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Viennent alors mes amis qui m’ont soutenue et ont égayé mon quotidien depuis souvent plus long-
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Introduction

The name of “glass” and the appellation “glassy” are used for systems whose dynamics is very slow and

with no sign of conventional long-range order. At low temperature, these systems can end up in some

arrested out-of-equilibrium state, the so-called glass, corresponding to a dynamics that is too slow to be

detectable (the relevant degrees of freedom look frozen on experimental time scales) and then appear

as mechanically rigid as a solid can be. A huge variety of materials, called “glass formers”, can form a

glass: this is for example the case of polymer glasses (plastics), molecular glasses, colloidal gels, foams,

spin glasses, vortex glasses, electron glasses. In the above examples, the “glassy” degrees of freedom

are associated with molecules, monomers, colloidal particles, bubbles, spin magnetic dipoles, vortices

or electrons. [1]

In this thesis we will be concerned by two kinds of glassy systems: the structural glasses [2, 3, 4]

and the spin glasses [5, 6]. In the former the degrees of freedom are molecules and the disorder is

self-induced when the temperature diminishes; in the latter the degrees of freedom are spins and there

is quenched disorder due to the presence of frozen-in magnetic impurities and defects.

The two classes of systems introduced above (and more generally glassy systems) are subject to a

phenomenon that is called frustration: it corresponds to the impossibility to minimize the total energy

of the system by minimizing sequentially the interactions between degrees of freedom. In structural

glasses, the frustration is geometrical and arises when one tries to arrange locally the molecules to

optimize the local energetic cost and does not manage to generalize this optimization to the whole space.

In spin glasses the mechanism of the frustration which is shown in figure 1 is linked to the presence of

quenched disorder which prevents one from satisfying the local spin-spin interactions without arriving

at a contradiction. The frustration is accompanied by a large degenerescence of the states of low energy

and can therefore be responsible for the existence of complex free-energy landscapes.

J12 = +1

J23 = +1

J34 = +1

J41 = −1

2

3

1

4

↑

↑

↑

?

Figure 1: Frustration in an Ising spin-glass model of four spins (1, 2, 3, 4) represented by red arrows, ↑ or ↓,
whose Hamiltonian is H = −

∑4
i=1 Ji,i+1SiSi+1, with S5 = S1. The four couplings Jij are distributed between

the two values ±1 with some probability distribution: here, 3 interactions are ferromagnetic J12/23/34 = +1 and

one is anti-ferromagnetic J41 = −1. Satisfying sequentially the local interactions one arrives at a contradiction

and the system is frustrated. There are several states of minimal energy which correspond, e.g., to ? = ↑ or ↓
and therefore the ground state is degenerate.

In three-dimensional structural glasses the slowing down of the dynamics has not been given (yet)

a widely accepted explanation: there are for instance proposals to associate it to the existence of an

underlying thermodynamic phase transition [7, 8, 9], or to to the existence of an underlying dynamical

transition [10, 11]. In three-dimensional Ising spin glasses, this slowing down is accepted to be associated
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with the existence of a thermodynamic phase transition at finite temperature, from a paramagnetic

to a spin-glass phases; however many questions are still open concerning the nature of the spin-glass

phase [12, 13, 14]. Structural and (Ising) spin glasses will be presented in more details in the chapter 1.

In general, a good starting point to try to understand a problem in statistical physics is to study

its mean-field approximation. On the one hand, since this approximation neglects long-range spatial

fluctuations, it is simpler to study than the exact theory in three dimensions. On the other hand, the

mean-field approximation often gives interesting qualitative information on the macroscopic physics of

the system of interest even in finite dimensions.

The mean-field approximations of structural glasses and spin glasses [15, 16, 17] have been shown

to be exact in the limit of infinite dimensions [18, 19, 20, 21, 22]. (We will often contrast infinite

dimensions to finite dimensions, which include the three-dimensional case.) Both mean-field theories

predict thermodynamic phase transitions at some finite temperature from a paramagnetic phase to an

“ideal”-glass phase (for structural glasses) or to a spin-glass phase (for Ising spin glasses). However,

they are intricate theories that are, e.g., written in terms of a n × n overlap matrix order parameter

with n → 0 [16] and associated to complex free-energy landscapes with the presence of ubiquitous

metastability. The latter appears to be a central ingredient in the mean-field description of the glass

transitions and glass phases. For structural glasses, as pictorially represented in figure 2, the mean-field

free energy is for low-enough temperatures above the thermodynamic transition temperature a rough

and hilly landscape with degenerate metastable minima whose number is exponential in the system

size. For Ising spin glasses, the mean-field free energy for temperatures lower than the transition one

is characterized by an infinite hierarchy of minima [23] (each minimum is divided in several smaller

minima, themselves divided in other smaller minima, etc.).

Figure 2: Structural glass: Pictorial mean-field free energy F [ρ(r)] as a function of the density field ρ(r)

for lower-enough temperatures larger than the glass-transition temperature with a huge number of metastable

minima.

One can wonder which signatures of the mean-field metastability remain in the thermodynamics of

finite-dimensional systems. Metastability may indeed be considered as an irrelevant mean-field artifact

since fluctuations destroy it in finite dimensions. To answer this, one should include fluctuations to

the mean-field descriptions and see their effect on the mean-field scenarios. A method of choice to

perform this is the renormalization group [24] which allows one to treat the fluctuations beyond the

mean-field description. This method is presented in chapter 2 with an emphasis on nonperturbative

approaches [25, 26]. Since studying the role of fluctuations directly on realistic models of structural

and spin glasses is a hard task, we try to somehow sidestep the difficulty by investigating fluctuations

in simpler related finite-dimensional models.

In chapter 3, we study the return to convexity of the free energy of a simple one-dimensional toy
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model as its size increases. The finite size of the system indeed constrains the spatial fluctuations, which

for instance allows some form of metastability and a nonconvex shape of the thermodynamic potential.

As this is the situation in computer simulations of glassy systems, one may wonder what kind of

information on the system in its thermodynamic limit and if the proper effective theory to describe it

can be extracted from systems of small to moderate sizes. For the case of the return to convexity in the

one-dimensional ϕ4 theory, we also investigate possible approximation schemes for the nonperturbative

renormalization group [25, 26] that could take into account the strong, nonperturbative, effect of the

spatial fluctuations that destroy ordering.

Due to the complex structure of the mean-field theory for structural glasses, it is still unclear what

is the nature of the relevant spatial fluctuations that lead to the glassy phenomenology in finite (say,

three) dimensions. In chapter 4, by investigating simple glass-forming systems, known as plaquette

spin models [27], on Bethe lattices of varying coordination number and comparing with results on

Euclidean lattices, we try to disentangle the effect of “short-range” fluctuations, associated with the

local environment, and that of “long-range” fluctuations in the glassy properties of these models.

In chapter 5, we analyze spatial correlations in the dynamics, a phenomenon associated with the

development of dynamical heterogeneities in glass-forming systems. To shed light on the origin of these

correlations and contrast them with the putative correlations responsible for the strong slowing down

of the dynamics in glass formers, we study analytically a non-glassy finite-dimensional model with a

simple non-glassy yet thermally activated dynamics.

Finally in chapter 6, we study the more standard problem of the role of large-scale fluctuations on

the critical behavior of the Ising spin glass (in the absence of an applied-magnetic field). We do so

by applying the nonperturbative renormalization group, in an effort to extend this method to glassy

systems characterized by a complex order-parameter field.





Chapter 1

Structural and spin glasses: a

perspective
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1.2.2 Edwards-Anderson model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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1.2.5 Droplet theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.1 Structural glasses

1.1.1 Phenomenology

Liquids that have been cooled “fast enough”, such that the standard first-order transition leading to the

crystalline phase is avoided, reach an equilibrium metastable phase named supercooled liquid phase.

The terminology “fast enough”, commonly used by the experimentalists, can be clarified: below the

melting temperature Tm, if one wants to avoid nucleation of the stable crystalline phase, the cooling rate

must be higher than the nucleation rate, so that the system is not given enough time to form a stable

nucleus and start crystallization. At the same time, the cooling rate must not be too large, or the system

would not manage to equilibrate. The supercooled liquid phase is a locally stable state, albeit with a

higher free energy than the true stable state which is the crystal phase. In the supercooled liquid phase,

the viscosity η of the system begins to grow in a very dramatic way when the temperature decreases

(typically, the viscosity grows by 14 orders of magnitude when T is decreased by 30− 40%). η is linked

to the relaxation time τ of the system, i.e. the time required to reach equilibrium. By convention,

when the relaxation time is of order τ ∼ 102 − 103 sec and larger, corresponding to a viscosity around

η ∼ 1012 Pa.s and more, the system in practice falls out of equilibrium on the experimental time

scale: this corresponds to the experimental glass transition temperature Tg which then represents a

dynamical crossover rather than a true phase transition. As a consequence, one is unable to equilibrate

the supercooled liquid below Tg, which reaches one of the numerous possible out of equilibrium states
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called glasses, depending on the initial conditions. See [28, 2, 3, 4] for reviews/book where more on the

supercooled liquids phenomenology can be found.

The above phenomenon is schematically represented on figure 1.1, which represents the enthalpies

of the crystal and of the liquid/supercooled-liquid/glass phases.

Figure 1.1: Volume or enthalpy of a liquid at constant pressure as a function of temperature. The different

phases evoked in the previous paragraph are represented: liquid, crystal, supercooled liquid and glass. Tm is the

melting temperature. A “fast enough” cooling yields a glass transition at a temperature Tg which depends on

the cooling rate. Reprinted from [29], where it was adapted from [30]

In the following, we will be concerned by the equilibrium (metastable) supercooled liquid phase,

and not the out-of-equilibrium glass.

Growing time scale

From experimental results, supercooled liquids are usually classified according to their “fragility”,

which characterizes the temperature dependence: see figure 1.2. [31] At one end of the spectrum,

“strong” glasses whose relaxation time follows an Arrhenius temperature dependence, τ ∼ e∆E/(kBT ),

are network glasses where dynamics is dominated by the constant energy barrier ∆E associated with

breaking covalent bonds between constituents.

Figure 1.2: The Angell plot from [32], representing the log of the viscosity η ∼ τ as a function of the inverse

of the temperature rescaled with Tg classifies the liquids according to their fragility, i.e., the deviation from

Arrhenius behavior τ ∼ e∆E/kBT .

“Fragile” glass formers (the vast majority of polymeric and molecular liquids) are characterized

by a faster-than-Arrhenius, a super-Arrhenius, temperature dependence of the relaxation time: τ ∼
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exp [∆E(T )/(kBT )] with ∆E(T ) increasing as one approaches the glass transition. A popular fitting

formula to describe this behavior is the Vogel-Fulcher-Tamman (VFT) expression [33, 34, 35]

τ ∼ exp

(
A

T − T0

)
, (1.1)

where A and T0 are adjustable parameters. This expression suggests a divergence of the relaxation

time at an unreachable temperature T0 below the experimental glass transition Tg. In any case, the

growth of the activation barriers as one cools the fragile liquid toward Tg is indicative of a collective

phenomenon, necessarily accompanied by the growth of some correlation length. [36]

Growing length scale?

In standard phase transitions, the growth of a time scale is associated to the concomitant growth

of a length scale. The most easily accessible length scale is that obtained from the classical two-point

density-density correlation function. One can consider the radial correlation function g(r) which gives

information about the structural properties of standard liquids: g(r) gives the average probability to

find a particle at a distance r from any particle. Its Fourier integral gives the static structure factor

S(q), which is directly measured in experiments. These two quantities do not show any marked change

as one cools the liquid down to Tg, as one can see on figure 1.3.

Figure 1.3: Structure factor S(q) as a function of the momentum q for three different temperatures obtained

from a computer simulation of a glass-forming liquid model, reprinted from [37].

An understanding and a detailed identification of the collective behavior at the origin of the growing

of relaxation times has been a recurring quest in the physics of glasses. [3, 1] We will discuss the subject

of growing length scales associated to collective behavior in the glass formation further down in the

manuscript.

Entropy

Another quantity which can be experimentally measured is the heat capacity at constant pressure

CP , from which we can determine the total entropy Ssl of the supercooled liquid as CP = T dSsl/dT .

One can plot the entropies of the supercooled liquid Ssl and of the crystal Scr as a function of the

temperature, see figure 1.4. One observes that the entropy of the liquid decreases much more rapidly

than that of the crystal. If the data are extrapolated below Tg, one could reach a temperature TK at

which the two entropies are equal, a rather strange phenomenon. [38] This, together with the empirical

observation that TK ' T0 (where T0 is defined above) within 10% or so, is suggestive of the possible

existence of an ideal, and unreachable, glass transition at TK .
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Figure 1.4: Entropies of the supercooled liquid Ssl and the crystal Scr as a function of temperature. By

extrapolation, one finds the Kauzmann temperature TK , at which Ssl = Scr. Reprinted from [38].

Dynamical heterogeneities

The heterogeneous character of the dynamics in glass-forming liquids has been established in the last

two decades. When approaching the glass transition at Tg, one observes, e.g. by confocal microscopy in

colloidal suspensions or by computer simulations of liquid models, the presence of fast and slow moving

regions, which stay so over an increasing time scale. [39, 40]

A snapshot from a computer simulation is shown in figure 1.5 (a), where the fastest particles are

colored in dark red, whereas the slowest are in blue, and a gradation covers the intermediate regimes.

On the second panel, figure 1.5 (b), are represented the vector displacements of the particles, by mean

of arrows of different lengths and pointing in different directions, on a time scale comparable to the

structural relaxation time τ = τα, which is the time needed by the configuration to relax. Both figures

show that the mobility varies among the particles, but also that particles with similar mobilities have

the tendency to gather spatially.

(a) (b)

Figure 1.5: (a) Simulation of supercooled liquid showing dynamical heterogeneities: particles change colors

depending on their mobility, dark red is for the fastest, dark blue for the slowest, and the gradation stands for

the intermediate regimes. Reprinted from [41]. (b) Arrows represent particles displacements on a time scale of

the order of the structural relaxation time. Both figures show that mobility varies among particles, and also that

particles sharing the same mobility are probable to be side by side. Reprinted from [3].

These dynamical heterogeneities are a form of space-time fluctuations and can be characterized

by correlations and an associated length scale. Such correlations in the dynamics cannot be unveiled

by conventional pair correlation functions. They require multi-point space-time correlation functions.
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Consider for instance a local probe of the motion for atom j between two times 0 and t, e.g., fj(q, t) =

<
{
eiq(rj(t)−rj(0))

}
. The average dynamics is characterized by the usual auto-correlation function (self-

intermediate scattering function) Fs(q, t) = N−1
∑N

j=1 〈fj(q, t)〉 represented in figure 1.6 (a). The

fluctuations in the dynamics, with δfj(q, t) = fj(q, t)− 〈fj(q, t)〉, can be characterized by higher-order

correlation functions such as

g4(r, t) =
1

N2

N∑
i,j=1

δ(rij − r) 〈δfi(q0, t)δfj(q0, t)〉 , (1.2)

with q0 usually taken as the location of the peak of S(q) represented in figure 1.3. The quantity g4 is

a 4-point space-time correlation function from which one can extract a “dynamical” correlation length

ξd(t) describing how far the motion of particles is correlated during an elapsed time t. A less detailed

description is embodied in the “nonlinear dynamic susceptibility”

χ4(t) =
N

V

∫
d3r g4(r, t) . (1.3)

At fixed temperature, χ4(t) has a nonmonotonic behavior (see figure 1.6) and goes through a maximum

for a time t of the order of the α-relaxation time. At this time, the correlations in the dynamics are

maximum. (Although this nonlinear susceptibility is not directly accessible in experiments on molecular

liquids, several proxies have been studied that all display the same behavior.)

(a) (b)

Figure 1.6: Measure of Fs(q0, t) (here q ≡ q0 of the text) (a) and corresponding regime of χ4(t) (b) in Lennard-

Jones supercooled liquids simulations. In particular χ4(t) has a maximum around τ = τα, time lapse at which

the particles dynamics is maximally correlated. Reprinted from [3].

The peak is found to grow when the temperature is decreased. Typically, in simulations, it grows

by two orders of magnitude between the highest temperature at which it appears and the lowest

temperatures at which the system can be equilibrated. Therefore the dynamical volume over which

dynamics is correlated is observed to grow with the inverse temperature, which suggests that the

glass transition is a collective phenomenon. For various estimates, the length scale characterizing such

correlations in the dynamics appears however to grow not bigger than 5 to 10 molecular diameters at

Tg. [39, 40]

1.1.2 Mode-coupling theory

The mode-coupling theory (MCT) predicts a dynamical arrest of the liquid structural relaxation at

some temperature TMCT based only on the modest variation of the auto-correlation function. Formally,

the MCT derives a set of nonlinear self-consistent equations [10] describing the evolution of the time-

dependent auto-correlation function C(t) of the local density field at time t, ρ(~r; t) = N−1
∑N

i=1 δ(~xi(t)−
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~r), that characterizes the supercooled liquid composed by N particles evolving in a continuous volume

V . In Fourier space, ρ~q(t) is the density fluctuation of wavelength q and defines

C(t) =
〈
ρ~q0(t)ρ~q0(0)∗

〉
−
〈
ρ~q0
〉2
, (1.4)

which can be measured in supercooled liquids by neutron scattering or computer simulation. At high

temperature (yellow curves on figure 1.7 (a)), the dynamical relaxation follows a standard exponential

decay C(t) ∼ exp(−t/τ). When the temperature decreases (red curves), a “plateau” develops and the

relaxation now displays two steps: a rapid β and a slow α regimes. The α relaxation step is often

described by a stretched exponential, C(t) ∼ e−(t/τ)β , with 0 < β < 1.

(a) (b)

Figure 1.7: Typical shape of the dynamical auto-correlation function C(t) in log-time scale obtained for different

temperatures. At high temperature the relaxation is exponential and below some temperature it displays a two-

step relaxation characteristic of low-temperature supercooled liquids: the fast β- and slow α-relaxation regimes.

(a) C(t) from water supercooled liquids experiments, here C(t) is the coherent intermediate scattering function.

Reprinted from [42]. (b) C(t) from the solution of the MCT non-linear self-consistent equations, for different

temperatures approaching TMCT . Reprinted from [3].

MCT equations can be derived using the Zwanzig-Mori formalism [43, 44] and have the form of

generalized Langevin equations, with a time-dependent memory kernel. The memory kernel is then

obtained in a specific, mode-coupling approximation, and is expressed in terms of the static structure

factor S(q). The nonlinearity of the equations gives rise to a sharp feedback between static structure

and dynamics, and even a small change in the static structure factor leads to a strong slowing down of

the relaxation.

The solution of the MCT equations displays a relaxation in two steps, similarly to what is observed

in experimental supercooled liquids. These solutions are represented on figure 1.7 (b) for different

temperatures.

At some temperature TMCT the system exhibits a dynamical arrest, corresponding to a transition

from an ergodic to a nonergodic state. No concomitant singularity in thermodynamic quantities and in

the structure of the system are observed. The MCT α-relaxation time is found to diverge as a power

law:

τα =
1

(T − TMCT )γ
. (1.5)

The profound difference with the dynamical arrest predicted by the empirical VFT fit (1.1) when

approaching Tg indicates that

TMCT > Tg > T0 . (1.6)

The dynamical transition at TMCT is avoided in real supercooled liquids, as shown in figure 1.8, and at

best persists as a dynamical crossover.
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Figure 1.8: log10 of the viscosity η ∼ τ as a function of the inverse temperature for liquid ortho-terphenyl from

Ref. [45]. The solid line is the mode-coupling prediction of the relaxation time, it fits well the high temperature

region, but breaks down at some point and diverges at TMCT , which is interpreted as a crossover temperature.

To conclude, mode-coupling approach can thus describe at best the dynamics of moderately su-

percooled liquids at temperatures T > TMCT . Possibly, it can also apply to the fast β-relaxations

even below TMCT . However it misses the deeply-supercooled regime in which the dynamics is better

described as thermally activated.

1.1.3 Mean-field theory of glasses

The mean-field theory of glasses originates in the physical picture that the slowing down of relaxation in

glass-forming liquids is a consequence of the existence of a complex free-energy landscape with numerous

minima that the system has to explore in order to relax. [46, 47, 48]

Kirkpatrick, Thirumalai and Wolynes looked for other simpler mean-field models in which such free-

energy landscape could exist, and where a phenomenology similar to the structural glasses occurs. [48,

49] This is the case of the Potts-glass model and of the spherical p-spin model with infinite-range

interactions, for example. This analogy was also supplemented by a crude mean-field density functional

theory of glass-forming liquids [47, 50] and by a scaling theory that one now refers to as the “random

first-order transition” (RFOT) theory [7]; see [51, 9] for reviews.

1.1.3.1 The spherical p-spin model

For illustration we consider below the spherical p-spin model. The behavior of the Potts-glass model is

similar. The p-spin model was introduced in [52]. Its Hamiltonian is:

H({σi}) = −
N∑

i1,...,ip=1

Ji1,...,ipσi1 ...σip , (1.7)

where the sum runs over all possible ensembles of p spins among the N spins of the system, the

interactions are therefore fully-connected and there is no lattice structure. The σi’s are Ising spins
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or spherical spins with constraint
∑N

i=1 σ
2
i = N , and the Ji1,...,ip ’s are quenched random couplings

distributed accorded to a Gaussian probability density with zero mean and variance p!/(2Np−1).

The origin of the disorder is different between supercooled liquids and p-spin model, as in the former

it is self induced while the temperature is lowered whereas in the latter the disorder is quenched and

put by hand, by the introduction of random coupling constants.

The spherical p-spin model with p ≥ 3 nevertheless provides a convenient framework to introduce

a mean-field theory presenting a complex free-energy landscape and a phenomenology related to that

observed in real supercooled liquids, see below.

One first defines the partition function, summing the Boltzmann weights over all N -spin configura-

tions {σi} = (σ1, ..., σN ) and introducing a site-dependent external field hi that will be used to compute

configurations corresponding to free-energy minima,

Z ({hi}) =
∑
{σi}

exp

[
−βH({σi}) + β

N∑
i=1

hiσi

]
. (1.8)

The Gibbs free energy is the Legendre transform of the Helmholtz free energy obtained from

−β−1 logZ ({hi}) with the magnetization per site i: mi = − [βZ ({hi})]−1 ∂Z ({hi}) /(∂hi) = 〈σi〉.
It is given by

F ({mi}) = −β logZ ({h?i }) +

N∑
i=1

h?i mi, (1.9)

where the external field configuration has to be fixed such that the relation

− β ∂ logZ ({hi})
∂hi

∣∣∣
{hi}={h?i }

+mi = 0 (1.10)

is verified. F has been named the TAP free-energy from the names of Thouless, Anderson and Palmer

who first introduced it. [53]

It appears that F is composed of many minima, which can be found by searching for the configu-

rations {m?
i } satisfying the equation

∂F ({mi})
∂mi

∣∣∣
{mi}={m?i }

= 0. (1.11)

The remarkable property of this model when p ≥ 3 is that the number of solutions of the solutions of

the above equation, and more restrictively the number of minima, is exponentially large in the system

size N for a whole range of temperature. One is interested in computing the thermodynamic properties

of this collection of minima. Since the model is fully connected, the connectivity is equal to the number

of degrees of freedom and this precludes the formation of finite clusters where the order parameter

takes different values. As a result, barriers between locally stable states are extensive, infinite in the

thermodynamic limit; thus, when the system enters a locally stable state it cannot escape from it to

reach the global minimum, and stays for an infinite time in a metastable state. The sharp separation

between configurations within one free-energy minimum and different minima allows one to perform a

well-defined coarse graining. One computes first the free-energy density of one minimum (state) µ by

summing over configurations {σi} belonging to this minimum µ

fµ = − 1

βN
log

∑
{σi}∈µ

e−βH({σi}). (1.12)
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Introducing the f -dependent configurational entropy (density) sc(f) = N−1 log
∑N

µ=1 δ(f−fµ) counting

the logarithm of the number of minima with fixed free-energy density f , one can write the partition

function of the system summing on the different states. This is the second step:

Z =

N∑
µ=1

e−βNfµ =

∫
df exp−βN [f−Tsc(f)] . (1.13)

The free-energy density of the system in the thermodynamic limit can be evaluated by a saddle-point

calculation:

F = − 1

Nβ
logZ = min

f
[f − Tsc(f)] . (1.14)

The metastable states dominating the partition function have a free-energy density f?(T ) which is

solution of equation (1.14). This defines rigorously the configurational entropy, or complexity (in the

spin-glass community), which counts the number of statistically available states, as

sc(T ) = sc(f
?(T )) . (1.15)

By analyzing the behavior of sc(T ) when the temperature is varied, one identifies two characteristic

temperatures, Td and TK : at Td, the equilibrium configuration entropy first emerges as a nonzero quan-

tity (the number of relevant states is then exponentially large in N) and at TK < Td, this configurational

vanishes.

For T > Td, the configurational entropy drops to zero discontinuously. Above Td only one global

free-energy minimum exists, corresponding to the the high-temperature paramagnetic phase. Mean

field free-energy barriers separating metastable states being of infinite height, the system remains stuck

in one metastable state below Td and the relaxation time τ diverges at Td; consequently, the dynamics

is out of equilibrium below Td. This breaking of ergodicity corresponds to a transition which is purely

dynamical, and no singularity in the free energy is found. Actually this singularity is a mean-field

artifact, as the fully-connected nature of the description prevents the existence of thermal fluctuations

allowing the system to relax between minima. The temperature Td is the equivalent of TMCT of

section 1.1.2 at which a similar dynamical transition occur.

At TK , the configurational entropy linearly vanishes giving back an entropy crisis á la Kauzmann

(see figure 1.4). A thermodynamic phase transition occurs toward a new amorphous state corresponding

to the minimum in which the system is stuck, which is now an equilibrium ideal glass state. This RFOT

(which also goes under the name of “one-step replica symmetry breaking”, see below) is second order

in the usual thermodynamic sense (with no latent heat) but accompanied by a discontinuous jump of

the order parameter as in first-order transitions.

The spherical p-spin model also displays a MCT-like two-step relaxation (as plotted in figure 1.7

(a)) and aging properties akin to what is observed in real structural glasses. [52, 54, 17]

1.1.3.2 Order parameter: overlap matrix

As for the Sherrington-Kirkpatrick Ising spin glass [16, 12, 55, 56, 57, 58], the order parameter Q of

this mean-field glass transition is a complicated object, a (n×n) matrix of overlaps with n→ 0, which

measures the average structural similarity between configurations in different minima.

Replica trick

Historically this order parameter comes from the fact that a convenient way to compute the free

energy in models with quenched disorder is to use the replica trick. It allows one to compute the

free energy averaged over disorder, namely F = −β−1logZ, by using the exact equality logZ =
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limn→0

[
(Zn − 1)/n

]
. Hence, by letting n be an integer, the partition function has to be copied n times

before the product of exponential is averaged

Zn =
∑

{σa1},...,{σan}
e−β

∑n
i=1 H[{σai}] . (1.16)

Then n replicas of the system formally identified by indexes (a1, ..., an) appear. Each one is in a

configuration {σai}, and all of them are submitted to the same quenched disorder, leading to the

possibility to integrate Zn over an unique disorder distribution. This leads to an effective coupling

between replicas and one finally has to perform the usually uncontrolled procedure of letting n go to

zero after a continuation to noninteger values of n in order to obtain the correct averaged free energy

F .

The overlap between two replicas, or configurations, {σa} and {σb}, shows up naturally in the

calculation of F and provides an order parameter. One can define

Qab =
1

N

N∑
i=1

σai σ
b
i , (1.17)

with Qab = 1 if the two configurations a and b are identical, Qab = −1 if they are anti-correlated, and

Qab = 0 if they are uncorrelated. The self-overlap is Qaa = 1 due to the Ising or spherical constraint.

Overlap matrix

Then, one can construct the (n × n) matrix of overlaps Qab and 〈Qab〉 which is the order parame-

ter [16] Physically, the continuous version of the matrix of average overlaps is linked to the probability

distribution of having some overlap q between configurations of the system averaged over the disorder

P (q). Mathematically, P (q) is equal to the fraction of elements 〈Qab〉 of the overlap matrix equal to q:

P (q) = lim
n→0

1

n(n− 1)

∑
a6=b

δ (q − 〈Qab〉) . (1.18)

If the replicas are all symmetric and 〈Qab〉 = q0 for all a and b different, the probability distribution

is just one Dirac-δ centered in q0: P (q) = δ(q − q0). The overlap matrix is then “replica symmetric”.

Having just one possible value of overlap precludes the existence of more than one state. (A spin

reversed state must also of course exist and the overlap between the two states in then −q0. We consider

here only positive values of the overlap.) If α and β are two states, then two configurations {σa1} and

{σa2} belonging to α are more similar than two configurations {σa} and {σb} respectively from α and

β. The thermally averaged overlap must therefore take two values: 〈Qa1a2〉 = q1 and 〈Qab〉 = q0, with

q1 > q0. The probability distribution has two δ-peaks, P (q) = m1δ(q − q1) + (1 −m1) δ(q − q0) (with

m1 the probability of being in the same state), and characterizes a “first step of replica symmetry

breaking” (1-RSB) of the overlap matrix. As n→ 0 is necessary to recover the correct physics, one also

takes the limit m1 → 0.

The overlap matrix for r steps of replica symmetry breaking can be constructed following the

scheme represented on figure 1.9. For the p-spin model described above, only one step of replica-

symmetry breaking is needed (when p ≥ 3). We will see that for the mean-field Ising spin-glass case

(see section 1.2.3) the phase transition is described in terms of a matrix where the symmetry between

replicas has been fully broken (full-RSB), meaning that the number of steps goes to infinity r →∞. [16]

The order parameter, which is zero in the disordered (paramagnetic) phase and nonzero in the

ordered (spin-glass) phase, is a single parameter, say q0, akin to the Edwards-Anderson [59] parameter

qEA = N−1
∑N

i=1 〈σi〉
2, when the system remains replica symmetric but becomes a full function in the

full-RSB case [12].
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Figure 1.9: Construction of the overlap matrix for r = 1 and r = 2 steps of replica symmetry breaking, with

n > m1 > m2 > ... > m∞ ≥ 0. One can iterate it r times to reach any step r of replica symmetry breaking.

When r = ∞, the full Parisi replica symmetry breaking overlap matrix, order parameter of the Ising spin glass

transition in the mean-field theory, is obtained. On the diagonal, the elements are Qaa = 1.

1.1.3.3 Glass-forming liquids in infinite spatial dimension

The RFOT scenario occurring in mean-field p-spin and Potts-glass models has also been found in several

liquid models when treated within mean-field-like approximations. [47, 60, 61, 62] More importantly,

the RFOT scenario has recently been shown to occur exactly for the glass formation and the glass phase

of liquids in infinite spatial dimensions [21, 22, 63, 64]: this definitely confirms the RFOT 2-temperature

scenario as the mean-field theory of glass-forming liquids.

Some tools from spin-glass theory [6], such as the replica method and generating functional ap-

proaches, have been developed to study the mean-field version of supercooled liquids models. [65, 66, 17]

This requires to work with the density functional F [{ρ(r)}] which is written as an integral over the

volume of the system of functions of the whole density field ρ(r). It contains all information on the

positions of the particles in the system, but is potentially highly complex. The configurational space

has 3N dimensions, with N the number of particles (atoms), which makes any free-energy landscape

hard to visualize. On figure 2 we pictured an overly schematic view of F [{ρ(r)}] as a function of ρ(r).

1.1.3.4 Franz-Parisi potential

However, instead of working with the free-energy functional, one can construct a reduced free energy

which already contains interesting information. In the context of the mean-field theory of glasses, the

order parameter of the glass transition is the overlap of a configuration a with a reference configuration

r. 1 The probability distribution function of the overlap between a and r is naturally associated to

a large deviation function, the Franz-Parisi potential V (q) [67]. It measures the free-energy cost to

maintain a configuration with a fixed average overlap q with a reference one r and is illustrated in

figure 1.10. (Note that figure 1.10 corresponds to a mean-field description in which the potential is

nonconvex.)

The knowledge of which minima are likely to be visited by the system among the exponentially

large number of potential ones (below some temperature) is reduced to the knowledge of the minima

1This description has transformed the self-induced disorder of supercooled liquids into a quenched one, represented by

the fixed reference configuration.
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of V (q).

When T > Td, V (q) has a unique minimum and the corresponding phase is symmetric, with an

order parameter qEA = 0. At T = Td, V (q) develops a spinodal at some positive value of q. When

T < Td, V (q) has a secondary minimum. The equilibrium order parameter is always qEA = 0 as all the

available configurations are statistically equally accessible. At T = TK the secondary local minimum

of V (q) becomes stable and the order parameter jumps discontinuously to qEA 6= 0.

Figure 1.10: Franz-Parisi potential V (q) as a function of the average overlap q between a system configuration

and an equilibrium reference one for different temperatures. Reprinted and adapted from [3].

The height difference between the global minimum and the metastable minimum gives access to the

configurational entropy (density) sc(T ). Indeed maintaining the system in the metastable minimum

between Td and TK yields an entropic cost of T sc(T ) coming from the non-exploration of the other

metastable states. The shape of V (q) also illustrates the first-order character of the glass transition, as

the order parameter appears discontinuously at TK .

Figure 1.11: Phase diagram in temperature-coupling phase space, separating a high-temperature low-overlap

phase from a low-temperature high-overlap phase for the mean-field p-spin model with p = 4. There are three

curves, the rightmost is the spinodal of the metastable state which touches ε = 0 at Td; the middle one is the

first-order transition line reaching ε = 0 at TK > 0; the leftmost is the spinodal of the q ' 0 minimum. The

three curves match at a terminal critical point. Reprinted from [68].

From the shape of V (q), one also concludes that a first-order transition from low- to high-overlap

phases must exist when an external field ε linearly coupled to the overlap is turned on between Td and

TK . [68, 69] Such a line of transitions is potentially interesting because they occur at higher temperatures

than that at TK in ε = 0 and could therefore be easier to detect. The free energy F (ε) of the system
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is obtained via a Legendre transform

V (q) = F (ε) + q ε with q = −∂F (ε)

∂ε
, (1.19)

and corresponds to a tilted V (q). If ε > 0, the high-q minimum of V (q) is favored and will appear upon

lowering the temperature at Td(ε) > Td(0) = Td. The first-order transition will occur at T?(ε) > TK ,

hence creating a line between low- and high-q phases in the T -ε plane. The line of first-order transition

ends in a critical point at some value εc and Tc = T?(εc) (see figure 1.11).

1.1.4 Beyond the mean-field theory

The question is to know whether the mean-field theory of glasses presented above is the correct effective

theory to describe supercooled liquids in finite dimensions or not, i.e., remains robust to the introduction

of fluctuations. Either the thermodynamic glass transition at TK > 0 persists or disappears, one has

to find the fluctuation mechanisms responsible for the relaxation of finite-dimensional systems below

Td and above TK .

1.1.4.1 Phenomenological arguments

Assuming that the mean-field theory of glasses is qualitatively correct in finite-dimensional systems,

the fluctuations can be tentatively accounted for through phenomenological arguments of nucleation

and the “mosaic scenario”. [7]

Nucleation destroys metastable states in finite dimensions

In the above mean-field description the properties of the system were computed as if it was charac-

terized by a collection of metastable states with infinite lifetime.
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Figure 1.12: Free-energy of the Curie-Weiss model as a function of the magnetization m. (a) For three

values of the temperature, T > Tc, T = Tc and T < Tc. (b) T < Tc, for three values of the external

field h > 0, h = 0 and h < 0. For h 6= 0, a metastable state appear in the free-energy.

Metastable states are present within the Ginzburg-Landau description of the fully connected Ising

model (Curie-Weiss model) in an external field, when looking at the free energy as a function of the

magnetization m, near the phase transition, see figure 1.12. Below a certain temperature it presents

two minima with different extensive free energies. The free energy is therefore nonconvex. The barrier

between minima is extensive and the system in the thermodynamic limit will remain an infinite time

in the metastable minimum even if it is not the one of lowest free energy.

In a finite-dimensional system, nonuniform configurations are relevant and the free energy does not

retain the nonconvex shape. A fluctuation of the order parameter when the system is in a metastable
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state takes the form of a nucleation bubble. [70, 28] Consider for instance the d-dimensional Ising

model below Tc in the presence of an external positive magnetic field h. In this case the stable state

has a positive magnetization and the metastable state of the mean-field description has a negative

magnetization (see figure 1.12 (b)).

(a) (b)

Figure 1.13: (a) Nucleation region for the Ising model for h > 0 in 2 dimensions. The two phases of

different magnetization + (stable) and − (metastable) coexist and have respective energy f+ and f−;

σ is the surface tension. (b) The nucleation bubble of radius Rd relaxes in the outer phase if it is larger

than a critical value R? depending on the different energies, found as the radius where ∆F is maximal.

Imagine we insert a bubble of radius R of the stable phase within the metastable phase, as repre-

sented in figure 1.13 (a). It exists a typical radius R? below which the free-energy cost to maintain

the bubble within the metastable phase is positive and the bubble therefore shrinks and disappears.

Above this radius, the nucleation bubble is free-energetically favorable and grows without bound such

that the metastable state disappears. The free-energy cost of the bubble is ∆F (R) = σRd−1 −∆fRd,

whose typical shape is plotted in figure 1.13 (b). The first term is the free-energy cost associated with

the creation of an interface, with σ the surface tension between the metastable and the stable phases.

The second term is the difference of the bulk free-energy density between the metastable and stable

phases, ∆f > 0. R? is defined as the location of the maximum of ∆F (R).
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Figure 1.14: Free-energy of the Curie-Weiss model as a function of the magnetization m for T < Tc and

h < 0. The free energy is nonconvex in mean field (purple line), and performing a Maxwell construction

(red line) allows one to recover the needed convexity property of the free energy for finite-dimensional

systems.

The above phenomenological approach justifies that the escape of the system from a metastable

state to reach the stable state is described by the nucleation (and further growth) of a droplet: this

leads to activated dynamics. As a result, finite-dimensional systems always present a convex free energy,

which one can approximate from the mean-field result by the Maxwell construction (see figure 1.14).
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This convexity implies that metastability disappears. The system in the thermodynamic limit is either

in the global minimum of the free energy when the latter is unique or in one of the two pure states if

there is a phase transition and a coexistence curve. However, systems smaller than the typical length

scale of the relevant fluctuations will essentially behave as systems “without” fluctuations for which the

mean-field approximation is well suited.

“Mosaic” scenario for glass-forming liquids in finite dimensions

Schematically, the mosaic picture states that a finite-dimensional supercooled liquid in the regime

TK < T < Td is composed of finite domains of linear size ξ in different states corresponding to minima

of the complex free-energy landscape, with equal free-energy densities. This requires the existence

of interfaces, whose energetic cost is proportional to a surface tension Y . In supercooled liquids the

interface between different states can be very rough with effective dimension θ ≤ d−1. Thus, a nucleus

of linear size R has an interface free-energy cost of ∆Fint = Y Rθ.

For the Curie-Weiss model the balancing term was the free-energy density difference ∆f > 0. Here

free-energy densities of all states are the same. However, localizing the system in one state among the

exponentially large number has an entropic cost, the competing term is thus ∆Fent = T sc(T )Rd. The

free energy of a droplet of size R is then

∆F (R) = Y Rθ − Tsc(T )Rd . (1.20)

This can be associated to a length scale, the mosaic length, found by setting equation (1.20) to zero:

ξ ∝
( Y (T )

Tsc(T )

) 1
d−θ

. (1.21)

The mosaic length captures the emergence of a cooperative behavior. Indeed, it is inversely proportional

to the configurational entropy (density) sc(T ). As the latter decreases with T below Td, it leads to an

increase of ξ that finally diverges at TK as sc(TK) = 0. (The critical nucleus obtained as the maximum

of ∆F (R) scales in the same manner.)

It has been argued that the mosaic length scale is directly connected to a “point-to-set” correla-

tion length ξPTS . [71] This has given support to the mosaic scenario, as the point-to-set length can

be computed in long-range-interaction models (Kac models, see below) [72] and in computer simula-

tions [73, 74, 75]: it gives the spatial extent over which the effect of equilibrium amorphous boundary

condition propagates, see figure 1.15.

Figure 1.15: Point-to-set length scale from [76].

Starting with an equilibrium configuration of the system, a cavity of radius R is created outside

which the particles are frozen. The particles inside the cavity can rearrange, and the system evolves

with this constraint, the outer particles acting as a pinning field. The point-to-set length scale is defined
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as the minimal cavity radius such that the similarity between the new and the initial configurations

goes to zero at the center. Metastability and a mean-field like description then have some physical

meaning on linear scales smaller than ξPTS only.

The point-to-set length also yields an upper bound for the relaxation time τ < ec ξ
d
PTS/T (c a

constant) [36, 77] which predicts that a diverging relaxation time implies a diverging length scale. The

relaxation time is expected to be given by an Arrhenius-like law, τ = τ0 exp [∆E(T )/(kBT )], with the

barrier ∆E(T ) growing with ξ with another critical exponent ψ,

∆E(T ) ∼ ∆0 ξ
ψ . (1.22)

Replacing the T -dependent barrier ∆E(T ) by its expression in equation (1.22) and the configurational

entropy (density) by sc ∼
T→TK

(T − TK), one obtains a relaxation time τ which would diverge at TK as

τ ∼ exp

[( Y (T )

T − TK

) ψ
d−θ
]
. (1.23)

The above expression of τ is similar to the phenomenological VFT law given in equation (1.1) when

T0 ' Tk and is equal to it when θ = d/2 and ψ = θ as argued in [7].

1.1.4.2 Fluctuations beyond mean field: a review of past and ongoing work

One would like to study through first-principle methods the influence of spatial fluctuations in finite

dimensions on the mean-field description of the glass transition. For instance, one knows that by

definition (a Legendre transform) the equilibrium free energy of the finite-dimensional system has to be

convex. One would thus like to find statistically relevant fluctuation mechanisms by which metastability

and nonconvexity of the free energy that are central in the mean-field treatment disappear in finite

dimensions.

Yet, at the mean-field level, the nature of metastability and of the metastable states of the density

functional F [{ρ(x)}] is quite elusive [71, 78, 79] and the effective or coarse-grained landscape of minima

and saddle-points is expected to be very complex, with a number of minima that is exponentially

large in the system size. Finding the mechanism by which fluctuations alter this mean-field free-energy

landscape, e.g., via some form of nucleation events, is therefore a very challenging task.

Several steps have been recently achieved in investigating the role of fluctuations beyond the mean-

field theory of glasses:

- “Instanton” calculations have been performed on the effective Franz-Parisi potential of the repli-

cated theory and give an estimation of the surface tension of some droplet. [80, 78, 79]

- Kac models have been studied: these models have long-range interactions and, depending on the

order in which one takes the thermodynamic limit and the limit where the range of interactions goes

to infinity, they are exactly described either by the conventional mean-field results (where the free

energy can be nonconvex) or by an improved version in which nonuniform configurations are allowed

and convexity of the free energy is recovered. Kac models have been used to provide an analytic

determination of the mosaic length scale [72]. Instanton calculations also allowed the determination of

a “glassy coherent length” [78], argued to lead to a relaxation time [81] that would be in agreement

with the phenomenological mosaic scenario.

- Real-space Migdal-Kadanoff renormalization group methods applied on spin-glass models supposed

to be in the same universality class as finite-dimensional structural glasses (which is exact in d = ∞)

have found that in large but finite dimensions the glass transition could be controlled by a nontrivial

zero-temperature fixed point. [82, 83]
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- The dynamics of the finite-dimensional glass-formers near Td, known to be a dynamical crossover

(from experiments), has been thoroughly investigated. Using MCT equations that can be written

to study the dynamics of glass-forming models near Td [84, 85], analytical computations of the ef-

fect of long-range fluctuations (added perturbatively) on this dynamical transition have been per-

formed. [86, 87, 88, 89] This yields an avoided dynamical transition in finite-dimensional systems.

Dynamical heterogeneities and activated dynamics then also naturally emerge.

- A mapping of supercooled liquids in finite dimensions onto Ising-like systems with disorder is also

suggested.

It has been shown that the critical fluctuations of the overlap close to the dynamical transition are

in the same universality class as the spinodal point of the random-field Ising model (RFIM) 2. [95] If

one thinks of the liquid below Td as formed of finite-size domains in which a local Franz-Parisi potential

can be defined, the local (domain) configurational entropy would play the role of an applied random

field and the local (domain) overlap that of the local magnetization. [95, 96]

Then, when an external field ε is applied, glassy systems presenting a RFOT in mean-field develop

a first-order transition line in the T − ε plane (see section 1.1.3.4). Such line has been detected in

computer simulation of finite-dimensional systems. [97, 98, 99, 100] Studies have predicted that its

terminal critical point (in Tc, εc > 0) is in the universality class of the RFIM. [101, 102] A glass

transition line can also be obtained in the T − c plane when “pinning” a certain fraction c of particles

in the system. It is predicted on the basis of mean-field glassy models [103] and claimed to be observed

in simulations of finite-dimensional liquid models [104]. It was established [105] that fluctuations close

to the critical endpoint can also be mapped onto the RFIM, in agreement with other results. [103, 106]

Additional suggestions of mapping of supercooled liquids in finite dimensions onto Ising-like systems

with disorder has also appeared in various numerical computer simulations [107, 98, 99, 100]. The same

conclusion has been obtained in computer simulations of finite-dimensional glassy plaquette models in

an external field [108, 109].

- Another mapping has been proposed in [110] where it is argued that the effective theory for the

glass transition is in the universality class of an Ising spin glass in a field. This would invalidate the

possibility of a nonzero temperature glass transition in finite-dimensional systems, similarly to the

absence of a de Almeida-Thouless line for Ising spin glasses in finite dimensions argued by the authors

(see also section 1.2.3). A real-space RG treatment has been performed in support of this idea. [111]

1.1.5 A diversity of theoretical approaches

Explaining the glass transition and the slowing down of relaxation that leads to it remain an open

and controversial issue. The established existence of a mean-field theory does not preclude alternative

theories focusing directly on 3-dimensional glass-forming systems with no reference to this mean-field

scenario. As stressed above, spatial fluctuations can be for glass formation in d = 3 and one may as well

try to postulate the nature and the effect of these fluctuations based on physical intuition. Among the

many attempts, one could notice those based on the existence of some locally-preferred order and its

2The RFIM is a paradigmatic model showing a competition between ferromagnetic interactions and quenched dis-

order. [90, 91, 92, 93, 94]. Its Hamiltonian (in its simplest form) is like the simple Ising one, but with random fields

hi (following some probability distribution that can be Gaussian) applied on each sites i of the lattice: H[{σi}] =

−J
∑
〈i,j〉 σiσj −

∑N
i=1 hiσi, where σi = ±1 are Ising spins, and

∑
〈i,j〉 is over nearest neighbors. From the mean-field

infinite-range treatment, if disorder strength h2
i is too strong compared to the ferromagnetic coupling, the system is para-

magnetic at all temperatures. If it is smaller than some critical value, the system can present a phase transition at some

temperature between a high-temperature paramagnetic phase and a low-temperature ferromagnetic one. This mean-field

description is qualitatively correct above the upper critical dimension which is du = 6 [90].
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possible frustration at large distance [8, 112] or, in a quite well different vein, those relying on a purely

dynamical description in terms of mobility defects and dynamical facilitation [113]. In the following,

we will only discuss the latter because we will come back to it again in chapter 4.

1.1.5.1 Dynamic facilitation

In the Dynamical Facilitation Theory (DFT) [11], it is postulated that the physics of glass-forming

liquids can be understood purely at the dynamical level, with no need for any thermodynamic or

landscape description.

Dynamic facilitation is the fact that a mobile region, called mobility defect, prompts the mobility

of others nearby regions, generating highly rearranging domains and dynamical heterogeneities. [113]

The rest of the system is essentially frozen. Hence relaxation comes with cooperative moves in real

space, which become harder and harder the more the temperature decreases. Therefore glassiness is

the consequence of effective dynamical constraints in the motion of particles when the temperature is

lowered, irrespective of the thermodynamics of the system. [114]

Kinetically constrained models

DFT is realized in simple models with trivial thermodynamics but with dynamical rules enforcing

kinetic constraints. Examples are the Fredrickson-Andersen model [115] and the East model [116].

The Fredrickson-Andersen model is a lattice-gas model of particles that can be either mobile ni = 1

or immobile ni = 0. Its Hamiltonian is given by:

H({ni}) = J
N∑
i=1

ni. (1.24)

The constant J is the energy scale arising from the production of a mobility defect ni = 1 on site i.

The thermodynamics of the model is therefore trivial and has no singularity at nonzero temperature.

The dynamics however is nontrivial due to the introduction of a kinetic constraint: a variable is allowed

to change state at a given site if and only if a minimum number of its nearest neighbors are empty.

On can also define models with some asymmetry in the dynamical constraint, as the East model [11].

The relaxation time is generally found to diverge at zero temperature only, either in an Arrhenius-type

of behavior for “noncooperative” models or in a super-Arrhenius way for “cooperative” models [11].

Dynamical facilitation and properly chosen KCM’s are able to reproduce the salient features of the

dynamics of supercooled liquids [117]. However, there remains some arbitrariness in the choice of the

proper KCM and an instability to describe thermodynamical features of real glass-formers such as the

rapid decrease of the entropy.

Plaquette spin models

In these lattice spin models the local interactions involve spins belonging to plaquettes. Different

plaquette models have been studied in the literature, which are characterized by the number p of spins

around an elementary plaquette, the number c of plaquettes attached to a given site, and more generally

by the lattice type. When p = c, their dynamics on Euclidean lattices can be fully described by localized

defects and the dynamic-facilitation theory. [118, 119, 114, 27]

For example the Hamiltonian of the square-plaquette model on a square lattice (c = p = 4) is given

by

H[{σi}] = −J
∑
µ

σµ1σµ2σµ3σµ4, (1.25)

where µ labels the square plaquettes, σµi = ±1 the four Ising spins composing µ, and J > 0 is the

energy coupling strength. If the spin variables are changed into plaquettes variables σµ1σµ2σµ3σµ4 →
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Sµ, the above Hamiltonian becomes that of a noninteracting model of variables Sµ = ±1 and its

thermodynamics is therefore trivial. Its dynamics however is not simple, as a simple spin flip changes

the state of all the plaquettes to which it belongs to. It has been shown that the dynamics of this model

can be studied by looking at the −1 plaquettes only, which play the role of mobility defects as they

favor the −1 transformation of the surrounding plaquettes variables, and can be described as resulting

from effective kinetic constraints. These models are thus akin to KCM’s. [114].

When the number of spins per plaquette is even, such as the square-plaquette model or the cubic

plaquette model on a cubic lattice (c = p = 8), the model is characterized by a relaxation time that

follows an Arrhenius law, like strong glass formers. [120, 121, 27, 122, 123]

Models with an odd number of spins per plaquette have also been studied on 2-dimensional and

3-dimensional Euclidean lattices. In the triangular-plaquette model, the ferromagnetic interactions

involve the 3 spins of each upward-pointing triangle in a triangular lattice (c = p = 3) and in the square-

pyramid model they involve the 5 spins of each upward-pointing square-based pyramid on a body-

centered cubic lattice (c = p = 5). They represent “fragile” glass-formers, for which the relaxation time

τ grows with decreasing temperature T in a super-Arrhenius manner with log τ ∝ 1/T 2. [119, 114, 27]

These models have been extensively investigated in relation to the theory of glass formation, more

specifically for their connection to simple glass-forming models with kinetic constraints, see [27] for a

review.

The main advantage of these models is their dual nature: they appear as KCM’s and good models

for the DFT at the defect (plaquette) level (when c = p), yet represent bona fide models with nontrivial

thermodynamics and local, unconstrained, dynamics at the spin level. In consequence they provide a

framework to understand the possible connection between theories of the glass transition, based whether

on a nontrivial dynamics (DFT) or on a nontrivial thermodynamics (mean-field theory of glasses). We

will consider them in chapter 4.

1.2 Spin glasses

1.2.1 Phenomenology

The magnetic moments that compose spin glass materials are submitted to random ferromagnetic and

antiferromagnetic interactions due to frozen-in structural disorder in the system. Indeed, the scattering

of the conduction electrons leads to indirect interactions between spins that oscillate strongly with the

distance. Therefore, as distance between spins is random, some interactions will be positive, favoring

ferromagnetic alignment, others will be negative, favoring anti-ferromagnetic alignment. The spins

are in the impossibility to find an alignment that satisfies all the interactions: this phenomenon is

called frustration [124] (see figure 1 were it is sketched for four Ising spins). As a consequence and as

represented on figure 1.16, no conventional long range order can be established, with all spins pointing

in the same direction (ferromagnetic order), or in alternate directions (antiferromagnetic order).

Nevertheless, at some critical temperature Tc, the system presents a second-order phase transi-

tion [126] toward a phase with a new kind of order: with spins ~σi pointing in random but well defined

directions, such that the magnetization is zero N−1
∑N

i=1 〈~σi〉 = 0 but N−1
∑N

i=1 〈~σi〉
2 is different from

zero, where the brackets denote a thermal average. This phase has been called the spin-glass phase,

and its nature is still not understood (see below). Experimentally and from computer simulations one

can approach the critical point from the high temperature side only, as the relaxation time is infinite

in the spin-glass phase. The system then falls out of equilibrium and displays aging behavior. [127]

It seems that the combination of randomness and frustration is the source of this new kind of phase

transition.
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Figure 1.16: Pictorial comparison between different orders on a two-dimensional discrete lattice: (a) spin glass,

(b) ferromagnetic and (c) antiferromagnetic. Reprinted from [125].

1.2.2 Edwards-Anderson model

The first effective model of spin glasses was introduced by Edwards and Anderson (EA) in [59]. They

proposed the following effective spin-glass Hamiltonian, in the case of Ising spins σi = ±1,

H = −
∑
〈i,j〉

Jijσiσj − h
∑
i

σi , (1.26)

where the sum 〈i, j〉 runs over all distinct nearest neighbors sites of a lattice of N sites, and h is an

external magnetic field that will often be set to zero in the following. The Jij are finite-range random

interactions that can be ferromagnetic or antiferromagnetic and mimic the oscillating interactions of

experimental spin glasses. They follow some probability distribution P (Jij), that can be chosen as

Gaussian with zero mean, J = 0, where the overline denotes an average over the quenched disorder.

The different observables are computed for fixed configurations of the quenched disorder, over which

an average is finally performed.

Edwards and Anderson argued that this model should present a spin-glass phase transition at a

critical temperature Tc, with a paramagnetic high-temperature phase and a spin-glass low-temperature

phase. The order parameter of this transition, since called Edwards-Anderson parameter (see also

section 1.1.3.1), is the “overlap” between spin configurations averaged over disorder,

qEA =
1

N

N∑
i=1

〈σi〉2 , (1.27)

where 〈 . 〉 is a thermal average for a fixed configuration of the disorder. qEA is zero above Tc and grows

continuously for T ≤ Tc, showing that the transition is second order.

The phase transition in the EA Ising spin glass was put in evidence in computer simulations in

dimension d = 3 in [128, 129] and with renormalization calculations in [130]. It is also now confirmed

by large scale computer simulations. [131, 132] Several studies [133, 134, 135, 136, 137] have been

devoted to the determination of the lower critical dimension dl, defined as the dimension at which the

transition disappears. They agree on a value of the lower critical dimension between 2 and 3 (possibly

dl ' 2.5).

1.2.3 Mean-field theory

Sherrington and Kirkpatrick (SK) studied the Hamiltonian (1.26) in the fully-connected version where

the Jij are of infinite range, [15] showing the existence of a mean-field spin-glass transition at a tem-
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perature Tc from a paramagnetic phase to a mean-field spin-glass phase. See [5, 138] for reviews where

the mean-field theory of spin glasses is developed.

The free energy (averaged over the quenched disorder) of the system, F = −β−1logZ, can be

formally computed by use of the replica trick (see section 1.1.3.2). This generates n replicas of the

system with a n→ 0 limit to evaluate in order to recover the initial physical situation. One can rewrite

the partition function in terms of an overlap between replicas a and b, Qab ≡ N−1
∑N

i=1 σ
a
i σ

b
i (i is the

lattice position). The Edwards-Anderson parameter is directly linked to this quantity as

qEA = lim
n→0

1

n(n− 1)

∑
a6=b
〈Qab〉 . (1.28)

The high-T and low-T phases are studied by finding the singularities of the free energy in the framework

of the replica method. Sherrington and Kirkpatrick considered a replica symmetric (RS) solution with

Qab = Q when a 6= b. The EA parameter in this case is just qEA = 〈Q〉. Under this hypothesis, they

found two solutions: qEA = 0, supposed to correspond to the high-temperature phase, and qEA 6= 0,

supposed to describe the low-temperature (spin-glass) phase. They also computed the critical exponents

of this second-order transition. This yielded the upper critical dimension as the dimension for which

the scaling relation 2β + γ = duν is verified for the mean-field critical exponents, hence du = 6 for the

spin-glass universality class. 3

The stability of a phase is determined by computing the curvature(s) (called “masses” in field

theory) at the corresponding extremum of free energy. If there are many directions, as in the case

of a replicated theory, the curvatures in all directions are obtained from a n(n−1)
2 × n(n−1)

2 matrix of

second derivatives of the free energy (called Hessian matrix) with respect to the fields δQabδQcd (with

a < b, c < d). Its eigenvalues give access to the stability of the solution along the corresponding

eigendirection. A positive eigenvalue corresponds to a stable eigendirection, along which if the system

is perturbed it will end in the same state; the contrary happens for a negative eigenvalue, and any

fluctuation occurring in the corresponding eigendirection will make the system escape from its state. A

zero eigenvalue is related to a eigendirection said “marginal”, and generically one has to compute the

third order derivative of the free energy evaluated at the extremum to determine the stability.

