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Title: L’amélioration des performances des systèmes sans fil 5G par groupements adaptatifs des utilisateurs
Mots clés : Mise en cache proactive, MIMO massif, apprentissage automatique, réseaux cellulaires, 5G

Résumé: 5G est prévu pour s’attaquer, en plus d’une augmentation considérable du volume de trafic,
la tâche de connecter des milliards d’appareils avec des exigences de service hétérogènes. Afin de relever
les défis de la 5G, nous préconisons une utilisation plus efficace des informations disponibles, avec plus de
sensibilisation par rapport aux services et aux utilisateurs, et une expansion de l’intelligence du RAN. En
particulier, nous nous concentrons sur deux activateurs clés de la 5G, à savoir le MIMO massif et la mise en
cache proactive.

Dans le troisième chapitre, nous nous concentrons sur la problématique de l’acquisition de CSI dans MIMO
massif en TDD. Pour ce faire, nous proposons de nouveaux schémas de regroupement spatial tels que, dans
chaque groupe, une couverture maximale de la base spatiale du signal avec un chevauchement minimal entre
les signatures spatiales des utilisateurs est obtenue. Ce dernier permet d’augmenter la densité de connexion
tout en améliorant l’efficacité spectrale.

MIMO massif en TDD est également au centre du quatrième chapitre. Dans ce cas, en se basant sur les
différents taux de vieillissement des canaux sans fil, la périodicité d’estimation de CSI est supplémentaire. Nous
le faisons en proposant un exploité comme un degré de liberté supplémentaire. Nous le faisons en proposant
une adaptation dynamique de la trame TDD en fonction des temps de cohérence des canaux hétérogènes. Les
stations de bases MIMO massif sont capables d’apprendre la meilleure politique d’estimation sur le uplink pour
de longues périodes. Comme les changements de canaux résultent principalement de la mobilité de l’appareil,
la connaissance de l’emplacement est également incluse dans le processus d’apprentissage. Le problème de
planification qui en a résulté a été modélisé comme un POMDP à deux échelles temporelles et des algorithmes
efficaces à faible complexité ont été fournis pour le résoudre.

Le cinquième chapitre met l’accent sur la mise en cache proactive. Nous nous concentrons sur l’amélioration
de l’efficacité énergétique des réseaux dotes de mise en cache en exploitant la corrélation dans les modèles de
trafic en plus de la répartition spatiale des demandes. Nous proposons un cadre qui établit un compromis
optimal entre la complexité et la véracité dans la modélisation du comportement des utilisateurs grâce à la
classification adaptative basée sur la popularité du contenu. Il simplifie également le problème du placement
de contenu, ce qui se traduit par un cadre d’allocation de contenu rapidement adaptable et économe en énergie.



Title: Performance improvement of 5G Wireless Systems through adaptive grouping of users
Keywords: Massive multiple-input multiple-output 5Massive MIMO), proactive caching, machine learning,
cellular networks, 5G

Abstract: 5G is envisioned to tackle, in addition to a considerable increase in traffic volume, the task of
connecting billions of devices with heterogeneous service requirements. In order to address the challenges of
5G, we advocate a more efficient use of the available information, with more service and user awareness, and
an expansion of the RAN intelligence. In particular, we focus on two key enablers of 5G, namely massive
MIMO and proactive caching.

In the third chapter, we focus on addressing the bottleneck of CSI acquisition in TDD Massive MIMO. In
order to do so, we propose novel spatial grouping schemes such that, in each group, maximum coverage of the
signal’s spatial basis with minimum overlapping between user spatial signatures is achieved. The latter enables
to increase connection density while improving spectral efficiency.

TDD Massive MIMO is also the focus of the fourth chapter. Therein, based on the different rates of
wireless channels aging, CSI estimation periodicity is exploited as an additional DoF. We do so by proposing
a dynamic adaptation of the TDD frame based on the heterogeneous channels coherence times. The Massive
MIMO BSs are enabled to learn the best uplink training policy for long periods. Since channel changes result
primarily from device mobility, location awareness is also included in the learning process. The resulting
planning problem was modeled as a two-time scale POMDP and efficient low complexity algorithms were
provided to solve it.

The fifth chapter focuses on proactive caching. We focus on improving the energy efficiency of cache-
enabled networks by exploiting the correlation in traffic patterns in addition to the spatial repartition of requests.
We propose a framework that strikes the optimal trade-off between complexity and truthfulness in user behav-
ior modeling through adaptive content popularity-based clustering. It also simplifies the problem of content
placement, which results in a rapidly adaptable and energy efficient content allocation framework.
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Chapter 1

Resumé (French)

1.1 Contexte et motivation

Les communications mobiles ont été fondamentales dans la production de nos sociétés con-
nectées contemporaines. Des anciens systèmes mobiles analogiques aux réseaux long term
evolution (LTE), plus sophistiqués [1], les progrès dans les systèmes sans fil ont radicalement
changé la façon dont les humains accèdent et échangent des informations.

Actuellement, les communications sans fil sont à une croisée de chemins. En effet, la
demande de capacité toujours croissante et la prolifération d’appareils intelligents, avec des
applications nécessitant des débits élevés, nécessitent de nouvelles générations de réseaux
plus efficaces pour permettre une augmentation substantielle des performances. Les sys-
tèmes de communication mobile de cinquième génération (5G) émergent à grande vitesse
pour répondre à un large éventail de défis apportés par la soif de nos sociétés actuelles et fu-
tures pour les communications sans fil. La 5G doit s’attaquer, en plus d’une augmentation du
volume de trafic, au défi de connecter des milliards d’appareils avec des besoins de service
hétérogènes. Les réseaux de 5 G devraient fournir des améliorations telles que [2]:

• 10 fois plus de débits expérimenté: l’ère des débits de pointe plus uniformes et multi-
Gbps.

• 10 fois moins de temps de latence: les niveaux de latence devraient être aussi bas que
1 ms.

• 10 fois plus de densité de connexion: activation de la connectivité Internet of Things (IoT)
avec peu de complexité et de surcharge de signalisation.

• Augmentation de 3 fois dans l’efficacité spectrale: une utilization plus efficace de la
bande passante.
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1.2. 5G: Une concentration de nouveaux paradigmes et de technologies innovantes

• 100 fois plus de capacité de trafic: réseaux très densifiés avec plus de points d’accés
partout.

• 100 fois plus d’efficacité du réseau: réseaux énergétiquement efficace avec traitement
de signal et matériel efficaces.

Ces objectifs de performance de haut niveau pour la 5G ont été développés dans le cadre
de International Mobile Telecommunications (IMT)-2020, l’initiative International Telecom-
munication Union (ITU) pour définir la base de 5G. Ces exigences sont associées à trois
cas d’utilisation majeurs, à savoir Haut débit mobile amélioré (enhanced Mobile Broad-
band (eMBB)), Communications massives de type machine ( massifs Machine Type Com-
munications (MTC)) et Communications ultra-fiables et à faible latence (Ultra-reliable low
latency communication (URLLC)) [3], [4], [5]:

• Communications ultra-fiables et à faible latence (URLLC): Ce cas d’utilisation se con-
centre sur les services exigeants en termes de latence et de fiabilité. Il répond aux
attentes de la fabrication industrielle contrôlée à distance, la chirurgie médicale à dis-
tance, des réseaux intelligents et de la conduite automatisée, etc.

• Haut débit mobile amélioré: Ce cas d’utilisation s’accompagne de nouvelles appli-
cations et exigences, en plus de la communication cellulaire conventionelle. Il vise
à répondre aux exigences d’un mode de vie humain de plus en plus numérisé. Il se
concentre sur les services à haut débit tels que la réalité virtuelle, réalité augmentée et
le streaming vidéo.

• Communications massives de type machine: massive MTC se concentre sur les exi-
gences d’un grand nombre d’appareils connectés avec une faible capacité de données
et de faibles exigences en latence. Cela inclut les applications telles que les villes
intelligentes, IoT, etc.

Les différents cas d’utilisation mentionnés ont des caractéristiques variables et parfois con-
tradictoires. En effet, à titre d’exemple, 5G doit passer de la prise en charge de capteurs
à faible débit (10 kbps) à de nouvelles expériences mobiles immersives à plusieurs Gbps.
Cela signifie que les réseaux 5 G doivent pouvoir évoluer à travers divers services avec des
appareils mobiles également divers. Ce faisant vient avec sa charge de difficultés.

1.2 5G: Une concentration de nouveaux paradigmes et de
technologies innovantes

Répondre aux exigences mentionnées nécessite des changements radicaux dans le paradigme
du réseau en plus d’innovations perturbatrices. Dans ce contexte, les réseaux 5 G peuvent

2



1.2. 5G: Une concentration de nouveaux paradigmes et de technologies innovantes

faire appel à un large éventail de nouvelles technologies. Cela permet un saut dans les
performances qui éclipse ses prédécesseurs. Ces innovations toucheront la transmission et la
conception de la couche physique en plus d’introduire des bouleversements dans les couches
supérieures du réseau. En fait, 5 G New Radio (NR) utilisera de nombreuses technologies
clés afin d’atteindre de nouveaux niveaux de performance et d’efficacité. Les combinaisons
de ces dernières étendront l’importance des communications mobiles et leurs permettront de
jouer un rôle central dans un monde de cas d’utilisation changeants. Parmi les innovations
potentielles dans la couche physique 5G, on peut citer [3]:

• Communications dans la plage des ondes millimétriques.

• Entrée multiple sortie multiple massif (mMIMO).

• Accès multiple non orthogonal (NOMA).

• Communications sans fil full-duplex.

• Agrégation de porteuse et modulations Multicarrier.

• Plus grand spectre.

• Communication Sidelink.

• Nouvelle forme d’onde et numérologie Orthogonal frequency-division multiplexing
(OFDM) hétérogène.

En plus de ces améliorations dans la couche physique, les innovations de 5 G changeront
la façon dont le réseautage est effectué. En fait, 5 G concentre un certain nombre de nou-
veaux paradigmes qui visent à permettre un réseau plus agile, automatique et intelligent dans
chacune de ses opérations [5]. Parmi les principales innovations de réseautage à 5 G, on peut
citer [3]:

• Réseau d’accès radio cloud (nuage).

• Récolte d’énergie.

• Accès sans fil vert.

• Réseau auto-organisé (SON).

• Réseau sans fil centré sur l’utilisateur (mise en cache proactive, etc.).
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Dans cette thèse, nous nous sommes concentrés principalement sur deux technologies
majeures qui vont permettre d’atteindre l’âge de 5 G, à savoir MIMO massif et la mise en
cache proactive. L’objectif principal de la présente thèse est d’améliorer les performances
des deux technologies en utilisant une optimisation intelligente basée sur la sensibilisation
aux services et utilisateurs. Cet intérêt était basé sur une observation fondamentale. Les deux
technologies peuvent être améliorées en optimisant les opérations du réseau en se basant sur
des informations secondaires facilement accessibles dans les réseaux mobiles.

Tirant parti des connaissances sous-exploitées du côté de radio access network (RAN),
telles que les statistiques spatiales, la propagation Doppler et la modélisation efficace de la
popularité du contenu, les performances du réseau peuvent être considérablement améliorées.
Ceci est réalisé grâce à l’incorporation d’algorithmes efficaces dans les procédures de réseaux.

Cette observation est la pierre angulaire de cette thèse et un soin particulier a été pris
afin de développer des schémas permettant d’améliorer les performances du réseau avec le
minimum possible de signalisation.

Dans les sections suivantes, nous donnons d’abord un aperçu des progrès passés et ré-
cents dans les deux technologies choisies. Nous présentons ensuite les grandes lignes de la
thèse et de ses contributions.

1.3 MIMO massif pour 5G: Un bref historique et travaux
connexes

Toute évolution dans les réseaux doit apporter une amélioration substantielle d’efficacité
spectrale. Massive MIMO est une technologie qui rend cela possible pour 5 G car elle peut
apporter une amélioration de dix fois dans l’efficacité spectrale [3]. Ce gain impressionnant
est obtenu en utilisant une centaine d’éléments d’antenne bon marché dans les stations de
bases. Cela permet le multiplexage spatial d’un nombre considérable de dispositifs mobiles.

L’idée originale est basée sur des effets statistiques à grande échelle qui résultent de
l’augmentation drastique du nombre d’antennes base station (BS) (de l’ordre de centaines)
[6]. Il en résulte, pratiquement, une réduction des impacts de l’évanouissement rapide, des
interférences et du bruit additif. Plus important encore, il permet de concentrer l’énergie
rayonnée sur les cibles prévues.

Par conséquent, par un traitement cohérent des signaux sur le réseau d’antennes BS, le
précodage d’émission peut être utilisé pour concentrer chaque signal sur sa borne prévue
et la combinaison de réception peut être utilisée pour discriminer les signaux de différents
utilisateurs. Plus il y a d’antennes à la BS, plus la focalisation spatiale peut être fine. Cela
permet de planifier beaucoup plus d’utilisateurs que ce qui est possible aujourd’hui, ce qui
augmente énormément l’efficacité spectrale et la densité de connexion.

L’excès d’antennes BS entraîne une augmentation du nombre de flux de données qui
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peuvent être exploités pour desservir plus de terminaux, réduisant la puissance rayonnée,
tout en augmentant le débit de données.

Massive MIMO peut aussi améliorer la fiabilité des liens grâce à la diversité spatiale
et fournir plus de Degrees of freedom (DoF) dans le domaine spatial, ce qui améliore les
performances, quel que soit le bruit des mesures. En raison du multiplexage spatial agressif
qui en résulte, Massive MIMO peut fournir un gain impressionnant dans les performances
du réseau en dirigeant simplement les ondes rayonnées dans les bonnes directions. Puisque
l’énergie rayonnée est fortement concentrée sur des zones centrées sur l’utilisateur, Massive
MIMO fournit des gains considérables dans EE [7], [8].

Les principaux avantages des systèmes Massive MIMO peuvent être résumés comme
suit:

• Gain d’efficacité spectrale élevé Massive MIMO hérite des gains de Multi-user multiple-
input multiple-output (MIMO) conventionnels mais à grande échelle, comme son nom
l’indique. En effet, avec M antennes à la station de base, desservant K utilisateurs à
une seule antenne, on obtient une diversité d’ordre M avec un gain de multiplexage de
min(M,K). Ces paramètres peuvent être ajustés afin d’améliorer l’efficacité spectrale
de la communication.

• Gain d’efficacité énergétique élevé

Massive MIMO atteint ses performances grâce à l’excès d’antennes BS combinées à un
traitement cohérent. Cela permet de réduire considérablement la puissance d’émission.
Par conséquent, grâce à une combinaison cohérente à la réception et à la forma-
tion de faisceau à la transmission, Energy efficiency (EE) peut être considérablement
améliorée.

• Traitement simple

Massive MIMO utilise des schémas de traitement de signaux simples mais efficaces
(précodage et décodage linéaires dans les downlink (DL) et uplink (UL), respective-
ment). De plus, lorsque le nombre d’antennes est suffisamment grand, le durcissement
du canal résultant simplifie encore le traitement du signal.

• Robustesse et fiabilité accrues

Le grand nombre d’antennes BS procure plus de diversité. Cela se traduit par une
meilleure fiabilité de liaison. De plus, à mesure que le nombre d’antennes augmente,
le bruit additif, l’évanouissement à petite échelle et les interférences cellulaires sont
vouées à disparaître.

• Réduction des coûts dans les composants RF Massive MIMO utilise un traitement
cohérent qui permet de réduire la puissance rayonnée. Cela permet d’utiliser des am-
plificateurs peu-cher dans la gamme milli-Watt.
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Cependant, il existe toujours un compromis entre performance réalisable et complexité.
Les gains intéressants de Massive MIMO viennent avec leur part de défis:

• Gestion des interférences multi-utilisateurs Massive MIMO offre des gains consid-
érables en termes de performances réseau. Cependant, certains utilisateurs peuvent
voir leur canal souffrir d’un impact inégal d’interférence. Par conséquent, il peut être
nécessaire de mettre en œuvre des schémas d’annulation d’interférence. L’alignement
d’interférence [9], détection de multi-utilisateurs Maximum de vraisemblance [10] et
le codage Dirty paper coding[11] peuvent être utilisé. Ces schémas souffrent d’un
défaut majeur, à savoir une complexité de calcul élevée.

• Acquisition de CSI
Le traitement cohérent est la pierre angulaire des systèmes Massive MIMO. Par con-
séquent, une estimation Channel state information (CSI) précise est requise. Cela peut
être très difficile dans les modes Frequency division duplexing (FDD) et Time division
duplexing (TDD), étant donné l’échelle du système (nombre d’utilisateurs, nombre
d’antennes BS). La mobilité des utilisateurs a également un impact important car elle
définit la corrélation entre le CSI et la réalisation réelle du canal.

• planification (Scheduling) Massive MIMO est prévu pour gérer un grand nombre
de périphériques connectés. Avec les exigences de 5 G de connexion haute densité,
la planification des utilisateurs est d’une importance primordiale. De plus, lorsque
les mêmes ressources temps-fréquence sont partagées, la sélection des utilisateurs qui
peuvent être actifs simultanément peut considérablement modifier les performances du
système.

En raison ces avantages, Massive MIMO a fait l’objet d’une attention de plus en plus
importante de la part de la communauté scientifique. Cela a abouti à une littérature riche qui
traite différents aspects de ce concept. Dans ce qui suit, nous résumons certains des travaux
sur Massive MIMO en fonction de leurs similitudes et de leurs directions.

1.3.1 Méthodes d’estimation CSI:

La pierre angulaire de Massive MIMO est un traitement de signal cohérent qui se base sur des
connaissances précises et opportunes du CSI. Dans ce qui suit, nous donnons un aperçu des
méthodes d’estimation du CSI dans les systèmes Massive MIMO en plus de la caractérisation
des défis les plus importants liés à l’acquisition de CSI.

Systèmes TDD et contamination pilote

Dans les systèmes TDD Massive MIMO, les estimations de CSI sont obtenues en utilisant
la réciprocité des canaux et la formation (training) UL. Dans ces systèmes, seuls les BSs
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doivent avoir une connaissance CSI afin de précoder et de décoder de façon cohérente les sig-
naux multi-utilisateurs. La quantité de ressources d’entraînement temps-fréquence dépend
du nombre d’antennes des utilisateurs.

TDD est considéré comme plus approprié pour les opérations Massive MIMO car cela
implique que l’estimation du canal doit être effectuée dans une seule direction, et peut ensuite
être utilisée dans les deux directions. Cet avantage ne peut pas être négligé, car cela signifie
que les frais généraux de formation ne sont fonction que du nombre d’utilisateurs.

Néanmoins, en raison de l’intervalle de cohérence limité, la dimension d’apprentissage
est restreinte et les mêmes séquences pilotes doivent être réutilisées, ce qui entraîne une con-
tamination pilote [6], [13]. Ce phénomène a été identifié comme un facteur limitant majeur
des performances de Massive MIMO et a attiré une attention considérable dans les travaux
précédents [93]. Plusieurs méthodes ont été proposées afin de réduire ou, mieux encore,
d’éliminer l’impact de la contamination pilote dans les systèmes TDD Massive MIMO. Ces
méthodes sont basées sur les pilotes ou sur les sous-espace spatials des canaux [93].

Le changement de temps pour la transmission pilote a été proposé dans [14], [15], comme
moyen de réduire la contamination pilote. L’idée principale était de décaler la transmission
du pilote dans le temps afin que les utilisateurs dans différentes cellules transmettent à des
heures qui ne se chevauchent pas. Les résultats montrent que le résultat du protocole est une
élimination efficace de la contamination du pilote.

Dans [16], Ashikhmin et Marzetta ont proposé une méthode de précodage de contami-
nation pilote (PCP) basée sur les coefficients d’évanouissement lent. La méthode proposée
nécessite un certain niveau de coopération entre les BSs pour construire les matrices PCP.
Les résultats montrent que cette méthode peut fournir des gains non négligeables en Spec-
tral efficiency (SE). Ce travail a été étendu dans [17] en proposant un pré-codage basée
sur l’évanouissement à grande échelle (LSFP) et un décodage à évanouissement à grande
échelle (LSFD) dans le régime d’un nombre fini d’antennes BS. Les résultats ont montré un
gain intéressant dans le taux d’interruption de 5 %. D’un autre côté, les approches basées sur
le sous-espace améliorent la précision de l’estimation de CSI en exploitant les statistiques
d’ordre supérieur du signal. Dans [18], les auteurs ont montré que, en utilisant la corrélation
spatiale des canaux et un précodage / combinaison adéquat, la capacité du système Massive
MIMO peut augmenter sans limite en fonction du nombre de BS antennes. Ceci est rendu
possible en exploitant l’indépendance linéaire entre les matrices de covariance des canaux
des utilisateurs copilotes. Dans [19], la décomposition en valeurs propres (eigenvalue de-
composition (EVD)) des matrices de covariance est implémenté afin d’obtenir les estima-
tions de CSI. Afin de diminuer les erreurs, EVD est combiné avec le moindre carré itératif.
Les auteurs ont montré que la méthode EVD permet d’atténuer l’impact de la contamina-
tion des pilotes et surpasse les techniques d’estimation classiques du CSI. Dans [20, 21],
une détection aveugle a été proposée. L’idée principale était d’exploiter la décomposition en
valeurs singulières afin de discriminer les signaux des utilisateurs. Les résultats ont montré
que la connaissance du sous-espace engendré par chaque vecteur de canal est suffisante pour
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obtenir des estimations précises de CSI par simple projection. Néanmoins, cette approche
suppose que tous les canaux souhaités sont plus fort que tous les canaux interférents, ce qui
ne tiennent pas toujours dans la pratique. Neumann et al. [22] a proposé un critère maximum
a-posteriori (MAP) pour l’estimation du canal subspatial afin de résoudre ce problème. Bien
qu’une amélioration des performances ait été remarquée, l’utilisation de MAP se fait au prix
d’une complexité accrue. Dans [23], une projection itérative des moindres carrés avec une
estimation en diagonale a été proposée afin de résoudre le problème de la contamination des
pilotes.

Systèmes FDD et retour d’information

Dans les systèmes FDD, puisque UL et DL utilisent différentes bandes de fréquence, CSI des
deux liens doivent être estimés. UL CSI est obtenu en permettant aux utilisateurs d’envoyer
différentes séquences pilotes. Dans les DL, les estimations de CSI sont obtenues en utilisant
la formation DL suivie d’un retour d’information explicites ou implicites des CSI. A mesure
que le nombre d’antennes BS augmente, l’estimation du canal FDD devient très probléma-
tique puisque le surdébit de retour CSI évolue linéairement avec le nombre d’antennes du
système [24].

L’activation des systèmes FDD Massive MIMO ne peut être effectuée que si ce problème
est corrigé. Dans [24, 25], JSDM pour MU-MIMO DL a été étudié. JSDM est un système
qui vise à servir les utilisateurs en les regroupant, de sorte que les utilisateurs d’un groupe
aient des covariances de canaux à peu près similaires, alors que les utilisateurs de differents
groupes ont des espaces propres de covariance orthogonaux. JSDM a été conçu, à l’origine,
pour les systèmes FDD Massive MIMO, sans tenir compte des interférences entre cellules.
Elle permet de réduire le surcoût de retour CSI dans les systèmes FDD tout en n’encaissant
aucune perte d’optimalité par rapport au cas complet channel state information at the trans-
mitter side (CSIT). Exploiter le sous-espace de covariance est définitivement approprié pour
Massive MIMO puisque, pratiquement, le rang de la matrice de covariance du canal est
probablement plus petit que le nombre d’antennes BS. La performance de JSDM est basée
sur le regroupement des utilisateurs en fonction de leurs eigenspaces de covariance. Par con-
séquent, la méthode de regroupement mise en œuvre est d’une importance primordiale. Dans
[25], un clustering K -mean basé sur la distance chordale a été proposé pour les systèmes
FDD avec JSDM. Dans [26], les auteurs ont étudié un large éventail de mesures de similarité
telles que la vraisemblance pondérée, la projection sous-spatiale et les mesures de similarité
basées sur Fubini. Dans [26], deux méthodes de clustering, à savoir, le clustering hiérar-
chique etK -medoids, étaient considérées pour le groupement d’utilisateurs avec les mesures
de proximité mentionnées ci-dessus. Une comparaison des méthodes de regroupement pro-
posées a été effectuée et la combinaison qui atteint la plus grande capacité a été dérivée. Dans
[27], nous avons proposé une nouvelle mesure de similarité couplée à une nouvelle méthode
de clustering afin d’obtenir un groupement d’utilisateurs approprié basé sur les statistiques
de second ordre des canaux. En utilisant le même principe de formation de faisceau en deux
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étapes de JSDM, nous avons développé une approche de regroupement d’utilisateurs basée
sur la théorie des graphes qui pallie les lacunes des méthodes de classification d’utilisateurs
proposées précédemment. Dans [28], les propriétés spatiales du canal ont été exploitées afin
d’obtenir des estimations CSI dans la plage Millimeter-Wave (mm-wave). Les auteurs ont
proposé d’impliquer la corrélation temporelle entre deux blocs séquentiels dans la procédure
en raison de l’ensemble de défis spécials que mm-waves impose. La réduction de la rétroac-
tion peut également être obtenue à l’aide de la détection compressée et de la répartition des
canaux [29,30]. Dans [31], la modélisation des canaux clairsemés (sparse) a été utilisée pour
montrer que Compressed sensing (CS) peut réduire efficacement les ressources de formation
temps-fréquence. Le même principe a également été utilisé dans [30, 32].

Vieillissement des canaux

Une autre raison de l’inexactitude de CSI est le vieillissement des canaux (channel aging).
Ce phénomène résulte de la variation du canal entre l’instant où il est appris et l’instant où
il est utilisé pour le décodage du signal dans le UL et le beamforming dans le DL. Cette
variation temporelle est due à la mobilité des utilisateurs et aux retards de traitement dans les
BS. La dégradation des performances due au vieillissement des canaux a été étudiée dans un
système MIMO avec coordinated multi-point transmission/reception (CoMP) dans [33]. Les
auteurs ont montré que l’impact du vieillissement des canaux est atténué lors de l’utilisation
de filtres de prédiction de canal dans le régime de faible mobilité. Les auteurs de Truong et
al. [34] ont fournit une analyse des performances de débit réalisables sur le UL et le DL,
en présence de vieillissement des canaux et de prédiction de canal. Ils ont montré que, bien
que le vieillissement des canaux entraîne une dégradation des performances des systèmes
Massive MIMO, la prédiction des canaux fournit les moyens de surmonter ce problème.
Dans Papazafeiropoulos et al. [35, 36], l’effet du vieillissement des canaux combiné à la
prédiction a été étudié dans des scénarios avec des précodeurs Zero Forcing (ZF) régularisés
(DL) et des récepteurs minimum mean square error (MMSE) , respectivement. Dans Kong et
al. [37], les limites inférieures de SE pour les récepteurs Maximum ratio combining (MRC)
et ZF avec et sans prédiction de canal ont été dérivées avec un nombre arbitraire d’antennes
et d’utilisateurs. L’impact du vieillissement et de la prédiction des canaux sur la loi d’échelle
de la puissance a été étudié. Les auteurs ont démontré que, dans le scénario monocellulaire
et multicellulaire, l’échelle d’évolution de la puissance d’émission n’est pas affectée ni par
un CSI retardé, ni par la prédiction de canal.

1.3.2 Détection de signaux codés

La détection du signal implique une estimation précise des données transmises connaissant
le signal reçu. La détection de signal peut également exploiter la connaissance du CSI quand
elle est disponible. Une large gamme d’algorithmes de détection est disponible pour les
systèmes Massive MIMO. Ces algorithmes peuvent être classés comme linéaires ou non
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linéaires. La détection linéaire a l’avantage de la faible complexité qui vient avec le prix
de la performance inférieure. En fait, la sortie des détecteurs linéaires se détériore rapide-
ment à mesure que le nombre d’utilisateurs émetteurs augmente [38]. Lorsque le système
devient limité par les interférences, des algorithmes de détection non linéaires peuvent être
utilisés afin d’améliorer les performances. De tels systèmes implémentent une annulation
d’interférence à plusieurs étapes. Ces systèmes comprennent des récepteurs d’annulation
d’interférence successifs et parallèles.

