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Résumé 

La R&D sur les catalyseurs s’est longtemps focalisée sur la formulation de la phase 

active, conduisant ainsi à une influence accrue des limitations diffusionnelles internes. 

Dans cette thèse, une meilleure représentation microscopique de catalyseurs poreux a 

été développée. En représentant simultanément les propriétés texturales et 

diffusionnelles, ce modèle pourra quantifier ces limitations dans le but d’optimiser la 

conception des catalyseurs. 

En s’appuyant sur une approche de Monte Carlo, des réseaux en 2D ou 3D, constitués de 

pores cylindriques interconnectés, sont générés de façon à reproduire la porosité, la 

surface spécifique et le volume poreux des supports d’alumine-gamma. Cet outil 

performant est capable de générer des réseaux contenant jusqu’à 18000×18000 nœuds 

en 2D et 600×600×600 en 3D avec 2 milliards de pores. 

Un modèle 1D du transport de matière est utilisé à l’échelle du pore en supposant une 

diffusion fickienne. Avec cet outil, des réseaux de taille 200×200 peuvent être simulés. 

La confrontation des tortuosités simulées aux données de la littérature montre un bon 

accord. Cependant, la comparaison avec les valeurs expérimentales issues d’études par 

chromatographie inverse, montre des valeurs expérimentales plus élevées, probablement 

dû à la présence de deux niveaux de porosité. 

L’algorithme a par conséquent été modifié afin de générer des réseaux à deux niveaux de 

porosité et a ainsi permis de reproduire les propriétés texturales et de transfert de 

matière d’une alumine. Concernant les propriétés texturales, des erreurs relatives 

inférieures à 10% ont été obtenues, tandis qu’un bon accord a été trouvé pour les 

tortuosités, 2.34 pour 2.40 expérimentalement. 

 

 

 

Mots-clés : supports d’alumine-gamma, modèles de réseaux poreux aléatoires, diffusion 

en 1D dans des réseaux poreux, tortuosité. 
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Abstract 

Catalyst R&D has long focused on the formulation of the active phase, leading to an 

increased influence of internal diffusion limitations. In this Ph.D. thesis, a better discrete 

representation of porous catalysts has been developed. By simultaneously accounting for 

the correct textural and diffusional properties, such catalyst support models can be used 

to quantify internal mass transfer in order to optimize catalyst design. 

Both 2D and 3D pore networks, constituted by interconnected cylindrical pores, are 

generated by a Monte Carlo approach to reproduce the porosity, specific surface area and 

pore volume of gamma-alumina supports. This highly efficient tool is capable of 

generating 2D networks of 18000×18000 and 600×600×600 nodes in 3D, containing up 

to 2 billion pores. 

Mass transfer is simulated by a 1D Fick’s diffusion model within each pore of the network. 

200×200 networks, containing up to 80,000 pores, can be simulated. The confrontation 

of the calculated tortuosities as a function of porosity to theoretical correlations shows a 

good agreement. However, when comparing to experimental values from fixed-bed tracer 

experiments, actual aluminas exhibit higher tortuosities, probably due to the organisation 

of the pore structure in two levels. 

Hence, by modifying the model to generate networks with two-levels of porosity, we 

have been able to simultaneously reproduce both the textural and diffusion properties of 

an actual alumina. Relative errors less than 10% were obtained for the textural 

properties, while a good agreement was found for the tortuosity values, with a calculated 

value of 2.34 against the experimental value of 2.40. 

 

 

 

Keywords: gamma alumina supports, random pore network models, 1D diffusion within 

pore networks, tortuosity. 
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1 

GENERAL INTRODUCTION 
In the refining industry, hydroprocessing, catalytic reforming and isomerization processes 

all use catalysts that are dispersed on gamma-alumina supports. These supports are 

highly complex porous structures due to their scales of porosity and heterogeneity. The 

activity and selectivity of catalysts is therefore not only determined by the active phase, 

but also by the mass transfer occurring within the porous structure of the support. 

Moreover, the mass transfer resistance is in particular related to the pore structure and 

to the nature and size of the diffusing molecules that will define the diffusion regime. 

Intra-particle diffusion is an essential aspect in the research field of heterogeneous 

catalysis. In the case of catalytic conversion of complex fractions, it has been established 

that intra-particle diffusional resistance can be highly limiting for certain applications. 

Therefore, during the preparation of heterogeneous porous catalysts, slight variations in 

the textural properties of the support (porosity, pore diameter) can lead to significant 

variations in the catalytic activity. 

Hence, the adequate evaluation of the diffusion phenomena is crucial in order to correctly 

predict the influence of operating conditions during reactor design and optimisation. It is 

also important to have a good understanding of these aspects in order to optimise the 

catalyst pore structure and therefore mass transfer through the catalyst network. 

When modelling mass transfer phenomena within catalyst particles, one is confronted 

with two main steps. First, one has to describe the pore structure of the pellet in a 

realistic way, since the diffusion kinetics is highly dependent on the pore network 

geometry. Secondly, one has to model mass transfer within the catalyst particle. 

Comparing the simulation results to experimental data is also essential in order to 

validate the models and/or estimate unknown parameters (textural or diffusion 

properties). 
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Several representations of porous catalysts can be found in the literature. They can be 

classified into two main types, continuum models and discrete representations. Typically, 

a continuum description of mass transfer in porous media is based on global textural 

parameters, such as the porosity and the tortuosity (Ruthven, 1984). The main 

shortcoming of continuum descriptions is related to the representation of the catalyst 

pore structure as a pseudo-homogeneous medium, which does not allow to explicitly 

account for the contributions of neither the pore network topology (interconnectivity, 

coordination, etc.) nor the pore morphology (pore size distribution, pore shape, pore 

surface roughness, etc.). This assumption also implies the use of average or effective 

mass transfer properties. 

On the other hand, discrete models, which describe the pore structure by using a 

network of connected pores, have now been highlighted for several years, as can be seen 

in the literature review. These models are able to define the pore structure on the 

microscopic level, by means of a discrete network, taking profit of experimental 

characterisation data to reproduce the pore structure of a given sample. The prediction of 

mass transfer through the previously constructed porous medium is also possible, 

simulating mass transfer within each pore of the network. An interesting property of the 

direct simulation of mass transfer within each pore is that it only requires the use of 

molecular diffusion coefficients and hence, no fitting parameters are needed. However, at 

the present, the actual barriers for this kind of models are the memory restrictions and 

the CPU performance. Indeed, only small networks can be simulated. Rieckmann and Keil 

(1999), for instance, used a 30×30×30 network corresponding to 27 thousand nodes and 

60 thousand pores. 

However, up to now none of these discrete models have been able to correctly reproduce 

the textural properties at a representative (grain) scale and validate the predictions on 

the diffusion phenomena occurring at the level of a catalyst grain of an actual solid. 

Hence, this thesis will focus on a better representation of the influence of the topology on 

the mass transfer properties by using a discrete approach and will apply such techniques 

to gamma-alumina supports. 
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OUTLINE OF THE THESIS 

As mentioned above, gamma-alumina supports are highly complex porous structures 

therefore requiring a special care for their representation. The first part of this thesis 

(State of the Art) includes three chapters. General information on the supports is given 

in Chapter I, to provide the reader an insight into the geometrical complexity of gamma-

aluminas. An overview on the experimental characterization of the textural properties 

within porous catalysts is as well depicted (Chapter I). 

The main mass transfer phenomena occurring within a pore network are discussed in 

Chapter II, as well as, techniques for the experimental characterisation of mass transfer 

within porous catalysts. In Chapter III, several approaches found in the literature, either 

discrete or pseudo-homogeneous/continuous, to study the impact of the pore structure 

topology on the mass transfer properties are described. 

The second part of the manuscript (Description of the models - Chapter IV) contains 

the description of the model developed during this thesis project. Firstly, the algorithm 

that represents the pore structure of gamma-alumina supports by means of a discrete 

pore network is presented. This discrete representation is simply based on a random pore 

network physically constituted by interconnected cylindrical pores. The explanation of the 

network generator algorithm is followed by the description of the model accounting for 

mass transfer within pore networks. 

The third part of the manuscript (Sensitivity Analyses) includes two chapters. The 

sensitivity analyses were performed on different parameters of the generation algorithm. 

We have expressively separated the impact on the textural properties presented in 

Chapter V from the impact on the mass transfer properties that can be found in Chapter 

VI. 

The fourth part of the manuscript (Dynamic Study) is dedicated to the mass transfer 

properties in transient regime (Chapter VII). A dynamic study is presented that compares 

the transient diffusion properties in a discrete pore network to those obtained in the 

pseudo-homogeneous model. 

The last part of the manuscript (Comparison to Actual Aluminas) contains Chapter 

VIII that is dedicated to the reproduction of both textural and mass transfer properties 

using 2D periodic pore networks. The simulated data is confronted to the textural and 

mass transfer properties of 5 samples of gamma-alumina supports, which were 

previously characterized via physisorption and inverse chromatography techniques, 

during an experimental PhD thesis at IFP Energies Nouvelles (Kolitcheff, 2017). 

Finally, the thesis conclusions and perspectives are given at the end of the manuscript. 
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 – CHARACTERISATION OF THE TEXTURAL CHAPTER I
PROPERTIES OF POROUS CATALYSTS 

The present chapter will give a brief introduction on the literature review devoted to 

catalyst supports, specifically within the frame of our work devoted to gamma-alumina 

supports. The complexity of gamma alumina supports and the impact of the operating 

conditions during catalyst preparation on their textural properties are described. 

To improve the design and preparation of more efficient materials as catalyst supports, 

several textural properties have been used over the years, to characterize the 

performances of these catalyst supports. This chapter will be dedicated to these features. 

The experimental techniques and methods used for the textural properties estimation are 

also discussed. 

I.1 PREPARATION OF GAMMA-ALUMINA CATALYSTS 

We have listed below different aspects that underlie the performance and lifetime of 

catalysts and that are related to the characteristics of supports (Poncelet and Grange, 

1983): 

-  the mechanical resistance; 

-  the specific surface area; 

-  the dispersion of the metal nanoparticles/active sites; 

-  the possibility for the support to become a reactive support and participate in 

the catalytic reaction. 
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Catalyst preparation is an important step that aims to produce at industrial scale 

catalysts with high activity, selectivity and stability conditions. In general, the main 

characteristic of a gamma-alumina support is related to a large specific surface area on 

which the active material can be dispersed. Depending on its final application, other 

characteristics may come into play, such as the pore size distribution and the pore 

volume. The catalyst support creates resistances to mass transfer that are related to the 

support morphology and can remarkably decrease the catalyst performances. It is then 

important to give an overview of the techniques used for their formulation and synthesis. 

Let us consider the example of a hydrotreating process where the use of gamma-alumina 

supports prevails due to its mechanical properties, low costs and good knowledge of its 

textural properties. The gamma-alumina supports are generally used in the form of 

beads or extrudates. 

Supported catalysts are prepared in several steps. The general procedure consists in 

depositing the precursor onto the support surface and transforming the precursors into 

the required active compounds (oxide, sulphide, metal). The main preparation steps are 

listed below: 

-  support formulation and synthesis; 

-  dispersion of the active phase; 

-  drying; 

-  calcination; 

-  activation of the precursor species. 

I.1.1 SUPPORT SYNTHESIS 

In Fig. I-1, an overview on the gamma alumina support synthesis for a hydrotreating 

catalyst is presented. 

 
Fig. I-1. Support formulation of an alumina catalyst support. Adapted from Kolitcheff (2015). 
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A first mixing step is performed to obtain a suspension of metal salt solution, either via 

precipitation using an aluminium salt, or via a sol-gel route using an aluminium alcoxyde. 

The metal salt suspension is then water rinsed and dried, obtaining thereby a boehmite 

powder. A post-treatment is then performed to settle the support formulation, by means 

of forming, drying and decomposition (calcination). 

The final sizes of the platelets depend on the balance between the nucleation rate and 

the particle growth rate that is controlled by the supersaturation (ratio between the 

solute concentration and its solubility) and therefore on the concentration of the 

suspension and the operating conditions. As supersaturation increases, the formation of 

smaller platelets is favoured and when the temperature increases, larger platelets are 

formed. It is important to note that the size of the platelets determines the size of the 

voids inside the catalyst, i.e. the pore sizes. When larger platelets are formed then larger 

pores are as well formed. 

During extrusion, the boehmite powder is transformed into millimetre size particles. This 

step first consists on mixing the boehmite powder with an acid phase under mechanical 

agitation. Afterwards, an alkaline solution is added, the particles flocculate, giving the 

material a certain consistency. The paste obtained is then extruded through a die of a 

given shape (cylinder, trilobe, quadrilobe, etc.). For catalytic applications, polylobed 

geometries are generally preferred, as they increase the external surface to volume ratio 

of the extrudates, and hence reduce the characteristic length of internal and external 

mass transfer. 

 
Fig. I-2. Schematic representation of an elementary crystallite, agglomerates and aggregates. 

During the course of the support synthesis, the platelets (elementary crystallites) of 2 to 

50 nm form aggregates (hundreds of nm) and agglomerates (μm) (Fig. I-2), which 

produce a very complex porous system characterized by different spatial organizations at 

different scales. 

In order to remove the residual water remaining within the extrudates, a drying step is 

required before reinforcing the textural and mechanical properties via a calcination 

process. 
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The operating conditions of the support synthesis govern the arrangement of the 

aluminium oxides conditioning the network, the structure and the pores and/or platelets, 

agglomerates and aggregates dimensions. These different aspects can be partially 

quantified by the textural properties of the support. A further section is presented 

towards the understanding of these textural properties. 

I.1.2 DISPERSION OF THE ACTIVE PHASE 

After the preparation of the catalyst support (extrusion – drying – calcination), the active 

phase needs to be added and dispersed inside the catalyst support. This step is 

considered to have only a small influence on the structure of the support. 

There are different techniques to perform the dispersion of the active phase, such as 

impregnation, ion exchange/equilibrium adsorption, grafting, anchoring, 

deposition/precipitation, spreading and wetting, immobilization of metal particles and 

agglomerates and chemical vapour deposition. Amongst these, impregnation is the most 

common one (Köhler, 2006). 

Impregnation consists in the deposition of precursors (salts in aqueous phase) belonging 

to the active phase over the catalyst support. There are two main impregnation 

techniques: dry and diffusional impregnations. 

During dry impregnation, one controls the exact amount of deposited species in the 

solvent volume to cover the available pore volume. The migration of precursors into the 

pores of the support is promoted by capillary pressure. The diffusional impregnation 

makes use of a greater amount of solvent and requires a concentration gradient in order 

to the precursors to migrate, as the support is immersed in the impregnation solution. 

Under a chemical regime, the more dispersed the active phase, the greater the catalyst 

activity. A large surface area allows the active phase to be deposited in the most 

dispersed form possible (Balakrishnan and Gonzalez, 1993). Thus, the best way to 

improve chemical reactivity, apart from using a highly efficient active phase, is to 

increase the specific surface area. However, the pore diameter can also be extremely 

impacting on the overall activity: 

-  in the case where the size of the molecules is larger than the diameters of 

certain pores, the molecules cannot access a part of the solid. Since the 

molecules cannot reach the active phase located in this porosity, the latter 

becomes useless for the reaction. This is usually observed for bulky 

molecules, such as asphaltenes for instance; 

-  if the molecules have access to the entire porosity of the solid, the size of the 

pores could have an influence on the diffusion regime of the molecules. 
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After the dispersion of the active phase, several other steps come into play: an ageing 

stage, a drying step, followed by a thermal treatment using calcination or reduction and 

finally, the activation step. 

I.1.3 AGEING, DRYING AND THERMAL TREATMENT (CALCINATION) 

In the course of the ageing step, a slow migration of the metal precursors into the 

catalyst grains occurs, usually with the help of a water-saturated atmosphere at ambient 

temperature and pressure. At the drying stage, the evaporation of the solvents used 

during the active phase dispersion takes place. 

During the thermal treatment, the textural properties, the activity and the stability of the 

catalyst will be modified. This stage is usually performed with the introduction of an inert 

gas flow and promoted at high temperatures, leading to the following transformations: 

-  precursors decomposition, with the formation of active sites; 

-  textural modifications by sintering, increasing the aggregate dimensions and 

therefore the pore sizes, thus lowering the specific surface area and leading to 

greater internal diffusional resistances. 

At the end of these steps, the final form of the active species is obtained and in the case 

of precursors with low interaction with the support, a better dispersion is obtained. Also, 

the final structure of the catalyst is obtained. 

I.1.4 ACTIVATION 

During this step, precursors are transformed into the catalytically active phase submitted 

to a thermal treatment, with a gas flow, where the following phenomena occur: 

-  decomposition and desorption of volatile compounds; 

-  chemical bonding of the precursors to the support; 

-  chemical transformation generating new phases, by means of a thermal 

treatment under inert, oxidizing, reducing, sulphur-containing or reaction gas 

atmosphere: calcination (O2/N2), reduction (H2), sulphidation (H2/H2S). 

I.2 POROUS CATALYST SUPPORTS AND THEIR TEXTURAL PROPERTIES 

The preparation of gamma-alumina supports occurs in several successive and individual 

steps. Each step may impact the textural and mechanical properties of the material. The 

porosity of gamma-aluminas is originated by the voids in the different levels of 

organization of the pore structure. As we may recall, the morphology of a gamma-

alumina support is considered to contain three main scale structures. 
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From the same sizes of elementary crystallites, it is possible to synthetize gamma- 

alumina supports with a great variation of the textural properties. In the work of Morin 

(2014), the influence of the solvent used during the catalyst preparation was 

investigated. As we can see in Fig. I-3, the pore size distributions are very different 

depending on the solvent that is used: in the presence of an organic solvent (t-butanol) a 

second level of porosity with larger pores is created. Since the organic solvent exerts 

repulsive forces between the different scale structures, reducing their capacity to 

agglomerate and delivering more porous supports. 

 
Fig. I-3. Cumulated pore size distributions measured via Hg porosimetry and obtained for gamma-alumina 

supports prepared using two different solvents and two different shaping processes (Morin, 2014). 

This means that aluminas porosity is not only linked to the morphology and/or size of the 

elementary crystallites but there is also the possibility to obtain different pore structures 

depending on the supports preparation method. 

Weiland (2015) studied Xenon diffusion in a bimodal alumina using NMR spectroscopy. 

Different levels of confinement have been identified and can be attributed to different 

porosities characterized by different diameters, which is in agreement with Morin (2014). 

Weiland (2015) also showed that these different porous levels are hierarchically 

organized: only the larger porous domain is in direct contact with the external fluid, i.e. 

to access the small porosity, molecules have first to pass through the larger porous 

domain. 

In order to develop a model to correctly represent a gamma-alumina support, one should 

understand the main textural properties. We will therefore be dedicating to the available 
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structural information on porous catalysts, the experimental characterisation techniques 

used and the data obtained, as well as, their interpretation. 

Among the most commonly used textural properties are the specific surface area, the 

specific pore volume, the porosity and the pore size distribution (Klobes et al., 2006). 

The porosity of the support is the fraction of pore volume of a particle. This parameter is 

given by the ratio of the accessible void space volume to the total volume of the catalyst 

particle and can be related to other properties: 

where  is the pore volume per unit of mass or specific pore volume ( ) and  

is the mass per unit of catalyst volume or apparent density (expressed in ). The 

latter also depends on the pore volume, as follows: 

with  the solid phase or skeletal density expressed in . 

The average pore diameter is also an important property of the support, since it 

determines the diffusional regime. Besides the classification of pores according to their 

availability, their shape and dimension are also pore characteristics. Pore shapes have 

been systematically defined as cylindrical, funnel or slit-shaped. For pore dimensions, the 

IUPAC (International Union of Pure and Applied Chemistry) classification proposes three 

categories: 

-  micropores, with a diameter inferior to ; 

-  mesopores, having a diameter ranging from  to ; 

-  macropores, with a diameter higher than . 

Generally, gamma-alumina supports are essentially constituted by mesopores and 

macropores corresponding respectively to the voids between crystallites/clusters and by 

the voids between agglomerates. Depending on the formulation of the support, several 

structures and pore size distributions of aluminas can be obtained. However, the increase 

in the mean pore diameter is generally to the detriment of the specific surface area due 

to the growth of the elementary crystallites. 

Hence, the pore structure depends on the size, shape and the aggregation of the 

particles (crystallites, clusters and agglomerates) giving rise to the textural properties. 

The total specific surface area is defined as the accessible area of a solid surface per unit 

mass of material (for reasons of brevity the word “accessible” will be dropped in the 

 (I-1) 

 (I-2) 
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remainder of the report). The specific surface area of alumina-supported catalysts 

typically ranges from  to . 

The pore size distribution  when normalized by the solid mass is defined as 

follows: 

where  is the specific pore volume corresponding to the pores having a radius 

comprised between  and . The total specific pore volume is then given by: 

where  is the range of radii in the porous medium. 

Another important feature characterising the pore structure of a catalyst support is the 

connectivity ( ). This is simply the average coordination number in the pore network. 

With the coordination number defined as the number of pores emanating from each 

branching site. 

Table I-1 gathers the main textural properties of five aluminas used in hydrotreating 

processes, giving an idea of the order of magnitude of the textural features: average 

diameter, BET surface area, specific pore volume and support’s porosity. These aluminas 

were experimentally characterised in the work of Kolitcheff (2017) and will be interesting 

to validate the proposed model. 

Table I-1. Textural properties obtained for 5 samples of actual porous aluminas using nitrogen sorption 

(Kolitcheff, 2017). 

Alumina 
 
 

 
 

 
 ε 

A 7.1 340 0.71 0.72 

B 8.0 300 0.72 0.70 

C 9.0 290 0.78 0.72 

D 9.6 270 0.74 0.71 

E 17.6 160 0.77 0.73 

 

 (I-3) 

 (I-4) 
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I.3 EXPERIMENTAL CHARACTERISATION OF THE TEXTURAL PROPERTIES 

In the following, a description of two experimental techniques of characterization and 

some general methods used to treat the data are given: electron microscopy and 

sorption techniques. 

I.3.1 ELECTRON MICROSCOPY 

Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) are 

generally employed as qualitative techniques for experimental characterization. With 

these techniques, one can observe and detect the local properties of the physical 

structure. It should be stressed however that these local properties are not always 

representative of the global structure of the support. From the images of the TEM/SEM 

techniques, we can evaluate the homogeneity of the porous structure, the main defects, 

the size of the elementary particles, and also their shape. 

The following SEM images were taken on bimodal gamma-alumina supports exhibiting 

macro- and mesopores. During the preparation of the solids that are submitted to SEM 

experiments, it is necessary to fill the samples with resin and polish them mechanically. 

The black spots in Fig. I-4 to Fig. I-6 represent the added resin and therefore the void 

space and the grey space represents the gamma-alumina structure. 

The SEM images (Fig. I-4 and Fig. I-5) were taken on a bimodal catalyst support at a 

scale of  and . Fig. I-4 shows some visible mesopores, macropores and 

agglomerates. The SEM image in Fig. I-5 simultaneously shows macropores, 

agglomerates and clusters, while the SEM image in Fig. I-6 shows a mono-modal alumina 

support obtained at a scale of . 

It can be concluded from these SEM images that the gamma-alumina structure is highly 

disordered and complex, showing different levels of porosity. Therefore, the development 

of a representative network for the real structure of a gamma-alumina support is a quite 

difficult task and remains a simplified version of the real system. 
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Fig. I-4. SEM image at a scale of 100 nm of a bimodal alumina (Direction Physique et Analyse - Groupe de 

travail texture et Polissage Ionique 2014). 

 
Fig. I-5. TEM image from a bimodal alumina with a macro and mesoporosity at a  scale (Direction 

Physique et Analyse - Groupe de travail texture et Polissage Ionique 2014). 

 
Fig. I-6. TEM image of a monomodal alumina with a mesoporosity scale and shot at  (Direction Physique et 

Analyse - Groupe de travail texture et Polissage Ionique 2014). 
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I.3.2 SORPTION TECHNIQUES 

Numerous sorption techniques using probe molecules have been developed to 

characterize powders and porous solids (Sing et al., 1984; Rouquerol et al., 1994). These 

sorption techniques can only detect open pores because of the inaccessibility of the fluid 

to closed pores. Similarly, if the probe molecules are too large, they will not reach all the 

accessible porosity. 

We will focus on the description of the physisorption technique and the underlying 

methods used to determine the textural properties. 

I.3.2.1 SORPTION ISOTHERMS AND HYSTERESIS LOOPS 

Physical sorption occurs when a species, the adsorptive, is brought into contact with the 

surface of a solid, the adsorbent. The fluid-wall and fluid-fluid interactions govern the 

physical sorption process. The technique consists in measuring the quantity of adsorptive 

that is present within the pores at a given temperature and pressure. The measurements 

can be performed by increasing or decreasing the relative pressure , where  is the 

saturation pressure of the bulk adsorptive. At a value of , the porous sample is 

totally filled with liquid. The sorption measurements are usually performed by using 

nitrogen at its boiling temperature of 77K. 

One will choose the probe molecule according to the diameter of the pores to be studied. 

These molecules should be small enough so that they can reach all the porosity. An 

alternative to nitrogen is for instance, the argon molecule due to its greater stability 

(chemically inert). 

Although sorption techniques can only detect open pores, the total volume of closed 

pores can be derived knowing the experimental apparent density and the theoretical 

skeletal density. 

At a given temperature, the experimental isotherms are generally represented by the 

amount of adsorptive present in the pores per unit of solid mass  as a function of the 

relative equilibrium pressure  (Rouquerol et al., 2014): 

As illustrated in Fig. I-7 (Kuchta, 2010; Bobin, 2010), depending on the relative pressure 

, the sorption process is due to several consecutive steps. By increasing the relative 

pressure, one successively finds: 

 (I-5) 
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Domain A - Located adsorption: at low relative pressures, from  to , 

adsorption occurs on the solid sites of adsorption that are the most strongly attractive 

(defaults, imperfections, etc.); 

Domain B - After increasing the pressure, but still at low relative pressures, the 

filling of narrow micropores occurs according to an adsorption process; 

Domain C - At a relative pressure around  to , micropores continue to be 

filled. Simultaneously, the solid surface is covered by a number of adsorbed 

molecules that is increasingly significant. At the end of this domain , the 

whole surface of the solid is statistically covered by a dense adsorbed monolayer that 

allows to determine the specific surface area of the porous solid according to the BET 

method (see section I.3.2.2); 

Domain D - On top of the monolayer, several layers are progressively formed by 

multi-molecular adsorption. Then, the adsorption process is replaced by a liquid 

phase filling process of mesopores, the capillary condensation. The Kelvin equation 

(I-11) relates the pressure to the curvature radius of the liquid-vapour interface. 

According to a geometrical model of the pore, the curvature radius can be related to 

the pore radius that is being filled. By increasing the pressure, all pores are finally 

filled with liquid at the boundary limit of approximately . 

 
Fig. I-7. Main adsorption steps on a physical adsorption isotherm. 

For different porous materials, the shape of the isotherms differs. In 1940, five types of 

adsorption isotherms were identified, as proposed by Brunauer et al. (1940). The 

classification is referred to as the BDDT or Brunauer classification. Afterwards, Halsey 

(1948) documented a sixth adsorption isotherm. Later on, in the 80’s, Sing et al. (1984) 
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joined by Rouquerol et al. (1999), reformulated the adsorption isotherms classification as 

represented in Fig. I-8 by adding the hysteresis loop that appears in the isotherms of 

type IV and V. 

 

Fig. I-8. Classification of adsorption isotherms defined by IUPAC (Sing et al., 1984; Rouquerol et al., 1999; 

Rouquerol et al., 2014). 

These six types of adsorption isotherms are generally accepted by the scientific 

community and documented by the International Union of Pure and Applied Chemistry 

(IUPAC) and published in Sing et al. (1984): 

Type I: Microporous materials (e.g. zeolites and activated carbon); 

Type II: Non-porous and macroporous materials (e.g. non-porous alumina and 

silica); 

Type III: Non-porous and macroporous materials with weak interactions between 

adsorbate and adsorbent (e.g. graphite/water); 

Type IV: Mesoporous materials (e.g. mesoporous alumina and silica); 

Type V: Porous materials having weak interactions with the adsorbate (e.g. activated 

carbon/water); 

Type VI: Homogeneous surface materials (e.g. graphite/Kr and NaCl/Kr). 

Nitrogen sorption is only suitable to characterize micro and mesopores. Furthermore, the 

specific surface area has to be greater than . In the case of gamma-alumina 

supports, Type IV isotherms, which correspond to mesoporous materials, are usually 

observed. 
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When the adsorption and desorption curves follow a different path, the sorption isotherm 

is said to have a hysteresis loop. These hysteresis loops are linked to the capillary 

condensation that occurs in the mesopores and can be described by the Kelvin equation 

(I-11). Based on the hypothesis of the capillary condensation mechanism, Barrett, Joyner 

and Halenda (1951) were able to determine pore size distributions, leading to the so-

called BJH method. 

In the following sections, we present a brief description of the methods used to exploit 

physisorption data in order to estimate the specific surface area, the pore size 

distribution and the connectivity. 

I.3.2.2 DETERMINATION OF THE SPECIFIC SURFACE AREA - BET METHOD 

The theory proposed by Brunauer, Emmett and Teller (1938), known as the BET method, 

is based on the principle of multimolecular adsorption that is applied to the domains A to 

C (see Fig. I-7). The first layer formation mainly depends on the fluid-wall interaction 

while the formation of the following layers mainly depends on the fluid-fluid interactions. 

In a first step, the physisorption data has to be translated into a BET plot that is assumed 

to be linear according to the BET model (Rouquerol et al., 2014): 

where  corresponds to the amount of gas adsorbed per unit of solid mass  

and  to the monolayer capacity per unit of solid mass ,  is an empirical 

constant indicating the order of magnitude of the adsorbent-adsorbate interactions. From 

the slope  and the intercept on the y axis  of this plot, one 

obtains the monolayer capacity  and constant : 

In the absence of other factors, for instance, the presence of microporosity or highly 

active sites, the BET plot applied to a Type II or Type IV isotherm is capable of providing 

a fairly reliable assessment of the monolayer capacity, as long as the curvature of the 

first plateau of the isotherm is distinguishable. 

The second step consists in calculating the specific surface area that is obtained using the 

BET monolayer capacity, : 

 (I-6) 

 (I-7) 

 (I-8) 

 (I-9) 
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with  the specific surface area obtained from the BET method,  the 

Avogadro number and  the molecular cross-sectional area (average area occupied 

by each molecule in a monolayer). This parameter may be already known or estimated 

by other methods or even calculated from the density of the adsorptive in a bulk liquid 

state (Rouquerol et al., 2014). Thus, 

where  is a packing factor,  the density of the adsorptive liquid at the operating 

temperature and  the molar mass of the adsorptive. Nitrogen adsorption occurs at 77K 

and the value of  is usually taken for  (Emmett and Brunauer, 1938). 

I.3.2.3 DETERMINATION OF PORE SIZE DISTRIBUTION – BJH METHOD 

In the case of mesoporous materials, such as silica alumina supports, the pore size 

distribution can be obtained by using the desorption branch of the isotherm for relative 

pressures comprised between  and , according to the BJH method (Barrett et al., 

1951). It is admitted that each step of the desorption process at a given relative pressure 

 is due to two phenomena: 

-  liquid emptying of a category of pores having a radius lower than a radius  

obeying to the Kelvin equation (I-11) that are condensed by capillarity and 

leaving behind an adsorbed film in the pore walls according to equation 

(I-12); 

-  desorption contribution from a category of pores already emptied and having 

a radius greater than , where the thickness  of the adsorbed multilayer 

decreases. 

Applying the Kelvin equation to the desorption branch and taking the hypothesis of 

cylindrical and open pores, Barret and his co-workers were able to obtain a quantitative 

analysis of porosity (Barrett et al., 1951). The Kelvin equation relates the pore 

dimensions to the vapour phase pressure that corresponds to the liquid-vapour 

equilibrium within the pore. For a cylindrical pore shape, the modified Kelvin equation is: 

 is a shape factor, that takes the value of 1 for adsorption and 2 for desorption; 

 is the surface tension of the liquid-vapour interface and is equal to  
for nitrogen at  (Bobin, 2010); 

 is the molar volume of the adsorbate in the liquid state (for nitrogen 
); 

 (I-10) 

 (I-11) 
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 is the contact angle between the liquid and the solid surface, which takes a maximum 
value of  during pore condensation; 

 is the Kelvin radius which is related to the pore radius  by , where  is the 
thickness of the adsorbed multilayer film (cf. Fig. I-9). 

During desorption in a set of cylindrical mesopores with exactly the same radii , it 

seems reasonable to assume that the condensate has a meniscus of hemispherical form 

and radius . However, as some adsorption has already occurred, the thickness of the 

adsorbed multilayer needs to be accounted for, so that,  is smaller than . If the 

thickness of the adsorbed multilayer is given by , the radius of the cylindrical pore is: 

 
Fig. I-9. Schematic representation of the relation between the Kelvin radius, rk and the pore radius rp in a 

cylindrical mesopore (Rouquerol et al., 2014). 

The BJH method is therefore based on an adapted Kelvin equation in order to take into 

account a layer of adsorbed molecules, with thickness . These adsorbed molecules are 

present on the pore’s surface before capillary condensation takes place, but they are also 

present after the evaporation (Bobin, 2010). Given that for most liquid-solid systems the 

contact angle is low, it is generally assumed that . We may therefore define the 

adapted Kelvin equation by: 

In addition, there are also several correlations that were established experimentally for 

the layer thickness . The most used correlations in the determination of the pore size 

are from Halsey presented in equation (I-14) and Harkins-Jura-de Boer (equation (I-15)) 

(Hammond and Conner, 2013). 

 (I-12) 

 (I-13) 

 (I-14) 

 (I-15) 
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The two expressions for the layer thickness are compared in the following figure (Fig. 

