to mode-73, Deep Sea Research and Oceanographic Abstracts, pp.559-582, 1976. ,
Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proceedings of the National Academy of Sciences, vol.113, issue.15, pp.3932-3937, 2016. ,
A Non-Local Algorithm for Image Denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.60-65, 2005. ,
DOI : 10.1109/CVPR.2005.38
Evaluation of different covariance models for the operational interpolation of high resolution satellite Sea Surface Temperature data over the Mediterranean Sea, Remote Sensing of Environment, vol.164, pp.334-343, 2015. ,
DOI : 10.1016/j.rse.2015.04.025
Analysis Scheme in the Ensemble Kalman Filter, Monthly Weather Review, vol.126, issue.6, pp.1719-1724, 1998. ,
DOI : 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
Data Assimilation in the Geosciences -An overview on methods, issues and perspectives. ArXiv e-prints, 2017. ,
Identification of eddies from sea surface temperature maps with neural networks, International Journal of Remote Sensing, vol.42, issue.8, pp.1601-1618, 2006. ,
DOI : 10.1016/S0893-6080(03)00021-2
Reconstruction of Subsurface Velocities From Satellite Observations Using Iterative Self-Organizing Maps, IEEE Geoscience and Remote Sensing Letters, vol.14, issue.5, pp.617-620, 2017. ,
DOI : 10.1109/LGRS.2017.2665603
URL : https://hal.archives-ouvertes.fr/hal-01685269
Inverse method for the retrieval of ocean vertical profiles using self organizing maps and hidden markov models -application on ocean colour satellite image inversion, NCTA 2011 -Proceedings of the International Conference on Neural Computation Theory and Applications [part of the International Joint Conference on Computational Intelligence IJCCI 2011], pp.24-26, 2011. ,
Global Microwave Satellite Observations of Sea Surface Temperature for Numerical Weather Prediction and Climate Research -ProQuest, p.1097, 2005. ,
Satellite Altimetry, International Geophysics of Satellite Altimetry and Earth SciencesA Handbook of Techniques and Applications, p.1, 2001. ,
URL : https://hal.archives-ouvertes.fr/hal-00798764
Global observations of nonlinear mesoscale eddies, Progress in Oceanography, vol.91, issue.2, pp.167-216, 2011. ,
Global observations of large oceanic eddies, Geophysical Research Letters, issue.15, p.34, 2007. ,
Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond, 2003. ,
An Ensemble-Based Smoother with Retrospectively Updated Weights for Highly Nonlinear Systems, Monthly Weather Review, vol.135, issue.1, pp.186-202, 2007. ,
DOI : 10.1175/MWR3353.1
URL : http://www.atmos.ucla.edu/tcd/PREPRINTS/Chin%26co-BSS-MWR%2707.pdf
Statistical signal processing: modelling and estimation, 2002. ,
DOI : 10.1007/978-1-4471-0139-0
Robust locally weighted regression and smoothing scatterplots, Journal of the American statistical association, vol.74, issue.368, pp.829-836, 1979. ,
Predicting regional and pan-arctic sea ice anomalies with kernel analog forecasting, 2017. ,
Smoothing Problems in a Bayesian Framework and Their Linear Gaussian Solutions, Monthly Weather Review, vol.140, issue.2, pp.683-695, 2012. ,
DOI : 10.1175/MWR-D-10-05025.1
URL : https://hal.archives-ouvertes.fr/hal-00905009
Region Filling and Object Removal by Exemplar-Based Image Inpainting, IEEE Transactions on Image Processing, vol.13, issue.9, pp.1200-1212, 2004. ,
DOI : 10.1109/TIP.2004.833105
URL : http://www.csee.wvu.edu/~xinl/courses/ee565/image_inpainting.pdf
Assimilation of altimeter eddy fields in a limitedarea quasi-geostrophic model, Journal of physical oceanography, vol.17, issue.12, pp.2280-2293, 1987. ,
