.. Système-Électro-optique-pour-la-mesure-du-champ-Électrique, 121 5.1.1 -Unité de traitement du signal associée à la sonde électro-optique, p.122

.. Cartographie-de-la-distribution-du-champ-Électrique, 132 -Simulation de la distribution du champ électrique, p.135

.. Réponse-de-la-sonde-en-présence-d-'une-boucle-résonante, P. André, K. A. Thierry, . Aurélie, R. W. Biophysique et al., 141 [1] M. Décorps, Imagerie de résonance magnétique Paul Lauterbur and the Invention of MRI Available: https://mitpress.mit.edu/books/paul-lauterbur-and-invention-mri. [Accessed: 07 Magnetic Resonance Imaging: Physical Principles and Sequence Design The signal-to-noise ratio of the nuclear magnetic resonance experiment Wiley: RF Coils for MRI Mapping of metabolites in whole animals by 31P NMR using surface coils An inductively coupled, series-tuned NMR probe, Mispelter, and A. Briguet, Nmr Probeheads for Biophysical And Biomedical Experiments: Theoretical Principles And Practical Guidelines, pp.71-85, 1969.

J. Murphy-boesch and A. P. Koretsky, An in Vivo NMR probe circuit for improved sensitivity, Journal of Magnetic Resonance (1969), vol.54, issue.3, pp.526-532, 1969.
DOI : 10.1016/0022-2364(83)90333-5

W. A. Edelstein, C. J. Hardy, and O. M. Mueller, Electronic decoupling of surface-coil receivers for NMR imaging and spectroscopy, Journal of Magnetic Resonance (1969), vol.67, issue.1, pp.156-161, 1969.
DOI : 10.1016/0022-2364(86)90421-X

J. S. Hyde, R. J. Rilling, and A. Jesmanowicz, Passive decoupling of surface coils by pole insertion, Journal of Magnetic Resonance (1969), vol.89, issue.3, pp.485-495, 1969.
DOI : 10.1016/0022-2364(90)90332-4

M. Burl and M. X. Zou, Transmit mode coil detuning for MRI systems, 2005.

C. E. Hayes and L. Axel, Noise performance of surface coils for magnetic resonance imaging at 1.5 T, Medical Physics, vol.12, issue.5, pp.604-607, 1985.
DOI : 10.1118/1.595682

B. Iacopetta, Are there two sides to colorectal cancer?, International Journal of Cancer, vol.122, issue.5, pp.403-408, 2002.
DOI : 10.7326/0003-4819-122-5-199503010-00001

URL : http://onlinelibrary.wiley.com/doi/10.1002/ijc.10635/pdf

C. Wittekind, F. L. Greene, R. V. Hutter, L. H. Sobin, and M. Klimpfinger, Atlas TNM - Traduction de la 4e edition en langue anglaise par le Professeur Jean-Luc Breau, cancerologue: Guide illustre de la Classification TNM / pTNM des tumeurs malignes, 1998.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-tieulent et al., Global cancer statistics, 2012, Global cancer statistics, pp.87-108, 2012.
DOI : 10.1038/nrc1948

C. Robinson, CT colonography: computer-assisted detection of colorectal cancer, The British Journal of Radiology, vol.84, issue.1001, pp.435-440, 2011.
DOI : 10.1136/ewjm.173.5.307

R. M. Summers, C. D. Johnson, L. M. Pusanik, J. D. Malley, A. M. Youssef et al., Automated Polyp Detection at CT Colonography: Feasibility Assessment in a Human Population, Radiology, vol.219, issue.1, pp.51-59, 2001.
DOI : 10.1148/radiology.219.1.r01ap0751

F. Pilleul, M. Penigaud, L. Milot, J. Saurin, J. Chayvialle et al., Possible Small-Bowel Neoplasms: Contrast-enhanced and Water-enhanced Multidetector CT Enteroclysis, Radiology, vol.241, issue.3, pp.796-801, 2006.
DOI : 10.1148/radiol.2413051429

H. Kwok, I. P. Bissett, and G. L. Hill, Preoperative staging of rectal cancer, International Journal of Colorectal Disease, vol.15, issue.1, pp.9-20, 2000.
DOI : 10.1007/s003840050002

R. F. Thoeni, Colorectal cancer Radiologic staging, Radiol. Clin. North Am, vol.35, issue.2, pp.457-485, 1997.

T. Shimura, Magnifying Chromoendoscopy and Endoscopic Ultrasonography Measure Invasion Depth of Early Stage Colorectal Cancer With Equal Accuracy on the Basis of a Prospective Trial, Clinical Gastroenterology and Hepatology, vol.12, issue.4, pp.662-668, 2014.
DOI : 10.1016/j.cgh.2013.06.022

E. Cho, M. Nakajima, K. Yasuda, T. Ashihara, and K. Kawai, Endoscopic ultrasonography in the diagnosis of colorectal cancer invasion, Gastrointestinal Endoscopy, vol.39, issue.4, pp.521-527, 1993.
DOI : 10.1016/S0016-5107(93)70163-7

C. Beaumont, T. Pandey, R. G. Fricke, J. Laryea, and K. Jambhekar, MR Evaluation of Rectal Cancer: Current Concepts, Current Problems in Diagnostic Radiology, vol.42, issue.3, pp.99-112, 2013.
DOI : 10.1067/j.cpradiol.2012.08.002

