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1

Introduction

Nanophotonics is the field of science aiming at manipulating light using
nano-sized structures, allowing for an unprecedented control over some of
the most exotic light-matter phenomena. These nanostructures can be made
of dielectrics, transparent materials. In that case, their size is usually of the
order of the wavelength and they are called photonic crystals. Another way
to control light is to leverage the very peculiar response of tiny pieces of
metal, or of nano-structures metallic films to reach very high field concen-
trations. A piece of metal can actually be considered as plasma (the free
electron gas) trapped in a box (the piece itself). That is the reason why the
domain of nanophotonics dealing with metals is called plasmonics.

While Maxwell’s equations were published 150 years ago[26, 27], when
used with Drude’s model established more than 100 years ago[15] they are
perfectly able to describe accurately the optical response even of the smallest
nanoparticles. We know it because starting maybe 30 years ago, Maxwell’s
equations began to be solved computationally using first specifically de-
signed numerical methods. This is the case of the Fourier Modal Method[17,
22], which is widely used in nanophotonics and has been partly developed
in the team Elena of the Institut Pascal to which I belong.

However, the systematic resolution of Maxwell’s dates back to Abeles[1]
who proposed a transfer matrix formalism for multilayers that has had a
tremendous success in the optical community. The team recently published
a set of numerical tools for the optics of multilayers called Moosh[12]. I par-
ticipated in this effort, helping to test the programs extensively. Multilay-
ers clearly belong to the class of nanostructures, like anti-reflective coatings
that are usually only a quarter of wavelength thick, or the periodic multilay-
ers called Bragg mirrors and that are composed equivalently of thin layers.
The optical properties of multilayers, despite having been largely studied,
are still nowadays a very active domain of research. This is mainly due
to the fact that including metallic layers vastly expands the potential effect
of multilayers on light - allowing negative refraction and sub-wavelength
focusing.

Multilayered plasmonic structures are crucial, as studying their optical
properties help understand the resonances of nanoparticles, coupled or not
to a metallic film. An interface between a metal and a dielectric actually
supports a surface plasmon - and this in turn explains why a spherical
nanoparticle can resonate: the surface plasmon sees the particle as a cav-
ity. They resonate whenever the circumference is a multiple of the surface
plasmon effective wavelength. A gap between two metals supports a gap-
plasmon, which explains why a nano cube coupled to a metallic surface
resonate: it constitutes a cavity for the gap-plasmon, and the resonance con-
dition is here that the cube should have a width that is a multiple of half an
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effective wavelength of the gap-plasmon[29].
This is just to show how fundamental the study of multilayered struc-

tures is - essentially because it allows analytic results and provides a phys-
ical insight into all the other structures of plasmonics. We underline here
that plasmonics is much older than most people suspect, as the absorption
properties of metallic nanoparticles have been empirically found and used
in stained glass (see Fig. 1) and even in precious objects made of glass dur-
ing the roman era (see Fig. 2). Nowadays, nanoparticles are considered se-
rious candidates for the thermal treatment of cancer - owing to their unique
light concentration properties.

FIGURE 1: Nano-particle plasmonic resonances are utilized in
stained glass to produce colorful pictures.

FIGURE 2: Lycurgus cup is the oldest example of a glass con-
taining nanoparticles for an optical purpose.

Plasmonic guided modes present a unique and very specific property:
they can present very low effective wavelengths. This explains why the size
of plasmonic resonators can be reduced to a deeply subwavelength size.
Even this aspect is well described using the classical description of guided
modes, a more physical and simple explanation would be welcome. The
main goal of my thesis was initially to give a more physical reason why
plasmonic guided modes behave as they do, presenting very high effective
index, by considering them with the point of view of energy propagation.
Finally, despite its extraordinary accuracy, it seems that Drude’s model ac-
tually presents some limitations[11] and that this is linked directly to the
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small effective wavelength of plasmonic guided modes[28]. Since Moosh is
able to take these phenomena into account, they have attracted my attention
too.

In a first chapter, I will go through the way Maxwell’s equations are
solved in multilayers whether to find a reflection coefficient or a guided
mode and its properties. I will explain the scattering matrix method that
constitutes the core of Moosh. Throughout the whole manuscript I have
tried to illustrate the concepts of nanophotonics and especially plasmonics
using Moosh (Multilayer Optics is Officially Super Hype[12]).

In a second chapter, I will focus on plasmonic guided modes and metallo-
dielectric multilayers, using again Moosh as a tool to explore all these sit-
uations. I will explain the first steps that led us to the generalization of
Yariv and Yeh’s theorem stating that the energy velocity, for mode guided
in non-dispersive multilayered dielectric structures, is equal to the group
velocity. We knew we would run into problems when trying to generalize
this theorem to plasmonic guided modes because the energy balance should
obviously include the contribution of free electrons - they are responsible
for the optical response of metals and are moved by the electric field, the
carrying a part of the energy of the wave. We have tried to see how easy
the theorem could be generalized by calculating the group and energy ve-
locity for the most emblematic guided modes (the surface plasmon and the
gap-plasmon). This indicated us that after all, the free electrons could be
forgotten in the energy balance.

In the third chapter, I will show that Yariv and Yeh’s approach can be
generalized to plasmonic structures, and that this provides a new insight
into the fundamental reasons why plasmonic guided modes have such high
effective indexes. We introduce the concept of plasmonic drag to summarize
the insight the theorem brings and show on the examples of surface plas-
mons and gap-plasmons the energy balance that can be made.

Finally, in a fourth chapter, I have made a short study of a gap-plasmon
resonance that is sensitive to the spatial dispersion present in metals. It is
induced by the repulsion between free electrons, which is completely over-
looked in Drude’s model, but not in a more accurate description of the jel-
lium: the hydrodynamic model. In this framework, exciting a gap-plasmon
using a prism coupler is a good idea to put spatial dispersion into evidence.
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Chapter 1

Solving Maxwell’s equations in
multilayers

In this first chapter, the way Maxwell’s equations are solved in multilayers
is presented. This is the principle of operation of Moosh[12], a program,
developed by the team, which I have helped to test. I will show in this
chapter the capabilities of Moosh, using it to illustrate the most fundamental
concepts of optics - total internal reflection, positive or negative refraction
and perfect lensing. I will then present the way Moosh finds the guided
modes of a multilayered structure, as guided mode play a fundamental role
in plasmonics.

1.1 Maxwell’s equations and constitutive relations

In the 19th century James Clerk Maxwell published the equations that gov-
ern electric and magnetic fields [27]. It was until that time that light have
been considered to be an electromagnetic wave.

These equations depend on space and time and are given a follows

div �D = ρ (1.1)

�rot �E = −∂t �B (1.2)

div �B = 0 (1.3)

�rot �H = �j + ∂t �D (1.4)

These equations are not complete without specifying the constitutive rela-
tions that are acceptable for isotropic, linear and local media. The equations
are

�B = μ0Rm ∗ �H (1.5)

�D = ε0Re ∗ �E (1.6)

where Rm(�r, t) and Re(�r, t) are the local responses of the medium. Where *
is the convolution product with respect to time. A Fourier Transform with
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respect to t can be done because the whole system is invariant with time.
Then the constitutive relations become

�B = μ0μ(�r, ω) �H (1.7)

�D = ε0ε(�r, ω) �E (1.8)

The relative permitivity ε and the relative permeability μ depend on
variables of space. In what follows we consider ε and μ to be constant.
In addition, consider that the medium to be homogeneous( no source) for
which ρ=0 and �j=0.

1.1.1 General expression for the fields

We consider lamellar structures of which ε and μ depend on z. In the har-
monic regime, with a e−iωt time dependency, Maxwell’s equations become

∂yEz − ∂zEy = iωμ0μHx (1.9)

∂zEx − ∂xEz = iωμ0μHy (1.10)

∂xEy − ∂yEx = iωμ0μHz (1.11)

∂yHz − ∂zHy = −iωε0εEx (1.12)

∂zHx − ∂xHz = −iωε0εEy (1.13)

∂xHy − ∂yHx = −iωε0εEz (1.14)

Since the problem is invariant for x and y, a Fourier transform can be
done with respect to these two variables. It is equivalent to say that we as-
sume an exp i(kx x+ ky y) dependency with respect to these two variables.
Then, it is always possible to make a coordinate change in order to guaran-
tee that ky = 0, without loosing any generality. The important consequence
is that there is no dependency on y any more and that Maxwell’s equations
decouple to split into two sub-systems, one where Ey plays a central role

⎧⎪⎨
⎪⎩

−∂zEy = iω μ0 μHx

∂zHx − ∂xHz = −iω ε0 εEy

∂xEy = iω μ0 μHz

, (1.15)
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and one for which Hy (p polarization) is the central quantity⎧⎪⎨
⎪⎩

−∂zHy = −iω ε0 εEx

∂zEx − ∂xEz = iω μ0 μHy

∂xHy = −iω ε0 εEz

(1.16)

In plasmonics, the only interesting phenomena occur in p polarization[25].
Before continuing in the explanation of this section, it is essential to de-

fine what polarization of light is. Light, by definition, is an electromagnetic
wave which consists of two wave forms, a vertical and a horizontal one
in a certain direction of propagation. Up on polarization, only one com-
ponent of the wave oscillates in a single direction. This means that if we
choose a vertical polarizer, the horizontal component will be absorbed and
vice versa. There are two types of polarization; P polarization where the
transverse-magnetic (TM) is polarized it is thus called, tangential plane po-
larized. S- polarization, is also called transverse-electric (TE), as well as
sigma-polarized or sagittal plane polarized.

The guided modes that are supported by metallo-dielectric structures,
including a simple interface between a metal and a dielectric, are all based
on oscillations of the electron gas that are linked to a magnetic field along the
y direction here. If these guided modes are not excited, essentially nothing
happens.

Combining the above equation in the p polarization case yields:

∂z

[
∂zHy

iωμ0μ

]
− ∂x

[
∂xHy

iωμ0μ

]
= −iωε0εHy (1.17)

and finally
∂2
zHy + ∂2

xHy = −ω2ε0μ0εμHy (1.18)

which is simply Helmholtz’s equation for Hy. In s polarization, the result is
exactly the same, except that Hy is replaced by Ey.

Given the dependency on x, we have

∂2
xHy = −k2

xHy, (1.19)

which finally gives
∂2
zHy +

[με
c2

− k2
x

]
Hy = 0. (1.20)

The general solution in a given layer can thus be written

Hy = (A+
j e

ikjz(z−zj) + B+
j e

−ikjz(z−zj))ei(kxx−ωt) (1.21)

where kj
z =

√
μjεjk2 − k2

x where k = ω
c

= 2π
λ

. This expression means that
in each layer two waves are present: a wave propagating upwards with an
amplitude A+

j just under interface j, and a wave propagating downwards
with an amplitude B+

j at the same place.
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We could have taken, as a reference, the interface j + 1 instead of j. In
that case, the expression for Hy is

Hy = (A−
j e

ikjz(z−zj+1) + B−
j e

−ikjz(z−zj+1))ei(kxx−ωt) (1.22)

It is essential to mention that Hy is continuous owing to �
rot �H all through-

out the structure. In addition, given the fact that the two expressions should
be obviously equal for any value of x, z and t, the link between the coeffi-
cients is simply

B−
j e

+ikizzi+1 = B+
j e

+jkizzi (1.23)

and
B−

i = B+
i e

ikizki (1.24)

for the B coefficients, and for the A coefficients

A−
j e

−ikj
zzj+1 = A+

j e
−jkizzi (1.25)

A+
j = A−

j e
+jkiz(zi−zj+1) = A−

j e
jkjzhj . (1.26)

1.1.2 Boundary conditions

The fields that are parallel to the interfaces are continuous. In p polarization,
this means that both Hy and Ex are continuous. For Hy, this condition yields,
at the interface j located in zj A

−
j−1 + B−

j−1 = A+
j + B+

j . And since

Ex =
1

iωμ0

× ∂zHy

ε
, (1.27)

Then the quantity ∂zHy

ε
has to be continuous too, which yields

1

εj−1

kj−1
z (A−

j−1 − B−
j−1) =

1

εj
kj
z(A

+
j − B+

j ) (1.28)

We have then a system of equations, constituted by the two continuity
equations written for each interface. The equations linking the A+

j and B+
j to

the A−
j and B−

j must be added for each layer. However, solving the system
directly doesn’t work, because the numerical methods that are classically
used prove to be unstable. We notice that the system is peculiar, since it
links Aj and Bj with Aj+1 and Bj+1 and to Aj−1 and Bj−1 essentially, but
not to the other coefficients. There are thus systematic ways to solve it, and
one of these ways, the most stable, is to use scattering matrices, that we will
explain now.
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1.1.3 Scattering matrix algorithm

Interface scattering matrix

Consider the interface between medium j and j + 1, the continuity of tan-
gential component of the electric field vector �E and normal component of
the magnetic field �H relations can be rewritten as follows

