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Abstract

Adaptive software is a class of software which is able to modify its own in-
ternal structure and hence its behavior at runtime in response to changes in its
operating environment. Adaptive software development has been an emerging
research area of software engineering in the last decade. Many existing ap-
proaches use techniques issued from software product lines (SPLs) to develop
adaptive software architectures. They propose tools, frameworks or languages
to build adaptive software architectures but do not guide developers on the
process of using them. Moreover, they suppose that all elements in the SPL
specified are available in the architecture for adaptation. Therefore, the adap-
tive software architecture may embed unnecessary elements (components that
will never be used) thus limiting the possible deployment targets. On the other
hand, the components replacement at runtime remains a complex task since it
must ensure the validity of the new version, in addition to preserving the correct
completion of ongoing activities.

To cope with these issues, this thesis proposes an adaptive software develop-
ment process where tasks, roles, and associate artifacts are explicit. The process
aims at specifying the necessary information for building adaptive software ar-
chitectures. The result of such process is an adaptive software architecture that
only contains necessary elements for adaptation. On the other hand, an adap-
tation mechanism is proposed based on transactions management for ensuring
consistent dynamic adaptation. Such adaptation must guarantee the system
state and ensure the correct completion of ongoing transactions. In particular,
transactional dependencies are specified at design time in the variability model.
Then, based on such dependencies, components in the architecture include the
necessary mechanisms to manage transactions at runtime consistently.

Keywords: Variability Modeling, Software Architecture, Consistent Dy-
namic Adaptation, Transactional Dependency, Transaction Management, Soft-
ware Product Line.





Résumé

Les logiciels adaptatifs sont une classe de logiciels qui peuvent modifier
leur structure et comportement à l’exécution afin de s’adapter à des nouveaux
contextes d’exécution. Le développement de logiciels adaptatifs a été un domaine
de recherche très actif les dix dernières années. Plusieurs approches utilisent des
techniques issues des lignes des produits afin de développer de tels logiciels. Ils
proposent des outils, des frameworks, ou des langages pour construire des ar-
chitectures logicielles adaptatives, mais ne guident pas les ingénieurs dans leur
utilisation. De plus, ils supposent que tous les éléments spécifiés à la concep-
tion sont disponibles dans l’architecture pour l’adaptation, même s’ils ne seront
jamais utilisés. Ces éléments inutiles peuvent être une cause de soucis lors du
déploiement sur une cible dont l’espace mémoire est très contraint par exemple.
Par ailleurs, le remplacement de composants à l’exécution reste une tâche com-
plexe, elle doit assurer non seulement la validité de la nouvelle version, mais
aussi préserver la terminaison correcte des transactions en cours.

Pour faire face à ces problèmes, cette thèse propose un processus de dévelop-
pement de logiciels adaptatifs où les tâches, les rôles, et les artefacts associés
sont explicites. En particulier, le processus vise la spécification d’informations
nécessaires pour construire des architectures logicielles adaptatives. Le résultat
d’un tel processus est une architecture logicielle adaptative qui contient seule-
ment des éléments utiles pour l’adaptation. De plus, un mécanisme d’adapta-
tion est proposé basé sur la gestion de transactions pour assurer une adaptation
dynamique cohérente. Elle assure la terminaison correcte des transactions en
cours. Nous proposons pour cela la notion de dépendance transactionnelle :
dépendance entre des actions réalisées par des composants différents. Nous pro-
posons la spécification de ces dépendances dans le modèle de variabilité, et de
l’exploiter pour décider des fonctions de contrôle dans les composants de l’ar-
chitecture, des fonctions qui assurent une adaptation cohérente à l’exécution.

Mots-clés : Modélisation de Variabilité, Architecture Logicielle, Adapta-
tion Dynamique Cohérente, Dépendance Transactionnelle, Gestion de Transac-
tion, Ligne de Produit.





Contents

Résumé en français 1
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1 Introduction

L’adaptation d’un logiciel est la capacité d’un logiciel à s’adapter à son envi-
ronnement d’exécution. Une adaptation est dite ≪ dynamique ≫ si le processus
d’adaptation se déroule à l’exécution sans arrêter le système [Grondin 08]. Dans
certains cas tels qu’un système médical ou un système de communication, un
arrêt complet du système peut causer un dommage grave. Il est donc impor-
tant de pouvoir développer de tels systèmes adaptatifs qui peuvent se modifier
eux-mêmes.

Pour développer des logiciels adaptatifs, plusieurs travaux utilisent des tech-
niques issues des lignes de produits (LdP). Ils utilisent des modèles pour spécifier
la variabilité et l’architecture d’une ligne de produits tels que le modèle de va-
riabilité. Des éléments communs (commonality) sont présents dans tous les pro-
duits et des éléments variables (variabilité) représentent des différences entre les
produits [Bosch 01, Capilla 13]. La différence est spécifiée par des variantes dans

1



2 Résumé en français

le modèle de variabilité. La correspondance (mapping) entre l’architecture de la
ligne de produits et le modèle de variabilité est spécifiée. La description de la va-
riabilité à la conception nous permet de configurer plusieurs produits différents.
À partir des choix des éléments dans le modèle de variabilité (configuration de la
ligne), une configuration de l’architecture est déduite. Les éléments choisis sont
présents et activés dans le produit. Pour les besoins de l’adaptation, tous les
éléments qui ne sont pas choisis dans la configuration sont disponibles dans le
produit, même s’ils ne seront jamais utilisés. Ces éléments inutiles peuvent être
une cause de soucis dans le déploiement sur une cible dont l’espace mémoire
est très contraint par exemple. Enfin, les approches existantes ne fournissent
pas d’instructions aux développeurs sur comment construire des architectures
logicielles adaptatives.

Au-delà de la conception, à l’exécution, une nouvelle configuration peut
être décidée et une nouvelle architecture correspondante déduite. En calcu-
lant la différence entre la configuration actuelle et la nouvelle configuration,
des actions de reconfiguration sont générées. Elles sont exécutées pour modifier
l’architecture logicielle actuelle. Cependant, la détermination du meilleur mo-
ment pour remplacer des composants dans le processus d’adaptation est une
tâche complexe. Un processus d’adaptation assure non seulement la validité de
la nouvelle configuration, mais doit aussi garantir la terminaison correcte des
transactions en cours. Une telle adaptation s’appelle l’adaptation dynamique
cohérente. Certains travaux proposent des solutions pour faire face à ce problème
[Kramer 90, Ghafari 12a]. Tous sont basés sur la notion de ≪ transaction ≫. Une
transaction est une séquence d’actions exécutées par un ou plusieurs composants
qui se termine en un temps borné. Lorsque le système est en train d’exécuter
une transaction, aucun composant engagé dans cette transaction ne peut être
remplacé. La terminaison d’une transaction peut dépendre de celle d’autres
transactions. Cependant, ces travaux n’abordent pas la dépendance transac-
tionnelle entre des composants dans le système et comment trouver le meilleur
moment pour remplacer les composants.

Pour faire face aux problèmes cités ci-dessus, nous travaillons sur un proces-
sus de développement pour aider les développeurs à spécifier les informations
nécessaires pour générer une architecture logicielle adaptative qui ne contient
pas des éléments inutiles. Dans ce processus, des tâches, des rôles, des artefacts
associés sont explicites. De plus, nous proposons une approche pour spécifier
la dépendance transactionnelle. À partir du langage commun de variabilité
(CVL) [OMG 12] et de son modèle de variabilité, nous introduisons une nou-
velle contrainte, dependsOn . Elle indique la dépendance transactionnelle entre
composants. Nous proposons un mécanisme d’adaptation qui utilise les informa-
tions spécifiées à la conception pour développer des éléments dans le système,
et les exploiter à l’exécution pour assurer une adaptation cohérente et sûre.
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Le reste de ce document est organisé comme suit. La section 2 introduit le
processus de développement proposé dans notre approche. La section 3 présente
les mécanismes d’adaptation qui utilisent la spécification de dépendance transac-
tionnelle pour assurer une adaptation dynamique cohérente. La section 4 décrit
un prototype dédié au processus. La section 5 résume des travaux connexes et
enfin, la section 6 conclut ce résumé et propose quelques perspectives.

2 Processus de développement des architectures lo-

gicielles adaptatives

Pour aider les ingénieurs à construire des logiciels adaptatifs, nous proposons
un processus de développement qui comprend la spécification de la variabilité
comme une première étape. Notre processus est basé sur CVL [OMG 12] pour
spécifier la variabilité. Dans CVL, un modèle de variabilité se compose (1) d’un
arbre de VSpecs qui est utilisé pour spécifier la variabilité et les parties com-
munes d’une ligne de produits, et (2) de points de variation pour faire le lien
entre l’arbre de VSpec et un modèle dit de base qui spécifie l’architecture de la
ligne de produits. Dans CVL, un modèle de résolution est spécifié pour confi-
gurer le modèle de variabilité.

La figure 1 présente notre processus de développement d’architecture logi-
cielle adaptative qui se compose de plusieurs étapes différentes. Notre processus
est basé sur l’ingénierie de LdP qui distingue deux phases : l’ingénierie de do-
maine et l’ingénierie d’application.

2.1 L’ingénierie de domaine

Le haut de la figure 1 présente l’ingénierie de domaine. Il prend en charge de
définir la variabilité, la commonalité, et l’architecture d’une ligne de produits.
Le modèle de variabilité est spécifié en utilisant CVL, alors que le modèle de
base est représenté en utilisant un langage de description d’architecture comme
ACME [Garlan 00].

Les rôles des participants

Nous définissons trois rôles des participants dans cette phase : l’expert de do-
maine, l’ingénieur de domaine, et l’architecte de domaine. Un expert a une très
bonne connaissance dans un domaine précis. Il fournit l’information nécessaire à
l’ingénieur de domaine pour identifier la variabilité. L’ingénieur collecte l’infor-
mation de domaine et construit le modèle de variabilité. L’architecte de domaine
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Figure 1 – Processus de développement de logiciel adaptatif

prend en charge la construction du modèle de base.

Un processus de spécification

La figure 2 présente une stratégie de spécification des modèles de variabi-
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Figure 2 – Un processus de spécification des modèles
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lité et de base. Cette stratégie se compose de quatre activités : 1) La première
activité vise à identifier un ensemble de variabilité et commonalité dans le do-
maine ; 2) basé sur cet ensemble, un ingénieur de domaine construit un arbre
de VSpecs ; 3) Une architecte logiciel définit le modèle de base ; 4) L’ingénieur
de domaine fait le mapping entre l’arbre de VSpecs et le modèle de base.

La première activité est considérée comme un pré-requis. La quatrième ac-
tivité ne peut être réalisée qu’après la deuxième et la troisième activité.

2.2 L’ingénierie d’application

La partie en bas de la figure 1 présente l’ingénierie d’application qui com-
bine les artefacts obtenus dans l’ingénierie de domaine pour générer le produit
adaptatif. Cette phase est divisée en deux sous-processus : celui de la conception
et celui à l’exécution. En fonction des processus, les rôles sont définis.

Les rôles des participants

L’ingénierie d’application se focalise sur des activités pour générer le pro-
duit adaptatif et contrôler l’adaptation à l’exécution. Des utilisateurs four-
nissent des besoins pour qu’un concepteur de produit adaptatif crée un modèle
de résolution. Le concepteur de produit adaptatif utilise un outil implémenté
dans notre approche pour générer le modèle de produit adaptatif, puis le code
exécutable. Des développeurs complètent le code généré, et l’empaquettent.
Enfin, un ingénieur d’adaptation prend en charge de développer une unité de
contrôle d’adaptation.

À la conception

En général, le sous-processus de conception vise à générer un produit adapta-
tif qui contient seulement les éléments nécessaires à l’adaptation. Pour faire cela,
le sous-processus commence par la spécification d’un modèle de résolution. Au-
jourd’hui, cette spécification ne permet pas de distinguer les éléments nécessaires
à l’adaptation de ceux rejetés. Par défaut donc, elle oblige à embarquer l’en-
semble des éléments dans le produit. Nous proposons une extension pour amélio-
rer la spécification.

La figure 3 présente un méta-modèle de CVL. La partie droite représente
un extrait du modèle de résolution. Dans ce modèle, l’attribut de decision est
utilisé pour sélectionner les éléments choisis. Un élément choisi par l’attribut
decision va être présent et activé dans le produit. Si cet attribut est important,
il ne suffit pas pour construire une architecture logicielle adaptative. En effet,
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Figure 3 – Un extrait du méta-modèle de CVL

une telle architecture peut contenir des éléments qui ne sont pas activés dans le
produit, tout en étant disponibles dans le produit pour un usage ultérieur.

Afin de spécifier de tels éléments, nous proposons un nouvel attribut, avai-
labilityAtRuntime (à droite dans la figure 3). Il indique si l’élément corres-
pondant est disponible ou pas dans le produit. Grâce à cet attribut, les éléments
utiles ou inutiles à l’adaptation sont séparés.

Enfin, nous avons réalisé un outil AdapSwAG pour générer le modèle de
produit adaptatif basé sur le modèle de résolution ainsi étendu. Il est utilisé
pour générer un squelette d’artefacts d’implémentation. Il est combiné avec
les artefacts d’implémentation existants ou complété par les développeurs pour
créer le produit adaptatif.

À l’exécution

Lorsqu’une décision de changement se fait, un nouveau modèle de résolution
(nouvelle configuration) doit être choisi. Il est comparé au modèle de résolution
actuel pour trouver la différence avec l’architecture courante. À partir de cette
différence, des actions de reconfiguration peuvent être générées dans un plan de
reconfiguration. Le plan est envoyé à un reconfigurateur pour réaliser l’adap-
tation. Le moment où remplacer des composants est important pour assurer la
cohérence de système. La section suivante va aborder ce problème.
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3 Processus d’adaptation dynamique cohérente

Afin de réaliser une adaptation dynamique cohérente, dans notre approche,
nous nous basons sur la gestion de transactions. Dans cette section, nous repré-
sentons comment gérer et exploiter la dépendance transactionnelle lors de la
conception et à l’exécution.

3.1 Gestion de transactions

Un exemple

Nous étudions un exemple représenté dans la figure 4. Dans la figure, nous
supposons un scénario d’adaptation pour le remplacement d’implémentation
des composants, Compression et Decompression. Si ce remplacement se fait à
l’exécution, il faut assurer que tous les messages qui ont été compressés par
Compression soient décompressés par Decompression en utilisant le même
algorithme avant de remplacer ces composants. Ceci indique qu’il y a une
dépendance entre deux composants qui s’appellent le composant démarreur et
le composant terminateur, respectivement. Dans ce document, nous appelons
une telle dépendance la dépendance transactionnelle.

:Emetteur :Compression :Récepteur

T
0

T
1

T
2

Légende

 
      Transaction localeTi

Transaction globale

t2

t3

t1

t4

:Decompression

T
3

t5

t6

t7

 

Figure 4 – Diagramme de séquence de l’exemple

La dépendance transactionnelle est définie sur la notion de transaction. Nous
définissons deux types de transaction. Une transaction locale est définie comme
une séquence d’actions exécutées par un composant qui se termine dans un
temps borné. Une transaction globale est un ensemble des transactions locales
exécutées sur des composants différents.

Dans l’exemple, avant de réaliser l’adaptation, la transaction globale doit
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finir dans les composants dépendants (démarreur et terminateur). Ceci signifie
que si la transaction T1 a lieu, la transaction T3 doit finir avant de pouvoir
remplacer les composants. Du coup, il y a une dépendance transactionnelle
entre T1 et T3.

Spécification de dépendance transactionnelle

Afin de spécifier la dépendance transactionnelle, nous proposons une nou-
velle relation, dependsOn , ajoutée dans le modèle de variabilité. La figure
5 décrit un modèle de variabilité de l’exemple avec la relation dependsOn.
Dans la figure, les deux implémentations des fonctionnalités de compression et
décompression sont considérées avec deux algorithmes, Run-Length Encoding
(RLE) [Watson 03], et Lempel-Ziv (LZ) [Farach 98].

La relation indique que des messages qui sont traités par RLECompression
doivent être traités par RLEDecompression avant de pouvoir réaliser l’adapta-
tion. En termes de la transaction, si une transaction locale a lieu dans RLECompr-
ession, une transaction locale correspondante doit terminer dans RLEDecompre-
ssion.

1..1

Service

Émetteur

RLECompression

LZCompression

Récepteur

Compression Decompression

1..1

RLEDecompression

LZDecompression

dependsOn dependsOn

 

Figure 5 – Le modèle de variabilité avec la contrainte ≪ dependsOn ≫

Gestionnaire de transactions et modèle de composant

Afin de gérer les transactions dans les composants dépendants, un gestion-
naire de transactions doit être ajouté dans l’architecture. Il doit communiquer
avec les composants dépendants dans l’architecture et recevoir des informations
du début de la transaction de RLECompression ou LZCompression, et celles de
la fin de la transaction de RLEDecompression ou LZDecompression. Grâce à
ces informations, le gestionnaire peut identifier quand une transaction globale
finit dans les composants dépendants. En communiquant avec le gestionnaire de
transactions, le reconfigurateur peut calculer le meilleur moment pour remplacer
des composants.
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Pour fournir l’information de contrôle transactionnel au gestionnaire de tran-
saction, les composants dépendants ont besoin d’avoir la capacité de commu-
niquer avec lui. En outre, ils peuvent recevoir et réaliser des actions de recon-
figuration déclenchées par le reconfigurateur. De plus, l’adaptation dans notre
approche est basée sur l’isolement des composants 1 qui sont remplacés. Donc,
nous proposons un nouveau modèle de composant (comme décrit dans la figure
6) qui consiste en quatre parties : un calcul (le cœur fonctionnel), une connexion,
une barrière, et un contrôle. Les parties de calcul et de connexion sont les par-
ties principales du modèle de composant. La barrière est utilisée pour isoler le
composant du reste du système pour l’adaptation. Le contrôle prend en charge
la réalisation des actions de reconfiguration reçues du reconfigurateur et l’envoi
des informations de contrôle transactionnel au gestionnaire de transactions.

Calcul

Contrôle

Connexion

Barrière
sortie

entrée

 

Figure 6 – Le modèle de composant

Grâce au modèle de composant et à la spécification de dépendance tran-
sactionnelle, les composants dépendants sont conçus avec des fonctionnalités
convenables pour assurer la cohérence de l’adaptation.

 

Transaction globale

Composant de démarreur Composant de terminateur

Point d’isolation

Émetteur Récepteur

Compression Decompression

Gestionnaire de 
transactions

dependsOn

 

Figure 7 – Groupe de composant remplacé

La figure 7 décrit un exemple où un groupe des composants, Compression
et Decompression, va être remplacé. Basé sur la spécification de dépendance
transactionnelle, les composants savent qu’ils doivent informer le gestionnaire

1. Basé sur l’idée dans le domaine de la chirurgie, un chirurgien doit isoler l’organe à
remplacer.
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de transactions du début et de la fin des transactions dans le groupe. Le ges-
tionnaire de transactions participe alors au processus d’adaptation et fournit
au reconfigurateur les informations sur les transactions dans les composants
dépendants.

La section suivante présente une stratégie d’adaptation réalisée dans notre
approche.

3.2 Stratégie d’adaptation

Une stratégie d’adaptation utilisée dans notre approche est basée sur l’iso-
lement du groupe des composants (le groupe de placement) qui va être rem-
placé par un autre (le groupe de remplacement). En fait, lors de la réception
d’une commande d’isolement du reconfigurateur, les composants de frontière
du groupe de placement vont activer leur barrière. Toutefois, afin de terminer
des transactions en cours dans le groupe, la barrière permet aux messages qui
viennent de l’intérieur du groupe de passer. De nouvelles requêtes qui viennent
de l’extérieur du groupe vont, elles, être bloquées à la barrière. Cependant, afin
de terminer les transactions dans les composants dépendants, la barrière per-
met aux messages traités par le composant démarreur de passer la barrière du
composant terminateur.

4 Prototype

Nous avons développé un outil qui automatise certaines tâches du proces-
sus de développement. En particulier, il aide l’ingénieur à générer le produit
adaptatif. En outre, cet outil contient un module qui permet de valider des
configurations de la ligne de produits spécifiées dans des modèles de résolution.

De plus, afin de vérifier notre approche, nous avons implémenté l’exemple
mentionné dans la section précédente. Nous suivons les étapes proposées dans la
section 2 pour construire le produit. Les composants dans le produit adaptatif
sont générés sur le modèle de composant iPOJO [Escoffier 07] et sont conformes
à notre modèle de composant pour la gestion des transactions et de l’adaptation.

5 Travaux connexes

Plusieurs approches sont basées sur la ligne de produits pour construire le
produit adaptatif. Ils utilisent des modèles différents pour spécifier la variabi-
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lité tels que les approches dans [Lee 06, Cetina 13] qui utilisent le modèle de
fonctionnalité proposé par Kang et al. [Kang 90], [Morin 09a, Bencomo 08] avec
le modèle de variabilité orthogonal proposé par [Pohl 05], ou [Pascual 14] avec
CVL. Ces modèles sont configurés pour construire le produit adaptatif. Ce-
pendant, ils ne distinguent pas les éléments disponibles pour l’adaptation. Par
défaut, tous les éléments sont disponibles pour l’adaptation. L’approche dans
[Cetina 08a] élimine quelques éléments dans le modèle de variabilité. Toutefois,
elle est basée sur un ensemble des scénarios d’adaptation différents prévus à la
conception.

Aucune de ces approches n’offrent d’instructions (processus) à l’ingénieur
pour concevoir des modèles. Notre approche explicite les étapes du proces-
sus pour générer une architecture logicielle adaptative. L’architecture générée
contient seulement les éléments nécessaires pour l’adaptation.

Pour identifier le meilleur moment pour remplacer des composants, la plu-
part des approches sont basées sur la gestion de transactions et définissent
l’état ≪ sûr ≫, tels que ≪ quiescent ≫ dans [Kramer 90], ou ≪ tranquil ≫ dans
[Vandewoude 07]. Cependant, ces états sont considérés sur un unique composant
sans dépendance transactionnelle. L’approche proposée par Ghafari et al. dans
[Ghafari 15] considère un groupe de composants. Ils définissent un contrôleur de
transactions pour initier et terminer des transactions. Grâce au contrôleur, le
moment convenable est explicite. Toutefois, c’est une approche ≪ ad-hoc ≫ . Ils
ne spécifient pas la dépendance transactionnelle à la conception et ne l’exploitent
pas pour gérer des transactions pour l’adaptation. Notre approche utilise une
relation ajoutée dans le modèle de variabilité pour spécifier la dépendance tran-
sactionnelle. Cette relation est nécessaire pour identifier le meilleur moment
pour le remplacement des composants.

6 Conclusion

Contributions

Dans cette thèse nous avons proposé un processus de développement d’ar-
chitecture logicielle adaptative et un mécanisme d’adaptation basé sur la spécifi-
cation à la conception de dépendances transactionnelles pour assurer une adap-
tation dynamique cohérente. En fonction de ceci, nos contributions principales
sont déterminées comme suit :

1. Un processus de développement basé sur la modélisation de la variabilité
pour construire des architectures logicielles adaptatives qui ne contiennent
pas d’éléments inutiles pour l’adaptation : Ce processus vise à aider les
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développeurs à construire des architectures logicielles adaptatives qui com-
prennent uniquement des composants potentiellement utilisés. Une des
activités importantes de ce processus est la spécification de logiciel basée
sur les modèles. Dans ce processus, nous proposons l’utilisation du modèle
de CVL que nous avons étendu pour que le produit résultant ne comprenne
pas d’éléments qui ne seront jamais utilisés dans l’architecture adaptative.

2. Un mécanisme d’adaptation basé sur la spécification de la dépendance
transactionnelle pour assurer l’adaptation dynamique cohérente : Ce méca-
nisme est considéré à la conception et à l’exécution. À la conception, le
méta-modèle de CVL est étendu pour spécifier la dépendance transac-
tionnelle. La relation ajoutée est exploitée à l’exécution pour trouver le
meilleur moment pour l’adaptation. D’autre part, elle est également uti-
lisée pour générer des actions de reconfiguration dans le plan de reconfi-
guration. En outre, un modèle de composant est proposé pour supporter
la gestion de transactions et l’adaptation cohérente.

Perspectives

Notre approche ouvre plusieurs perspectives différentes. D’abord au niveau
de la spécification, le modèle de variabilité ne change pas au fil de temps. Il
pourrait être intéressant d’étudier les conséquences de l’évolution d’un modèle
de variabilité. Ensuite, le processus d’adaptation est centralisé. On pourrait
envisager un processus plus réparti. Enfin, une réelle application a besoin d’être
étudiée avec l’approche proposée pour évaluer sa performance.
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1.1 Problem Statement

Software adaptation is the capacity of a software to adapt to a changing oper-
ating environment. The operating environment includes anything around soft-
ware execution such as user requirements, end-user input, external hardware
devices and sensors, or program instrumentation [Oreizy 99]. Adaptation is
said to be dynamic if the adaptation process is performed at runtime, i.e., with-
out stopping the whole application while modifying it [Grondin 08]. In certain
circumstances, dynamic adaptation is needed for software systems such as med-
ical, finance, or telecommunication systems since stopping the software have
consequences for business, or is even dangerous for humans. Hence, building
autonomous software that is able to adapt itself is mandatory. Through such
an adaptation, called adaptation process 1, the software system moves from the
current version to a new one. For example, a message communication system
can use encoding/decoding functions to encrypt messages during communica-
tion. Depending on the security level, the used encoding/decoding functions

1. In this dissertation, an adaptation process can be understood as an adaptation process
at runtime.

1
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may be different. To avoid interruption of the message communication system,
encryption functions must be changed at runtime.

Over the past decade, software architecture has emerged as an important
field in software engineering for representing the design of software systems
[Hussein 11]. In software architectures, components represent the computa-
tional elements and data stores of the system, while connectors represent inter-
actions among them via interfaces. This is the core architectural representa-
tion adopted by a number of architecture description languages (ADLs), such
as ACME [Garlan 00] and FractalADL [Coupaye 07]. Architecture-based adap-
tive software development has emerged and is widely used [Cheng 02c, Floch 06,
Cheng 09]. Adaptive software architectures are intended for systems whose con-
figuration can be changed at runtime.

Through architecture-based adaptation, an adaptation process replaces the
active variants by other through reconfiguration actions. The actions include
start/stop, add/remove components and establish/destroy connections between
them. Still, the replacement of one component by another one remains a com-
plex task. This complexity is caused by the component state which is contained
in the active components [Vandewoude 05] and their connections. Therefore, an
adaptation process not only includes the actions for components replacement,
but also take state transfer activities into account.

Software Product Line (SPL) paradigm has emerged as one of the ap-
proaches to develop software products or software-intensive systems at lower
cost, in shorter time, and with higher quality [Pohl 05]. SPLs focus on man-
aging and building multi software products from a set of previously developed
and tested artifacts. A fundamental principle of SPL is variability management
[Hallsteinsen 08] that encompasses the activities of explicitly representing vari-
ability in software artifacts throughout the lifecycle, managing dependencies
among different variabilities, and supporting the instantiation of the identified
variabilities [Schmid 04]. In SPLs, a desired product is built by deciding about
selected and unselected elements at design time, and it contains all the neces-
sary elements to respond to user requirements. However, it can not be modified
at runtime.

Dynamic Software Product Lines (DSPLs) extend classic SPL engineering
approaches by moving their change capabilities to runtime [Hinchey 12], i.e., a
new product version can be derived at runtime by modifying the running prod-
uct. In order to derive a new product at runtime, the elements of the product
line must be available at runtime in the product. They do not participate on the
calculation process of the initial product, they are inactive elements. Therefore,
a product contains all the elements of the DSPL even if some of them are inac-
tive and will not (or even cannot) be used for the target execution environment.
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This can be a problem for limited deployment targets. Hence, identifying the
inactive elements that will be used for adaptation is necessary to reduce the
size of the adaptive product, increase security and reduce adaptation costs. For
example, in a message communication system, only encryption algorithms that
may be used in the product should be included in it, even if some of them are
inactive in the initial product.

In order to realize adaptation processes, a control unit, called reconfigura-
tor, needs to be added into the adaptive software architecture. This control
unit can be manually created with embedded reconfiguration actions such as
[Martinez 15c]. This increases development costs, and is error-prone. The re-
configurator may also be designed as an interpreter of reconfiguration plans. It
can execute a received reconfiguration plan from an external element. Reconfig-
uration plans can be manually programmed or be automatically generated. The
reconfiguration plan based on the manually programming increases development
costs and is error-prone. Thus, reconfiguration plans should be generated auto-
matically and be injected into the reconfigurator to realize adaptation process.