The first solution, qEA = 0, yields a diagonal Hessian matrix. Its eigenvalues λ1 are all degenerate

and are given by, when n = 0,

λ1 = 2
T − Tc
Tc

. (1.29)

The paramagnetic state, qEA = 0, is stable for temperatures T > Tc as λ1 > 0. The properties

of the high-temperature phase are therefore well described by a replica symmetric order parameter.

As expected in phase transitions, this phase becomes marginally stable at T = Tc (λ1 = 0) and is

completely unstable for T < Tc (λ1 < 0). To correct this the system usually has to break a symmetry,

acquiring a nonzero order parameter so that the eigenvalues become non-negative.

Such a symmetry breaking corresponds to the other, nontrivial, solution with qEA 6= 0. It should

describe the low-temperature phase. It is usually expected to be stable for T < Tc. This yields a

symmetric stability matrix that can be diagonalized [140]: it has three distinct n-dependent eigenvalues,

two of them being degenerate when n = 0. The related three eigendirections and their respective n-

dimensions are the replicon “R” (n(n−3)
2 ), the anomalous “A” (n − 1) and longitudinal “L” (1) ones.

3For the mean-field spin-glass transition they are given by β = 1, γ = 1 and ν = 1/2 hence du = 6. [139]
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When n = 0, the eigenvalues are given by (A and L are degenerate)

λA,L = 2
Tc − T
Tc

,

λR = −4

3

(
Tc − T
Tc

)2

.

(1.30)

One immediately sees for T < Tc that this solution, qEA 6= 0, is stable along the anomalous and

longitudinal eigendirections (λA,L > 0), but unstable along the replicon one (λR < 0). The replica-

symmetric solution cannot therefore be the right description of the low-temperature phase for T < Tc.

The correct description of the mean-field Sherrington-Kirkpatrick model for the low-temperature

phase was obtained by Parisi [16, 12, 55, 56, 57, 58]. It involves an additional symmetry breaking,

namely the breaking of the replica symmetry when computing the relevant saddle-point in the mean-

field treatment. The replica symmetry is continuously broken and involves an infinite number of stages

(r → ∞ in section 1.1.3.2) that leads to an overlap order parameter which is now a whole function.

The physical interpretation of this solution is that the low-temperature phase is characterized by an

infinite number of pure states (which generalizes the two pure states found in a simple ferromagnetic

model) with an ultrametric organization [23]. By studying the stability of this solution, it has been

shown that it is stable, albeit marginally stable, in all directions. [141]

1.2.4 Beyond the mean-field theory

For spin glasses, it has been shown that the mean-field approximation is quantitatively correct in

infinite-dimensions. [18, 19, 20] Fluctuations of field, that are by definition absent in mean field, are

present in finite dimensions and may modify the scenario for finite-dimensional systems. In the case of

spin glasses, is the nature of the low-temperature phase the same as predicted in the mean field, as it

occurs in the Ising model, for example? The situation is not clear and is still today not settled. One

should however distinguish what happens for the (critical) transition itself and for the low-temperature

spin-glass phase.

For the former, the conventional scenario appears to apply: the spatial fluctuations present in finite-

dimensional systems modify the mean-field critical exponents only below an upper-critical dimension

du = 6 and do not change the qualitative features of the critical point and of the associated scaling

behavior above a lower critical dimension dl between 2 and 3. The critical exponents have been

computed in a perturbative renormalization group treatment in d = 6− ε, ε > 0. [139]

Quite different is the issue of the nature of the low-temperature phase. As it has been briefly

discussed above, the mean-field theory predicts an intricate spin-glass ordered phase characterized by

an infinite number of pure states and obtained through a spontaneous breaking of the replica symmetry

when n→ 0. How fluctuations alter this phase is still contentious as no successful renormalization group

treatment has been developed, at least below the putative upper critical dimension du = 6 [141].

An alternative theoretical framework formulated directly in low dimensions focuses on fluctuations

associated with low-energy “droplet” excitations and predicts a low-temperature phase with only a

finite number of pure states (see below).

1.2.5 Droplet theory

A quite different theoretical approach is the droplet theory, independently developed by Bray and

Moore [13, 142, 143] and Fisher and Huse [14, 144, 145]. This approach directly focuses on the spin-

glass phase in finite dimensions and on the role of spatial fluctuations. The number of pure states is



1.2. Spin glasses 27

assumed to be finite, essentially two as in ferromagnets, and the criticality of the low-temperature phase

is explained by the presence of large-scale excitations described as droplets. This approach is motivated

by real-space renormalization studies on “domain walls” [146, 134, 130]. These studies predict that the

lower-critical dimension for the existence of the spin-glass phase is between 2 and 3: 2 < dl < 3.

A key difference in the predictions of the mean-field and droplet theories is that in the presence of

a uniform (or random) applied field, there is no transition in the droplet theory whereas there is still a

finite-temperature transition with replica-symmetry breaking in the mean-field description.





Chapter 2

Theoretical tools

Contents

2.1 Method of instantons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Renormalization group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Real-space renormalization group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Nonperturbative RG in momentum space . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.3 Fixed points and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.4 Critical exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1 Method of instantons

In classical statistical mechanics, the partition function is the quantity one needs to compute in order

to extract the thermodynamic characteristics of a system at equilibrium. It is given by the expression

Z(β) =
∑
{σ}

e−βH({σ}) , (2.1)

where β = 1/(kBT ), {σ} represents all the possible configurations of the system and H({σ}) is the

Hamiltonian. Using Feynman path integral formalism and taking the continuum limit, one can go from

classical statistical mechanics to statistical field theory. The field ϕ(x) is a function of space. The

partition function is rewritten under the form of an integral over all the paths ϕ(x),

Z(β) =

∫
Dϕe−βH[ϕ] . (2.2)

There are situations, e.g. when β → ∞ (or T → 0) or in the mean-field limit, where one is interested

in the configurations or paths that minimize the energy,

δH[ϕ]

δϕ(x)

∣∣∣
ϕ(x)=ϕ?(x)

= 0 . (2.3)

These minimum energy configurations, also called classical solutions in a more general setting, can be

uniform (this is what gives the conventional mean-field description) or not. An instanton is a localized

solution whose energy or action H[ϕ?] is finite (and nonzero). [147, 148, 149] In the above, we have

considered the partition function appropriate for an equilibrium state in classical physics but the whole

formalism can be generalized to describe space-time behavior either in quantum-field theory or for the

dynamics of classical systems. In chapter 5 of this manuscript, we will consider the dynamics of a

system of particles in the low temperature limit T → 0, and make use of the instanton formalism:

having a finite action, instantons indeed provide the dominant contribution to describe the dynamics

in this limit.
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Let us illustrate here the instanton method for the simple case of the equilibrium behavior of a

one-dimensional scalar-field theory, with potential V (ϕ(x)) and the lowest order gradient term. [148]

The Hamiltonian (or action in field theory) in this case reads:

H[ϕ] =

∫
x

{ c
2

(∂xϕ(x))2 + V (ϕ(x))
}
, (2.4)

where c > 0 is a parameter. We are looking for solutions of equation (2.3), which here becomes:

c
∂2ϕ?(x)

∂x2
− ∂V (ϕ(x))

∂ϕ(x)

∣∣∣∣
ϕ?

= 0 . (2.5)

By making the formal replacements (x → t ; ϕ?(x) → X(t)) this equation corresponds to Newton’s

equation for a particle at position in time X(t) with kinetic energy c
2

(
Ẋ(t)

)2
into the reversed potential

−V (X(t)), see figure 2.1 (a). For example, for a double-well potential V (ϕ(x)) = r
4

(
ϕ(x)2 − ϕ2

0

)2
(then

it corresponds to the ϕ4 theory), with r > 0 and ϕ0 > 0, a uniform solution of (2.5) is given by ϕ? = ±ϕ0

and a localized solution of (2.5) is simply:

ϕ?(x) = ±ϕ0 tanh(x/σ) , (2.6)

where σ =
√

2c/r is the width of the instanton (not to be confused with σ of equation (2.1)). The

boundary conditions of the solution also minimize the energy: ϕ?(x→ −∞) = ∓ϕ0 and ϕ?(x→ +∞) =

±ϕ0. The resulting “instanton” ϕ?(x) = ϕ0 tanh(x/σ) (the “kink”) is represented on figure 2.1 (b) for

ϕ0 = 1 and σ = 0.3; its x→ −x reverse, ϕ?(x) = −ϕ0 tanh(x/σ), is the “anti-kink”.
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Figure 2.1: One-dimensional ϕ4 theory. (a) Reversed potential −V (ϕ) for the 1d ϕ4 theory. The instantonic

trajectory (b) corresponds with formal replacements (x→ t ; ϕ?(x)→ X(t)) to a particle X(t) living in −V (X(t))

and going from position −ϕ0 at t → −∞ to +ϕ0 at t → +∞. (b) Instanton: ϕ?(x) = ϕ0 tanh(x/σ) for ϕ0 = 1

and σ = 0.3.

Originally, the method of instantons was developed in order to compute passage probabilities of

tunneling in quantum mechanics, see [148]. Indeed, exp(−βS?), with S? the “action” of an instanton, is

the probability of tunneling from −ϕ0 to ϕ0 in the potential +V [ϕ]. In the classical mechanics case, this

corresponds to a particle climbing an energy barrier S?. The action corresponding to the instantonic

solution can be rewritten as

S? =

∫ ϕ0

−ϕ0

dx [2V (ϕ?(x))]1/2 , (2.7)

and is a finite quantity (even in the thermodynamic limit).

One can easily prove that instantons are very localized and rare objects [148]. Therefore on an

interval on length L, or of duration τ , a typical configuration of the system at low temperature will be
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composed by a succession of 2n kink and anti-kink instantonic events (like the kink shown in figure 2.1

(b)) centered on positions x1, x2, · · · , x2n, as shown schematically for n = 2 on figure 2.2. Here we

consider periodic boundary conditions hence the number of instantons must be even.
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Figure 2.2: One-dimensional ϕ4 theory. A possible configuration ϕc(x) for a linear system of size L = 40 with

periodic boundary conditions composed by 2 instantons/anti-instantons (like the one of figure 2.1 (b)) centered

in positions x1, x2, x3, x4.

The partition function of the system can then be obtained by adding to the contribution of the

uniform solutions ϕ = ±ϕ0 all the possible configurations of 2n instantons that can occur on a segment

of size L, as the one represented in figure 2.2 for n = 2. One has to take into account that the positions

xi can be wherever on the interval [−L/2; +L/2], which gives an entropic factor. In addition, as each

instanton costs an energy S?, and that uniform profiles ϕ0 do not cost energy, the total energetic cost

of a configuration with 2n instantons is simply given by 2nS?. One then has to sum over all possible

positions xi’s to obtain Z(β). In particular, when σ = 0, the instantonic trajectories becomes sharp

jumps of zero width. In this case the entropic factor is simplified, and is given by:∫ L/2

−L/2
dx1

∫ L/2

x1

dx2 · · ·
∫ L/2

xn−1

dx2n =
L2n

(2n)!
. (2.8)

One obtains Z(β) by summing over all possible configurations going from +ϕ0 (or −ϕ0) in −L/2 to

+ϕ0 (or −ϕ0) in +L/2, which corresponds to summing over all integers n:

Z(β) =
∞∑
n=0

e−β2nS? L
2n

(2n)!
. (2.9)

The case of nonzero width σ is done in chapter 3. In addition, one can also include the fact that

the real trajectories occurring in a system at low temperature can be slightly modified with respect

to the instantonic trajectories which are exactly valid at T = 0. This results in the introduction in

the expression of Z(β) of a term accounting for the fluctuations of shape, determined by evaluating a

Gaussian integral over the second order field derivative δH[ϕ(x)]/(δϕ(x′)δϕ(y′))
∣∣∣
ϕ?(x)

. This involves

the computation of the determinant of the operator −∂2
x + V ′′[ϕ]. [148, 149]

2.2 Renormalization group

Phase transitions are ubiquitous in physics. This generic term encodes the fact that a system drastically

changes its properties under the variation of some external parameter, for example the temperature

T . When it crosses a critical value Tc, particular of the system, the phase transition occurs. This is

generally captured by an adequate order parameter, which passes from zero to a nonzero value at the

transition.
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The most common phases transitions are separated in two classes.

On the one hand, first-order phase transitions, which are characterized by a discontinuous emergence

of a nonzero order parameter, resulting in the existence of a latent heat (related to the height of the

“jump”). The correlation length ξ remains finite in the whole temperature range.

On the other hand, second-order phase transitions, for which the emergence of a nonzero order

parameter is continuous, which results in the absence of latent heat. The correlation length diverges at

the transition, basically meaning that all the degrees of freedom are correlated. The system then shows

scale invariance. The key consequence of this scale invariance is that the thermodynamic parameters

can be expressed as scaling laws of the distance to the critical external parameter, involving critical

exponents. For example, for a temperature T larger than but close to the critical one, the correlation

length behaves like

ξ ∼ (T − Tc)−ν (2.10)

and diverges when T → Tc with a critical exponent ν. These exponents are part of the more general

category of “universal quantities”, which are independent on the microscopic details of the systems.

They are identical for systems belonging to the same universality class which is characterized for instance

by the type of symmetry that is broken at the transition. On the contrary, non-universal quantities

depend on the particular system under study: it is the case for the value of the critical temperature,

for example.

In this thesis we will be concerned by different universality classes: The chapter 3 deals with the

Ising model universality class in which the low temperature phase breaks the two-state Z2 symmetry.

The chapter 4 is concerned by both the pure and the random-field Ising model universality classes. The

chapter 6 treats of the Ising spin-glass universality class.

A key theoretical framework to compute universal and non-universal quantities characterizing phase

transitions, and more specifically critical points at which scale invariance arises, is the renormalization

group (RG) [24]. Although a large body of RG studies have used perturbation expansions (ε expansion

with ε the distance to the upper critical dimension, expansion in the coupling constants, etc.) we will

be concerned by nonperturbative implementations of the RG.

2.2.1 Real-space renormalization group

The simplest (and usually crudest) way of implementing a nonperturbative renormalization group is

the Migdal-Kadanoff procedure [150, 151, 152, 153] that relies on a renormalization of the partition

function in real space.

As mentioned above, in the vicinity of second-order phase transitions, it is expected that for the

long-distance physics and for universal quantities, the details of what happens at short-length scales do

not matter. Therefore, one is aiming at a coarse-graining process that averages the fluctuations which

are irrelevant for the physics at large scales and gives access to the long-distance physics.

Consider for instance the Ising model on a triangular lattice in dimension two. To obtain information

on thermodynamic quantities, on has to sum over the spin degrees of freedom to obtain the partition

function

Z =
∑
{Si}

eβJ
(0)
∑N
〈i,j〉 SiSj (2.11)

with 〈i, j〉 the sum over nearest neighbors sites, the lattice containing N sites. Instead of doing the sum

in one breath, the idea behind the RG procedure is to sum recursively on degrees of freedom contained

in some groups, or blocks, of spins whose shape depends on the geometry of the initial system. Here,

these blocks can be chosen to triangular plaquettes, see figure 2.3. On one block A is defined a new
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Figure 2.3: Triangular lattice with Ising spins Si on the vertices, i = 1, ..., N . Block-spins ŜA (A = I, J,K) are

defined following (2.12) on triangular plaquettes A, where SAj are the three spins of A, j = 1, 2, 3. Reprinted

from [26].

spin, called block-spin ŜA, which is defined according to some rule: for example, one can choose a

“majority rule”,

ŜA = sign(SA1 + SA2 + SA3 ) . (2.12)

One then sums over all the initial degrees of freedom SAi yielding this block-spin, making some coarse

graining that brings a new effective interaction between the ŜA’s. In the thermodynamic limit the

number of sites N →∞, hence the number of degrees of freedom is let unchanged by the above coarse

graining. A difference exists, however, in the effective lattice spacing between block-spins, which is now

> a. This introduces the last RG operation, a reduction of the scale of the lattice to recover the initial

lattice spacing. Doing so, the partition function finally obtained is left invariant.

In general, the process generates new interactions between spins that no longer have the same form as

in equation (2.11). To make progress and do actual computations, one must proceed to approximations.

A bold one is to neglect all multi-spin interactions except the pair ones, so that the new Hamiltonian

for block spins has the same form as the original one. Let’s denote by J (1) the effective pair interaction

existing between block-spins, where the 1 stands for “one” step. The partition function can therefore

be rewritten with ŜA transformed in Si (i and A both take values between 1 and ∞) as it is always an

Ising spin,

Z =
∑
{Si}

eβJ
(1)
∑
〈i,j〉 SiSj . (2.13)

The procedure can be repeated with the RG transformations for the couplings, J (n+1) = R(J (n)). At

this stage we remember that at the critical point the system is scale invariant. This implies that the

above decimation at criticality yields invariant coupling constants, J? = R(J?),which correspond to

fixed points of the RG transformation. One can then search for the critical fixed point J? of this real-

space RG procedure and get the critical physics by evaluating Z for this coupling. If one considers a

system close to (but not at) criticality, the RG flow of the coupling will spend a long time in the close

vicinity of the critical fixed point, before finally flowing away from it to reach one of the two trivial

fixed points describing the paramagnetic and ferromagnetic phases.

This real-space RG method is nonperturbative but the approximations that are made are in general

uncontrolled and not easy to improve in a systematic way. In one dimension, one can devise real-space

RG schemes that are exact. This is what we have done in our study detailed in chapter 3.

2.2.2 Nonperturbative RG in momentum space

An alternative implementation of the nonperturbative RG is to work in momentum space instead of

real space. This was originally developed by Wilson [24] and later by others [154, 155, 156]. We will
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present here the nonperturbative RG (NPRG) formalism as formulated by C. Wetterich in terms of the

effective average action [157, 158, 159, 160, 161]; for reviews see [25, 26].

The NPRG is based on the original idea of Wilson which aims to determine effective actions giving

the correct long-distance physics by progressively integrating short-wavelength/high-momentum fluc-

tuations. However, instead of working with the abstract action Sk of the modes which have not been

yet integrated out, one computes the effective action Γk (or Gibbs free-energy functional) of the modes

(k′)2 > k2 that have already been integrated out, with |k| < |k′| < Λ, and Λ the ultraviolet cutoff that

is of order of the inverse lattice spacing (or microscopic length scale). This quantity possesses a quite

simple physical interpretation, as will be seen.

The effective average action Γk verifies the following properties: When |k| = Λ, no fluctuations have

been integrated out and Γk is the initial (bare) action of the system

ΓΛ = S , (2.14)

and when k = 0, all fluctuations are integrated out and Γk is the Gibbs free energy of the model

Γ0 = Γ . (2.15)

The introduction of the scale k permits to interpolate between the microscopic action and the macro-

scopic free energy by introducing a family of effective average actions in between. Γk is a coarse grained

free energy with coarse-graining domains of linear size |k|−1, such that all the fluctuations details within

the domains have been averaged out.

2.2.2.1 Definition of the effective average action

The partition function can be supplemented by a source term, linear in the field,

Z[h] =

∫
Dϕe−S[ϕ]+

∫
ddxϕ(x)h(x) . (2.16)

A thermodynamic potential can be defined as

W [h] = logZ[h], (2.17)

and it is equal to the Helmholtz free energy F up to some −β−1 factor. The functional derivative of

W [h] with respect to the source gives the connected correlation functions, in particular the thermal

average of the field density, the magnetization, is

δW [h]

δh(x)
= 〈ϕ(x)〉 = φ(x) , (2.18)

which is used in a Legendre transform to give another thermodynamic potential, the effective action

Γ[φ] = −W [h] +

∫
ddxφ(x)h(x), (2.19)

where h(x) is obtained by inverting the relation (2.18). In statistical physics, this effective action is the

Gibbs free energy, and
δΓ[φ]

δφ(x)
= h(x), (2.20)

which in absence of external field corresponds to extrema of Γ.
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The effective average action Γk is a generalization of the above effective action at the scale k.

Technically, Γk is built by adding a term to the action S which limits the domain of momenta over

which the integration is performed, such that the modes q2 > k2 are averaged and those with q2 < k2

are not (or weakly) affected. This is the regularization or cutoff term,

∆Sk[ϕ] =
1

2

∫
ddq Rk(q

2)ϕqϕ−q , (2.21)

where Rk(q
2) plays the role of a mass term, freezing “low-momenta” modes. Actually, the latter enter

into the definition of the propagators Pk(q
2) ∝

(
q2 +Rk(q

2)
)−1

, which are integrated in d dimensions

on the range [0; Λ]; Rk(q
2) plays the role of an infrared (IR) cutoff as it suppresses the contributions of

the low momenta modes with q2 . k2. The regulator term satisfies two properties:

• It is of order k2 for q2 . k2, such that it freezes the contribution of momenta q2 . k2,

• It vanishes for q2 & k2, such that the highest momenta are not affected by the presence of the

regulator.

A commonly used regulator function is the exponential one, Rk(q
2) = q2

(
eq

2/k2 − 1
)−1

, which

verifies the above conditions. A sharper one called the Litim regulator [162] is also often used, it is

given by the expression 1

Rk(q
2) = (k2 − q2)Θ(k2 − q2) , (2.22)

and allows for analytic computations of integrals over the propagators.

The action S thus modified gives rise to a Helmholtz free energy with cutoff k

Wk[h] = log

∫
Dϕe−S[ϕ]−∆Sk[ϕ]+

∫
ddxϕ(x)h(x) , (2.23)

and the effective average action Γk is obtained through the Legendre transform of Wk[h], but modified

by the subtraction of the cutoff term, i.e.,

Γk[φ] = −Wk[h] +

∫
ddxφ(x)hk(x)−∆Sk[φ] , (2.24)

with φ(x) = δWk[h]
δh(x) , and hk(x) obtained by inverting it. Because of the subtraction of ∆Sk[φ] the

effective average action does not need to be convex, whereas the associated Legendre transform Γk+∆Sk
does by definition.

The limit Γ0 = Γ can be recovered from the above equation easily as the cutoff ∆Sk vanishes when

k → 0. The subtraction of ∆Sk ensures that ΓΛ = S is also recovered, without modifying the other

limit. [25]

2.2.2.2 Exact flow equation

An exact equation giving the evolution of the effective average action with the change of the fluctuation

cutoff k can be derived [163, 160, 161]:

∂

∂k
Γk[φ] =

1

2
Tr

{[
�(2)
k +Rk(q

2)1
]−1 ∂Rk

∂k

}
, (2.25)

where
[
�(2)
k +Rk(q

2) 1
]−1

has to be understood as an inverse in the operator sense. The second order

functional derivative and the trace term contain absolutely everything on which the theory depends,

1In the case where the field is also renormalized, a factor Zk appears in the expressions of Rk(q2).
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momenta or coordinates and internal indices if they are present:

Γ
(2)
k;a,b(q, q

′) =
δ2Γk[φ]

δφa(q)δφb(q′)
, (2.26)

and

Tr =
∑
a

∫
ddx = V 2

∑
a

∫
ddq

(2π)d
= V 2

∑
a

∫
q
. (2.27)

The integral appearing in this flow equation is over one loop, or one momentum vector, which

simplifies crucially the problem in comparison to the perturbative case in which a term of order n in

perturbation implies to compute an n-loop integral. The presence of Rk(q
2) in the integrand regularizes

the expression in the ultraviolet (UV) and the IR. For q2 & k2, ∂kRk(q
2) = 0 and the upper bound in

effectively replaced by k; on the other side, all the modes with q2 . k2 are given a mass of order k2

which freezes them, and k acts as an IR cutoff that provides from any q → 0 divergence.

In practice, it is convenient to take the regulator derivative at the end, and the flow equation (2.25)

is often expressed as
∂

∂k
Γk[φ] =

1

2
∂̃kTr

{
log
[
�(2)
k +Rk(q

2) 1
]}

, (2.28)

with the introduction of the operator ∂̃k = ∂Rk
∂k

∂
∂Rk

which acts only on the Rk dependence of the right

hand side.

The flow equation (2.25) is an exact equation and its solution contains all the properties of the

system. However, despite its apparent simple character, it is in general impossible to solve without

introducing some approximations. Indeed, the functionals Γk[φ] and Γ
(2)
k;a,b(q, q

′) depend on the complete

profile(s) φa(q), and are extremely complicated mathematical objects.

2.2.2.3 Diagrammatic representation

In the case of a theory without internal indices, the equation (2.25) is more explicitly written in

reciprocal space under the form of an integral over q

∂

∂k
Γk[φ] =

1

2

∫
ddq

(2π)d
∂Rk(q

2)

∂k
Pk;q,−q[φ] , (2.29)

where Pk;q,−q[φ] is the propagator, which depends on the field configuration, defined as

Pk;q,−q[φ] =

[(
�(2)
k +Rk(q

2)1
)−1

]
q,−q

. (2.30)

This equation, and its higher fields derivatives, can be rewritten under the form of Feynman diagram(s)

The graphical representation of the above equation (2.29) is 2

∂

∂k
Γk[φ] =

1

2
×

q

−q

where the cross corresponds to the derivative ∂Rk(q2)
∂k and the simple line is the propagator Pq,−q. If we

consider a theory with internal indices, again, these indices have to appear on the diagram.
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•

q1

q2

q4

q3

Figure 2.4: Diagrammatic representation of Γ
(4)
k;q1,q2,q3,q4

= δΓk

δφ(q1)...δφ(q4) .

The evolution equation of any vertex Γ
(n)
k has also a simple diagrammatic representation. The

vertex Γ
(n)
k = δΓk

δφ(q1)...δφ(qn) (n ≥ 3) can be represented diagrammatically, for example it is done in

figure 2.4 for n = 4.

The flow equation for Γ
(1)
k [φ] is obtained taking one field derivative of equation (2.29):

∂

∂k

δΓk[φ]

δφ(q1)
=

1

2
∂̃k

∫
q2,q3

Γ
(3)
k;q1,q2,q3

Pk;q3,−q2 . (2.31)

Taking the derivative of the diagram representing ∂
∂kΓk[φ] with respect to φ(q1) is equivalent to create a

leg to this diagram, carrying a momentum q1, as shown in figure 2.5. At this stage, one has understood

∂

∂k

δΓk[φ]

δφ(q1)
=

1

2
∂̃k •

q2

q3

q1

Figure 2.5: Diagrammatic representation of ∂
∂k

δΓk[φ]
δφ(q1) .

that propagators (and indices) appearing inside a loop are integrated (summed), and the ones present

on the external leg(s) are fixed by the field derivative(s).

Similarly, we can take another field derivative of diagram of figure 2.5 to obtain the higher-order

flow equation

∂

∂k

δ2Γk[φ]

δφ(q1)δφ(q2)
=

1

2
∂̃k

{∫
q3,q4

Γ
(4)
k;q1,q2,q3,q4

Pk;−q4,q3 −
∫
q3,q4,q5,q6

Γ
(3)
k;q1,q3,q4

Pk;−q4,q5 Γ
(3)
k;q2,q5,q6

Pk;−q6,q3

}
(2.32)

represented on figure 2.6.

2In the diagrams the vectors have been omitted to simplify the notation.
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∂

∂k

δ2Γk[φ]

δφ(q1)δφ(q2)
=

1

2
∂̃k

{
q3

q4

q2

q1

• −

q6

q5

q3

q4

q1 q2 }
• •

Figure 2.6: Diagrammatic representation of ∂
∂k

δ2Γk[φ]
δφ(q1)δφ(q2) .

Etc.

2.2.2.4 Approximations and truncations

The main difficulty is to find an approximation scheme for the problem at hand. Different general

schemes have been proposed and we summarize some of them below.

Derivative expansion

In the study of critical phenomena, we are concerned by the long-distance physics. It is there-

fore possible to expand the effective average action in gradients of the field (around a uniform field

configuration). For illustration, the two lowest truncations of the derivative expansion are:

-O(∂0) Local potential approximation (LPA): At the lowest order, the only term kept is the usual

gradient squared

Γk[φ] =

∫
ddx

[
Uk(φ(x)) +

1

2
(∂xφ(x))2

]
, (2.33)

where Uk(φ) is the effective potential, which is equal to the effective average action evaluated for

a uniform field (times the volume of the system). The kinetic term is not renormalized during the

process.

-O(∂2):At second order, one has (for a 1-component scalar theory)

Γk[φ] =

∫
ddx

[
Uk(φ(x)) +

Zk(φ(x))

2
(∂xφ(x))2

]
(2.34)

where one now has a new function Zk(φ) characterizing the renormalization of the field.

- The derivative expansion approximation can be truncated still at higher orders of derivatives,

involving more functions.

Expansion in powers of the field around a nontrivial configuration

If we want to describe the properties of the system near a certain constant profile φ0,k, it may be

useful to write Γk as an expansion in powers of φ(x)− φ0,k. Truncated at some order N , this gives

Γk[φ] =

N∑
n=0

1

n!

∫  n∏
j=1

ddxj [φ(xj)− φ0,k]

Γ
(n)
k (x1, ..., xn;φ0,k) +O(φN+1) , (2.35)

and if φ0,k corresponds to a minimum of Γk, the first field derivative vanishes, Γ
(1)
k (x1;φ0,k) = 0. In the

above expression the notation

Γ
(n)
k (x1, ..., xn;φ0,k) =

δnΓk
δφ(x1)...δφ(xn)

∣∣∣
φ=φ0,k

(2.36)

has been used and will reappear in the following.
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Mixing the approximations

One can combine the derivative expansion and the expansion in powers of the field (around a

nontrivial configuration), e.g.,

Uk(φ) =
N∑
n=0

1

n!
U

(n)
k (φ0,k) (φ− φ0,k)

n , (2.37)

Zk(φ) =
M∑
n=0

1

n!
Z

(n)
k (φ0,k) (φ− φ0,k)

n . (2.38)

The so-called LPA’ approximation amounts to keeping the full potential Uk(φ) and truncating Zk(φ)

at the zeroth order, i.e., Zk(φ) = Zk(φ0,k).

Expansion in invariants

An alternative expansion to that in the field difference from a nontrivial configuration consists in

using invariants. This guaranties that the symmetries of the theory are preserved by the truncation.

This can be illustrated for the simple case of the ϕ4 theory. There is an unique invariant ρ = 1
2φ

2, and

Γk can be expanded as

Γk[φ] =

∫
ddx

[
Uk(ρ) +

1

2
Zk(ρ) (∂xφ(x))2 +O(∂4)

]
. (2.39)

The above expression is manifestly invariant by the Z2 (or O(N)) symmetry as is the bare action.

This is relatively easy to perform for a theory with an unique invariant, however this can be more

involved for more complex theories with internal indices, for which the symmetry can be described

by many index-dependent invariants. In chapter 6, we construct the effective potential Uk for such a

theory in the case of the Ising spin-glass model.

2.2.2.5 ϕ4 theory within the LPA

As an illustration, we first consider the LPA for the ϕ4 theory. As already discussed, this theory

has a unique invariant ρ = 1
2φ

2, hence its potential Uk can be defined as a function of ρ. With this

approximation Γ
(2)
k (q, q′) in a uniform profile ρ is given by

Γ
(2)
k (q, q′)

∣∣∣
ρ

=
(
q2 + U ′k(ρ) + 2ρU ′′k (ρ)

)
δ(q + q′) , (2.40)

where the primes on U(ρ) denote derivatives with respect to ρ. In this case the propagator (2.30) is

easy to compute. Inserting the LPA ansatz, (2.33), in the exact RG equation, (2.25), leads to

∂

∂k
Uk(ρ) =

1

2

∫
ddq

(2π)d
∂kRk(q

2)

q2 + U ′k(ρ) + 2ρU ′′k (ρ) +Rk(q2)
, (2.41)

This equation can be solved numerically once a regulator function Rk(q
2) has been chosen.

The physical quantity that will give us the macroscopic properties of the system is limk→0 Uk(φ) =

U0(φ). If φ0,k is the minimum of Uk(φ), it will be equal to the average order parameter φ0,k→0 in

the limit k → 0. In the high temperature phase, the average order parameter is zero, hence the

potential U0(φ) has a unique minimum centered on φ0,k→0 = 0. In the phase where the symmetry is

spontaneously broken, the average order parameter is nonzero, the potential therefore has two minima

located in ±φ0,k→0 6= 0. However, Γ0 = Γ, the Gibbs free energy which is given by a Legendre

transform and must be convex at all temperatures by definition. The exact shape of the potential in

the low temperature phase is therefore flat between the two values ±φ0,k→0 6= 0.
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Figure 2.7: Evolution of the average potential Uk(φ) (here φ is noted ϕ) when the scale k of the included

fluctuations is varied. Here is plotted the particular case where the initial condition UΛ(φ) is a double-well

potential which minimum is in position > φ0,k→0, hence Uk(φ) converges toward the broken symmetry phase

potential with lowering k. The inner part progressively flattens to recover the convexity property of the Gibbs

free energy (times V −1) when k = 0. Reprinted form [25].

These behaviors are recovered if one solves the flow equation (2.41) for an initial condition of the

average potential at scale Λ which has the shape of a potential in the broken symmetry phase. For a

coarse grained Ising model, one can choose an initial condition corresponding to a ϕ4 potential, with

two symmetric minima located at some finite symmetric values, which can be fine tuned. 3 The initial

position of one minimum (the minima are symmetric) is a marker of how much the system is in the

low temperature phase: the more it is initially set to be far from the origin, the more the system is in

a broken symmetry phase. More explicitly, if the initial minimum is larger than φ0,k→0, Uk→0(φ) will

converge toward the potential of the broken symmetry phase, see figure 2.7, and inversely.

At the critical point, which localizes the limit between the two phases, the average order parameter

φ0,k→0 is zero. In particular, one observes in the case of the LPA that the minimum at criticality goes

to zero when k → 0 with some power of k

φ2
0,k ∝ ρ0,k ∼

k→0
k2−d , (2.42)

corresponding to the dimension of the minimum in reciprocal space (in this case the anomalous dimen-

sion η = 0).

So far we have considered an operation which is the analog of coarse-graining in the real space RG

of section 2.2.1. The second step of the RG transformation, i.e., a rescaling of the system under study,

is necessary to find the fixed points of the RG transformation. For this we will use scaling dimensions

like the one of ρ0,k in equation (2.42) near k = 0. One then obtains a dimensionless flow equation, and

the critical point of the physical system is determined by finding the associated fixed point solution. It

contains information about universal quantity.

3One has to note that from a polynomial initial condition of the potential, truncated at O(ϕ4) for example, the inner

part of the potential will never be flat. This feature requires to consider the exact, complete expansion, of the potential.
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2.2.2.6 Dimensionless flow equation for the LPA

In order to find the critical fixed point associated with scale free behavior, we have to write equa-

tion (2.41) in a dimensionless form. If γk, uk and %̃ are the dimensionless equivalent of Γk, Uk and ρ,

one has:

Γk = k0 γk ,

Uk = kd uk ,

ρ = kd−2 %̃ ,

(2.43)

where we have used that dimensionally [x] = k−1 . With the above set of relations, we can compute

the dimension of any field derivative of Uk(ρ).

To find a fixed point of the renormalization group procedure, we have to determine the flow equation

of the dimensionless potential uk(%̃). The total derivative k d
dkuk(%̃) reads

k
d

dk
uk(%̃) = k

d

dk

[
k−dUk

(
kd−2%̃

)]
= −d uk(%̃) + k∂kuk(%̃) + u′k(%̃) (d− 2) %̃ . (2.44)

At this point, we can introduce the dimensionless RG “time” t and the dimensionless derivative d
dt (and

∂t)

t = log
k

Λ
,

d

dt
= k

d

dk
. (2.45)

When a total derivative d
dtx appears, it can be replaced by ẋ, in analogy with real time derivatives.

The fixed point solution u?(%̃) is found by solving d
dtuk(%̃) = 0, which is given by

0 = −d u?(%̃) + u′?(%̃) (d− 2) %̃+ vd l
d
0

[
u′?(%̃) + 2%̃ u′′?(%̃)

]
, (2.46)

where the rightmost term is the dimensionless equivalent of the integral in equation (2.41), which

is written with help of the “threshold function” ld0 defined, after using the dimensionless variables

y = q2/k2 and rk(y) = Rk(q
2)/k2, as

ld0(w) =
1

2

∫ ∞
0

dy yd/2−1 ∂trk(y)

y + rk(y) + w
, (2.47)

where vd is a factor coming from the integration over angular variables, with Ωd the solid angle in

dimension d,

vd =
Ωd

2(2π)d
, Ωd =

2πd/2

Γ(d2)
. (2.48)

The values of the above threshold function ld0 for the Litim regulator (2.22) can be found in [26].

Fixing a regulator function rk(y), equation (2.46) can be numerically solved. Although it seems to

admit an infinity of solutions, it has been shown that the physical solution corresponds to a particular

u?(%̃) which is regular in %̃ [156, 164].

The average potential can also be studied for more complex O(N) theories, the ϕ4 theory corre-

sponding to N = 1. They are all described in terms of an unique invariant, implying that the average

potential is a function of one variable which can be found by solving one differential equation. However,

for theories involving more than one invariant we are faced with functions of several variables and a

system of differential equations has to be solved. In practice, this is doable is the number of invariants

is not too large.
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2.2.3 Fixed points and stability

The system of dimensionless flow equations (for the LPA and more involved truncations) can admit

several fixed points, one of them corresponds to the critical point in the dimension d at which the

problem is studied. The latter is unstable, with only one relevant direction 4.

The stability of the fixed point is studied by linearizing the dimensionless flow equations around the

fixed point. In the case where the functions are expanded around some field configuration and one has

flow equations for couplings constants, this gives rise to a matrix, whose eigenvalues encode the stability

of the fixed point. More generally, one may have to solve a system of partial differential equations.

With our choice of RG time t = log k
Λ , an unstable direction corresponds to a negative eigenvalue.

The eigenvalues of a critical fixed point are all positive (the stable eigendirections) excepted one:

the eigendirection associated to the temperature, which is unstable as it automatically drags the system

out of criticality if different from Tc. In the case where an external field h is applied, a second eigenvalue

is negative in the eigendirection associated to the external field.

The unstable directions correspond to relevant coupling constants, when the stable ones are linked

to irrelevant couplings. One can also find a zero eigenvalue, which corresponds to a marginal direction:

one therefore needs to go beyond the linear perturbation to know if it is relevant or irrelevant.

In field theory, the Gaussian theory contains a simple-well potential term, centered on 0:

HG =

∫
ddx

[
1

2
(∂~xφ(x))2 +

1

2
φ(x)2

]
. (2.49)

The RG procedure can be exactly performed, as only simple Gaussian integrals appear, and the dimen-

sionless flow equations admit one fixed point, called the Gaussian fixed point. Actually, this fixed point

is stable for systems in dimension d above the upper critical dimension du and the critical exponents

are the classical ones predicted by the mean-field theory.

Generally, one is more interested in the critical properties of systems below the upper critical

dimension, real systems being generally contained in the dimension interval d ∈ [1; du[. In this case,

fluctuations become important, and they are not described by the above Gaussian theory. The trivial

Gaussian fixed point hence becomes unstable (repulsive), meaning that the universal physics is described

by an other, nontrivial fixed point.

2.2.4 Critical exponents

The anomalous dimension accounts for the effect of field renormalization and describes the critical

behavior of the pair correlation function:

G(2)(r) ∝
T=Tc

1

rd−2+η
. (2.50)

When approaching the critical point, the behavior of the correlation length is governed by a power law

with critical exponent ν:

ξ ∼ (T − Tc)−ν . (2.51)

The critical exponent ν can be obtained from the knowledge of the eigenvalues of the stability matrix

around the critical fixed point. Generically, ν is given by the inverse of the relevant eigenvalue λ1 (in

the case where the is no external field):

ν =
1

|λ1|
. (2.52)

4In the presence of an external field, there is an additional relevant direction.
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Other critical exponents can be determined from the scaling relations that are verified in the framework

of the nonperturbative RG:

α = 2− ν d ,
γ = ν(2− η) ,

δ =
d+ 2− η
d− 2 + η

,

β =
ν

2
(d− 2 + η) .

(2.53)

Therefore, only ν and η are independent critical exponents (at least when there is no additional dan-

gerously irrelevant operator as it is the case, for instance, for the critical point of the random-field Ising

model [165]).
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The results of this chapter have been published in [166].

The activated dynamics that is expected to play a fundamental role in supercooled liquids below

the dynamical transition Td is intimately related to the presence of metastability in the systems. This

metastability takes place in the complex mean-field free-energy landscape in the form of an exponential

number (in the system size) of metastable minima.

No one knows what is left from the mean-field theory in finite dimensions. Studying directly the

effect of fluctuations starting from the mean-field theory is an extremely hard task. This is partly

due to the very intricate nature of the associated replica-field theory which involves a n × n overlap

matrix order parameter, with n that must be analytically continued to zero, and also to the necessity to

introduce nonperturbative events. Some of the different attempts that have been done in this direction

are reported in section 1.1.4.2.

One can then prefer to work with effective theories, which basically encode the main physical

mechanisms while leaving out the inessential ones and are usually easier to study. These theories then

contain the long-distance properties of the system under study all in having washed out the irrelevant

small-length-scale details of the original system. Their effective Hamiltonian, that can be strikingly

different (and, as one hopes, simpler) from the microscopic theory, are expressed in terms of effective

parameters which are not known a priori, and the fundamental step for a correct description of the

macroscopic physics in terms of an effective theory is then to find these parameters.

A possible effective theory for supercooled liquids is a RFIM-like theory, and the interested reader

is redirected to section 1.1.4.2 where several references where it is argued for that are given. One possi-

bility to proceed would then be to consider the finite-dimensional results of simulations, that take into

account, virtually exactly, of all the spatial fluctuations of the system including highly nonperturbative

ones, in order to determine the effective parameters of the effective theory describing the system in

the thermodynamic limit. One finds that supercooled liquids in finite (small-enough) sizes eventually

behave in a mean-field manner, if the relevant fluctuations responsible for the disappearance of the

metastability occur on a length scale larger than the system size, and one can measure a nonconvex
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Franz-Parisi potential V (q). [167] This potential was introduced in section 1.1.3.4. Studying for an en-

semble of reference liquid configurations the average value of V (q) and its fluctuations in such-finite-size

systems should provide a way to access these parameters. [102] Once they are known, predictions of the

effective theory on long length scales could be further checked against other numerical or experimental

observations.

One however has to design a method to extract the effective parameters from the nonconvex shape

of V (q) measured in finite-size computer simulations. This requires a better understanding of the role

played by nonperturbative fluctuations and the development of a theoretical approach able to capture

them at all scales.

The aim of this chapter is to study this problem on a toy model that is simple enough to be

thoroughly investigated. We propose the study of a simple model presenting metastability when studied

on small-enough-finite sizes. Its mean-field like double-well structure gradually evolves when finite-size

(and finite-dimensional) fluctuations are progressively introduced, in practice by increasing the size

over which the model is defined. The model can be fully investigated from analytic and numerical

computations. We will then characterize completely the fluctuations present in the system. We will

understand how they affect the potential, from its mean-field like shape in small sizes to the the expected

convex shape in the thermodynamic limit, and will determine from this evolution the parameters of the

effective theory. In order to mimic the situation in structural glasses, in parallel to exact computations

valid when the temperature goes to zero, T → 0, we perform numerical simulations and numerical

calculations on finite-size systems at low but finite T . Once analyzed by scaling arguments, these

results allow to characterize fully the relevant fluctuations that bridge the gap from small-sizes results

to the thermodynamic limit and to determine the effective parameters of the effective theory.

3.1 One-dimensional model

The model that we focus on is the one-dimensional ϕ4 scalar field theory defined by the Hamiltonian

HL[ϕ] =

∫ L

0
dx
[ c

2
(∂xϕ)2 + V (ϕ(x))

]
, (3.1)

where L is the system size, c > 0, and the local potential V (ϕ) has a double-well form

V (ϕ) =
r

4
(ϕ2 − 1)2 , (3.2)

with r > 0. We are interested in the low-temperature regime. There, the physics of the model

is governed by strong nonperturbative fluctuations: these are kinks or domain walls of small width

between the positively magnetized and negatively magnetized phases (to use the language of magnetic

systems), and the order parameter varies from ∓1 to ±1 on a very small distance. These spatially

localized defects are a priori energetically unfavorable: they have a finite energetic cost. Hence, their

density is always finite, albeit very small at low temperature (it follows a Boltzmann distribution).

However, by redistributing the positions of these kinks the system can gain entropy. The standard

balance between energy and entropy gives the kinks/anti-kinks redistribution winner: it is therefore

their presence that destroys the phase transition which is predicted at the mean-field level and remains

in a perturbative treatment.

Mirroring the current situation in glasses, the problem we consider is one in which we want to infer

the parameters of a theory that we conjecture to be of the Ising/ϕ4 type from the results of simulations

and to further check that the effective microscopic theory we have in mind is the correct one. The input

from simulations and other essentially exact computations that we consider as available knowledge is
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the probability of observing a given average value φ of the field in a system of finite size L, or, more

precisely, its logarithm,

UL(φ) = − 1

βL
lnPL(φ) (3.3)

where PL(φ) is the probability density to observe 1
L

∫
dxϕ(x) equal to φ in a system of size L with

periodic boundary conditions and β = 1/(kBT ). We will call UL(φ) the finite-size effective potential

since it takes into account all fluctuations exactly, up to the length-scale L. In the L→ 0 limit it

coincides with the bare potential V (φ), whereas in the thermodynamic limit it is equal to the exact

effective potential (Gibbs free energy) as a function of φ.

Of course, in the case of the one-dimensional ϕ4 field theory we know from the start that the proper

effective theory is just that given in equation (3.1). Nevertheless, the problem of inferring the bare

parameters of the theory, c, r, and the energy of a kink from the behavior of finite-size systems is not

straightforward. Moreover, understanding in detail the evolution of UL(φ), i.e., how the change in

shape of the finite-size effective potential is related to the progressive integration of nonperturbative

fluctuations is also very instructive. The knowledge gained in the case of this simple problem will likely

be useful for tackling more difficult and still unsolved ones.

We also tried to develop an approach that progressively takes into account fluctuations, including

the nonperturbative ones, and allows one to eventually describe the macroscopic behavior. The theo-

retical method of choice for progressively bridging the gap from microscopic to macroscopic physics is

the renormalization group (RG) (see section 2.2). In particular the nonperturbative renormalization

group (NPRG) could be able to catch the effect of all kinds of fluctuations, from perturbative to non-

perturbative ones. The NPRG starts from an exact flow equation for the running effective action Γk[φ],

which can be solved successfully if one manages to find a simple yet rich enough truncation for it.

In both of the above situations, i.e., either in a system of finite size L or within the NPRG in a system

in the thermodynamic limit but in the presence of an infrared cutoff on fluctuations of wavelength larger

than 1/k, fluctuations are limited. As a result, the relevant potential, be it the finite-size one UL(φ)

or the running effective one Uk(φ) = Γk[φ]/(βL), need not be convex. Just like in the mean-field limit

where no fluctuations are taken into account, which in the present case leads to a Landau potential equal

to the bare V (φ), metastability can thus be present. As the length scale over which fluctuations are

allowed increases, i.e., with increasing L or decreasing k, metastability should become less pronounced

and in the macroscopic limit, L→∞ or k → 0, both UL(φ) and Uk(φ) should converge to the convex

exact effective potential.

The typical evolution with L of UL(φ) is shown in figure 3.1 (a) and that of the running effective

potential Uk(φ) is plotted in figure 3.1 (b). (In the latter case, we have obtained the result by using

the so-called Local Potential Approximation (LPA) of the exact NPRG equation.) The progressive

disappearance of metastability is clearly observed in the two cases. The question we want to address

in the former case is as follows: Say we are given some numerical data in the form of figure 3.1 (a);

how can one extract information about the corresponding effective theory and its parameters? On the

other hand, in the latter case, it is possible to develop a suitable approximation scheme of the effective

action such that the NPRG is able to reproduce the main features associated with the nonperturbative

fluctuations in the present model?

3.2 The finite-size effective potential

In this section we study the behavior of the finite-size effective potential UL(φ) and its evolution with the

system size L. We first describe intuitively the shape of UL(φ) and explain the ideas on how to extract

the relevant quantities such as the correlation length ξ and the surface tension γ from the evolution of
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Figure 3.1: 1-dimensional ϕ4 scalar field theory. (a) Plot of the finite-size effective potential UL(φ) as

a function of φ for different values of L, as obtained by MonteCarlo simulation: L = 4, 8, 16, 32, 128 for

model parameters r = 2, c = 4, β = 1. (b) Plot of the running effective potential Uk(φ) = Γk(φ)/(βL)

as a function of φ for different values of k obtained by using the Local Potential Approximation (LPA).

The model parameters are c = 1, β = 1, r = 1/2, and Λ = 1. The flow equation is obtained with a

regulator of the form[162] Rk(p) = (k2 − p2)Θ(k2 − p2): ∂kUk(φ) = −π−1U ′′k (φ)[U ′′k (φ) + k2]−1. Note

that there is a k-dependent but φ-independent contribution that is not included (hence the apparent

difference of behavior with that in (a).

UL(φ), by focusing in particular on the behavior of two quantities: the curvature of UL(φ) in φ = 0,

κL = U ′′L(0), and the height of the barrier of UL(φ) between the maximum in φ = 0 and the minima

in φmin ' ±1 (when present), ∆L = UL(0) − UL(φmin). We then present detailed analytic results for

UL(φ) in the limit of zero temperature, which are obtained through the instanton technique, and use

them as a benchmark to check the validity of our recipes for extracting the correlation length and the

surface tension. Finally, we numerically determine the behavior of UL(φ) at finite temperature, i.e. at

finite (but large) ξ. To this aim, we have combined Monte-Carlo (MC) simulations and perturbation

expansions based on a real-space RG and transfer matrix treatments. We then apply again the recipes

for extracting the temperature dependence of ξ and γ and compare the output with the direct numerical

computation of these quantities.

3.2.1 The shape of UL(φ) and its evolution with L

At any given finite temperature, i.e., at any given finite correlation length ξ, if the system size goes to

infinity, then the magnetization distribution goes to a Gaussian centered at φ = 0, due to the central

limit theorem, and eventually converges to a Dirac-delta function. (We use in this section the language

of magnetic systems and call φ the magnetization, or, more properly, the magnetization density.) Thus,

in the thermodynamic limit, the finite-size effective potential displays an unique (parabolic) minimum

in φ = 0. On the other hand, at any given finite system size, as the temperature goes to zero and the

correlation length goes to infinity, the magnetization goes to either plus or minus one with probability

one. For ξ � L the finite-size effective potential is given by two symmetric minima centered in ±1.

As a result, a nontrivial distribution of PL(φ) and a nontrivial shape of UL(φ) arise between the two

opposite limits considered above.

In order to figure out intuitively the evolution of PL(φ) and UL(φ) with the system size, let us

first focus on the typical configurations of the field ϕ(x) which, at least at low enough temperature,

dominate the Gibbs measure. These are the configurations associated with the ground states of the

system, corresponding to constant positive or negative magnetization profiles ϕ(x) = ±1, and the
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Figure 3.2: Sketch of the evolution of the shape of the finite-size effective potential UL(φ) for different

system sizes L: a) L < 2σ; b) 2σ � L� ξ; c) L . ξ; d) L ' ξ; e) L & ξ; f) L� ξ.

lowest excitations above them, involving domain walls (i.e., kinks and anti-kinks), which correspond to

instantons that minimize the hamiltonian and connect positively and negatively magnetized regions (see

chapter 2). At low enough temperature (large enough correlation length), the typical configurations

of the field are thus well described by regions with almost constant ±1 magnetization separated by

narrow domain walls. The width σ of a domain wall is the typical size of an interface. The energy of

a domain wall, S?, is, by definition, proportional to the microscopic surface tension γ of the model,

which is defined as the energy cost associated with the creation of an interface between two regions

with opposite magnetization. It is easy to show (see below for more details) that the typical distance

between domain walls is of the order of the correlation length ξ, which is proportional to eβS
?
.

If L is smaller than 2σ, no domain walls can be present in the system. (We consider periodic

boundary conditions, so that the number of domain walls must be even.) Thus, PL(φ) ' e−βLV (φ) and

UL(φ) ' V (φ) (see figure 3.2 (a)). Therefore, from equation (3.2), ∆ ' r/4 and κ ' −r.
For L > 2σ but still much smaller than the correlation length ξ, the probability of finding a domain

wall is very small. The typical field configurations are then approximately constant ±1 magnetization

profiles plus some small thermal fluctuations, whose amplitude depends on V ′′(φ = ±1) = 2r. On the

other hand, configurations with zero magnetization correspond to field profiles with 2n domains walls,

with n ∈ N∗, that are suitably placed between 0 and L (obviously, 2nσ ≤ L). The thermodynamic

weight of such configurations is proportional to e−2nβS? and the probability of having φ = 0 is obtained

as

PL(φ = 0) ∝ L

2

[
e−2βS? +

(L− 4σ)2

8
e−4βS? +

(L− 6σ)4

192
e−6βS? + . . .

]
, (3.4)

where the terms (L− 4σ)2/8, (L− 6σ)4/192, etc., correspond to the combinatorial factors accounting

for the number of field configurations with 4, 6, etc., domain walls between 0 and L that have zero

magnetization (see the next section for more details). As long as 2σ � L� ξ, all configurations with

more than a single kink/anti-kink pair are highly suppressed and their contribution can be neglected.

Therefore, PL(φ = 0) is dominated by field profiles with only two domains walls. Since all such profiles

have the same combinatorial factor (and thus the same probability), independently of the distance

between the kink and the anti-kink, all intermediate magnetization values, sufficiently away from ±1,

occur with approximately the same probability. As a result, for 2σ � L � ξ the finite-size effective
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potential UL(φ) is given by two deep narrow symmetric minima around φmin ' ±1 (whose curvature is

simply given by 2r/L) that are separated by a central region where UL(φ) is approximatively constant.

This is sketched in figure 3.2 (b). The barrier height ∆L = UL(0)− UL(φmin) is then given by 2S?/L,

and the curvature in φ = 0 is κL = U ′′L(0) ' 0.

The qualitative shape of UL(φ) does not show any significant change until L . ξ. At this point, the

terms of equation (3.4) corresponding to field configurations with more than two domain walls start to

give a significant contribution to PL(φ). Since there are exponentially many more configurations of the

domain walls corresponding to zero magnetization with respect to configurations yielding positive or

negative magnetization, PL(φ) starts to develop a secondary maximum around φ = 0 as a result of this

entropic effect. Correspondingly, UL(φ) develops a secondary minimum in zero, as sketched in figure 3.2

(c). In this regime the behavior of the barrier height ∆L and of the curvature κL are model-dependent

and cannot be determined by simple intuitive argument: they must be computed in some explicit way,

as we do in the following subsections.

For L ' ξ the barrier ∆L is expected to disappear as the value of the potential in φ = 0 crosses that

in φ ' ±1 (see figure 3.2 (d)). As L further increases the minima in ±1 become higher and eventually

disappear. However, the potential may still remain nonconvex, as illustrated in figure 3.2 (e). Full

convexity is recovered only for L → ∞. It is then easy to show that the finite-size effective potential

coincides with the Gibbs free-energy density (or exact effective potential) U(φ) of the system:

UL(φ) = U(φ) + o

(
1

L

)
, (3.5)

where U(φ) is defined as the Legendre transform of the Helhmoltz free energy,

U(φ) = β−1f(β, h) + hφ , (3.6)

where h is the external magnetic field and 〈ϕ〉 = −∂f(β, h)/∂(βh) = φ (we have again used the magnetic

language). As a consequence, for L� ξ the finite-size effective potential is a convex function of φ and

presents a unique minimum in φ = 0: see figure 3.2 (f). In the thermodynamic limit the curvature κL
approaches κ∞ = U ′′(0) = χ−1, where χ is the magnetic susceptibility defined as χ = ∂〈ϕ〉/∂h|h=0 =

(〈ϕ2〉 − 〈ϕ〉2)|h=0.

(a) (b)

Figure 3.3: Schematic plot of the curvature κL = U ′′L(0) (a) and of the barrier height ∆L = UL(0) −
UL(φmin) times the system size L (b) as a function of L. The barrier height is shown on a log-log plot.

The labels a)-f) correspond to the shapes of UL(φ) of figure 3.2. Note that the behavior of L∆L at

small L . 2σ is not universal and depends on the bare parameters.

Based on the intuitive arguments discussed above, we can qualitatively determine the behavior of

the quantities of interest for us, κL and ∆L, as a function of L. They are schematically represented

in figure 3.3. On very short length scales, L < 2σ, the curvature is negative, κL ' −r. Then, for
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2σ � L� ξ, κL is approximately zero. For L . ξ, κL starts to grow and for L→∞ it approaches 1/χ

as 1/L. In turn, the barrier height ∆L behaves roughly as 2γ/L for 2σ � L� ξ and rapidly vanishes

for L & ξ.