Image denoising with patch based PCA: local versus global, Procedings of the British Machine Vision Conference 2011, pp.25-26, 2011. ,
DOI : 10.5244/C.25.25
URL : https://hal.archives-ouvertes.fr/hal-00654289
Analog-based postprocessing methods for air quality forecasting, Air Pollution Modeling and its Application XXIII, pp.237-239, 2014. ,
Kalman Filter and Analog Schemes to Postprocess Numerical Weather Predictions, Monthly Weather Review, vol.139, issue.11, pp.3554-3570, 2011. ,
DOI : 10.1175/2011MWR3653.1
The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system, Remote Sensing of Environment, vol.116, pp.140-158, 2012. ,
DOI : 10.1016/j.rse.2010.10.017
A family of embedded runge-kutta formulae, Journal of computational and applied mathematics, vol.6, issue.1, pp.19-26, 1980. ,
Image quilting for texture synthesis and transfer, Proceedings of the 28th annual conference on Computer graphics and interactive techniques , SIGGRAPH '01, pp.341-346, 2001. ,
DOI : 10.1145/383259.383296
URL : http://online.cs.nps.navy.mil/DistanceEducation/online.siggraph.org/2001/Papers/09_ImagesAndTextures/../cd/papers/efros/efros.pdf
Extended-Range Forecasting by Weather Types, pp.834-840, 1951. ,
DOI : 10.1175/1520-0469(1949)006<0001:OEDITA>2.0.CO;2
Improvement of coastal and mesoscale observation from space: Application to the northwestern Mediterranean Sea, Geophysical Research Letters, vol.104, issue.C6, pp.402148-2153, 2013. ,
DOI : 10.1175/JPO-D-12-0106.1
URL : https://hal.archives-ouvertes.fr/hal-00808033
Data Assimilation, 2009. ,
DOI : 10.1007/978-3-642-03711-5
URL : https://hal.archives-ouvertes.fr/hal-00229825
An Ensemble Kalman Smoother for Nonlinear Dynamics, Monthly Weather Review, vol.128, issue.6, pp.1852-1867, 2000. ,
DOI : 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
Missing data super-resolution using non-local and statistical priors, 2015 IEEE International Conference on Image Processing (ICIP), pp.676-680, 2015. ,
DOI : 10.1109/ICIP.2015.7350884
URL : https://hal.archives-ouvertes.fr/hal-01271182
Joint Interpolation of Multisensor Sea Surface Temperature Fields Using Nonlocal and Statistical Priors, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.9, issue.6, pp.2665-2675, 2016. ,
DOI : 10.1109/JSTARS.2016.2523605
URL : https://hal.archives-ouvertes.fr/hal-01441483
Data-Driven Models for the Spatio-Temporal Interpolation of Satellite-Derived SST Fields, IEEE Transactions on Computational Imaging, vol.3, issue.4, 2017. ,
DOI : 10.1109/TCI.2017.2749184
URL : https://hal.archives-ouvertes.fr/hal-01656178
Improving mesoscale altimetric data from a multi-tracer convolutional processing of standard satellite-derived products. working paper or preprint, 2016. ,
URL : https://hal.archives-ouvertes.fr/hal-01756076
Data-driven assimilation of irregularly-sampled image time series, 2017 IEEE International Conference on Image Processing (ICIP), 2017. ,
DOI : 10.1109/ICIP.2017.8297094
URL : https://hal.archives-ouvertes.fr/hal-01757749
A daily global mesoscale ocean eddy dataset from satellite altimetry, Scientific data, 2015. ,
Eddyscan: A physically consistent ocean eddy monitoring application, Intelligent Data Understanding (CIDU), 2012 Conference on, pp.96-103, 2012. ,
Sequential neural models with stochastic layers, Advances in Neural Information Processing Systems, pp.2199-2207, 2016. ,
Markov Random Fields for Super-Resolution In Advances in Markov Random Fields for Vision and Image Processing, 2011. ,