A−
j + B−

j = A+
j+1 + B+

j+1 (1.29)
1

εj
kj
z(A

−
j − B−

j ) =
1

εj+1

kj+1
z

(
A+

j+1 − B+
j+1

)
(1.30)

Take A−
j and B+

j+1, then

A−
j − B+

j+1 = A+
j+1 − B−

j (1.31)

and
kj
z

εj
A−

j +
kj+1
z

εj+1

B+
j+1 =

kj+1
z

εj+1

A+
j+1 +

kj
z

εj
B−

j . (1.32)

A few calculations lead to the following matrix form

[
A−

j

B+
j+1

]
=

1
kjz
εj

+ kj+1
z

εj+1

[
kjz
εj

− kj+1
z

εj+1
2kj+1

z

εj+1

2kjz
εj

kj+1
z

εj+1
− kjz

εj

] [
B+

j

A−
j+1

]
(1.33)

Layer matrix

Using expressions (1.24) and (1.26), a scattering matrix can be written for a
layer [

A+
j

B−
i

]
=

[
0 eikjhj

eikjhj 0

] [
B+

j

A−
j

]
(1.34)

Cascading of scattering matrices

Once scattering matrices have been defined for interfaces and layers, they
have to be assembled two by two to find the scattering matrix of the whole
structure. The process is called cascading, and its main purpose is to obtain
a single scattering matrix from two scattering matrices that concern partly
the same variable. We assume we have coefficients A,B,C,D,E, F (that
correspond to A±

j andB±
j ) that are linked by the following relations[

A
B

]
=

[
S11 S12

S21 S22

] [
C
D

]
(1.35)

[
D
E

]
=

[
U11 U12

U21 U22

] [
B
F

]
(1.36)
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We want to find a scattering matrix linking A and E to C and F , we
therefore begin by eliminating the intermediate variables B and D using
the straightforward results

B(1− S22U11) = S21C + S22U12F

and

D (1− U11S22) = U11S21C + U12F

So that A and E can be written

A = S11C +
S12

1− U11S22

× [U11S21C + U12F ] (1.37)

E =
U21S21C

1− S22U11

+ U12 +
U21S22U12

1− S22U11
F (1.38)

And finally, the scattering matrix linking A and E to C and F is[
A
E

]
=

[
S11 +

S12U11S21

1−U11S22

S12U12

1−U11S22
U21S21

1−S22U11
U22 +

U21S22U12

1−S22U11

] [
C
F

]
(1.39)

This formula can be used on any pair of scattering matrix provided each
one of them has two coefficients (here B and D) in common. The matrices
can be interface or layer matrices, or two matrices obtained through cascad-
ing.

1.1.4 Scattering matrix of the whole structure

Cascading all the interface and scattering matrices leads to the scattering
matrix of the whole multilayered structure, whose coefficients are in fact
directly the reflection and transmission coefficients of the whole structure,
given the physical meaning of the amplitudes A0, B0, AN+1 and BN+1.[

B0

AN+1

]
=

[
r1 t2
t1 r2

] [
A0

BN+1

]
(1.40)

Where r1 is the reflection coefficient when a plane wave is coming from
above. Using relations (1.37) and (1.38) it is possible to retrieve the inter-
mediary coefficients, which means all the Aj and all the Bj . That way, it is
possible to compute the field in each layer.

1.1.5 Examples

Although multilayered structures are a rather limited class of architectures,
almost all the phenomenon of optics can be illustrated in this framework.
By providing maps of the electric or magnetic fields, Moosh, a numerical
swiss army knife for the study of the optical properties of multilayers[12].
Using Moosh, computing optical properties of any multilayered structure:
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reflection, transmission, absorption spectra, as well as Gaussian beam prop-
agation or guided modes, can be performed. In addition, Moosh allows to
better grasp the physics – and this is what we will show here. We illustrate
the capabilities of the method with several examples, of increasing complex-
ity.

Refraction

That is why we begin with a phenomenon as simple as refraction. The pic-
ture shown Fig. 1.1 shows a beam refracted when encountering an interface
between two media. The refracted beam and the reflected beam (producing
a characteristic interference pattern) are clearly visible.

FIGURE 1.1: Refraction. Incident beam width of 10λ a wave-
length of λ = 800nm, an angle of incidence=50◦ illuminating
an interface air/dielectric of value 2 The overall width of the
picture is 70λ and the height 25λ. The white bar represents

one wavelength vertically (800 nm).

Brewster incidence

The reflection coefficient depends on the polarization of the incident light.
In p polarization, the reflection coefficient presents a zero for a peculiar in-
cidence angle called the Brewster angle (see Fig. 1.2). This "total transmis-
sion" can be simulated using Moosh, as shown on Fig. 1.3. There is still a
very weak reflected beam, that is due to the fact that there are several plane
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waves in the incident beam, so that the transmission can not be total, as
some plane waves are slightly reflected.

FIGURE 1.2: Reflection as a function of the incident angle with
a wavelength of 600nm, number of points of 200 and number
of periods = 20 of a dielectric value 2. The reflection coefficient

reaches zero for an angle of 55◦.

Total internal reflection

When a beam propagating in a high-index medium is sent on an interface
with a lower index medium, total internal reflection occurs. While such a
phenomenon is known even to high school students, Moosh allows to show
what happens under the prism, and the evanescent wave that is generated.
This is shown Figure 1.4

Anti-reflective coating

An anti-reflective coating is usually a quarter-wavelength layer of interme-
diate refractive index between air and the medium in which light is trans-
mitted. Using Moosh, it is easy to compute both the transmission coefficient
for different wavelength (see Fig. 1.5), and the propagation of the beam in-
side the structure(see Fig. 1.6), showing the resonance that allows light to
be fully transmitted in normal incidence. Not interference pattern is present
here, which shows how efficient the device is.

Bragg mirror

A Bragg mirror is a multilayer with two different indices with well chosen
thicknesses. It is called a quarter-wave stack because each layer corresponds
to a quarter of a wavelength in the medium (by taking into account the re-
fractive index). Moosh allows to compute the reflection coefficient as a func-
tion of the wavelength, showing a range for which light is very efficiently
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FIGURE 1.3: Brewster Incidence with a wavelength of 600nm.
The white bar represents 1 wavelength.

reflected - this part is called the forbidden band, because light cannot prop-
agate in the Bragg mirror for this wavelength range (see Fig. 1.7). Fig. 1.8
shows the reflection of a Gaussian beam.

Negative refraction

Negative refraction has been first predicted by V.g.Velasco in 1968[43]. But
this fact didn’t attract any attention at that time. In 2000, Smith et al. demon-
strated the phenomenon of negative refraction experimentally[41]. MOOSH
allows the study of such a process and the result is shown in Figure 1.3.

Perfect lensing

After the work of Smith, Pendry considered the device to be a perfect lens.
Currently, Moosh is capable to study this phenomenon numerically, as shown
Figure 1.10.
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FIGURE 1.4: Total internal reflection, Incident beam width of
10λ a wavelength of λ = 800nm, an angle of incidence=50◦

illuminating an interface dielectric /air. The overall width of
the picture is 70λ and the height 25λ.

FIGURE 1.5: Anti Reflective Coating with a wavelength of
530nm, spatial window size d = 70λ, incident beam width

w = 10λ at normal incidence.
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FIGURE 1.6: Transmission as a function of the wavelength
with a spatial window size d = 70λ, incident beam width

w = 10λ, and an angle of incidence of 45◦.

FIGURE 1.7: Bragg spectrum with a wavelength of 600nm,
spatial window size d = 70λ, incident beam width w = 10λ,

and an angle of incidence of 35◦.
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FIGURE 1.8: Bragg mirror.

FIGURE 1.9: Negative refraction of a Gaussian beam with a
waist of 50λ, λ = 800nm propagating in air and meeting a slab
of a negative index materials ε = −2.25, μ = 1. The working
wavelength is 363.8 nm, the incidence angle 75◦. The physical

width of the domain is 15λ and the height 1965 nm.



1.1. Maxwell’s equations and constitutive relations 17

FIGURE 1.10: Perfect Lens. Incident beam width of 0.1λ
a wavelength of λ = 800nm, illuminating an interface
air/dielectric/air The overall width of the picture is 70λ and

the height 25λ.
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1.2 Guided modes

In plasmonics especially, guided modes play an essential role. Finding guided
modes and computing their properties accurately is thus of great impor-
tance. A guided mode is a solution of Maxwell’s equation without any in-
coming wave with boundary conditions, and as such, it only exists for very
precise conditions.

When looking for guided modes, one assumes that

kx > nk0

where n is the maximum index of refraction of the outer media and k0 =
ω
c
.

This means the fields present an exponential decay in the outside medium.
It reduces to finding a solution to Maxwell’s equations without any incom-
ing wave from above or from under the structure. With N inside layers,
the number of unknowns (2 by layer inside the structure, 1 for each outer
medium) is 2N + 2. It is exactly the number of equations of the type (1.29)
and (1.30), since two can be obtained for each of the N + 1 interfaces.

Finally, the whole system of equations can be written under the form

M

⎡
⎢⎢⎢⎢⎢⎣

A0

A1

B1
...

BN+1

⎤
⎥⎥⎥⎥⎥⎦ = 0.

The only way to get a solution that is not null is to have a singular matrix,
which can be written

detM = 0. (1.41)

This relation provides the dispersion relation, that links the pulsation ω
to the wave vector kx and can be written, very generally

f(kx, ω) = 0.

However, using detM = 0 proves unstable numerically and tedious
when calculations have to be done by hand. In the latter case, the best solu-
tion is simply to take the whole system and eliminate all the unknowns one
after the other. This yields a relation, at the end of the calculation, that is the
dispersion relation.

Numerically, the equation f(kx, ω) = 0 must be solved in the complex
plane in general. Once the frequency ω has been chosen, kx is in general
complex. A way to solve this equation is to look for minima of |f(kx, ω)|
instead of zeros of f(kx, ω). Each minimum of |f | is actually a zero of f ,
and |f | does not present any other minimum than the zeros because f is a
holomorphic function.

It is not always possible to find a dispersion relation by hand. Some-
times, this is too complicated and a purely numerical method is welcome.
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This can be done in a stable way using scattering matrices. The scattering
matrix of the whole multilayer is such that[

A0

BN+1

]
=
[
S
] [ B0

AN+1

]
and looking for a guided mode, hence means looking for a solution for

which [
B0

AN+1

]
= 0

but [
A0

BN+1

]
�= 0

In other words, the problem can be written

[S]−1

[
A0

BN+1

]
= 0

and here the dispersion relation is in that case simply

det[S]−1 = 0,

which can be solved like explained above. S−1 must not be invertible and
A0 and BN + 1 is the only solution.

1.3 Different light velocities

Now we concentrate on the question of the velocity of a guided mode.

1.3.1 Phase and group velocities

By definition, the phase velocity is the speed at which wave fronts (surfaces
for which the phase presents the same value) travel. That is why it is called
phase velocity. For a propagating mode, the phase velocity is thus simply
given by the ratio

vφ =
ω

kx
(1.42)

where ω is the angular frequency and kx is the wave number.The direction
of propagation is along the x axis.

The phase velocity is especially important for cavity resonances, because
kx and thus the effective wavelength 2π/kx are what are critical for deter-
mining the right conditions to excite the resonance (frequency, angle...).

The group velocity by definition is the wave packet velocity of which the
overall shape of the wave propagates through space. It is also defined as the
velocity of transport in a dispersive medium.

vg =
∂ω

∂kx
(1.43)
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FIGURE 1.11: Guided Modes. Field profile (Ey), arbitrary
units, for modes guided in a dielectric slab with a thickness
of 1000 nm and a permittivity 4+0.1i (between the red lines)
surrounded by a medium with a permittivity of 1 (air) for a

wavelength of 700 nm.

We consider propagation in dielectric waveguides.

1.3.2 Energy velocity

The energy velocity, vE has been recognized since a long time. Considering
a wave of which the energy propagates with a certain velocity. This velocity
is defined to be the velocity of the energy transport[8]. The energy velocity
which can be defined as the ratio of the integral of the Poynting vector over
the integral of the energy density

vE =

∫ +∞
−∞ Pxdz∫ +∞
−∞ ξdz

. (1.44)

Here the Poynting vector is actually the mean value of the actual Poynt-
ing vector, and since all the fields we are considering are complex, given the
polarization we have

Px = −1

2
�EzH

∗
y . (1.45)
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The energy density we consider here is a mean value too[32], and it is given
by

U =
1

4

(
μ0μr

�H. �H∗ + ε0εr �E. �E∗
)
. (1.46)

In the non-dispersive and loss less case the energy velocity, vE , has been
proved to be equal to the group velocity, vg by Yariv and Yeh[45]. Then

P

U
=

∂ω

∂kx
(1.47)

This means that:
vE = vg (1.48)

Yariv and Yeh’s original approach considers the matrix Bloch wave for-
malism in order to derive the dispersion behavior of electromagnetic modes
layered periodic media[45].

Two variables are derived; the time averaged flux of energy in an elec-
tromagnetic field.