1.3.3 Précodage et décodage

Massive MIMO exploite les connaissances de CSI afin de discriminer spatialement les sig-
naux des utilisateurs. Le précodage (ou multiplexage) fait référence aux techniques qui
permettent de focaliser le signal transmis sur un récepteur donné, minimisant ainsi la perte
d’énergie dans les lobes latéraux. Le décodage (ou démultiplexage) fait référence à une com-
binaison cohérente à la réception de sorte que le signal reçu est détecté dans une direction
donnée. Les deux sont réalisés en ajustant les phases et les amplitudes des signaux sur les
différentes antennes des BS. De plus, le précodage a l’avantage de réduire peak-to-average-
power-ratio (PAPR), un phénoméne très problématique pour les systèmes OFDM. Les tech-
niques de précodage peuvent être non linéaires ou linéaires. Les méthodes non linéaires,
telles que dirty-paper-coding (DPC) et les méthodes assistées par treillis, ont des perfor-
mances plus élevées qui accompagnent une implémentation plus complexe. D’autre part, les
précodeurs linéaires ont l’avantage d’une mise en œuvre simple. De tels précodeurs incluent
MRC, MMSE, et ZF [12]. MRC maximise les Signal-to-noise ratio (SNR) en ajoutant les
composantes du signal de manière cohérente sur les éléments d’antenne. MRC est parti-
culièrement adapté à Massive MIMO qui utilise généralement une puissance rayonnée in-
férieure à partir de BS. Le précodage ZF est plus adapté aux scénarios à forte interférence et
fonctionne plutôt bien avec un SNR élevé. ZF vise à annuler l’interférence multi-utilisateur.
Bien qu’efficace dans la réduction des interférences, ZF s’accompagne d’un coût de calcul
plus élevé et d’un gain de matrice réduit [39]. Le précodage MMSE est le précodage linéaire
optimal dans un système Massive MIMO DL. Il s’agit d’un compromis entre l’amplification
de la puissance du signal utile et la suppression des interférences multi-utilisateur. Par con-
séquent, le précodage MMSE fonctionne bien dans les deux conditions SNR haute et basse.
Comme les fréquences mm-wave sont considérées pour 5 G, des techniques de précodage
plus spécialisées ont été proposées pour ces fréquences. Dans [40], un schéma de précodage
hybride combinant à la fois le précodage analogique et numérique a été proposé pour traiter
l’atténuation élevée du signal qui se produit dans les fréquences mm-wave.
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historique et travaux connexes

1.3.4 Efficacité énergétique

L’énorme potentiel de Massive MIMO dans la réduction de la consommation d’énergie et,
par conséquent, l’augmentation de EE est maintenant très bien établi [7], [8]. En fait, puisque
la puissance d’émission peut être réduite de manière significative, Massive MIMO peut pro-
duire un gain non négligeable en EE. De plus, l’utilisation d’un grand nombre d’antennes
permet d’utiliser des composants peu coûteux sans perte de performance notable[117]. Dans
[7], la loi d’échelle de puissance pour UL Massive MIMO a été dérivée et le grand potentiel
d’amélioration de EE a été étudié. Dans [118], EE de Massive MIMO avec du matériel non
idéal a été analysée. Dans [8], les auteurs ont montré, en tenant compte des dégradations
matérielles, que EE est maximisé pour un nombre fini d’antennes déployées.

5 G ne peut pas être activé simplement en augmentant les performances de la couche
physique. En effet, un changement de paradigme du réseau est nécessaire. Permettre au
réseau de passer d’un paradigme agnostique réactif, de service et d’utilisateur à un paradigme
plus proactif et intelligent peut produire une augmentation substantielle de ses performances.
De plus, on s’attend à ce que 5 G gèrent divers scénarios de déploiement avec des exigences
différentes. Cela peut devenir assez compliqué avec une topologie de réseau fixe.

Afin de résoudre ces problèmes, les réseaux 5 G centré sur l’utilisateur sont envisagés
[3]. Cela signifie que les futurs réseaux 5 G seront caractérisés par une architecture plus
plate avec une partie de l’intelligence déplacée vers le RAN, à la periphérie du réseau. L’un
des principaux facilitateurs de 5 G centré sur l’utilisateur est, de toute évidence, la mise en
cache proactive (Proactive Caching). Cela fait référence à la capacité de provisionnement
local de contenu personnalisé. Ceci peut être réalisé en permettant au RAN d’obtenir les
informations de contexte des utilisateurs et de prédire le trafic en utilisant des algorithmes
d’analyse et de recommandation. Avoir un système plus dynamique RAN proactif permet de
stocker localement du contenu populaire qui décharge le back-haul et réduit la latence End
to End (E2E) tout en améliorant l’expérience utilisateur.

1.4 Mise en cache proactive pour les réseaux 5G centrés
sur l’utilisateur: un bref historique et travaux connexes

L’idée de mise en cache proactive dans les réseaux sans fil trouve ses racines dans un principe
plutôt ancien qui a d’abord été considéré dans le domaine des systèmes d’exploitation [41].
Le principe s’est ensuite étendu au web où il a été constaté que la mise en cache des con-
tenus dans les serveurs proxy et autres nœuds du réseau permet d’améliorer l’évolutivité du
World Wide Web et de décharger l’infrastructure réseaux [42]. La mise en cache proactive à
la periphérie des réseaux sans fil est un concept plutôt récent. En se basant sur l’observation
que les comportements humains sont corrélés et plutôt prévisibles [43], doter le RAN de
la capacité d’analyser le trafic utilisateur et prédire le contenu le plus probable peut con-
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sidérablement décharger le back-haul, améliorer Quality of Experience (QoE) et la latence
E2E [3]. La mise en cache proactive permet de révolutionner les RAN. En effet, au lieu du
paradigme conventionnel du tube de données réactif et agnostique de l’utilisateur, RAN sera
doté de capacités d’analyse et de prédiction qui lui permettent de jouer un rôle important
dans le provisionnement et la gestion de contenu. Les principaux avantages de la mise en
cache proactive du côté RAN peuvent être résumés comme suit:

• Réduire la latence de bout en bout (E2E)

• Améliorer l’efficacité énergétique

• Gérer la charge de trafic

• Augmenter le débit du réseau et améliorer la qualité d’expérience (QoE)

En raison de son énorme potentiel pour répondre aux besoins de 5 G, la mise en cache
proactive a attiré beaucoup d’attention dans les milieux de la recherche universitaire et in-
dustrielle. Cela a abouti à une littérature riche qui traite différents aspects de ce concept.
Dans la suite, nous résumons certains des travaux sur la mise en cache proactive en fonction
de leurs similitudes et directions.

Mise en cache proactive et l’estimation de la popularité du contenu

La mise en cache proactive se base sur la connaissance de l’utilisateur et du trafic, en parti-
culier les contenus susceptibles d’intéresser l’utilisateur en prenant en compte les étiquettes
de trafic, les attributs utilisateur, les types de terminaux, etc.

Dans [44], l’apprentissage automatique supervisé, en particulier, le filtrage collaboratif
est utilisé pour estimer la popularité du contenu. Mettant à profit la connaissance du contexte,
les réseaux sociaux et la corrélation des comportements humains, la popularité du contenu
peut être estimée efficacement, ce qui entraîne des gains de déchargement considérables.

Dans [46], l’apprentissage à l’aide de transfert est étudié pour la mise en cache dans small
cell network (SCN). Les résultats ont montré que le transfert de connaissances d’un domaine
source d’informations contextuelles vers un domaine cible peut considérablement améliorer
le gain de déchargement.

Dans [47], les mesures de centralité pour le placement de contenu sont exploitées. Les au-
teurs ont proposé un processus de diffusion de contenu basé sur la centralité où l’information
complète sur la diffusion du contenu dans les réseaux sociaux n’est pas parfaitement connue.
Les résultats ont montré que des gains de déchargement raisonnables peuvent être obtenus.

Dans [48], une formulation théorique alternative du problème de mise en cache proactive
a été proposée. Après avoir modélisé le problème comme un jeu d’appariement plusieurs-
à-plusieurs, les auteurs ont proposé un algorithme d’appariement qui aboutit à un résultat
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stable par paire avec un gain considérable dans le rapport des demandes satisfaites par le
cache.

Alternativement, au lieu de généraliser la distribution de popularité sur tous les profils
d’utilisateurs, nous avons proposé une approche de clustering d’utilisateurs basée sur la pop-
ularité du contenu dans [49]. Nous avons étudié l’impact d’une analyse plus détaillée du
comportement des utilisateurs et justifié cette approche en utilisant un outil de sélection de
modèles statistiques, à savoir Akaike information criterion (AIC). Les résultats ont montré
que le regroupement des utilisateurs en fonction de leurs préférences peut augmenter con-
sidérablement les performances du système. Une extension de ce travail mettant l’accent sur
l’impact d’une telle approche sur EE est donnée dans [50]. Dans [51], le regroupement des
utilisateurs selon leur modèle de demande a également été étudié dans le but de réduire les
délais de service. Les auteurs ont montré que le schéma de regroupement surpasse l’approche
de mise en cache non groupée et aléatoire.

Gains de mise en cache codés

Traiter le problème de mise en cache proactive par les outils de théorie d’information est
assez naturelle. En effet, la mise en cache proactive est un paradigme entièrement défini
par les informations pouvant être collectées sur le comportement des utilisateurs. Dans [52],
une approche théorique de la mise en cache proactive est donnée. Les auteurs ont dérivé
des gains de mise en cache locaux et globaux basés sur un schéma codé qui exploite les
deux. Dans ce cas, les résultats ont montré que l’approche codée conduit à une amélioration
multiplicative du débit de pointe par rapport aux schémas précédemment connus. Ces résul-
tats sont ensuite étendus aux popularités non uniformes du contenu dans [53, 54], l’accès au
cache non uniforme dans [55], les tailles de cache hétérogènes dans [56], les systèmes de
cache en ligne dans [57], les réseaux hiérarchiques de cache dans [58] et le cas multi-serveur
dans [59]. Dans [60, 61], la mise en cache codée aléatoire est étudiée dans les réseaux sans
fil device to device (D2D). Dans ce cas, il a été trouvé que le schéma D2D avec réutilisa-
tion spatiale et simple mise en cache aléatoire décentralisée permet d’obtenir la même loi
de mise à l’échelle du débit quasi-optimal que la multidiffusion codée. Dans la même ligne
de pensée, la performance du placement de cache aléatoire décentralisé avec un schéma de
livraison codé est donnée dans [62,63]. Une communauté de stockage D2D est étudiée dans
[64]. En utilisant des codes de régénération et de la redondance dans le contexte de la mise
en cache codée distribuée, les auteurs ont montré qu’une simple redondance peut entraîner
des gains considérables de consommation d’énergie. Dans [65], les effets du codage réseau
sur l’augmentation de la quantité de données disponibles pour les utilisateurs à travers les
nœuds de cache sont étudiés. Dans ce cadre, une méthode de placement de contenu basée sur
le codage réseau a été proposée, ce qui a permis d’accroître l’équité et le gain de décharge-
ment. De plus, dans [66], la mise en cache codée a été étudiée dans des réseaux sans fil
avec canal d’évanouissement. Dans ce document, il a été montré qu’avec une allocation de
puissance ou de bande passante, les performances de débit de la mise en cache codée dans
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le mode de transport à division de fréquence sont nettement meilleures que dans le mode de
répartition dans le temps.

Aspects de déploiement

Les aspects de déploiement sont d’une importance primordiale dans les réseaux dotés de
mise en cache proactive. L’allocation optimale du contenu a été étudiée dans [45] où SBS
(helpers) sont chargés de fournir le contenu aux utilisateurs via des transmissions à courte
portée.

Les cas codés et non codés ont été étudiés. Les auteurs ont fourni des algorithmes
d’affectation de contenu afin d’améliorer le délai de téléchargement total. Les extensions
de ce travail, y compris pour D2D, sont données dans [67, 68].

Dans [69], le placement optimal du contenu dans SBS avec une capacité de backhaul
limitée est étudié. Là, conditionnée par la connaissance de la distribution de popularité, le
placement de contenu a été formulé comme un problème de sac à dos. Lorsque les profils
des contenus disponibles ne sont pas connus à l’avance, le problème est formulé comme
un problème "bandit manchot" qui permet d’apprendre la distribution de la popularité et de
procéder au placement du contenu. Les auteurs ont fourni trois algorithmes pour identifier
les compromis importants entre l’exploitation et l’exploration. Ce travail a été étendu avec
une analyse plus approfondie dans [70].

La relation entre distance de collaboration et interférence a été étudiée dans [71] pour les
réseaux D2D. Les auteurs ont montré qu’avec suffisamment de réutilisation de contenu, un
débit non nul par utilisateur peut être atteint, même avec un stockage et un délai limités.

Dans [72], les différents compromis, pour les SBS avec backhaul limité, ont été étudiés.
Dans ce travail, les auteurs ont étudié l’impact des différents paramètres du système sur la
probabilité d’interruption et le taux moyen de distribution de contenu. Dans [73], le problème
d’un placement géographique optimal du contenu est considéré. Là, il a été montré que le
stockage des contenus les plus populaires n’est bénéfique que dans certains scénarios de
déploiement particuliers. Particulièrement, lorsque les zones de couverture multiple sont
importantes, il est plus avantageux d’introduire plus de diversité dans le contenu mis en
cache. Des conclusions similaires ont été données dans [50]. Dans [74], le front de Pareto du
coût de déploiement des caches et le coût attendu pour un client afin de récupérer un grand
fichier à partir du cache sont étudiés.

Mise en cache proactive pour une communication verte

L’efficacité énergétique est considérée comme un Key performance indicator (KPI) primor-
diale pour les réseaux 5 G . Comme la mise en cache proactive échange un débit réseau
avec la capacité de stockage, elle peut apporter un gain considérable en termes d’efficacité
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énergétique des réseaux. Cet impact de la mise en cache proactive a été étudié dans [75].
Là, les auteurs ont optimisé EE en ce qui concerne la puissance de transmission et ont mon-
tré qu’activer la mise en cache dans les BSs peut améliorer de manière significative l’EE.
L’impact de la mise en cache proactive sur EE a également été étudié dans [76]. Les facteurs
clés qui affectent les EE des réseaux activés en cache ont été étudiés. Dans [77], les auteurs
ont fourni un cadre GreenDelivery pour la mise en cache. Il en résulte une réduction des
activités BS et donc une consommation d’énergie réduite. Dans [78], une mise en cache
conjointe et un cadre d’activation de BS pour les réseaux cellulaires verts est proposé. Les
résultats démontrent jusqu’à 45 % d’économie énergitique. Dans [50], l’impact de la mod-
élisation de la popularité du contenu sur EE a été étudié. Les auteurs ont optimisé EE par
rapport à la densité optimale des SBSs actifs et au placement de contenu, en fonction de la
classification des utilisateurs basée sur la popularité.

1.5 Plan de la thèse et contributions

Dans le chapitre 3 (TDD Massive MIMO systems: Enhancing CSI estimation through
Spatial Division based training), nous nous attaquons au problème d’estimation du CSI
dans les systèmes Massive MIMO TDD . Nous adoptons la division spatiale comme moyen
de planifier plus d’utilisateurs tout en gardant les frais généraux d’entraînement sous con-
trôle.

L’idée principale est basée sur le fait que le planning d’un plus grand nombre d’utilisateurs,
par cellule, peut être réalisée sans avoir à augmenter les ressources de formation. Ceci est
réalisé en permettant la réutilisation des pilotes dans les cellules tout en séparant les signaux
des utilisateurs copilotes en fonction de leurs informations spatiales. Nous proposons une
approche alternative pour le clustering spatial d’utilisateurs afin de pallier les lacunes des
méthodes de regroupement précédemment utilisées [25, 26]. Comme un système multicel-
lulaire est pris en compte, les interférences intra-cellulaires et inter-cellulaires sont traitées.
Dans ce chapitre, ces deux problèmes sont découplés et traités successivement.

Afin de gérer les interférences copilotes intra-cellulaire, au lieu de regrouper les utilisa-
teurs en fonction de la similarité de leurs signatures spatiales [25, 26], nous adoptons une
approche différente qui vise à construire des groupes d’utilisateurs copilotes. Dans chaque
cellule, un groupe copilote donné est formé de sorte qu’il contienne des utilisateurs avec
un chevauchement minimal dans leurs signatures spatiales et qui fournissent une couver-
ture maximale des DoFs du système. L’idée est d’associer chaque utilisateur à un ensemble
de faisceaux qui concentrent une grande partie de la puissance de son canal. Après avoir
obtenu les matrices de décodage spécifiques à l’utilisateur, les BSs dérivent des groupes
d’utilisateurs copilotes. Chaque groupe fournit une couverture maximale de tous les flux
indépendants disponibles avec un chevauchement minimal entre les matrices spécifiques aux
utilisateurs. Contrairement aux schémas de regroupement spatial antérieurs, où chaque sig-
nal d’utilisateur est traité avec une matrice spécifique au groupe [24–26,82], l’approche pro-
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posée permet de prendre en compte les informations spatiales réelles de chaque utilisateur.
Cette approche permet également de coupler les problèmes de regroupement d’utilisateurs
et d’ordonnancement, ce qui réduit la complexité de la gestion du réseau.

Nous proposons deux formulations du problème de regroupement spatial et nous pro-
posons deux algorithmes en conséquence. Tout d’abord, le problème de la sélection des
utilisateurs copilotes basé sur la couverture spatiale est formulé comme un problème de
couverture maximale [79]. Dans le second cas, le problème de la génération des groupes
copilotes est formulé comme un Problème de couverture maximale généralisée [80]. Nous
fournissons deux algorithmes efficaces pour résoudre les deux problèmes formulés et nous
évaluons leur performance en dérivant leurs rapports d’approximation respectifs.

Une fois les groupes d’utilisateurs copilotes formés, nous abordons le problème de l’interférence
copilots inter-cellulaires grâce à un système efficace d’attribution de séquences d’apprentissage.
Pour ce faire, nous formulons un problème d’optimisation combinatoire qui exploite l’information
spatiale des liaisons interférentielles. Le réseau est par conséquent capable d’allouer des
séquences d’apprentissage UL spécifiques à des groupes d’utilisateurs copilotes dans des
cellules différentes, de sorte que les interférences résultantes peuvent être gérées efficace-
ment en utilisant les récepteurs spatiales précédemment définis. Le problème d’allocation de
pilotes qui en résulte est formulé sous la forme d’un max-cut problem [81], ce qui permet
d’utiliser un algorithme d’approximation de faible complexité pour le résoudre.

Dans le chapitre 4 ( Enhancing performance by long term CSI estimation planning),
nous abordons le problème d’estimation du CSI UL dans les systèmes Massive MIMO TDD,
en utilisant une approche différente. En fait, en partant du constat que les systèmes sans
fil actuels supposent la même durée de créneau horaire pour tous les appareils, sans tenir
compte du fait que les utilisateurs sont soumis à des spreads Doppler hétérogènes, on remar-
que un DoF précédemment négligé, à savoir, la périodicité d’estimation du CSI. En fait, la
durée de l’intervalle de cohérence dans les systèmes sans fil actuels est basée sur la propa-
gation Doppler maximale prise en charge. La surcharge d’estimation CSI est définie en con-
séquence [1]. Cette approche est sous-optimale car elle implique que le réseau va consacrer
des ressources temps-fréquence précieuses à l’estimation d’informations réutilisables. C’est
particulièrement le cas pour les utilisateurs à faible mobilité car leurs canaux ne changent
pas au même rythme que les utilisateurs plus mobiles. Par conséquent, aborder le goulot
d’étranglement de la formation UL en permettant une estimation adaptative CSI basée sur la
propagation Doppler semble tout à fait logique. Nous proposons une approche dans laquelle
les ressources de formation nécessaires sont définies dynamiquement, à chaque tranche de
temps. Cette idée est en accord avec le concept de Dynamic TDD [2], où les ressources de
la trame TDD sont définies dynamiquement sans configuration préfixée.

Le concept de base est que, dans un créneau donné, si la corrélation entre l’estimation
de CSI et le canal réel n’était pas considérablement dégradée en raison du vieillissement,
le réseau n’est pas obligé de le réestimer. Cela permet d’utiliser une partie des ressources
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de formation pour la transmission de données ou pour programmer davantage d’utilisateurs.
Étant donné que le vieillissement des canaux résulte principalement de la mobilité, la vitesse
étant un paramètre important, il est nécessaire d’optimiser la politique de formation sur de
longues périodes tout en intégrant la sensibilisation à la mobilité. Le développement de
politiques de formation à long terme nécessite des estimations précises de l’emplacement
des utilisateurs, ce qui peut être plutôt compliqué à obtenir, en pratique [1], [85].

Par conséquent, ce problème est abordé en supposant que le réseau a une connaissance
partielle des positions des utilisateurs. En effet, nous supposons que le réseau est capa-
ble d’estimer l’emplacement d’un ensemble limité d’utilisateurs. L’adaptation à la modi-
fication des coefficients d’évanouissement à grande échelle et l’optimisation des décisions
d’apprentissage UL, basées sur l’autocorrélation du canal, devraient se faire sur deux échelles
de temps différentes [84]. En fait, les deux optimisations sont basées sur des informations qui
changent sur des échelles de temps hétérogènes. Afin d’atteindre une SE cumulative maxi-
male sur des intervalles de temps plus grands que le bloc de cohérence de l’évanouissement
à grande échelle, un problème de contrôle à deux échelles temporelles est considéré.

Dans l’échelle de temps rapide (niveau inférieur), le réseau dérive une stratégie de déci-
sion d’entraînement optimale tout en supposant des statistiques de second ordre de canal con-
stantes (coefficients d’évanouissement à grande échelle). En prenant en compte l’évolution
dans le temps de la corrélation entre le CSI estimé et le canal actuel, le réseau est capable
d’optimiser ses décisions d’ordonencement des utilisateurs pour l’entraînement UL pour un
horizon fini. La prise en compte de la dimension temporelle permet au réseau d’être plus
efficace puisqu’il devient capable de prédire l’impact de ses décisions sur les performances
présentes et futures. Pour ce faire, nous proposons un système intelligent où le réseau n’est
pas obligé d’optimiser sa décision d’entraînement au début de chaque créneau mais apprend
la meilleure politique de formation pour des périodes importantes mais limitées. En raison
de la lente évolution des coefficients d’évanouissement et d’autocorrélation à grande échelle,
le réseau est capable de dériver une séquence de décisions d’entraînement optimales basées
sur les mêmes informations. Dans ce cas, le problème d’optimisation de la formation UL
peut naturellement être formulé comme un problème de planification discrète sur un horizon
de temps fini [86]. En fait, l’optimisation des décisions d’ordonnancement du réseau équiv-
aut à dériver une séquence d’actions qui maximise la SE cumulative au fil du temps. Puisque
dériver la stratégie d’entraînement optimale peut être prohibitif en calcul pour de grands
horizons d’optimisation, nous fournissons un cadre d’optimisation combinatoire qui permet
de dériver une politique d’entraînement approximative avec un temps de calcul réduit.

Dans l’échelle de temps lente (niveau supérieur), le réseau s’adapte à la mobilité des
utilisateurs en décidant quels utilisateurs doivent évaluer leur emplacement. La sélection
efficace de ces utilisateurs est d’une importance primordiale en raison de la consommation
d’énergie et des frais de signalisation qui en résultent. Le problème d’apprentissage à deux
échelles est modélisé comme un Partially Observable Markov Decision Process (POMDP)
[87]. Dans ce chapitre, nous fournissons des algorithmes efficaces pour le résoudre et nous
présentons les gains obtenus en term de SE.
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Dans le chapitre 5 (User-centric 5G networks: EE under popularity based user
Clustering), nous mettons l’accent sur la mise en cache proactive. Nous explorons l’impact
du placement de contenu et de la modélisation de la popularité sur un SCN avec mise en
cache proactive.

Alors que la plupart des travaux précédents considèrent une popularité moyenne du con-
tenu sur tous les utilisateurs, ce travail utilise un cadre de mise en cache alternative. En
effet, les utilisateurs sont regroupés en fonction de leur profil de popularité. Ce choix est
motivé par l’existence de schémas de trafic très divers chez les utilisateurs. En effet, le con-
tenu demandé dépend du réseau social de l’utilisateur et des intérêts qui peuvent être très
différents d’une personne à l’autre. Supposer une popularité de contenu homogène parmi
les utilisateurs ne peut que conduire à perdre des informations précieuses. Afin de mon-
trer la pertinence de cette approche, un critère de sélection de modèle statistique, à savoir
critère d’information Akaike est utilisé. AIC permet de mesurer la véracité d’un modèle
statistique donné. Il aborde également le compromis entre l’adéquation d’un modèle statis-
tique, basé sur l’estimation du maximum de vraisemblance, et sa complexité, donnée par
le nombre de paramètres à estimer. AIC permet d’adapter la mise en cluster des utilisa-
teurs aux changements de configuration de trafic car il peut détecter les modifications dans
le nombre optimal de clusters. Dans le cas d’une faible mobilité, il est judicieux d’adapter
le placement des fichiers en fonction des informations de localisation. C’est le cas des util-
isateurs en zone confinée (bureau, campus universitaire ...). La connaissance géographique
est exploitée dans le cadre de mise en cache, plus précisément la corrélation spatiale dans les
modèles de trafic. Ce problème est abordé juste après la détection du comportement princi-
pal grâce à la classification basée sur la popularité du contenu. Ce choix est motivé par les
différentes échelles de temps selon lesquelles la popularité du contenu et la localisation de
l’utilisateur évoluent. En effet, si la corrélation dans la popularité du contenu entre les util-
isateurs d’un même groupe social est constante pendant de longues périodes, leurs positions
peuvent changer en raison de la mobilité. Cela motive la nécessité d’adapter le placement de
contenu mis en cache plus souvent que les fichiers sélectionnés afin de simplifier la gestion
du réseau. Un cadre d’optimisation de l’emplacement du cache est donné en fonction du
regroupement d’utilisateurs précédemment effectué. Le problème d’optimisation combina-
toire qui en résulte vise à exploiter la corrélation spatiale dans le modèle de trafic utilisateur
afin de réduire la puissance consommée. Il présente également un autre avantage intéres-
sant du clustering basé sur le contenu. En fait, le regroupement effectué sur les utilisateurs
permet également de regrouper les fichiers en conséquence. Par conséquent, la complexité
du problème de placement de fichiers résultant est plus faible puisque l’espace de recherche
est réduit de l’ensemble du catalogue à des groupes de fichiers de taille totale approxima-
tivement égale. Cela simplifie considérablement la gestion du système de mise en cache par
rapport au travaux existants qui se basent uniquement sur la localisation, où la complexité
des problèmes formulés est proportionnelle au nombre de fichiers total.

Enfin, le chapitre 6 inclut nos conclusions et un aperçu sur les futurs travaux potentiels
liés à cette thèse. Nous notons que chaque chapitre ci-dessus contient sa propre notation
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Chapter 2

Introduction

2.1 Background and Motivation

Mobile communications have been fundamental in producing our contemporary information
societies. From legacy analog mobile systems to the more sophisticated LTE networks [1],
the advances in wireless systems have radically changed the ways with which humans access
and exchange information.

Presently, wireless communications are at crossroads. As a matter of fact, the ever grow-
ing demand for high data capacity and the proliferation of smart devices with applications
that require high rates calls upon the definition of a more efficient next generation standards
so that the substantial increase of data traffic can be handled.

The fifth-generation (5G) mobile communications systems are rapidly emerging to ad-
dress a wide range of challenges brought by the thirst of our present and future societies for
wireless communications. 5G is envisioned to tackle, in addition to a mountainous increase
in traffic volume, the challenge of connecting billions of devices with heterogeneous service
requirements. 5G networks are expected to provide improvements such as [2]:

• 10 folds increase in experienced throughput: Ushering the era of more uniform, multi-
Gbps peak rates.