Determining the best moment to replace components is a difficult task. The
adaptation process should ensure not only the validity of the resulting product
but also should preserve the correct completion of ongoing activities and min-
imise disruption of the services. Such an issue has been addressed by Kramer
and Magee [Kramer 90] and is based on determining a safe status 2 named qui-
escence in the paper. Identifying the safe status is based on the concept of
“transaction”. A transaction is a sequence of actions executed by one or several
components that completes in bounded time. When the system is executing a
transaction, no component involved in this transaction can be replaced. Ac-
cording to [Kramer 90], two transactions are dependent on each other if the
completion of a transaction may depend on the completion of other one. In
terms of architecture, requiring services of a component to another one is con-
sidered as static dependency or architectural dependency. The static dependency
between components indicates that if a component exists, the other one must be
present in the architecture. In terms of transaction, the completion of a transac-
tion can require the completion of another transaction on the other component.
Such a dependency is called dynamic dependency or transactional dependency.
Quiescence-based approaches only consider transactional dependencies between
components that are adjacent in the architecture where a component requires
services of other one. In order to build adaptive software, we will show that
based on the transactional dependency between adjacent components is not
enough since dynamic dependencies between non-adjacent components should

2. In this thesis, we use status instead of state to differentiate the moment for adaptation
and the state of variables and properties of components like to [Vandewoude 07].
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be taken into account for finding the best moment for replacing components.

From the aforementioned problems, we argue that the adaptive software
architecture development is a complex task and an appropriate development
paradigm that deals with these difficulties is needed.

1.2 Challenges

Based on the problem statement, we identify five challenges for developing adap-
tive software architectures. The first two challenges are concerned with the de-
velopment process at design time to generate an adaptive product. The others
are related to exploiting information specified at design time for adaptation at
runtime.

• Modeling variability and commonality for adaptation (C1): Developing
adaptive software could be based on SPL engineering to specify the vari-
ability and commonality of system variants. Variability of functions should
be clearly separated from the adaptive software architecture, and varia-
tion points need to be clearly identified. In addition, a process to guide
engineers on how to specify them is necessary.

• Configuring and automatically building adaptive architecture (C2): The
adaptive architecture should only contain elements that can be used in the
product. Thus, information related to such elements should be explicitly
specified for configuration. On the other hand, based on the information
given at design time, the adaptive architecture should be automatically
generated to ensure consistency from the abstract level to the concrete
one in the development process.

• Supporting state transfer (C3): An adaptive software system must guar-
antee its state before and after adaptation, i.e., the state should be trans-
ferred from the running variant to the new one when executing adaptation
process.

• Automatically planning adaptation (C4): In order to reduce the time and
adaptation costs, reconfiguration plans should be automatically generated
instead of being manually implemented.

• Ensuring consistent dynamic adaptation (C5): System consistency must
be ensured after adaptation. That means that the adaptation process
should preserve the correct completion of ongoing activities.
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These challenges can be divided into two groups: one related with what
should be considered for specifying and building automatically adaptive archi-
tecture at design time (C1, C2), and another one related with dynamic adap-
tation at runtime (C3, C4, and C5). The challenges are closely related to each
other. Challenges C1 and C2 emphasize two different steps in the development
process. Challenge C3 is concerned with C5 as one important activity for en-
suring consistent dynamic adaptation is state transfer. Therefore, a solution for
challenge C3 aims at providing the necessary information for this activity. On
the other hand, challenge C4 is related with C1, and C3. Moreover, a solution
for challenge C5 aims at finding the best moment to execute reconfiguration
plan mentioned in challenge C4.

1.3 Research Methodology

This section presents the research methodology followed from the beginning to
the final results. It is considered as a research process in which a sequence
of activities that include explorations, choices, and re-orientations have been
performed before identifying what would be the contributions. In a PhD, these
research activities are linear but not smooth.

First of all, a research topic was determined. It originated from the research
history and orientation of the PASS team 3. One of the main research orienta-
tions of the group is to ease the design and development of adaptive software
systems based on models. One of the models is variability model (or feature
model) that is used in SPL engineering to specify the variability and common-
ality of a product line. Therefore, the first phase of our research process focused
on using techniques of SPL engineering to build adaptive systems. From this
aspect, our first research question (RQ) was as follows:

RQ1. How to build adaptive software architectures?

In order to answer this question, we have done a survey on the state of
the art on modeling adaptive systems. Particularly, approaches based on vari-
ability modeling were analyzed. Approaches such as [Trinidad 07, Cetina 09a,
Phung-khac 10] use feature models 4 to specify and manage variability and build
adaptive software. The change points in the adaptive architecture are presented
through variation points in the feature model. However, we saw that a variation

3. http://recherche.telecom-bretagne.eu/pass/

4. The terms of “feature model” or “variability model” signify the same sense, in this
dissertation, we will use the terms according to authors of each approach.

http://recherche.telecom-bretagne.eu/pass/
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point is considered as a feature in the feature model, and links with the adap-
tive architecture were omitted. From the studied approaches we concluded that
separation between variation points and variability specification is necessary.
After a review of the literature of existing variability modeling approaches such
as Feature-Oriented Domain Analysis (FODA) [Kang 90], Orthogonal Variabil-
ity Model (OVM) [Pohl 05], Common Variability Language(CVL) [OMG 12],
etc, CVL approach has emerged as the best approach. It clearly separates be-
tween the variability specification, variation points, and software architecture.
CVL offers models and tools but it does not offer methods to use them. Thus, a
process should be proposed to guide engineers on how to specify these models,
and build the adaptive software architecture. The results of this work were
reported in [Huynh 16a].

We continued our research by studying existing approaches using CVL for
building adaptive software. All of the approaches, e.g., [Cetina 09b, Pascual 14]
assume that all elements are embedded in the final product and deployed at
runtime, even if some of them will never be used. Therefore, we proposed
to extend CVL meta-model to allow specification of unuseful elements for a
particular final product. More detail on this aspect is found in Chapter 4.

Next, after a solution was proposed to build adaptive software architec-
tures, a control unit needs to be added in to the adaptive architecture to realize
adaptation processes. However, determining the appropriate moment for com-
ponents replacement is necessary to ensure the system consistency. This aspect
started as the second phase in our research process:

RQ2. What is the appropriate moment to start components replacement in an
adaptation process?

To answer this question, we investigated a case study described in Chapter
5. Moreover, we analyzed literature on related approaches such as [Kramer 90,
Vandewoude 07, Ma 11, Ghafari 12a] and applied them to it to find limitations
of each approach. We saw that all these approaches are based on the con-
cept of transaction to determine a safe status for adaptation. According to
[Kramer 90, Vandewoude 07], this status involves a single component. We tried
to apply them to our case study, and found that [Kramer 90, Vandewoude 07]
can not ensure a reliable adaptation in a system in which replaced components
depend on each other, e.g., encoding and decoding components. That means
that computation errors arise in the system after adaptation.

In terms of transactions, we use the term transactional or dynamic depen-
dency when transactions on a component depend on transactions on the other
one. We tried to better understand such dynamic dependencies by studying ap-
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proaches in [Ma 11, Ghafari 12a]. Unfortunately, these are ad-hoc approaches,
i.e., there are no general solution to manage dynamic dependencies. They are
not interested in specifying such dependencies for building adaptive software.

This analysis led us to conclude that a general solution is necessary to man-
age dynamic dependencies. This solution should include dynamic dependency
specification. The specification is made at design for building adaptive archi-
tectures and exploited at runtime for generating adaptation actions. Part of
the results from this study is presented in [Huynh 16b]. More detailed answers
to these questions are found in Chapter 4 and Chapter 5, respectively.

Finally, the models used to specify the variability and the software archi-
tectures are based on the EMF framework integrated in Eclipse. Therefore, to
validate our propositions, we implemented tools as Eclipse plug-ins supported
for building adaptive software architectures from the models specified in the
EMF framework. Those tools were applied on case studies to check their feasi-
bility. Moreover, we reused the case study adapted from [Ma 11, Ghafari 15] to
validate the aspect of transaction management in our approach. Although this
case study is simple, it is not trivial. It has the necessary properties to cope
with the issues of managing transactional dependency.

1.4 Contributions

Based on the challenges and research questions mentioned in the previous sec-
tions, a comparison with the related approaches is presented in Chapter 2. No
existing approaches support all challenges and answer the research questions.
Therefore, we worked on a development process that encompasses all the chal-
lenges for building adaptive software architectures. According to this, our main
contributions are identified as follows:

1. Development process based on variability modeling to build adap-
tive software architectures that do not contain the unnecessary
elements for adaptation: This development process aims at guiding
developers building an adaptive software architecture that includes only
components that will potentially be used. One of the important activities
of this development process is software specification based on models. In
this process, we propose to use the models and basic tools of CVL. More-
over, we have extended them so that the resulting adaptive product does
not include elements that will never be used in the architecture.

2. Adaptation mechanisms based on dynamic dependencies speci-
fication to ensure consistent dynamic adaptation: This adaptation
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mechanism is considered from design to runtime. At design time, the CVL
meta-model is extended for specifying dynamic dependencies. Moreover,
this specification is exploited at runtime to find the best moment for adap-
tation. On the other hand, it is also used for generating reconfiguration
actions in the reconfiguration plan.

Both contributions are based on specifying the necessary information in
models at design time. The former focuses on design time to build the adaptive
software architecture that contains necessary elements for adaptation. In com-
parison with the related approaches, we identify just the necessary elements,
whereas, the existing approaches suppose that all components at design time
exist in the product at runtime or are added on-the-fly. The latter encompasses
dynamic dependencies specification at design time and mechanisms for adapta-
tion at runtime. Existing approaches are based on the concept of transaction,
but, they are ad-hoc approaches. They do not take dynamic dependencies spec-
ification into account.

1.5 Structure of the Thesis

Figure 1.1 shows the structure of this thesis. It is structured in three main
parts: state of the art, contribution, and epilogue. Part I provides a foundation
to read Part II. Part III concludes the dissertation.

Part I consists of two chapters. Chapter 2, State of the Art, considers the
state of art and offers the reader the foundation and concepts about software
development process, CVL, sofware architecture and its adaptability. Chap-
ter 3, Related software adaptation approaches, discusses the related approaches
based on the challenges identified in this chapter. The conclusion of Chapter 3
determines limitations of existing approaches to position our contribution.

Part II consists of two chapters. Chapter 4, Adaptive Software Architec-
ture Development Process, presents a development process based on variability
modeling for building an adaptive software architecture. It focuses on coping
with the first group of challenges. We extend the variability model from CVL
and build a tool implemented as an Eclipse plug-in in order to automatically
build architecture model. Additionally, Chapter 5, Consistent Dynamic Adap-
tation Process, focuses on adaptation mechanisms to ensure consistent dynamic
adaptation. This chapter mentions the specification of the dynamic dependency
and adaptation mechanism that uses the dynamic dependency specification to
find the best moment for realizing adaptation. To support consistent dynamic
adaptation, we have implemented a module to validate the new product config-
uration. Moreover, a prototype has been done to validate the propositions in
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Figure 1.1 – Structure of the thesis

this chapter.

Part III contains Chapter 6, Conclusion and Perspectives, that highlights
the contributions of the dissertation. In addition, some perspectives of future
work are also anticipated.



10 1. Introduction



Part I

State of the Art

11





Chapter 2

Background and Context

Contents

2.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . 14

2.2 Software Development . . . . . . . . . . . . . . . . . 14

2.2.1 Model-Driven Engineering . . . . . . . . . . . . . . . . 15

2.2.2 Software Product Line Engineering . . . . . . . . . . . 17

2.3 Common Variability Language . . . . . . . . . . . . 21

2.3.1 Specification . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Software Architecture . . . . . . . . . . . . . . . . . . 27

2.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Component . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Connector . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.4 Architectural Configuration . . . . . . . . . . . . . . . 30

2.4.5 Architecture Description Language . . . . . . . . . . . 30

2.5 Architecture-Based Software Adaptation . . . . . . 32

2.5.1 Terminologies . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 DSPL and Software Adaptation . . . . . . . . . . . . . 34

2.5.3 Adaptation Control Loop Model . . . . . . . . . . . . 35

2.5.4 Architecture-Based Adaptation . . . . . . . . . . . . . 37

2.5.5 Consistent Dynamic Adaptation . . . . . . . . . . . . 38

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 44

13



14 2. Background and Context

2.1 Chapter Overview

This chapter presents concepts and principles related to software development
in which software product line engineering (SPLE) is highlighted. One of the
main techniques in SPLE is variability modeling. Moreover, architecture based
software development has arisen as an effective way to develop software systems
that encompasses adaptive software development. The goal of this chapter is
to introduce and define a base of knowledge that will be used throughout this
dissertation.

Structure of the Chapter

Section 2.2 introduces approaches to software development including Model-
Driven Engineering and SPLE. An important technique in SPLE is variability
modeling. In our approach, the common variability language (CVL) used to
specify the variability is presented in section 2.3.

Section 2.3 presents the CVL approach. A summary of CVL is presented
to see a general view of this approach. In this approach, software architecture
specification plays a main role for building a software architecture.

Section 2.4 shows concepts related to software architecture and elements
used to fabricate software architectures. In this section, we will also present
what an architecture description language is.

Section 2.5 presents terminologies in software adaptation. Then, we present
some fundamental knowledges related to software adaptation. Finally, it presents
needs to ensure consistent dynamic adaptation.

Finally, Section 2.6 summarizes the chapter.

2.2 Software Development

This section provides a brief introduction of two software development meth-
odologies, including Model-Driven Engineering and Software Product Line En-
gineering (SPLE). The former presents the concepts related to Model-Driven
Engineering, and focuses on Model-Driven Architecture and Domain Specific
Modeling. In the latter, we highlight the role of subprocesses in SPLE, and
techniques to manage variability and configure products.
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2.2.1 Model-Driven Engineering

During the last decade a new trend of approaches used in the software engineer-
ing field has emerged, called Model-Driven Engineering (MDE). Their aim is to
cope with the challenge of the increasing complexity and productivity in soft-
ware development. MDE is based on using models as the critical artifacts in the
software development. The aim of using models to reduce software complexity
has been around for many years [Schmidt 06].

No existing definition for models is accepted by software engineering com-
munity, because, nobody can just define what a model is, and expect that other
people will accept this definition [Ludewig 03]. Many model definitions are in-
dicated in [Creff 13], for example, “a model is a simplification of a system built
with an intended goal in mind” [Bézivin 01], or “a model of a system is a de-
scription or specification of that system and its environment for some certain
purpose” [OMG 03], etc. But, according to the scope of this dissertation, we
consider (a) model(s) as:

“An abstraction or high-level specifications, a description of a system, or some
aspects of a system” [Czarnecki 05a, Kühne 06, France 07, Filho 14].

“Models help in developing artifacts by providing information about the con-
sequences of building those artifacts before that are actually made” [Ludewig 03].
The system that is specified by a model may or may not exist at the time when
the model is created. Models are created to serve particular purposes, for ex-
ample, presenting a human understandable description of some aspects of a
system or information in a form that can be mechanically analyzed [France 07].
In terms of development process, models are used as the primary source for
documenting, analyzing, designing, constructing, deploying and maintaining a
system [Truyen 06].

The main activities in MDE focus on creating models to specify the systems
[Kleppe 03]. In MDE, many different models can be created in which each kind
can be specific to represent problems of a distinct domain of knowledge. Instead
of using only one single kind of model to serve as unified language to represent
any problems, Domain Specific Modeling Languages (DSML) are dedicated to
particular areas, such as medical or avionics systems [Filho 14].

MDE technologies combine: 1) DSML where the application structure, be-
havior, and requirements of a type of systems are formalized within particular
domains, such as software-defined radios, avionics mission computing, online
financial services, warehouse management, or even the domain of middleware
platforms; 2) transformation engines and generators that analyze some aspects
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of models and then synthesize different types of artifacts, such as source code,
simulation inputs, XML deployment descriptions, or alternative model repre-
sentations [Schmidt 06].

As mentioned in [France 07], there are major initiatives of MDE such as
Object Management Group’s (OMG) Model Driven Architecture [Kleppe 03],
Microsoft Software Factory [Greenfield 04], Model Integrated Computing (MIC)
[Sztipanovits 97], etc. In these initiatives, Model Driven Architecture (MDA) is
considered as one of the best initiatives of MDE which is a registered trademark
of OMG. On the other hand, Domain Specific Modeling (DSM) is also considered
as another branch of MDE.

2.2.1.1 Model-Driven Architecture

MDA is an approach proposed by the OMG to build systems using models. The
models allow to represent the systems independently of a specific platform. It
takes full advantage of the basis principle of separation of concerns to separate
the specification of system functionality from the specification of the imple-
mentation of that functionality on a specific technology platform [OMG 03].
Both specifications are defined as models, called Platform Independent Mod-
els (PIMs), and Platform Specific Models (PSMs), respectively. PIMs specify
the structure and functions of a system in a way that abstracts out technical
details. Whereas, PSMs are created from PIMs by combining them with the
necessary information to produce implementations for a selected platform. The
transformation from PIMs to PSMs is performed by using model transforma-
tions. Code generators are used to generate the source code executable in the
target platform.

In this dissertation, we consider the component-based architecture model
as a PSM. It is used to generate implementations skeleton conforming the tar-
get platform by using a specific code generation module implemented in our
approach.

2.2.1.2 Domain-Specific Modeling

Domain-Specific Modeling (DSM) is a software engineering methodology for
designing and developing systems. It is based on specifying a solution using do-
main concepts or problem-level abstractions. DSM raises the level of abstraction
and hides programing languages [Kelly 07].

DSM is usually described by using a Domain-Specific Modeling Language
(DSML). DSML is a language to express problems of a particular domain. It
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is defined as a set of meta-models used to describe structures, behaviors and
relationships among the problem domain concepts including their semantics and
associated constraints [Schmidt 06].

DSM also includes a domain specific code generator that uses the domain-
specific models to fully generate artifacts of concrete applications. The artifacts
may be text, executable source code, or immediate models. With DSM, the
human’s manual intervention in the artifacts is significantly reduced. Therefore,
DSM improves the productivity, and product quality [Kelly 07].

In this thesis, we use models to specify software systems. The models are
used to describe different aspects of a system, such as the variability model, the
architecture model, etc.

2.2.2 Software Product Line Engineering

Software Product Line Engineering (SPLE) has been proposed as a methodology
to develop similar software products and software-intensive systems at lower
costs, in shorter time, and with higher quality [Clements 01, Pohl 05, Babar 10].
In terms of costs, as stated by [Pohl 05], SPLE offers benefits when producing
products. Figure 2.1 shows the costs of the development of n different products.
The solid line sketches the costs of producing a single product, whereas the
dotted line presents the costs of developing products using SPLE. As described
in the figure, before the break-event point, the cost of developing products
in SPLE is relatively high. It is significantly reduced for larger quantities of
products built with SPLE. The break-even point where the two lines intersect
presents the same cost for developing the products separately as well as for
developing them by product line engineering. Empirical investigations indicate
that the break-even point is reached around three or four products [Weiss 99,
Clements 01].

In the SPLE community, an Sofware Product Line (SPL) or software family
is defined as a set of similar products built from re-usable artifacts. A desired
product is configured and derived by reusing the available artifacts [Arboleda 13]
such as common architectures, software components, models, documents, or
other elements useful to develop systems. To enable reuse on a large scale,
SPLE identifies and manages commonality, i.e., the common characteristics (or
features) of all products in the family, and variability, i.e., characteristics (or
features) that may be different in different products, across a set of system
artifacts [Babar 10]. Variability is defined as the ability to change or customize
a system [Gurp 01]. It plays a central role in an SPL development process and
is also a concern in all stages of the life cycle of a product.
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Figure 2.1 – Costs of software product development (adopted from [Pohl 05])

2.2.2.1 Software Product Line Process

To make reuse possible, the SPLE paradigm separates two processes, domain en-
gineering and application engineering to build individual products [Czarnecki 00,
Harsu 02]. The former can be considered as a “development for reuse”, while
the latter is a “development with reuse”. Figure 2.2 shows those processes.
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Domain engineering focuses on the analysis of the domain, the commonali-
ties and the variabilities for reusable artifacts as requirements, design models,
architectures, etc. Like traditional software engineering, the domain engineer-
ing includes analysis, design, and implementation activities. Domain analysis
consists of determining the scope of a product line, identifying the common
and variable features among the family members, and creating structural and
behavioral specifications of a product line. Domain design aims at developing a
common architecture for all the members of a product line, and a plan to build
individual products based on the reusable artifacts [Czarnecki 05a]. Finally, do-
main implementation consists of implementing reusable artifacts as components,
generators, and DSLs [Czarnecki 05a]. In our approach, the domain analysis is
an important task to define the commonality and the variability of a product
line.

Application Engineering

Application engineering refers to the activities of combining the artifacts
produced in the domain engineering to build members of a product line. The
application engineering focuses on reusing the domain artifacts and exploiting
advantages of commonalities and variabilities to develop individual products of
a family. During the application requirements phase, various features of a con-
crete product can be identified that conform to context, e.g., user requirements,
execution environment, etc. Based on a set of such features, in the applica-
tion derivation phase, a set of corresponding available artifacts identified in the
domain engineering is selected to build concrete products. The selection can
be made through a variability model that presents the commonality and the
variability of an SPL. Once the selection decisions are made in the variability
model, the variability model is said to be configured. Consequently, the related
software artifacts can be deduced to build the final product (or product con-
figuration). This task can be manually or automatically realized using code
generation or models composition.

2.2.2.2 Variability Modeling

The basis of SPLE is based on managing the variability and the commonality.
Variability management is the most important activity that is performed during
the whole product line development cycle [Arboleda 13]. It is considered as a
key feature to distinguish SPLE from other software engineering approaches
[Bosch 01]. A main issue of variability management in software product line is
the explicit representation of the variability [Sinnema 04]. A way to represent
efficiently variability is to model it. A review of variability modeling approaches
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is in [Chen 09, Czarnecki 12].

FODA [Kang 90] is one of the first approaches to model variability in SPL.
This approach unifies the notion of feature to represent the commonality and
variability in a tree structure, called feature model. A feature is abstracted as
a capability provided by the system [Elkhodary 10]. It is considered as a unit
of software functionality or non-functionality that meets a requirement, imple-
ments a design decision, or provides a potential configuration option [Apel 09].
Figure 2.3 shows an example of a feature model. This model contains a root
feature that is decomposed into mandatory, optional features, feature groups as
or-groups or xor-groups.
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Figure 2.3 – Feature model (adopted from [Czarnecki 12])

The type of features is extended in the cardinality-based feature model pro-
posed in [Czarnecki 05c] with the notion of cardinality of a feature (the clone
number), e.g., solitary features with cardinality [1..1] are referred to as manda-
tory, whereas solitary features with cardinality [0..1] are called optional. Ad-
ditionally, a solitary feature with cardinality [n..m] indicates that the clone
number of the feature can be configured, e.g., a printer may have some clones of
cartridge. On the other hand, the cardinality can be applied to feature groups
to identify the features number in the group to be selected.
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In addition to hierarchical relation among features, cross-tree dependencies
among features can be represented. This dependency is defined using two con-
straints, “requires” and “excludes”, i.e., a feature requires/excludes another
feature, respectively. For instance, in order to record a mp3 file with the MP3
Recording feature, an application requires the MP3 feature in the Audio For-
mats feature group.

Moreover, one important characteristic in variability modeling is binding
time. It indicates the moment when a feature is selected for the final product
during the development process. If features are selected too early, the flexibility
of the product line artifacts is less than required. If features are selected later
than necessary, the resulting solution is more costly than necessary [Bosch 01].

Feature models are largely used in research and industry. Apart from feature
models, a recent approach raised to represent variability is Common Variabil-
ity Language (CVL). CVL separates clearly between the variability and the
software architecture. We will present CVL and its main concepts in Section
2.3.

2.2.2.3 Variability Configuration and Product Derivation

The aim of variability configuration is to allow producing software products
under the product line approach. Once variability is identified in the domain
engineering, i.e., the variability of the family is defined in architecture and
implemented in its source code, various products of the family can be statically
deduced by configuring the variability model, or even reconfigured at runtime
[Capilla 13].

Product configuration is based on the idea that product derivation activities
should be based on the parameterization and/or composition of the SPL arti-
facts [Perrouin 08]. Most approaches are based on the original feature model
proposed by Kang et al [Kang 90]. The mapping between the feature model and
the software architecture as well as design artifacts allows to identify elements
in the architecture when a selection is made in the feature model. The selec-
tion can be realized through various stages of the software development process
[Czarnecki 05b]. Finally, a particular product can be derived.

2.3 Common Variability Language

In this section, we present the main concepts of CVL for specifying the vari-
ability and the commonality of SPL. CVL is a domain-independent language,
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and also an approach for specifying and configuring variability. An overview
of the CVL approach is depicted in Figure 2.4. Three models are defined: the
base model that allows to model the elements of the architecture, the variability
model that models variability in the base model, and the resolution model that
is defined to configure the variability model.

Let CVL model denote the three models: the base model, the variability
model, and the resolution model. A particular product can be generated by
using the CVL execution that takes CVL model as its input. An overview of
these three models and the CVL execution is presented in the two following
sections.
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Figure 2.4 – Common Variability Language approach (adopted from [OMG 12])

2.3.1 Specification

Specification is considered as a stage in the domain engineering process. Vari-
ability and commonality of an SPL are specified using the variability model,
whereas architecture of an SPL is specified using the base model.

2.3.1.1 Base Model

A base model is used to represent concrete elements for building the different
products of a family. It can be defined in any MOF-defined language [OMG 12]
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or domain-specific modeling language (e.g., UML). It can also be considered as
a component-based architecture model, e.g., Fractal ADL [Coupaye 07], ACME
[Garlan 00]. As the architecture of a family of products, it embeds variability
thanks to alternative elements. A base model is not a consistent nor a runnable
architecture. Thus, it needs be configured to identify elements for generating
the final product that is runnable.

In our approach, the base model is specified as a component-based archi-
tecture. Reconfiguring this architecture consists of adding, removing, replacing
components, or modifying parameters in a component.

2.3.1.2 Variability Model

As mentioned in the previous sections, a variability model captures variability
and commonality of a product family. It allows making explicit the differences
and the similitudes between products in the same family.

In the CVL approach, variability is specified in a variability model conform-
ing to the CVL meta-model. The variability model consists of three parts: the
variability specification tree (VSpec tree), variation points, and Object Con-
straint Language 1 (OCL) constraints.

VSpec tree

A variability specification (VSpec) is the central concept of variability mod-
eling in CVL. It is an indication of variability in the base model [OMG 12].
VSpecs may be organized into a tree, called VSpec tree, where the parent-child
relationships are defined.

The VSpecs can be divided into three kinds: Choice, Variable, and VClassi-
fier. Choice requires a binary selection (true/false). Variable allows providing
a value of a certain type. VClassifier allows specifying instance multiplicity of
a VSpec. It indicates how many instances of it can be created.

In a VSpec tree, the parent-child or hierarchic relationships indicate certain
constraints on the decision of the nodes such as optional, mandatory, or group
multiplicity. The relationships of Variable and VClassifier to their parent are
always mandatory. On the other side, relationship of Choice to its parent is
either mandatory or optional specified by using a field “isImpliedByParent” in
Choice. Moreover, a VSpec may have a group multiplicity to specify how many
children must be resolved. CVL uses the terms of “resolution” to indicate

1. http://www.omg.org/spec/OCL/
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a decision for a VSpec. If a VSpec is resolved positively, the VSpec will be
configured in the final product.
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Figure 2.5 – VSpec tree (adopted from [OMG 12])

For example, a VSpec tree is shown in Figure 2.5. The rounded rectan-
gle, rectangle, and ellipse are used to present Choice, VClassifier, and Variable,
respectively. The solid and dotted lines present the mandatory and optional
relationships between two VSpecs, respectively. If we do not select Printer for
configuration, i.e., Printer is negatively resolved, we must decide negatively
for Type, there is no instance of Cartridge, and no value is assigned to res-
olution, and so on recursively down the tree. On the contrary, if Printer is
positively resolved, its children must be decided, i.e., Type must also be posi-
tively resolved, a value should be assigned to resolution, and there is at least
one instance of Cartridge.

The remainder of this dissertation focuses on the Choice VSpecs because we
work on adaptive software architecture, i.e., the software architecture will be
modified at runtime by replacing components thanks to selection or deselection
of VSpecs in the VSpec tree. A Choice is resolved positively or negatively, i.e.,
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it is decided to true or false. Thus, the Choice VSpec is appropriate for
representing variability of components in adaptive software architectures.

Variation Points

Variation points link VSpecs to elements of the base model affected by the
variability. They allow to identify what elements of the base model are removed,
added, or/and modified when a Choice in the VSpec tree is resolved positively.
We consider three ways that variation points define the changes of the base
model:

• Existence. This is a type of variation point in charge of representing
whether an object of a link exists or not in the product model. The
object and link of a base model can be linked to ObjectExistence and
LinkExistence variation points, respectively.

• Substitution. This type indicates that a single object of an entire model
fragment may be substituted by another one. The single object and the
entire fragment can be linked to ObjectSubstitution and FragmentSubsti-
tution variation points, respectively.