�S =
1

2
Re[ �E × �H∗]

and the time averaged electromagnetic energy density. It is given again
by

U =
1

4
(ε �|E|2 + μ �|H|2)

Both �S and U are both periodic functions of x with a period T. It is better to
define the space averaged quantities in a periodic medium. Thus the mean
values over one period for U and �S are given by

< U >=
1

T

∫ T

0

U(x)dx

and

< �S >=
1

T

∫ T

0

�S(x)dx

The velocity of the energy flow or the energy velocity is

ve =
< S >

< U >

which gives the rate at which the energy flows from one cell to the next in a
periodic medium.

The group velocity of a wave propagating in the same medium is proved
to be equal to the energy velocity in this context too. The concepts of group,
energy, and phase velocity in periodic systems are discussed in detail in the
pioneering works of Yariv and Yeh[45] and[8].

Yariv and Yeh explained that their definitions are equivalent in systems
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composed of non-absorbing materials[18], demonstrating that in this partic-
ular context we have

ve = vg (1.49)

Although their result is established in the context of periodical struc-
tures, it can be easily extended to a single waveguide, as this is shown in
Yeh’s book[46].

The main consequence of this result is to make the energy velocity com-
pletely useless - because in the case of dielectrics there is no insight to get
from the expression of vE . What Yariv and Yeh have finally shown, is that
there are two ways to derive the group velocity, one of them relying on the
computation of the energy fluxes and densities in the structure.

As we will show in the following, this equality becomes much more in-
teresting in plasmonics, when metals are involved. However, since metals
are dispersive and contain electrons, the energy velocity is not even well de-
fined and the theorem can not be extended without reconsidering the whole
proof.

1.4 Conclusion

In this chapter, we have exposed the basics of how Maxwell’s equations can
be solved in the framework of multilayers, where the results are often ana-
lytic. The scattering matrix algorithm allows to solve the analytic systems
of equations that can be found when writing the boundary conditions be-
tween two different layers.Scattering matrices numerically much more reli-
able in any condition than transfer matrix- that is why they were chosen for
Moosh. And we have introduced all the concepts that will be used in the
next chapters, insisting on the notion of velocity. Three different velocities
can be defined: the phase (important for calculating resonance frequency in
cavities), the group (the actual velocity of a signal) and the energy veloc-
ity. Yariv and Yeh’s theorem shows that for guided modes just as for Bloch
modes in Bragg mirrors, the last two velocities are simply equal. But in the
context of dielectric materials the energy point of view does not really bring
any useful insight, so that this theorem is largely ignored by the community
and its demonstration quite hard to find[46].
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Chapter 2

Plasmonics

Plasmonics is a domain of optics whose aim is to utilize metallic nanostruc-
tures to better control light. Metals play a particularly important role, as
they allow to obtain very unusual light phenomena like negative refraction
in multilayered structures, for instance. Metals actually provide an optical
response to the incoming light that dielectrics are completely incapable of.
A way of explaining why will be exposed in the next chapter.

Here we will introduce Drude’s model, whose limitations will be dis-
cussed in Chapter 3, and the basic concepts of plasmonics, focusing espe-
cially on guided modes like surface plasmons and gap-plasmons.

It is worth underlining that plasmonics spans seemingly unrelated fields
such as medicine (where plasmonics can be used for imaging[21], and gold
nanoshells can be used in cancer treatment[24, 33], alternative energy (light
concentrators for photovoltaics)[36] and integrated circuits (plasmonic in-
terconnects)[3]. While not all these applications may be successful in the
future, it underlines the wide potential of metallic nanostructures in differ-
ent domains of Science.

Many analytic calculations are presented in this chapter. They may be
sometimes tiresome, but in the beginning of my work, they constituted the
only elements I could rely on to tell under which form Yariv and Yeh’s the-
orem had a chance to be generalized. As will be shown in the next chapter,
this is probably the simplest possible generalization, finally. But in the be-
ginning, in order to know for instance if the energy conveyed by electrons
had to be considered, we were using analytical calculations of the group
velocity to guide us.

2.1 Drude’s model

The most commonly used model for metal permittivity is the classical Drude
model, developed by Paul Drude in 1900[13]. The model was derived in or-
der to describe the optical properties of materials, especially metals, and
it predicts with reasonable accuracy the permittivity and the conductivity
of real metals by modeling the conduction-band electron motion in a metal
lattice under an applied electric field. The Drude model considers a macro-
scopic point of view of charge carrier (an electron or a hole) motion, using a
simple equation of motion and deriving the material permittivity in a har-
monic oscillator.
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In the Drude model, metals are considered as cloud of free electrons that
are not bound to a particular atomic nucleus but are free to move within the
metal lattice.

The central idea of Drude description of the optical response of metals
is to consider that they can be described as dielectrics because the current
can be considered as an effective polarization of the medium. This central
idea is often overlooked, although it is very important – it can be used in
any case, including for other models that link the electric field to the current
in a more complicated way than Drude’s model.

We call �P the effective polarization and it is linked to the current by the
following

�̇P = �J (2.1)

First, we show that the current can be easily included into Maxwell’s
equations. We start by Maxwell’s first equation

div �E =
ρ

ε0
. (2.2)

Since we have conservation of the charges, we have

∂tρ+ div �J = 0

which means that by replacing �J we obtain

∂tρ+ div∂t �P = ∂t

(
ρ+ div �P

)
= 0.

In harmonic regime, and thus for any dynamic current, we have

ρ+ div �P = 0

leading to
ρ = −div �P

It is then possible
div(ε0 �E + �P ) = 0

to introduce a �D = ε0 �E + �P vector, satisfying

div �D = 0

The same can be done with the following equation

�rot �H = �J + ε0∂t �E,

using (2.1) so that we finally get

�rot �H = ∂t �D.
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This shows that the currents can actually be included, from Maxwell’s
equations point of view, as an effective polarization.

Now Drude’model makes a direct link between the electronic current
and the electric field which pushes the electrons, by considering them as
punctual particles pushed by the electric force. The current is in that case
given by

�J = n(−e)�v,

where n is the electron density, e the elementary charge and �v the electron
speed, so that we have

me�̇v = (−e) �E

Finally, the relation between the effective polarization and the electric
field is given by

�̈P = −ne�̇v

�̈P =
ne2

m
�E

where the electric field , �E = �E0 exp(−iωt) If we define the plasma frequency
ωp so that

ne2

m
= ε0ω

2
p

then we finally have a direct expression for the effective permittivity of met-
als

εm = 1− ω2
p

ω2
= 1− λ2

λ2
p

(2.3)

εm is evaluated by the Drude Model. Starting with Newton’s second law
The electric force:

�Fe = −e �E

and friction force:
�f = −α�v

Solving the

−mω2x+ jαωx = −eE

then

x =
eE
m

ω2 − j α
m
ω

where
τ =

1

δ
=

m

α

�P = n�p

p = −ex
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�p =
−ne2

	E
m

ω2 − j ω
τ

Then

�D = ε0(1−
ω2
p

ω2 − jωδ
) �E (2.4)

the plasma frequency ωp is:

ω2
p =

ne2

mε0

If the losses are neglected,

εr = 1− ω2
p

ω2
. (2.5)

λp is the wavelength corresponding to the plasma frequency, typically
125 nm for noble metals as silver or gold. The model can be further re-
fined by adding terms corresponding to the response of the background,
considered as a dielectrics. These terms become important in the blue or
UV region, where metals become absorbent because of the inter band tran-
sitions (transition between valence bands in metals, thus concerning bound
electrons).

Using this simple model to describe the optical response of metals has
allowed to better understand why metals would for instance reflect light so
easily. The first thing that Drude’s model brings in that framework is the
notion of the skin depth, the typical penetration length for light in a metal,
both on reflection and when guided modes are considered. This is shown
on figure 2.1 using Moosh. When the metal is considered lossless, it is worth
underlining that the skin depth is roughly constant, around 25 nm for noble
metals.

2.2 Surface plasmons

Wood anomalies are absorption lines that appear when using metallic grat-
ings to make spectra of white light. They were identified at the very begin-
ning of the 20th century[30] and explained by Fano[16] half a century later.
Fano explained that a peculiar guided mode, the surface plasmon, propa-
gating at the interface between the metal and the dielectric is excited by the
grating, resulting in the absorption of the incoming light.

In the end of the 60’s, these surface plasmons have been excited using
two different setups based on prisms. These devices have been proposed
by Otto[34] and Krestschman and Raether[20].

This guided mode is extremely important in plasmonics because most
of the phenomena that occur in plasmonics can be linked, one way or the
other, to the surface plasmon. In addition, the only well spread application
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FIGURE 2.1: Skin Depth, Reflection of a plane wave with an
incidence angle 70◦ with a spatial window size d = 70λ and

an incident beam of width w = 10λ.

of plasmonics so far is the detection of biological molecules using a prism
coupler in the Kretschman Raether configuration.

2.2.1 Dispersion relation of the surface plasmon

Here, we will first derive the dispersion relation of the surface plasmon. The
expressions of the fields in the dielectrics and in the metal respectively (for
y > 0, in the dielectric)

Hy = A exp(ikxx) exp(−κdz) (2.6)

Hy = B exp(−kxx) exp(κmz) (2.7)

κm =
√

k2
x − εmk2

0 (2.8)

and
κd =

√
k2
x − εdk2

0. (2.9)

Since we are looking for a guided mode in p polarization, we know that
the Hy magnetic field in a dielectric and in a metal respectively are given by

Hd
y (x, z) = A exp(ikxx) exp(−κdz) (2.10)

for y > 0 in the dielectrics and

Hm
y (x, z) = B exp(ikxx) exp(κmz) (2.11)
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FIGURE 2.2: Surface plasmon. Taken from [4].

in the metal.
Two boundary conditions have then to be taken into consideration for

y=0, and they are
Hm

y (x, 0) = Hd
y (x, 0) (2.12)

and the second boundary condition, which must be satisfied whatever
the values of x and for y = 0, is

1

εm

∂Hm
y

∂z
=

1

εd

∂Hd
y

∂z
(2.13)

which yields
κm

εm
+

κd

εd
= 0, (2.14)

the dispersion relation of the surface plasmon. In addition, by using the
above expressions of κm and κd, the relationship between kx, the surface
plasmon wave vector, and ω can be put under the form

kx = k0

√
εmεd

εm + εd
(2.15)

provided εm < 0. As can be seen in this expression, it is even necessary that
|κm| > κd otherwise kx is purely imaginary.

When taking into account the dispersive nature of metals, with Drude’s
model

εm = 1− ω2

ω2
p

= 1− λ2

λ2
p

(2.16)
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so that finally we have

kx = k0

√√√√ 1− λ2

λ2
p

εd + 1− λ2

λ2
p

(2.17)

The dispersion has an asymptote when

kx → ∞

which occurs when
λ → λp√

1 + εd

and finally when ω tends to

ωsp =
ωp√
εd + 1

This shows that there is an asymptote for a peculiar frequency ωsp, above
which no surface plasmon can be excited.

FIGURE 2.3: The dispersion relation of the Surface Plasmon,
characterized by an asymptote for ω =

ωp√
εd+1

, the frequency
above which the surface plasmon cannot be excited. Losses do

not change that point.

In reality, losses prevent the surface plasmon to reach very high wave
vectors. The dispersion relation presents a bend-back relatively quickly, be-
cause ωsp is in general in a frequency domain where inter band transition ab-
sorb light efficiently. Many theoretical studies neglect this however, because
it is not always relevant to understand the fundamentals of the phenomena
in plasmonics.
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The asymptote is important because it means the surface plasmon is the-
oretically able to reach very high phase velocities around the surface plas-
mon frequency ωsp. This is linked to very low group velocities, as will be
explained in the next paragraph. Such a phenomenon is often called slow
light and, as we will see, the surface plasmon is not the only mode for which
it may occur.

2.2.2 Group velocity

As explained in the previous chapter, the group velocity of a guided mode
is given by

vg =
∂ω

∂kx
, (2.18)

where kx is the wave vector in the x direction. Here, we would like to see if
Yariv and Yeh’s prediction that the group velocity and the energy velocity
are equal can be retrieved through direct calculations of both velocities in
a simple case. The surface plasmon, with a non-dispersive metal, is the
simplest case that can be imagined.

There are several ways to calculate the group velocity. The first way is
by applying the above definition and derive the angular frequency by the
wave number or, conversely, deriving the wave number with respect to the
angular frequency and taking the inverse. This strategy works only in the
case when ω is an explicit function of kx (or the contrary). In general, the
dispersion relation is too complicated for that strategy to be used.

Instead, since the dispersion relation can be written, very generally,

f(ω, kx) = 0. (2.19)

We can write that
df =

∂f

∂kx
dkx +

∂f

∂ω
dω (2.20)

and if we follow a mode along its dispersion curve, then we should always
have df = 0. This means that we have

∂ω

∂kx
= −

∂ω
∂kx
∂f
∂ω

. (2.21)

Although the calculus is quite straightforward, the expression it yields
is far from being simple. It is often not simple to use it to gain any phys-
ical intuition on the guided mode. In the case of the surface plasmon, the
complexity is reasonable.