Objective analysis of meteorological fields. by L. S. Gandin. translated from the russian. jerusalem (israel program for scientific translations) figures; 28 tables. £4 1s. 0d, Quarterly Journal of the Royal Meteorological Society, vol.242, issue.393, pp.53-92447, 1965. ,
The Challenge of Using Future SWOT Data for Oceanic Field Reconstruction, Journal of Atmospheric and Oceanic Technology, vol.33, issue.1, pp.119-126, 2015. ,
DOI : 10.1175/JTECH-D-15-0160.1
On the inversion of submesoscale tracer fields to estimate the surface ocean circulation, Journal of Marine Systems, vol.126, pp.33-42, 2013. ,
DOI : 10.1016/j.jmarsys.2012.02.014
Deep learning, 2016. ,
Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEEE Proceedings F, Radar and Signal Processing, pp.107-113, 1993. ,
DOI : 10.1049/ip-f-2.1993.0015
Neural approach to inverting complex system: Application to ocean salinity profile estimation from surface parameters, Computers & Geosciences, vol.72, pp.201-209, 2014. ,
DOI : 10.1016/j.cageo.2014.07.012
Submesoscale Cold Filaments in the Gulf Stream, Journal of Physical Oceanography, vol.44, issue.10, pp.2617-2643, 2014. ,
DOI : 10.1175/JPO-D-14-0029.1
Automatic eddy extraction from sst imagery using artificial neural network. The international archives of the photogrammetry, remote sensing and spatial information science, pp.279-282, 2008. ,
Ensemble Kalman Filtering without a Model, Physical Review X, vol.6, issue.1, p.11021, 2016. ,
DOI : 10.1073/pnas.1015753108
URL : http://doi.org/10.1103/physrevx.6.011021
Econometrics textbook, 2000. ,
Relating sardine recruitment in the Northern Benguela to satellite-derived sea surface height using a neural network pattern recognition approach, Progress in Oceanography, vol.59, issue.2-3, p.241 ,
DOI : 10.1016/j.pocean.2003.07.005
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, 2015 IEEE International Conference on Computer Vision (ICCV), pp.1026-1034, 2015. ,
DOI : 10.1109/ICCV.2015.123
URL : http://arxiv.org/pdf/1502.01852
Learning-based emulation of sea surface wind fields from numerical model outputs and sar data. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal, vol.8, issue.10, pp.4742-4750, 2015. ,
URL : https://hal.archives-ouvertes.fr/hal-01581500
The role of mesoscale eddies in the general circulation of the ocean?numerical experiments using a wind-driven quasi-geostrophic model, Journal of Physical Oceanography, vol.8, issue.3, pp.363-392, 1978. ,
Next-Generation Numerical Weather Prediction: Bridging Parameterization, Explicit Clouds, and Large Eddies, Bulletin of the American Meteorological Society, vol.93, issue.1, p.6, 2012. ,
DOI : 10.1175/2011BAMS3224.1
Global Optimization of an Analog Method by Means of Genetic Algorithms, Monthly Weather Review, vol.145, issue.4, pp.1275-1294, 2017. ,
DOI : 10.1175/MWR-D-16-0093.1
Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters*, Monthly Weather Review, vol.140, issue.2, pp.528-542, 2012. ,
DOI : 10.1175/2011MWR3640.1
Mitigating Observation Perturbation Sampling Errors in the Stochastic EnKF, Monthly Weather Review, vol.143, issue.7, pp.2918-2936, 2015. ,
DOI : 10.1175/MWR-D-14-00088.1
A New Approximate Solution of the Optimal Nonlinear Filter for Data Assimilation in Meteorology and Oceanography, Monthly Weather Review, vol.136, issue.1, pp.317-334, 2008. ,
DOI : 10.1175/2007MWR1927.1
URL : https://hal.archives-ouvertes.fr/hal-00853121