• Value assignment. It is used to represent that a given value is assigned to
a given slot in the base model, e.g., SlotAssignment variation point.

OCL Constraints

CVL supports the definition of OCL constraints among elements of a VSpec
tree that cannot be directly captured by hierarchical relations in the VSpec
tree. CVL presents a basic constraint language - a restricted subset of OCL.
Additionally, CVL allows to use other constraint languages, including more
complete OCL. Some constraints are usually used such as implies and excludes.
For example, a constraint “A implies B” indicates that if A is resolved to true,
B must also be resolved to true.

2.3.2 Configuration

Configuration is taken into account in application engineering process to gen-
erate product models from the specified models in the domain engineering. In
CVL, the product model is generated by configuring the variability model. This
model is configured thanks to a resolution model defined by an application en-
gineer.
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2.3.2.1 Resolution Model

A resolution model presents decisions to configure the variability model. When
a variability model is configured, each VSpec is resolved. The resolution is
presented as a tree where each element, called VSpecResolution, refers to a
VSpec of the variability model. According to the three types of VSpec, there are
three types of VSpecResolution: ChoiceResolution that resolves Choice VSpecs,
VariableValueAssignment that resolves Variable VSpecs, and VInstance that
resolves VClassifier VSpecs.

Figure 2.6 shows a resolution model that corresponds to the VSpec tree
of Figure 2.5. Each node in the tree is a VSpecResolution that refers exactly
to a VSpec in the VSpec tree. In Figure 2.6, Printer=True is a ChoiceReso-
lution that resolves Printer positively; resolution=1600 is a variable value
assignment that resolves resolution; c1:Cartridge as well as c2:Cartridge
are VInstances that resolve Cartridge, and so on. Finally, Scanner=False
resolves Scanner negatively. So, the children of Scanner need not be speci-
fied in the resolution model. In addition, a VSpec that is not resolved by any
VSpecResolution of the resolution model can use the default decision specified
in that own VSpec.

Office=True

Scanner=FalsePrinter=True

BW=FalseColor=True

resolution=1600

c1:Cartridge

Turbo=False

High=True Low=True

inkVolume=50

Type=True

c2:Cartridge

Turbo=True

High=True Low=False

inkVolume=80

Speed=True

Speed=True

 

Figure 2.6 – Resolution model (adopted from [OMG 12])

Once all the VSpecs are resolved, i.e., the variability model is configured,
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the variation points are used to decide which components and attributes in the
base model are affected by the configuration to create the product model.

2.3.2.2 CVL Execution

CVL provides a tool, called CVL Execution (Figure 2.4), that takes the CVL
model (a variability model, a base model, and a resolution model) as its input.
The result of running the CVL Execution is a product model that is specified
in the same language of that base model.

Conclusion

CVL offers tools and meta-models to specify variability of a product family
but it does not offer a method to specify the variability model and the base
model. In addition, the product is generated without runtime variability.

2.4 Software Architecture

2.4.1 Definition

Software architecture is considered as a discipline of software engineering. The
description of software architecture allows to effectively represent the complex
software system throughout its development, deployment, and evolution/adap-
tation.

Presently, there is no definition about software architecture accepted widely
by the software engineering community. A model of software architecture was
early proposed in [Perry 92] as a triple:

Software architecture = {Elements, Form, Rationale}

This means that a software architecture is a set of elements in which each
element has a particular form. Elements are distinguished between three types:
processing, data and connecting elements. These three types can be consol-
idated into the two main concepts, components and connectors. The form
presents the way in which the elements are arranged in the architecture. Finally,
the rationale presents the motivation for the choice of elements, and the form
[Perry 92]. Shaw and Garlan [Shaw 96b] were based on the definition proposed
by Perry et al. to define software architecture as follows:
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“Software architecture involves the description of elements from which sys-
tems are built, interactions among those elements, patterns that guide their
composition, and constraints on these patterns”.

In this definition, the composition among architectural elements and the de-
pendencies between them are mentioned. In fact, the elements in architecture
are composed in an entity to accomplish the system, i.e., the elements are orga-
nized or structured. According to Kruchten et al. [Kruchten 06], the following
definition was proposed:

“Software architecture involves the structure and organization by which mod-
ern system components and subsystems interact to form systems, and the prop-
erties of systems that can best be designed and analyzed at the system level”.

Recently, Bass et al. in [Bass 12] defined:

“Software architecture of a system is the set of structures needed to reason
about the system, which comprise software elements, relations among them, and
properties of both”.

Although these definitions focus on various aspects of software architecture,
all of them refer to two main aspects, structural and behavioral. The system
structure is described in terms of components, connectors, and configurations.
The behaviors are considered as the interactions between system components
via connectors to achieve the functional system. They may be described in
terms of actions and their relations, behaviors of components and connectors,
and how they interact and change, the state of the active system [Szyperski 02].
In this thesis, we focus on the structural aspect including components, connec-
tors, and configurations of the software architecture to cope with architectural
adaptation.

2.4.2 Component

A component can be used to represent calculation elements or store units of
the system such as clients, servers, databases, user interfaces, etc. [Schmerl 02].
It can be simple/atomic or composite, and its functionality is originated from
a simple procedure or a complex application [Moo-Mena 07]. The software
component is defined in [Szyperski 02] as:

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties”.

The component in this definition is seen as a composition unit with inter-
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faces and explicit dependencies. A component may have multiple interfaces in
which each defines an interaction point with other component or its environ-
ment. Components play a central role for building software systems, or can be
integrated by third-parties. In terms of building software systems, Taylor et al.
[Taylor 09] defined software component as:

“A software component is an architectural entity that (1) encapsulates a sub-
set of the system’s functionality and/or data, (2) restricts access to that subset
via an explicitly defined interface, and (3) has explicitly defined dependencies
on its required execution context”

According to this definition, a component highlights the role of calculation
or/and data of a system. Those calculation and data can be accessed via ex-
plicitly defined interfaces. Moreover, a critical aspect of software components
makes them usable and reusable according to the required execution context.

2.4.3 Connector

In software architecture, components are mainly responsible for processing or
data, or both simultaneously. Another aspect in software architecture is inter-
action among components. This interaction is represented using connectors. A
connector is defined in [Shaw 96a] as:

“Connectors are the locus of relations among components. They mediate
interactions but are not–“things” to be hooked up (they are, rather, the hookers-
up). Each connector has a protocol specification that defines its properties.
These properties include rules about the types of interfaces it is able to medi-
ate for, assurances about properties of the interaction, rules about the order in
which things happen, and commitments about the interaction such as ordering,
performance, etc.”

According to this definition, a connector is considered as a mediate element
for communication and coordination activities among components, as well as a
software element whose properties can be specified. This definition mentions
rules for interactions. The interaction aspect of connectors is also mentioned in
the definition of Taylor et al. [Taylor 09] as:

“A software connector is an architectural element tasked with effecting and
regulating interactions among components.”

In order to effect and regulate interactions, a connector must provide ser-
vices. In Chapter 5 in the book of Taylor et al. [Taylor 09], a software connector
can provide four classes of services as follows:
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• Communication: provides services for transferring data among compo-
nents.

• Coordination: provides services for transferring control among compo-
nents.

• Conversion: provides services for transforming the interaction required
by one component to that provided by another.

• Facilitation: provides services that mediate and streamline component
interactions such as load balancing, scheduling services, and concurrency
control.

On the other hand, connectors can offer extra-functional services, such as
logging, transactions, quality of service constraints, and so on. These function-
alities are independent of the interaction of component’s functionalities and are
usually provided by platforms such as CORBA, DCOM or RMI. In fact, con-
nectors are not clearly presented in such platforms. Furthermore, they are not
explicitly presented in some component models such as Fractal [Coupaye 07],
or iPOJO [Escoffier 07].

2.4.4 Architectural Configuration

In order to accomplish system’s objective, components and connectors are com-
posed in a specific way into a set of software elements. Such a set of elements is
considered as the system’s configuration. Taylor et al. defined a configuration
as follows:

“ An architectural configuration is a set of specific associations between the
components and connectors of a software system’s architecture.”

This means that configuration is a particular structure for a concrete system.
It can be represented as a graph in which nodes represent components and arcs
represent connectors. A configuration can be built as a complete product. For
example, the product model generated by CVL Execution may be considered
as an architectural configuration.

2.4.5 Architecture Description Language

Software architectures can be described using an Architecture Description Lan-
guage (ADL). ADLs aim at specifying a high-level structure of the application
rather than the implementation in a specific source code [Vestal 93]. ADLs sup-
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port architecture-based development by providing a foundation with standard
notions for specifying and describing the software systems [Medvidovic 00].

Many ADLs have been proposed to model and represent software architec-
ture from the 90 years, such as Rapid [Luckham 95], Darwin [Magee 96], Weight
[Allen 97], ACME [Garlan 00], and so on. Each of them specifies the architec-
ture system according to its own way. However, all of them are based on the
basis concepts of component and connector.

In this thesis, we use ACME to specify the component-based adaptive ar-
chitecture or the base model in terms of CVL as our ADL. It is used for
three reasons: 1) It is a general purpose ADL that supports extensible ar-
chitectures for different domains, and extensible properties and architectural
analyses; 2) It extends the usual component-connector representation with the
concept of families, allowing designers to define different architectural variants
or styles [Schmerl 02]. 3) It can be extended to support runtime adaptation
[Cheng 02b, Cheng 02a].

ACME: an architecture description language [Garlan 00]

An architecture structure defined in ACME uses main types of elements
such as components, connectors, systems, ports, roles, and representations.

Each component in ACME can have multiple interfaces called ports, which
identify a point of interaction between the component and its environment.
Similarly, connectors in ACME also have interfaces which are defined by a set
of roles. The roles in the connector allows identifying the role of participants
in interactions. For instance, a connector used to represent interaction between
two components has two roles such as (caller, callee) or (sender, receiver). Com-
ponents and connectors can be composed in a set of elements, called system,
by attaching component ports to connector roles. It is represented as a graph
in which nodes are components and arcs are connectors. In ACME, each com-
ponent or connector can be represented by one or more details, lower-level
descriptions which is called a representation. Connection between components
and their more detail is represented by binding.

For example, a client server system can be represented in ACME as Figure
2.7. The system consists of a Client and a server that can be implemented by
Server 1 or Server 2. Each component has a port described as a small black
square. The interaction between the client and the server is represented by a
connector with two roles, caller and callee. The connector is attached with two
ports of Client and Server. Two bindings are used to map two ports from
Server to Server 1 and Server 2, respectively.
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Figure 2.7 – A client-server system represented in ACME

2.5 Architecture-Based Software Adaptation

The previous sections present an overview of methodologies about software de-
velopment and concepts related to variability and software architecture. The
methodologies are considered as one solution to develop adaptive software.
They are the basis of Dynamic Software Product Line (DSPL) engineering
that emerged as an efficient way to deal with runtime software adaptation
[Cetina 08b]. In this section, we describe the relation between DSPL and soft-
ware adaptation to highlight the role of DSPL in software adaptation develop-
ment. In addition, the terminologies and principles related to software adap-
tation and architecture-based adaptation are introduced. Finally, adaptation
mechanisms are studied on how to ensure dynamic consistent adaptation.

2.5.1 Terminologies

Software adaptation is the capacity of a software to adapt to a changing op-
erating environment. The operating environment includes anything observable
by a software system, such as end-user input, external hardware devices and
sensors, or program instrumentation [Oreizy 99]. Indeed, when the operating
environment changes, the system needs to be modified to meet the new condi-
tions [Cheng 09]. Through such an adaptation, the software system moves from
a current version to a new one.

A characteristic of adaptation is the moment when the changes can be
performed. Based on the adaptation time in the development process, two
adaptation types can be identified: static adaptation and dynamic adaptation
[Canal 06, Geihs 09]. The former refers to the modifications that are performed
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during design, and development time. Artifacts touched by the static adapta-
tion can be the design model, the documentation or the source code. If the static
adaptation corresponds with activities related to the maintenance [Chapin 01],
the system needs to be stopped, and its services are interrupted. The latter
refers to the changes of software system that happens during system execution.
This adaptation type maintains the continuity of services assured by the sys-
tem. Moreover, it must also ensure the consistency of the system during and
after adaptation. According to the definition of Oreizy et al. [Oreizy 98], the
dynamic adaptation is defined as realizing modifications in a system without
recompilation during runtime. Compared to the static adaptation, the dynamic
adaptation significantly reduces the disruption of services provided by the sys-
tem.

Software systems that perform such dynamic adaptation are called adap-
tive or self-adaptive software systems. They are defined as a class of soft-
ware which is able to dynamically modify (at runtime) its own internal struc-
ture or/and its behavior in response to changes in its operating environment
[Oreizy 99, Cheng 09, de Lemos 13]. In fact, it does not exist a clear separation
between adaptive and self-adaptive. An adaptive system is called self-adaptive
if it observes its execution environment, decides adaptation, and modifies the
system by itself, i.e., without the intervention of external agents, e.g., user
intervention. The self-adaptive terminology is closely related to the self-* prop-
erties of software systems such as self-managing, self-healing, self-optimizing,
and self-configuring [Salehie 09]. On the other hand, an adaptive system may
be intervened by external agents that can decide and/or realize the adaptation
on the running system. In this thesis, we focus on the dynamic or runtime
aspect of software adaptation.

Depending on the degree of automation, we distinguish three types of adap-
tation: manual adaptation, automatic adaptation, and semi-automatic adapta-
tion. The former requires an engineer to decide, plan and implement manually
adaptation mechanisms, e.g., [Buisson 15]. The second one refers to the self-
adaptive systems, e.g., [Geihs 09, Pascual 14]. Finally, in the third one, some
activities such as monitoring execution environment and deciding adaptation
are realized by an external agent, while the planning and executing adaptation
are realized by the system itself, e.g., [Phung-khac 10].

Adaptation is realized by adaptation controllers. The adaptation is called to
be centralized when a centralized controller is used. Otherwise, it is distributed.
In the distributed adaptation, several entities coordinate with each other to
manage and control the adaptation process. In this thesis, we focus on adaptive
software systems whose adaptation is controlled at runtime by a centralized
controller integrated in it. This controller will receive a decision from an external



34 2. Background and Context

agent for adaptation.

An adaptation can change the functionality of a system or not. This refers
to the terms of functional/non-functional adaptation. A functional adaptation
will change the software system functionality, i.e., services provided to the users
can be modified, added, or removed from/to the software system after the adap-
tations. According to Parlavantzas et al. [Parlavantzas 05] and Bencomo et al.
[Bencomo 08], functional adaptation refers to the notion of extensibility as the
ability to add new functionality. On the other hand, non-functional adaptation
leads to changing the characteristics of the system such as quality of service,
performance, security, etc. For example, the adaptation proposed by Pascual
et al. [Pascual 14] is considered as non-functional adaptation for optimizing its
activities. In this thesis, we consider non-functional adaptation that replaces
an architectural variant by another one.

2.5.2 DSPL and Software Adaptation

The term DSPL was firstly introduced in [Kim 04] as an approach where new
products can be produced at runtime without stopping the running system. Ac-
cording to [Hinchey 12], DSPLs extend traditional SPLs approaches by moving
their change capabilities to runtime, i.e., a new product version can be derived
at runtime by modifying or reconfiguring the running system. Generally, the
aim of DSPL focuses on developing software products that can be adapted at
runtime to cope with the more frequent changes of the operating environment
such as user requirements, end-user input, external hardware devices and sen-
sors, or program instrumentation.

DSPLs have been proposed to use the techniques in SPL engineering to build
adaptive software systems [Hallsteinsen 06, Bashari 13]. They are considered as
an efficient way to deal with runtime product adaptation. In comparison with
traditional SPL, DSPL highlights the dynamic aspect, i.e., software artifacts are
used to dynamically replace parts of the running product based on variability
specified in SPL. Thus, an adaptation mechanism should be provided to cope
with runtime variability in the product. In DSPLs, observing the execution
context, deciding and controlling the adaptation are critical tasks. The appli-
cation engineer, the user, or the application itself can carry out manually or
automatically these tasks [Hallsteinsen 08].

The software artifacts in DSPLs that are not selected for configuring the
initial product should be integrated into the product. They can potentially
be used at runtime to cope with new requirements. Thus, such artifacts must
be available at runtime. By default, all artifacts in DSPL are available in the
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product for adaptation. We have not found any approach that identifies artifacts
that are not required for a particular product.

2.5.3 Adaptation Control Loop Model

In a classic system, i.e., non automatic, a system administrator is responsible for
observing the system, analyzing new requirements, and deciding the actions to
maintain the services provided by the system. Once the system is designed and
deployed, it can not be repaired without stopping it. Such a system is designed
as an open-loop system. On the other hand, an adaptive software system is
provided an external adaptation mechanism based on closed-loop control to
monitor and control adaptation at runtime [Garlan 04]. Figure 2.8 shows a
closed-loop control that includes adaptation mechanisms to monitor and modify
dynamically the system. Such kind of control can be considered as a feedback
control loop.

System

 Controller 

 Control Monitor 

Figure 2.8 – A closed-loop control model (adopted from [Garlan 04])

A feedback is information that is translated back into an action performed
onto the system from which it has originated [Křikava 13]. A feedback control
loop includes four key activities: collect, analyze, decide, and act, as depicted
in Figure 2.9 [Dobson 06]. The loop starts with the collection of relevant data
reflecting the system and its environment from sources such as environmental
sensors and user context. Next, the system will analyze the collected data.
Based on the results of analysis, a decision is made about how to adapt to
reach a desirable state. Finally, the system must act to realize the adaptation
decision via available actuators and effector [Cheng 09].

The generic model of a feedback loop is sometime also referred to as auto-
nomic control loop [Brun 09] or adaptation loop [Salehie 09]. The idea of this
model originates from the autonomic computing research community to en-
able self-management of system [Kephart 03]. It is known as Monitor-Analyze-
Plan-Execute loop (MAPE or MAPE-K with a shared knowledge component)
[Kephart 03]. Figure 2.10 shows the MAPE loop that distinguishes between
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Figure 2.9 – Feedback control loop model (adopted from [Dobson 06])

the managed element (the running system) and the autonomic manager. The
managed element may be either entire system or a component within a larger
system. The autonomic manager includes four elements that observe system
parameters, analyze them, plan actions and execute them. The knowledge ele-
ment shared between these elements is standard data such as models, databases,
or dictionaries. It can also be shared among autonomic managers [IBM 05].

Running System

Autonomic manager

Monitor Execute

Analyze Plan

Knowledge

 

Figure 2.10 – MAPE-K loop (adopted from [Kephart 03])

• Monitor: The monitoring phase captures properties related to the man-
aged elements and its external environment. Based on the knowledge, the
monitor identifies what it observes and collects. The data can be collected
through sensors and transforms the current context to a form that can be
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manipulated by other phases.

• Analyze: Based on the context information provided by the monitor phase
and the knowledge, the analyzing phase evaluates changes and determines
a new target system and offers change decisions.

• Plan: The planning phase receives the change decisions and make an
adaptation plan based the knowledge and the new target system. The
plan provides necessary actions for adaptation.

• Execute: The plan is provided to the executor to realize adaptation ac-
tions. The executor can observe the ongoing activities in the current
system to decide an appropriate moment to apply the execution of adap-
tation actions.

In this thesis, we focus on the activities of planning and executing adaptation
actions. We adopt the MAPE-K loop in which the executing element is called
Reconfigurator. This Reconfigurator can access the knowledge repository that
contains data such as the variability model, the deployment model, etc, and
receives a reconfiguration plan generated from the planning element to execute
adaptation on the running system.

2.5.4 Architecture-Based Adaptation

Software architectures are considered as design-time artifacts. Architectural
models are specified by using ADLs with explicit components and interactions
among them, and analyzed by using design-time tools. The idea of architecture-
based adaptation is to maintain these models and tools at runtime to be used
as a basis for adaptation [Cheng 02a].

Architecture-based software adaptation provides adaptation mechanisms ba-
sed on architectural models to monitor and adapt the running system. This kind
of adaptation uses a closed-loop control to manage and control adaptation as
mentioned in [Oreizy 99, Cheng 02c, Garlan 04].

In [Heimbigner 02], configurable runtime architecture models are used to
describe the structure of the software system. They are moved from design to
runtime to define multiple configurations for the architecture. Such models are
attached to the software system to provide the basis for defining and monitoring
the context. Moreover, they are used for reconfiguring the system as well.

Architecture-based adaptation facilitates managing and realizing adapta-
tions using architectural models. The architectural models allow to represent
explicitly components and their constraints. For this reason, one of the main
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advantages of using architectural models is that they support to validate new
configurations of the system as well as ensure the system consistency and in-
tegrity [Oreizy 98, Morin 09b].

2.5.5 Consistent Dynamic Adaptation

A critical requirement of adaptation is to ensure the system consistency, i.e.,
the correct completion of ongoing activities must be preserved, the adaptation
process does not break component dependencies, and the state of current com-
ponents must be transfered to the new ones [Li 12]. An adaptation that ensures
such requirements is called consistent dynamic adaptation.

Two of the three most important issues of consistent dynamic adaptation
indicated by Ghafari et al. [Ghafari 12b] are reaching a “safe status” 2, and
transferring the internal state of entities which have to be replaced. The former
indicates the moment when components can be replaced. The latter focuses on
the state transfer between the current and the new configuration.

In this section, we present concepts and an overview of existing approaches
related to these issues in order to understand how to manage them.

2.5.5.1 Definition of Transaction

Consistent dynamic adaptation is closely related to the notion of transaction,
since both are looking for the consistent status of a system.

According to Kramer and Magee in [Kramer 90], a transaction is defined
as “an exchange of information of two and only two [components] 3, initiated
by one of the [components]”. It consists of a sequence of messages exchanged
between two components that completes in bounded time. Similarly, Rasche
et al. [Rasche 03] defined “a transaction is a sequence of one or more message
exchanges over a connection”. These definitions highlight a cycle of commu-
nication messages without the computation activities of the components and
consider a transaction via two connected components. A transaction is initi-
ated when a component invokes a service on other components.

Figure 2.11 shows three components, Initiator, Dispatcher, and Receiver,
participating in two transactions T1 and T2. According to the transaction def-

2. We use “status” as mentioned in [Vandewoude 07] instead of “state” to differentiate
from internal state, e.g., value of variables, properties of components, or data, etc. Status
indicates an appropriate moment for adaptation, whereas, state indicates state space.

3. In this thesis, we use the term of [components] instead of nodes that some authors used.
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Figure 2.11 – Example of transactions according to the definition in [Kramer 90]

inition of Kramer and Magee, T1 relates to two components (Initiator and
Dispatcher) while T2 relates to the Dispatcher and Recipient components.

On the other hand, Ma et al. in [Ma 11] define a transaction as “a sequence
of actions executed by a component that completes in bounded time”. Actions
include local computations on a component and its message exchanges. An
example is represented in Figure 2.12. It includes three transactions instead of
two as in Figure 2.11. Each transaction is engaged in a component.

:Initiator :Dispatcher :Receiver

T1 T2 T3

 

Figure 2.12 – Example of transactions according to the definition in [Ma 11]

A transaction can be initiated by another transaction. Such a transaction
is called consequent transaction. Kramer and Magee indicated that the trans-
actions in a system can depend on each other. A dependent transaction is
a transaction whose completion may depend on the completion of other con-
sequent transactions. On the other hand, a transaction is independent if its
completion does not depend on any other transactions.

According to the definition of dependent transactions, Figure 2.11, T2 is
called consequent of T1, i.e., T1 completes iff T2 has finished. Finally, T2 is an
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independent transaction. On the other hand, in Figure 2.12, T1 depends on T2,
and T2 depends on T3. T3 is the consequent transaction of T2. Similarly, T2
and T3 are the consequent transactions of T1.

We adopt the transaction definition in [Ma 11] and extend it towards many
components engaged in a transaction. This extension will be presented in Chap-
ter 5. However, to explain the existing approaches in this section, we adopt their
definitions.

2.5.5.2 System Consistency

The adaptation process must preserve the system consistency. A system is
consistent if the correctness of ongoing activities of the system is not affected
by adaptation, and the state of the whole system is guaranteed. The sys-
tem consistency is distinguished into local consistency and global consistency
[De Palma 01, Ketfi 02]. The former is related to one component independently
of the others, whereas the latter concerns the whole system.

Local Consistency

Local consistency is considered as the local state of a single component. It is
related to the inner computation of a component [De Palma 01] and interactions
between the component and other components [Chen 02]. The local state is
consistent if it is maintained during reconfiguration, i.e., the inner computation
and its interactions are preserved.

According to [De Palma 01], in order to maintain local consistency, the re-
configuration must take into account the following issues: the reference preser-
vation, the state one, and the state of communication channels. Indeed, when
replacing a component by another one, all references of other components that
require services of the replaced component must be guaranteed. Secondly, the
local state of component must be preserved. Finally, the last issue is related
to communication channels. When realizing adaptation, some communication
messages may still be in transit. Thus, such messages should be taken into
account for adaptation. If one of these issues is not satisfied, the component
becomes inconsistent.

Global Consistency

In a system, the local consistency is not enough to ensure the system consis-
tency: global computations must also be preserved consistent in spite of adap-
tation [De Palma 01]. The global computations concern globally distributed
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transactions, where each transaction is performed by a distributed component
that is liable to be reconfigured [Li 11].

A system guarantees global consistency before and after adaptation if the
adaptation ensures the local consistency of all components and the global com-
putations. In our approach, the global consistency is addressed by managing
transactions to identify a safe status, and transferring state in the system.

2.5.5.3 Safe Status

Safe status is an appropriate moment and also a condition which allows an
adaptation process to ensure global consistency. Indeed, an existing system
has potentially ongoing activities that should not be canceled or aborted by
adaptation. On the other hand, changes by adaptation should not lead to an
inconsistency in the system. Therefore, the replaced components should be put
in the safe status that ensures no inconsistencies arisen in the system.

Detecting the moment when the safe status is reached is a difficult task.
This task is considered as the key to ensure consistent dynamic adaptation.
Kramer and Magee [Kramer 90] were the first to consider this problem and
abstract the status of a system into a set of different status for each component.
They consider two main status for each component, active and passive, whose
definitions are given as follows:

Definition 1. (Active status) A component in the active status can initiate,
accept, and service transactions.

Definition 2. (Passive status) A component in the passive status must con-
tinue to accept and service transactions, but

1. it is not currently engaged in a transaction that it initiated, and

2. it will not initiate new transactions.

Kramer and Magee identify that a passive status is necessary but insufficient
for updatability as a component may still be processing transactions that were
initiated by other components. Thus, they propose a stronger concept:

Definition 3. (Quiescence) A component is quiescent if:

1. It is not currently engaged in a transaction that it initiated,

2. It will not initiate new transactions,

3. It is not currently engaged in servicing a transaction, and

4. No transactions have been or will be initiated by other components
that require service from this component.
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In the quiescent status, the status of a component is both consistent and
frozen. It is consistent in that the component does not participate in partially
completed transactions, and is frozen in that the component state will not
change as a result of new transactions [Kramer 90].

In order to achieve the quiescent status of a component C, we must ensure
that no transactions have been or will be initiated by other components that
require services of C. This means that the following conditions must be ensured:

• Component C must be passive.

• All initiated transactions and their consequent transactions that have been
realized or will be realized by the component C must complete.

• All components that can initiate transactions that result in consequent
transaction on C must be passive.

The quiescent criterion is a sufficient condition for a component to be safely
modified in dynamic reconfiguration. However, to reach and maintain the qui-
escent status, all components that can directly or indirectly initiate a new
transaction on this component must be in passive status. In the worst case, all
the components in the system are passive, which may lead the system to an un-
availability status. Consequently, quiescence often causes significant disruption
to the running system that may not be acceptable. This is a serious drawback
with respect to the impact of changes in the system [Arnold 96].

Vandewoude et al. proposed the concept of tranquility, as an alternative to
quiescence [Vandewoude 07], and defined it as follows:

Definition 4. (Tranquillity) A component is tranquil if:

1. It is not currently engaged in a transaction that it initiated;

2. It will not initiate new transactions;

3. It is not actively processing a request;

4. None of its adjacent components are engaged in a transaction in
which it has both already participated and might still participate in
the future.

Similar to the quiescent status, the tranquil status is based on the passive
status (conditions 1 and 2) and the condition 3. However, the tranquil compo-
nent only considers its adjacent components, i.e., the tranquility reduces the
number of passive components. The component can be safely replaced if it has
not yet begun a transaction, or consequent transactions.
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In order to maintain the tranquility of a component as soon as reaching
tranquil status, all interactions between that component and its environment
must be blocked. This is not taken into account in the quiescence because all
components that may directly or indirectly initiate new transactions on the
component are passive and remain passive until they are explicitly reactivated.

Although the tranquility status is a sufficient condition for preserving system
consistency during reconfiguration, this criterion does not work safely. It only
ensures local consistency without the global consistency. Thus, the work in
[Ghafari 12a] is based on managing a sequence of transactions to find a safe
status for a global consistency.