First, we try to find an expression of the group velocity in the non-
dispersive case, in order to check Yariv and Yeh’s theorem on a practical
example involving (non-dispersive) metals

∂f

∂kx
=

1

εm

∂κm

∂kx
+

1

εd

∂κd

∂kx
=

kx(εmκm + εdκd)

εmεdκmκd

(2.22)
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and

∂f

∂ω
=

1

εm

∂κm

∂ω
+

1

εd

∂κd

∂ω
= − ω

c2
κm + κd

κmκd

. (2.23)

Then, after quite a few simplifications, we get

vg =
kxω(εmκm + εdκd)

k2
0εmεm(κm + κd)

. (2.24)

Substituting k0 by ω
c

in equation (2.24), we obtain

vg =
ω(εmκm + εdκd)

kx(εm + εd)(κm + κd)
(2.25)

From the dispersion relation of the surface plasmon we know that

εmκd + εdκm = 0 (2.26)

so that finally, in the non-dispersive case, it is possible to write

vg = vφ =
ω

kx
. (2.27)

2.2.3 Energy velocity

In order to evaluate the energy velocity of a surface plasmon, two parame-
ters should be evaluated: the Poynting vector flux which is denoted by πx

and the mean energy density which is denoted by ξ. In the non-dispersive
case this can be easily done.

vE =

∫ +∞
−∞ πxdz∫ +∞
−∞ ξdz

(2.28)

The Poynting vector in the x direction in the metal and the dielectric will
be denoted πm and πd respectively. We have

πm
x =

kx|A|2HyH
∗
y

2ωε0εm
(2.29)

πd
x =

kx|A|2HyH
∗
y

2ωε0εd
(2.30)

and since HyH
∗
y = exp(−2κmz) in the metal, or HyH

∗
y = exp(−2κdz) in

the dielectric.

πm
x =

kx|A|2 exp(−2κmz)

2ωε0εm
(2.31)

and

πd
x =

kx|A|2 exp(−2κdz)

2ωε0εd
(2.32)
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Integrating the Poynting flux gives
∫ +∞

−∞
πxdz =

∫ 0

−∞
πm
x dz +

∫ +∞

0

πd
xdz (2.33)

∫ 0

−∞
πm
x dz =

kx|A|2
4κmωε0εm

(2.34)

∫ +∞

0

πd
xdz =

kx|A|2
4κdωε0εd

(2.35)

|A|=1, then ∫ +∞

−∞
πxdz =

kx(κmεm + κdεd)

4ωε0κmκdεmεd
(2.36)

By simplification∫ +∞

−∞
πxdz =

kx
4ωε0

(
1

εmκm

+
1

εdκd

)
(2.37)

The Energy density is denoted by ξ here and we assume its expression
to be simply

ξ =
1

2

(
1

2
μ0|Hy|2 + 1

2
ε0ε �E. �E∗

)
(2.38)

and since

ExE
∗
x =

κ2
d exp(−2κdz)|A|2

ωε20ε
2
d

(2.39)

and

EzE
∗
z =

k2
x exp(−2κdz)|A|2

ω2ε20ε
2
d

(2.40)

we finally obtain

ξd =
1

4
μ0|A|2 exp(−2κdz) +

1

4

1

ω2ε0εd
[κ2

d + k2
x]|A|2 exp(−2κdz) (2.41)

where κ2
d = k2

x − εdk
2
0 . The next step is then

ξd =
1

4
μ0|A|2 exp(−2κdz) +

1

4

1

ω2ε0εd
[2k2

x − εdω
2ε0μ0]|A|2 exp(−2κdz). (2.42)

Upon simplification, using that k2
0 = ω2ε0μ0 we obtain

ξd =
k2
x

2ω2ε0εd
|A|2 exp(−2κdz) (2.43)
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By integrating the energy density we have in the dielectric∫ +∞

0

ξddz =
k2
x

4ω2ε0εdκd

(2.44)

and in the metal ∫ 0

−∞
ξmdz =

k2
x

4ω2ε0εmκm

(2.45)

Now the two flux must be added. Adding equations 2.46 and 2.47 gives
the integral of the energy density

∫ +∞

−∞
ξdz =

∫ 0

−∞
ξmdz +

∫ +∞

0

ξddz. (2.46)

The resulting expression is
∫ +∞

−∞
ξdz =

k2
x

4ω2ε0

(
1

εdκd

+
1

εmκm

)
. (2.47)

In order to evaluate the energy velocity , calculating equation 2.28, The
ratio of equation 2.36 and equation 2.46 gives

vE =

∫ +∞
−∞ πxdz∫ +∞
−∞ ξdz

=
ω

kx
(2.48)

Then in the non dispersive case, for a surface plasmon, we can thus see
that the theorem holds and that we have

vE = vg (2.49)

This may look as a trivial result, but this shows that even in the case of
a (non-dispersive) metal Yariv and Yeh’s theorem can be applied to the sur-
face plasmon without having to consider the kinetic energy of the electron
gas in the energy density, nor in the energy flux.

2.2.4 Dispersive case

In the dispersive case, the group velocity can be calculated too, but it cannot
be compared to the energy velocity as it is not obvious what expression
should be chosen for the energy density.

Starting with the dispersion relation of Surface plasmons:

κm

εm
+

κd

εd
= 0 (2.50)

vg = −
∂f
∂kx
∂ f
∂ω

(2.51)
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∂f

∂kx
=

1

εm

∂κm

∂kx
+

1

εd

∂κd

∂kx
(2.52)

1

εm

∂κm

∂kx
=

kx
εmκm

1

εd

∂κd

∂kx
=

kx
εdκd

∂f

∂kx
=

kx(εdκd + εmκm)

εmεdκmκd

(2.53)

∂f

∂ω
=

εm
∂κm

∂ω
− κm

∂εm
∂ω

ε2m
+

1

εd

∂κd

∂ω
(2.54)

εm
∂κm

∂ω
=

−k0εm√
k2
xc

2 − ω2 + ω2
p

κm
∂εm
∂ω

=
2ω2

pκm

ω3

1

εd

∂κd

∂ω
=

1

εd

−k0εd√
k2
xc

2 − εdω2
=

−k0√
k2
xc

2 − εdω2

Solving the above equations gives

∂f

∂ω
=

−k0εmω
2H − 2GHκmω

2
p − κ0Gε2mω

2

GHε2ω2
(2.55)

where
G =

√
k2
xc

2 − ω2 + ω2
p

and
H =

√
k2
xc

2 − εdω2

Solving equation 2.44 gives the expression of the group velocity

vg =
kx(εdκd − εmκm)(GHε2mω

2)

(εmεdκmκd)(kxεmω2H − 2GHκmω2
p −+k0Gε2mω

2)
(2.56)

The form taken by this group velocity is such that it is hardly intelligible.
It is thus difficult to interpret and use to form ones intuition on the behavior
of the mode. It is not obvious, from the above expression, that Yariv and
Yeh’s theorem holds - which was our hope here.

2.3 Prism couplers

In a multilayered structure illuminated from above, since kx is conserved
throughout the whole structure, we can expect a surface plasmon to be ex-
cited when the incident wave presents a wave vector kx that is given by 2.15.
It is thus not possible to excite a surface plasmon using a propagating beam
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coming directly from the dielectric supporting the guided mode. The wave-
vectors kx of the different plan waves that are involved have a kx that will
always be smaller than k0. They cannot excite the mode in that condition,
because its effective index is larger than 1. In order to generate kx vectors
that are larger, a prism can be used because the wave-vector along the x
direction of a plane wave is in that case given by

kx = n k0 sin θ (2.57)

and if the index n is larger than the index of the dielectric at the interface of
which the surface plasmon propagates, then a surface plasmon can theoret-
ically be excited. In order to do so, the kx that is sent has to satisfy roughly

kx � ksp (2.58)

which can be written

n sin θ �
√

εdεm
εd εm

. (2.59)

The difference between the theoretical angle for which the surface plas-
mon can be excited and the actual one is due to the fact that the guided
mode is disturbed by the prism and becomes a leaky mode.

Two configurations have thus been proposed, both using a prism to gen-
erate a high enough wave vector. The first configuration has been published
by Otto[34] in 1968 and marks the beginning of plasmonics as a field.

In the Otto configuration, the prism is simply placed above the surface
of the metal. The surface plasmon is simply excited when the light inside
the prism has an incidence angle larger than the critical angle and satisfying
the resonance condition above. This case has been simulated using Moosh
and the resulting magnetic field map is shown in figure 2.5. The surface
plasmon excited at the interface between the metal and air can very clearly
be seen here.

In order to illustrate that the surface plasmon can excited only if the res-
onance condition is respected, the reflection coefficient is shown, as a func-
tion of the angle, on figure 2.7.
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FIGURE 2.4: Otto Configuration

The second configuration, proposed by Kretschmann and Raether[19] in
1972, is actually the most used, for practical reasons. In the Kretschmann-
Raether (KR) configuration, the metal film is evaporated on top of a glass
prism, as shown in figure 2.8. Then the film is illuminated through the di-
electric prism at an angle of incidence greater than of total internal reflection
angle satisfying the excitation condition.

Exactly as for the Otto configuration, when the right angle of incidence is
chosen, a surface plasmon resonance is excited. The profile of the magnetic
field in such a case, computed using Moosh, is shown in figure 2.9.

2.3.1 SPR bio-sensors

The only, so far, commercial application of plasmonics is biosensing. The
principle is to use a Kretschmann-Raether configuration composed of a light
source, prism attached to a thin gold film and a detector. At the resonance
angle, the surface plasmon is excited - but the very angle for which this
happens depends on the state of the lower surface (see Figure 2.10). This
surface is functionalized: organic molecules are binded to the gold surface,
ready to bind themselves to the free molecules that are in the liquid below
the metallic surface. As this molecular binding occurs, there will be a shift
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FIGURE 2.5: Otto configuration with a wavelength of 600 nm,
the spatial window size is 150λ, the incident beam width is

10λ, and the critical angle 44.9◦

FIGURE 2.6: Surface Plasmon Resonance

in the reflectivity curve i.e. a shift in resonance. The KR configuration has
the advantage that it is easy to change the liquid in contact with the metallic
surface or to introduce new molecules to analyze, which is not the case with
the Otto configuration.

Figure 2.10 illustrates the principle of the SPR sensing.
Using Moosh, the reflection coefficient as a function of the angle can be

computed for a SPR when the metal is covered by a very thin dielectric film,
representing the binded molecules of interest. Figure 2.11 shows the result
for different layer thicknesses. Classically, the index of the layer is consid-
ered to be around 1.46 (typical of organic materials) and its thickness of a
few nanometers (3 nm is often taken in the literature to test the sensitivity
of a device).
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FIGURE 2.7: Reflection as a function of the critical angle with
a wavelength of 600 nm, the spatial window size is 150λ, the

incident beam width is 10λ,and the critical angle 44.9 ◦

2.4 Metallo-dielectrics

Metallic slabs have been considered as a sort of lens [35], mainly because
they support surface plasmons that allow to convey the information usually
contained in evanescent, thanks to their property to propagate evanescent,
somehow, not far angularly speaking from the surface plasmon resonance.

More importantly, metallo dielectric[40] are able to transmit light al-
though they contain a lot of metal, as if the dielectric was able to help the
light tunneling through. Another way to see that : metallo-dielectric present
band structures that can be hyperbolic[42] and thus lead to negative refrac-
tion. Such an effect has actually been largely observed[44] and even used to
enhance the resolution of some peculiar lenses.

Essentially, a periodic metallo-dielectric multilayer is characterized by
solely the thickness dm of metallic layers and the thickness dd of dielectric
layers. The metallic filling ratio is defined by

ρ =
dm

dm + dd
. (2.60)

Such a structure has a dispersion relation that is similar to the one of
Bragg mirrors. When the wavelength of light becomes large compared to
the period d = dm + dd then the medium behaves as an homogeneous
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FIGURE 2.8: Kretschmann Configuration

medium for light - but it is anisotropic. More precisely, the dispersion re-
lation for p polarized light, in that limit, becomes[37]

k2
x + k2

y

ε‖
+

kz
ε⊥

=
ω2

c2
, (2.61)

with
ε‖ =

εmεd
ρεm + (1− ρ)εd

. (2.62)

Because of the dispersive nature of metals, both effective permittivities
change with the frequency. When the filling ratio is high enough, two phe-
nomenon can occur.

When ε‖ becomes negative, while ε⊥ > 0 obviously the dispersion re-
lation, instead of being an ellipsoid, becomes an hyperbole (shown figure
2.12). It is not possible to have kz = 0, the dispersion relation cannot be
satisfied in that case. This produces negative refraction[5], even if this is not
always easy to identify[44]. Such a phenomenon is easy to simulate with
Moosh (see figure 2.13). This case is called Type I hyperbolic meta material.