We can therefore extract the important physical quantities by focusing on the behavior of κL and

∆L. For instance, one possible recipe is to try to collapse the curves of κL versus L obtained at different

temperatures onto a master curve by rescaling the axes by adjustable parameters. The parameters that

provide the best collapse should then be χ(T )−1 for κL (vertical axis) and ξ(T ) for L (horizontal axis).

Another possibility would be to plot L∆L as a function of L and, knowing the correlation length ξ(T )

from the previous operation, to look for a plateau or a region of weak dependence on L for L < ξ:

at low enough temperature, the height of the plateau should then be twice the surface tension γ(T ).

(Alternatively, one could do a log-log plot as in figure 3.3 (b).) In the next subsections we will implement

and check these ideas in a quantitative way.

3.2.2 UL(φ) in the T → 0 (ξ →∞) limit

As explained above, at very small temperature the Gibbs measure is dominated by the ground state

of the system and the lowest excitations above it. The ground states of equation (3.1) correspond to

constant field configurations ϕ(x) = ±1. The lowest excitations above the ground states correspond to

nonuniform kink and anti-kink instantonic profiles that are obtained by minimizing the Hamiltonian:

δHL[ϕ(x)]

δϕ(x)

∣∣∣∣
ϕ?

= 0 ⇒ c
∂2ϕ?(x)

∂x2
=
∂V (ϕ(x))

∂ϕ(x)

∣∣∣∣
ϕ?
, (3.7)

with the boundary conditions ϕ?(x → −∞) = ∓1 and ϕ?(x → +∞) = ±1. This differential equation

can be solved exactly for the ϕ4 theory in d = 1, yielding

ϕ?(x) = ± tanh(x/σ) , (3.8)

with σ =
√

2c/r. The energy cost associated to such domain walls can be obtained by plugging

equation (3.8) into equation (3.1) (momentarily, we have redefined the system from −L/2 to L/2 and

taken the instanton center far away from the edges); this gives S? =
∫
HL[ϕ?(x)] dx ≈

√
8rc/9. Note

that we can make more precise now the notion of “low-temperature regime”: It is obtained by letting

either β or r be large, such that the Boltzmann factor associated with the presence of a domain wall,

exp(−β
√

8rc/9), is much smaller than 1.

Small fluctuations of the field around the instantonic profile can be easily taken into account at a

Gaussian level. After expanding the Hamiltonian around the instantonic solution up to second order

in δϕ(x) = ϕ(x)− ϕ?(x), the thermodynamic weight of a single instanton is expressed as

Z1 ' e−βS
?

∫
Dϕe

−β
2

∫
dxdy

δ2HL
δϕ(x)δϕ(y)

∣∣∣∣
ϕ?
δϕ(x) δϕ(y)

. (3.9)

In order to compute the functional integral above one thus need to diagonalize the operator correspond-

ing to the kernel

M(x, y) = β

[
−c ∂

2

∂x2
+ V ′′(ϕ?(x))

]
δ(x− y) , (3.10)

which yields

Z1 ' e−βS̃
?

= e−βS
?+ 1

2
ln(2π/detM) . (3.11)

In the present low-temperature limit, it can be shown, following the arguments of e.g. [149], that

detM ∼ βr and, thus, S̃? ' S? − (1/2)β−1 ln(βr) + O(β−1).
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At very low temperature the typical configurations of the field are therefore described by a dilute

gas of domain walls separated by regions with constant ϕ = ±1. The partition function of the system

can thus be written as a sum over the number n of kink/anti-kink pairs (as discussed above, the number

of domain walls must be even to be compatible with the periodic boundary conditions) weighted by the

energy cost e−2nβS̃? times an appropriate combinatorial coefficient I2n accounting for all the possible

configurations of the positions of 2n domain walls between 0 and L:

ZL =

[L/2σ]∑
n=0

I2n(L) e−2nβS̃? , (3.12)

where [x] denotes the integer part of x. Note that, since the instantons have a finite width σ, we

cannot place more than (L/2σ) kink/anti-kink pairs between 0 and L. The problem of determining the

combinatorial coefficients I2n is equivalent to computing the entropy of a gas of 2n hard spheres of size

σ on a ring of length L (see appendix A.1). The resulting expression is

I2n(L) =
1

n

L

(2n− 1)!
(L− 2nσ)2n−1 . (3.13)

Two length scales thus naturally emerge from the calculation: σ, the typical size of an interface, and eβS̃
?

(here and in the following we have set the microscopic length scale 1/Λ to unity), which corresponds to

the typical distance between two consecutive instantons. Following arguments similar to those in [168]

the latter can easily be shown to be (up to a trivial proportionality constant) the correlation length ξ

of the system as obtained from the exponential decay of the two-point connected correlation function.

After introducing the rescaled variables ζ = L/eβS̃
?

and α = σ/L, the partition function finally

reads

ZL(ζ, α) = 2

[1/(2α)]∑
n=0

ζ2n

(2n)!
(1− 2nα)2n−1 . (3.14)

The computation of the magnetization probability distribution PL(φ) in the T → 0 limit can be

carried out in a similar way. Note that an analogous computation has already been done for the Ising

model in d = 1 [168] (see also below).

For each given instantonic configuration with 2n alternate kinks and anti-kinks we define xi, i =

1, . . . , 2n, as the lengths of the regions with constant ϕ = ±1. In terms of these variables, the extensive

magnetization M reads

M =

∫ L

0
ϕ(x) dx = ±

n∑
i=1

(x2i−1 − x2i) . (3.15)

Note that thanks to the translational invariance, one can choose without loss of generality to place

the first domain wall at x = 0. The sign of M in front of the sum thus depends on whether the first

instanton is from ϕ = −1 to ϕ = +1 or vice versa. Since each domain wall has a width σ, we also have

that
2n∑
i=1

xi = L− 2nσ . (3.16)

In consequence, the extensive magnetization is bounded as |M | ≤ L − 2nσ. When enforcing the

constraints given by equations (3.15) and (3.16) one obtains

PL(M) =
1

ZL

[
δ(M − L) + δ(M + L) + 2

[(L−|M |)/2σ]∑
n=1

J2n(M,L) e−2nβS̃?
]
, (3.17)
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where ZL is defined in equation (3.12). Again, the combinatorial factors J2n(M,L) can be computed

exactly (see appendix A.1). After introducing the rescaled variables ζ, α defined above and the mag-

netization density φ = M/L and using the fact that δ(Lφ) = (1/L)δ(φ) and PL(Lφ) = (1/L)PL(φ), we

finally obtain:

PL(φ) =
1

ZL(ζ, α)

[
δ(φ− 1) + δ(φ+ 1) + 2

[(1−|φ|)/2α]∑
n=1

(ζ/2)2n

[
(1− 2nα)2 − φ2

]n−1

n!(n− 1)!

]
, (3.18)

where ZL(ζ, α) is given in equation (3.14). It is easily checked that PL(φ) is properly normalized,∫ 1
−1 PL(φ) dφ = 1. One also finds that in the limit σ → 0, i.e., when the domain walls become infinitely

sharp, and for S̃? = 2J , equations (3.14) and (3.18) give back the exact results derived for the one-

dimensional Ising model.[168]. These calculations are explicitly done in appendix A.1.

The finite-size effective potential and its evolution with the system size can be now explicitly de-

termined in the T → 0 limit from the relation in equation (3.3). UL(φ) behaves as anticipated in the

previous section: It presents two narrow minima in φ = ±1, corresponding to the δ-functions, 1 and

a secondary minimum in φ = 0 due to the entropic term in equation (3.18). As L increases (i.e., α

decreases) the minimum in φ = 0 becomes deeper and deeper, as the sum over n in equation (3.18)

grows exponentially fast with ζ/α. For L ' ξ the value of the minimum in φ = 0 crosses that of the

two symmetric minima in φ = ±1 (strictly speaking the value of the minima in φ = ±1 is defined only

for a nonzero temperature; otherwise, one has to consider the weight of the delta peaks). Nevertheless,

at any finite L the potential remains nonconvex due to the vestiges of the two minima in ±1. It is only

in the thermodynamic limit that UL→∞(φ) = U(φ) recovers full convexity.
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Figure 3.4: (a) Rescaled curvature χκL as a function of L/ξ for the ϕ4 field theory in d = 1 in the

low-temperature regime for β = 1, r varying from 2 to 6, and for c = 2r. (b) Log-log plot of the rescaled

barrier, L∆L/(2S̃
?), as a function of L/ξ for the ϕ4 field theory in d = 1 for β = 1, r varying from 4 to

10, and c = 2r. The curves stop on the low side for L = 2σ + a and the barrier is not defined within

the instanton treatment for L < 2σ.

From equations (3.3), (3.14), and (3.18), one can compute all the desired characteristics of UL(φ),

such as the curvature in φ = 0, κL, and the barrier height (when present), ∆L. Following the ideas

presented in the previous section, we plot in figure 3.4 (a) the curvature κL multiplied by the magnetic

susceptibility χ as a function of the system size L divided by the correlation length ξ, for different

1Note that at small but finite temperature, the two δ-functions in φ = ±1 acquire a finite width due to the small

gaussian thermal fluctuations of the fields around φ(x) = ±1. Locally, the amplitude of such thermal fluctuations is

simply related to V ′′(φ = ±1) = 2r. Therefore the curvature of the two minima of UL(φ) in φ = ±1 is 2βr/L.
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temperatures. 2 We have set β = 1, c = 2r and a range of r from 2 to 6 (as discussed above, the

low-temperature limit here means that exp(−β
√

8rc/9) = exp(−4r/3)� 1). The curves show a perfect

collapse, as expected. Via the instanton calculation we indeed have access to all physical quantities of

the present simple model. This is a consistency check of the recipe discussed above and an illustration

of the range of temperatures where the asymptotic results apply. We show in figure 3.4 (b) the evolution

of the barrier height ∆L multiplied by the system size L and divided by twice the domain-wall (free)

energy S̃? as a function of L/ξ for β = 1, c = 2r, and for r varying from 4 to 10. This log-log plot is

very similar to the sketch in figure 3.3 (b). The value L∆L/(2S̃
?) ≈ 1 (implying γ ' S̃? as expected)

is observed for L ∼ 2σ, which corresponds to very small values of L/ξ, especially at low temperature.

There is then a broad regime, up to L/ξ . 1, where one observes a small decay, by less than a factor

of 10. Finally, for L & ξ there is a fast (exponential) decay.

These plots validate at a quantitative level the proposed ways of extracting the parameters of the

theory from the behavior of the finite-size effective potential. We now turn to the same exercise but in

the finite temperature regime where the analytical solution via the instantons is no longer a sufficient

description.

3.2.3 UL(φ)/L for finite but large ξ

In this section we apply and test the empirical recipes to extract ξ, χ and γ proposed above on a system

at large but finite correlation length (corresponding to small but finite temperature). We obtain a

numerical estimate of the finite-size effective potential UL(φ) for a range of values of L through several

methods.

First, we have performed MC simulations. To this aim, we first discretize the continuum field

theory of equation (3.1) by replacing the gradient by its discrete lattice version. The Hamiltonian thus

becomes

HL({ϕi}) = a
L∑
i=1

[ c

2a2
(ϕi − ϕi+1)2 + V (ϕi)

]
. (3.19)

We set the lattice spacing a to 1 (note that for c = 2r the width of a domain wall is then σ = 2 > a)

and we consider periodic boundary conditions: ϕL+1 = ϕ1.

The numerical simulations are performed with a Metropolis algorithm: At each time step we pick

a site i at random, and attempt to change the value of ϕi by a random quantity, δϕi, extracted

from a gaussian distribution with zero mean and variance σϕ. We then compute the energy difference

∆HL = c δϕi(δϕi + 2ϕi − 2ϕi+1) + V (ϕi + δϕi) − V (ϕi) and accept the move with the Metropolis

probability p = min{1, e−β∆HL}. Time is advanced by 1/L. The typical width of the field shifts σϕ is

optimized recursively during the dynamics by enforcing that the acceptance rate of the moves (averaged

over the last 100 MC steps) is approximately equal to 0.3.

We start from a given initial condition (for instance ϕi = +1 ∀i) and let the system evolve and

equilibrate. The equilibration time τ , which of course depends on β, r, and L, can be extracted from

the exponential decay of dynamical correlation functions such as (1/L)
∑

i〈ϕi(t+t′)ϕi(t′)〉 ' 〈ϕ2〉 e−t/τ .

In order to compute the magnetization probability distribution, PL(φ), we measure the instantaneous

magnetization ϕ(t) = (1/L)
∑

i ϕi(t) at regular time intervals corresponding to several times the equili-

bration time, say 10τ . This allows us to make sure that the values of ϕ(t) measured during the dynamics

are statistically independent. In this way we construct a histogram of the magnetizations which gives

2Note that in the T → 0 limit, the correlation function has a simple exponential form, G
(2)
c (r) ' e−r/ξ. As a

consequence, the magnetic susceptibility becomes χ = 2
∫
G

(2)
c (r) ∝ 2ξ and κ∞ = 1/(2ξ). This result can be obtained

analytically, as shown in appendix A.2.
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an estimate of PL(φ) and, from equation (3.3), we obtain UL(φ). Results for β = 1, r = 2, c = 2r, and

L varying from 4 to 128 are shown in figure 3.1 (a).

Note that in order to obtain an accurate enough estimate of PL(φ) and of UL(φ), we need to

sample rare events, which take place with an exponentially small probability in the system size. As a

consequence, the number of measurements of the instantaneous magnetization must scale exponentially

with L. Since the computational time of a single MC step scales linearly with the system size, this

implies that the total computational time of our MC simulations scales as τLeL. Therefore, MC results

are limited to not too large values of L, typically L . 102.

In order to overcome this limitation and study larger system sizes, we have used a 1/L perturbation

expansion combined with an exact computation of the (Helmholtz) free energy of the model through

both a real-space RG approach and a transfer-matrix technique.

Let us start with the definition of the magnetization probability distribution,

PL(φ) =
Tr{ϕi}δ(Lφ−

∑
i ϕi)e

−βHL

Tr{ϕi}e
−βHL , (3.20)

where Tr{ϕi} ≡
∫ ∏

i dϕi. By using the integral representation of the δ-function, one easily obtains

PL(φ) = eLβfL(β,0)

∫ i∞

−i∞
dµ e−L[βfL(β,µ)+µφ] , (3.21)

and

UL(φ) = − 1

βL
ln

∫ i∞

−i∞
dµ e−L[βfL(β,µ)+µφ] − fL(β, 0) , (3.22)

where fL(β, µ) is the Helmholtz free-energy density of a system of size L in the presence of an external

uniform magnetic field µ/β:

fL(β, µ) = − 1

βL
ln Tr{ϕi}e

−βHL+µ
∑
i ϕi . (3.23)

For large enough L the integral in equations (3.21) and (3.22) is dominated by the maximum in µ = µ?,

which is given by 3

∂βfL(β, µ)

∂µ

∣∣∣∣
µ?

+ φ = 0 . (3.24)

Expanding the argument of the exponential around µ? leads to

βfL(β, µ) + µφ = βfL(β, µ?) + µ?φ+
β

2
f

(2)
? (δµ)2 +

β

3!
f

(3)
? (δµ)3 +

β

4!
f

(4)
? (δµ)4 + . . . ,

where f
(n)
? = ∂nfL(β, µ)/∂µn|µ? and δµ = µ − µ?. One can thus treat all terms beyond the gaussian

level in a perturbative way and obtain a systematic expansion of PL(φ) and UL(φ) in powers of 1/L.

From a straightforward calculation, one finds up to the order 1/L2:

UL(φ) ' fL(β, µ?) +
µ?

β
φ− fL(β, 0)− 1

βL
ln

√
2π

βL|f (2)
? |

+
1

βL2

[
f

(4)
?

8β|f (2)
? |2

+
5[f

(3)
? ]2

24β|f (2)
? |3

]
. (3.25)

The above equation deserves some comments:

3Since the integrand in equations (3.21) and (3.22) is an analytic function, we can modify the contour in the complex

plane.
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(1) As already mentioned, in the thermodynamic limit, UL→∞(φ) converges to the Gibbs free-

energy density U(φ), which is defined as the Legendre transform of the Helmholtz free-energy density

fL→∞(β, h) (see equation (3.6)) and is therefore a convex function of the magnetization φ.

(2) equation (3.25) is actually an expansion in powers of ξ/L. The successive derivatives of the

Helmholtz free energy with respect to the external field µ yield the n-points connected correlation func-

tions, βf
(n)
? = (1/L)

∑
i1,...,in

〈ϕi1 · · ·ϕin〉con, which thus behave as ξn−1/L. As a result, the expansion

of equation (3.25) does not converge for L/ξ < 1 (even if L is large) and is expected to poorly behave

compared to the numerical simulations in this regime. On the other hand, it should provide a good

description of the finite-size effective potential for L/ξ > 1.

(3) In order to make some use of equation (3.25) we need to know the expression of the Helmholtz

free energy of the model on a ring of L sites, at temperature β, and in the presence of an external

uniform magnetic field µ/β.

The calculation of fL(β, µ) can be done exactly by using a real-space RG approach (see chapter 2),

called the Migdal-Kadanoff (MK) scheme. It consists in integrating out iteratively half of the sites of

the systems (say the odd sites) at each decimation step, and computing recursively the effective pair

interaction potential, Wn(ϕ,ϕ′), among the remaining sites. Consider for instance three consecutive

sites, i, i + 1, and i + 2, at the p-th step of the renormalization procedure. After integrating out the

field on the site i+ 1, one finds the following exact recursive equation:

Wp+1(ϕi, ϕi+2) = − 1

β
ln

∫ +∞

−∞
dϕi+1 e

−β[Wp(ϕi,ϕi+1)+Wp(ϕi+1,ϕi+2)] , (3.26)

with the initial condition:

W0(ϕ,ϕ′) =
c

2a2

(
ϕ− ϕ′

)2
+

1

2

[
V (ϕ) + V (ϕ′)− µ

β

(
ϕ+ ϕ′

)]
. (3.27)

For a system of size L = 2p, after p−1 decimation steps, there are only two sites left and the Helmholtz

free-energy density can be obtained as a simple integration:

fL(β, µ) = − 1

2pβ
ln

∫ +∞

−∞
dϕdϕ′ e−2βWp−1(ϕ,ϕ′) . (3.28)

This procedure allows one to obtain very accurate numerical values of fL(β, µ) and of its derivatives,

provided that the size of the system is an integer power of 2. In order to access other values of the

system size L, we have complemented the RG calculation by a transfer-matrix (TM) approach.

Indeed, the partition function of the system can be written as, with λ1 > λ2 > · · · > λL:

ZL(β, µ) = Tr{ϕi}Tϕ1,ϕ2Tϕ2,ϕ3 · · ·TϕL,ϕ1 = TrTL = λL1 + λL2 + . . . ,

where the transfer-matrix operator is such that Tϕ,ϕ′ = exp(−βW0(ϕ,ϕ′)) with W0 given by equa-

tion (3.27). One can then numerically diagonalize the operator by discretizing the values of the fields

ϕ and ϕ′ and compute its eigenvalues, λ1, λ2, . . ., which leads to an approximate expression for the

Helmholtz free-energy density,

fL(β, µ) ' − 1

β
lnλ1 −

1

βL
eL ln(λ2/λ1) + o

[
(λ3/λ1)L

]
.

Since the correlation length of the system is given by

ξ−1 = − ln (λ2/λ1) , (3.29)
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Figure 3.5: (a) Log-log plot of the curvature κL = U ′′L(0) as a function of L for β = 1, r = 4, 6, 8, 10,

12, and c = 2r. (b) Same data with a rescaling of the horizontal and vertical axes, as L/ξfit and χfitκL
respectively, to provide the best collapse to a mastercurve.
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Figure 3.6: Plot of the scaling parameter ξfit versus r and comparison with the direct computation

of the correlation length through MC and instanton techniques. Recall that have set β = 1, so that

the temperature dependence is controlled by r. (Recall that since c = 2r, the instanton width σ =√
2c/r = 2.) The error bars associated with the fitting procedure are very small in this case and of the

order of the symbol size.

equation (3.29) provides a good approximation for fL(β, µ) only for L & ξ.

The finite-size effective potential UL(φ) is then obtained from equation (3.25). The numerical results

for the curvature κL in φ = 0 and for the barrier height ∆L at small but finite temperature (or rather,

correlation length) are displayed in figures 3.5 and 3.7. In figure 3.5 (a), we plot κL versus L for several

temperatures (actually, values of r as we fix β = 1) and in figure 3.5 (b) we show the best data collapse

on a mastercurve after rescaling both the curvature and the system size by temperature-dependent

adjustable parameters. (Note that the curvature κL is obtained from the 1/L expansion only as the

numerical accuracy of our MC data is not high enough to allow a good determination of the curvature.)

In figure 3.6 we plot the best-fit parameter ξfit versus r and compare it to a direct determination of the

correlation length through MC simulations and the instanton technique: we find a very good agreement

between the two sets of data. The same agreement is obtained for χfit which is found proportional to

the correlation length, ξfit or ξ, as expected in one dimension.
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Figure 3.7: (a) Log-log plot of the barrier height times the system size, L∆L, versus L/ξfit for β = 1,

c = 2r, r = 4, 6, 8, 9, 10. Filled circles correspond to MC data. Empty squares are obtained using the

1/L expansion with the real-space RG approach and filled triangles correspond to the 1/L expansion

with the transfer-matrix approach. (b) Same data with an adjustment of the vertical axis, L∆L/γfit,

to provide the best collapse for L/ξfit < 1.
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Figure 3.8: Plot of the scaling parameter γfit, multiplied by β/r, versus r and comparison with the

direct instanton computation of the surface tension. The error bars are associated to the uncertainty of

the collapse procedure. Recall that we have set β = 1 and c = 2r, so that the temperature dependence

is controlled by r, with γ ∝ r. Note also that the instanton calculation breaks down at small r.

In figure 3.7 (a), we display a log-log plot of L∆L versus L/ξfit where ξfit is obtained from the

previous data collapse in figure 3.5. (As could be anticipated, the 1/L expansion fails completely

for L/ξ . 1 and is not shown here.) figure 3.7 (b) then shows the same data with L∆L divided

by a temperature-dependent adjustable parameter γfit that ensures the best collapse of all curves for

L/ξ < 1 (this parameter is determined up to a multiplicative constant). When plotted as a function of

r, we find that this best-fit parameter γfit matches very well the r dependence of the direct estimate

of the surface tension of the model through the instanton technique: see figure 3.8. Here, β = 1 and

c = 2r, so that βS̃? = 4r/3− (1/2) ln r for large enough r. We have arbitrarily adjusted the unknown

constant in γfit so that the latter is roughly equal to 2βS̃?: the plot in figure 3.7 (b) is shown with this

choice of constant (which merely shifts all curves by a constant amount on the log scale).

These plots therefore confirm that the ideas and recipes we have proposed to extract the correlation

length ξ, the susceptibility χ and the surface tension γ (or alternatively the amplitude of the gradient
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term c) from finite-size numerical data for the effective potential work nicely. Without a priori knowl-

edge one can empirically determine the relevant parameters of the underlying (effective) theory from

observations on finite-size systems.

3.3 Nonperturbative renormalization group

We also attacked the same problem by using a specular and complementary approach: starting from a

known microscopic (or to the least effective) theory and trying to include the fluctuations, in particular

possibly strongly nonperturbative ones, to describe the observed macroscopic behavior. The method

of choice that could possibly achieve this is the RG, more precisely the nonperturbative RG (NPRG),

see section 2.2. Being able to capture the effect of nonperturbative fluctuations via a NPRG approach

(supposed capable to taken then into account efficiently) on the model under study could open the

way to new ideas for treating the effect of activated phenomena in supercooled liquids, where they are

ubiquitous. All details of this section are relegated to appendix A.3, as it does not enter directly in the

topic of this thesis.

Applications of the NPRG formalism to the one-dimensional ϕ4 theory have been previously con-

sidered. [169, 170, 171, 172] In these studies it was found that simple approximation schemes fail to

recover the low-temperature physics of the model, in particular the activated scaling form of the cor-

relation length (ξ ∝ eβS
?
). To understand the underlying reason for this failure, an exact asymptotic

low-temperature form of the running effective action Γk[φ] has to be derived by using the instanton

approach and a mapping to the one-dimensional Ising model.

We tested different approximation schemes for the expression of the effective action. The first one is

the so-called derivative expansion, where the running effective action at scale k is expanded in gradients

of the field. Unfortunately finite truncations of the derivative expansion are unable to reproduce the

exact features of the low-temperature physics. The lowest order in the derivative expansion is given by

the LPA. In this case the return to convexity of the potential Uk(φ) when k is lowered is observed, as it

can be seen on figure 3.1 (b), determined using the Litim regulator given in equation (2.22). The LPA

provides a good description for values of T higher than the energy barrier of the double well, or more

precisely than the instanton energy cost S?. Nevertheless, it fails to reproduce the low-temperature

results with a thermally activated dependence of the correlation length, ∝ exp(βS?). For instance,

the curvature of the effective potential in zero, κk=0 = U ′′k=0(0), which should vanish exponentially

when T → 0 as exp(−βS?) (see also section 3.2) is generically found to vanish as a power law of T

instead. The nonperturbative regime associated with the rare localized events, which is captured by

the instanton calculation, is therefore completely missed.

Actually, going to any finite order of the truncation of the derivative expansion, one always finds

an inconsistency in the higher order flow equation. The right-hand side is of higher order in exp(βS?k)

than the left-hand side and precludes from the extraction of an asymptotic behavior when βS?k → ∞.

This is however corrected by cancellation of terms in the non-truncated approximation, effect that

cannot take place at all orders when the truncation is finite. The appropriate ansatz of Γk[φ] would

therefore contain an infinite sum of derivative terms of the form (∂φ(x))2l. This however leads to an

infinite set of differential equations that cannot be treated with standard methods. Another routes

have been tried, they are briefly explained in appendix 2.2. All of them have failed to properly describe

the nonperturbative physics of the one-dimensional ϕ4 at low temperature. More work is needed to

possibly find a solution to this unsatisfactory theoretical situation.
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3.4 Conclusion

We have studied the ϕ4 theory at low temperature in the regime where the behavior of the system

is completely dominated by nonperturbative instantonic fluctuations. The variation of the “maximal”

spatial extent of these fluctuations, possibly controlled by the size of the system, gives rise to nontrivial

shape of the effective potential. It has a double-well shape when fluctuations are “absent” (small sizes),

suffers nontrivial changes when they are progressively included (size increases), and converges toward

a convex shape when fluctuations occur at all scales (thermodynamic limit).

This shape variation is intimately related to the parameters of the underlying microscopic or effective

theory. For the ϕ4 theory studied here, surface tension and correlation length can be extracted from

empirical analysis of the curvature in zero and of the barrier height of the effective potential obtained

from the numerical study of finite-size systems. This strategy could be very useful in the analysis of

finite-size numerical simulation of glassy systems where a Franz-Parisi potential can be defined. Such

analysis of this potential and its fluctuations could allow to extract the parameters of the effective theory

of supercooled liquids in the thermodynamic limit, which would supposedly map on a RFIM-like theory.

We also illustrate the difficulty to describe the low-temperature nonperturbative physics of the

one-dimensional ϕ4 theory through truncations of the NPRG.
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The results of this chapter have been published in [173].

When coupling different copies of glassy systems, and when considering the similarity or averaged

overlap between configurations as an order parameter, the mean-field theory of glasses predict a first-

order transition line in the temperature (T )−coupling (ε) plane separating a low-overlap from a high-

overlap phase and terminating in a critical point (see also section 1.1.3.4). In particular, this line

terminates at ε = 0 (which then corresponds to the usual physical situation for glass formation) at a

temperature TK > 0, corresponding to a realization of the entropy crisis of the RFOT scenario.

Such field-induced transitions were also recently found in several computer simulations for 3-

dimensional Lennard-Jones or hard-spheres glass-forming liquids, albeit for small systems. [97, 98,

99, 100] The presence of this first-order transition for some positive value of ε was sometimes viewed as

an indirect evidence of the existence of a RFOT scenario (at ε = 0) in finite-dimensional glass-formers.

However, since as soon as ε is too small the system equilibrates on out-of-experimental time scales and

no transition line can be found, this assumes that a smooth extrapolation of the ε > 0 transition line

can be done down to ε = 0, which is not evident since, e.g., some singularity could be present around

ε ' 0.

Recently, the thermodynamic behavior of coupled plaquette spin models models (see also sec-

tion 1.1.5.1) with p = c was studied in dimensions d = 2 and d = 3, [174, 108, 109] which correspond

respectively to the triangular-plaquette model (TPM) with p = c = 3 and the square-pyramid model

(SPyM) with p = c = 5. These works presented strong numerical evidence for the existence of a transi-

tion line in the T − ε plane. What appears specific, though, about the thermodynamic transition line
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in these plaquette spin models is that it exactly goes to zero temperature at ε = 0, TK = 0, and does

so in a singular manner.

This raises an interesting possibility, namely, that fluctuations present in finite-dimensional systems

could generically depress the thermodynamic glass transition temperature TK predicted by the mean-

field theory to zero temperature. In particular, this would prevent the appealing extrapolation of the

computer-simulation results of a T − ε transition line for ε > 0 down to ε = 0.

To address the issue of the effect of fluctuations on the first-order transition line, a possibility is to

study the thermodynamic behavior of plaquette spin models of glasses in the presence of a coupling

between replicas of the system, on a lattice where spatial fluctuations of the order-parameter field are

not present, or nearly. In order to do this we can distinguish between long-range and short-range

fluctuations. The distinction appears somehow arbitrary because fluctuations may of course appear on

a continuum of scales. What is meant by “long-range fluctuations” are long wave-length fluctuations

whose correlations in space may become scale-free, e.g., near critical points. They are responsible for

the difference between mean-field and finite-dimensional results at criticality or for the disappearance

of metastability in finite dimensions; they can be present in (infinite) Euclidean lattices, but not in

Bethe lattices and other tree-like or fully-connected structures in which the spatial correlations are

intrinsically limited. “Short-range fluctuations” instead denote here fluctuations that are associated

with the local environment, as, e.g., the connectivity of the lattice, and that never become scale-free:

such fluctuations are present in Bethe lattices (and Euclidean lattices as well of course) but are absent

in the fully connected lattice which is typically a fluctuation-less system.

This study will give us more insight on the proper effect of long-range and short-range fluctuations

in specific glassy systems that are plaquette (spin) models.

4.1 The plaquette spin models

The Hamiltonian of the plaquette spins models reads

H[C] = −J
2

∑
µ

σµ1 · · ·σµp (4.1)

where C ≡ {σi} denotes the spins configuration on a lattice ofN sites, J is a positive coupling, σµα = ±1,

µ is the index characterizing the elementary plaquettes of the lattice, and α spans the p sites around

the plaquette. This Hamiltonian is the same as the p-spin model one given in equation (1.7) where the

random coupling between spins Jij has been replaced by the constant J , and the interactions do not

occur between p randomly chosen spins but on one plaquette containing p spins.

We will study two cases with c = p, either the TPM where c = p = 3 and the SPyM where

c = p = 5. Both plaquette models Euclidean lattice structure are represented on figure 4.1: the TPM is

designed for a triangular lattice, where the plaquettes are the upward-pointing triangles; the SPyM is

constructed on a body-centered cubic lattice, where each square-based upward pyramid is a plaquette.

We recall (see also section 1.1.3.2) that the overlap at site i between two configurations C ≡ {σi}
and C′ ≡ {σ′i} (measuring the similarity between them) is defined as

qi = σi σ
′
i . (4.2)

As σi = ±1, it is clear from its definition that it is also an Ising variable, with qi = ±1.
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(a) (b)

Figure 4.1: TPM and SPyM on Euclidean lattices. (a) Triangular plaquettes (c = p = 3) enlightened in gray,

the ferromagnetic interactions involve the 3 spins of each upward-pointing triangle in a triangular lattice. (b)

Square-pyramid plaquette (c = p = 5), interactions involve the 5 spins (gray balls) of each upward-pointing

square-based pyramid on a body-centered cubic lattice. Both reprinted from [108].

4.1.1 Different couplings between configurations

Garrahan, Turner and Jack studied coupled systems in two different settings: an “annealed” one, where

two coupled replicas of the system evolve together, for the 2-d (TPM) and 3-d (SPyM) systems [174, 108]

and a “quenched” one, where the configurations of the system are biased to be similar to a fixed reference

configuration, for the 3-d (SPyM) case [109].

In all cases one has to study the thermodynamics in the presence of an attractive coupling between

configurations. The two settings are presented in detail below.

Quenched coupling

In this case one is interested in the distribution of the overlap between the system’s configurations

and a fixed reference equilibrium configuration C0 [67, 68]. The probability of a configuration C in the

presence of an attractive coupling ε with C0 is then given by

pε[C|C0] =
1

Zε[C0]
e
βJ
2

∑
µ σµ1···σµp+βε

∑
i σiσ

0
i , (4.3)

where i and µ respectively denote the sites and the elementary plaquettes of the lattice, and ε is the

strength of the attractive coupling.

From the normalization factor Zε[C0] one defines (−β) times the free energy of the system as a

function of ε: Wε[C0] = lnZε[C0].

Due to the dependence on C0 this is a random function and it can be characterized by its cumulants,

W1(ε) = Wε[C0], W2(ε, ε′) = Wε[C0]Wε′ [C0]−Wε[C0]Wε′ [C0], etc., where the overline denotes an average

over the reference configuration. Although one could investigate the influence of a reference configu-

ration equilibrated at a different temperature than the physical one T = 1/β (kB = 1), we focus here

on the most relevant case where the reference configuration is drawn from the equilibrium Boltzmann

distribution at temperature T :

p[C0] =
1

Z
e
βJ
2

∑
µ σ

0
µ1···σ0

µp . (4.4)

The so-called Franz-Parisi potential V (q) (more precisely β V (q)) corresponds to the Legendre transform

of (−W1(ε)) 1,

βV (q) = −W1(ε) + βε q , with q = ∂W1(ε)/∂ε , (4.5)

where q is the average overlap q = N−1
∑N

i=1 σi σ
0
i . More details on the Franz-Parisi potential V (q)

can be found in the section 1.1.3.4, together with references.

1W1(ε) will be abusively called free energy in the following.
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Annealed coupling

In this case one focuses on two coupled replicas C ≡ {σi} and C′ ≡ {σ′i}, both equilibrated at the

same temperature T = 1/β with the Hamiltonian

Hε[C, C′] = H[C] +H[C′] + βε
∑
i

σiσ
′
i , (4.6)

where H[C] is given by equation (4.1). The free energy 2 for the coupled replicas is defined as

W an(ε) = ln Tr exp(−βHε[C, C′]) , (4.7)

where the trace is over the spin variables σi, σ
′
i = ±1.

4.1.2 From coupled replicas to plaquette models in a field

When c = p the plaquette spin models have a dual representation in which one switches from the

Ising spins, σi, defined on the sites of the original lattice with connectivity c to the Ising plaquette

variables, Sµ =
∏
α σµα, placed on the dual lattice with the same connectivity c. As shown for instance

in [118, 119, 27, 174], the mapping from one representation to the other is one-to-one with appropriate

boundary conditions (at least for the TPM and SPyM studied here).

In terms of the plaquette variables, one can reexpress the Hamiltonian in equation (4.1) as

H[C] = −J
2

∑
µ

Sµ , (4.8)

which corresponds to a noninteracting Ising model in an external field J/2. This representation in terms

of plaquette variables is particularly useful to study the quenched and annealed Franz-Parisi potential.

We first rewrite the Hamiltonian of a interacting spins system in a configuration C and cou-

pled to a configuration C0 in terms of the overlap variables qi = σiσ
0
i , introducing the constraint∑

{σi=±1}
∏
i δ(qi − σiσ0

i ) = 1:

e−βHε[{qi}|C0] =
∑

{σi=±1}
e
βJ
2

∑
µ σµ1···σµp+βε

∑
i σiσ

0
i

∏
i

δ(qi − σiσ0
i ) . (4.9)

Due to the properties of Ising variables, (σ0
i )

2 = 1, one has σi = qiσ
0
i , and Hε[{qi}|C0] can be expressed

as

Hε[{qi}|C0] = −J
2

∑
µ

σ0
µ1 · · ·σ0

µp qµ1 · · · qµp − ε
∑
i

qi . (4.10)

By using the dual representation σ0
µ1 · · ·σ0

µp = S0
µ for the configuration C0, we finally find

Hε[{qi}|C0] = −J
2

∑
µ

S0
µ qµ1 · · · qµp − ε

∑
i

qi . (4.11)

In summary, we started with a Hamiltonian with spins variables interacting via constant pair in-

teractions, and coupled to random applied fields determined by the reference equilibrium configuration

C0, and eventually found a Hamiltonian with overlap variables (that also are Ising spins) whose pair

interactions are now random and coupled to a constant external field ε.

We now consider separately the annealed and the quenched settings.

2The same shortcut will be done for W an(ε).
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4.1.2.1 Mapping in the annealed case and self-dual line

We start with the simpler annealed case. The Franz-Parisi potential is obtained from the annealed free

energy, which from equations (4.6), (4.7), and (4.11) is given by

W an(ε) = ln
∑

{qi=±1}

 ∑
{S′µ=±1}

e
βJ
2

∑
µ S
′
µ(1+

∏p
α=1 qµα)eβε

∑
i qi

 , (4.12)

where the configuration C0 ≡ C′ in equation (4.11) is now considered as annealed and we have therefore

replaced the subscript 0 by a prime on Sµ. By performing the sum over the plaquette variables explicitly,

one ends up with

W an(ε) = ln
∑

{qi=±1}
e−βH

an
ε [{qi}]

where the Hamiltonian Hanε [{qi}] reads

Hanε [{qi}] = − 1

β

∑
µ

ln

[
2 cosh

(
βJ

2

(
1 +

p∏
α=1

qµα

))]
− ε

∑
i

qi . (4.13)

The above expression ln
[
2 cosh

(
βJ
2 (1 +

∏p
α=1 qµα)

)]
assumes two values depending on

∏p
α=1 qµα,

Hanε [{qi}] =


ln [2 cosh (βJ)] if

p∏
α=1

qµα = 1

ln 2 if

p∏
α=1

qµα = −1 ,

(4.14)

which gives the effective Hamiltonian:

Hanε [{qi}] = − 1

β

∑
µ

{
ln [2 cosh (βJ)]

2

(
1 +

p∏
α=1

qµα

)
+

ln 2

2

(
1−

p∏
α=1

qµα

)}
− ε

∑
i

qi

= − 1

2β
ln[cosh(βJ)]

∑
µ

p∏
α=1

qµα − ε
∑
i

qi + cst ,

(4.15)

where cst denotes an irrelevant constant.

As first shown by Garrahan [174], the annealed computation therefore amounts to studying a

plaquette spin model with a coupling J̃ = (1/β) ln[cosh(βJ)] in a uniform external field H̃ = ε.

This model is known to have an exact duality property [175, 176, 177], which implies that the

partition function Z(J̃ , H̃) associated with the Hamiltonian in equation (4.15) satisfies Z(J̃ , H̃) =

[sinh(βJ̃) sinh(2βH̃)]N/2Z(J̃ ′, H̃ ′) with tanh(βJ̃ ′/2) = e−2βH̃ and tanh(βH̃ ′) = e−βJ̃ .

As a result [174, 108], the annealed free energy W an(J, ε), where we have made the dependence on

the coupling J explicit, satisfies

W an(J, ε)− N

2
ln[sinh(2βε)] = W an(J ′, ε′)− N

2
ln[sinh(2βε′)] , (4.16)

where tanh(βJ/2) = e−βε
′

and tanh(βε/2) = e−βJ
′
. There is therefore a self-dual line which is char-

acterized by sinh(βJ) sinh(βε) = 1. If the free energy has a singularity in a point (βJ, βε), by equa-

tion (4.16) it is also singular in the point obtained by the above transformation. As a result, if the

model has a single phase transition, it must take place along the self-dual line which emanates from the

point at zero temperature and zero coupling, T = ε = 0. Note that the result is valid for the Euclidean

lattices as well as for the Husimi trees, provided c = p.
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4.1.2.2 Mapping in the quenched case

We now consider the quenched case. The reference configuration C0 in equation (4.10) represents

some quenched disorder. More precisely, from the form of the Hamiltonian in equation (4.10) the

disorder appears as random couplings, JS0
µ. Computing the quenched Franz-Parisi potential is then

tantamount to obtaining the partition function of a model with random p-spin interactions in a uniform

external field. Therefore it corresponds to (−1/β times) the quenched average free energy, which using

equations (4.3), (4.11) is given by

W1(ε) = logZε[C0] ∝
∑

{S0
µ=±1}

p({S0
µ}) ln

∑
{qi=±1}

eβ
J
2

∑
µ S

0
µ qµ1···qµp+βε

∑
i qi . (4.17)

The distribution of the random interactions (4.4) are given by that of the variable S0
µ, which for an

equilibrium distribution at temperature T = 1/β is simply

p({S0
µ}) ∝

∏
µ

exp

[(
βJ

2

)
S0
µ

]
. (4.18)

The average of S0
µ is tanh(βJ/2), whereas the variance is given by S0

µS
0
ν = tanh2(βJ/2) + δµν [1 −

tanh2(βJ/2)]. Thus, the disorder is such that the average interaction is ferromagnetic and the fluctua-

tions are smaller than the mean value, in particular at low temperature.

The computation of the free energy Wε[C0] does not lead to further simplifications, such as the

self-dual line found in the annealed case.

4.2 Euclidean-lattice triangular and square-pyramid plaquette mod-

els

In the annealed case, the two models, TPM (2d) and SPyM (3d), both display a first-order transition

line in the T − ε plane between a phase with a low overlap between the two replicas and one with a

high overlap [174, 108]. Thanks to the duality relation (4.16), one knows that the transition line must

be along the self-dual line, which is defined by the relation sinh(βJ) sinh(βε) = 1. This line terminates

in a critical point that was found to be in the universality class of the Ising model [108], as originally

predicted in the work [101]. The results are reprinted on figure 4.2 (a).

In the quenched case, for the 3-d SPyM, numerical simulations by Jack and Garrahan[109] gave

evidence for the existence of a first-order critical line terminating in a critical point in the universality

class of the random-field Ising model (RFIM), as theoretically predicted [101, 102], see figure 4.2 (b).

The represented transition line (on figure 4.2 (b)) is an estimation, based on a scaling near ε ' 0,

T ' 0, which is obtained in two steps. First evaluating the configurational entropy on the transition

line ε?(T ), given by the height difference of the two minima of V (q) given in (4.5):

T Sc(T ) = V (q ' 1)− V (q ' 0) ' ∆q ε?(T ) , (4.19)

where ∆q ' O(1) is the overlap difference between minima. One has then to estimate the config-

urational entropy Sc(T ). In plaquette models it is expected to behave as the total Shannon entropy

S = −
∑

i pi log pi, where pi is the probability of the state i. [109] (Indeed there is no intra-state entropy

since T ' 0.) At very low temperature, one defect plaquette Sµ = −1 has a probability weight e−J/T

and the relevant configurations are only composed by one defect, more defects yielding an infinitely less



4.3. Bethe-lattices triangular and square-pyramid plaquette models 67

(a) (b)

Figure 4.2: Temperature T versus coupling βε phases diagrams for the plaquette spin models. (a) TPM (2d)

and SPyM (3d) in the annealed case. The dashed line is the continuation of the self-dual line, and the terminal

critical point are in the Ising universality class. Reprinted from [108]. (b) SPyM (3d) in the quenched case. The

large-dashed line is an estimation based on of the scaling ε ' Ae−1/T for ε ' 0, T ' 0 (A = 1.25) and passing by

the points at which the transition has effectively been detected. Unfilled circles localize a second order transition

line. The TPM presents no transition line in the quenched case, as the disorder kills it in 2d (see main text).

The terminal critical point is in the random-field Ising model universality class.

favorable configuration when T → 0. Hence the total entropy writes S ∼
T→0

J/T e−J/T , which allows to

localize the first-order transition line:

ε?(T ) ∼
T→0

J e−J/T . (4.20)

This relation is actually valid for the quenched case and the annealed case TPM and SPyM on both

Euclidean and Bethe lattice, the above arguments being applicable in all the cases. It is moreover

visible on the figures 4.2 for the Euclidean case, and as we shall show, is the same in the Bethe case.

Note that in the quenched case there should be no finite-temperature phase transition for the TPM.

Due to the presence of quenched disorder, the existence of the first-order transition line and of a terminal

critical point in the universality class of the RFIM is excluded in d = 2. The presence of quenched

disorder kills the transition in dimensions d ≤ 2, as it was explained with the Imry-Ma argument [90, 94]

and its rigorous formalization by Aizenman and Wehr [178].

In appendix B.1 we give heuristic arguments for why, as expected on general grounds [101, 102],

the terminal critical point of the coupled plaquette spin models in the annealed setting is in the Ising

universality class of the simple Ising model and that in the quenched setting in the universality class

of the RFIM.

4.3 Bethe-lattices triangular and square-pyramid plaquette models

In order to discuss a mean-field version of the TPM and the SPyM that correctly takes into account

“short-range fluctuations” we consider plaquette models on Bethe hyper-lattices (or Husimi trees, the

analog of a Bethe lattice for systems with plaquette interactions [179]).

In the present case, the lattice is formed of elementary plaquettes of p sites that are connected

through a tree-like structure with a fixed connectivity c. Each spin is involved in exactly c plaquettes,

hence in c distinct p-spin interactions. Due to the tree structure, spatial fluctuations are restricted and

the models have a mean-field character.
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We are primarily interested in the Bethe (hyper) lattice versions of the 2-dimensional TPM, which

corresponds to c = p = 3, and of the 3-dimensional SPyM, which corresponds to c = p = 5. In these

cases, the lattice is a Husimi tree in which each site is connected to exactly c = p elementary plaquettes,

themselves comprising exactly p sites forming a triangle for the TPM and a pyramid for the SPyM: see

figure 4.3 for the case c = p = 3.

As already mentioned, the mapping between site and plaquette variables, the mapping between

coupled replicas and plaquette spin models in a field, and the duality relations hold also for Bethe

hyper-lattices. They will be used in the following to simplify the analysis. Although we focus on

models with c = p, it is also interesting to study cases in which c is different from p in order to discuss

the results from a more general perspective. Along the way, we will therefore consider the treatment

for generic values of c and p.

4.3.1 Quenched case

When c = p, one expects that, if present, the phase transitions consist in a single first-order line

terminating in a critical point. On general grounds one expects the mean-field, i.e., Bethe-lattice,

critical temperature to be higher than its Euclidean counterpart.

Furthermore, due to the tree structure of the Bethe hyper-lattice, one can derive self-consistent

equations that allow one to obtain the phase diagram in the T − ε plane. This imply to use the so-

called cavity method [179, 180, 181, 182], allowing to derive self-consistent recurrence equations on the

“cavity field”. The cavity field h
(i)
µ represents the effect on site i of plaquette µ of all the spins except

those involved in the plaquettes other than µ containing the site i (see figure 4.3). To do so, the primary

assumption is that the different cavity fields of a Husimi tree are uncorrelated in the large-size limit.

Typical loops are indeed of order log(size) and have a vanishing contribution when the system size goes

to infinity.

One sub-tree of connectivity c can be constructed from a plaquette of p sites by adding (p−1)(c−1)

branches emanating from p−1 sites and by leaving unconnected one “cavity” site. In turn, (p−1)(c−1)

such sub-trees, whose cavity fields are known, can be attached to a new plaquette µ to form a new,

larger, sub-tree (figure 4.3).

(i)
h

h
(k)

(k)
h

h
(j)

h
(j)

j

k

i

µ

π

σ

ω

ν

Figure 4.3: Local structure of the Bethe hyper-lattice for p = c = 3. The cavity fields that satisfy the

recursive cavity equation in equation (4.23) are also shown.
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For one configuration {q(1)
µ , ..., q

(p)
µ } of the plaquette µ, the energy Eµ({q(1)

µ , ..., q
(p)
µ }) of the new

sub-tree can be written as the sum of the contributions due to the individual effective cavity fields

acting on sites {1, ..., i − 1, i + 1, ..., p} of plaquette µ plus the energy of the plaquette in the presence

of a constant external field ε (not counted on site i):

Eµ({q(1)
µ , ..., q(p)

µ }) = −J
2
Sµ
∏
j∈µ

q(j)
µ −

∑
j∈µ\i

(ε+H(j)
µ )q(j)

µ (4.21)

where H
(j)
µ =

∑
ν3j\µ h

(j)
ν is the total cavity field acting on site j. The notations \i and \µ mean that

we exclude the spin i or the plaquette µ from the sum, and Greek letters refer to plaquettes and Latin

letters to sites. The mapping from section 4.1.2.2 has been used to write (4.21).

Then, Sµ = ±1 (we have dropped the superscript 0 from the notations of the previous section) is a

binary random variable taken from the distribution p[Sµ = ±1] = e±βJ/2/[2 cosh(βJ/2)]. Tracing out

over the configurations {q(1)
µ , ..., q

(i−1)
µ , q

(i+1)
µ , ..., q

(p)
µ } gives the effective cavity field h

(i)
µ acting on site i

of the plaquette µ via

Ceβh
(i)
µ q

(i)
µ =

∑
{q(1)µ ,...q

(p)
µ \q(i)µ }={±1}

e−βEµ({q(1)µ ,...,q
(p)
µ }) (4.22)

with C a normalization constant. Equation (4.22) can be further rewritten as [179]

tanh(βh(i)
µ ) = tanh

(
βJSµ

2

) ∏
j∈µ\i

tanh

β ∑
ν3j\µ

h(j)
ν + βε

 . (4.23)

Figure 4.3 provides a visual representation of the cavity fields.

The h
(j)
µ ’s are random variables that depend on the disorder realization. Therefore, we have to

follow their whole probability distribution P (h). In the thermodynamic limit, equation (4.23) becomes

a self-consistent equation for P (h):

P (h) =
∑

Sµ=±1

p[Sµ]

∫ c−1∏
j=1

p−1∏
ν=1

[
dh(j)

ν P (h(j)
ν )
]
δ
(
h− h(i)

µ

)
(4.24)

with h
(i)
µ given by equation(4.23). Note that these cavity equations are valid for all values of c and p.

This equation can be solved numerically by using population dynamics [179, 181, 182], with a

population of 10 millions fields.

4.3.2 Annealed case

Thanks to the duality relation, one knows that the transition line on the Bethe lattice must be along

the same self-dual line as for the Euclidean case, which is defined by the relation sinh(βJ) sinh(βε) = 1.

Therefore, only the location of the terminal critical point is different.

The cavity method explained in the previous section can be applied to the simpler annealed case.

In the case of annealed setting, the quenched disorder is absent and the plaquette interaction coupling

is fixed to J̃ = (1/β) ln[cosh(βJ)]. Therefore P (h) (4.24) converges to a Dirac delta function and we

have to solve a simple self-consistent recurrence equation on the cavity field h:

tanh(βh) = tanh
(βJ̃

2

)
tanh [β(c− 1)h+ βε]p−1 . (4.25)
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Note that these cavity equations are valid for all values of c and p.

After solving this equation and plugging the solution into the expression of the free energy of the

plaquette model model in a field one can reconstruct the phase diagrams. The details of the computation

of the intensive annealed free energy from the cavity solution are given in appendix B.2.

4.3.3 Phase diagrams

In both quenched and annealed settings, after solving the equation for the cavity field and plugging the

solution into the expression of the free energy of the plaquette model in a field one can reconstruct the

phase diagrams. The details of the computation of the intensive quenched and annealed free energies

are given in appendix B.2. The first order transition line from a high-overlap to a low-overlap phases

is determined by finding, for fixed values of the temperature T , the field ε?(T ) for which the intensive

free-energy values of the two phases are equal. For each setting, this is done by injecting the two

solutions (one for the low-overlap phase and the other for the high-overlap phase) of the above cavity

equations into the corresponding free-energy expression. This gives two functions of ε (at fixed T ) that

has to be varied until they are equal, then ε = ε?(T ).

The phase diagram that we obtain for the SPyM is shown in the upper left panel of figure 4.4 (a)

while that for the TPM is shown in the left panel of figure 4.4 (b). In both cases, the transition line

emerges from the singular point at T = 0 and ε = 0. As anticipated, the transition line in the annealed

case is on the self-dual line. It is always above the quenched transition line, as could have also been

expected since disorder suppresses the transition.

Both the annealed and the quenched transition lines T?(ε) (or equivalently, ε?(T )), display a singular

behavior, ε?(T ) ∼ J e−J/T given in equation (4.20), when T → 0.

Finally, the results obtained here for the SPyM and the TPM on Bethe hyper-lattices can be

compared with those on Euclidean lattices. For the SPyM they are plotted together with the numerical

results and estimates of [109] in figure 4.5. The agreement is quite remarkable in this case. As expected

for any mean-field treatment, the critical temperatures are overestimated compared to the d = 3 case,

but the overall features of the phase diagram, including the singular behavior when T and ε go to zero

are similar in both descriptions. For the TPM, the annealed results are in good agreement between the

Bethe hyper-lattice and the 2-dimensional (triangular) lattice. As already mentioned, this however can

no longer be true for the quenched case: a transition is found on the Bethe lattice whereas it should be

absent in d = 2.

The main lesson brought by these results is that the singular behavior of the transition line in the

TPM and SPyM, with a transition temperature that goes to zero when the coupling goes to zero, is

not the consequence of the long-range fluctuations, hence not an intrinsic property of finite dimensions.

The very same behavior is found in the Bethe-lattice versions of the TPM and SPyM.

4.4 Role of fluctuations in glassy plaquette spin models

4.4.1 Short-range fluctuations

One can probe the role of short-range fluctuations by changing the connectivity c at fixed p for the

Bethe hyper-lattice. In the absence of coupling ε, it is known that the plaquette spin models on Bethe

lattices can display, as temperature is lowered, a sequence of two transitions [179, 183, 184, 185, 186]: a

dynamical one Td and a static one at TK , yielding an exact realization of the mean-field RFOT scenario

(see section 1.1.3.1). Adding a bias in the form of an attractive coupling ε with other configurations
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Figure 4.4: Temperature T versus coupling βε phases diagrams for the plaquette spin models in both

the annealed and the quenched descriptions on Bethe hyper-lattices with (a) p = 5 and c = 4, 5, 6, and

(b) p = 3 and c = 3 and c = 4 (c = 2 corresponds to the 1-dimensional chain and is of no interest here).

The interaction strength J is set equal to 1. The dashed line is the continuation of the self-dual line

(see text). We consider βε instead of ε for the horizontal axis to better compare all cases; otherwise

the transition line for c = 4 terminates in ε? = 0 at T = 0 , although the situation is quite different

from the case c = 5 because there is a nonzero configurational entropy at T = 0 and ε? actually scales

as T and not J exp(−J/T ).
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Figure 4.5: Temperature T versus coupling βε phase diagram of the square-pyramid model (SPyM) in

both the annealed and the quenched descriptions for the Bethe hyper-lattice with c = 5 (dashed lines)

and for d = 3 (full lines [109, 108]). The transition lines are between a high-T phase with low overlap

and a low-T phase with high overlap. The interaction strength J is set equal to 1. Inset: Sketch of

the Franz-Parisi potential V (q) as a function of the overlap in the mean-field description (left) and for

d = 3 (right).

then produces a line of first-order transitions between a low- and a high-overlap phase that emanates

from TK and terminates at higher T and ε in a critical point.

For c > p one finds that TK > 0. The phase diagram in the T -βε plane obtained from the cavity

equations, is illustrated in the right panels of figures 4.4 (a) and (b). The annealed transition line (in

blue) reaches the vertical axis at a temperature larger than the quenched TK but that may be either

smaller (c = 6, p = 5) or larger (c = 4, p = 3) than Td. This is the conventional mean-field RFOT

scenario with TK > 0, as it also appears in a fully connected lattice (c→∞) or in infinite dimensions.

On the contrary, when c < p the configurational entropy Sc(T ) ' βε?(T ) from equation (4.19)

remains nonzero in T = 0 at ε = 0 and there is therefore no Kauzmann transition in the absence of

coupling. The transition line persists down to a threshold value cd of the connectivity but it reaches

the zero-temperature line at a nonzero value of the rescaled coupling βε? (see figure 4.4 (a)) 3.

The case c = p, which can also be realized in Euclidean space, appears somehow marginal: there is

an entropy catastrophe but exactly at zero temperature, i.e., TK = 0.

Short-range fluctuations therefore appear very influent on the thermodynamic behavior of plaquette

spin models in zero field. They are responsible of the location of the transition line in ε = 0 and of

the existence of a RFOT (either in TK = 0 or > 0) or not. This is in agreement with a previous work

where short-range fluctuations were argued to be important for the RFOT scenario. [187]

3Both lines terminate at the same value of ε. This is due to the fact that in the zero-temperature limit the couplings

do not fluctuate any longer in the quenched case: they all become equal to J . In consequence, quenched and annealed

settings coincide.
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4.4.2 Long-range fluctuations

The role of long-range fluctuations can be assessed by comparing Bethe and Euclidean lattices with the

same c = p. As seen from figure 4.5, long-range fluctuations do not change the topology of the phase

diagram for the SPyM model, neither in the annealed setting nor, if one compares with the numerical

results of [109], in the quenched one. They do of course modify the location of the transitions and change

the behavior near the critical terminal points: the values of the critical exponent are the classical (mean-

field) ones on the Bethe lattice but are those of the d = 3 pure or random-field Ising model in Euclidean

space (see also appendix B.1).