• 10 folds decrease in latency: Latency levels are expected to be as low as 1 ms.

• 10 folds connection density: Enabling IoT connectivity with low complexity and sig-
naling overhead.

• 3 folds spectrum efficiency: More efficient utilization of the available bandwidth using
advanced antenna techniques.
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• 100 folds traffic capacity: Highly densified networks with more access point (AP)s
everywhere.

• 100 folds network efficiency: More EE networks with effectual processing and hard-
ware.

These high-level performance targets for 5G were developed as part of IMT-2020, the
ITU initiative to define the basis for 5G. These requirements are mapped to three different
main use cases, namely eMBB, massive MTC and URLLC [3],[4],[5]:

• Ultra-reliable and low latency communications: This use case focuses on latency-
sensitive and reliability demanding services. It tackles the expectations of wireless
controlled industrial manufacturing, remote medical surgery, smart grids and auto-
mated driving, etc.

• Enhanced mobile broadband: The enhanced mobile broadband use case comes with
new applications and exigencies in addition to the legacy mobile broadband applica-
tions. It aims to meet the demands of a more and more digitalized human lifestyle.
It focuses on services with broadband requirements such as virtual reality (VR), aug-
mented reality (AR) and video streaming.

• Massive machine type communications: massive MTC focuses on meeting the de-
mands of a high number of connected devices with low data capacity and latency-
sensitivity requirements. This includes applications such as smart cities, IoT, etc.

The different aforementioned use cases have varying and, sometimes, conflicting charac-
teristics. Indeed, as an example, 5G must scale from supporting low-data rate sensors at 10s
of kbps to new immersive mobile experiences at several Gbps. This means that 5G networks
need to be able to scale across diverse services with equally diverse mobile devices. Doing
so comes with its toll of difficulties.

2.2 5G: A concentration of new paradigms and innovative
technologies

Meeting the aforementioned requirements necessitate drastic changes in the network paradigm
in addition to a large array of disruptive innovations. In this context, 5G networks can call
upon a wide range of physical and higher layers new technologies. This enables a leap in
wireless networks performance that dwarfs its predecessors. These innovations will touch on
transmission and design of the networks physical layer in addition to introducing upheaval
in the networking and application layer techniques. As a matter of fact, 5G NR will employ
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many key technologies in order to attain new levels of performance and efficiency. The com-
binations of the latter will expand the importance of mobile communications and enables
it play a much central role in a world of changing use cases. Among the potential main
innovation in 5G physical layer, one can cite [3]:

• mm-wave Mobile Communications.

• Massive MIMO Communications.

• Non-Orthogonal Multiple Access (NOMA).

• Full-DuplexWireless Communications.

• Carrier aggregation and Multicarrier Modulations.

• Larger spectrum.

• Sidelink communication.

• New waveform and heterogeneous OFDM numerology.

In addition to these physical improvement, the innovations in 5G will change how net-
working is performed. As a matter of fact, 5G concentrates a number of new paradigms
which aim at enabling a more agile, automatic and intelligent network in each of its opera-
tions [5]. Among the main networking innovations in 5G, one can state [3]:

• cloud radio access network (CRAN).

• Energy Harvesting.

• Green Heterogeneous Wireless Access.

• Self Organizing Network (SON) networks.

• Fog Computing.

• User-Centric Wireless Network (proactive caching, etc).

In this thesis, we mainly focused on two major technologies that will help usher in the age
of 5G, namely Massive MIMO and proactive caching. The main goal during the present the-
sis was to improve the performance of both technologies using intelligent optimization based
on services and user awareness. This interest was based on a fundamental observation. Both
technologies can be improved by optimizing network operations based on slow changing and
easily obtainable side information on mobile users. Leveraging underexploited knowledge
at the RAN side, such as spatial statistics, Doppler spread and efficient modeling of content
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popularity, the network performance can be substantially improved. This is achieved thanks
to the incorporation of efficient algorithms in the networks procedures. This observation is
the cornerstone of this thesis and special care was taken in order to develop schemes that
enable the improvement of the network performance with the least possible signaling and
training overhead counterpart. In the following sections, we first give an overview of past
and recent advancements in both technologies. We then present the outline of the thesis and
its contributions accordingly.

2.3 Massive MIMO for 5G: A brief history and related works

Any evolution in network generation, perforce, have to make substantial improvement in SE
and area throughput. Massive MIMO is a technology that makes this possible for 5G since
it brings a minimum of ten-fold improvement in SE [3]. This impressive gain is achieved
using arrays of some hundred cheap antenna elements at the BSs. Thus enabling the spatial
multiplexing of a considerable number of mobile devices. The basic idea is based on large
scale statistical effects that results from drastically increasing the number of BS antennas
(on the order of hundreds) [6]. This results in practically reducing the impacts of fast fading,
interference and additive noise. More importantly, it enables to focus the radiated energy on
intended targets. Consequently, by coherent processing of the signals over the BS antenna
array, transmit precoding can be used in order to concentrate each signal at its intended ter-
minal and receive combining can be used in order to discriminate between the signals of
different users. The more antennas at the BS, the finer the spatial focusing can be. This al-
lows to schedule many more users than is possible today, hence immensely increasing overall
SE, connection density and area capacity. The excess of BS antennas results in increasing
the number of data streams which can be exploited to serve more terminals, reducing the ra-
diated power, while boosting the data rate. Massive MIMO can also improve link reliability
through spatial diversity and provide more DoF in the spatial domain, resulting in enhancing
performance irrespective of the noisiness of the measurements. Owing to the resulting ag-
gressive spatial multiplexing, Massive MIMO can deliver an impressive gain in the network
performance by simply steering the radiated waves in the right directions. Since the radiated
energy is highly concentrated on user centric zones, Massive MIMO delivers considerable
gains in EE [7], [8]. All of this is achieved with cost efficient antenna elements at the BSs
and simplified, usually single antenna, user equipment. The main benefits of Massive MIMO
systems can be summarized as follows:

• High Spectral efficiency gain Massive MIMO inherits the conventional MU-MIMO
gains but on a massive scale, as its name specifies. As a matter of fact, with M BS
antennas serving K single antenna users, a diversity of order M together with a mul-
tiplexing gain of min(M,K) are achieved. These parameters can be tuned in order to
further improve SE and achieve higher communication resilience.

24



2.3. Massive MIMO for 5G: A brief history and related works

• High Energy efficiency gain Massive MIMO achieves its performance thanks to the
excess of BS antennas combined with coherent processing. This allows to considerably
reduce transmit power. Consequently, through coherent combining at the reception and
beamforming at the transmission, EE can be considerably improved.

• Simple processing
Massive MIMO employs simple yet efficient signal processing schemes (linear pre-
coding and deconding in the DL and UL, respectively). Indeed, the large number of
BS antennas reduces the complexity of mitigating the impact of small scale fading
and additive noise. In addition, when the number of antennas is sufficiently large, the
resulting channel hardening further simplifies signal processing.

• Increased robustness and reliability
The large number of BS antennas procures more diversity. This results in better link
reliability and higher rate. In addition, as the number of antennas increases, additive
noise, small scale fading, and intra- cell interference are bound to vanish.

• Cost reduction in radio frequency (RF) power components
Massive MIMO employs coherent processing which allows to reduce the radiated
power. This enables to use low cost radio frequency (RF) amplifiers in the milli-Watt
range.

However, there always exists a compromise between achievable performance and com-
plexity. The interesting gains of Massive MIMO come with their share of challenges:

• Multiuser interference management Massive MIMO deliver considerable gains in
network performance. However, some users can have their channel suffer from an
uneven impact of multiuser interference. Consequently, it may be necessary to imple-
ment interference cancellation schemes. Interference alignment [9], maximum likeli-
hood multiuser detection [10] and dirty paper coding [11] can be used. These schemes
suffer from a major shortcoming, namely high computational complexity.

• CSI acquisistion
Coherent processing is the cornerstone of Massive MIMO systems. Consequently,
timely and accurate CSI is required. This can be very challenging in both FDD and
TDD modes, given the system scale (number of users, number of BS antennas). User
mobility have also an important impact since it defines the correlation between esti-
mated CSI and actual channel realization.

• User scheduling Massive MIMO is envisaged to handle a large number of connected
devices. With the 5G requirements of high density connection, user scheduling is of
paramount importance. In addition, when the same time-frequency resources are used,
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selecting the users that can be active simultaneously can considerably alter the system
performance.

Due to the advantages and popularity of Massive MIMO, it have been the subject of ever
increasing focus from the research community.This resulted in a rich literature that treats
different aspects of this concept. In the following, we summarize some of the works on
Massive MIMO based on their similarities and directions.

2.3.1 CSI estimation Methods:

The cornerstone of Massive MIMO is coherent signal processing which relays on accurate
and timely CSI knowledge. In what follows, we provide an overview of CSI estimation in
Massive MIMO systems in addition to the characterization of the most important challenges
that relate to CSI acquisition.

TDD systems and pilot contamination

In TDD Massive MIMO systems, CSI estimates are obtained using channel reciprocity and
UL training. In these systems, only BSs are required to have CSI in order to coherently pre-
cod and decode multiuser signals. The amount of time-frequency training resources depends
on the number of users antennas. TDD is considered as more suitable for Massive MIMO
operations since it implies that channel estimation needs to be performed in only one direc-
tion, and then can be used in both directions. This advantage can not be overlooked since
it means that training overhead scales only with the number of users. Nevertheless, owing
to the limited coherence interval, the training dimension is restricted and the same pilot se-
quences need to be reused which results in pilot contamination [6],[13]. This phenomenon
has been identified as a major limiting factor of Massive MIMO performance and has at-
tracted substantial attention in previous works [93]. Several methods have been proposed in
order to reduce or, better yet, eliminate the impact of pilot contamination in TDD Massive
MIMO systems. These methods are either pilot-based or subspace-based [93]. Time shifting
for pilot transmission was proposed in [14], [15], as a mean to reduce pilot contamination.
The main idea was to shifting pilot transmission in time so that users in different cells trans-
mit at non-overlapping times. Results show that this protocol result is an efficient elimination
of pilot contamination. In [16], Ashikhmin and Marzetta proposed a pilot contamination pre-
coding (PCP) method based on the slow fading coefficients. The proposed method requires
a certain level of cooperation between BS in order to construct the PCP matrices. Results
show that this method can deliver non negligible SE gains. This work has been extended
in [17] by proposing large-scale fading pre-coding (LSFP) and large scale fading decoding
(LSFD) in the regime of a finite number of BS antennas. Results showed an interesting
gain in the 5% outage rate. Subspace-based approaches, on the other hand, improve CSI
estimation accuracy by leveraging the signal’s higher order statistics. In [18], the authors
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showed that, leveraging spatial channel correlation and adequate precoding/combining, the
capacity of Massive MIMO system can increase without limit as a function of the number of
BS antennas. This is made possible by exploiting linear independence between copilot users
channel covariance matrices. In [19], covariance matrix EVD is implemented in order to ob-
tain CSI estimates. In order to decrease errors, EVD is combined with iterative least-square.
The authors showed that the EVD method enable to mitigate the impact of pilot contamina-
tion and outperforms conventional pilot-based CSI estimation techniques. In [20, 21], blind
detection was proposed. The main idea was to exploit singular value decomposition in order
to discriminate user signals. Results showed that the knowledge of the subspace spanned by
each channel vector is sufficient to obtain accurate CSI estimates through simple projection.
Nevertheless, this approach assumes that all desired channels are stronger than all interfering
channels which do not always hold in practice. Neumann et al. [22] proposed a MAP crite-
rion for subspace channel estimation in order to overcome this issue. Although performance
improvement was noticed, the utilization of MAP comes at the price of increased complex-
ity. In [23], an iterative least-square projection with Diagonal jacket-based estimation was
proposed in order to address the issue of pilot contamination.

FDD systems and feedback overhead

In FDD systems, since UL and DL utilize different frequency bands, CSI of both links need
to be estimated. UL CSI is obtained by enabling users to send different pilot sequences. In
the DL, CSI estimates are obtained using DL training followed by explicit or implicit CSI
feedback. As the number of BS antennas increases, FDD channel estimation becomes very
problematic since CSI feedback overhead scales linearly with the number of system antennas
[24]. Enabling FDD Massive MIMO systems can only be done if the feedback bottleneck is
addressed.

This problem was addressed in [24, 25], where JSDM for MU-MIMO DL was investi-
gated. JSDM is a scheme that aims to serve users by clustering them into groups such that
users within a group have approximately similar channel covariances, while users across
groups have near orthogonal covariance eigenspaces. JSDM has been designed, originally,
for FDD Massive MIMO systems without considering inter-cell interference. It enables to
reduce CSI feedback overhead in FDD systems while incurring no loss of optimality with
respect to the full CSIT case. Exploiting the covariance subspace is definitively suitable for
Massive MIMO since, practically, the rank of the channel covariance matrix is likely smaller
than the number of BS antennas. The performance of JSDM is based on grouping users
according to their covariance eigenspaces. Consequently, the implemented grouping method
is of paramount importance. In [25], a chordal distance based K-mean clustering was pro-
posed for FDD systems with JSDM. In [26], the authors investigated a wide range of sim-
ilarity measures such as weighted likelihood, subspace projection and Fubini-Study based
similarity measures. In [26], two clustering methods namely, hierarchical and K-medoids
clustering for user grouping with the aforementioned proximity measures. A comparison of

27



2.3. Massive MIMO for 5G: A brief history and related works

the proposed grouping methods was performed and the combination that achieves the largest
capacity was derived. In [27], we proposed a new similarity measure coupled with a novel
clustering method in order to achieve appropriate user grouping based on the channels sec-
ond order statistics. Using the same principle of two stage beamforming as in JSDM, we
developed a graph theory based user grouping approach that mitigate the shortcomings of
previously proposed user clustering methods. In [28], the spatial properties of the channel
were leveraged in order to obtain CSI estimates in the mm-wave range. The authors proposed
to implicate time correlation between two sequential block frames in the procedure owing to
the special set of challenges that mm-waves impose. Reducing the feedback overhead can
also be achieved using compressed sensing and channel sparsity [29, 30]. In [31], sparse
channel modeling was used in order to show that CS can efficiently save DL time-frequency
training resources. The same principle was also used in [30, 32].

Channel aging

Another reason for CSI inaccuracy is channel aging. This phenomenon results from the vari-
ation of the channel between the instant when it is learned and the instant when it is used for
signal decoding in the UL and beamforming in the DL. This time variation is due to users
mobility and processing delays at the BS. Performance degradation due to channel aging was
studied in a MIMO system with CoMP in [33]. The authors showed that the impact of chan-
nel aging is mitigated when utilizing channel prediction filters in the low mobility regime.
The authors in Truong et al. [34] provide an analysis of the achievable rate performance
on UL and DL in the presence of channel aging and channel prediction. They showed that,
although channel aging leads to degradation in the performance of Massive MIMO systems,
channel prediction provides the means to overcome this issue. In Papazafeiropoulos et al.
[35,36], the effect of channel aging combined with channel prediction has been investigated
in scenarios with regularized ZF precoders (DL) and MMSE receivers, respectively. In Kong
et al. [37], lower bounds of the sum-rate for both MRC and ZF receivers with/without chan-
nel prediction have been derived with an arbitrary number of BS antennas and users. The
impact of channel aging and prediction on the power scaling law has been studied. The
authors demonstrated that, in the single-cell and the multi-cell scenario, the transmit power
scaling is not affected neither by aged CSI nor channel prediction.

2.3.2 Detection of Encoded Signals

Signal detection implies accurate estimation of the transmitted data knowing the received
signal. Signal detection can also exploit knowledge of the CSI when available. A wide
range of detection algorithms is available for Massive MIMO systems. These algorithms can
be classified as linear or nonlinear. Linear Detection has the advantage of low complexity
which comes with the price of lower performance. In deed the output of linear detectors
deteriorates rapidly as the number of transmitting users increases [38]. When the system
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becomes interference limited, nonlinear detection algorithms can be employed in order to
improve performance. Such schemes implement interference cancellation at multiple stages.
Such popular schemes include successive and parallel interference cancellation receivers.

2.3.3 Precoding and Decoding

Massive MIMO exploits CSI knowledge in order to spatially discriminate user signals. Pre-
coding (or multiplexing) refers to the techniques that enable to focus the transmitted signal
on a given receiver, thus minimizing energy loss in side lobes. Decoding (or demultiplexing)
refers to coherent combining at the reception so that the received signal is detected in a given
direction. Both are realized by adjusting the phases and amplitudes of the signals at the
different BS antennas. In addition, precoding has the advantage of reducing PAPR which is
very problematic for OFDM systems. Precoding techniques can be nonlinear or linear. Non-
linear methods, such as DPC and lattice-aided methods, have higher performance that come
with more complex implementation. Linear precoders, on the other hand, have the advan-
tage of simple implementation. Such precoders include MRC, MMSE, and ZF [12]. MRC
maximizes the SNR by adding the signal components coherently over the antenna elements.
This achieved using the wireless channel estimate. MRC is particularly suited for Massive
MIMO which typically employs lower radiated power from the BS. ZF precoding is more
suited to interference limited scenarios and performs quite well with high SNR. ZF aims at
nulling the multiuser interference. While efficient in reducing interference, ZF comes with
the penalty of higher computational cost and reduced array gain [39].

MMSE precoding is the optimal linear precoding in a Massive MIMO DL system. It
strikes a compromise between amplifying the useful signal power and suppressing multiuser
interference. Consequently, MMSE precoding performs well in both high and low SNR
conditions. Since mm-wave frequencies are considered in 5G, more specialized precoding
techniques have been proposed for these frequency range. In [40], a hybrid precoding scheme
combining both analog and digital precoding has been proposed in order to deal with the high
signal attenuation that happens at mm-wave frequencies using a non-complex sub array.

2.3.4 Energy efficiency

The huge potential of Massive MIMO in reducing energy consumption and consequently
increasing EE is now very well established [7], [8]. In fact, since the transmit power can
be significantly reduced, Massive MIMO can produce a non negligible EE gain. Moreover,
the use of a large number of antennas make it possible to employ inexpensive component
without considerable performance loss [117]. In [7], the power scaling law for UL Massive
MIMO was derived and the large potential in improving EE was investigated. In [118],
EE of Massive MIMO with non ideal hardware was analyzed. In [8], the authors showed,
taking into consideration hardware impairments, that EE is maximized for a finite number of
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deployed antennas.

5G can not be enabled by, simply, increasing the physical layer performance. Indeed,
a networking paradigm change is needed. Enabling the network to transit from a reactive,
service and user agnostic paradigm to a more proactive and intelligent one, can produce
substantial increase in its performance. Moreover, 5G is expected to handle diverse deploy-
ment scenarios with different requirements. This can become quite complicated with a fixed
network topology.

In order to address these issues, user-centric 5G is envisaged [3]. This means that future
5G networks will be characterized by a flatter architecture with part of the intelligence shifted
down to the RAN. One of the major enablers of User-centric 5G is, definitely, proactive
caching. It refers to the ability of personalized local content provisioning. This can be
achieved by enabling the RAN to obtain users’ context information and predict traffic using
analysis and recommendation algorithms. Having a proactive more intelligent RAN enable
to locally store popular content which offloads the back-haul and reduces E2E latency while
enhancing user experience.

2.4 Proactive Caching for User-centric 5G networks: A brief
history and related works

The idea of proactive caching in wireless networks finds its roots in a rather old principle
which was first considered in the field of operating systems [41]. The principle spread then
to the web where it was found that caching contents in the proxy servers and other nodes
of the network enables to enhance the scalability of the world wide web and offload the
networks infrastructure [42]. Proactive caching at the edge of wireless networks is a rather
recent concept. Based on the observation that human behavior is correlated and rather pre-
dictable [43], endowing the RAN with the ability to analyze user traffic and predict most
likely content to be requested can considerably offload the back-haul while enhancing QoE
and E2E latency [3]. Proactive caching enables to revolutionize the RAN. Indeed, instead
of the conventional paradigm of reactive and user-agnostic data pipe, RAN is endowed with
analysis and prediction capabilities that enable it to play an important role in content provi-
sioning and management. The main benefits of proactive caching at the RAN side can be
summarized as follows:

• Reduce E2E latency

• Improve energy efficiency

• Manage traffic load

• Increase the network throughput and enhance QoE
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Owing to its huge potential in addressing 5G requirements, proactive caching has at-
tracted considerable attention in both academic and industrial research communities. This
resulted in a rich literature that treats different aspects of this concept. In the following, we
summarize some of the works on proactive caching based on their similarities and directions.

Proactive Caching and Content Popularity Estimation

Proactive caching relays on user and traffic awareness, specifically, contents that the user
may be interested in by considering traffic labels, user attributes, terminal types, etc. Conse-
quently, content popularity modeling and estimation are of paramount importance.

In [44], supervised machine learning, specifically, collaborative filtering is used in order
to estimate content popularity. Leveraging context-awareness, social networks and corre-
lations of human behavior, content popularity can be efficiently estimated which results in
considerable offloading gains.

In [46], transfer learning for caching in SCN is studied. Therein results showed that
transfer of knowledge from a rich contextual information source domain to a target domain
can considerably improve the offloading gain.

In [47], the centrality measures for content placement are exploited. The authors pro-
posed a centrality-based content dissemination process where the complete information of
content dissemination in social networks is not perfectly known. Therein, results showed
that reasonable offloading gains can be obtained. In [48], an alternative game theoretical
formulation of the proactive caching problem was proposed. After modeling the problem as
a many-to-many matching game, the authors proposed a matching algorithm that reaches a
pairwise stable outcome with considerable gain in satisfied requests ratio.

Alternatively, instead of generalizing the popularity distribution over all user profiles, we
proposed a content popularity based user clustering approach in [49]. Therein, we investi-
gated the impact of a more detailed analysis of user behavior and justified their approach
using a statistical model selection tool, namely AIC. Results showed that clustering users
according to their preference and caching content accordingly can significantly increase the
system performance. An extension of this work with emphasis on the impact of such ap-
proach on EE is given in [50]. Clustering users according to their request pattern was also
investigated in [51] with the goal of reducing service delay. The authors showed that the
clustering scheme outperforms the unclustered and random caching approach.

Coded Caching Gains

An information-theoretic formulation of the caching problem is quite natural. Indeed, proac-
tive caching is a paradigm that is completely defined by the information that can be collected
on the users behavior. In [52], an information-theoretic approach of proactive caching is
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given. The authors derived local and global caching gains based on a coded scheme that
exploits both gains. Therein, results showed that the coded approach leads to a multiplica-
tive improvement in the peak rate compared to previously known schemes. These results are
then extended to non-uniform content popularities in [53, 54], non-uniform cache access in
[55], heterogeneous cache sizes in [56], online caching systems in [57], hierarchical caching
networks in [58] and multi-server case in [59]. In [60, 61], random coded caching is studied
in D2D wireless networks. Therein, it was found that the D2D scheme with spatial reuse and
simple decentralized random caching achieves the same near-optimal throughput scaling law
as coded multicasting. In the same line of thinking, the performance of decentralized ran-
dom caching placement with a coded delivery scheme is given in [62, 63]. A D2D storage
community is studied in [64]. Using regenerating codes and redundancy in the context of
distributed coded caching, the authors showed that simple redundancy can lead to consider-
able gains in energy consumption. In [65], the effects of network coding on increasing the
amount of available data to the users through the cache nodes is studied. Therein, a net-
work coding-based content placement method was proposed, resulting in increasing fairness
and offloading gain. Additionally, in [66], coded caching was studied in wireless networks
with fading channel. Therein, it was shown that with power or bandwidth allocation, the
throughput performance of coded caching under the frequency-division transport mode is
significantly better than that under the time-division mode.

Deployment Aspects

Deployment aspects are of paramount importance in cache enabled networks. Optimal con-
tent assignment was studied in [45] where SBS (helpers) are in charge of delivering the
contents to the users via short-range transmissions. Therein, both coded and uncoded cases
were investigated. The authors provided content assignment algorithms in order to improve
the total expected downloading delay. Extensions of this work, including D2D case, is given
in [67, 68].

In [69], optimal content placement in a SBS with limited backhaul capacity is studied.
Therein, conditioned on the knowledge of popularity distribution, content placement was
formulated as a knapsack problem. When profiles of the available contents are not known in
advance, the problem is formulated as a multi-armed bandit problem which enables to learn
the popularity distribution and proceed to content placement. The authors provided three
algorithms to pinpoint the important trade-offs between exploitation and exploration. This
work was extended with more extensive analysis in [70].

The relation between collaboration distance and interference was studied in [71] for D2D
networks. The authors showed that with enough content reuse, non-vanishing throughput per
user can be attained, even with limited storage and delay.

In [72], the different trade-offs, in cache-enabled SBS with limited backhaul, where stud-
ied. Therein the authors investigated the impact of different system parameters on the achiev-
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able outage probability and average content delivery rate.

In [73], the problem of an optimal geographic placement of content is considered. Therein,
it was shown that storing the most popular contents is beneficial only in some particular de-
ployment scenarios. Particularly, when multi-coverage areas are significant, it is more ben-
eficial to introduce more diversity in the cached content. Related conclusions were given in
[50].

In [74], the Pareto front of the expected deployment cost of the caches in the plane and
the expected cost for a client to retrieve a large data file from the cache is studied.

Proactive Caching for Green communication

Energy efficiency is considered as a major KPI for 5G networks. Since proactive caching
trades off storage capacity with network throughput, it can bring a considerable gain in the
networks energy efficiency. This impact of proactive caching was studied in [75]. Therein,
the authors optimized the achievable EE with respect to transmit power and showed that en-
abling caching at the BSs can significantly improve the EE. The impact of proactive caching
on EE was also investigated in [76]. The key factors that impact the EE of cache enabled
networks were studied. In [77], the authors provided a GreenDelivery framework, with the
joint design of Energy-Harvesting, push, and caching. It results in the reduction of BS ac-
tivities and thus a reduced energy consumption. In [78], a joint caching and BS activation
framework for green cellular networks is proposed. Therein, results demonstrated up to
45% energy savings. In [50], the impact of content popularity modeling on EE was studied.
The authors optimized EE with respect to the optimal density of active SBSs and to content
placement, under popularity based user clustering.

2.5 Thesis Outline and Contributions

In Chapter 3 (TDD Massive MIMO systems: Enhancing CSI estimation through Spa-
tial Division based training), we address the bottleneck of UL training in TDD Massive
MIMO systems. We adopt spatial division as a mean to schedule more user while keeping in
check training overhead.

The main idea is based on the fact that scheduling more users per cell can be achieved
without having to increase the training resources. This is performed by allowing pilot reuse
within cells while separating copilot users signals based their spatial information. We pro-
pose an alternative approach for spatial user clustering in order to address the shortcoming
of previously used grouping methods [25, 26]. Since a multi-cell system is considered, both
intra-cell and inter-cell interference is addressed. In this chapter, these two problems are
decoupled and dealt with successively.
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In order to deal with intra-cell copilot interference, instead of grouping users based on
the similarity of in their spatial signatures [25, 26], we adopt a different approach that aims
at constructing copilot user groups. In each cell, any given copilot group is formed such
that it contains users with minimum overlapping in their signals spatial signatures and that
provide a maximum coverage of the systems’ DoFs. The proposed approach is referred to
as Spatial basis coverage based copilot UE selection. The idea is to associate each user with
a set of beams that concentrate a large amount of its channel power. After obtaining the
users specific decoding matrices, the BSs derive copilot user groups. Each group provides a
maximum coverage of all available independent streams with minimum overlapping between
users specific beam matrices. In opposition to prior spatial clustering schemes, where each
user signal is processed with a group specific matrix [24–26, 82], the proposed approach
enables to take into consideration the actual spatial information of each user. This approach
enables also to couple the problems of user grouping and scheduling which reduces the
complexity of the network management.

We provide two formulation of the copilot grouping problem and we propose two group-
ing algorithms accordingly. First, the problem of spatial basis coverage based copilot user
selection is formulated as a maximum coverage problem [79]. In the second case, the prob-
lem of copilot group generation is formulated as a Generalized maximum coverage problem
[80]. We provide two efficient algorithms to solve the two formulated problems and we
assess their performance by deriving their respective approximation ratios.