:Sender:Packer :(De)compression :Receiver

T0

T2

T1

T3

T4

 

Figure 2.13 – An example for the status management (adopted from
[Ghafari 12a])

Figure 2.13 shows a sequence diagram to illustrate a sequence of transac-
tions. In the figure, the (De)compression component consists of two services
of compressing and decompressing messages. Suppose that the adaptation sce-
nario is replacing the (De)compression component by another one. In order to
ensure the global consistency, all messages that have been compressed by the
(De)compression component (transaction T1) must be decompressed by the
(De)compression component (transaction T4) before replacing it. That indi-
cates that there is a transactional dependency between T1 and T4. Although
the approach in [Ghafari 12a] is interested in the transactional dependency,
their approach is an ad-hoc one and does not propose a systematic approach to
manage such dependencies. More detail of this approach in [Ghafari 12a] are
represented in Section 3.6.
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If the (De)compression component is divided into two components, Compre-
ssion and Decompression, applying the quiescent and tranquil criteria does
not ensure the global consistency when replacing these components, because
the quiescent and tranquil criteria are applied on single components without
the transactional dependency. This will be explained in Section 5.2.1.1.

2.5.5.4 State Transfer

The state of a system includes the local state of all components and all messages
in transit [Ma 11]. The local state consists of all information such as component
properties, data of a component in the system. According to Grondin et al.
[Grondin 08], a system state is defined as the set encompassing values of all
variable attributes of all roles in all configurations.

State transfer is an important issue of dynamic adaptation [Ghafari 12b]. It
is considered as a process of capturing the runtime state of a component or a
group of components and using this state to initialize a new version.

In the literature, two existing techniques related to state transfer are men-
tioned in [Vandewoude 05], direct state transfer, and indirect state transfer.
For the former, the state of the current version is directly used by the replacing
version that has the capacity to interpret and convert state from the current
version. For the latter, the current version exports its state in an abstract
representation that is used by the replacing version.

The most difficult task of state transfer is to identify the correspondence
among states of the component versions. As the semantic of this state is
component-specific, the state migration task can never be completely auto-
mated [Vandewoude 03]. Hence, a human interaction will always be required.
In this thesis, we use a state transfer model to represent the state mapping
among components.

2.6 Summary

In this chapter, we have briefly introduced the background and concepts
recommended for understanding this dissertation. We have given an overview
of methodologies of software development based on models. Particularly, SPL
arises as an efficient engineering for developing software in which variability
modeling and software architecture specification play a critical role. For the
variability modeling, there are different approaches such as feature model, OVM,
or CVL, in which CVL clearly separates variation points from the variability
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specification, and the software architecture. The software architecture has also
been presented in this chapter. It can be represented by using ADLs. In this
chapter, we have briefly presented ACME - an architecture description language
that is used in this thesis.

In this thesis, we are interested in the architecture-based adaptation. Thus,
we have provided the concepts related to the architecture-based software adap-
tation, as well as developing adaptive software architectures. Particularly, DSPL
is considered as an efficient way to develop adaptive software architectures. On
the other hand, guaranteeing the system consistency during adaptation plays
an important role in adaptation.

This thesis is based on DSPL to develop adaptive software architectures in
which CVL is used to specify the variability and commonality via the variabil-
ity model. In CVL, a base model is used to specify the software architecture.
The variability and the base models are used throughout our development pro-
cess. At runtime, these models are used as a support for planning the dynamic
adaptation. Additionally, other issues such as state transfer, and consistent
adaptation should be also taken into account when realizing adaptation.

In the next chapter, we will make a survey of various works that are related
to ours. We use the challenges identified in Section 1.2 to analyze and evaluate
them. This allows us to make a comparison to find advantages and limitations
and to position our contributions.
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3.1 Chapter Overview

In this chapter, we discuss approaches related to adaptive software develop-
ment process. A description of the existing approaches is performed based
on the challenges defined in Section 1.2 consisting of: 1) Modeling variability
and commonality for adaptation; 2) Configuring and automatically building
adaptive architecture; 3) Supporting state transfer; 4) Automatically planning
adaptation; 5) Ensuring consistent dynamic adaptation. This description is
shown from Sections 3.2 to 3.6. Finally, Section 3.7 provides an overview of a
comparison of these existing approaches and their limitations.
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3.2 Modeling Variability and Commonality

Modeling variability and commonality in SPL is considered as an effective way to
build systems that can be changed to meet various conditions and requirements.
A technique to build adaptive software systems based on specifying variability
has emerged as mentioned in the review of Capilla et al. [Capilla 14]. They
presented many various ways to describe the variability in which the variability
modeling based on models is a popular method. There are three main proposals
used for modeling variability such as the feature model [Kang 90], the orthog-
onal variability model [Pohl 05], and recently the common variability language
[Haugen 13]. In this section, we use these proposals to present the variability
and commonality modeling.

Based on Feature Models [Kang 90]

Most exiting approaches are based on the feature model proposed in [Kang 90]
to specify variability for adaptation. In [Trinidad 07], a feature model is used
to represent variability for DSPLs. By assuming that a feature corresponds to
a component in the architecture, this approach proposes a direct mapping from
the feature model to the component-based architecture model. The component-
based architecture model includes the core architecture and the “dynamic” one.
The core architecture maps to mandatory features while the dynamic archi-
tecture to optional features. Thanks to the mapping between features and
components, when configuring the feature model, a product can be determined.

Authors in [Cetina 08a, Cetina 13] also used feature models and proposed
extensions to represent variability of autonomic systems, called FAMA feature
model [Benavides 05]. They use a DSL to specify the product architecture,
the PervML language [Muñoz 05]. In [Cetina 13], the mapping between the
feature model and the product architecture is defined by the “superimposition
operator”, whereas [Cetina 08a] uses a realization model to map features in the
FAMA feature model to PervML elements.

In FamiWare [Gámez 11], feature models are used to represent variability
and commonality of various product configurations. A feature mapping is de-
fined to represent the correspondence between features and components. A
product architecture can be determined by using a set of parameters that rep-
resents the context. Corresponding to various context conditions, different con-
figurations can be identified thanks to variability specified in the feature models.

Gomaa et al. [Gomaa 07] introduced a modeling approach to design evolu-
tionary and dynamically reconfigurable software architectures. Feature models
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are built and analyzed to identify variability and commonality before the imple-
mentation of the system. After the implementation, the models and the system
co-exist and evolve. The feature models are dynamically analyzed at runtime
to help determine the dynamic impact of each feature on the software archi-
tecture. Variation points in the feature model can be realized thanks to “plug-
compatible” components, and component interface inheritance in component-
based software architectures.

In FUSION [Elkhodary 09, Elkhodary 10], authors use a feature model to
abstract capabilities provided by a system. According to this approach, a feature
represents an abstraction of elements in the architecture, i.e., it maps to a subset
of the software system architecture. Based on feature groups (optional features
that are defined in the feature model) variability can be identified.

Unlike the above approaches, Lee et al. [Lee 06] proposed a feature-oriented
approach to develop dynamically reconfigurable products by analyzing features.
This approach is based on feature model to present variability and analyze fea-
ture binding units. A feature binding unit consists of a set of service features in
which each feature represents a major functionality of the system and may be
added or removed as a unit. This approach provides a guideline to design ar-
chitectural components from the feature binding units. Based on the variability
in the feature model, adaptation can be achieved at runtime.

Similarly, Phung et al. [Phung-khac 10] proposed the adaptive medium ap-
proach, called adaptive medium approach, to develop adaptive distributed ap-
plications. This approach separates business logic from the adaptation aspects
of the applications. In the business logic, this approach extends the feature
model to represent variability and commonality. The model is then refined for
generating different products as members of an SPL. Finally, the generated
products are composed together with an adaptation medium for performing
adaptation.

On the other hand, some approaches are based on context-aware model to
enrich the feature model. Authors in [Saller 13, Saller 15] proposed an asso-
ciation between feature models and context aware models to design DSPLs.
The feature models are enriched with context information specified in a con-
text model to reason about potential context changes. Based on the feature
model and the context aware model, a transition system is derived that defines
context-aware reconfiguration behavior. Each state in the transition system is
a valid configuration. It provides necessary information to perform adaptation
at runtime.

Similarly, in [Mizouni 14], a framework is proposed to build context aware
and adaptive mobile applications based on feature modeling and SPL concepts.
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The feature model is used to represent variability and commonality of SPL
in which each feature associates with an execution context. This approach
distinguishes the features into three feature groups, critical, important, and
useful. The important and useful features are considered as variation points.
Each feature refers to a component or a composite structure in the architectural
model. At the end of the design time, features in the feature models are selected
to derive members of SPL. Each member is associated with a context of use.
In terms of implementation, components are implemented as a set of services of
application based on the OSGi component model. A context decision module
integrated in the framework decides an appropriate member according to the
corresponding context.

Recently, authors in [Mauro 16] proposed the HyVar approach for building
adaptive systems. They use feature models enriched by contextual information
and propose a reconfiguration engine, called HyVarRec, that can compute the
new configurations. The features are incorporated with concrete code artifacts
that have to be assembled to produce the actual software products.

Nieke et al. in [Nieke 17] proposed an integrated tool, called DarwinSPL,
that allows representing three dimensions of variability, spatial variability, con-
textual variability, and temporal one. Product configuration is considered as
spatial variability. The spatial variability includes configurable functionality of
a software system in terms of different features defining a set of all possible con-
figurations. The spatial variability is captured in feature models. Each feature
in the feature model is referred to its corresponding implementation artifact.

Based on Orthogonal Variability Model (OVM) [Pohl 05]

Besides feature models defined by Kang et al. [Kang 90], Pohl et al. [Pohl 05]
proposed Orthogonal Variability Model (OVM) to represent variability. OVM
clearly defines variation points and variants in a variability model that corre-
spond with feature group and feature in feature model, respectively. Moreover,
OVM allows to define the mapping to development artifacts via artifact depen-
dencies specified in the variants and the variation points.

Particularly, Bencomo et al. in [Bencomo 08] also use OVM to specify vari-
ability. This approach proposed a domain specific language (DSL) to specify
architecture model, OpenCOM DSL [Bencomo 06]. A particular product archi-
tecture consists of selecting a set of elements in the architecture model. Each
variant in the variability model refers to a particular product architecture.

Other techniques for adaptation are based on aspect-oriented modeling (AO-
M). In DiVA [Morin 09b], authors proposed an approach to leverage AOM and
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MDE to manage variability at runtime. A variability model is used to represent
possible variants of the system. Each variant can be considered as an aspect
model. Depending on a given context, a set of aspect models can be selected
and dynamically woven into an architectural model of the system at runtime.
This solution of managing variability using AOM was also used in [Morin 08,
Morin 09a] where the aspects are woven into the architecture model presenting
mandatory components to build various product architectures.

Parra et al. [Parra 11a, Parra 11b] (CAPucine) defined a feature model
conforming to OVM meta-model. They combine the feature model with aspect
models. The aspect models describe elements, cores and/or aspects, of any
product. Each core is specified using a metamodel that consists of the basic ele-
ments of a component and service-based application. The aspects are designed
for modifying the elements of the core by adding and deleting new elements at
specific points (point cut) in the core structure. When configuring the feature
model, core and aspect elements in the aspect models can be identified. These
elements are woven with each other to build a particular software product.

Based on Common Variability Language [OMG 12]

A recent approach is proposed in [Haugen 08, OMG 12] as a new way to rep-
resent variability separated from software architecture, called Common Variabil-
ity Language (CVL). Authors in [Pascual 14, Pascual 13] presented an approach
that uses CVL to develop adaptive software systems. The system is described
by variability models and base models. The mapping between the variability
and base models is done using variation points. Similarly, Cetina et al. in
[Cetina 09b] used CVL to specify variability. This approach uses the PervML
DSL [Muñoz 05] to specify the architecture model like [Cetina 08a, Cetina 13].

Work in [Gámez 15] is based on CVL to represent variability as well. This
approach uses UML to present the base model. Constraints between the context
and variants are defined in OCL in the variability model. When the context
changes, a new resolution model can be identified for producing a new product.
Similar to [Gámez 11], this approach is also based on the FamiWare middleware
to build adaptive software.

Other approaches

In MADAM [Floch 06, Geihs 09], authors proposed an approach to develop
adaptive software based on a particular component framework. The framework
describes a composition of component types. Each type is considered as a
variation point where various component implementations can be plugged in
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to achieve variability. Thanks to that, the variability can be identified and
used to realize adaptations. A component architecture model is considered as
a variability model in MADAM.

Discussion

Modeling variability and commonality for adaptation plays an important
role in an adaptive software development process. It allows to exactly describe
variation points where changes can be realized in software architectures. How-
ever, the feature model proposed by Kang et al. [Kang 90] unifies the notion of
features in which the concepts of variants and variation points are not clearly
distinguished. This drawback is better handled in OVM that defines a fea-
ture model with the concepts of variant and variation point. Comparing to
the feature model proposed by Kang et et al., OVM explicitly distinguishes
between the concepts of variant and variation point. However, in OVM, both
variant and variation point are considered as nodes in the model. CVL pro-
vides a better way to model variability and separate variation points from vari-
ability. CVL was used to develop adaptive software in some approaches such
as [Cetina 09b, Pascual 14, Gámez 15]. Unfortunately, no existing approaches
provide a guideline to help engineers on how specify the variability model and
software architectures for building adaptive software architectures.

3.3 Configuring and Automatically Building Adap-

tive Architecture

This section briefly introduces related approaches in which variability model is
configured and a particular product can be automatically generated from a set
of information specified and artifacts implemented at design time. In order to
configure variability, a set of information about feature selections must be de-
termined. It can be defined and generated from collecting context information,
or user requirements.

In particular, the approach in [Pascual 14] uses CVL to specify the variabil-
ity. A resolution model is used to configure the variability. It is represented as
a vector that is generated by using the DAGAME optimization algorithm to fit
the execution context. Its elements contain ‘1’ or ‘0’ values corresponding to
selected or unselected VSpecs in the VSpec tree, respectively. When the context
changes, a new vector can be generated at runtime. For a given vector, a new
product is generated thanks to a dynamic reconfiguration service, and adapted
to the current system.
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FUSION [Elkhodary 09, Elkhodary 10] is also based on vectors to define
a product configuration. Feature selections are specified in the vectors by an
engineer to build adaptive software systems. Metrics collected from the running
system are analyzed by the FUSION framework that decides a new optimized
configuration at runtime. This configuration allows to determine a new product
that will be adapted to the running system by the framework.

In FamiWare [Gámez 11], based on a set of parameters of context and con-
straints between them, and features in feature model, the feature model can be
dynamically configured. Then, a product can be automatically generated by
applying model-driven and SPL engineering techniques. At runtime, monitor-
ing services capture the possible elements of the context that may change. So a
new configuration can be identified and a new product deduced. A defined plan
allows to adapt the current product to the new one. Similar to [Gámez 11], the
approach in [Gámez 15] is also based on the context to define a resolution model
for configuring the variability model. A new resolution model can be generated
at runtime when the context changes.

In MADAM [Floch 06, Geihs 09], an architecture model is used to represent
system architecture whose components are annotated with properties. These
properties qualify the services offered or needed by components, e.g., they can
represent system context such as the memory or the network characteristic.
Based on the context description, a product configuration can be identified
conforming to a concrete context by the MADAM middleware.

Based on the influences of the context on configuration options, in [Nieke 17],
different features can be selected for a configuration by an engineer using a tool
provided in the approach. A product can be built by composing implementation
artifacts implemented in domain engineering corresponding to the configuration.
In DarwinSPL, a reconfigurator, HyVarRec in [Mauro 16], is used to calculate
a new configuration thanks to context information provided by users. The new
product corresponding to this configuration is adapted to the current product
by HyVarRec.

Approach in [Saller 13] used a context model mapped to a feature model.
According to requirements of the context, a set of features can be selected to
build a product. Due to changes in the context, a constraint solver is used to
generate new configuration at runtime. The constraint solver takes the feature
and context models as its inputs, its output is various products satisfying to
the context. An optimized configuration is calculated to adapt to the current
product.

Like above approaches, in [Morin 08, Morin 09b] in order to select appro-
priate variants, a reasoning framework treats an adaptation model to take de-
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cisions. This model specifies which variants have to be selected based on a
context model. Products are built by composing the selected variants (aspects)
in the variability model with components in the architecture (core) model. By
using the reasoning framework, a new product can be identified and adapted to
current product at runtime.

Other approaches generate all members of SPL at design time in which
each member is selected depending on the context. Indeed, in [Mizouni 14],
based on the defined feature model, a set of members of SPL is generated by
using a SPL generator. A member of SPL is selected according to the current
context detected by using a context decision module. Similarly, Bencomo et
al. [Bencomo 08] specify a product configuration as a variant in the variability
model. Each variant is mapped to a specification of context. Corresponding to
the current context, a product architecture can be selected.

In some approaches, the role of the user is mentioned to configure a software
product. In CAPucine [Parra 11a], in order to build a product, a product
developer selects a set of features. A desirable product is generated as a result
of configuration and then deployed. In [Gomaa 07], the feature model can be
configured according to given features that are selected by the user. The product
line architecture is adapted and tailored to derive application architecture. The
reusable components are stored in a reused library for adaptation.

Authors in [Phung-khac 10] used and extended the medium refinement pro-
cess to develop the adaptation medium and generate functional medium’s archi-
tectural variants. Depending on some situations of the operating environment
or certain user requirements, various variants can be selected to build or adapt
the running product.

Another aspect in the configuration process is reducing unnecessary features
in the feature model before configuring it. In [Cetina 08a], three models are
used to describe SPL, feature model, architecture model, and realization model,
called SCV model. Based on a set of different evolutionary scenarios related to
pervasive resources and user goals that are not feasible, the model elements in
SCV can be pruned. Then, depending on the current context such as user goal,
resources, an initial configuration can be generated. Other elements that are
not selected for the initial configuration are integrated in the product to adapt
to new context arisen at runtime. Based on the current context to build an
initial product and integrating unselected elements into the initial product for
adaptation are also applied in [Cetina 09a, Cetina 13].

Discussion
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Existing approaches configure the variability and generate products of a
family based on a given context at the configuration moment. For the given
context, a set of features can be selected, and then a concrete product is built
and deployed. Throughout its execution, the context can change, and the cur-
rent product needs to be adapted. Usually, all features that are not selected
for the initial product will be integrated into the product and deployed at run-
time during adaptation process. However, integrating all features can be an
issue for limited deployment targets such as mobile devices. In [Cetina 08a],
such elements are eliminated thanks to pruning SCV model. For each pre-
defined evolutionary scenario that is not feasible in the specific domain, the
pruning phase applies a set of rules to delete undesired elements. However, it
increases development costs and time. On the other hand, another approach is
uploading required features through a network if they are available. Neverthe-
less, uploading required features during adaptation causes security issues as the
functionality of the features may be intervened by hackers.

3.4 Supporting State Transfer

An important aspect to ensure system consistency is state transfer. Once cur-
rent components are replaced by other ones, their state must be maintained
and migrated into the new ones. This is a critical task to ensure correctness of
the system through adaptations. This challenge is closely related to the one of
ensuring consistent dynamic adaptation. In this section, we present approaches
relevant to supporting state transfer.

Most existing approaches use a technique based on identifying the corre-
sponding states between two components versions and using the getting/setting
functions for transferring state. Indeed, in [Bialek 04], authors defined state
transfer function from the current component version to the new one to rep-
resent the state mapping between two component versions. This function is
manually described before performing adaptation and considered as a parame-
ter in the adaptation request. In order to access the state of the running system,
the running system has to implement the setVar() and getVar() functions, to
set and get the variable values. On the other hand, a state transfer function is
used in [Zhang 06] for transferring state as well.

Similarly, in [Grondin 08] an application designer defines a state transfer net
to identify the state mapping between two component versions. This approach
considers an application’s state as the set encompassing values of all variable
attributes of all roles in all configurations. When a component is removed from
the system, component attributes tagged as variables must be saved. They are
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restored afterwards to any other component replacing the current one. Infor-
mation specified in the state transfer net allows to identify the mapping state
between components versions. Each node of the net is a set of the application
attributes or variables that belong to a configuration. Links of the net connect
only attributes through transfer functions.

Vandewoude et al. in [Vandewoude 05] addressed the state transfer and
proposed a methodology to deal with runtime adaptation of components. They
proposed a number of steps to perform state transfer. Particularly, at design
time, both, old and new component versions, are analyzed and information col-
lected during this analysis is embedded in a structure called the state transition
logic. This structure is packaged together with the implementation of the new
component version and used by the Dynamic Update Module in which a State
Transformation Manager is responsible for transferring the actual state to the
new one using the state export and import actions.

Other approaches are just interested in the introspection and intercession
aspects in component model. They do not take into account specifying the state
mapping between two components versions, but assume that variables between
two single components are similar. Indeed, the approach in [Polakovic 08] con-
sidered state as the private data encapsulated by components that are designed
conforming to the Fractal component model. However, this model lacks inter-
face for state transfer. Therefore, for the purpose of state transfer, authors
extended the Fractal component model by defining additional control interfaces
(ReconfigurationController and StateTransferController). The StateTransfer-
Controller interface provides two services of getting and setting states. Thanks
to this interface, states of component are accessible and settable.

Based also on setting/getting state with the Fractal component model, au-
thors in [Stoicescu 12] took into account the state transfer between components
based on OW2 FraSCAti v1.4 [Seinturier 12] - a platform providing runtime
support for SCA and developed according to SCA principles. FraSCAti al-
lows designers to manage stateful components which can explicitly provide a
state management service in the form of a Java interface with getState() and
setState() methods which is called when needed.

Similar to [Stoicescu 12], in [Chen 02], a component model was proposed in
which control interface defines methods such as extractState() and restoreState()
for state transfer. They are implemented by programmers and used by a con-
figuration management in adaptation process.

In MADAM [Geihs 09] the state transfer from the old to the new config-
uration is also mentioned. This approach provides a simple solution in which
configurable application components are implemented with interfaces that al-
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low to change their states. These interfaces define methods to allow to get the
current configuration state of the components, and transfer serializable one to
another.

Phung et al. in [Phung-khac 10] used a data transfer model to represent
information that the adaptation medium needs to read/write data from/to any
components of the functional medium. This model is automatically created
by collecting data annotation models through the generation of the functional
medium variants. Based on the information specified in this model, state trans-
fer actions can be generated in a reconfiguration plan. An adaptation manager
is in charge of transferring state between component versions.

Discussion

Transferring state plays a critical role in the adaptation process to ensure
system consistency. It guarantees the state of system. Many approaches are
interested in this issue and propose different solutions. A simple solution is
to take into consideration the homogeneity between two component versions
and provide methods, setState() and getState() such as [Stoicescu 12, Chen 02,
Phung-khac 10], etc. In the case of the inhomogeneity between the component
versions, this solution may generate errors: type errors, data errors, etc. A
solution is to propose a logic unit such as state transfer net in [Grondin 08], or
state transition logic in [Vandewoude 05], that do the state mapping between the
components. However, this task also remains complex if the target components
have not a space for storing the state of current version.

3.5 Automatically Planning Adaptation

In order to realize the adaptation process, a reconfiguration plan should be
provided. This section introduces related approaches that support planning
adaptation. A reconfiguration plan can be automatically or semi-automatically
generated.

One of the techniques for automatically generating a reconfiguration plan is
comparing the current configuration and the new one. Particularly, in MADAM
[Geihs 09], a BuilderandPlanner is responsible for dynamically building descrip-
tions of alternative configuration versions called configuration templates. For
each possible configuration version and each possible deployment, a configura-
tion template is created. A Configurator compares the configuration templates
with the information about the currently running applications to derive a se-
quence of steps for the adaptation process. The sequence of steps can contain
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information to create, remove component instances on local or remote nodes,
connect and disconnect components through local or remote connectors, and
set the parameters of components.

Similarly, in DiVA [Morin 08, Morin 09b, Morin 09a], by using EMF Com-
pare in order to compare models representing current and new versions, a diff
and a match models can be produced. They specify the differences and the
similarities between two versions. These models are automatically analyzed to
obtain the relevant changes between the source model and the target model e.g.,
addition/removal of components/bindings, changes of attribute values, etc.

Also based on computing differences between two configuration versions, in
CAPucine [Parra 11a], a Script Generator with two versions considered as its
input is used to generate a list of modifications expressed in terms of weaving
or unweaving aspects. Finally, this script is executed in the reconfiguration
platform to adapt the product.

In [Pascual 14] once a new configuration fits the current context, a reconfig-
uration plan is generated by the Dynamic Reconfiguration Service by comparing
the differences between two configuration versions. Differences are propagated
to the VSpec tree, variation points and then the software architectural model.
This plan is executed in the architecture by an adaptation service. Similarly,
in [Phung-khac 10], a reconfiguration plan is generated by comparing two con-
figuration versions. It is realized by using an adaptation medium that manages
and performs the adaptation process.

Like the above approaches, in FamiWare [Gámez 11, Gámez 15], a plan
is automatically generated by comparing the differences between two product
configurations. This plan is interpreted by FamiWare’s reconfiguration service
that executes the corresponding actions in the plan.

The reconfiguration plan can be partially generated thanks to information
specified at design time for adaptation. The approach in MoRE [Cetina 09a,
Cetina 13] is based on the context monitor that uses the runtime state as input
to check context conditions. These conditions are associated with predefined res-
olutions at design time, representing a partial configuration, e.g., a resolution
has a form as {{FeatureA, Active}, {FeatureB, Inactive}}. When discovering
changes in the context, and based on an appropriate resolution and current
system model, a reconfiguration plan is generated by a Model-Based Reconfig-
uration Engine. MoRE framework is in charge of realizing actions specified in
the reconfiguration plan.

In [Bencomo 08], a transition model is used to specify at a high-level abstrac-
tion the transition between variants that correspond to particular configurations
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specified in the variability model. In order to adapt to a new product, the recon-
figuration policies are generated from the transition model by using generative
techniques.

In [Saller 13], based on the feature and context models, a transition system
is derived that defines context-aware reconfiguration behavior. Every state in
the system represents a valid product configuration of the DSPL that satisfies
a context. This system can be extended at runtime to cope with new con-
figurations corresponding to a particular context combination emerging during
execution. The transition system provides the information necessary to execute
an adaptation at runtime.

According to the approach based on analyzing features to develop adaptive
software in [Lee 06], a reconfiguration request is offered by a context analyzer.
Then, a reconfiguration strategy analyzer analyzes the request and determines a
reconfiguration strategy. It exploits the feature model to identify reconfiguration
actions in the reconfiguration strategy. Finally, this strategy is interpreted by
a reconfiguration handler to realize reconfiguration actions.

Unlike the above approaches, in FUSION [Elkhodary 09, Elkhodary 10], a
reconfiguration plan consists of a series of transitions from the current feature
selection to a new one. Depending on a metric collected in FUSION, features
impacted by a new context are considered. For each feature, a transition can
be realized by using the dynamic adaptation service proposed in this approach.

Discussion

Automatically building reconfiguration plans is necessary to avoid error-
prone and reduce adaptation costs. Existing approaches are based on system-
specified models such as variability model, architecture model, context model,
and so on, to generate reconfiguration plans. However, all of these approaches
lack actions supporting for the state transfer and the system consistency speci-
fied in the reconfiguration plan.

In this thesis, we take into account the component-based adaptation. Other
approaches such as [David 09, Léger 10, Buisson 15] are interested in the comp-
onent-based adaptation as well as languages for specifying and realizing adap-
tation. However, in these approaches, the reconfiguration plan is manually
implemented without automatically using models specified at design time.
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3.6 Ensuring Consistent Dynamic Adaptation

This section introduces some approaches to ensure consistent dynamic adap-
tation. Such an adaptation must guarantee the whole system consistency, i.e.,
system state must be guaranteed and the correct completion of ongoing activ-
ities must be ensured. The former is related to state transfer mentioned in
Section 3.4. This section focuses on the latter to find the best moment when
an adaptation process can be performed.

In section 2.5.5, we have presented two criteria, quiescence and tranquility,
that can be applied on single components to find the best moment for replacing
them. These status definitions are largely used by most approaches related to
consistent dynamic adaptation ([Gomaa 07, Polakovic 08, Pascual 14]). All of
them propose different approaches or algorithms to drive components to the
quiescent status.

In order to avoid the passive status of other components when considering
the quiescent status of a component, some approaches are based on the princi-
ple of blocking new request messages. The approach in [Vandewoude 05] uses
a technique proposed in [Vandewoude 04] that makes sure a component has
completed all its actions, and the component system will temporarily block all
new requests addressed to the component until it has been replaced by its new
version. In [Stoicescu 12], incoming requests on replaced components must be
buffered. Moreover, in order to maintain system consistency, components must
be stopped in a quiescent status, i.e., when all internal processing has finished.
These tasks are fulfilled by using FraSCAti and FScript [Seinturier 12]. Simi-
larly, in [Chen 02], the proposed component framework analyzes and treats the
interactions among components. It provides a component runtime environment
and implements services for the dynamic reconfiguration. Particularly, the ser-
vices support for managing interactions among components and blocking newly
initiated invocations between the target component and other components.