Long-range fluctuations also enforce convexity of the potential V (q) (see the sketch in figure 4.5)

and prevent true metastability. As a result, the dynamical transition found at Td in ε = 0, which can

be associated to a spinodal point (where a secondary minimum first appears in the potential V (q)), is

avoided and can at best remain in the form of a crossover. However, all this is akin to what is obtained

in a conventional 3-dimensional ferromagnet at a first-order phase transition and does not call into

question the qualitative or even semi-quantitative relevance of the mean-field description.

For the 2-dimensional case in the quenched setting long-range fluctuations have a more severe in-

fluence. The TPM with c = p = 3 displays a transition line in the quenched calculation on the Bethe

hyper-lattice but the transition should be absent on the triangular lattice. In Euclidean space, d = 2

is indeed the lower critical dimension of the RFIM (see section 4.2), which means that the fluctua-

tions depress the transition to zero temperature and zero random-field strength: no finite-temperature

transition therefore exists in the T − ε plane.

4.5 Remarks

As sketched in figure 4.5, if a transition is present in the presence of a biasing field ε in d = 3, V (q)

remains singular when ε = 0 (with a linear segment) and a configurational entropy Sc (more precisely

T times Sc) can then be unequivocally defined at low enough T as the difference between the two

ends of the singular segment of V (q), even in the thermodynamic limit and in finite d. This will be in

agreement with the mean-field based assumptions underlying the RFOT theory.

Implications for the dynamics can also be done. It has been recently shown that the dynamics of

a plaquette spin model on a random-regular graph/Bethe lattice with c = p (the authors focused on

c = p = 3 but the conclusion is more general)[188] is equivalent to that of a kinetically constrained

model of noninteracting spins. So, plaquette spin models with c = p appear to share similar glassy

features on Bethe and Euclidean lattices, even at the dynamical level. The dynamics is therefore ruled

by the kinetically constrained motion of localized defects. The latter have a relaxation time diverging

at zero temperature exactly, as the thermodynamics is totally trivial for the KCM. In particular τ has

been computed for the plaquette models with c = p, and it appears to have two distinct behaviors

depending on if the parameters c = p are even or odd (see section 1.1.5.1). In particular they present

either an Arrhenius like or super-Arrhenius like behavior:

ln τ ∝ 1/T if c = p even ,

ln τ ∝ 1/T 2 if c = p odd .
(4.26)

However, it is clear that the usual RFOT explanation of glassy dynamics in terms of mosaics

and entropic droplets does not apply for these models. It stipulates that the relaxation time behaves

following τ ∝ e∆E(T )/T , where the energy barrier ∆E(T ) is given by equations (1.21), (1.22). Replacing

the configurational entropy (density) by its value here Sc(T ) ∼ J/T e−1/T , the relaxation time would
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be given by:

ln τ ∝ Y (T )ψ/(d−θ)

T
exp

[
ψ

(d− θ)T

]
, (4.27)

with Y (T ) the surface tension of the droplets of the mosaic scenario and ψ and θ critical exponents.

All these quantities are defined in section 1.1.4.1.

This would be in disagreement with the expressions of equation (4.26) be c = p odd or even. One

therefore faces different possibilities: The first one is that the RFOT theory gives a good description

of the thermodynamics in three dimensions but that it fails for the dynamics. Another is that the

RFOT arguments for the slow relaxation hold but that the proposed scalings for ξ and τ (in equa-

tions (1.21), (1.23)) designed for a divergence at some TK 6= 0 do not apply since the point-to-set

length diverges at zero temperature only. The approach to a zero-temperature glass transition, which

is not the usual situation envisaged by the RFOT theory, might lead to important changes. For example

metastable states seem to have zero surface tension in plaquette spin models [123], whereas it was some

nonzero function Y (T ) in the mosaic theory.

4.6 Conclusion

This chapter is an assessment of the role of the fluctuations on overlap-based phase transitions in

plaquette spin models of glasses in the presence of a biasing field. Motivated by the computer simulation

results of [174, 108, 109] who found a transition line, in the temperature-coupling plane between a low-

overlap and a high-overlap phases, that predicts the realization of a RFOT scenario when the coupling

is zero at zero temperature exactly with a singular behavior of the transition line, and argued that

TK = 0 could eventually be a more generic effect of fluctuations on the RFOT scenario in glass-formers,

we addressed the issue of the fluctuations on these plaquette spin models.

We have distinguished the effect of what we called “long-range fluctuations” and “short-range

fluctuations” on the RFOT scenario by comparing the thermodynamics of plaquette spin models on

Bethe and Euclidean lattices (which is given by the results evoked in the above paragraph). The latter

contains all ranges of fluctuations, by definition, whereas the former presents short-range ones only.

The description on Bethe lattices is then an improved mean-field approximation.

At least for the 3-dimensional square pyramid model (SPyM), we have seen that the main properties

of the transition line, namely the singular behavior when ε ' 0 and T ' 0, the fact that TK = 0 and the

overall shape of the line, are qualitatively the same on Bethe and Euclidean lattices and are therefore

quite robust to the introduction of long-range fluctuations. Therefore, it appears that the long-range

fluctuations are not responsible for the fact that TK = 0 in the SPyM. However, it also appears that

the short-range fluctuations, which are tuned by varying the inter-plaquette connectivity on the Bethe

lattice, are responsible for the position of the terminal point of the transition line at ε = 0, the situation

where TK = 0 being peculiar to the SPyM-like cases where the connectivity is equal to the number of

spins per plaquette, as changing this one can also find TK > 0 or no TK at all.

The mean-field description for the SPyM in d = 3, provided that it correctly encompasses the de-

scription of the local environment, appears surprisingly robust to the introduction of the long-range

fluctuations. In d = 2 however, the mean-field description completely fails to describe the thermody-

namic properties of the triangular-plaquette model on Euclidean lattice. Indeed, in two dimensions

the disorder kills the line of transition whereas the plaquette model with c = p = 3 on the Bethe

lattice predicts an in-field line of transition. This scenario is also what occurs for the classical Ising

model in one dimension, in which there is no transition whereas the mean-field description predicts it;

this nevertheless does not modify the validity of the qualitative information (existence of a transition,
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nature of the low temperature phase and of the order parameter, etc) given by the mean-field approx-

imation is dimensions higher than one. One can then expect that here, where the effective theory is

presumably an Ising-like theory with disorder, the failing of the mean-field description to describe the

thermodynamics of the system in d = 2 does not challenge the validity of the mean-field description in

higher dimensions.

The robust mean-field account of the transition line in d = 3 could suggest that glassy systems

are well described in the absence of bias, as far as the thermodynamic aspects involving the overlap

order parameter are concerned, by the mean-field approximation. However standard phenomenological

arguments applied to obtain predictions on the dynamics of finite-dimensional systems (to go beyond

the mean-field artifact of a dynamical transition occurring at Td) are not able to capture the true

relaxation time of plaquette spin models. An account of the dynamical events allowing the relaxation

of finite-dimensional plaquette models from first-principle calculation at the level of the mean-field

approximation would be required.





Chapter 5

Space-time fluctuations in Arrhenius

systems

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 The model: system {particles + bath} . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 From a deterministic Hamiltonian to Langevin equations . . . . . . . . . . . . 78

5.3.1 Normal modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.2 Expressing the Hamiltonian in terms of the normal modes . . . . . . . . . . . . . . . 79

5.3.3 Generalized Langevin equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.4 Random force, generalized potential and memory kernel . . . . . . . . . . . . . . . . 83

5.3.5 Properties of the stochastic noise generated by the bath . . . . . . . . . . . . . . . . 84

5.4 Deterministic field theory for particles with stochastic dynamics . . . . . . . . 85

5.5 Low-T calculations: saddle points and instantons . . . . . . . . . . . . . . . . . 87

5.5.1 Saddle point and non-linear coupled-differential equations . . . . . . . . . . . . . . . 87

5.5.2 Simplest nontrivial solutions: general kernel . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.3 Simplest nontrivial solutions: approximated kernel . . . . . . . . . . . . . . . . . . . 89

5.6 Three-point susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.7 Four-point susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7.1 Master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7.2 Four-point correlation function and susceptibility . . . . . . . . . . . . . . . . . . . . 101

5.8 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

The work of this chapter is still in progress.

5.1 Introduction

In section 1.1.1 we presented the notion of dynamical heterogeneities; see [40] for a reviewing book.

They can be characterized by a dynamical correlation length ξd(t) through the 4-point space-time

correlation function g4(r, t), ξd(t) describing how far the motion of particles is correlated during an

elapsed time t. The “nonlinear dynamic susceptibility” χ4(t) gives access to the maximal value of ξd(t)

which corresponds to a time of order of the α-relaxation time.

The measure of the two above quantities requires a “tracking” of all the particle positions. This is

easy in simulations, but impossible in real experiments. In the latter case one prefers the use of “re-

sponse functions” which quantify how the system reacts to some external, well-controlled, perturbation.

Unfortunately, nor g4(r, t) or χ4(t) are directly linked to a response function.
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They are however indirectly related to the “three-point” dynamic susceptibility χT . It gives the

response of the auto-correlation function C(t) to a change of temperature,

χT (t) ≡ ∂C(t)

∂T
. (5.1)

For a system with deterministic Hamiltonian dynamics and closed volume V , all the “histo-

ries” of the N particles in positions xi(t) at time t are encoded in the possible initial configura-

tions {xi(0)} of the system. The statistic average of an observable O can then be computed ex-

actly by weighting the initial configurations by their respective Boltzmann weights, as 〈O(t)〉 =

(Z(t = 0))−1 ∫
{xi(0)} O({xi(t)}) e−βH[{xi(0)}]. The total Hamiltonian can also be expressed as a sum

of its elementary degrees of freedom H[{xi(0)}] =
∫
~y h[{xi(0)}; ~y]. Then the auto-correlation function

C(t) = N−1
∑N

j=1

{
〈xj(t)xj(0)〉 − 〈xj(0)〉2

}
becomes:

C(t) =
1

Z(0)

1

N

N∑
j=1

∫
{xi(0)}

xj(t)xj(0)e−β
∫
~y h[{xi(0)};~y]− 1

Z(0)2

1

N2

 N∑
j=1

∫
{xi(0)}

xj(0)e−β
∫
~y h[{xi(0)};~y]

2

.

(5.2)

We can compute its derivative with respect to the inverse temperature β = (kBT )−1. The figures shown

all along this chapter have been done for kB = 1. Using 〈h[{xi(0)}; ~y]〉 = h0(~y) and ∂β
∂T = −(kBT

2)−1,

χT becomes

χT (t) =
1

kBT 2

1

N

N∑
j=1

∫
~y
〈[xj(t)− x0][xj(0)− x0][h[{xi(0)}; ~y]− h0(~y)]〉 . (5.3)

The integrand is a two-time and two-space-point function and can give rise to a dynamical length scale,

be it trivial or not.

Evaluating the square of χT (t) and using the Cauchy-Schwarz relation, one finds an inequality (or

bound) between χ2
T (t) and χ4(t), that must be valid in systems where the energy is conserved, [189, 190]

and in particular if we consider the NV E ensemble (where the energy is fixed and the temperature

varies), this inequality reads:

χT (t)2 ≤ 1

(kB T 2)2

〈
δH2

〉
χ4(t) . (5.4)

The quantity
〈

(δH = H[{~xi(0)}]−H0)2
〉

represents the average energy fluctuations. It is equal to

N cV kBT
2 in the NV T ensemble, with cV the intensive heat capacity at constant volume V which is

equal to 3/2 kB for a monatomic gas.

The above dynamical length scale, ξd(t), and the static point-to-set length scale are often seen as

evidences of the emergence of cooperativity in supercooled liquids. One does not know to what extent

these two length scales are two facets of the same physical phenomenon. In this respect, we will study

the dynamical correlations emerging in Arrhenius systems. On the one hand these systems can be

seen as a collection of independent degrees of freedom, with no static correlations whatsoever, and no

cooperative glassy dynamics (at least in the usual sense). On the other hand, Arrhenius systems can be

viewed as a collection of independent two-level systems that relax on a typical time τ ∝ e∆/T , where ∆

is some constant energy barrier. The auto-correlation function has a simple behavior C(t) ∝ e−t/τ(T ),

which directly yields an expression for the dynamical susceptibility, χT (t) ∝ 1/T 2(t/τ)2e−t/τ . This

function is non-monotonous with a maximum at time t = τ which increases as 1/T 2. Then, there exists

a χ4(t) that must satisfy the bound and eventually has a maximum, which would be associated to the

presence of a growing dynamical correlation length which diverges at T = 0 and at least as 1/T 2.
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Finding this dynamic length scale for Arrhenius systems could allow one to pinpoint the mechanisms

responsible for it. These non-glassy mechanisms could occur in supercooled liquids that also present

Arrhenius, or super-Arrhenius, dynamics. They should then not be identified erroneously as a marker

of glassiness and the related dynamical length scale as an evidence of the emergence of cooperativity

in glassy systems. Their knowledge would allow to discriminate between trivial (Arrhenius-like) and

nontrivial (glassy) properties of the dynamical heterogeneities of glasses.

One can then ask for the possible physical mechanisms yielding to such a dynamical correlation

in simple Arrhenius systems, and the most reasonable hypothesis seems to be that the dynamical

correlation is mediated by the thermal bath. Indeed, the jump of an Arrhenius particle above the

energy barrier ∆ could generate a perturbation of order ∆ that can be very large compared to kB T ,

the typical thermal energy of the degrees of freedom of the bath, if we choose to work at low enough

temperature such that the thermal fluctuations are negligible, ∆ � kBT . This mechanism could give

rise to some nontrivial dynamical correlation. Since the bound given by equation (5.4) is valid in the

NV E ensemble, we want to dive the Arrhenius systems in a thermal bath that allow for conservation

of the total energy of the system and that is “complex” enough such that it can mediate dynamical

correlations.

In the following, we will try to compute the two dynamical susceptibilities, χT and χ4. To do

this, we first present the model and the modelisation of the thermal bath by an assembly of harmonic

oscillators [191, 192], then we will derive generalized Langevin equations for the Arrhenius systems

following [43, 191, 44, 193, 194, 195] and we will transform these differential equations with stochastic

noise into deterministic differential equations following the Martin-Siggia-Rose-De Dominicis-Janssen

formalism [196, 197, 198]. Since we are interesting in the finding of eventual dynamical length scales

that should diverge at T = 0, we will restrict our calculations to the limit of low temperatures and will

present instantons calculations that one can then perform (see also chapter 2).

5.2 The model: system {particles + bath}

The model is defined on a square lattice in dimension d = 3, with linear size L and volume V , containing

N sites separated by a lattice spacing a, hence N = (L/a)3. Each site is the equilibrium position of

a harmonic oscillator of mass m, which is connected to its 2d nearest neighbors by springs of stiffness

K0. It has been shown that an assembly of harmonic oscillators can play the role of a heat bath. [191]

Then, we distribute Arrhenius systems, which are modeled by a collection of Ndw independent

particles of massM > m, living in one-dimensional double-well (dw) potentials at fixed random positions

in space. The center of the double well i is fixed at position ~Ri and Xi(t) represents the coordinate of

the particle inside the double well i relative to its center. To be concrete, we take the following form of

the potential, with two symmetric minima in ±1,

V (X) =
∆

4
(X2 − 1)2 . (5.5)

The probability to jump from one minimum to the other follow an Arrhenius law, namely the relaxation

time of one particle is τ = τ0e
β∆/4, where β = (kBT )−1, ∆/4 is the height of the potential barrier and

τ0 is some microscopic relaxation time. The thermodynamic limit is taken in such a way that N →∞
and Ndw →∞ with Ndw/N = ρ = finite but small, ρ being the density of double wells.

In addition, each particle particle i is coupled to its nearest oscillator of the bath by a spring of

stiffness g, and the quadratic coupling between the particle in the double well and the oscillator in the

bath is such that the force is zero when the oscillator is at its equilibrium position and the particle on
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the top of the barrier of V . A pictorial representation of the model projected in one dimension is shown

in figure 5.1.

Xα

Figure 5.1: Pictorial sketch of the model in one dimension.

δ~xj(t) is the distance of the j-th oscillator with respect to its equilibrium position δ~xj(t) = ~xj(t)−~lj ,
with ~lj = (lxj , l

y
j , l

z
j ) and lεj ∈ a {1, ..., L/a} for ε = {x, y, z}. We suppose that the whole system {bath

+ particles} is isolated such that the total energy is conserved,

H[{ ~X}, {δ~x}, { ~̇X}, {δ~̇x}] = EPc [{ ~̇X}] + EBc [{δ~̇x}] + Ep[{ ~X}, {δ~x}] = cst . (5.6)

The total kinetic energies of the particles (P ) and of the bath (B) are given by:

EPc [{ ~̇X}] =
M

2

Ndw∑
i=1

~̇Xi(t)
2 , (5.7)

EBc [{δ~̇x}] =
m

2

N∑
j=1

δ~̇xj(t)
2 . (5.8)

The total potential energy of the ensemble bath plus Ndw particles can be written as a sum of subcom-

ponents,

Ep[{ ~X}, {δ~x}] = EPp [{ ~X}] + EBp [{δ~x}] + EIp [{ ~X}, {δ~x}] , (5.9)

corresponding to the total double-well potential energy of particles and to the total elastic potential

energy of the bath, respectively given by,

EPp [{ ~X}] =

Ndw∑
i=1

∑
ε=x,y,z

V (Xi,ε) , (5.10)

EBp [{δ~x}] =
K0

2

N∑
j=1

(δ~xj+1(t)− δ~xj(t))2 , (5.11)

and a elastic potential energy of interaction (I) between bath and particles,

EIp [{ ~X}, {δ~x}] =
g

2

Ndw∑
i=1

(
~Xi(t)− δ~xRi(t)

)2
, (5.12)

where we have introduced δ~xRi(t) =
∑N

j=1 δ~xj(t)δ(
~lj − ~Ri).

5.3 From a deterministic Hamiltonian to Langevin equations

In this section, we are going to derive generalized Langevin equations for our double-well systems

interacting with a heat bath formed by the three-dimensional assembly of harmonic oscillators. Then,

we will give the statistic properties of the heat bath. [43, 191, 44, 193, 194, 195]
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5.3.1 Normal modes

It is well known that the motion of an ensemble of harmonic oscillators in euclidean lattices can be de-

scribed in terms of normal modes, i.e., standing waves with the same wave number and frequency. [199]

For periodic boundary conditions, the wave number values must respect that:

ei(kµ µ) = ei kµ(µ+L) ⇒ kµ = ±2π

L
pµ with µ = x, y, z , (5.13)

with px, py, pz integers. The wave number that can be taken in one direction depends on the linear size

of the system L, or, equivalently, on the linear number of harmonic oscillators L/a, and is such that

(kx, ky, kz) = (2π/L) (px, py, pz), with (px, py, pz) ∈ {0;±1; ...;±L/(2a)}, and with increment of 2π/L

between two nearest wave vectors.

The distance δ~xj(t) of a harmonic oscillator j with respect to its equilibrium position ~lj is, using

the notation
∑

~k
≡
∑π/a

(kx,ky ,kz)=−π/a,

δ~xj(t) =
1√
N

∑
~k

~u~k(t)e
i~k·~lj . (5.14)

The ~u~k are complex numbers, and ~u~k their complex conjugate. To ensure that δ~xj(t) is real we have

to impose that ~u~k = ~u−~k, from which ensues the following property: ~u~k~u−~k = ~u~k~u~k = |~u~k|
2. We finally

introduce the Fourier transform of the Kronecker delta function in discrete space:

δ~k,−~k′ =
1

N

N∑
j=1

ei(
~k+~k′)·~lj . (5.15)

5.3.2 Expressing the Hamiltonian in terms of the normal modes

The different terms of the Hamiltonian can be rewritten in terms of the normal modes.

Kinetic energy

The kinetic energy of the bath of oscillators becomes:

EBc =
m

2

∑
~k,~k′

~̇u~k~̇u~k′δ~k,−~k′ =
m

2

∑
~k

|~̇u~k(t)|
2 . (5.16)

Potential energy

The total potential energy EPp +EBp +EIp is going to be rewritten like ẼPp + ẼBp + ẼIp , the two being

equal. The first term, expression (5.11), becomes:

EBp =
1

2

∑
~k

λ2
~k
|~u~k(t)|

2 . (5.17)

We have introduced λ2
k, λ

2
~k

= K0
∑

~k′ N
−1
∑N

j=1 e
i(~k+~k′)·~lj

(
1− ei~k·(~lj+1−~lj)

)(
1− ei~k′·(~lj+1−~lj)

)
, the k-

dependent coupling between phonons that propagate within the bath of harmonic oscillators. In di-

mension d = 3 when ||~k|| � 1, with ~k2 = ||~k||2 = k and K = K0/d (see appendix C.1), it reads

λ2
k = Ka2k2 + o(~k2) . (5.18)

The third term, expression (5.12), can be reexpressed as

EIp =
g

2

Ndw∑
j=1

 ~Xj(t)−
1√
N

∑
~k

~u~k(t)e
i~k ~Rj

2

, (5.19)
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and developed into three distinct contributions:

1) One depending only on the ~Xi(t).

2) A term depending only on the degrees of freedom of the bath, that can be written, with ρ = Ndw/N

the density of double wells,

1

N

g

2

∑
k,k′

~u~k(t)~u~k′(t)

Ndw∑
j=1

ei(
~k+~k′)~Rj =

1

2
ρ g
∑
k,k′

~u~k(t)~u~k′(t)δ~k,−~k′ =
1

2
ρ g
∑
k

|~u~k(t)|
2 . (5.20)

3) And a term coupling the normal modes to the double-well particles.

The above three contributions can be distributed into the following redefinitions of the potential ener-

gies:

ẼPp = EPp +

Ndw∑
i=1

∑
ε=x,y,z

g

2
Xi,ε(t)

2 =

Ndw∑
i=1

∑
ε=x,y,z

(
V (Xi,ε) +

g

2
Xi,ε(t)

2
)
, (5.21)

ẼBp = EBp +
1

2

∑
~k

g

2
ρ|~u~k(t)|

2 =
1

2

∑
~k

λ̃2
k|~u~k(t)|

2 , (5.22)

ẼIp = − g√
N

Ndw∑
j=1

~Xj(t)
∑
~k

~u~k(t)e
i~k ~Rj , (5.23)

where we have introduced a modified phonon coupling,

λ̃2
k = λ2

k + g ρ . (5.24)

In the following, we further manipulate the expression of the potential energy. The sum ẼBp + ẼIp
can be rewritten as a factorized square, with ~Rmn = ~Rm − ~Rn,

ẼBp + ẼIp = ẼB+I
p − 1

2

g2

N

Ndw∑
m,n=1

~Xm(t) ~Xn(t)
∑
~k

ei
~k ~Rmn

λ̃2
k

. (5.25)

The first term is given by:

ẼB+I
p =

1

2

∑
~k

λ̃2
k

~u~k(t)− g√
N

1

λ̃2
k

Ndw∑
j=1

~Xj(t)e
−i~k ~Rj

~u−~k(t)− g√
N

1

λ̃2
k

Ndw∑
j=1

~Xj(t)e
i~k ~Rj

 . (5.26)

The second term gives rise to a local contribution when m = n and to a nonlocal contribution when

m 6= n. The local part is −1
2g

2α
∑Ndw

n=1
~Xn(t)2 (in the thermodynamic limit N →∞), with

α = (2πK)−1

[
1− π−1

√
ρg

K
arctan

(
π

√
K

ρg

)]
. (5.27)

Together with ẼPp in equation (5.21), it allows us to define an effective “free” double-well potential

UNdw for the particles,

UNdw

(
{ ~Xi}

)
=

Ndw∑
i=1

∑
ε=x,y,z

[
V (Xi,ε) +

g

2
(1− gα)X2

i,ε

]
=

Ndw∑
i=1

∑
ε=x,y,z

V1 (Xi,ε) + cst , (5.28)
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where cst denotes an irrelevant constant that will be neglected. V1 is the new effective local potential

for each particle (in direction ε),

V1 (Xi,ε) =
∆

4

(
X2
i,ε −X2

0

)2
, (5.29)

and X0 is a redefinition of the minimum of V in equation (5.5), defined if 1 > (g/∆) (1− α g),

X2
0 = 1− g

∆
(1− α g) . (5.30)

The nonlocal part, yielding a total effective interaction energy

INdw ({Xi,ε}) =
∑

ε=x,y,z

Ndw∑
m,n=1
m<n

V2 (Xm,ε, Xn,ε) , (5.31)

gives rise to an effective ferromagnetic pair interaction mediated by the bath, as it can be found for

instance in [200] for Brownian particles. This comes from the fact that when two particles in two

double wells are, say, respectively in +1 and in −1, the harmonic oscillators of the bath are either

“compressed” or “elongated”, and this gives rise to an elastic cost. For two particles at dimensionless

distance R̂mn = Rmn/a (a being the lattice spacing), the effective ferromagnetic pair potential reads

V2 (Xm,ε, Xn,ε) = −Xm,εXn,ε Y (R̂mn) , (5.32)

whose interaction is asymptotically given by a Yukawa potential:

Y (R̂mn) ' g2

4πK

1

R̂mn
exp

[
−
√
ρg

K
R̂mn

]
. (5.33)

The constant α and the function Y (R̂mn) are computed in appendix C.3.1.

This effective ferromagnetic interaction gives rise to a static length scale that can eventually be large.

We want to be in a regime where the dynamical length scale(s) are large compared to this static length

scale, and this will be so if we impose to the effective energy of interaction of the ferromagnetic state to

be small compared to the total thermal-energy fluctuations, N kB T � |INdw ({Xi,ε} = {+1} or {−1})|.
This energy is computed in appendix C.2 and yields the following condition, where constants of order

one have been discarded,

T � ρ g . (5.34)

Before going to the next section, we set the Hamiltonian of the system to be written as

H[{ ~X}, {~u}, { ~̇X}, {~̇u}] =EPc [{ ~̇X}] + UNdw [{ ~X}] + INdw [{ ~X}] + EBc [{~̇u}] + EB+I
1 [{ ~X}, {~u}] . (5.35)

and we finally define the effective potential energy of the particles, or generalized potential, as

WNdw = UNdw + INdw . (5.36)

5.3.3 Generalized Langevin equations

We suppose that the time dependence of the ~Xj(t) is known. Dynamical equations are computed from

Hamilton’s equations for both bath and particles degrees of freedom, which are, in each of the three

directions of space denoted by ε, with b~k,ε = ~b~k,ε · ~eε,{ ∂H

∂u~k,ε
(t) = −mü~k,ε(t) ;

∂H

∂(mu̇~k,ε)
(t) = u̇~k,ε(t)

}
, (5.37)
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{ ∂H

∂Xj,ε
(t) = −MẌj,ε(t) ;

∂H

∂(MẊj,ε)
(t) = Ẋj,ε(t)

}
. (5.38)

Using the expression of the Hamiltonian in equation (5.35), we obtain the equations of motion for the

particles and for the bath degrees of freedom:

mü~k,ε(t) + λ̃2
ku~k,ε(t) =

g√
N

Ndw∑
j=1

Xj,ε(t)e
−i~k ~Rj , (5.39)

MẌj,ε(t) = −∂WNdw

∂Xj,ε
+

g√
N

∑
~k

u~k,ε(t)e
i~k ~Rj − g2

∑
n

Xn,ε(t)
1

N

∑
~k

1

λ̃2
k

cos
[
~k
(
~Rn − ~Rj

)]
. (5.40)

They are coupled differential equations, nonlinear in space and nonlocal both in space and time. The

solution of the equation of motion of one of the bath’s degrees of freedom u~k,ε in equation (5.39), with

initial position and velocity u~k,ε(0) and u̇~k,ε(0), can be formally written as

u~k,ε(t) = u~k,ε(0) cos(ωt) +
u̇~k,ε(0)

ωk
sin(ωkt) +

g/m√
N

Ndw∑
j=1

e−i
~k ~Rj

∫ t

0
dt′Xj,ε(t

′)
sin[ωk(t− t′)]

ωk
, (5.41)

where we defined the phonon frequency ωk =
√
λ̃2
k/m. Inserting equation (5.41) in equation (5.40),

we obtain an equation of motion for the particles that depends on the bath only through its initial

condition:

MẌj,ε(t) = −∂WNdw

∂Xj,ε
− g2

∑
n

Xn,ε(t)
1

N

∑
~k

1

λ̃2
k

cos
[
~k
(
~Rn − ~Rj

)]

+
g√
N

∑
~k

ei
~k ~Rj

[
u~k,ε(0) cos(ωkt) +

u̇~k,ε(0)

ωk
sin(ωkt)

]

+
g2

m

∑
n

1

N

∑
~k

ei
~k(~Rj−~Rn)

∫ t

0
dt′Xn,ε(t

′)
sin[ωk(t− t′)]

ωk
.

(5.42)

We integrate by part the last term, this yields a memory kernel that couples to the velocity of the

particle:∫ t

0
dt′Xn,ε(t

′)
sin[ωk(t− t′)]

ωk
=

1

ω2
k

[Xn,ε(t)−Xn,ε(0) cos(ωkt)]−
∫ t

0
dt′Ẋn,ε(t

′)
cos(ωk(t− t′))

ω2
k

. (5.43)

After a distribution of the above leftmost term (into brackets), the equation (5.42) becomes:

MẌj,ε(t) = −∂WNdw

∂Xj,ε
+ g2

∑
n

Xn,ε(t)
1

N

∑
~k

1

λ̃2
k

(
ei
~k(~Rn−~Rj) − cos

[
~k
(
~Rn − ~Rj

)])

+
g√
N

∑
~k

ei
~k ~Rj

[(
u~k,ε(0)− g

m

∑
n

1√
N

e−i~k ~Rn

ω2
k

Xn,ε(0)

)
cos(ωkt) +

u̇~k,ε(0)

ωk
sin(ωkt)

]

− g2

m

∑
n

1

N

∑
~k

ei
~k(~Rj−~Rn)

∫ t

0
dt′Ẋn,ε(t

′)
cos(ωk(t− t′))

ω2
k

.

(5.44)
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Since ei
~k(~Rn−~Rj) − cos

[
~k
(
~Rj − ~Rn

)]
= 1/2

(
ei
~k(~Rn−~Rj) − e−i~k(~Rn−~Rj)

)
, the rightmost term of the

above equation vanishes. 1 This last equation is a generalized Langevin equation for the particle j

MδẌj,ε(t) = −∂WNdw

∂Xj,ε
+ Fj,ε(t)−

Ndw∑
n=1

∫ t

0
dt′ Ẋn,ε(t

′)Kjn(t− t′) , (5.45)

living in the generalized potential WNdw , with a memory kernel Kjn(t− t′) non local in space and time

acting as a time-dependent dissipation term, and subject to a random force Fj,ε coming from the bath.

5.3.4 Random force, generalized potential and memory kernel

The random force is given by the expression:

Fj,ε(t) =
g√
N

∑
~k

ei
~k ~Rj

[(
u~k,ε(0)− g

m

∑
n

1√
N

e−i~k ~Rn

ω2
k

Xn,ε(0)

)
cos(ωkt) +

u̇~k,ε(0)

ωk
sin(ωkt)

]
, (5.46)

and the two contributions of WNdw are given by:

UNdw ({Xi}) =
∑

ε=x,y,z

U
(ε)
Ndw

({Xi,ε}) =
∑

ε=x,y,z

Ndw∑
i=1

V1 (Xi,ε) ,

INdw ({Xi}) =
∑

ε=x,y,z

I
(ε)
Ndw

({Xi,ε}) =
∑

ε=x,y,z

Ndw∑
i,j=1
i<j

V2 (Xi,ε, Xj,ε) .

(5.47)

They can be respectively rewritten as a sum over all local potentials V1 (Xi,ε), defined in equation (5.29),

and all pair interaction potentials V2 (Xi,ε, Xj,ε), defined in equation (5.32).

The memory kernel of dissipation, nonlocal in time, reads:

Kjn(t− t′) =
g2

m

1

N

∑
~k

ei
~k ~Rjn

cos[ωk(t− t′)]
ω2
k

. (5.48)

The kernel is symmetric in t→ −t, Knp(t) = Knp(−t). It is estimated using arguments of continuity in

appendix C.3.2. The different expression then obtained are compared to the above exact expression in

figure 5.2. The expressions found are: a local (in space) one when n = p, with Rnp = ||~Rn − ~Rp|| and

R̂ = R/a,

Knn(t) ' g2 α

sin

(√
K
mπ t

)
√

K
mπ t

, (5.49)

and a nonlocal (in space) asymptotic expression when n 6= p

Knp(t) '
1

π
Y (R̂np)

(
SinIntegral

[
π

(
R̂np −

√
K

m
t

)]
+ SinIntegral

[
π

(
R̂np +

√
K

m
t

)])
+O(ρgR̂np) .

(5.50)

One can go further and make a very crude approximation of the above expressions. It

consists in replacing sin(Ax)
Ax by δ(x) and 1

π (SinIntegral [A(B + Ct)] + SinIntegral [A(B − Ct)]) by

1We have used that the sum N−1∑
~k

(
λ̃k
)−2 (

e
~k~z − e−~k~z

)
evaluates to zero, as ~k ∈ Z3.
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[Θ(t+B/C)−Θ(t−B/C)] (both exact when A→∞). The interest of this crudest approximation is

to perform analytically time integrals where the dissipation kernels appear. This approximation makes

sense if the details of Knj(t) do not influence (much) the particles dynamics, as one can see on figure 5.2.

We thus introduce the following simplified memory kernels: the local one,

Knn(t) ' σ δ(t) , (5.51)

and the nonlocal one,

Knp(t− t′) ' Y (R̂np)
[
Θ
(
ν(t− t′) + R̂np

)
−Θ

(
ν(t− t′)− R̂np

)]
. (5.52)

For simplicity of notation we have introduced the frequency ν =
√
K/m and the constant σ = g2 α.
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Figure 5.2: Memory kernels of dissipation Kij(t) for i = j (a) and i 6= j (b) (here Rij ≡ R̂ij). The different

curves are obtained either: from their exact expression (5.48) (purple), from their estimations (5.49) and (5.50)

(orange), and from their crudest analytic approximations (5.51) and (5.52) (blue). The parameters are such that:

K = 1, m = 1, ρg = 0.0001, R̂ij = 10. We observe an error of order O(ρgR̂ij) ' 0.001 between the purple and

the orange curves of Kij(t) when i 6= j, that we suppose (at least for the moment) does not spoil our calculations.

The local and the nonlocal kernels are represented on figure 5.2. The above estimation (orange)

and the crude approximation (blue) are compared to the numerical values (purple) obtained from the

expression in equation (5.48). The estimation of Knj(t) with n 6= j in equation (5.50) presents a

deviation of order O(ρgR̂np) (see figure 5.2 (b)) that we do not take into account for the moment,

supposing that it does not spoil our calculations.

5.3.5 Properties of the stochastic noise generated by the bath

Suppose that at t = 0 the bath is equilibrated in presence of the particles. Hence, its possible initial con-

figurations follow a Gibbs distribution with probability p0 = (Z0(β))−1 e−βE0;Ndw , with β = (kBT )−1.

The quantities E0;Ndw and Z0(β) are, respectively, the energy of the bath for a particular configuration

of the system {particles + bath} and the partition function of the system, both at time t = 0. The
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expression of E0;Ndw is, from equation (5.35),

E0;Ndw =

1

2

∑
~k

m|~̇u~k(0)|2 + λ̃2
k

~u~k(0)− g√
N

1

λ̃2
k

Ndw∑
j=1

Xj(0)~exe
−i~k ~Rj

~u−~k(0)− g√
N

1

λ̃2
k

Ndw∑
j=1

Xj(0)~exe
i~k ~Rj


=

1

2

∑
~k

m|~̇u~k(0)|2 + λ̃2
k

∣∣∣∣∣∣~u~k(0)− g√
N

1

λ̃2
k

Ndw∑
j=1

Xj(0)~exe
−i~k ~Rj

∣∣∣∣∣∣
2 .

(5.53)

Z0(β) is the sum over all the initial configurations
{
{~u~k(0)}; {~̇u~k(0)}

}
of the Boltzmann weight:

Z0(β) =
∑

{~u~k(0)},{~̇u~k(0)}
e−βE0;Ndw . (5.54)

Knowing the initial probability p0, we can determine the stochastic properties of the bath noise,

in the light of [192, 201]. It consists in computing the moments of the probability distribution of

the stochastic force Fj,ε(t), which depends on the stochastic variables u~k,ε(0) and u̇~k,ε(0), as we can

see in equation (5.46). We therefore introduce the average over the initial configurations of the bath,

〈 . 〉0 = (Z0(β))−1∑
{~u~k(0)},{~̇u~k(0)} . e

−βE0;Ndw . From standard properties of Gaussian distributions, we

determine the mean and the variance of the stochastic variables composing p0 directly looking at the

expression of E0;Ndw . In each space direction ε we have the means,〈
u̇~k,ε(0)

〉
0

= 0 ,〈
u~k,ε(0)− g√

N

1

λ̃2
k

Ndw∑
j=1

Xj,ε(0)e−i
~k ~Rj

〉
0

= 0 ,
(5.55)

and the variances, 〈
u̇~k,ε(0)u̇~k′,ε′(0)

〉
0

=
kBT

m
δ~k,−~k′δε,ε′ , (5.56)〈u~k,ε(0)− g√

N

1

λ̃2
k

Ndw∑
j=1

Xj,ε(0)e−i
~k ~Rj

u~k′,ε′(0)− g√
N

1

λ̃2
k

Ndw∑
j=1

Xj,ε′(0)e−i
~k′ ~Rj

〉
0

=
kBT

λ2
k

δ~k,−~k′δε,ε′ ,

(5.57)

and the covariance, 〈
u~k,ε(0)u̇~k′,ε′(0)

〉
0

= 0 . (5.58)

The above relations yield the following properties of the stochastic noise coming from the bath. The

means immediately imply that

〈Fj,ε(t)〉0 = 0 , (5.59)

and the variances and the covariance allow us to compute the time-correlation of the stochastic force,

〈
Fj,ε(t)Fj′,ε′(t

′)
〉

0
=
g2kBT

m

1

N

∑
~k,~k′

ei
~k ~Rj+i~k

′ ~Rj′

ωkωk′
δ~k,−~k′δε,ε′

[
cos(ωkt) cos(ωk′t

′) + sin(ωkt) sin(ωk′t
′)
]

=
g2kBT

m
δε,ε′

1

N

∑
~k

ei
~k(~Rj−~Rj′ ) cos[ωk(t− t′)]

ω2
k

= kBTδε,ε′Kjj′(t− t′) ,

(5.60)
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where we have recognized the expression of the memory kernel Kjj′(t− t′) given in equation (5.48).

5.4 Deterministic field theory for particles with stochastic dynamics

We use the Martin-Siggia-Rose-De Dominicis-Janssen formalism to integrate over the bath noise and

obtain a deterministic field theory. [196, 197, 198] The partition function of the system {particles +

bath} is defined as a path integral over all possible time-trajectories Xi(t) of all the particles i (i from

1 to Ndw) and over the time-configurations of the noise force ~Fi(t) acting on particle i.

The noise is a sum of independent Gaussian variables, hence it is also a Gaussian variable. Its

probability distribution is therefore fully determined by its average (5.59) and its variance (5.60),

P
[
{~F}; t

]
∝ exp

−1

2

∑
i,j

∑
ε,ε′

∫ t

0
dt1 dt2Fi,ε(t1)

[
kBTδε,ε′Kij(t1 − t2)

]−1
Fj,ε′(t2)

 (5.61)

We compute the partition function Z
[
{~h}; t

]
adding particle dependent external fields ~hi in order

to compute thermodynamic quantities from field derivatives with respect to the external fields. It

will be useful to compute correlations. The particles positions have to be solution of the Langevin

equation (5.45) at all times 0 < t1 < t, this is imposed as a constraint by introducing a Dirac delta

function. The partition function is then given by:

Z
[
{~h}; t

]
=

∫ Ndw∏
i=1

∏
ε

(DXi,εDFi,ε) P
[
{~F}; t

]
exp

{∑
i

∑
ε

∫ t

0
dt′ hi,ε(t′)Fi,ε(t′)

}
t∏

t1=0

δ

∑
j

∑
ε

(
MẌj,ε(t1) +

∂WNdw

∂Xj,ε
(t1) +

Ndw∑
n=1

∫ t1

0
dt2 Ẋn,ε(t2)Kjn(t1 − t2)− Fj,ε(t1)

) .
(5.62)

The integral representation of the δ-function, δ(~x) = (2π)−3
∫∞
−∞ d~y e

−i~x~y, requires the introduction of

conjugate variables, ~y. We call these conjugate variables X̂j,ε(t). After introducing the probability

distribution of the bath force given in equation (5.61) in the above equation, we obtain:

Z
[
{~h}; t

]
∝
∏
ε

∫ Ndw∏
j=1

[
DXj,εDX̂j,ε×

exp

{
−i
∫ t

0
dt1X̂j,ε(t1)

(
MẌj,ε(t1) +

∂WNdw

∂Xj,ε
(t1) +

Ndw∑
n=1

∫ t1

0
dt2 Ẋn,ε(t2)Kjn(t1 − t2)

)}
∫
DFj,ε exp

{
−1

2

∑
n

∫ t

0
dt1 dt2Fn,ε(t1) [kBTKnj(t1 − t2)]−1 Fj,ε(t2) +

∫ t

0
dt′
[
hj,ε(t

′) + iX̂j,ε(t
′)
]
Fj,ε(t

′)

}]]
.

(5.63)

The partition function can be written as a product of three partition functions in each space di-

rection, Z
[
{~h}; t

]
= zx[{h}; t]zy[{h}; t]zz[{h}; t]. Since the moves of the particles in the three space

directions should be independent, we can equivalently restrict the study of the particle displacement to

one direction of space. In the following, we will therefore rename the different ε-dependent variables as
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Xi,ε → Xi. To compute z[{h}; t] ≡ zx[{h}; t], we have to integrate over the stochastic force. This gives

rise to a functional Gaussian integral,

∫ ∏
i

DFi exp

−1

2

∑
n,j

∫ t

0
dt1 dt2Fn(t1) [kBTKnj(t1 − t2)]−1 Fj(t2) +

∑
j

∫ t

0
dt′
[
hj(t

′) + iX̂j(t
′)
]
Fj(t

′)

 .

(5.64)

We use the notation ~F = (F1, ..., FNdw), the same for ~φ = ~h + i
~̂
X and the Ndw × Ndw matrix M =

kBT K(t− t′). The above functional Gaussian integral then becomes∫
D ~F exp

{
−1

2

∫ t

0
dt1 dt2 ~F

t(t1)M(t1 − t2)−1 ~F (t2) +

∫ t

0
dt1 ~φ

t(t1)~F (t1)

}
, (5.65)

and once the integration over the stochastic forces have been performed, reads

1√
detK

exp

{
kBT

2

∫ t

0
dt1 dt2~φ

t(t1)K(t1 − t2)~φ(t2)

}
. (5.66)

This expression can be used to compute the expression in equation (5.64),

1√
detK

exp

kBT2
Ndw∑
n,j=1

∫ t

0
dt1 dt2

[
hj(t1) + iX̂j(t1)

]
Kjn(t1 − t2)

[
hn(t2) + iX̂n(t2)

] . (5.67)

This allows us to introduce an action S[{X}, {X̂}; t] entering in the definition of the partition function

z[{h}; t],

z[{h}; t] ∝
∫ Ndw∏

j=1

(
DXjDX̂j

) 1√
detK

e−βS[{X},{X̂},{h};t] . (5.68)

The conjugate variables are redefined as X̂j → ikBTX̂j . The action obtained is fully deterministic, the

price to pay is however to deal with the hard-to-interpret conjugate variables X̂j ,

S[{X}, {X̂}, {h}; t] = −1

2

Ndw∑
n,j=1

∫ t

0
dt1 dt2[kBT hj(t1) + X̂j(t1)]Kjn(t1 − t2)[kBT hn(t2) + X̂n(t2)]

+

Ndw∑
j=1

∫ t

0
dt1X̂j(t1)

(
MẌj(t1) +

∂WNdw

∂Xj
(t1) +

Ndw∑
n=1

∫ t1

0
dt2 Ẋn(t2)Kjn(t1 − t2)

)
.

(5.69)

The potential appearing above is W
(ε)
Ndw

, with
∑

ε=x,y,zW
(ε)
Ndw

= WNdw , that we have renamed W
(ε)
Ndw
→

WNdw . From the expression of S, one can compute correlation functions taking derivatives with respect

to external sources. In general computing correlation functions from the action above is a hard task.

However, simplifications arise if one works at very low temperature.

5.5 Low-T calculations: saddle points and instantons

At present, our aim is to compute the statistically relevant time-trajectories
{
{X(t)}, {X̂(t)}

}
of the

Ndw particles. These trajectories may dominate the partition function in equation (5.68) at very low

T . At low temperature (when S/T � 1), they are easily accessible through a saddle-point method
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onto the action S[{X}, {X̂}; t] found by setting hn(t) = 0 for all n in equation (5.69). The solutions

found,
{
{X?(t)}, {X̂?(t)}

}
, correspond to the lowest energy-cost trajectories. There are generically

two kinds of solutions: the trivial constant profiles ones, and the nontrivial ones called instantons,

corresponding to sharp jumps between the trivial solutions. See also section 2.1 speaking about the

method of instantons.

5.5.1 Saddle point and non-linear coupled-differential equations

The instantons solutions are found by minimizing the action S[{X}, {X̂}; t] with respect to the trajec-

tories
{
{X(t)}, {X̂(t)}

}
. This is technically doable by taking functional derivatives of S[{X}, {X̂}; t],

and gives a system of 2Ndw coupled differential equations:
δS[{X}, {X̂}; t]

Xj(t′)

∣∣∣
X?
j ,X̂

?
j

= 0

δS[{X}, {X̂}; t]
δX̂j(t′)

∣∣∣
X?
j ,X̂

?
j

= 0 .

(5.70)

The above equations read, more precisely,
0 = M

¨̂
X?
j (t′) + X̂?

j (t′)
∂2WNdw

∂(X?
j )2

(t′)−
∑
n

∫ t

t′
dt1 X̂

?
n(t1)∂t′Knj(t1 − t′) +

∑
n

X̂?
n(t′)Knj(0)

0 = MẌ?
j (t′) +

∂WNdw

∂X?
j

(t′) +
∑
n

[∫ t′

0
dt1 Ẋ

?
n(t1)Knj(t

′ − t1)−
∫ t

0
dt1 X̂

?
n(t1)Knj(t

′ − t1)

]
.

(5.71)

Different integrations by parts are performed, yielding boundary terms (BT) that have to be evaluated.

In equation (5.71) (top), two BT appear,
[
X̂j(t1)∂t1δ(t1 − t′)

]t
0

and
[
∂t1X̂j(t1)δ(t1 − t′)

]t
0

with t′ fixed,

which are zero for 0 � t′ � t. Another BT,
[
δ(t′ − t2)Kjj′(t1 − t2)

]t1
0

= δ(t′ − t1)Kjj′(0), yields the

following condition on the times appearing above: 0 ≤ t′ ≤ t1. In equation (5.71) (bottom), a term

Knj(t1)δ(t′ − 0) appears, which is null for the same reason as above.

The mass of each particle is such that M � m, we can therefore neglect the inertial part of the

Langevin equations, Ẍj(t) ' 0 and
¨̂
X?
j (t) ' 0, going in the over-damped limit.

5.5.2 Simplest nontrivial solutions: general kernel

The constant profile X̂?
j (t) = 0 and X?

j′(t) = 0 is the most trivial solution of the system composed by

equations (5.71); we are interested in nontrivial ones. Below, we will deal with two kind of instantonic

solutions for the particles in the double wells that will be characterized by the different energetic costs

they yield. At very low temperature, the trajectories are a sequence of time lapses where the particles

stay static in one of the two minima, followed by dynamical jumps across the potential energy barrier

which corresponds to an instanton. This instanton can be decomposed in two parts, namely, the

“descent” of the potential energy barrier which will be characterized by a zero energetic cost, and the

“climb” of the potential energy barrier which will have a finite (and obviously positive) energetic cost.

Descent

The most simple nontrivial and non-constant solution one finds corresponds to the one with all the

X̂?
j (t) = 0, for all j = {1, ...., Ndw}. This immediately verifies equation (5.71) (top). Replacing the
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X̂?
j (t) by 0 in equation (5.71) (bottom), we obtain a set of coupled dynamical equations for the particles

X?
j , for all j ∈ {1, · · · , Ndw},

X̂?
j (t′) = 0∫ t′

0
dt1 Ẋ

?
j (t1)Kjj(t

′ − t1) = −∂WNdw

∂X?
j

(t′)−
∑
n6=j

∫ t′

0
dt1 Ẋ

?
n(t1)Knj(t

′ − t1)
. (5.72)

They correspond to a particle Xj living in a generalized potential WNdw and creating a time dissipation

Knj(t− t′) on the other particles X?
n with n 6= j, and Kjj(t− t′) on itself. The static solutions of the

above system of equations correspond to Ẋ?
j = 0 for all j, and obviously correspond to stationary points

of the generalized potential WNdw , that can be minima, maxima and saddle points. In the instanton

method, these static solutions are joined by instantonic trajectories involving 1, 2, · · · , Ndw particles

that can be found by searching for solutions of the above differential equations with Ẋ?
j 6= 0 for all the

j’s.

We can evaluate the energetic cost associated to such an instantonic trajectory, injecting the differ-

ential equation (5.72) in the effective action (5.69) for {h(t) = 0}. The fact that X̂?
j (t′) = 0, for all j

and t′, immediately provides that the trajectory has a zero energy cost,

S[{X?}, {X̂?}; t] = 0 , (5.73)

and that this instantonic trajectory then corresponds to the “descent” trajectory of, say, n particles,

from a saddle point A of WNdw to a minimum B of WNdw (corresponding to a stable state), that are

such that WNdw(A) > WNdw(B).

Climb

Another simple solution consists in fixing X̂?
j (t) = Ẋ?

j (t). It transforms equation (5.71) (bottom)

in the time-reversal of the bottom equation of the system (5.72),
X̂?
j (t′) = Ẋ?

j (t′)

−
∫ t

t′
dt1 Ẋ

?
j (t1)Kjj(t

′ − t1) = −∂WNdw

∂X?
j

(t′) +
∑
n 6=j

∫ t

t′
dt1 Ẋ

?
n(t1)Knj(t

′ − t1) .
(5.74)

In addition, injecting X̂?
j (t) = Ẋ?

j (t) into equation (5.71) (top) gives the time derivative of the bottom

expression of the system (5.74) just obtained. One finds back that the static solutions are given by the

stationary point of WNdw , and that the instantonic trajectory can be found by searching for non-static

solutions.

If the system of equations (5.72) encodes the descent trajectory of particles within WNdw , the

system of equations (5.74) which formally corresponds to its time-reverse trajectory then encodes the

“climbing” one. We can compute the related energy cost, and obtain that it is finite, and can indeed

describe the jump of particles over an energy barrier,

S[{X?}, {X̂?}; t] =

Ndw∑
j=1

∫ t

0
dt1Ẋj(t1)

[
MẌj(t1) +

∂WNdw

∂Xj
(t1)

]
=

∫ t

0
dt1

M
2

Ndw∑
j=1

∂t1

(
Ẋj(t1)2

)
+ ∂t1WNdw


= EPc (t)− EPc (t = 0) +WNdw(t)−WNdw(t = 0) .

(5.75)

The details of this computation are given in appendix C.4. Despite of the complex structure of the

differential equations giving the instantonic solution, the finite action of the climb is simply given by the

difference between final and initial energy values, irrespective to the details of the instantonic trajectory.
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5.5.3 Simplest nontrivial solutions: approximated kernel

The expressions of the instantonic solutions simplify if we replace the local and nonlocal memory kernels

by their crudest approximations, given in equations (5.51) and (5.52), respectively. The integrals then

are exactly computable and we will use that
∫ t

0 dt
′ δ(t− t′) = 1/2. The potential WNdw is expressed in

terms of a free UNdw and a interaction INdw contributions, expression (5.47) projected in one direction

(for example ε = x), the latter verifying that ∂INdw/(∂Xi)(t) = −
∑

j 6=iXj(t)Y (R̂12).

The descent solution then has a “delay” term, with tdij = min
(
t′ − R̂ij/ν; 0

)
,

X̂?
i (t′) = 0

σ

2
Ẋ?
i (t′) = −∂UNdw

∂X?
i

(t′) +
∑
j 6=i

Y (R̂ij)X
?
j (tdij)

for i ∈ {1, · · · , Ndw} , (5.76)

and the climb solution has an “advance” term, with tcij = min
(
t′ + R̂ij/ν; t

)
,

X̂?
i (t′) = Ẋ?

i (t′)

σ

2
Ẋ?
i (t′) = +

∂UNdw
∂X?

i

(t′)−
∑
j 6=i

Y (R̂ij)X
?
j (tcij)

for i ∈ {1, · · · , Ndw} , (5.77)

5.5.3.1 Low-density expansion

In the following, we want to compute the two dynamical susceptibilities presented in the introduction

of this chapter, χT (t) and χ4(t). In order to compute them, we are going to make expansions in the

density ρ, that should be correct if ρ is low enough.

χT - We have seen in section 5.1 that for a system with Hamiltonian dynamics, χT could be defined

by the expression in equation (5.3). In our case, the three point dynamic susceptibility of the double

well reads

χT (t) =
1

kBT 2

1

Ndw

Ndw∑
j=1

〈
[Xj(t)− 〈Xj〉0][Xj(0)− 〈Xj〉0]E0;Ndw

〉
0
. (5.78)

where the statistical average 〈 . 〉0 is computed with respect to the initial bath-configuration distribution

defined in section 5.3.5 and E0;Ndw is the energy of the thermal bath in presence of the Ndw particles

at t = 0 for a particular initial configuration of the system {particles + bath}, given in equation (5.53).

We have used that its average over all the initial bath configurations is 〈E0;Ndw〉0 = 0. To compute

χT , we consider that each term of the sum, corresponding to a particle j, has a dominant contribution

(of order 1) coming from the correlation of the particle j in the absence of the Ndw − 1 other particles

of the bath, and then the effect of the presence of Ndw − 1 other particles in the bath contributes as

a correction term of order ρ. We can also use that, in the case where there is only one particle in the

bath, the mean position of that particle is equal to zero, 〈X〉0,1 = 0, since this particle does not feel the

effective ferromagnetic pair interaction that would be generated by the other particles, and the problem

of one free particle (submitted to thermal noise) in a double well is symmetric. The average 〈 . 〉0,1 is

computed for a bath containing only one particle (j = 1), whose initial energy is given by E0;Ndw=1. In

equation, this means that each term of the above sum can be rewritten as〈
[Xj(t)− 〈Xj〉0][Xj(0)− 〈Xj〉0]E0;Ndw

〉
0

= 〈X1(t)X1(0)E0;1〉0,1 +O(ρ) , (5.79)

and that the quantity of interest, χT , can be computed for a bath containing only one particle at leading

order, plus sub-leading corrections of order ρ,

χT (t) =
1

kBT 2
〈X1(t)X1(0)E0;1〉0,1 +O(ρ) . (5.80)
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χ4 - The four-point susceptibility was introduced in section 5.1, and for the double-well particles it

is defined as

χ4(t) = 1
N2
dw

∑Ndw
i,j=1

{〈
[Xi(t)− 〈Xi〉0][Xi(0)− 〈Xi〉0][Xj(t)− 〈Xj〉0][Xj(0)− 〈Xj〉0]

〉
0

−〈[Xi(t)− 〈Xi〉0][Xi(0)− 〈Xi〉0]〉0
〈
[Xj(t)− 〈Xj〉0][Xj(0)− 〈Xj〉0]

〉
0

}
.

(5.81)

We are going to use the same argument than above, that is that one-particle quantities can be estimated

by their leading order, such that the “self” part (when i = j) of the expression of χ4 is given by〈
[Xi(t)− 〈Xi〉0]2[Xi(0)− 〈Xi〉0]2

〉
0
− 〈[Xi(t)− 〈Xi〉0][Xi(0)− 〈Xi〉0]〉20

=
〈
X1(t)2X1(0)2

〉
0,1
− 〈X1(t)X1(0)〉20,1 +O(ρ) ,

(5.82)

and also the connected part of the nonlocal contribution of χ4 (when i 6= j)

〈[Xi(t)− 〈Xi〉0][Xi(0)− 〈Xi〉0]〉0
〈
[Xj(t)− 〈Xj〉0][Xj(0)− 〈Xj〉0]

〉
0

= 〈X1(t)X1(0)〉20,1 +O(ρ) . (5.83)

The effect of the Ndw− 1 other particles that yields a correction of order ρ in the self part of χ4, whose

ρ-expansion is given in equation (5.82), acts as a small field on particle 1 which modifies slightly the

stationary positions of X1 (see below), and should therefore be trivial and not be responsible for the

existence of dynamical correlations in χ4(t). For this reason we neglect this correction of O(ρ) in the

following.