Once copilot user groups are formed, we address the issue of inter-cell copilot interfer-
ence through an efficient cross-cell training sequence allocation scheme. In order to do so,
we formulate a combinatorial optimization problem that leverages the spatial information
of interference links. The network is, consequently, able to allocate specific UL training
sequences to copilot user groups in different cells, such that the resulting interference can
be managed efficiently using the previously defined spatial signature based receivers. The
resulting pilot allocation problem is formulated as a max-cut problem [81], which enables to
use a low complexity approximation algorithm to solve it.

In Chapter 4 ( Enhancing performance by long term CSI estimation planning), we
address the bottleneck of UL training in TDD Massive MIMO systems, using a different
approach. In fact, based on the observation that current wireless systems assume the same
time slot duration for all devices regardless of the fact that users are subject to heterogeneous
Doppler spreads, we notice a DoF that was previously neglected, namely, CSI estimation
periodicity. As a matter of fact, the coherence slot duration in current wireless systems is
based on the maximum supported Doppler spread and the CSI estimation overhead is defined
accordingly [1]. This approach is suboptimal since it implies that the network is going to
spend precious time-frequency resources on estimating information that may be reusable.
This is particularly the case for users with low mobility since their channels do not change
at the same rate as faster moving users. Consequently, addressing the UL training bottleneck
by enabling a Doppler spread based adaptive CSI estimation seems to be quite logical. We
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propose an approach in which the needed training resources are defined dynamically, at each
time slot. This idea is in according with the concept of Dynamic TDD [2], where the slot
resources are defined dynamically without a prefixed configuration.

The basic concept is that, at a given slot, if the correlation between the estimated CSI
and the actual channel was not considerably degraded, due to aging, the network is not re-
quired to reestimate it. Doing so enables to spear part of the training resources that can be
used for data transmission or to schedule more users. Since channel aging results, primarily,
from mobility, with speed being an important parameter, optimizing the training policy for
long time periods while incorporating mobility awareness is required. Developing long term
training policies requires accurate estimates of user locations, which can be rather compli-
cated to obtain, in practice [1],[85]. Consequently, this problem is tackled while assuming
that the network has a partial knowledge of the user positions. We suppose that the net-
work is able to estimate the location of a limited set of users. Adapting to the change in the
large-scale fading coefficients and optimizing UL training decisions based on the channel’s
autocorrelation should occur on two different time scales [84]. In fact the two optimizations
are based on information that changes over heterogeneous time scales. In order to achieve
the maximum cumulative average SE over time spans larger than the large-scale fading co-
herence block, a two time scale control problem is considered. In the fast time scale (lower
level), the network derives an optimal training decision strategy while assuming constant
channel second order statistics (large-scale fading coefficients). By taking into consideration
the evolution over time of the correlation between the estimated CSI and the actual channel,
the network is able to optimize its decisions to schedule users for UL training over a finite
time horizon. Taking into consideration the time dimension allows the network to be more
efficient since it becomes able to predict the impact of its decisions on present and future
performance. In order to do so, we propose an intelligent system where the network is not
required to optimize its training decision at the beginning of each time slot but learns the
best training policy for large but finite time periods. Owing to the slow changing large scale
fading and autocorrelation coefficients, the network is able to derive a sequence of optimal
training decisions based on the same information. In this case, the UL training optimization
problem can naturally be formulated as a discrete planning problem over a finite time hori-
zon [86]. In fact, optimizing the network’s scheduling decisions is equivalent to deriving a
sequence of actions that will maximize the cumulative average SE over time. We formulate
a finite horizon deterministic control problem. The optimal training decisions are derived for
a predefined time duration, denoted here by H , for which the large-scale fading coefficients
are supposed to be constant. This is quite advantageous since it allows the network to opti-
mize its training over time without requiring the actual channel estimates. Since deriving the
optimal training strategy can be computationally prohibitive for large optimization horizons,
we provide a combinatorial optimization framework that enables to derive an approximate
training policy with reduced running time. In the slow time scale (upper level), the network
adapts to user mobility by deciding which users are required to feedback their locations.
Efficiently selecting these users is of paramount importance owing to the resulting energy
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consumption and signaling overhead. The two time scale learning problem is modeled as a
POMDP [87]. In this chapter, we provide efficient algorithms to solve it and we present the
resulting gains in SE.

In Chapter 5 (User-centric 5G networks: EE under popularity based user Clus-
tering), we focus on improving the performance of User-aware 5G networks, particularly,
we focus on proactive caching. We explore the impact of content placement and popularity
modeling on a cache enabled SCN.

While most previous works average content popularity over all users, this work uses an
alternative caching framework. In fact, users are grouped according to their content pop-
ularity profiles. This choice is motivated by the existence of very diverse traffic patterns
among users. Indeed, the requested content depends on the user social network and interests
that can be very different from one person to the other. Assuming a homogeneous content
popularity among users can only result in loosing valuable information. In order to show-
case the pertinence of this approach, statistical model selection, namely, Akaike information
criterion is used. AIC enables to measure the truthfulness of a given statistical model. It
also addresses the trade-off between the fitness of a statistical model based on maximum
likelihood estimation and its complexity which is given by the number of parameters to be
estimated. AIC enables to adapt user clustering to any traffic pattern changes since it can
detect modifications in the optimal number of clusters.

In the case of low mobility, where users do not change positions too often, it makes
sense to adapt the files placement based on location information. This is the case for users in
confined areas (office, university campus....). Geographical user awareness is then exploited
in the caching framework, specifically, spatial correlation in traffic patterns. This problem is
tackled right after main behavior detection through content popularity based clustering. This
choice is motivated by the different time scales according to which content popularity and
user location evolve. In fact, while the correlation in content popularity between users from
the same social group is constant for long periods of time, their location can change due to
mobility. This motivates the need to adapt the cached content placement more often than
the selected files in order to simplify the management of the network. A cache placement
optimization framework is given based on the previously performed user grouping. The
resulting combinatorial optimization problem aims at exploiting the spatial correlation in
user traffic pattern in order to reduce the average consumed power. It also showcases another
interesting advantage of content based clustering. In fact, the clustering that is done on
the users enables also to group the files accordingly. Consequently, the complexity of the
resulting optimal file placement problem is lower since the search space is reduced from
the whole file catalog to groups of file of approximately equal total size. This considerably
simplifies the management of the caching system compared to existing work on location
based optimization where, the complexity of the formulated problems is proportional to the
number of files.

Finally, chapter 6 includes our conclusions and potential future works related to this
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thesis. We note that each chapter above contains its own mathematical notation.
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Chapter 3

TDD Massive MIMO systems:
Enhancing CSI estimation through
Spatial Division based training

3.1 Overview

Each evolution in wireless networks is required to provide considerable increase in SE and
area throughput. These requirements especially vital in 5G networks owing to the consid-
erable throughput demand that it should face. One of the most promising technologies to
achieve the required performance improvement is, without doubt, Massive MIMO [6]. In-
deed, by leveraging a large number of antennas at the BSs, Massive MIMO proved to be
able to provide a considerable improvement in the network’s spectral and energy efficiencies
[88],[7], [8].

However, Massive MIMO gains depend heavily on acquiring accurate CSI estimates at
the BSs. In TDD systems, CSI estimation is performed through UL training, leveraging
channel reciprocity [13]. Unfortunately, owing to the limited coherence interval, the training
dimension is restricted and the same pilot sequences need to be reused which results in the
phenomenon of pilot contamination [13]. Addressing this issue lead to the development of
numerous CSI estimation methods that exploit different channel statistics in order to mitigate
copilot interference and enhance CSI accuracy. Several of these methods leverage spatial
division multiplexing in order to efficiently discriminate user channels and thus substantially
reduce copilot interference. The main idea resides in grouping users based on their spatial
information and processing their signals accordingly. These methods proved to be able to
provide considerable SE gains in both FDD and TDD Massive MIMO systems. Indeed,
in TDD mode, users with non-overlapping spatial signatures can be allowed to reuse the
same pilot sequence, even within a single cell, since a simple linear projection on each user
dominant signal space can effectively mitigate copilot interference [92]. In FDD mode,
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spatial division multiplexing can be exploited in order to reduce the CSI feedback overhead
with little or even negligible capacity loss. This enables to schedule more users for the same
CSI feedback overhead which increases SE and connection density [25]. Previous works on
spatial multiplexing proposed to group users based on their channel covariance eigenspace
[25, 26], when UL or UL channel covariances are known, or simply based on their signals
mean direction of arrivals [92]. Different grouping methods were implemented including,
for example, K-mean [25], K-medoids and hierarchical clustering [26]. In [92], a greedy
user scheduling algorithm was implemented in order to partition users into copilot groups
based on their spatial signatures. In addition different proximity measures between users
signal spaces were also considered[26]. These studies showed that the performance of spatial
division multiplexing schemes depend heavily on the implemented user grouping scheme.

Although a considerable increase in SE was recorded, these methods come with a number
of shortcomings. In fact, in order to achieve a good user clustering, the K-medoids and K-
mean clustering methods require a prior estimation of the parameter K. In addition, these
methods use an averaging in order to derive the group specific eigenspace matrix which can
lead to a substantial overlapping between the clusters. As a matter of fact, practically, users
might have similar but not necessarily identical second order channel statistics. This dictates
the need to consider individual user spatial information. Another major shortcoming of these
methods is the fact that they overlook the efficiency of leveraging the totality of the available
DoFs of the system.

In this chapter, we propose an different approach for spatial user clustering. We con-
sider a multi-cell TDD Massive MIMO system, in which, spatial diversity is exploited in
order to allow for a more aggressive pilot reuse, within each cell, while mitigating copilot
interference. This allows for an increase in the number of scheduled users for the same train-
ing overhead while improving SE. Since a multi-cell system is considered, both intra and
inter-cell pilot contamination are addressed.

We choose to decouple these two problems and address them successively. In order
to deal with intra-cell copilot interference, we propose a spatial grouping and scheduling
scheme. Instead of grouping users based on the similarity of in their covariance eigenspaces
[25,26], we adopt a different approach that aims at constructing copilot user groups based on
the users spatial signatures. In each cell, any given copilot group is formed such that it con-
tains users with minimum overlapping in their signals spatial signatures and that provide a
maximum coverage of the systems’ independent streams. The proposed approach is referred
to as spatial basis coverage based copilot users selection. The idea is to associate each user
with a set of beams that concentrate a large amount of its channel power. Since Uniform lin-
ear array (ULA)s are considered, the columns of a unitary discrete Fourier transform (DFT)
matrix are used as spatial basis [25],[92]. After obtaining the users specific decoding ma-
trices, the BSs derive copilot user groups. Each group provides a maximum coverage of all
available independent streams with minimum overlapping between users specific beam ma-
trices. This approach enables also to couple the problems of user grouping and scheduling
which reduces the complexity of the network management. We provide two formulation of
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the copilot grouping problem and we propose two grouping algorithms accordingly. First,
the problem of spatial basis coverage based copilot UE selection is formulated as a maxi-
mum coverage problem [79]. In the second case, the problem of copilot group generation is
formulated as a Generalized maximum coverage problem [80]. The two formulations enable
us to provide efficient algorithms that perform the desired grouping. We go one step further
and derive the approximation ratio of each algorithm in order to assess its performance.

Once copilot user groups are formed, we address the issue of inter-cell copilot interfer-
ence through an efficient cross-cell training sequence allocation. In order to do so, we for-
mulate a combinatorial optimization problem in a graphical framework based on the copilot
groups spatial signature. Using this information, the network is able to allocate specific UL
training sequences to copilot user groups in different cells, such that the resulting interfer-
ence can be managed efficiently using the previously defined spatial receivers.

The rest of the chapter is organized as follows. The systems model under consideration
is provided in Section 3.2. In Section 3.3, we discuss the principal and performance of
spatial division multiplexing in TDD Massive MIMO systems. In Section 3.4, we propose
a spatial basis cover scheme for copilot user selection. Therein, we propose two algorithms
to achieve the desired grouping and we assess their guaranteed performance. In Section 3.6,
numerical results capturing the gains that the proposed scheme can provide are given. We
finally conclude in Section 3.7.

3.2 System Model And Preliminaries

We consider a multi-cell, multi-user Massive MIMO network operating in TDD mode. The
network is composed of Nc cells containing each, a BS that is equipped with a large M -
element ULA. Each BS is serving K single omni-directional antenna users such that K >>
M . Users are randomly distributed in each cell. Considering flat fading channels, the channel
vector between user i in cell b and the BS of the rth cell, g[r]

ib is composed of an arbitrary
number of i.i.d. P rays (P >> 1)[90]. Hence, the UL channel g[r]

ib is given by the following
multi-path model

g[r]
ib =

1√
P

P∑
p=1

a(θ
[r,p]
ib )γ

[r,p]
ib , (3.1)

Here, γ[r,p]
ib represents the complex gain of the pth ray from user i in cell b and the BS of

the rth cell and follows a CN
(

0, µ
[r]2

ib

)
distribution where µ[r]

ib denotes the average attenua-

tion of the channel. θ[r,p]
ib denotes the direction of arrival of the pth ray from user i in cell b

and the BS of the rth cell. Moreover, a(θ
[r,p]
ib ) ∈ CM×1 is the array manifold vector which is

given by:
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Figure 3.1: System Model
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where λ denotes the signal wavelength, d refers to the antenna spacing such that d ≤ λ
2
. As

in [90] and [92], the incident angles of each user, with mean Direction of Arrival (DOA)
θ

[r]
ib , are considered to be restrained in a narrow angular range

[
θ

[r]
ib − ∆θ

[r]
ib , θ

[r]
ib + ∆θ

[r]
ib

]
.

Within this range a(θ
[r,p]
ib ), p = 1, . . . , P, ∀i, b, r are mutually correlated. Consequently, the

covariance matrix of each channel g[r]
ib , which is given by R[r]

ib = E
[
g[r]
ib g[r]†

ib

]
, possesses a

low-rank property.

As introduced above, in this chapter we focus on a TDD Massive MIMO system, where
the entire frequency band is used for DL and UL transmission by all BSs and users. The
BSs acquire CSI estimates using orthonormal training sequences (i.e., pilot sequences) in
the UL. At each coherence interval, a maximum of τ users are scheduled for UL training in
each cell with τ ≤ K. For that, we consider a set of orthonormal training sequences, that
is, sequences qi ∈ Cτ×1 such that q†i qj = δij (with δij the Kronecker delta). In this chapter,
we consider an aggressive pilot reuse approach. In fact, in addition to reusing the same set
of orthogonal pilot sequences in every cell, we consider that the same sequences are reused
even within one cell. Consequently, the channel estimates are corrupted by both inter and
intra-cell pilot contamination.
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3.3 Spatial Division Multiplexing Based User Scheduling

3.3.1 Spatial Basis in Massive ULAs

Massive MIMO systems provide a substantial SE gain by spatially multiplexing a large num-
ber of mobile devices. This greater number of served devices requires higher signaling or
feedback overhead in order to obtain CSI estimates. Consequently, new CSI acquisition
schemes are required in order to address this issue, taking into consideration user clustering,
grouping and beamforming. This issue promoted many research work which resulted in de-
signing new transmission strategies for Massive MIMO leveraging low-rank approximation
of the channel covariance matrix [25, 26, 90]. Indeed, based on the fact that the incident
signals at the BSs are characterized by narrow angular spread, it was proven that the ef-
fective channel dimension can be reduced without capacity loss. This is achieved through
eigen-decomposition of covariance matrices and eigenmode based user grouping[25, 26].

In this chapter, we build an alternative low-rank model, leveraging the characteristics of
ULAs. Indeed, in this case, it was proven that a unitary DFT matrix constitute a good spa-
tial basis of the signal [24, 92]. This means that, without accurate estimates of the channel
covariance matrices, spatial division multiplexing can be implemented using a unitary DFT
matrix. Indeed, for each user, it is sufficient to derive decoding matrices based on the DFT
matrix vectors that concentrate the majority of its channel power [92]. The main idea is to
group users according to their spatial signatures and allocate pilot sequence such that copilot
users are spatially separated (i.e., their spatial signatures span independent subspaces). This
principle is similar to previously proposed spatial division methods. However, we propose
a novel grouping scheme that take into consideration the efficiency of the spatial space cov-
erage. Indeed, copilot user grouping is performed based on two criterion. First, users are
grouped such that they have minimum overlapping in their spatial signatures. Second, the
users in each group provide a maximum coverage of the set of independent DFT streams.
The latter criterion was completely sidestepped in previous work. Users signals are then
processed using a per-user DFT-based decoding matrix.

We start by deriving the achievable average Signal-to-interference-plus-noise ratio (SINR)
with a per-user DFT-based decoding matrix and we discuss the proposed user grouping in the
next section. As in [92], we consider a DFT based spatial basis for ULA. In more details, the
BSs proceed to DL training once each Tl, where Tl is the duration during which the channel
spatial information remains unchanged. In this DL training phase, each user will feedback
the indexes of the reference beams (i.e, columns of the DFT matrix F ) that concentrate a
considerable percentage of its channel power. Particularly, each user i, b will feedback the
indexes of the DFT matrix columns for which the following condition is verified:∥∥∥g[b]†

ib fs
∥∥∥2

Tr(R[b]
ib )
≥ α, (3.3)
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where 0 < α < 1 is a design parameter that characterizes the projection on a reference beam
and, consequently, the percentage of the total power received along this beam. The vectors
for which the condition above is verified will form a detection matrix F[b]

ib for each user ib:

F[b]
ib = {fs ∈ F,

∥∥∥g[b]†

ib fs
∥∥∥2

Tr(R[b]
ib )
≥ α}, (3.4)

F[b]
ib will be used as the bases in which the user’s signal is detected and will henceforth be ref-

ereed to as spatial signature of user ib. The spatial signature of each user forms a subspace
that concentrate a large percentage of the its channel power. Consequently, allocating the
same copilot sequence to users with minimum overlapping in their spatial signature (3.4) en-
ables to discriminate between their signals since the power of their channels is concentrated
in different subspaces.

Note that this association can be done without requiring a covariance matrix estimate
thanks to DL probing [110]. In the proposed scheme, we increase the reuse factor of training
sequences. The same pilot sequence can be allocated to multiple users in a given cell, if their
detection matrices are non-overlapping. This results in increasing the number of scheduled
users while, at the same time, ensures that copilot interference, within the same cell, can be
efficiently mitigated thanks to simple linear projections in the users spatial spaces.

3.3.2 Achievable Performance With Adaptive Spatial Division Based
User Scheduling

For every user i, b, we consider the matrix Fib formed by the vectors of the DFT matrix
according to (3.4). During the UL training period, active users send their pilot sequence so
that the BSs can estimate their CSI. For analytical simplicity, we consider that UL training
sequences have the same reuse factor within all cells. We consider that the network schedules
Np users to use any given pilot sequences in each cell. During UL training, the received pilot
signal Y[b]

p at BS b is given by:

Y[b]
p =

√
ρp

Nc∑
r=1

τ∑
l=1

∑
i∈Σ(l,r)

g[b]
ir ql

† + Wp, (3.5)

where Wp ∈ CM×τ refers to an additive white Gaussian noise matrix with i.i.d. CN (0, 1)
entries and ρp denote the pilot transmit power. Σ(l, r) denotes the set of user in cell r that
are using pilot sequence l during UL training. The bth BS then uses the orthogonality of the
training sequences in order to obtain the MMSE estimate of the channel of user i, b [129]. In
order to discriminate the copilot users signals, the BS exploits the previously defined spatial
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signature matrices (3.4). The BS estimates the channel of each user i, b after projecting the
received signal on F[b]

ib as

ĝ[b,ib]
ib = F[b]†

ib R[b]
ib

 1

ρp
IM +

Nc∑
r=1

∑
u∈Σ(χ(i,b),r)

R[b]
ur

−1

(
Y[b]
p qχ(i,b)

ρp
), (3.6)

where χ(i, b) denote the index of the training sequence used by user i, b. Note that indexes of
the projection matrix F[b]

ib are added to the channel estimate since its law depends on UE i, b
spatial signature. Using the orthogonality characteristic of the MMSE estimate, the wireless
channel of each user i, b can be decomposed as

g[b,ib]
ib = ĝ[b,ib]

ib + g̃[b,ib]
ib , (3.7)

where g̃[b,ib]
ib ∼ CN

(
0, F †ibR

[b]
ib Fib − F

†
ibR

[b]
ib

(
1
ρp

IM +
∑Nc

r=1

∑
u∈Σ(χ(i,b),r) R[b]

ur

)−1

R[b]
ib Fib

)
represents the uncorrelated estimation error. Next we study the achievable average UL SINR
under the considered setting. During UL data transmission, BS b receives the following data
signal

Y[b]
u =

√
ρu

Nc∑
r=1

τ∑
l=1

∑
i∈Σ(l,r)

g[b]
ir dir + wu, (3.8)

where wu ∈ CM×1 refers to an additive white Gaussian noise vector with i.i.d. CN (0, 1)
entries and ρu denotes the UL data transmission power. We consider linear detection where,
the signal of each user i, b is estimated using a precoded matched filter receiver. In order to
detect the signal of user i, b, BS b uses Fibĝ

[b,ib]
ib as detection filter. The estimate of the signal

of user i, b can be decomposed as follows:

ĝ[b,ib]†
ib F†ib

Y[b]
u√
ρu

= (3.9)

ĝ[b,ib]†
ib (ĝ[b,ib]

ib dib + g̃[b,ib]
ib dib +

Nc∑
r=1

τ∑
l 6=χ(i,b)

∑
u∈Σ(l,r)

g[b,ib]
ur dur +

Nc∑
r=1

∑
u∈Σ(χ(i,b),r)

ur 6=ib

g[b,ib]
ur dur +

w[ib]
u√
ρu

),

In what follows, we consider the large system limit, where M and K grow to infinity while
keeping a finite ratio K

M
. This assumption enables to derive a deterministic approximation of

the achievable average SINR which is derived following the same approach as in [88].
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Lemma 1. In the case of a large antenna array with a spatially correlated channel, the
average UL SINR of user i in cell b, with matched filter receiver and spatial signature based
projection, can be written as :

γib =
( 1
M

Tr(Ψ
[b,ib]
ib ))2

Nc∑
r=1

τ∑
l 6=χ(i,b)

∑
u∈Σ(l,r)

Tr(F †ibR[b]
urFibΨ

[b,ib]
ib ))

M2 +
∑Nc

r=1

∑
u∈Σ(χ(i,b),r)

ur 6=ib

Tr(Ψ
[b,ib]
ur ))2

M2 +
Tr(Ψ

[b,ib]
ib ))

ρuM2

,

(3.10)

where Ψ
[b,ib]
ur = F†ibR

[b]
ur

(
1
ρp

IM +
∑Nc

r=1

∑
k∈Σ(χ(i,b),r) R[b]

kr

)−1

R[b]
urFib.

We can see in (3.10) that the achievable average SINR of any given user, in the asymp-
totic regime, depends on the power of copilot interference in the subspace spanned by the
user’s spatial signature. Although increasing the pilot reuse factor increases the number
of active users, intra-cell copilot interference can be completely mitigated if the same pilot
sequence is allocated to users with non-overlapping spatial signatures, i.e, independent de-
tection matrices. Selecting copilot users in each cell is then of paramount importance. In the
next section, we address the problem of intra-cell copilot interference through appropriate
spatial signature-based user grouping.

3.4 An Alternative Approach to Spatial User Grouping: A
Spatial Basis Coverage Problem

Exploiting the channel low-rank property in Massive MIMO transmission strategies proved
to provide non-negligible gains in performance for both TDD and FDD systems. In FDD
mode, spatial division multiplexing allows to reduce the CSI feedback overhead while incur-
ring no capacity loss [25]. In TDD such methods enable to reduce training resources while
mitigating the impact of pilot contamination [92]. These gains are mainly due to the capac-
ity of spatial division methods to utilizes the independent spatial spaces of different users
in order to discriminate between their signals. Spatial division based methods relay on an
efficient spatial information-based user grouping. Several works proposed to perform this
grouping using the classical K-mean algorithm with different proximity measures [25, 26].
K-medoids and hierarchical clustering have also been proposed [26]. A DFT-based greedy
user grouping was also considered in SBEM [92].

Although the aforementioned grouping approaches get the work done and provide con-
siderable performance increase for both FDD and TDD modes, they suffer, nevertheless,
from a range of shortcomings that may limit the potential of spatial division multiplexing.

Indeed, previously proposed methods neglect a very important criterion, namely the
coverage of all the available DoFs. Indeed, when applied to the spatial division problem,
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classical clustering approaches concentrate on the mutual distance between user channels
subspaces with little regard to the final coverage of independent streams. This means that,
although the condition of independent spatial information is met, the DoFs that the Massive
MIMO system provides can be underexploited. Addressing these shortcomings can help
boost the performance of spatial division multiplexing methods.

In this chapter, we propose a method that, in addition to the requirement of independent
spatial subspaces, emphasizes on leveraging all independent streams that the Massive MIMO
system can provide. Since a TDD system is considered in this work, the focus will be
on addressing the ULs training bottleneck. To mitigate pilot contamination while realizing
UL training for an excess of users with only τ pilot sequences, the same pilot sequence is
allocated to users with minimum spatial signature overlapping which constitute a copilot
group within each cell. In addition, the users within each copilot group achieve a maximum
coverage of all interdependent streams. Consequently, in each cell, a total of τ copilot groups
need to be constructed, each of which is associated with a distinct training sequence. In what
follows, we formulate the spatial basis coverage based copilot user selection problem. We
then provide efficient algorithms that enables to solve it. Two approaches are considered.
The first approach is power agnostic. This means that it neglects the channel power along
each beam and concentrate only on minimum spatial signature overlapping and maximum
coverage without discriminating users based on their channel gains. The second approach
is power aware. This means that users are prioritized based on their achievable channel
gains in addition to the criterion considered in the power agnostic approach. The differences
between the two approaches lie mainly in complexity and fairness. These differences will be
discussed in more details further in this chapter.

3.4.1 Power Agnostic Spatial Basis Coverage

In this subsection, we focus on solving the spatial basis coverage copilot user selection prob-
lem in a power agnostic approach. In this case, the BSs know only the set of DFT beams
that concentrate a large percentage of channel power (i.e, F[b]

ib ,∀i, b). The user-beam associa-
tion is performed as specified in the previous section thanks to Massive MIMO training (3.4)
[110] or using UL preamble [92]. As previously discussed, the BSs perform spatial basis
coverage based copilot user selection in order to schedule users for UL training. This is done
in order to deal with intra-cell copilot interference. The out of cell copilot interference will
be addressed later in this chapter. In the power agnostic case, the BSs do not take into consid-
eration the achievable gain along each beam. Consequently, in this case, the problem reduces
to scheduling users with minimum spatial signature overlapping and maximum coverage of
the DFT beams. This actually simplifies the problem at hand and enables to derive the de-
sired grouping with low complexity. The power agnostic approach is also characterized by
the upside of fairness since it does not discriminate scheduled users based on their channel
power. However, this means that more flexibility should be allowed when constructing copi-
lot users. In fact, since we cannot prioritize users based on their channel gain, it may be wise
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Figure 3.2: Example of spatial basis coverage for M = 100

to allow for some spatial overlapping. We also allow for another degree of flexibility in this
problem, namely, pilot reuse in each cell. In fact, in this work, we consider that the reuse
factor of each pilot sequence can vary from one cell to the other. This implemented in order
to allow for a more flexible specific training sequences allocation to the copilot groups when
dealing with inter-cell copilot interference. The main principle of the spatial basis coverage
problem is depicted in Figure (3.2).

We consider τ copilot groups (covers) per cell C [b]
k , k = 1, . . . , τ, b = 1, . . . , Nc. Each

copilot group in each cell will be associated with a distinct pilot sequence. We start by
defining x[k]

i,b, ∀i, b, k and y[k]
s,b, ∀s = 1, ...,M, b = 1, ..., Nc, k = 1, ..., τ , which are given by

x
[k]
{i,b} =

 1 if user i, b is selected in copilot group C [b]
k .