When on the contrary, ε⊥ < 0 and ε‖ > 0, kx = ky = 0 is not possible any
more and the hyperboloid is completely different. This usually means that
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FIGURE 2.9: Kretschmann Raether configuration with a wave-
length of 630 nm,spatial window size d = 150λ and an inci-
dent beam width w = 10λ and an angle of incidence of 44.935◦

FIGURE 2.10: Biosensing using a Kretschmann-Raether con-
figuration.

nothing propagates when coming from outside in the medium, if the wave
vector along the x axis is not high enough. But such meta materials support
very high effective index guided modes, similar to gap-plasmons (see next
section).

2.5 Gap-plasmons

A gap-plasmon is the fundamental mode of Metal Insulator-Metal waveg-
uide with a thickness of the insulator less than 50 nm in the visible. This
is roughly twice the skin depth and the next chapter will definitely help to
understand why this peculiar thickness. When such a gap is constituted in
a metallic structure, then resonances appear that can be linked to the excita-
tion of a gap-plasmon.
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FIGURE 2.11: Kretschmann-Raether Configuration,Gap plas-
mon. Energy coefficient as a function of the incidence angle
for several thicknesses of the layer on top of gold from 0 to 5

nm, with an index of 1.46, typical of organic materials.

The first paper published about a gap-plasmon resonator was written
by Leveque and Martin[23]. They studied the resonance arising when a
flat nanoparticle is coupled to a thin gold film. In their article, Leveque
and Martin, recognized that the field along the interface reaches its maxi-
mum under the particle and follows a law in d−3/2 where d is the distance
between the particle and the film. Leveque and Martin, using numerical
simulations, have predicted an electric field intensity enhancement of 5000
for the Localized Surface Plasmons (LSP) resonance with λ = 600nm and a
gap of d = 5nm. However, they did not really perform any physical analysis
beyond their calculations.

Gap plasmons have been well understood in the study performed by
Sergey I. Bozhevolnyi and Thomas Søndergaard in 2007 [7]. They have ex-
plained that the gap-plasmon propagating under the particle considered the
film coupled particle as a cavity, which explains the concentration of elec-
tromagnetic energies into sub wavelength volumes and the enhancement
of both scattered and local electric fields. They called the structures metal-
insulator-metal (MIM).

The gap-plasmon has an effective index ngp = kx
k0

that diverges when
the width of the gap tends to zero. Theoretically, there is thus no limit to
the effective index of the mode. Practically, the effective index never goes
beyond 10 - many other phenomena, as spatial dispersion, hinder the gap-
plasmon to reach an extremely high effective index.

A patch constitutes a cavity for the gap-plasmon because it is reflected
by the edges of the patch. Consequently, the typical size of cavity d for a
gap-plasmon is given, for the fundamental mode by

d =
λ0

2ngp

. (2.63)



42 Chapter 2. Plasmonics

FIGURE 2.12: Figure taken from [37] illustrating the disper-
sion properties of hyperbolic meta materials in the wave vec-

tor space.

FIGURE 2.13: Negative refraction of a Gaussian beam with
a waist of 50λ, propagating in air and meeting a hyperbolic
meta material as described in [44]. The working wavelength
is 363.8 nm, the incidence angle 75◦. The physical width of the
domain is 15λ nm and the height 2000 nm. The picture has

been stretched to be easier to understand.

This means that when the size of the gap decreases, since the effective index
diverges, the size of the resonator decreases. In the work of Bozhevolnyi et
al.[7], it has been explained that in thin strips and narrow gaps, both struc-
tures exhibit the same Q-factor of the resonance determined primarily by
the complex dielectric function of metal. Moreover, the quality factor does
not change when the size of the gap decreases. This increases the imaginary
part of the propagation constant of the gap-plasmon, but the size of the res-
onator decreases too, so that finally the quality factor remains essentially
constant. One of the consequences of such a miniaturization is that with so
tiny cavities, the Purcell effect is huge in such structures. The Purcell fac-
tor measures the ratio between the lifetime of an emitter in vacuum to the
lifetime in the cavity. A high Purcell factor thus means that the emitter can
couple efficiently to its environment to emit light very quickly. Using MIM
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resonators, a team from Duke University managed to reach up to 1000 for
the Purcell factor[2].

Finally, it is worth mentioning that the miniaturization makes the optical
resonators difficult to fabricate using lithography. But nanocubes can be
synthesized and then auto-assembled on a metallic surface covered by a
chemically grown spacer of a few nanometers, allowing to realize actual
MIM resonators working in the visible range of the spectrum for a very low
cost[29]. MIM resonators can be used for biosensing[9], and even nanocubes
can be used for gas detection[38].

2.5.1 Dispersion relation

We will now look for the dispersion relation of the gap-plasmon, the even
mode that propagates in a gap between two metals.

The form of the magnetic field Hy is in the upper metallic part

Hy = A exp(κmz) exp(ikxx) (2.64)

The form of the magnetic field Hy is in the lower metallic part

Hy = B exp(−κmz) exp(ikxx) (2.65)

In the dielectric the form of the magnetic field Hy is

Hy = [C exp(κdz) +D exp(−κd.z)] exp(ikxx) (2.66)

The gap-plasmon being an even mode, C = D and we have in the di-
electric

Hy = E cosh(κdz) exp(ikxx) (2.67)

The boundary conditions, Hy and 1
ε

∂Hy

∂z
being continuous, lead for z = h

2

as shown in figure 2.14 to

E cosh(κd
h

2
) = A exp(−κm

h

2
) (2.68)

and

E sinh(κd
h

2
) = A

[
−κm

εm
exp(−κm

h

2
)

]
. (2.69)

Taking the ratio of the above equations yields the dispersion relation

κm

εm
+

κd

εd
tanh(κd

h

2
) = 0. (2.70)

Here there is no way to explicitly write kx as a function of ω. The so-
lutions of the equation have to be computed in the complex plane, using
Moosh. As can be easily seen however, when h → +∞ the dispersion re-
lation is simply the dispersion relation of the surface plasmon as shown in
figure 2.14. We have nonetheless tried to redo the calculations leading to
analytic expressions for the group and energy velocity.
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FIGURE 2.14: The waveguide in which the gap-plasmon prop-
agates

2.5.2 Group velocity

We begin with the dispersion relation, that can be written

g(kx, ω) =
κm

εm
+

κd

εd
tanh(κd

h

2
) = 0. (2.71)

The dispersion relation is not as simple as for surface plasmons where kx
is an explicit function of ω. The group velocity can thus be calculated using
the relation

vg = −
∂g
∂kx
∂ g
∂ω

. (2.72)

We first calculate the term

∂g

kx
=

1

εm

κm

∂kx
+

1

εd

κd tanh(κd
h
2
)

∂kx
(2.73)

which gives

∂g

∂kx
=

kx[2κdεd + 2κmεm tanh(κd
h
2
)− hκmκd]sech2(κd

h
2
)

2κmκdεmεd
(2.74)
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and finally
∂g

∂ω
=

1

εm

∂κm

∂ω
+

1

εd

∂κd tanh(κd
h
2
)

∂ω
. (2.75)

The second term can be written

∂g

∂ω
= −ω[2κd + 2κm tanh(κd

h
d
) + κmκdhω sech2(κd

h
2
)]

2κmκdc2
(2.76)

and thus the group velocity can be written under the form

vg =
[2κd + (2κmεm) tanh(κd

h
2
)− (hκmκdsech2(κd

h
2
))[ε2m] tanh

2(κd
h
2
)]

2κd + 2κm tanh(κd
h
2
) + κmκdhsech2(κd

h
2
) (tanh2(κd

h
2
ε3mε

2
d)

(2.77)

2.5.3 Energy velocity

Again, the energy velocity is, in the non-dispersive case,

vE =

∫ +∞
−∞ Pdz∫ +∞
−∞ ξdz

(2.78)

In order to calculate vE , the following steps should be done

P 1
m =

kx
ωε0εm

exp(2κmz) (2.79)

P 2
m =

kx
ωε0εm

exp(−2κmz) (2.80)

Pd =
kx[exp(2κdz) + exp(−2κdz)] + 2

ωε0εd
(2.81)

∫ +∞

−∞
Pdz =

∫ −h
2

−∞
P 1
mdz +

∫ h
2

−h
2

Pddz

∫ +∞

h
2

P 2
mdz (2.82)

∫
Pmdz =

kx exp(−κmh)

κmε0εmω
(2.83)

∫ +h
2

−h
2

Pddz =
kx[exp(κdh)− exp(−κdh) + 2κdh]

κdε0εdω∫ +∞

−∞
Pdz =

∫
Pmdz +

∫
Pddz (2.84)

∫
Pmdz =

kx exp(−κmh)

κmε0εmω
(2.85)

∫
Pddz =

kx(exp(κdh)− exp(−κdh) + 2κdh)

κdε0εdω
(2.86)
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The calculations of the stored energy density are shown below

ξ1m =
κm exp(2κmz)

ε0εmω
(2.87)

ξ2m =
κm exp(−2κmz)

ε0εmω
(2.88)

ξd =
κd[exp(2κdz) + exp(−2κdz)]

ε0εdω
(2.89)

Where ξ1m and ξm2 are the stored energy densities in the two metallic slabs
and ξd is the stored energy density in the dielectric. The total energy density
is the sum of the energy densities in the two metallic slabs and the dielectric.
And in order to calculate the energy velocity in a gap plasmon the total
energy density should be integrated. This is shown in equation 2.94

∫ +∞

−∞
ξdz =

∫ −h
2

−∞
ξ1mdz +

∫ +∞

h
2

ξ2mdz +

∫ h
2

−h
2

ξddz (2.90)

∫
ξm =

1

ε0εm
exp(−κmh) (2.91)

∫
ξddz =

2 sinh(κdh)

ε0εdω
(2.92)

∫ +∞

−∞
ξdz =

εd exp(−κmh) + 2εm sinh(κdh))

ε0εmεdω
(2.93)

Then by applying equation 2.68, the energy velocity is calculated

vE =
kx(εd exp(−κmh) + 2εm(sinh(κdh) + κdh))

κmκd(εd exp(−κmh) + 2εm sinh(κdh))
(2.94)

2.5.4 Prism coupler and gap-plasmons

Exciting a gap-plasmon can be both easy and difficult. For instance, it is
hard to excite a gap-plasmon using a fire-end coupler. The width of the gap
is so small that the incoming wave has difficulties to couple to the guided
mode. Typically, when illuminating two coupled nanocubes, whereas there
is a gap-plasmon resonance in between, it gives a very small signal.

There is however a way to excite gap-plasmon that has never been ex-
plored yet, although it is very simple. One can use a prism to couple a
gap-plasmon. Of course, this way to excite the gap-plasmon is limited: the
maximum effective index that can be reached is the index of the prism. The
highest index prism is made of T iO2 with an index of approximately 2.6.
This means that when the gap is too narrow, the effective index of the gap-
plasmon is so high that it cannot be excited any more.

The reflection coefficient of the structure (prism-metal-gap-metal) can be
simulated, once more, using Moosh. The result show that the gap-plasmon
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FIGURE 2.15: The effective index as a function of the plasmon
frequency and the width of the gap

can actually be excited (see figure2.16). Of course, the excitation depends
on the thickness of the gold layer, just like for the surface plasmon. The
narrower the gap, the higher the effective index, and thus the larger the
incidence angle for which the resonance is excited.

When the gap is narrower than 12 nanometers, obviously the gap-plasmon
resonance is difficult to couple, as its effective index is too high. A gap in
the reflection still persists, but it is much less pronounced and shifts slightly
towards smaller angles.

Figure 2.17 shows the map of the magnetic field when a gap-plasmon
resonance is excited, computed using Moosh.

2.6 Conclusion

In this chapter, we have shown the main conceptual "objects" on which the
field of plasmonics relies. The most fundamental concept is the concept of
surface plasmon: a mode that is guided along an interface between a metal
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FIGURE 2.16: Gap Plasmon Resonance. Energy reflection co-
efficient as a function of the incident angle with a wavelength
of 600 nm,spatial window size d = 70λ and an incident beam
width w = 10λ, the green curve represents a gap of width
1000nm and the rest are as follows: blue with gap of 50nm,
the red curve represents: 20 nm gap, the dark gray curve rep-
resents the gap of 18nm width, the gray curve represents the
gap of 15nm width, the dark blue curve represents the gap of
12nm width, the yellow curve with a gap of 10nm width, the

purple curve represents the gap of 5nm width.

and a dielectric. This is still today the most important contribution of plas-
monics to applied physics, as using prism couplers allowing for the exci-
tation of surface plasmon resonance (SPR) is a widespread sensing method
for biologically interesting molecules. We have tried to illustrate as much
as possible, using Moosh, all the concepts of plasmonics. And we have cal-
culated analytically the group velocities and energy velocities of the surface
plasmon and of the gap-plasmon, the guided modes between two metals.
This has shown that in non-dispersive cases, even in the presence of metal,
Yariv and Yeh’s theorem holds - so that there seems to be no need to take
into account the electrons in the energetic point of view. This is a first result.
We were not able however to tell from the expressions we have calculated
in the dispersive case, what we should take as an expression for the local
energy density. This will be discussed in the next chapter.