The work in [Vandewoude 07] is based on the tranquil criteria. In this
approach, a Live Update Extension Module (LUM) - an extension of the core
DRACO system - allows a component to be replaced in a tranquil status and
preserves this status for the duration of the adaptation.

Based on the tranquil status, the approach in [Ma 11, Baresi 16] proposed
a new criterion, called version-consistent, to define when an adaptation process
ensures global system consistency. It uses future or past labels to mark conse-
quent transactions initiated by a root transaction. When the root transaction
is initiated by a component and can initiate consequent transactions on other
components, future label is marked on connections linked to those components.
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In contrast, past labels are marked once the consequent transactions have fin-
ished. For example, a component A initiates a transaction that can cause a
consequent transaction on a component B. A future label is then marked on
the connection from A to B. Once this transaction has completed, a past label
is marked on this connection. If all connections to the target component are
marked as a past label, such component can be replaced. However, this ap-
proach is illustrated on a single component to be replaced. This assumes that
the moment for replacing a component is independent from others.

The work in [Ghafari 12a] represents a connector-based approach to main-
tain the system consistency during adaptation of a component-based distributed
system and defines the serenity status. In this approach, a new component
version is activated as soon as receiving a reconfiguration request. Then, the
current component version is informed about reconfiguration. This component
notifies its connectors about changes. From this moment, new requests to these
connectors will be driven to the new component version. In order to identify
the serenity status, this approach uses a transaction controller to start and stop
transactions. The last component that participates in a sequence of transac-
tions must be identified at design time. It informs the transaction controller
about the end of transactions. Once the transaction controller receives infor-
mation from the last component, the transaction has finished and the current
component version can be deleted from the system.

Discussion

Existing approaches are based on the concept of transaction to identify the
safe status of components. However, most approaches take only into consider-
ation the status of single components. They do not address the transactional
dependencies among components. Authors in [Ghafari 12a] are interested in this
issue. However, in a large architecture, implementing transaction controller in
the approach becomes a very complex task. Moreover, it requires two versions of
a component at the same time from the beginning to the end of the adaptation
process. Finally, this approach is considered as an ad-hoc approach: they do not
exploit information at design time for identifying the safe status for adaptation
at runtime.

3.7 Summary

In chapter 1 we have introduced five challenges when developing adaptive soft-
ware systems. They have been used to describe the related approaches in this
chapter. A summary of these approaches are shown in Table 3.1.
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In Table 3.1, the first column (Approach) indicates names such as approach
name, author, or project and references of the approaches. The last five columns
correspond to five challenges:

• Modeling variability and commonality for adaptation (C1)

• Configuring and automatically building adaptive architecture (C2)

• Supporting state transfer (C3)

• Automatically planning adaptation (C4)

• Ensuring consistent dynamic adaptation (C5)

In the table, a check mark Xis used to indicate that the challenge in column
is a main interest of the corresponding approach in the row, i.e., this challenge
is managed by the approach, and a solution is proposed. A check mark between
parenthesis (X) indicates that the approach does not fully handle the challenge.
A dash – indicates that the challenge is not addressed by the approach.

Firstly, to cope with C1, most existing approaches use models such as the
feature model, OVM, or CVL to specify the variability and commonality. In the
feature model, feature groups and optional features are considered as variation
points, whereas the notion of the variation point is clearly defined in OVM
and CVL. Differentiated from other approaches, each variant in OVM used in
GENIE refers to a particular product architecture instead of an element or a set
of elements of the software architecture. Thus, the variability used in GENIE
does not represent variation points in the software architecture. Not using the
feature models, MADAM is based on a particular component framework to
describe a composition of component types. The variability is represented via
the composition.

Secondly, most approaches address C2 to configure and automatically build
adaptive software. However, according to Gomaa et al., the user is responsible
for manually selecting and tailoring a product from a set of existing artifacts
in a reusable library. For adaptation, all elements that are not configured for
the initial product are available, even if they are useless. Therefore, in MoRE,
before configuring the product, some elements in the SCV model are pruned.
This reduces the useless elements available in the system.

Next, we see that few approaches fully support C3. The state transfer in
Chen et al., Polakivic et al., MADAM, Adaptive medium, Stoicscu et al., is to
exchange the atomic data between two components, i.e., the state is guaranteed
without modifying it. However, if the state is transfered between two inhomo-
geneous components, it must be modified. Therefore, some approaches propose
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No Approach C1 C2 C3 C4 C5

1 Adaptive medium [Phung-khac 10] X X (X) X –

2 Bialek et al. [Bialek 04] – – X – –

3 CAPucin [Parra 11a] X X – X –

4 Chen et al. [Chen 02] – – (X) – (X)

5 DarwinSPL [Nieke 17] X X – – –

[Morin 08]
6 DiVA [Morin 09a] X X – X –

[Morin 09b]

7 FamiWare
[Gámez 11]

X X – X –
[Gámez 15]

8 FUSION
[Elkhodary 09]

X X – X –
[Elkhodary 10]

9 Ghafari et al. [Ghafari 12a] – – – – X

10 GENIE [Bencomo 08] (X) X – X –

11 Gomaa et al. [Gomaa 07] X (X) – – (X)

12 HyVar [Mauro 16] X X – – –

13 Lee et al. [Lee 06] X – – X –

14 MADAM
[Floch 06]

(X) X (X) X –
[Geihs 09]

15 MaDcAr [Grondin 08] – – X – –

16 Mizouni et al. [Mizouni 14] X X – – –

17 MoRE
[Cetina 08a] X X – – –
[Cetina 13] X X – X –

18 Pascual et al. [Pascual 14] X X – X (X)

19 Polakovic et al. [Polakovic 08] – – (X) – (X)

20 Saller et al. [Saller 13] X X – X –

21 Stoicescu et al. [Stoicescu 12] – – (X) – (X)

22 Trinidad et al. [Trinidad 07] X – – – –

23 Vandewoude et al.
[Vandewoude 05]

– – X – (X)
[Vandewoude 07]

24 Version consistency
[Ma 11]

– – – – (X)
[Baresi 16]

25 Zhang et al. [Zhang 06] – – X – –

Table 3.1 – Related component-based approaches to the defined challenges
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logic units, functions, or nets to map the state among components. However,
all them suppose that it is necessary to have a target variable to store the state.
The state will be lost if it does not exit the target variable to store it.

Similarly, most approaches supporting C1 are interested in C4. For C4, the
feature models are exploited to plan the adaptation. Based on a new configu-
ration meeting new requirements, reconfigurations actions can be identified.

Finally, most approaches do not fully handle C5. They are based on the
quiescent or tranquil criteria to find the best moment for adaptation. However,
as previously mentioned, these criteria only consider single component without
the transactional dependency for the system consistency. The approach pro-
posed by Ghafari et al. takes into account this issue. It can be applied on
reconfiguring a components group. However, this is an ad-hoc approach.

Limitations of the Related Approaches

From the description of related approaches in the five above sections, we see
that existing limitations consist of the lack of:

1. A process to guide engineers on how to specify variability and
commonality. Indeed, existing approaches use feature model, OVM,
or CVL to specify the variability and commonality of adaptive systems.
However, no existing guideline helps engineers on how to specify them. In
addition, separation of variation points in the variability specification is
necessary to clearly identify changes in the architecture for adaptation at
runtime.

2. Separation of useful/unuseful elements for building adaptive sys-
tems. To cope with resources limitations and security issues during adap-
tation, the distinction of useful/unuseful elements is necessary. The un-
useful elements should be eliminated from the system. However, most
approaches assume that all architectural elements are available at run-
time for adaptation. Or, if such elements are not available, they must be
available over the network. However, in terms of security, the transmission
of software elements during the software execution should be avoided.

3. An abstraction of specifying state transfer for adaptation. State
transfer is a complex task. In existing approaches this task is manually
implemented or represented in a form interpreted by a particular recon-
figuration framework.

4. Necessary actions in an auto-generated reconfiguration plan for
adaptation. Indeed, in existing approaches, a reconfiguration plan fo-
cuses on component replacement actions without actions for driving re-
placed components to a safe status, and transferring state among compo-
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nents.

5. Specification information that is exploited at runtime to ensure
dynamic consistent adaptation. Most existing approaches are based
on managing transactions to detect the safe status. Usually, a particu-
lar mechanism is used to manage the transactions. Additionally, the safe
status is considered in single components without transactional depen-
dencies between them. And, no existing approaches address managing
transactional dependencies among components for adaptation.

In order to overcome these limitations, the two research questions identified
in Section 1.3 should be answered. On one hand, for the question How to
build adaptive software architectures?, we work on a development process to
build adaptive software architectures. Such a development process provides
the necessary guidelines to specify variability, and architecture models of an
adaptive system. In addition to specify variability and software architecture, a
configuration specification of an adaptive product in the development process
can provide necessary information to identify useful/useless elements in the
adaptive architecture. Moreover, the role of participants in the process needs
to be determined.

On the other hand, for the second question, What is the appropriate moment
to start the execution of an adaptation process?, we work on an adaptation mech-
anism that are based on managing transactions to identify the best moment for
adaptation. Such mechanism is built based on exploiting information specified
at design time in the variability model. This information is used at runtime
to support for generating reconfiguration actions. Additionally, to provide the
information for state transfer, a state transfer model is specified at design time
that is also exploited at runtime to identified the state transfer actions in the
reconfiguration plan.

Conclusion

We have presented the related approaches to develop adaptive software sys-
tems. Based on the five challenges identified, we have discussed various aspects
in those approaches. From each considered aspect, limitations are identified
that allow to justify the research questions to be important that need to be
answered. To deal with such questions, the next part presents our contribution
in which two chapters focus on responding these two questions.
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4.1 Chapter Overview

In Chapter 1, we have introduced two research questions of this thesis, How
to build adaptive software architectures? ; What is the appropriate moment to
start the execution of an adaptation process?. This chapter addresses the first
question by proposing a development process with concrete activities in which
variability modeling is a critical one. A variability model is specified and used
throughout the process. When it is configured, an adaptive software architecture
can be generated. Our approach is based on CVL to specify variability and
generate the adaptive software architecture. CVL offers tools and meta-models
to specify variability of a product family but it does not offer a method to
specify the variability model and the base model. In addition, the product is
generated using CVL with no runtime variability. Therefore, considering CVL
and related approaches leads us to two main questions:

• Question 1: How to specify variability and base models?

This question relates to a subprocess to specify them. Such a subprocess
orders activities and relations of them.

• Question 2: How to configure the variability model and generate an adap-
tive software architecture that contains only the necessary elements for
adaptation?

By default, an adaptive software architecture contains all architectural ele-
ments identified in the base model. As previously mentioned, our approach
aims at eliminating unnecessary elements from the final architecture.

In order to answer these questions, this chapter aims at defining a devel-
opment process to build adaptive software architectures that include only the
elements that may be needed in the target environment. Such a development
process must provide concrete steps with corresponding guides for engineers
to specify the variability and the base models. Moreover, the role of partici-
pants in such process must be defined. To do that, Section 4.2 firstly presents
the adaptive software architecture development process. Section 4.3 focuses on
domain engineering - a subprocess in the development process in which model-
ing variability is a main task. Next, Section 4.4 presents how to configure the
variability model and steps on how to generate adaptive software architectures.
Furthermore, a general adaptive software architecture is shown to see the struc-
ture of an adaptive system. Finally, Section 4.5 presents implemented tools and
a case study to validate our approach.
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4.2 A Global Overview of Development Process

Figure 4.1 shows our adaptive software architecture development process. It
consists of different steps performed from high-level specification to executable
code. Our process is based on SPL engineering. The SPL engineering distin-
guishes two phases: domain engineering and application engineering.

The top of the figure describes the domain engineering process. It is re-
sponsible for defining the commonality and variability, and architecture of a
product line. The variability and the base models are artifacts of this phase.
In our approach, the variability model is specified using CVL, whereas, the
base model is represented by using ACME. We have chosen ACME as it offers
generality enough to straightforwardly describe a variety of system structures.
Besides, it provides a good basis for designing and manipulating architectural
specifications and generating code.

The bottom of the figure describes the application engineering process. It
refers to the process of actually combining the artifacts obtained during the
domain engineering phase to generate adaptive software architectures, also
called adaptive products. In our approach, this phase is partitioned into two
subprocesses: one at design time and another one at runtime. The former,
described in the left part of the figure, focuses on configuring the variabil-
ity model, generating adaptive software architecture models, also called
adaptive product models 1 that include variability, and then executable code
to build particular adaptive products that can be deployed in a target platform,
e.g., OSGi. The latter, in the right part of the figure, describes an adaptation
process at runtime in which a reconfiguration plan is executed by a Reconfig-
urator that is injected into the software architecture to control the adaptation
process.

4.3 Domain Engineering

In this section, the whole process of domain engineering described in the top of
Figure 4.1 is detailed. As previously mentioned, this process focuses on speci-
fying variability and base models. To do that, domain issues are identified and
analyzed by engineers. Roles of stakeholders in this process must be distin-
guished from collecting information in the domain, analyzing, and modeling it.
We propose three scenarios to analyze and specify these models. The scenarios

1. The terms of {adaptive software architecture and adaptive product}, {adaptive software
architecture model and adaptive product model} are used as synonyms in the remainder of
this dissertation.
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provide a guideline that consists of various steps to specify the models.

4.3.1 Roles

We consider different roles for software engineers and participants in the do-
main engineering. Based on artifacts needed to be defined in this process, we
distinguish three roles:

• Domain expert: Domain experts have a high degree of skills in their knowl-
edge of the domain. In the development process, they provide necessary
knowledges for domain engineers to identify what is the variability and
commonality of the domain.

• Domain engineer: Domain engineers are responsible for collecting infor-
mation/data from the domain, and the domain expert. They define vari-
ability models.

• Domain architect: Domain architects are architectural experts of the do-
main. They perfectly know about architecture of the domain. Together
with domain engineers, they can participate in collecting information from
domain and designing systems. In particular, they are in charge of de-
scribing base models.

4.3.2 Variability Modeling Process

In the domain engineering, the variability modeling plays an important role.
This section presents strategies to specify variability models conforming to the
CVL meta-model, and base models conforming to an architecture meta-model,
i.e., ACME meta-model in our approach. Such strategies order the following
set of activities:

• Activity 1: Identifying the variability and commonality in the domain,
and design information.

• Activity 2: Specifying the VSpec tree and constraints in the tree.

• Activity 3: Building the base model.

• Activity 4: Mapping the VSpec tree and the base model.

These activities closely relate with each other. The first activity is the basis
to realize the second and third activities. The result of the second activity
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can give the necessary information to realize the third activity and vice versa.
The last activity is realized according to the result of the second and the third
activities. Figure 4.2 shows the activities and their sequencing in time.
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Figure 4.2 – Four activities in a variability modeling process

The first activity, 1 in the figure, aims at identifying variability and com-
monality in the domain. This activity is performed by domain engineers who
analyze documentation of existing applications of a product line, interview do-
main experts or users of the domain, etc.

Once the commonality and variability are identified, they are organized into
a VSpec tree as the result from the second activity 2 . This activity is man-
ually realized by domain engineers. The VSpec tree will be used throughout
the process to manage variability of the product line and configure particular
products. On the other hand, based on the information collected from the first
activity, constraints among VSpecs that can not be presented in the hierarchic
structure of the tree can be identified. Then, these constraints are represented
by using excludes/implies constraints and integrated into the variability model.

The third activity 3 aims at specifying a base model. Depending on the
applied strategy, it is defined before or after specifying the VSpec tree. This
activity is performed by domain architects.

Finally, variation points are defined in the activity 4 to map VSpecs in
the VSpec tree and elements in the base model. This activity can be manu-
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ally realized by domain engineers or semi-automatically done thanks to similar
characteristics of elements in the two models.

Depending on the order of activities 2 and 3 , three different strategies
may be identified for a development process. We discuss them in the rest of this
section.

“Variability-driven process” (top-down approach)

Figure 4.3 shows the development process using this strategy. The VSpec
tree is specified from information collected by domain engineers before specifying
the base model. Following this strategy, a base model may be built based on the
results from the first and the second activities. It allows specifying variability at
high level of abstraction towards the diversity of components at concrete level.
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Specifying the 
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Building the base 
model

Mapping the Vspec tree and 
the base model

 

Figure 4.3 – “Variability-driven process” strategy

This strategy facilitates the building of the base model. For example, the
approach in [Phung-khac 10] allows to generate architectural variants from the
variability model via a refinement process. Each architecture variant is consid-
ered as a configuration of the base model. Based on the variability model to
build the base model ensures the matching between elements in the variability
and the base models. This strategy may be interesting when building an adap-
tive product in a new domain where there are no existing products, or reusing
existing products whose architecture models are not explicit.

“Architecture-driven process” (bottom-up approach)

Figure 4.4 shows the development process using this strategy. Activity 2
needs the result from the first activity as it is difficult or even not possible to only
use the base model to identify the variability. This strategy allows specifying
diversity of components at concrete level towards high level abstraction.

This strategy is appropriate for reusing architectural models of existing prod-
ucts in a domain that is explicit. These architecture models can be directly
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Figure 4.4 – “Architecture-driven process” strategy

reused to create the base model of a product line by merging them (a technique
to merge models is mentioned in [Rubin 13]). Reusing the architectural models
to build the base model allows to reduce the time as well as the development
costs. However, identifying the variability in the base model may be a complex
task.

“VSpec tree - base model independent process” (hybrid approach)

Figure 4.5 depicts this strategy. The VSpec tree and the base model are in-
dependently specified. The advantage of this strategy is to allow independently
specifying the models, i.e., they can be parallelly developed. This reduces the
development time. Unlike the two first strategies, there is no guarantee to have
a variation point for each VSpec. For example, building the variability and the
base models from particular product models in [Martinez 15a, Martinez 15b]
could be considered as a “VSpec tree - base model independent process”.
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Figure 4.5 – “VSpec tree - base model independent process” strategy

This strategy is appropriate for reusing artifacts of heterogeneous products
in a domain. There may be existing architecture models in heterogeneous forms.
Therefore, it should be uniformed before merging them. Moreover, the VSpec
tree can be built without the base model.
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4.3.3 Summary

In our development process, domain engineering encompasses all the activities
of the variability modeling process. The goal of the domain engineering process
is to build the variability and the base models that will be used throughout the
application engineering process to build adaptive software architectures.

In this section, we have distinguished the different roles of stakeholders to
specialize the tasks in the domain engineering process. Specializing the tasks
increases the productivity and the effectivity of the work in the domain engi-
neering process.

On the other hand, we have defined three scenarios on how to specify the
variability and the base models. They provide an order of the activities to
build them. According to practical conditions of the availability of the collected
information, a corresponding strategy could be selected. For example, if the
architectural variants exist in the same domain, the second strategy should be
selected to build a base model in short time. An answer to Question 1 has been
given in this section.

4.4 Application Engineering

This section presents a process to build particular products from information
specified in the models in the domain engineering. In traditional SPL, such a
product is generated without its variability. In our approach, a product must
include its variability, i.e., it contains alternative elements for adaptation. Thus,
configuration of variability must provide the necessary information to identify
such elements. Moreover, in order to control adaptation at runtime, a controller
unit should be added in the architecture.

Application engineering focuses on various activities to generate an adaptive
architecture and control adaptation at runtime. Therefore, the roles in this
process should be identified as well.

4.4.1 Roles

The responsibilities for building adaptive software architectures are shared among
several stakeholders:

• User: Users in the application engineering directly use the product result-
ing from the application engineering. They provide the necessary require-
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ments to build particular products from artifacts in the domain engineer-
ing. Such requirements can be met by reusing existing artifacts in the
domain engineering. They may contain information about the variability
for building the adaptive products.

• Adaptive product designer: Adaptive product designers collect require-
ments provided by the users. Based on such requirements, they define a
resolution model to configure the variability model defined in the domain
engineering. They use generation tools to generate the adaptive product
model from the specified models, and then part of the executable code.

• Product developer: Product developers complete the executable code gen-
erated from the process, compose, and package it.

• Adaptation engineer: Adaptation engineers are responsible for developing
adaptation controllers.

4.4.2 Design time

In general, at design time, an adaptive product should be created from models in
the domain engineering. It contains only the necessary elements for adaptation.
To do that, our process at design time starts with specifying a resolution model.
As the adaptive product should be able to adapt at runtime, this model should
allow adaptive product designers to specify which variability has to be effectively
managed at runtime.

4.4.2.1 Configuring Variability: Extensions of CVL

As previously mentioned, our approach is based on CVL. An extract of the
CVL resolution meta-model [OMG 12] is presented in Figure 4.6 (right part).
A resolution model is used to configure a variability model conforming to the
variability meta-model (left part of Figure 4.6) in which each VSpec is resolved
by a VSpecResolution.

When building an adaptive software architecture, the Choice VSpec plays an
important role. A Choice VSpec allows to choose one or several of the possible
alternatives, i.e., components in the architecture may be different depending on
the chosen alternatives. A Choice is resolved by given a value to the decision
attribute of the corresponding ChoiceResolution. If a Choice VSpec is resolved
by a true value for this attribute, the corresponding elements in the base model
will be present and activated in the adaptive product.
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Figure 4.6 – An extract of CVL meta-models

Although the information about the active elements is important, it is not
enough to build an adaptive software architecture. Indeed, such architecture
may include 2 elements that are not activated in the initial product, but needed
if the execution context or use requirements change.

To specify such elements, we have added a new attribute to a VSpecReso-
lution, availabilityAtRuntime. This attribute indicates if the corresponding
VSpec should be included or not in the adaptive product at runtime.

Attributes
availabilityAtRuntime

true false

d
ec
is
io
n

true present and
activated

present and
activated

false present and not
activated

not present and
not activated

Table 4.1 – Configuring elements in the product based on the decision and
availabilityAtRuntime attributes

Table 4.1 shows the association of the decision and availabilityAtRun-
time attributes for configuring variability and generating an adaptive software
architecture model. As previously mentioned, a ChoiceResolution with the de-
cision attribute set to true indicates that its corresponding elements in the

2. We use this term to indicate that the architecture effectively contains the elements or
that there are some mechanisms available to add them “on-the-fly”.
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architecture are present and activated in the adaptive product. When a true

value is assigned to the decision attribute, the role of the availabilityAtRun-
time attribute need not to be taken into account. On the other hand, when the
decision attribute value is false, the availability of components in the prod-
uct at runtime depends on the value assigned to the availabilityAtRuntime
attribute. If the value is true, its corresponding elements in the architecture
should be present in the product at runtime and thus available in case of adap-
tation. Otherwise, the corresponding elements are not included in the product.

4.4.2.2 Adaptive Product Model Generation

Figure 4.7 shows the stage of our development process where the variability
model is configured and the adaptive product model generated. As already men-
tioned, the adaptive product model is generated by configuring the variability
model based on the resolution model. This task is realized by the AdapSwAG
tool. It considers the CVL model (the variability model, the base model and
the extended resolution model) as its input. Its output is an adaptive prod-
uct model that may include alternative elements for adaptation. Compared to
the CVL execution of the CVL approach, the software architecture generated by
AdapSwAG tool may include some variabilities. The AdapSwAG tool generates
this adaptive product model by applying the following rules:

1. A component in the base model will be included in the adaptive product
model and activated in the adaptive product if the decision attribute
corresponding Choice VSpec is set to True.

2. A component in the base model will be present in the adaptive product
model, but not activated in the adaptive product if the corresponding
VSpecResolution decision attribute is set to false and the availability-
AtRuntime to true.

3. Value for variables in components are obtained from the value attribute
of their VSpecResolution.

4. Connections between components that should be present in the adaptive
product model and activated in the adaptive product are maintained.

The generated adaptive product model is independent of the target plat-
form. Based on the adaptive product model and the given target platform, a
text generation module generates implementation artifacts skeleton that include
packages. Each of them corresponds to a component specified in the adaptive
product model and consists of component implementations, a component spec-
ification, and configuration files. Once the implementation artifacts skeleton is
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Figure 4.7 – Generating Adaptive software architecture model (adapted from
[OMG 12])

generated, implementation artifacts that are either available or should be de-
veloped are integrated into it to build components. This task is performed by
product developers. The result is an adaptive product that can be executed in
the target platform.

On the other hand, if the adaptive product model embeds variability, then,
its architecture may change at runtime, and the component state affected by
the changes should be migrated to the new one. As the semantic of this state is
component-specific, the state migration task can not be completely automated.
Thus, adaptation engineers have to specify a state transfer model that gives
actions to effectively migrate the state between components. The state transfer
model represents the state mapping between placement and replacement com-
ponents 3 in the adaptive product model. It is specified at design time and used
at runtime. The state transfer model will be detailed in Chapter 5.

4.4.2.3 Adaptive Software Architecture

In order to realize adaptation at runtime, the generated adaptive product needs
to have a control unit, or adaptation controller. Figure 4.8 shows the general
adaptive architecture that we consider. The adaptive product is considered as
a managed system that is deployed in a reflective component platform, e.g.,
OSGi. It can be implemented according to a component model, e.g., iPOJO
or Fractal. On the other hand, the adaptation controller is considered as a
managing system to manage and control adaptation.

In the figure, the adaptation controller has three main parts: Repository,
Reconfigurator, and Planner. These parts closely interact with each other in
the adaptation process.

3. In our approach, we use placement component to indicate the current component version
that will be replaced by another one called replacement component
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Figure 4.8 – General adaptive software architecture

Repository

It contains models specified in the domain engineering and the application
engineering at design time such as the CVL model, the state transfer model,
and the deployment model. The latter is used to get information about the
location of components in the system. It is out of the scope of this thesis.

The repository corresponds to the Knowledge part in the MAPE-K model.
It contains information to be exploited by the Planner and the Reconfigurator
for generating reconfiguration plans and effectively realizing adaptation, respec-
tively.

Planner

It is in charge of generating reconfiguration plans after receiving an adapta-
tion request with a new resolution model. To do that, it exploits information in
the repository. A generated plan is injected into the Reconfigurator to realize
the adaptation process.

Reconfigurator
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It is responsible for executing actions in the reconfiguration plan received
from the Planner. The Reconfigurator reads the plan and coordinates actions
specified in the plan. Actions are executed using introspection or intercession
services of the target platform. In addition, it can use control services of com-
ponents to invoke particular services. A component model describing these
services will be presented in Chapter 5.

4.4.3 Runtime

Figure 4.9 details an adaptation process. When the software architecture has
to be changed, a new resolution model (new configuration) must be specified.
This configuration may be either defined by engineers or computed thanks to a
control module. This activity is represented by step 1 in the figure.

Repository

Deployment model

Base modelNew resolution model

Planner

Current resolution modelVariability model State transfer model

Reconfiguration plan

Reconfigurator

c ip

Managed system – adaptive product

Available components

Running system

3

4

1

Validator

2 

Figure 4.9 – An overview of adaptation process
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The consistency of the new resolution model is validated by a validation
tool (step 2 in the figure). If the new resolution model does not conform to
the variability model, the validation tool informs the adaptation engineer to
correct the new resolution model. Otherwise, it is sent to the Planner to plan
adaptation.

The Planner compares the current resolution model in the repository and the
new one to identify what VSpecs, elements and connections in the architecture
will be selected or unselected (step 3 in the figure). For state transfer actions,
it uses the state transfer model available in the repository.

In step 4 , the reconfiguration plan is sent to the Reconfigurator that reads
it and executes the corresponding actions. It makes an extensive use of the
models in the repository. Details of this utilization will be given in Chapter 5.

An important problem is to determine when components replacement ac-
tions can be started while preserving system consistency. As previously men-
tioned, this issue relates to transaction management. It will be detailed in
Chapter 5 and a solution will be presented.

4.4.4 Summary

In this section, we have addressed Question 2 of our research. We have intro-
duced a subprocess to build adaptive software architectures from the specifica-
tion of models in the domain engineering. The main goal of this subprocess is
to build adaptive software architectures that include only elements that may be
needed in case of adaptation. To do that, a new attribute availabilityAtRun-
time has been proposed. It allows adaptive product engineers to determine
what elements have to be available at runtime for adaptation. Eliminating use-
less elements in the product economizes deployment space. Although proposed
in the CVL context, the availabilityAtRuntime attribute can be applied to
whatever feature model to specify the need for availability of the elements in
adaptive products.

In addition, we have structured an adaptive architecture in two parts, the
managing and the managed systems. This architecture is based on the MAPE-
K model, an adaptation model that is largely used by the adaptive software
community. Therefore, it can be simply used and implemented by adaptive
software engineers.
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4.5 Evaluation and Discussion

In order to validate the solution proposed in this chapter, this section presents
a tool that is used in the development process to build adaptive software ar-
chitectures. It is used and applied on a prototype to illustrate the feasibility of
our approach.