0 otherwise.

y
[k]
s,b =

 1 if beam fs is covered in cell b and copilot group C [b]
k .

0 otherwise.

(3.11)

Formally, under the power agnostic approach, the Beam coverage based copilot UE se-
lection problem can be formulated as follows:
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max
Y

τ∑
k=1

C∑
b=1

M∑
s=1

y
[k]
s,b (3.12)

subject to
∑
i

x
[k]
{i,b} ≤ U

[k]
b ∀k = 1...τ, ∀b = 1, ..., Nc (2.12a)

∑
i,fs∈Fib

x
[k]
{i,b} ≥ y

[k]
s,b ∀k = 1...τ, ∀b = 1, ..., Nc, (2.12b)

(2.12a) guarantees that the number of users in a given copilot group C [b]
k , k = 1, . . . , τ, b =

1, . . . , Nc, is upper bounded by U [k]
b , k = 1, . . . , τ, b = 1, . . . , Nc. Note that U [k]

b is a design
parameter that defines the reuse factor of a given pilot sequence in each cell. Depending on
the considered setting, U [k]

b can be the same or differs from one cell to the other. (2.12b)

guarantees that, for any covered beam fs in cell b, in copilot group C [b]
k , at least one user i, b

with fs ∈ F[b]
ib is scheduled for UL training in copilot group C [b]

k . We start by showing the
computational intractability of problem (3.12).

Lemma 2. The considered spatial basis coverage based copilot UE selection problem (3.12)
is NP-hard.

Proof. For C = 1 and τ = 1, (3.12) is equivalent to a maximum coverage problem which is
known to be NP-hard [80]. Consequently, (3.12) is also NP-hard.

The proof of computational intractability provides us with insight on how to solve this
problem in a low complexity manner.

In order to solve (3.12), we use two nested greedy phases. In the upper phase, the al-
gorithm produces τ maximum coverages of the DFT matrix vectors (F), in each cell. The
maximum covers C [b]

k , k = 1..τ, b = 1, .., Nc, are computed successively in a greedy man-
ner. Each of the maximum covers is computed using another greedy method that goes as
follows. For each C [b]

k , k = 1..τ, b = 1, .., Nc, the set of uncovered beams is initialized as
the vectors of the DFT matrix. Then users are added to C [b]

k successively while selecting,
at each iteration, the user with the spatial signature that cover a maximum of the uncovered
DFT columns. This procedure is repeated until attaining the reuse constraint U [k]

b for each
copilot group, in each cell. Different from previously proposed algorithms, the present ap-
proach enables to satisfy the spatial independence requirements within each copilot group
while offering a maximum utilization of the excess of DoFs. The detailed algorithm is given
in table 3.1. We denote by Γ(b) the set of users in cell b = 1, . . . , Nc.
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Initialize: Copilot groups sets C [b]
k = ∅, k = 1, . . . , τ, b = 1, . . . , Nc,

User specific beam matrices Fib,∀i ∈ Γ(b), b = 1, . . . , Nc

1.For b = 1 : Nc do:

2.For k = 1 : τ do:

3.Define the set Un = F as the set of uncovered beams.

4.For j = 1 : U
[k]
b do:

5. i∗ ←− argmax
i∈Γ(b)

|Fib ∩ Un|

6. Un←− Un \ {Fi∗b ∩ Un}

7. C
[b]
k ←− C

[b]
k

⋃
i∗

8. End for

9. End for

10. End for

Table 3.1: Power Agnostic Beam coverage based copilot UE selection

The algorithm in table 3.1 produces τ copilot user groups in each cell. Each copilot group
maximizes the coverage of the DFT beams while minimizing the overlapping between copi-
lot users spatial signatures. Consequently, the CSI estimation of each user can be enhanced
by a simple linear projection. Note that the proposed algorithm allows for some subspace
overlapping. This is actually needed since users are not prioritized based on their channel
gains. We now proceed by deriving the performance guarantee of the proposed algorithm.

Theorem 3. The algorithm in table 3.1 provides an (1 − ( τ−1
τ

)τ )(1 − 1
e
)-approximation of

the optimal solution of problem (3.12).

Proof. See A.1.
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3.4.2 Power Aware Spatial Basis Coverage

In the power aware approach, users are prioritized based on the power of their signals along
each direction. The resulting problem provides a more efficient grouping since it takes into
consideration the overlapping between copilot users spatial signatures, the coverage of the
signal space and the power of each user channel. However, this efficiency comes at the price
of augmented complexity and reduced fairness since users are discriminated based on their
channel gains. In this case, we define a different value for each beam depending on which
user is covering it. For each user i, b, the value associated with beam fs, s = 1, . . . ,M is
given by ζ [s]

ib , where ζ [s]
ib is the power of user i, b channel along fs, s = 1, . . . ,M . This con-

sideration changes the formulation of the spatial basis coverage based copilot UE selection
problem (3.12). The main idea of providing maximum coverage of the DFT beams, in each
cell and for each pilot sequence, still holds but the actual gain associated with each beam
will also be taken into consideration. The resulting combinatorial optimization problem can
be formulated as follows

max
Y

τ∑
k=1

Nc∑
b=1

∑
i∈Γ(b)

∑
fs∈F

ζ
[s]
ib y

[s,k]
{i,b} (3.13)

subject to
∑

i∈Γ(b),fs∈Fib

y
[s,k]
{i,b} ≤ 1 ∀k = 1...τ, ∀b = 1...Nc (2.13a)

∑
i∈Γ(b),fs∈Fib

x
[k]
{i,b} ≥ y

[s,k]
{i,b} ∀k = 1...τ, ∀b = 1...Nc, (2.13b)

∑
i∈Γ(b)

x
[k]
{i,b} ≤ U

[k]
b ∀k = 1...τ, ∀b = 1...Nc, (2.13c)

The constraints, in (2.13a), guarantees that each beam is covered by at most one user. (2.13b)

guarantees that, for any covered beam fs in cell b, in copilot group C [b]
k , at least one user

i, b with fs ∈ Fib is scheduled for UL training in copilot group C
[b]
k . (2.13c) guarantees

that the total number of the users associated with a given pilot sequence in a given cell is
bounded. The difference between (3.12) and (3.13) is mainly the fact that the actual gain
along each stream is taken into consideration. This means that, the BS can optimize its
pilot allocation accordingly with the final aim of maximizing the total weight of the covered
streams. This means that, in addition to reducing copilot interference thanks to the non-
overlapping spatial signatures, the users are selected such that the achievable gain along all
the available independent streams is maximized. We start by showing the computational
intractability of problem (3.13).

Lemma 4. The considered spatial basis coverage based copilot UE selection problem (3.13)
is NP-hard.

Proof. For C = 1 and τ = 1, the optimization problem (3.13) is equivalent to a Generalized
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Maximum Coverage Problem (GMC) which is known to be NP-hard. Consequently, (3.13)
is also NP-hard.

The proof of computational intractability provides us with insight on how to solve prob-
lem 3.13 efficiently. Indeed, to solve 3.13, we adopt a successive coverage approach as
the previous algorithm. The difference here comes in the construction of each copilot group
where the actual power along each beam needs to be considered. To this end, ∀ k = 1..τ, b =
1, .., Nc, a GMC problem is solved. Solving the GMC problem that produces each copilot
group will be performed based on a modification of the coverage algorithm in [80].

The present approach enables to satisfy the spatial independence requirements within
each copilot group while offering a maximum utilization of the excess of DoFs. Since it takes
into consideration the actual power of users signals along each beam, the present approach
enables also to discriminate between users based on their channel gain in each direction.
This, ultimately, results in more efficient utilization of the system’s DoFs by prioritizing
users with high signal power in each direction. Before providing the detailed algorithm
to solve (3.13), some definitions are now in order. We define a user allocation A as a triple
A = (φ, ξ, h), where φ represents the set of selected users, ξ denotes the set of corresponding
covered beams and h is an assignment from ξ to φ such that ∀, fs ∈ ξ, h(fs) denotes the user
covering beam fs. For a given allocation A, we define V (A) =

∑
fs∈ξ ζ

[s]
h(fs),b

as the value of
A and W (A) = |φ| as its weight. We also define the residual value of ([i, b], fs) with respect
to A as follows

VA([i, b], fs) =

 ζ
[s]
i,b if fs is not covered by A.

ζ
[s]
i,b − ζ

[s]
h(fs),b

otherwise.
(3.14)

The main idea of the algorithm is to use two nested greedy phases. In the upper phase,
the maximum coverages C [b]

k , k = 1..τ, b = 1, .., Nc are computed successively in a greedy
manner. In order to obtain each coverage, in the lower phase, the algorithm uses the residual
value 3.14 in a greedy procedure so as to choose a subset of DFT beams that are part of a
given user spatial signature with the highest density. Users are then added to the selection as
long as their residual value is positive. When the greedy phase ends, its resulting selection
is compared with the highest value of a single user. The selection with the highest value is
then selected. This procedure is repeated in the each cell b = 1, .., Nc for each copilot group
k = 1..τ . We now present the detailed algorithm in table 3.2.
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1.For b = 1 : Nc do:

2. For k = 1 : τ do:

3. Ag ←− Greedy(S = {i, i ∈ Γ(b)} )

4. Find the single user i∗, b with most efficient coverage of the reference beams.

5. V (As)←−
∑

fs,fs∈Fi∗b
ζ

[s]
i∗b

6. If V (Ag) ≥ V (As):

7. C
[b]
k ←− (Ag)

8. Else

9. C
[b]
k ←− (As)

10. End for

11. End for

Table 3.2: Power Aware Beam coverage based copilot UE selection
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1. j ←− 0

2. While new beams with positive residual value can be added to A without

violating the cardinality constraint U [k]
r do:

3. Use the greedy algorithm for Knapsack problems in order to derive

([i∗, r],Fi∗r) such that WA([i∗, r],Fi∗r) ≤ U
[k]
r −W (A), which has the maximum density

4. A←− A⊕ ([i∗, r],Fi∗r)

5. For u /∈ A do:

6. If WA⊕([u,r],Fur)([u, r],Fur) ≤ 0 and ∀f ∈ Fur, VA⊕([u,r],Fur)([u, r], f) > 0 do:

7. A←− A⊕ ([u, r],Fur)

8. End for

9. j ←− j + 1

10. End While

11. Return(A)

Table 3.3: Greedy(S)

The algorithm in table 3.2 consists of solving a generalized maximum coverage problem
for each copilot group C [b]

k , k = 1, . . . , τ, b = 1, . . . , Nc, successively. We now derive the
performance guarantee of the proposed algorithm.

Theorem 5. The algorithm in table 3.2 provides an (1−( τ−1
τ

)τ )
3
2
− e
−2

2

1−e−2 -approximation of the
optimal solution of problem (3.13).

Proof. See A.2.

The proposed algorithm in table 3.2 provide τ covers of the DFT matrix beams in each
cell. This results in τ copilot user groups, in each cell, that fully exploit all available DoFs

54



3.5. Cross Cell Pilot Allocation: A Graphical Approach

with minimum overlapping between the beam sets of each user. This leads to an efficient
reduction of intra-cell copilot interference.

The main differences between the power agnostic and aware cases are performance guar-
antees and complexity. Indeed, the simplified power agnostic case enables to achieve the
desired grouping with good performance guarantee (see Theorem 3) and low complexity.
The power aware case provide a more efficient grouping since it takes into consideration the
users channel gains. Nevertheless, this comes with a penalty in the approximation ratio (see
Theorem 5) and a higher computational complexity. Constructing the copilot user groups
enables to efficiently address the issue of intra-cell interference. Nevertheless, further spec-
tral efficiency gain can be achieved by addressing the issue of inter-cell copilot interference.
This will be the focus of the next section.

3.5 Cross Cell Pilot Allocation: A Graphical Approach

3.5.1 Cross Cell Pilot Allocation Problem

The proposed spatial basis coverage copilot UE selection approach enables to manage intra-
cell copilot interference. Using predefined spatial signature-based detection filters provides
the means to substantially reduce intra-cell copilot interference. Nevertheless, another per-
formance limiting factor, namely inter-cell copilot interference, needs to be treated. This
can be achieved by leveraging the spatial signatures of the inter-cell interference channels.
Adopting the same approach as in the previous section will not be as fruitful in this case.
Indeed, constructing copilot groups across cells, in order to address the problems of intra-
cell and inter-cell interference simultaneously, proves to be quite complex. This is due to
the complexity of defining a proper grouping metric that is based on the spatial signatures of
both useful and interference links.

This fact motivated the present approach of dealing with interference through two con-
secutive subproblems. A major advantage of such division is the reduction of complexity.
Indeed, since copilot user groups have already been constructed in each cell, addressing
out-of-cell copilot interference reduces to allocating specific training sequences to copilot
groups. If copilot interference is to be addressed from the beginning as a whole, it will re-
sult in a complex pilot allocation problem among all users in all cells which proves to be
complicated.

Practically, complete removal of interference is not physically possible. In addition,
copilot user grouping was performed with the clear goal of managing intra-cell interference.
Consequently, when dealing with inter-cell copilot interference, previously formed copilot
groups should be maintained. We propose a scheme in which pilot allocation is done such
that high interference links are suppressed when spatial signature based receivers are used.
In this section, we address this problem using an intelligent pilot assignment scheme. The
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basic idea is to infer inter-cell copilot interference from the spatial signatures of interference
links. A training phase to obtain spatial information of the interference links is required. This
can be implemented without a large signaling overhead owing to the slow changing spatial
information. We now consider that, each user i, b, i = 1...K, b = 1...Nc is associated with
Nc matrices {F[r]

ib , r = 1...Nc}. Each matrix F[r]
ib is constructed in a similar manner to (3.4)

as follows

F[r]
ib = {fs ∈ F,

∥∥∥g[r]†

ib fs
∥∥∥2

Tr(R[r]
ib )
≥ α}, (3.15)

3.5.2 Graphical Modeling and Proposed Solution

The first step to manage inter-cell copilot interference is to construct an interference graph
that corresponds to the considered system setting. We construct an undirected interference
graph G(C, E). Each node C [b]

k ∈ C, k = 1...τ, b = 1...Nc represents copilot user group
of index k in a give cell b. Each edge in e

C
[j]
b ,C

[k]
l
∈ E represents an interference link and

is associated with a given weight w
C

[j]
b ,C

[k]
l

. We propose a method for determining the edge
weight without accurate SINR measurements since it cannot be obtained before pilot allo-
cation. In this work, we propose to infer interference levels form spatial information. This
consideration is due to the practical low signaling overhead that is required.

Since the weight of each edge quantifies the level of interference between two copilot
groups, an appropriate measure need to be considered. This task is not an easy one since
the weight of the edge between two different copilot groups need to properly characterize
the levels of resulting interference. The research papers that investigated spatial division
multiplexing proposed different metrics to characterize subspace distances. The most used
one is chordal distance. Such metric has the considerable downside of neglecting the actual
signal power in each subspace. In addition, the present framework implies that the weight of
each edge need to characterize the mutual interference between two groups of users. Con-
sequently, defining a distance measure between copilot groups is a major issue in our case.
In order to solve this issue, we call upon hierarchical clustering where measuring distances
between groups is commonly encountered. We adopt a linkage method in hierarchical clus-
tering [26], namely weighted average linkage. To quantify interference on each link, we
use spatial signature overlapping between the users forming the two copilot groups which
is obtained using the chordal distance between spatial signatures. The weight of each edge
w
C

[j]
b ,C

[k]
l

is then given by

w
C

[j]
b ,C

[k]
l

= min
y∈C[j]

b ,z∈C[k]
l

{1

2
‖F[b]

ybF
[b]†

yb − F[b]
zlF

[b]†

zl ‖
2
F +

1

2
‖F[l]

ybF
[l]†

yb − F[l]
zlF

[l]†

zl ‖
2
F}, (3.16)
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Here ‖F[b]
ybF

[b]†

yb −F[b]
zlF

[b]†

zl ‖2
F represents the chordal distance between the spatial signatures

of the useful signal of user y ∈ C [j]
b and the interference generated by z ∈ C [k]

l . ‖F[l]
ybF

[l]†

yb −
F[l]
zlF

[l]†

zl ‖2
F denotes the chordal distance between the spatial signatures of the useful signal of

user z ∈ C [k]
l and the interference generated by y ∈ C [j]

b .

The weight expression (3.16) capture the minimum chordal distance between the spa-
tial signatures of the interference and useful signals for all users in the two copilot groups
and is inspired by the single and weighted average linkage, commonly used in hierarchical
clustering [26].

In each cell, users from the same copilot group are the only devices allowed to transmit
the same UL training sequence. Consequently, during pilot allocation, we need to make sure
that any given pilot sequence ql, l = 1...τ should be allocated to only one copilot group in
each cell. In order to do so, the weight of the links between copilot groups from the same cell
will be given a very large value w∞, because intra-cell interference between copilot groups
must be avoided. Using this metric we are able to construct the interference graph G(C, E),
which is a first step in the proposed pilot allocation scheme. An illustration of G is presented
in figure 3 for the case of Nc = 3 and τ = 2.

The considered pilot allocation problem is closely related to MAX-CUT problem [81].
Indeed, the task of interference management in our problem reduces to suppressing high
pilot contamination between copilot groups. This can be performed by allocating the same
training sequence to copilot groups with minimum mutual interference weights. In the con-
sidered graphical framework, this task is equivalent to partitioning the interference graph into
τ subgraphs where the copilot groups in each subgraph will be allocated the same training
sequence. In the graph theory, a cut is a partition of the vertices of the graph into multiple
sets or clusters. The size of a cut is the total number of edges that cross the cut. In our
weighted graphs, the size of the cut is the sum of weights of the edges that cross the cut. A
cut is said to be maximal if the size of the cut is not smaller than the size of any other cut.
By generalizing this notion to τ cuts, the MAX-τ -CUT problem is to find a set of τ cuts that
are not smaller in size than any other τ cuts. Given τ UL training sequences and Nc cells,
containing each τ copilot groups, our pilot allocation problem is a MAX-τ -CUT problem on
the interference graph and can be stated as follows:

Pilot sequence allocation problem: Given the interference graph G(C, E) with τ × Nc

nodes and edge weight w
C

[j]
b ,C

[k]
l

for each edge e
C

[j]
b ,C

[k]
l
∈ E , partition the graph into τ dis-

joint sets Pg, g = 1, ..., τ , such that∑
C

[j]
b ∈Pg ,C

[k]
l ∈Pg′

g 6=g′

w
C

[j]
b ,C

[k]
l

is maximized.

The training sequence length constraint is already taken into consideration by the defini-
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Copilot groups  in cell 2 
represented by their  
respective  spatial basis 
coverages

Copilot groups  in cell 1 
represented by their  
respective  spatial basis 
coverages

Figure 3.3: Interference graph example

tion of the number of resulting sets τ . Since interference links between copilot users in the
same cell was assigned a large weight w∞, we are sure that all copilot groups within a given
cell will be allocated to different sets. The max-τ - cut algorithm assigns different training
sequences to copilot groups with strong spatial signatures overlapping between the useful
and interference signals. The complexity of the proposed pilot allocation algorithm depends
on the number of copilot groups, edges and training sequences.

A remark on the complexity of this algorithm is now in order. Proceeding to sequence
allocation, once copilot groups are formed, results in a substantial simplification of the prob-
lem. In fact, instead of processing each user individually, the proposed method exploits the
previously formed copilot groups in order to reduce running time of the pilot allocation al-
gorithm. This impact becomes very interesting in an IoT communication scenario. In fact
with a high number of scheduled devices per copilot group, it makes sens to implement
this grouping in order to deal with inter and intra cell copilot interference, separately, while
reducing the running time of the algorithm.
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The Pilot sequence allocation problem is NP-hard in a graph constituted of a large num-
ber of nodes [187]. Meaning that the optimal solution is computationally prohibitive to
obtain. Consequently, we use the low complexity algorithm in [81]. The heuristic algorithm,
in [81], provides an approximate solution that achieves at a ratio of (1 − 1

τ
) of the optimal

one for a general MAX-τ -CUT problem, given that all weights in the graph are nonnega-
tive integers. Since all weights in the considered interference graph are positive, using the
heuristic from [81] provides us with a (1 − 1

τ
)-approximation of the optimal solution for

the considered problem. The detailed algorithm for cross cell Pilot assignment is given in
table 3.4.

Initialize: intra-set weights Wg = 0,∀g = 1...τ Pg = ∅, g = 1, ..., τ

1. Assign the τ copilot groups in cell 1 to different pilot sets

2. Randomly order the rest of copilot groups.

3. Select the next copilot group v and assign it to set g∗ for which

W v
g∗ is minimized where W v

g =
∑

u∈Pg wv,u

4. Update the Average weight of group g∗ such that Wg∗ = Wg∗ +W v
g∗

5. Repeat steps 3− 4 until all copilot groups are assigned.

Table 3.4: Cross cell Pilot assignment algorithm

3.6 Numerical Results And Discussion

In this section, we provide numerical results demonstrating the performance of the proposed
spatial basis coverage copilot user selection. We compare the proposed approach with a con-
ventional TDD Massive MIMO system. We then extend the simulation results to include
MAX-τ -CUT pilot allocation.
We consider a network constituted of Nc = 4 hexagonal cells. Each cell has a radius 0.5 Km
from center to vertex. Each cell contain a Massive MIMO BS at its center, equipped with
M = 100 equally spaced isotropic antennas. The minimum distance between antenna el-
ements is equal to λ

2
. Each cell contains K = 20 users with randomly generated mean

direction of arrivals. The channel vectors of the different users are generated according to
3.1 where P = 50. Each coefficient µ[r]2

ib ,∀i, b, r denotes the path-loss between the user
and the target BS. The path-loss coefficient is 2.8. For each user i, b, the angles of its rays
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3.6. Numerical Results And Discussion

θ
[r,p]
ib , p = 1, . . . , P are uniformly distributed in the interval

[
θ

[r]
ib −∆θ

[r]
ib , θ

[r]
ib + ∆θ

[r]
ib

]
where

the Angular spread (AS) is supposed to be the same for all users with ∆θ
[r]
ib = ∆ = 4◦.

The coherence interval is set to Ts = 200, split between training and data transmission. We
take α = 0.01. In order to assess the accuracy of channel estimation, we take as metric the
average individual mean square error.

SNR (dB)
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Figure 3.4: Comparison of uplink channel estimation MSE with τ = 5 and U [k]
b = 4,∀k, b

Figure (3.4) illustrates a comparison of Mean square error (MSE) performances of UL
channel estimation, as a function of SNR. Figure (3.4) shows that UL channel estimation is
improved when using the two proposed spatial basis coverage algorithms in the low SNR
range (up to approximately 7.5dB for the power agnostic approach and up to 15 dB for the
power aware approach ). It shows that power aware spatial basis coverage outperform the
power agnostic approach. This is mainly due to the fact that the power aware approach do not
allow any overlapping between users spatial signatures while some overlapping is permitted
in the power agnostic approach. Figure (3.4) shows also that, as SNR increases, the perfor-
mances of the two proposed algorithms reach two distinct error floors. This phenomenon is
due to the truncation error that results from projection on the users specific signal subspaces.
These error floors depend on the rank of the user’s spatial signatures and can be reduced by
considering the DFT beams that concentrate lower levels of the user channel power (This
can be done by decreasing α in (3.4)) .

Figure (3.5) illustrates a comparison of Cumulative density function (CDF)s of the achiev-
able SEs between the proposed spatial basis coverage algorithms and a conventional TDD
Massive MIMOs system, for different SNR values. Figure (3.5) shows that, for an SNR of
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Figure 3.5: Comparison of CDFs of achievable SE for different SNR values with τ = 5 and U [k]
b = 4,∀k, b

−5dB, the power aware spatial basis coverage and the power agnostic spatial basis coverage
approaches achieves 5% outage rate around 136 bit/s/Hz and 102 bit/s/Hz, respectively. This
represents gains of 52bit/s/Hz and 18bit/s/Hz, respectively, in comparison with a conven-
tional TDD Massive MIMO system. For 5dB, these gains become 56bit/s/Hz and 24bit/s/Hz,
respectively. This increase is mainly due to the reduced impact of additive noise since the
system becomes interference limited which emphasizes the ability of the proposed schemes
to mitigate intra-cell copilot interference.

Figure (3.6) illustrates a comparison of CDFs of the achievable SE between the proposed
spatial basis coverage algorithms and a conventional TDD Massive MIMO system, for differ-
ent for different τ and U [k]

b values. Figure (3.6) shows that, for τ = 10 and U [k]
b = 2∀k, b, the

power aware spatial basis coverage and the power agnostic spatial basis coverage approaches
achieves 5% outage rate around 136 bit/s/Hz and 102 bit/s/Hz, respectively.

Figure (3.7 ) illustrates the impact of the proposed max-τ -cut pilot allocation algorithm.
Figure (3.7 ) shows that addressing the issue of inter-cell copilot interference through effi-
cient pilot sequence allocation results in an improvement in the system SE. Indeed, while
the power aware spatial basis cover approach achieves 5% outage rate around 202 bit/s/Hz,
the combination with the max-τ -cut pilot assignment algorithm result achieves 5% outage
rate around 216 bit/s/Hz. Consequently, after constructing copilot user groups based on the
spatial basis approach, the same diversity in spatial signatures can be leveraged in order to
address the problem of inter-cell copilot interference. Although complete removal of inter-
ference is still not possible, especially since copilot user groups are constructed based on the
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useful links spatial information, non-negligible performance improvement can be achieved
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by efficient pilot sequence allocation across cells.

3.7 Closing Remarks

In this chapter, we have studied user scheduling and pilot allocation based on spatial divi-
sion multiplexing for TDD Massive MIMO systems. We proposed a copilot user grouping
approach based on spatial basis cover coverage. After associating each user with the DFT
matrix vectors that concentrate the majority of its channel power, users are assigned to copilot
groups in order to achieve a maximum coverage of the DFT vectors per group. The proposed
approach enables to increase the SE without requiring more training overhead. This is made
possible by more aggressive pilot reuse within each cell taking into account spatial diversity.
Various numerical results were provided to demonstrate the effectiveness of the proposed
method. In order to efficiently manage inter-cell copilot interference, further optimization is
performed. We have proposed a graphical approach for training sequence allocation across
cells. The proposed approach exploits the interference links spatial information in order to
reduce the impact of inter-cell copilot interference. The training sequence allocation opti-
mization is formulated as a max-cut problem. Consequently, we are able to provide a low
complexity algorithm that allocates training sequences to copilot groups while minimizing
interference thanks to spatial diversity. Although, the proposed approach does not remove
entirely the bottleneck of Massive MIMO systems, namely copilot interference, it provides
a practical method to increase the achievable SE for the same training overhead. It also
provides an efficient tool to increase the number of connected devises which is an essential
requirement for 5G and beyond networks.
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Chapter 4

Enhancing performance by long term
CSI estimation planning

4.1 Overview

Mobile communication networks are shifting from being dominated by voice traffic with
symmetric DL/UL capacity needs to more asymmetric data traffic [3]. Consequently, the
conventional design of wireless networks including fixed FDD or TDD settings with little
flexibility for varying the capacity split between resources needs to be phased out in future
generation. In addition, the advent of 5G with high density connectivity and spectral effi-
ciency requirements, imposes a more efficient and flexible use of time-frequency resources.
In this context, Dynamic TDD is starting to attract more attention owing to its flexible utiliza-
tion of the available radio resources by means of dynamic adaptation of the TDD UL / DL
subframe configuration [119]. Thereby Dynamic TDD can greatly improve user experience
especially in low to medium load.