Recently, gap-plasmons, guided modes between two metals, with the
remarkable property to present very high effective index when the gap is
very small, have been studied and identified as the next important concept
of plasmonics. The fact that they propagate so slowly is leveraged to built
sub wavelength resonators. But the physics of this slowdown could benefit
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FIGURE 2.17: Gap Plasmon Resonance with a wavelength of
600 nm,spatial window size d = 70λ and an incident beam

width w = 10λ

from a new vision - as it is difficult to form any intuition about why exactly
this plasmonic slowdown takes place. Anyway, we have shown that it is
possible theoretically, using high index prisms, to excite the equivalent of
the SPR for the gap-plasmon, the Gap-Plasmon Resonance. This will be
useful in the last chapter, when non-local phenomena kick in.
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Chapter 3

The Energy Point of View in
Plasmonics: The Concept of
Plasmonics Drag

Introduction

We have discussed in the previous chapter the properties of gap-plasmons,
and their tendency to present a very high effective index when the width
of the gap decreases - and how this explains the extraordinary small size
of gap-plasmon resonators compared to the wavelength in vacuum. Even
though the dispersion relation completely allows to describe this phenomenon,
a more physical view of this phenomenon has yet to be provided. Gap-
plasmons are characterized by effective wavelengths that can theoretically
be as small as a tenth of the wavelength in vacuum, so that even very deeply
sub wavelength structures can resonate. There is however little physical in-
sight into the reasons why gap-plasmons do actually reach so small wave-
lengths and thus so large wave vectors.

In this chapter we show that considering how the energy flows in met-
als, gives a coherent physical picture of guided modes in plasmonics, and
thus of the gap-plasmon behavior. We rely on the work of Yariv and Yeh,
who showed that the velocity energy is equal to the group energy for modes
guided in non-dispersive, dielectric multi-structures. We generalized their
theorem to plasmonic guided modes, that propagate in metals, even though
metals are intrinsically dispersive and contain electrons, making the right
expression for the energy flux and density subject to debate. Then we use
the insight brought by the theorem to study surface plasmons and gap-
plasmons, showing the insight this approach can bring.

3.1 Energy velocity in metals

In non-dispersive, dielectric media, Poynting’s theorem allows to give clear
expressions for the Poynting vector �Π, representing the energy flux, and the
energy density ξ. Building on these, it is possible to define, for a guided
mode in a dielectric multilayer, the energy velocity. Defining the energy
velocity is useless, unless it can be somehow linked to other velocities, to
provide an insight on the way these modes propagate. Yariv and Yeh have
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shown that for any mode guided in a dielectric structure, energy velocity
and group velocity are actually equal. This theorem has limited importance,
as the energy in dielectric structures is totally unable to flow in any exotic
way.

Yariv and Yeh’s result can not be applied directly to modes guided in
plasmonic structures like multilayers for two reasons (i) the expression of
the energy cannot be correct, as metals present a negative permittivity and
because they are intrinsically dispersive, and even more importantly (ii)
electrons, that are responsible for the optical response of metals, carry a
large part of the energy so that the Poynting vector and the energy density
in plasma have completely different expressions. But since plasmonic struc-
tures exhibit very exotic behaviors, as slow modes or negative refraction,
considering the way the energy flows in these structures can be expected to
provide much more insight than for dielectric waveguides.

In this first part we show, taking the same path as Yariv and Yeh, that
considering the energy carried by the electromagnetic fields only is enough
to define properly an energy velocity that is actually equal to the group
velocity for guided modes in structures containing metals. This provides a
justification for previous works where the Poynting vector has been show
to actually provide some insight into the propagation of plasmonic guided
modes and Bloch modes.

We underline that we establish this link in the framework of the Drude
model, without taking into account the losses. In plasmonic structures,
losses are usually important. Here, however, they will not hinder us from
discussing important features of plasmonic structures as negative refraction
and slow modes. It should however be kept in mind that when interband
transition kick in, the losses become so high that modes simply do not prop-
agate any more. We will probably never be able to witness the excitation of
a plasmonic backward mode, although they have been theoretically pre-
dicted, because they are supported only for very high frequencies for which
losses are overwhelming.

We consider a multilayered structure invariant in the x and y directions,
and a guided mode, solution of Maxwell’s equations presenting a ei(kx x−ω t)

dependency in x and t. In the following, we call kx/k0 where k0 =
ω
c

the ef-
fective index of the guided mode. We will assume the mode is p-polarized,
because nothing exotic occurs for the s polarization in metallo-dielectric
structures. Maxwell’s equations reduce to

∂zEz − ikxEz = iωμ0Hy (3.1)
∂zHy = iωε0εEx (3.2)
ikxHy = −iωε0εEz (3.3)

Any change in the mode will be linked to a small change in its propa-
gation constant, noted δkx, its pulsation δω, its electric and magnetic field,
respectively δ �E and δ �H . These small changes are all linked by Maxwell’s
equations, whatever the dispersion relation. These equations can thus be
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differentiated to yield

−i δkx Ez − ikx δEz + ∂z δEx = −i δω μ0Hy − iωμ0 δHy (3.4)
∂z δHy = i δω ε0εEx + iωε0 δεEx + iωε0ε δEx (3.5)

i δkx Hy + ikx δHy = −i δω ε0εEz − iωε0 δεEz − iωε0ε δEz(3.6)

and since ε is only a function of ω, we can write that δε = δω ∂ε
∂ω

.
Following Yariv and Yeh, we introduce now the quantity

�F = δ �E ⊗ �H∗ + δ �H∗ ⊗ �E + �H ⊗ δ �E∗ + �E∗ ⊗ δ �H, (3.7)

where ∗ denotes the complex conjugate.
Since we restrain ourselves here to a multilayered structure invariant in

the y direction, we only need to calculate ∂z Fz = 2i∂z

(
δEx H

∗
y − Ex δH

∗
y

)
.

Given this expression, we first calculate the quantity

A = ∂z
(
δEx H

∗
y − Ex δH

∗
y

)
= ∂zδEz.H

∗
y + δEx.∂zH

∗
y − ∂z δH

∗
y .Ex + δH∗

y .∂zEx

Using respectively (3.4),(3.5) and (3.6) we find that the different terms
can be written

∂z(δEx)H
∗
y = i δkx EzH

∗
y + ikxH

∗
y δEz + i δω μ0|Hy|2 + iωμ0 δHy H

∗
y(3.8)

∂zH
∗
y .δEx = −iωεεE∗

x δEx (3.9)

−∂z(δH
∗
y )Ex = i δω ε0

(
ε+ ω

∂ε

∂ω

)
|Ex|2 + iωε0ε δE

∗
x Ex (3.10)

−δH∗
y ∂zEx = −ikxEz δH

∗
y + iωμ0Hy δH

∗
y (3.11)

Using (3.3) and (3.6), we have in addition

ikx
(
δEzH

∗
y − Ez δH

∗
y

)
= −δEz iωε0εE

∗
z+iωε0ε δE

∗
z Ez+iδkx EzH

∗
y+iδωε0

(
ε+ ω

∂ε

∂ω

)
|Ez|2.

(3.12)
Adding all the terms to calculate A and using (3.12), we finally get

∂zFz = 4i δkx�
(
EzH

∗
y

)
+ 2i δω

(
μ0| �H|2 + ε0

{
ε+ ω

∂ε

∂ω

}
| �E|2

)
(3.13)

where all the real terms have been eliminated. We recognize the expression
of the Poynting vector and an expression that we identify as the energy
density in a dispersive medium ξ = 1

4

(
μ0HyH

∗
y +

{
ε+ ω ∂ε

∂ω

}
�E. �E∗

)
.
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When ∂zFz is integrated over the whole profile of a guided mode in a
plasmonic structure, we thus get

∫ +∞

−∞
∂zFz = 0 (3.14)

= −8iδkx

∫
Πxdz + 8iδω

∫
ξdz (3.15)

so that finally we have the theorem

vE =

∫
πxdz∫
ξdz

=
∂ω

∂kx
= vg (3.16)

Our conclusion is that, for a plasmonic guided mode propagating par-
tially inside metals, the theorem of Yariv and Yeh holds. This means that
considering the energy flow of the electromagnetic guided mode solely is
sufficient to get a sense of what really happens to the energy and to be able
to do a link with the group velocity. There may be a component of the en-
ergy density and energy flow that come from the free electrons, and it could
be worth to go and explore this peculiar point. But obviously, consider-
ing an energy density taking into account dispersion but not the electrons
movement is enough.

Most importantly, this means that considering the guided modes by look-
ing at the Poynting flow makes perfect sense. This is crucial because energy
flows strangely enough in metals - in a way opposite to the propagation di-
rection given by the wavevector. This alone, as we will show in the follow-
ing, gives and explanation about the low group velocity and high effective
index of plasmonic guided modes.

Finally, it is worth underlining that this demonstration provides a way
to reach an expression for the energy density for dispersive materials that
is completely different from the many ways to do so proposed by Brillouin,
Landau or Loudon[32].

3.2 Energy flow for surface plasmons

Our aim here is to consider the surface plasmon through the prism of energy
and to make energy balances. We first underline that, in the framework of
Drude’s model, we can write that

ε+ ω
∂ε

∂ω
= 1− ω2

p

ω2
+ ω

[
2ω2

p

ω3

]
= 1 +

ω2
p

ω2
(3.17)

3.2.1 Energy velocity

We will here calculate the energy density using the right expression for the
energy of the electromagnetic wave only. Again, while the calculations can
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prove tiresome and are really complicated by the fact that the metal is dis-
persive, the expressions they give for the energy (and thus group) velocity
have the advantage of being easy to discuss because at the numerator the
Poynting balance appears.

If we take, again, for the magnetic field in the dielectric Hy = A exp(−iκdz)
we have

Ex =
−Aκd exp(−κdz)

jωεεd
(3.18)

and
Ez =

Akx exp(−κdz)

ωε0εd
(3.19)

while inside the metal the expressions for the fields are

Hy = A exp(κmz) (3.20)

and again for the electric fields inside the metal

Ex =
Aκm exp(κmz)

iωε0εm
(3.21)

Ez =
Akx exp(κmz)

iωε0εm
(3.22)

The energy density is

ξ =
1

4
μ0HyH

∗
y + ε0

(
ε+ ω

∂ε

∂ω

)
[ExE

∗
x + EzE

∗
z ] (3.23)

In the dielectrics, the energy density is

ξd =
1

4
μ0|A|2 exp(−2κdz) +

1

4

ε0εd [κ
2
d + k2

x]

ω2ε20ε
2
d

|A|2 exp(−2κdz) (3.24)

Since k2
d = k2

x − εdk
2
0 , we have

ξd =
1

4
μ0|A|2 exp(−2κdz)

[
1 +

1

ω2μ0ε0εd
[2k2

x − εdk
2
0]

]
. (3.25)

Since k2
0 = ω2μ0ε0, then

ξd =
1

4
|A|2 exp(−2κdz)

2k2
x

εdωε0
(3.26)

and ∫ +∞

0

ξddz =
k2
x

4ω2ε0εdκd

|A|2. (3.27)

In the metal and since,κ2
m = k2

x − εmk
2
0 , the energy density is
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ξm =
1

4
μ0|A|2 exp(2κmz) +

1

4
ε0

(
1 +

ω2
p

ω2

)
1

ω2ε20ε
2
m

[
κ2
m + k2

x

] |A|2 exp(2κmz)(3.28)

=
1

4
|A|2 exp(2κmz)

[
μ0 +

(1 +
ω2
p

ω2 )

(ω2ε0ε2m)
(2k2

x − εmk
2
0)

]
(3.29)

=
1

4
|A|2 exp(2κmz)

[
μ0

(
1− 1 +

ω2
p

ω2

1− ω2
p

ω2

)
+

2k2
x

ω2ε0ε2m

(
1 +

ω2
p

ω2

)]
, (3.30)

while, the integral of the energy density in the metal is given by

∫ 0

−∞
ξmdz =

1

8κm

[
μ0

2

1− ω2

ω2
p

+
2μ0k

2
x

k2
0ε

2
m

(
1 +

ω2
p

ω2

)]
. (3.31)

3.2.2 Poynting flux

The Poynting flux is

Px =
kx

ωε0ε
|Hy|2 (3.32)

in the metal

πm =

∫ 0

−∞
Pxdz =

kx
2ωε0εmκm

|A|2 (3.33)

and in the dielectric

πd =

∫ +∞

0

Pxdz =
kx

2ωε0εdκd

|A|2 (3.34)

∫
Px =

kx
2ωε

[
1

εdκd

+
1

εmκm

]
(3.35)

The ratio of the flux is given by the simple expression

πm

πd

=
κdεd
κmεm

(3.36)

we have plotted this ratio as a function of the effective index on figure 3.1. It
can be seen that, as the frequency approaches the surface plasmon frequency
and thus the effective index tends to infinity, the ratio becomes important.
This is the sign that high wavevector are directly linked to a ratio of the
poynting in metal and in dielectric that become close to -1 (since the flux is
negative in the metal). Such a ratio can be interpreted as a drag - the mode
being violently slowed down by the negative Poynting vector of the metal.