S. C. Roach, P. A. Hulse, F. J. Moulding, R. Wilson, and B. M. Carrington, Magnetic resonance imaging of anal cancer, Clinical Radiology, vol.60, issue.10, pp.1111-1119, 2005.
DOI : 10.1016/j.crad.2005.05.008

P. Taflampas, M. Christodoulakis, E. De-bree, J. Melissas, and D. D. Tsiftsis, Preoperative decision making for rectal cancer, The American Journal of Surgery, vol.200, issue.3, pp.426-432, 2010.
DOI : 10.1016/j.amjsurg.2009.09.023

C. Buchbender, T. A. Heusner, T. C. Lauenstein, A. Bockisch, and G. Antoch, Oncologic PET/MRI, Part 1: Tumors of the Brain, Head and Neck, Chest, Abdomen, and Pelvis, Journal of Nuclear Medicine, vol.53, issue.6, pp.928-938, 2012.
DOI : 10.2967/jnumed.112.105338

H. Dorez, Endoluminal high-resolution MR imaging protocol for colon walls analysis in a mouse model of colitis, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.12, issue.4, pp.657-669, 2016.
DOI : 10.1002/1522-2586(200007)12:1<79::AID-JMRI9>3.0.CO;2-T

URL : https://hal.archives-ouvertes.fr/hal-01295669

M. D. Schnall, R. E. Lenkinski, H. Y. Kressel, and H. M. Pollack, 5476095 Intracavity probe and interface device for MRI imaging and spectroscopy, Magnetic Resonance Imaging, vol.14, issue.5, 1995.
DOI : 10.1016/S0730-725X(96)90036-3

K. Inui, Endoscopic MRI: Preliminary Results of a New Technique for Visualization and Staging of Gastrointestinal Tumors, Endoscopy, vol.27, issue.07, pp.480-485, 1995.
DOI : 10.1055/s-2007-1005752

M. D. Schnall, R. E. Lenkinski, H. M. Pollack, Y. Imai, and H. Y. , Prostate: MR imaging with an endorectal surface coil., Radiology, vol.172, issue.2, pp.570-574, 1989.
DOI : 10.1148/radiology.172.2.2748842

M. D. Schnall and H. M. Pollack, Magnetic resonance imaging of the prostate gland, Urologic Radiology, vol.142, issue.1, pp.109-114, 1990.
DOI : 10.1148/radiology.157.1.3898223

M. D. Schnall, Y. Imai, J. Tomaszewski, H. M. Pollack, R. E. Lenkinski et al., Prostate cancer: local staging with endorectal surface coil MR imaging., Radiology, vol.178, issue.3, pp.797-802, 1991.
DOI : 10.1148/radiology.178.3.1994421

H. M. Pollack and M. D. Schnall, Magnetic resonance imaging in carcinoma of the prostate, The Prostate, pp.17-31, 1992.
DOI : 10.1148/radiology.178.3.1994421

C. Maldjian, R. Smith, M. Kilger, G. Schnall, M. Ginsberg et al., Endorectal surface coil MR imaging as a staging technique for rectal carcinoma: a comparison study to rectal endosonography, Abdominal Imaging, vol.25, issue.1, pp.75-80, 2000.
DOI : 10.1007/s002619910015

C. Meyenberger, R. A. Böni, P. Bertschinger, G. F. Zala, H. P. Klotz et al., Endoscopic Ultrasound and Endorectal Magnetic Resonance Imaging: a Prospective, Comparative Study for Preoperative Staging and Follow-Up of Rectal Cancer, Endoscopy, vol.27, issue.07, pp.469-479, 1995.
DOI : 10.1055/s-2007-1005751

G. F. Gualdi, E. Casciani, A. Guadalaxara, C. Orta, E. Polettini et al., Local staging of rectal cancer with transrectal ultrasound and endorectal magnetic resonance imaging, Diseases of the Colon & Rectum, vol.43, issue.3, pp.338-345, 2000.
DOI : 10.1007/BF02258299

P. Torricelli, S. R. Lo, A. Pecchi, G. Luppi, A. M. Cesinaro et al., Endorectal coil MRI in local staging of rectal cancer, Radiol. Med. (Torino), vol.103, issue.12, pp.74-83, 2002.

A. Ramgolam, R. Sablong, L. Lafarge, H. Saint-jalmes, and O. Beuf, Optical spectroscopy combined with high-resolution magnetic resonance imaging for digestive wall assessment: endoluminal bimodal probe conception and characterization in vitro, on organic sample and in vivo on a rabbit, Journal of Biomedical Optics, vol.16, issue.11, pp.117005-11700513, 2011.
DOI : 10.1117/1.3646917

URL : https://hal.archives-ouvertes.fr/inserm-00664036

D. J. Dinter, R. Hofheinz, M. Hartel, G. F. Kaehler, W. Neff et al., Preoperative Staging of Rectal Tumors: Comparison of Endorectal Ultrasound, Hydro-CT, and High-Resolution Endorectal MRI, Onkologie, vol.203, issue.5, pp.230-235, 2008.
DOI : 10.1007/s00423-006-0139-0