Another bottleneck that a dynamic allocation of TDD resource can address is UL train-
ing. In fact, in TDD systems, the actual number of active users is restricted due to training
overhead and to the limited coherence time. Consequently, increasing connection density
can be enabled by optimizing the training procedure so that the network can acquire a max-
imum amount of CSI for as little as possible training. The importance of such optimization
is taken to another dimension in massive MIMO systems [6]. In order to be able to achieve
the needed energy and spectral efficiency gains, accurate CSI estimates is required at the BS
end. In TDD systems, CSI estimates are acquired using UL training with orthogonal pilot
sequences [13]. Consequently, addressing the UL training bottleneck through an adaptive
TDD frame structure seems to be quite logical. Nevertheless, this optimization needs to
rest on user-specific information with the final goal of increasing the networks performance.
The defining parameter that was chosen to achieve this is Doppler spread or, equivalently,
the wireless channel coherence time. In fact, based on the observation that current wireless
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systems assume the same time slot duration for all devices regardless of the fact that users
are subject to heterogeneous Doppler spreads, we notice a degree of freedom that was previ-
ously neglected, namely, CSI estimation periodicity. As a matter of fact, the coherence slot
duration in current wireless systems is based on the maximum supported Doppler spread and
the CSI estimation overhead is defined accordingly [1]. This approach is suboptimal since it
implies that the network is going to spend precious resources on estimating information that
may be reusable. This is particularly the case for users with low mobility.

In this chapter, we address this issue by exploiting the heterogeneous channel aging effect
among users. We propose a novel approach for UL training in massive MIMO systems
that defines the needed training resources dynamically, at each time slot, depending on all
available information about users. We notice that further improvement can be achieved by
considering a training optimization over time, while taking into consideration user mobility.
In fact, since Doppler spread results from mobility, with velocity being a defining parameter,
it makes sense to consider changes in user locations. In order to enable the network to cope
with mobility, an UL training strategy that takes into consideration the evolution of user
positions, and, consequently, large-scale fading coefficients, should be developed. Doing so
requires exact information about user locations, which can be quite complicated to obtain, in
practice. Consequently, we tackle this problem while allowing the network to have a partial
knowledge of the user positions. We suppose that the network is able to estimate the location
of a limited set of users. Adapting to the change in the large-scale fading coefficients and
optimizing UL training decisions based on the channel’s autocorrelation should occur on
two different time scales [84]. Consequently, we develop a two time scale control problem
where the network learns the best position estimation and UL training decisions for long
time periods.

In the fast time scale (lower level), the network derives an optimal training policy while
assuming constant channel second order statistics. By taking into consideration the evolution
over time of the correlation between the estimated CSI and the actual channel, the network
is able to optimize its decisions to schedule users for UL training over time. Taking into
consideration the time dimension allows the network to be more efficient since it becomes
able to predict the impact of its training decisions on present and future performance. In
the slow time scale (upper level), the network adapts to user mobility by deciding which
users are required to feedback their locations. In fact estimating the exact location of all
users requires a non negligible signaling overhead. Consequently, efficiently selecting the
users that are required to feedback their location is of paramount importance. The combined
optimization on the two time scales provides the network with an optimal training strategy
that considerably improves the achievable cumulative average SE.

The rest of the chapter is organized as follows. The network model under consideration
is provided in Section 4.2. In Section 4.3, we propose an adaptive Doppler based UL train-
ing framework that exploits outdated CSI estimates. We also assess its performance with
different linear receivers. In Section 4.4, a two time scale UL training learning framework is
presented and optimization algorithms are provided. In Section 4.5, numerical results captur-
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ing the gains that the proposed scheme can provide are given. We finally conclude in Section
4.6.

4.2 System Model And Preliminaries

We consider the UL of a multi-cell multiuser massive MIMO system constituted of C macro
BSs operating in TDD mode. Each macro BS is equipped with M omnidirectional antennas
and serves K mobile devices equipped, each, with a single omnidirectional antenna. We will
refer to the latter as users.

All users in the network move according to different speeds and directions. Conse-
quently, their signals are subject to heterogeneous Doppler spreads which results in dif-
ferent wireless channel autocorrelations in time. We consider a system where time is slotted
t ∈ {0, 1, . . .} and the duration of each time slot t is given by Ts OFDM symbols. We note
that Ts is a system parameter that depends on the maximum Doppler spread supported by the
network, see for instance Toufik et al. [1].

The wireless channel of each user can be decomposed as a product of small and large
scale fading coefficients. The wireless channel from user k (in cell c) to BS j, at time slot t,
i.e., g[j]

kc(t), is given by

g
[j]
kc(t) =

√
β

[j]
kch

[j]
kc(t), for all k = 1, . . . , K, and j, c = 1, . . . , C, (4.1)

where h[j]
kc(t) ∈ CM×1 is the fast fading vector which is described by means of the uncorre-

lated circular-symmetric complex Gaussian channel vector having zero mean and unit vari-
ance, i.e. h[j]

kc(t) ∼ CN (0, IM). β[j]
kc ∈ R+ models the large-scale effect including shadowing

and pathloss, which are assumed to remain constant during large-scale coherence blocks
of Tβ OFDM symbols. Typically (Tβ >> Ts). For different large-scale coherence blocks
coefficients β[j]

kc are assumed to be independent.

Remark 1. In Sections IV and V we will consider a system where, after Tβ OFDM symbols,
β

[j]
kc evolves according to a Markovian model.

4.2.1 Channel Estimation

As introduced above, in this work we focus on a TDD system, where the entire frequency
band is used for DL and UL transmission by all BSs and users. The BSs acquire CSI esti-
mates using orthonormal training sequences (i.e., pilot sequences) in the UL. We consider a
pilot reuse factor of 1, i.e. the same sets of pilot sequences are used in all cells.

We also consider that, during each coherence interval, a maximum of τ users are sched-
uled for UL training in each cell with τ ≤ K. For that, we consider a set of orthonormal
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training sequences, that is, sequences qi ∈ Cτ×1 such that q†i qj = δij (with δij the Kronecker
delta).

During the UL training phase of the coherence interval t, the lth BS receives the pilot
signal Y [l]

p (t) ∈ CM×τ

Y [l]
p (t) =

C∑
c=1

τ∑
k=1

√
Ppg

[l]
kc(t)q

†
k +Wp(t), (4.2)

where Wp(t) ∈ CM×τ refers to an additive white Gaussian noise matrix with i.i.d. CN (0, 1)
entries. Pp refers to the training signal power. The lth BS then uses the orthogonality of
training sequences in order to obtain the MMSE estimate of the channel of user k, l [129] as

ĝ
[l]
kl(t) =

β
[l]
kl

1
Pp

+
∑C

b,b 6=l β
[l]
kb

Y
[l]
p (t)√
Pp

qk. (4.3)

Note that the MMSE channel estimate ĝ[l]
kl(t) follows a CN

(
0,

β
[l]2

kl
1
Pp

+
∑C
b,b 6=l β

[l]
kb

IM

)
distribu-

tion. Taking into consideration the MMSE estimation result, the wireless channel between
user k (in cell l) and BS l can then be decomposed as follows

g
[l]
kl(t) = ĝ

[l]
kl(t) + g̃

[l]
kl(t), (4.4)

where g̃[l]
kl(t) represents the estimation error and follows a CN

(
0,

(
β

[l]
kl −

β
[l]2

kl
1
Pp

+
∑C
b,b 6=l β

[l]
kb

)
IM

)
distribution. Moreover, ĝ[l]

kl(t) and g̃[l]
kl(t) are independent due to the orthogonality property

of linear MMSE estimators.

4.2.2 Channel aging

In practice, the wireless channel varies between the time when it is learned and used for
precoding in DL and decoding in UL. This variation is due mainly to user movement and
processing delays. Such phenomenon is referred to as channel aging. Its impact can be
captured by a time varying wireless channel model. To this end we consider a stationary
ergodic Gauss-Markov block fading regular process (or auto-regressive model of order 1)
[124]. The evolution of the channel vector of user k, l between the two slots t and t − 1 is
expressed as

g
[l]
kl(t) = ρ

[l]
klg

[l]
kl(t− 1) +

√
β

[l]
klε

[l]
kl(t), (4.5)

where ε[l]
kl(t) denotes a temporally uncorrelated complex white Gaussian noise process with

zero mean and variance (1− ρ[l]2

kl )IM . ρ[l]
kl represents a temporal correlation parameter of the

68



4.3. An adaptive uplink training approach for Massive MIMO TDD systems

channel of user k, l. This parameter is given by Jakes et al. [124] and reads as follows

ρ
[j]
kl = J0(2πf

[j]
kl T ), (4.6)

where J0(·) is the zeroth-order Bessel function of the first kind and f [j]
kl represents the max-

imum Doppler shift of user k in cell l with respect to the antennas of BS j. In our work,
we adopt a realistic setting in which, mobile users have different frequency shifts since we
consider heterogeneous movement velocities and directions. For every user k in cell l, the
maximum Doppler shift with respect to the antennas of BS j is given by

f
[j]
kl =

νklfc

c
cos(θ[j]

kl ), (4.7)

where νkl is the velocity of user k in cell l in meters per seconds, c = 3 × 108 mps is the
speed of light, fc is the carrier frequency and θ[j]

kl represents the angular difference between
the directions of the mobile device movement and the incident wave. From the properties of
the Bessel function, we deduce that the channel autocorrelation is bounded as, 0 ≤ |ρ[j]

kl | ≤ 1.
Taking into consideration the combined effects of estimation error and impairments due to
channel aging, we can express the wireless channel of user k, l at time t as

g
[l]
kl(t) = ρ

[l]
klĝ

[l]
kl(t− 1) + ρ

[l]
klg̃

[l]
kl(t− 1) +

√
β

[l]
klε

[l]
kl(t), (4.8)

4.3 An adaptive uplink training approach for Massive MIMO
TDD systems

In this section, we present a novel approach for UL training in TDD Massive MIMO sys-
tems. We argue that using an adaptive training scheme that leverages the users heteroge-
neous channel coherence times can improve the achievable spectral efficiency. We present a
detailed analysis of the impact of the proposed scheme on the achievable spectral efficiency
with MRC and ZF receivers respectively.

In current Massive MIMO models, the same coherence interval Ts is considered for all
users in the network. Ts is defined as a system parameter that is based on the maximum
Doppler spread supported by the network [1]. This consideration results in a suboptimal
use of the time-frequency resources and a loss of flexibility that can be leveraged otherwise.
As a matter of fact, in practice, users have heterogeneous Doppler spreads. This is due
to different users velocities and movement directions. Consequently, their channels do not
age at the same rate. Considering that all users need to perform UL training with the same
periodicity while sidestepping the important of heterogeneous coherence times, causes vain
redundancy and a loss of resources. A more efficient approach should adapt the periodicity
of each user CSI estimation according to its actual coherence time [111] [123]. This means
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that, at a given slot, if the correlation between the estimated CSI and the actual channel was
not considerably degraded, due to aging, the network is not required to reestimate it. Doing
so enables to spear part of the training resources that can be used for data transmission or to
schedule more users. In all cases, the latter results in an increase in the achievable spectral
efficiency.

In this section, we investigate the achievable spectral efficiency when such training scheme
is used. We also derive an important condition which ensures that a coherence time-based
training scheme is able to provide a substantial improvement of the network performance.

4.3.1 An adaptive coherence time-based uplink training scheme

We consider a massive MIMO system in which CSI estimation is adapted according to the
actual users’ coherence times. We consider that the network groups users according to their
channel autocorrelation coefficients into Ng copilot user groups λg, g = 1, ..., Ng. The
users in each group are either scheduled for UL training synchronously, using the same pilot
sequence, or not scheduled at all. This requirement guarantees that copilot users always
have the same CSI delay and a similar channel aging effect. For each copilot group λg, g =
1, ..., Ng, the CSI delays are denoted by dg, g = 1, ..., Ng. At each slot, all Ng copilot user
groups are scheduled for data transmission and a maximum of τ (τ < Ng) copilot groups are
selected for UL training. The rest will have their signals processed using the last estimated
version of their CSI. The proposed TDD protocol consists of the following seven steps.

1. In the beginning of each large-scale coherence block, the BSs estimate the large scale
fading and channel autocorrelation coefficients, i.e., β[j]

kc and ρ[j]
kc for all k = 1, . . . , K,

and c, j = 1, . . . , C. All coefficients are then fed back to a central processing unit
(CPU).

2. Next, the CP uses theK-mean algorithm in order to cluster users according to their au-
tocorrelation coefficients, see Young et al [189]. The resulting clusters will be charac-
terized by an average autocorrelation coefficient or, equivalently, an average Doppler
spread and a variance of the corresponding users autocorrelation coefficients. The
considered number of clusters is Nc. Defining Nc is of paramount importance. In this
work, we choose to define Nc according to

Nc = dTmax
Ts
e, (4.9)

where Tmax represents the maximum coherence slot of the users’ channels. (3.9) guar-
antees that the average coherence slot per cluster is approximately equivalent to a mul-
tiple of Ts. This is needed in order to appropriately define CSI estimation periodicity
as a function of the parameter Ts.
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3. Next, the CP allocates all users in the network (K per cell) to Ng copilot user groups.
Each group contains at maximumC users from the same channel autocorrelation based
cluster and from different cells. These Ng copilot groups are formed so that the vari-
ance of the autocorrelation coefficients in each group is minimized. This is done in
order to guarantee that copilot users has similar channel aging effects. An example
of the proposed adaptive coherence time-based user grouping procedure is given in
Figure 4.1.

 

Cluster 1  

Cluster 2  

Cluster 3 

 

Copilot groups 

Figure 4.1: Illustration of Steps 2) and 3) of the adaptive coherence-time based user schedul-
ing procedure with C = 4, K = 2, Ng = 6, Nc = 3.

4. At each coherence slot, the network schedules at maximum τ copilot user groups for
UL training synchronously. Depending on the main KPI to optimize, different schedul-
ing algorithms can be used to select these copilot groups [1].

5. All Ng copilot groups transmit their UL signal in a synchronous manner.

6. The BSs process the received pilot signal and estimates the channels of the active users
during UL training using MMSE estimators. The BSs decode and precode the UL and
DL data signals, respectively, using the last estimated version of each user CSI.

7. All BSs synchronously transmit DL data signals to the Ng copilot groups.

4.3.2 Spectral efficiency with outdated CSI

In what follows, we analyze the impact of the aforementioned training procedure on the
achievable spectral efficiency of the network with linear receivers. In particular, two linear
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receivers are considered, namely, MRC and ZF receivers. We derive closed-form lower
bounds of the achievable spectral efficiency with outdated CSI. Moreover, we provide a
condition in order to ensure that the spectral efficiency of all users is improved when outdated
CSI is used. For the sake of analytical traceability, we consider that the Ng copilot groups
contain exactly C users. We, henceforth, refer to each user by its copilot group and serving
BS indexes.

During UL data transmission, at time slot t, BS l receives the data signal Y [l]
u (t) which is

given by

Y [l]
u (t) =

C∑
c=1

Ng∑
k=1

√
Pug

[l]
kc(t)Skc +Wu(t), (4.10)

where Wu(t) ∼ CN(0, IM) is the additive noise, Skc denotes the UL signal of the user
from copilot group k, k = 1, . . . , Ng in cell c, c = 1, . . . , C and Pu denotes the reverse link
transmit power.

MRC Receivers

In what follows, we derive a lower bound on the achievable spectral efficiency of aforemen-
tioned procedure with a MRC receiver. At the reception, each BS applies a MRC receiver
based on the latest available version of CSI estimates. BS l, l = 1, . . . , C detects the signal
of user g, g = 1, . . . , Ng, within the same cell, by applying the following filter

ugl(t) =
ĝ

[l]
gl (t− dg)
‖ĝ[l]

gl (t− dg)‖
, t ≥ dg, (4.11)

where ĝ[l]
gl (t−dg) denotes the latest available channel estimate of user g in cell l. The resulting

average achievable spectral efficiency in the system with MRC receivers is given in Theorem
6.

Theorem 6. For Ng active copilot groups during UL transmission, τ of which are scheduled
for UL training and using a MRC receiver ugl(t) that is based on the latest available CSI
estimates of each user g, l, the average achievable spectral efficiency in the UL R̄MRC

u is
lower bounded by:

R̄MRC
u ≥

C∑
l=1

Ng∑
g=1

(
1− τ

Ts

)
log

(
1 +

(M − 1)β
[l]2

gl ρ
[l]2dg

gl

(M − 1)× Ipgl + Ingl

)
, (4.12)
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where dg, g = 1...Ng represents the CSI delays of users in copilot groups g, g = 1, . . . , Ng.
Ipgl and Ingl are given by:

Ipgl =
C∑
c 6=l

ρ[l]2dg
gc β[l]2

gc , (4.13)

Ingl = (
C∑
c=1

Ng∑
k 6=g

β
[l]
kc +

C∑
c=1

(β[l]
gc − ρ[l]2dg

gc

β
[l]2

gc

1
Pp

+
∑C

b=1 β
[l]
gb

) +
1

Pu
)× (

1

Pp
+

C∑
b=1

β
[l]
gb).

Proof. See B.1.

Equation (4.12) provides further insights into the impact of channel aging on the achiev-
able average spectral efficiency as a function of the CSI time offset. We can clearly see that
the spectral efficiency decreases as a function of its CSI time offset. This is an intuitive re-
sult since the correlation between the estimated CSI and the actual channel fades over time.
Equation (4.12) shows also that for a same CSI time offset, the degradation due to channel
aging is higher for users with lower autocorrelation coefficients. Although outdated CSI
causes an SINR degradation, the speared resources from UL training can lead to an increase
in spectral efficiency.

ZF Receivers

We now consider that the BSs use ZF receivers that are based on the latest available version
of CSI estimates. BS l, l = 1, . . . , C detects the signal of the user g, g = 1, . . . , Ng, within
the same cell, by applying the following filter:

U zf
l (t) = (Ĝo†

l (t)Ĝo
l (t))

−1Ĝo
l (t), t ≥ dg, (4.14)

where Ĝo
l (t) ∈ CM×Ng is the outdated CSI matrix with [Ĝo

l (t)]g = ĝ
[l]
gl (t−dg) for each user g

in cell l. The resulting average achievable spectral efficiency in the system with ZF receivers
is given in Theorem 7.

Theorem 7. For Ng active copilot groups during UL transmission, τ of which are scheduled
for UL training and using a ZF receiver U zf

l (t) that is based on the latest available CSI
estimates of each user, the average achievable spectral efficiency in the UL R̄ZF

u is lower
bounded by:

R̄ZF
u ≥

C∑
l=1

Ng∑
g=1

(
1− τ

Ts

)
log

(
1 +

(M −Ng)β
[l]2

gl ρ
[l]2dg

gl

(M −Ng)× Ipgl + Ingl

)
, (4.15)
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where dg, g = 1...Ng represents the CSI delays of users in copilot groups g, g = 1, . . . , Ng.
Ipgl and Ingl are given by:

Ipgl =
C∑
c 6=l

ρ[l]2dg
gc β[l]2

gc , (4.16)

Ingl =

 1

Pu
+

C∑
c

Ng∑
k

β
[l]
kc − ρ

[l]2dk

kc

β
[l]2

kc

1
Pp

+
∑C

b,b 6=c β
[l]
kb

 (
1

Pp
+

C∑
b=1

β
[l]
gb).

Proof. See. B.2.

4.3.3 ASYMPTOTIC Performance

We now analyze the potential gain that the proposed training approach can provide. To do
so, we compare it with a reference model that follows a classical TDD protocol in which all
of NG copilot groups are scheduled for UL training at each time slot. We consider a worst
case scenario with random delays and random copilot groups allocation. In this scenario,
each user experiences the lowest channel autocorrelation coefficient in comparison with its
copilot users. This means that each user suffers from the heaviest channel aging impact in
its copilot group.

Theorem 8. In the asymptotic regime (M grows large), with ρ̄[min]
g and ρ̄[max]

g denoting, re-
spectively, the minimum and maximum autocorrelation coefficients in copilot group g, g =
1, ..., NG, the proposed training framework enables to improve the SE of each user when (4.17)
is satisfied

(
ρ̄

[min]2

g

ρ̄
[max]2
g

)dg

≥

(
1 + SINR[∞]

g,l

)Ts−NG
Ts−τ − 1

SINR[∞]
g,l

, (4.17)

with

SINR[∞]
g,l =

β
[l]2

gl∑
c 6=l β

[l]2
gc

, (4.18)

Proof. See B.3.

Condition (4.17) ensures that the SE of each user increases when outdated CSI is used.
Equation (4.17) shows that the speared resources due to the reduced training overhead is a
defining parameter. In fact, SE is improved as long as the SINR degradation is compensated
for by the spared resources from training. It also shows the importance of the ratio between
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the minimum and maximum autocorrelation coefficients in a copilot group. A high ratio is
required in order to achieve the needed SE gain. This requirement become tighter as the CSI
time offset increases. (4.17) shows that the use of the proposed procedure can improves the
achievable SE even with random delays and random pilot sequence allocation.

Remark 2. In order to satisfy condition (4.17), copilot users need to have similar autocor-
relation coefficients. This explains Steps 2) and 3) in the protocol in Section III.A. In fact,
clustering users based on their autocorrelation coefficients and grouping them accordingly
results in copilot user groups with homogeneous channel aging within each group. This al-
lows to tolerate higher CSI time offset. (4.17) also shows that the use of the aforementioned
training procedure can improves the achievable SE of the network, even with random pilot
allocation. Consequently, one can do better if a coherence time adaptive scheduling for UL
training is implemented. More importantly, the proposed scheme shows the impact of the
time dimension. This fact justifies the need for a time-aware training optimization which will
be the focus of the next section.

4.4 Optimal training strategy with outdated CSI and user
mobility: a two-time scale decision process

We proved that adapting UL training periodicity to the actual channel coherence time can
provide a considerable increase in network performance, even with random pilot sequence
allocation. Nevertheless, higher performance gain can be obtained if more sophisticated and
adapted scheduling policy is used. Developing such policy is the focus of this section.

As a matter of fact, knowing that CSI estimation periodicity should depend on the rate of
channel aging, it makes sense to develop an UL training policy that takes into consideration
the evolution in the difference between the estimated CSI and the actual wireless channels.
In opposition to a per slot UL training optimizing, such policy enables to take into consider-
ation the impact of past scheduling decisions on the long term performance. User mobility
should also be included. In fact, channel aging results, primarily, from mobility, with veloc-
ity being a defining parameter. Consequently, developing an UL training policy that takes
into consideration the evolution of large-scale fading coefficients, in addition to channel ag-
ing, is of paramount importance. Developing such strategy requires accurate estimates of
user locations, which can be rather complicated to obtain, in practice. As a matter of fact,
localizing all covered users requires a non negligible signaling overhead, when the localiza-
tion capabilities of the network are used (observed time difference of arrival (OTDOA) [1]
for example), on the one hand and large energy consumption with global positioning sys-
tem (GPS) on the other hand [85]. Consequently, this problem should be addressed while
assuming a partial knowledge of the user positions. Adapting to the change in user locations
and optimizing UL training decisions based on the channels’ autocorrelation coefficients,
should occur on two different time scales [84]. In fact, the two optimizations are based on
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Figure 4.2: A two time-scale planning problem

information that change over heterogeneous time scales (The wireless channel changes faster
than user position). Consequently, a two time scale control problem should be formulated.
This will be the focus of the present section.

4.4.1 Optimizing uplink training: A two-time scale control problem

We now model the two-time scale system introduced above as a Partially Observable Markov
Decision Process [87]. We assume that in both time scales (i.e., the slow and the fast-time
scales, see Figure 4.2) the action and state spaces are finite.

We consider that, in the slow-time scale (upper level), the position of the users evolves
according to a Markovian Mobility model [125] within their serving cells. These position
variations occur at decision times n = 0, 1, . . .. Let `g(n) be the combination of the positions
of users from copilot group g at time n. Considering the combination of copilot users posi-
tions instead of each individual one enables to reduce the complexity of the present model.
We assume, for the sake of simplicity, that all copilot groups have L possible position combi-
nations, hence `g(n) ∈ {1, . . . , L}. Building this model requires a portioning of the coverage
area of each cell into a number of disjoint regions. The area of each region is chosen such that
the variation of the large scale fading coefficients can be considered as negligible within the
region. For copilot group g, each position `g(n) ∈ {1, . . . , L} corresponds to a combination
of regions in each cell. The transition probabilities are characterized by the matrix

Pg = (pg(i, j))i,j∈{1,...,L}, for copilot group g. (4.19)

The large scale fading coefficients for user g in cell l, i.e., β[j]
gl , j ∈ {1, . . . , C} depend on

the users’ position. In previous sections, we assumed that this values were constant. In this
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Copilot group 1

Copilot group 2

Copilot group 3

Figure 4.3: Markovian Mobility Model

section, we add a time dependency to it, namely, β[j]
gl (n) = β

[j],`g(n)
gl ∈ {β[j],1

gl , . . . , β
[j],L
gl }.

Acquiring the information on the position of all users can be really expensive. In fact,
in 4G networks, mobile devices were required to monitor and process positioning reference
signals (PRS) from all neighboring cells which requires a non-negligible signaling and pro-
cessing overhead [1]. Acquiring, user position using GPS results also in a considerable
energy consumption for the mobile devices [85]. Consequently, we consider that a limited
number of users can feedback its positions to the network. In particular, we assume that, in
every decision epoch, the users from Umax copilot groups can feedback their positions (with
Umax < Ng). The CP therefore can only acquire the positions of the users from Umax copilot
groups, at each time n. The positions of the rest of the user will be inferred from previous
estimations. This estimation is characterized by the belief state vector. The belief state vector
of copilot group g, at decision-time n, will be denoted by~bg(n), where the ith entry in~bg(n)
refers to the probability that the users of copilot group g are in positions of combination i.
We define by Xg the set of all belief states for copilot group g and we let X = X1× . . .×XNg
be the state space in the upper level. A remark on the notation is now in order.

Remark 3. The state in the upper level x ∈ X is an L×Ng matrix, whose columns represent
the belief state vectors of all copilot groups g, for g = 1, . . . , Ng. That is, x = (~b1, . . . ,~bNg).

In the upper level, at every decision epoch n = 0, 1, . . ., the decision is to select which
Umax copilot groups out of the Ng will transmit their positions to the BSs. That is, we
consider the action vector ~u(n) = (u1(n), . . . , uNg(n)) ∈ A = {0, 1}Ng , such that

ug(n) =

{
1 users in copilot group g feedback their positions at decision epoch n,
0 otherwise.

(4.20)
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At decision epoch n, the transition probability from belief state matrix x(n) ∈ X to belief
state matrix x(n+ 1) ∈ X is defined by

Pup(x(n+ 1) = x′|x(n) = x, ~u(n)) =P(~b1(n+ 1) = b′1|~b1(n) = b1, ~u(n)) · . . . (4.21)

· P(~bNg(n+ 1) = b′Ng |~bNg(n) = bNg , ~u(n)),

where, x′ = (~b′1, . . . ,
~b′Ng), x = (~b1, . . . ,~bNg) with b′g, bg ∈ Xg for all g = 1, . . . , Ng and

~u(n) ∈ A. The latter is satisfied because all users have independent movements. Recall that
each position combination of users in copilot group g is characterized by a set of large scale
fading coefficients β[j]

gl , j ∈ {1, . . . , C}, l ∈ {1, . . . , C}.

In the fast-time scale, we define the state-space by X = {0, . . . , H − 1}Ng , that is, the
set of all possible delay vectors. Namely, ~d = (d1, . . . , dNg) ∈ X is such that dg is the CSI
delay of all users in copilot group g, i.e., λg. The action space is given by A = {0, 1}Ng . For
~a = (a1, . . . , aNg) ∈ A, ag, 1, . . . , Ng is given by

ag =

{
1 copilot group g is scheduled for uplink training,
0 otherwise.