I-10): 

 
Fig. I-10. Adsorbed layer thickness as a function of relative pressure from Halsey and Harkins-Jura-de Boer 

works. 

Knowing the adsorbed volume, the thickness  and the pore radius, as well as, assuming 

a cylindrical pore shape with , one can determine the volume and 

surface of the different categories of pores. 

On Fig. I-11 is represented the specific pore volume corresponding to  

for three catalyst supports. 

 
Fig. I-11. Specific pore volume of different catalyst supports used in hydrotreating. Adapted from Leprince 

(1998). 

The quantity that is measured and represented on Fig. I-11 is in fact 

 so that, the PSD is obtained by taking the derivative of this 
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quantity. An example of a pore size distribution (PSD), obtained for a  support, 

used in hydrotreating applications, is presented on Fig. I-12. 

 
Fig. I-12. PSD obtained by the BJH method for a gamma-alumina support (Bobin, 2010). 

From the PSD obtained by the BJH method, the total pore surface area per unit of solid 

mass sBJH can be calculated and compared to the sBET in order to get information on the 

shape and morphology of the pores present in the porous material: 

-  if : pores have a shape similar to that assumed in the BJH method, 

i.e. tubular pores opened at both extremities; 

-  if : pores may be of a cylindrical shape but closed on at least one of 

the extremities, or presenting constraining regions or of ink-bottle shaped. 

This situation is the most frequent; 

-  if : pores contain several spherical cavities. If the discrepancy is 

high, it may indicate the possibility of having a microporosity region. 

Other approaches also exist, such as the Corrugated Pore Structure Model 

(Androutsopoulos and Salmas, 2000) which is dedicated to the PSD characterisation, 

using nitrogen hysteresis data and accounting for the evolution of the shape of the 

interface. This method was extended to estimate non-biased mass transfer tortuosity 

factor -  in Salmas et al. (2003). 

I.3.2.4 SEATON METHOD FOR THE PSD AND CONNECTIVITY DETERMINATION 

Different numerical approaches propose enhanced characterization models accounting for 

the connectivity factor, a factor that is left aside by conventional models. These models 

go beyond simple parallel and regular cylindrical pores. 
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The Seaton method (Seaton, 1991), used to determine the connectivity, is described 

here. This method is based on the use of both the desorption and the adsorption 

branches of the sorption isotherm for relative pressures comprised between 0.4 and 1.0. 

The adsorption branch is used to determine the PSD by the method developed by Seaton 

and his co-workers (Seaton et al., 1989) or conventional methods like the BJH method. 

On the other hand, a percolation model is applied to analyse the desorption branch. The 

simultaneous use of the two branches allows to determine the mean connectivity of the 

porous material as well as a characteristic dimensionless length of the micro/meso 

porous domains. As mentioned before, the connectivity is defined as the average 

coordination number i.e. on the total number of pores meeting at a junction. 

The hysteresis phenomenon can be due to three mechanisms. It is either associated to 

thermodynamic effects, in the presence of a metastable liquid and at a pressure below 

the condensation pressure, or considered to be due to the curvature difference of the 

liquid-vapour interface between the condensation and the vaporisation and leading to 

factor 2 from the Kelvin equation (I-11). The third mechanism, the one studied by 

Seaton, is related to the interconnectivity of the network as illustrated in Fig. I-13. 

 
Fig. I-13. Illustration of the percolation theory. Taken from Seaton (1991). 

Three pores A, B and C are supposed to be filled with liquid at the end of the adsorption 

branch. For the liquid to vaporize it must be in contact with the vapour phase (meniscus 

formation). If the three pores were in contact with the external surface, the order in 

which liquid nitrogen should vaporize is C, B, A when the pressure decreases according to 

the Kelvin equation. If only pore B is in contact with the external surface, the 

interconnectivity factor comes into play, and the sequence of vaporization will be: B at 

the vaporization pressure of pore B and C at the vaporization pressure of pore B, and 

finally, A at the vaporization pressure of pore A. The delay of pore C emptying will give 

rise to the hysteresis phenomenon. 

As illustrated above, for emptying or vaporization to occur, a percolation threshold has to 

be reached within the pore network. This percolation threshold is characterized by the 

existence of a percolation cluster that is necessarily full of vapour. From that point of 
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view, each pore of the network can be occupied or non-occupied according to the 

following rules: 

-  a pore containing liquid nitrogen at an applied pressure greater than its 

condensation pressure corresponds to a non-occupied bond: it cannot 

participate in the percolation process; 

-  a pore containing metastable liquid or vapour phase nitrogen at an 

applied pressure inferior to its condensation pressure is an occupied bond; 

-  a pore containing a vapour phase is associated to an occupied bond belonging 

to the percolation cluster. 

In the experimental isotherm taken from Seaton (1991) and given in Fig. I-14, different 

steps of desorption can be identified. At the relative pressure  of approximately , all 

pores are filled with liquid nitrogen. From A to B (Fig. I-14), only the pores located 

nearby the external surface can start evaporating followed by their immediate 

neighbours. At point B, a sufficient number of pores contain vaporized nitrogen in order 

to form the first percolation cluster, which crosses the entire catalyst particle. From point 

B to point C, desorption will occur, as shown in Fig. I-14. From point C onwards, all pores 

have access to the vapour phase via the percolation cluster, and the adsorption and 

desorption isotherms coincide. 

 
Fig. I-14. Adsorption and desorption isotherms for a silica alumina catalyst support (Seaton, 1991). 

It should be stressed that Seaton’s method is only consistent with Type H1 and Type H2 

hysteresis. The percolation process is described by the following variables: 

-   is the occupation probability that is calculated by the ratio between the 

number of pores which are submitted to a pressure below their condensation 
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pressure (that contain a metastable liquid or vapour phase) and the total 

number of pores; 

-   is the percolation probability or accessibility that is calculated by the ratio 

between the number of pores from which nitrogen has vaporised and the total 

number of pores. Put otherwise,  is the probability for a pore to belong to 

the percolation cluster; 

-   is the connectivity or mean coordination number, i.e. the mean number 

of bonds to which a node is connected; 

-   is the average linear dimension of the micro/mesoporous structure. 

Fig. I-15 represents the evolution of two main parameters derived from the percolation 

theory. A parallel can be made with the desorption branch presented in Fig. I-14. 

From point A to point B (Fig. I-14 and Fig. I-15),  increases as the pressure is reduced 

but  remains equal to : percolation does not occur. At point B from Fig. I-14, a 

percolation cluster is formed by a pathway of metastable pores connected to the external 

surface of the catalyst, so that  and . Between points B and C,  continues 

to increase as well as  since, the number of occupied bonds continues to increase by 

decreasing the applied pressure. A decompression of the liquid in the mesopores occurs, 

emerging the vapour phase in a few pores at the catalyst surface and pores with 

metastable liquid. When point C is reached,  and : the percolation process is 

totally achieved. 

 
Fig. I-15. Variation of  (percolation probability) as a function of  (occupation probability) during desorption 

(Seaton, 1991). 

In the literature devoted to the percolation theory, many models have been proposed to 

relate , the number of accessible connections, i.e. the number of connections that 
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belong to the percolation cluster and , the number of occupied connections, i.e. the 

number of pores filled with metastable liquid or vapour phase. Jarzbeski and Lorenc 

(1995), Uzio (1997) and Uzio and Euzen (2000) proposed the following relation on the 

basis of the work of Kirkpatrick (1973). Kirkpatrick’s equation to determine  as a 

function of  is: 

with the function  using Kirkpatrick’s equation for  dependence on  

where ,  and  are polynomial functions that depend on . The coefficients 

of these polynomial functions are then adjusted to match the experimental data. Stauffer 

and Aharony (1985) proposed another relation for  as a function of near the 

percolation threshold, and for sufficiently large systems, which is given by: 

with the critical exponents,  and , taking the values of  and , respectively. 

However, in order to define the  function, this relation uses the universal relation 

between  and the value of  at the percolation threshold , that is . 

The proposed characterization method is as follows (see also Liu et al. (1992), and Liu 

and Seaton (1994)): 

1)  Firstly, one determines the pore number distribution  by using the 

adsorption branch. From this distribution, one can calculate the occupation 

probability  for each pressure  according to the pore size distribution: 

where , is the pore size at pressure  at which nitrogen vaporizes and given 

by the Kelvin equation. 

2)  Secondly, for each pressure , the ratio  is determined from the experimental 

isotherm according to the following expression (see Fig. I-16). 

One should note that  is the number of moles that would vaporize if all pores 

at a pressure below their condensation pressure had access to the vapour phase. 

And so, it is also the number of moles required to fill pores, in which nitrogen 

 (I-16) 

 (I-17) 

 (I-18) 

 (I-19) 

 (I-20) 
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has not yet condensed at a given pressure, during the adsorption experiment. 

Regarding  it is the number of moles that were able to desorb to the 

detriment of the network connectivity (Liu et al., 1992). 

 
Fig. I-16. Illustration of  determination. 

3)  The third step consists in obtaining the average coordination number  and 

the characteristic dimension  by fitting a model expressing  as a function 

of  to the experimental data . From this set of equations,  

and  are recursively obtained (see equations (I-16) and (I-18)). 

For the isotherm curve presented in Fig. I-14/Fig. I-16, the fitting using equation (I-16) 

takes only into account the domain of application near the percolation threshold. This 

means that only experimental points where  is significantly different from  and from  

are accounted for. For the isotherm presented in Fig. I-14/Fig. I-16, only the 3 data 

points between point B and C are in the valid range,  and . 

I.4 CONCLUSIONS 

From the SEM images, we are able to detect the major disorders present in the physical 

structure of alumina supports. This leads us to conclude that there is no easy way of 

replacing a complex porous structure by a simple geometrical representation that 

actually corresponds to the physical structure of alumina. It is also clear from the images 

presented that we are not in the presence of cylindrical pores, as it is generally assumed. 

For the physisorption techniques, we concluded that they can be used to determine the 

structural parameters (PSD, surface area, porosity) of the porous solid. It should be 

stressed that the textural properties obtained always describe the catalyst from a 

pseudo-homogeneous viewpoint. Focusing on the Seaton model, that makes use of 

physisorption data, we may conclude that this model can be an important tool to extract 
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additional structural parameters for gamma-alumina samples, specifically the average 

connectivity of the porous catalyst. 
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 – MASS TRANSFER WITHIN POROUS CATALYSTS CHAPTER II

This chapter is dedicated to the description of mass transfer phenomena that occur inside 

the pore structure of a catalyst particle. We first discuss the general phenomena 

occurring in the catalyst particle followed by a brief description of the most significant 

ones for this project. We also introduce the key models found in the literature to 

represent diffusion phenomena occurring inside porous structures, i.e. the well-known 

and largely used Fick’s model and the Maxwell-Stefan model. 

After identifying the main mass transfer properties used to characterise mass transfer 

through porous catalysts, we present some experimental techniques used for mass 

transfer properties estimation and determination. 

II.1 DESCRIPTION OF THE MASS TRANSFER PHENOMENA 

This section contains a short description of the mass transfer phenomena involved in a 

catalytic reactor at the particle scale. Enclosed mass transfer phenomena at the particle 

scale may be categorized into three main mechanisms: 

-  mass transfer resistance in the vicinity of the extrudates/particles external 

walls; 

-  diffusion in macro and mesopores; 

-  adsorption and surface diffusion. 

A general schematic representation of these three mechanisms is illustrated in Fig. II-1: 
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Fig. II-1. Illustration of the three mass transfer mechanisms present in a bimodal catalyst support. Adapted 

from Gaulier (2014). 

II.1.1 EXTERNAL MASS TRANSFER 

Before entering into the grain, molecules must be transferred from the bulk fluid to the 

surface of the catalyst particle. The corresponding mass transfer resistance is 

represented by the film model that is based on the assumption that the external mass 

transfer resistance is concentrated in the vicinity of the outer surface of the catalyst 

particles. This resistance is related to the hydrodynamic conditions prevailing in the 

catalytic reactor, as well as, to diffusion within the fluid. The  component flux is 

expressed as follows: 

with , the external mass transfer coefficient of component  ,  and 

 respectively the fluid concentration of the  species at the grain outer surface and in 

the bulk phase. 

II.1.2 DIFFUSION IN MACRO/MESOPORES - DIFFUSION REGIMES 

The mass transfer phenomena occurring inside the porous catalyst particles depend on 

the physical and geometrical characteristics of the system. There are three different 

diffusion regimes: molecular diffusion, Knudsen diffusion and surface diffusion that may 

be combined with a viscous flow. The mass transfer by diffusion in porous media is a 

consequence of the molecule-molecules collisions and/or the molecule-wall collisions. 

Both bulk/molecular and Knudsen diffusion regimes occur according to a serial 

arrangement of resistances (see Fig. II-2). In the case of a liquid phase, the resistance 

due to the wall is generally negligible (molecular diffusion) while it can be significant in 

the case of a gas phase. Indeed, this resistance can become the limiting step when the 

mean free path of the molecules (i.e. the average distance between molecular collisions) 

is large compared to the pore diameter – and is called Knudsen diffusion (Krishna and 

Wesseling, 1997). 

 (II-1) 
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Surface diffusion occurs in parallel with the molecular and Knudsen processes and its 

contribution to the total species flow may be quite significant within micropores, in the 

presence of strong adsorption. In those cases, the limiting diffusion is therefore the 

surface diffusion (Krishna and Wesseling, 1997). If a pressure gradient exists within the 

porous medium, a global convective flow can also exist, generally in the laminar regime, 

that acts in parallel with molecular and Knudsen diffusion mechanisms. 

 
Fig. II-2. Representation of different mass transfer mechanisms in porous media and the equivalent electric 

resistivity scheme. Adapted from Krishna and Wesseling (1997). 

In the framework of our project, the mass transfer data that we dispose, was obtained 

using representative molecules of different sizes (n-heptane and squalene) diffusing 

under molecular diffusion in a liquid phase over a gamma-alumina catalyst support 

(Kolitcheff et al., 2017). Hence, the next subsection will be only dedicated to a brief 

description regarding the molecular diffusion regime, even though for very large 

molecules surface diffusion cannot be ruled out. 

In conclusion, as our system is considered to be in the molecular diffusion regime, the 

mean free path of the molecules is small compared to the pore diameter and so, inter-

molecular collisions are much more frequent than molecule-wall collisions. Therefore, one 

can consider that diffusion is only due to the Brownian motion of the molecules and to 

the geometrical properties of the porous media. 

II.1.3 MODELLING THE MOLECULAR DIFFUSION PROCESS 

In the following sections, two models are presented to describe isobaric diffusion 

transport, Fick’s model and Maxwell-Stefan’s model. At the end, a brief comparison of the 

two models is given, specifying their ranges of application and their flaws. 

II.1.3.1 THE FICK MODEL 

This model is often used due to its simplicity and is defined as follows: 
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, diffusive flux of the  species ; 

, total concentration ; 

, molecular diffusion coefficient of species  in the mixture ; 

, molar fraction gradient of species . 

In this model, it is assumed that the mass transfer driving force is the composition 

gradient, Dim representing the friction between species  and the remaining components 

of the fluid considered as a whole. It should be stressed that this model has been derived 

and should in principle only be applied to binary mixtures or at high levels of dilution of 

component . 

Within the framework of the Fick model, one can find some theoretical or empirical 

equations for the calculation of the Fick binary diffusion coefficients. In the case of large 

spherical molecules, highly diluted in a low molecular weight liquid solvent, the molecular 

diffusion coefficient can be estimated by the Stokes-Einstein equation (Krishna and 

Wesseling, 1997): 

with, 

, Fick binary diffusion coefficient in a diluted solution ; 

, Boltzmann constant ; 

, temperature of the system ; 

, solvent viscosity ; 

, hydrodynamic radius of the solute molecule . 

Wilke and Chang developed an empirical correlation for diluted binary solvent/solute 

liquid mixtures accounting for the steric hindrance of solutes and solvents, as well as an 

association parameter for the solvent (Chang and Wilke, 1955). 

where, 

, dimensionless association coefficient of solvent B; 

, molar mass of solvent B ; 

, molar volume of solute A at its normal boiling point . 

 (II-2) 

 (II-3) 

 (II-4) 
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II.1.3.2 THE MAXWELL-STEFAN MODEL 

Let us first consider a binary mixture at a fixed pressure. If the motion of components 1 

and 2 is considered at steady state, the momentum balance equation of component 1 for 

example, can be written as follows (Krishna and Wesseling, 1997): 

with  the chemical potential of species 1 of which the gradient accounts for a distance 

from equilibrium. The right-hand side of equation (II-5), where  and  are the 

diffusion velocities of the components, represents the friction force exerted on species 1 

by species 2 characterised by the binary diffusion coefficient . This friction force is 

proportional to , the molar fraction of component 2 and to the relative velocity . 

Multiplying by  and using the diffusion flux definition,  we obtain the 

momentum balance for species 1 expressed according to the diffusive fluxes: 

Since by definition , then equation (II-6) allows to calculate . Equations (II-5) 

and (II-6) can be easily extended to any multicomponent mixture as follows: 

And, according to the diffusion fluxes and for a multicomponent ideal mixture: 

Among equations (II-8), only  equations are independent. As a matter of fact, 

due to the Gibbs-Duhem equation and the fact that , the following equation holds: 

For an isothermal, isobaric diffusion process in an ideal multicomponent solution and 

taking a multicomponent mixture, we have: 

 (II-5) 

 (II-6) 

 (II-7) 

 (II-8) 

 (II-9) 

 (II-10) 

 

 
(II-11) 
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where  and  are the molar fraction gradient vector and diffusion fluxes vector 

respectively, and the  matrix  elements are: 

In the case of a non-ideal solution, a thermodynamic model of the mixture has to be 

used in order to express the chemical potential of each component. 

II.1.3.3 MAIN FEATURES OF FICK’S MODEL 

The substantial difference found comparing the Maxwell-Stefan model with Fick’s model 

resides in the driving force that is used. The Maxwell-Stefan approach is based on a more 

realistic driving force, the chemical potential gradient and bases the mass transfer 

properties on irreversible thermodynamic considerations, whereas Fick’s model uses a 

concentration gradient as driving force. Since thermodynamic equilibrium is driven by 

chemical potential, Fick’s model is therefore less realistic. 

Moreover, the Maxwell-Stefan diffusivities are clearly binary diffusion coefficients and are 

less dependent on concentration. The Maxwell-Stefan formulation also takes naturally 

into account the coupling effects between components. As far as the binary diffusion 

coefficients are concerned, it should always be remembered that the applicability of Fick’s 

law is limited to binary mixtures or for a highly diluted component in a mixture. The 

extension of the Fick’s model to multicomponent mixtures, that can take into account 

coupling between the fluxes and forces, is based on diffusion coefficients that are 

complex functions of the binary diffusion coefficients and of the solute composition (Bird 

et al., 2007). 

Despite all the constraints and warnings concerning Fick’s model, it continues to be 

extensively used due to its simplicity. 

On the opposite side, the Maxwell-Stefan model is thermodynamically consistent, since 

its driving force is the chemical potential. The Maxwell-Stefan diffusivities are clearly 

binary diffusion coefficients and are less dependent on concentration. The Maxwell-Stefan 

formulation also takes naturally into account the coupling effects between the various 

concentration gradients and fluxes. The main drawback resides in the resolution of the 

equations. 

 

 

 

(II-12) 
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Since within the framework of this study, the main point is the geometrical 

representation of porous media, we will restrict ourselves to Fick’s model. 

II.2 EXPERIMENTAL CHARACTERISATION OF MASS TRANSFER PROPERTIES IN POROUS 

MEDIA 

The characterisation of physical structures and the morphology of pores plays an 

important role in the determination of mass transfer properties since they lead to the 

definition of the effective diffusion coefficient in porous media. As mentioned before, 

several experimental techniques used in the determination of this mass transfer property 

can be found in the literature. Among them we can cite, the Pulsed Field Gradient 

Nuclear Magnetic Resonance (PFG-NMR) (Kortunov et al., 2005) which is a microscopic 

technique. We can also cite macroscopic techniques that lead to an indirect estimation of 

the tortuosity (Shen and Chen, 2007): either measuring the diffusion coefficient of a 

chosen nonreactive species both, in free solution and in a porous material of known 

porosity, the Inverse Chromatography technique (Ruthven, 1984) - a time-consuming 

process, or relating the tortuosity to a measured quantity that is obtained from electrical 

resistivity measurements (Barrande et al., 2007). 

The results obtained from the so-called macroscopic and microscopic methods can be 

very different. Microscopic methods are based on the measurement of physical 

phenomena occurring at the molecular level. Macroscopic methods are, however, 

measuring an overall property. 

Moreover, measurements by self-diffusion (PFG-NMR) and diffusive transport (Inverse 

Chromatography) lead to a difference in the expression of the relationship between the 

molecular diffusion and the effective diffusion, and hence on the tortuosity. When 

measuring the flux as in the case of the inverse chromatography, the correction by the 

accessible porosity is required. On the other hand, during a mean square displacement 

measurement, as it is the case of PFM-NMR, this correction is not necessary since the 

molecules are already in the accessible porosity. 

II.2.1 EXPERIMENTAL MICROSCOPIC METHODS FOR DIFFUSION PROPERTIES 

The microscopic methods that can be found in the literature are for instance, the PFG-

NMR and the quasi-elastic neutron scattering (QENS). The QENS technique can measure 

both transport and self-diffusivities at individual pore space level, but requires a careful 

sample preparation exempted of water and a single component measurement. 

Concerning the use of the PFG-NMR technique, we can list several advantages (Mantle, 

2010): 

-  simple sample technique; 
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-  isothermal system; 

-  multicomponent systems are possible; 

-  spatial resolution is also possible. 

It was shown that the PFG-NMR technique is able to estimate mass transfer properties 

that are comparable to those from the chromatography technique. However, the main 

disadvantage is the fact that with the NMR technique it is difficult to reach high 

temperatures and pressures. Also, commercial catalysts, containing paramagnetic 

metals, generally cannot be studied by PFG-NMR. Finally, the measured mass transfer 

properties are pure molecular self-diffusivities instead of transport diffusivities, since the 

measurements are performed at equilibrium conditions (under a system with no chemical 

potential gradient). 

II.2.2 EXPERIMENTAL MACROSCOPIC METHODS FOR DIFFUSION PROPERTIES: INVERSE 

CHROMATOGRAPHY 

Since we dispose a set of results obtained by the inverse chromatography technique, the 

following section will only be devoted to the description of this technique. The available 

results were obtained during a PhD thesis at IFP Energies Nouvelles (Kolitcheff, 2017) 

and focused on gamma-alumina supports used in hydrotreating processes. 

One of the main advantages of the inverse chromatography technique is the wide 

temperature and pressure operating ranges that can be chosen close to reaction 

conditions. It can also be used with commercial catalysts and is a rather simple 

technique, when compared for instance to the NMR technique. 

Inverse Chromatography is generally used to study the diffusion and adsorption process 

in porous media. The basis of this technique relies on the concentration outlet time 

response of a column filled with a porous material (fixed-bed) and initially at equilibrium, 

to a concentration perturbation of one component diluted in a carrier fluid applied at the 

inlet stream. 

The propagation and deformation of a given perturbation along the column depends on 

the fluid velocity, as well as, on the equilibrium and transport properties of the porous 

material with respect to the component that is used. In the case of an inlet concentration 

step (see Fig. II-3), the outlet concentration time variation is called breakthrough curve. 

In this case, when the concentration perturbation completely leaves the column, the inlet 

and outlet concentrations become equal. The experiments are generally performed within 

the linear domain. 
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Fig. II-3. Schematic representation of a breakthrough curve – evolution in time and space of the radial average 

concentrations in the packed bed. Adapted from Kolitcheff (2017). 

 

In order to extract the mass transfer and equilibrium parameters from breakthrough 

curves, one uses a linear dynamic model of the column (Ruthven, 1984). The moments 

technique can be used to obtain these parameters (Haq and Ruthven, 1986). With this 

technique, the transport and equilibrium parameters are obtained by matching the 

experimental moments to those obtained from the model. The models that are commonly 

used for the inverse chromatography technique are 1D models with respect to the axial 

coordinate of the column. Fig. II-3 represents the average radial concentration profiles as 

a function of time and axial position for a given column. As far as the porous medium is 

concerned, mono- or bi-disperse models are used depending on its structure (Ruthven, 

1984). 

During his PhD thesis, Kolitcheff (2017) used the moments method based on a mono 

disperse model: the expression of the first and second theoretical moments of this model 

have been derived previously (Haynes and Sarma, 1973). Then, in order to obtain the 

mass transfer properties, the plate theory of chromatography is employed relating the 

HETP to the first and second theoretical moments. It should be stressed, however, that 

the expressions of the theoretical moments are only known for some linear models 

(Ruthven, 1984). Hence, the experiments have to be performed within a linear response 

domain. If adsorption occurs, for example, the isotherm has to be linear with respect to 

the component fluid phase concentration. 

II.3 CONCLUSIONS 

Concerning the intra-particle mass transport, it should be stressed that, within the 

framework of our project, the diffusion process through macropores and mesopores is 

considered to occur according to the molecular diffusion regime. For the available 

experimental data, Kolitcheff showed during his PhD thesis that the experiments were 

indeed carried out under the molecular diffusion regime. 
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Assuming that the total concentration is uniform and that the diffusing species is highly 

diluted, Fick’s model is going to be mainly used for the sake of simplicity. 

Comparing Inverse Chromatography to NMR techniques has shown us that similar mass 

transfer properties can be obtained by both techniques. Yet, inverse chromatography is a 

more time-consuming technique. Even so, it has a wide application given its range of 

possible operating conditions, in contrast to NMR techniques that cannot be used under 

high pressures and temperatures. On the other hand, it must also be stressed that the 

main disadvantage of the Inverse Chromatography technique concerns the fact that its 

application to multicomponent systems is difficult. 
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 - IMPACT OF PORE STRUCTURE ON MASS CHAPTER III

TRANSFER PROPERTIES 

The influence of the pore structure on mass transfer can be accounted for in two different 

ways: in a pseudo-homogeneous approach or discretely. 

A pseudo-homogeneous description of mass transfer in porous media is based on a 

representation of the porous medium by a continuous pseudo-homogeneous system and 

requires the definition of global and average textural parameters, such as porosity and 

tortuosity. On the other hand, a discrete description can be based on the generation of a 

pore network or simply by accounting for the pore size distribution, as we will see further 

on (for instance on section III.2.1.2). But most importantly, the mass transfer modelling 

within the porous structure is based on the mass transfer description occurring within 

each pore of the network. Instead of using an effective diffusion coefficient as for 

pseudo-homogeneous representations, the discrete representation uses a molecular 

diffusion coefficient, thereby avoiding the use of the tortuosity factor as an adjustable 

parameter. 

III.1 CONTINUUM APPROACHES 

As we cite from Coppens and Bhatt (2017): “the most utilised representation for 

modelling phenomena in porous media are continuum models that do not explicitly 

consider the pores or the solid, but they average their impact on properties by way of 

effective values. For example, transport by diffusion and flow, with or without reaction, is 

modelled using partial differential equations (PDEs) over a continuum, bounded by the 

external surface of the medium, in which the transport and reaction parameters are 
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assumed to take effective values. These values account explicitly for porosity, but 

condense topological (connectivity) and morphological effects into a single parameter (for 

transport: tortuosity), which is assumed constant or could change over the spatial 

domain and over time (in case of dynamic processes, like catalyst deactivation). For 

anisotropic media, the effective properties could vary in different directions as well”. 

The conventional approach to account for the pore network on mass transfer properties 

considers a correction of the molecular diffusion coefficients. The Random Spheres Model 

(Toulhoat et al., 2005; Rao and Coppens, 2012) used to describe mass transfer in 

hydrodemetallisation catalysts is one of the examples found in the literature that uses 

the somewhat different, but still conventional approach. 

III.1.1 CONVENTIONAL APPROACH 

First, in the description of mass transfer within a conventional approach, the concept of a 

continuous and pseudo-homogeneous medium requires to account for the macroscopic 

influence of the pore network morphology on the mass transfer properties. 

Indeed, the solid structure introduces geometrical constraints to diffusion within the fluid 

phase that are conventionally accounted for by the particle porosity and by the so-called 

tortuosity factor . The latter is usually considered as an adjustable parameter in pseudo-

homogeneous mass transfer models developed for porous media. When using a Fick or 

Maxwell-Stefan model for molecular diffusion, their diffusion coefficients must be 

corrected as follows in order to obtain the effective diffusion coefficient (Ruthven, 1984): 

with   the molecular diffusion coefficient,  and , respectively the particle 

porosity and the tortuosity factor. Equation (III-1) is valid if it is assumed that the 

diffusing molecules have to cross the external surface area of the catalyst particle in 

order to access the pore volume. However, if it is assumed that the diffusing molecules 

are already inside the catalyst pore volume, then the catalyst porosity  must be 

removed from equation (III-1) (see Appendix I for more details on this subject). 

Regarding the tortuosity factor, it has been, over the years, extensively studied. The next 

section is devoted to the empirical and theoretical models that have been developed for 

the prediction of this feature. 

III.1.1.1 THE TORTUOSITY FACTOR 

The tortuosity factor can be defined in two different ways: either geometrically or by 

relating the flux to the driving force gradient. From a geometric point of view, the 
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tortuosity is given by the ratio between, the total length of the diffusion path of a species 

diffusing in a porous medium, and the straight-line distance between starting and 

finishing points. This geometric tortuosity factor therefore only depends on the support 

porosity and the network structure. 

From the open literature, one observes that several correlations for the tortuosity factor 

give , the exponent 2 being related to the definition of a geometric tortuosity, which is 

given by , the square root of the ratio of the actual distance travelled by the 

species per unit length of the medium (Shen and Chen, 2007). For the sake of brevity 

and common usage among the chemical engineering community, the  will be addressed 

to as , the tortuosity factor. 

However, it should also be highlighted that the path followed may depend on the 

diffusion regime, i.e. on the size of the diffusing particles or molecules compared to that 

of pores. Another definition of tortuosity therefore uses the true path length of diffusing 

particles. Hence, according to Barrande et al. (2007), the tortuosity factor is entirely 

linked to the ratio of the flux to the driving force with and without the presence of a 

porous medium: 

 is the transport variable as a flux of matter, velocity or current,  is the driving force 

gradient and the indices  and  refer respectively to the measurement of the flux in 

the presence and in the absence of the porous solid. 

Under a molecular diffusion regime, equation (III-2) is equivalent to equation (III-1). 

However, the extent of this equation is not constrained to the molecular diffusion regime. 

Indeed, it can be applied in the presence of Knudsen and surface diffusion, which implies 

that if the system is submitted to a variation of the operating conditions (temperature or 

pressure), the tortuosity factor changes, due to the fact that it will gather contributions 

from the variation of the operating conditions on the Knudsen and surface diffusivities. 

On the other hand, under a molecular diffusion regime, the measured tortuosity is similar 

to a geometric tortuosity and therefore only depends on the network porosity and 

organization. 

The tortuosity is a parameter used in many fields such as, heterogeneous catalysis, 

medicine and rheology. According to Shen and Chen (2007), one of the approaches that 

can be found to indirectly measure tortuosity is based on measurements of diffusion 

coefficients of selected nonreactive species, both in free solution and in a porous 

medium. The methods using the diffusional characteristic times, can be divided in two 
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types, microscopic, such as Pulsed Field Gradient Nuclear Magnetic Resonance (PFG-

NMR) (Kortunov et al., 2005) and macroscopic, for example inverse chromatography. 

The tortuosity factor is usually represented as a function of the porosity. The main 

theoretical relations available in the literature are listed below. The first three equations 

refer to the constraints that these models have to satisfy: 

The constraint presented in equation (III-3) means that the actual (average) path 

crossed by the species while diffusing within the interstitial fluid in a porous medium is 

longer than in the absence of the solid. The second constraint implies no hindrance to 

diffusion in the absence of the porous solid: 

The third constraint is related to the fact that diffusion mass transfer is not supposed to 

occur in the solid itself: 

The fundamental theoretical relations developed and taken from Petersen (1958), 

Bhatia (1985), and Dykhuizen and Casey (1989), accounting for diffusion in porous 

media begin with the derivation of the tortuosity factor in dilute suspensions of particles 

of simple geometric shapes, i.e. a collection of randomly oriented capillaries cutting 

through a solid body. Maxwell (1873) dedicated his work to uniform spheres and Rayleigh 

(1892) to infinite cylinders normal to the direction of flow, leading respectively to the 

following expressions: 

Bhatia (1985), and Dykhuizen and Casey (1989) defined the tortuosity factor by , 

where  depends on the angle between successive pores. If the successive steps are 

truly randomly oriented, or if we are in the presence of a regular lattice, or even if we are 

in the presence of randomly oriented cylindrical pores, F=1 and therefore: 

On the other hand, if the pore size is distributed than . In the work of Bhatia (1985), 

it is mentioned that for capillary networks, factor F may actually depend on the pore 

lengths and diameters, as well as, on the connectivity of the network Z. For constant 

diameter and length,  is given by: 
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Several other theoretical relations of tortuosity as a function of porosity have been 

proposed in the literature (Akanni and Evans, 1987; Shen and Chen, 2007). For example, 

systems of overlapping spheres, random arrays of freely overlapping cylinders and a 

mathematical description for heterogeneous catalysts taking two- and three dimensional 

porous structures where a large number of travellers walk throughout the structure, can 

be respectively retrieved from the works of Weissberg (1963), Tomadakis and Sotirchos 

(1993) and Beeckman (1990): 

Both equations (III-13) and (III-14) were obtained for the diffusion within gamma-

alumina pellets and are respectively from the works of Wakao and Smith (1962) and 

Weisz and Schwartz (1962). In the work of Weisz and Schwartz (1962), the developed 

model takes the simulation of diffusion within a random cylindrical porous structure, and 

where the solid structure is represented by a random structure of overlapping spheres. 