4.5.1 AdapSwAG tool: a Plug-in for Generating Adaptive Soft-

ware Architectures

The Eclipse platform is built from various Eclipse components that are called
plug-ins. It provides a strong mechanism to extend it by integrating additional
functionalities via such plug-ins that are implemented as bundles of code. Via
the additional plug-ins, we can create new software development environments
as editors, transformation, generation tools, etc.

In order to support generating the adaptive product model, and the exe-
cutable code in the adaptive software architecture, we have created an Eclipse
plug-in, called Adaptive Software Architecture Generation tool (AdapSwAG
tool). It consists of three modules to validate resolution models, generate the
adaptive product model from the models specified in the domain engineering,
and executable code from the adaptive product model. These modules are in-
tegrated into the Eclipse platform as new menu entities (see Figure 4.10).

Figure 4.10 – AdapSwAG tool integrated into Eclipse platform

4.5.1.1 Validation of Resolution Models

This module allows validating a resolution model to be applied to success-
fully configure a variability model. It analyzes constraints, hierarchic relations,
and cross-over constraints via implies or excludes constraints in the variability
model.
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Without loss of generality, we suppose that the variability model is struc-
tured as a tree by using Features. In order to configure this model, a resolution
model is specified as a tree structure. Each element of the resolution model is a
FeatureResolution that maps to a Feature in the variability model. Suppose that
a FeatureResolution has a decision attribute to represent the selection of the
corresponding feature, and an availabilityAtRuntime attribute to represent
the availability of that Feature in the product configuration.

We defined an algorithm to validate if a resolution model satisfies the con-
straints specified in a variability model. It is based on the following definitions:

• F = {F1, F2, ..., Fn} denotes a set of Features of the variability model.

• FR = {FR1, FR2, ..., FRm} denotes a set of FeatureResolutions of the
resolution model.

• E = {(Fi, Fj) ∈ F × F : Fi excludes Fj} denotes a set of excludes con-
straints of the variability model

• I = {(Fi, Fj) ∈ F ×F : Fi implies Fj} denotes a set of implies constraints
of the variability model

• FRi denotes the FeatureResolution corresponding to Fi

• FRi.decision represents the decision on Fi. If the FRi.decision = true,
Fi will be selected (or positively resolved) and its corresponding elements
in the base model will be present and activated in the adaptive product,
and vice versa.

• FC = FRi.getChildren() represents children of FRi in a resolution model.

Algorithm 1 summarizes the constraint analysis process to validate the res-
olution model. It takes as inputs: 1) the variability model; 2) the resolution
model; 3) the set of constraints. Lines 4-9 analyzes mandatory constraints to
ensure that a Feature must be positively resolved, if its parent is positively
resolved. Lines 10-21 are used to analyze the cardinality constraints. This
constraint identifies the number of Features children that must be positively re-
solved in a group. Finally, lines 25-36 analyze the implies/excludes constraints
satisfaction in the resolution model.

4.5.1.2 Product Model and Code Generation

The validated resolution model is used as an input to generate the adaptive
product model. For each FeatureResolution in the resolution model, the corre-
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Algorithm 1 Validating the resolution model

1: procedure Validation(FR,F,E, I)
2: for each FRi ∈ FR do ⊲ Search the resolution model
3: Fi← FRi.getReferenceFeature

4: if FRi.decision = false then
5: if Fi.isMandatory AND
6: FRi.parent.decision = true then
7: return false
8: end if
9: else

10: if Fi has cardinality then
11: min← Fi.getLower()
12: max← Fi.getUpper()
13: {FC} ← FRi.getChilds()
14: for each FCk ∈ FC do
15: if FCk.decision = true then
16: count++
17: end if
18: end for
19: if count < min OR count > max then
20: return false
21: end if
22: end if
23: end if
24: end for
25: for each e(Fi, Fj) ∈ E do ⊲ Check excludes constraint
26: if FRi.decision = true

27: AND FRj .decision = true then
28: return false
29: end if
30: end for
31: for each ι(Fi, Fj) ∈ I do ⊲ Check implies constraint
32: if FRi.decision = true

33: AND FRj .decision = false then
34: return false
35: end if
36: end for
37: return true
38: end procedure
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sponding Feature can be identified, and the elements in the base model identified
via the mapping between the variability and the base models.

Adaptive product model generation is shown in Algorithm 2. It is based on
the set of rules described in Section 4.4.2.2. In the algorithm:

• C = {C1, C2, ..., Cl} denotes a set of components

• CN = {(Ci, Cj) ∈ C × C} denotes a set of connections from component
Ci to component Cj

• BM = {C,CN} denotes the base model

Algorithm 2 Generating the adaptive product model

1: procedure ProductModelGeneration(FR,F,BM)
2: PM = {}
3: for each FRi ∈ FR do
4: if FRi.decision = true then
5: Fi ← FRi.getReferenceFeature ⊲ Get the corresponding

Feature from the FeatureResolution
6: Cl ← Fi.getReferenceElement ⊲ Get the corresponding

elements in the base model
7: PM.add(Cl)
8: end if
9: end for

10: for each CNi(Cm, Cn) ∈ Cn do
11: if Cm ∈ PM AND Cn ∈ PM then PM.add(CN)
12: end if
13: end for
14: for each FRi ∈ FR do
15: if FRi.availabilityAtRuntime = true AND
16: FRi.decision = false then
17: Fi ← FRi.getReferenceFeature

18: Cl ← Fi.getReferenceElement

19: PM.add(Cl)
20: end if
21: end for
22: return PM

23: end procedure

In Algorithm 2, lines 3-9 generate the adaptive product model whose compo-
nents correspond to Features that are positively resolved. Connections among
such components will be guaranteed in the adaptive product model (line 10 -
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13). Otherwise, for the Features that are negatively resolved but that should be
available at runtime, the corresponding components will be present in the adap-
tive product model but not activated. Thus, lines 14-21 add such components
to the adaptive product model.

The adaptive product model generated is used as input to generate the
execution code. In our approach the code generation module is implemented
using the Xpand generator framework 4. This generator is based on EMF, i.e.,
it generates code from EMF models, the adaptive product model in our case.
XPand provides a statically-typed template language that allows us to write
code generation templates. The templates teach the code generator how to
translate the adaptive product model into code.

Based on the given execution platform and the structure of the target com-
ponent model, a code generation template can be written. An extract of this
template is shown as Figure 4.11. This template is used to create Java classes
each corresponding to a component specified in the adaptive product model.
Line 2 allows to create Java files with its ≪name≫. From line 3, the content
of Java files is described.

In order to run the Xpand generator, a workflow needs to be defined. The
workflow controls generation process whose steps (loading models, checking
them, generating code) are executed by the generator. In our implementa-
tion, the code generator is integrated into the AdapSwAG tool. Depending on
the target platform, different file types will be automatically generated.

In our approach, we use iPOJO/OSGi [Escoffier 07] as a target platform.
The result of code generation contains the necessary elements such as Java
implementations, a component specification (XML documents), and a configu-
ration file to create iPOJO components.

4.5.2 A case study

4.5.2.1 Example description

In order to illustrate our approach, we have studied a Medical Image Diagnosis
System (MIDS) that includes three main elements: equipments (e.g., X-ray CT
scanner and X-ray imaging devices) that take medical images, an image store
(IS) that stores the medical images sent from the equipments, and a tablet that
receives the images from the server treated by a doctor (see Figure 4.12). A Wifi
or 3G connection may be used to connect the tablet to the server. The tablet

4. http://wiki.eclipse.org/Xpand
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Figure 4.11 – An extract of a Xpand template file

can use a buffer to store medical images. When connection is strong, tablet
memory may be released allowing the system to work online, i.e., the tablet
does not need to use the buffer to store the medical images. Additionally, other
services can be used to observe and evaluate the system such as a log service, a
performance evaluation service, etc.

Studying the MIDS leads us to consider a simple client-server system in
which the tablet plays the role of a server that receives images from IS. Images
are treated by a doctor and analysis results returned to the IS. Other elements
of the MIDS play the role of a client that sends images, considered as requests,
to the tablet and waits the analysis results considered as responses from the
tablet. In this section, we use the “server” and “client” terms to indicate the
tablet and the IS, respectively. Furthermore, we consider the images sent by IS
as client messages.
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Figure 4.12 – A medical image diagnosis system

Figure 4.13 shows the models and tools used at design time to build an
adaptive software architecture for the MIDS. The left side of the figure presents
the CVL models, the right side the stages to generate the product. As previously
mentioned, the server can work online or with a buffer to store the images.
Therefore, we consider two types of servers: a buffered server (BS) and a non-
buffered server (nBS) (see the variability model in Figure 4.13). Client messages
treated by servers can be logged by a log server (Log). We also assume that
the initial configuration of the application includes Client and BS, and that the
Log server is not necessary. As engineers want to reduce the size of the server
when network connection is strong, the product should be able to replace the
BS by the nBS at runtime.

4.5.2.2 Specification and Implementation

Variability of this application is modeled by a VSpec tree in CVL that conforms
to the CVL meta-model. All VSpecs in our VSpec tree are Choices. The solid
lines indicate mandatory VSpecs, and the dotted lines optional VSpecs. The
[1..1] multiplicity value associated with a small triangle indicates that only one
VSpec should be configured [Haugen 13].

In this example, there are five variation points in the variability model. An
ObjectExistence variation point does the mapping between the Client VSpec
in the VSpec tree and the Client component in the base model. This point
indicates that the Client component may or may not exist in the product. Sim-
ilarly, four ObjectExistence variation points do the mapping between Server,
nBS, BS, Log in the VSpec tree, and Server, nBS, BS, and Log components in
the base model, respectively. Moreover, the multiplicity value in the VSpec tree
indicates that one and only one server, either BS or nBS, can be configured in
Server.

In order to generate a product, the decision attribute of the Log and nBS

nodes of the resolution model is set to false to indicate that they should not be
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Figure 4.13 – An example of building an adaptive software architecture

activated in the initial product. However, as the availabilityAtRuntime at-
tribute of the nBS is set to true, the corresponding components will be present
in the product for a later activation. On the other hand, the availability-
AtRuntime attribute of the Log VSpecResolution is set to false to indicate
that the corresponding elements will not be present in the product. Hence, the
availabilityAtRuntime attribute allows to eliminate the unnecessary compo-
nents (e.g., the Log component).
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The resolution model must conform constraints specified in the VSpec tree.
One of these constraints is that the Server component can be implemented
either by a nBS or a BS one, i.e, both nBS and BS cannot have the decision
attribute set to true. Such validations ensure the validity of the resolution
model. In our approach, they are validated by a module integrated in the
AdapSwAG tool.

AdapSwAG tool generates an adaptive product model with an adaptive
software architecture that no longer contains the Log component (the top right
part in Figure 4.13). Compared to the CVL execution element described in
Section 2.3, the product model in the CVL approach would not contain both
components, Log and nBS.

In this example, we use the iPOJO/OSGi platform [Escoffier 07] as a target
platform since it allows to build dynamically extensible Java-based applications
and facilitates management including features like dynamic dependency, com-
ponent reconfiguration, component factory, and introspection. Furthermore, it
also works on many Java virtual machines such as BEA JRockit, Mika, or Google
Dalvik (used in Android) [Escoffier 08]. In order to connect the components,
the Apache CXF framework 5 is used.

Based on the specification of the iPOJO component model and Apache CXF
framework, a text generation module is implemented with the Xpand genera-
tor framework 6. It generates implementation artifacts skeletons that include
packages. Each generated package corresponds to a component specified in the
adaptive product model. It consists of the necessary elements such as Java
implementations, a component specification (XML documents), and a configu-
ration file to create iPOJO components.

Although not a real example, this experimentation shows that our approach
is feasible using existing technologies: iPOJO, CVL, ACME, CXF. We used the
top-down approach to build the variability and the base models as we had no
existing architecture model. The adaptive product includes two versions of the
server component as we decided that both of them may be useful at runtime.
The Log component was pruned to reduce the code volume.

4.5.3 Discussion

In this chapter, we have introduced an adaptive software architecture process
to build adaptive software architectures. This process consists of various steps
to specify variability and generate the adaptive software architecture.

5. http://cxf.apache.org/
6. http://wiki.eclipse.org/Xpand
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In addition to specify the variability and the base models, they must be
configured to generate the adaptive product model, and the adaptive product
that can be executed in a target platform. A generated adaptive product model
should only contain necessary elements for adaptation. Therefore, we have
proposed a new attribute, availabilityAtRuntime in the resolution model.
This attribute allows to select elements that are not configured in the initial
product to be included in the adaptive product model.

Moreover, a generation process has been proposed to generate the adaptive
product. It consists of two steps: generating the adaptive product model, and
the executable code. We have implemented a tool that is in charge of the gen-
eration process. This tool exploits models specified at design time to generate
the adaptive product model, and is based on iPOJO/OSGi for code generation.
Furthermore, we have provided general algorithms applied in the tool to perform
generation. These algorithms can be implemented for other models and target
platforms. As each target platform assumes a particular component model, the
generation module should take it into account. We present the properties of the
component model so that adaptive software architectures can be generated in
the next chapter.

In order to control the adaptation process, an adaptation controller or a
managing system should be developed and composed with the adaptive prod-
uct. Next chapter details our proposed adaptation process that ensures the
consistency of the adaptive product.
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5.1 Chapter Overview

This chapter addresses a main issue to ensure system consistency before and
after adaptation: the correct completion of ongoing activities and the validity
of the new version of the adaptive product. This issue relates to transaction
management that allows to identify when transactions start and finish in the
system, i.e., transaction scope. A transaction is a sequence of actions executed
by one or several components that completes in a bounded time.

Our approach is based on specifying the transaction scope at design time to
build adaptive products. Then, the transaction scope specification is exploited
at runtime to identify the best moment to realize components replacement.
Therefore, considering transaction management leads us to putting out the fol-
lowing research questions:

• Question 3: How to specify and manage transactions scope in adaptive
software architectures?

Transactions scope allows to identify the transactional space to be man-
aged when changes have to be made in the architecture. A management
module that exploits transactions scope specification can be developed
and integrated into the product. It is in charge of determining when
transactions start and finish.

Additionally, an adaptation process relying on transaction management
should be proposed. The process should ensure system consistency, i.e., all
ongoing activities have correctly completed, and the state must be guaranteed
before and after the adaptation. The following question should be answered.

• Question 4: How to identify when to replace components and realize state
transfer for consistent dynamic adaptation?

Identifying the best moment to replace components plays a critical role
as it will influence the correctness of ongoing activities. Moreover, the
state integrity should be taken into account. An adaptation process that
ensures the correct completion of ongoing activities and guarantees the
system state is called consistent dynamic adaptation process in this thesis.

Section 5.2 describes how to specify transaction scope and how it is ex-
ploited for building adaptive software architectures and to manage transactions
at runtime. Next, adaptation strategies based on the proposed transaction man-
agement are presented in Section 5.3. The main activity in those strategies is
isolating the set of components to be replaced. Section 5.4 will detail how an
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adaptation process takes place. Finally, Section 5.5 provides evaluation and
discussion of this chapter.

5.2 Transaction Management

This section details how transaction scope is specified in our approach and how
it is exploited to build adaptive products and manage transactions at runtime
so that ongoing activities complete correctly. To clarify the transaction man-
agement issue, a case study is described and applied throughout this chapter.

5.2.1 A Case Study

5.2.1.1 Example Description and Needs of Transaction Management

The case study used in this chapter is adapted from the one presented in Figure
4.12 (Chapter 4). Images exchanged in the system are coarse, i.e., they are not
processed before being sent/received. In some systems such as ones in defense
that require a high level of performance (e.g., defense domain), the exchanged
images should be compressed. Therefore, two main functionalities, compres-
sion and decompression, are added into the original system. The images will
be compressed before being sent to the receiver, and be decompressed after ar-
riving at the receiver. The system can be re-described as in Figure 5.1. The
sender exploits the images in the image source, compresses, packages, and sends
them to the receiver (steps 1 , 2 , 3 and 4 in the figure). After receiving
the images and decompressing them, the receiver exports them to the screen
(steps 5 and 6 in the figure). The compression/decompression functionali-
ties can be implemented using different algorithms, each presenting a different
level of performance. Depending on the different performance requirements, the
implementation of such functionalities may be changed at runtime.

Without loss of generality in the adaptation context, the software architec-
ture of the system can be described by an Architecture Description Language
(ADL), and the images in the communication process can be considered as
communication messages (see Figure 5.2). The figure presents a graphical rep-
resentation of the architecture of the image delivery system. It consists of five
main components, namely Sender, Receiver, Compression, Decompression,
and Packer. In the figure, two implementations of the compression and de-
compression functionalities have been considered with two compression/decom-
pression algorithms, Run-Length Encoding (RLE) [Watson 03] and Lempel-Ziv
(LZ) [Farach 98]. The considered scenario is shown in Figure 5.3. Whenever a
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Figure 5.1 – The image delivery system example

message is ready, it is sent by the Sender component to the Compression one.
Then, the compressed message is sent to the Packer that adds a header to the
message. When the complete package is ready, it is sent to the Receiver com-
ponent. As soon as the Receiver component receives the package, the message
that is extracted from the package will be sent to the Decompression one to be
decompressed.

Compression

Receiver

Packer

Sender

Decompression

LZCompression

RLEDecompression

LZDecompression

RLECompression
 

Figure 5.2 – Adaptive software architecture of the image delivery system

The adaptation process considered in this chapter simply consists of the
replacement of the algorithm used by the Compression component by another
one. In this case, the Decompression component should also be replaced to
use the corresponding decompression algorithm. If we replace the Compression
and Decompression components at runtime, we should ensure that all messages
that have been compressed before replacement are decompressed using the right
algorithm, i.e., the adaptive software architecture should guarantee the global
consistency.
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Figure 5.3 – Behavior of the image delivery system

According to the quiescent criterion, when considering the single Compressi-
on component, it reaches quiescent status before t1 or after t4. For the Decompr-
ession component, it reaches the quiescent status before t1 or after t7. There-
fore, when considering both components, Compression and Decompression

replacement can only be made before t1 or after t7 in Figure 5.3. If the
Sender always initiates new transaction before the end of the transaction T3,
the Compression and Decompression components will never reach the quies-
cent status. Therefore, all components that can directly or indirectly initiate
a new transaction on this component must be in passive status (defined in
[Kramer 90]). Consequently, quiescence often causes significant disruption to
the running system.

In order to reduce the disruption, Vandewoude et al. [Vandewoude 07] pro-
posed the concept of tranquility, as an alternative to quiescence. The Compress-
ion component reaches the tranquil status before t2 or after t3. Similarly, the
Decompression component reaches the tranquil status before t5 or after t6.
Therefore, when considering the tranquil status of two components at the same
time, tranquility criterion allows to replace them before t2, from t3 to t5, or
after t6. Moreover, the replacement of the Compression and Decompression

components are independent because they are not adjacent components. How-
ever, changes from t3 to t5 on the system do not ensure system consistency,
i.e., the images may be compressed by an old version of the algorithm and de-
compressed using the new one. This leads to incorrect decompressed images
compared with the original ones, i.e., global consistency is not guaranteed. Re-
placement of Compression and Decompression components after t3 and before
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t5 should then be forbidden.

We assume that network conditions ensure response transfer from the Decom-
pression component to the Receiver one. Between t2 and t3, t5 and t6, the
Compression and Decompression components cannot be replaced as they are
actively processing a request or engaged in servicing a transaction. After t6
(after the end of transaction T4), images compressed by the Compression com-
ponent have already been decompressed by the Decompression component.
Therefore, replacing the Compression and Decompression components after t6
guarantees global consistency. In terms of transactions, if T1 happens, T4 must
be completed before replacing components. This means that there is a depen-
dency between transactions T1 and T4, that we call dynamic dependency, or
transactional dependency. The Compression and Decompression components
cannot be replaced after the beginning of T1 and before the end of T4.

Hence, identifying such dependencies between transactions is necessary. To
this end, we distinguish two transaction types, local and global transactions.

Definition 5. (Local transaction) A local transaction is defined as a sequence
of actions executed by a single component that completes in bounded time. It
can be initiated by the component itself or another one.

Definition 6. (Global transaction) A global transaction is a set of local
transactions to realize a complete task. It can be initiated and finished at the
same component or another one.

According to these definitions, if there are dependencies between local trans-
actions on components in the same global transaction, they must complete their
role in the global transaction before replacing them. In our approach, depen-
dencies between local transactions are specified at design time and exploited at
runtime to identify when to replace components while ensuring global consis-
tency.

5.2.1.2 CVL Specification

Figure 5.4 shows a VSpec tree, a base model (as a component-based architec-
ture), and variation points for our case study. The resolution model is omitted
in the figure for the sake of clarity.

In order to model variability in the system, we only use Choice VSpecs and
represent them by rounded rectangles. Each VSpec can be bound to its parent
by a solid or a dotted line. A solid line means that if the parent is positively
resolved, the VSpec child has to be positively resolved. A dotted line means
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Figure 5.4 – Modeling variability using CVL

that if the parent is positively resolved (chosen), the VSpec child is optional
(chosen or not). For instance, if the Compression VSpec is positively resolved,
it is not necessary to choose RLECompression or LZCompression. However, the
[1..1] multiplicity value associated with a small triangle in the figure indicates
that if the parent is positively resolved, one VSpec child must also be. In this
case, either RLECompression or LZCompression must be positively resolved in
the configuration.

Variation points link VSpecs with elements in the base model. We use the
ObjectExistence variation point in our example. An ObjectExistence variation
point is bound to the RLECompression VSpec and the RLECompression com-
ponent, which means that, if the RLECompression VSpec is negatively resolved
(not chosen), the RLECompression component will be removed from the result-
ing configuration.
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5.2.2 Transactional Dependency Specification in CVL

OCL constraints may be specified in CVL between VSpecs. For example, a
constraint like A implies B means that if A is positively resolved and its corre-
sponding elements in the base model are included in the architecture, then B

should also be positively resolved and the corresponding elements in the base
model also included in it.

Such dependencies are not enough when building adaptive software. For
example, a smart home may include an alarm service (AS) and a presence de-
tection service (PS). One may want to specify that if the PS is included in
the product, the AS should also be included, i.e., PS implies AS. However,
if PS is replaced from an IR-based motion sensor system to a thermal-based
one, the AS does not need to be replaced to keep the smart home consistent.
Additionally, when replacing the IR-based motion sensor by the thermal-based
sensor, information treated by the IR-based motion sensor need not be taken
into account by AS. Hence, there is no transactional dependency between AS
and PS. On the contrary, when replacing the Compression component by an-
other version, messages already compressed by the Compression component
must be decompressed by the Decompression component before realizing the
adaptation. Therefore, the implies or excludes constraints are not enough when
building adaptive software.

To tackle this issue, we propose a new constraint, dependsOn. A constraint
like A dependsOn B means that when replacing A, messages in a transaction
where A is involved must also be processed by B before replacing the components
A and B.

Number Constraint

#1 RLECompression dependsOn RLEDecompression

#2 LZCompression dependsOn LZDecompression

Table 5.1 – An extract of new constraints in our approach

The dependsOn constraint may be used to decide when to perform com-
ponents replacement. For instance, a message compressed by the RLECompre-

ssion component must be decompressed by the RLEDecompression one before
replacement. This means that, both must be configured at the same time in the
system configuration. Therefore, the RLECompression VSpec must imply the
RLEDecompression VSpec in the variability model (see Figure 5.4), and vice
versa. Moreover, when replacing the RLECompression and RLEDecompression

components during execution, messages compressed by RLECompression must
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be decompressed by RLEDecompression (see Figure 5.3), i.e., both must fin-
ish their role in the global transaction. Constraints presented in Table 5.1 are
used to specify transactional dependencies between the RLECompression and
RLEDecompression components. Similarly, there is a transactional dependency
between LZCompression and LZDecompression. The direction of the depend-
sOn constraint is explained later in Section 5.2.3.

5.2.3 Transactional Dependency Management

As mentioned in Section 5.2.1.1, the components to be replaced must finish their
role in all current global transactions before replacement. Therefore, we need
to identify the beginning and the end of global transactions in the base model.
In this section, we distinguish different roles of components for this purpose.
Additionally, a Transaction Manager needs to be added into the architecture.
It communicates with other components by using the control functions of the
component model.

5.2.3.1 The role of components

In component-based software architecture adaptation, an adaptation process
realizes the necessary actions to replace a set of components, called place-
ment components group, by another one, called replacement components
group. In our approach, we distinguish two types of placement components
groups (see Figure 5.5).

• A placement components group without dependsOn constraints consists
of components in which a component can require or not services of other
components in the group to complete its role in the global transaction
(Figure 5.5a).

• A placement components group with dependsOn constraints consists of a
set of components in which there is at least one transactional dependency
specified in the variability model (the dotted arrows in Figure 5.5b). In
order to complete a global transaction in the group, the transaction also
requires services of components outside the group. This is presented by
the dotted line in the figure.

In order to replace all components in a placement components group, the
group should be isolated from the rest of the system 1. Its components must have

1. Based on an idea in the surgery domain, a surgeon needs to clamp the organ to be
removed or replaced.
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Figure 5.5 – Two types of placement components groups

finish their role in all current global transactions in the group before replacing
them. Isolating a placement components group is performed in our approach
by activating a barrier in frontier components in the group. Therefore, the
frontier and internal components should be differentiated. Frontier com-
ponents provide services for external components, e.g., components A, B, E,

G, I, J in Figure 5.5. Internal components have no relation with components
outside the group, e.g., components C, D, F, H in Figure 5.5. Frontier and
internal components can be identified by using the base model, once the place-
ment components group has been identified. This will be detailed in Section
5.4.2.1.

Once isolated, replacement will be possible when no component in the group
is engaged in servicing a global transaction and transactional dependencies are
managed. In oder to know when these conditions apply:

1. All components manage their status information and make it available.
Two values are possible for this information:

Definition 7. (Busy status) The busy status indicates that the compo-
nent is treating a request or engaged in servicing a transaction.

Definition 8. (Free status) The free status of a component indicates
that the component is passive and not currently engaged in servicing a
transaction.
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All components in the group should be free before replacement.

2. Components with a transactional dependency make available information
about completed global transactions. Such components can be identified
by the dependsOn constraint in the specification. We call them depen-
dent components. For example in Figure 5.5b, components {F and H},
and {I and J} are dependent components. To better explain the role and
responsibilities of dependent components, we call the source component
of the constraint the starter component (e.g., F, I), and the destination
component of the constraint the ender component, (e.g., H, J).

Once a starter component has participated in a global transaction, it must
be processed by the ender component before allowing the replacement of such
components. To this end, a starter component should be able to indicate for
each global transaction in the group, if it already processed the transaction. For
each global transaction in the group already executed by the starter component,
an ender component should be able to tag the transaction as finished by the
dependent components.

In our approach, starter and ender components should be designed with the
necessary control functions to manage global transactions:

• Starter components generate global transaction control information (com-
ponent name, transaction ID) and add it to communication messages.

• Ender components remove global transaction control information after
treating them.

 

Global transaction
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Sender Receiver
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Figure 5.6 – A placement components group with dependsOn constraint

Figure 5.6 shows a global transaction in our example (described in Section
5.2.1.1). It corresponds to a placement components group with a dependsOn
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constraint. Compression and Decompression components are both frontier
and dependent components (starter and ender, respectively). As frontier com-
ponents, they should include a barrier to isolate the group. As dependent
components they should manage global transaction control information in com-
munication messages.

5.2.3.2 Transactions Manager and Reconfigurator

As presented in Chapter 4, in order to change an adaptive software architecture
at runtime, an adaptation controller controls the adaptation process. We have
identified three main parts of the controller, one of them, the Reconfigurator,
controls the execution of changes. It decides about when components replace-
ment can start and control its different steps. To start a component replacement
process:

• All internal and frontier components should be free, and

• Dependent components, if any, should already finish to process all current
global transactions in the group.

The Reconfigurator gets the first type of information from the components
themselves: the status information. For the latter type of information, a par-
ticular component, the Transaction Manager, is added to the general adaptive
software architecture at design time. Based on transactional dependencies, de-
pendent components are connected to the Transaction Manager and send it
information about when a global transaction has been processed by the starter
component and when it has been finished by the ender one.

Figure 5.7 shows the final general adaptive software architecture of our ex-
ample. Compression and Decompression components are connected to the
Transaction Manager as they are dependent components. They are also con-
nected to the Reconfigurator for realizing control functions during adaptation.
This will be detailed in Section 5.2.3.3.