Deepeddy: A simple deep architecture for mesoscale oceanic eddy detection in sar images, 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), pp.673-678, 2017. ,
Potential use of microwave sea surface temperatures for the estimation of ocean currents, Geophysical Research Letters, vol.107, issue.C10, 2006. ,
DOI : 10.1357/002224090784988700
URL : https://hal.archives-ouvertes.fr/hal-00270261
On the Transfer Function between Surface Fields and the Geostrophic Stream Function in the Mediterranean Sea, Journal of Physical Oceanography, vol.44, issue.5, pp.1406-1423, 2014. ,
DOI : 10.1175/JPO-D-13-0186.1
Identification of Marine Eddies from Altimetric Maps, Journal of Atmospheric and Oceanic Technology, vol.20, issue.5, pp.772-778, 2003. ,
DOI : 10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2
Reconstruction of satellite chlorophyll images under heavy cloud coverage using a neural classification method. Remote sensing of environment, Bibliography, vol.131, pp.232-246, 2013. ,
URL : https://hal.archives-ouvertes.fr/hal-01495295
A new extension of the kalman filter to nonlinear systems, pp.182-193, 1997. ,
Atmospheric modeling, data assimilation and predictability, 2003. ,
DOI : 10.1017/CBO9780511802270
Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height, Geophysical Research Letters, vol.35, issue.48, pp.36-12603, 2009. ,
DOI : 10.1029/2009GL038359
URL : https://hal.archives-ouvertes.fr/hal-00413564
Remote Sensing of Sea Surface Salinity: An Overview with Case Studies, Journal of Coastal Research, vol.276, pp.830-838, 2011. ,
DOI : 10.2112/JCOASTRES-D-11-00060.1
Deep kalman filters. arXiv preprint, 2015. ,
Machine learning in geosciences and remote sensing, Geoscience Frontiers, vol.7, issue.1, pp.3-10, 2016. ,
Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A: Dynamic Meteorology and Oceanography, vol.109, issue.2, pp.97-110, 1986. ,
DOI : 10.1175/1520-0493(1982)110<0455:OVNMI>2.0.CO;2
Large sample asymptotics for the ensemble Kalman filter, 2009. ,
Parameterization of subgrid stirring in eddy resolving ocean models. Part 1: Theory and diagnostics, Ocean Modelling, vol.39, issue.1-2, pp.154-169, 2011. ,
DOI : 10.1016/j.ocemod.2011.03.007
URL : https://hal.archives-ouvertes.fr/hal-00755145
An Improved Mapping Method of Multisatellite Altimeter Data, Journal of Atmospheric and Oceanic Technology, vol.15, issue.2, pp.522-534, 1998. ,
DOI : 10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2
Deep learning, Nature, vol.9, issue.7553, pp.436-444, 2015. ,
DOI : 10.1007/s10994-013-5335-x
An exemplar-based hidden Markov model framework for nonlinear state-space models, 2016 24th European Signal Processing Conference (EUSIPCO), pp.2340-2344, 2016. ,
DOI : 10.1109/EUSIPCO.2016.7760667
URL : https://hal.archives-ouvertes.fr/hal-01444213
Spatio-temporal interpolation of altimeter-derived SSH fields using analog data assimilation: A case-study in the south china sea, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2017. ,
DOI : 10.1109/IGARSS.2017.8127625
Using archived datasets for missing data interpolation in ocean remote sensing observation series, OCEANS 2016, Shanghai, pp.1-5, 2016. ,
DOI : 10.1109/OCEANSAP.2016.7485433
URL : https://hal.archives-ouvertes.fr/hal-01355266
The Analog Data Assimilation, Monthly Weather Review, vol.145, issue.10, p.2017 ,
DOI : 10.1175/MWR-D-16-0441.s1
URL : https://hal.archives-ouvertes.fr/hal-01609141
Non-parametric Ensemble Kalman methods for the inpainting of noisy dynamic textures, 2015 IEEE International Conference on Image Processing (ICIP), pp.4288-4292, 2015. ,