C. Armenean, E. Perrin, M. Armenean, O. Beuf, F. Pilleul et al., RF-induced temperature elevation along metallic wires in clinical magnetic resonance imaging: Influence of diameter and length, Magnetic Resonance in Medicine, vol.4, issue.5, pp.1200-1206, 2004.
DOI : 10.1109/APS.2002.1016469

V. Detti, D. Grenier, E. Perrin, and O. Beuf, Assessment of radiofrequency self-heating around a metallic wire with MR T1-based thermometry, Magnetic Resonance in Medicine, vol.4, issue.2, pp.448-455, 2011.
DOI : 10.1002/jmri.1880040114

D. M. Peterson, B. L. Beck, G. R. Duensing, and J. R. Fitzsimmons, Common mode signal rejection methods for MRI: Reduction of cable shield currents for high static magnetic field systems, Concepts in Magnetic Resonance, vol.63, issue.1, pp.1-8, 2003.
DOI : 10.1002/nbm.1940030106

H. Kogure, Y. Kogure, and J. C. Rautio, Introduction to RF Design Using EM Simulators, 2011.

W. R. Nitz, A. Oppelt, W. Renz, C. Manke, M. Lenhart et al., On the heating of linear conductive structures as guide wires and catheters in interventional MRI, Journal of Magnetic Resonance Imaging, vol.43, issue.1, pp.105-114, 2001.
DOI : 10.1148/radiology.202.1.8988223

M. F. Dempsey, B. Condon, and D. M. Hadley, Investigation of the factors responsible for burns during MRI, Journal of Magnetic Resonance Imaging, vol.8, issue.4, pp.627-631, 2001.
DOI : 10.1002/jmri.1880080137

M. E. Ladd and H. H. Quick, Reduction of resonant RF heating in intravascular catheters using coaxial chokes, Magnetic Resonance in Medicine, vol.649, issue.4, pp.615-619, 2000.
DOI : 10.1111/j.1749-6632.1992.tb49619.x

W. H. Harrison, M. Arakawa, and B. M. Mccarten, 4682125 RF coil coupling for MRI with tuned RF rejection circuit using coax shield choke, Magnetic Resonance Imaging, vol.6, issue.3, 1987.
DOI : 10.1016/0730-725X(88)90424-9

S. Weiss, P. Vernickel, T. Schaeffter, V. Schulz, and B. Gleich, Transmission line for improved RF safety of interventional devices, Magnetic Resonance in Medicine, vol.11, issue.1, pp.182-189, 2005.
DOI : 10.1078/0939-3889-00161

J. Yuan, J. Wei, and G. X. Shen, A direct modulated optical link for MRI RF receive coil interconnection, Journal of Magnetic Resonance, vol.189, issue.1, pp.130-138, 2007.
DOI : 10.1016/j.jmr.2007.08.016

O. G. Memis, Y. Eryaman, O. Aytur, and E. Atalar, Miniaturized fiber-optic transmission system for MRI signals, Magnetic Resonance in Medicine, vol.29, issue.1, pp.165-173, 2008.
DOI : 10.2214/ajr.147.2.379

URL : http://onlinelibrary.wiley.com/doi/10.1002/mrm.21462/pdf

A. J. Raaijmakers, Design of a radiative surface coil array element at 7 T: The single-side adapted dipole antenna, Magnetic Resonance in Medicine, vol.18, issue.5, pp.1488-1497, 2011.
DOI : 10.1007/978-94-009-3597-6

S. Fandrey, S. Weiss, and J. Müller, A novel active MR probe using a miniaturized optical link for a 1.5-T MRI scanner, Magnetic Resonance in Medicine, vol.29, issue.1, pp.148-155, 2012.
DOI : 10.1002/mrm.1910290322

E. Y. Wong, M. , Q. Zhang-phd, J. L. Duerk-phd, J. S. Lewin et al., An optical system for wireless detuning of parallel resonant circuits, Journal of Magnetic Resonance Imaging, vol.24, issue.4, pp.632-638, 2000.
DOI : 10.1016/0022-2364(76)90233-X

S. Weiss, In vivo safe catheter visualization and slice tracking using an optically detunable resonant marker, Magnetic Resonance in Medicine, vol.6, issue.28, pp.860-868, 2004.
DOI : 10.1078/0939-3889-00161

M. Korn, R. Umathum, J. Schulz, W. Semmler, and M. Bock, Optically detunable, inductively coupled coil for self-gating in small animal magnetic resonance imaging, Magnetic Resonance in Medicine, vol.13, issue.3, pp.882-888, 2011.
DOI : 10.1002/(SICI)1522-2594(200002)43:2<284::AID-MRM16>3.0.CO;2-C

C. Du, J. Yuan, and G. G. Shen, Comparison of FP, VCSEL and DFB laser diode in optical transmission for MR RF coil array, Joint Annual Meeting ISMRM-ESMRMB SMRT, 2007.

S. Biber, P. Baureis, J. Bollenbeck, P. Hocht, and H. Fischer, Analog optical transmission of 4 MRI receive channels with high dynamic range over one single optical fiber, 16th Annual Meeting of the International Society for Magnetic Resonance in Medicine, 2008.