It should be stressed that these theoretical models are highly idealized and based on a 

given structure of the porous medium and that they do not contain any adjustable 

parameter. 

Empirical correlations have also been proposed and may depend on one or several 

adjustable parameters, such as the ones proposed in the critical review from Shen and 

Chen (2007). With one adjustable parameter we can find the work of Iversen and 

Jorgensen (1993) dedicated to soils and catalysts: 

The work of Boudreau (1996) and of Weissberg (1963) dedicated to the diffusive 

transport in fine-grained sediments, proposed the following correlation: 
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where B and C are adjustable parameters, the default values being respectively equal to 

3.79 and 2.02. 

The main theoretical and empirical correlations are graphically represented in Fig. III-1. 

As we observe from Fig. III-1, the tortuosity globally decreases with the porosity. Within 

the framework of our project, the alumina is formulated by the crystallites stacking 

giving rise to aggregates. These aggregations are governed by the formulation conditions 

of the supports. In the case of random stacking, the relationships presented below (Fig. 

III-1) show that for porosities between 0.4 and 0.8, the associated tortuosity values 

should be comprised between 4.3 and 1.1. In the literature, however, for aluminas 

having the same porosity, values of tortuosity ranging from 1.8 to 7.1 are found 

(Carniglia, 1986). Moreover, the aluminas studied in the work of Kolitcheff et al. (2017) 

that have a porosity around 0.7, present values of tortuosity ranging from 2 to 3. 

The works of Weisz and Schwartz (1962) and of Beeckman (1990) take a special interest 

due to their high values of tortuosity. For instance, the work of Beeckman (1990) is 

actually based on Monte Carlo simulations taking a large amount of travellers that go 

throughout a two- or three-dimensional porous structure. The underlying tortuosity 

calculated in this work implies a diffusional definition. 

 
Fig. III-1. Tortuosity as a function of the porosity given by some theoretical models or empirical correlations. 

As mentioned before, a special application of this conventional approach found in the 

literature to describe the influence of the morphology of the support on mass transfer 

properties in a continuous way is the Random Spheres Model. A brief description of this 

model will be presented below. 
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III.1.2 RANDOM SPHERES MODEL (RSM) 

The random spheres model presented in Toulhoat et al. (2005) is inspired from the work 

of Weissberg (1963), and of Van Eekelen (1973). 

In the work of Toulhoat et al. (2005), several porous catalysts were studied: the 

hydrodemetallisation (HDM) catalysts for instance, the chestnut bur with large meso and 

macropores, as well as hydrodesulphurization (HDS) catalysts. 

In residue hydrotreating units, catalyst deactivation is very fast and is due to coking and 

deposition of metal sulphides, Ni and V sulphides. Hence, it strongly affects the intrinsic 

catalytic activities and the textural properties. To account for this major operating issue, 

any residue hydroprocessing simulator needs a description of the catalyst deactivation. 

The main idea of Toulhoat et al. (2005) consisted in providing a detailed description of 

the fresh catalyst and of the evolution of the catalyst during fouling. The schematic 

representation of porous media, subject to coking and to metal sulphide deposition is 

represented in Fig. III-2: 

 
Fig. III-2. Porous media schematic representation considering catalysts ageing and superposing three different 

porous media: fresh catalyst (blue), metal sulphides (violet) and coke deposits (black) (Toulhoat et al., 2005). 

The first step consisted in finding a representation of the fresh catalyst. With the RSM 

model, proposed by Van Eekelen (1973), alumina platelets or alumina clusters are 

defined as spheres with a given particle radius and a volumetric density. The spheres are 

randomly positioned and allowed to overlap. For given values of these two parameters, 

the porosity and the surface area can be calculated. Subsequently, the appearance of 

coke and the deposition of metal sulphides create additional objects that reduce the 

available pore space, the available surface area and the average pore radius. 

Intra-particle mass transfer is accounted for by Fick’s model using a local effective 

diffusion coefficient . This coefficient depends on the local porosity and the average 

pore radius. Both parameters were defined as a function of the amount of metal 

sulphides and coke locally deposited in the catalyst structure. 
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Numerous other applications of the RSM model can be found in the literature. In the work 

of Rao and Coppens (2012), a Random Spheres Model was constructed in order to take 

into account the deactivation of porous catalysts used in hydrodemetallisation processes. 

III.2 DISCRETE APPROACHES - COMBINED DESCRIPTION OF PORE STRUCTURE AND MASS 

TRANSFER 

Several approaches have been found in the literature combining the description of the 

porous structure of the pellet in a realistic way, and the multicomponent diffusion of 

reactants into and out of the pores of the catalyst support. The optimization of the pore 

geometry is an important tool to design a support with minimum diffusional resistances 

and leading to a higher catalyst performance. For that matter, in this section, we propose 

a brief review of the models used to investigate the transport in disordered porous 

materials using diffusion models at the single pore level. Besides the more correct 

description of mass transport, the following approaches account for the real porous 

structure taking their experimental textural data and constructing a pore network 

reproducing these features, in contrast to continuum models. 

The following sections are hence dedicated to two different types of approaches, 

analytical and numerical approaches defining implicitly and explicitly the pore structure. 

With either, some methods that do not take into account the connectivity effect, such as 

the cross-linked pore network models, while other models are able to account for this 

network property: the effective medium theory, the Bethe networks, the Rieckman’s 

approach and the Pore-Cor Model. 

III.2.1 ANALYTICAL MODELS 

Keil (1999) mentions the great amount of works dedicated to diffusion-reaction systems 

in pore networks. For instance, the random pore model developed by Wakao and Smith 

(1962) is dedicated to pellets containing a bi-disperse pore system. The pore structure of 

the pellets is simulated by an assembly of small particles. If these particles are allowed 

to contain pores, then both a macro and micro void-volume distribution exist. The 

drawback of this model is the absence of connections between pores. In fact, it is a 

refined version of a parallel pore model. An enhanced model was created by Johnson and 

Stewart (1965) that employs randomly oriented capillary axes that are cross-linked, as 

briefly described in the following section. 

III.2.1.1 CROSS-LINKED PORE NETWORK MODELS 

The model created by Johnson and Stewart (1965) represents the porous structure 

according to Fig. III-3. 
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Fig. III-3. Pore model developed by Johnson and Stewart (1965). 

In their work, the flux in the y direction is obtained by averaging the flux in the pores 

over the void and solid area of the particle. For that matter, they use the pore size 

distribution and the inclination of each pore with respect to y likewise: 

where is the projection of the flux along a single pore in the y direction and the 

macroscopic flux in the y direction. The inclination of pores is the phenomenon leading to 

the definition of the tortuosity factor as described in Friedman and Seaton (1995) and 

taking a value of 3. Even though in the latter a correction may be considered in order to 

take into account for the finite aspect ratio of the pores. 

The Johnson and Stewart (1965) work was then extended by Feng and Stewart (1973). 

Indeed, equation (III-17) was put in 3 different working forms, based on various 

approximations of the diffusion integral for isotropic pore networks (i.e. randomly 

oriented), such as: 

-  1st approach: uniform pore radius; 

-  2nd approach: the tortuosity is independent of the pore radius; 

-  3rd approach: the integral from equation (III-17) is reduced to a summation. 

Their results infer that the 2nd approach is the less accurate, the 3rd approach being the 

most reliable and recommended for accurate work. Even though the 1st approach is less 

accurate than the 3rd one, it is mentioned that it gives shorter computation times. 

III.2.1.2 EFFECTIVE MEDIUM THEORY 

The effective medium theory (EMT) adapted by Kirkpatrick (1973) to electric resistivities 

is here discussed. It offers a convenient route to model transport in disordered 

mesoporous materials, while considering the entire pore size distribution, by replacing 

the actual pore network with an effective one, having a uniform conductance in each 

pore. One advantage of this method is that it enables a rigorous analysis of the 

relationship between apparent tortuosity and the pore structure, as well as, properties of 

the diffusing fluid taking a special interest on the network connectivity. 
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In the work of Gao et al. (2014), the EMT was implemented for the case of diffusion in a 

gaseous phase. First, for a pore radius , the conductance  is defined as the ratio of the 

molecular current to the driving force (pseudo-bulk density gradient), i.e.: 

with  the apparent diffusivity where K is the equilibrium constant based on the 

relevant pore radius. 

Taking as hypothesis, the independence of the bulk pressure drop on the pore size, the 

effective medium conductance  is given by the solution of: 

with  an average over the pore number distribution,  the mean coordination 

number or connectivity of the network. 

After having determined the effective medium conductance, Gao et al. (2014) are able to 

estimate the pore flux by the given equation: 

with  the ideal gas constant,  the coordinate along the macroscopiccontinuum flux 

direction,  stands for a correlation effect due to the finite possibility that a 

diffusing molecule re-enters a pore that it has just left, cf. Bhatia (1995), and  

accounts for the orientation of pores depending on the pore aspect ratio . 

Upon integration over the pore volume of equation (III-20), it results: 

with  

Comparing with experimental data based on  at a mean pore radius yield on 

equation (III-22) an apparent tortuosity can be easily obtained, like so: 

An interesting study performed under the Knudsen regime for different temperatures and 

network connectivities, to study the impact on the apparent tortuosity factor, is available 
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in the work of Gao et al. (2014). They observed very high values of the tortuosity factor, 

up to a value of 12. 

III.2.2 NUMERICAL MODELS 

In order to account for the influence of the morphology of the porous structure on mass 

transfer properties, a representative pore network is created. The mass transfer is then 

described within the representative simulated pores. Several models are presented 

below: the Bethe networks, the Rieckman’s approach and finally, the Pore-Cor model. 

Many other models could be cited for instance, a recent one proposed by Ye et al. (2017) 

that is also based on a construction of a pore network. In their work, the pore network is 

cut in the desired shapes of the catalysts and so, it is capable of explicitly accounting for 

the pore network topology and for the pore connectivity. The pore networks have been 

simulated with mass transfer and reaction for a network size of 1152 nodes around 

10×10×10. The effectiveness factor for different catalyst shapes was compared. 

III.2.2.1 BETHE NETWORKS 

Another interesting representation of porous structures is that of random pore networks 

(Bethe networks), first introduced by Beeckman and Froment (1980) and Reyes and 

Jensen (1985), see Fig. III-4. 

 
Fig. III-4. Bethe lattice pore network representation. 

In Bethe networks, a well-defined topological network is the departure point. The 

network created is then modified to match the porosity and pore size distribution of a 

given structure. Bethe networks consist of infinite branching trees and are fully 

characterised by a mean coordination number or connectivity  (Fig. III-5). 

These random Bethe networks are therefore able to reproduce many of the properties of 

more complex three-dimensional model structures. In particular, the remaining fraction 

of the original branches reflects the experimental porosity, and the pore size distribution 

function is given by the experimentally measured pore size distribution. The connectivity 

 remains to be specified, but it could be either used as an adjustable parameter or 

experimentally obtained by the Seaton method (Seaton, 1991) for instance. 
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Fig. III-5. From the left to the right: Bethe lattice with Z=3; related Bethe network having a fraction of bonds 

randomly removed; coordinated Bethe network with arbitrary values of porosity and pore sizes (Becker and 

Pereira, 1993). 

 

In addition, a very useful property of Bethe networks is that they exhibit classical 

percolation behaviour: a minimum fraction of bonds or percolation threshold is required 

to find a connected path spanning a large region of space – percolation threshold. This 

can be related to the connectivity factor by the following expression: 

As mentioned before, the percolation threshold gives the minimum fraction of bonds 

required for the network to have macroscopic transport. Stated otherwise, we could say 

that  is a measure of the interconnectivity between the pores of the network. 

Similarly, to the Seaton’s method, the Bethe network is able to quantify the pore 

accessibility within the network. With, the accessible porosity that is the fraction of pores 

in the network that can be reached from a distant peripheral location. 

The description of mass transfer using the Bethe network is based on the evaluation of a 

continuum effective diffusion coefficient in a porous solid, with a given porosity and 

average connectivity, and by integrating single pore diffusivities over all accessible pores 

present in the network structure (Reyes and Jensen, 1985; Becker and Pereira, 1993). 

III.2.2.2 RIECKMAN AND KEIL’S APPROACH 

The model constructed by Rieckmann and Keil (1999) can be divided in two main parts: 

description of the pore structure and definition of mass transfer through the network. 

First of all, the definition of the pore network was obtained by representing a 3D random 

cubic network (Fig. III-6). Different aspects are taken into account: the type of pores, 

type of pore walls (e.g. smooth or fractal), the effect of connectivity, local 

heterogeneities, distribution of active centres, time-dependent changes and percolation 

phenomena (Rieckmann and Keil, 1997). This part of the model adopts a predefined pore 

radii and porosity distributions meeting experimental data obtained via nitrogen 
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physisorption or mercury porosimetry and a connectivity factor obtained by the Seaton’s 

method. 

 
Fig. III-6. Discretization of the pore network (Rieckmann and Keil, 1997). 

Concerning mass transport occurring in the porous medium, its description is based on 

the dusty-gas model for each pore and with an enhanced factor regarding the chemical 

reactions (Krishna and Wesseling, 1997). The dusty-gas model comprehends the 

description of both the molecular diffusion, the Knudsen diffusion, the surface diffusion 

and finally, the viscous flow. In the work of Rieckmann and Keil (1999), they used 

power-law rate equations, as well as Langmuir-Hinshelwood or Eley-Rideal equations to 

model the chemical reaction rates. 

In the work of Rieckmann and Keil (1999), the pores are connected at the nodes, where 

it is assumed that no chemical reaction neither adsorption nor accumulation occurs. So, 

the overall balance in a node must be equal to . It should be noted that inner and outer 

surface nodes have specific boundary conditions. In order to solve the mass balance 

equations within the entire network, the mass balance equations for individual pores 

have to be solved simultaneously, since these mass balances are coupled by the 

boundary conditions at the nodes of the network. In their work, Rieckmann and Keil 

(1999) were able to simulate mass transfer within a grid of 30×30×30 network size 

averaged over 10 realisations to compare calculated to measured concentrations, in 

order to validate their model. 

III.2.2.3 PORE-COR MODEL 

The “Pore-Cor” network model has been used to model a range of materials such as soil, 

sandstone, catalysts and paper coating (Johnson et al., 2003; Spearing and Matthews, 

1991; Laudone et al., 2005). It represents the void structure of a porous medium as a 

series of identical interconnected unit cells with periodic boundary conditions. Each unit 

cell comprises an array of 1000 nodes equally spaced in a Cartesian cubic-close-packed 

array, i.e. a 10×10×10 network. Cubic pores are positioned with their centres at each 

node, and are connected by smaller cylindrical pores (Fig. III-7). 
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Fig. III-7. Usual cell unit obtained from the Pore-Cor model (Laudone et al., 2008). 

In the work of Spearing and Matthews (1991), 1000 cubes configured in a  

array and connected by a network of cylinders in 3D were used. The model was able to 

quantify the essential features of a porous material, the surface area, porosity and the 

pore size distribution from mercury porosimetry experiments. It can also quantify the 

tortuosity factor and the connectivity. 

To describe the pore network, the lengths and radii of the pores must be known. The 

model uses a specific pore size distribution obtained experimentally, going from the 

larger size to the lowest from the limits of the mercury porosimetry curve. Diameters are 

considered uniformly spaced from  to . The pore size distribution can be skewed 

by a parameter known as “pore skew”. These 100 radii sizes are then assigned randomly 

to the total amount of pores. The largest pore intersecting a given node then determines 

the node size (cube size). As the pore size governs the cube size, there is at least a 

strong correlation between node and pore sizes for any particular cube (node). 

In order to model the void spaces of the pore network, the Pore-Cor model reproduces 

the experimental percolation phenomenon within the sample during mercury porosimetry 

experiments by fitting the simulated characteristics with the mercury intrusion 

experimental data (Johnson et al., 2003; Laudone et al., 2007). To construct a realistic 

pore network, a best-fit is obtained for the values of four geometric modelling 

parameters included in a distance function between two neighbour data points, from the 

simulated and the experimental mercury intrusion curves (Johnson et al., 2003). To this 

end, node and pore size distributions, specifically the node and pore skew, the 

connectivity factor and a correlation between nodes and pores sizes are used (Laudone et 

al., 2007): 
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-  the connectivity, the coordination numbers of the nodes may vary from  to  

and the connectivity factor is generally lower than , often taking the value of 

 (Laudone et al., 2005; Bobin, 2010); 

-  pore skew, defined as the percentage of pores of the smallest size in a 

distribution of 100 sizes which is linear when plotted on a logarithmic size 

axis; 

-  the node skew, which is a sort of a shape-scaling factor that bulks up the 

sizes of the nodes (cubes) to achieve the experimental porosity; 

-  the correlation level between nodes and pores sizes is also fitted. The pore 

lengths are determined by the distance between the node edges that they 

connect. These distances are determined not only by the node size, but also 

by the spacing between the row of nodes, which is determined by equalizing 

the simulated to the experimental porosity. 

In order to adjust the simulated to the experimental porosity, the spacing of the nodes is 

varied. This means that the length of the pores joining the nodes is varied while keeping 

the node sizes and pore diameters unchanged. 

The modelling of diffusion from simulated pore structures obtained from the Pore-Cor 

model was also tested and one of these cases is described in the work of Laudone et al. 

(2008). The diffusive flux of species A through a single cylindrical pore of length  and 

radius  is given by Fick’s model, being the concentration profiles obtained via the 

resolution of a one-dimensional diffusion problem. However, in the work of Laudone et al. 

(2008), the mass transfer description was not compared to experimental data. 

It must be mentioned that at IFPEN (Bobin, 2010), alumina supports were simulated 

using the Pore-Cor model, starting from mercury porosimetry experiments and using the 

Pore-Cor model to obtain  and . From the latter study, the influence of the four Pore-

Cor parameters on the steepness of the simulated mercury intrusion curve was 

confirmed. At IFPEN, the Seaton’s method was also tested to quantify  and  with the 

help of physisorption data. 

III.3 CONCLUSIONS 

The use of a discrete representation of the pore network with modelling mass transfer by 

diffusion within each pore (either using the Fick or the Maxwell Stefan model, the latter 

being a more realistic approach) appears to be the preferred method for representing the 

influence of the topoly of porous catalysts on mass transfer (Keil, 1999). 

As stated before, the random spheres model gives a continuum description of the 

influence of the solid morphology on mass transfer properties, even though a local 
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effective diffusion coefficient, a local porosity and a local pore radius are used. It is 

therefore of less interest when it comes to compare this model with a discrete approach. 

As mentioned in the first section of this chapter, a discrete representation of the pore 

network of a given solid would be more realistic and is more helpful in the understanding 

and the optimization of the structure of the gamma-alumina supports. As stated by Keil 

(1999), a discrete approach is preferable for such a study in comparison to a continuum 

approach. 

Concerning the analytical methods from the discrete representation, the Johnson and 

Stewart (1965) model was a first introduction for the account of the network phenomena 

related to the different pore sizes and to the orientation of pores, nevertheless the 

connectivity phenomena is not studied. On the other hand, the effective medium theory, 

accounts for both phenomena related to the different pore sizes, the orientation of pores 

and the connectivity over the pore structure. In the work of Gao et al. (2014), they were 

able to estimate a tortuosity factor, even though extremely high values for the tortuosity 

factor are found. 

Concerning the Bethe network, we should underline the use of percolation concepts and 

the fact that it is a discrete approach based on diffusivities obtained from single 

cylindrical pores. 

Rieckmann and Keil (1999) proposed a very inspiring work in terms of the creation of a 

pore network accounting for the connectivity of the system. The way the pore structure 

meets the characteristics of a real solid is also highly relevant. However, in their work, 

only the pore size distribution is fitted. The description of mass transfer in this approach 

uses the Dusty Gas model to simulate the pore network. This allows to accurately predict 

mass transfer phenomena occurring inside the particle grains of a catalytic reactor. 

Concerning the Pore-Cor model, the simulation of a pore network of cubes and cylinders 

closely matches data, such as porosity and percolation properties, obtained 

experimentally by mercury porosimetry. Diffusion is well simulated in the work of 

Laudone et al. (2008) for a given porous material taking this discrete approach but still, 

not compared to available experimental data. 

The present work is very similar to this kind of models that, as we have seen, are able to 

correctly account for both textural and mass transfer properties. The developed model is 

based on the Rieckman’s approach. Indeed, in order to represent the pore structure of 

gamma-alumina supports, an algorithm capable of generating random pore networks of 

interconnected cylindrical pores is developed and mass transfer by diffusion is simulated 

within each pore of the network. The main goal of the developed tools is to reproduce the 

textural features and the tortuosity of actual aluminas. 
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DESCRIPTION OF THE MODELS 
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 - PORE NETWORK MODEL: MONTE CARLO CHAPTER IV
ALGORITHM AND MASS TRANSFER DESCRIPTION 

IV.1 INTRODUCTION 

In this chapter are described the numerical tools used within the framework of the Ph.D. 

thesis. A first tool is used to generate random pore networks by means of a Monte Carlo 

algorithm. Then, a second tool is used to simulate transient mass transfer within the 

network by considering one-dimensional diffusion within each pore of the network. 

The Monte Carlo algorithm generates pore networks in order to represent the textural 

structure of gamma alumina supports. The pore network is constituted by interconnected 

cylindrical pores. The textural properties such as the specific surface area, the pore 

volume and the catalyst porosity are calculated. 

A second tool is dedicated to the 1D transient simulation of mass transfer through each 

single pore of the pore network. Diffusional mass transfer description either using the 

Fick model or the Maxwell-Stefan model is possible. From this model, we are able to 

extract an effective diffusion coefficient that can be compared with experimental data 

obtained from fixed bed tracer experiments (Kolitcheff, 2017) as well as, with available 

information in the open literature. On the following figure (Fig. IV-1), a schematic 

description of the process of generating, treating and simulating mass transfer within the 

pore networks is provided. 

 



 

59 

 
Fig. IV-1. Flowchart describing the pore network modelling process from its generation and treatment to mass 

transfer simulation. 

IV.2 RANDOM PORE NETWORK GENERATION 

The network is structurally constituted by interconnected cylindrical pores of given 

diameter and length. The generation is based on the following inputs: the network sizes, 

a connectivity pattern, pore diameter and pore length distributions and finally, a pore 

existence probability, P, that defines if a given pore exists based on a generated random 

number. The pore connectivity pattern repeats an elementary unit of pore connections 

along the network and gives the maximum number of pores connected to a node. 

The initial condition of the network is a pre-defined grid of nodes positioned in 2D or 3D, 

with Nx, Ny and Nz nodes along each axis, resulting in a maximum number (or initial 

number) of nodes in the network of Nx×Ny×Nz. 
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A Monte Carlo algorithm walks through the grid and randomly creates pores based on the 

connectivity pattern and on the pore existence probability. At a given node, a random 

number uniformly distributed between 0 and 1 is drawn for each initially connected pore 

(given the connectivity pattern, see section IV.2.1) in order to determine whether the 

pore is retained in the network. The existence of a given node is thereby a consequence 

of the connection of at least one pore. Given the pore size distributions specified as input, 

a randomly drawn diameter (Dp) is attributed to each existing pore. While the developed 

algorithm also allows randomly drawing a pore length for a distribution, in this work, we 

restrict ourselves to the case of a fixed pore length (Lp). 

The following table (Table IV-1) illustrates the role of the connectivity pattern. For each 

configuration, we define the vectors that constitute the connectivity pattern and that will 

reproduce different pore network configurations, when repeating the elementary unit. 

The connectivity pattern will dictate the maximum connectivity of the network. For 

instance, if we take a 2D configuration for square networks, each node is initially 

connected to 4 pores corresponding to a maximum coordination number of Zmax=4. 
Table IV-1. Examples on how the connectivity pattern works. 

 

By changing the connectivity pattern, we can therefore generate different types of pore 

networks in 2D (square, triangular, hexagonal) or in 3D (simple cubic, body-centred 

cubic, face-centred cubic, diamond, tetrahedral), each having a different maximum 

connectivity Zmax. 

The networks can also be created with a periodicity along the x, y, and/or z axis. For 

example, to introduce a periodicity along the x axis into a given pore network, we must 
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simply connect the nodes on the “left” of the network to the nodes on the “right” by 

adding a pore. 

At the external surface of a given pore network, we have expressly removed the 

perpendicular pores with respect to the surface normal vector. 

At the end of the procedure, dead volumes of inaccessible pores are eliminated since 

they do not contribute to the experimental textural properties neither to the diffusion 

paths. Then, the textural properties of the support are recalculated (see section IV.2.1). 

The next section is dedicated to the output data obtained from the Monte Carlo 

algorithm. 

IV.2.1 OUTPUT DATA FROM THE NETWORK GENERATION MODEL 

The textural properties are a part of the output data generated by the pore network 

model. Here follows the way they are calculated. Hypothesis 1 considers a 

parallelepiped particle shape, with dimensions Ex, Ey and Ez, in which there are initially a 

number of nodes that are equidistantly spaced in all directions. The parallelepiped 

dimensions are given by: 

with ,  and  the initial number of nodes along each axis and Lp, the pore length. 

Within 2D pore networks Nz=1 and the above definitions are still used. These definitions 

lead to a representation of a random pore network with fixed and equidistant nodes 

within the matrix. The total catalyst support volume ( ) and mass ( ) are simply 

given by: 

where  is the alumina skeletal density. The initial or maximum number 

of nodes  in the parallelepiped particle is given by: 

Hypothesis 2 considers that a pore network is constituted by cylindrical pores. In 

equations (IV-5), (IV-6) and (IV-7) we present the expressions that allow to calculate the 

catalyst porosity, the specific surface area and the specific pore volume. 

  

 (IV-1) 

   

 (IV-2) 

 (IV-3) 

(IV-4) 
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The above equations are used in the code to calculate the values for the textural 

properties. It should be mentioned that the latter equation is not independent of the first 

one, as . 

In order to illustrate the effect of each parameter, one can further simplify the equations 

with some additional hypotheses. In case the pore network has a constant pore diameter 

and a constant pore length (Hypothesis 3), the above equations reduce to: 

The maximum connectivity for a node is equal to , except for the nodes at the 

surface, where the pores can only be oriented inside the material. However, if the 

network is sufficiently large, the effect of this lower connectivity for the nodes placed at 

the catalyst surface on the average connectivity becomes negligible (Hypothesis 4). 

Hence, we can approximate the number of pores by: 

with the average connectivity . Given equation (IV-4), one obtains: 

And since , one obtains: 

 (IV-5) 

 (IV-6) 

 (IV-7) 

 (IV-8) 

 (IV-9) 

 (IV-10) 

 (IV-11) 

 (IV-12) 

 (IV-13) 
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It should be stressed that 

Hence, one finally obtains: 

It is clear that if the diameter, the maximum connectivity or the pore existence 

probability increase, then ,  and  will increase as well. However, if the pore length 

increases then the values of these textural properties decrease. A sensitivity analysis 

regarding the model parameters is presented in section V.4. 

Moreover, in order to perform the transient mass transfer simulation within the network, 

the information on the structure of the pore network must be handed over to the mass 

transfer model. To this aim, we have developed a connectivity matrix that contains all 

the required information on the network. Indeed, the connectivity matrix is a simple 

matrix, where it is possible to store information concerning not only pores and nodes but 

also information related to the boundary conditions of the mass transfer model. Indeed, 

certain pores are linked to nodes placed on the external surface of the porous catalyst, 

while others are interior pores. 

As an example, let us take a simple network constituted by two pores  and  and 3 

nodes: ,  and . A schematic and illustrative representation of this network is shown in 

Fig. IV-2. Even though nodes are here illustrated with a small volume, the volume of the 

generated pore networks is exclusively contained in the pores. 

 (IV-14) 

 (IV-15) 

 (IV-16) 

 (IV-17) 

 (IV-18) 

 (IV-19) 
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Fig. IV-2. Schematic network used to exemplify data storage. Each node is represented by a circle. Blue circles 

for nodes at the external surface of the grain, red circles for interior nodes. 

The following matrix (Table IV-2) illustrates the connectivity matrix obtained for the 

network example presented in Fig. IV-2. 

Table IV-2. Connectivity matrix defining the pore network represented in Fig. IV-2 with . 

Nodes  Connectivity,    B.C. 

      

      

     +1 

The first column lists the node labels, while the second column gives the connectivity of 

each node, . The 3rd and 4th columns contain the label of each pore connected to a given 

node. The number of columns of this part of the connectivity matrix can vary from Z=1 

to Zmax. In the example depicted in Fig. IV-2, the maximum connectivity of the network is 

 (a node can be connected up to two pores, at the most) therefore, only two 

columns are required for this network. If the node connectivity of a given node is lower 

than , the subsequent columns are filled with . The +/- sign before each pore label 

in the 3rd and 4th columns imposes the sign convention of the flow inside each pore. 

The last column refers to the boundary conditions applied to each node or to each pore 

boundary. Any value differing from (0) corresponds to nodes that are located at the 

external surface of the particle and that allow to distinguish inlet and outlet nodes, 

respectively (-1) and (+1) for the example presented in Fig. IV-2. For such external 

nodes, the concentrations of the species are fixed as boundary conditions during the 

diffusion simulations. On the other hand, (0) means that we have an internal node. For 

such nodes, a conservation condition of each species is used. The latter will be explained 

further on. The next section will give a global overview of the Monte Carlo algorithm. 

IV.2.2 NETWORK GENERATION ALGORITHM DIAGRAM 

The following diagram presented in Fig. IV-3 illustrates the network generation model 

based on a Monte Carlo approach, from the selection of the network size and 

configuration of the pore network to the determination of the textural properties. As 
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shown in Fig. IV-3, several inputs are used to generate the pore network, such as the 

connectivity pattern and the pore existence probability. 

 
Fig. IV-3. Flowchart describing briefly the pore network generation. 

An initial grid is taken as departure point. A given element (node) from the initial grid is 

selected. Taking the connectivity pattern, a potential pore is considered and a uniformly 

distributed random number selected. If the random number is lower than the pore 

existence probability then the pore exists and is connected to the node. A pore diameter 

and length are attributed in accordance with the pore size distributions specified as input. 

When generating a periodic network, additional pores may connect the network from one 
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side to the other along the periodicity axis. These extra pores are of course added 

according to the connectivity pattern and the pore existence probability. 

The procedure ends when all elements from the initial grid have been covered. Then, the 

textural properties, such as the average diameter and average length of the pores, the 

specific surface area, the catalyst pore volume and the porosity, are calculated and 

stored. The connectivity matrix that contains the required information on the pore 

network structure for further mass transfer simulation is also stored. 

As mentioned before, in order to simulate mass transfer by diffusion through the pore 

network, the network must be submitted to the removal of possible inaccessible pores. 

The next section contains a brief description on the inaccessible volume removal. 

IV.2.3 INACCESSIBLE VOLUME SUPPRESSION ALGORITHM 

To simulate mass transfer within a pore network, the inaccessible pore volume is first 

removed. This inaccessible pore volume is made of pores for which there is no path 

linking them to the external surface of the pore network. Therefore, these inaccessible 

volumes will not contribute to the textural properties nor participate to the mass transfer 

and shall be removed. They are nevertheless used to evaluate the catalyst textural 

properties with and without the inaccessible pore volume (see section V.2). 

A flowchart is presented in Fig. IV-4 in order to illustrate the process of removing the 

inaccessible volume. In order to remove this inaccessible volume, the inaccessible pores 

must be found within the pore network. To this end, the paths that can be found from 

the external nodes are systematically marked by walking from node to node. An 

inaccessible pore does not belong to any of these paths. The global outcome will allow us 

to save all pores having a path to the external surface of the catalyst (accessible 

volume). 

After having removed the inaccessible volume, the connectivity matrix and the textural 

properties are saved. These data are subsequently used to simulate mass transfer within 

the pore network. 
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Fig. IV-4. Flowchart summarizing the inaccessible volume suppression. 

 

IV.3 MASS TRANSFER DESCRIPTION WITHIN EACH CYLINDRICAL PORE OF A RANDOM PORE 

NETWORK 

The mass transfer within the pore network is simulated based on the connectivity matrix 

and additional inputs, such as the initial and boundary conditions, the molecular diffusion 

coefficient and some discretization parameters. 

According to Friedman and Seaton (1995), for intersecting capillary models, if it is 

assumed that the pores are much longer than wide, diffusion and reaction are effectively 

one dimensional in individual pores and the solution of the network diffusion problem 

reduces to satisfying a mass balance at each node. Therefore, in order to simulate mass 
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transfer by diffusion within a pore network, a 1D isothermal transient mass transfer 

model is assumed since the length of each pore is high with respect to its diameter. For 

species , the mass balance within each pore of the network under isothermal conditions 

is given as follows: 

 (IV-20) 

where and are respectively the concentration and flux of species  in a given pore  

and  is the spatial coordinate along the pore axis. 

In order to calculate , we use the Fick model, considering a constant total 

concentration binary mixture and constant molecular diffusion coefficient Dim. Hence,  

is then defined by: 

 (IV-21) 

with Dim, the molecular diffusion coefficient of species , which for small concentrations of 

the diffusing species can be considered independent from the concentration. The 

combination of the mass balance of species i with the Fick model leads to: 

 (IV-22) 

The discretization over time and space of equation (IV-22) is performed using 

respectively the DASPK routine created by Petzold (1982) and an orthogonal collocation 

method developed by Villadsen and Michelsen (1978) (cf. Appendix II). It is important to 

mention that the majority of the simulations were performed using for each pore, 3 

collocation points. The next section is dedicated to the initial and boundaries conditions 

applied to the system. 

IV.3.1 INITIAL AND BOUNDARY CONDITIONS AT THE NODES 

With the information stored in the connectivity matrix (example given in Fig. IV-2 and 

Table IV-2) and the length and diameter of each pore of the network, one can describe 

the mass transfer process within the pores. By checking the connectivity matrix, one 

observes that the only inlet of the network represented in Fig. IV-2 is node , since its 

boundary condition takes the value of . 