DOI : 10.1109/ICIP.2015.7351615
URL : https://hal.archives-ouvertes.fr/hal-01271173
Spatial interpolation methods applied in the environmental sciences: A review, Environmental Modelling & Software, vol.53, pp.173-189, 2014. ,
DOI : 10.1016/j.envsoft.2013.12.008
The Met. Office global three-dimensional variational data assimilation scheme, Quarterly Journal of the Royal Meteorological Society, vol.119, issue.570, pp.1262991-3012, 2000. ,
DOI : 10.1002/qj.49712455003
Analysis methods for numerical weather prediction, Quarterly Journal of the Royal Meteorological Society, vol.112, issue.474, pp.1177-1194, 1986. ,
Atmospheric predictability as revealed by naturally occurring analogues, Journal of the Atmospheric sciences, vol.26, issue.4, pp.636-646, 1969. ,
Predictability: A problem partly solved, Proc. Seminar on predictability, 1996. ,
Inpainting Strategies for Reconstruction of Missing Data in VHR Images, IEEE Geoscience and Remote Sensing Letters, vol.8, issue.5, pp.914-918, 2011. ,
DOI : 10.1109/LGRS.2011.2141112
Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification, IEEE Transactions on Geoscience and Remote Sensing, vol.55, issue.2, pp.645-657, 2017. ,
DOI : 10.1109/TGRS.2016.2612821
URL : https://hal.archives-ouvertes.fr/hal-01369906
A wavelet tour of signal processing, second edition, 1999. ,
A theory for multiresolution signal decomposition: the wavelet representation, IEEE transactions on pattern analysis and machine intelligence, vol.11, issue.7, pp.674-693, 1989. ,
Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence, Journal of Geophysical Research: Oceans, vol.6, issue.6194, pp.3329-3357, 2017. ,
DOI : 10.1038/srep24349
A New Sea Surface Height???Based Code for Oceanic Mesoscale Eddy Tracking, Journal of Atmospheric and Oceanic Technology, vol.31, issue.5, pp.311181-1188, 2014. ,
DOI : 10.1175/JTECH-D-14-00019.1
A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of ofes (ogcm for the earth simulator), J. Earth Simulator, vol.1, pp.35-56, 2004. ,
A model-based approach for analog spatio-temporal dynamic forecasting, Environmetrics, 2015. ,
The nature and consequences of oceanic eddies. Ocean Modeling in an Eddying Regime, pp.5-15, 2008. ,
Advanced data assimilation in strongly nonlinear dynamical systems, Journal of the Atmospheric Sciences, vol.51, issue.8, pp.1037-1056, 1994. ,
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation, 2016 Fourth International Conference on 3D Vision (3DV), p.2016 ,
DOI : 10.1109/3DV.2016.79
URL : http://arxiv.org/pdf/1606.04797
An evaluation of analog-based postprocessing methods across several variables and forecast models, p.2015, 2015. ,
Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences, Deep sea research and oceanographic abstracts, pp.445-454, 1970. ,
DOI : 10.1016/0011-7471(70)90059-8
Five balltree construction algorithms, 1989. ,
A local ensemble Kalman filter for atmospheric data assimilation, Tellus A: Dynamic Meteorology and Oceanography, vol.56, issue.131, pp.415-428, 2004. ,
DOI : 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
Data assimilation with the weighted ensemble Kalman filter, Tellus A: Dynamic Meteorology and Oceanography, vol.133, issue.6, pp.673-697, 2010. ,
DOI : 10.1175/MWR2946.1
URL : https://hal.archives-ouvertes.fr/hal-00490840
Improved description of the ocean mesoscale variability by combining four satellite altimeters, Geophysical Research Letters, vol.104, issue.C6, 2006. ,