C. P. Yakymyshyn, P. B. Roemer, and R. D. Watkins, Electro-optical circuit for signal transmission, 1998.

G. P. Koste, M. C. Nielsen, T. R. Tolliver, R. L. Frey, and R. D. Watkins, Optical MR receive coil array interconnect, ISMRM 13th Annual Meeting, p.411, 2005.

T. Vaughan, 9.4T human MRI: Preliminary results, Magnetic Resonance in Medicine, vol.12, issue.6, pp.1274-1282, 2006.
DOI : 10.1002/mrm.21073

URL : https://hal.archives-ouvertes.fr/in2p3-00491725

L. Quettier, Expected Magnetic Field Quality From the Preliminary Measurements Performed During the Manufacturing of the Iseult/Inumac Whole-Body 11.7-T MRI Magnet, IEEE Transactions on Applied Superconductivity, vol.26, issue.4, pp.1-4, 2016.
DOI : 10.1109/TASC.2016.2515762

A. Kangarlu and P. L. Robitaille, Biological effects and health implications in magnetic resonance imaging, Concepts in Magnetic Resonance, vol.41, issue.5, pp.321-359, 2000.
DOI : 10.1080/08327823.1988.11688043

J. A. Besson, E. I. Foreman, L. M. Eastwood, F. W. Smith, and G. W. Ashcroft, Cognitive evaluation following NMR imaging of the brain., Journal of Neurology, Neurosurgery & Psychiatry, vol.47, issue.3, pp.314-316, 1984.
DOI : 10.1136/jnnp.47.3.314

I. C. Atkinson, L. Renteria, H. Burd, N. H. Pliskin, and K. R. Thulborn, Safety of human MRI at static fields above the FDA 8T guideline: Sodium imaging at 9.4T does not affect vital signs or cognitive ability, Journal of Magnetic Resonance Imaging, vol.20, issue.5, pp.1222-1227, 2007.
DOI : 10.1016/S0010-9452(84)80053-2

I. C. Atkinson, R. Sonstegaard, N. H. Pliskin, and K. R. Thulborn, Vital signs and cognitive function are not affected by 23-sodium and 17-oxygen magnetic resonance imaging of the human brain at 9.4 T, Journal of Magnetic Resonance Imaging, vol.87, issue.1, pp.82-87, 2010.
DOI : 10.1002/jmri.22221

S. Bongers, Y. Christopher, H. Engels, P. Slottje, and H. Kromhout, Retrospective Assessment of Exposure to Static Magnetic Fields During Production and Development of Magnetic Resonance Imaging Systems, Ann. Occup. Hyg, vol.58, issue.1, pp.85-102, 2014.

S. Bongers, P. Slottje, L. Portengen, and H. Kromhout, Exposure to static magnetic fields and risk of accidents among a cohort of workers from a medical imaging device manufacturing facility, Magnetic Resonance in Medicine, vol.55, issue.5, pp.2165-2174, 2016.
DOI : 10.1080/00140139.2012.718802

L. D. Davis, K. Pappajohn, and I. M. Plavnieks, Bibliography of the biological effects of magnetic fields, Fed. Proc, vol.21, issue.5, pp.1-38, 1962.

V. Hartwig, G. Giovannetti, N. Vanello, M. Lombardi, L. Landini et al., Biological Effects and Safety in Magnetic Resonance Imaging: A Review, International Journal of Environmental Research and Public Health, vol.27, issue.3, pp.1778-1798, 2009.
DOI : 10.1007/s10669-007-9064-1

P. M. Glover, Interaction of MRI field gradients with the human body, Physics in Medicine and Biology, vol.54, issue.21, p.99, 2009.
DOI : 10.1088/0031-9155/54/21/R01

J. A. Nyenhuis, J. D. Bourland, and D. J. Schaefer, Analysis from a stimulation perspective of the field patterns of magnetic resonance imaging gradient coils, Journal of Applied Physics, vol.33, issue.8, pp.4314-4316, 1997.
DOI : 10.1002/mrm.1910330506

J. D. Bourland, J. A. Nyenhuis, and D. J. Schaefer, Physiologic effects of intense MR imaging gradient fields, Neuroimaging Clin. N. Am, vol.9, issue.2, pp.363-377, 1999.

D. J. Schaefer, J. D. Bourland, and J. A. Nyenhuis, Review of Patient Safety in Time-Varying Gradient Fields, Journal of Magnetic Resonance Imaging, vol.38, issue.1, pp.20-29, 2000.
DOI : 10.1007/978-1-4612-1664-3_6

M. Bencsik, R. Bowtell, and R. Bowley, Electric fields induced in the human body by time-varying magnetic field gradients in MRI: numerical calculations and correlation analysis, Physics in Medicine and Biology, vol.52, issue.9, p.2337, 2007.
DOI : 10.1088/0031-9155/52/9/001

S. Crozier, H. Wang, A. Trakic, and F. Liu, Exposure of workers to pulsed gradients in MRI, Journal of Magnetic Resonance Imaging, vol.12, issue.5, pp.1236-1254, 2007.
DOI : 10.1002/jmri.21162

D. L. Price, J. P. De-wilde, A. M. Papadaki, J. S. Curran, and R. I. Kitney, Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T, Journal of Magnetic Resonance Imaging, vol.21, issue.2, pp.288-293, 2001.
DOI : 10.1002/1522-2586(200102)13:2<288::AID-JMRI1041>3.0.CO;2-P