The procedure adopted to define the initial conditions and the boundary conditions of 

pores and nodes will now be described. 

As initial condition for the pores, a fixed concentration in every position of all pores is 

used. Hence, we have for a given species: 
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 (IV-23) 

The boundary conditions for the pores are expressed at the nodes of the network. Since 

we consider that nodes do not accumulate matter, these boundary conditions were 

inspired from the Kirchhoff’s junction rule (or nodal rule) and by the Kirchhoff’s loop (or 

mesh) rule that are used for the modelling of electrical circuits. Kirchhoff’s first law or 

junction rule derives from the mass conservation law and implies that, at any node 

(junction), the sum of the flows entering into that node is equal to the sum of the flows 

leaving that node, or, stated differently, the algebraic sum of flows is zero. Kirchhoff’s 

second law requires that the chemical potential (or the concentration in the case of Fick’s 

law) at the pore end connected to a node equals the chemical potential (or 

concentration) of the node. 

The initial condition for the nodes is the same as those for the pores. According to the 

position of the nodes in the network, their boundary conditions can be different. Indeed, 

for the external nodes, the concentrations of the species are fixed at a given value during 

the diffusion simulations. 

We list below the boundary conditions for our system of interconnected pores with some 

exceptions that can be found in the course of diffusion through the pore network. For a 

given node, the number of boundary conditions is equal to its connectivity, i.e. the 

number of connected pores. To the first pore considered (from those connected to the 

node), a flow continuity is imposed: the flow is calculated and the concentration at the 

node is therefore known. For the remaining pores, the concentration at the pore end 

connected to a node is imposed. 

-  If a given node is located at the external surface of the catalyst grain then, 

the concentration is given by the concentration at the catalyst surface: 

 (IV-24) 

-  For inner nodes, the boundary condition invokes that the sum of all the flows 

entering and leaving pores connected to the node must be equal to . For a 

given node, we have: 

 (IV-25) 

-  The node concentration of species  is common to all connected pores to the 

node: 

 (IV-26) 



 

70 

-  In the particular case where the node is a dead-end, the flow at the node 

must be equal to  and so, taking the Fick model, the concentration 

gradient must simply fulfil: 

 (IV-27) 

with , depending on the extremity of the pore that is considered. 

IV.3.2 NUMERICAL RESOLUTION DIAGRAM FOR THE MASS TRANSFER MODEL 

A global overview of the 1D mass transfer simulation within each pore, from the spatial 

and time discretization to the flux determination, is presented in Fig. IV-5. 

 
Fig. IV-5. Flowchart describing in summary the mass transfer simulation procedure. 

For the mass transfer simulation and as mentioned before, an orthogonal collocation is 

used with respect to the spatial discretization (Villadsen and Stewart, 1967) and for the 
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time discretization the DASPK package is used and based on a modified Newton’s method 

Petzold (1982). Further information can be found in Appendix II. 

The first step of the mass transfer simulation is the calculation of certain spatial 

discretization parameters, such as the weighting functions and the Jacobi polynomial 

roots. The reader should know that the mentioned Jacobi polynomials roots are simply 

the position of each collocation point along the pore length and are of course reliant on to 

the spatial discretization. The weighting functions are also relative to the spatial 

discretization, they are part of the determination of the concentration and concentration 

derivatives at each collocation point of a given pore. Extended information can be found 

in Appendix II. 

Then, a combination of the spatial and time discretization is required in order to obtain 

both, the concentration and the 1st and 2nd derivatives at each time and over each 

collocation point of a given pore based on the initial and boundary conditions and the 

calculation of the mass balance residual errors. 

IV.4 CONCLUSIONS 

A major building block of our work has been presented here. It illustrates a method to 

generate random pore networks and to obtain its textural properties and its connectivity 

information. The combination of the generation of random networks along with the 

description of mass transfer will allow us to simulate large size pore networks. 

By modifying the input parameters, various networks with different structures can now 

be generated and their textural properties can be calculated. These networks will have to 

correctly represent the textural properties of actual alumina supports. Moreover, the 

determination of effective mass transfer properties from the simulation of mass transfer 

by diffusion in 1D of each pore of the network will allow us to compare the simulated 

effective diffusivity and tortuosity with experimental and correlated data. 

Nevertheless, a numerical validation of the mass transfer model as well as a sensitivity 

analysis to the model parameters of the network algorithm and their impact on both 

textural and mass transfer properties must be investigated. The validation of the mass 

transfer model is available in Appendix III. The next chapters will be dedicated to the 

sensitivity analyses. 
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SENSITIVITY ANALYSES 
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 - NETWORK GENERATION ALGORITHM ANALYSIS CHAPTER V

V.1 INTRODUCTION 

One of the outstanding features of the developed network generation algorithm is related 

to its capacity and highly efficient data storage. Indeed, it was proven possible to create 

extremely large networks: 15000×15000 nodes in 2D and 600×600×600 nodes in 3D, 

containing up to 340 million pores connecting 225 million nodes. The algorithm also has 

a very low computation time: on a Dell desktop computer with a 3.5 GHz Intel Xeon E5 

CPU and 16GB of RAM, it takes about 2 s to build a square pore network with 200×200 

nodes (40 thousand nodes and 56 thousand pores), and about 30 min to build a cubic 

network with 400×400×400 nodes (64 million nodes and 115 million pores). 

In order to test the network generation algorithm, we have studied the textural 

properties of several networks starting from different inputs. Since the networks may 

contain some inaccessible volumes, the first study was dedicated to the impact of the 

inaccessible volume removal on the textural properties. Then, several sensitivity analyses 

were performed towards the impact of the Monte Carlo algorithm variability. Finally, we 

have studied as well the influence of the network parameters, such as the pore diameter, 

the pore length, the maximum connectivity, the dimensionality (2D or 3D), and the pore 

existence probability. 

We have used a range of model parameters capable of generating pore networks within 

the range of the textural properties of actual aluminas textural properties and that are 

presented in Table I-1. 
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V.2 INACCESSIBLE VOLUME SUPPRESSION 

During the network generation, inaccessible pores may have been created. Since these 

pores will not participate on the mass transfer process, their suppression allows reducing 

the computational burden of the dynamic mass transfer simulations. In the present 

study, we intend to check if whether the textural properties change significantly after the 

removal of the inaccessible volume. 

We have represented in Fig. V-1 and Fig. V-2, the catalyst porosity and specific surface 

area obtained for thirty 2D triangular pore networks of maximum connectivity Zmax=6 for 

each tested network size. We have used network sizes of 50x50 and 100x100 and a pore 

existence probability of P=0.7. 

 
Fig. V-1. Catalyst porosity calculated for 2D Zmax=6 networks with P=0.7 before and after the inaccessible 

volume removal. 

 
Fig. V-2. Catalyst specific surface area calculated for 2D triangular networks with P=0.7 before and after the 

inaccessible volume removal. 
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For a pore existence probability of P=0.7, we observe that the textural properties remain 

identical for almost all 30 networks generated. We have calculated the maximum relative 

deviations comparing the textural properties before and after removal (see Table V-1) for 

the two tested network sizes and for the pore existence probability of 0.7 and also at 

P=0.6. It is clear that the inaccessible pore volume that can appear occasionally in some 

of the generated pore networks does not significantly impact their textural properties. 

Table V-1. Maximum relative deviations of the textural properties before and after the inaccessible pores 

removal for 2D networks with Zmax=6. 

Network 
size 

Probability SBET Vp ε Z 

100×100 
P=0.7 0.02% 0.02% 0.005% 0.005% 

P=0.6 0.07% 0.07% 0.03% 0.06% 

50×50 
P=0.7 0.07% 0.07% 0.02% 0.06% 

P=0.6 0.12% 0.12% 0.05% 0.12% 

V.3 MONTE CARLO ALGORITHM VARIABILITY 

To test the network generation tool, several sensitivity analyses on the calculated 

textural properties were performed. In what follows, the influence of the Monte Carlo 

algorithm variability on the required minimum network size and on the number of 

simulations is studied. The corresponding mass transfer properties with respect to the 

required number of simulations are presented in Chapter VI. 

V.3.1 REQUIRED MINIMUM NETWORK SIZE 

Due to the Monte Carlo algorithm variability, a sensitivity analysis is performed to 

determine the minimum network size to use in order to get constant textural properties. 

The analysis was performed for constant Dp and Lp at 10 and 15 nm, respectively. To 

investigate this effect, 1000 networks were generated for several pore existence 

probabilities and network sizes Nx×Ny×Nz. Different connectivity patterns were also 

tested, with maximum connectivities Zmax ranging from 4 to 12. 

As an example, Fig. V-3 - Fig. V-6 contain the results obtained for 2D triangular networks 

(Zmax=6) using P=0.7. The porosity (ε), the connectivity (Z), the specific surface area 

(sBET) and the specific pore volume (vp) are graphically represented for several network 

sizes as a function of the number of nodes. The three curves in each figure correspond to 

the minimum, maximum and average values found among the 1000 networks generated. 
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Fig. V-3. Porosity obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 

 
Fig. V-4. Connectivity obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 

 
Fig. V-5. Specific surface area obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 
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Fig. V-6. Pore volume obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 

 

From Fig. V-3 to Fig. V-6, one observes that the minimum, average and maximum values 

converge as the number of nodes increases, meaning that the Monte Carlo variability can 

be reduced by increasing the number of nodes of a pore network. Taking a 5% maximum 

relative variation on the textural properties leads to a required network size of 10,000 

nodes (100×100 network) for a 2D Zmax=6 network using P=0.7. 

Table V-2 contains the required minimum network sizes obtained for several pore 

existence probabilities and connectivity patterns in 2D and 3D. The minimum network 

sizes were selected at a 5% relative deviation on the textural properties. From Table V-2, 

we may conclude that, from a global point of view, as pore existence probability and 

maximum connectivity increase, so does the required number of nodes of the network. 

Extended data can be found on Appendix IV. 

Table V-2. Required network size for several pore existence probabilities and maximum connectivities. 
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V.3.2 REQUIRED NUMBER OF SIMULATIONS 

Since a single Monte Carlo simulation provides a single random network, its textural 

properties correspond to a single value inside their distribution. To compensate for this 

randomness, several simulations are generally averaged when one uses Monte Carlo- 

based algorithms. With several Monte Carlo simulations, one can calculate an average 

value and a standard deviation for each property, and hence a confidence interval for the 

estimated properties. It is often more convenient to use a relative deviation to 

characterize the range of the confidence interval: 

 
(V-1) 

The goal of this sensitivity analysis is to assess the number of simulations that are 

required in order to obtain textural and mass transport properties with a chosen 

precision. To this aim, 1000 2D networks of size 50×50 with a maximum connectivity of 

Zmax=6, a pore existence probability of P=0.7 and constant Dp and Lp (10 and 15 nm, 

respectively) were generated. The textural properties obtained are represented in Fig. 

V-7 to Fig. V-10. 

For the sample of 1000 simulations, we obtain the following results as average values 

and standard deviations: catalyst porosity ε of 0.71±0.005, an average connectivity Zavg 

of 4.11±0.03, an average specific surface area sBET of 322±9m2·g-1, and a pore volume vp 

of 0.8×10-6±0.02×10-6m3·g-1. As illustrated in Fig. V-7 to Fig. V-10, the relative 

deviations initially decrease rapidly, and show almost constant values of 0.8%, 0.8%, 

2.7% and 2.7% respectively are obtained for the Monte Carlo variability for large 

numbers of simulations. After approximately thirty simulations, the relative deviations 

already reach similar values. 

A confidence interval on an averaged property not only depends on the standard 

deviation of the sample, but also on the sample size. For a sample with N values, the 

standard deviation of the mean is calculated as , while the 95% confidence 

interval for the average is given by , where  is the critical 

value given by Student’s t-distribution. 

For a sample of thirty simulations, we therefore obtain, given as 95% confidence 

intervals, a porosity of 0.71±0.001, an average connectivity Zavg of 4.11±0.01, an 

average specific surface area sBET of 322±3.25 m2·g-1, and a mean pore volume vp of 

0.80×10-6 ±0.01×10-6 m3·g-1. Expressed as relative deviations, the ranges of the 

confidence intervals are therefore equal to 0.3%, 0.3%, 1.0% and 1.0% respectively. 
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Compared to the experimental errors, these deviations are considered to be sufficiently 

adequate. 

 

  
Fig. V-7. Porosity obtained from 1000 2D 50×50 networks with Zmax=6 and P=0.7. 

  
Fig. V-8. Predicted connectivity of all 1000 2D networks of size 50×50 with Zmax=6 and P=0.7. 

  
Fig. V-9. Predicted specific surface area of all 1000 2D networks of size 50×50 with Zmax=6 and P=0.7. 

  
Fig. V-10. Predicted pore volume of all 1000 2D networks of size 50×50 with Zmax=6 and P=0.7. 
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V.4 INFLUENCE OF THE NETWORK GENERATION MODEL PARAMETERS 

In this section, we intend to illustrate the influence of the model parameters on the 

textural properties of the generated pore networks. Several network parameters were 

tested, such as the parallelepiped particle dimensions (Nx and Ny), the pore existence 

probability P, the pore diameter distribution Dp and the pore length Lp. We have also put 

in evidence the relation between the textural properties and the average connectivity. 

These sensitivity studies are performed using 2D networks (Nz = 1) generated from a 

maximum connectivity Zmax=6 with constant Dp and Lp of 10 and 15 nm respectively, and 

a pore existence probability of 0.7. If for instance the sensitivity analysis is performed to 

the pore diameter then, of course, the diameter is varied, otherwise it is fixed to the 

values listed above. The corresponding mass transfer properties will be presented in 

section VI.3. 

V.4.1 INFLUENCE OF THE ASPECT RATIO NX/NY WITH AN EQUAL MAXIMUM NUMBER OF 

NODES 

We have first tested separately the influence of the particle dimensions Nx and Ny (the 

corresponding data is available in Appendix V). 

We have selected five network sizes of constant maximum number of nodes so that, the 

Monte Carlo variability (see section V.3.1) does not interfere in this particular study. 

Since we are using 2D triangular networks with P=0.7, at least 10,000 nodes are 

required (cf. Table V-2). The following Nx×Ny sizes with Nz=1 were chosen: 10×1000, 

20×500, 50×200, 200×50 and 500×20. The mean and standard deviations of the main 

textural properties are graphically represented on Fig. V-11 to Fig. V-14. 

As can be seen in Fig. V-12, the mean connectivity varies from 4.2 to 3.96. Concerning 

the average porosity, specific surface area and pore volume (Fig. V-13 and Fig. V-14), 

they decrease from 0.73 to 0.68, from 352 to 280 m2·g-1 and from 8.8×10-7 to 7.0×10-7 

m3·g-1, respectively. As illustrated in Fig. V-11 to Fig. V-14, a slight reduction is observed 

for the network sizes 200×50 and 500×20. This is partly explained by the way the 

network is constructed. For the examples presented, inlet and outlet nodes are placed at 

the top and bottom of the periodic pore network (with respect to the y-axis) and to these 

nodes, we expressly remove all horizontal pores within the inlet and outlet nodes. This 

means that, as Nx increases (number of inlet or outlet nodes), a larger number of 

horizontal pores are removed. 

When looking to the standard deviations calculated for the different textural properties 

and shown in Fig. V-11 to Fig. V-14, we observe that they remain globally constant. 
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Available data from 2D square networks (Zmax=4) can be found in Appendix V. A rather 

similar behaviour to that from 2D triangular networks is observed. 

 
Fig. V-11. Porosity according to Nx/Ny. 2D networks, Zmax = 6, P = 0.7. 

 
Fig. V-12. Connectivity according to Nx/Ny. 2D networks, Zmax = 6, P = 0.7. 

 
Fig. V-13. Specific surface area according to Nx/Ny. 2D networks, Zmax = 6, P = 0.7. 

 
Fig. V-14. Pore volume according Nx/Ny. 2D networks, Zmax = 6, P = 0.7. 

The effect of the aspect ratio Nx/Ny will especially be important when looking at the 

anisotropy observed on the mass transfer properties presented further on (cf. VI.3.1.). 
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V.4.2 INFLUENCE OF THE PORE EXISTENCE PROBABILITY: P 

The results presented in Fig. V-15 to Fig. V-18 are averages over 30 pore networks at 

different pore existence probabilities. Two maximum network sizes are tested (50×50 

and 100×100). Note that the 50×50 networks are only used to show the impact of the 

standard deviation since it has been shown in Table V-2 that 10,000 nodes are required 

to have a relative deviation lower than 5%. 

In Appendix VI, we present the variation of the average, the variance, the standard 

deviation and the relative deviation of the different textural properties at different pore 

existence probabilities and as a function of the number of samples, ranging from 1 to 30. 

From Fig. V-15 to Fig. V-18, one sees the textural properties (porosity, connectivity, 

particle specific surface area and pore volume) increasing with the pore existence 

probability. For the porosity and the mean connectivity, the effect of the pore existence 

probability is linear, while the increase in specific surface area and pore volume is more 

than linear with increasing pore existence probability. This behaviour is of course in 

agreement with the equations used to calculate the textural properties, which have been 

derived in section IV.2.1. The effect of the maximum connectivity Zmax will be strictly 

analogous to the effect of the pore existence probability. It is also important to note that 

the standard deviations take in general low values. 

Moreover, a slight deviation of the textural properties is observed when comparing the 

values obtained from 50×50 to those from 100×100, the latter network size leading to 

slightly higher mean values and slightly lower standard deviations. 

 

 
Fig. V-15. Mean porosity according to the pore existence probability, P. 2D networks, Zmax = 6. 
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Fig. V-16. Mean connectivity according to the pore existence probability, P. 2D networks, Zmax = 6. 

 
Fig. V-17. Mean sBET according to the pore existence probability. 2D networks, Zmax=6. 

 
Fig. V-18. Pore volume according to the pore existence probability, P. 2D networks, Zmax = 6. 
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Extended data regarding 2D pore networks with a maximum connectivity of Zmax=4 is 

available in Appendix VI. The behaviour of the 2D square networks is similar to the one 

shown here for 2D triangular networks. 

V.4.3 INFLUENCE OF THE PORE DIAMETER: DP 

In order to study the influence of the pore diameter on the textural properties, 30 pore 

networks were generated for two network maximum sizes 50×50 and 100×100. The 

corresponding mass transfer properties are presented further on, in section VI.3.3. 

 

 
Fig. V-19. Porosity according to the pore diameter. 2D networks with Zmax=6 and P=0.7. 

 
Fig. V-20. Connectivity according to the pore diameter. 2D networks with Zmax=6 and P=0.7. 
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Fig. V-21. Specific surface area according to the pore diameter. 2D networks with Zmax=6 and P=0.7. 

 
Fig. V-22. Pore volume according to the pore diameter. 2D networks with Zmax=6 and P=0.7. 
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the porosity, the effect of the pore diameter is quadratic, while the increase in the 
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Fig. V-23 to Fig. V-26 show that as the pore length increases, the catalyst porosity, 

specific surface area and pore volume decrease while the average connectivity remains 

constant, as expected. The porosity can be represented by a hyperbolic function with 

respect to the square of the pore length, which is in agreement with the equations used 

to calculate the textural properties (section IV.2.1). 

Comparing the results for the two maximum network sizes (50×50 and 100×100), 

similar values are obtained for the various textural properties, while the average 

connectivity increases slightly with the network size. Again, the calculated standard 

deviations remain rather low except for the average network connectivity. 

Extended data regarding 2D pore networks with a maximum connectivity of Zmax=4 is 

available in Appendix VIII. The behaviour for these 2D square networks is similar to the 

one shown here for 2D triangular networks. 

 
Fig. V-23. Porosity according to the pore length. 2D networks with Zmax=6 and P=0.7. 

 
Fig. V-24. Connectivity according to the pore length. 2D networks with Zmax=6 and P=0.7. 
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Fig. V-25. Specific surface area according to the pore length. 2D networks with Zmax=6 and P=0.7. 

 
Fig. V-26. Pore volume according to the pore length. 2D networks with Zmax=6 and P=0.7. 

V.4.5 RELATION BETWEEN THE AVERAGE CONNECTIVITY AND THE TEXTURAL 

PROPERTIES 

The link between the network average connectivity, which is defined as the average of all 

the connectivities of the existing nodes within the pore networks, and the textural 

properties was studied taking 30 pore networks in 2D or 3D containing up to 10,000 

nodes. We are here comparing two calculated properties of the model, the textural 

properties as a function of the average connectivity. Indeed, it is the variation of the pore 

existence probability that leads to the variation of the average connectivity. Different 

network configurations are used with maximum connectivities of Zmax=4 (2D square 

networks) and Zmax=6 (2D triangular and 3D cubic networks). 

On Fig. V-27 to Fig. V-29 are gathered the textural properties as a function of the 

average connectivity with respect to the three network configurations: square (Zmax=4), 

0

100

200

300

400

500

14 15 16 17 18 19 20 21

S 
BE

T 
av

er
ag

e 
(m

2 ·
g-1

)

Pore length (nm)

 S BET 100×100
 S BET 50×50

0.E+00

2.E-07

4.E-07

6.E-07

8.E-07

1.E-06

14 15 16 17 18 19 20 21

Vp
 a

ve
ra

ge
 (m

3 ·
g-1

)

Pore length (nm)

 Vp 100×100
 Vp 50×50



 

89 

triangular (Zmax=6) and cubic (Zmax=6). On each type of network, different pore 

existence probabilities were used. For square networks, the probability inputs are: 

, for triangular networks we used:  and 

finally, for cubic networks we have: . 

As can be seen from Fig. V-27 to Fig. V-29, there is a unique behaviour of ε, sBET and vp 

as a function of the average connectivity, regardless the pore existence probability and 

the nature of the network: the three textural properties increase with the average 

connectivity. The porosity increases linearly with the average connectivity, while the 

increase in specific surface area and pore volume is faster than linear with increasing 

average connectivity. This behaviour is completely analogous to that of the pore 

existence probability and is in agreement with the equations used to calculate the 

textural properties, which have been derived in section IV.2.1. 

 
Fig. V-27. Catalyst porosity as a function of the average connectivity. 

 
Fig. V-28. Specific surface area as a function of the average connectivity. 
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Fig. V-29. Particle pore volume as a function of the average connectivity. 
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V.5 CONCLUSIONS 

From the Monte Carlo variability study, we have concluded that the initial or maximum 

network size (maximum number of nodes of the network) clearly impacts the textural 

properties of the networks. For different pore existence probabilities and for different 

network configurations, we have determined the required initial network size in order to 

reach constant textural properties. For instance, for a 2D Zmax=6 configuration and at a 

pore existence probability of 0.7 and at a maximum relative error of 5%, 10,000 nodes 

are required. We have also tested the influence of the number of samples on the 

calculated average values for the textural properties, and we showed that for the 2D 

Zmax=6 configuration and for P=0.7, 30 network samples are required to reach calculated 

values with a low standard deviation. 

Concerning the sensitivity analyses, we may conclude that the increase on both the pore 

existence probability and the pore diameter, leads to an increase in the porosity, the 

specific surface area and the catalyst pore volume. We have also shown the positive 

correlation between these properties and the average connectivity of the network. 

Concerning the pore length, it has an opposite effect, the textural properties decrease 

when the pore length is increased. Regarding the separate study on the parallelepiped 

dimensions Nx and Ny, taking a 10,000 nodes network size, one observes rather constant 

standard deviations. 

When looking at the values of the mean textural properties of the generated pore 

networks, we have shown that, by varying the input values, we can generate pore 

networks with widely varying properties: catalyst porosities ranging between 0.55 and 

0.86, specific surface areas between 3.95×10-7 and 1.54×10-6 m3·g-1 and pore volumes 

between 3.95×10-7 to 1.54×10-6 m3·g-1. As these ranges comprise the values that are 

typical for commercial alumina supports, an optimization tool can be used to find the 

appropriate inputs in order to represent actual gamma alumina supports as characterized 

by their measured textural properties. A further chapter will be focusing on this part. 

The next chapter will be dedicated to a sensitivity analysis of the Monte Carlo algorithm 

and of its parameters on the mass transfer properties for the studied pore networks 

presented in this chapter. 
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 - MASS TRANSFER MODEL ANALYSIS CHAPTER VI

VI.1 INTRODUCTION 

In order to test the mass transfer model, the analyses performed for the network 

generation algorithm, where the impact on the textural properties was observed (cf. 

Chapter V), is here applied to the continuum mass transfer properties, i.e. the effective 

diffusion coefficient or the diffusional tortuosity. Due to memory storage problems, the 

numerical solvers of the mass transfer model limit the sizes of the networks that can be 

simulated. Despite this, networks of 200×200 nodes containing up to 80,000 pores have 

been simulated. First, we will describe how to calculate the effective (macroscopic) mass 

transfer properties from the discrete (microscopic) 1D mass transfer simulation by 

diffusion through a periodic pore network. 

VI.1.1 ESTIMATION OF THE EFFECTIVE DIFFUSION COEFFICIENT 

In order to be able to compare data with some of the available theoretical and empirical 

correlations or with experimental data (Kolitcheff, 2017) relating the catalyst support 

tortuosity to its porosity, it is necessary to determine continuum mass transfer 

properties. To this end, we use the pore network mass transfer model as described in 

section IV.3. 

As illustrated in Fig. VI-1, starting from an initial condition where the network has a 

concentration for species  equal to 0 everywhere, a concentration difference Δci=ci1-

ci0>0 of 1mol·m-3 is suddenly imposed at t=t0 (step function) between the inlet and the 

outlet nodes of an infinite plate in the x direction. To satisfy the latter condition, a 
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periodic network in the x axis is built. For each pore belonging to the periodic network, 

mass transfer by diffusion is simulated using a molecular diffusion coefficient, Dim. 

 
Fig. VI-1. Illustration comparing the discrete (microscopic) approach to a (macroscopic) continuum approach. 

 

The outlet flux of species  is then calculated according to equation (VI-1) at the pore 

network level. In equation (VI-1), the sum is calculated over the pores placed at the 

outlet of the network. 

 (VI-1) 

At the macroscopic level, the transfer process is assumed to occur only according to the 

y axis in a unique cylindrical straight fluid macropore. The effective diffusion coefficient is 

defined as follows (Ruthven, 1984): 

 (VI-2) 

with  the effective diffusion coefficient and Ji the outlet flux in the periodic network. 

At the final steady state, the flux Ji is given by: 

 (VI-3) 

with  the thickness of the infinite plate. From this equation, the effective 

diffusion coefficient can be obtained as follows: 

 (VI-4) 

As the molecular diffusion coefficient Dim used in the discrete simulations is known, the 

tortuosity can be calculated from equation (IV-5) (see Appendix I): 

 (VI-5) 
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In our simulations, we have taken for the molecular diffusion coefficient a value of 

= , which corresponds to the order of magnitude of a molecular 

diffusion coefficient in a liquid phase. 

VI.2 MONTE CARLO ALGORITHM VARIABILITY 

The 1D mass transfer simulation by diffusion was performed in order to investigate the 

sensitivity of continuum mass transfer properties to the algorithm, using the networks 

previously generated in Chapter V (only the required minimum network size influence 

from section V.3.1 is not here investigated in terms of mass transfer properties). The 

following sections show the results of this investigation. 

VI.2.1 REQUIRED NUMBER OF SIMULATIONS 

The estimation of the required number of simulations was performed using 1,000 2D 

networks of size 50×50 with a maximum connectivity of Zmax=6 and a pore existence 

probability of P=0.7. 

The response of the effective diffusion coefficient is similar to that of the textural 

properties (see Fig. VI-2). The relative deviation decreases until reaching a constant 

value of 6.7%. Averaging over a sample of 1,000 simulations, the effective diffusion 

coefficient (Dieff) amounts to 7.8×10-11 m2·s-1, while its standard deviation is 0.5×10-11 

m2·s-1. 

Again, for a sample with N values, the standard deviation of the mean is calculated as 

, while the confidence interval for the average is given by 

. After dividing by the average value of the effective diffusion coefficient, the 

confidence interval can be expressed as a fraction of the average value. For a sample of 

30 simulations, the confidence interval expressed as a relative deviation amounts to 

, which is considered to be sufficiently adequate. 

 

  
Fig. VI-2. Predicted effective diffusion coefficient of all 1000 2D networks of size 50×50 with Zmax=6 and P=0.7 
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We have gathered in the table below (Table VI-1) the relative deviations of each textural 

and mass transfer property for two different network sizes. One observes a considerable 

decrease in the relative deviation with the increase of the number of nodes of the 

network. 

 
Table VI-1. Relative deviations from textural and mass transfer properties of 1000 generated pore networks. 

Relative 

deviations 
  Zavg SBET Vp Dieff 

10×30  2.3% 2.2% 7.6% 7.6% 16.7% 

50×50  0.8% 0.8% 2.7% 2.7% 6.7% 

 

VI.3 INFLUENCE OF THE NETWORK GENERATION MODEL PARAMETERS 

In this section are shown the continuum mass transfer properties regarding the 

sensitivity towards several network parameters, such as: the parallelepiped particle 

dimensions, the pore existence probability P, the pore diameter Dp and the pore length 

Lp. The relation between the textural properties and the average connectivity is also 

presented. 

VI.3.1 INFLUENCE OF THE ASPECT RATIO NX/NY WITH A CONSTANT MAXIMUM NUMBER OF 

NODES 

The effective diffusion coefficients are here determined for the networks generated to 

study the influence on the particle dimensions Nx and Ny, Nz being equal to 1. The results 

for the textural properties have been shown in section V.4.1. This study was performed 

taking an identical maximum number of nodes of 10,000 nodes and testing the influence 

of the aspect ratio Nx/Ny. The pore networks are 2D triangular and periodic along the x-

axis, therefore representing an infinite plate. In the mass transfer simulations, diffusion 

will occur along the direction of the y-axis. 

For network sizes 10×1000, 20×500, 50×200, 200×50 and 500×20 containing an equal 

maximum number of nodes, the mean and standard deviations of the mass transfer 

properties are graphically represented on Fig. VI-3 and Fig. VI-4, while the textural 

properties have been discussed in section V.4.1. 

Fig. VI-3 contains for each network size, the 30 pore networks previously presented that 

have been mass transfer simulated in order to obtain the corresponding tortuosity. As we 



 

96 

can see from this figure (Fig. VI-3), the dispersion of the results is very clear for lower Nx 

and this is confirmed in Fig. VI-4. 

 
Fig. VI-3. Predicted tortuosity from mass transfer simulations as a function of the catalyst porosity for 5 

different 2D Zmax=6 network sizes according to Nx/Ny. 

Fig. VI-4 shows the average tortuosities for each network size varying between 1.26 and 

1.31 for a porosity ranging from 0.68 to 0.73. The aspect ratio Nx/Ny of the pore network 

does not seem to have a significant impact on the average tortuosity. The overall 

average tortuosity amounts to 1.28 for an overall average porosity of 0.72. 

 
Fig. VI-4. Predicted tortuosity for 5 different 2D Zmax=6 network sizes as a function of the aspect ratio Nx/Ny. 

When analysing the standard deviation of the tortuosity factor (Fig. VI-4), a lower 

standard deviation is observed for higher values of Nx, that is for lower values of Ny. This 

result may be explained as follows: for low values of Nx, a narrow (but thick) sample 

system is infinitely repeated along the x-axis, while for high values of Nx, a wide (but 

thin) sample system is infinitely repeated along the x-axis. This means that, for low 

values of Nx, there is a limited number of diverse pathways through the infinite plate, 

while, for high values of Nx, the number of diverse pathways through the infinite plate 

will be much higher. Hence, one can expect that for higher values of Nx, the impact of 

more “extreme” paths between the inlet and outlet nodes (either with =1 or with >>1) 

will be limited because it will be averaged out over a large number of tortuous pathways. 
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Moreover, if we increase the characteristic length of diffusion, that is if we increase Ny, 

the probability to find a given amount of bends along the y axis also increases and the 

dispersion of the results that is the standard deviation increases. Thus, as Nx increases 

and Ny decreases the standard deviation of the tortuosity will decrease, even though the 

average tortuosity does not significantly depend on the aspect ratio Nx/Ny. 

We shall recall that Nx and Ny have a similar impact on the textural properties, while for 

the mass transfer properties and due to the fact that diffusion only occurs in the y 

direction for periodic networks along the x-axis, their impact differs. 

This study on the impact of the aspect ratio Nx/Ny was also performed for square 2D pore 

networks (2D Zmax=4) and a similar behaviour was observed (cf. Appendix V). 

VI.3.2 INFLUENCE OF THE PORE EXISTENCE PROBABILITY: P 

The tortuosity ( ) obtained via the mass transfer simulation for the several networks 

presented in section V.4.2, is represented in Fig. VI-5 as a function of porosity and for 

several pore existence probabilities. Numerous theoretical correlations (Wakao and 

Smith, 1962; Tomadakis and Sotirchos, 1993; Beeckman, 1990) and empirical 

correlations (Weisz and Schwartz, 1962; Akanni and Evans, 1987) for porous catalysts 

are also available, and large variations can be observed depending on their hypotheses 

or origin. 

From Fig. VI-5, we observe a decrease in the tortuosity factor with the catalyst porosity, 

which is an expected behaviour. If we reduce the pore existence probability, we remove 

a certain number of pores resulting in a lower porosity and creating a more tortuous path 

for the diffusing molecules. When comparing the simulated data, the lowest network size 

50×50 has a larger standard deviation than the 100×100 network size, as expected, but 

the average tortuosities are similar for the two network sizes. 

Concerning the theoretical and empirical correlations, the correlation from Tomadakis 

and Sotirchos (1993) has similar values to those simulated (1.16 to 1.40 ± 0.06). 