Similarly, two-particle quantities appearing in the sum giving χ4 are computed, at leading order,

for a bath containing only two particles, and the effect of the presence of the Ndw−2 other particles are

encoded in a correction term of order ρ. Introducing the average 〈 . 〉0,2, computed for a bath containing

two double wells whose initial energy is given by E0;Ndw=2, we obtain that the two-particle terms are

given by, with i 6= j,〈
[Xi(t)− 〈Xi〉0][Xi(0)− 〈Xi〉0][Xj(t)− 〈Xj〉0][Xj(0)− 〈Xj〉0]

〉
0

= 〈X1(t)X1(0)X2(t)X2(0)〉0,2 +O(ρ) .

(5.84)

(Notice that the approximation in equation (5.83) can be a source of error. This is discussed in the

conclusion of this chapter.) Within this low-ρ approximation and using translation invariance for the

particle that are indiscernible, the four-point susceptibility is given by:

χ4(t) =
1

Ndw

(〈
X1(t)2X1(0)2

〉
0,1
− 〈X1(t)X1(0)〉20,1

)
+

1

Ndw

Ndw∑
j=2

{
〈X1(t)X1(0)Xj(t)Xj(0)〉0,2 − 〈X1(t)X1(0)〉20,1 +O(ρ)

}
.

(5.85)

We have seen with the above density expansion that, at leading order, the two dynamic susceptibil-

ities that we want to compute can be fully characterized by quantities calculated with baths containing

only one or two particles. Therefore, in the following we focus on these two situations. We will drop

the ? to simplify the notations.

5.5.3.2 One particle

For a single particle “1” in a double-well potential, the effect of the other particles is absent in the

expression of UNdw and the potential is simply given by:

U1(X) = V1(X) =
∆

4

(
X2 −X2

0

)2
, (5.86)
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with X0 defined in equation (5.30). The differential equations giving the instantonic solutions become

(with “−” standing for the descent and “+” for the climb):
X̂−(t′) = 0

σ

2
Ẋ−(t′) = − ∂V1

∂X−
(t′)

,


X̂+(t′) = Ẋ+(t′)

σ

2
Ẋ+(t′) = +

∂V1

∂X+
(t′)

. (5.87)

There are two kind of solutions verifying the above equations: constant profiles ±X0, costing zero

energy, and instantons linking the constant profiles. Their energetic cost is given by the action of the

climb (the descent costing zero energy) in equation (5.75), for one particle whose climb occurs between

t = −∞ and t = 0, S
[
X+, X̂+

]
= M

2

(
Ẋ+(0)2 − Ẋ+(−∞)2

)
+ V1 (X+(0)) − V1 (X+(−∞)). Each

instanton then costs a finite energy S? which is given by

S? = V1(0) = ∆X4
0/4 , (5.88)

if X+(t = −∞) = ±X0, X+(0) = 0 and Ẋ+(t = −∞) = Ẋ+(t = 0) = 0.

The instantonic solutions verify the following equation:

Ẋ±(t) = ±2
∆

σ
X±(t)

(
X±(t)2 −X2

0

)
, (5.89)

which can be solved analytically for both descent and climb: a typical solution has been represented on

figure 5.3. This is rather well known [202], and one finds that the time spent at the top of the barrier

is of duration δt ∼ − log T , and is very short compared to the typical time separating two consecutive

instantons, τ = eβ S? .

X+(t)

X-(t)

-X0
2δt

+X0

-5.×10-14 0 5.×10-14
-1

-0.5

0

0.5

1

t

Figure 5.3: Instanton solutions for one independent particle linking the constant profiles ±X0. X+(t) and

X−(t) correspond respectively to the “climb” and to the “descent” solutions. The “width” of the instanton is

δt ∼ − log T and is small compared to the distance between consecutive instantons, τ = eβ S? .

5.5.3.3 Two particles

We solve numerically the coupled differential equations in (5.76) and (5.77), for a system of two particles

at mutual (dimensionless) distance R̂12 on a time interval [0; t]. The free potential UNdw in this case is

equal to:

U2(X1, X2) = V1(X1) + V1(X2) =
∆

4

(
X2

1 −X2
0

)2
+

∆

4

(
X2

2 −X2
0

)2
, (5.90)
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with X0 and Y (R̂12) defined in equations (5.30) and (5.33), respectively.

The coupled equations are different depending if we consider the descent solution (−), with td =

min
(
t′ − R̂12/ν; 0

)
, 

σ

2
Ẋ1,−(t′) = − ∂U2

∂X1,−
(t′) + Y (R̂12)X2,−(td) X̂1,−(t′) = 0

σ

2
Ẋ2,−(t′) = − ∂U2

∂X2,−
(t′) + Y (R̂12)X1,−(td) X̂2,−(t′) = 0 ,

(5.91)

or the climb solution (+), with tc = min
(
t′ + R̂12/ν; t

)
,

σ

2
Ẋ1,+(t′) = +

∂U2

∂X1,+
(t′)− Y (R̂12)X2,+(tc) X̂1,+(t′) = Ẋ1,+(t′)

σ

2
Ẋ2,+(t′) = +

∂U2

∂X2,+
(t′)− Y (R̂12)X1,+(tc) X̂2,+(t′) = Ẋ2,+(t′) .

(5.92)

The solutions of the above systems of differential equations are either constant profiles (Xc
1, X

c
2) or finite-

energetic cost instantons linking them. We find the constant profiles by solving, for all j, Ẋj,±(t) = 0

and setting Xj(t) = Xc
j for all t, this gives:

∂U2

∂Xc
1

= Y (R̂12)Xc
2

∂U2

∂Xc
2

= Y (R̂12)Xc
1

. (5.93)

The system has nine solutions (Xc
1, X

c
2), which, of course, correspond to stationary points of the poten-

tial W2(X1, X2). The solutions are: the global maximum in (0, 0), the minima in ' (±X0,±X0) noted

(+,+), (−,−), (+,−), (−,+), and the saddle points in ' (0,±X0) or ' (±X0, 0) (saddle points) noted

(0,+), (0,−), (+, 0), (−, 0). Introducing ψ±(n) =
√

1± nY (R̂12)/(∆X2
0 ) with ψ+ > 1 and ψ− < 1,

the static solutions are given by:

(Xc
1 ; Xc

2) = (±,±) ≡ (±X0 ψ+(1) ; ±X0 ψ+(1)) ; (±,∓) ≡ (±X0 ψ−(1) ; ∓X0 ψ−(1)) ;

(0,±) ≡
(
∓X0√

2

√
1− ψ+(2)ψ−(2) ; ±X0√

2

√
1 + ψ+(2)ψ−(2)

)
;

(±, 0) ≡
(
±X0√

2

√
1 + ψ+(2)ψ−(2) ; ∓X0√

2

√
1− ψ+(2)ψ−(2)

)
;

(0, 0) ≡ (0 ; 0) .

(5.94)

The respective potential energies of the stationary states are, with S? the action of the instanton of an

independent particle (see above),

W2 (±,±) = −X2
0 Y

(
R̂12

)
−
Y
(
R̂12

)2

2 ∆
; W2 (±,∓) = +X2

0 Y
(
R̂12

)
−
Y
(
R̂12

)2

2 ∆

W2 (0,±) = W2 (±, 0) = S? +
Y
(
R̂12

)2

2 ∆
; W2 (0, 0) = 2S? .

(5.95)

The instantons are found in two steps: 2 First solving the system of differential equations which

gives the descent part of the instanton. Then, since the climb system of equations is formally identical

2We previously considered a perturbative treatment of Y (R̂12) � 1 around the one particle solution found above.

However this yielded diverging contributions and we abandoned it.
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to the time reverse of the descent system of equations (forgetting about the auxiliary variables), we

find the climb solution by taking the time reverse of the descent solution.

Simple instanton

We search the instanton for one particle, say X1, while the other, X2, stays in the same minimum.

The descent solution is found by solving equations (5.91) with an initial condition taken among the

saddle points of W2, (±, 0) and (0,±). The width (in time) δt of the kink is small compared to R̂12/ν.

Then, supposing that the particle was static a time R̂12/ν before the kink, we can consider the delayed

positions, X1,−(td) and X2,−(td) with td = t−R̂12/ν as constant and equal to the initial condition (±, 0)

or (0,±) on the interval t′ ∈ [0;n δt], where t = 0 is the initial time of the kink and n is an integer.

The system should at t = 0 is at a stationary point of W2. Then, in order to find a dynamical solution

one has to slightly perturb the initial condition away from the maximum, X1,−(0)→ X1,−(0)± ε, with

ε > 0 small.

X1,+(t)

X1,-(t)

-X0 ψ+(1)

X0 ψ-(1)

+X0
1-ψ- (2)ψ+ (2)

2

δt

-1

-0.5

0

0.5

1

t

X2,+(t)

X2,-(t)

-X0
1+ψ- (2)ψ+ (2)

2

2 R12/ν

-X0 ψ-(1)

-X0 ψ+(1)

1

0

-1

t

Figure 5.4: Sketch of the simple instanton solutions for two coupled particles, X1/2,+(t) and X1/2,−(t), corre-

sponding respectively to the “climb” and to the “descent”. The stationary points of W2(X1, X2) by which the

solutions pass are represented. Here R12 ≡ R̂12.

As an example, in figure 5.4 we show a sketch of the descent solutions, X1,−(t) in orange and X2,−(t)

in green, for t ≥ 0 and for the initial condition: (X1,−(0), X2,−(0)) ≡ (0 + ε,−). A time R̂12/ν after

the beginning of the descent kink, the solution X2,−(t) begins to feel a contribution from the delayed

term X1,−(td) which varies of O(1) on a time O(δt). This creates a small “kink” on X2,−(t), as one can

see on figure 5.4. The height of this kink is of order O
[
Y
(
R̂12

)
∆X1,−

]
, where ∆X1,− = O(1) gives

the difference between final and initial positions during the precedent kink.The system then ends in an

“approximate” stable state (+,−).

Indeed, one can see that after an other time interval R̂12/ν, the particle X1,−(t) will feel a

contribution from X2,−(td), creating a kink of order O
[
Y
(
R̂12

)
∆X2,−

]
= O

[
Y
(
R̂12

)2
]
, since

∆X2,− = O
[
Y
(
R̂12

)]
. The stable state will be reached when the above serie will have converged,

and that happens exponentially fast in R̂12/ν.

On can obtain an other descent solution with initial condition : (X1,−(0), X2,−(0)) = (0− ε,−). Its

time reverse gives the climb solution shown in figure 5.4, in purple for X1,+(t) and blue for X2,+(t).

Joining the two at t = 0 gives the simple instanton at leading order for the two coupled particles.

The effective ferromagnetic interaction between X1 and X2 yields different finite energetic cost if

the climb begins from a ferromagnetic initial state, (±,±), or from an anti-ferromagnetic one, (±,∓).
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The former costs more energy than the latter:

S [(±,±)→ (0,±)] = W2(0,±)−W2(±,±) = S? +X2
0 Y

(
R̂12

)
+
Y
(
R̂12

)2

∆
> S? ,

S [(∓,±)→ (0,±)] = W2(0,±)−W2(∓,±) = S? −X2
0 Y

(
R̂12

)
+
Y
(
R̂12

)2

∆
< S? .

(5.96)

In the computation of the energetic costs we have considered the initial and final states as stable

states of W2, hence neglecting sub-leading corrections of the exponential convergence (in R̂12/ν) of the

instanton toward a stable state. This approximation will be kept in the following of this chapter.

Double instanton

Besides the instantonic solutions during which only one particles overcomes the barrier (and whose

energy cost is of order S?), there is another class of possible solutions, that we will call the “double

instanton”: it corresponds to two particles jumping together over the barrier. These solutions will

turn out to cost an energy of order 2S?, and one could generically expect that only yield a sub-leading

contribution. Yet, as we will discuss below, they might be relevant for the computation of the dynamical

susceptibilities.

In order to find the double instanton solution, we perform the same analysis than above with the

initial condition (0, 0). The initial position X1,−(0) is slightly perturbed by ε, hence X1 makes the first

descent kink. It is shown in figure 5.5 for the initial condition (ε, 0). After a time R̂12/ν, the second

particle feels a contribution from X1,−(td) and begins to move toward a stable state of W2, as shown on

figure 5.5. If one does not apply at hand an ε-perturbation on X2,−(0) = 0 the final state will always

be ferromagnetic. As in the case of the simple instanton, the climb solution is taken as the time reverse

of the descent solution with initial condition (−ε, 0).

X1,+(t)

X1,-(t)

X2,+(t)

X2,-(t)

-X0
1+ψ- (2)ψ+ (2)

2

X0
1+ψ- (2)ψ+ (2)

2

X0ψ+(1)

-X0ψ+(1)

0

2 R12/ν

δt

-1

-0.5

0

0.5

1

t

Figure 5.5: Double instanton solutions for two coupled particles, X1/2,+(t) and X1/2,−(t), corresponding respec-

tively to the “climb” and to the “descent”. Here R12 ≡ R̂12.

The finite energetic cost of the double instanton depends on the initial state of the climb, ferromag-
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netic or anti-ferromagnetic. The former will cost more energy than the latter:

S [(±,±)→ (0, 0)] = W2(0, 0)−W2(±,±) = 2S? +X2
0 Y

(
R̂12

)
+
Y
(
R̂12

)2

2 ∆
> 2S? ,

S [(∓,±)→ (0, 0)] = W2(0, 0)−W2(∓,±) = 2S? −X2
0 Y

(
R̂12

)
+
Y
(
R̂12

)2

2 ∆
< 2S? ,

(5.97)

where we have also considered that initial and final states can be taken as stable states of W2. The

instantonic solution form (∓,±) to (0, 0) has a smaller energetic cost than two independent instantons

and might be physically relevant.

5.6 Three-point susceptibility

We have seen in section 5.5.3.1 that the three-point susceptibility is given by the equation (5.80), for

which we have to compute 〈X1(t)X1(0)E0;1〉0,1 for a bath containing only one particle.

E0;1 contains a kinetic and a potential parts, E0;1 = E
(c)
0;1 +E

(p)
0;1 , that, we suppose for the moment,

contribute identically to the expression of χT . We use the expression in equation (5.46) at t = 0 (in

one particular space direction ε), with F1(t = 0) =
∑

~k
F

1,~k
(0), to write

E
(p)
0;1 =

1

2

∑
~k

λ̃2
k

∣∣∣∣∣~u~k(0)− g√
N

1

λ̃2
k

X1(0)~exe
−i~k ~R1

∣∣∣∣∣
2

=
1

2

N

g2

∑
~k,~k′

λ̃2
k e
−i(~k+~k′)~R1 F

1,~k
(0)F

1,~k′(0) δ~k,−~k′ .

(5.98)

Using the equation (5.15) to reintroduce the lattice spacing in the above expression, the quantity to

compute becomes:〈
X1(t)X1(0)E

(p)
0;1

〉
0,1

=
1

2

1

g2

N∑
j=1

∑
~k,~k′

ei(
~k+~k′)·(~lj−~R1) λ̃k λ̃k′

〈
X1(t)X1(0)F

1,~k
(0)F

1,~k′(0)
〉

0,1
. (5.99)

The dynamical correlation
〈
X1(t)X1(0)E

(p)
0;1

〉
0,1

, and probably also the three-point dynamical suscep-

tibility χT (t), is composed of small correlations
〈
X1(t)X1(0)F

1,~k
(0)F

1,~k′(0)
〉

0,1
that are of order g2,

since we know from the equation (5.60) that the time-correlation of the stochastic force is of order g2.

This correlation propagates via phonons of wavelength ~k, and when one sums over all wavelengths and

over all space points one finds a correlation
〈
X1(t)X1(0)E

(p)
0;1

〉
0,1

which is of order 1, as well as the

three-point dynamic susceptibility χT (t).

We can use the field theory obtained via the Martin-Siggia-Rose-De Dominicis-Janssen formalism

to compute this correlation function. Indeed, we remark that field derivatives of the partition function

in equation (5.62) (in one fixed direction ε) with respect to the sources h
1,~k

(t′) and evaluated in zero

field give rise to the connected correlation functions of the stochastic force, with
〈
F

1,~k
(0)
〉

0,1
= 0,

1

z[{h = 0}]
δz[{h}]

δh
1,~k

(0)δh
1,~k′(0)

∣∣∣
{h

1,~k
=0}

=
〈
F

1,~k
(0)F

1,~k′(0)
〉

0,1
. (5.100)

Therefore the average of equation (5.99) can be computed via:〈
X1(t)X1(0)F

1,~k
(0)F

1,~k′(0)
〉

0,1
=
δ 〈X1(t)X1(0)〉0,{h}
δh

1,~k
(0)δh

1,~k′(0)

∣∣∣
{h

1,~k
=0}

. (5.101)
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We can compute an estimation of the above quantity from the expression in equation (5.68) of the

partition function. This is an estimation because all the terms that would be generated by the field

derivative with respect to the fields are not displayed, however we can suppose that they would yield

the same conclusion as the one we give at the end of this section. One of the terms generated by the

computation of the correlation
〈
X1(t)X1(0)F

1,~k
(0)F

1,~k′(0)
〉

0,1
is given by:

1

z[{h = 0}; t]

∫ t

0
dt1 dt2K11(t1;~k)K11(t2;~k′)

∫
DX1DX̂1X1(t)X1(0) X̂1(t1)X̂1(t2) e−βS[X1,X̂1,{h=0};t]

=

∫ t

0
dt1 dt2K11(t1;~k)K11(t2;~k′)

〈
X1(t)X1(0) X̂1(t1)X̂1(t2)

〉
0,1

,

(5.102)

with K11(t1) =
∑

~k
K11(t1;~k).

This quantity is not easy to compute. However, in the limit of low temperatures we can make use

of the instanton method, exact in the limit T → 0 (see section 2.1). The system is then dominated by

trajectories which minimize the action S
[
X1, X̂1, {h = 0}; t

]
. From section 5.5.3.2 we know that these

trajectories are composed by constant profiles ±X0 linked by localized (in time) instantonic jumps. The

energetic cost of the former is zero, and of the latter is S? = ∆X4
0/4. A trajectory of duration t and

composed by n instantons has therefore a probability e−nβS? . In the following we make the hypothesis

that the instantons width is negligible compared to the distance between two consecutive instantons.

Since subsequent instantons are uncorrelated, we suppose that they arrive at Poissonian times. As a

consequence, the entropic factor coming from the location of the n instantons is simply given by this

integral ∫ t

0
dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn =
tn

n!
. (5.103)

The probability for a particle to go from, say, X1(0) = −X0 to X1(t) = −X0 is then given by a sum

over all possible even values of n = 2k,

P (−X0 → −X0) =
1

M

∞∑
k=0

e−2k βS? t2k

(2k)!
= 2 cosh (t/τ) with τ = eβS? , (5.104)

with M some normalization constant, and becomes a sum over odd values if initial and final states are

different. Summing over all possible initial and final states, we can compute easily the autocorrelation

function of a system of Ndw particles,

C(t) = 〈X1(t)X1(0)〉0,1 − 〈X1〉20,1 +O(ρ) = X2
0 e
−2t/τ +O(ρ) . (5.105)

We now turn to compute the quantity of interest which is given in equation (5.102). From equa-

tion (5.87), X̂1(t′) is nonzero only if t′ is evaluated during an instantonic event which are assumed to

have a zero width. Therefore we add the constraint that at time t1 occurs the m1-th instanton and

at time t2 > t1 occurs the (m1 + m2)-th instanton, obliging us to consider at least n = 2 instantons

to have a nonzero expression. Then we can also estimate that, at the “middle” of the kink/anti-kink,

when X1(t) ' ±X0/2, the auxiliary variables are given by X̂1 = Ẋ1 = (2/σ) (∂X1U1) (X1 ' ∓X0/2) ∝
±∆X3

0/σ, with σ = g2 α. Then the expression becomes, supposing that X1(0) = −X0,〈
X1(t)X1(0) X̂1(t1)X̂1(t2)

〉
0,1
∝ X8

0

∆2

σ2

∞∑
n=2

(−1)ne−nβS?

∞∑
m1=1

∞∑
m2=1

∞∑
m3=0

δ(m1 +m2 +m3 − n) (−1)m1−1 tm1−1
1

(m1 − 1)!
(−1)m2

(t2 − t1)m2−1

(m2 − 1)!

(t− t2)m3

m3!
.

(5.106)
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The factor (−1)n account for the fact that X1(0)X1(t) = ±X2
0 depending if the number n of instanton is

even or odd, respectively. The factor (−1)m1−1 (or (−1)m2) takes into account that X̂1(t1) (or X̂1(t2))

does not have the same sign if m1 (or m2) is a kink or an anti-kink. The sums over m1, m2 and m3 can

be performed by shifting m1 and m2 by minus one, this yields: − [t− 2(t2 − t1)]n−2 /((n − 2)!). This

expression can be injected into equation (5.106) and gives, after summing over n,

〈
X1(t)X1(0) X̂1(t1)X̂1(t2)

〉
0,1
∝ −

(
4S?
τ σ

)2

exp (−[t− 2 (t2 − t1)]/τ) . (5.107)

If the trajectory begins from X1(0) = +X0, one has to consider factors (−1)m1 and (−1)m2−1 instead,

and one obtains exactly the same contribution. We have also considered the case where the times t1
and t2 fall into the same instantonic event, t1 = t2, this yields a similar expression. Injecting all the

ingredients into equation (5.99) we obtain an estimation of
〈
X1(t)X1(0)E

(p)
0;1

〉
0,1

:

−8
g2 S2

?

τ2 σ2
e−t/τ

N∑
j=1

{
τ

∫ t

0
dt1 [fj (t1)]2 + 4

∫ t

0
dt2

∫ t2

0
dt1 fj (t1) fj (t2) e2 (t2−t1)/τ

}
, (5.108)

where we have introduced the function fj (t1), with K11(t1;~k) from equation (5.48),

fj (t1) =
∑
~k

ei
~k(~lj−~R1) λ̃k

1

g2
K11(t1;~k) =

1

N

∑
~k

ei
~k(~lj−~R1) cos(ωk t1)

λ̃k
. (5.109)

This function can be rewritten as fj(t1) = (2π)−2K−1/2 a2/d2
j φj

(√
K/mt1 a/dj

)
, with a the lattice

spacing and the length dj = ||~lj − ~R1||. The scaling function φj contains a unique dynamical length

scale dj , the distance between the double well and site j, over which phonons propagate with a constant

velocity c = a
√
K/m. The computation of φj is performed in appendix C.5. We can make a change of

variable to reexpress the equation (5.108), replacing the time variables t1 over which the integrals are

performed by t1 → x tj , x being without dimension and tj = dj/c a time scale, and this gives a new

expression for equation (5.108),

−8 g2 S2
? a

4 e−t/τ

(2π)4K2

N∑
j=1

1

(τ dj)
2

{
τ

tj

∫ t/tj

0
dx [φj (x)]2 + 4

∫ t/tj

0
dx

∫ x

0
dy φj (x)φj (y) e2 (x−y)/(τ/tj)

}
.

(5.110)

This estimation is informative since it implies that
〈
X1(t)X1(0)E

(p)
0;1

〉
0,1

is composed of small contri-

butions that propagate in a ballistic way: they cover distances dj with constant velocity c. If the other

terms composing the dynamical correlation
〈
X1(t)X1(0)E

(p)
0;1

〉
0,1

behave in the same fashion and if E
(p)
0;1

and E
(c)
0;1 contribute identically to χT , we can estimate that the maximal dynamical correlation that

arises from the maximum of χT at t ∼ τ has a ballistic dynamical length scale c τ . Physically, the jump

of an Arrhenius particle over its potential energy barrier creates a perturbation of order ∆ which is large

compared to the thermal fluctuations of the bath kBT , this perturbation propagates within the bath

and generates small-amplitude dynamical correlations that spread on a ballistic length scale of order

c τ : the jump of an Arrhenius particle dynamically correlates to a volume (c τ)3 of the bath around

it. After a time of order τ , the Arrhenius particles makes a new jump and the dynamical correlation

begins to vanish.
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5.7 Four-point susceptibility

We have seen in section 5.5.3.1 that the four-point susceptibility is given by the equation (5.85), for

which we have to compute
〈
X1(t)2X1(0)2

〉
0,1

, 〈X1(t)X1(0)〉0,1 and 〈X1(t)X1(0)X2(t)X2(0)〉0,2. We

introduce the four-point correlation function as

g4(R̂12, t) = 〈X1(t)X1(0)X2(t)X2(0)〉0,2 − 〈X1(t)X1(0)〉20,1 , (5.111)

where R̂12 is the dimensionless distance between particles 1 and 2. We can transform the sum appearing

in the expression of χ4 in an integral, using that the double-wells are separated by a typical distance

∆r̂ = ρ−1/3 → dr̂, then
Ndw∑
j=2

g4(R̂1j , t) ' ρ
∫

(τ ν)3
d3r̂ g4(r̂, t) . (5.112)

The integral is over a dimensionless volume of radius τ ν (with ν =
√
K/m = c/a) because two particles

at distance r̂ > τ ν cannot be correlated since they would have relaxed before the ballistic signal or

correlation would arrive (see also section 5.6), and g4(r̂ > τ ν, t) ' 0. The four-point susceptibility can

then be rewritten as

χ4(t) ' 1

Ndw

{〈
X1(t)2X1(0)2

〉
0,1
− 〈X1(t)X1(0)〉20,1 + ρ

∫
(τ ν)3

d3r̂ g4(r̂, t) +O(ρ2)

}
. (5.113)

We want to compute g4(r̂, t), with r̂ ≥ 1. In order to proceed we use again the method of instantons,

valid in the low temperature limit. Then, we know that the time-trajectories of our two particles,

X1(t) and X2(t), are dominated by constant profiles, (±,±) and (±,∓), costing almost no energy,

and instanton trajectories linking them, given by either a simple O(1) jump or two, called respectively

the “simple” and “double” instantons. To compute statistic averages one has to sum over all possible

trajectories of this kind, akin to what was done to compute χT .

However it is slightly more involved here as one is confronted to four constant profiles (instead of

two for χT ) and to four different instantons, or four different energy costs, from the left state to the

right state,

(±,±)→ (0,±) ; (∓,±)→ (0,±) ; (±,±)→ (0, 0) ; (∓,±)→ (0, 0) . (5.114)

The energy costs of the above instantons are fully determined by the initial and final states, as one can

see in equations (5.96) and (5.97). Since the instantons are diluted enough in time, typically separated

by a time of order of the relaxation time of one Arrhenius particle, it should then be possible to compute

the averages by means of transition rates between steady states and a master equation.

5.7.1 Master equation

General considerations

We are interested on the statistics of the dynamical jumps, that requires the knowledge of the

time-dependent probability Pα(t) to find the system in state α.

The Master equation gives a differential equation for the probability Pα(t) to be in the steady state

α at time t. It requires the knowledge of the ensemble of steady states, Ω, and of the transition rates

from state β to state α, rβ→α = rαβ. The probability then verifies:

dPα(t)

dt
=
∑
β∈Ω

rαβPβ(t) , (5.115)
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which can be expressed in a matrix form d~P (t)
dt = r~P (t), with r the transfer matrix, such that (r)αβ =

rαβ. The transfer matrix contains the probability to go from any state β to any state α on a time interval

dt. It must satisfy some properties. Since the total probability must be conserved,
∑

α Pα(t) = 1, the

diagonal elements of the transfer matrix are constrained,∑
α∈Ω

dPα(t)

dt
=
∑
αβ∈Ω

rαβPβ(t) = 0 ⇒
∑
α∈Ω

rαβ = 0 ⇒ rαα = −
∑
β 6=α

rαβ . (5.116)

Then, in order for equilibrium to be reachable, the detailed balance must be satisfied,

rαβPβ = rβαPα . (5.117)

One can find a formal solution for the probability, for all α ∈ Ω,

Pα(t) =
∑
β∈Ω

(ert)αβPβ(0) , (5.118)

with Pβ(0) the initial probability of state β. In order to find explicit solutions one has to diagonalize the

transfer matrix. It is not doable directly as the matrix is not symmetric and one has to “symmetrize”

it. One constructs a new ratio matrix, symmetric, r̃αβ = P
−1/2
α (0) rαβ P

1/2
β (0). This yields a master

equation for a new probability, P̃α(t) = Pα(t)/
√
Pα(0), whose explicit solutions can be computed.

Introducing the eigenvalues of r̃, λi, and M = {~vi} the matrix of eigenvectors, ~vi, the probability can

be computed via:

P̃α(t) =
∑
βγ∈Ω

Mαγ e
λγt (M−1)γβ P̃β(0) . (5.119)

The initial probability is then recovered using Pα(t) =
√
Pα(0)P̃α(t). From the expression of Pα(t),

any average of a time-dependent observable O(t)O(0) can be computed as:

〈O(t)O(0)〉 =
1

Z(t)

∑
αβγ∈Ω

Oα(t)
√
Pα(0)Mαγ e

λγt
(
M−1

)
γβ
Oβ(0)

√
Pβ(0) , (5.120)

with Z(t) the partition function, Z(t) =
∑

α∈Ω Pα(t), and Pα(0) the initial probability of state α at

thermal equilibrium.

Our problem

In our case, Arrhenius systems, the transition rate to go from one state α to another state γ is

proportional to e−β∆E , with ∆E some finite energy barrier and β the inverse temperature. Here the

transitions between states occur through instantonic trajectories whose energy barriers are given by

the action of the corresponding instanton.

System of two coupled particles

For the case of two coupled particles (i.e. g > 0) at distance R̂12 the instantons have a width of

δt = 2 R̂12/ν. If δt � τ , i.e. R̂12 � τ ν, one can define the transition rates on a time span δt like

follows. As soon as R̂12 � τ ν the particles decorrelate faster than the ballistic wave would propagate

and the particles are independent. In the former case the transfer matrix is given by, in the basis Ω =

{(+,+) , (−,−) , (+,−) , (−,+)}, with τ = eβ S? , ζ = eβ Y (R̂12)
2
/(2 ∆) > 1 and µ = eβ X

2
0 Y (R̂12) > 1,

r =


r11 τ−2 ζ−1 µ−1 τ−1 ζ−2µ τ−1 ζ−2 µ

τ−2 ζ−1 µ−1 r22 τ−1 ζ−2 µ τ−1 ζ−2 µ

τ−1 ζ−2 µ−1 τ−1 ζ−2 µ−1 r33 τ−2 ζ−1 µ

τ−1 ζ−2 µ−1 τ−1 ζ−2 µ−1 τ−2 ζ−1 µ r44

 . (5.121)
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The diagonal elements rii verify equation (5.116). Since Y
(
R̂12

)
� 1, the following holds µ > µ/ζ >

µ/ζ2 > 1, and some transitions are more probable than the others.

The initial probability of the steady state α is given by ∝ e−βW2(α). From equation (5.95), we have

that:

P(+,+)(0) = P(−,−)(0) =
1

Z(0)
µ ζ ; P(+,−)(0) = P(−,+)(0) =

1

Z(0)
µ−1 ζ , (5.122)

with Z(0) the normalization, Z(0) =
∑

α∈Ω Pα(0). One can check easily that detailed balance is then

satisfied.

The two quantities to compute are expressed with the expression (5.120), replacing the observable

O by X1X2. Using that the eigenvalues of the matrix r̃ and the matrix M are given by:

{λi} =

{
0,−2(ζ + τ)

µζ2τ2
,−2µ(ζ + τ)

ζ2τ2
,−

2
(
µ2 + 1

)
µζ2τ

}
, M =


µ −1 0 −µ−1

µ 1 0 −µ−1

1 0 −1 1

1 0 1 1

 , (5.123)

we determine the following expression, with Z(t) = 1,

〈X1(t)X1(0)X2(t)X2(0)〉0,2 =
X4

0

(1 + µ2)2

([
µ2ψ+(1)2 − ψ−(1)2

]2
+ µ2

[
ψ−(1)2 + ψ+(1)2

]2
e
−

2(µ2+1)
µζ2τ

t

)
.

(5.124)

System of one particle

In this case the transfer matrix in the basis {X0,−X0} = {+,−} and the initial probability are

simply given by:

r =

(
−τ−1 τ−1

τ−1 −τ−1

)
, P+(0) = P−(0) =

1

2
. (5.125)

The eigenvalues of r̃ and the matrix M are then given by:

{λi} =

{
−2

τ
, 0

}
, M =

(
−1 1

1 1

)
, (5.126)

from which we compute the following, with Z(t) = 1,〈
X1(t)2X1(0)2

〉
0,1

= X4
0 , 〈X1(t)X1(0)〉0,1 = X2

0 e
−2 t/τ . (5.127)

We find back the auto-correlation function of equation (5.105) since C(t) = 〈X1(t)X1(0)〉0,1 + O(ρ),

from which we obtain back χT ≡ ∂TC(t). This yields:

χT (t) = − 1

kBT 2

∆X6
0

2

t

τ
e−2 t/τ +O(ρ) . (5.128)

5.7.2 Four-point correlation function and susceptibility

The approach described above gives access to the self part of χ4 and to the function g4(r̂, t), that appear

in the expression (5.113). Using that
[
ψ−(1)2 + ψ+(1)2

]
= 2, we find that they are given by〈

X1(t)2X1(0)2
〉

0,1
− 〈X1(t)X1(0)〉20,1 = X4

0

(
1− e−4 t/τ

)
,

g4(r̂, t) = X4
0

[µ2ψ+(1)2 − ψ−(1)2
]2

+ 4µ2 e
−

2(µ2+1)
µζ2τ

t

(1 + µ2)2 − e−4 t/τ

 with r̂ > 1 .
(5.129)
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(kB T2)2

<δH2>
χT

2(t)

χ4(t)

1/2

χ4(∞)~X0
4

~ρβ2

0 0.5 1 1.5 2 2.5 3

t/τ

Figure 5.6: Schematic left and right sides of the bound Ndw(kBT
2)2 χ2

T (t)/
〈
δH2

〉
≤ Ndwχ4(t) (the overall

Ndw factors are not reported on the figure to alleviate the legend). The left term is non-monotonous with a

maximum at t = τ/2. Then, if Ndwχ4(∞) < Ndw(kBT
2)2 χ2

T (τ/2)/
〈
δH2

〉
, which is equivalent to X4

0 < ρβ2 for

our problem (see main text), χ4(t) must also be a non-monotonous function of t in order to satisfy the bound at

all times.

When the particles are decorrelated, g = 0, then (ζ, µ, ψ+(1), ψ−(1)) = 1 and one finds that all the

contributions to χ4 are zero, except the “self” part. The nonlocal part of χ4, g4(r̂, t), begins near 0 at

t = 0 and converges toward the square of the static two-point correlation function, Cstat(r̂) = 〈X1X2〉0,2,

when t → ∞. Cstat(r̂) can be determined by evaluating the square root of the infinite-time limit of

g4(r̂, t), and is a strictly increasing function of the inverse temperature β:

Cstat(r̂) =
(

lim
t→∞

g4(r̂, t)
)1/2

=
X2

0

1 + µ2

(
µ2ψ+(1)2 − ψ−(1)2

)
= X2

0 tanh
[
β X2

0 Y
(
R̂12

)]
+
Y
(
R̂12

)
∆

.

(5.130)

Between the two above limits, g4(r̂, t) and χ4(t) can eventually present a non-monotonous behavior. 3

χ4(t) must be non-monotonous in order to satisfy the bound given in equation (5.4) at all times t if

we satisfy a condition that is pictorially represented on figure 5.6, and corresponds to impose that the

long-time limit of χ4, limt→∞ χ4(t) = χ4(∞), is lower than (kBT
2)2 χ2

T (τ/2)/
〈
δH2

〉
. From the generic

expression of the bound in equation (5.4) and using that
〈
δH2

〉
0

= N cV kBT
2 and that χT (t) is given

by the equation (5.128), the bound can be rewritten as

χ4(t) ≥ β2 kB (N cV )−1

(
X6

0 ∆

2

)2 (
t

τ

)2

e−4 t/τ +O(ρ) . (5.131)

We can then express the condition to have a non-monotonous behavior of χ4(t) (and g4(r̂, t)) for our

problem, demanding to χ4(∞) to be smaller than the right-hand side of the above inequality evaluated

in t = τ/2. χ4(t) in the infinite-time limit is usually dominated by the static susceptibility to the

square, ρ
∫
d3r̂ Cstat(r̂)

2. In our case, the self part of χ4 dominates the long time limit since we are

in the low-ρ and low-g regime, and forms a plateau whose height is χ4(∞) ∼ X4
0/Ndw. This plateau

must be lower than the peak of the right-hand side of the inequality in equation (5.131) evaluated for

3χ4(t) is given by a sum of positive contributions, g4(r̂, t), for different values of r̂ and can present a non-monotonous

behavior with t only if g4(r̂, t) also in non-monotonous with t.
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t = τ/2, using that Ndw/N = ρ it gives:

X4
0/Ndw ≤ β2 kB

N cV

(
X6

0 ∆

2

)2

(1/2)2 e−2 ⇒ T � ρ1/2 . (5.132)

If the above condition is verified we should be in a regime where the bound is not trivially satisfied

by the self part and the static correlations of χ4. In the meantime, we remember that the condition

given in equation (5.34) must be respected otherwise the correlations would be dominated by the static

length scale, this condition is recalled here: T � ρ g.

β=30

β=40

β=50

0 1 2 3
0

t/τ(β)

g
4
(r

0
,t
/τ
)

;
C

s
ta

t(
r 0
)2

Figure 5.7: Representation of g4(r̂0, t) (here r0 ≡ r̂0), r̂0 > 1, as a function of t for various values of the

inverse temperature β. The static average Cstat(r̂0)2 is also represented. The parameters are fixed such that:

r̂0 = R̂12 = 1, g = 0.001, ρ = 0.1, ∆ = 1, K0 = 1.

β=30

β=40

β=50

χ4(t/τ)
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Figure 5.8: Representation of the left and right sides of the bound Ndw χ4(t) > Ndw (kBT
2)2 χ2

T (t)/
〈
δH2

〉
for

different values of β (the overall Ndw factors are not reported on the figure to alleviate the legend). All quantities

are computed with the master equation formalism. We clearly see that for times of order τ and when the the

bound is not trivially satisfied, i.e. by the self part of χ4(t), the right term Ndw (kBT
2)2 χ2

T (t)/
〈
δH2

〉
, dashed

lines, is larger than the left term Ndw χ4(t), plain lines, hence violating the said bound.

However, even in respecting these two conditions, i.e. ρ g � T � ρ1/2, g4 (and χ4) is a strictly

monotonous (and increasing) function of t, as it can be viewed on figure 5.7. 4

4Actually it can be non-monotonous in the limit of high temperatures, with a maximum at a time t0 = τ/2µζ2/(1 +
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As expected from the above argument, the bound given in equation (5.131) is then found to be

not satisfied at all times. Even if it is trivially satisfied when t � τ since the self part of χ4(t) is

always larger than the long time limit of χT (t), indeed Ndw limt�τ χ4(t) ' X4
0 is always larger than

Ndw limt�τ χT (t) ' 0, this is not so at times of order of the relaxation time τ as one can see on

figure 5.8.

Since the physical bound is violated, our result for χ4 and g4 are clearly wrong, and we are obviously

unable to determine a dynamical length scale from their behaviors. At present we have to understand

what are the possible sources that could have yield an error; the different possibilities are exposed in

more details in the conclusion.

5.8 Conclusion and perspectives

From a simple implementation of the Cauchy-Schwarz theorem one finds that the four-point suscep-

tibility, χ4(t), is bounded by below by a term depending on the three-point susceptibility squared,

χT (t)2. In glassy systems the two above quantities have been efficiently used to determine a nontrivial

dynamical length scale that characterizes how far can be two correlated events occurring at distinct

times t1 and t2. This length scale is maximal when |t1 − t2| is of order τ , the relaxation time of the

system, and can be related to the maximum of χ4. This dynamical length scale as well as the static

point-to-set length scale are two of the strongest candidates that could characterize the relevant fluc-

tuations responsible for the relaxation occurring in supercooled liquids. One does not know if they

can be considered as different evidences of the same physical phenomenon. If it is the case, is the

physical mechanism generating them linked to the glassy properties of supercooled liquids and can the

associated dynamical length scale be viewed as concomitant to the emergence of some cooperativity in

the system? Or, does the underlying physical mechanism have a non-glassy origin?

In this chapter we studied a model of independent Arrhenius systems coupled via a conservative

bath of harmonic oscillators for which the three-point susceptibility is known to be non-monotonous in

time, with a maximum at time of order τ which increases with the inverse temperature squared, T−2.

Since the bound should be satisfied in these systems, one eventually expects a non-monotonous χ4(t)

from which could be extracted a nontrivial dynamical length scale going at least as T−2. In parallel, one

knows from the beginning that the static of these systems is trivial, at least in the range of parameters

where the effective ferromagnetic coupling generated by the interaction with the bath can be neglected.

Hence, characterizing the dynamical length scale existing in such Arrhenius systems could allow one to

understand the non-glassy mechanisms at the origin of its existence. Such knowledge could be used as

a benchmark to distinguish the trivial, non-glassy, and nontrival, glassy, generators of this dynamical

length scale in supercooled liquids.

In Arrhenius systems at low T , a fluctuation of the order of the Arrhenius barrier (O(1)) is huge

compared to the thermal fluctuations, kBT . We found that these fluctuations of order 1 excite phonons

that propagate in the bath, each one carrying a correlation proportional to the square of the (small)

coupling between Arrhenius systems and the bath. These phonons propagate ballistically (with a

constant velocity c depending on the parameters of the bath) and the dynamical correlation that arises

from the peak of χT at times of order τ spreads on a dynamical length scale c τ and over a volume

of order (c τ)3 in dimension three. Here we have studied a simplified version of thermal bath with

µ2 − 2µζ2) log
(
2µζ−1/(1 + µ2)

)
. This t0 is positive only when ζ−2 < (1 + µ2)/(2µ) < ζ2 ⇒ exp

(
−β Y (r̂)2 /∆

)
<

cosh
(
β X2

0 Y (r̂)
)
< exp

(
β Y (r̂)2 /∆

)
, then only if β Y (r̂)2 � β Y (r̂)� 1. We can then make three expansions that yield

a supplementary condition for the temperature, β < 2/(∆X4
0 ). This is in contradiction with our primary assumption for

validity of the instanton method, β S? � 1, and cannot be considered as the relevant mechanism for non-monotonicity.
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quadratic couplings and this is why we have found a simple ballistic propagation of the phonons. In

a more realistic case, the couplings are not simply quadratic and the ballistic regime, that would exist

for short times, would be rapidly replaced by a diffusive regime. [203]

Then we have computed χ4(t) using a master equation formalism, however we obtained an incon-

sistent result since the bound evoked above is “violated” for times of order τ . We have therefore been

unable to go further in the characterization of the dynamical length scale(s) existing in our “simple”

problem.

To bypass this unsatisfactory situation, we have tried to understand the possible sources of error

that could arise from our study.

First, we could have neglected other important instantonic solutions that give rise to dynamical

correlations in χ4(t). To this respect, we have performed numerical computer simulations of the exact

generalized Langevin equations with the approximate nonlocal memory kernel of dissipation for a bath

containing two Arrhenius particles and yet, we have not been able to see any sign of the existence

of a peak in g4. A first possibility is that the approximations for the kernel were maybe too violent

and not valid. Then, if the existence of very small dynamical correlations that spread over a length

scale c τ is the sole source of dynamical correlation, the jump of one particle would create a signal

that would propagate through phonons and would change a little the potential barrier of the other

particle. Such effect would therefore be invisible in g4 obtained from computer simulations, since their

amplitude would be exponentially small and smeared by the statistic noise. However once integrated

over the relevant volume (c τ)3, which is exponentially large, they would have satisfied the bound.

Another possible explanation for the failure of these simulations could be that the instanton involving

the mutual jump of two particles over an Arrhenius barrier is responsible for the dynamical correlations,

and that it would not have been present in our result with the correct statistics since it requires quite

long times of simulation to happen.

Second, the error could come from one of the approximations made in this chapter. There are several

of them, but the most important one is the low-density expansion. It allowed us to compute correlations

existing in a bath containing Ndw particles at leading order via correlations existing in bathes containing

only one or two particles. Carrying too far this expansion, we could have simplified a correlation that

should have been computed for a bath containing two particles, i.e. 〈X1(0)X1(t)X2(0)X2(t)〉, in a

product of correlations computed for a bath containing only one particle, i.e. 〈X1(0)X1(t)〉2. For

example, if we did so in a regime where the two particles can effectively be dynamically correlated,

their mutual correlation cannot be factorized; it is the case if the distance separating them is smaller

than c τ , the ballistic length that phonons can cover in a time span equal to the Arrhenius relaxation

time after which the two particles totally decorrelate. This would mean in particular that all the

dynamical correlations mediated by the bath are trivial and propagate via phonons on ballistic length

scales.

We have tried to go beyond the low-density expansion, which would change some of the equations

of this chapter. This seems to yield a non-monotonous behavior of χ4 that could satisfy the bound and

from which a length scale could be extracted. However, all this is still very preliminary and begs for a

deeper understanding.
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The results of this chapter are under preparation to be published.

6.1 Introduction

In this chapter, we consider a different type of glassy systems than those studied above: the Ising spin

glass, which we have briefly introduced and reviewed in chapter 1. Our goal is to extend the formalism

of the nonperturbative renormalization group (NPRG) presented in chapter 2 to such a system in order

to investigate the long-distance behavior. As we will see, there are serious technical difficulties to

achieve this, mostly related to the nature of the order parameter field, but our hope is to be able to

tackle unsettled problems concerning the role fluctuations in spin glasses by a novel approach.

As discussed in the introductory chapter, the main open issues in spin glasses theory concern the

nature of the low-temperature (spin-glass ordered) phase and the existence of a transition in presence

of an applied magnetic field. In this work we consider as a first step a simpler question, that of critical

behavior associated with the transition between the paramagnetic and the spin-glass phases in zero

applied field.

We first recall the field theoretical description of the spin-glass transition point. The first treatment

to go from the microscopic EA Hamiltonian (1.26) to a continuous Ginzburg-Landau-Wilson field

theory was proposed by Harris and Lubensky [139, 204] in their RG treatment of the critical behavior

in zero applied field. A similar derivation was given shortly after in [205], who constructed a field
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theoretical Lagrangian up to cubic order using a Hubbard-Stratonovich transformation [206]. The use

of this transformation and the generic cubic field theory, with all possible terms generated during a

field expansion (argued to be necessary to study the transition in a field), can also be found in [207].

When performing the Hubbard-Stratonovich transformation, the replica trick is used to formally

integrate the disorder (see section 1.1.3.2). The collective overlap variables are defined as Qab(i) =

Sai S
b
i (1 − δab) (hence Qaa = 0 and Qab = Qba), where a and b refer to replicas and i to a site of the

lattice. Their average gives back the EA order parameter (see section 1.2.3).

The Hamiltonian is then expanded in powers of the field Qab around zero (to study the critical

behavior) and the continuum limit is taken. This gives at order O(Q4)

H[{Qab}] =

∫
ddx

1

2

∑
(ab)

(∂xQab(x))2 +
m1

2

∑
(ab)

Q2
ab(x) + w1

∑
(abc)

Qab(x)Qbc(x)Qca(x)

+u1

∑
(abcd)

Qab(x)Qbc(x)Qcd(x)Qda(x) + u2

∑
(ab)

Q4
ab(x) + u3

∑
(abc)

Q2
ab(x)Q2

bc(x) + u4

∑
(abcd)

Q2
ab(x)Q2

cd(x)

 ,

(6.1)

where
∑

(ab) ≡
∑

a<b,
∑

(abc) ≡
∑

a<b<c, etc.

This effective Hamiltonian has an important symmetry that it inherits from the original Edwards-

Anderson Hamiltonian through the replica method: if for one replica index, say a, one changes Qab(x)

in −Qab(x) for all space points x and all other replica indices b, the Hamiltonian is left invariant. As

a result in each polynomial term, a given replica index must appear an even number of times. This is

easily generalized to higher order terms not present in equation (6.1).

6.2 Ising spin glass in zero field: previous results

6.2.1 Mean-field critical exponents and beyond with perturbative RG

Within the mean-field description, the critical exponents are given by the classical values

νMF = 1/2,

ηMF = 0,
(6.2)

which are valid above an upper critical dimension du = 6. [59, 15, 139]

The first RG study of the critical behavior was performed by Harris and Lubensky [139]. They

computed, in perturbation around the mean field solution in d = 6 − ε, the critical exponents of the

spin glass transition at order O(ε).

The ε expansion was extended to order O(ε2) in [208]. The coefficients of the O(ε3) of the serie were

first computed in [209] but were found to be erroneous and were corrected in [210]. In practice, the

perturbative RG can involve a very high number of diagrams (going to O(εp) generates all the p-loop

diagrams) and the computation of their contributions rapidly becomes tedious. No calculation beyond

O(ε3) has been carried out. The three-loop critical exponents of the spin glass transition are given by

ν(ε) =
1

2
+

5

12
ε− 1.6574 ε2 − 1.2597 ε3 +O(ε4) ,

η(ε) = −ε
3

+ 1.2593 ε2 + 0.7637 ε3 +O(ε4) .
(6.3)
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Figure 6.1: Critical exponents (a) ν and (b) η from both computer simulations and from the RG ε-expansion.

The ε-expansion is very far from the computer simulations results as soon as the dimension is d . 5.9− 5.8.

They are shown in figure 6.1 together with results of computer simulations. Except extremely close

to d = 6, the predictions from the ε-expansion are strikingly poor, being complete nonsense below

d ' 5.9 or 5.8. This rather unusual feature may also explain why no one attempted to go to the next

order in the perturbation in ε. We will see that a much better and simpler result can be reached with

a nonperturbative RG approach.

6.2.2 Critical exponents from computer simulations and lower critical dimension

The most accurate determination of the critical exponents of the zero field transition of the EA Ising

spin glass known to date are listed in the following table. They are computed for a Gaussian distribution

of the random couplings. The values for dimensions d = 3, 4, 5 and d ≥ 6 are respectively collected

from [211, 212, 213].

Table 6.1: Critical exponents of the Ising spin glass from simulations in various dimensions d. The mean field

(MF) values are also given.

d d ≥ 6 5 4 3

ν 1/2 0.720(5) 1.113(1) 2.562(42)

η 0 -0.22(2) -0.30(5) -0.3900(36)

The other exponents can be deduced from the standard scaling relations, given in equation (2.53).

We recall that the transition in the Ising spin glass remains down to a lower critical dimension dl
between 2 and 3 (see also section 1.2.2).

6.3 Approximation scheme for the nonperturbative RG for the Ising

spin glass

We saw in chapter 2 that the derivative expansion provides a powerful approximation scheme to solve

the exact functional RG equation for the effective average action. In the context of the critical behavior

of the Ising spin glass with field theoretical description based on the Hamiltonian (or “bare action”)
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given in equation (6.1), the order ∂2 of the expansion of the effective average action reads

Γk[{Qab}] =

∫
ddx

1

2

∑
(cd),(ef)

Zk;cd,ef ({Qab(x)}) ∂xQcd(x)∂xQef (x) + Uk ({Qab(x)})

 , (6.4)

As previously discussed, an important symmetry of the problem (in zero applied magnetic field) is that

when changing Qab(x) to −Qab(x) for a given replica index a for all space points x and all other replica

indices b 6= a, the effective action should be left invariant. This also constrains the form of the quadratic

infrared (IR) regulator used to suppress long wavelength fluctuations of the overlap field, which can be

chosen as

∆Sk [{Qab}] =
1

2

∑
(ab)

∫ ∫
ddx ddx′Rk

(
|x− x′|

)
Qab(x)Qab(x

′) . (6.5)

The flow of the effective average action Γk is described by the exact RG equation

∂tΓk [{Qab}] =
1

2

∑
(ab)

∫
q
∂tRk(q

2)

[(
�(2)
k +Rk 1

)−1
]ab,ab
q,−q

(6.6)

where
∫
q =

∫ ddq
(2π)d

,
∑

(ab) ≡
∑

a<b, and �(2)
k is the matrix of the second derivatives, i.e.,

Γ
(2)
k;x,cd,x′,ef [{Qab}] =

δ2

δQcd(x)δQef (x′)
Γk [{Qab}] , (6.7)

with c < d and e < f .

One immediately sees from equation (6.6) that there is a severe difficulty for deriving RG flow

equations for functions of this order O(∂2) as done for the simpler problem of the ϕ4 theory discussed

in chapter 2. Indeed, even if one considers spatially uniform configurations of the overlap field, Qab(x) =

Qab, there is a priori no way to properly invert the matrix �(2)
k + Rk1 in replica indices: either one

keeps generic configurations in replica space and the inversion is not possible in general (in the absence

of a procedure generalizing the expansion in free replica sums used to derive the nonperturbative RG

theory of the RFIM [214]) or one chooses configurations with a specific symmetry in replica indices,

e.g., a replica symmetric configuration with Qab = Q for all a and b different, and one cannot obtain a

closed set of functional equations.

An alternative is then to further expand the functions Zk and Uk around a nontrivial configuration,

as also often employed in nonperturbative RG studies. [25] A choice that has been proven efficient for

retaining the nonperturbative character of the RG method is to expand around one of the (nonzero)

minima of the running potential Uk. [25] (This implies before all that fluctuations are accounted for,

the system is in the symmetry-broken phase with a nontrivial minimum different from zero.) In what

follows, for studying the critical point of the Ising spin glass in zero field, we choose a replica symmetric

minimum of Uk ({Qab}), i.e.,

U
(1)
k;cd ({Qk}) =

δ

δQcd
Uk ({Qab})

∣∣∣
Qab=Qk

= 0 (6.8)

for all c < d. For convenience, we will use in the following the short-hand notation |Qk to indicate that

a function or its derivatives are evaluated for all Qab’s equal to the minimum Qk.

For the kinetic (gradient) term of the effective average action, we will consider the lowest-order

approximation,

Zk;cd,ef ({Qab}) ' Zk δec δfd (6.9)
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where Zk ≡ Zk;ab,ab ({Qk}) is given by

Zk =
1

δ(d)(0)

d

dq2

(
δ2 Γk

δQab(q)δQab(−q)

∣∣∣
Qk

) ∣∣∣
q2=0

(6.10)

with δ(d)(0) = (2π)−d V and V the volume of the system.

More care is needed for the expansion around Qk of the potential Uk ({Qab}). Indeed we would like

to work with an expansion that when truncated does not break the symmetry of the effective action

already mentioned and in which the definition of the coupling constants (evaluated at the minimum)

does not depend on the order of the truncation. Let us illustrate these considerations with a (much)

simpler problem, that of the standard ϕ4 theory with Z2 inversion symmetry. The theory has an unique

invariant (for the Z2 symmetry), ρ(x) = 1/2φ(x)2. The potential can then be expanded around the

nontrivial minimum ρk = 1/2φ2
k as

Uk(φ) ≡ Uk(ρ) =
∞∑
i=2

λk;2i

i!
(ρ− ρk)i . (6.11)

This form of the potential, when truncated at any order i = p, encodes by construction the Z2 symmetry.

The coupling constants λk,2i for i ≤ p can be defined in a way that does not depend on the level p of

the truncation. An obvious choice is

λk;2i =
∂i

∂ρi
Uk(ρ)

∣∣∣
ρk
, (6.12)

as the contribution of the terms of higher order than i vanishes when evaluated at the minimum. This

choice however relies on the uniqueness of the invariant ρ and will not be of any use when considering the

spin-glass problem in which the number of invariants is infinite. One can instead make use of derivatives

with respect to the original φ field and a proper definition can still be found by obtaining the coupling

constants λk;4, λk;6, · · · , λk;2p from the derivatives with respect to φ up to order p evaluated in the

minimum φk. For instance, U
(1)
k (φk) defines φk; adding U

(2)
k (φk) = λk;4 φ

2
k then defines λk;4; adding

U
(3)
k = 3λk;4 φk + λk;6 φ

3
k defines λk;6; etc. At the level p, truncating the potential at any order strictly

larger than p does not change the expressions of the coupling constants up to λk;2p.

6.4 Expansion in invariants of the potential around the minimum

and definition of the coupling constants

In this section we detail how to expand the effective average potential Uk around the replica symmetric

minimum configuration Qk while keeping track at each order of the symmetry of the effective action,

i.e., the invariance for any given replica index a under the change Qab(x) → −Qab(x) for all other

replica indices b and all space points x. Invariants here refer to combinations of the overlap fields that

satisfy this symmetry. There is a list of such quantities in appendix D.1.

To achieve our goal, we do not expand the potential in mere powers of the overlap fluctuations

δQab = Qab −Qk as done, e.g., in [215, 207]. As a first step, one can reorganize the expansion in Qab’s

similar to that given in equation (6.1) with the help of invariants that vanish when evaluated at the

minimum Qk (meaning that all the overlaps Qab are set equal to Qk) and, apart from the lowest order

are such that their first derivatives also vanish when evaluated at Qk.