DOI : 10.1016/S0074-6142(01)80148-0
Non-local Regularization of Inverse Problems, Inverse Problems and Imaging, vol.52, issue.7, pp.511-530, 2011. ,
DOI : 10.1109/TIT.2006.871582
Stochastic methods for sequential data assimilation in strongly nonlinear systems, Monthly weather review, vol.129, issue.5, pp.1194-1207, 2001. ,
An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data, PLOS ONE, vol.159, issue.4, p.155928, 2016. ,
DOI : 10.1371/journal.pone.0155928.t001
Filtering via simulation: Auxiliary particle filters, Journal of the American statistical association, vol.94, issue.446, pp.590-599, 1999. ,
An insight into the issue of dimensionality in particle filtering, 2010 13th International Conference on Information Fusion, pp.1-8, 2010. ,
DOI : 10.1109/ICIF.2010.5712050
URL : https://hal.archives-ouvertes.fr/hal-00911994
A tutorial on hidden markov models and selected applications in speech recognition, Proceedings of the IEEE, pp.257-286, 1989. ,
U-Net: Convolutional Networks for Biomedical Image Segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.234-241, 2015. ,
DOI : 10.1007/978-3-319-24574-4_28
URL : http://arxiv.org/pdf/1505.04597
Data-driven discovery of partial differential equations, Science Advances, vol.3, issue.4, p.1602614, 2017. ,
Estimating Model Parameters with Ensemble-Based Data Assimilation: A Review, Journal of the Meteorological Society of Japan. Ser. II, vol.91, issue.2, pp.79-99, 2013. ,
DOI : 10.2151/jmsj.2013-201
Geometric Methods for Vortex Extraction, Data Visualization'99, pp.53-62, 1999. ,
DOI : 10.1007/978-3-7091-6803-5_6
SSH Wavenumber Spectra in the North Pacific from a High-Resolution Realistic Simulation, Journal of Physical Oceanography, vol.42, issue.7, pp.1233-1241, 2012. ,
DOI : 10.1175/JPO-D-11-0180.1
URL : https://hal.archives-ouvertes.fr/hal-00739070
An eddy-resolving hindcast simulation of the quasi-global ocean from, 1950. ,
Regional Objective Analysis for Merging High-Resolution MERIS, MODIS/Aqua, and SeaWiFS Chlorophyll- a Data From 1998 to 2008 on the European Atlantic Shelf, IEEE Transactions on Geoscience and Remote Sensing, vol.49, issue.1, pp.143-154, 2011. ,
DOI : 10.1109/TGRS.2010.2052813
Reconstruction of high resolution atmospheric fields for northern europe using analog-upscaling, pp.1681-1703, 2012. ,
Learning with kernels: support vector machines , regularization, optimization, and beyond, 2002. ,
Manifold Learning for Latent Variable Inference in Dynamical Systems, IEEE Transactions on Signal Processing, vol.63, issue.15, pp.3843-3856, 2015. ,
DOI : 10.1109/TSP.2015.2432731
Linear Gaussian state-space model with irregular sampling: application to sea surface temperature, Stochastic Environmental Research and Risk Assessment, vol.86, issue.1, pp.793-804, 2010. ,
DOI : 10.1093/biomet/86.4.815
SST spatial anisotropic covariances from METOP-AVHRR data, Remote Sensing of Environment, vol.141, pp.144-148, 2014. ,
DOI : 10.1016/j.rse.2013.10.024
URL : https://hal.archives-ouvertes.fr/hal-00946860
Combining Analog Method and Ensemble Data Assimilation: Application to the Lorenz-63 Chaotic System, Machine Learning and Data Mining Approaches to Climate Science, pp.3-12, 2015. ,
DOI : 10.1007/978-3-319-17220-0_1
URL : https://hal.archives-ouvertes.fr/hal-01202496
Offline parameter estimation using EnKF and maximum likelihood error covariance estimates: Application to a subgrid-scale orography parametrization, Quarterly Journal of the Royal Meteorological Society, vol.61, issue.687, pp.141383-395, 2015. ,