Indeed, this theoretical correlation is based on the simulation of random arrays of 

cylinders, quite similar to the pore networks that are being studied. 

Additional data regarding 2D pore networks with a maximum connectivity of Zmax=4 is 

available in Appendix VI, where a similar trend for the relation of the tortuosity-porosity 

was observed for the 2D square networks. However, for a given porosity, the tortuosity 

values for the 2D square networks are different from the tortuosities obtained for 2D 

triangular networks (this is also observed in section VI.3.5). Contrary to what the 

correlations stick to, this observation leads us to the conclusion that the catalyst porosity 
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is not the only factor that comes into play in the tortuosity variation, but that the 

geometry of the porous structure is also critical. 

 
Fig. VI-5. Variation of the predicted tortuosities as a function of porosity for several pore existence probabilities. 

Correlations taken from Akanni and Evans (1987), Beeckman (1990), and Shen and Chen (2007). 

VI.3.3 INFLUENCE OF THE PORE DIAMETER: DP 

In order to study the influence of the pore diameter on the mass transfer properties, 

mass transfer by diffusion was simulated within the 30 pore networks generated for each 

Dp from section V.4.3. Fig. VI-6 shows that the pore diameter does not influence the 

continuum mass transfer properties. Indeed, the simulated mass transfer is governed not 

by the diameter of the pore (Reyes et al., 1989) but by its length, since our model is 

based on a 1D diffusion simulation. 

 
Fig. VI-6. Variation of the average predicted tortuosities as a function of porosity for several pore diameters. 2D 

networks with Zmax=6 and P=0.7 and a network size of 100×100. 
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Further data obtained for 2D square pore networks with maximum connectivity Zmax=4 

and a pore existence probability of P=0.97 is available in Appendix VII. The same 

behaviour is found comparing the 2D square networks. 

VI.3.4 INFLUENCE OF THE PORE LENGTH: LP 

The impact of the pore length on the mass transfer properties was studied simulating the 

diffusion process on the 30 pore networks studied for each Lp on section V.4.4. For each 

generated network, mass transfer by diffusion within an infinite plate was simulated in 

order to calculate the average tortuosity. 

The diffusive data presented in Fig. VI-7 shows that the tortuosity factor keeps a 

constant value when varying the pore length. This may seem surprising because the pore 

length governs the mass transfer process by diffusion, as mentioned in the previous 

section (VI.3.3). However, in our pore networks Ny=Ey/Lp (see section IV.2) and as we 

increase the pore length Lp, we also increase Ey with constant Ny (fixed network size). 

This means that the increase in the pore length generates an increase in the 

characteristic continuum length of diffusion (plate thickness), therefore showing no 

impact on the mass transfer properties although the porosity decreases. The mean 

tortuosity found takes a value of 1.29±0.06 for average porosities varying from 0.40 to 

0.72. 

Additional data regarding 2D pore networks with a maximum connectivity of Zmax=4 is 

available in Appendix VIII. The same behaviour was observed for the 2D square 

networks. 

 
Fig. VI-7. Variation of the average predicted tortuosities as a function of porosity for several pore lengths and 

taking 2D pore networks with Zmax=6 and P=0.7. 
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VI.3.5 RELATION BETWEEN THE AVERAGE CONNECTIVITY AND THE MASS TRANSFER 

PROPERTIES 

The impact of the network connectivity on the mass transfer properties was studied 

taking the 30 pore networks in 2D or 3D containing up to 10,000 nodes with different 

configurations, as shown in section V.4.5, where the textural properties were discussed. 

It is also recalled that the average connectivity was varied by modifying the maximum 

connectivity and by modifying the pore existence probability. 

Fig. VI-8 shows a clear correlation between the network average connectivity Zavg and 

the tortuosity: for a given network configuration the tortuosity decreases with increasing 

Zavg as expected. 

 

 
Fig. VI-8. Variation of the predicted tortuosities as a function of the average connectivity, having varied the 

pore existence probability. 3 sets of data are available: 2D Zmax =4, 6 and 3D Zmax=6. 

Comparing the 2D square (P=0.98) with 2D triangular (P=0.65) and 3D cubic networks 

(P=0.71), for a given average connectivity, the tortuosity increases with the maximum 

connectivity Zmax and is greater in a 2D network than in a 3D network, for the same Zmax. 

This is probably due to the lower pore existence probability that is used for 2D triangular 

networks than for 3D cubic networks and subsequently, for 2D square networks. 

We may recall that at equal average connectivities, we have observed in section V.4.5 

that the textural properties of the three different configurations have similar values. So, 

this leads us to conclude that at equal average connectivities and similar catalyst 

porosities (cf. section V.4.5, Fig. V-27), it is the non-isotropy of the system (different 

pore existence probabilities for the three configurations) that will make a difference on 
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the tortuosity factor, regardless of the initial configuration of the network. This also 

means that the porosity is not necessarily the key-parameter but could rather be the 

“surface porosity” defined as the ratio of the pores surface with a projection in the 

diffusion direction and the total surface of pores. 

VI.3.6 COMPARISON OF THE PREDICTED TORTUOSITIES WITH THE EFFECTIVE MEDIUM 

THEORY FOR CONSTANT PORE DIAMETERS 

We have also compared, the relation of the tortuosity with the average connectivity to 

the apparent tortuosity obtained via the effective medium theory (EMT), see section 

III.2.1.2 and equation (III-23). The results obtained in Fig. VI-9 are averages from 30 

pore networks for each pore existence probability. From this figure, it is clear that for all 

configurations the EMT tortuosities are very high compared to the predicted tortuosities. 

Taking the EMT tortuosities, at equal average connectivity, the different network 

configurations give an identical tortuosity whereas the simulated tortuosities differ. 

 
Fig. VI-9. Comparison of the predicted tortuosities (curved lines) as a function of the average connectivity to 

the apparent tortuosities obtained via the EMT (dotted plots), having varied the pore existence probability. 

Taking 2D networks with constant pore diameter and length. 

Even though it has not been represented on Fig. VI-9, we have also observed that for 

both 2D configurations and at a pore existence probability of P=1.0, the value of the 

apparent tortuosity obtained from the EMT abruptly decreases to a value of 1.62 for 2D 

Zmax=4 with Zavg=3.94 and to a value of 1.87 for 2D Zmax=6 with Zavg=5.92. If we look at 

the predicted tortuosities obtained via our model, for networks having P=1.0, the 

tortuosity factor takes simply the value of =1.0. 
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VI.3.7 COMPARISON OF THE PREDICTED TORTUOSITIES WITH THE EFFECTIVE MEDIUM 

THEORY FOR PORE DIAMETER DISTRIBUTED NETWORKS 

In the previous section VI.3.6, the comparison of the simulated tortuosities to the 

tortuosities obtained from the application of the effective medium theory was performed 

for networks with a constant pore diameter and a constant length. In this section, we 

intend to compare both approaches for networks with a pore diameter distribution, while 

keeping a constant length. 

To this aim, we have generated, for each tested probability, thirty 2D triangular networks 

(Zmax=6) with a similar pore number distribution with a left skewed shape, as illustrated 

in Fig. VI-10. 

 

 
Fig. VI-10. Illustrative pore diameter distribution taken from a 2D triangular network with P=1.0 used in the 

comparison of the predicted tortuosities with the EMT. 

 

We have gathered in Fig. VI-11, for several pore existence probabilities: 

, the simulated and calculated EMT tortuosities. 

As we can see from Fig. VI-11, both approaches present a similar behaviour, i.e. the 

tortuosity decreases with the increase in average connectivity. We also observe that the 

effective medium theory keeps overestimating the tortuosity values, as already shown 

for networks with constant diameter and pore length. 
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Fig. VI-11. Comparison of the predicted tortuosities as a function of the average connectivity to the apparent 

tortuosities obtained via the EMT, having varied the pore existence probability. Taking 2D networks with Zmax=6 

and a pore diameter distribution. 

VI.4 CONCLUSIONS 

From the Monte Carlo variability study, we have concluded that after simulating 1000 

pore networks with 2D Zmax=6 and P=0.7, the relative deviation (= standard deviation / 

mean value) of the effective diffusion coefficient levels off at a value of 6.7%. For a 

sample of 30 simulations, a standard error on the mean effective diffusion coefficient 

represents a relative error of 1.3%. 

Concerning the various sensitivity analyses performed, we can conclude that the 

variation of the pore diameter does not influence the mass transfer properties as a 

consequence of the main hypothesis of our model of 1D diffusion at the microscopic 

scale. The pore length on the other hand completely governs the mass transfer 

simulation at the microscopic scale. However, at the macroscopic scale, we have actually 

obtained constant tortuosity factors when the pores length was varied yet, this is merely 

due to the fact that when we increased the pore length, the thickness of the periodic 

plate was also increased, as the number of nodes was kept constant at Ny=Ey/Lp. 

The sensitivity analysis performed on the pore existence probability, where we have put 

in evidence a graphical representation of the tortuosity as a function of the catalyst 

porosity, infers that the increase in the pore existence probability reduces the tortuosity 

factor. This was an expected result since reducing the probability leads to a removal of 

more pores thereby creating more tortuous pathways, hence increasing the tortuosity 

factor. The comparison of the correlated tortuosity data with the simulated tortuosities is 
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in agreement with the Tomadakis and Sotirchos (1993) correlation. This is also consistent 

since this specific correlation is based on the simulation of random arrays of cylinders 

very similar to those we generate. 

From the relation between the tortuosity with the average connectivity, a unique 

behaviour is exhibited, whatever the pore existence probability and the nature of the 

network. At identical average connectivities, we observed that all 3 configurations led to 

rather similar porosities (cf. section V.4.5, Fig. V-27). So, for constant average 

connectivity and at iso-porosity, we could say that regardless the initial network 

configuration (Zmax), it is the non-isotropy of the system that comes into play i.e. the 

decrease in pore existence probability. For the highest tortuosity obtained, the lower the 

pore existence probability is used amplifying the anisotropy of the system. 

Regarding the parallelepiped dimensions Nx and Ny, the increase in the aspect ratio Nx/Ny 

at equal initial network sizes shows a reduction on the standard deviation of Di,eff. As the 

number of diffusive pathways increases with increasing aspect ratio, the dispersion in the 

tortuosity results is decreased. 

The comparison of the simulated tortuosities as a function of Zavg with the effective 

medium theory (EMT) shows that this theory overestimates the simulated tortuosity 

values. 

We have observed in this chapter that the tortuosity factors obtained via the simulation 

of our 2D and 3D networks are rather low ( <1.5) when compared to the experimental 

data that yields values ranging from 2 to 3. 
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DYNAMIC STUDY 
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 - DYNAMIC BEHAVIOUR OF THE SYSTEM CHAPTER VII

In this section, we intend to compare the transient behaviour of both the discrete and the 

pseudo-homogeneous continuum models, once the tortuosity is determined from the 

steady state behaviour, as described in section VI.1.1. This study can be very important 

to validate the continuum representation and it could also be a future tool to the 

comparison with experimental transient data obtained via inverse chromatography, as we 

have been comparing the simulated tortuosity factors to experimental tortuosities 

estimated by this technique. 

First, we will show some introductory and very simple case studies regarding the discrete 

dynamic response only in order to understand the effects of dead volumes, and of the 

network volume. 

A preliminary example is then studied where the transient mass transfer responses of the 

discrete and the pseudo-homogeneous models are compared using a 2D triangular 

network with P=1.0. We may recall that the discrete model makes use of a molecular 

diffusion coefficient and the continuum model uses an effective diffusion coefficient in a 

single pore with a macroscopic pore length that is equal to the plate thickness of the pore 

network (discrete model). The comparison of the two models is based on the outlet flux. 

Subsequently, we pursued the study by comparing, for simple cases, the dynamic 

responses of the discrete model and the pseudo-homogeneous model. Finally, the 

development towards our general 2D networks is presented. 

VII.1 INTRODUCTORY CASE STUDIES FOR THE DISCRETE MODEL 

In this section, the dynamic response of the discrete model is studied. The effects of the 

network volume, the presence of a dead volume and also of the initial conditions are 
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considered, the latter being available in Appendix IX. In the simulations performed, we 

have used constant pore diameter of 10×10-9 m and a constant pore length of 15×10-9 

m. 

VII.1.1 EFFECT OF THE NETWORK VOLUME 

In order to understand the effect of the pore volume on the dynamic response of a pore 

network, we have simulated the dynamic response for CS 1. This is simply a discrete 

model with three pores in series. In the simulations, three different diameters for the 

horizontal pore, D2 (2nd pore, cf. Fig. VII-1) were used. The chosen diameters for this 2nd 

pore are given in Table VII-1. 
Table VII-1. Effect of the network volume on the dynamic responses. Variation of the 2nd pore diameter. 

CS Diameter, m Volume of the 2nd 
pore , m3 

Network pore 
volume , m3 

1a    

1b    

1c    

 
Fig. VII-1. Dynamic responses of the inlet and outlet flux for CS 1, having varied the diameter of the horizontal 

pore. 

For these three different diameters, the dynamic responses in terms of inlet and outlet 

flux are represented graphically in Fig. VII-1. A binary mixture is used with species A 

diffusing from the inlet node at the top of the network to the outlet node that is 

positioned at the bottom. The initial condition with respect to species A is 
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 and the boundary conditions at the inlet and outlet nodes are:  and 

. 

When the diameter of the horizontal pore is increased, the pore volume is increased and 

the mass transfer resistance of the network decreases. Indeed, the resistance for each 

pore is given by the following equation: 

 

The global resistance of the network that is the sum of all resistances, for cases 1b and 

1c is smaller, yielding higher flows and also higher fluxes at the outlet since, the 

diameter of the outlet pore is kept constant (see Fig. VII-1). 

When looking to the dynamic responses and taking the fact that the capacitive volume 

increases, we expect to obtain different dynamic responses. The sequence of delays we 

expect to find is ,  and, , which is in good agreement with Fig. VII-1. 

To confirm the exactness of the numerical tools, we have calculated the surface area 

between the inlet and outlet flux by integrating along the time step as follows: 

 (VII-1) 

with  the inlet and outlet flux,  the time step used in the integration method 

to calculate the number of moles and , the surface of a pore at the inlet or outlet, 

which are identical in case study 1. The calculated integral is compared to the variation of 

the number of moles in the network: 

 

 
(VII-2) 

with the average concentration within the network equal to . 

Table VII-2. Estimated number of moles obtained from the inlet and outlet flux. Effect of the network volume. 

Diameter, 
m 

Theoretical 
n, mol 

Estimated n, 
mol 

tstep=1×10-7s 

Estimated n, 
mol 

tstep=5×10-9s 

Relative error 

1×10-

7s 
5×10-

9s 

    13% 4% 

    10% 3% 

    8% 3% 
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The estimated number of moles for a time step of 5×10-9s is very similar to the 

theoretical number of moles with an error of 3 to 4%. For higher time steps, the relative 

errors increase as we can see from Table VII-2. 

VII.1.2 EFFECT OF A DEAD VOLUME 

In order to understand the effect of adding a dead volume to a given pore network CS 1, 

CS 11 and CS 11b are used (Fig. VII-2). The general definition of a dead volume is a 

volume in which there is a zero flux during the steady state regime. To CS 1 we have 

added a dead volume, resulting in CS 11 and CS 11b that differ only in where the dead 

volume is placed. 

In order to explain the effect of the network volume, the concept of percolating volume 

and capacitive volume must first be defined. If we are under a steady state regime, the 

percolating volume is the volume where the diffusion process takes place, whereas the 

capacitive volume corresponds to the volume of the network including for instance, dead 

volumes that do not participate in the steady-state diffusion process (Fdead-end=0 during 

the steady state). And as we quote from Reyes et al. (1989), the dead-end porosity does 

not contribute to the net transport, and should not be included in the calculation of the 

net pore volume available for diffusion. 

In Fig. VII-2, the dynamic responses in terms of the inlet and the outlet flux are 

displayed. The initial and boundary conditions taken in the previous section are used. 

Cases CS 1, CS 11 and CS 11b have an equal percolating volume but the capacitive 

volumes of cases CS 11 and CS 11b are larger than their percolating volumes, due to the 

presence of the dead volume. Also, . Since all these networks 

have an identical percolating volume, an identical steady state is expected for CS 1, CS 

11 and CS 11b, which is verified in Fig. VII-2. 

Concerning the dynamic responses and as we can see from the inlet fluxes in Fig. VII-2, 

CS 11b and CS 11 are delayed compared to CS 1. This is due to the fact that CS 11 and 

CS 11b have a larger capacitive volume than CS 1. Also, CS 11b has an extra delay with 

respect to CS 11 that is explained by the number of moles that is retained in the dead 

volume on each CS (11 or 11b). Since, the dead volume from CS 11b is closer to the 

inlet node that has a boundary condition of , its concentration at steady 

state is necessarily larger than that from the dead volume in CS 11, placed near the 

outlet node with .  
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Fig. VII-2. Dynamic responses of CS 1, 11 and 11b, observation of the dead volume effect. 

Let us remark as well that, as is visible in Fig. VII-2, the outlet fluxes from CS 11 and CS 

11b are identical. The difference between these two networks is indeed only sensitive to 

their inlet nodes. If instead of filling process, we simulate a purging process we would 

have a flux sensitive to the outlet nodes, as shown in Appendix IX, when testing different 

initial conditions. 

We have also studied the dynamic response for larger discrete pore networks with an 

increased diffusion path, by means of CS 30, illustrated in Fig. VII-3. To this network, we 

have added a dead volume placed at different positions of the network, resulting in CS 

31, CS 32 and CS 33. Within these case studies we created pore networks with dead 

volumes placed either close to an inlet node or near an outlet node. The same initial and 

boundary conditions are used as in the previous study 

. The addition of the dead volumes to CS 30 does not influence 

the steady state regime, since all cases have identical percolation volumes and, the 

diffusional tortuosity is simply τ=1.96. 
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Fig. VII-3. Dynamic response in terms of the inlet and outlet flux for the discrete (microscopic) approach of 

case studies 30, 31, 32 and 33. Illustration of the pore network for the different case studies. 

If we look at the outlet transient responses in Fig. VII-3, we have practically a match for 

all case studies with dead volumes, since the perturbation created by the dead volumes 

is only reflected on the inlet flux. Logically, the sequence by which the molecules would 

leave the different networks is CS 30, 32, 33 and finally, 31. This means that CS 30 has 

a lower characteristic time than CS 32 and so on, which is confirmed with Fig. VII-3. This 

sequence of delay is mainly due to the fact that CS 30 does not have any dead volume 

and to the disposition of the dead volumes in the different CS. 

In CS 31, the number of molecules delayed in the dead volumes is greater than any 

other case study. As we may recall, the concentration gradient imposed by the boundary 
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conditions is 1 mol·m-3, since we have a concentration of 1 and 0 mol·m-3, for the inlet 

nodes and the outlet nodes, respectively. That means that for CS 31, the steady state 

concentration in the dead volume is uniform and close to 1.0, since the dead volume is 

placed near the inlet node. For CS 33, the concentration of the dead volumes is going to 

vary from 1 to 0 mol·m-3. Finally, due to the fact the dead volume is placed close to the 

outlet node for CS 32, the steady state concentration in the dead volume is close to 0, so 

a reduced amount of molecules is delayed. Case studies 1, 11 and 11b have already 

clarified this point. 

The following section is dedicated to the comparison of the dynamic response of the 

discrete model and the pseudo-homogeneous continuum model for simple cases. 

VII.2 COMPARISON OF THE TRANSIENT RESPONSES FOR THE DISCRETE MODEL AND THE 

CONTINUUM MODEL 

In order to compare the transient response of our discrete model with that of the 

pseudo-homogeneous continuum model, as illustrated in Fig. VI-1 from section VI.1.1, 

we have simulated the mass transfer by diffusion along a 50×50 pore network of 

maximum connectivity Zmax=6 and a pore existence probability of P=1.0, meaning that 

all pores from the initial grid exist. In total, 7,500 partial differential equations are 

simulated within this network. 

 
Fig. VII-4. Outlet flux given by the discrete (microscopic) and continuum (macroscopic) models. 2D network 

with Zmax=6 and P=1.0. 

Fig. VII-4 shows that both approaches lead to identical steady state outlet fluxes since 

the effective diffusion coefficient has been obtained to satisfy these conditions, with a 

diffusional tortuosity of 1.0. On the contrary, the dynamic behaviour of the two models is 

different: the continuum (macroscopic) model response is faster than that of the discrete 
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(microscopic) model, which means that the molecules in the discrete pore network are 

retained longer. 

To understand this difference in time delay, several hypotheses can be considered. The 

1st
 hypothesis (Hypothesis 5) is related to a possible difference between the pore 

volume fraction and the pore surface fraction. For a given surface element of a given 

pore network, the pore surface fraction can be translated into the ratio of all pore 

surfaces intersecting the surface element divided by the percolating pores surface, i.e. 

the surface ratio of the total number of pores divided by the pores with a projection of 

the diffusion path in the y-axis in the surface element. As an example, for a 2D triangular 

network of size 50×50 and a pore existence probability of 1.0 an average surface 

porosity of 0.67 was found whereas the catalyst porosity takes a value of 1.0. A 2nd 

hypothesis (Hypothesis 6) is linked to the possibility of having different capacitive 

volumes for the two models, i.e. the presence of dead volumes in the discrete pore 

network. 

As far as the 1st hypothesis is concerned, let us consider the mass balance of species i in 

a continuum model with a different surface fraction from the ordinary volumetric porous 

fraction (porosity): 

 (VII-3) 

At a constant correction factor  to the classical continuum mass balance where  

and  are implicitly considered to be equal, the mass balance is then defined as follows: 

 (VII-4) 

Considering a pore network that is sufficiently large, the surface fraction can be 

translated into a volume. Hence, the correction factor is simply the available/capacitive 

pore volume of the discrete network divided by the pore volume of the network that 

would participate in the diffusion process given a continuum model (i.e. those who have 

a diffusion projection in the y-axis): 

 (VII-5) 

In the next sections, we try to clarify the origin of the time delay observed between the 

responses of the discrete network and the continuum model observed in Fig. VII-4. We 

will first start by comparing the responses of the discrete model to those of the 

continuum model for simple case studies. Then, to each of them, a dead volume is added 

and the model’s responses are compared. Finally, networks having a larger thickness will 
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be tested and the overall results will lead us to the final conclusions on our 2D pore 

networks. 

VII.2.1 SIMPLE CASE STUDIES FOR THE COMPARISON OF THE TRANSIENT RESPONSES OF 

THE DISCRETE MODEL AND THE CONTINUUM MODEL 

In Fig. VII-5 are represented two simple networks under consideration and the simulated 

dynamic responses obtained during a filling process. The green and purple solid lines 

correspond to the outlet fluxes obtained via the discrete (microscopic) approach, 

respectively for the first and second case studies (CS 1 and CS 2), whereas the dashed 

plots correspond to the fluxes obtained via a continuum (macroscopic) approach. The 

responses of the continuum model have been obtained with and without the correction 

factor applied to the accumulation term, see eq. (VII-4) and (VII-5). 

 
Fig. VII-5. Comparison of the predicted outlet flux in transient regime by discrete (microscopic) and continuum 

(macroscopic) models for case study 1 and 2. 

The first observation that we may take from Fig. VII-5 is related to the steady state 

regimes. For each case study, the same steady state is obtained for the two models. This 

is expected since the effective diffusion coefficient is determined to satisfy this constraint. 

Moreover, CS 1 and CS2 exhibit different steady state regimes due to the fact that CS 2 

has a larger percolating volume. 
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The steady state fluxes obtained take the following values: 

 and . The effective diffusion coefficient of species A is 

then  and . A geometric 

tortuosity was also calculated and compared to the diffusional tortuosity. As all pores 

have the same length and diameter (we have used equal Dp and Lp for all pores), the 

geometric tortuosity is simply calculated as the number of pores through which the 

molecules diffuse within the discrete pore network divided by the number of pores that 

correspond to the thickness of the plate. For CS 1, we find that . For both 

models, an identical value for each case study is found. The estimated diffusional and 

geometric tortuosities are:  and . 

As far as the transient behaviour is concerned, it can be seen in Fig. VII-5 that the 

transient responses of the discrete pore network and those of the continuum model differ 

significantly. However, when a correction factor of CF of 3/2 = 1.5 for CS 1 and 

CF=4/2=2.0 for CS 2 are applied to the dynamic response of the continuum model, a 

good agreement is found. For these simple case studies, the correction factor can be 

simply imagined as the volume of pores in the discrete representation divided by the 

volume of the continuum representation. We can define CF by the number of pores 

instead of taking the volume of pores since we have a constant pore diameter and a 

constant pore length. The remaining case studies can be found in Appendix IX and 

section IX.2. 

 
Fig. VII-6. Diffusional tortuosity as a function of the geometric tortuosity from case studies 1 to 10. 

Fig. VII-6 compares the diffusional and geometric tortuosities for all case studies from 1 

to 10 (extra data is available in Appendix IX). For each case study, the diffusional 

tortuosity is identical to the geometric tortuosity. 

1.0

1.5

2.0

2.5

3.0

1.0 1.5 2.0 2.5 3.0

Di
ffu

sio
na

l 

Geometrical 

1 2 3 4 5 6 7 8 9 10



 

116 

Also, it is visible that the tortuosity factors generally increase from the first case study to 

the latter. This is due to the fact that from case study 1 to 10 the pathway of the network 

is generally increased and so the percolating volume increases, as well. And of course, 

knowing that, we have maintained the same molecular diffusion coefficient and the same 

concentration gradient . 

VII.2.2 SIMPLE CASE STUDIES WITH DEAD VOLUMES FOR THE COMPARISON OF THE 

TRANSIENT RESPONSES OF THE DISCRETE MODEL AND THE CONTINUUM MODEL 

In order to check for their influence, dead volumes have been added to the networks CS 

1 to 10, resulting in CS 11 to 20, respectively. 

In Fig. VII-7 are compared the outlet fluxes obtained for case study CS 1, CS 11 and CS 

11b. A dead volume has been added to CS 1 to get CS 11 and CS 11b. The last two differ 

only by the position of the dead volume. 

 
Fig. VII-7. Comparison of the transient responses for the discrete (microscopic) model and continuum 

(macroscopic) model for CS 1, 11 and 11b. 

All three networks present the same steady state behaviour since their percolating 

volumes are the same. The steady states are in good agreement whatever the model and 

the CS, which is an expected result since a dead volume does not interfere on the steady 

state of the diffusion process. Indeed, the presence of a dead volume does not interfere 

with the system steady state that exhibits equal percolating volumes. The geometric and 

diffusional tortuosities from CS 11 take a value of , which is equal to . 
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Looking at the transient responses, case study 11 and case study 11b have curiously the 

same dynamic. This is merely due to the fact that we are in the filling process and that 

the delay for CS 11b is only observed on the inlet flux (cf. Fig. VII-2). Comparing the 

transient responses of the discrete model for case study 1 with case studies 11/11b, we 

observe that they exhibit a different behaviour due to the dead volume. 

Moreover, if one applies the correction factor of CF=4/2 to both continuum models of CS 

11 and CS 11b, the corrected dynamic response of the continuum model does not match 

the dynamic response of the discrete model. This can be explained by the fact that the 

discrete pore network contains a dead volume that needs to be taken into account in the 

pseudo-homogeneous representation. A good representation for the continuum model 

when we are in the presence of dead volumes would be to have a correction factor CF 

that accounts only for the diffusive pores and to add a dead volume in the continuum 

representation. 

The remaining case studies (CS 11-20), where a dead volume is added to case study 1-

10 respectively, can be found on Appendix IX. 

VII.2.3 SIMPLE CASE STUDIES WITH AN INCREASED POROUS MEDIA LENGTH  FOR THE 

COMPARISON OF THE TRANSIENT RESPONSES OF THE DISCRETE MODEL AND THE 

CONTINUUM MODEL 

In this section, we have extended the comparison of the dynamic responses of the 

discrete and continuum models towards the understanding of larger network sizes. The 

connectivity and the dead volume effects are tested. 

We started by the pore network illustrated in Fig. VII-8 and corresponding to case study 

30. It has a diffusional tortuosity of 1.96, which is equal to the geometric tortuosity. The 

dynamic response of both discrete and continuum models is also shown in Fig. VII-8. 

Logically, the dynamic response of the continuum model is much faster than the dynamic 

response of the discrete model. We have therefore corrected the response of the 

continuum model, as we did before for simple networks and in order to account for the 

adequate capacitive volume. We remind that the correction factor CF is equal to the ratio 

of the volume of pores in the discrete representation divided by the volume of the 

continuum representation. For this specific case (CS 30), the correction factor required 

takes a value of CF=49/25=1.96, as there is a total amount of 49 pores and 25 diffusing 

pores along the y axis. By applying this correction factor to the dynamic response of the 

continuum model, this response gets in line with the dynamic response of the discrete 

model (see Fig. VII-8). 
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Fig. VII-8. Dynamic response of both discrete (microscopic) and continuum (macroscopic) models for case 

study 30. Illustration of the pore network respective to the considered case study. 

The case “CS 30 triangle” is generated by increasing the connectivity of CS 30, as 

illustrated in Fig. VII-9. A diffusional tortuosity of 1.03 is obtained. Regarding the 

geometric tortuosity, we can no longer calculate this value, as we have been commonly 

calculating for simple networks. Here, the geometric tortuosity could be calculated for 

instance, based on random walk theories (Bhatia, 1985). 

Until now, the correction factor was simply the total pore volume divided by the diffusing 

pores, i.e. pores that exhibit a projection of the diffusing vector on the y axis (from now 

on designated by CFglobal). This gave identical values of CF as for a CF defined by the ratio 

of the volume of the discrete representation divided by the volume of the continuum 

representation. Yet, for “CS 30 triangle”, these two ratios do not give the same value. 

Indeed, the first one gives CFglobal=72/48=1.5 and the second one gives CF= 

Vpores/Vmacropore=72/25=2.88. A good agreement was found taking CF=2.88, as illustrated 

in Fig. VII-9. 

The dynamic responses obtained from the two proposed corrections for the continuum 

model are graphically represented in Fig. VII-9, for CS “30 triangle”. 

As we have concluded before from Fig. VII-9, the dynamic response of the continuum 

model from “CS 30 triangle” that fits better is that from a correction factor CF given by 

the ratio of the pore volume of the discrete representation divided by the volume taken 

by the continuum representation. 
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Fig. VII-9. Dynamic response of both discrete (microscopic) and continuum (macroscopic) models for CS 30 

triangle. Illustration of the pore network respective to the considered case study. 

The two correction factors that have been proposed in this section are going to be tested 

in the correction of the dynamic response of our 2D networks. With all the information 

collected, we are finally able to understand the dynamic responses of our pore networks. 

VII.2.4 PERIODIC 2D NETWORKS FOR THE COMPARISON OF THE TRANSIENT RESPONSES OF 

THE DISCRETE MODEL AND THE CONTINUUM MODEL 

After having analysed several simple case studies on the comparison of the transient 

response for the discrete and continuum models, we have concluded our study with some 

examples on the dynamic response of 2D networks. 

The dynamic responses of both discrete and continuum models for periodic networks 

along the x-axis of size 50×50 with Zmax=6, P=1.0 and constant pore diameter (10 nm) 

and length and (15nm) are displayed in Fig. VII-10. The diffusional tortuosity for a pore 

network of P=1.0 is =1.0. Regarding the dynamic responses of the pseudo-

homogeneous model, for CF=1.0, we observe of course a time delay when comparing to 

the response of the discrete model. CF=1.0 means that no correction is applied. Using 

the two correction factors defined in section VII.2.3, similar values of CF are obtained 

and the dynamic responses of the continuum models are able to correctly describe the 

dynamic response of the discrete model. 
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Fig. VII-10. Dynamic responses from the discrete (microscopic) and continuum (macroscopic) models for a 2D 

periodic network with Zmax=6 and of size 50×50 and at a P=1.0. 

We pursued our study by decreasing the pore existence probability, in order to check 

whether the correction factors are still capable of correctly describing the dynamic 

response of the discrete model. Two periodic networks with a P=0.7 and P=0.6 were 

generated and their dynamic responses are shown in Fig. VII-11 and Fig. VII-12, 

respectively, with the diffusional tortuosities of 1.29 and 1.37. 

 
Fig. VII-11. Dynamic responses from the discrete (microscopic) and continuum (macroscopic) models for a 2D 

periodic network with Zmax=6 and of size 50×50 and at a P=0.7. 

As the pore existence probability decreases, only the correction factor defined by the 

ratio of the pore volume of the discrete representation to the volume of the macropore 

agrees. The corrected dynamic response of the continuum model using CFglobal starts to 

shift from the dynamic response of the discrete model. In summary, we could say that an 
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approximated and fair representation of the continuum model to the dynamic description 

is obtained for . 

 
Fig. VII-12. Dynamic responses from the dicsrete (microscopic) and continuum (macroscopic) models for a 2D 

periodic network with Zmax=6 and of size 50×50 and at a P=0.6. 

We have also simulated 2D pore networks with Zmax=4 and with a network size of 50×50 

and at different pore existence probabilities:  leading to the following 

diffusional tortuosities . The dynamic responses from both discrete and 

continuum models are represented graphically in Fig. VII-13, Fig. VII-14 and Fig. VII-15. 

 
Fig. VII-13. Dynamic responses from the discrete (microscopic) and continuum (macroscopic) models for a 2D 

periodic network with Zmax=4 and of size 50×50 and at a P=1.0. 

A similar behaviour to that from Zmax=6 networks is found for networks with a reduced 

connectivity of Zmax=4. At a pore existence probability of P=1.0, the dynamic response 
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can easily be corrected. But as we decrease the pore existence probability, only 

 is capable to give a good agreement for the dynamic response. 

 
Fig. VII-14. Dynamic responses from the discrete (microscopic) and continuum (macroscopic) models for a 2D 

periodic network with Zmax=4 and of size 50×50 and at a P=0.95. 