We define a variable ρ
(2)
ab written in terms of the unique invariant of O(Q2),

ρ
(2)
ab =

1

2
(Q2

ab −Q2
k) , (6.13)
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and the higher-order terms up to p = 5 (the replica indices are distinct, a, b, c, d, e 6=) are defined as

follows:

µ
(3)
abc = QabQbcQca −Q3

k −Qk
(
ρ

(2)
ab + ρ

(2)
bc + ρ(2)

ca

)
,

µ
(4)
abcd = QabQbcQcdQda −Q4

k −Q2
k

(
ρ

(2)
ab + ρ

(2)
bc + ρ

(2)
cd + ρ

(2)
da

)
,

λ
(4)
ab = ρ

(2)
ab ρ

(2)
ab , λ

(4)
abc = ρ

(2)
ab ρ

(2)
bc , λ

(4)
abcd = ρ

(2)
ab ρ

(2)
cd ,

µ
(5)
abcde = QabQbcQcdQdeQea −Q5

k −Q3
k

(
ρ

(2)
ab + ρ

(2)
bc + ρ

(2)
cd + ρ

(2)
de + ρ(2)

ea

)
,

ν
(5)
abc = ρ

(2)
ab µ

(3)
abc, ν

(5)
abcd =

1

2
ρ

(2)
ab

(
µ

(3)
acd + µ

(3)
bcd

)
, ν

(5)
abcde = ρ

(2)
ab µ

(3)
cde .

(6.14)

The terms of order O(Q6) are given in appendix D.2. Each of the above term is such that replica indices

appear an even number of times, as desired. The expansion of the potential can then be reexpressed as

Uk({Qab}) = Wk,1(Qk)
∑
(abc)

µ
(3)
abc + Uk,1(Qk)

∑
(abcd)

µ
(4)
abcd + Uk,2(Qk)

∑
(ab)

λ
(4)
ab

+ Uk,3(Qk)
∑
(abc)

λ
(4)
abc + Uk,4(Qk)

∑
(abcd)

λ
(4)
abcd

+ Vk,1(Qk)
∑

(abcde)

µ
(5)
abcde + Vk,2(Qk)

∑
(abc)

ν
(5)
abc

+ Vk,3(Qk)
∑

(abcd)

ν
(5)
abcd + Vk,4(Qk)

∑
(abcde)

ν
(5)
abcde + · · · .

(6.15)

The terms of order Q6 are given in equations (D.1), (D.2)and (D.3). The above expression of Uk is

not satisfying yet, although the invariance is now manifest at each order. Indeed, as explained in the

simple example of the φ4 theory treated above, we also require that the coupling constants (i.e., the

parameters in front of the various invariants) be defined through derivatives evaluated at the minimum

Qk in such a way that the expression does not depend on the order of the truncation of the expansion.

As can be seen with the help of the tables in appendix D.3, second-order derivatives of Uk evaluated

at the minimum, for instance, may involve terms of the expansion in equation (6.15) up to arbitrarily

high orders (contrarily to what found above for the φ4 theory). One should therefore proceed to

an additional resummation and reorganization of all the terms so that the newly defined coupling

constants up to a given order, say p, can be defined through derivatives of order p or less in a way that

is independent on the level q of the truncation, provided of course that q ≥ p.
The procedure has unfortunately to be implemented order by order explicitly. We use the derivatives

of the various terms of the expansion in equation (6.15) evaluated at the minimum Qk, which are listed

up to O(Q5) and to fourth-order derivatives in tables D.3 to D.5 of appendix D. One then has to

consider a term by term approach to ensure that all new coupling constants up to order p are exactly

defined from derivatives of order up to n ≤ p evaluated at Qk, irrespective of the order q ≥ p of the

truncation. (This implies that these derivatives when applied to any term of order larger than q gives

exactly zero.) We have checked the construction explicitly up to order q = 6. However, the number

of derivatives growing with the order more rapidly than the number of possible invariants (hence, of

coupling constants), the problem appears underconstrained and one expects that it is always possible

to find a solution. 1 The solution however is not unique and the coupling constants may therefore be

1At any order p the number of derivatives is given by the number of possible multigraphs with an infinite set of nodes

and with p edges where the loops are forbidden [216, 217, 218] and the number of invariants is given by the number of

Euler multigraphs with the same property [219, 220].
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defined through different sets of derivatives. In an exact treatment this has of course no consequences,

but it does when considering an approximation where the potential is truncated at given order.

Let us now illustrate the procedure at the lowest orders. We introduce for convenience the variables

X
(p)
i (p is the order of the term, i the label of the associated coupling constant) defined by:

X
(3)
1 =

∑
(abc)

µ
(3)
abc , X

(4)
1 =

∑
(abcd)

µ
(4)
abcd , X

(4)
2 =

∑
(ab)

λ
(4)
ab , X

(4)
3 =

∑
(abc)

λ
(4)
abc , X

(4)
4 =

∑
(abcd)

λ
(4)
abcd ,

X
(5)
1 =

∑
(abcde)

µ
(5)
abcde , X

(5)
2 =

∑
(abc)

ν
(5)
abc , X

(5)
3 =

∑
(abcd)

ν
(5)
abcd , X

(5)
4 =

∑
(abcde)

ν
(5)
abcde , etc. ,

(6.16)

and we look for an expansion of the potential Uk in the form

Uk({Qab}) = W̃k,1X
(3)
1 +

4∑
i=1

Ũk,i X̃
(4)
i +

4∑
i=1

Ṽk,i X̃
(5)
i +O(Q6) , (6.17)

which corresponds to a rearrangement of the expression in equation (6.15) with new coupling constants

and new invariants distinguished by a tilde.

At the lowest order, we require that one exactly has

W̃k,1 =
δ3Uk

δQabδQbcδQca
, (6.18)

where a, b, c are all distinct (one can, e.g., choose a < b < c). This condition is satisfied at each

subsequent order of a truncation of the expansion of Uk if order by order, the third derivative involved

in equation (6.18) gives zero when acting on any invariant X̃
(p)
i with p ≥ 4. These invariants are linear

combinations of the original X
(q)
i ’s with q ≤ p. (By construction, X̃

(3)
1 = X

(3)
1 .)

From table D.3, one can check that δ3/(δQabδQbcδQca) acting on any X
(4)
i is zero when evaluated

at the minimum. Hence, X̃
(4)
i = X

(4)
i . For the O(Q5) terms, the solution is of the form

X̃
(5)
i = X

(5)
i −

4∑
j=1

bij QkX
(4)
j − ciQ

2
kX

(3)
1 (6.19)

where the coefficients bij and ci must be chosen such that δ3X̃
(5)
i /(δQabδQbcδQca)|Qk = 0. This re-

quirement is easily satisfied considering that there are 20 unknowns for only 4 constraints.

At the next order, i.e., O(Q4), one has to choose the protocol to define the coupling constants Ũk,i,

i = 1, · · · , 4, knowing that W̃k,1 is defined by equation (6.18). As detailed in appendix D.2, one can

come up with two different acceptable sets of conditions using all three derivatives of second order and

one derivative of third order, all evaluated at the minimum Qk. One finds

δ2Uk
δQ2

ab

∣∣∣
Qk

= −(n− 2)Qk W̃k,1 − (n− 2)(n− 4)Q2
k Ũk,1 +

1

3
Q2
kŨk,2

δ2Uk
δQabδQbc

∣∣∣
Qk

= Qk W̃k,1 + (n− 3)Q2
k Ũk,1 +Q2

kŨk,3

δ2Uk
δQabδQcd

∣∣∣
Qk

= 2Q2
k Ũk,1 +Q2

kŨk,4

δ3Uk
δQabδQbcδQca

∣∣∣
Qk

= W̃k,1 ,

(6.20)
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and either (later called choice (A))

δ3Uk
δQ2

abδQcd

∣∣∣
Qk

= Qk Ũk,4 , (6.21)

or (and choice (B))
δ3Uk

δQabδQbcδQcd

∣∣∣
Qk

= Qk Ũk,1 . (6.22)

It is possible to define the invariants X̃
(5)
i such that they do not contribute to these derivatives evaluated

at Qk (see appendix D.2). We expect that this is also possible for higher-order terms because the system

of linear equations to solve has many more unknowns than the number of constraints. In principle the

procedure can be generalized to consider higher orders. In practice we have only studied the two orders

presented above.

In what follows we show how to implement the nonperturbative RG by using the above considera-

tions.

6.5 Implementing the nonperturbative RG with the chosen approx-

imation scheme

We can now insert the chosen ansatz for the effective average action,

Γk [{Qab}] =

∫
ddx

1

2
Zk
∑
(cd)

(∂xQcd(x))2 + Uk ({Qab(x)})

 , (6.23)

where Uk is expanded in invariants around the minimum Qk as in equation (6.17), into the exact RG

equation, equation (6.6).

At the lowest order of the expansion of Uk, one has to consider the RG flow of 3 parameters, Zk,

Qk, and W̃k,1. The corresponding equations can be derived from the definitions of the three quantities,

equation (6.10) for the field renormalization constant Zk, equation (6.8) for the nontrivial minimum

of the potential Qk, and equation (6.18) for the coupling constant W̃k,1, by differentiating the exact

RG equation in equation (6.23) and evaluating the final expression for a uniform configuration of the

field overlaps with Qab = Qk for all distinct pairs (a, b) of replica indices. When proceeding to these

manipulations, the ansatz in equation (6.23) with Uk truncated at the lowest order is inserted in the

right-hand side of the functional RG flow equation.

For spatially uniform field configurations and the ansatz in equation (6.23), one has

Γ
(2)
k;ab,cd(q, q

′) = δ(d)(q + q′) Γk;ab,cd(q
2) (6.24)

with

Γ
(2)
k;ab,cd(q

2) = Zkq
2δacδbd + U

(2)
k;ab,cd , (6.25)

where we have taken a < b and c < d, and for the proper (1-particle irreducible) vertices of order n ≥ 3,

Γ
(n)
k;a1b1,··· ,anbn(q1, · · · , qn) = δ(d)(q1 + · · · qn)U

(n)
k;a1b1,··· ,anbn . (6.26)

After differentiating the exact functional RG equation for Γk and evaluating the result at the

minimum Qk of the potential, one obtains expressions of the form

∂tU
(1)
k;ab

∣∣∣
Qk

=
1

2
∂̃tD

(3)
ab (0)

∣∣∣
Qk
, (6.27)
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∂tΓ
(2)
k;ab,cd(q

2)
∣∣∣
Qk

=
1

2
∂̃t

{
E

(4)
ab,cd(0)− E(3),(3)

ab,cd (q2)
} ∣∣∣

Qk
, (6.28)

and

∂tU
(3)
k;ab,cd,ef =

1

2
∂̃t

{
2F

(3),(3),(3)
ab,cd,ef (0)− F (4),(3)

ab,cd;ef (0)− F (4),(3)
ab,ef ;cd(0)− F (4),(3)

cd,ef ;ab(0) + F
(5)
ab,cd,ef (0)

} ∣∣∣
Qk
.

(6.29)

etc., where the operator ∂̃t acts only on the IR cutoff function Rk(q
2), and the expressions of the various

quantities D
(3)
ab (0), E

(4)
ab,cd(0), · · · , F (5)

ab,cd,ef (0) are given in appendix D.4. These expressions involve the

proper vertices obtained from equation (6.26) as well as the propagators Pk;ab,cd(q
2) evaluated for

spatially uniform overlap fields (in practice here all chosen equal to Qk):

Pk;ab,cd(q
2) =

[(
�(2)(q2) +Rk(q

2)1
)−1

]
ab,cd

, (6.30)

where a < b and c < d. For the replica-symmetric minimum configuration, Qab = Qk, one has

Γ
(2)
k;ab,cd(q

2) = (1− δa,b)(1− δc,d)
(

Γ
(2)
k;1(q2)[δa,cδb,d + δa,dδb,c]

+ Γ
(2)
k;2(q2)[δa,d(1− δb,c) + δb,c(1− δa,d) + δa,c(1− δb,d) + δb,d(1− δa,c)]

+Γ
(3)
k;2(q2)(1− δa,c)(1− δa,d)(1− δb,c)(1− δb,d)

)
,

(6.31)

with (distinct a, b, c, d)

Γ
(2)
k;1(q2) = Γ

(2)
k;ab,ab(q

2) = q2Zk + U
(2)
k;1 ,

Γ
(2)
k;2(q2) = Γ

(2)
k;ab,bc(q

2) = U
(2)
k;2 ,

Γ
(2)
k;3(q2) = Γ

(2)
k;ab,cd(q

2) = U
(2)
k;3 .

(6.32)

It is easy to check that the matrix Pk;ab,cd(q
2) has the same form as that of Γ

(2)
k;ab,cd(q

2) in equa-

tion (6.31) with

Pk,1(q2) =
2

n(n− 1)

 1
2n(n− 3)

Γ
(2)
k;R(q2) +Rk(q2)

+
n− 1

Γ
(2)
k;A(q2) +Rk(q2)

+
1

Γ
(2)
k;L(q2) +Rk(q2)

 ,
Pk,2(q2) =

2

n(n− 1)(n− 2)

− 1
2n(n− 3)

Γ
(2)
k;R(q2) +Rk(q2)

+

1

2
(n− 4)(n− 1)

Γ
(2)
k;A(q2) +Rk(q2)

+
n− 2

Γ
(2)
k;L(q2) +Rk(q2)

 ,
Pk,3(q2) =

2

n(n− 1)(n− 2)

 n

Γ
(2)
k;R(q2) +Rk(q2)

− 2(n− 1)

Γ
(2)
k;A(q2) +Rk(q2)

+
n− 2

Γ
(2)
k;L(q2) +Rk(q2)

 ,
(6.33)

where we have introduced the eigenvalues of �(2)
k , Γk;R,A,L(q2) = Zk q

2 + U
(2)
k;R,A,L, with the “masses”

given by

U
(2)
k;R = U

(2)
k;1 − 2U

(2)
k;2 + U

(2)
k;3 ,

U
(2)
k;A = U

(2)
k;1 + (n− 4)U

(2)
k;2 − (n− 3)U

(2)
k;3 ,

U
(2)
k;L = U

(2)
k;1 + 2(n− 2)U

(2)
k;2 +

1

2
(n− 2)(n− 3)U

(2)
k;3 .

(6.34)
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and corresponding to the “replicon” (R), “anomalous” (A), and “longitudinal” (L) sectors of the n(n−1)
2 ×

n(n−1)
2 matrix. [6] In the limit n → 0, one can see that the anomalous and longitudinal masses are

degenerate, with their difference going to 0 linearly in n. When n → 0, it is then convenient to

introduce the quantity

U
(2)
k;AL =

U
(2)
k;A − U

(2)
k;L

n
= −U (2)

k;2 −
(n− 3)

2
U

(2)
k;3 . (6.35)

In this limit the propagators Pk,1, Pk,2, Pk,3 become

Pk,1(q2)
∣∣∣
n=0

= 3PR(q2)− 2PA(q2)− 2U
(2)
k;AL P

2
A(q2)

∣∣∣
n=0

,

Pk,2(q2)
∣∣∣
n=0

=
3

2
PR(q2)− 3

2
PA(q2)− 2U

(2)
k;AL P

2
A(q2)

∣∣∣
n=0

,

Pk,3(q2)
∣∣∣
n=0

= PR(q2)− PA(q2)− 2U
(2)
k;AL P

2
A(q2)

∣∣∣
n=0

,

(6.36)

with

PR(q2)
∣∣∣
n=0

=
1

q2Zk +Rk(q2) + U
(2)
k;R

∣∣∣
n=0

,

PA(q2)
∣∣∣
n=0

=
1

q2Zk +Rk(q2) + U
(2)
k;A

∣∣∣
n=0

.

(6.37)

Finally, from equation (6.27) we obtain the flow of Qk. By deriving equation (6.28) with respect to

q2 (which therefore only involves E
(3),(3)
ab,cd (q2)) and evaluating the result in q2 = 0 we obtain the flow of

Zk and from equation (6.29) specified to Uk;ab,bc,ca(Qk) (distinct a, b, c) we obtain the flow of W̃k,1. In all

cases, we have to use the identity that for any function fk, ∂tfk(Qk) = ∂tfk|Qk +
∑

(cd) fk;cd(Qk) ∂tQk.

When studying the next order of the truncation, one also needs the flow of the 4 coupling constants

Ũk,i, or equivalently the flow of the 4 derivatives in equations (6.20) and (6.21) or (6.22) evaluated in Qk:

the flow of the 3 second-order derivatives is obtained from equation (6.28) and that of the additional

third-order derivative from equation (6.29).

In the practical implementation of this nonperturbative RG, we have used the so-called optimized

regulator proposed by Litim, which is given by the expression

Rk(q
2) = Zk(k

2 − q2)Θ(k2 − q2) . (6.38)

It gives a mass equal to Zk (k2 − q2) to the field fluctuations with q2 ≤ k2, hence freezing them, and

does not affect the ones with q2 > k2 as it vanishes in this range, see also section 2.2.2.1.

6.6 Nonperturbative RG equations in dimensionless form

In order to search for the fixed point controlling the critical point of the Ising spin glass in zero applied

field, one needs to cast the RG flow equations derived in the preceding section into a dimensionless

form. This can be done by introducing scaling dimensions and dimensionless quantities (which will be

denoted by lowercase letters while their dimensionful counterpart are denoted by capital letters):

Uk = kd uk ,

Q = kd/2−1Z
−1/2
k q ,

U
(n)
k = kd+n(1−d/2)Z

n/2
k u

(n)
k .

(6.39)
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We also introduce dimensionless momentum, regulator and propagator,

q = k q̂ ,

Rk(q
2) = Zkk

2 rk
(
q̂2
)
,

Pk;ab,cd(q
2) = Z

−1/2
k k−2 pk;ab,cd

(
q̂2
)
.

(6.40)

A running anomalous dimension ηk is also defined from the flow equation of Zk,

ηk = −∂t logZk , (6.41)

which, by using the definition of Zk and the flow equation in equation (6.28) can be rewritten as

ηk =
1

2

d

dp̂2

(
∂̃te

(3),(3)
ab,ab

(
p̂2
) ∣∣∣
qk

) ∣∣∣
p̂2=0

, (6.42)

where e(3),(3) is the dimensionless counterpart of E(3),(3). In deriving equation (6.42) we have used the

fact that E(4) does not depend on p̂2 and that similarly Γ
(3)
k;ac,cd,ef = U

(3)
k;ac,cd,ef does not depend on p̂2

in the present approximation. The explicit expression of e
(3),(3)
ab,ab

(
p̂2
)

is for instance

e
(3),(3)
ab,ab (p̂2) =

∑
(ef),(gh),
(ij),(lm)

∫
q̂
u

(3)
k;ab,ef,gh pk;gh,ij(q̂

2)u
(3)
k;ab,ij,lm pk;lm,ef

(
|~̂q + ~̂p|2

)
. (6.43)

The flow of the needed derivatives of the potential evaluated in the minimum in dimensionless form

is obtained from equations (6.28), (6.29) and generically read

∂tu
(n)
k;a1b1,...,anbn

(qk) =
[
−d+

n

2
(d− 2 + ηk)

]
u

(n)
k;a1b1,...,anbn

(qk) + ∂tu
(n)
k;a1b1,...,anbn

∣∣∣
qk

+ δqk
∑

(an+1bn+1)

u
(n+1)
k;a1b1,...,anbn,an+1bn+1

(qk)
(6.44)

where we have defined

δqk = q̇k +
1

2
(−2 + d+ ηk) qk . (6.45)

The notation ẋ = dx/dt is used when there is no ambiguity. From equation (6.44) one easily obtains

that

δqk =
1

2

∂̃td
(3)
ab (0)|qk∑

(cd) u
(2)
k;ab,cd

, (6.46)

where d
(3)
ab again denotes the dimensionless counterpart of D

(3)
ab and the denominator can be simply

rewritten as ∑
(cd)

u
(2)
k;ab,cd(qk) = u

(2)
k;1(qk) + 2(n− 2)u

(2)
k;2(qk) +

1

2
(n− 2)(n− 3)u

(2)
k;3(qk)

= u
(2)
k;L(qk) ,

(6.47)

where u
(2)
k;L(qk)’s is the dimensionless longitudinal mass evaluated in qk.
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6.7 Lowest-order O(Q3) truncation

We consider now the lowest-order approximation in which the expansion of the potential Uk in equa-

tion (6.17) is truncated at the first nonzero term:

Uk({Qab}) = W̃k,1X
(3)
1 (6.48)

where W̃k,1 is defined by equation (6.18). This approximation of the nonperturbative RG which we will

refer to as “NPRG-0” has already been discussed in section 6.5.

The different field derivatives of Uk appearing in the flow equations can be expressed in this trun-

cation as

U
(2)
k;ab,ab

∣∣∣
Qk

= −(n− 2)Qk W̃k,1

U
(2)
k;ab,bc

∣∣∣
Qk

= Qk W̃k,1

U
(2)
k;ab,cd

∣∣∣
Qk

= 0

U
(3)
k;ab,bc,ca

∣∣∣
Qk

= W̃k,1

U
(3)
k;ab,ab,ab

∣∣∣
Qk

= 0

U
(3)
k;ab,ab,bc

∣∣∣
Qk

= 0

U
(3)
k;ab,ab,cd

∣∣∣
Qk

= 0

U
(3)
k;ab,bc,cd

∣∣∣
Qk

= 0

U
(3)
k;ab,ac,ad

∣∣∣
Qk

= 0

U
(3)
k;ab,ac,de

∣∣∣
Qk

= 0

U
(3)
k;ab,cd,ef

∣∣∣
Qk

= 0

U
(i)
k

∣∣∣
Qk

= 0 for i ≥ 4

(6.49)

with distinct a, b, c, d, e, f . (We recall that the equation U
(3)
k;ab,bc,ca

∣∣∣
Qk

= W̃k,1 is true beyond the present

truncation.)

The three coupled dimensionless flow equations read

ηk =
1

2
w2
k,1

d

dp̂2

(
∂̃tẽ

(3),(3)
ab,ab

(
p̂2
) ∣∣∣
qk

) ∣∣∣
p̂=0

,

q̇k = −1

2
(−2 + d+ ηk) qk +

1

2(n− 2) qk
∂̃td̃

(3)
ab (0)

∣∣∣
qk
,

(6.50)

as u
(2)
k;L(qk) = (n− 2) qk wk,1 from equation (6.34), and

ẇk,1 =
1

2
(−6 + d+ 3ηk)wk,1 + w3

k,1 ∂̃tf̃
(3),(3),(3),(3)
ab,bc,ca (0)

∣∣∣
qk
. (6.51)

We have defined the dimensionless coupling constant wk,1 associated with W̃k,1 and we intro-

duced the tilde quantities as ẽ
(3),(3)
ab,ab

(
p̂2
) ∣∣∣
qk

= w−2
k,1 e

(3),(3)
ab,ab

(
p̂2
) ∣∣∣
qk

, d̃
(3)
ab (0)

∣∣∣
qk

= w−1
k,1 d

(3)
ab (0)

∣∣∣
qk

and

f̃
(3),(3),(3),(3)
ab,bc,ca (0)

∣∣∣
qk

= w−3
k,1 f

(3),(3),(3),(3)
ab,bc,ca (0)

∣∣∣
qk

to make the coupling constant wk,1 apparent in the flow

equations. The definitions of the dimensionless diagrams are given with dimensions in: e
(3),(3)
ab,ab (p̂) (D.20),

d
(3)
ab (0) (D.19) and f

(3),(3),(3),(3)
ab,bc,ca (0) (D.21). After having performed the sums over replica indices, we
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find

d̃
(3)
ab (0)

∣∣∣
qk

= 2(n− 2)

∫
q̂
pk,2

(
q̂2
) ∣∣∣
qk
,

ẽ
(3),(3)
ab,ab (p̂2)

∣∣∣
qk

= 2(n− 2)

∫
q̂

[
pk,1

(
q̂2
)
pk,1

(
|q̂ + p̂|2

)
+(n− 2) pk,2

(
q̂2
)
pk,2

(
|q̂ + p̂|2

)
+ (n− 3) pk,3

(
q̂2
)
pk,3

(
|q̂ + p̂|2

)] ∣∣∣
qk
,

f̃
(3),(3),(3)
ab,bc,ca (0)

∣∣∣
qk

=

∫
q̂

{
(n− 2) p3

k,1

(
q̂2
)

+ 3(n− 2) pk,1
(
q̂2
) [

(n− 2) p2
k,2

(
q̂2
)

+ (n− 3) p2
k,3

(
q̂2
)]

+ [n((n− 9)n+ 54)− 104] p3
k,2

(
q̂2
)

+ 6(n− 3)(3n− 10) p2
k,2

(
q̂2
)
pk,3(q̂,−q̂)

+3(n− 4)(n− 3)(n+ 2) pk,2
(
q̂2
)
p2
k,3

(
q̂2
)

+ 4(n− 5)(n− 4)(n− 3) p3
k,3

(
q̂2
)} ∣∣∣

qk
.

(6.52)

The first and last equations of (6.52) involve q̂-integrations of products of propagators
∏m
i=1 pai

(
q̂2
)

for m = 1, 3 with the ai’s ∈ {1, 2, 3}. Using equation (6.36), the propagators p1,2,3 are rewritten in

terms of the diagonal propagators pR,A. As a consequence, we have to compute only one kind of integral

in the flow equations of qk and wk,1; it is given by:

j(R,nR;A,nA) = vd ∂̃t

∫ ∞
0

dq̂ q̂d−1 pR
(
q̂2
)nR pA

(
q̂2
)nA ∣∣∣

qk
, (6.53)

with nR and nA integers such that 1 ≤ nR + nA ≤ 2m. The computation of this integral can be

performed using the expressions of pR,A
(
q̂2
)
, rk

(
q̂2
)

and the Litim regulator in equation (6.38), and

gives in the limit n→ 0:

j(R,nR;A,nA) = −vd
2

d

(
1− ηk

d+2

)
(

1 + u
(2)
k;R(qk)

)nR (
1 + u

(2)
k;A(qk)

)nA
 nR

1 + u
(2)
k;R(qk)

+
nA

1 + u
(2)
k;A(qk)

 , (6.54)

with vd a factor coming from the integration over angular variables,

vd =
Ωd

(2π)d
, with Ωd =

2πd/2

Γ(d/2)
. (6.55)

The equation for ηk requires to compute an other integral, slightly more involved, whose general ex-

pression is

jz(R,nR;A,nA) = vd

(
d

dp̂2
∂̃t

∫ ∞
0

dq̂ q̂d−1 pR
(
q̂2
)nR pA

(
|q̂ + p̂|2

)nA) ∣∣∣
qk;p̂=0

. (6.56)

The computation of this integral can also be performed, with the result in the limit n→ 0:

jz(R,nR;A,nA) = vd
2

d

nR nA(
1 + u

(2)
k;R(qk)

)nR+1 (
1 + u

(2)
k;A(qk)

)nA+1 . (6.57)

The physics at criticalitity is obtained by finding the fixed point of the system formed by equa-

tions (6.50) and (6.51) in the limit n → 0, with the knowledge of ηk as a function of qk and wk,1.

In addition to the Gaussian fixed point {q? = 0, w?1 = 0}, we find below d = 6 a nontrivial solution

{q?, w?1} which is plotted in figure 6.2 (a) and (b) as a function of the distance from the upper critical
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Figure 6.2: Fixed point solution for the critical point of the Ising spin glass at the lowest order NPRG-0 of the

nonperturbative RG approach (in brown) versus 6 − d. We also show the perturbative ε expansion to order ε3

(purple) and results from computer simulations (red points): (a) Dimensionless minimum q?; (b) dimensionless

cubic coupling constant w?1 ; (c) anomalous dimension η; (d) relevant (λ1) and irrelevant eigenvalues of the

stability matrix around the fixed point; (e) correlation length exponent ν; and (f) dimensionless anomalous and

longitudinal masses u
(2)
?;A,L = −2 q? w?1 (in brown) and replicon mass u

(2)
?;R = 0 (in blue).
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dimension, 6− d. In figure 6.2 (c) we also plot the anomalous dimension η obtained at the fixed point.

By studying the linear stability of the RG flow equations around the fixed point, we have determined

the relevant eigenvalue, λ1 < 0, and the irrelevant one, λ2 > 0, also shown as a function of dimensions:

see figure 6.2 (d). From the relevant eigenvalue one can obtain the correlation length exponent ν as

ν =
1

|λ1|
(6.58)

and it is plotted in figure 6.2 (e).

The critical fixed point is found from du = 6 down to some lower critical dimension less than

3, dl ' 2.97. When approaching this lower critical dimension from above, both the value of the

dimensionless minimum q? and the correlation length exponent ν diverge (see figures 6.2 (a),(e)) in

agreement with theoretical predictions. [221]

In figures 6.2 (a)-(e) we have also plotted the results of the perturbative RG up to 3 loops [209] as

well as the results from state-of-the-art computer simulations [211, 212, 213]. The comparison clearly

shows that while the ε expansion even at order ε3 fails when ε & 0.1 − 0.2, as already mentioned in

section 6.2, the present nonperturbative RG is quantitatively correct for a larger domain of dimensions

and is still semi-quantitatively good in d = 3 (the predicted anomalous dimension η is about −0.5 to

be compared with the simulation result η ' −0.4).

Near d = 6, the present NPRG-0 approximation exactly reproduces the 1-loop perturbative calcu-

lation, with

q? =
√
ε/(3
√

2) (1 +O(ε)) ,

w?1 = −
√
ε/2 (1 +O(ε)) ,

λ1 = −2 +
5

3
ε, λ2 = ε+O(ε2) ,

(6.59)

in agreement with [139, 215]. However, it represents a drastic improvement over the perturbative RG

when dimension is lowered.

All in all, the success of the NPRG-0 approximation for describing the critical behavior of the Ising

spin glass suggests that the nonperturbative RG may prove a very promising approach. A shortcoming

of the present truncation is that the dimensionless replicon mass u
(2)
?;R is exactly zero by construction

(see also figure 6.2 (f)). It would be interesting to check whether it becomes negative in an improved

truncation. In simpler cases, such as the φ4 theory, the dimensionless potential at the critical fixed

point has a shape that resembles the shape of a dimensionful potential in the symmetry broken phase

of a finite-size system: in some sense it gives some indication of the symmetry-breaking scenario. One

knows that for spin glasses, a negative dimensionful replicon mass may signal an instability toward

replica symmetry breaking. [6] Knowing whether the dimensionless replicon mass is negative or not at

the critical point would then provide a nontrivial piece of information. We therefore consider below the

next order of the NPRG truncation scheme.

6.8 Next-order O(Q4) truncation

The potential is now truncated at order O(Q4), i.e.

Uk({Qab}) = W̃k,1[Qk]X̃
(3)
1 +

4∑
i=1

Ũk,i X̃
(4)
i , (6.60)
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and the independent flowing parameters of the theory, in addition to the field renormalization constant

Zk, are Qk, W̃k,1, Ũk,1, Ũk,2, Ũk,3, and Ũk,4, which are defined from derivatives of the potential Uk as

explained in section 6.4. Note that there are two possible choices denoted (A) and (B) that depend

on which specific third-order derivative is considered in addition to that defining W̃k,1. The different

field derivatives of Uk at this level of the truncation are, with (a, b, c, d, e, f 6=) and evaluated in

{Qab} = {Qk},

U
(2)
k;ab,ab

∣∣∣
Qk

= −(n− 2)Qk W̃k,1 − (n− 2)(n− 3)Q2
kŨk,1 +

1

3
Q2
kŨk,2 ,

U
(2)
k;ab,bc

∣∣∣
Qk

= Qk W̃k,1 + (n− 3)Q2
kŨk,1 +Q2

kŨk,3 ,

U
(2)
k;ab,cd

∣∣∣
Qk

= 2Q2
kŨk,1 +Q2

kŨk,4 ,

(6.61)

U
(3)
k;ab,bc,ca

∣∣∣
Qk

= W̃k,1 ,

U
(3)
k;ab,ab,ab

∣∣∣
Qk

= QkŨk,2 ,

U
(3)
k;ab,ab,bc

∣∣∣
Qk

= QkŨk,3 ,

U
(3)
k;ab,ab,cd

∣∣∣
Qk

= QkŨk,4 ,

U
(3)
k;ab,bc,cd

∣∣∣
Qk

= QkŨk,1 ,

U
(3)
k;ab,ac,ad

∣∣∣
Qk

= 0 ,

U
(3)
k;ab,ac,de

∣∣∣
Qk

= 0 ,

U
(3)
k;ab,cd,ef

∣∣∣
Qk

= 0 ,

U
(4)
k;ab,bc,cd,da

∣∣∣
Qk

= Uk,1 ,

U
(4)
k;ab,ab,ab,ab

∣∣∣
Qk

= Uk,2 ,

U
(4)
k;ab,ab,bc,bc

∣∣∣
Qk

= Uk,3 ,

U
(4)
k;ab,ab,cd,cd

∣∣∣
Qk

= Uk,4 ,

(6.62)

U
(4)
k;others

∣∣∣
Qk

= 0 ,

U
(i)
k

∣∣∣
Qk

= 0 for i ≥ 5 .
(6.63)

The above expressions of the derivatives of the potential enter in the right-hand side of the flow

equations (the “beta functions”) of Zk, Qk and the 5 coupling constants. As explained above, these cou-

pling constants are defined from a restricted set of derivatives, which we write below in a dimensionless

form (as before the dimensionless quantities are written without a tilde to alleviate the notation):

u
(2)
k;ab,ab

∣∣∣
qk

= −(n− 2)qk wk,1 − (n− 2)(n− 3)q2
kuk,1 +

1

3
q2
kuk,2 ,

u
(2)
k;ab,bc

∣∣∣
qk

= qk wk,1 + (n− 3)q2
kuk,1 + q2

kuk,3 ,

u
(2)
k;ab,cd

∣∣∣
qk

= 2q2
kuk,1 + q2

kuk,4 ,

u
(3)
k;ab,bc,ca

∣∣∣
qk

= wk,1 ,

(6.64)

and either one of two choices,

(A) u
(3)
k;ab,ab,cd

∣∣∣
qk

= qkuk,4 ,

(B) u
(3)
k;ab,bc,cd

∣∣∣
qk

= qkuk,1 .
(6.65)

One can invert the two above systems (A) and (B) to obtain the explicit expressions of the constants as

functions of the field derivatives of uk; this simple inversion is done in appendix D.5.1. The dimensionless

flow equations of ηk and qk are given by equations (6.42) and (6.46), with the longitudinal mass

u
(2)
k;L(qk) = (n− 2) qkwk,1 + q2

k

(
2(n− 3)(n− 2)uk,1 +

1

3
uk,2 +

(n− 2)

2
(4uk,3 + (n− 3)uk,4)

)
. (6.66)
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Figure 6.3: Critical fixed point properties of the Ising spin glass at the next order O(Q4) NPRG-1 (A) and

(B) versus 6 − d. We also display in brown the results of the NPRG-0. (a) Dimensionless minimum q?; (b)

dimensionless cubic coupling constant w?1 ; (c) anomalous dimension η; (d) correlation length exponent ν (we

expect ν to behave similarly for the choice (B) but we did not perform the calculation); (e) dimensionless

anomalous/longitudinal mass u
(2)
k;A/L(qk); and (f) dimensionless replicon mass u

(2)
k;R(qk).
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The five dimensionless RG flow equations {ẇk,1, u̇k,1, u̇k,2, u̇k,3, u̇k,4} are directly obtained from the

expressions given in appendix D.5.1, D.5.2.

The physics at criticalitity is obtained by finding the critical fixed point {q?, w?1, u?1, u?2, u?3, u?4} of

the system of RG flow equations, ηk being determined as a function of the independent couplings. The

cases (A) and (B) give almost the same results. The dimensionless dependence of q? and w?1 are given

in figures 6.3 (a) and (b), that of the anomalous dimension η and of the correlation length exponent ν

in figures 6.3 (c) and (d). We also show the predictions of the NPRG-0. The results of the NPRG-1 (A)

or (B) are clearly not as good as those of the lower approximation NPRG-0, except possibly close to the

upper critical dimension du = 6. Strinkingly, one finds that the critical fixed point no longer extends

continuously down to a dimension between 2 and 3. The fixed point emerging from the Gaussian one

below d = 6 indeed disappears at a dimension d ' 5.4 where it seems to merge with another (unstable)

fixed point (and a new, probably unphysical, fiwed point then emerges): see figure 6.3 and the square-

root like behavior of the various quantities when approaching d ' 5.4 from above, a behavior that

is typical of the collapse of two fixed points. This scenario of an accidental collapse with spurious

fixed points is found in other theories like the O(N) model studied by the nonperturbative RG with a

truncated expansion around a nontrivial minimum [Delamotte, private communications]: whereas the

lowest-order approximation is well behaved, the higher order generates spurious unstable fixed points

that at some (unphysical) dimension come to collapse with the (physical) critical fixed point. This

occurs even at quite high orders (even as high as 16 [Delamotte, private communications]) and is cured

by considering a functional approach where, e.g., one derives and solves the RG flow for the effective

average potential as a function of the order parameter field. We seem to encounter the same problem

for the Ising spin-glass critical behavior.

The interesting piece of information that we nonetheless obtain from this NPRG-1 truncation con-

cerns the dimensionless replicon mass expressed (when n→ 0) as

u
(2)
k;R(qk) =

1

3
q2
k (6uk,1 + uk,2 − 6uk,3 + 3uk,4) . (6.67)

Over the range of dimensions where a reasonable critical fixed point exists, this dimensionless mass is

negative (see figure 6.3 (f)).

6.9 One-loop-improved approximation

A possible solution for avoiding the generation of spurious fixed points as one increases the number of

coupling constants is to treat the new coupling constants not as independent parameters determined

from additional flow equations but as “slave” parameters explicitly determined in terms of lower-order

terms. This is what is achieved by a mixed approximation scheme to the nonperturbative RG equation

known as the one-loop improved approximation [222]. The couplings are therefore divided in primary

ones that follow nonperturbative RG flow equations (in which other couplings may also appear) and

secondary ones that are expressed in terms of 1-PI vertices obtained from a one-loop-like approximation

involving the nonperturbative propagator calculated from the nonperturbative RG flow for the primary

parameters.

The rationale for this approximation scheme is that higher-order 1-PI vertices are more easily

approximated in the infrared (IR) regularized theory at scale k, even via a one-loop-like formula [222].

As we will see, the implementation of this approximation scheme in the spin-glass problem is however

not as straightforward as for the ϕ4 theory, again due to the nature of the order parameter and of the

invariants. This will require an additional approximation. We now give the main steps of the procedure.

More details are given in appendix D.6.
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We start from the expression in invariants of the potential given in equation (6.17), which we recall

here:

U [{Qab}] = W̃1X
(3)
1 +

4∑
i=1

ŨiX
(4)
i +

4∑
i=1

Ṽi

X(5)
i −

4∑
j=1

bij QkX
(4)
j − ciQ

2
kX

(3)
1

+O(Q6) (6.68)

and where the constants {bij , ci} for i = 1, ..., 4 and j = 1, ..., 4 have two possible solutions, which are

given in the equations (D.12) for (A) and (D.13) for (B) (see appendix D.6).

The RG equations for ηk and qk are the same as in equations (6.42) and (6.46), and the RG flow

equation for wk,1 is (with distinct a, b, c):

ẇk,1 =
1

2
(−6 + d+ 3ηk)wk,1 +

1

2
∂̃t

{
2 f
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(6.69)

with the definitions of f
(3),(3),(3)
ab,bc,ca (0), f

(4),(3)
ab,bc;ca(0) and f

(5)
ab,bc,ca(0) given in (D.21).

All the 1-PI vertices, i.e. field derivatives of the effective average action, γ
(n)
k;a1b1,...,anbn

for n =

2, 3, 4, 5 that are nonzero are listed in appendix D.6.1. These field derivatives are potentially functions

of all the couplings of the expansion of the potential in equation (6.68). For simplicity, we will use a

truncation of the exact potential (6.68) at order O(Q5); hence all the dependence on the couplings of

higher order is neglected.

One-loop-improved prescription

The secondary couplings {uk,1, uk,2, uk,3, uk,4, vk,1, vk,2, vk,3, vk,4} are computed as slave functions

of the independent parameters {qk, wk,1}. Namely, they are determined from the one-loop-improved

prescription of the γ(n) for n = 4, 5. This method is justified if the corrections to the flow equations of

the independent primary couplings brought by the secondary couplings are small and can be seen as

perturbations.

The one-loop improved prescription provides an expression for the field derivatives of Γk (the 1-PI

vertices) in terms of the independent parameters qk and wk,1 only:

U
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k;a1b1,...,anbn

∣∣∣
Qk

=
1

2

δn

δQa1b1 ...δQanbn
Tr log

[
�
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k +Rk 1

] ∣∣∣
Qk
, (6.70)

where the Tr log term is the one-loop approximation and the effective action Γk is the O(Q3) truncation

of Γk given by:

Γk[{Qab}] =

∫
x

1

2
Zk
∑
(ab)

(∂xQab(x))2 +Wk,1

∑
(abc)

µ
(3)
abc

 . (6.71)

The different nonzero field derivatives of Uk (the local piece of Γk) are listed in equation (6.49). The

one-loop-improved prescription of the γ(5)’s and γ(4)’s, and the expressions of the secondary couplings

uk,i’s and vk,i’s in terms of them are given in appendix D.6.2. These expressions of the uk,i’s and vk,i’s

thus obtained are injected into the different 1-PI vertices γ(p) listed from (D.44) to (D.47) that appear

into the three dimensionless flow equations.

Critical fixed-point solution

All the results of this section have been obtained for the choice (A) of the potential. The same study

has been performed for the choice (B), the results obtained are almost identical with that obtained with

the choice (A) and for this reason they are not represented.
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We search for the critical fixed-point solution {q?, w?1} of the RG flow equations with ηk and the

secondary couplings {uk,1, uk,2, uk,3, uk,4, vk,1, vk,2, vk,3, vk,4} fully determined as functions of qk and

wk,1.

The critical fixed-point solution seems to depend on the maximal number of distinct replicas nmax
that we consider in the indices {a1, b1, ..., ap, bp} of the different vertices γ

(p)
k;a1b1,...,apbp

listed in (D.44)

to (D.47). Indeed, the Trace present in the flow equations generates sums over replica indices, and

distinct replicas generates factors like (n − 3)(n − 4)(n − 5) that can potentially be large and violate

the assumed perturbative character of the terms containing the secondary couplings uk,i and vk,i.

We study the critical fixed point for various nmax, beginning with nmax = 3 (the minimal number

required to define wk,1 as it comes from γ
(3)
k;ab,bc,ca, with a, b, c 6=). The definition of the secondary

couplings in equations (D.49) and (D.48) imply a dependence on nmax. For a given value of nmax, the

only nonzero coupling constants are

nmax = 3 → uk,2 , uk,3 , vk,2 ,

nmax = 4 → uk,2 , uk,3 , vk,2 ; uk,1 , uk,4 , vk,3 ,

nmax ≥ 5 → uk,2 , uk,3 , vk,2 ; uk,1 , uk,4 , vk,3 ; vk,1 , vk,4 .

(6.72)
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Figure 6.4: Fixed point solution for the critical point of the Ising spin glass at the O(Q5) truncation of the po-

tential in one-loop-improved approximation of the nonperturbative RG versus 6−d. We compare three situations

where the maximal number of replicas nmax appearing in the vertices is varied: nmax = 3 (red/gray), nmax = 4

(purple/pink) and nmax = 5 (blue/black). We also display the results of the NPRG-0 (in brown/orange). (a)

Anomalous dimension η; and (b) correlation length critical exponent ν.

The critical exponents of the critical fixed-point solutions are represented as a function of the

distance 6− d to the upper critical dimension in figure 6.4 for each case of nmax. In this case there are

no spurious fixed points that come to collapse the critical fixed point but the lower critical dimension

is now found to be too small compared to expected values (dl is supposed to be between dimensions 2

and 3). In particular for nmax = 4, the exponent ν diverges for a dimension d between 0 and 1, which

is unphysical.

We also studied the one-loop improved scheme when the truncation for the primary parameters is

carried out at the next order to see the influence of the truncation on the results. The case nmax = 4

is slightly better for the O(Q5) truncation of Uk, plotted here, than for the O(Q4) truncation whose

results are shown in appendix D.6.4. In the latter the exponent ν is found to diverge for d = 0 only,

hence no lower critical dimension is found. This can be linked to the fact that at fixed nmax, the

order of truncation of Uk has to be such that not too many derivatives are missed in the lists (D.44)
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and (D.47). One can note indeed that the more reasonable behavior is obtained in the case nmax = 3

for both truncations to O(Q4) and O(Q5).
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Figure 6.5: Fixed point solution for the critical point of the Ising spin glass at the O(Q5) truncation of the po-

tential in one-loop improved approximation of the nonperturbative RG versus 6−d. We compare three situations

where the maximal number of replicas nmax appearing in the vertices is varied: nmax = 3 (red/gray), nmax = 4

(purple/pink) and nmax = 5 (blue/black). We also display the results of the NPRG-0 (in brown/orange). (a)

Dimensionless anomalous/longitudinal mass u
(2)
?;A(qk); and (b) dimensionless replicon mass u

(2)
?;R(qk).

We obtain in each case a positive dimensionless anomalous/longitudinal dimensionless mass and

a negative dimensionless replicon mass, as plotted in figure 6.5 for the O(Q5) truncation of Uk (the

O(Q4) plots can be found in appendix D.6.4 and display the same behavior). The masses are given by

expressions in terms of secondary couplings in equations (6.66) (for n→ 0) and (6.67).

6.10 Conclusion

In this chapter, we have developed a nonperturbative RG approach to study the critical behavior

associated with the phase transition of the Ising spin glass in zero applied field. To get around the

methodological difficulties due to the nature of the order parameter (a n × n matrix with n → 0) we

have devised an approximation scheme based on an expansion around a nontrivial minimum of the

potential that keeps explicitly into account the symmetry of the theory at each order of the truncation.

Whereas we find that the lowest-order approximation is very successful compared to the ε expansion

in describing the critical physics from the upper critical dimension du = 6 down to d = 3, problems

arising from the generation of spurious fixed points appear at higher orders and are only partly solved

by another, mixed, approximation scheme known as one-loop improved.

One could then try to expand around a minimum of the potential with a more complex structure,

i.e., a Parisi full-RSB solution. This would considerably increase the complexity of the algebra for

deriving flow equations (see e.g. [141]) and there is no guarantee that spurious fixed points would not

be generated at high-enough order of the truncation. It seems that any further progress by means

of the nonperturbative RG will have to retain the functional character of the method and avoid field

expansions.





Conclusion and perspectives

Understanding glassy systems, such as structural glasses and spin glasses, in two and three dimensions

still represents a challenge for physicists. Mean-field approximations for both systems have been known

for some time and proven exact (quite recently for glass-forming liquids) when the dimension is infinite.

These mean-field scenarios are quite intricate and involve complex free-energy landscapes, multitude of

pure states, and metastability, all phenomena that may be fragile in the presence of spatial fluctuations

which are ubiquitous in finite-dimensional systems. In this work we have tackled this problem of the

effect of fluctuations in glassy systems. The task being arduous, we have studied a set of relatively

simple, yet finite-dimensional, models and for this purpose we have used and developed a variety of

theoretical tools.

Below, we briefly summarize the main conclusions of this work and sketch some perspectives. The

interested reader can go back to the conclusion section that closes each chapter for more details.

In chapter 3, we have considered the role of nonperturbative fluctuations in a one-dimensional

toy model in which these fluctuations destroy the phase transition found at the mean-field level. The

extent of the fluctuations can be restricted either by considering a finite-size system or by introducing an

infrared cutoff in the renormalization group formalism. We have shown how one can extract information

on the parameters of the underlying theory from finite-size studies of systems of small to moderate sizes

and how to build from this an effective theory. This provides a guide for computer-simulation studies

of glass-forming liquid models that for practical reasons can only access limited system sizes. We have

also studied how various approximation schemes of the nonperturbative renormalization group fail on

describing strong fluctuations and rare events in the simple (and otherwise well known) example of the

one-dimensional ϕ4 theory.

In chapter 4, we have investigated the thermodynamic properties of plaquette spin models of glass-

forming systems that have been described in terms of kinetically-constrained motion of localized de-

fects [27] and taken as a paradigm for the theory of dynamical facilitation [11]. Both “short-range”

fluctuations associated with the local environment on Bethe lattice and “long-range” fluctuations that

distinguish Euclidean from Bethe lattices with the same local environment have been considered. Sur-

prisingly, we have found that what was considered as singular thermodynamic properties characteristic

of the three-dimensional (Euclidean) models are reproduced on a Bethe lattice, provided one chooses

the same local environment. The long-range fluctuations therefore seem to have a week influence on

these properties, contrary to short-range fluctuations. In two dimensions however, long-range fluctua-

tions have a more drastic effect as they destroy the phase transition predicted from the Bethe lattice

calculation.

In chapter 5, we have investigated analytically the spatial correlations in the dynamics of a simple

finite-dimensional system whose relaxation is thermally activated yet trivial in the sense that it is

described by a single constant activation energy and an Arrhenius law. These correlations are usually

associated with the development of dynamical heterogeneities in glassy systems and characterized by a

length scale that can be extracted from multi-body (beyond two) space-time correlation functions. [40]

We have found that such a “dynamical” length does grow in the system under study in spite of the

absence of any cooperativity in the relaxation. However, the nature of this length in the present model

appears rather trivial and not directly related to the kind of dynamical heterogeneities observed in

glass-forming liquids. The study is still in progress to determine whether there is or not an additional

characteristic length at play in the behavior of the four-point space-time correlation function.

Finally, in chapter 6 we have considered the critical behavior associated with the phase transition of
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the Edwards-Anderson Ising spin-glass model [59] in the absence of an applied magnetic field. We have

developed an approximation scheme of the nonperturbative renormalization group that preserves the

original symmetry of the model. We have found that the lowest order of our scheme provides a good

description of the critical behavior down to the dimension three, which must be contrasted with the

poor performance of the perturbative renormalization group treatment. However, at the higher orders

the situation deteriorates due to the presence of spurious fixed points that may annihilate the critical

fixed point in (unphysical) dimensions larger than three. In the range of dimensions where the critical

fixed point exists, the dimensionless replicon mass is negative at the fixed point (the dimensionful mass

is of course zero), which may be tentatively interpreted as indicating that replica symmetry must be

broken in the spin-glass phase for all finite sizes. [58] (Nothing can be said for the thermodynamic

limit or equivalently the limit where the infrared cutoff is zero.) The goal of this study was not the

description of the critical behavior per se (as the existence of a transition in dimension three is well

established and large-scale computer simulations provide accurate estimates of the critical properties)

but rather to provide a first implementation of the nonperturbative renormalization group for glassy

systems characterized by an overlap order parameter field. [16, 12] The difficulties encountered in

the present study suggest that the next step to make progress within this framework is to develop a

functional approximation scheme that avoids field expansions.

Despite progress made by several authors and the insight provided by phenomenological approaches,

a description from first principles of the effect of the spatial fluctuations on the properties of glassy

systems is clearly a daunting task. We have emphasized in several places of this manuscript the

obstacles on the way to a full-blown implementation of a nonperturbative renormalization group and

pointed out that a functional approach would likely be necessary to make further progress. Another

potentially useful approach, more specifically for the case of glass-forming liquids and (structural)

glasses, is to devise a proper effective theory in which the already nontrivial effect of the short-range

fluctuations have been incorporated. As found from previous work [7, 95, 105, 86, 102, 89] (for a

differing view see [110]) a good candidate is some variant of the random-field Ising model [90, 94] or its

field-theoretical version. The parameters of this effective theory could be systematically extracted from

finite-size computer-simulation studies of realistic glass-forming models (as proposed in chapter 3). The

long-distance physics of this effective theory could then be determined either by numerical simulations

or renormalization group analysis. Whether or not this leads to a complete description of both the

statistics and the dynamics of glassy systems in three dimensions is yet to be seen.



Appendix A

Non-perturbative fluctuations in a

simple model with metastability

A.1 Computation of the combinatorial factors for the gas of instan-

tons

The combinatorial coefficients I2n(L) are configuration integrals of 2n domain walls of width σ on a ring

of size L. This problem is equivalent to the computation of the partition function of 2n (discernible)

hard spheres of size σ on a ring of size L in D = 1. As done in the main text, we define xi, i = 1, . . . , 2n,

as the lengths of the regions with constant φ = ±1 (i.e., the gaps between the spheres). These variables

must satisfy the constraint
∑2n

i=1 xi + 2nσ = L.

One then has

I2n(L) =
L

n

∫ L−2nσ

0
dx2n−1

∫ L−2nσ−x2n−1

0
dx2n−2 · · ·

∫ L−2nσ−(x2n−1+x2n−2+···+x2)

0
dx1 ,

where the factor L comes from translational invariance and the factor 1/n accounts for the number of

ways one can choose the first kink/anti-kink pair. In the following, we will determine the expression of

I2n by recurrence. In order to do this, it is convenient to introduce the functions

gn(y) =

∫ y

0
dxn−1

∫ y−xn−1

0
dxn−2 · · ·

∫ y−(xn−1+xn−2+···+x2)

0
dx1 , (A.1)

in terms of which the combinatorial factors can be expressed as

I2n(L) =
L

n
g2n(L− 2nσ) . (A.2)

From the definition in equation (A.1), one can write gn+1(y) in terms of gn(y),

gn+1(x) =

∫ y

0
dxn gn(y − xn) =

∫ y

0
dxn gn(xn) , (A.3)

which, from g2(y) =
∫ y

0 dx1 = y and by recurrence, immediately leads to

gn(y) =
yn−1

(n− 1)!
. (A.4)

Finally, after plugging equation (A.4) into (A.2), one obtains equation (3.13) of the main text.

In order to compute the combinatorial factors J2n(M,L) one has to impose that the gaps xi satisfy

the two following constraints: 

2n∑
i=1

xi = L− 2nσ ,

n∑
i=1

(x2i−1 − x2i) = M ,
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which can be rewritten as 

n∑
i=1

x2i−1 =
L− 2kσ +M

2
,

n∑
i=1

x2i =
L− 2kσ −M

2
.

As a result, the integrals over the variables xi can be divided into separate integrations over even and

odd gaps, which can be written in terms of the functions gn(y) defined above. This yields

J2n(M,L) =
L

2n
gn

(
L− 2nσ −M

2

)
gn

(
L− 2nσ +M

2

)
.

The extra 1/2 factor comes from the fact that only half of the configurations, namely, those with the

first domain wall joining ϕ = −1 to ϕ = +1, contribute to magnetization +M , whereas the others

contribute to −M . After using the exact expression in equation (A.1), one finally finds

J2n(M,L) =
L

2n

[
(L− 2nσ)2 −M2

]n−1

22(n−1)(n− 1)!2
, (A.5)

which, with the help of the intensive variables φ = M/L and α = σ/L, leads to equation (3.18) of the

main text.

In the following we show that PL(φ) given in equation (3.18) is properly normalized to 1. We

start by computing the integrals over φ of the terms of the sum separately. By changing variable to

x = φ/(1− 2nα) one gets

Υ2n(L) = 2

(
ζ

2

)2n ∫ +(1−2nα)

−(1−2nα)
dφ

[
(1− 2nα)2 − φ2

]n−1

n!(n− 1)!

= 2
(ζ/2)2n

n!(n− 1)!
(1− 2nα)2(n−1)(1− 2nα)

∫ +1

−1
dx (1− x2)n−1 .

The integral over dx can be computed as∫ +1

−1
dx (1− x2)n−1 = 2

∫ π/2

0
dθ (cos θ)2n−1 =

√
π

Γ(n)

Γ(n+ 1/2)
,

where Γ(n+ 1/2) = 2−n(2n− 1)!!
√
π. By using the fact that

(2n− 1)!! =
(2n)!

(2n)!!
=

(2n)!

2nn!
,

one then finds

Υ2n(L) = 2ζ2n (1− 2nα)2n−1

(2n)!
. (A.6)

From equations (3.18), (3.14) and (A.6), one ends up with

∫ +1

−1
dφPL(φ) =

1

ZL(ζ, α)

∫ +1

−1
dφ (δ(φ− 1) + δ(φ+ 1)) +

1/(2α)∑
n=1

2ζ2n (1− 2nα)2n−1

(2n)!


=

1

ZL(ζ, α)

1/(2α)∑
n=0

2ζ2n (1− 2nα)2n−1

(2n)!
= 1 .

(A.7)



A.2. Instanton calculation for the one-dimensional Ising model 135

The expression of PL(φ) for the one-dimensional Ising model [168] can be recovered as a particular

case of equation (3.18) in the limit σ → 0 (i.e., for infinitely sharp domain walls) and for S̃? = 2J . In

particular one then has

ZL(ζ, α = 0) = 2

∞∑
n=0

ζ2n

(2n)!
= 2 cosh ζ ,

and

PL(φ) =
1

2 cosh ζ

[
(δ(φ− 1) + δ(φ+ 1)) +

∞∑
n=1

2(ζ/2)2n (1− φ2)n−1

n!(n− 1)!

]
.

These expressions coincide with the results of reference [168].