3.3 Energy balance for gap-plasmons

For gap-plasmons too, the same kind of calculation can be made.
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FIGURE 3.1: Ratio of the Poynting in metal (negative) to the
Poynting in the dielectric for various effective index.

First we remind the reader the expressions of the fields (for z > 0, Hy

and Ex being even and Ex odd with respect to z = 0):

Hy =

⎧⎪⎨
⎪⎩

A cosh(κdz) z <
h

2

B exp(−κmz) z >
h

2

(3.37)

Ex =

⎧⎪⎪⎨
⎪⎪⎩

Aκd sinh(κdz)
1

iωε0εd

−Bκm exp(−κmz)
1

iωε0εm

(3.38)

Ez =

⎧⎪⎪⎨
⎪⎪⎩

−kx
ωε0εd

A cosh(κdz)

−kx
ωε0εm

B exp(−κmz)

(3.39)

3.3.1 Poynting flux

The Poynting flux in the dielectric can be written

∫ h
2

0

Pddz =

∫ h
2

0

|A|2 kx
2ωε0εd

cosh2(κdz)dz (3.40)
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and since cosh2 x = 1 + cosh(2x) a way to write this term is

∫ h
2

0

Pddz =
|A|2

2ωε0εd
kx

∫ h
2

0

1 + cosh(2κdz)dz (3.41)

=
|A|2kx
2ωε0εd

[
h

2
+

1

2κd

sinh(κdh)

]
. (3.42)

In the metal, we have∫ +∞

h
2

|B|2
2ωε0εm

kx exp(−2κmz) =
|B|2

4ωε0εmκm

kx exp(−κmh) (3.43)

and if we take A = 1 (an arbitrary choice for a guided mode), we end up
having
∫ +∞

0

πxdz =
kx

2ωε0

[
h

2εd
+

1

2κdεd
sinh(κdh) + cosh2(κd

h

2
)

1

2εmκm

]
. (3.44)

These expressions can be used to compute the ratio of the Poynting flux
in the metal over the Poynting flux in the dielectric as a function of the
gap width and frequency, as shown on figure 3.2 - which will be discussed
below.

3.3.2 Integrated energy density

Energy density

• Non-dispersive case

In the metal

ξm =
1

4

(
μ0HyH

∗
y + ε0ε �E �E∗

)
(3.45)

=
1

4
μ0|B|2 exp(−2κmz) + ε0εm|B|2 κ

2
m + k2

x

4ω2ε20ε
2
m

exp(−2κmz) (3.46)

=
|B|2k2

x

4ω2ε0εm
exp(−2κmz) (3.47)

∫ +∞

h
2

ξmdz =
k2
x

4ω2ε0εmκm

|B|2 exp(−κmh) (3.48)

In the dielectric

ξd =
1

4
μ0|A|2 cosh2(

κdz

2
)+

1

4
ε0εd

(
1

(ωε0εd)2
|A|2κ2

d sinh
2(κdz) +

k2
x

ω2ε20ε
2
d

|A|2 cosh2(
κdz

2
)

)
(3.49)
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The integral of energy density in the dielectric is done as follows

∫ h
2

0

ξddz = |A|2
[
1

4
μ0 +

k2
x

4ω2ε0εd

] ∫ h
2

0

cosh2(κdz)dz+|A|2 κ2
d

4ω2ε0εd

∫ h
2

0

sinh2(κdz)dz

(3.50)
In order to perform the calculation, we use

cosh2(κdz) =
1

2
[cosh(2κdz) + 1]

and

∫ h
2

0

cosh2(κdz)dz =
1

2

[
sinh(2κdz)

2κd

+ z

]
(3.51)

=
h

4
+

1

4κd

sinh(κdh). (3.52)

and

∫ h
2

0

sinh2(κdz)dz =
1

2

[
cosh(2κdz)

2κd

− z

]
(3.53)

=
−h

4
+

1

4κd

cosh(κdh). (3.54)

then the integral of the energy density in the dielectric is

∫ h
2

0

ξddz = |A|2
[
1

4
μ0 +

k2
x

4ω2ε0εd

] [
h

4
+

1

4κd

sinh(κdh)

]
(3.55)

=
h

4
+

1

4κd

sinh(κdh). (3.56)

∫ h
2

0

ξddz = |A|2
[
1

4
μ0 +

k2
x

4ω2ε0εd

] [
h

4
+

1

4κd

sinh(κdh)

]
+|A|2 κ2

d

4ω2ε0εd

[−h

4
+

1

4κd

cosh(κdh)

]
(3.57)

• Dispersive case

ξd does not change, but ξm does and it is shown below

ξm =
1

4
|B|2 exp(−2κmz) +

1

4
ε0

(
1 +

ω2
p

ω2

)
|B|2κ

2
m + k2

x

ω2ε20ε
2
m

exp(−2κmz) (3.58)

=
1

4
μ0|B|2 exp(−2κmz)

(
1− 1 +

ω2
p

ω2

1− ω2
p

ω2

)
+

k2
x

2ω2ε0ε2m
|B|2 exp(−2κmz)(1 +

ω2
p

ω2
)(3.59)
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∫ h
2

0

ξm =

[
1

4
μ0

(
−2ω2

p

ω2

1− ω2
p

ω2

)
+

k2
x

2ω2ε0ε2m

]
|B|2(exp(−κmh)− 1) (3.60)

3.3.3 Energy velocity

The energy velocity is

vE =

∫
πxdz∫
ξdz

(3.61)

We have checked numerically that the group velocity corresponded to
this complicated expression. Moreover, we have, as for the surface plas-
mon, represented on figure 3.2 the ratio of the Poynting in the metal and in
the dielectric. The same phenomenon appears, of course : the ratio tends
to -1 (and to 1 in absolute value) whenever the mode is slowed down, ei-
ther because the gap closes or because the frequency approaches the surface
plasmon frequency.

FIGURE 3.2: Ratio of the Poynting in metal (negative) to the
Poynting in the dielectric as a function of the gap and of the

frequency.
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3.4 Conclusion

In this chapter, we have generalized Yariv and Yeh’s theorem. Beyond this
generalization, this means we have shown that considering the classical ex-
pression for the energy density in a dispersive medium was enough to be
able to calculate an energy velocity of the electromagnetic field alone, and
that this velocity is actually equal to the group velocity. There is thus no
real need to consider the contribution of free electrons to the energy of the
mode to discuss its physics. We underline that our work constitutes a way
to reach an expression for the energy density different from all the previous,
historical approaches by Brillouin or Landau.

We have shown on the examples of the surface plasmon and of the gap-
plasmon that considering Poynting vector balances gives an completely new
insight on why in plasmonic structures guided mode get slowed down. This
energy point of view can be summarized by saying that the Poynting vector
in metals is opposite to the propagation direction, so that metals produce a
drag that diminishes the group velocity and thus increases the wavevector.

We finally stress that while we applied here our tools to guided modes,
it is possible to reach the same conclusions for Bloch waves in metallo-
dielectric structures - a study that remains to be done but that should be
made easy by the theoretical developments we have presented here.
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Chapter 4

Beyond Drude’s Model:
Non-locality in Plasmonics

Introduction

The Drude model is both extraordinary old and successful. Over the years,
this incredible simple picture of electrons moving freely in the incoming
electromagnetic field has allowed to describe the optical response of metal
even for the smallest nanoparticles. There has been a huge amount of work
dedicated to more accurate models of the jellium, the free electron gas con-
tained in metals. The Thomas-Fermi model, for instance, has allowed his-
torically to better understand the impressive accuracy of Drude’s model[13].
Nowadays, we know the Drude model can be derived from the most fun-
damental laws of quantum mechanics - it represents the zero-th order term
of any such model.

The hydrodynamic model has been developed and studied during the
seventies and eighties. It constitutes a quite accurate framework to describe
the non-linear response of metals. If the zero-th order is actually Drude’s
model, and the second-order terms are non-linear, there is a first order term
which produces spatial dispersion. It it then no longer possible to describe
the metal as a local dielectric - the polarization of the equivalent dielectric
does not depend on the local electric field any more.

The influence of non-locality has been searched for years on surface plas-
mons and on nanoparticles. But surface plasmons never reach very high
wavevectors and very small nanoparticles do not have a well controlled
shape. All the theoretical developments that took place in the eighties did
not produce any idea of any potential experiment showing nonlocal effects.

In 2012, such an experiment was published in Science[11]. Using a nano-
sphere coupled to a metallic film by a nanometric gap, Duke’s team was able
to show (at last) a difference between Drude’s model predictions and the
experiment. Moreover, they proved that the hydrodynamic model was very
accurate and allowed to predict the right resonance shift when the particle
was getting closer to the metallic substrate.

The main advantage of the hydrodynamic model is that is yields analytic
results in multilayered structures. A paper was then published showing that
gap-plasmons were much more likely to be sensitive to spatial dispersion
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than any other plasmonic guided mode[28] because they could reach effec-
tive wavelength that are so small (not so far from the mean free path of elec-
trons in metals). Finally, it is possible to write a scattering matrix method to
solve Maxwell’s equations in the framework of the hydrodynamic model[6],
so that this feature has been included in Moosh[12].

I have used these tools to study the influence of nonlocality on the gap-
plasmon resonance in the case of a prism coupler.

4.1 Local and nonlocal polarizability

Several models have been implemented in order to study the effect of the be-
havior of electrons on the electrical and optical properties of metallic struc-
tures. In all cases, the crucial quantity to estimate is the polarizability be-
cause, as has been shown in Chapter 2, any current of free electrons can be
seen as an effective polarizability. Even in the case of the hydrodynamic
model, this strategy holds.

4.1.1 Polarizability in Drude’s model

The first model was the Drude model that was initiated around 1900. Con-
sidered to be the most accurate model for years, Drude’s model clearly de-
scribe the movement of electrons in metals submitted to an external field.
The most important characteristic of a metal, evidently, is its high electrical
conductivity. So, around 1900, and shortly after J.J Thompson’s discovered
the electron, people became interested in the mechanism of metallic conduc-
tion - and no model had ever been proposed at the time. The earliest work
had been performed by E. Riecke in 1898, but it was quickly invalidated by
that of Drude in 1900[14]. Drude suggested a simple model that explained
a notable empirical law, the Wiedermann Franz law[10] (1853). This law
stated that at a given temperature the ratio of the thermal conductivity to
the electrical conductivity was the same for all metals.

The assumptions of the Drude model are:

1. a metal contains free electrons which form an electron gas,

2. there is now interaction between electrons, which interact only with the ionic
crystal

3. the average thermal energy of electrons is <1
2
mv2T>. But, electrons pur-

sue random movements inside the metal so that <vT>=0 even though
<v2T > �=0 (these random movements inside the metal are a result of
collisions that occur with ions),

4. ions have large mass compared to electrons and thus they are essen-
tially static.

In fact, the interaction between metals and electromagnetic radiation is mostly
controlled by the conduction of electrons inside the metal and referring to
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Drude Model, free electrons vibrate 180 degrees out of phase relative to the
driving electric field[31]. As a result, all metals maintain a negative dielec-
tric constant below their plasma frequency, which causes the very high re-
flectivity.

Considering the effects of free electrons, application of the Drude-Sommerfeld
model for free electron-gas simply gives

me
∂2�r

∂t2
+meΓ

∂�r

∂t
= e �E0 exp(−iωt) (4.1)

where e and me are the charge and the effective mass of the free electrons,
which is quite close to their actual mass for metals. �E0 and ω are the complex
amplitude and the frequency of the applied electric field. Γ is the damping
term and is proportional to the Fermi velocity denoted by vF and inversely
proportional to the electron mean free path l between scattering events, Γ
=vF

l
. The frequency-dependent dielectric function of the metal is given by

ε(ω) = 1 + χe(ω) (4.2)

and finally

εDrude(ω) = 1− ω2
p

ω2 + iΓω
(4.3)

where ωp =
√

ne2

meε0
is the plasma frequency.

It is possible to add terms representing the contribution of core electrons,
the polarizability of the ionic crystal. This is especially important when
studying spatial dispersion, as the response of free electrons is much more
nonlocal than the response of the bound electrons.

In order to be as realistic as possible on this particular issue, we use fits
made on a very large wavelength rang, based on many different experi-
mental data[39]. They allow to distinguish between the two responses. The
model used for the supplementary terms in this case is more complicated
than the classical

4.1.2 Polarizability in the hydrodynamic model framework

As previously stated, the hydrodynamic model studies the collective motion
of free electrons in metals, seen as a fluid. This motion is described in terms
of hydrodynamic variables that are

• the charge density n(�r, t),

• the electron fluid velocity: v(�r, t),

• the pressure inside the jellium p(�r, t),

• and the macroscopic electric and magnetic fields respectively denoted
by: �E(�r, t) and �B(�r, t).
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The equation of motion of the electric fluid is written as

n
∂�v

∂t
+ n(�v.∂ �∇)�v + γn�v = − ne

me

( �E + �v × �B)−
�∇p

me

(4.4)

where, again, γ is the phenomenological parameter taking into considera-
tion the electron-ion collisions.