 
Fig. VII-15. Dynamic responses from the discrete (microscopic) and continuum (macroscopic) models for a 2D 

periodic network with Zmax=4 and of size 50×50 and at a P=0.9. 
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VII.3 CONCLUSIONS 

The general concept of percolating and capacitive volumes is here considered. Different 

percolating volumes lead to different steady states. And different capacitive volumes lead 

to different dynamic responses. 

Regarding the 1st hypothesis mentioned in section VII.2 (Hypothesis 5), for 2D periodic 

networks the dynamic response from the continuum model match the response of the 

discrete model, by using a correction factor associated to the accumulation term. Two 

correction factors were tested but the most appropriate is the ratio of the pore volume 

used in the discrete representation to the volume used in the continuum representation. 

Nevertheless, the reader should keep in mind that this corrected pseudo-homogeneous 

model is merely an approximate model. When it comes to simple pore networks with 

dead volumes, the corrected continuum model is not capable of correctly predicting the 

dynamic response of the discrete model. 

As far as the 2nd hypothesis (Hypothesis 6 from section VII.2) is concerned, for 2D 

periodic networks, since the capacitive volume is larger than the percolating volume, to 

correctly describe the dynamic response of the pseudo-homogeneous model, the extra 

volume from the capacitive volume must be taken into account, i.e. by the use of dead 

volumes. 

For our actual pore networks and whatever their configuration, either 2D Zmax=6 or 2D 

Zmax=4, and taking a fully completed pore network with P=1.0 or for lower pore existence 

probabilities, we still observe a good agreement when describing the dynamic response 

of the continuum model according to Hypothesis 5. 

The next chapter will focus on the representativeness of the generated pore networks in 

terms of the textural properties and for the mass transfer properties by comparing them 

to actual aluminas. 
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COMPARISON TO ACTUAL ALUMINAS 
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 - REPRESENTATIVENESS OF 2D NETWORKS CHAPTER VIII

VIII.1 INTRODUCTION 

In this chapter, we intend to compare both the textural and mass transfer properties 

from our pore networks with experimental data obtained respectively via physisorption 

and inverse liquid chromatography techniques. Table VIII-1 contains the available 

textural and mass transfer properties on the aluminas studied experimentally at IFP 

Energies Nouvelles (Kolitcheff, 2017). 

Table VIII-1. Textural and mass transfer properties obtained for 5 samples of actual porous aluminas (Kolitcheff 

et al., 2017). 

Alumina 
 
 

 
 

 
 ε  

A 7.1 340 0.71 0.72 3.0 

B 8.0 300 0.72 0.70 2.8 

C 9.0 290 0.78 0.72 2.4 

D 9.6 270 0.74 0.71 2.5 

E 17.6 160 0.77 0.73 2.0 

Fig. VIII-1 contains the pore size distributions obtained for the various aluminas 

(Kolitcheff et al., 2017). As we can see from Fig. VIII-1 and from Table VIII-1, all studied 

aluminas are strictly mesoporous and have a similar porosity and pore volume but 

different tortuosities. Only the BET surface area  that essentially depends on the 

smallest pores, varies significantly as do the pore size distributions. 
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Fig. VIII-1. Alumina supports pore size distribution experimentally estimated by the BJH method taking the 

desorption branch (Kolitcheff et al., 2017). 

From the sensitivity analyses performed on the model parameters and presented in 

Chapter V, we have seen that the model is capable of generating pore networks with 

textural properties within the same order of magnitude of actual porous aluminas. 

On the other hand, from Chapter VI, we have observed that the tortuosity values remain 

rather low, not exceeding values of 1.5, while the experimental tortuosities are in the 

range of 2 to 3. Fig. VIII-2 compares the simulated to experimental tortuosities. 

 
Fig. VIII-2. Variation of the predicted tortuosities as a function of the catalyst porosity for several pore 

existence probabilities. Correlations taken from Akanni and Evans (1987), Beeckman (1990), and Shen and 

Chen (2007). 
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The conclusion given in Kolitcheff et al. (2017) that we quote here is: “behind the 

textural properties, the organization of the pore network may play an important role in 

the diffusion behaviour inside the solids. (…) With an overall porosity around 0.7, the 

measured tortuosity values of the solids are much higher (2 to 3) than the tortuosity 

values predicted by the correlations (1.2 to 1.4) suggesting that only part of the porosity 

of the alumina support actively contributes to the mass transfer” (Kolitcheff et al., 2017). 

It is therefore assumed that the pore network is hierarchically organized into two 

different levels, as already suggested in recent studies (Forman et al., 2016) and also on 

the presented works of Morin (2014) and Weiland (2015) (cf. section I.2). 

Therefore, in this chapter, we first intend to describe the generation of a two-level pore 

network and what it looks like. Secondly, we will optimize the model parameters in order 

to construct pore networks with textural properties that are similar to those of actual 

aluminas. Afterwards, the mass transfer properties of these two-level pore networks are 

compared to the experimental data. 

VIII.2 CONSTRUCTION OF TWO-LEVEL PORE NETWORKS 

We have proposed a two-level network constituted by different regions of interconnected 

pores of small size. These regions are surrounded by the second level of porosity that is 

simply constituted by pores of larger pore diameter. Fig. VIII-3 schematically illustrates 

such a two-level network. 

 
Fig. VIII-3. Illustration of a two-level network. 

For the construction of a two-level pore network, we have used the same model 

parameters as before. In this case, however, two pore diameters are admitted, as well as 
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two pore lengths and two pore existence probabilities, one for each level of porosity. We 

have also added (see Fig. VIII-3) a spacing parameter that defines where the larger 

pores are inserted. The diagram presented in Fig. VIII-4 represents the flowchart for the 

construction of a two-level network. The difference with the previous tool is the fact that 

the pore diameter depends on the porosity level. 

 
Fig. VIII-4. Flowchart describing briefly the construction of a two-level pore network generation. 

The step added in the flowchart ensures the definition of the porosity level for a given 

pore, either belonging to the 1st level of porosity (smaller pores) or to the 2nd one (larger 

pores). Moreover, if we take a spacing of 3 and a pore length of 15nm, then the first 



 

130 

level has L1=15nm and the second level of porosity has in fact L2=45nm. An important 

aspect to be mentioned is that the dimensions Ex, Ey and Ez of the parallelepiped particle 

depend on the pore length L1 for the smallest pores. 

The elimination of the inaccessible pore volume and the mass transfer models are not 

submitted to modifications caused by the implementation of the two-level pore networks. 

In order to optimize the model parameters so that we may simultaneously represent both 

the textural and the mass transfer properties of actual aluminas, we have decided to 

study the influence of each model parameter from each porosity level on these features. 

The next section is dedicated to these sensitivity analyses. 

VIII.3 SENSITIVITY ANALYSES ON TWO-LEVEL PORE NETWORKS 

The new configuration of networks in two levels of porosity is here submitted to a 

sensitivity analyses on the different model parameters, such as the pore existence 

probability, pore diameter and pore length. As we did previously during the sensitivity 

analyses shown in Chapter V and Chapter VI, for each set of model parameters, we have 

generated thirty periodic pore networks of size 50×50 and Zmax=6. For each of these, we 

have calculated the textural and mass transfer simulated diffusion. An average over the 

thirty pore networks is then calculated. 

VIII.3.1 INFLUENCE OF THE PORE EXISTENCE PROBABILITY 

In order to test the influence of the pore existence probability, we have varied separately 

P1 and P2 corresponding to the pore existence probability for the first level of porosity and 

for the second level of porosity. The remaining model parameters take the following 

values: D1=5nm, D2=20nm, L1=15nm with a spacing of 3. When P1 is varied, P2 = 0.7 

and when P2 is varied, P1 = 0.7. 

We have gathered in Fig. VIII-5 and Fig. VIII-6 the evolution of the specific pore volume 

and surface area as a function of the pore existence probability P1 or P2. For the variation 

of P1, the averages on the specific pore volume range from 1.0 to 1.4×10-6 m3·g-1, the 

specific surface area from 317.3 to 455.7 m2·g-1, the catalyst porosity between 0.76 to 

0.81 and finally, the average connectivity from 4.1 to 5.1. For the variation of P2, the 

averages range from 1.0 to 4.9×10-6 m3·g-1, from 317.3 to 1425.5 m2·g-1, from 0.76 to 

0.94 and from 4.1 to 4.4 respectively for the specific pore volume, surface area, porosity 

and connectivity. Additional data regarding the evolution of the catalyst porosity and the 

connectivity as a function of the pore existence probabilities can be found in Appendix X. 
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Fig. VIII-5. Influence of the pore existence probabilities P1 (dotted blue plot) and P2 (dotted red plot) on the 

specific pore volume for a two-level network taking the 1st configuration. 

 
Fig. VIII-6. Influence of the pore existence probabilities P1 (dotted blue plot) and P2 (dotted red plot) on the 

specific surface area for a two-level network taking the 1st configuration. 

We have observed that for pore networks generated at P1=P2 = 0.7, the pore volume 

ratio between the larger and smaller pores V2 / V1 is around 4.5. Even though the 

number of small pores is quite significant compared to the number of large pores, the 

high pore diameter ratio D2/D1=20/5=4 is preponderant and hence, the variation of the 

pore existence probability P2 for the 2nd level of porosity has a much larger impact on the 

textural properties than the pore existence probability P1 (see Fig. VIII-5 and Fig. VIII-6). 

Regarding the mass transfer properties, the tortuosity factor is represented in Fig. VIII-7 

as a function of the catalyst porosity. Again, it is observed that P2 is preponderant 

against P1. 
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Fig. VIII-7. Influence of the pore existence probabilities P1 (dotted blue plot) and P2 (dotted red plot) on the 

tortuosity for a two-level network taking the 1st configuration. 

The plausible explanation for that to happen is once more related to the pore volume 

ratio or herein, to the pore surface ratio between the two levels of porosity (S2/S1≈ 4.0 

for P1=P2=0.7). For the variation of P1, the average tortuosity ranges from 1.42 to 1.24 

for an average porosity of 0.76 to 0.81 and when P2 is varied, we have  =[1.42, 1.10] 

and ε=[0.76, 0.94]. It can be seen in Fig. VIII-7 that the tortuosities remain rather low 

compared to the experimental data. In order to increase , we thought of another way of 

constructing a two-level pore network that does not oblige the larger pores to fill the 

spacing range and, where L2 can be lower than D2, as illustrated in Fig. VIII-8: 

 
Fig. VIII-8. Illustration of a two-level network with a second configuration where L2 can be lower than D2. 
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With this kind of network configuration, the same sensitivity analysis was performed and 

we are able to expand the tortuosity values, as can be seen in Fig. VIII-9. Additional data 

regarding the textural properties can be found in Appendix X. 

 
Fig. VIII-9. Influence of the pore existence probabilities P1 (dotted blue plot) and P2 (dotted red plot) on the 

tortuosity for a two-level network taking the 2nd configuration. 

VIII.3.2 INFLUENCE OF THE PORE DIAMETER 

To perform a sensitivity analyses on the pore diameter, we have varied separately D1 and 

D2 that are respectively the pore diameter for the first level of porosity and for the 

second level of porosity. For these simulations, we have used P1=P2=0.7, L=15 nm and a 

spacing of 3. When D1 is varied from 3 to 6 nm, D2=20 nm and when D2 is varied from 

18 to 21 nm, D1 = 5 nm. 

Table VIII-2 gathers the information relative to the calculated average textural properties 

when studying the influence of the average pore diameters. 

Table VIII-2. Influence of the pore diameter on the average textural properties for two-level networks taking 

the 1st configuration of a two-level network. 
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properties 
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sBET (m2·g-1) 188.4 – 489.8 200.7 – 427.4 

ε 0.67 – 0.83 0.64 – 0.82 
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Fig. VIII-10 shows the average pore diameter Davg when varying the pore diameter from 

the first level of porosity D1 and when varying the pore diameter from the second level 

D2. Since the number of small pores is much larger than the number of large pores, Davg 

is more sensitive to the variation of D1, as shown in Fig. VIII-10. Indeed, starting from 

the simulations where D1=5nm and D2=20nm, if we increase D2 from 20 to 21 nm, the 

D2 relative variation of D2=1/20 and the average pore diameter only varies slightly, 

while increasing D1 from 5 to 6nm represents a relative change D1=1/5 that is much 

larger, thereby strongly impacting the average pore diameter. 

 
Fig. VIII-10. Influence of the pore diameters D1 (dotted blue plot) and D2 (dotted red plot) on the average pore 

diameter for a two-level network taking the 1st configuration. 

Fig. VIII-11 and Fig. VIII-12 show the variation of the specific pore volume and surface 

area as a function of the pore diameter D1 or D2. 

 
Fig. VIII-11. Influence of the pore diameters D1 (dotted blue plot) and D2 (dotted red plot) on the specific pore 

volume for a two-level network taking the 1st configuration. 
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Fig. VIII-12. Influence of the pore diameters D1 (dotted blue plot) and D2 (dotted red plot) on the specific 

surface area for a two-level network taking the 1st configuration. 

From the evolution of the specific pore volume and surface area, we can see that there is 

not much difference in the ranges obtained. As explained above, the effect of the 

variation of D1 on the average pore diameter is more significant than D2, but this is 

counterbalanced by the effect of the pore volume ratio within a pore network, which is, 

as we know more significant for larger pores. 

For the variation of D1 ( D1), the average tortuosity ranges from 1.54 to 1.27 for an 

average porosity of 0.67 to 0.83 and when D2 is varied ( D2), we have  = [1.37, 1.49] 

and ε = [0.64, 0.82], as shown in Table VIII-3, which also lists the outlet pore surface of 

the infinite plate, the total outlet flow and flux. 

Table VIII-3. Mass transfer properties obtained at the outlet surface of the infinite plate and taking the variation 

of D1 and D2 on a two-level pore network taking the 1st configuration of a two-level network. 

   

Total outlet flow ×1019 (mol·s-1)   

Total outlet flux ×105 (mol·m-2·s-1)   

Outlet pore surface ×1015 (m-2)   
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Looking at Fig. VIII-13, the first conclusion is that for two-level pore networks, the pore 

diameters have an impact on the simulated tortuosities. This is contrary to the effect 

obtained for the one-level pore networks. Indeed, for one-level pore networks, when the 

0

150

300

450

600

6 7 8 9 10

s B
ET

av
er

ag
e 

(m
2 ·g

-1
)

Average pore diameter (nm)

 S BET 50×50 D1
 S BET 50×50 D2



 

136 

pore diameter is varied, it changes the diameter of all pores within the network. For two-

level pore networks, only some of them are changed, thereby impacting the tortuosity. 

The second conclusion that can be taken from Table VIII-3 and Fig. VIII-13 is related to 

effects of the two diameters. When diameter D1 is increased, the tortuosity is reduced, 

while for diameter D2, the tortuosity remains rather constant. Whether increasing D1 or 

D2 the total outlet flow increases in both cases, but the impact is more important for D1. 

This is especially due to the fact that D1 >> D2. Moreover, the variation of the outlet 

pore surface area is increased in a similar manner for D2 and D1, since for a given pore 

network S2/S1>>1. Hence, for the variation of D2, as both the total outlet flow and pore 

surface area increase simultaneously, we obtain a rather constant tortuosity. But for D1, 

the variation of the total outlet flow is preponderant against the variation of the outlet 

surface area and hence, the total outlet flux increases and the tortuosity are reduced. 

 

 
Fig. VIII-13. Influence of the pore diameters D1 (dotted blue plot) and D2 (dotted red plot) on the tortuosity for 

a two-level network taking the 1st configuration. 

 

We have also simulated the second configuration of the two-level pore networks and, as 

we can see in Fig. VIII-14, the tortuosity values decrease with increasing D1, but remain 

constant when D2 is varied. For this kind of configuration, the behaviour of the textural 

properties as a function of the pore diameters is collected in Appendix X. 
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Fig. VIII-14. Influence of the pore diameters D1 (dotted blue plot) and D2 (dotted red plot) on the tortuosity for 

a two-level network taking the 2nd configuration. 

VIII.3.3 INFLUENCE OF THE PORE LENGTH 

A sensitivity analysis on the influence of the pore lengths will be described in this section. 

We have varied separately L1 and L2, which correspond respectively to the pore length 

attributed to the first level of porosity and to the pore length for the second level of 

porosity. For these simulations, P1=P2=0.7, D1=5nm, D2=20nm and a spacing of 3 are 

used. When L1 or L2 are varied from 15 to 18 nm, L2=15nm and L1=15nm, respectively. 

An important aspect to be mentioned is that the dimensions Ex, Ey and Ez of the 

parallelepiped particle depend on the pore length L1 for the smallest pores. Table VIII-4 

gathers the information relative to the calculated average textural properties when 

studying the influence of the pore lengths L1 and L2. Fig. VIII-15 and Fig. VIII-16 show 

the variation of the specific pore volume and surface area as a function of the pore length 

L1 or L2. 

Table VIII-4. Influence of the pore length on the average textural properties for two-level networks taking the 

1st configuration of a two-level network. 
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properties 
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Z ≈4.11 ≈4.11 
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Fig. VIII-15. Influence of the pore lengths L1 (dotted blue plot) and L2 (dotted red plot) on the specific pore 

volume for a two-level network taking the 1st configuration. 

Looking at Fig. VIII-15, we expected that the pore volume would be further increased 

with L2 due to the fact that the pore volume ratio is greater for larger pores. As we saw 

in the equations derived in section IV.2.1 for the specific pore volume, the denominator 

depends on L2
. As mentioned before, the pore length used for the two-level pore 

networks corresponds to L1, the pore length of the smallest pores. Hence, increasing pore 

length L1 will also increase the size of the parallelepiped particle, thereby reducing the 

specific pore volume, while the specific pore volume will slightly increase when increasing 

L2 at constant values of L1, i.e. at a constant particle size. Analogously to the evolution of 

the specific pore volume, the behaviour of the specific surface area as a function of the 

pore lengths L1 or L2 is very similar Fig. VIII-16. 

 
Fig. VIII-16. Influence of the pore lengths L1 (dotted blue plot) and L2 (dotted red plot) on the specific surface 

area for a two-level network taking the 1st configuration. 
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For the variation of L1, the average tortuosity ranges from 1.42 to 1.24 for an average 

porosity of 0.76 to 0.51 and when L2 is varied,  = [1.42, 1.60] and ε = [0.76, 0.77]. Fig. 

VIII-17 shows the average tortuosity increasing with the reduction in L1 and, with the 

increase in L2. 

 
Fig. VIII-17. Influence of the pore lengths L1 and L2 on the tortuosity for a two-level network taking the 1st 

configuration of a two-level network. 

Looking at Fig. VIII-17 and the available data in Table VIII-5, when increasing L2, we 

observe the total outlet flow is reduced, whereas for L1, it remains relatively constant. 

Indeed, the total outlet flow rate gets more affected by the variation of L2 since, within a 

given pore network the pore surface ratio is significantly greater than 1, S2/S1>>1. 

To calculate the total outlet flux, the total outlet flow rate is divided by the outlet pore 

surface area, which remains, of course, constant with the variation of L1 or L2. Hence, the 

total outlet flux shows the same behaviour as the total outlet flow rate. 

 

Table VIII-5. Mass transfer properties obtained on the influence of L1 and L2 on a two-level pore network taking 

the 1st configuration of a two-level network. 

   

Total outlet flow ×1019 (mol·s-1)   

Total outlet flux ×105 (mol·m-2·s-1)   

Tortuosity,    
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becomes larger than L1, the large pores are no longer straight cylindrical pores, but they 

become slightly bent (i.e. tortuous) to connect to nodes that are a distance L1 apart. 

Hence, when it comes to the calculation of the effective diffusion coefficient, the increase 

in L1 increases Dieff and reduces the tortuosity factor. On the other hand, with the 

increase in L2, the plate thickness is not affected and hence, Dieff decreases like the outlet 

flux and the tortuosity increases. 

For the 2nd configuration, we have obtained a similar behaviour that is presented in Fig. 

VIII-18, but in addition, we obtain larger tortuosity values. This is due to the fact that the 

larger pores are more frequently connected to smaller pores. The corresponding textural 

properties can be found in Appendix X. 

 
Fig. VIII-18. Influence of the pore lengths L1 and L2 on the tortuosity for a two-level network taking the 2nd 

configuration of a two-level network. 

VIII.4 GENERATION OF A TWO-LEVEL NETWORK FOR ALUMINA C 

In order to find the model parameters capable of generating pore networks with textural 

properties that are similar to those of actual aluminas, an optimization tool was 

developed and is described in this section. As an example, it is applied to alumina C. 

As we have seen before, the textural properties can be easily correlated with the pore 

existence probabilities from the two porosity levels, P1 and P2, with a finite range [0,1] 

Hence, the developed optimization methodology is a simple iterative tool based on 

dichotomy. We have simplified the optimization tool by keeping constant the pore 

diameters, lengths and spacing, although one could optimize all these parameters 

simultaneously. As targets for the optimization, we only have two independent 

experimental textural properties, the experimental catalyst porosity and the specific 

surface area. 
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Fig. VIII-19. Flow sheet diagram describing the optimisation of the textural properties, optimizing P1 and P2 to 

obtain respectively, a specific surface area and porosity similar to those from actual aluminas. 

The diagram in Fig. VIII-19 describes in summary, the optimization tool used to search 

for the pore existence probabilities, P1 and P2, that are able to generate representative 

pore networks in terms of the specific surface area and catalyst porosity. The two 

simulated textural properties are calculated as an average over 30 simulations. 
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The choice of the parameter, P1 or P2, that optimizes either the catalyst porosity or the 

specific surface area is taken based on the sensitivity analyses shown in the previous 

section (VIII.3). Taking the first configuration for two-level pore networks, having 

Zmax=6, D1=5nm, D2=18nm and L1=L2=15nm, we have generated thirty pore networks 

at a low pore existence probability (P1=P2=0.4) and at the maximum pore existence 

probability (P1=P2=1.0). As mentioned before, for both extremes, the average catalyst 

porosity and specific surface area are calculated over thirty pore networks. These 

features are then confronted to the experimental values to check if, in between the 

considered probability range, it is possible to find the target and which new range must 

be chosen to continue the iteration until the target is reached. 

Fig. VIII-20 and Fig. VIII-21 show the behaviour of the absolute error calculated from the 

textural properties, considering a separate variation of the pore existence probabilities, 

P1 and P2. 

As we can see from Fig. VIII-20 and Fig. VIII-21, the absolute errors obtained for the 

catalyst porosity and specific surface area reach a value of 0, for values of P1 or P2 that 

fall within the range [0,1] Hence, it is possible to find a two-level pore network with 

textural properties that are similar to those of actual aluminas. 

 

 
Fig. VIII-20. Absolute error obtained for the porosity having varied either P1 or P2. 
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Fig. VIII-21. Absolute error obtained for the specific surface area having varied either P1 or P2. 

 

Taking the 2nd configuration of two-level pore networks (Fig. VIII-8) and a network size 

of 100×100, we have optimised the pore existence probabilities for different sets of 

models parameters (L1, D2 and D1) in order to represent alumina C (cf. Table VIII-1). The 

available textural properties are gathered in Fig. VIII-22 to Fig. VIII-24. The different 

sets of model parameters are assembled in groups of given pore length L1 and pore 

diameter D2. For each group, several pore diameters D1 have been tested. 

 

 
Fig. VIII-22. Catalyst porosity as a function of the average pore diameter obtained for two-level pore networks 

representing alumina C. Taking in consideration the diagram from Fig. VIII-19. 
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Fig. VIII-23. Specific surface area as a function of the average pore diameter obtained for two-level pore 

networks representing alumina C. Taking in consideration the diagram from Fig. VIII-19. 

 
Fig. VIII-24. Specific pore volume as a function of the average pore diameter obtained for two-level pore 

networks representing Alumina C. Taking in consideration the diagram from Fig. VIII-19. 

As we can see from these figures, several sets of model parameters allow to obtain 

similar textural properties. Moreover, the textural properties are relatively close to those 

of alumina C, even if the average diameter remains somewhat underestimated. This also 

shows that the two-level pore networks are overdetermined, as different combinations of 

model parameters lead to similar properties. To find a unique set of model parameters 

that fulfils the structural characteristics of alumina C, it will be necessary to include 

additional data, for instance based on the simulation of physisorption within these 

networks. 

Starting from this first set of simulations, we selected some of the model parameter sets 

(diameters and lengths) and their corresponding optimised pore existence probabilities. 
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For a selected number of cases, the two-level pore networks were generated and their 

mass transfer properties were calculated. The values obtained with this second set of 

simulations were then compared to those of alumina C, as shown in Fig. VIII-25 to Fig. 

VIII-27. As can be seen, the textural properties are quite well represented by these two-

level pore networks. 

 
Fig. VIII-25. Specific surface area according to catalyst porosity obtained from optimised two-level pore 

networks (100×100) representing alumina C. 

 
Fig. VIII-26. Specific pore volume according to the catalyst porosity obtained from optimised two-level pore 

networks (100×100) representing alumina C. 

The corresponding mass transfer properties are presented in Fig. VIII-27, showing the 

average tortuosity as a function of the average catalyst porosity. As can be observed 
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from Fig. VIII-25 to Fig. VIII-27, the use of a two-level pore network allows us to 

reproduce both textural and mass transfer properties of alumina C networks. 

 
Fig. VIII-27. Tortuosity according to porosity obtained from optimised two-level pore networks (100×100) 

representing alumina C. Correlations taken from Akanni and Evans (1987), Beeckman (1990), and Shen and 

Chen (2007), and experimental data for different aluminas from Kolitcheff (2017). 

We have decided to go a little further on this study by taking the set of parameters L=15, 

D2=20, D1=4.1 nm and, the pore existence probabilities of P1=0.7 and P2=0.517. As we 

can see from Fig. VIII-27, with this set of parameters, we obtain a tortuosity that is 

similar to that for alumina C. We therefore decided to test another set of parameters with 

D1=3.9nm (green dot) and, a second one with P1=0.72 (dark red). 

 
Fig. VIII-28. Specific surface area according to the catalyst porosity obtained from two-level pore networks 

(100×100) representing alumina C. 
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Fig. VIII-29. Specific pore volume according to the catalyst porosity obtained from optimised two-level pore 

networks (100×100) representing alumina C. 

 
Fig. VIII-30. Tortuosity according to the porosity obtained from two-level pore networks (100×100) 

representing alumina C. Correlations taken from Akanni and Evans (1987), Beeckman (1990), and Shen and 

Chen (2007), and experimental data for different aluminas from Kolitcheff (2017). 

With the decrease in the diameter D1, we increase the tortuosity and reduce vp 

approaching the actual data. Yet, the sBET is reduced, as well as ε deviating once more 

from the experimental data. With the increase of P1, the tortuosity, ε and vp are not 

favoured but the sBET gets closer. The combined effect of decreasing D1 and increasing P1 

(L=15, D2=20, D1=3.9nm, P1=0.72 and P2=0.517 - dark purple dot), gives rather similar 

values to those from alumina C in terms of , vp and ε whereas, the sBET is rather low 

compared to the experimental value. 
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Taking then this set of model parameters where L=15, D2=20, D1=3.9nm, P1=0.72 and 

P2=0.517, we pursued the study by increasing the pore existence probability P1 to 0.74 

(red dot) and then to 0.75 (light purple). As can be observed, the parameters set 

L=15nm, D2=20nm, D1=3.9nm, P1=0.74, P2=0.517 agrees in terms of the diffusional 

properties. Also, the relative errors obtained respectively, for the specific pore volume 

and surface area are of 10.5 and 6%. 

VIII.5 CONCLUSIONS 

Using one-level pore networks, we have seen in Chapter V that the textural properties 

from these networks are in accordance with the orders of magnitude for actual aluminas. 

On the other hand, when confronting the simulated tortuosities (<1.5) with experimental 

data (2 to 3, cf. Fig. VIII-2), a large discrepancy is observed. Moreover, during the 

experimental study of actual aluminas (Kolitcheff et al., 2017) via inverse liquid 

chromatography, a different organization of the aluminas structure was proposed, 

suggesting an organization in two porosity levels. This proposal was reproduced in our 

model that was imagined to be constituted by several regions containing small pores (1st 

level of porosity), which are surrounded by slightly larger pores (2nd level of porosity). 

The developed two-level pore networks therefore contain two different pore diameters, 

pore lengths and pore existence probabilities. 

A sensitivity analysis was performed to the model parameters in order to understand 

which parameters should be optimised in order to reproduce the experimental textural 

properties, specifically the catalyst porosity and specific surface area. The chosen 

parameters are P1 and P2, used respectively to reproduce the specific surface area and 

the porosity. 

With the developed optimisation tool, several sets of model parameters (L, D2 and D1) 

were considered and fixed in order to determine P1 and P2. For each set, thirty 2D 

triangular pore networks of size 100×100 were generated, and the average properties 

over these thirty networks were used to select P1 and P2. Taking some of the sets and 

their corresponding pore existence probabilities obtained via the optimisation tool, we 

have once more generated thirty 2D triangular networks of size 100×100 to calculate 

both, the textural and the mass transfer properties and compare them to the 

experimental data of alumina C. It was shown that, for some of these parameter sets, 

the two-level pore networks could reproduce the textural properties and the tortuosity 

value of alumina C. For this alumina, the selected final model parameters are: L=15nm, 

D2=20nm, D1=3.9nm, P1=0.74 and P2=0.517. 
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THESIS CONCLUSIONS 

We have dedicated this project to a better understanding of the mass transfer description 

within porous catalysts, specifically on gamma-alumina supports, which are highly 

complex porous systems. These catalyst supports are widely used in the refining 

industry, and a correct understanding of their impact is essential. Since the catalyst 

performance directly depends on the porous structure, dispersion of the active sites, the 

diffusing molecules and the diffusion regime, the need to correctly represent both the 

porous structure and mass transfer seems clear. 

As cited in the literature review, Keil (1999) considered that the preferred model to 

investigate the influence of the porous structure on the mass transfer description is a 

discrete representation. Several models can be found in the open literature, yet, to our 

knowledge, none of these models tried to simultaneously recreate both textural and mass 

transfer features of actual gamma-alumina supports. 

In order to correctly represent the porous structure of actual aluminas, it is necessary to 

rely on experimental characterization. Some textural properties can be measured via 

physisorption techniques. The main features that can be obtained are essentially the pore 

volume, the specific surface area, as well as the pore size distribution and the 

connectivity. In a parallel PhD thesis carried out by Svetan Kolitcheff, the nitrogen 

sorption technique was used to obtain, for five different aluminas, their main textural 

properties. 

Moreover, it is also important to rely on the experimental study of mass transfer within 

actual aluminas. An Inverse Chromatography setup was used in the framework of 
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Kolitcheff’s Ph.D. resulting in the estimation of diffusional tortuosities obtained for the 

studied aluminas. 

We have developed a simulation tool that is based on a discrete representation and that 

is capable of generating random pore networks and simulate mass transfer by diffusion 

within each pore. 

The pore network generation model was validated in terms of its Monte Carlo variability 

and it was concluded that, for a 2D pore network of maximum connectivity 6 and with a 

pore existence probability of 0.7, the minimum network size required is of 10,000 nodes. 

Also, averaging the simulation results over 30 pore networks allows obtaining sufficiently 

high and repeatable model precision. The model was also tested in terms of the network 

aspect ratio Nx/Ny, .i.e. the ratio of its size in the x and y direction when Nx≠Ny, and it 

was concluded that a rather high ratio of Nx/Ny is preferred. 

The sensitivity analysis performed on the algorithm showed that the textural properties 

increase with the model parameters, such as the pore existence probability, pore 

diameter and length. We have obtained a satisfactory to good agreement between the 

textural properties of the discrete representation and the values for the actual gamma-

aluminas. 

Regarding the results on the mass transfer properties obtained through sensitivity 

analyses, for the variation of the pore existence probability, a relation of the tortuosity 

with the catalyst porosity was put in evidence. We observed that the tortuosity decreases 

with increasing catalyst porosity. A comparison with theoretical correlations showed a 

similar trend between data, and our tortuosity values were rather similar to those 

obtained by Tomadakis and Sotirchos (1993). However, the simulated tortuosities 

showed rather low values when compared to the experimental results obtained via 

Inverse Chromatography. We also observed that the tortuosity was not affected by the 

variation of the pore diameters and pore lengths. Hence, we concluded that this is due to 

the underlying hypotheses of the model respectively, 1D diffusion and the fact that when 

we increase the pore length, the network expands as well. 

The dynamic mass transfer study compared our discrete representation with a pseudo-

homogeneous continuum model, and showed that a correcting factor is required between 

the two models. It was concluded that this correcting factor should be applied to the 

accumulation term, when simulating mass transfer with the pseudo-homogeneous 

continuum representation. This correction factor is simply the volume ratio of the 

continuum to discrete representation. This correction is required due to the fact that we 

have used the outlet pore surface of the periodic network (discrete representation) as the 

outlet surface of the macro-pore (continuum representation), and also that the infinite 
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plate thickness defined the macro-pore length. Hence, the total accessible volume from 

the two representations is different. However, it is important to mention that a good 

representation of the dynamic response of the continuum model using the correction 

factor is only valid when it comes to sufficiently large pore networks, and that the effect 

of dead volumes must be accounted otherwise. 

At this point, we focused on the experimental mass transfer characterization in order to 

understand how to reproduce the mass transfer properties of actual aluminas. Kolitcheff 

stated that the porous structure of actual aluminas was probably organized in several 

porosity levels. We have therefore tried to reproduce random pore networks with this 

main characteristic, by creating regions, where small pores are interconnected, that are 

surrounded by larger pores. 