(4.22)

When a given copilot group is not scheduled for training, its signals are processed using
the last available CSI estimates. The decision times at the fast-time scale (lower level) will
be denoted by t = {t0, t1, . . .}, with tnH = n for all n = 0, 1, . . . and H the finite-time
horizon in the lower level. Moreover, we make the assumption that the decision ~u(n) in the
slow-time scale (at decision epoch n) is made right after the decision at time tnH . We denote
by ~d(0) = ~d0 ∈ X the initial state in the fast-time scale at n = 0 and x0 ∈ X the initial state
in the slow-time scale. In this particular model, the fast time scale transitions from time tnH
until time t(n+1)H−1 for all n ≥ 0 are deterministic. Namely,

dg(tnH+j) = (1 + dg(tnH+j−1))(1− ag(tnH+j)), for all n ≥ 0, and 1 ≤ j ≤ H. (4.23)

At the fast time scale, we therefore encounter a finite-state finite-horizon deterministic sequential-
decision making problem [86]. In what follows we consider MRC receivers at the BSs. The
same analysis can be done in the case of ZF receivers by applying simple changes which will
be indicated when needed. The reward in this lower level, at time t with MRC receivers, is
the following

Rlow(~d(t),~a(t), x, ~u) =

Ng∑
g=1

C∑
l=1

(
1− 1

Ts

Ng∑
i=1

ai(t)

)
log
(

1 + SINRMRC
gl (~d(t), x, ~u)

)
,

(4.24)

where x ∈ X and ~u ∈ A are fixed and

SINRMRC
gl (~d(t), x, ~u) =

(M − 1)(β
[l]
gl )

2(ρ
[l]
gl)

2dg(t)

(M − 1)× Ipgl + Ingl
, (4.25)
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the SINR of user g in cell l with MRC receiver. Ipgl and Ingl are given in Theorem 6.
Note that SINRMRC

gl can be replaced with SINRZF
gl (Theorem 7), if ZF receivers are used.

We also need to state that the reward function at the lower level, i.e., Rlow, depends on the
belief state and the decision in the upper level.

We now define the sequence πlow = {~φlown }∞n=0, where for each n,

~φlown = (φlowtnH , φ
low
tnH+1

, . . . , φlowt(n+1)H−1
). (4.26)

Each function φlowtnH+j
: X × X × A → A prescribes the action to be taken at decision time

tnH+j (in the lower level), for all n ≥ 0 and all 0 ≤ j ≤ H − 1. For this model we only
look at the set of stationary decision rules, πlow with respect to the upper level, such that
~φlown (~d, x, ~u) = ~φlown′ (~d, x, ~u) for all n and n′ given ~d ∈ X , x ∈ X and ~u ∈ A. The set of
all possible lower level decision rules will be denoted by Πlow, i.e., πlow ∈ Πlow. Moreover,
we drop the dependency on n, since we only consider policies that are n-independent, and
we denote by Φlow the set of all H-horizon policies ~φlow, i.e., ~φlow ∈ Φlow. We now define
Φlow
x,~u ⊂ Φlow as follows

Φlow
x,~u = {~φlowx,~u : ~φlowx,~u = (φlowx,~u,t0 , . . . , φ

low
x,~u,tH−1

), φlowx,~u,tj : X × {x} × {~u} → A and j = 0, . . . , H − 1}.
(4.27)

The latter is the set of all H-horizon policies given initial belief state matrix x and action in
the upper level ~u. Note that, in the definition of Φlow

x,~u to introduce the policy ~φlowx,~u , we use
the decision times t0, . . . , tH−1. This is without loss of generality, since we recall that these
policies are independent from n.

Next we define the reward in the upper level. Namely,

Rup(~d, ~φlow, x(n), ~u(n)) =

t(n+1)H−1∑
t=tnH

Rlow(~d(t), φlowt (~d(t), x(n), ~u(n)), x(n), ~u(n)), (4.28)

where ~d is the delay state vector at time tnH . We remark that none of the upper level decisions
incur in an immediate cost. Let us denote by Φup the set of all possible stationary decision
rules in the upper level, such that πup ∈ Φup, πup : X×X → A. Consequently, the objective
is to find πup ∈ Φup and πlow ∈ Φlow such that

max
πup∈Φup

max
πlow∈Φlow

lim
Z→∞

1

Z

Z−1∑
n=0

E
(
Rup(~d(tnH), πlow, x(n), πup(~d(tnH), x(n)))

)
. (4.29)

The latter problem is a POMDP [87]. To see this, it suffices to note that the slow time
scale sequential decision making problem is just a POMDP with a reward that depends on
the fast time scale deterministic decision making problem. Therefore the standard theory on
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Bellman’s optimality equations follows. The optimal decision-rule for this POMDP can be
obtained as a solution of the optimality equation for 0 < α < 1

V (~d, x) = max
~u∈A

(
max

~φlow
x,~u
∈Φlow
{Rup(~d, ~φlowx,~u , x, ~u) + α

∑
y∈X

Pup(y|x, ~u)V (~d
~φlowx,~u , y)}

)
. (4.30)

We will now make an assumption that will simplify the model significantly. Let us define
Φ
low ⊂ Φlow where

Φ
low

= {~φlow : ~φlow = (φlowt0 , . . . , φtlowH−1
), (4.31)

φlowtj : X × {x} × {~u} → A for j = 0, . . . , H − 1, and φlowt0 = (1, . . . , 1)}.

For all ~φlow ∈ Φ
low

, ~φlow is such that, in the first stage of the H-horizon problem, all copilot
groups are scheduled for UL training. This allows us to start every slow-time scale with the
same delay state ~d(nH) = (0, . . . , 0) for all n = 0, 1, . . .. Optimality equation in Eq. (4.30)
then reduces to

V (x) = max
~u∈A

(
max

~φlow
x,~u
∈Φ

low
{Rup(~φlowx,~u , x, ~u)}+ α

∑
y∈X

Pup(y|x, ~u)V (y)

)
, (4.32)

where Rup(~φlowx,~u , x, ~u) = Rup((0, . . . , 0), ~φlowx,~u , x, ~u). If we further denote

Rmax(x, ~u) = max
~φlow
x,~u
∈Φ

low
{Rup(~φlowx,~u , x, ~u)}, (4.33)

we then obtain a standard one-time scale POMDP, and its optimality equation reduces to

V (x) = max
~u∈A

(
Rmax(x, ~u) + α

∑
y∈X

Pup(y|x, ~u)V (y)

)
. (4.34)

Although Markov Decision Process (MDP)s have been long studied in the literature, little
can be said about the optimal solution of complex problems like Problem (4.34). In the next
subsections, we provide methods to solve Problem (4.34).

4.4.2 Fast time scale: learning an optimal training strategy for finite
horizon

We start by solving the fast time scale problem in order to derive Rmax(x, ~u), see equa-
tion (4.33). In the current literature, the number of scheduled users, on each slice of the
spectrum, is limited by the length of the UL training signal, which is already fixed. A more
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appropriate approach would be to define the needed training resources dynamically at each
time slot depending on all available information about users. This is in accordance with the
concept of dynamic TDD that is already considered in the current development of the 5G
standard [2].

In order to do so, we consider a dynamic system in which the base stations selects, at
the beginning of each slot, the users that are scheduled for training, if there is any, and the
users that will be using an outdated version of their CSI. In order to enjoy full flexibility,
no maximum delay constraint is fixed a priori and the network is free to allow any delay it
deems acceptable. All copilot groups are scheduled for data transmission. All available CSI
estimates are used in order to decode the users signal. We choose to base the proposed UL
training optimization on the lower bound in Theorem 6 and on the estimated autocorrelation
of the users channels. This is quite advantageous since it allows the network to optimize
its training over time without requiring instantaneousness channel estimates. UL training
optimization can naturally be formulated as a discrete planning problem over a finite time
horizon [86]. In fact, optimizing the network’s scheduling decisions is equivalent to deriving
a sequence of actions that will maximize the projected cumulative average spectral efficiency
over time.

We formulate a finite horizon deterministic control problem. The optimal training de-
cisions are derived for a predefined time duration H . The actions of the network on the
fast time scale are optimized while assuming a given belief state x, an initial state ~d(0) =
(0, . . . , 0) for all n = 0, 1, . . . and a given action in the upper level ~u.

The control horizon H is selected to be equal to the large-scale fading block. The main
goal, in this section, is to derive the optimal training strategy over a finite optimization hori-
zonH . To the authors knowledge, this is the first work that addresses the issue of UL training
using an optimal control approach over a finite time horizon. Without loss of generality, we
consider n = 0. The problem of optimal users scheduling for UL training can be formulated
as follows:

max
~φlow
x,~u
∈Φ

low
{
tH−1∑
t=t0

Ng∑
g=1

C∑
l=1

(
1− 1

Ts

Ng∑
i=1

ai(t)

)
log
(

1 + SINRMRC
gl (~d(t), x, ~u)

)
}, (4.35)

with

Ng∑
g=1

ag(t) ≤ τ, ∀t = t1, . . . , tH−1,

~d(0) = (0, . . . , 0).

A naive approach to solve problem (4.35) is to generate allH-length sequences of actions
and then select the sequence that results in the higher cumulative average SE after H slots
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(brute force). Clearly, this approach can be quite computationally prohibitive when the action
space and the optimization horizon are large. A more appropriate approach is to use the
Dynamic Programming (DP) algorithm, see [192] (based on the Bellman Equation). The
DP approach can be used for sequential decision making problems like the one proposed in
Eq. (4.35). Next we present the DP algorithm for Problem (4.35). Let X ∪ {γ} be the set of
all delay states, with γ an artificially introduced final state. We assume that the reward (or
the spectral efficiency) from state ~di to ~dj with ~di, ~dj ∈ X is given by

rij =

Ng∑
g=1

C∑
l=1

(
1− 1

Ts

Ng∑
n=1

~aijn

)
Rgl(~dj), (4.36)

if there exists an action vector ~aij = (aij1 , . . . , a
ij
Ng

) that allows the transition from state ~di to
~dj in one stage. Otherwise, rij = −∞. We further define riγ = 0 the cost to go from state ~di
to the final state γ. Let us now define Vh(~d) as the optimal reward to get from state ~d to γ in
H − h stages, then the optimal reward from initial state ~d0 = (0, . . . , 0) to final state γ, i.e.,
V0(~d0), is obtained as follows. Define

Vh(~di) = max
~dj∈X
{rij + Vh+1(~dj)}, for all h = t1, . . . , tH−1, and VH(~di) = riγ = 0, for all ~di ∈ X.

In the next table we provide the DP algorithm (proposed above) in details.
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Input: Optimization horizon H , Maximum length of training sequences τ , Channel

autocorrelation coefficients estimates for all users, Ng copilot groups.

Initialize: VH−1 = {0}Ng×H and a∗H−1n = {0}Ng×H for all n ≤ Ng,

1. for t1 < h < tH−1:

2. for ~di ∈ X at stage h:

define rij = −∞ if the transition from ~di to ~dj is not allowed

define rij =
∑Ng

g=1

∑C
l=1

(
1− 1

Ts

∑Ng
n=1~a

ij
n

)
log
(

1 + SINRMRC
gl (~dj, x, ~u)

)
if transition from ~di to ~dj is allowed

3. Vh(~di) = max~dj∈X(rij + Vh+1(~dj))

4. (a∗h1(~di), . . . , a
∗
hNg

(~di)) = argmax~dj∈X(Vh+1(~dj) + rij)

5. The optimal training strategy is retrieved as follows ~a∗1(~d0 + 1) is the optimal action

vector at stage 1. ~a∗2(~dj) with djn = (2 + d0
n)(1− a∗1n) we retrieve the optimal

action vector at stage 2, and so on.

Table 4.1: Finite horizon optimal uplink training strategy

Due to user grouping, deriving the optimal training strategy is simplified. In fact, instead of
deciding which user is scheduled for UL training with which pilot sequence at, each time
slot, the network optimizes its decisions for predefined groups. Consequently, the search
space is reduced and the optimal strategy can be derived faster. Enabling the network to
optimize its training decisions over time has another interesting impact since it enables to
reduce the needed signaling between the BS and the users. In fact, the scheduling decisions
are communicated once every HTs slots. Since users are grouped and are aware of their
grouping, the BS is not required to notify each user, individually, about its training strategy.
Feeding back the decisions to the users can be done on a group bases which significantly
reduces the amount of required signaling in the network.

Remark 4. We note that the algorithm in Table 4.1 can be computationally expensive for
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large optimization horizons H with a running time O(H |X| |A|). In the next subsection
we provide an algorithm with a lower complexity that provides an approximate policy that
reaches a guaranteed fraction of the optimal solution.

4.4.3 Fast time scale: A faster approximate learning solution

Deriving a training strategy, in the lower level (fast time scale), using the aforementioned
value iteration algorithm provides an optimal solution to the considered control problem
(4.35). Nevertheless, in low mobility cases, the optimization horizon can be quite large due
to slow changing user locations. Consequently, the search space at each iteration of the
algorithm in table I becomes large resulting in a long running time that can hinder the UL
training procedure. This motivates us to find an alternative approach to solve problem (4.35).

Instead of adopting a dynamic programming approach, we trait this problem by combina-
torial optimization. In order to do so, expressing the CSI delays ~d(tj) = (d1(tj), . . . , dNg(tj))

as a function of the action vectors ~a(t) = (a1(t), . . . , aNg(t)), ∀t = t0, . . . , tj−1 and ~d(t) =
(d1(t), . . . , dNg(t)), ∀t = t0, . . . , tj , is now in order. The delay dg(tj),∀g = 1, . . . , Ng, can
be written as follows

dg(tj) = tj

tj∏
t=t1

(1− ag(t)) +

tj∑
t=t1

t ag(tj − t)
tj∏

h=tj−t+1

(1− ag(h)). (4.37)

Consequently, the objective function in problem (4.35) can be transformed into the following

max
~a(t0),...,~a(tH−1)

{
tH−1∑
t=t0

Ng∑
g=1

C∑
l=1

(
1− 1

Ts

Ng∑
i=1

ai(t)

)
log
(

1 + SINRMF
gl (~d(t), x, ~u)

)
}, (4.38)

with

Ng∑
g=1

ag(t) ≤ τ, ∀t = t1, . . . , tH−1, (4.39)

SINRMRC
gl (~d(tj), x, ~u) =

(M − 1)(β
[l]
gl )

2(ρ
[l]
gl)

2(tj

tj∏
t=t1

(1−ag(t))+
tj∑
t=t1

t ag(tj−t)
tj∏

h=tj−t+1
(1−ag(h)))

(M − 1)× Ipgl + Ingl
,
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and

Ipgl =
C∑
c 6=l

ρ[l]

2(tj

tj∏
t=t1

(1−ag(t))+
tj∑
t=t1

t ag(tj−t)
tj∏

h=tj−t+1
(1−ag(h)))

gc β[l]2

gc , (4.40)

Ingl = (
C∑
c=1

∑
k 6=g

β
[l]
kc +

C∑
c=1

(β[l]
gc −

β
[l]2

gc ρ
[l]

2(tj

tj∏
t=t1

(1−ag(t))+
tj∑
t=t1

t ag(tj−t)
tj∏

h=tj−t+1
(1−ag(h)))

gc

1
Pp

+
∑C

b=1 β
[l]
gb

) +
1

Pu
)

(4.41)

× (
1

Pp
+

C∑
b=1

β
[l]
gb).

In the following theorem, we show that problem (4.38) is equivalent to a maximization of a
submodular function subject to matroid constraints.

Theorem 9. Problem (4.38) is equivalent to maximizing a submodular set function subject
to matroid constraints.

Proof. See appendix C.

The structure of problem (4.38) is quite convenient. In fact, even-though the objective
function is not monotone, efficient approximation algorithms exist for the non-monotone
submodular set function case.

In this work, we make use of the approximation algorithm proposed in [190] which
provides a

(
1

k+2+ 1
k

+ε

)
-approximation of the optimal solution under k matroid constraints.

In our case, we consider H − 1 matroid constraints. Each one is associated with a given
optimization stage t, t = t1, . . . , tH−1. In fact, the action at each tnH is already fixed
~d(tnH) = (0, . . . , 0). Consequently, the proposed algorithm in this subsection provides a(

1
H+1+ 1

H−1
+ε

)
-approximation of the optimal cumulative average SE. The detailed algorithm

is given in table 4.2. We define the ground setG = {v1t1 , . . . , vNgt1 , . . . , v1tH−1
, . . . , vNgtH−1

},
where each element vgt represents the scheduling of copilot group g for training at slot t. We
also define the sets It, t = t1, . . . , tH−1. Each It contains the selected elements at stage t
with |It| ≤ τ .
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1. Set G0 = G:

2. for t1 < h < tH−1:

3. Apply Approximate local search Procedure (table III) on the ground set Gh to obtain

a solution Sh ⊂ Gh corresponding to the problem: maxS(Rup(S, x, ~u) : S ⊂ Gh)

4. set Gh+1 = Gh \ Sh

5. Return the best solution (Rmax(x, ~u) = maxS1,...,SH−1
(Rup(Sh, x, ~u))).

Table 4.2: Algorithm for Approximate Finite horizon training strategy

Input: Ground set X of elements

1. Set v ←− argmaxu∈X(f(u)) and S ←− {v}

2. While one of the following local operations applies, update S accordingly

•Delete Operation on S:

If e ∈ S such that f(S \ {e}) > (1 + ς
N4
g
)f(S) then S ←− S \ {e}

•Exchange Operation on S:

If d ∈ X \ S and eh ∈ S ∪ {∅} (for t1 < h < tH−1) are such that (S \ {eh}) ∪ {d} ∈ Ih

for all h and f((S \ {e1, . . . , eH−1}) ∪ {d}) > (1 + ς
N4
g
)f(S),

then S ←− (S \ {e1, . . . , eH−1}) ∪ {d}.

Table 4.3: Approximate Local search Procedure
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4.4.4 Slow time scale: adapting to user mobility

Once the fast time scale planning problem is solved, we tackle the infinite horizon positioning
problem of the slow time scale. Since we have chosen to decompose (4.29) into two levels,
the combination of the policies, in the two time scales, will provide an infinite horizon policy
that solves (4.29). The mobility of each copilot group g is modeled by an L-state Markov
chain. The positions of users in a each copilot group g remain the same for a given period
which is equal to the large scale fading coefficients coherence block and evolves according
to the probability transition matrix Pg.

Solving the slow time scale control problem, directly, becomes intractable for a large
number of users and possible positions, owing to the resulting complexity of belief-state
monitoring [193]. Nevertheless, practical methods exist if policy optimality is abandoned
for the sake of convergence speed. We adopt the approximate approach in Nourbakhsh et al.
[194], which solves a POMDP by exploiting its underlying MDP. This is done by ignoring
the agent’s confusion (uncertainty about users locations) and assuming that it is in its most
likely state (MLS). Replacing a complicated POMDP Problem by its underlying MDP en-
ables to considerably reduce complexity since the belief space is replaced by a more practical
and smaller state space.

We now discuss in more details how the upper level policy is derived. Particularly, in our
case, the state of the underlying MDP, at a given decision epoch, s ∈ S is an NG × 1 vector
whose elements represent the location of all copilot groups. That is, s = (`1, . . . , `NG). The
most likely positions of users, for each decision epoch n = 0, 1, . . ., are obtained as

{`∗1(n), . . . , `∗NG(n)} = argmax{`1(n),...,`NG (n)}∈{1,...,L}NG (

NG∏
g=1

~bg`g(n)), (4.42)

Recall that the belief position at decision epoch n depends on the belief state transition
given in (4.21). Using (4.42), the agent’s uncertainty about user locations is removed and
the upper level planning problem is transformed to a more practical MDP. The resulting
MDP is solved using value iteration [86]. At each iteration, the CP updates its belief-state
(according to (4.21)) and assumes that the users are in their most likely positions (ac-
cording to (4.42)). Then, a training policy is derived in the fast time scale, based on the
assumed positions. Deriving the latter can be done using the algorithm in table I . This
provides the upper level reward which is equivalent to the H-horizon lower level reward
Rmax(x, ~u) = max~φlow

x,~u
∈Φ

low{Rup(~φlowx,~u , x, ~u)}. The same procedure is repeated until deriv-

ing the best position estimation decision for each most likely state. Although the derived
policy provides only an approximate location estimation strategy, it enables, nevertheless, to
solve a problem otherwise intractable in realistic scenarios.
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4.5 Numerical Results

In this section we provide some numerical results to validate the derived analytical expres-
sions and to demonstrate the performance of the proposed training/copilot group scheduling
scheme. We also showcase the performance of the proposed UL training learning proce-
dures. We compare the obtained results for the proposed schemes with a massive MIMO
system operating according to the classical TDD protocol, considered as a reference model.
We consider C = 7 hexagonal cells, each of which has a radius of 1.5Km. The possible posi-
tions of the mobile users are generated randomly in each cell with minimum distance of 10m
to their serving BSs. The movement velocities and directions are generated randomly for all
users. User speeds are drawn randomly from [4Km/h; 80Km/h]. This interval includes,
pedestrian and public transportation speeds. The angle separating the movement direction
of the mobile devices and the directions of their incident waves are drawn from [0, 2π]. The
path-loss exponent is considered to be equal to 3.5. A coherence block of Ts = 200 is as-
sumed with a coherence time of 1 ms. The system operates over a bandwidth of 200Mhz
[94]. Once the copilot groups formed, we consider L = 5 possible position combinations
for each group. The transition probabilities matrices Pg, g = 1, . . . , Ng are also generated
randomly with

∑L
j=1 pg(i, j) = 1,∀g = 1, . . . , Ng,∀i = 1, . . . , L.
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Figure 4.4: Comparison of the CDFs of spectral efficiency (Ng = 30, M = 50)

Figure 4.4 presents a comparison of CDFs of the achievable spectral efficiency between
the reference model and the proposed training scheme for different numbers of antennas at
the BS. For 50 BS antennas, the proposed training scheme achieves a gain in the 5% outage
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rate of 6 bit/s/hz. For 150 antennas, the gain in the 5%-outage rate grows to 8 bit/s/hz This
increase in the performance is mainly due to the reduced training resources which can be
used to transmit more data.
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Figure 4.5: Spectral efficiency for varying values of M

Figure 4.5 examines the tightness of the proposed analytical lower bound given in The-
orem 6. As can be observed, the proposed lower bound almost overlap with the simulation
curve. In addition, we readily see that using outdated CSI with the implicated decrease of
training resources increases the spectral efficiency by 6.91 bit/s/hz for M = 50. This gain
attains 11.2 bit/s/hz for M = 150.

Figure 4.6 shows a comparison of the achievable SE as a function of the number of BS
antennas with ZF and MRC receivers, respectively. As we can see in Figure 4.6, the proposed
training scheme achieves a considerable gain in SE with both ZF and MRC receivers. For
M = 105, the proposed training scheme achieves SE gains of 12.2 bit/s/hz and 3.6 bit/s/hz
with ZF and MRC receivers, respectively. We readily see that the speared resources from
UL training enable to mitigate any degradation in SINR that the use of outdated CSI may
generate.

We now investigate the performance of the proposed two time scale learning algorithms.
The performance is evaluated as the difference between the achievable cumulative average
SE of the considered methods and a classical Massive MIMO TDD protocol.

In Figure 4.7 , we illustrate the performance of the UL training learning algorithms for the
fast time scale. The performance of optimal policy (Algorithm table 4.1) and the approximate
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one (Algorithm table 4.2) are compared with the case where outdated CSI is used with a per
slot optimization. The latter means that the evolution of the correlation between the estimated
CSI and the actual channel according to the time dimension is not taken into consideration
and the scheduling of copilot groups for UL training is optimized in order to maximize the
ASE at each slot. Figure 4.7 shows that using the algorithms in table 4.1 & 4.2, the gain in
cumulative average SE is maintained and attains 41.99 bit/s/hz and 38.7 bit/s/hz respectively,
at the final stage of the optimization horizon H . However, although per slot optimization
achieves also a gain in cumulative average SE, we can see that this method performs poorly
in comparison with the proposed policies which shows the paramount importance of taking
the time dimension into consideration when optimizing UL training decisions. Finally, due
to its good performance, we can deduce that the approximate method (Algorithm table 4.2)
represents an efficient low complexity substitute to the more computationally prohibitive DP
approach (Algorithm table 4.1).
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Figure 4.8: CASE gain for different Umax values (H = 4, n = 0, . . . , 2, Umax1 = Ng, Umax2 = Ng −
4 and Umax3 = Ng − 8

In Figure 4.8, we illustrate the achievable cumulative average SE gain after 3 upper level
decision epochs with a lower level of horizonH = 4. In this example, 3 values for Umax were
considered. As can be readily observed, decreasing Umax results in lower cumulative average
SE gain. This is quite intuitive since a lower Umax results in more confusion about the users
locations. In fact, the CPU commits more errors when inferring users positions from its
belief states for lower Umax values. Nevertheless, despite the positioning errors the proposed
two time scale learning approach is able to provide a considerable cumulative average SE
gain of 110.26 bit/s/hz, 97.863 bit/s/hz and 70.73 bit/s/hz with Umax1, Umax2 and Umax3

91



4.6. Closing Remarks

respectively, after 12 Ts slots. These results did not showcase the energy and signaling gains
that result from reducing positioning estimation but are sufficient to prove the advantages of
allowing the network to proactively plan its UL training decisions for long time periods.

4.6 Closing Remarks

In this chapter, we have proposed a novel UL training paradigm for TDD massive MIMO
systems. The main idea is to adapt the periodicity of each users’ CSI estimation based on
its actual coherence time. The proposed scheme highlighted the importance of the time di-
mension in the training process and proved that this dimension can be leveraged in order to
substantially improve the achievable cumulative spectral efficiency. As a matter of fact, we
proposed a two time scale control problem in order to allow the network to learn the best
UL training strategy taking into consideration user mobility, channel coherence time and
practical signaling overhead limitations. In the fast time scale, the network learns an optimal
training strategy by choosing which users are requested to send their pilot signals for a prede-
fined optimization horizon that is equivalent to the large scale fading coefficients coherence
block. In the slow time scale, owing to practical signaling and processing overhead limita-
tion, the network needs to choose which users are required to feedback their positions, based
on their belief states. The proposed approach enables to leverage the time evolution of the
correlation between the wireless channel and the estimated CSI and provides an impressive
increase in the achievable cumulative average SE that cannot be obtained otherwise.
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Chapter 5

User-centric 5G networks: Energy
Efficiency under popularity based
Clustering in cache enabled SCN

5.1 Overview

5G systems are expected to fulfill multiple user experience requirements such as low latency,
high reliability, low energy consumption and dense connectivity. In order to meet these re-
quirements, network designers can call upon a number of innovative technologies, namely,
dense small-cell deployment, millimeter-wave communications and massive MIMO among
others. Nevertheless, the performance gap between 5G requirements and previous wireless
networks, such as LTE, is considerable. Addressing this difference cannot be fulfilled by
only concentrating on improving the physical layer in a user and service agnostic fashion.
As a matter of fact, under the current reactive networking paradigm, physical layer technolo-
gies falls short of solving peak traffic demands. This situation is expected to worsen with the
surge in the number of connected devices and the advent of high density connectivity which
put a considerable strain on back-haul links. Consequently, to meet the low latency and di-
verse 5G requirements, some data plane functionalities should be offloaded on the edge of
the network in order to facilitate data provision and reduce the strain on the back-haul. This
is exactly what user-centric networks are envisioned to achieve. User-centric 5G network
trades the conventional service agnostic for a more intelligent and proactive one. By moni-
toring and analyzing the sources of traffic, user behavior can be predicted and local copies of
popular content can be provided from local storage devices at the edge of the network. This
can reduce E2E latency and enhance user experience while reducing the needed resources
to achieve it. User-centric networks are emerging as a promising technology to address the
required performance increase for future wireless access networks. Predicting users behavior
and proactively caching popular content in the edge of the network has shown a consider-
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able potential in terms of back-haul savings and user experience improvement. In addition, a
worldwide challenge for the design of future cellular systems is to meet the increasing traffic
demand, while, on the other hand, to lower the emission of greenhouse gases for achiev-
ing the environment sustainability. User-centric 5G networks have the potential to address
one of the key requirements of 5G networks, namely, EE. As a matter of fact, thanks to
the improvement of memory devices, proactive caching offers a very practical and energy
efficient alternative to network densification since it replaces back-haul link by caching ca-
pacity at the BSs. The impact of user-centric networks on EE is a fundamental subject that is
attracting increasing attention [170, 171]. Previous works already showed the considerable
potential of proactive caching in reducing energy consumption [76]. When coupled with en-
ergy harvesting communications, the green impact of proactive caching is taken to another
level[170].