Figure 5.8 shows messages exchanges among a general placement compo-
nents group, the Transaction Manager, and the Reconfigurator. Starter and
ender components inform the Transaction Manager about the beginning and
the end of global transactions, respectively. Once the Reconfigurator wants to
start components replacement, it asks the Transaction Manager if dependent
components have finished to process current global transactions. If so, the Re-
configurator waits for other components to be free.
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Figure 5.7 – A final general adaptive software architecture of the example
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Figure 5.8 – General interaction of components in a placement components
group, the Transaction Manager, and the Reconfigurator

5.2.3.3 A Component Model for Consistent Adaptation

As previously mentioned, components should offer a set of control functions so
that:

• Frontier components should be able to isolate the placement components
group.

• Starter and ender components should be able to inform the Transaction
Manager about the beginning and the end of global transaction process-
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Figure 5.9 – Component model

To this end, we propose a component model presented in Figure 5.9. It
consists of four parts: Barrier, Calculation, Connection, and Control. The bar-
rier is used to isolate placement components groups. The calculation is the
functional part of the component model. A component can require or offer
services from/to other ones via the connection. The control part is in charge
of executing actions received from the Reconfigurator component. It can ac-
tivate/deactivate the barrier and process the transactional control information
received from starter components in the group.

Control

The control part of our component model provides control services that the
Reconfigurator can invoke to manage adaptation process. We have identified
eight control services:

• Isolation/Reintegration services: they allow the Reconfigurator to indi-
cate a component to activate/deactivate its barrier to isolate a placement
components group.

• Passivation: it allows the Reconfigurator to tell a component to passivate
so that it does not start new transactions anymore.

• Connection redirection: it is used by the Reconfigurator to change func-
tional connections of components.

• State transfer: it allows the Reconfigurator to read and write the compo-
nent state information.

• Status service: it allows the Reconfigurator to get the status (busy or free)
of components.

• Finally, the control part includes functionalities to process the global
transaction control information, and inform the Transaction Manager
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about the beginning and the end of the global transactions in dependent
components

In order to use the control services on components, the Reconfigurator needs
to be connected to them via the connection part of the component model.

Connection

There are two types of connections: functional connections and control con-
nections. Functional connections correspond to connections for application func-
tionalities. The communication messages in this type of connections are service
requests to perform the functionalities of the system. Control connections are
used to connect components to the Reconfigurator or the Transaction Man-
ager components. The exchanged messages in this kind connections are control
messages, state of components, or global transaction control information.

Barrier

The barrier of a component plays a critical role in our approach. It is acti-
vated by the control part in the component model in frontier components. Such
a barrier may block all types of messages or not depending on the adaptation
strategies. These strategies and the rules applied by barriers are detailed in
Section 5.3.2.

5.2.4 Summary

In this section, we have introduced the need of 1) specifying transactional de-
pendencies for managing global transactions in a placement components group
and 2) a component model that supports consistent adaptation.

Specifying transactional dependencies in the variability model allows to
reduce the design space and facilitates exploiting them at runtime. In our
approach, transactional dependencies are specified in a variability model con-
formed to the CVL meta-model. However, they can be adapted to other models.

Additionally, we have distinguished two types of placement components
groups to limit the number of components that need to be managed in terms of
transactions by the Transaction Manager. Only dependent components need to
be managed by the Transaction Manager. To support consistent adaptation, we
proposed a new component model that clearly identifies the control functions
for adaptation, and explicits the need for a barrier. Our component model can
be implemented on many component-based frameworks, e.g., Fractal, iPOJO,
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to build adaptive software architectures.

Transactional dependencies and our component model give an answer to
Question 3 “How to specify and manage transaction scope in adaptive software
architectures?”. The next section gives details on how the components barrier
may behave and the consequences of this behavior on the adaptation strategy.

5.3 Adaptation Strategies Based on the Isolation of

the Placement Components Group

5.3.1 Two Adaptation Strategies

Depending on the filtering rules applied by the components barrier of a place-
ment components group, we distinguish two adaptation strategies: hard isola-
tion adaptation strategy and soft isolation adaptation strategy.

Hard isolation adaptation strategy (HIAS): In this strategy no filter-
ing rules are applied by the barrier. All messages arriving to components of
a placement components group are blocked and stored by the barrier. Com-
ponents replacements starts as soon as the group is isolated, but the running
transactions in the group may not be completed. Once the replacement fin-
ishes, messages stored in barriers should be unblocked to be processed by new
components, so that uncompleted transactions are “replayed”.

As the placement components group is isolated from the rest of the sys-
tem, component replacement may begin immediately and there is no need for a
Transaction Manager component. However, a complex store-and-replay process
or rollback mechanism is necessary to ensure the global consistency.

Figure 5.10 shows a scenario with HIAS. We assume that a placement com-
ponents group contains two components, A, and B that will be replaced by A’,
and B’, respectively, and the component A is a frontier component. Transaction
T0 is initiated in A at t0, and initiates a consequent transaction, T1 in B. At t1,
the Reconfigurator isolates the placement components group, and immediately
activates the components, A’, B’. The transactions initiated at t0 in the group
will be aborted. They must be replayed at t2 by the replacing components in
order to ensure system consistency.

Soft isolation adaptation strategy (SIAS): In this strategy, compo-
nent barrier applies a set of filtering rules to ensure that running transactions
complete before applying changes in the architecture. Two types of functional
messages pass the barriers:
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Figure 5.10 – An adaptation with HIAS

1. Messages from components in the placement components group

2. External messages already processed by a starter component but not man-
aged by the ender component.

3. All other messages are blocked at frontier components of the group.

In this strategy, changes on the architecture have to wait till all running
transactions complete. Placement components group is not completely iso-
lated from the rest of the system and no store-and-replay mechanism is needed.
However, the strategy requires a Transaction Manager component to manage
transactional dependencies.

Figure 5.11 shows an adaptation scenario similar to the one in Figure 5.10,
but with SIAS. The Reconfigurator isolates the placement components group
and wait till when all components are free (t3 in the figure). At this moment,
components replacement is realized. Compared to HIAS, the moment to replace
components is later than the one in HIAS (t2 in the figure).

HIAS SIAS

Development time + ++

Reactivity ++ +

Table 5.2 – A comparison between HIAS and SIAS

Table 5.2 summarizes the characteristics of both strategies. To choose one
of them when designing an adaptive software, one may consider two criteria:
development time and reactivity on adaptation. HIAS is more expensive when
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Figure 5.11 – An adaptation with SIAS

considering development cost as store-and-replay mechanism may be complex.
For SIAS the Transaction Manager component and barriers are integrated in
our approach. On the other hand, HIAS is more reactive than SIAS to execute
changes. Therefore, if the probability of having long ongoing transactions in a
placement components group is important or reactivity on adaptation is critical,
developing a HIAS may be a better approach. On the contrary, if reactivity is
not an issue or transactions are short-term or seldom, the SIAS strategy may
be used.

Our approach is based on SIAS. The main issue is being able to distinguish
which messages have to be blocked by the filtering barrier. The next section
aims at identifying the rules to apply and the way to implement them.

5.3.2 Isolation of Placement Components Groups

We have distinguished two types of placement components groups: with or
without dependsOn constraints.
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5.3.2.1 Placement Components Groups without dependsOn Con-
straints

The isolation of a placement components group without dependsOn constraints
is shown in Figure 5.12. Once an adaptation process has started, the Recon-
figurator asks the group to isolate itself from the system. Frontier components
(components A, B in the figure) activate their barrier thus blocking all messages
coming from the outside of the group (messages coming from 1 , and 2 in
the figure). Messages coming from internal components pass the barrier so that
ongoing transactions complete. For example, the barrier of component B allows
messages from C to go through it.

 

A

C B

D

1

2

Global transaction

Legend

 Component

Isolation point

 

Figure 5.12 – Isolation of a placement components group without dependsOn
constraints

In order to distinguish internal and external messages in frontier compo-
nents, the Reconfigurator should provide the set of components in the group
to all frontier components. External messages blocked in the barrier will be
transfered to new replacing components that will process them.

5.3.2.2 Placement Components Groups with dependsOn Constraints

The isolation of a placement components group with dependsOn constraints
is shown in Figure 5.13. In the group, transactions in F, and I are dependent
on transactions in H, and J, respectively.

As for groups without dependsOn constraints, the barrier of all frontier
components is activated to isolate the group and internal messages should pass
the barrier. However, external messages that have been processed by a starter
component should also pass the barrier to complete ongoing transactions in
the dependent components (messages from 4 , and 6 in Figure 5.13). Other
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external messages should be blocked (messages from 3 , and 5 in Figure 5.13).

dependsOn
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Global transaction
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Figure 5.13 – Isolation of a placement components group with dependsOn
constraints

As for placement components groups without dependsOn constraints, the
Reconfigurator component sends the list of components in the group to frontier
components. To distinguish external messages to be blocked or not, each frontier
component relies on the header of each message. As mentioned in Section
5.2.3.1, a starter component (F, and I) is able to generate the global transaction
control information, add it into the header of communication messages, and
inform the Transaction Manager about the beginning of a global transaction.
If the header of a message contains global transaction control information, a
frontier component should allow the message to pass the barrier. For example,
messages from 4 , and 6 pass the barrier of components G and J, respectively,
as these messages have been processed by a starter component (F and I in the
figure) but not from the ender.

Based on the above analysis, the set of rules for filtering messages at barrier
of components is defined as follows:

• Rule 1: Messages coming from components in the group and those whose
header contains global transaction information should pass barriers.

• Rule 2: All other messages should be blocked.

As the ender component of a transactional dependency removes global trans-
action information from messages, our filtering rules allow ongoing transactions
to finish consistently.
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5.3.3 Summary

In this section, we have presented two adaptation strategies, HIAS and SIAS,
based on the isolation of placement components groups. A comparison has also
been presented to show the advantages and the disadvantages of each strategy.
We base our work on the SIAS approach to deeper understand the idea of
transactional dependencies and its impact in the component model.

5.4 Adaptation Process

The purpose of this section is to present the whole picture of an adaptation
process and to give hints on how a reconfiguration plan can be generated based
on the models specified at design time. An overview of the adaptation process
was presented in Section 4.4.3 with four activities: specifying a target resolution
model, validating it, planning actions in the architecture, and executing them.
The previous chapter presented how to specify the resolution model and validate
it. The planning and executing activities will be detailed in this section.

5.4.1 Adaptive Software Architecture

Figure 5.14 shows a generic final adaptive software architecture. Compared to
the architecture presented in Figure 4.8, we have added dependsOn constraints
in the variability model (the dotted arrows), connections between the Recon-
figurator and the adaptive product, and the Transaction Manager component.
Reconfigurator and Transaction Manager components are connected to the con-
trol part of adaptive product components, the first one to control operation in
the architecture, the second one to be aware of ongoing global transactions. In
the figure, both are connected to the same components in the adaptive product:
for both variability has been specified in the variability model and there is a
dependsOn constraint between them.

The Reconfigurator component directly connects to the Transaction Man-
ager to get information about the set of ongoing transactions in dependent
components. It uses this information to determine when starting components
replacement in the architecture.

Finally, the Planner component is in charge of planning adaptation. When
receiving a new resolution model from external agents, it exploits the models in
the repository to compute a reconfiguration plan. The process to generate the
reconfiguration plan is presented in the next section.
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Figure 5.14 – Final general adaptive software architecture

5.4.2 Reconfiguration Plan

The generic form of a reconfiguration plan is presented in Figure 5.15. As shown
in the figure, actions in the reconfiguration plan are separated into eight steps:

1. Isolating the placement components group. The Reconfigurator should
be able to identify frontier components in the group to ask for barrier
activation. Depending on the type of the barrier (filtering or not), com-
munication messages in the group can be blocked.

2. Passivating components in the placement components group. Again, the
Reconfigurator component needs to know what and where are the compo-
nents in the group.

3. Identifying components status information. To this end, the Reconfigura-
tor should be able to know components in the group and to distinguish
starter components as their status is managed by the Transaction Man-
ager component and not the component itself.

4. Activating the replacement components group. The set of replacement
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components should be known by the Reconfigurator component to activate
them. The barrier of components activated in this step is activated to
guarantee the order of messages transfered from replaced components and
new messages arriving after redirecting connections by the next step.

5. Connecting the replacement components group. The Reconfigurator com-
ponent should know connections of the placement components group and
those of the replacement components group to redirect them.

6. Transferring state from the replaced components to the replacing ones. To
this end, the Reconfigurator component should be able to map the state
from source to destination components.

7. Reintergrating the replacement components group. The Reconfigurator
component should know components in the replacement components group
to deactivate their barrier.

8. Deactivating the placement components group. The Reconfigurator com-
ponent should know components in the placement components group to
deactivate them.

Therefore, depending on the reconfiguration action, the Planner component
should be able to identify:

• Placement components group,

• Frontier components,

• Starter components,

• Replacement components group, and

• State mapping between replaced and replacing components

Next sections present how this information may be got from the models by the
Planner. Without this information, it will not be able to generate a plan.

5.4.2.1 Identifying Placement and Replacement Components Group

For an adaptation to be started, a new resolution model needs to be specified.
Once the model is provided, the Planner combines it with the models in the
repository to generate the reconfiguration plan. The first activity in the plan
generation process concerns the comparison of two resolution models to identify
the placement and replacement components groups.

Figure 5.16 shows an example in which the differences of two architecture
configurations can be calculated by comparing two resolution models (RM).
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<reconfigurationPlan>
<isolation>
<!−− frontier components with the placement components group −−>

</isolation>
<passivation>
<!−− components in the placement components group−−>

</passivation>
<getStatus>
<!−− components in the placement components group for getting status of these

components and starter components for asking Transaction Manager−−>

</getStatus>
<activation>
<!−− replacing components in the replacement components group−−>

</activation>
<connection>
<!−− redirection of connections to the replacing components−−>

</connection>
<stateTransfer>
<!−− state mapping from the replaced components to the replacing ones−−>

</statetransfer>
<reintegration>
<!−− components in the replacement components group−−>

</reintegration>
<deactivation>
<!−− components in the placement components group−−>

</deactivation>
</reconfigurationPlan>

Figure 5.15 – Generic structure of a generated reconfiguration plan

The differences are propagated to the VSpec tree, variation points, and then
the base model.

For the first step 1 , each resolution model (RM) is searched by using the
depth-first search algorithm 2, and represented as an array of true and false

values. Resolution models (RM1 and RM2 in the figure) are compared by us-
ing a XOR operation. true results indicate a difference between RMs (dotted
rectangles in the figure): the decision attribute in the VSpecResolution has
changed from true to false, or from false to true, e.g., the decision at-
tribute in the RLECompression VSpecResolution has been changed from true

to false. VSpecs that are affected by such a change are deduced in Step 2 .
According to the changes in VSpecResolutions, the selection of VSpecs must also
be changed: If the value of the decision attribute of a VSpecResolution changes

2. http://www.cs.yale.edu/homes/aspnes/pinewiki/DepthFirstSearch.html
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Figure 5.16 – Calculating the differences between two architectural configura-
tions

from true to false, the corresponding VSpec previously selected, will be uns-
elected and vice versa (e.g., VS1 changes from selected to unselected in Figure
5.16). Then, variation points bound to such VSpecs should be determined in
Step 3 . If a VSpec changes from selected to unselected, the corresponding
variation point’s state is disabled, and vice versa. For example, VP1 refers to
VS1 that has been unselected. Therefore, VP1 will be disabled. In the last step
4 , variation points differences are propagated to the base model. Actions to
change the architecture can then be determined. In our example, VP1 refers
to the RLECompression component. As the new state of VP1 is disabled, the
RLECompression component will be deactivated in the system.

From the results of calculating the differences between architectural config-
urations, the placement and the replacement components groups can be identi-
fied. In our example, the placement components group contains RLECompression
and RLEDecompression, and it will be deactivated. The replacement compo-
nents group contains LZCompression and LZDecompresssion, and will be acti-
vated in the adaptive product.
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Once placement and replacement components groups have been identified,
identifying starter, frontier components and connections to be redirected are
simple task. For the former, the dependsOn constraints in the VSpec tree
are used. For the latter, the base model will allow the Planner to identify
redirections.

5.4.2.2 State Mapping between Components

An important issue that must be addressed in adaptation to ensure the
consistency is the state transfer of components that are replaced. The state
includes the local state of all components, i.e., the component attributes, and
all messages in transit [Ma 11]. The state can be transfered to new components
with or without changes. We propose here a partial solution that is used to
validate our approach. Developing this aspect is a perspective of this thesis.

Figure 5.17 shows three cases of state transfer. The upper part shows a case
where the state is transferred to the new component as it is. The two lower
parts present the cases where the state is transformed via functions f1, f2 or
f3.

S1 D1

S1

D2f1(S1)

Source state Destination state

D3f2(S1)

S1

S2
f3(S1,S2) D3

 

Figure 5.17 – Generality of state transfer

In order to map the state between sources and destinations, we propose a
state transfer meta model (see Figure 5.18). The state transfer model is con-
sidered as a set of state transfer points. Each point is specified by a destination
variable, one or many source variables, and state transfer function. State trans-
fer functions are used to transform the state from sources to destinations. Each
of them is described by an operation and its parameters. The parameters refer
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Figure 5.18 – A state transfer meta-model

Several variables in components in the base model may be source variables.
The data type of each variable should be identified by using the base model.
This allows the Reconfigurator to clearly identify the data type of variables.

Destination variables may be existing variables in new components in the
base model. If there is no existing variable in the destination component to
store the source variables, the state can be lost. If the adaptation requirements
must guarantee the state of the system, it should be stored somewhere else. In
this case, a temporary variable in a temporary component could be used. If the
state to be managed includes communication messages, they should be treated
by the new component. Therefore, the temporary component requires services
of the new component in the base model.

Figure 5.19 shows an example in which the communication messages have
to be transferred from Server1 to Server2 during adaptation. We assume that
Server1 has a buffer to store communication messages, and Server2 has no
buffer. A temporary variable in a temporary component is used to store such
messages. Action (2) presents the state transfer from Server1 to Temporary.
The temporary component requires the service of Server2 (action (3)), and
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then returns the results to the client (actions (4) and (5)). The temporary
component will be destroyed when its buffer is empty. This issue is out of the
scope of this thesis but it is described to represent the generality of the state
transfer model.

 Client Server1

Temporary

Server2

(1)

(2)

(3)
(4)

(5)

(6)

state transfer

Legend

 
request

return

Figure 5.19 – An example with a temporary component when transferring state

The state transfer model for this example is shown in Figure 5.20. It includes
a state transfer point. The source variable is mapped to a buffer variable in
Server1 and the destination variable is mapped to the tempBuffer variable in
the Temporary component. This component requires services in Server2 and
returns results to Client.

In our approach, we assume that components state only includes communi-
cation messages. Such messages may be blocked at the barrier of components,
and will be transferred between replaced and replacing components during the
adaptation process. In terms of implementation, communication messages are
stored in a variable in the component implementation. The state transfer model
simply describes the mapping of two variables used to store the communication
messages between two components. Based on the barrier of components in
the placement components group and the state transfer model, state mapping
actions can be generated in the reconfiguration plan.
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<StateTransferModel>
<points>
<srcVariable name=”buffer”>
<type type=”ObjectType” class=”Message”/>
<variableHandle mofRef=”Server1”/>

</srcVariable>
<dstVariable type=”TemporaryVariable” name=”tempBuffer”>
<type type=”ObjectType” class=”Message”/>
<belongTo name=”Temporary”>
<requires mofRef=”Server2”/>
<returns mofRef=”Client”/>

</belongTo>
</dstVariable>

</points>
</StateTransferModel>

Figure 5.20 – A state transfer model instance

5.4.3 Executing the Reconfiguration Plan

After receiving the reconfiguration plan from the Planner, the Reconfigurator
component executes it. To this end, it has to get the status of components in
the placement components group before realizing the component replacement.

In Section 5.4.2, we have presented a reconfiguration plan that includes eight
steps. They are executed as follows:

1. Isolate placement components group. The Reconfigurator takes informa-
tion about the frontier components described in the reconfiguration plan,
then, uses the deployment model to be aware of their location and sends
them the isolation command. After receiving the isolation command, the
control part in the components will activate the barrier to block messages.
As mentioned in Section 5.3.2, messages that satisfy rule 1 will pass the
barrier.

2. Passivate the placement components group. The Reconfigurator uses in-
formation in Step 2 of the reconfiguration plan to set components to the
passive status. No components in the group will be able to initiate new
transactions.

3. Get status of all components and information about the completion of
transactions in the dependent components. This step has been presented
in Figure 5.8. The reconfiguration plan includes the components to be
directly accessed by the Reconfigurator (to know their status) and those
whose status is managed by the Transaction Manager (starter compo-
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nents). Once all global transactions finish in dependent components and
other components of the group are free, the component replacement can
be realized.

4. Activate new components. The replacement components group is included
in the plan. The Reconfigurator component activates these components.
By default, their barrier is activated when activating them.

5. Redirect connections to the new components. The Reconfigurator redirects
the connections to the replacement components group according to Step
5 in the plan.

6. Transfer state. All messages stored in the buffer of the frontier components
in the placement components group are transfered to the head of buffer
in the corresponding components in the replacement components group
to guarantee the message order.

7. Reintegrate components in the replacement components group. So far,
the components in the replacement components group are reintegrated
and the barriers are deactivated. The replacement components group is
completely joined into the adaptive product.

8. Deactivate components. Finally, all components in the placement compo-
nents group are deactivated.

Reconfiguration actions are realized conforming to the reconfiguration plan.
Most these actions are based on the deployment model to locate the compo-
nents in the adaptive product. In order to realize actions 1, 2, 3, 5, 6, and
7, the Reconfigurator interacts with the control part of components. Whereas,
the actions 4 and 8 are realized by using the services provided by deployment
platforms, e.g., install, start, or stop bundles in OSGi.

5.4.4 Summary

We have presented an adaptation process from an adaptation requirement to
realizing reconfiguration actions. An architecture consisting of three main ele-
ments, Reconfigurator, Planner, and Transaction Manager has been presented.
The Planner generates a reconfiguration plan and exploits models to identify
the components involved on each step of the plan. The Reconfigurator executes
the plan and uses the deployment model to effectively locate components in the
system. It connects to the Transaction Manager to be aware of the completion
of transactions in the dependent components.

Our reconfiguration plan includes state transfer action to guarantee system
consistency. Generation of such actions is based on a state transfer model.
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Our approach based on models, Planner, Reconfigurator, Transaction Man-
ager components and a component model, is our answer to Question 4 “How to
determine when to replace components and transfer state for consistent dynamic
adaptation?”.

5.5 Evaluation and Discussion

5.5.1 Evaluation

In order to realize a Proof of Concept (PoC), the case study used in this chapter
has been implemented. It is simple but meets the main requirements to illustrate
our approach: a placement components group with transactional dependency.

Figure 5.4 shows the variability and the base models of the system. In order
to configure the variability model, a resolution model must be specified. We
assume that the two components, LZCompression and LZDecompression, are
available at runtime, but are not selected for the product (all other elements
are selected in the product).

The AdapSwAG tool described in Section 4.5.1 is reused to generate the
product model. As previously mentioned, this tool consists of three modules to
validate resolution models, generate product models from the models specified
in the domain engineering, and executable code from a product model. In
this chapter, the code generation module is extended so that generated code
conforms to the component model proposed in Section 5.2.3.3.

Transactional dependencies in the system are specified in Table 5.1. Based
on such dependencies, the starter and ender components can be identified: the
RLECompression and RLEDecompression components, respectively. Both need
to be connected to the Transaction Manager to provide the global transaction
control information for managing transactions. This connection is manually
completed by product developers. At runtime, the Transaction Manager com-
ponent receives information about the beginning of global transactions from
the RLECompression component, and their end from the RLEDecompression

component.

We have implemented our example on top of the iPOJO/OSGi component
model [Escoffier 07, The OSGi Alliance 14]. This model allows to build dy-
namically extensible Java-based applications and facilitates their management
by offering features like dependency, component reconfiguration, component
factory, and introspection. In order to connect components, the Apache CXF
framework [Apache 09] has been used.
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<reconfigurationPlan:Plan>
<isolation>
<actions component=”RLECompression” placementComponentGroup=”

RLECompression, RLEDecompression”/>
<actions component=”RLEDecompression” placementComponentGroup=”

RLECompression, RLEDecompression”/>
</isolation>
<passivation>

<actions component=”RLECompression”/>
<actions component=”RLEDecompression”/>

</passivation>
<getStatus>
<actions component=”RLECompression”/>
<actions component=”RLEDecompression”/>
<actionsForManager component=”RLECompression”/>

</getStatus>
<activation>
<actions component=”LZCompression”/>
<actions component=”LZDecompression”/>

</activation>
<connection>
<actions srcComponent=”Compression” oldDstComponent=”RLECompresison”

newDstComponent=”LZCompression”/>
<actions srcComponent=”Decompression” oldDstComponent=”RLEDecompresison”

newDstComponent=”LZDecompression”/>
</connection>
<transfer>
<actions><point>

<srcVariable name=”buffer”>
<variableHandle mofRef=”RLECompression”/>

</srcVariable>
<dstVariable name=”buffer”>
<variableHandle mofRef=”LZCompression”/>

</dstVariable>
</point></actions>

</transfer>
<reintegration>
<actions component=”LZCompression”/>
<actions component=”LZDecompression”/>

</reintegration>
<deactivation>
<actions component=”RLECompression”/>
<actions component=”RLEDecompression”/>

</deactivation>
</reconfigurationPlan:Plan>

Figure 5.21 – A generated reconfiguration plan
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In our example, a iPOJO component is organized as a package in a Java
project. Therefore, there are nine packages corresponding to nine components
(Sender, Receiver, Compression, RLECompression, LZCompression, Decomp-
ression, RLEDecompression, LZDecompression, and Packer) in the managed
system. Each package contains a class for functional behavior and a sub-package
for control services. The former is implemented with a barrier, a functional
connection, and calculation parts. There are seven different classes used in its
implementation. The latter contains four classes: two for control functions,
and two for capturing headers of communication messages. In the managing
system, there are three components, Planner, Reconfigurator, and Transaction
Manager. The Planner is implemented with three classes, the Reconfigurator
with three classes, and the Transaction Manager with two classes. Moreover,
there are five model instances in the repository supporting the adaptation and
a target resolution model instance.

The scenario of adaptation process is described in Figure 5.22. When re-
ceiving an adaptation request with a new resolution model from an external
agent, e.g., a reconfiguration engineer, the Planner generates a reconfiguration
plan. The generated reconfiguration plan is shown in Figure 5.21. It includes
the eight steps as presented in Section 5.4.2.

After generating the reconfiguration plan, the Planner sends it to the Re-
configurator to realize the adaptation. For the sake of clarity, the components
Packer, Compression, and Decompression are not shown in Figure 5.22. As
soon as receiving the reconfiguration plan, the Reconfigurator realizes recon-
figuration actions according to the eight steps mentioned in Section 5.4.3. As
previously, in the step 4 and 8, the Reconfigurator uses services provided by the
OSGi platform. Thus, its interactions are hidden in the figure.

5.5.2 Discussion

This chapter has presented an approach based on specifying transactional de-
pendencies to realize consistent dynamic adaptation. We have proposed a new
constraint in the variability model, dependsOn, to specify transactional depen-
dencies in the variability model. This dependency is exploited to support the
management of transactions at runtime. We also propose a component model
that contains the necessary control functions to support consistent dynamic
adaptation.

In addition, two adaptation strategies have been proposed, HIAS and SIAS.
Both are based on the isolation of the placement components group. The former
is based on completely isolating the group with a barrier. The latter partially
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Figure 5.22 – An extract of dynamic adaptation process
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isolates the group by using a filtering barrier. A comparison has been made in
Table 5.2. For HIAS, the component replacement can be immediately realized
after isolation, but the development of mechanisms to ensure consistency is
complex. For SIAS, the transaction management allows to ensure consistency
during adaptation but component replacement can not start immediately after
isolation.

In order to verify the feasibility of our approach, we have extended the
AdapSwAG tool. This extension allows the executable code to conform to the
proposed component model. Moreover, we have implemented the case study
that meets necessary requirements for illustrating the issues of the chapter as
mentioned in 5.1.
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Chapter 6

Conclusion and Perspectives
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6.1 Contribution Summary

This thesis has proposed an approach to develop adaptive software architec-
tures. The approach we propose presents a development process from design
to runtime. On the one hand, at design time, our approach relies on specifying
the variability of software product lines and configuring it to generate adaptive
products. On the other hand, at runtime, a proposed adaptation mechanism
relies on exploiting the information specified at design time to ensure consistent
dynamic adaptation. Particularly, the information about specifying the trans-
actional dependencies plays a critical role. Moreover, a component model has
been proposed to cope with transactional dependencies.

Based on the proposed adaptive software architecture development process,
we argue that our approach overcomes the five challenges identified in the Chap-
ter 1 for development of adaptive software architectures: 1) modeling variabil-
ity and commonality for adaptation, 2) configuring and automatically building
adaptive architectures, 3) supporting state transfer, 4) automatically planning
adaptation, 5) ensuring consistent dynamic adaptation.