With this new representation of pore networks with two-levels of porosity, we observed 

an increase in the tortuosity values. After implementing an optimization tool to determine 

the pore existence probabilities from the textural properties, we have been able to 

reproduce both the textural and mass transfer properties, as was illustrated for alumina 

C. Taking a 2D periodic network of size 100×100, a good agreement was found between 

the simulated and experimental data, having obtained a tortuosity of 2.34 against 2.40, 

while the deviations for the textural properties are rather low, and more specifically, 

relative errors of 0.12%, 10%, and 6% were found for the catalyst porosity, the specific 

pore volume and specific surface area, respectively. 
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PERSPECTIVES 

As shown above, an optimization tool was implemented in order to identify the set of 

model parameters that are able to represent the alumina studied – alumina C. From this 

study available in Chapter VIII, we have concluded that several sets of model parameters 

are able to fulfil this task. We believe that extra comparative data would allow to discard 

some of these sets. To this aim, one could rely on the simulation of nitrogen 

adsorption/desorption within our random pore networks. 

We have started by implementing a simple tool capable of conducting the nitrogen 

adsorption/desorption phenomena within the periodic pore networks. This algorithm, that 

was in part developed by Monsur Uddin during his supervised internship, is divided in two 

main parts: the nitrogen adsorption simulation and the nitrogen desorption simulation. 

At each relative pressure, the Kelvin or critical radius  is calculated, attending to factor 

f that takes a value of 1 during adsorption and of 2 during desorption. This factor takes 

into account the shape of the liquid-vapour interface, a cylindrical interface for adsorption 

and a hemispherical during desorption. The adsorbed layer thickness  is calculated as 

well. Two correlations are tested in this model: the De Boer’s and the Halsey equations, 

retrieved from Hammond and Conner (2013). 

In order to simulate the adsorption process, we calculate the adsorbed volume at each 

incremented relative pressure and for each pore of the network making use of the Kelvin 

and thickness equations. The Kelvin radius is going to dictate which pores of the network 

are going to be completely filled with adsorbed nitrogen where  and those 

that will keep filling layer by layer and therefore having . The diagram that 
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follows (Figure 1) gives a global flow diagram of the algorithm used to simulate the 

adsorption process. 

 
Figure 1. Conduction of the adsorption algorithm. 

For the desorption process, the algorithm developed calculates the desorbed volume 

accounting for the percolation phenomenon caused by the network connectivity. This 

reproduces the hysteresis on the adsorption/desorption isotherm, as we have seen from 

the Seaton model (Seaton, 1991). In order to take into account for the network 

connectivity, the definition of an equivalent diameter is used. 

The equivalent diameter of a given pore is the actual pore diameter at which the nitrogen 

is going to desorb due to the network connectivity. Hence, the equivalent diameter  is 

not necessarily given by the pore diameter itself , but can possibly be imposed by the 

diameter of an adjacent pore. The algorithm implemented is briefly described in the 

following diagram (Figure 2). 
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Figure 2. Definition of the equivalent diameter in order to simulate desorption taking into account the 

connectivity effect. 

We first assign to each pore connected to an external node their equivalent diameter . 

Due to the fact that these pores are directly connected to the external surface, their 

equivalent diameter is simply their own diameter . Then, taking these external pores, 

we cover their adjacent pores (representing the 2nd layer) and their pore diameters are 

saved. We pursue with another layer of adjacent pores (representing the 3rd layer). 

After assigning the equivalent diameter to each pore of the network, one may simulate 

desorption using the Kelvin radius and comparing to the equivalent radius. The algorithm 
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for the desorption simulation becomes very similar to that from the adsorption, as shown 

in the following Figure 3. 

 
Figure 3. Desorption simulation using the equivalent diameter previously defined. 

In order to test the algorithm, a sensitivity analysis was performed taking several pore 

size distributions (PSD). The sensitivity analyses are performed to study qualitatively the 

effect of different PSDs on the adsorption/desorption isotherms. For instance, in Figure 4 

to Figure 6, the effect of the PSD spread on the isotherm is considered. For narrower 

pore size distributions, if we take a look at the desorption branch, we observe the 

adsorbed volume being reduced more abruptly. Now, comparing the effect of having a 

greater amount of smaller pores to a greater amount of larger pores, Figure 7 and Figure 

8 respectively, show that for a greater amount of smaller pores, the desorption delay is 

increased. 
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Figure 4. Wide spread pore size distribution (on the left) with the corresponding adsorption/desorption 

simulation (on the right). 

 
Figure 5. Medium spread pore size distribution (on the left) with the corresponding adsorption/desorption 

simulation (on the right). 

 
Figure 6. Narrow spread pore size distribution (on the left) with the corresponding adsorption/desorption 

simulation (on the right). 
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Figure 7. Positive skew pore size distribution (on the left) with the corresponding adsorption/desorption 

simulation (on the right). 

 
Figure 8. Negative skew pore size distribution (on the left) with the corresponding adsorption/desorption 

simulation (on the right). 

As mentioned before, the simulation of the adsorption/desorption phenomena within our 

random pore networks could be an asset to define the set of model parameters capable 

of reproducing actual aluminas. The developed algorithm could be used to go further on 

this subject. 

During this PhD thesis, we have mainly focused on calculated textural and mass transfer 

properties obtained for pore networks with constant pore diameter. The effect of pore 

size distributions on the textural and mass transfer features should also be investigated 

and may get us closer to the real system. Moreover, the simulation of physisorption 

within the generated two-level pore networks could probably allow a better reproduction 

of the textural properties and the pore size distribution of actual aluminas. 

Concerning the mass transfer simulations, the continuum representation was used to 

determine the calculated tortuosity from the steady state flux at the outlet of the discrete 

simulation. The dynamic simulations could also be directly compared to the experimental 
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transient data obtained via inverse chromatography, instead of extracting “experimental” 

tortuosities from the data. 

In order to utilize our discrete model for actual applications, it would be interesting to 

study non-linear systems, by accounting for adsorption and for catalytic reactions, and 

also test the the use of multicomponent mixtures. The effect of the organization of the 

alumina support on the catalytic performances could then be studied by using 

representations of several existing aluminas in such diffusion-reaction systems. 

Additionally, to validate these simulations, one could then prepare different catalysts by 

impregnating the same active phase on different alumina supports and perform the 

corresponding experiments. 

Ultimately, these tools may be used to generate the “optimal” alumina support for a 

given reaction system by creating various alumina supports and simulating the coupled 

diffusion-reaction for each of these supports with a given active phase. 
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APPENDIX I  

In what follows, we assume a spherical shape for the particle. Let us first consider the 

case where is defined as the molar concentration within the pores at the macroscopic 

scale. The flux continuity in the fluid phase with respect to the film theory at the 

interface is as follows: 

 (1) 

The i component balance within the pores of the catalyst particles is: 

 
(2) 

 

If the effective diffusion coefficient is defined as in equation (3), then the particle 

porosity cancels in the material balance as well as in the boundary condition: 

 (3) 

However, if the effective diffusion coefficient is defined taking the catalyst porosity then 

the mass balance becomes: 

 
(4) 

If now is defined as the molar concentration within the catalyst particle at the 

macroscopic scale, the boundary condition (1) is modified as follows since the continuity 

of the fluid phase concentration has to be satisfied: 

 (5) 

The material balance within the particles is now: 

 
(6) 

 

The particle porosity cancels in the material balance but remains in the boundary 

condition. However, the definition (3) of the effective diffusion coefficient can be used for 

this situation. 
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APPENDIX II  

The discretization over time and space of the pore network is performed by using 

respectively, DASPK created by Petzold, L.R.; Brown, P. N.; Hindmarsh, A. C. and Ulrich 

C. W. and an orthogonal collocation method developed by Villadsen, J. and Michelsen, M., 

which is briefly described below. 

The discretization over time uses the package DASPK. This is used to calculate large-

scale systems with initial conditions, in the presence of differential algebraic equations 

(DAEs), as mentioned before. Indeed, this code solves non-linear or linear systems of 

DAEs using a combination of variable-order, variable-step size backward differentiation 

formula (BDF) for time stepping. 

In summary, on each step taken by DASPK, a sequence of nonlinear algebraic systems 

arises. These are solved by one of two types of methods (Petzold, 1982): 

- a Newton iteration with a direct method (dense or band matrix solvers) for the 

linear systems involved; 

- a Newton iteration with a preconditioned Krylov iterative method for the linear 

systems involved. 

We have opted for the direct method using band matrix solvers, since we consider we are 

in a small-scale project. Also, the direct method chosen will use an internal difference 

quotient Jacobian matrix. 

DASPK solves the initial value problem for the DAE system  with respect to a 

set of initial conditions  and . To solve , DASPK 

follows, as mentioned before, the discretization by the BDF method. For each time step, 

where , which changes whenever the steps or order change and  is a vector 

which depends on the solution at past times and finally, , ,  and  are evaluated at 

time , using therefore a modified version of Newton’s method (Brenan and Campbell, 

1996; Petzold, 1982): 

 (7) 

In fact, the direct method computes and factorizes matrix  (defined in parentheses in 

the equation above – termed the iteration matrix) and then uses it, for as many time 

steps as possible. The iterative method (Krylov) would have used an approximation of  

(a preconditioned matrix ). 

Using the direct method implies that DASPK will determine the Jacobian of the system. It 

also implies that the Jacobian matrix will be considered as a full matrix. 
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In our case study and as expected, we will not be in the presence of a full Jacobian 

matrix. Therefore, we must determine the size of our matrix. For each pore we have 

 elements, to which we must multiply the maximum value found 

between the difference of the pores’ labels connected to a given node in order to have 

our matrix size. 

Concerning the spatial discretization, an orthogonal collocation method is applied, which 

is able to solve differential equations by polynomial approximations. It is called 

orthogonal collocation due to the fact that the collocation points are the zeros of 

orthogonal polynomials. It should be clear that this method is a system of distributed 

parameters, the collocation points that are located along the pore length correspond to 

the roots of a polynomial. 

The domain is broken up into a fixed number of (relatively) large subdomains or 

elements, and high-order basis functions are used to construct a trial solution within each 

element. The polynomial functions passing through the collocation points are Jacobi 

polynomials, or more specifically shifted polynomials as they are ranged between [0,1] 

instead of [-1,1]. These polynomials can be easily constructed and increased to any 

desired degree . The Jacobi polynomials  of degree  are defined such, that 

they satisfy the orthogonality conditions (Villadsen and Stewart, 1967; Soliman et al., 

2014), which are: 

 (8) 

With  and, 

 (9) 

With  and where  is the weighting function of the orthogonality conditions and  

is a constant. For Jacobi polynomials, 

 (10) 

Thus,  and  are the indices of the weight function . The Jacobi polynomials must 

satisfy some requirements, for more information we refer the reader to Soliman et al. 

(2014). 

In the orthogonal collocation method, we represent the solution as a polynomial with 

unknown coefficients to be determined such that the differential equation is satisfied at 

certain points. The best way to write a polynomial approximation of a function in terms of 

its values (ordinates) at certain points is through the Lagrange interpolation formula that 



 

173 

allows to obtain the solution at the collocation points (Surjanhata, 1993). Secondly, we 

can easily derive formulae for the derivatives using the Lagrange interpolation formula. 

And finally, the same Lagrange formula can then be used to obtain the concentration 

values at any point . The Lagrange interpolation formula is given as follows 

(Villadsen and Michelsen, 1978): 

 (11) 

With the Lagrange polynomials, 

 (12) 

With the help of equation (11), the first and second derivatives of any function  

expressed in terms of Lagrange polynomials and at a collocation point  can be easily 

obtain (Soliman et al., 2014): 

 (13) 

 (14) 

With  and , the collocation points and where, 

 (15) 

 (16) 

Villadsen and Michelsen (1978) propose a good method to calculate these two vectors, 
 and . 

Also, equations (13) and (14) must be in accordance with, 

 (17) 

with  the weighting matrix of integration. 
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APPENDIX III  

In order to numerically validate the FORTRAN® code used in the mass transfer 

simulation, we intend in this section to present some pore networks with low complexity 

that may be helpful to validate the code by comparing concentration profiles. 

At first, the concentration profiles obtained for simple networks of pores in series with an 

overall pore length  will be compared to the concentration profiles of a single pore with 

length . We expect to obtain identical concentration profiles. Secondly, non-linear 

networks such as, triangles and stars will be put at test. 

For all simulations, through the pore network will diffuse a binary mixture composed by 

species A and B. At time , the network is immerged under a solution composed by 

species B and for time , species A will start diffusing through the pore network from 

the external surface of the network and at concentration . 

III.1 SIMULATION OF LINEAR SIMPLE NETWORKS USING THE FICK’S MODEL 

The code validation can be outlined as follows: 

1) Simulation of 1 single pore of radius and length,  and (basis of comparison); 

2) Simulation of 2 pores in series, sized  and ; 

3) Simulation of 2 pores in series, sized  and  and ; 

4) Simulation of 3 pores in series, sized  and ; 

5) Simulation of 3 pores in series, sized  and ,  and . 

The pore radius and length used are:  and . 

III.1.1 SIMULATION OF A SINGLE PORE 

In order to manage the code validation, it was important in a first step, to compare 

concentration profiles of simple networks. We have decided, for instance, to compare 

pores in series (having an overall length of ) to a single pore sized  (basis of 

comparison). For these case scenarios, both concentration profiles should be identical. 

 
Fig. Ap. III-1. 1 single pore sized  with blue node at the external surface of the grain, with . 

Here follows the concentration profile of a single pore of size  (Fig. Ap. III-2): 
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Fig. Ap. III-2. Concentration profile of a single pore sized  and  (dashed lines represent the basis of 

comparison). 

III.1.2 SIMULATION OF 2 PORES IN SERIES WITH L1=L2=  /2 

The graphical representation presented on Fig. Ap. III-4, gives us the comparison of the 

concentration profiles obtained from two different networks: 2 pores in series of size  

(continuous lines) and a single pore of size  (dashed lines) and at different simulation 

times. 

 
Fig. Ap. III-3. 2 pores sized , with node 1 open to the outer surface. 

As we can see from Fig. Ap. III-4, the concentration profiles are identical, except at time 

, where at the extremity of the pore a maximum relative error of  was 

found. Apart from time , at all times and positions, the relative errors have an 

order of magnitude of  or even . 

 
Fig. Ap. III-4. Concentration profiles at different times t obtained from one single pore  (dashed lines) and 2 

pores in series  (continuous lines). 
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III.1.3 SIMULATION OF 2 PORES IN SERIES WITH  AND  

We proceed to an analogous comparison using once again two pores in series having 

different lengths,  for the first pore and  for the second one. Node 1 is open and 

at concentration  for species A. Here follows an illustrative representation of the 

network. 

 
Fig. Ap. III-5. 2 pores sized:  and , with node 1 open. 

Placing us at the end of the pore and looking for the maximum relative error, we have 

found once again the same order of magnitude , followed by  and the majority of 

the relative errors present an order of magnitude of  or even . The following 

figure represents the concentration profiles at different simulation times for the two 

pores in series (continuous lines) and for the single pore  (dashed lines). 

 
Fig. Ap. III-6. Concentration profiles at different times t obtained for one single pore  (dashed lines) and 2 

pores in series of and  (continuous lines). 

III.1.4 SIMULATION OF 3 PORES IN SERIES  

This time, we have simulated three pores in series sized  with an overall network 

length of , as shown illustratively below (Fig. Ap. III-7) and that we shall compare with 

the single pore concentration profile of size . 

 
Fig. Ap. III-7. Illustrative representation of the network constituted by 3 pores sized , with node 1 open. 

For this comparison presented on Fig. Ap. III-8, we have calculated as well, the relative 

errors at the end of the network (node 4). For , the order of magnitude has not 

changed , for the following simulation times the order of magnitude of the relative 

errors alternates between  and . 
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Fig. Ap. III-8. Concentration profiles at different times t obtained from one single pore  (dashed lines)and 3 

pores in series of  (continuous lines). 

III.1.5 SIMULATION OF 3 PORES IN SERIES WITH ,  AND  

Last but not the least, we have simulated 3 pores in series with pores sized: ,  

and finally . 

 
Fig. Ap. III-9. Illustrative representation of the network constituted by 3 pores sized ,  and , with 

node 1 open. 

The concentration profiles at different simulation times are shown in Fig. Ap. III-10, 

continuous lines for the 3 pores in series and dashed lines for the single pore of size . 

The relative errors are rather low and the concentration profiles obtained simulating the 

3 pores in series of different sizes match the concentration profiles obtained from the 

simulations using a single pore of size . 

 
Fig. Ap. III-10. Concentration profiles at different times t obtained from one single pore  (dashed lines)and 3 

pores in series of ,  and  (continuous lines). 
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With the data presented above, we have shown that a good agreement is found for the 

comparisons performed. The code is able to numerically handle a series of pores. It 

should also be mentioned that different sizes of pores, length and radius, were also 

tested, and that we have found a good agreement as well. In the next subchapter, non-

linear pore networks will be tested. 

III.2 SIMULATION OF NON-LINEAR PORE NETWORKS USING THE FICK’S MODEL 

After having validated the networks of pores in series presented above, we tested other 

kinds of network shapes, in order to understand the feasibility of the code. We present 

here simulations performed with pores in the form of a triangle and a star. The pore 

radius and length used are:  and . 

III.2.1 SIMULATION OF A TRIANGLE WITH DIFFERENT BOUNDARY CONDITIONS SCENARIOS 

Fig. Ap. III-12 plots the concentration profiles at several simulation times of all three 

pores belonging to a triangle network (see Fig. Ap. III-11). All nodes of the triangle are 

placed at the external surface of the particle, they have therefore the same concentration 

. 

 
Fig. Ap. III-11. Schematic illustration of a triangle network having all nodes open. Blue nodes are open and at 

the external surface of the catalyst grain, with . 

To validate the calculations, the concentration profiles of each pore should be the same. 

It is exactly what is found in the graphical representation below (Fig. Ap. III-12). 

 
Fig. Ap. III-12. Concentration profiles of all 3 pores belonging to a triangle where all nodes are open. Dashed 

lines represent pores 2 and 3 and continuous lines, pore 1. 

The following plots of Fig. Ap. III-14 and Fig. Ap. III-15 also refer to a triangle for which 

the node 3 is closed and nodes 1 and 2 open and with concentration  (Fig. Ap. III-13). 
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Therefore, the concentration profiles that we shall obtain have necessarily two pores with 

the exact same concentration profiles. 

 
Fig. Ap. III-13. Schematic illustration of a triangle network having 1 only node closed. Blue nodes are open and 

at the external surface of the catalyst grain, with . Red nodes are interior nodes. 

Indeed, if we look to Fig. Ap. III-14 and Fig. Ap. III-15, representing the concentration 

profiles at times  and  respectively, one observes two identical 

concentration profiles, corresponding to pores 2 and 3, as expected. 

 
Fig. Ap. III-14. Concentration profiles extracted at time t=0.001s for 3 pores belonging to a triangle where one 

of the nodes is closed. 

 
Fig. Ap. III-15. Concentration profiles extracted at time t=0.005s for 3 pores belonging to a triangle where one 

of the nodes is closed. 

We have also tested instead of closing one only node of the triangle, closing two of them, 

as shown in the scheme below (Fig. Ap. III-16). Now, the concentration profiles of pores 

1 and 3 should be equal. 
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Fig. Ap. III-16. Schematic illustration of a triangle network having 2 nodes closed. 

The following graphical representations, Fig. Ap. III-17 and Fig. Ap. III-18, confirm that 

the concentration profiles obtained at two different simulation times,  and 

 for pores 1 and 3 completely match. 

 
Fig. Ap. III-17. Concentration profiles at t = 0.001s for 3 pores belonging to a triangle where two of the nodes 

are closed. 

 
Fig. Ap. III-18. Concentration profiles at t = 0.005s for 3 pores belonging to a triangle where two of the nodes 

are closed. 

III.2.2 SIMULATION OF A STAR TAKING DIFFERENT BOUNDARY CONDITIONS SCENARIOS 

The star under consideration has three pores and contains four nodes (Fig. Ap. III-19). 

We have obtained for each pore their concentration profile. Assuming that only the 

middle pore is closed, we should obtain the exact same concentration profiles for each 

three pores. 
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Fig. Ap. III-19. Schematic illustration of a star network, having the external nodes open. Blue nodes are open 

and so, at the external surface of the catalyst grain, with . Red nodes are inner nodes. 

Looking to Fig. Ap. III-20, we can confirm that all three pores have the same 

concentration profile. 

 
Fig. Ap. III-20. Concentration profiles referent to the pores of a star at different time simulations having the 

external nodes open and with . Dashed lines represent pores 2 and 3 and the continuous line, pore 1. 

Now, taking the middle node of the star open and with concentration  and all the 

external nodes closed as illustrated on Fig. Ap. III-21. With this case scenario, we should 

also find that all pores have the same concentration profiles. 

 
Fig. Ap. III-21. Schematic illustration of a star network, having the middle node open. 

Fig. Ap. III-22 shows exactly this scenario. The concentration profiles were obtained at 

different simulation times, in continuous lines we have represented pore 1 and in dashed 

lines, pores 2 and 3. We may conclude from this data that there is a perfect match 

between the concentration profiles obtained for each pore, as expected. 
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Fig. Ap. III-22. Concentration profiles referent to the pores of a star at different time simulations. External 

nodes are closed, and the middle node opened with . 

Taking another scenario, we have considered external nodes 1 and 2 to have 

concentration  and node 3 and 4 are not in contact with the external surface (inner 

nodes). 

 
Fig. Ap. III-23. Schematic illustration of a star network, having 2 external nodes open. Blue nodes are open and 

at the external surface of the catalyst grain, with . Red nodes have no contact with the grain surface. 

The concentration profiles obtained are shown in Fig. Ap. III-24 and Fig. Ap. III-25 

confirming that pores 1 and 2 have the same profiles. 

 
Fig. Ap. III-24. Concentration profiles referent to the pores of a star at time simulation t=0.005s. 2 external 

nodes are open and with . 
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Fig. Ap. III-25. Concentration profiles referent to the pores of a star at time simulation t=0.01s. 2 external 

nodes are open and with . 

Taking now, one external node open (node 1) and therefore in contact with the external 

surface of the grain and with concentration , we can represent the network as shown in 

Fig. Ap. III-26: 

 
Fig. Ap. III-26. Schematic illustration of a star network, having one only external node open. 

The simulations confirm that pores 2 and 3 have identical concentration profiles as can 

be seen on Fig. Ap. III-27 and Fig. Ap. III-28 respectively for times  and 

. 

 
Fig. Ap. III-27. Concentration profiles referring to pores of a star at t=0.005s. 1 external node is open and with 

concentration . 
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Fig. Ap. III-28. Concentration profiles referring to pores of a star at t=0.01s. 1 external node is open and with 

concentration . 

 

III.3 SIMULATION OF LINEAR SIMPLE NETWORKS USING THE MAXWELL-STEFAN’S MODEL 

We present in this section simulations performed to validate the code using Maxwell-

Stefan’s law. All the simulations presented in the previous section were also performed 

using the Maxwell-Stefan’s equation and all validations succeeded very well. However, for 

a matter of brevity and importance, we have decided that in this section we would only 

present two case scenarios. The reader also should know that the Maxwell-Stefan 

equation used is dedicated to isothermal, ideal and incompressible systems of a 

multicomponent mixture. 

First, we performed a simulation for a binary mixture, where we compare the 

concentration profiles obtained from the Fick’s and the Maxwell-Stefan equation, over 

one single pore. 

The following graphical representations are relative to times and (Fig. Ap. 

III-29 and Fig. Ap. III-30), using the given pore characteristics: and 

. Having defined a diffusivity of , for and and . The 

simulations show a good agreement between the two laws, as expected. Given the fact 

that we are in the presence of a binary mixture. 

Now, taking a pore network constituted by one single pore of  and 

. And comparing it to two pores in series, each one of size , we have compared 

the concentration profiles of these two simple networks using the Maxwell-Stefan model. 

We know for a fact that, the concentration profiles obtained from the two networks 

should match. Also, we should mention that we are still in the presence of a binary 

mixture. For simulation time  we have, as expected, the profiles completely 

matching (see Fig. Ap. III-31). 
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Fig. Ap. III-29. Concentration profiles comparing the use of the Maxwell-Stefan law with the Fick’s law at time 

T=0.005s. 

 
Fig. Ap. III-30. Concentration profiles comparing the use of the Maxwell-Stefan law with the Fick’s law at time 

T=0.015s. 

 
Fig. Ap. III-31. Concentration profiles obtained from a network of two pores in series, each sized L/2 and 1 

single pore sized L. 

III.4 OTHER CASE SCENARIOS USING THE MAXWELL-STEFAN’S MODEL 

Another case scenario here proposed takes a binary mixture diffusing over the single 

pore, but this time we consider two mixtures with different species diffusivities. For one 
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of the binary mixtures we have  and for the other one, we have 

, for  and  and . The following graphical representation contains 

the concentration profiles from both mixtures at two different simulation times (see Fig. 

Ap. III-32 and Fig. Ap. III-33). 

 
Fig. Ap. III-32. Concentration profiles comparing two different mixtures in terms of diffusivities and at time 

T=0.005s. 

 
Fig. Ap. III-33. Concentration profiles comparing two different mixtures in terms of diffusivities and at time 

T=0.01s. 

From the graphics presented above, it is clear that the mixture with lower values of 

diffusivities  has a delay compared to the other mixture with 

, which is an expected result. 

Last but not the least, we present here a simulation performed through a pore network 

defined by a star of three pores. The pores of the star network have respectively a pore 

radius and length of  and . The mixture diffusing is a ternary mixture 

and we have considered the situation where only two external nodes of the star are open 

(nodes 1 and 2 from Fig. Ap. III-34). One of these external nodes is only in contact with 

species 2 and the other, is only in contact with species 3 as shown in Fig. Ap. III-34 . At 

time  only species 1 is present. 
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Fig. Ap. III-34. Simulation of a ternary mixture diffusing in a star network. 

We have simulated this network with a mixture having all diffusivities taking the same 

value , for  and  and . The concentration profiles along pore 1 

at a simulation time of  and  are represented graphically on the following 

figures: 

 
Fig. Ap. III-35. Concentration profiles of a ternary mixture over pore 1 at time T=0.015s. 

 
Fig. Ap. III-36. Concentration profiles over pore 1 of a ternary mixture over pore 1 at time T=0.04s. 

The concentration of species 2 decreases from the entrance of the pore (node 1) until 

node 4, whereas for species 1 and 3 it increases, as expected. A similar behaviour is 
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observed in pore 2, as it can be seen on Fig. Ap. III-37 and Fig. Ap. III-38. With species 

3 decreasing and species 1 and 2 increasing their concentration. 

 
Fig. Ap. III-37. Concentration profiles of a ternary mixture over pore 2 at time t=0.015s. 

 
Fig. Ap. III-38. Concentration profiles of a ternary mixture over pore 2 at time t=0.04s. 

Finally, the following graphics show the evolution of the concentration in pore 1: at the 

entrance of the pore (Fig. Ap. III-39), in the middle (Fig. Ap. III-40) and at the end of 

the pore (Fig. Ap. III-41): 

 
Fig. Ap. III-39. Concentration evolution at the entrance of the diffusing species in pore 1 of the star network. 
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Fig. Ap. III-40. Concentration evolution in the middle of pore 1 of the star network. 

 
Fig. Ap. III-41. Concentration evolution in the outlet of pore 1 of the star network. 

III.5 CONCLUSIONS 

We developed a model where mass transfer by diffusion can be described through a pore 

network, using the Fick’s and Maxwell-Stefan’s laws and where the influence of the 

morphology of the network is taken into account, using a connectivity matrix. The code 

was validated numerically and theoretically through various cases using simple networks 

of: pores in series, stars and triangles. 

This model is a valuable tool that helped us to define in each pore, a concentration profile 

at different simulation times. It also allows to make use of the node rule used in the work 

of Kirchhoff’s and therefore to define as well the concentration at each node of the 

network. The mass transfer prediction proposed in the model can be of course extended 

to other phenomena that may be produced inside a porous structure, for instance 

chemical reactions or adsorption phenomena. 
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APPENDIX IV  

Additional data related to the required minimum network size, where different network 

sizes are tested Nx×Ny×Nz with Nx=Ny and Nz=1. 

The study was promoted on different kinds of networks, from 2D Zmax=4-6 to 3D Zmax=6-

8.  

IV.1 REQUIRED MINIMUM NETWORK SIZE FOR 2D SQUARE NETWORKS 

Regarding the 2D square network (Zmax=4) several pore existence probabilities were 

studied . 

 

Taking P=0.5, we have: 

 
Fig. Ap. IV-1. Catalyst porosity obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D Zmax=4 

networks with P=0.5. 

 
Fig. Ap. IV-2. Connectivity obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D Zmax=4 

networks with P=0.5. 
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Fig. Ap. IV-3. Specific surface area obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D 

Zmax=4 networks with P=0.5. 

 
Fig. Ap. IV-4. Pore volume obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D Zmax=4 

networks with P=0.5. 

 

For P=0.7, one has: 

 
Fig. Ap. IV-5. Catalyst porosity obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D Zmax=4 

networks with P=0.7. 

 

0

20

40

60

80

100

120

10 1000 100000 10000000

S 
BE

T 
(m

2 ·g
-1

)

Number of nodes

Minimum
Maximum
Average

1.0E-07

1.5E-07

2.0E-07

2.5E-07

3.0E-07

10 1000 100000 10000000

Vp
 (m

3 ·g
-1

)

Number of nodes

Minimum
Maximum
Average

0.35

0.40

0.45

0.50

0.55

0.60

10 1000 100000 10000000
Number of nodes

Minimum
Maximum
Average



 

192 

 
Fig. Ap. IV-6. Connectivity obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D Zmax=4 

networks with P=0.7. 

 
Fig. Ap. IV-7. Specific surface area obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D 

Zmax=4 networks with P=0.7. 

 
Fig. Ap. IV-8. Pore volume obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D Zmax=4 

networks with P=0.7. 
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And finally, for P=0.9: 

 
Fig. Ap. IV-9. Catalyst porosity obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D Zmax=4 

networks with P=0.9. 

 
Fig. Ap. IV-10. Connectivity obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D Zmax=4 

networks with P=0.9. 

 
Fig. Ap. IV-11. Specific surface area obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D 

Zmax=4 networks with P=0.9. 
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Fig. Ap. IV-12. Pore volume obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D Zmax=4 

networks with P=0.9. 

IV.2 REQUIRED MINIMUM NETWORK SIZE FOR 2D TRIANGULAR NETWORKS 

Concerning 2D triangular networks with Zmax=6 and taking P=0.5, we have: 

 
Fig. Ap. IV-13. Catalyst porosity obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D 

Zmax=6 networks with P=0.5. 

 
Fig. Ap. IV-14. Connectivity obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D Zmax=6 

networks with P=0.5. 
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Fig. Ap. IV-15. Specific surface area obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D 

Zmax=6 networks with P=0.5. 

 
Fig. Ap. IV-16. Pore volume obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D Zmax=6 

networks with P=0.5. 

 

For P=0.7 see section V.3.1. Finally, for P=0.9, we have: 

 
Fig. Ap. IV-17. Catalyst porosity obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D 

Zmax=6 networks with P=0.9. 
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Fig. Ap. IV-18. Connectivity obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D Zmax=6 

networks with P=0.9. 

 
Fig. Ap. IV-19. Specific surface area obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D 

Zmax=6 networks with P=0.9. 

 
Fig. Ap. IV-20. Pore volume obtained for different network sizes Nx×Ny×Nz with Nx=Ny and Nz=1. 2D Zmax=6 

networks with P=0.9. 
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Taking P=0.5, we have: 

 
Fig. Ap. IV-21. Catalyst porosity obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=6 

networks with P=0.5. 

 
Fig. Ap. IV-22. Connectivity obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=6 networks 

with P=0.5. 

 
Fig. Ap. IV-23. Specific surface area obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=6 

networks with P=0.5. 
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Fig. Ap. IV-24. Pore volume obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=6 networks 

with P=0.5. 

 

For P=0.7: 

 
Fig. Ap. IV-25. Catalyst porosity obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=6 

networks with P=0.7. 

 
Fig. Ap. IV-26. Connectivity obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=6 networks 

with P=0.7. 
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Fig. Ap. IV-27. Specific surface area obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=6 

networks with P=0.7. 

 
Fig. Ap. IV-28. Pore volume obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=6 networks 

with P=0.7. 

 

For P=0.9: 

 
Fig. Ap. IV-29. Catalyst porosity obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=6 

networks with P=0.9. 
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Fig. Ap. IV-30. Connectivity obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=6 networks 

with P=0.9. 

 
Fig. Ap. IV-31. Specific surface area obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=6 

networks with P=0.9. 

 
Fig. Ap. IV-32. Pore volume obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=6 networks 

with P=0.9. 
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For P=0.5, we have: 

 
Fig. Ap. IV-33. Catalyst porosity obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=8 

networks with P=0.5. 

 
Fig. Ap. IV-34. Connectivity obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=8 networks 

with P=0.5. 

 
Fig. Ap. IV-35. Specific surface area obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=8 

networks with P=0.5. 
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Fig. Ap. IV-36. Pore volume obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=8 networks 

with P=0.5. 

 

For P=0.7: 

 
Fig. Ap. IV-37. Catalyst porosity obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=8 

networks with P=0.7. 

 
Fig. Ap. IV-38. Connectivity obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=8 networks 

with P=0.7. 
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Fig. Ap. IV-39. Specific surface area obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=8 

networks with P=0.7. 

 
Fig. Ap. IV-40. Pore volume obtained for different network sizes Nx×Ny×Nz with Nx=Ny=Nz. 3D Zmax=8 networks 

with P=0.7. 
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APPENDIX V  

In this section, we first present the results obtained for 2D Zmax=4 (triangular) networks 

respective to the separate influence of Nx and Ny and then, we present the results 

obtained for 2D Zmax=4 networks on both the textural and mass transfer properties. A 

pore existence probability of P=0.98 is here used. 