R. E. Brummett, J. M. Talbot, and P. Charuhas, Potential hearing loss resulting from MR imaging., Radiology, vol.169, issue.2, pp.539-540, 1988.
DOI : 10.1148/radiology.169.2.3175004

A. Kangarlu, L. Tang, and T. S. Ibrahim, Electric field measurements and computational modeling at ultrahigh-field MRI, Magnetic Resonance Imaging, vol.25, issue.8, pp.1222-1226, 2007.
DOI : 10.1016/j.mri.2007.01.115

P. Nordbeck, Spatial distribution of RF-induced E-fields and implant heating in MRI, Magnetic Resonance in Medicine, vol.57, issue.2, pp.312-319, 2008.
DOI : 10.2214/ajr.182.5.1821111

E. Neufeld, S. Kühn, G. Szekely, and N. Kuster, Measurement, simulation and uncertainty assessment of implant heating during MRI, Physics in Medicine and Biology, vol.54, issue.13, p.4151, 2009.
DOI : 10.1088/0031-9155/54/13/012

F. G. Shellock, Radiofrequency Energy-Induced Heating During MR Procedures: A Review, Journal of Magnetic Resonance Imaging, vol.23, issue.1, pp.30-36, 2000.
DOI : 10.1097/00004728-199911000-00002

URL : http://onlinelibrary.wiley.com/doi/10.1002/1522-2586(200007)12:1<30::AID-JMRI4>3.0.CO;2-S/pdf

P. Jarrige, Développement d'une sonde électro-optique dédiée à la mesure simultanée du champ électrique et de la température au sein des milieux biologiques, 2013.

L. Bernard, Caractérisation électrique des tissus biologiques et calcul des phénomènes induits dans le corps humain par des champs électromagnétiques de fréquence inférieure au GHz, 2007.

C. Gabriel, S. Gabriel, and E. Corthout, The dielectric properties of biological tissues: I. Literature survey, Physics in Medicine and Biology, vol.41, issue.11, p.2231, 1996.
DOI : 10.1088/0031-9155/41/11/001

S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Physics in Medicine and Biology, vol.41, issue.11, p.2251, 1996.
DOI : 10.1088/0031-9155/41/11/002

S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Physics in Medicine and Biology, vol.41, issue.11, p.2271, 1996.
DOI : 10.1088/0031-9155/41/11/003

K. R. Foster and H. P. Schwan, Dielectric properties of tissues and biological materials: a critical review, Crit. Rev. Biomed. Eng, vol.17, issue.1, pp.25-104, 1989.

M. A. Stuchly and S. S. Stuchly, Dielectric Properties of Biological Substances ??? Tabulated, Journal of Microwave Power, vol.15, issue.1, pp.19-25, 1980.
DOI : 10.1016/0926-6585(66)90014-8

R. Pethig, Dielectric properties of body tissues, Clinical Physics and Physiological Measurement, vol.8, issue.4A, p.5, 1987.
DOI : 10.1088/0143-0815/8/4A/002

V. Raicu, N. Kitagawa, and A. Irimajiri, A quantitative approach to the dielectric properties of the skin, Physics in Medicine and Biology, vol.45, issue.2, p.1, 2000.
DOI : 10.1088/0031-9155/45/2/101

J. Bao, S. Lu, and W. D. Hurt, Complex dielectric measurements and analysis of brain tissues in the radio and microwave frequencies, IEEE Trans. Microw. Theory Tech, vol.45, issue.10, pp.1730-1741, 1997.

G. Schmid, G. Neubauer, and P. R. , Dielectric properties of human brain tissue measured less than 10 h postmortem at frequencies from 800 to 2450 MHz, Bioelectromagnetics, vol.31, issue.6, pp.423-430, 2003.
DOI : 10.1088/0031-9155/31/8/007

G. Schmid, G. Neubauer, U. M. Illievich, and F. Alesch, Dielectric properties of porcine brain tissue in the transition from life to death at frequencies from 800 to 1900 MHz, Bioelectromagnetics, vol.35, issue.6, pp.413-422, 2003.
DOI : 10.1109/TMTT.1987.1133870

C. M. Alabaster, The Microwave properties of tissue and other lossy dielectrics Available: https, 2004.

K. S. Cole and R. H. Cole, Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics, The Journal of Chemical Physics, vol.7, issue.4, pp.341-351, 1941.
DOI : 10.1063/1.1745400

K. S. Cole and R. H. Cole, Dispersion and Absorption in Dielectrics II. Direct Current Characteristics, The Journal of Chemical Physics, vol.36, issue.2, pp.98-105, 1942.
DOI : 10.1007/BF01331932

D. W. Davidson and R. H. Cole, ???Propanol, The Journal of Chemical Physics, vol.5, issue.12, pp.1484-1490, 1951.
DOI : 10.1039/tf946420a040

. Yumpu and . Com, Fondements de la mesure thermique sans contact -Micro-Epsilon, " yumpu.com. [Online] Available: https://www.yumpu.com/fr/document/view/36930740/fondements-de-la-mesure-thermique- sans-contact-micro-epsilon. [Accessed: 09, 2017.