A.2 Instanton calculation for the one-dimensional Ising model

As stated in the main text, we consider the one-dimensional Ising model with periodic boundary

condition which is described by the Hamiltonian

H[{σi}] = −J
L∑
i=1

σiσi+1 − h
L∑
i=1

σi (A.8)

where σL+1 ≡ σ1, the lattice spacing which is as unity, and, contrary to the case studied in section 3.2,

only the thermodynamic limit L→∞ is considered.

We summarize the main (known) results about the model. The partition function can be computed

using the transfer matrix method.[223] The transfer matrix is given by

V =

(
eh̃+J̃ e−J̃

e−J̃ e−h̃+J̃

)
(A.9)

where h̃ = βh and J̃ = βJ and the partition function is obtained as ZN = TrVN . One can easily

diagonalize the transfer matrix with the rotation

U =

(
cos θ − sin θ

sin θ cos θ

)
(A.10)

where 1/ tan(2θ) = e2J̃ sinh h̃. The eigenvalues are given by

λ± = eJ̃ cosh h̃±
√
e2J̃ cosh2 h̃− 2 sinh(2J̃) . (A.11)

The average magnetization m =< σi > is then

m =
eJ̃ sinh h̃√

e2J̃ cosh2 h̃− 2 sinh(2J̃)
(A.12)

and the two-point connected correlation function

G(2)
c (|i− j|) = 〈σiσj〉 −m2 = sin2(2θ)

(
λ−
λ+

)|i−j|
, (A.13)

which can be rewritten as

G(2)
c (r) = sin2(2θ)e−r/ξ (A.14)
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where ξ =
[
ln
(
λ−
λ+

)]−1
. These expressions provide the magnetization and the two-point function at

fixed external magnetic field h. However we would like to have the magnetization instead of the external

field as the primary variable since we want to work with the effective action defined by the Legendre

transform.

One can thus invert the relation in equation (A.12) to obtain

λ+

λ−
=

√
1−m2(1− e−4J̃) + e−2J̃√
1−m2(1− e−4J̃)− e−2J̃

, (A.15)

so that, in the limit of very low temperature, one gets

ξ(m)−1 ' 2e−2J̃

√
1−m2

(A.16)

and

G(2)
c (r) = (1−m2)e−r/ξ(m) . (A.17)

These results are used in section A.3.1.

A.3 Nonperturbative renormalization group

See section 2.2 for an introduction on the nonperturbative renormalization group (NPRG).

A k-dependent cutoff function is added to the microscopic (bare) action S[ϕ] (S[ϕ] is equal to the

Hamiltonian HL[ϕ] of equation (3.1)) that freezes all fluctuations with k′ < k:

S[ϕ]→ Sk[ϕ] = S[ϕ] +
1

2

∫
q
ϕ(q)Rk(q)ϕ(−q) , (A.18)

where
∫
q ≡

∫
ddq/(2π)d with d the space dimension. The function Rk(q) is the regulator.

The effective average action Γk[φ] can be constructed, and an exact evolution equation of Γk[φ] under

the variation of k can be written. The k-dependent magnetization φk(x) = 〈ϕ(x)〉k is introduced, where

the average 〈 . 〉k is taken by using the modified action Sk[ϕ]. The k subscript in is then omitted and

φk(x) ≡ φ(x). In particular the exact flow equation for Γk[φ] writes, from equation (2.25):

∂Γk[φ]

∂k
=
β

2

∫
xy
Rk(x− y)

[(
Γ

(2)
k + βRk

)−1
]
xy

(A.19)

with the initial condition ΓΛ[φ] = βS[φ] and Γ
(n)
k (x1, . . . , xn) ≡ δnΓk/δφ(x1) . . . δφ(xn). The whole

equation is multiplied by β such that Γk[φ] has no dimension; we have used the notation
∫
x ≡

∫
ddx.

By differentiation, this functional flow equation is equivalent to an infinite hierarchy of coupled

flow equations for the running effective potential, Uk(φ) = Γk[φ]/Ld, and the running field derivatives

Γ
(n)
k (x1, . . . , xn) (then all evaluated for uniform field configurations).

A.3.1 Running effective action and instantons in the limit T → 0 (ξ →∞)

We first compute the expression of the running effective potential, Uk(φ) = Γk[φ]/L with φ a uniform

field, by using the instanton technique in the low-temperature regime where the correlation length is

large (see also section 3.2).
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For the one-dimensional ϕ4 theory under study, the k-dependent regularized action (A.18) reads

Sk[ϕ] =

∫ L

0
dx
[ c

2
(∂xϕ)2 + V (ϕ(x))

]
+

1

2

∫ L

0
dx

∫ L

0
dy φ(x)Rk(x− y)φ(y)

− L
[
V (φ0,k) +

1

2
Rk(0)φ2

0,k

] (A.20)

where S[ϕ] have been replaced by the Hamiltonian HL[ϕ] of equation (3.1) and V (ϕ) is given in

equation (3.2),

φ0,k = argminϕ

[
V (ϕ) +

1

2
Rk(0)ϕ2

]
, (A.21)

and we have added the last term in equation (A.20) for convenience, so that Sk[φ0,k] = 0. Contrary to

the previous section on the finite-size effective potential, we take here the thermodynamic limit and let

L → ∞. The restriction to the spatial extent of the fluctuations is now provided by the IR regulator

Rk(q).

A very simple regulator is the Callan-Symanzik one, Rk(q) = k2, which amounts to adding a

conventional mass term to the bare action S[ϕ] (A.18). (Note that in this case the running effective

action is equal to the bare action only in the limit Λ→∞ but this has no consequences for the physics

at intermediate and small momentum scales.) It is then possible to see that there exists a threshold

k = kc such that φ0,k 6= 0 for all k ≥ kc. This threshold corresponds to the moment along the RG flow

where the running modified potential V (ϕ) + 1
2k

2ϕ2 develops two minima and has a double-well shape.

One can expect that this qualitative evolution is very general and does not depend on the details of

the regulator. The precise form of Rk(q) changes only the point kc where the double-well shape first

appears.

For k > kc we can thus evaluate the probability of finding a particular magnetization in the system

by using the instanton method, much like in section 3.2.2. This probability is given by

Pk(φ = M/L) = N
∑
n≥1

e−2nβS?k

∫ ∞
0

(
2n∏
i=1

dzi

)
δ

(
2n∑
i=1

zi − L− 2nσk

)
δ

[
n∑
i=1

(z2i−1 − h2i)−
M

φ0,k

]
(A.22)

where zi is the length of the ith interval separated by two domain walls, N is a normalization constant,

S?k is the action evaluated on an single instanton profile and σk is the instanton width. By exponentiating

the Dirac delta functions and passing from a discrete sum to a continuum one so that αL = 2n, we get

Pk(φ) =N ′
∫ ∞

0
dα e−αLβS

?
k

∫ i∞

−i∞
dµdν

∫ ∞
0

(
2n∏
i=1

dzi

)
×

exp

[
µL(1 + ασk) + Lν

φ

φ0,k
−

n∑
i=1

[(µ+ ν)z2i−1 + (µ− ν)z2i]

] (A.23)

where N ′ is another normalization constant. Integration over the variables zi then leads to

Pk(φ) = N ′
∫ ∞

0
dαe−αLβS

?
k

∫ i∞

−i∞
dµdν exp

[
L

(
µ+ αµσk + ν

φ

φ0,k
− α

2
ln(µ2 − ν2)

)]
. (A.24)

For large L we can use a saddle point evaluation of the integrals over µ and ν, which gives

Pk(φ) = N ′
∫ ∞

0
dα exp

[
− αLβS?k + L

(
α− α lnα+

α

2
ln[(1 + ασk)

2 − (
φ

φ0,k
)2]

)]
. (A.25)
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Finally the integral over α can also be evaluated with the saddle point method and the value of α

at the saddle point is found to be

α =

√
1− φ2

φ2
0,k

e−βS
?
k (A.26)

where the range of magnetizations is limited to φ < φ0,k. The low-temperature regime corresponds to

βS?k large and the system is then described by a dilute instanton gas. The running effective potential

Uk is just −1/(βL) times lnPk(φ), to which one subtracts the contribution of the IR regulator, and it

is given by

Uk(φ) = − 1

βL
lnPk(φ)− 1

2
Rk(0)

(
φ2 − φ2

0,k

)
+ V (φ0,k)

= − 1

β

√
1− φ2

φ2
0,k

e−βS
?
k − 1

2
Rk(0)

(
φ2 − φ2

0,k

)
+ V (φ0,k) ,

(A.27)

which is valid for φ < φ0,k and is asymptotically exact when the temperature goes to zero. The

associated flow equation reads

∂Uk(φ)

∂k
=

∂

∂k

[
− 1

β

√
1− φ2

φ2
0,k

e−βS
?
k

]
+

1

2

∂Rk(0)

∂k

(
φ2

0,k − φ2
)

(A.28)

To go further and find the asymptotic low-temperature expressions for the Γ
(n)
k (x1, . . . , xn) vertices

at scale k, we use a short-cut provided by an approximate mapping when T → 0 between the ϕ4 theory

and the Ising model. The latter is described by the Hamiltonian

H[{σi}] = −J
L∑
i=1

σiσi+1 − h
L∑
i=1

σi (A.29)

where σL+1 ≡ σ1 if periodic boundary conditions are used and we have set the lattice spacing to one.

The thermodynamic limit with L → ∞ is considered here. This calculation for the one-dimensional

Ising model is rather standard[223] and the details are given in appendix A.2.

In the low-temperature limit, the long-distance properties of both theories are described in the

continuum. The expressions of their pair correlation function are respectively: for the Ising case

G(2)
c (r;m) ' (1−m2)e−r/ξ(m) with ξ(m) ' 1

2

√
1−m2 , e2βJ (A.30)

ξ(m) being the correlation length and m the magnetization per site, and for the (modified) ϕ4 theory

(from the instanton calculation)

G(2)
c (r;φ) ' (φ2

0,k − φ2)e−r/ξ(φ) with ξ(φ) ' 1

2

√
1− φ2

φ2
0,k

eβS
?
k . (A.31)

From the comparison between (A.30) and (A.31), one can see that the two theories map onto each

other with the following formal replacements when T → 0:

2J → S?k and (1−m2)→ (φ2
0,k − φ2) (A.32)

and S?k , the instanton action, is identified with the domain-wall energy when T → 0.
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At low temperature, the two-leg vertex can be written as

1

β
Γ

(2)
k (p;φ) ' 1

2β(φ2
0,k − φ2)

ξ(φ)
[
p2 + ξ−2(φ)

]
−Rk(0) (A.33)

where the last term is due to the definition of the running effective action from the modified Legendre

transform (2.24). This expression can be put in the form

β−1Γ
(2)
k (p;φ) = Zk(φ)p2 + U ′′k (φ) (A.34)

where Zk(φ) can be obtained as

Zk(φ) = lim
p→0

1

2β

∂2

∂p2
Γ

(2)
k (p, φ) =

1

2β(φ2
0,k − φ2)

ξ(φ) . (A.35)

In addition, we can check that

U ′′k (φ) +Rk(0) =
1

β

1

φ2
0,k − φ2

e−βSk√
1− φ2/φ2

0,k

, (A.36)

in complete agreement with equation (A.27).

By using the mapping with the one-dimensional Ising model, we can also obtain low-temperature

expressions for the higher-order 1PI correlation functions, Γ
(3)
k , Γ

(4)
k , · · · , at the scale k. With the

results given in appendix A.4 we obtain

Γ
(3)
k (p1, p2, p3;φ) = (2π)δ(p1 + p2 + p3)

c(φ)s(φ)2

2ξ(φ)

[
3− ξ(φ)2 (p1p2 + p1p3 + p2p3)

]
(A.37)

Γ
(4)
k (p1, p2, p3, p4;φ) =

(2π)δ(p1 + p2 + p3 + p4)

2ξ(φ)s(φ)6

(
−[c(φ)2 + s(φ)2]ξ(φ)4p1p2p3p4

−[3c(φ)2 + s(φ)2]ξ(φ)2(p1p2 + p1p3 + p1p4 + p2p3 + p2p4 + p3p4) + 3[5c(φ)2 + s(φ)2]
) (A.38)

where c(φ) = φ and c(φ)2 + s(φ)2 = φ2
0,k (c should not be confused with the notation also used for the

prefactor of the derivative term in the bare action). More generally the running 1PI correlation function

can be cast in the form Γ
(n)
k (p1, · · · , pn;φ) = (2π)δ(p1 + · · ·+ pn)ξ(φ)−1gn(ξ(φ)p1, · · · , ξ(φ)pn;φ) where

the remaining φ dependence in gn does not contain exponential terms involving exp(βS?k).

A.3.2 Approximation schemes

Having obtained the exact expressions for the running effective potential and the running 1PI correlation

functions in the low-temperature limit, we can now test approximation schemes for the exact NPRG

equation in equation (A.19). Among the several approximation schemes so far proposed, we will focus

first on the most popular one, the so-called derivative expansion. In this approximation, the running

effective action at the scale k is expanded in gradients of the field,

Γk[φ] = β

∫
x

[
Uk(φ(x)) +

1

2
Zk(φ(x))

(
∂φ(x)

∂x

)2

+ · · ·

]
(A.39)

where the higher-order terms involve 4, 6, etc., derivatives of the field. We will show that finite trun-

cations of the derivative expansion are unable to reproduce the exact features of the low-temperature

physics.
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A.3.2.1 LPA

The Local potential Approximation (LPA) is the lowest order of the derivative equation. It corresponds

to (2.33)

Γk[φ] = β

∫
x

[
Uk(φ(x)) +

1

2

(
∂φ(x)

∂x

)2
]
, (A.40)

where the coefficient of the gradient term is constant and is not renormalized. Plugging this ansatz into

equation (A.19), computing it for a uniform field φ and choosing the simple regulator Rk(q) = bkk
2 with

bk constant (taken to 1) lead to the following differential equation for the running effective potential

Uk(φ):

∂kUk(φ) =
1

4β

1√
U ′′k (φ) + k2

∂k(k
2) . (A.41)

It is easily verified that the exact expression in equation (A.27) does not satisfy the above equation.

The latter is actually unable to reproduce the correct scaling of the correlation length, with, e.g.,

U ′′k + k2 ∝ exp(−βS?k) [see equation (A.36)].

In figure 3.1 (b), we have plotted the running effective potential Uk(φ) at several values of k, as ob-

tained from the LPA with the Litim regulator (2.22): Rk(p) = (k2−p2)Θ(k2−p2). The curves illustrate

the return to convexity of the potential. However, as also known from previous attempts,[169, 170, 172]

if the LPA provides a good description for values of T higher than the energy barrier of the double well,

or more precisely than the instanton energy cost S?, they fail to reproduce the low-temperature result

with a thermally activated dependence of the correlation length, ∝ exp(βS?). For instance, the curva-

ture of the effective potential in zero, κk=0 = U ′′k=0(0), which should vanish exponentially when T → 0

as exp(−βS?) (see also section 3.2) is generically found to vanish as a power law of T instead. The

nonperturbative regime associated with the rare localized events, which is captured by the instanton

calculation, is therefore completely missed.

A.3.2.2 Second order of the derivation expansion

The next order corresponds to the following ansatz (from (2.34) setting Yk(φ(x)) = 0), sometimes called

LPA’:

Γk[φ] = β

∫
x

[
Uk(φ(x)) +

1

2
Zk(φ)

(
∂φ

∂x

)2
]
. (A.42)

When inserted in the exact RG flow equation, this ansatz leads to two coupled differential equations

for the functions Uk(φ) and Zk(φ) [the latter is obtained from the exact flow equation for the second

vertex Γ
(2)
k with the use of the prescription given in the first equality of equation (A.35)]:

∂kUk(φ) =
1

4β
∂k(bkk

2)
[
Zk(φ)

(
U ′′k (φ) + bkk

2
)]−1/2

(A.43)

∂kZk(φ) =
1

β
∂k(bkk

2)×[
− 5

64
U ′′′k (φ)2Zk(φ)1/2

(
U ′′k (φ) + bkk

2
)−7/2

+
9

32
Z ′k(φ)U ′′′k (φ)Zk(φ)−1/2

(
U ′′k (φ) + bkk

2
)−5/2

+
7

64
Z ′k(φ)2Zk(φ)−3/2

(
U ′′k (φ) + bkk

2
)−3/2 − 1

8
Z ′′k (φ)Zk(φ)−1/2

(
U ′′k (φ) + bkk

2
)−3/2

]
(A.44)
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where the IR cutoff function is of the same form as above (and a residual k-dependence is allowed in

bk).

When inserting the exact expression for Uk(φ) and Zk(φ) given in equations (A.27), (A.35), and

(A.36), one can see that equation (A.43) is now satisfied at leading order in exp(−βS?k) but not equation

(A.44). The exact expressions indeed generate terms of order exp(2βS?k) in the right-hand side of

equation (A.44) which do not cancel and have no counterparts in the left-hand side [which is itself

essentially of order exp(βS?k)]. The problem found at the LPA level can be formally cured at the level

of the effective average potential but at the expense of an inconsistency at the level of the function

Zk(φ).

A.3.2.3 Fourth order of the derivative expansion

To check whether the results found above correspond to a more systematic pattern, we have considered

the fourth order, which corresponds to taking (2.34), called the leading approximation:

Γk[φ] =

∫
x

[
Uk(φ(x)) +

1

2
Zk(φ(x))(∂φ(x))2 +

1

4!
Yk(φ(x)) (∂φ(x))4

]
. (A.45)

The equation for the running effective potential in equation (A.43) is unchanged but that for Zk(φ) is

now obtained as

∂kZk(φ) =
1

β
∂k(bkk

2)

[
− 5

64
U ′′′k (φ)2Zk(φ)1/2

(
U ′′k (φ) + bkk

2
)−7/2

+
9

32
Z ′k(φ)U ′′′k (φ)Zk(φ)−1/2

(
U ′′k (φ) + bkk

2
)−5/2

+
7

64
Z ′k(φ)2Zk(φ)−3/2

(
U ′′k (φ) + bkk

2
)−3/2

−1

8
Z ′′k (φ)Zk(φ)−1/2

(
U ′′k (φ) + bkk

2
)−3/2 − 1

8
Yk(φ)Zk(φ)−3/2

(
U ′′k (φ) + bkk

2
)−1/2

]
.

(A.46)

An equation for Yk(φ) is also derived by considering the flow of the 4-point 1PI vertex but it is too long

to be given here.

When inserting the exact low-temperature expressions for Uk(φ), Zk(φ), and Yk(φ) [the latter can be

obtained from equations (A.37,A.38)] in the three flow equations corresponding to the present ansatz,

one finds that both the equation for Uk and that for Zk in equation (A.46) are satisfied. For the latter,

the term involving Yk(φ) in the right-hand side of equation (A.46) now exactly cancels the term in

exp(2βS?k) that led to an inconsistency in the second-order approximation (see above). On the other

hand, one can check that the approximate equation for Yk(φ) is not satisfied by the exact expression

because of the presence of terms of order exp(4βS?k) in the right-hand side [while Yk itself behaves as

exp(3βS?k)].

A.3.2.4 General scheme and further approximations

Guided by the above results, it is now easy to infer the general pattern. The prefactors of the terms

with 2l derivatives of the field in the derivative expansion of the running effective action Γk[φ] are of

order exp[(2l− 1)βS?k ] in the low-temperature regime [and U ′′k (φ) +Rk(0) is itself of order exp(−βS?k)].

This dominant behavior when βS?k →∞ emerges from the exact NPRG hierarchy of equations for the

1PI vertices because terms that would naively lead to a higher power in exp(βS?k) in the right-hand

side of the equations (the “beta functions”) exactly cancel out. This cancelation effect is however lost if
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one truncates the expansion, whatever the order of the truncation. We conjecture that the appropriate

ansatz of Γk[φ] that reproduces the low-temperature physics of the model is instead

Γk[φ] =

∫
x

[
Uk(φ(x)) +

∞∑
l=1

1

(2l)!
Yk,2l(φ(x))(∂φ(x))2l

]
(A.47)

with, to make contact with the previous notations, Yk,2(φ) ≡ Zk(φ) and Yk,4(φ) ≡ Yk(φ). Note that

the above form of Γk is not the most general one: in the derivative expansion, the term of order ∂2l is

actually a combination of terms involving (∂φ)2l, ∂2φ(∂φ)2l−2, · · · , ∂2lφ which even after integration by

part cannot in general be reduced to a single contribution as in equation (A.47). The specific form in

equation (A.47) results from the rather simple momentum dependence of the 1PI correlation functions

in the one-dimensional Ising model and ϕ4 theory at low temperature.

The above finding allows us to discuss another approximation of the NPRG called BMW.[224] It

corresponds to a closure of the exact NPRG hierarchy at the level of the equation for the 1PI two-point

function Γ
(2)
k (p, φ):

∂kΓ
(2)
k (p, φ) = β

∫
dq

2π
∂kRk(q)

[
Gk(q, φ)2Gk(p+ q, φ)Γ

(3)
k (p, q,−p− q;φ)2 − 1

2
Gk(q, φ)2Γ

(4)
k (p,−p, q,−q;φ)

]
(A.48)

where Gk(p, φ) = [Γ
(2)
k (p, φ) + Rk(p)]

−1. The BMW closure consists in setting to zero the internal

momentum q appearing in the 3- and 4- point vertices in the right-hand side. After using the consistency

relations, Γ
(3)
k (p, 0,−p;φ) = ∂Γ

(2)
k (p;φ)/∂φ and Γ

(4)
k (p,−p, 0, 0;φ) = ∂2Γ

(2)
k (p;φ)/∂φ2, one obtains a

closed equation

∂kΓ
(2)
k (p, φ) = β

∫
dq

2π
∂kRk(q)

[
Gk(q, φ)2Gk(p+ q, φ)

[
∂Γ

(2)
k (p;φ)

∂φ

]2

− 1

2
Gk(q, φ)2∂

2Γ
(2)
k (p;φ)

∂φ2

]
(A.49)

which can be combined with the equation for the running effective potential Uk(φ). It is easily checked

that equation (A.49) is not compatible with the exact low-temperature expressions of Uk and Γ
(2)
k given

in section A.3.1: after scaling the momenta by ξ(φ) (see section A.3.1), the left-hand side of equation

(A.49) scales as ξ−1 whereas the right-hand side has a term in ξ0 that does not cancel out. Just like

truncations of the derivative expansion, the BMW closure is therefore unable to properly describe the

nonperturbative physics of the one-dimensional ϕ4 at low temperature.

The alternative to the existing approximation schemes of the NPRG is to start from the exact low-

temperature ansatz in equation (A.47). This however leads to an infinite set of differential equations that

cannot be treated with standard methods. We have tried another route which amounts to considering

the running effective action as being local in the two variables φ(x) and ∂φ(x) and introduce an auxiliary

field φ̂(x) to decouple ∂φ(x) from φ(x). This procedure however is highly ambiguous. In addition, say

we end up with a running effective action of the form Γk[φ, φ̂] =
∫
x Vk(φ(x), φ̂(x)), it is not clear that

standard approximations on this ansatz will correctly capture the expected low-temperature physics.

Actually we have tried an LPA approximation at the level of the two fields φ and φ̂ and it completely

misses the nonperturbative regime.

A.3.3 Higher dimensions

In a sense, the one-dimensional case is harder than the situation in higher dimensions. There, the

transition associated with a spontaneous symmetry breaking is not destroyed by the fluctuations and

the return to convexity has been shown to be properly described through simple approximations of the

NPRG. [225, 226, 25]
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Consider for instance the 3-dimensional ϕ4 theory. As far as the finite-size effective potential UL(φ)

is concerned, one can repeat and adapt the qualitative arguments developed in section 3.2.1. At low

enough temperature, the bare potential has two minima in, say, φ = ±1 and the relevant excitations

above the uniform ground states are system-spanning domain walls or interfaces between regions of

essentially constant positive and negative magnetization. When the system size L becomes larger than

the interface width (which is of the order of the correlation length[227]), the system can accommodate

one system-spanning interface: UL(φ) should then have, on top of the two symmetric minima for φ ' ±1,

a plateau for intermediate values of the field; the height of the plateau compared to the bottom of the

minima is given by Υ/L where Υ is the surface tension. As L increases, this height decreases and goes

to zero in the thermodynamic limit. The effective potential is convex with a flat intermediate portion

corresponding to phase coexistence. The evolution with L of UL(φ) is schematically depicted in figure

A.1. In this case, studying finite-size systems should allow one to extract two physical quantities, the

surface tension and the correlation length which corresponds to the interface width.

k2
φ
2

2 
 /Lγ

L=a L L=oo

k k=0k=Λ

Figure A.1: Schematic plot of the evolution of the shape of the finite-size effective potential UL(φ)

(top) and of the running effective potential Uk(φ) (bottom) with either system size L or running IR

momentum scale k for the ϕ4 theory in 3 dimensions.

This 3-dimensional ϕ4 theory in the symmetry-broken region 1 has also been studied in detail

within the NPRG framework.[225, 226, 25] Although influenced by domain walls as in one dimension,

the long-distance physics is nonetheless different as these nonperturbative fluctuations are not strong

enough to destroy the phase transition. As a result, simple approximation schemes of the running

effective action properly capture the effect of these fluctuations. The running effective potential Uk(φ)

evolves with decreasing k from the bare double-well potential to a convex effective potential when k = 0:

see the schematic plot in figure A.1. Provided one chooses an appropriate class of IR regulator,[25]

the intermediate “inner” part of Uk(φ) displays at small k a parabolic shape ∝ k2φ2 that comes in

addition to the two symmetric minima in φ = ±φ0,k. This parabolic dependence corresponds to the

expected exact behavior obtained by considering the nonuniform configurations of the field involving

domain walls. The remarkable feature is that this behavior is recovered by using approximations of

the NPRG, such as the first orders of the derivative expansion, which only consider expansions about

uniform fields.[226] This is in stark contrast with the situation encountered in one dimension.

1The return to convexity of the running effective potential has also been studied in the O(N) model with N > 2. In

this case, the excitations above the ground state take the form of spin waves: see Refs. [[228],[226]].
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A.4 Derivation of Γ
(3)
k and Γ

(4)
k from the one-dimensional Ising model

We start from the calculation of the 3-point correlation function in the Ising model. We need to compute

〈σiσi+r1σi+r1+r2〉 . (A.50)

It is given by

〈σiσi+r1σi+r1+r2〉 =
1

λN+ + λN−
Tr
[
SVr1SVr2SVN−r1−r2] (A.51)

where

S =

(
1 0

0 −1

)
. (A.52)

After diagonalizing the transfer matrix (see appendix A.2) and using that

U−1SU =

(
cos(2θ) − sin(2θ)

− sin(2θ) − cos(2θ)

)
, (A.53)

one obtains in the thermodynamic limit

〈σiσi+r1σi+r1+r2〉 = c3 + cs2

((
λ−
λ+

)r1
+

(
λ−
λ+

)r2
−
(
λ−
λ+

)r1+r2
)

(A.54)

where c = cos(2θ) = m and s = sin(2θ) = 1−m2 (c should not be confused with the notation also used

for the prefactor of the derivative term in the bare action). The connected 3-point correlation function

is then given by

〈σiσi+r1σi+r1+r2〉c = 〈(σi − 〈σi〉)(σi+r1 − 〈σi+r1〉) (σi+r1+r2 − 〈σi+r1+r2〉)〉 = −2cs2

(
λ−
λ+

)r1+r2

.

(A.55)

If we call x1 = i, x2 = i+ r1, x3 = i+ r1 + r2, the above result translates into

W (3)(x1 < x2 < x3) = −2cs2

(
λ−
λ+

)x3−x1
, (A.56)

so that the 3-point connected correlation function for generic arguments can be written as

W (3)(x1, x2, x3) = −2cs2

[(
λ−
λ+

)x3−x1
Θ(x3 − x2)Θ(x2 − x1) +

(
λ−
λ+

)x1−x3
Θ(x1 − x2)Θ(x2 − x3)

+

(
λ−
λ+

)x2−x1
Θ(x2 − x3)Θ(x3 − x1) +

(
λ−
λ+

)x1−x2
Θ(x1 − x3)Θ(x3 − x2)

+

(
λ−
λ+

)x2−x3
Θ(x2 − x1)Θ(x1 − x3) +

(
λ−
λ+

)x3−x2
Θ(x3 − x1)Θ(x1 − x2)

]
,

(A.57)

where Θ(x) is the Heaviside step function. Neglecting the underlying lattice and performing the Fourier

transform lead to

W (3)(p1, p2, p3) = (2π)δ(p1 + p2 + p3)
4cs2ξ−2

(
(p1p2 + p1p3 + p2p3)− 3ξ−2

)(
p2

1 + ξ−2
) (
p2

2 + ξ−2
) (
p2

3 + ξ−2
) . (A.58)
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We now use the mapping between the Ising model and the ϕ4 theory at low temperature and the relation

between the connected 3-point correlation function and the 1PI 3-point vertex. [149] We finally obtain

Γ
(3)
k (p1, p2, p3) = −Γ̃

(2)
k (p1)Γ̃

(2)
k (p2)Γ̃

(2)
k (p3)W (3)(p1, p2, p3)

= (2π)δ(p1 + p2 + p3)
cs2

2
ξ(φ)

[
3ξ−2(φ)− (p1p2 + p1p3 + p2p3)

] (A.59)

where c = φ and s2 = φ2
0,k − φ2. Note that it is Γ̃

(2)
k (p) ≡ G

(2)
c,k(p)−1, obtained from Γ̃k[φ] = Γk[φ] +

β
2

∫
dqRk(q)φ(q)φ(−q), which appears in equation (A.59) and not Γ

(2)
k (p). The calculation of Γ

(4)
k can

be done in an analogous way and leads to equation (A.38). Although a cumbersome derivation, the

higher orders can also be obtained along the same lines.





Appendix B

Short- and long-range fluctuations in

glassy plaquette spin models

B.1 Universality class of the terminal critical points

If present the terminal critical points take place for nonzero values of the coupling ε and therefore

nonzero values of the mean overlap q. As a result, one can expand the effective Hamiltonian for

the overlap variables in the region around the critical point. It is convenient to move on to a soft-

spin description by replacing the hard constraint qi = ±1 by an additional term in the Hamiltonian

V (qi) = (λ/8)(q2
i − 1)2 and let the qi’s take any real value. The annealed and quenched Hamiltonians

for the overlap variables become [see equations (4.15) and (4.11) of the main text]

Hanε [{qi}] = − J̃
2

∑
µ

p∏
α=1

qµα − ε
∑
i

qi +
∑
i

V (qi) , (B.1)

Hquε [{qi}|C0] = −J
2

∑
µ

S0
µ

p∏
α=1

qµα − ε
∑
i

qi +
∑
i

V (qi) , (B.2)

with J̃ = (1/β) ln[cosh(βJ)] and the S0
µ’s independently distributed variables with S0

µ = tanh(βJ/2),

S0
µS

0
ν = tanh2(βJ/2) + δµν [1− tanh2(βJ/2)], etc. (see the main text).

For the annealed case, we simply expand around the saddle-point solution q∗: qi = q∗ + φi, with q∗
solution of

−pJ̃
2
qp−1
∗ − ε+ V ′(q∗) = 0 . (B.3)

One then obtains

Hanε [{qi}]−Hanε [q∗] = − J̃
2
qp−2
∗

∑
<ij>

φiφj +
λ

8

∑
i

[2(3q2
∗ − 2)φ2

i + 4q∗φ3
i + φ4

i ] + · · · , (B.4)

where < ij > is a sum over distinct nearest-neighbor pairs on the lattice and the ellipsis denote 3-body

and higher-order ferromagnetic interactions. These interactions are known to be subdominant near

the critical point if the pair interactions do not vanish, which is the case if εc > 0, and consequently

q∗ > 0 (note that q∗ is the mean-field or saddle-point value and is different from the exact qc, but this is

irrelevant for the argument). The effective Hamiltonian in equation (B.4) has no Z2 inversion symmetry,

but as for the gas-liquid critical point of a fluid this is also known to be irrelevant at criticality (the Z2

symmetry is asymptotically restored at the underlying renormalization-group fixed point). The critical

point of the annealed model is therefore expected to be in the universality class of the Ising model.

For the quenched setting, the argument is slightly more involved. One expand the overlap variable

as before, qi = q∗ + φi; however, q∗ is the saddle-point solution not for the Hamiltonian in equation

(B.2), which would be site-dependent due to the quenched disorder, but for the replicated theory,

Hquε,rep[{qai }] = − 1

β

∑
µ

ln

[
cosh[(βJ/2)(1 +

∑
a

∏p
α=1 q

a
µα)

cosh(βJ/2)

]
− ε

∑
a

∑
i

qai +
∑
a

∑
i

V (qai ) , (B.5)
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where a = 1, · · · , n is the replica index. Looking for a replica-symmetric and spatially uniform saddle-

point solution leads to the following equation for q∗ when n→ 0:

− pJ
2

tanh(βJ/2)qp−1
∗ − ε+ V ′(q∗) = 0 . (B.6)

The effective hamiltonian can then be rewritten as

Hquε [{qi}|C0]−Hquε [q∗|C0] = −J
2
qp−2
∗ S0

µ

∑
<ij>

φiφj −
J

2
qp−1
∗

∑
i

∑
µ/i

(S0
µ − S0

µ)φi

− J

2
qp−2
∗

∑
<ij>

∑
µ/<ij>

(S0
µ − S0

µ)φiφj +
λ

8

∑
i

[2(3q2
∗ − 2)φ2

i + 4q∗φ3
i + φ4

i ] + · · · ,

(B.7)

where S0
µ = tanh(βJ/2), the sum on µ/i is over all plaquettes attached to site i and that on µ/ < ij > is

over all plaquettes sharing the edge (ij); the ellipsis denotes 3-body and higher-order interactions. The

Hamiltonian is therefore that of a lattice scalar-field theory with random fields, (J/2)qp−1
∗

∑
µ/i(S

0
µ−S0

µ),

and random bonds, (J/2)qp−2
∗

∑
µ/<ij>(S0

µ − S0
µ). Provided q∗ > 0, the dominant features at long

distance are thus the ferromagnetic pair interactions and the random field, and the associated critical

point is then expected to be in the universality class of the RFIM.

B.2 Cavity equations for the Bethe-lattice coupled plaquette spin

models: free energy

In order to compute the free energy per site one starts with p(c − 1) sub-trees. As illustrated in

figure B.1, one can either add a new plaquette µ and connect (c − 1) sub-trees to each site of the

plaquette or add (p− p/c) sites linked to c sub-trees.

Correspondingly, the average free energy per site can be computed as the difference between a

“plaquette” (p) contribution and a “site” (s) contribution:

−βf =
c

p

∑
Sµ=±1

p[Sµ]

∫ c−1∏
j=1

p∏
ν=1

[
dh(j)

ν P ∗(h(j)
ν )
]

logZ(µ)
p

(
{h(j)

ν }, Sµ
)

− (c− 1)

∫ c∏
j=1

[
dh(j)

ν P ∗(h(j)
ν )
]

logZ(j)
s

(
{h(j)

ν }
) (B.8)

with P ∗(h) the sationnary probability distribution solution of equation (4.24).

The plaquette and site contributions Z
(µ)
p and Z

(j)
s read respectively:

Z(µ)
p

(
{h(j)

ν }, Sµ
)

=
∑

{q(1)µ ,...,q
(p)
µ =±1}

exp
[βJSµ

2

∏
i∈µ

q(i)
µ + β

∑
i∈µ

q(i)
µ (ε+H(i)

µ )
]

(B.9)

and

Zs
(
{h(j)

ν }
)

=
∑
qj=±1

exp
[
βqj(ε+

∑
ν3j

h(j)
ν )
]
. (B.10)

In the annealed setting, the free energy is simply expressed as

− βf =
c

p
logZp(h

∗)− (c− 1) logZs(h
∗) (B.11)
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µ

Figure B.1: One can merge (p− 1)(c− 1) sub-trees of N sites either to one plaquette µ or to (p− p/c)
sites. In the former case, one has a new tree with p(c− 1)N + p sites and in the latter case, (p− p/c)
trees with cN + 1 sites. We illustrate here the TPM where c = p = 3.

with h∗ the solution of equation (4.25) and

Zp(h) =
∑

{q(1)µ ,...,q
(p)
µ =±1}

exp
[βJ̃

2

∏
i∈µ

q(i)
µ + β(ε+ h)

∑
i∈µ

q(i)
µ

]
Zs(h) =

∑
q=±1

exp
[
βq(ε+ h)

]
.

(B.12)





Appendix C

Space-time fluctuations in Arrhenius

systems

C.1 Normal modes

The internal energy (5.11) is modified by the introduction of normal modes,

EBp =
K0

2

∑
~k,~k′

~u~k(t)~u~k′(t)
1

N

N∑
j=1

ei(
~k+~k′)·~lj (1− ei~k·(~lj+1−~lj))(1− ei~k′·(~lj+1−~lj)) =

1

2

∑
~k

λ2
~k
|~u~k(t)|

2 , (C.1)

where we introduced λ2
~k
, the coupling between phonons that propagate within the bath of harmonic

oscillators. The rightmost term can be decomposed on each space direction ε,∑
ε={x,y,z}

1

N

∑
j|

(~lj+1−~lj)=~eε

ei(
~k+~k′)·~lj (1− ei~k·(~lj+1−~lj))(1− ei~k′·(~lj+1−~lj))

=
∑

ε={x,y,z}
(1− ei~k·~eε)(1− ei~k′·~eε) 1

N

N/d∑
j=1

ei(
~k+~k′)·~lj =

∑
ε={x,y,z}

(1− eia~k·~eε)(1− eia~k′·~eε)1

d
δ~k,−~k′ ,

where we have used that the difference (~lj+1 − ~lj) can take three distinct values a{~ex, ~ey, ~ez}, each of

them in equal proportion 1
d . The coupling is given by, with kε = ~k · ~eε and K = K0/d,

λ2
~k

= K
∑

ε=x,y,z

(1− eikεa)(1− e−ikεa) = 4K

[
sin2

(
kxa

2

)
+ sin2

(
kya

2

)
+ sin2

(
kza

2

)]
. (C.2)

C.2 Effective ferromagnetic interaction energy

Our aim is to compute the following term

INdw ({Xi} = {+X0} or {−X0}) , (C.3)

which is given by, using equations (5.31) and (5.32),

− X2
0

2

Ndw∑
m,n=1
m 6=n

Y (R̂mn) . (C.4)

We can transform this double sum into a double integration, setting R̂mn = ||~x− ~y||/a, ~x and ~y being

the positions of the particles equilibrium positions. The integration must be done in respect to an
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”exclusion” radius lower cutoff corresponding to the minimal radius separating two nearest neighbors

particles R?. Hence the sum becomes, with the dimensionless variables x̂ = x/a, ŷ = y/a, R̂? = R?/a,

Ndw∑
m,n=1
m 6=n

Y (R̂mn) =

∫ N
1/3
dw R?/2

−N1/3
dw R?/2

d3x

(R?)3

∫ N
1/3
dw R?/2

−N1/3
dw R?/2

d3y

(R?)3
Y (||~x− ~y||/a) Θ (||~x− ~y|| −R?)

=
a6

(R?)6

∫ N
1/3
dw R̂?/2

−N1/3
dw R̂?/2

d3x̂

∫ N
1/3
dw R̂?

−N1/3
dw R̂?

d3ẑ Y
(
||~̂z||

)
Θ
(
||~̂z|| − R̂?

)
∼ a6

(R?)6

(
N

1/3
dw R̂

?
)3
∫ N

1/3
dw R̂?

R̂?
dẑẑ2 Y (ẑ) ∼ a6

(R?)6
Ndw

(
R̂?
)6
∫ N

1/3
dw

1
dz̃ z̃2 Y

(
R̂?z̃

)
,

(C.5)

with z̃ = ẑ/R̂?. The above expression is finally

Ndw∑
m,n=1
m 6=n

Y (R̂mn) ∼ Ndw

∫ N
1/3
dw

1
dz̃ z̃2 Y

(
R̂?z̃

)
. (C.6)

The right function has the form Y (ẑ) = A e−Bẑ

ẑ , with A and B > 0, thus its integration yields

A

∫ N
1/3
dw

1
dẑẑ e−Bẑ =

A

B2

[
e−B (1 +B)− e−BN

1/3
dw

(
1 +BN

1/3
dw

)]
. (C.7)

As A = g2

4πK
1
R̂?

and B =
√

ρg
K R̂

?, we have A
B2 = 1

(R̂?)
3

g
4πρ . The volume is equivalently given by

V = a3N and V = (R?)3Ndw, hence 1

(R̂?)
3 =

(
a
R?

)3
= Ndw

N = ρ, the density of double-wells. The

effective interaction energy becomes

INdw ({+X0}) ∼ −
X2

0

2
Ndw

g

4π

[
e−
√

ρg
K
R̂?
(

1 +

√
ρg

K
R̂?
)
− e−

√
ρg
K
N

1/3
dw R̂?

(
1 +

√
ρg

K
N

1/3
dw R̂

?

)]
∼

Ndw�1
−X

2
0

2
Ndw

g

4π
e−
√

ρg
K
R̂?
(

1 +

√
ρg

K
R̂?
)
.

(C.8)

C.3 Different sums over ~k

In the following we will have to evaluate terms like 1
N

∑
~k
. Using that, for L = V 1/3 large, the sum can

be transformed in an integral, of some function f(~k) becomes

1

N

∑
~k

f(~k) =
1

N

L3

(2π)3

∫ π
a

−π
a

d~k f(~k) =
1

(2π)3

∫ π

−π
d~̂k f(~̂k) , (C.9)

as the number of sites is N = V
a3

and where we have defined the dimensionless variable ~̂k = a~k. In

addition the system under study is isotropic and all the functions we will encounter can be expressed

in term of spherical coordinates (k, θ, φ). They all have the same form f(~k) = l(~k)

λ̃2k
, where λ̃2

k =

gρ+Kk̂2 + o(k̂2), where we have used ρ = Ndw
N as the density of double-wells. Therefore the integrals

all read

1

(2π)3

∫ π

−π
d3k̂

l(~̂k)

gρ+Kk̂2
=

1

(2π)3

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ π

0
dk̂ k̂2 l(k̂, θ, φ)

gρ+Kk̂2
. (C.10)
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In the limit where ρg � 1 and in dimension d = 3, the rightmost integral is dominated by the infra-red

regime where k � 1.

C.3.1 Effective interaction between particles

We want to evaluate following sum which appears in the expression (5.25),

1

N

∑
~k

ei
~k(~Rm−~Rn)

λ̃2
~k

, (C.11)

in the two possible cases, n = m and n 6= m.

C.3.1.1 Case m = n

We have to compute

α =
1

N

∑
~k

1

λ̃2
~k

=
1

(2π)3
4π

∫ π

0
dk̂ k̂2 1

λ̃2
k

, (C.12)

with λ̃2
k = gρ+Ka2k2 + o(k̂2) from (5.24), where we have used ρ = Ndw

N as the density of double-wells.

This reads, integrated over the dimensionless k̂,

α =
1

2π2

∫ π

0
dk̂ k̂2 1

gρ+Kk̂2
=

1

2πK

[
1− 1

π

√
ρg

K
arctan

(
π

√
K

ρg

)]
. (C.13)

C.3.1.2 Case m 6= n

We define

Y (R̂mn) = g2 h(R̂mn) , (C.14)

with the dimensionless variable R̂mn = Rmn/a, a being the lattice spacing, Rmn = ||~Rmn||. The

function to compute, h(R̂mn) with R̂mn � 1, is given by

h(R̂mn) =
1

N

∑
~k

ei
~k ~Rmn

λ̃2
k

. (C.15)

Changing variable for ~̂R, the term to compute becomes

h(R̂mn) =
1

(2π)3

∫ π

−π
d~̂k

ei
~̂k ~̂Rmn

λ̃2
~̂k

=
1

(2π)3

∫ 2π

0
dφ

∫ π

0
dk̂

k̂2

λ̃2
~̂k

∫ π

0
dθ sin θ eik̂R̂mn cos θ (C.16)

=
1

(2π)2

2

R̂mn

∫ π

0
dk̂ k̂

sin(k̂R̂mn)

Kk̂2 + ρg
, (C.17)

which gives

h(R̂mn) =
1

2π2

1

R̂mn

1

K

[
SinIntegral(πR̂mn)− π

2

√
ρg

K
R̂mn +O(gρ)

]
. (C.18)

Using that for values of x � 1, SinIntegral(2πx) ∼ π
2 Θ(x), where Θ(x) = 1 if x > 0 is the Heaviside

function, h(R̂mn) can be expressed as

h(R̂mn) =
1

4πK

1

R̂mn

(
1−

√
ρg

K
R̂mn +O(gρ)

)
'

ρgR̂mn�1

1

4πK

1

R̂mn
exp

[
−
√
ρg

K
R̂mn

]
, (C.19)

with both R̂mn � 1 and ρgR̂mn � 1.
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C.3.2 Memory kernel

We have to compute the equation 5.48, that we recall

Knp(t− t′) =
g2

m

1

N

∑
~k

ei
~k ~Rnp cos[ωk(t− t′)]

ω2
k

, (C.20)

where ~Rnp = ~Rn − ~Rp and ω2
k =

λ̃2
~̂k
m . We will determine an estimation for the above quantity by using

continuity of different limits. As is said in the main text, this gives a quite reasonable description of

the dissipation kernel for the parameters we are concerned in.

C.3.2.1 Case n = p

We have to determine:

Knn(t− t′) =
g2

m

1

N

∑
~k

cos[ωk(t− t′)]
ω2
k

. (C.21)

In the following limits the kernel is given the following expressions.

• t = t′, (C.20) evaluates to g2 × (C.13), or

Knn(0) =
g2

2πK

[
1− 1

π

√
ρg

K
arctan

(
π

√
K

ρg

)]
, (C.22)

• t 6= t′ and ρg = 0

Knn;0(t− t′) = g2 1

2π2

∫ π

0
dk̂k̂2

cos

[√
K
m (t− t′)k̂

]
Kk̂2

=
g2

2π2

m

K3/2

sin

[√
K
mπ(t− t′)

]
(t− t′)

. (C.23)

We find that the limits coincide, limt→t′ Knn;0(t − t′) = limρg→0Knn(0). Then we estimate the kernel

of dissipation when t 6= t′ and ρg 6= 0 by

Knn(t− t′) ' g2

2π2

√
m

K3/2

[
1− 1

π

√
ρg

K
arctan

(
π

√
K

ρg

)] sin

[√
K
mπ(t− t′)

]
(t− t′)

. (C.24)

C.3.2.2 Case n 6= p

We have to determine, with n 6= p:

Knp(t− t′) =
g2

m

1

N

∑
~k

ei
~k ~Rnp cos[ωk(t− t′)]

ω2
k

. (C.25)

The dimensionless variables are ~̂k = a~k and ~̂R = ~R/a, with R̂np = || ~̂Rnp||. The sum can be transformed

as

1

N

∑
~k

ei
~k ~Rnp cos[ωk(t− t′)]

ω2
k

=
1

(2π)3

∫ 2π

0
dφ

∫ π

0
dk̂ k̂2 cos[ωk̂(t− t

′)]

ω2
k̂

∫ π

0
dθ sin θ eik̂R̂np cos θ

=
1

(2π)2

2m

R̂np

∫ π

0
dk̂ k̂2 cos[ωk̂(t− t

′)]

λ̃2
k̂

sin
(
k̂R̂np

)
k̂

(C.26)
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=
1

(2π)2

2m

R̂np

∫ π

0
dk̂ k̂

cos

[
(t− t′)

√
(Kk̂2 + ρg)/m

]
Kk̂2 + ρg

sin
(
k̂R̂np

)
. (C.27)

Then in the following limits the kernel takes the expressions below.

• When t = t′, we recover the integral (C.17) which values is (C.19), hence the kernel at time t = t′

writes, for R̂np � 1 and gρR̂np � 1,

Knp(0) 'ρg�1 g
2 1

4πK

1

R̂np
exp

[
−
√
ρg

K
R̂np

]
. (C.28)

• When t 6= t′ and ρg = 0

Knp;0(t− t′) = g2 1

2π2

1

R̂np

∫ π

0
dk̂k̂2

cos

[√
K
m (t− t′)k̂

]
Kk̂2

sin
(
k̂R̂np

)
k̂

= g2 1

4π2K

1

R̂np

(
SinIntegral

[
π

(
R̂np −

√
K

m
(t− t′)

)]
+ SinIntegral

[
π

(
R̂np +

√
K

m
(t− t′)

)])
.

(C.29)

The limits coincide limt→t′ Knp;0(t− t′) = limρg→0Knp(0). Then we estimate the kernel of dissipation

when t 6= t′ and ρg 6= 0 by

Knp(t− t′) ' g2 1

4π2K

1

R̂np
exp

[
−
√
ρg

K
R̂np

]
(

SinIntegral

[
π

(
R̂np −

√
K

m
(t− t′)

)]
+ SinIntegral

[
π

(
R̂np +

√
K

m
(t− t′)

)])
, (C.30)

with both R̂mn � 1 and ρgR̂mn � 1.

C.4 Simplification for the action of the climb

The finite action of the climb, equation (5.75) of the main text, is computed using the following

simplification:

Ndw∑
n,j=1

∫ t

0
dt1 Ẋj(t1)

[∫ t1

0
dt2 Ẋn(t2)Kjn(t1 − t2)− 1

2

∫ t

0
dt2 Ẋn(t2)Kjn(t1 − t2)

]
=

1

2

Ndw∑
n,j=1

[∫ t

0
dt1 Ẋj(t1)

∫ t1

0
dt2 Ẋn(t2)Kjn(t1 − t2)−

∫ t

0
dt1 Ẋj(t1)

∫ t

t1

dt2 Ẋn(t2)Kjn(t1 − t2)

]
=

1

2

Ndw∑
n,j=1

[∫ t

0
dt1 Ẋn(t1)

∫ t

t1

dt2 Ẋj(t2)Kjn(t1 − t2)−
∫ t

0
dt1 Ẋj(t1)

∫ t

t1

dt2 Ẋn(t2)Kjn(t1 − t2)

]
=

1

2

Ndw∑
n,j=1

[∫ t

0
dt1 Ẋj(t1)

∫ t

t1

dt2 Ẋn(t2)Kjn(t1 − t2)−
∫ t

0
dt1 Ẋj(t1)

∫ t

t1

dt2 Ẋn(t2)Kjn(t1 − t2)

]
= 0 .

(C.31)
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C.5 Scaling function appearing in the three-point susceptibility

We have introduced the function fj (t1), with K11(t1;~k) from equation (5.48) and σ = g2 α,

fj (t1) =
∑
~k

ei
~k(~lj−~R1) λ̃k

1

g2
K11(t1;~k) =

1

N

∑
~k

ei
~k(~lj−~R1) cos(ωk t1)

λ̃k
. (C.32)

We recall that ωk = λ̃k/
√
m =

√
K/mak + O(g ρ). Then the above can be rewritten, with ~y = a~k

dimensionless,

fj (t1) = (2π)−3

∫ π

−π
d3y ei~y(~lj−~R1)

cos

(√
K
my t1

)
√
Ky

+O(ρ)

= (2π)−2K−1/2

∫ π

0
dyy cos

(√
K

m
y t1

)∫ π

0
dθ sin θ eiy a

−1 ||~lj−~R1|| cos θ +O(ρ)

= 2 (2π)−2K−1/2 a

||~lj − ~R1||

∫ π

0
dy cos

(√
K

m
y t1

)
sin
(
ya−1 ||~lj − ~R1||

)
+O(ρ) .

(C.33)

We change variable for z = y a−1 ||~lj − ~R1||, always dimensionless, and ||~lj − ~R1|| = dj . Since

sinAy cosBy = 1/2 {sin [y(A+B)] + sin [y(A−B)]}, we obtain

fj (t1) = (2π)−2K−1/2a
2

d2
j

∫ π dj/a

0
dz

{
sin

[
z

(
1 +

√
K

m

a

dj
t1

)]
+ sin

[
z

(
1−

√
K

m

a

dj
t1

)]}
+O(ρ) .

(C.34)

The initial function can therefore be written

fj(t) = (2π)−2K−1/2a
2

d2
j

φj

(
t

tj

)
, (C.35)

with, tj = dj/a
√

m
K ,

φj

(
t1
tj

)
=

∫ π dj/a

0
dz

{
sin

[
z

(
1 +

t

tj

)]
+ sin

[
z

(
1− t

tj

)]}
+O(ρ)

=
1

1 + t/tj
+

1

1− t/tj
− cos [πK tj (1 + t/tj)]

1 + t/tj
− cos [πK tj (1− t/tj)]

1− t/tj
+O(ρ) .

(C.36)

The function φ, defined for 0 < t1, tj < t, is such that φj(t1/tj)→ ±tj when tj → t
−/+
1 .



Appendix D

Critical behavior of the Ising spin glass

below six dimensions

D.1 Simple invariants of the Ising spin-glass theory built from the

overlaps

The invariants of the Ising spin-glass theory are polynomials of the overlap field such that replica indices

must appear an even number of times. They are listed in the two following tables up to order O(Q6).

Table D.1: Invariants of the Ising spin glass field theory up to O(Q5).

O(Q2) O(Q3) O(Q4) O(Q5)

Q2
ab QabQbcQca QabQbcQcdQda QabQbcQcdQdeQea

Q4
ab Q2

abQabQbcQca
Q2
abQ

2
bc Q2

abQbcQcdQdb
Q2
abQ

2
cd Q2

abQcdQdeQec

Table D.2: Invariants of the Ising spin glass field theory at O(Q6).

O(Q6)

QabQbcQcdQdeQefQfa Q2
abQ

2
acQ

2
ad Q2

abQbcQcaQbdQda
Q6
ab Q2

abQ
2
bcQ

2
cd Q2

abQbcQcdQdeQeb
Q4
abQ

2
bc Q2

abQ
2
acQ

2
de Q2

abQcdQdeQefQfc
Q4
abQ

2
cd Q2

abQ
2
cdQ

2
ef QabQbcQcaQadQdeQea

Q2
abQ

2
bcQ

2
ca Q3

abQbcQcdQda QabQbcQcaQdeQefQfd

D.2 Expansion around the minimum in terms of invariants up to

O(Q6)

Each term of the expansion is chosen to be a function of the invariants of the same or lower order, having

its first field derivative equal to zero in Qk, and being itself zero in Qk. The terms are listed below in

increasing order of O(Qp). For orders up to O(Q5), they are given in the main text in equation (6.14).

For order O(Q6), they are (with distinct replica indices a, b, c, d, e, f 6=),

µ
(6)
abcdef = QabQbcQcdQdeQefQfa −Q6

k −Q4
k

(
ρ

(2)
ab + ρ

(2)
bc + ρ

(2)
cd + ρ

(2)
de + ρ

(2)
ef + ρ

(2)
fa

)
, (D.1)
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η
(6)
ab = ρ

(2)
ab ρ

(2)
ab ρ

(2)
ab

η
(6)
abc,1 =

1

2
ρ

(2)
ab ρ

(2)
ab

(
ρ(2)
ac + ρ

(2)
bc

)
η

(6)
abc,2 = ρ

(2)
ab ρ

(2)
bc ρ

(2)
ca

η
(6)
abcd,1 = ρ

(2)
ab ρ

(2)
ab ρ

(2)
cd

σ
(6)
abcd = ρ

(2)
ab µ

(4)
abcd

σ
(6)
abcde =

1

2
ρ

(2)
ab

(
µ

(4)
acde + µ

(4)
bcde

)
σ

(6)
abcdef = ρ

(2)
ab µ

(4)
cdef

η
(6)
abcd,2 = ρ

(2)
ab ρ

(2)
ac ρ

(2)
ad

η
(6)
abcd,3 = ρ

(2)
ab ρ

(2)
bc ρ

(2)
cd

η
(6)
abcde = ρ

(2)
ab ρ

(2)
ac ρ

(2)
de

η
(6)
abcdef = ρ

(2)
ab ρ

(2)
cd ρ

(2)
ef

τ
(6)
abcd = µ

(3)
abcµ

(3)
abd

τ
(6)
abcde = µ

(3)
abcµ

(3)
ade

τ
(6)
abcdef = µ

(3)
abcµ

(3)
def .

(D.2)

The sums are over distinct ordered replica indices
∑

(abc) =
∑

a<b<c, etc. The potential can thus be

rewritten as (the dependence on Qk of the coupling constants is not shown)

Uk({Qab}) = Wk,1

∑
(abc)

µ
(3)
abc

+ Uk,1
∑

(abcd)

µ
(4)
abcd + Uk,2

∑
(ab)

λ
(4)
ab + Uk,3

∑
(abc)

λ
(4)
abc + Uk,4

∑
(abcd)

λ
(4)
abcd

+ Vk,1
∑

(abcde)

µ
(5)
abcde + Vk,2

∑
(abc)

ν
(5)
abc + Vk,3

∑
(abcd)

ν
(5)
abcd + Vk,4

∑
(abcde)

ν
(5)
abcde

+ Tk,1
∑

(abcdef)

µ
(6)
abcdef + Tk,2

∑
(ab)

η
(6)
ab + Tk,3

∑
(abc)

η
(6)
abc,1 + Tk,4

∑
(abc)

η
(6)
abc,2

+ Tk,5
∑

(abcd)

η
(6)
abcd,1 + Tk,6

∑
(abcd)

η
(6)
abcd,2 + Tk,7

∑
(abcd)

η
(6)
abcd,3 + Tk,8

∑
(abcde)

η
(6)
abcde

+ Tk,9
∑

(abcdef)

η
(6)
abcdef + Tk,10

∑
(abcd)

σ
(6)
abcd + Tk,11

∑
(abcde)

σ
(6)
abcde + Tk,12

∑
(abcdef)

σ
(6)
abcdef

+ Tk,13

∑
(abcd)

τ
(6)
abcd + Tk,14

∑
(abcde)

τ
(6)
abcde + Tk,15

∑
(abcdef)

τ
(6)
abcdef +O(Q7) .