The current density is
�J = −en�v (4.5)

Considering the equation of continuity

ṅ =
1

e
�∇. �J (4.6)

and substituting the current density in its value in equation (4.4) gives

∂ �J

∂t
−

�J

en
�∇. �J − �J.�∇(

�J

en
)− γ �J =

ne2

me

E − e

me

�J × B + e
�∇p

me

(4.7)

Here we linearize the equation by neglecting higher-order terms and then

substitute the electric polarization vector �̈P = �J . This expression links local
polarization in the studied medium with the external electric field and the
pressure:

�̈P + γ �̇P =
ne2

me

E +
e

me

�∇p. (4.8)

The last element missing is a relation between the pressure and the elec-
tronic density n. This relationship has been evaluated by in the framework
of the Thomas-Fermi model which gives the form of the electron quantum
pressure to be

p(r, t) = ξn(r, t)5/3 (4.9)

where ξ= (3π2)2/3 h2/(5me). The continuity equation, can be integrated in
order to relate the electron density to the medium polarization to yield

n(r, t) = n0 +
1

e
�∇. �P (r, t). (4.10)

The term n0 is the equilibrium charge density. We can then relate the gradi-
ent of p to the electron density n by

e

me

�∇p =
5

3

e

me

ξn2/3�∇n (4.11)

and using the integrated expression (4.10) for n yields

e

me

�∇p =
5

3

n
2/3
0

me

ξ �∇(�∇. �P ), (4.12)
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so that we obtain finally the equation relating the effective polarization of
the metal to the external electric field:

−β2�∇(�∇. �P ) + �̈P + γ �̇P = ε0ω
2
p
�E (4.13)

where ωp=
√

ne2

ε0me
is the plasmon frequency and β =

√
5
3

n
2/3
0

me
ξ is the non-local

parameter that is often defined as a function of the Fermi velocity, vF by

β2 =
2

3

EF

me

=
v2F
3
. (4.14)

EF being the Fermi energy h2(3π2n0)2/3

2me
. This expression is very close to the

most likely value of β as suggested by the Duke’s experiments[11].
Maxwell’s equations are thus coupled to equation (4.13). In the harmonic

regime this equation becomes

β2�∇(�∇. �P ) + (ω2 + iγω)�P = −ε0ω
2
p
�E. (4.15)

Because of the term β2�∇(�∇. �P ) the effective polarization is not local any
more - the electric field in one location has an impact on the polarization
further away. The pressure term that is responsible for the apparition of
the spatial dispersion can be linked to the repulsion between electrons - and
exchange interaction can totally be integrated into this term, because, just
like Coulomb forces, it leads to repulsion between electrons[11].

4.2 Non-Locality

Now we will shortly see how Maxwell’s equations can be solved in the
framework of the hydrodynamic model for multilayers. Using Maxwell’s
equations, the polarization �Pf corresponding solely to the free electrons that
obey the hydrodynamic equations can be easily written

�Pf =
ε0.ω

2
p

ω2 + iγω

(
�E − (1 + χb)

β2

ω2
p

∇
(
∇. �E

))
. (4.16)

In a metallic layer, two kinds of waves can actually be distinguished.
First the transverse wave, characterized by �∇. �E = 0 then waves for which
�∇ ∧ �E = �0 and consequently �H = �0. Such waves are of course said to be
longitudinal and they correspond to the equivalent of sound in the plasma.
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If ∇. �E = 0, �∇. �Pf = �0 then everything reduces to the standard Maxwell’s
equations with a Drude model.

∂zEx − ∂xEz = iω μ0 Hy (4.17)

Ex =
1

iωε0 εm
∂zHy (4.18)

Ez = − 1

iωε0 εm
∂xHy. (4.19)

so that, inside the metal, the fields can be written (in layer j)

Hy = (Aje
−κtz + Bje

κtz)ei(kxx−ωt) (4.20)

Ex =
iκt

ωε0εm
(Aje

−κtz − Bje
κtz)ei(kxx−ωt) (4.21)

Ez =
−kx
ωε0εm

(Aje
−κtz + Bje

κtz)ei(kxx−ωt), (4.22)

where κt =
√

k2
x − εm k2

0 .
For the longitudinal wave, which is curl free, we can write that

∂zEx = ∂xEz. (4.23)

and finally

E

x =

1

ωε0
(Cje

−κ�z +Dje
κ�z)

]
ei(kxx−ωt) (4.24)

E

z =

−κ


ikxωε0
(Cje

−κ�z −Dje
κ�z)ei(kxx−ωt) (4.25)

with a wavevector

κ
 =

√
k2
x +

ω2
p

β2

(
1

χf

+
1

1 + χb

)
(4.26)

which is given by the dispersion relation of bulk plasmons. Here ωp is the
plasma frequency of the considered metal, and χf and χb are the suscep-
tibilities associated with the free and bound electrons, respectively (εm =
1 + χb + χf ).

Because it is possible to write analytically the form of the fields inside
a metallic layer, it is possible to come up with a scattering matrix method
that is particularly well suited for non-locality[6]. This method will not be
described here, but it has been implemented in Moosh, making it particu-
larly easy to simulate the optical response of a metallo-dielectric multilayer.
I have used this to study the sensitivity of a gap-plasmon prism coupler to
spatial dispersion.
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4.3 Gap-Plasmon Resonance and non-locality

The idea that such a structure has a chance to be more sensitive to non-
locality comes from the dispersion relation for the gap-plasmon in the frame-
work of the hydrodynamic model. It presents a simple form[28]

κz

εd
tanh

κz h

2
+

κt

ε
= Ω (4.27)

where Ω = k2x
κl

(
1
ε
− 1

1+χb

)
which differs from the local one solely because of

Ω. When β = 0, in the local case, Ω = 0, but otherwise it is not null and
thus perturbates the wavevector of the gap-plasmon when it becomes large
(since Ω is proportional to k2

x).
While the surface plasmon never reaches large wavevectors because of

the losses that produce a bend-back close enough to ωsp, the gap-plasmon
can reach high effective indexes when the gap decreases. Our prediction
was then that it should be easier to witness an impact of non-locality on a
gap-plasmon prism coupler than on a surface plasmon prism coupler. The
only way however to reach quite high effective indexes and to still be able
to couple to the gap-plasmon is to use a high index prism coupler. Here we
have thus considered T iO2. The configuration is reminded on figure 4.1.
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FIGURE 4.1: A gap-plasmon prism coupler, with a high index
prism on top, a metallic layer through which the gap-plasmon

is coupled and a metallic substrate.

We have thus used Moosh to study the impact of various geometrical
parameters on this configuration. There are two crucial parameters: the
thickness of the layer attached to the prism, and the width of the gap, which
controls the effective index. In addition, a working wavelength has to be
chosen. Since we are considering a gap-plasmon here, there is no need to be
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close to ωsp to reach high effective indexes. For larger wavelength, more in
the visible, or almost infrared part of the spectrum, the bound electrons play
a smaller role and do not absorb as much as in the blue part of the spectrum.
We have thus chosen λ = 650nm.

For the gold attached to the prism, we have tried different thicknesses,
while keeping the gap constant. This has convinced us that, while using
thicker gold layer could improve the slowing down of the gap-plasmon,
it was more important to keep it quite thin (18 nm) to be able to couple
the gap-plasmon efficiently. We underline that 18 nm is much thinner than
what is usually considered for surface plasmon couplers. Figure 4.2 shows
the impact of this first layer on the reflection coefficient of the structure,
when the gap-plasmon is excited through the prism.
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FIGURE 4.2: A wavelength λ = 500nm the same thickness
of the gold layer(20nm) and varying the thickness of the sec-
ond medium, the red and gray curves (Non-local,local respec-
tively) with a thickness of the additional layer 50 nm, the
green and blue curves (Non-local,local respectively) with a
thickness of the additional layer 40 nm, the orange and yel-
low curves (Non-local,local respectively) with a thickness of
the additional layer 30 nm, the purple and light green (Non-
local,local respectively) with a thickness of the additional layer
20 nm, and the light blue and black curves (Non-local,local re-

spectively) with a thickness of the additional layer 10 nm.

Finally, after having settled for 18 nm for the gold intermediate layer,
we have tried to see if even for relatively small effective indexes, the impact
of spatial dispersion could be seen. The results are shown on figure 4.3 for
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various width of the gap. Our first conclusion is clearly that the narrower
the gap, the larger the effective index, and thus the larger the impact of non-
locality. When the gap, however, becomes too narrow, the effective index of
the gap-plasmon is so high that is larger than the index of the prism, and
the guided mode cannot be coupled any more.

The main result here is that a shift of 1 to 2◦ can be observed between the
local and the nonlocal simulations, indicating a clear impact of nonlocality.
While this impact may seem modest, at least it is measurable - it is within
reach of current experimental setups.
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FIGURE 4.3: A wavelength λ = 700nm the same thickness of
the gold layer (20nm) and varying the thickness of the sec-
ond medium, the red and gray curves (Non-local,local respec-
tively) with a thickness of the second layer is 50 nm, the green
and blue curves (Non-local,local respectively) with a thickness
of the gold layer 40 nm, the orange and yellow curves (Non-
local,local respectively) with a thickness of the gold layer 30
nm, the purple and light green (Non-local,local respectively)
with a thickness of the gold layer 20 nm, and the light blue
and black curves (Non-local,local respectively) with a thick-

ness of the gold layer 10 nm.
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4.4 Conclusion

In this chapter, I have detailed the hydrodynamic model and explained how
it is possible to solve analytically Maxwell’s equations, coupled to the equa-
tion that links the external electric field and the effective polarization corre-
sponding to the free electron currents inside the metal. Using a scattering
matrix method that has been implemented in Moosh, I was able to study
the influence of spatial dispersion on a gap-plasmon prism coupler, show-
ing that a small but measurable shift could be measurable in such a config-
uration. We hope this will pave the way for future experiments.
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Conclusion

The main contribution of this work is undoubtedly the generalization of
Yariv and Yeh’s theorem, which shows that any guided mode in a plas-
monic multilayer has a group velocity that is equal to its energy velocity.
Such a a conclusion could seem trivial, but in the process, we have learned
a few important points. The energy velocity we are dealing with is simply
the energy that is conveyed by the electromagnetic field alone and it does
not include the energy conveyed by the free electrons in the metal. In order
to get a physical insight into why exactly the group velocity is so low, there
is thus no need to consider the contribution of free electrons. Moreover, the
energy density that appears in our calculations has the exact form of the
electromagnetic energy density that is used for dispersive media by Bril-
louin, Landau or Loudon[32]. This means that our derivation constitutes a
fourth, original, way to justify the form chosen for the energy density.

Importantly, the theorem we have demonstrated shows that in order to
obtain an analytical expression for the group velocity, it is as simple to cal-
culate the flux of the Poynting vector and the mean energy density and do
the ratio. Doing so presents an advantage: the Poynting balance allows to
understand the plasmonic slowdown. This is the low group velocity and
high effective index experienced by guided mode is certain conditions: for
surface plasmons and gap-plasmons near the surface plasmon frequency,
and for gap-plasmon either close to this peculiar frequency, or at any fre-
quency when the gap closes. Such a regime can be seen as a consequence
of the plasmonic drag: the fact that the Poynting vector inside a metal is
opposite to the Poynting inside a dielectric for a mode that is guided in a
plasmonic waveguide. The mean flux of the Poynting vector, divided but
the mean energy density perpendicularly to the mode propagation gives the
energy velocity and thus the group velocity. When we close the gap between
two metals, the gap-plasmon propagating in between propagates more and
more in the metal, and is thus more subject to this plasmonic drag. Its en-
ergy velocity and thus its group velocity decrease strongly, and finally, since
the group velocity is the derivative of ω with respect to the propagation con-
stant, this means that the propagation constant can only strongly increase.
Yariv and Yeh’s theorem, for plasmonics, thus present a real interest which
is not obvious for dielectric-only waveguides.

Using Moosh[12], an open source library that I have helped to develop
through a lot of testing, I have tried in this manuscript to illustrate many
different situations in nanophotonics and plasmonics. I hope this will help
illustrate its potential both for research and teaching. For teaching because
a nice image can be extremely informative. In research a seemingly simple
tool as Moosh, can be use to reveal very fundamental phenomena, like the
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influence of the repulsion between free electrons in metal on the optical re-
sponse of a metallic structure. I have, in the last chapter of this manuscript,
studied a surprizingly simple structure where these effects can clearly be
seen, and that could be perhaps realized one day. This structure belongs to
a new class of plasmonic resonating architectures (supporting gap-plasmon
resonances), that are all more likely to be sensitive to these phenomena and
the spatial dispersion they provoke.
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