T. Kawamura, K. Saito, S. Kikuchi, M. Takahashi, and K. Ito, Specific Absorption Rate Measurement of Birdcage Coil for 3.0-T Magnetic Resonance Imaging System Employing Thermographic Method, IEEE Transactions on Microwave Theory and Techniques, vol.57, issue.10, pp.2508-2514, 2009.
DOI : 10.1109/TMTT.2009.2029712

H. Bassen and G. Smith, Electric field probes--A review, IEEE Transactions on Antennas and Propagation, vol.31, issue.5, pp.710-718, 1983.
DOI : 10.1109/TAP.1983.1143126

H. C. Taylor, M. Burl, and J. W. Hand, Design and calibration of electric field probes in the range 10 - 120 MHz, Physics in Medicine and Biology, vol.42, issue.7, p.1387, 1997.
DOI : 10.1088/0031-9155/42/7/011

H. C. Taylor, M. Burl, and J. W. Hand, Experimental verification of numerically predicted electric field distributions produced by a radiofrequency coil, Physics in Medicine and Biology, vol.42, issue.7, p.1395, 1997.
DOI : 10.1088/0031-9155/42/7/012

H. Togo, N. Kukutsu, N. Shimizu, and T. Nagatsuma, Sensitivity-Stabilized Fiber-Mounted Electrooptic Probe for Electric Field Mapping, Journal of Lightwave Technology, vol.26, issue.15, pp.2700-2705, 2008.
DOI : 10.1109/JLT.2008.927612

P. Jarrige, Electrooptic Probe Adapted for Bioelectromagnetic Experimental Investigations, IEEE Transactions on Instrumentation and Measurement, vol.61, issue.7, pp.2051-2058, 2012.
DOI : 10.1109/TIM.2012.2183034

URL : https://hal.archives-ouvertes.fr/hal-00977787

N. Ticaud, Specific Absorption Rate Assessment Using Simultaneous Electric Field and Temperature Measurements, IEEE Antennas and Wireless Propagation Letters, vol.11, pp.252-255, 2012.
DOI : 10.1109/LAWP.2012.2189748

URL : https://hal.archives-ouvertes.fr/hal-00977795

P. Wust, T. Meier, M. Seebass, H. Fähling, K. Petermann et al., Noninvasive prediction of SAR distributions with an electro-optical E field sensor, International Journal of Hyperthermia, vol.10, issue.14, pp.295-310, 1995.
DOI : 10.3109/02656739409009338

S. Reiss, A. Bitzer, and M. Bock, An optical setup for electric field measurements in MRI with high spatial resolution, Physics in Medicine and Biology, vol.60, issue.11, p.4355, 2015.
DOI : 10.1088/0031-9155/60/11/4355

B. Loader, A. Gregory, D. Bownds, and F. Seifert, Evaluation of an optical electric field sensor for measurement of specific absorption rate (SAR) during magnetic resonance imaging, International Symposium on Electromagnetic Compatibility, EMC EUROPE, pp.2012-2013
DOI : 10.1109/EMCEurope.2012.6396819

B. E. Saleh and M. C. Teich, Electro-Optics, Fundamentals of Photonics, pp.696-736, 1991.
DOI : 10.1002/0471213748.ch18

G. Gaborit, Caractérisation de champs électriques hyperfréquences par capteurs électrooptiques vectoriels fibrés, 2005.

G. Gaborit, Electrooptic probe based on an organic microcavity, IEEE Photonics Technology Letters, vol.17, issue.10, pp.2140-2142, 2005.
DOI : 10.1109/LPT.2005.856424

URL : https://hal.archives-ouvertes.fr/hal-00145694

G. Gaborit, G. Martin, J. Coutaz, L. Duvillaret, S. Kassi et al., High-finesse Fabry-Perot electro-optic sensors with enhanced sensitivity and high spatial resolution, Applied Optics, vol.46, issue.11, pp.2001-2009, 2007.
DOI : 10.1364/AO.46.002001

URL : https://hal.archives-ouvertes.fr/hal-00186394

M. Bernier, Mesure vectorielle de champs électriques microondes et de température par transducteurs électro-optique, Grenoble INPG, 2008.

A. Yariv, Photonics: Optical Electronics in Modern Communications 6th Edition, 6 edition, 2007.

L. Duvillaret, S. Rialland, and J. Coutaz, Electro-optic sensors for electric field measurements II Choice of the crystals and complete optimization of their orientation, Journal of the Optical Society of America B, vol.19, issue.11, pp.2704-2715, 2002.
DOI : 10.1364/JOSAB.19.002704

G. Gaborit, J. Coutaz, and L. Duvillaret, Vectorial electric field measurement using isotropic electro-optic crystals, Applied Physics Letters, vol.1, issue.24, p.241118, 2007.
DOI : 10.1364/OL.27.000055

URL : https://hal.archives-ouvertes.fr/hal-00991884

Y. Gaeremynck, G. Gaborit, L. Duvillaret, M. Ruaro, and F. Lecoche, Two electric-field components measurement using a 2-port pigtailed electro-optic sensor, Applied Physics Letters, vol.99, issue.14, p.141102, 2011.
DOI : 10.1364/JOSAB.19.002704

R. Aydé, Unbiased Electro-Optic Waveguide as a Sensitive Nuclear Magnetic Resonance Sensor, IEEE Photonics Technology Letters, vol.26, issue.12, pp.1266-1269, 2014.
DOI : 10.1109/LPT.2014.2321099

R. Ayde, Microsystème électro-optique pour l'IRM par voie endoluminale, 2015.

L. N. Binh, Lithium niobate optical modulators: Devices and applications, Journal of Crystal Growth, vol.288, issue.1, pp.180-187, 2006.
DOI : 10.1016/j.jcrysgro.2005.12.020

G. B. Abboud, Microstructuration par échange protonique sur niobate de lithium : application à la réalisation de fonctions de filtrage, 2008.