(D.3)

As explained in the main text, this form is not yet satisfying, and some work remains to be done. It is

explained below.

A a starting point, we rewrite equation (D.3) in a more compact form:

Uk[{Qab}] = Wk,1X
(3)
1 +

4∑
i=1

Uk,iX
(4)
i +

4∑
i=1

Vk,iX
(5)
i +

15∑
i=1

Tk,iX
(6)
i +O(Q7) . (D.4)

The X
(j)
i ’s are expressed as sums of order O(Qj) of the terms of the invariant expansion listed

in (6.14), (D.1), and (D.2). For example, X
(3)
1 =

∑
(abc) µ

(3)
abc, X

(4)
1 =

∑
(abcd) µ

(4)
abcd, etc.

As explained in the main text, our goal is to reorganize the above expression of the potential in

such a way that one can define the (new) coupling constants via derivatives of the potential evaluated

at the minimum Qk whose expression does not depend on terms above a certain order of the expansion.

We therefore rewrite Uk as

Uk({Qab}) = W̃k,1 X̃
(3)
1 +

4∑
i=1

Ũk,i X̃
(4)
i +

4∑
i=1

Ṽk,i X̃
(5)
i +

15∑
i=1

T̃k,i X̃
(6)
i +O(Q7) , (D.5)
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where the new invariants are expressed as linear combinations of the old ones:

X̃
(3)
1 = X

(3)
1

X̃
(4)
i = X

(4)
i − aiQkX

(3)
1

X̃
(5)
i = X

(5)
i −

4∑
j=1

bij QkX
(4)
j − ciQ

2
kX

(3)
1

X̃
(6)
i = X

(6)
i −

4∑
j=1

dij QkX
(5)
j −

4∑
j=1

eij Q
2
kX

(4)
j − fiQ

3
kX

(3)
1

(D.6)

etc. We want W̃k,1 to be defined irrespective of X̃
(4)
i , X̃

(5)
i , ..., the Ũk,i’s to be defined irrespective of

X̃
(5)
i , X̃

(6)
i , etc. We also require that any subtracted term of the right hand side of expressions (D.6)

should not involve more distinct replica indices than the number of replicas involved in the definition

of the left hand side. (If this was left to happen, factors (n− p)−1 would be present in the right hand

side and would cause divergences for a fixed number n = p of replicas, whereas this should be valid

whatever the number n of replicas is.)

To implement the procedure, we make use of the tables D.3 to D.5 given below.

For the lowest order O(Q3) truncation, we choose to use the third order derivative to define W̃1. In

this case one has

W̃k,1 =
δ3Uk

δQabδQbcδQca

∣∣∣
Qk
. (D.7)

The X
(4)
i ’s all have their derivative with respect to δQabδQbcδQca in Qk equal to zero so that one has

to consider the X
(5)
i ’s to guarantee the exactness of equation (D.7), which leads to one constraint for

each X
(5)
i . At the next order, we want to define the Ũk,i’s using the three second order derivatives and

one third order derivative. The X
(5)
i ’s have to be modified according to

X̃
(5)
i = X

(5)
i −

4∑
j=1

bij QkX
(4)
j − ciQ

2
kX

(3)
1 . (D.8)

The ci’s and bij ’s are obtained by solving the following system of five equations (with a, b, c, d 6=), with

the three conditions on the second-order derivatives evaluated in Qk

δ2X̃
(5)
i

δQabδQab

∣∣∣
Qk

= 0 ,
δ2X̃

(5)
i

δQabδQbc

∣∣∣
Qk

= 0 ,
δ2X̃

(5)
i

δQabδQcd

∣∣∣
Qk

= 0 , (D.9)

and two conditions on third-order derivatives evaluated in Qkwhich must include the derivative used

for the definition of W̃k,1,

(1)
δ2X̃

(5)
i

δQabδQbcδQca

∣∣∣
Qk

= 0, (D.10)

and a second one, which a priori can be one of the following four (the numbers (p) refers to the derivative

number as in table D.3):

(2)
δ3X̃

(5)
i

δQ3
ab

= 0
∣∣∣
Qk

(3)
δ3X̃

(5)
i

δQ2
abδQbc

= 0
∣∣∣
Qk

(4)
δ3X̃

(5)
i

δQ2
abδQcd

= 0
∣∣∣
Qk

(5)
δ3X̃

(5)
i

δQabδQbcδQcd
= 0
∣∣∣
Qk
.

(D.11)
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There are four X̃
(5)
i ’s and five equations for each X̃

(5)
i : therefore we have a system of 20 equations and

20 unknowns to solve. The choices (2) and (3) of the equation (D.11) are not acceptable, because they

force one to subtract terms with more replicas than X
(5)
i itself. The other choices (4) and (5) have

solutions which are given below: for (4) (called (A) in the main text)

{c1 → 0, c2 → 1, c3 → 0, c4 → 0, b1,1 → 2(n− 4), b1,2 → 3(n− 4)(n− 3)(n− 2), b1,3 → −(n− 4)(n− 3),

b1,4 → 0, b2,1 → 0, b2,2 → 3(n− 2), b2,3 → −1, b2,4 → 0, b3,1 → 1, b3,2 → 3(n− 3)(n− 2), b3,3 → 3− n,

b3,4 → −2, b4,1 →
n− 4

2
, b4,2 →

3

2
(n− 4)(n− 3)(n− 2), b4,3 → −

1

2
(n− 4)(n− 3), b4,4 → 4− n} ,

(D.12)

and for (5) (called (B) in the main text)

{c1 → 0, c2 → 1, c3 → 0, c4 → 0, b1,1 → n− 4, b1,2 → 0, b1,3 → 0, b1,4 → 2(n− 4), b2,1 → 0,

b2,2 → 3(n− 2), b2,3 → −1, b2,4 → 0, b3,1 → 2, b3,2 → 6(n− 3)(n− 2), b3,3 → 6− 2n, b3,4 → −4,

b4,1 → 0, b4,2 → 0, b4,3 → 0, b4,4 → 0} .
(D.13)

The potential is then given by

U [{Qab}] = W̃k,1X
(3)
1 +

4∑
i=1

Ũk,iX
(4)
i +

4∑
i=1

Ṽk,i X̃
(5)
i +O(Q6) (D.14)

where the X̃
(5)
i ’s are given by one of the two solutions in (D.12) and (D.13).

The constants W̃k,1 and Ũk,i are thus exactly defined through the following expressions, which do

not involve higher order coupling constants:

δ2Uk
δQ2

ab

∣∣∣
Qk

= −(n− 2)Qk W̃k,1 − (n− 2)(n− 4)Q2
k Ũk,1 +

1

3
Q2
kŨk,2 ,

δ2Uk
δQabδQbc

∣∣∣
Qk

= Qk W̃k,1 + (n− 3)Q2
k Ũk,1 +Q2

kŨk,3 ,

δ2Uk
δQabδQcd

∣∣∣
Qk

= 2Q2
k Ũk,1 +Q2

kŨk,4 ,

δ3Uk
δQabδQbcδQca

∣∣∣
Qk

= W̃k,1 ,

(D.15)

and either (choice (A) in the main text)

(4)
δ3Uk

δQ2
abδQcd

∣∣∣
Qk

= Qk Ũk,4 , (D.16)

or (choice (B) in the main text)

(5)
δ3Uk

δQabδQbcδQcd

∣∣∣
Qk

= Qk Ũk,1 . (D.17)

The implicit assumption here is that one can generalize the construction given above for the X̃
(5)
i to

the higher-order terms. As mentioned in the main text, this is supported by the fact that the system of

linear equations to be solved is underconstrained, the number of possibilities for defining an acceptable

set of new invariants increasing with the order. (This is easily verified at the order O(Q6) for the X̃
(6)
i .)
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D.3 Table of field derivatives of various invariants in Uk evaluated at

the minimum

The definitions of the variables X
(p)
i expressed in terms of the invariants are:

X
(3)
1 =

∑
(abc)

µ
(3)
abc , X

(4)
1 =

∑
(abcd)

µ
(4)
abcd , X

(4)
2 =

∑
(ab)

λ
(4)
ab , X

(4)
3 =

∑
(abc)

λ
(4)
abc , X

(4)
4 =

∑
(abcd)

λ
(4)
abcd ,

X
(5)
1 =

∑
(abcde)

µ
(5)
abcde , X

(5)
2 =

∑
(abc)

ν
(5)
abc , X

(5)
3 =

∑
(abcd)

ν
(5)
abcd , X

(5)
4 =

∑
(abcde)

ν
(5)
abcde , etc. ,

(D.18)

and give, in the tables below, the derivatives of the variables X
(p)
i (up to O(Q5)) with respect to the

overlap fields and evaluated in the minimum, {Qab} = {Qk}.

Table D.3: Derivatives of X
(3)
1 and X

(4)
i (i = 1, 2, 3, 4) in {Qab} = {Qk}

X
(3)
1 X

(4)
1 X

(4)
2 X

(4)
3 X

(4)
4

1 δQ2
ab −(n− 2)Qk −(n− 2)(n− 3)Q2

k
1
3Q

2
k 0 0

2 δQabδQbc Qk (n− 3)Q2
k 0 Q2

k 0

3 δQabδQcd 0 2Q2
k 0 0 Q2

k

1 δQabδQbcδQca 1 0 0 0 0

2 δQ3
ab 0 0 Qk 0 0

3 δQ2
abδQbc 0 0 0 Qk 0

4 δQ2
abδQcd 0 0 0 0 Qk

5 δQabδQbcδQcd 0 Qk 0 0 0

6 δQabδQacδQad 0 0 0 0 0

7 δQabδQacδQde 0 0 0 0 0

8 δQabδQcdδQef 0 0 0 0 0

1 δQabδQbcδQcdδQda 0 1 0 0 0

2 δQ4
ab 0 0 1 0 0

3 δQ2
abδQ

2
bc 0 0 0 1 0

4 δQ2
abδQ

2
cd 0 0 0 0 1



162 Appendix D. Critical behavior of the Ising spin glass below six dimensions

Table D.4: Derivatives of X
(5)
i (i = 1, 2, 3, 4) in {Qab} = {Qk}

X
(5)
1 X

(5)
2 X

(5)
3 X

(5)
4

1 δQ2
ab −(n− 2)(n− 3)(n− 4)Q3

k 0 0 0

2 δQabδQbc (n− 3)(n− 4)Q3
k 0 0 0

3 δQabδQcd 4(n− 4)Q3
k 0 0 0

1 δQabδQbcδQca 0 Q2
k 0 0

2 δQ3
ab 0 −(n− 2)Q2

k 0 0

3 δQ2
abδQbc 0 1

3Q
2
k −(n− 3)Q2

k 0

4 δQ2
abδQcd 0 0 −2Q2

k −(n− 4)Q2
k

5 δQabδQbcδQcd (n− 4)Q2
k 0 2Q2

k 0

6 δQabδQacδQad 0 0 3Q2
k 0

7 δQabδQacδQde 2Q2
k 0 0 Q2

k

8 δQabδQcdδQef 0 0 0 0
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Table D.5: Derivatives of X
(5)
i (i = 1, 2, 3, 4) in {Qab} = {Qk}

X
(5)
1 X

(5)
2 X

(5)
3 X

(5)
4

1 δQabδQbcδQcdδQda 0 0 0 0

2 δQ4
ab 0 −2(n− 2)Qk 0 0

3 δQ2
abδQ

2
bc 0 −2

3Qk −2(n− 3)Qk 0

4 δQ2
abδQ

2
cd 0 0 −4Qk −2(n− 4)Qk

5 δQ2
abδQacδQbc 0 Qk 0 0

6 δQabδQacδQbcδQcd 0 0 Qk 0

7 δQabδQacδQbcδQde 0 0 0 Qk

8 δQ3
abδQbc 0 Qk 0 0

9 δQ3
abδQcd 0 0 0 0

10 δQ2
abδQbcδQbd 0 0 Qk 0

11 δQ2
abδQbcδQcd 0 0 Qk 0

12 δQ2
abδQbcδQde 0 0 0 0

13 δQ2
abδQacδQbd 0 0 0 0

14 δQ2
abδQcdδQce 0 0 0 Qk

15 δQ2
abδQcdδQef 0 0 0 0

16 δQabδQbcδQcdδQde Qk 0 0 0

17 δQabδQbcδQcdδQef 0 0 0 0

18 δQabδQbcδQcdδQce 0 0 0 0

19 δQabδQacδQadδQae 0 0 0 0

20 δQabδQcdδQceδQcf 0 0 0 0

21 δQacδQadδQbeδQbf 0 0 0 0

22 δQacδQbcδQdeδQfg 0 0 0 0

23 δQabδQcdδQefδQgh 0 0 0 0

D.4 Terms appearing in the RG flow equations of the derivatives of

the effective average action

The terms appear in the flow equations obtained by functional differentiation of the exact RG equation

for Γk and are evaluated for a spatially uniform field configuration. A graphical representation (without

replica indices) has been given in chapter 2. We obtain the following expressions:

D
(3)
ab (0) =

∑
(cd),
(ef)

∫
q

Γ
(3)
k;ab,cd,ef (0, q,−q)Pk;ef,cd(q

2) , (D.19)
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E
(3),(3)
ab,cd (p2) =

∑
(ef),(gh),
(ij),(lm)

∫
q

Γ
(3)
k;ab,ef,gh(p, q,−q − p)Pk;gh,ij(q

2) Γ
(3)
k;cd,ij,lm(−p,−q, q + p)Pk;lm,ef (|~q + ~p|2) ,

E
(4)
ab,cd(0) =

∑
(ef),(gh)

∫
q

Γ
(4)
k;ab,cd,ef,gh(0, 0, q,−q)Pk;ef,gh(q2) ,

(D.20)

F
(3),(3),(3)
ab,cd,ef (0) =

∑
(gh),(ij),(lt),
(mn),(op),(rs)

∫
q

Γ
(3)
k;ab,gh,ij(0, q,−q)Pk;ij,lt(q

2) Γ
(3)
k;cd,lt,mn(0, q,−q)Pmn,op(q2)×

Γ
(3)
k;ef,op,rs(0, q,−q)Prs,gh(q2) ,

F
(4),(3)
ab,cd;ef (0) =

∑
(gh),(ij),
(lp),(mn)

∫
q

Γ
(4)
k;ab,cd,gh,ij(0, 0, q,−q)Pk;ij,lp(q

2) Γ
(3)
k;ef,lp,mn(0, q,−q)Pmn,gh(q2),

F
(5)
ab,cd,ef (0) =

∑
(gh),(ij)

∫
q

Γ
(5)
k;ab,cd,ef,gh,ij(0, 0, 0, q,−q)Pij,gh(q2) .

(D.21)

By an abuse of notation, we have defined the proper vertices Γ
(n)
k without the delta function δ(d)(q1 +

· · ·+ qn).

D.5 Truncation of the expansion in invariants around the minimum

at order O(Q4)

D.5.1 Expressions of the coupling constants

The two systems of equations, (6.64) and (6.65) of the main text, can be inverted to obtain the expres-

sions of the constants as functions of the field derivatives of uk. For the choice (A), it gives

(A)

wk,1 = u
(3)
k;ab,bc,ca

∣∣∣
qk

, uk,1 =
u

(2)
k;ab,cd − u

(3)
k;ab,ab,cdqk

2q2
k

∣∣∣
qk

, uk,4 =
u

(3)
k;ab,ab,cd

qk

∣∣∣
qk
,

uk,2 =
3(n− 2)

(
u

(2)
k;ab,cd(n− 3)− u(3)

k;ab,ab,cd(n− 3)qk + 2u
(3)
k;ab,bc,caqk

)
+ 6u

(2)
k;ab,ab

2q2
k

∣∣∣
qk
,

uk,3 =
−u(2)

k;ab,cd(n− 3) + 2u
(2)
k;ab,bc + u

(3)
k;ab,ab,cd(n− 3)qk − 2u

(3)
k;ab,bc,caqk

2q2
k

∣∣∣
qk
,

(D.22)

and for the choice (B)

(B)

wk,1 = u
(3)
k;ab,bc,ca

∣∣∣
qk

, uk,1 =
u

(3)
k;ab,bc,cd

qk

∣∣∣
qk

, uk,4 =
u

(2)
k;ab,cd − 2u

(3)
k;ab,bc,cdqk

q2
k

∣∣∣
qk
,

uk,2 =
3
(
u

(2)
k;ab,ab + (n− 2)qk

(
u

(3)
k;ab,bc,cd(n− 3) + u

(3)
k;ab,bc,ca

))
q2
k

∣∣∣
qk
,

uk,3 =
u

(2)
k;ab,bc − qk

(
u

(3)
k;ab,bc,cd(n− 3) + u

(3)
k;ab,bc,ca

)
q2
k

∣∣∣
qk
.

(D.23)
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D.5.2 Dimensionless flow equations

The five d
dt

(
u

(n)
k;a1b1,...,anbn

∣∣∣
qk

)
that we are susceptible to use are (with distinct a, b, c, and the three

different cases {e, f} = {a, b} or {b, c} or {c, d}) read

d

dt

(
u

(2)
k;ab,ef

∣∣∣
qk

)
= (−2 + ηk)u

(2)
k;ab,ef

∣∣∣
qk

+
1

2
∂̃t

{
e

(4)
ab,ef (0)− e(3),(3)

ab,ef (0)
} ∣∣∣

qk
+ δqk

∑
(gh)

u
(3)
k;ab,ef,gh

∣∣∣
qk
,

d

dt

(
u

(3)
k;ab,bc,ca

∣∣∣
qk

)
=

1

2
(d− 6 + 3 ηk)u

(3)
k;ab,bc,ca

∣∣∣
qk

+
1

2
∂̃t

{
2 f

(3),(3),(3)
ab,bc,ca (0)− 3 f

(4),(3)
ab,bc;ca(0)

} ∣∣∣
qk

+ δqk
∑
(gh)

u
(4)
k;ab,cd,ef,gh

∣∣∣
qk
,
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with in addition for the choice (A)

(A)

d

dt

(
u

(3)
k;ab,ab,cd

∣∣∣
qk

)
=

1

2
(d− 6 + 3 ηk)u

(3)
k;ab,ab,cd

∣∣∣
qk

+ δqk
∑
(gh)

u
(4)
k;ab,ab,cd,gh

∣∣∣
qk

+
1

2
∂̃t

{
2 f

(3),(3),(3)
ab,ab,cd (0)− f (4),(3)

ab,ab;cd(0)− 2 f
(4),(3)
ab,cd;ab(0)

} ∣∣∣
qk
,

(D.25)

and the choice (B)

(B)

d

dt

(
u

(3)
k;ab,bc,cd

∣∣∣
qk

)
=

1

2
(d− 6 + 3 ηk)u

(3)
k;ab,bc,cd

∣∣∣
qk

+ δqk
∑
(gh)

u
(4)
k;ab,bc,cd,gh

∣∣∣
qk

+
1

2
∂̃t

{
2 f

(3),(3),(3)
ab,bc,cd (0)− 2 f

(4),(3)
ab,bc;cd(0)− f (4),(3)

ab,cd;bc(0)
} ∣∣∣

qk
.

(D.26)

The functions d
(3)
ab (0), e

(4)
ab,cd(p̂), e

(3),(3)
ab,cd (0), f

(3),(3),(3)
ab,cd,ef (0), and f

(4),(3)
ab,cd;ef (0) for all values of

a, b, c, d, e, f ∈ {1, ..., n} are coefficients which contain both sums over indices and integrals over mo-

menta of the propagators. Their formal definition is given in (D.19), (D.20), and (D.21) respectively.

Some of their expressions once the sums have been done can be found in the appendix D.5.3, the others

are too long to be reproduced here.

D.5.3 Contributions to dimensionless beta functions

For simplicity of notation, we rename the different nonzero dimensionless field derivatives, in equa-

tions (6.61) and (6.62), of the dimensionless potential uk (distinct a, b, c, d)

u
(3)
k;ab,bc,ca

∣∣∣
qk

= w1,

u
(3)
k;ab,ab,ab

∣∣∣
qk

= w2,

u
(3)
k;ab,ab,bc

∣∣∣
qk

= w3,

u
(3)
k;ab,ab,cd

∣∣∣
qk

= w4,

u
(3)
k;ab,bc,cd

∣∣∣
qk

= w5,

u
(4)
k;ab,bc,cd,da

∣∣∣
qk

= u1,

u
(4)
k;ab,ab,ab,ab

∣∣∣
qk

= u2,

u
(4)
k;ab,ab,bc,bc

∣∣∣
qk

= u3,

u
(4)
k;ab,ab,cd,cd

∣∣∣
qk

= u4.

(D.27)

The propagators pk,i(q̂
2) below, with i = 1, 2, 3, are also evaluated in qk. Below, we give the not-too-long

contributions to the dimensionless beta functions, and we precise which contributions are missing.
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D.5.3.1 Equation for q̇k

d
(3)
ab (0)|qk =

1

4

∫
q̂
dq̂ q̂d−1 {2p1 ((n− 2) ((n− 3)w4 + 4w3) + 2w2) + (n− 3)(n− 2)p3 (4w4 + 8w5)

+4(n− 2)p2 (4(n− 3)w5 + 2w1 + 4w3)} .

D.5.3.2 Equations for ηk

e
(3),(3)
ab,ab (p̂2)|qk =

1

4

∫
q̂
dq̂ q̂d−1

{
2(n− 2)p1

[
4p2

(
n2w2

4 + 2nw2
3 + 4nw4w3 − 7nw2

4 + 4(n− 3)(n− 2)w2
5

+8(n− 3) (w1 + w3 + w4)w5 + 8w1w3 + 4w2w3 − 12w4w3 + 12w2
4

)
+(n− 3)p3

(
8w3 ((n− 4)w4 + 4w5) + 8(2n− 7)w2

5 + w4 (((n− 9)n+ 24)w4 + 4w2) + 8w2
3

)]
+ (n− 2)

(
4p2

2

[
n2w2

4 + 2(n− 2)w2
1 + 4w1 (2(n− 2)w3 + (n− 3) (nw5 + 3w4) + w2) + 18nw2

3

−7nw2
4 + 2(n− 3)(n(n+ 13)− 50)w2

5 + 12nw3w4 + 4(n− 3)w5 (2(n+ 5)w3 + (8n− 29)w4 + w2)

−36w2
3 + 12w2

4 + 4w2w3 − 36w3w4

]
+ 16(n− 3)p3p2

[
2w3 ((n− 2)w4 + 2(3n− 10)w5) + (n− 4)w2

4 + (n(3n− 11)− 2)w2
5

+2w5 (((n− 5)n+ 5)w4 + w2) + w1 ((n− 4)w4 + 2(n− 2)w5 + 4w3) + 2w2
3

]
+ (n− 3)p2

3

[
8(n− 4) (w4 + 6w5)w1 + 8(n(11n− 89) + 181)w2

5

+ w4 (24(n− 4)w3 + (n(7n− 55) + 112)w4 + 4w2)

+8w5 (4(2n− 7)w3 + (n− 4)(5n− 21)w4) + 8w2
1 + 8w2

3

])
+2p2

1

[
4(n− 2)w2

1 + 3(n− 2)
(
(n− 3)

(
w2

4 + 4w2
5

)
+ 4w2

3

)
+ 2w2

2

]}
.
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D.5.3.3 Equation for d
dt

(
u

(2)
k;ab,ab|qk

)

e
(4)
ab,ab(0)|qk =

∫
q̂
dq̂ q̂d−1

{
u2 + 2(n− 2)u3 +

1

2
(n− 2)(n− 3)u4

}
p1 , (D.29)

∑
(cd)

γ
(3)
ab,ab,cd|qk = w2 + 2(n− 2)w3 +

1

2
(n− 2)(n− 3)w4 , (D.30)

and the expression of e
(3),(3)
ab,ab (0)|qk is obtained by evaluating equation (D.28) for p̂ = 0.

D.5.3.4 Equation for d
dt

(
u

(2)
k;ab,bc|qk

)
e

(4)
ab,bc(0)|qk =

∫
q̂
dq̂ q̂d−1 {2u3 + 2(n− 3)u1} p2 , (D.31)

∑
(ef)

γ
(3)
ab,bc,ef |qk = w1 + 2w3 + 2(n− 3)w5 + (n− 3)w6 +

1

2
(n− 3)(n− 4)w7 , (D.32)
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e
(3),(3)
ab,bc (0)|qk =

∫
q̂
dq̂ q̂d−1

{
1

2
p2

1

[
2nw2

3 + 8w1w3 + 4w2w3 + 4nw4w3 − 12w4w3 + n2w2
4 − 7nw2

4 + 12w2
4

+4(n− 3)(n− 2)w2
5 + 8(n− 3) (w1 + w3 + w4)w5

]
+ p1

[
2(n− 3)p3

(
2w2

3 + 2 ((n− 2)w4 + 2(3n− 10)w5)w3 + (n− 4)w2
4 + (n(3n− 11)− 2)w2

5

+2 (w2 + ((n− 5)n+ 5)w4)w5 + w1 (4w3 + (n− 4)w4 + 2(n− 2)w5))

+ p2

(
2(n− 2)w2

1 + 4 (w2 + 2(n− 2)w3 + (n− 3) (3w4 + nw5))w1 + 18nw2
3 − 36w2

3 + n2w2
4 − 7nw2

4

+ 12w2
4 + 2(n− 3)(n(n+ 13)− 50)w2

5 + 4w2w3 + 12nw3w4 − 36w3w4

+4(n− 3) (w2 + 2(n+ 5)w3 + (8n− 29)w4)w5)]

+
(n− 3)

2
p2p3

[
w2

4n
3 + 5w2

4n
2 + 16w3w4n

2 + 28w2
3n− 78w2

4n− 56w3w4n+ 4(n− 2)w2
1 − 40w2

3 + 168w2
4

+ 4(n(n(4n+ 17)− 303) + 702)w2
5 − 8w3w4 + 8 (2(n(4n− 13)− 3)w3 + (n(n(n+ 3)− 62) + 139)w4)w5

+ 4w2 (2w3 + (n− 4)w4 + 2(2n− 7)w5)

+ 4w1 (2w2 + 8(n− 3)w3 + ((n− 4)n+ 6)w4 + 2(n(2n− 3)− 16)w5)]

+
1

4
(n− 3)p2

3

[
7w2

4n
3 − 85w2

4n
2 + 40w3w4n

2 + 52w2
3n+ 346w2

4n− 312w3w4n+ 8(n− 4)w2
1 − 192w2

3

− 472w2
4 + 8(n(14(n− 12)n+ 687)− 954)w2

5 + 616w3w4

+ 8 (2(2n(5n− 39) + 153)w3 + (n(n(7n− 83) + 334)− 454)w4)w5

+8w1 ((2n− 7) (2w3 + (n− 4)w4) + 2(4(n− 8)n+ 65)w5) + 4w2 (2w3 + (n− 4) (w4 + 4w5))]

+ p2
2

[
2(3n− 8)w2

1 + 12 ((3n− 8)w3 + (n− 3) ((n− 4)w4 + (3n− 8)w5))w1 + w2
2

+ 6w2 ((n− 2)w3 + (n− 3) (w4 + 2w5))

+ 3
(
(3(n− 2)n− 4)w2

3 + 2(n− 3) ((5n− 14)w4 + 4(4n− 11)w5)w3

+(n− 3)
(
((n− 5)n+ 7)w2

4 + 4(2(n− 6)n+ 19)w5w4 + 2(n(7n− 33) + 30)w2
5

))]}
.
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D.5.3.5 Equation for d
dt

(
u

(2)
k;ab,cd|qk

)
e

(4)
ab,cd(0)|qk =

∫
q̂
dq̂ q̂d−1 {2u4 + 4u1} p3 , (D.34)

∑
(ef)

γ
(3)
ab,cd,ef |qk = 2w4 + 4w5 + 4(n− 4)w7 +

1

2
(n− 4)(n− 5)w8 , (D.35)

and we do not give the expression of e
(3),(3)
ab,bc (0)|qk .

D.5.3.6 Equation for d
dt

(
u

(3)
k;ab,bc,ca|qk

)
f

(4),(3)
ab,bc,ca(0)|qk =

1

2
((n− 3)u1 + u3)

∫
q̂
dq̂ q̂d−1 {16p2p1 ((n− 3)w5 + w3)

+ 4(n− 3)p2p3 ((n− 4)w4 + 2(n− 2)w5 + 4w3) + (n− 3)p2
3 (2(n− 4) (w4 + 6w5) + 4w1)

+4p2
2 ((n− 2)w1 + 2(n− 2)w3 + (n− 3) (nw5 + 3w4) + w2) + 4p2

1w1

}
,

(D.36)

∑
(ef)

γ
(4)
ab,bc,ca,ef |qk = 0 , (D.37)

and we do not give the expression of f
(3),(3),(3)
ab,bc,ca (0)|qk .
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D.5.3.7 Choice (A): equation for d
dt

(
u

(3)
k;ab,ab,cd|qk

)

f
(4),(3)
ab,cd;ab(0)|qk =

1

2

∫
q̂
dq̂ q̂d−1 {u1 [4p1 (2p3 ((n− 4)w5 + w3) + 2p2 ((n− 3)w5 + w1 + w3))

+ 4p2p3 (2(2n− 7)w3 + (n− 4)(n− 1)w4 + 2(n− 4)nw5 + 2w1 + 2w5)

+ p2
3 (4(n− 4)w1 + 2(n− 5)(n− 4)w4 + 4(n(3n− 23) + 45)w5)

+4p2
2 ((n− 4)w1 + 2(n− 1)w3 + n ((n− 3)w5 + 2w4) + w2 − 5w4 + 2w5) + 4p2

1w5

]
+ u4 [2p3p1 (4(n− 4)w3 + ((n− 9)n+ 22)w4 + 2w2)

+ p2
3 (4((n− 7)n+ 13)w4 + 8(n− 4)(n− 3)w5) + 16p2

2 ((3n− 11)w5 + w1 + w3)

+ 4p2 (2p1 ((n− 4)w4 + 2w3 + 2w5) + p3 (2(n− 4)w1 + 4(n− 3)w3 + n (4(n− 7)w5 + 2w4)

−8w4 + 52w5)) + 4p2
1w4

]}
,

(D.38)

f
(4),(3)
ab,ab;cd(0)|qk =

1

8

∫
q̂
dq̂ q̂d−1 {4(n− 2)u3 [4p1 (2(n− 3)p3w5 + 2p2 ((n− 3)w5 + w1 + w3))

+ 4(n− 3)p2p3 ((n− 4)w4 + 2(2n− 7)w5 + 2w1 + 2w3) + 4p2
2 (3(n− 2)w3 + 3(n− 3) (w4 + 2w5)

+w2) + (n− 3)p2
3 (2(n− 4) (w4 + 4w5) + 4w3) + 4p2

1w3

]
+ (n− 3)(n− 2)u4

[
(n− 2)

(
8p2

2 ((n− 3)w5 + w1 + w3) + 8p2 (2(n− 3)p3w5 + 2p1w3)

+2(n− 3)p3 (2p1 + p3)w4) + 4p2
1w2

]
+ 2u2

[
8p2

2 ((n− 4)w4 + 2(2n− 7)w5 + 2w1 + 2w3)

+ p2
3 (8(n− 4)w1 + 6(n− 4) ((n− 5) (w4 + 4w5) + 4w3) + 4w2)

+8p2 (2p3 ((n− 4) (w4 + 4w5) + 2w3) + 4p1w5) + 4p2
1w4 + 8p3p1w4

]}
,

(D.39)

∑
(ef)

γ
(4)
ab,ab,cd,ef |qk = u4 , (D.40)

and we do not give the expression of f
(3),(3),(3)
ab,ab,cd (0)|qk .

D.5.3.8 Choice (B): equation for d
dt

(
u

(3)
k;ab,bc,cd|qk

)

f
(4),(3)
ab,cd;bc(0)|qk =

1

2

∫
q̂
dq̂ q̂d−1 {u4 [4p1 (2p3 ((n− 4)w5 + w3) + 2p2 ((n− 3)w5 + w1 + w3))

+ 4p2p3 (2(2n− 7)w3 + (n− 4)(n− 1)w4 + 2(n− 4)nw5 + 2w1 + 2w5)

+ p2
3 (4(n− 4)w1 + 2(n− 5)(n− 4)w4 + 4(n(3n− 23) + 45)w5) + 4p2

2 ((n− 4)w1 + 2(n− 1)w3

+n ((n− 3)w5 + 2w4) + w2 − 5w4 + 2w5) + 4p2
1w5

]
+ u1

[
2p3p1 (4(n− 4)w3 + ((n− 9)n+ 22)w4 + 2w2) + p2

3 (4((n− 7)n+ 13)w4 + 8(n− 4)(n− 3)w5)

+ 16p2
2 ((3n− 11)w5 + w1 + w3) + 4p2 (2p1 ((n− 4)w4 + 2w3 + 2w5)

+p3 (2(n− 4)w1 + 4(n− 3)w3 + n (4(n− 7)w5 + 2w4)− 8w4 + 52w5)) + 4p2
1w4

]}
,

(D.41)
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f
(4),(3)
ab,bc;cd(0)|qk =

1

2

∫
q̂
dq̂ q̂d−1 {u3 [2p1 (2p3 ((n− 3)w5 + w3) + 2p2 ((n− 1)w5 + w1 + w3 + 2w4))

+ 4p2
2 (3(n− 4)w4 + (8n− 26)w5 + 2w1 + 6w3)

+ 2p2p3 (2(n− 3)w1 + (8n− 26)w3 + n ((n− 5)w4 + 2(2n− 7)w5) + 2w2 + 6w4 − 6w5)

+4p2
3 ((n− 4)w1 + (2n− 7)w3 + (n− 4) ((n− 4)w4 + (4n− 17)w5)) + 4p2

1w5

]
+ (n− 3)u1 [2p1 ((n− 3)p3 ((n− 4)w4 + 2w3 + 2w5) + 2p2 ((n− 1)w3 + (n− 3) (w4 + w5) + w1 + w2))

+ (n− 3)p2
3 (2(n− 4)w4 + 4(n− 3)w5) + 2(n− 3)p2p3 (nw4 + 8nw5 + 2w1 + 2w3 − 26w5)

+4p2
2 ((n− 2)w1 + 3(n− 2)w3 + (n− 3)(n+ 2)w5) + 4p2

1w3

]}
,

(D.42)∑
(ef)

γ
(4)
ab,bc,cd,ef |qk = u1 , (D.43)

and we do not give the expression of f
(3),(3),(3)
ab,bc,cd (0)|qk .

D.5.4 Results: additional plots

We give additional results for the NPRG-1 (A).
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Figure D.1: Fixed point solution for the critical point of the Ising spin glass at the next order NPRG-1 (A) of

the truncation of the nonperturbative RG approach versus 6 − d. We also display in brown the results of the

NPRG-0. (a) Relevant (λ1) and irrelevant (λi, i 6= 1) eigenvalues of the stability matrix at the critical fixed

point; and (b) dimensionless quartic constants u?i .

D.6 One-loop-improved approximation

D.6.1 Expression of the n-point 1-PI vertices γ(n)

The function d
(3)
ab (0) defined in (D.19) appearing in the flow of qk and the function e

(3),(3)
ab,ab (p̂2) defined

in (D.20) appearing in ηk, both involve the 3-point 1-PI vertices γ
(3)
ab,cd,ef (0, q̂,−q̂). The functions needed

for the flow of wk,1 are directly visible in (6.69), and they require 3 to 5-point vertices γ
(3)
ab,cd,ef (0, q̂,−q̂),

γ
(4)
ab,cd,ef,gh(0, 0, q̂,−q̂) and γ

(5)
ab,cd,ef,gh,ij(0, 0, 0, q̂,−q̂). Finally, the three flow equations contains the 2-

point vertices γ
(2)
ab,cd(q̂,−q̂), explicitly used in the propagators.

All the 1-PI vertices γ
(n)
k;a1b1,...,anbn

for n = 2, 3, 4, 5 that are nonzero are listed below for the choice

of solution (A) of the constants {bij , ci} of the exact potential (the choice (B) is also feasible, other

similar relations are obtained). These field derivatives of the effective average action are potentially
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functions of all the couplings of the expansion in invariants of the potential. Actually, with the choice of

solution (A), the derivatives γ
(2)
k;ab,ab(0)|qk , γ

(2)
k;ab,bc(0)|qk , γ

(2)
k;ab,cd(0)|qk , γ

(3)
k;ab,bc,ca(0)|qk and γ

(3)
k;ab,ab,cd(0)|qk

(with a, b, c, d 6=) are exactly given by the following expressions at the minimum, involving orders

until O(Q4) of the expansion. All the others receive contributions from the higher order terms of

the development, involving couplings vk,i, tk,i (O(Q6) terms), etc. (In the following list of definitions,

from (D.44) to (D.47), all indices are distinct two by two (a, b, c, d, e, f, g 6=).) We obtain:

γ
(2)
k;ab,ab(0)|qk = −(n− 2)qk wk,1 − (n− 2)(n− 3)q2

kuk,1 +
1

3
q2
kuk,2

γ
(2)
k;ab,bc(0)|qk = qk wk,1 + (n− 3)q2

kuk,1 + q2
kuk,3

γ
(2)
k;ab,cd(0)|qk = 2q2

kuk,1 + q2
kuk,4

γ
(3)
k;ab,bc,ca(0)|qk = wk,1

γ
(3)
k;ab,ab,ab(0)|qk = qkuk,2 −

1

2
(n− 2)q2

k (6(n− 4)(n− 3)vk,1 + 3(n− 3) ((n− 4)vk,4 + 2vk,3) + 8vk,2) +O(q3
ktk,i)

γ
(3)
k;ab,ab,bc(0)|qk = qkuk,3 +

1

6
q2
k (6(n− 4)(n− 3)vk,1 + 3(n− 4)(n− 3)vk,4 + 8vk,2) +O(q3

ktk,i)

γ
(3)
k;ab,ab,cd(0)|qk = qkuk,4

γ
(3)
k;ab,bc,cd(0)|qk = qkuk,1 −

1

2
q2
k (2(n− 4)vk,1 + (n− 4)vk,4 − 2vk,3) +O(q3

ktk,i)

γ
(3)
k;ab,ac,ad(0)|qk = 3q2

kvk,3 +O(q3
ktk,i)

γ
(3)
k;ab,ac,de(0)|qk = q2

k (2vk,1 + vk,4) +O(q3
ktk,i)

γ
(3)
k;ab,cd,ef (0)|qk = O(q3

ktk,i) ,

(D.44)

γ
(4)
k;ab,bc,cd,da(0)|qk = uk,1 −

1

2
qk (4(n− 4)vk,1 + (n− 4)vk,4 + 2vk,3) +O(q2

ktk,i)

γ
(4)
k;ab,ab,ab,ab(0)|qk = uk,2 −

1

2
(n− 2)qk (6(n− 4)(n− 3)vk,1 + 3(n− 3) ((n− 4)vk,4 + 2vk,3) + 10vk,2) +O(q2

ktk,i)

γ
(4)
k;ab,ab,bc,bc(0)|qk = uk,3 +

1

6
qk (6(n− 4)(n− 3)vk,1 + 3(n− 3) ((n− 4)vk,4 − 2vk,3) + 2vk,2) +O(q2

ktk,i)

γ
(4)
k;ab,ab,cd,cd(0)|qk = uk,4 − (n− 4)qkvk,4 − 2qkvk,3 +O(q2

ktk,i) ,

(D.45)

γ
(4)
k;ab,ab,ac,bc(0)|qk = qkvk,2 +O(q2

ktk,i)

γ
(4)
k;ab,ac,bc,cd(0)|qk = qkvk,3 +O(q2

ktk,i)

γ
(4)
k;ab,ac,bc,de(0)|qk = qkvk,4 +O(q2

ktk,i)

γ
(4)
k;ab,ab,ab,bc(0)|qk = qkvk,2 +O(q2

ktk,i)

γ
(4)
k;ab,ab,bc,bd(0)|qk = qkvk,3 +O(q2

ktk,i)

γ
(4)
k;ab,ab,bc,cd(0)|qk = qkvk,3 +O(q2

ktk,i)

γ
(4)
k;ab,ab,bc,de(0)|qk = O(q2

ktk,i)

γ
(4)
k;ab,ab,ac,bd(0)|qk = O(q2

ktk,i)

γ
(4)
k;ab,ab,cd,ce(0)|qk = qkvk,4 +O(q2

ktk,i)

γ
(4)
k;ab,bc,cd,de(0)|qk = qkvk,1 +O(q2

ktk,i)

γ
(4)
k;ab,bc,cd,ef (0)|qk = O(q2

ktk,i)

γ
(4)
k;ab,bc,cd,ce(0)|qk = O(q2

ktk,i)

γ
(4)
k;ab,ac,ad,ae(0)|qk = O(q2

ktk,i)

γ
(4)
k;ab,cd,ce,cf (0)|qk = O(q2

ktk,i)

γ
(4)
k;ab,ac,de,df (0)|qk = O(q2

ktk,i)

γ
(4)
k;ab,ac,ef,gh(0)|qk = O(q2

ktk,i) ,

(D.46)
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γ
(5)
k;ab,bc,cd,de,ea(0)|qk = vk,1 +O(qktk,i)

γ
(5)
k;ab,bc,ca,ab,ab(0)|qk = vk,2 +O(qktk,i)

γ
(5)
k;ab,bc,ca,ad,ad(0)|qk = vk,3 +O(qktk,i)

γ
(5)
k;ab,bc,ca,de,de(0)|qk = vk,4 +O(qktk,i)

γ
(5)
k;ab,bc,ca,ab,bc(0)|qk = O(qktk,i)

γ
(5)
k;ab,bc,ca,ab,ad(0)|qk = O(qktk,i)

γ
(5)
k;ab,bc,ca,ad,ae(0)|qk = O(qktk,i)

γ
(5)
k;ab,bc,ca,ad,bd(0)|qk = O(qktk,i)

γ
(5)
k;ab,bc,ca,ad,de(0)|qk = O(qktk,i)

γ
(5)
k;ab,bc,ca,ab,de(0)|qk = O(qktk,i)

γ
(5)
k;ab,bc,ca,de,df (0)|qk = O(qktk,i)

γ
(5)
k;ab,bc,ca,ab,cd(0)|qk = O(qktk,i)

γ
(5)
k;ab,bc,ca,ad,be(0)|qk = O(qktk,i)

γ
(5)
k;ab,bc,ca,ad,ef (0)|qk = O(qktk,i)

γ
(5)
k;ab,bc,ca,de,fg(0)|qk = O(qktk,i) .

(D.47)

For simplicity, we will take a truncation of the exact potential in equation (6.68) at order O(Q5), hence

all the dependence on the tk,i’s are set to zero in the above expressions.

D.6.2 One-loop-improved prescriptions

After neglecting all tk,i’s and higher order coupling constants in equation (D.47), the four vk,i’s are

exactly determined by the following expressions (distinct a, b, c, d, e)

vk,1 = γ
(5)
k;ab,bc,cd,de,ea(0)|qk ,

vk,2 = γ
(5)
k;ab,bc,ca,ab,ab(0)|qk ,

vk,3 = γ
(5)
k;ab,bc,ca,ad,ad(0)|qk ,

vk,4 = γ
(5)
k;ab,bc,ca,de,de(0)|qk ,

(D.48)

and from (D.45), the four uk,i’s are given by (distinct a, b, c, d)

uk,1 = γ
(4)
k;ab,bc,cd,da(0)|qk +

1

2
qk (4(n− 4)vk,1 + (n− 4)vk,4 + 2vk,3) ,

uk,2 = γ
(4)
k;ab,ab,ab,ab(0)|qk +

1

2
(n− 2)qk (6(n− 4)(n− 3)vk,1 + 3(n− 3) ((n− 4)vk,4 + 2vk,3) + 10vk,2) ,

uk,3 = γ
(4)
k;ab,ab,bc,bc(0)|qk −

1

6
qk (6(n− 4)(n− 3)vk,1 + 3(n− 3) ((n− 4)vk,4 − 2vk,3) + 2vk,2) ,

uk,4 = γ
(4)
k;ab,ab,cd,cd(0)|qk + (n− 4)qkvk,4 + 2qkvk,3 .

(D.49)

After, the 1-PI vertices γ(5) and γ(4) are given by their one-loop-improved prescriptions (distinct

a, b, c, d, e), namely,

γ
(5)
k;ab,bc,cd,de,ea(0)|qk

=
1

2

{
h

(3),(3),(3),(3),(3)
ab,bc,cd,de,ea (0) + h

(3),(3),(3),(3),(3)
ab,de,bc,ea,cd (0) + 5h

(3),(3),(3),(3),(3)
ab,bc,de,ea,cd (0) + 5h

(3),(3),(3),(3),(3)
ab,bc,ea,de,cd (0)

}
,

γ
(5)
k;ab,bc,ca,ab,ab(0)|qk = 3h

(3),(3),(3),(3),(3)
ab,bc,ca,ab,ab (0) + 3h

(3),(3),(3),(3),(3)
ab,bc,ab,ca,ab (0) ,

γ
(5)
k;ab,bc,ca,ad,ad(0)|qk = h

(3),(3),(3),(3),(3)
ad,bc,ad,ca,ab (0) + h

(3),(3),(3),(3),(3)
ad,ad,ca,bc,ab (0) + 2h

(3),(3),(3),(3),(3)
ad,ca,bc,ad,ab (0) + 2h

(3),(3),(3),(3),(3)
ad,ad,bc,ca,ab (0),

γ
(5)
k;ab,bc,ca,de,de(0)|qk = 3h

(3),(3),(3),(3),(3)
ab,bc,ca,de,de (0) + 3h

(3),(3),(3),(3),(3)
ab,de,bc,ca,de (0) ,

(D.50)
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and

γ
(4)
k;ab,bc,cd,da(0)|qk = −1

2

{
g

(3),(3),(3),(3)
ab,bc,cd,da (0) + 2 g

(3),(3),(3),(3)
ab,bc,da,cd (0)

}
,

γ
(4)
k;ab,ab,ab,ab(0)|qk = −3

2
g

(3),(3),(3),(3)
ab,ab,ab,ab (0) ,

γ
(4)
k;ab,ab,bc,bc(0)|qk = −1

2

{
2 g

(3),(3),(3),(3)
ab,ab,bc,bc (0) + g

(3),(3),(3),(3)
ab,bc,ab,bc (0)

}
,

γ
(4)
k;ab,ab,cd,cd(0)|qk = −1

2

{
2 g

(3),(3),(3),(3)
ab,ab,cd,cd (0) + g

(3),(3),(3),(3)
ab,cd,ab,cd (0)

}
.

(D.51)

where the functions h
(3),(3),(3),(3),(3)

and g(3),(3),(3),(3) read (for all a 6= b, c 6= d, e 6= f , g 6= h and i 6= j):

h
(3),(3),(3),(3),(3)
ab,cd,ef,gh,ij (0) =

∑
(kl),(mn),(op),(qr),(st),(uv),(wx),(yz),(αβ),(γδ)

∫
q̂
×

γ
(3)
ab,kl,mn(0, q̂,−q̂) pmn,op(q̂,−q̂) γ

(3)
cd,op,qr(0, q̂,−q̂) pqr,st(q̂,−q̂)

γ
(3)
ef,st,uv(0, q̂,−q̂) puv,wx(q̂,−q̂) γ(3)

gh,wx,yz(0, q̂,−q̂) pyz,αβ(q̂,−q̂)

γ
(3)
ij,αβ,γδ(0, q̂,−q̂) pγδ,kl(q̂,−q̂) ,

(D.52)

and

g
(3),(3),(3),(3)
ab,cd,ef,gh (0) =

∑
(kl),(mn),(op),(qr),(st),(uv),(wx),(yz)

∫
q̂
×

γ
(3)
ab,kl,mn(0, q̂,−q̂) pmn,op(q̂,−q̂) γ

(3)
cd,op,qr(0, q̂,−q̂) pqr,st(q̂,−q̂)

γ
(3)
ef,st,uv(0, q̂,−q̂) puv,wx(q̂,−q̂) γ(3)

gh,wx,yz(0, q̂,−q̂) pyz,kl(q̂,−q̂) .

(D.53)

The functions h
(3),(3),(3),(3),(3)

and g(3),(3),(3),(3) involve integrals over products of respectively 4 and 5

propagators pk;ab,cd(q̂,−q̂). To compute these integrals, the propagators are transformed into sums

of diagonal propagators, following the expressions given in equation (6.36) (for n → 0). Following

equations (6.34) and (6.35), the diagonal masses can be found as

u
(2)
k;R = 0 ,

u
(2)
k;A = −2qk wk,1 ,

u
(2)
k;AL = −qk wk,1 .

(D.54)

The zero replicon mass simplifies the replicon diagonal propagator to pR(q̂2) = rk(q̂
2)−1. The dif-

ferent integrals hence appearing are composed by a product of 4 ≤ mR + mA ≤ 10 propagators

pR(q̂2)mR pA(q̂2)mA , and they are given by the generic expression

j(R,mR;A,mA) = vd

∫ ∞
0

dq̂ q̂d−1 pR(q̂2)mR pA(q̂2)mA . (D.55)

The integrals can be computed for the Litim regulator, one part of the integral can be expressed exactly

when the other involves the hypergeometric function 2F1 defined for mR +mA >
d
2 and u

(2)
k;A > 0. The

integral is then given by

j(R,mR;A,mA) =

1

2
vd

2

d

1

(1 + u
(2)
k;A)m2

+
2F1

(
mA,−d

2 +mR +mA, 1− d
2 +mR +mA,−u(2)

k;A

)
Γ(mA) Γ

(
1− d

2 +mR +mA

)
Γ
(
−u(2)

k;A

)
 .

(D.56)
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The second part of j(R,mR;A,mA) involves an integration on q̂ over a range [1;∞[ which is ultraviolet

divergent if the condition mR + mA > d
2 is not respected; as soon as this is verified, like in our case

as mR + mA ≥ 4 and d
2 ≤ 3, the integral is convergent and finite. However, one has to be careful as

it leads to large values for the limiting case when mR + mA = d
2 , which could then give a too large

importance to secondary couplings supposed to be perturbative: this indeed occurs when one aims to

compute third order derivatives γ(3) by the one loop improved prescription. Since our choice is limited

to mR + mA ≥ 4, no such problems occur and we obtain only small corrections to the independent

couplings.

Using the above equations, one obtains expressions for the vk,i’s and the uk,i’s that are functions of

only qk and wk,1.

D.6.3 Additional results for the O(Q5) truncation of the potential

All the results of this appendix have been obtained for the choice (A) of the potential (6.68). The same

study has also been performed for the choice (B), but as the results are almost indistinguishable from

those for the choice (A), they have not been represented.
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Figure D.2: Fixed point solution for the critical point of the Ising spin glass at the O(Q5) truncation of

the potential in the one-loop improved approximation of the nonperturbative RG versus 6 − d. We compare

three situations where the maximal number of replicas nmax appearing in the vertices is varied: nmax = 3

(red/gray), nmax = 4 (purple/pink) and nmax = 5 (blue/black). We also display the results of the NPRG-0 (in

brown/orange). (a) Dimensionless minimum q?; (b) dimensionless cubic coupling constant w?1 ; and (c) relevant

(λ1) and irrelevant eigenvalues (λi, i 6= 1) of the stability matrix at the critical fixed point.
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Figure D.3: Fixed point solution for the critical point of the Ising spin glass at the O(Q5) truncation of

the potential in the one-loop improved approximation of the nonperturbative RG versus 6 − d. We compare

three situations where the maximal number of replicas nmax appearing in the vertices is varied: nmax = 3

(red/gray), nmax = 4 (purple/pink) and nmax = 5 (blue/black). We also display the results of the NPRG-0 (in

brown/orange). (a) Dimensionless quartic couplings u?i ; and (b) dimensionless quintic couplings v?i .

D.6.4 Results for the O(Q4) truncation of the potential

All the results shown here have been obtained for the choice (A) of the potential for the same reason

as given above.

With this truncation, setting nmax = 3 gives results which are qualitatively in agreement with the

NPRG-0 ones; in particular, the critical exponents behave similarly, also do q? and w?1; differences

appear however in the behavior of λ2 which does not diverge between d = 2 and d = 3 and the

anomalous mass which remains quite small. The same truncation with nmax = 4 gives poor results,

very far from the NPRG-0 ones: indeed ν is decreasing, there is no lower critical dimension as no

divergence nor instability of the fixed point appear. However, we observe that going to the next order

of truncation of the potential substantially improves the behavior and restores in large part the good

properties and the behavior of the NPRG-0 (see main text).
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Figure D.4: Fixed point solution for the critical point of the Ising spin glass at the O(Q4) truncation of the

potential in the one-loop improved approximation of the nonperturbative RG versus 6 − d. We compare two

situations where the maximal number of replicas nmax appearing in the vertices is varied: nmax = 3 (red/gray)

and nmax = 4 (purple/pink). We also display the results of the NPRG-0 (in brown/orange). (a) dimensionless

minimum q?; and (b) dimensionless cubic coupling constant w?1 .
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Figure D.5: Fixed point solution for the critical point of the Ising spin glass at the O(Q4) truncation of the

potential in the one-loop improved approximation of the nonperturbative RG versus 6 − d. We compare two

situations where the maximal number of replicas nmax appearing in the vertices is varied: nmax = 3 (red/gray)

and nmax = 4 (purple/pink). We also display the results of the NPRG-0 (in brown/orange). (a) Anomalous

dimension η; (b) relevant (λ1) and irrelevant eigenvalues (λi, i 6= 1) of the stability matrix at the critical fixed

point; (c) correlation length critical exponent ν; (d) dimensionless anomalous/longitudinal mass u
(2)
?;A(qk); (e)

dimensionless replicon mass u
(2)
?;R(qk); and (f) dimensionless quartic couplings u?i .
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Le rôle des fluctuations dans les systèmes vitreux de dimension finie

Résumé : Les systèmes vitreux sujets à une diminution de la température présentent une dynamique

très lente, et à une valeur suffisamment faible de celle-ci se trouvent dans un état désordonné dit “gelé”.

Cette thèse traite du cas des verres structuraux, comme les liquides surfondus, et du cas des verres

de spins. Dans les deux cas, les scénarios physiques issus des théories de champ moyen sont connus et

pourraient être sensibles à l’introduction des fluctuations présentes dans les systèmes de dimension finie.

L’étude de leur effet dans les systèmes vitreux étant difficile, nous avons étudié des modèles simples

reliés au problème de la transition vitreuse dans lesquels l’effet des fluctuations peut être analysé en

détail.

Concernant les verres structuraux, nous étudions tout d’abord le retour à la convexité de l’énergie

libre d’un système unidimensionnel où les fluctuations sont contraintes par la taille finie du système.

Ensuite, nous étudions le rôle des fluctuations de “courte” et de “longue” portée dans un système vitreux

appelé “modèle de plaquette” en comparant les propriétés thermodynamiques du système connues sur

réseaux Euclidiens à celles que nous avons obtenues sur un réseau “en arbre”. Enfin, nous étudions

l’existence de fluctuations spatio-temporelles au sein d’un modèle de systèmes à dynamique activée

couplés via un bain thermal à faible température.

Concernant les verres de spins, nous construisons une approche du groupe de renormalisation non-

perturbatif afin de décrire l’effet des fluctuations critiques sur les propriétés critiques du verre de spin

d’Ising en champ nul en dimensions inférieures à six.

The role of fluctuations in finite-dimensional glassy systems

Abstract: When the temperature diminishes, glassy systems present a very sluggish dynamics and

at low enough temperature can finish in some arrested disordered state. This thesis deals about the

case of structural glasses, to which category supercooled liquids belong to, and spin glasses. In these

two cases the physical scenarios issued from the mean-field theories are known and could be fragile

to the introduction of fluctuations that are present in finite-dimensional systems. Since the study of

the effect of fluctuations in glassy systems is a daunting task, the aim of this thesis is to study simple

related problems in which the effect of fluctuations can be thoroughly investigated.

For the structural-glass case, we study first the return to convexity of the free energy of a uni-

dimensional finite-size system where fluctuations are restricted by the finite size of the system. Then,

we study the role of “short”- and “long”-range fluctuations in a glass-former model called “plaquette

model” in comparing the thermodynamic properties of the system which are known on Euclidean lattices

with the ones we obtained on a “tree” lattice. Finally, we study the existence of space-time fluctuations

in a model made of activated-dynamics systems coupled via a thermal bath at low temperature.

For the spin-glass case, we construct a scheme for the nonperturbative renormalization group to

describe the effect of critical fluctuations on the critical properties of the Ising spin glass in zero field

in dimensions lower than six.