V.1 INFLUENCE OF NX ON 2D TRIANGULAR NETWORKS (ZMAX=6) 

To study the sensitivity towards Nx, thirty 2D triangular networks of constant Ny and 

variable Nx were generated. The maximum network sizes used are: 10×1000, 20×1000, 

30×1000, 40×1000, 50×1000 and 60×1000. The used pore existence probability is of 

0.7. The networks generated at a maximum size of 10×1000 have a maximum number 

of nodes of 10,000 nodes and for example, the network size 50×1000, contains an 

average amount of nodes of 49,955 and an average number of pores of 104,805. 

The influence of Nx on the mean and standard deviation of the catalyst porosity, 

connectivity, particle specific surface area and specific pore volume are represented 

graphically in Fig. Ap. V-1-Fig. Ap. V-4. 

 
Fig. Ap. V-1. Porosity according to Nx with Ny=1000. 2D networks, Zmax=6 and P=0.7. 

 
Fig. Ap. V-2. Connectivity according to Nx with Ny=1000. 2D networks, Zmax=6 and P=0.7. 

On Fig. Ap. V-1, the porosity standard deviation globally decreases when increasing the 

particle dimension Nx while the average porosity takes a value of 0.73. The same trends 

are observed for the remaining textural properties (see Fig. Ap. V-1-Fig. Ap. V-4). The 

mean textural properties take rather constant values. The average connectivity is of 
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4.20, the specific surface area of 352 m2·g-1 and the pore volume around 8.81×10-7 m3·g-

1. 

 
Fig. Ap. V-3. Specific surface area according to Nx with Ny=1000. 2D networks, Zmax=6 and P=0.7. 

 
Fig. Ap. V-4. Pore volume according to Nx with Ny=1000. 2D networks, Zmax=6 and P=0.7. 

In Fig. Ap. V-5 are graphically represented the tortuosities of all 30 networks generated 

for each network size and that have been previously studied in terms of the textural 

properties in Fig. Ap. V-1 to Fig. Ap. V-4. 

Fig. Ap. V-5 gives a global apparatus on the average and dispersion of the tortuosity data 

at each network size, being necessary to graphically represent the average and standard 

deviation from all 30 networks simulated for each network size, as shown in Fig. Ap. V-6. 

 
Fig. Ap. V-5. Tortuosity obtained per simulation as a function of the catalyst porosity for 6 different 2D Zmax=6 

networks according to Nx with Ny=1000. 
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In Fig. Ap. V-6, on the left are represented graphically the average tortuosity from all 30 

networks obtained for each network size and on the right, their corresponding standard 

deviation. 

 
Fig. Ap. V-6. Tortuosity obtained for 6 different 2D Zmax=6 network sizes according to Nx with Ny=1000. 

When looking to the mass transfer properties shown in Fig. Ap. V-6, a similar behaviour 

to that from the textural properties is here found. Indeed, we observe a decrease in the 

standard deviation as Nx increases in combination with a rather constant value of the 

average tortuosity (1.26 to 1.30) for an average value of the porosity of 0.73. We would 

expect that for greater Nx, the lower the probability to find paths with =1.0 and so, a 

tortuosity different from the average tortuosity becomes less exclusive and the standard 

deviation reduces. Also, with the increase in Nx, the network size also increases and the 

Monte Carlo variability is reduced hence, the standard deviation is also reduced. 

 

V.1.1 INFLUENCE OF NY ON 2D TRIANGULAR NETWORKS (ZMAX=6) 

A similar study is provided according to the parallelepiped dimension Ny, with Nx being 

constant. Thirty 2D triangular networks (Zmax=6) were generated for different maximum 
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of nodes is of 10,000 and for example, the 50×1500 network size contains an average 

number of nodes of 74,940 and an average number of pores of 157,385. 

Looking at the mean and standard deviation of the main textural properties presented on 

Fig. Ap. V-7 to Fig. Ap. V-10, it can be concluded a reduction on the standard deviation 

as Ny increases. The preponderant reason is actually due to the reduction of the 

variability of Monte Carlo for greater network sizes. Regarding the catalyst porosity, the 
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Fig. Ap. V-7. Porosity obtained according to Ny with Nx = 50. 2D networks, Zmax = 6, P = 0.7. 

 
Fig. Ap. V-8. Connectivity according to Ny with Nx = 50. 2D networks, Zmax = 6, P = 0.7. 

 
Fig. Ap. V-9. Specific surface area according to Ny with Nx = 50. 2D networks, Zmax = 6, P = 0.7. 

 

Fig. Ap. V-10. Pore volume according to Ny with Nx = 50. 2D networks, Zmax = 6, P = 0.7. 
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tortuosity that is available on Fig. Ap. V-12, it takes a value of 1.30 for an average 

porosity of 0.73. 

 
Fig. Ap. V-11. Predicted tortuosity per simulation as a function of the catalyst porosity for 4 different 2D Zmax=6 

network sizes according to Ny with Nx =50. 

The tortuosity standard deviations presented on the right hand side of Fig. Ap. V-12, do 

not have the same behaviour as the textural properties, that reduced with Ny. Indeed, 

the tortuosity standard deviation remains globally constant. As far as the average 

tortuosity is concerned, it remains rather constant with Ny.  

We would expect that for greater Ny, the greater the dispersion since, the characteristic 

length of diffusion increases with Ny and with that the probability to find more 

heterogeneous paths increases as well. Yet, one should know that the standard 

deviations calculated for the variation of Ny can be misleading. Due to the Monte Carlo 

variability that gets an important role if the maximum network size is varied. For greater 

network sizes, the data dispersion reduces. 

 
Fig. Ap. V-12. Predicted tortuosity according to Ny with Nx = 50. 2D networks, Zmax = 6, P = 0.7. 
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the report will help clarifying since, we have simulated pore networks of equal number of 

nodes and Nx≠Ny according to Nx/Ny. 

 

V.2 INFLUENCE OF NX ON 2D SQUARE NETWORKS (ZMAX=4) 

The influence of Nx on the textural and mass transfer properties is here studied on 2D 

Zmax=4 pore networks with P=0.98. 

As we can see from Fig. Ap. V-13 to Fig. Ap. V-16, the mean textural properties remain 

rather constant and the standard deviations are globally decreasing with increasing Nx 

due, essentially to the augmentation of the maximum network size that leads to a lower 

Monte Carlo variability. 

 
Fig. Ap. V-13. Porosity according to Nx with Ny=1000. 2D networks, Zmax=4 and P=0.98. 

 
Fig. Ap. V-14. Connectivity according to Nx with Ny=1000. 2D networks, Zmax=4 and P=0.98. 

 

Fig. Ap. V-15. sBET according to Nx with Ny=1000. 2D networks, Zmax=4 and P=0.98. 
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Fig. Ap. V-16. Pore volume according to Nx with Ny=1000. 2D networks, Zmax=4 and P=0.98. 

The mean tortuosity is also rather constant with a similar behaviour on the standard 

deviation of that from the textural properties. I.e., a decrease in the standard deviation 

with the augmentation of Nx. Once again probably due to the variability of the Monte 

Carlo approach. 

 
Fig. Ap. V-17. Tortuosity obtained per simulation as a function of the catalyst porosity for 6 different 2D Zmax=4 

networks according to Nx with Ny=1000. 

 
Fig. Ap. V-18. Tortuosity obtained for 6 different 2D Zmax=4 network sizes according to Nx with Ny=1000. 
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the standard deviation when Ny increases. Which we believe is merely due to the 

variability of Monte Carlo approaches. Since, for lower maximum network sizes the 

greater the results variability. 

 
Fig. Ap. V-19. Catalyst porosity according to Ny with Nx=50. 2D networks, Zmax=4 and P=0.98. 

 

Fig. Ap. V-20. Connectivity according to Ny with Nx=50. 2D networks, Zmax=4 and P=0.98. 

 
Fig. Ap. V-21. Specific surface area according to Ny with Nx=50. 2D networks, Zmax=4 and P=0.98. 

 
Fig. Ap. V-22. Pore volume according to Ny with Nx=50. 2D networks, Zmax=4 and P=0.98. 
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As for the averages of the tortuosity factor, they remain quite constant with values 

ranging from 1.018 to 1.032. On the other hand, the behaviour of the standard deviation 

of the mass transfer properties is quite different compared to that from the textural 

properties. It seems that, it keeps increasing with the augmentation of Ny. Yet, since the 

maximum network sizes of the different network sizes tested are different, any 

conclusions taken from these figures might be misleading. The reason why we have 

promoted the study on the influence of the parallelepiped dimensions taking networks 

with equal maximum number of nodes, as it is described in the next section. 

 
Fig. Ap. V-23. Tortuosity obtained per simulation as a function of the catalyst porosity for 6 different 2D Zmax=4 

P=0.98 networks according to Ny with Nx=50. 

 
Fig. Ap. V-24. Tortuosity obtained for 4 different 2D Zmax=4 P=0.98 network sizes 

according to Ny with Nx=50. 
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Fig. Ap. V-25. Porosity according to Nx/Ny. 2D networks, Zmax = 4, P = 0.98. 

 
Fig. Ap. V-26. Connectivity according to Nx/Ny. 2D networks, Zmax = 4, P = 0.98. 

 
Fig. Ap. V-27. Specific surface area according to Nx/Ny. 2D networks, Zmax = 4, P = 0.98. 

 
Fig. Ap. V-28. Pore volume according to Nx/Ny. 2D networks, Zmax = 4, P = 0.98. 
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Nx. And, that the standard deviations from the textural properties take rather low and 

globally constant values. 

 
Fig. Ap. V-29. Predicted tortuosity from mass transfer simulations as a function of the catalyst porosity for 4 

different 2D Zmax=4 P=0.98 networks according to Nx/Ny. 

 
Fig. Ap. V-30. Predicted tortuosity for 5 different 2D Zmax=4 and P=0.98 networks according to Nx/Ny. 
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APPENDIX VI  

This appendix contains extended data from section VI.3.2 regarding the variation of the 

textural and mass transport properties as a function of the number of generated pore 

networks, from 2 to 30 samples. 2D networks of size 100×100 with Zmax=6 were used. 

For 2D square networks (Zmax=4), the influence of the pore existence probability on the 

textural properties, as well as, on the tortuosity as a function of the catalyst porosity are 

presented. 

VI.1 INFLUENCE OF THE PORE EXISTENCE PROBABILITY ON 2D TRIANGULAR NETWORKS 

 
Fig. Ap. VI-1. Porosity per sample and cumulated average for different pore existence probabilities. 

 
Fig. Ap. VI-2. Porosity variance and standard deviation from 2 to 30 samples of networks at different pore 

existence probabilities. 

 
Fig. Ap. VI-3. Porosity deviation from 2 to 30 samples of networks at different pore existence probabilities. 
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Fig. Ap. VI-4. Connectivity per sample and cumulated average for different pore existence probabilities. 

 
Fig. Ap. VI-5. Connectivity variance and standard deviation from 2 to 30 samples of networks at different pore 

existence probabilities. 

 
Fig. Ap. VI-6. Specific surface area per sample and cumulated average for different pore existence probabilities. 

 
Fig. Ap. VI-7. Specific surface area variance and standard deviation from 2 to 30 samples of networks at 

different pore existence probabilities. 
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Fig. Ap. VI-8. Specific surface area deviation from 2 to 30 samples of networks at different pore existence 

probabilities. 

 
Fig. Ap. VI-9. Pore volume per sample and cumulated average for different pore existence probabilities. 

 
Fig. Ap. VI-10. Pore volume variance and standard deviation from 2 to 30 samples of networks at different pore 

existence probabilities. 

 
Fig. Ap. VI-11. Pore volume deviation from 2 to 30 samples of networks at different pore existence 

probabilities. 
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Fig. Ap. VI-12. Effective diffusion coefficient per sample and cumulated average for different pore existence 

probabilities. 

 
Fig. Ap. VI-13. Effective diffusion coefficient variance and standard deviation from 2 to 30 samples of networks 

at different pore existence probabilities. 

 
Fig. Ap. VI-14. Effective diffusion coefficient deviation from 2 to 30 samples of networks at different pore 

existence probabilities. 
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Fig. Ap. VI-15. Mean porosity according to the pore existence probability, P. 2D networks, Zmax = 4. 

 
Fig. Ap. VI-16. Mean connectivity according to the pore existence probability, P. 2D networks, Zmax = 4. 

 
Fig. Ap. VI-17. Mean specific surface area according to the pore existence probability, P. 2D networks, Zmax = 4. 
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Fig. Ap. VI-18. Mean pore volume according to the pore existence probability, P. 2D networks, Zmax = 4. 

 
Fig. Ap. VI-19. Variation of the predicted tortuosities as a function of porosity for several pore existence 

probabilities and taking a 2D pore network with Zmax=4. Correlations taken from Akanni and Evans (1987), 

Beeckman (1990), and Shen and Chen (2007). 
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APPENDIX VII  

Influence of the pore diameter on the textural and mass transfer properties for 2D pore 

networks of size 100×100 and 50×50 with Zmax=4 and P=0.97. Additional data from 

section VI.3.3. 

 
Fig. Ap. VII-1. Porosity according to the pore diameter. 2D networks with Zmax=4 and P=0.97. 

 
Fig. Ap. VII-2. Connectivity according to the pore diameter. 2D networks with Zmax=4 and P=0.97. 

 
Fig. Ap. VII-3. Specific surface area according to the pore diameter. 2D networks with Zmax=4 and P=0.97. 
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Fig. Ap. VII-4. Predicted pore volume according to the pore diameter. 2D networks with Zmax=4 and P=0.97. 

 
Fig. Ap. VII-5. Tortuosity per simulation as a function of porosity for several pore diameters. 2D pore network 

with Zmax=4 and P=0.97. 

 
Fig. Ap. VII-6. Variation of the average predicted tortuosities as a function of porosity for several pore 

diameters. 2D pore networks Zmax=4 and P=0.97. 
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APPENDIX VIII  

Influence of the pore length on the textural and mass transfer properties for 2D pore 

networks having a maximum connectivity of Zmax=4 and a pore existence probability of 

P=0.97. 

A similar behaviour is found to that shown on section V.4.4, being the example present 

on this section referent to 2D triangular pore networks having Zmax=6. The porosity, the 

specific surface area and the pore volume decrease with the augmentation of the pore 

length. 

Concerning the tortuosity factor (Fig. Ap. VII-5 and Fig. Ap. VII-6), we could say that a 

slight increase with the pore length is observed. Nevertheless, one has to keep in mind 

that the error bars follow this increase. 

 
Fig. Ap. VIII-1. Porosity according to the pore length. 2D networks with Zmax=4 and P=0.97. 

 
Fig. Ap. VIII-2. Connectivity according to the pore length. 2D networks with Zmax=4 and P=0.97. 
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Fig. Ap. VIII-3. Specific surface area according to the pore length. 2D networks with Zmax=4 and P=0.97. 

 
Fig. Ap. VIII-4. Pore volume according to the pore length. 2D networks with Zmax=4 and P=0.97. 

 
Fig. Ap. VIII-5. Tortuosity per simulation as a function of porosity for several pore lengths. 2D pore networks 

with Zmax=4 and P=0.97. 
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Fig. Ap. VIII-6. Variation of the average predicted tortuosities as a function of porosity for several pore lengths. 

2D pore networks with Zmax=4 and P=0.97. 
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APPENDIX IX  

Study related to the dynamic response of the mass transfer model. At first, the dynamic 

response from the discrete model on the effect of the initial conditions is evaluated. 

Then, the effect of the dead volume on the purge process is discussed similarly to the 

presented filling process on section 0. 

The extra case studies presented in this appendix refer to the simple case studies of pore 

networks without and with a dead volume (see sections VII.2 and VII.2.2). 

 

IX.1  DYNAMIC EFFECTS FOR THE DISCRETE MODEL 

IX.1.1 THE EFFECT OF THE INITIAL CONDITIONS 

At , the networks are either going to be filled with species A and therefore, the initial 

condition is:  or, the networks may be purged and so, . The 

usual boundary conditions have been kept: at the inlet and outlet nodes we have 

respectively,  and  for the concentration of species A. 

Looking at the dynamic responses of CS 1 testing the filling and the purge process (cf. 

Fig. Ap. IX-1), we can see that the inlet and the outlet flux are reversed that is the 

expected behaviour since we are in the presence of a linear model. 

 
Fig. Ap. IX-1. Dynamic response for CS 1 during the filling and the purge. 

After adding a dead volume to CS 1, we have obtained CS 11 and 11b that differ only on 

where the dead volume is placed as shown in Fig. Ap. IX-2 and Fig. Ap. IX-3. Again, the 

inlet and outlet flux are inversed for the filling and purge. Yet, for CS 11 the outlet flux 

from the purge is delayed compared to the inlet flux of the filling process and for CS 11b 

the inlet flux from the filling process is delayed compared to the outlet of the purge. 
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Fig. Ap. IX-2. Dynamic response for CS 11 during the filling and the purge. 

 
Fig. Ap. IX-3. Dynamic response for CS 11b during the filling and the purge. 
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amount of molecules that must be purged or filled so, we must take special interest on 
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at the steady state, the concentration of the dead volume is uniform and we observe that 

it is equal to . Taking the filling process with , we 

know that in the end, we must fill . While during the purge, 

where  we must purge . Which is greater 

than the number of moles used during the filling process explaining therefore the delay 

observed in Fig. Ap. IX-2. 

A similar behaviour is found for CS 11b (Fig. Ap. IX-3), during steady state the 

concentration of the dead volume is . Therefore, during the filling 
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must remove . The purge clearly has a lower number of moles to 

purge than the filling process has to fill hence, the latter is delayed. 

IX.1.2 THE EFFECT OF THE DEAD VOLUME 

The effect of the dead volume during a purge is observed taking the dynamic inlet and 

outlet flux and for CS 1, 11 and 11b (see Fig. Ap. IX-4). Equal steady states are found as 

the percolating volume is identical. 

Comparing the filling process presented on (Fig. VII-2), we can see that the inlet and 

outlet flux from the purge were inversed. Similarly to what happened in the filling 

process, where the outlet flux from CS 11 and 11b are identical, herein the inlet flux are 

as well identical. The perturbation implicating the dead volume is therefore observed on 

the outlet flux. For the same reasons previously explained in section IX.1.1, dealing with 

the initial conditions effect, the sequence of delay in the dynamic inlet flux must be: CS 

1, 11b and 11. Since a greater amount of moles needs to be purged in CS 11. 

 
Fig. Ap. IX-4. Dynamic response of CS 1, 11 and 11b, observation of the dead volume effect during a purge. 
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differ, due to the difference on the percolating volume. The flux for case study 3 and 4 

are respectively:  and , with the following 

effective diffusion coefficients:  and  and 

the diffusion tortuosities of  and , which are identical to the geometric 

tortuosities. 

Concerning the dynamic response of the pseudo-homogeneous approach available on Fig. 

Ap. IX-5, it is well described when using the right correction factor applied to the 

accumulation term. Case studies 3 and 4 use the following correction factors 5/3=1.67 

and 7/3=2.33, respectively. These corrections manage to take into account the adequate 

capacitive volume. Otherwise, a time lapse is observed between the dynamic responses 

of the discrete and continuum models. 

 
Fig. Ap. IX-5. Comparison of the predicted outlet flux in transient regime by discrete (microscopic) and 

continuum (macroscopic) models for case studies 3 and 4. 

We have contibued our study by case study 5 and 6 presented in Fig. Ap. IX-6 that 

shows a similar behaviour as observed for CS 1 and 2 (Fig. VII-5). Indeed, we reach the 

same steady state for both the discrete and the continuum approach, whereas the steady 

states from CS 5 and 6 differ. The flux for case study 5 and 6 are respectively: 

 and , with the following effective diffusion 

coefficients:  and . The steady states 

differ from the two case studies due to the difference on the percolating volume, as 

mentioned in the comparison of CS 1 to CS2. Regarding the predicted diffusional 
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tortuosities are identical to the geometric tortuosities and to the correction factors. This 

is also true for every case study from 1 to 10. 

Concerning the dynamic response of the continuum model available on Fig. Ap. IX-6, it 

can be seen that a correction on the accumulation term is required in order to establish 

identical transient regimes. Otherwise, a time delay is observed between the dynamic 

responses of the discrete and continuum model. The correction factors taken for case 

study 5 and 6 are respectively, CF=8/4=2.0 and CF=10/4=2.5. 

 
Fig. Ap. IX-6. Comparison of the predicted outlet flux in transient regime by discrete (microscopic) and 

continuum (macroscopic) models for case studies 5 and 6. 

Regarding case studies 7 and 8, illustrated on Fig. Ap. IX-7, we found once again an 

equal steady state flux for both approaches yet different between CS 7 and 8: 

 and . With the following effective diffusion 

coefficients:  and  and  and 

. 

Concerning the transient response, the corrected continuum model is able to correctly 

describe the response of the discrete model. A correction factor of 1.5 and 2.0 is used 

respectively for CS 7 and 8. 
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Fig. Ap. IX-7. Comparison of the predicted outlet flux in transient regime by discrete (microscopic) and 

continuum (macroscopic) models for case studies 7 and 8. 

 
Fig. Ap. IX-8. Comparison of the predicted outlet flux in transient regime by discrete (microscopic) and 

continuum (macroscopic) models for case studies 9 and 10. 

CS 8CS 7

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

0.E+00 2.E-05 4.E-05 6.E-05 8.E-05 1.E-04

Fl
ux

 (m
ol

·m
-2

·s-1
)

Time (s)

Microscopic 7
Macroscopic 7
Macroscopic 7 CF
Microscopic 8
Macroscopic 8
Macroscopic 8 CF

CS 9 CS 10

0.E+00

2.E-04

4.E-04

6.E-04

8.E-04

1.E-03

0.E+00 2.E-05 4.E-05 6.E-05 8.E-05 1.E-04

Fl
ux

 (m
ol

·m
-2

·s-1
)

Time (s)

Microscopic 9
Macroscopic 9
Macroscopic 9 CF
Microscopic 10
Macroscopic 10
Macroscopic 10 CF



 

232 

Finally, the information related to case studies 9 and 10 is gathered on Fig. Ap. IX-8. We 

have obtained equal steady state flux and effective diffusion coefficients: 

 and . An expected result since the percolating volumes 

are equal for both case studies. With the diffusional and geometric tortuosities also 

identical and predicted at a value of , as expected as well. 

Case studies 9 and 10 also have an identical transient response. A predictable result due, 

respectively, to the identical percolating and capacitive volumes. A correction factor of 

2.0 is used for both pore networks in order to shift the dynamic response of the pseudo-

homogeneous model to the right-hand side. 

 

IX.3 SIMPLE CASE STUDIES WITH DEAD VOLUMES COMPARING THE DYNAMIC RESPONSES OF THE 

DISCRETE AND CONTINUUM MODELS 

The following case studies are related to case studies 11 to 20 that result from CS 1 to 

10 by adding a dead volume. 

The simulated data comparing case study 2 with case study 12 is graphically represented 

onFig. Ap. IX-9. Case study 2 and 12 reproduce the same behaviour observed when 

comparing case study 1 and 11 from section VII.2.2. 

 
Fig. Ap. IX-9. Comparison of the discrete (microscopic) and continuum (macroscopic) models in transient 

regime for CS 2 and 12. 
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The steady states are identical as they have equal percolating volumes. And concerning 

the dynamic responses, case study 12 is delayed compared to case study 2, due to the 

augmentation of the capacitive volume. Comparing the responses of the discrete model 

and the corrected continuum model from case study 12 also indicates a difference 

between the two plots. 

Fig. Ap. IX-10 contains the information regarding case study 3 and 13, where the 

tortuosity factor of case study 13 remains of course equal to that from case study 3, 

. 

 
Fig. Ap. IX-10. Comparison of the discrete (microscopic) and continuum (macroscopic) models in transient 

regime for CS 3 and 13. 
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of 5/3=1.67. The dead volume must be correctly taken into account on the continuum 

representation, as mentioned before. Moreover, the dynamic response of case study 13 

is delayed compared to case study 3, due to the presence of the dead volume that delays 

the mass transfer behaviour by diffusion. 

The information related to case study 4 and 14 is represented on Fig. Ap. IX-11. The 

tortuosity factor of case study 14 is equal to that from case study 4, . 

 

CS 3 CS 13

0.0E+00

3.0E-04

6.0E-04

9.0E-04

1.2E-03

1.5E-03

0.0E+00 1.0E-05 2.0E-05 3.0E-05

Fl
ux

 (m
ol

·m
-2

·s-1
)

Time (s)

Microscopic 3

Macroscopic 3 CF

Microscopic 13

Macroscopic 13 CF=2



 

234 

 
Fig. Ap. IX-11. Comparison of the discrete (microscopic) and continuum (macroscopic) models in transient 

regime for CS 4 and 14. 

 
Fig. Ap. IX-12. Comparison of the discrete (microscopic) and continuum (macroscopic) models in transient 

regime for CS 5 and 15. 
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The dynamic response of the discrete simulation of case study 4 is faster than case study 

14 (see Fig. Ap. IX-11), the dead volume present in the pore network from case study 14 

is responsible for this delay since it increases the capacitive volume. The correction factor 

used in the continuum simulation of case study 14 is not in accordance with the response 

of the discrete simulation. 

In conclusion, the corrected continuum model seems to be incapable of correctly 

describing the dynamic response of the discrete model. 

Taking Fig. Ap. IX-12 and case study 15, a slight deviation on the response of the 

continuum approach is observed compared to the response of the discrete model. The 

dead volume should once again be correctly accounted for. 

Given the predicted outlet flux present on Fig. Ap. IX-13, one observes an equal steady 

state for both case studies 6 and 16 and therefore the diffusional tortuosity of case study 

16 is equal to that from case study 6, . 

 

 
Fig. Ap. IX-13. Comparison of the discrete (microscopic) and continuum (macroscopic) models in transient 

regime for CS 6 and 16. 
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Fig. Ap. IX-14. Comparison of the discrete (microscopic) and continuum (macroscopic) models in transient 

regime for CS 7 and 17. 

 
Fig. Ap. IX-15. Comparison of the discrete (microscopic) and continuum (macroscopic) models in transient 

regime for CS 8 and 18. 
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Fig. Ap. IX-16. Comparison of the discrete (microscopic) and continuum (macroscopic) models in transient 

regime for case study 9 and 19. 

 
Fig. Ap. IX-17. Comparison of the discrete (microscopic) and continuum (macroscopic) models in transient 

regime for case study 10 and 20. 
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The discrepancy between the dynamic responses of case study 6 and 16 continues to 

reduce compared to case study 5 and 15 as well as, case study 3 and 13. The effect of a 

single dead volume gets less significant with the increase in the overall capacitive 

volume. 

Similar behaviour are observed on the remaining case studies shown in Fig. Ap. IX-14 to 

Fig. Ap. IX-17. 

Fig. Ap. IX-18 regroups the diffusional tortuosities as a function of the geometric 

tortuosity for the simple case studies from 1 to 10 and those from case study 11 to 20, 

where a dead volume was added to each first 10 case studies. As expected all data points 

coincide with the bisector. 

 
Fig. Ap. IX-18. Diffusional tortuosity as a function of the geometric tortuosity from case studies 1 to 20. 
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APPENDIX X  

X.1 INFLUENCE OF THE PORE EXISTENCE PROBABLITY: P1 AND P2 

Extended data on the catalyst porosity (Fig. Ap. X-1) and network connectivity (Fig. Ap. 

X-2) for the first configuration used, where L2 is obligatorily greater than D2. 

 

 
Fig. Ap. X-1. Influence of the pore existence probabilities P1 (dotted blue plot) and P2 (dotted red plot) on the 

catalyst porosity for a two-level network using the 1st configuration. 

 

 
Fig. Ap. X-2. Influence of the pore existence probabilities P1 (dotted blue plot) and P2 (dotted red plot) on the 

network connectivity for a two-level network using the 1st configuration. 

 

Extended data on the textural properties for the 2nd configuration can be found in Fig. Ap. 

X-3 to Fig. Ap. X-6. 
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Fig. Ap. X-3. Influence of the pore existence probabilities P1 (dotted blue plot) and P2 (dotted red plot) on the 

specific pore volume for a two-level network using the 2nd configuration. 

 
Fig. Ap. X-4. Influence of the pore existence probabilities P1 (dotted blue plot) and P2 (dotted red plot) on the 

specific surface area for a two-level network using the 2nd configuration. 

 
Fig. Ap. X-5. Influence of the pore existence probabilities P1 (dotted blue plot) and P2 (dotted red plot) on the 

catalyst porosity for a two-level network using the 2nd configuration. 

 

0.0E+00

4.0E-06

8.0E-06

1.2E-05

1.6E-05

2.0E-05

0.65 0.75 0.85 0.95

v p
av

er
ag

e 
(m

3 ·g
-1

)

Pore existence probability 

 Vp 50×50 P1
 Vp 50×50 P2

0

1 500

3 000

4 500

6 000

0.65 0.75 0.85 0.95

s B
ET

av
er

ag
e 

(m
2 ·g

-1
)

Pore existence probability

 S BET 50×50 P1
 S BET 50×50 P2

0.80

0.84

0.88

0.92

0.96

1.00

0.65 0.75 0.85 0.95

ε
av

er
ag

e

Pore existence probability

Porosity 50×50 P1
Porosity 50×50 P2



 

241 

 
Fig. Ap. X-6. Influence of the pore existence probabilities P1 (dotted blue plot) and P2 (dotted red plot) on the 

network connectivity for a two-level network using the 2nd configuration. 

 

X.2 INFLUENCE OF THE PORE DIAMETER: D1 AND D2 

Extended data on the catalyst porosity (Fig. Ap. X-7) and network connectivity (Fig. Ap. 

X-8) for the first configuration used, where L2 is obligatorily greater than D2. 

 

 
Fig. Ap. X-7. Influence of the pore diameters D1 (dotted blue plot) and D2 (dotted red plot) on the catalyst 

porosity for a two-level network using the 1st configuration. 

 

4.0

4.4

4.8

5.2

5.6

6.0

0.60 0.70 0.80 0.90 1.00

Z 
av

er
ag

e

Pore existence probability

 Z 50×50 P1
 Z 50×50 P2

0.2

0.4

0.6

0.8

1.0

1.2

6 7 8 9 10

av
er

ag
e

Average pore diameter (nm)

Porosity 50×50 D1
Porosity 50×50 D2



 

242 

 
Fig. Ap. X-8. Influence of the pore diameters D1 (dotted blue plot) and D2 (dotted red plot) on the network 

connectivity for a two-level network using the 1st configuration. 

Regarding the second configuration the following figures (from Fig. Ap. X-9 to Fig. Ap. 

X-13) contain the textural properties as a function of the pore diameters. 

 
Fig. Ap. X-9. Influence of the pore diameters D1 (dotted blue plot) and D2 (dotted red plot) on the average pore 

diameter for a two-level network using the 2nd configuration. 

 
Fig. Ap. X-10. Influence of the pore diameters D1 (dotted blue plot) and D2 (dotted red plot) on the specific pore 

volume for a two-level network using the 2nd configuration. 

 

3.5

3.8

4.1

4.4

4.7

5.0

6 7 8 9 10

Z 
av

er
ag

e

Average pore diameter (nm)

 Z 50×50 D1
 Z 50×50 D2

6.0

7.0

8.0

9.0

10.0

0 5 10 15 20 25

D
 a

ve
ra

ge

Pore diameter D1 or D2 (nm)

Davg variation D1
Davg variation D2

0.E+00

1.E-06

2.E-06

3.E-06

4.E-06

5.E-06

6 7 8 9 10

v p
 av

er
ag

e 
(m

3 ·g
-1

)

Average pore diameter (nm)

 Vp 50×50 D1
 Vp 50×50 D2



 

243 

 
Fig. Ap. X-11. Influence of the pore diameters D1 (dotted blue plot) and D2 (dotted red plot) on the specific 

surface area for a two-level network using the 2nd configuration. 

 
Fig. Ap. X-12. Influence of the pore diameters D1 (dotted blue plot) and D2 (dotted red plot) on the catalyst 

porosity for two-level network using the 2nd configuration. 

 
Fig. Ap. X-13. Influence of the pore diameters D1 (dotted blue plot) and D2 (dotted red plot) on the network 

connectivity for a two-level network using the 2nd configuration. 

X.3 INFLUENCE OF THE PORE DIAMETER: L1 AND L2 

Extended data on the catalyst porosity (Fig. Ap. X-14) and network connectivity (Fig. Ap. 

X-15) for the first configuration used, where L2 is obligatorily greater than D2. 
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Fig. Ap. X-14. Influence of the pore lengths L1 (dotted blue plot) and L2 (dotted red plot) on the catalyst 

porosity for a two-level network using the 1st configuration. 

 
Fig. Ap. X-15. Influence of the pore lengths L1 (dotted blue plot) and L2 (dotted red plot) on the network 

connectivity for a two-level network using the 1st configuration. 

Regarding the second configuration the following figures (from Fig. Ap. X-16 to Fig. Ap. 

X-19) contain the evolution of the textural properties as a function of the pore lengths. 

 
Fig. Ap. X-16. Influence of the pore lengths L1 (dotted blue plot) and L2 (dotted red plot) on the specific pore 

volume for a two-level network using the 2nd configuration. 
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Fig. Ap. X-17. Influence of the pore lengths L1 (dotted blue plot) and L2 (dotted red plot) on the specific surface 

area for a two-level network using the 2nd configuration. 

 
Fig. Ap. X-18. Influence of the pore lengths L1 (dotted blue plot) and L2 (dotted red plot) on the catalyst 

porosity for a two-level network using the 2nd configuration. 

 
Fig. Ap. X-19. Influence of the pore lengths L1 (dotted blue plot) and L2 (dotted red plot) on the connectivity 

network for a two-level network using the 2nd configuration. 
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