L. Gillette, Système de mesure électro-optique pour la caractérisation de champ électrique intense en environnement industriel, 2017.

G. Gaborit, A Nonperturbative Electrooptic Sensor for in Situ Electric Discharge Characterization, IEEE Transactions on Plasma Science, vol.41, issue.10, pp.2851-2857, 2013.
DOI : 10.1109/TPS.2013.2257874

M. Armenean, O. Beuf, F. Pilleul, and H. Saint-jalmes, Optimization of Endoluminal Loop Radiofrequency Coils For Gastrointestinal Wall MR Imaging, IEEE Sensors Journal, vol.4, issue.1, pp.57-64, 2004.
DOI : 10.1109/JSEN.2003.820334

O. Beuf, F. Jaillon, and H. Saint-jalmes, Small-animal MRI: signal-to-noise ratio comparison at 7 and 1.5 T with multiple-animal acquisition strategies, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.9, issue.4, pp.202-208, 2006.
DOI : 10.1016/S1476-5586(03)80038-6

URL : https://hal.archives-ouvertes.fr/hal-00443147

E. B. Rosa, The self and mutual-inductances of linear conductors, Bulletin of the Bureau of Standards, vol.4, issue.2, 1908.
DOI : 10.6028/bulletin.088

D. M. Peterson, B. L. Beck, G. R. Duensing, and J. R. Fitzsimmons, Common mode signal rejection methods for MRI: Reduction of cable shield currents for high static magnetic field systems, Concepts in Magnetic Resonance, vol.63, issue.1, pp.1-8, 2003.
DOI : 10.1002/nbm.1940030106

C. Chen, D. I. Hoult, and V. J. Sank, Quadrature detection coils???A further ???2 improvement in sensitivity, Journal of Magnetic Resonance (1969), vol.54, issue.2, pp.324-327, 1969.
DOI : 10.1016/0022-2364(83)90057-4

R. Ayde, Potentialities of an Electro-Optic Crystal Fed by Nuclear Magnetic Resonant Coil for Remote and Low-Invasive Magnetic Field Characterization, IEEE Sensors Journal, vol.13, issue.4, pp.1274-1280, 2013.
DOI : 10.1109/JSEN.2012.2230623

URL : https://hal.archives-ouvertes.fr/hal-00828446

S. Palaniappan and S. K. Sastry, ELECTRICAL CONDUCTIVITY of SELECTED JUICES: INFLUENCES of TEMPERATURE, SOLIDS CONTENT, APPLIED VOLTAGE, and PARTICLE SIZE, Journal of Food Process Engineering, vol.19, issue.10, pp.247-260, 1991.
DOI : 10.1111/j.1365-2621.1990.tb01055.x

H. Kato, M. Hiraoka, and T. Ishida, An agar phantom for hyperthermia, Medical Physics, vol.13, issue.3, pp.396-398, 1986.
DOI : 10.1118/1.595882

S. Master, C. Paris-saclay, ?. Gif-sur-yevette, R. Sablong, L. Duvillaret et al., France Simulation Monte Carlo des spectres d'énergie des rayons X et ? et étude de l'influence du traitement du signal sur la forme des spectres en énergie obtenus par spectrométrie X et ? 2012 ? 2013 Master 1 en Sciences Physiques Biomédicales Université Libanaise Electro-optic probe for real time assessments of RF electric field produced in an MRI scanner: Feasibility tests at 3, Faculté des Sciences 2 ? Fanar, Liban Publications et communications Publications dans des revues internationales avec comité de lecture, pp.1-11, 2018.

I. Saniour, R. Aydé, A. Perrier, G. Gaborit, L. Duvillaret et al., Active optical-based detuning circuit for receiver endoluminal coil, Biomedical Physics & Engineering Express, vol.3, issue.2, pp.1-10, 2017.
DOI : 10.1088/2057-1976/aa5db0

URL : https://hal.archives-ouvertes.fr/hal-01492605

C. H. Raki, I. Saniour, F. Robb, H. Souchay, S. A. Lambert et al., Comparison of single-loop endoluminal receiver coils based on serial or parallel active decoupling circuits using controllable MEMS switches, Conférences internationales avec comité de lecture et publication des actes [ Proc. Intl. Soc. Mag. Reson. Med. 26 (ISMRM), pp.16-21, 2018.

H. Raki, I. Saniour, F. Robb, H. Souchay, S. A. Lambert et al., Endoluminal coil-sensitivity degradation with the coil-orientation effect with respect to B0 field: preliminary results, Proc. Intl. Soc. Mag. Reson. Med. 26 (ISMRM), pp.16-21, 2018.