Specifying and Configuring Variability

133
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We have presented a variability-driven development process for building
adaptive software architectures. The process is based on CVL tools and meta-
models to model the variability and the architecture of an SPL. It defines a set
of ordered tasks performed by engineers from the variability specification up to
the software architecture. These models are used to configure adaptive prod-
ucts. In order to avoid unnecessary elements to be embedded in the product,
the CVL resolution meta-model is extended with a new attribute, availabil-
ityAtRuntime. We have proposed it as an extension of CVL but it can be
applied to any model to deal with building the adaptive products.

Developping a Tool Supporting for Validating Configurations of SPL
and Generating Adaptive Products

In order to support engineers on building adaptive software architectures,
we have developed the AdapSwAG tool to generate the adaptive software archi-
tectures. This tool considers the extended CVL model as its input. However,
it can be extended to adapt to different inputs such as feature models. In addi-
tion, it integrates a module to validate the applicability of a resolution model
for configuring a variability model.

Specifying Transactional Dependencies

Identifying the status of the placement components group plays a critical
role for ensuring consistent dynamic adaptation. In our approach, this status is
identified based on the transaction management. To develop a product support-
ing transaction management, transactional dependencies should be specified at
design time to offer necessary information for designing components of an adap-
tive product. Therefore, we have proposed dependsOn constraints. They indi-
cate dependencies between components (called starter and ender components)
in terms of transaction: if a transaction is engaged in a starter component, its
result must be treated by the ender component before replacing components.

The dependsOn constraint is used with CVL. However, it can be adapted to
other variability models to represent the transactional dependency for building
adaptive software architectures.

Component Model for Ensusing Consistent Dynamic Adaptation

In order to support the transaction management, a component model has
been proposed with control, connection, calculation, and barrier. The control
and connection parts are in charge of observing global transactions and inform-
ing the Transaction Manager about the beginning of a global transaction in a
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starter component and the end of the global transaction in an ender component.
Moreover, it needs to provide a status control attribute for managing its status,
free or busy, in all components of the system.

Such component model is exploited to design components when building
an adaptive product. At design time, components are assigned different roles
(starter or ender) according to the identified transactional dependencies. In so
doing, the number of components that has to manage transactions in a place-
ment components group is limited to the starter and ender components.

Furthermore, in order to isolate a placement components group, the compo-
nent model needs to provide functions that allows to isolate itself from the rest
of the system. It is the role of barrier in the component model. When realiz-
ing the adaptation process, the barrier of frontier components in the placement
components group must be activated to isolate the group.

Adaptation Mechanism for Consistent Dynamic Adaptation

For this purpose, transactional dependencies are exploited at runtime to
find when components can be replaced. An adaptation mechanism has been
proposed that consists of the necessary activities to replace a placement com-
ponents group by another. Thanks to the transaction management and the
status control attribute, the adaptation mechanism allows to identify the mo-
ment when all global transactions finish in the placement components group.
This is also the best moment to realize the adaptation actions. Therefore, such
an adaptation mechanism ensures the correctness of ongoing activities. More-
over, the state transfer actions allow to guarantee the status of the system.

6.2 Limitations

Our approach for building adaptive software architectures has several limita-
tions. Firstly, the selection of available elements in the adaptive product com-
pletely depends on the knowledge of adaptive product designers. Secondly, it
does not support the evolution of the product line. Thirdly, it lacks a mechanism
to observe informing the Transaction Manager about the end of transactions.
Finally, there is not the rollback mechanism when arising errors during the
adaptation process.

Selection of Available Elements

An adaptive software architecture is generated based on configuring the
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variability model. The selection of VSpecs in the variability model is decided by
the resolution model via the attributes, decision and availabilityAtRuntime.
However, the availability at runtime of necessary elements depends completely
on the knowledge of engineers collected from the requirement process. This
approach does not offer criteria to help the engineers on distinguishing the
useful and useless elements.

No Support for Evolution

Architectural elements generated in the adaptive product can not change
over time, i.e., such elements are foreseen at design time for adaptation. How-
ever, a product line may evolve to meet new requirements over many years, and
new elements could be arisen in the future and added into the adaptive prod-
uct. A new element added into the existing product can positively or negatively
impact the existing elements. Our approach lacks a process to cope with this
aspect.

Lack of an Observation Mechanism

During execution of the adaptive product, the starter and ender components
always inform the Transaction Manager about the beginning and the end of
global transactions. Based on this information, the Reconfigurator can identify
when they can be replaced. If the starter component has treated a message, but
the result message does not arrive at the ender component or the end of global
transaction can not arrive at the Transaction Manager, the adaptation process
will not finish.

Lack of a Rollback Mechanism During Adaptation

The adaptation mechanism we propose is based on managing transactions
in a placement components group to ensure consistent dynamic adaptation.
However, this adaptation mechanism does not take into account the break arisen
during adaptation. Indeed, the system can incorrectly function or even being
suspended, if there are errors during adaptation.

6.3 Perspectives

Although the work presented in this thesis covers the needs to build adaptive
software architectures, there are also some aspects that could be done to improve
our approach.
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Towards a Process for the Evolution of Product Line

A product line can evolve over time to meet new requirements. This means
that the variability model can grow by adding new VSpecs. The new VSpecs
added can positively impact the existing VSpecs. Therefore, the variability
model must be modified to adapt to the new VSpecs and ensure the consistency
of the variability model. In addition, the modification of the variability model
leads the changes in the architecture. Consequently, the running system must
be modified at runtime as well.

As an ongoing work, we are working on the literature of existing approaches
such as [Pleuss 12, Nieke 17] that address this issue. Based on such literature,
we see that there is no process to track the evolution from the abstraction
specification to the deployment. Therefore, a process should be proposed to
meet this issue. This is considered as a short-term perspective of our work.

Supporting Reliable Distributed Adaptation

In the context of a distributed system, an adaptation process may consist
of many adaptation subprocesses that are performed in distributed sites. These
subprocesses should be coordinated to control the adaptation process. More-
over, a rollback mechanism for returning to the system state before adaptation
should be available to handle errors during adaptation.

These aspects have been addressed by our research group. Works in
[Phung-khac 10, Huynh 11] addressed the distributed adaptation process and
reliable adaptation with a rollback mechanism. However, they do not address
the transaction management to determine when changes should be applied.

Extending the State Transfer Aspect

In our approach, a partial solution related to the state transfer have been
proposed. However, we are only interested in the state transfer of communi-
cation messages after activating components. The state of a component before
or during its activation has not been taken into account. In addition, our par-
tial solution addresses changes of state from sources to targets by using state
transfer functions. An extended research about this aspect and the proof of its
applicability should be studied in the future.

Comparing performance between two strategies, HIAS and SIAS

We have proposed two strategies to realize adaptation. However, our ap-
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proach is only focused on SIAS. An extension research about HIAS should be
realized. Consequently, a quantitative analysis between HIAS and SIAS is nec-
essary to indicate the effectivity of each strategy according to the development
context.

Extending the Prototype and Applying the Approach on a Real Sys-
tem

The prototype implemented in our approach is based on CVL. Thus, it
should be improved to adapt to alternative models. Particularly, the Adap-
SwAG tool should provide functionalities to adapt to different models. De-
pending on the input models, corresponding functionalities are used.

In addition, we based our work on simple examples to justify our approach.
Therefore, a real example should be studied and developed with our approach
to overall evaluate it.
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inition of the OMG/MDA Framework. In Proceed-
ings of the 16th IEEE International Conference on Au-
tomated Software Engineering, ASE ’01, pages 273–,
Washington, DC, USA, 2001. IEEE Computer Society.
15

[Bialek 04] R. Bialek & E. Jul. A framework for evolutionary, dy-
namically updatable, component-based systems. In Dis-
tributed Computing Systems Workshops, 2004. Pro-
ceedings. 24th International Conference on, pages 326–
331, March 2004. 55, 63

[Bosch 01] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Ku-
usela, J. Henk Obbink & Klaus Pohl. Variability Issues
in Software Product Lines. In 4th International Work-
shop on Software Product-Family Engineering, pages
13–21, London, UK, 2001. Springer-Verlag. 1, 19, 21

[Brun 09] Yuriy Brun, Giovanna Marzo Serugendo, Cristina
Gacek, Holger Giese, Holger Kienle, Marin Litoiu,
Hausi Müller, Mauro Pezzè & Mary Shaw. Soft-
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Paola Inverardi & Jeff Magee. Software Engineering for
Self-Adaptive Systems: A Research Roadmap. Lecture
Notes in Computer Science, vol. 5525 LNCS, pages 1–
26, 2009. 2, 32, 33, 35

[Clements 01] Paul Clements & Linda Northrop. Software product
lines: Practices and patterns. Addison-Wesley Profes-
sional, 2001. 17

[Coupaye 07] Thierry Coupaye & Jean-Bernard Stefani. Fractal
Component-based Software Engineering. In Proceed-
ings of the 2006 Conference on Object-oriented Tech-
nology: ECOOP 2006 Workshop Reader, ECOOP’06,
pages 117–129, Berlin, Heidelberg, 2007. Springer-
Verlag. 2, 23, 30

[Creff 13] Stephen Creff. A multidimensionnal variability model-
ing for an incremental product line evolution. Theses,
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Y. l. Traon. Automating the Extraction of Model-Based
Software Product Lines from Model Variants (T). In



BIBLIOGRAPHY 153

2015 30th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), pages 396–406,
Nov 2015. 76

[Martinez 15b] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bis-
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Appendix B

Implementation Details

In this appendix, we present some implementations related to our approach.
On the one hand, the modules in the AdapSwAG tool are detailed. On the
other hand, the services in the control part of the component model presented in
Section 5.2.3.3 will be detailed in this appendix. Moreover, the implementations
of the Transaction Manager and Reconfigurator are briefly represented as well.

2.1 AdapSwAG Tool

2.1.1 Resolution Model Validation

We apply the algorithm 1 in context of CVL to validate the resolution model.
The following procedure is recursively called to search VSpecResolutions in the
resolution model. In context of this thesis, we are interested in the Choice
VSpec. Thus, only ChoiceResolution is considered in the resolution model.

1 String validateNode(VSpecResolution vspecResolution,

2 ArrayList<BCLConstraint> bclConstraints) {

3 if (vspecResolution instanceof ChoiceResolution) {

4 ChoiceResolution choiceResolution = (ChoiceResolution)

vspecResolution;

5 Choice resolvedChoice = choiceResolution.getResolvedChoice();

6 if (!choiceResolution.isDecision()) { // check impliedByParent

7 if (resolvedChoice.isIsImpliedByParent()) {

8 EObject parent = choiceResolution.eContainer();

9 if (((ChoiceResolution) parent).isDecision()) {

10 return "Error: Conflict with impliedByParent constraint

in "
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11 + choiceResolution.getName();

12 }

13 }

14 } else {

15 if (resolvedChoice.getGroupMultiplicity() != null) { // check

16 // multiplicity

17 int min = resolvedChoice.getGroupMultiplicity().getLower();

18 int max = resolvedChoice.getGroupMultiplicity().getUpper();

19 int count = 0;

20 for (VSpecResolution subVSpecResolution : choiceResolution

21 .getChild()) {

22 if (subVSpecResolution instanceof ChoiceResolution) {

23 ChoiceResolution subChoiceResolution =

(ChoiceResolution) subVSpecResolution;

24 if (subChoiceResolution.isDecision()) {

25 count++;

26 }

27 }

28 }

29 if ((count < min) || (count > max)) {

30 return "Error: Conflict with multiplicity constraint in "

31 + resolvedChoice.getName();

32 }

33 }

34

35 // check implies/excludes

36 for (BCLConstraint bclConstraint : bclConstraints) {

37 EList<BCLExpression> expressions = bclConstraint

38 .getExpression();

39 for (BCLExpression expression : expressions) {

40 if (expression instanceof OperationCallExp) {

41 OperationCallExp operationExpression =

(OperationCallExp) expression;

42 EList<BCLExpression> arguments = operationExpression

43 .getArgument();

44 VSpec vspec1 = ((VSpecRef) arguments.get(0))

45 .getVSpec();

46 VSpec vspec2 = ((VSpecRef) arguments.get(1))

47 .getVSpec();

48 if ((operationExpression.getOperation().getName()

49 .equals("logImplies"))

50 && (vspec1.getName().equals(resolvedChoice

51 .getName()))) {

52 for (VSpecResolution vspresolution :

resolutionList) {

53 if ((vspresolution.getResolvedVSpec()

54 .getName().equals(vspec2.getName()))
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55 && (!((ChoiceResolution) vspresolution)

56 .isDecision())) {

57 return "Error: Conflict with implies

constraint at "

58 + resolvedChoice.getName();

59 }

60 }

61 }

62 if ((operationExpression.getOperation().getName()

63 .equals("logExcludes"))

64 && (vspec1.getName().equals(resolvedChoice

65 .getName()))) {

66 for (VSpecResolution vspresolution :

resolutionList) {

67 if ((vspresolution.getResolvedVSpec()

68 .getName().equals(vspec2.getName()))

69 && (((ChoiceResolution) vspresolution)

70 .isDecision())) {

71 return "Error: Conflict with excludes

constraint at "

72 + resolvedChoice.getName();

73 }

74 }

75 }

76 }

77 }

78 }

79 if (choiceResolution.getChild() != null) {

80 for (VSpecResolution subVSpecResolution : choiceResolution

81 .getChild()) {

82 return validateNode(subVSpecResolution, bclConstraints);

83 }

84 }

85 }

86 }

87 ...

88 return "valid";

89 }

2.1.2 Product Model Generation

This module is implemented to generate a product model that contains
active components and connections among them, and available components.
The following procedure is implemented to identify the active components.
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1 ArrayList<ComponentInstance>

activeComponents(ArrayList<VSpecResolution> vspecResolutions,

2 ArrayList<VariationPoint> variationPoints,

ArrayList<ComponentInstance> componentsInBaseModel) {

3 ArrayList<ComponentInstance> componentInstances = new

ArrayList<ComponentInstance>();

4 for (VSpecResolution vspecResolution : vspecResolutions) {

5 if ((vspecResolution instanceof ChoiceResolution)) {

6 ChoiceResolution choiceResolution = (ChoiceResolution)

vspecResolution;

7 if (choiceResolution.isDecision()) {

8 Choice choice = choiceResolution.getResolvedChoice();

9 for (VariationPoint variationpoint : variationPoints) {

10 if ((variationpoint instanceof ObjectExistence)) {

11 ObjectExistence objExistence = (ObjectExistence)

variationpoint;

12 if (objExistence.getBindingChoice().getName()

13 .equals(choice.getName())) {

14 ObjectHandle objHandle = objExistence

15 .getOptionalObject();

16 String mofRefComponent = objHandle.getMOFRef();

17

18 ComponentInstance activeComponent =

returnComponentByName(

19 mofRefComponent, componentsInBaseModel);

20 componentInstances.add(activeComponent);

21 }

22 }

23 }

24 }

25 }

26 }

27 return componentInstances;

28 }

ACME uses two types of connection, Binding and Attachment. In order
to identify the connections among components, two following procedures are
implemented.

1 ArrayList<Attachment> activeAttachments(ArrayList<ComponentInstance>

activeComponents,

2 ArrayList<Attachment> attachments) {

3

4 ArrayList<Attachment> activeAttachmentsList = new

ArrayList<Attachment>();

5 for (Attachment attachment : attachments) {
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6 String component = attachment.getComp();

7 for (ComponentInstance componentInstance : activeComponents) {

8 if (componentInstance.getName().equals(component)) {

9 activeAttachmentsList.add(attachment);

10 }

11 }

12 }

13 return activeAttachmentsList;

14 }

1

2 ArrayList<Binding> activeBindings(ArrayList<ComponentInstance>

activeComponents,

3 ArrayList<Binding> bindings) {

4

5 ArrayList<Binding> activeBindingsList = new ArrayList<Binding>();

6 for (Binding binding : bindings) {

7 String srcComponent = binding.getCompSrc();

8 String dstComponent = binding.getCompDest();

9 boolean chkSrcComponentInList = false;

10 boolean chkDstComponentInList = false;

11 for (ComponentInstance componentInstance : activeComponents) {

12 if (componentInstance.getName().equals(srcComponent)) {

13 chkSrcComponentInList = true;

14 }

15 if (componentInstance.getName().equals(dstComponent)) {

16 chkDstComponentInList = true;

17 }

18 }

19 if ((chkSrcComponentInList) && (chkDstComponentInList)) {

20 activeBindingsList.add(binding);

21 }

22 }

23 return activeBindingsList;

24 }

Finally, the available components are added into the product model accord-
ing to value of the availabilityAtRuntime attribute.

1 ArrayList<ComponentInstance>

availableComponents(ArrayList<VSpecResolution> vspecResolutions,

2 ArrayList<VariationPoint> variationPoints,

ArrayList<ComponentInstance> componentsInBaseModel) {

3 ArrayList<ComponentInstance> inactiveComponentInstances = new

ArrayList<ComponentInstance>();

4 for (VSpecResolution vspecResolution : vspecResolutions) {
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5 if ((vspecResolution instanceof ChoiceResolution)) {

6 ChoiceResolution choiceResolution = (ChoiceResolution)

vspecResolution;

7

8 if ((!choiceResolution.isDecision())

9 && (choiceResolution.isAvailabilityAtRuntime())) {

10 Choice choice = choiceResolution.getResolvedChoice();

11 for (VariationPoint variationpoint : variationPoints) {

12

13 if ((variationpoint instanceof ObjectExistence)) {

14 ObjectExistence objE = (ObjectExistence)

variationpoint;

15

16 if (objE.getBindingChoice().getName()

17 .equals(choice.getName())) {

18 ObjectHandle objHandle = objE

19 .getOptionalObject();

20 String mofRefComponent = objHandle.getMOFRef();

21 ComponentInstance activeComponent =

returnComponentByName(

22 mofRefComponent, componentsInBaseModel);

23 inactiveComponentInstances.add(activeComponent);

24 }

25 }

26 }

27 }

28 }

29 }

30 return inactiveComponentInstances;

31 }

2.2 Transaction Management and Adaptation Con-

troller

2.2.1 Control Service Provided by the Component Model

In order to control components during adaptation, the control part in the
component model should provide services. Such services will be invoked by the
Reconfigurator during adaptation process. They are represented via an interface
as follows.

1 public interface ControlService {

2 public void isolate(boolean bool, ArrayList<String> componentList);
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3 public void passivate(boolean bool);

4 public void redirect(String oldAddress, String newAddress);

5 public Status getStatus(); //two status: free and busy

6 public CircularFifoQueue <Message> getState();

7 public void setState(CircularFifoQueue <Message> msg);

8 }

The implementation of this interface is realized in a Controller class of each
component. For example, the isolation service can be implemented in the Con-
troller class as follows.

1 public void isolate(boolean bool, ArrayList<String> componentList) {

2 // activation of barrier

3 for (Factory factory : factories) {

4 if (factory.getName().equals("ComponentName")) {

5 ComponentInstance im = (ComponentInstance)

factory.getInstances().get(0);

6

7 ComponentInstance ci = (ComponentInstance) im;

8 Properties props = new Properties();

9 props.put("isIsolation", bool); //isIsolation is an attribute

to control the barrier of the "CompnentName" component

10 props.put("componentsInGroup", componentList);

//componentsInGroup is an attribute to control the

filtering of the barrier

11 im.reconfigure(props);

12 }

13 }

14 }

The controller part exploits understandable (introspection) and reconfig-
urable (intercession) services in target platforms to control components.

2.2.2 Transaction Manager

This section represents an implementation of Transaction Manager com-
ponent that provides services to receive the beginning and the end of global
transactions from dependent components. The global transaction information
contains name of component and transaction identification that are defined in
a class TransactionIdentification. Moreover, the Transaction Manager should
provide services to the Reconfigurator to be known the termination of trans-
actions in the placement components group. Connections among them are im-
plemented using Remote Method Invocation - RMI. We use RMI because of
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distinguishing it from the functional connections (CXF) among components.

An interface of the Transaction Manager is represented as follows.

1 public interface TransactionManagerService {

2 public void informBeginning(TransactionIdentification transactionID)

throws RemoteException;

3 public void informEnd(TransactionIdentification transactionID)

throws RemoteException;

4 public boolean getStatus(ArrayList<String> starterComponents) throws

RemoteException;

5 }

The interface consists of three services declared, informBeginning, infor-
mEnd, and getStatus. The interface is implemented by the TransactionManager
class as follows.

1 public class TransactionManager implements TransactionManagerService {

2 /*

3 * This class is used to manage transactions processed by dependent

4 * components

5 */

6 String address;

7 int port;

8 ArrayList<TransactionIdentification> transactionList = new

ArrayList<TransactionIdentification>();

9

10 public TransactionManager() throws RemoteException {

11 this.transactionList = null;

12 Registry registry; // rmi registry for lookup the remote objects.

13 System.setProperty("java.security.policy",

"java.security.AllPermission");

14 System.setProperty("java.rmi.server.hostname", this.address);

15 try {

16 // create the registry and bind the name and object.

17 registry = LocateRegistry.createRegistry(this.port);

18 registry.rebind("TransactionManager", this);

19 } catch (RemoteException e) {

20 throw e;

21 }

22 }

23

24 @Override

25 public void informBeginning(TransactionIdentification transactionID)

throws RemoteException {

26 transactionList.add(transactionID);

27 }
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28

29 @Override

30 public void informEnd(TransactionIdentification transactionID)

throws RemoteException {

31 transactionList.remove(transactionList.indexOf(transactionID));

32 }

33

34 @Override

35 public boolean getStatus(ArrayList<String> starterComponents) throws

RemoteException

36 {

37 for (TransactionIdentification ti : transactionList) {

38 String componentName = ti.getComponentName();

39 for (String starterComponent : starterComponents) {

40 if (componentName.equals(starterComponent)) {

41 return false;

42 }

43 }

44 }

45 return true;

46 }

47 }

2.2.3 Reconfigurator

The Reconfigurator needs to provide a service that is invoked by the Planner.
The plan generated by the Planner is considered as a parameter in the service
provided by the Reconfigurator. Such service is implemented as follows.

1 package service;

2

3 public interface ReconfigurationService {

4 public void reconfigure(String planFile);

5 }

The Reconfigurator reads the plan and realizes adaptation actions. In order
to realize actions such as isolate, get status, etc, on components, the Reconfig-
urator needs to connect to the control part of the component and invoke its
services. One of actions is illustrated as follows.

1 public void isolate(String component, String address, int port,

ArrayList<String> componentList) {

2 /*

3 * connect to the isolated component



180 B. Implementation Details

4 */

5 ControlService controlService;

6 Registry registry;

7

8 try {

9 registry = LocateRegistry.getRegistry(address, port);

10 controlService = (ControlService) (registry.lookup(component

11 + "Controller"));

12 controlService.isolate(true, componentList);

13 } catch (RemoteException e) {

14 e.printStackTrace();

15 } catch (Exception e) {

16 e.printStackTrace();

17 }

18 }

The function, isolate, contains four parameters in which the first and the last
ones, component and componentList, are deduced from the reconfiguration plan,
the rest parameters are found by using the deployment model. Other actions
that invoke the services provided by the control part are similarly implemented
as well.

On the other hand, to identify the termination of transactions in the depen-
dent components, the Reconfigurator invokes the service, getStatus(components),
provided by the Transaction Manager with the parameters of the address of the
Transaction Manager and a set of starter components.

1 public boolean getStatusInDependentComponents(String address, int

port, ArrayList<String> starterComponents) {

2 TransactionManagerService transactionService;

3 Registry registry;

4 boolean result = false;

5 try {

6 registry = LocateRegistry.getRegistry(address, port);

7 transactionService = (TransactionManagerService)

(registry.lookup("TransactionManager"));

8 result = transactionService.getStatus(starterComponents);

9 } catch (RemoteException e) {

10 e.printStackTrace();

11 } catch (Exception e) {

12 e.printStackTrace();

13 }

14 return result;

15 }
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A true return indicates that this is the moment when global transactions
finish in the dependent components.

Furthermore, to implement the functions for activating and deactivating dis-
tributed components in the system, we exploit the remote management services
that are supported by deployment frameworks, e.g., Apache Felix Framework.
These services are implemented using Java Management Extensions (JMX).
Thanks to such services, the Reconfigurator can remotely manage the compo-
nents in hosts. For example, the following code is used to activate a component.

1 public void activate(String componentName, String host, String

felixFrameworkUUID) {

2 System.out.println("start the activation action");

3 MBeanServerConnection server = connecToRemoteHost(host);

4 long bundleid = installBundleOnRemoteHost(server, componentName,

felixFrameworkUUID);

5 ObjectName mbeanName;

6 try {

7 mbeanName = new ObjectName("osgi.core:type=framework,version=1.7,"

8 +"framework=org.apache.felix.framework,uuid="

9 +felixFrameworkUUID);

10 FrameworkMBean osgiFrameworkProxy = JMX.newMBeanProxy(server,

mbeanName, FrameworkMBean.class);

11 osgiFrameworkProxy.startBundle(bundleId);

12 } catch (MalformedObjectNameException | IOException e) {

13 e.printStackTrace();

14 }

15 System.out.println("finish the activation action");

16 }
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Résumé 

Les logiciels adaptatifs sont une classe de logiciels qui peuvent 

modifier leur structure et comportement à l'exécution afin de s'adapter 

à des nouveaux contextes d'exécution. Le développement de logiciels 

adaptatifs a été un domaine de recherche très actif les dix dernières 

années. Plusieurs approches utilisent des techniques issues des lignes 

des produits afin de développer de tels logiciels. Ils proposent des 

outils, des frameworks, ou des langages pour construire des 

architectures logicielles adaptatives, mais ne guident pas les 

ingénieurs dans leur utilisation. De plus, ils supposent que tous les 

éléments spécifiés à la conception sont disponibles dans l'architecture 

pour l'adaptation, même s'ils ne seront jamais utilisés. Ces éléments 

inutiles peuvent être une cause de soucis lors du déploiement sur une 

cible dont l'espace mémoire est très contraint par exemple. Par 

ailleurs, le remplacement de composants à l'exécution reste une tâche 

complexe, elle doit assurer non seulement la validité de la nouvelle 

version, mais aussi préserver la terminaison correcte des transactions 

en cours.  

Pour faire face à ces problèmes, cette thèse propose un processus de 
développement de logiciels adaptatifs où les tâches, les rôles, et les 
artefacts associés sont explicites. En particulier, le processus vise la 
spécification d'informations nécessaires pour construire des 
architectures logicielles adaptatives. Le résultat d'un tel processus est 
une architecture logicielle adaptative qui contient seulement des 
éléments utiles pour l'adaptation. De plus, un mécanisme d'adaptation 
est proposé basé sur la gestion de transactions pour assurer une 
adaptation dynamique cohérente. Elle assure la terminaison correcte 
des transactions en cours. Nous proposons pour cela la notion de 
dépendance transactionnelle : dépendance entre des actions réalisées 
par des composants différents. Nous proposons la spécification de ces 
dépendances dans le modèle de variabilité, et de l'exploiter pour 
décider des fonctions de contrôle dans les composants de 
l'architecture, des fonctions qui assurent une adaptation cohérente à 
l'exécution. 
 
 
 

Mots clefs : Modélisation de Variabilité, Architecture Logicielle, 

Adaptation Dynamique Cohérente, Dépendance Transactionnelle, 

Gestion de Transaction, Ligne de Produit 

 

 

Abstract 

Adaptive software is a class of software which is able to modify its own 

internal structure and hence its behavior at runtime in response to 

changes in its operating environment. Adaptive software development 

has been an emerging research area of software engineering in the 

last decade. Many existing approaches use techniques issued from 

software product lines (SPLs) to develop adaptive software 

architectures. They propose tools, frameworks or languages to build 

adaptive software architectures but do not guide developers on the 

process of using them. Moreover, they suppose that all elements in the 

SPL specified are available in the architecture for adaptation. 

Therefore, the adaptive software architecture may embed unnecessary 

elements (components that will never be used) thus limiting the 

possible deployment targets. On the other hand, the components 

replacement at runtime remains a complex task since it must ensure 

the validity of the new version, in addition to preserving the correct 

completion of ongoing activities. 

To cope with these issues, this thesis proposes an adaptive software 
development process where tasks, roles, and associate artifacts are 
explicit. The process aims at specifying the necessary information for 
building adaptive software architectures. The result of such process is 
an adaptive software architecture that only contains necessary 
elements for adaptation. On the other hand, an adaptation mechanism 
is proposed based on transactions management for ensuring 
consistent dynamic adaptation. Such adaptation must guarantee the 
system state and ensure the correct completion of ongoing 
transactions. In particular, transactional dependencies are specified at 
design time in the variability model. Then, based on such 
dependencies, components in the architecture include the necessary 
mechanisms to manage transactions at runtime consistently. 

Keywords: Variability Modeling, Software Architecture, Consistent 

Dynamic Adaptation, Transactional Dependency, Transaction 

Management, Software Product Line 
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