DOI : 10.1111/j.1600-0870.2009.00407.x
On the nonlinear and nonnormal filter using rejection sampling, IEEE Transactions on Automatic Control, vol.44, issue.2, pp.314-319, 1999. ,
DOI : 10.1109/9.746257
Principal Neighborhood Dictionaries for Nonlocal Means Image Denoising, IEEE Transactions on Image Processing, vol.18, issue.12, pp.2649-2660, 2009. ,
DOI : 10.1109/TIP.2009.2028259
Introduction to Data Assimilation for Scientists and Engineers, Open Learn. Res, INPT 0202 6h, 2013. ,
Long-Range Weather Forecasting Using an Analog Approach, Journal of Climate, vol.2, issue.6, pp.594-607, 1989. ,
DOI : 10.1175/1520-0442(1989)002<0594:LRWFUA>2.0.CO;2
The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines, Ocean Science, vol.5, issue.4, pp.447-460, 2009. ,
DOI : 10.5194/os-5-447-2009
Wavelet Filtering to Extract Coherent Vortices from Altimetric Data, Journal of Atmospheric and Oceanic Technology, vol.24, issue.12, pp.2103-2119, 2007. ,
DOI : 10.1175/2007JTECHO434.1
Tracking oceanic currents by singularity analysis of Microwave Sea Surface Temperature images, Remote Sensing of Environment, vol.112, issue.5, 2009. ,
DOI : 10.1016/j.rse.2007.10.007
Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping, Journal of Atmospheric and Oceanic Technology, vol.32, issue.1, pp.177-184, 2014. ,
DOI : 10.1175/JTECH-D-14-00152.1
URL : https://hal.archives-ouvertes.fr/hal-01132400
New blending algorithm to synergize ocean variables: The case of SMOS sea surface salinity maps, Remote Sensing of Environment, vol.146, pp.172-187, 2014. ,
DOI : 10.1016/j.rse.2013.09.018
Searching for analogues, how long must we wait? Tellus A, pp.314-324, 1994. ,
Particle Filtering in Geophysical Systems, Monthly Weather Review, vol.137, issue.12, pp.4089-4114, 2009. ,
DOI : 10.1175/2009MWR2835.1
Nonlinear data assimilation in geosciences: an extremely efficient particle filter, Quarterly Journal of the Royal Meteorological Society, vol.1, issue.653, pp.1991-1999, 2010. ,
DOI : 10.1007/978-1-4757-3437-9
Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks, IEEE Transactions on Geoscience and Remote Sensing, vol.55, issue.2, pp.881-893, 2017. ,
DOI : 10.1109/TGRS.2016.2616585
The dynamics of enstrophy transfer in two-dimensional hydrodynamics, Physica D: Nonlinear Phenomena, vol.48, issue.2-3, pp.273-294, 1991. ,
DOI : 10.1016/0167-2789(91)90088-Q
Ensemble data assimilation without perturbed observations, Monthly Weather Review, vol.130, issue.7, pp.1913-1924, 2002. ,
Downscaling general circulation model output: a review of methods and limitations, Progress in Physical Geography, pp.530-548, 1997. ,
Data Mining: Practical machine learning tools and techniques, 2016. ,
Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly, Ocean Science, vol.10, issue.1, pp.39-48, 2014. ,
DOI : 10.5194/os-10-39-2014
AnaWEGE: a weather generator based on analogues of atmospheric circulation, Geoscientific Model Development, vol.7, issue.2, pp.531-543, 2014. ,
DOI : 10.5194/gmd-7-531-2014
Deconvolutional networks, Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp.2528-2535, 2010. ,
Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art, IEEE Geoscience and Remote Sensing Magazine, vol.4, issue.2, pp.22-40, 2016. ,
DOI : 10.1109/MGRS.2016.2540798
Analog forecasting with dynamics-adapted kernels, Nonlinearity, vol.29, issue.9, 2014. ,
DOI : 10.1088/0951-7715/29/9/2888
URL : http://arxiv.org/pdf/1412.3831
Deep learning in remote sensing: a review, 2017. ,