I. Saniour, G. Gaborit, L. Duvillaret, R. Sablong, A. Perrier et al., Towards optical-based real-time evaluation of the local SAR: RF electrical field in biological sample, ESMRMB, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01693606

I. Saniour, A. Perrier, L. Duvillaret, R. Sablong, G. Gaborit et al., An optical-based active detuning for single and dual channel/loop endoluminal surface coils, ESMRMB, 2017.
DOI : 10.1088/2057-1976/aa5db0

URL : https://hal.archives-ouvertes.fr/hal-01693614

H. Raki, I. Saniour, F. Robb, H. Souchay, S. A. Lambert et al., Characterization and comparision of RF MEMS switch for active detuning of endoluminal receiver coils, ESMRMB, 2017.

I. Saniour, G. Gaborit, L. Duvillaret, A. Perrier, and O. Beuf, Optical-based probe for real time assessment of RF electrical field during MRI exam, Proc. Intl. Soc. Mag. Reson. Med. 25 (ISMRM), 2017.
URL : https://hal.archives-ouvertes.fr/hal-01693604

I. Saniour, G. Gaborit, L. Duvillaret, A. Perrier, and O. Beuf, Experimental and simulated distribution of the RF electrical field inside a birdcage coil, Proc. Intl. Soc
URL : https://hal.archives-ouvertes.fr/hal-01693561

M. Reson and . Med, 25 (ISMRM), Hawaï, Etats-Unis, 2017.

I. Saniour, A. Perrier, G. Gaborit, J. Dahdah, L. Duvillaret et al., Direct optical measurement of the RF electrical field for MRI, Proc. Intl. Soc. Mag. Reson
URL : https://hal.archives-ouvertes.fr/hal-01433300

I. Saniour, R. Aydé, A. Perrier, G. Gaborit, H. Dorez et al., Optical for both active decoupling and conversion/transmission for a MR endoluminal coil, ESMRMB
URL : https://hal.archives-ouvertes.fr/hal-01236042

I. Saniour, A. Perrier, R. Aydé, G. Gaborit, L. Duvillaret et al., Endoluminal MR receiver coil based on electro-optical conversion and active optical decoupling, Proc. Intl. Soc. Mag. Reson. Med. 23 (ISMRM), pp.30-35
URL : https://hal.archives-ouvertes.fr/hal-01272122

C. I. Saniour, G. Gaborit, L. Duvillaret, A. Perrier, and O. Beuf, Mesure et cartographie du champ électrique radiofréquence d'une bobine RMN en utilisant une sonde électrooptique, Conférences nationales avec comité de lecture et publication des actes [ Journées Nationales Micro-Ondes (JNM), 2017.

I. Saniour, G. Gaborit, L. Duvillaret, A. Perrier, and O. Beuf, Sonde électro-optique pour la mesure quantitative du champ électrique radiofréquence durant un examen IRM, RITS

I. Saniour, A. Perrier, L. Duvillaret, R. Sablong, G. Gaborit et al., Découplage actif optique d'un capteur miniature pour l'IRM endoluminale, RITS

I. Saniour, G. Gaborit, L. Duvillaret, A. Perrier, and O. Beuf, Cartographie du champ électrique radiofréquence dans une bobine RMN volumique, SFRMBM

I. Saniour, R. Aydé, A. Perrier, G. Gaborit, L. Duvillaret et al., Capteur utilisant un guide d'onde électro-optique pour la mesure du champ magnétique RF sub pT par voie optique : application à l'IRM endoluminale, Journées Nationales Micro-Ondes (JNM)

I. Saniour, R. Aydé, A. Perrier, G. Gaborit, L. Duvillaret et al., Conversion électro-optique du signal et découplage actif d'un capteur IRM endoluminal à liaison optique, SFRMBM, 2015.

. Autres-présentations-[-d1-]-i, A. Saniour, G. Perrier, L. Gaborit, R. Duvillaret et al., Découplage actif optique pour l'IRM endoluminale, FINYS

I. Saniour, Sonde multiélements à liaisons optiques pour l'IRM par voie endoluminale " , journée bien vieillir, 21 mai 2016, p.169972433

I. Saniour, Sonde multiélements à liaisons optiques pour l'IRM par voie endoluminale, des doctorants 3 ème année, 2016.

I. Saniour, Optical-based methods for endoluminal MR imaging and RF electrical field measurement, Journée des doctorants 1 ère année, 2015.

I. Saniour, A. Perrier, G. Gaborit, L. Duvillaret, R. Sablong et al., Découplage actif optique d'un capteur endoluminal pour l'IRM, 20 ème Journée scientifiques de l'EDISS, pp.15-2015

À. Autres-implications and . Polytech, Génie Biomédical à Polytech'Lyon), Semestre 1. -20 h de TD d'électronique numérique, niveau licence 3 (Génie Biomédical à Polytech'Lyon), Semestre 2. - 9h de TD d'électronique radiofréquence, Génie Biomédical à Polytech'Lyon), Semestre 2 Semestre 1. -18h de TP de capteurs et instrumentation, niveau master 1 (Génie Biomédical à Polytech'Lyon), Semestre 2. -1h des enseignements transversaux, pp.2016-2017