A key component of information-centric networks is users behavior modeling (i.e. con-
tent popularity profiles). Most previous works assume similar popularity profiles for all
users. We argue that this approach is suboptimal. As a matter of fact, assuming homoge-
neous content popularity among users can only result in loosing valuable information that
can be leveraged otherwise. In realistic scenarios we observe the existence of very diverse
traffic patterns among users. In fact, the requested content depends on the user social net-
work and interests that can be very different from one person to the other. In this chapter,
we address this issue by providing a more adaptive framework for proactive caching that
takes into consideration the diversity of user traffic patterns. We also EE in the context of
heterogeneous traffic patterns.

The main contribution of this chapter is to provide a content popularity based cluster-
ing framework for caching. In particular, given heterogeneous user profiles, we propose a
content popularity based clustering scheme. In order to achieve an efficient user grouping,
we use the Akaike Information Criterion. This allows to effectively estimate the number
of clusters and the associated average popularity profiles, thus providing an estimate of the
main users request patterns. Based on the derived average profiles, we develop two opti-
mization frameworks in order to improve the achievable EE. First, the optimal active SBS
density vector is obtained through quasi-concave optimization. This allows to switch SBSs
on and off and cache content accordingly so that the EE is optimized. Second, we leverage
any spatial correlation in user request patterns in order to improve EE by optimizing content
placement in the SCN. We develop a combinatorial optimization framework that enables to
place popular content in SBSs caches so that the total transmit power is minimized.

The rest of chapter is organized as follows. Our network model for proactive caching
is detailed in Section 5.2. The proposed content popularity based clustering is presented in
Section 5.3. An analysis of EE in addition to its optimization with respect to active SBSs
densities is carried out in Section 5.4. In Section 5.5, the problem of cache placement is
addressed. Discussions of numerical results are carried out in Section5.6. Finally, Section
5.7 draws some conclusions.
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5.2 System Model And Preliminaries

5.2.1 Network Model

We consider a small cell network deployed over a disc with radiusRn. The SBSs are spatially
distributed according to a homogeneous Poisson point process φs with density λsmax . The
available SBSs can be in idle or active modes. The density of active SBSs is given by λs
such that λs ≤ λsmax .

We consider an orthogonal frequency-division multiple access (OFDMA) system where,
users served by the same SBS, are scheduled on orthogonal resources. Consequently, each
user will be subject to interference coming from users served by other SBSs. The users are
also distributed in R2 according to an independent homogeneous Poisson point process (PPP)
φ with density λ such that, λ >> λsmax . The average number of users in the network is
then given by U = λπR2

n. Each user is equipped with a single antenna and is allowed
to communicate with any SBS within a radius R. This restriction enables to control the
level of interference. We consider that R is defined so that each user is covered with high
probability by more than one SBS. We consider that a packet can be successfully transmitted
and decoded if and only if SINR> θ. This means that, if the SINR is lower than the threshold
θ, the link undergoes an outage and the transmission fails.

A general power law pathloss model is used where, the power decay is given by r−αus . rus
represents the distance between user u and its serving SBS s and α > 2 denotes the pathloss
exponent.The wireless channel from user u to the SBS s is then given by:

gus =
√
r−αus hus, (5.1)

where hus represents the small scale fading coefficient modeled as Rayleigh fading i.e.,
CN (0, 1) distributed random variable. We consider that the transmit power, used in both
UL and DL, is defined according to channel inversion power control [177]. This is done so
that the transmit power compensates the pathloss in order to keep the average signal power
at the receiver (i.e., the SBS or the user terminal) equal to a certain constant value ρ0. The
transmit power used by user u to communicate with SBS s, according to channel inversion
power control, is given by: ρus = ρ0r

α
us. The channel inversion power control will ensure a

limitation of the interference level since the power received at any BS from a typical user is
upper bounded by ρ0R

α, where R denotes the maximum communication radius. Controlling
the level of interference, in both UL and DL, is a vital factor that guarantees an EE gain [76].

5.2.2 User scheduling and caching strategy

We consider a file catalog C containing F files with different sizes. Each file i has a size of
Li bits. Users are assumed to have heterogeneous file popularity distributions. Each user u is
associated with a popularity vector Pu = [p1u...pFu], where piu denotes the probability that
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Figure 5.1: System Model

user u requests file i from the catalog. We consider that these probabilities change slowly
over time and that they are previously known by the network. Estimating the popularity
distributions can be performed by learning from previously recorded requests [178]. In
this work, we limit our analysis to the case of perfectly known popularity distributions. The
study of the impact of estimation error in popularity distributions is considered in future
work. Although users have heterogeneous popularity profiles, we assume that they can be
grouped according to their interest into Nc clusters. This means that the users, forming each
cluster, have correlated request patterns. Meaning that the distance between their content
popularity vectors is small. Each SBS is equipped with a caching capacity of M bits.

Each individual SBS fills its memory device with the most popular files from a given
cluster. In each cluster, the most popular files are selected based on the average of the
popularity vectors associated with the users forming this cluster. Therefore, appropriately
clustering the users based on the similarity in their popularity distributions is of paramount
importance. Not all SBSs are required to be active. We consider the density vector of active
SBSs Λs ∈ RNc×1, where each of its coefficients λsk, k = 1..Nc represents the density of
active SBS caching the most popular files of cluster k. Λs is defined such that Λ†s1 = λs.
Each user looks for the requested file in the cache of the SBSs within a radius R. The user
starts with the closest SBS from his own cluster. If the requested file is available in a cache
within this distance, a cache hit event occurs and the user will associate with the closest SBS
storing the requested file. In the event of a cache miss, the user, simply, associates with the
nearest SBS from its corresponding cluster and the requested content will be retrieved from
the core network through the backhaul. If a user cannot find an SBS from its own cluster
within a radius of R, it will only communicate with SBSs from other clusters within radius
R, in the case of a cache hit event. An example of the considered model is represented in
Figure 1 with three popularity based clusters represented, each, by a color.
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5.3 Information theoretic approach to user clustering

Proactive caching systems require an efficient characterization of content popularity in order
to correctly predict the files that are most likely to be requested. While most of the existing
work assume similar popularity distributions for all users, we adopt a content based clus-
tering approach. We argue that clustering users according to their popularity distributions
enables to better assess social similarities [49, 51] and, consequently, devise a more efficient
caching system. In fact, supposing that all users in the network have similar popularity dis-
tributions means that the resulting statistics are just an average of content popularity over all
social groups. This leads to neglecting the diversity of social behavior. Contrary to traditional
location based clustering methods, content aware clustering enables to identify the main re-
quest patterns in the network which leads to a better understanding of user preferences. In
this work, content popularity based clustering is considered. Users are grouped such that,
the correlation between the popularity profiles of users in the same cluster is maximized.
This correlation is characterized by the euclidean distance between their content popularity
vectors. While content based clustering was proposed in [51] using a spectral approach, we
choose to adopt an information theoretic method, namely, Akaike information criterion. AIC
allows to efficiently estimate the number of clusters and to assess the information loss that
results from assuming a single popularity distribution.

5.3.1 Cluster estimation: Akaike information criterion

In the considered setting, the users have heterogeneous popularity profiles. However, the
different social relations and interactions may result in some correlation in user request pat-
terns. Consequently, content popularity based clustering is used in order to minimize the
divergence among user content popularity distributions in each cluster. The number of con-
tent popularity based clusters is unknown a priori and should be estimated. Allowing the
system to estimate this parameter periodically or whenever a substantial change in user in-
terest is recorded, allows the network to cope with any modification in user request pattern.

In order to estimate the number of clusters, we use AIC [173] as a statistical model se-
lection criterion. It allows to assess the quality of a statistical models for a given set of data.
The data set to be modeled in our case is the collection of user content popularity distribu-
tions. Using AIC enables to estimate the expected Kullback-Leibler discrepancy between
the data generating model and any candidate statistical model. It also addresses the trade-
off between the fitness of the statistical model, based on maximum likelihood estimation,
and its complexity, which is given by the number of model-characterizing parameters to be
estimated.

In our case, we aim at modeling the distribution that generates the user’s popularity
vectors. We consider the true generating distribution A(P1, ..., PU) =

∏U
u=1 Pu(Pu), where

Pu(Pu) is the probability that user u has a popularity vector Pu. We assume thatA(P1, ..., PU)
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results from the aggregating of Nc user clusters where, Nc denotes the true number of
clusters. Let ξNi , i ∈ [cmin, .., cmax] be a set of approximation models. Each approxi-
mation model ξNi is characterized by Ni clusters and a popularity generating distribution∏U

u=1 Pu(Pu|Ni). The popularity generating distribution depends on the number of clusters
Ni. In fact, the average and variance of content popularity vectors in each cluster depend,
primarily, on Ni. The Kullback-Leibler information, which characterizes the information
lost when an approximating model is used, can be written, ∀ ξNi , i ∈ [cmin, .., cmax], as:

d
(
Ni, Nc

)
=

∫
[0,1]F

U∏
u=1

Pu(Pu) log
( ∏U

u=1 Pu(Pu)∏U
u=1 Pu(Pu|Ni)

)
d p1...d pF , (5.2)

After simplification, the discrepancy between the two models is given by [174]:

d
(
Ni, Nc

)
= E

{
−2 log (LξNi (Ni|Pu, u = 1...U))

}
, (5.3)

where E {.} denotes the expectation with respect to the available data, which is the collection
of all users popularity profiles, knowing Ni. LξNi (Ni|Pu, u = 1...U) denotes the likelihood
of having Ni clusters, knowing the popularity profiles of the users (the expression will be
given later on in this section).
In [174], Akaike noted that −2 log (LξNi (Ni|Pu, u = 1...U)) is a biased estimate of the
average discrepancy. After bias adjustment, the expected discrepancy can be approximated
by:

E
{
d
(
Ni, Nc

)}
≈ 2ki − 2log (LξNi (Ni|Pu, u = 1...U)). (5.4)

Here ki denotes the number of characterizing parameters in model ξNi and E {.} denotes
the expectation with respect to the available data. The expected value of the discrepancy is
asymptotically equal to the expected AIC of the considered statistical model which is given
by:

AIC(ξNi) = 2ki − 2log (LξNi (Ni|Pu, u = 1...U)). (5.5)

AIC allows to assess the truthfulness of any considered statistical model, and in our case,
allows to estimate the number of content based clusters together with the characterizing pa-
rameters of each one. Each cluster is characterized by the average file popularity distribution
and its variance within the cluster. In order to approximate the process generating the users
probability vectors, we consider a set of statistical models Ξ = {ξNcmin ...ξNcmax} where,
{Ncmin...Ncmax} represents the range over which the search for the true number of clusters
will be carried out. Each of the considered models will be typified by a number of defin-
ing parameters. In our case, each considered model ξNi is characterized by Ni × (F + 1)
parameters, Ni × F representing the average file popularity in each cluster and Ni variance
estimates. We consider that the likelihood LξNi (Ni|Pu, u = 1...U) is computed based on a
Gaussian Mixture model. This is a common assumptions for data generating models [188].
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The log likelihood function log (LξNi (Ni|Pu, u = 1...U)) is computed after clustering user
with the assumption that they can be grouped into Ni clusters. log (LξNi (Ni|Pu, u = 1...U))
can be written as follows:

log (LξNi (Ni|Pu, u = 1...U)) =
U∑
u=1

(
log(

1√
2πσ̂Fψ(u)

)−
‖Pu − P̂ψ(u)‖2

2σ̂2
ψ(u)

+ log(
Uψ(u)

U
)
)
,

(5.6)

where ψ(u) represents the index of the cluster to which user u is assigned. P̂ψ(u) denotes the
average popularity vector in cluster ψ(u). Uψ(u) refers to the number of users in cluster ψ(u).
σ̂2
ψ(u) denotes the variance of content popularity vectors in cluster ψ(u) and is given by:

σ̂2
ψ(u) =

1

(Uψ(u))

∑
j∈Uψ(u)

‖Pj − P̂ψ(u)‖2. (5.7)

Then the log-likelihood function can be written as:

log (LξNi (Ni|Pu, u = 1...U)) =

Ni∑
k=1

−Uk
2

(log(2π)− 1 + 2log(
Uk
U

)− F log(σ̂2
k)). (5.8)

The resulting AIC for model ξNi is given by:

AIC(ξNi) = 2Ni(F + 1) +

Ni∑
k=1

Uk(log(2π)− 1 + 2log(
Uk
U

)− F log(σ̂2
k)). (5.9)

The model that best describe the user popularity vectors is the one that minimizes the AIC
and, consequently, the discrepancy. In order to find the best model, the user are clustered
according to their content popularity vectors using the K-mean algorithm [189], while as-
suming different numbers of clusters from a search range {Ncmin...Ncmax}. The selected
model ξAIC verifies:

ξAIC = argmin
ξ∈Ξ

AIC(ξ). (5.10)

The selected model which minimizes the AIC, strikes the best trade-off between fitness and
complexity. This results in a truthful modeling of content popularity based clusters. The
resulting model guarantees minimum discrepancy among the request patterns of the users
within each cluster. We now provide the detailed description of the content based user clus-
tering algorithm.

5.3.2 User clustering algorithm

The proposed content popularity based clustering algorithm starts by defining a search in-
terval [Ncmin...Ncmax]. The algorithm begins by assuming the existence of Ncmin clusters. It
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clusters the users accordingly using the K-mean algorithm [189]. K-mean allows to assign
each user to the cluster with the nearest centroid which results in minimizing the disparity
between users behaviors in the same cluster. The popularity profile of the cluster is then
defined as the average of the popularity vectors of all users in the cluster as:

P̂k =

∑
u,ψ(u)=k Pu

Uk
. (5.11)

Each cluster k is then associated with a vector P̂k = [p̂1k...p̂Fk], where p̂fk denotes the
average popularity of file f in cluster k. Once users are assigned to their respective clusters,
AIC is computed. The number of clusters is incremented by adding a new centroid. The AIC
is then recomputed until reaching a minimum. AIC is decreasing as a function of the number
of clusters until reaching a minimum in the most accurate estimate. The AIC will then start
increasing because of model complexity. Since the goal of the clustering is to reduce the
divergence among users from the same cluster, a new centroids is added, at each step, in the
cluster with the greatest popularity variance. The new center is selected as the user having
the largest distance from the mean popularity vector of its cluster. This allows to reduce the
discrepancy in user traffic pattern. The detailed clustering algorithm can be written as the
following:
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Initialize: Define search interval [Ncmin...Ncmax], Set

K = Ncmin Choose randomly the first Ncmin centroids

from the available users

1. Run K-mean algorithm and compute AIC(ξK)

2. Choose the user having the largest distance from its

centroid in cluster k∗ with the greatest variance

(k∗ = argmax
k=1...K

σ̂2
k)

3. Add a centroid with the popularity profile of

the chosen user and set K = K + 1

4. Run step 1 to step 3 until AIC starts to increase.

5. Choose the model which minimizes the AIC and

cluster the users accordingly

Table 5.1: Content-popularity based user clustering algorithm

Once content popularity based clustering is performed, the cached files of each cluster
are selected based on its average popularity vector, which is given in (11). For each {k =
1...Nc}, the files in the catalog are ordered in a decreasing order of popularity according
to P̂k. The set of cached files, in each cluster, {∆k, k = 1...Nc} is then selected as the
most popular files, according to {P̂k, k = 1...Nc}, whose aggregate size is at maximum M .
Apart from the maximum size constraint, we impose no restrictions on the set of cached
files. Consequently, there may be some overlapping between the cached files of different
clusters. Meaning that the same file can be selected in the cached sets of different clusters
(∆k ∩ ∆j 6= ∅, for some k 6= j). Files that are selected by different clusters are very
popular across user. Consequently, it makes sense to increase the number of cached copies
in the network. Given the considered model in section II , allowing overlapping between
the cached files of different clusters provides better performance. Since user preference
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can change over time, the algorithm in Table I can be executed periodically or whenever
substantial popularity profile modification is recorded. This allows the caching system to
adapt the selected files accordingly. In order to investigate the performance of the proposed
scheme, we assess its impact on the achievable EE of the system.

5.4 EE with content popularity clustering

Predicting which content is most likely to be requested and caching it in the edge can reduce
the latency and backhaul load as well as increasing the overall throughput. Proactive caching
also proved to be an effective technology that can improve another very important metric in
future generation networks, namely, EE [76]. In what follows, we investigate the EE of cache
enabled small cell networks with content popularity based user clustering. We consider the
DL of the cache enabled network. Without loss of generality, we concentrate on a reference
user located at the origin of the plane. The EE of the network is given by the ratio between
the average achievable spectral efficiency and the average consumed power [76].

Σ =
SE

ρctotal
, (5.12)

where Σ denotes the average energy efficiency, ρctotal denotes the average consumed power
in the cache enabled small cell network and SE denotes its average achievable spectral effi-
ciency. In order to derive the expressions of SE and ρctotal and, consequently, the achievable
EE, we need to start by finding the expression of the cache hit probability.

5.4.1 Cache hit Probability

According to the considered system model, the cache hit probability refers to the probability
of finding a requested file in the cache of a SBS within radiusR from a given user [176]. Our
context is different from the one in [176], since the users are clustered and the SBSs cache
different files depending on their associated cluster. Considering the proposed clustering
model, the cache hit probability can be expressed as follows (the derivations are skipped for
brevity):

P {hit} =
1

U

Nc∑
k=1

U∑
u=1

( ∑
i∈∆k

piu
)(

1− e−λskπR2)
, (5.13)

where ∆k represents the set of the most popular files of cluster k that fills the SBS caching
capacity. This equation denotes the probability of finding of at least one SBS with the re-
quested file stored in its cache within a radius R from a given user. The density of SBS
caching the most popular content of a cluster {k, k = 1...Nc} is given by λsk and, their av-
erage number Nsk is given by Nsk = λskπR

2
n. The densities {λsk, k = 1...Nc} are such that

102



5.4. EE with content popularity clustering

∑Nc
k=1 λsk = λs. One major upside of content popularity based user clustering is content di-

versity. While each SBS caches the most popular files of only one cluster, users can request
any of the cached files in SBSs within radius R, which can be fetched without additional
load on the backhaul. In fact, a given user can communicate with the closest SBS caching
the files of a cluster different from his own whenever the requested content is already cached.
Consequently, compared with the classical approach of caching the same popular content ev-
erywhere, the users covered by several SBSs from different clusters will see an increase in
their cache hit probability.

5.4.2 Average total consumed power

In order to gain a useful insight into the achievable EE and capture the fundamental tradeoffs,
we extend the power model in [76]. The average consumed total power in the considered
network with caching capabilities can be modeled as follow:

ρctotal = E {ρI}+ E {ρT}+ E {ρf} , (5.14)

where ρI , ρT and ρf denote, respectively, the power consumed by the infrastructure of active
base stations, the total transmit power and the used power to fetch files from the hard disc or
the core network. The expectation E {.} is taken over the users and SBSs PPPs.
The average power consumed by the infrastructure is given by:

E {ρI} = ρλsπR
2
n, (5.15)

ρ and λsπR2
n denote, respectively, the fix operational charge consumed by an active SBS

and the average number of active SBSs. The average power used to retrieve a file either over
the backhaul, when a cache miss event occurs, or from a SBS cache is given by:

E {ρf} = λsπR
2
n

(
ρhdP {hit}+ ρbh

(
1− P {hit}

))
, (5.16)

where ρhd denotes the power needed to retrieve data from the local hard disk of a small BS
when the requested content is already cached and a cache hit event occurs. ρbh denotes the
power needed to retrieve data from the core network through the backhaul when a cache miss
event occurs. Owing to channel inversion power control, the power used for transmission
depends on the distance between the communicating SBS and users. Here we consider Υk

as the set of users associated with cluster k, ∀k = 1..Nc. Each user looks for the requested
file in the cache of the SBSs within a radius R, starting with the closest SBS from his own
cluster. If the requested file is available in a cache within this distance, a cache hit event
occurs and the user will associate with the closest SBS storing the requested file. In the event
of a cache miss, the user associates with the nearest SBS from its corresponding cluster and
the requested content is retrieved from the core network through the backhaul. If a user
cannot find an SBS from its own cluster within a radius R, it only communicate with SBSs
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from other clusters within radius R, in the case of a cache hit event. The average total
transmission power is given by:

E {ρT} =
λsπR

2
n

U

Nc∑
k=1

∑
u∈Υk

(
E {ρk}+

∑
j 6=k

∑
i∈∆s

piu(1− e−λsjπR
2

)(E {ρj} − E {ρk})
)
,

(5.17)

where E {ρk} denotes the average transmit power that a typical user utilizes when com-
municating with SBSs associated with cluster k,∀k = 1..Nc. Finally, the expression of the
average consumed total power is derived by including the expressions of E {ρk}, ∀k = 1..Nc.

Lemma 10. The average consumed total power in the considered network with caching
capabilities and content-popularity based user clustering can be modeled as follows:

ρctotal = λsπR
2
n(ρhdP {hit}+ ρbh

(
1− P {hit}

)
+ ρ) +

λsπR
2
n

U

Nc∑
k=1

∑
u∈Υk

(
ρ0γ(α

2
+ 1, πλskR

2)

(λskπ)
α
2

(5.18)

+
∑
j 6=k

∑
i∈∆s

piu(1− e−λsjπR
2

)(
ρ0γ(α

2
+ 1, πλsjR

2)

(λsjπ)
α
2

−
ρ0γ(α

2
+ 1, πλskR

2)

(λskπ)
α
2

)).

Proof. See C.1.

Following the same reasoning, the average consumed total power in the network with no
proactive caching capabilities at the SBSs, is given by:

ρnctotal = λsπR
2
nρbh + ρλsπR

2
n + λsπR

2
n

ρ0γ(α
2

+ 1, πλsR
2)

(λsπ)
α
2

. (5.19)

ρnctotal is taken into consideration in order to guarantee an improvement in the average EE of
the network, when proactive caching is implemented.

5.4.3 Average Spectral Efficiency

In order to derive the achievable EE, the expression of the average spectral efficiency should
be derived. The DL SINR for a user u taken at the origin is given by:

SINR =
ρ0 ‖hu‖2

σ2 +
∑Nc

k=1 Ik
, (5.20)

where Ik, ∀k = 1..Nc represents the interference coming from SBS from cluster k given by
Ik =

∑
i∈φsk ρik‖hui‖

2r−αui . Here φsk denotes the set of SBSs associated with cluster k, k =

1..Nc. ρik refers to the power used in the DL by SBS i from cluster k. σ2 represents the noise
power. In order to compute the average spectral efficiency of the network, first we need to
derive the achievable coverage probability which is given in the following Lemma:
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Lemma 11. The downlink coverage probability is given by:

P {SINR ≥ θ} = exp(− θ

ρ0

σ2)×
Nc∏
k=1

exp
(
− πλskΓ(1 +

2

α
)Γ(1− 2

α
)(
θ

ρ0

)
2
αE
[
ρ

2
α
k

] )
.

(5.21)

Proof. See C.2.

We can see from Lemma 11, that increasing the SBS density enables to reduce the used
transmit power. Nevertheless, we need to take into consideration the constant power con-
sumed by the infrastructure of active SBSs which represents an important part of power
consumption of the network. The average achievable spectral efficiency can be written as:

SE = λsπR
2
n log(1 + θ) P {SINR ≥ θ} . (5.22)

Given the average achievable spectral efficiency and average consumed power, we can derive
a closed form expression of the energy efficiency Σ:

Σ =
λsπR

2
n log(1 + θ) P {SINR ≥ θ}

ρctotal
. (5.23)

By substituting (2.18) and (2.21) into (2.23), we obtain the average EEs. We can notice from
(2.21) that the density of SBSs is a major defining parameter of Σ.

5.4.4 Analysis of Energy Efficiency

We can see, in (2.22), that increasing the SBS density results in a reduction in the interfer-
ence. This is mainly due to the resulting decrease in transmit power since users are closer to
their serving SBSs. Nevertheless, increasing SBS density results in more power consumption
due to the strain of active infrastructure. We aim at finding the optimal active SBS density
vector that maximizes the achievable EE, even when user positions are not taken into con-
sideration. We can imagine a setting in which SBS are activated and shutdown based on user
density and popularity profiles. We consider a constraint in which we aim at maintaining a
power budget that is lower than that used when no proactive caching is enabled. The problem
can be formulated as follows:

maximize
Λs

Σ (5.24)

subject to ρctotal − ρnctotal ≤ 0, (4.24a)

Λ†s1 ≤ λsmax . (4.24b)

This optimization problem allows to derive the optimal density vector needed to maximize
the average EE for a given user density, popularity profiles and cache size. Although the
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closed form expression of Σ is complex to analyze, it can be proven that Σ is quasi concave
using an intelligent simplification by considering a composition of Σ with an affine mapping
[200].

Theorem 12. The considered optimization problem is quasi concave and the optimal SBS
density Λ∗s can be derived, with zero duality gap. If ∃Λ∗s such that ∇Σ(Λ∗s) = 0 then this
vector is unique and it is the optimal solution. If this condition is not satisfied for any Λs

such that Λ†s1 ≤ λsmax , then the optimal solution can be found using the Karush-Kuhn-
Tucker (KKT) conditions:

∇L(Λ∗s, ς, κ) = ∇Σ(Λ∗s) + ς∇C(Λ∗s) + κ∇H(Λ∗s) = 0,

ςC(Λ∗s) = 0, κH(Λ∗s) = 0,

H(Λ∗s) ≤ 0, C(Λ∗s) ≤ 0,

ς > 0, κ > 0,

(5.25)

where L refers to the Lagrangian associated with problem (24), C(Λs) = ρctotal − ρnctotal,
H(Λs) = Λ†s1. ς and κ refers to the Lagrangian multipliers associated, respectively, with
(24a) and (24b).

Proof. See C.3.

Finding the optimal density vector Λ∗s based on the KKT conditions in (4.25), can be
done using, for example, the sub-gradient descent method [200].

5.5 Exploiting spatial correlation in users demand

While, in the previous sections, EE was optimized with respect to the density vector of active
SBSs, further EE gain can be achieved by including spatial information whenever it is avail-
able. The choice to decouple the two problems of cached file selection and content placement
can be justified by the fact that popularity distributions change slower than user locations.
Consequently, the selected cached content which depends on the average popularity distri-
bution per cluster, is kept constant for long periods and the network can adapt its location
based on user movement. Real life examples can also support this approach. While correla-
tion in content popularity between users from the same social group stays for long periods of
time, their location can change due to mobility. This motivates the need to adapt the cached
content placement more often than the selected files in order to simplify the management of
the network. Acquiring information on user location requires a non negligible processing
and signaling overhead. Consequently, this information should be leveraged whenever it is
available.

In the case of low mobility, where users do not change positions too often, it makes
sense to adapt the files placement based on location information. Adapting the cached files
placement can be done periodically or whenever the backhaul load allows it.
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Practically, we may observe a spatial correlation in user file demand. This can be ex-
plained by the fact that people from the same social group (living or working in the same
place) are most likely to have similar preferences. We aim at finding an effective allocation
of the SBSs to the different clusters in order to minimize transmit power and, consequently,
to improve the achievable EE. In fact, decreasing the distance between a given user and the
SBS storing its requested file results in lower transmit power. Consequently, by effectively
allocating the SBSs to the different clusters, we are able to lower the level of interference in
the network, which results in increasing the EE [76].

The problem of cache placement can be tackled by adopting a hybrid approach where,
a clustering based on both the location and content popularity is performed. This approach
is more complex and do not necessarily produce better results since content popularity stays
constant for long periods of time. In addition, the clustering that is done on the users enables
also to group the files accordingly. Consequently, the complexity of the resulting optimal
file placement problem is lower since the search space is reduced from the whole file catalog
to groups of file of approximately equal total size. This simplifies the management of the
caching system compared to existing work on location based optimization where, the com-
plexity of the formulated problems is proportional to the number of files. This results in a
considerable gain in running time which enables the network to be more reactive since it can
adapt the content placement depending on user location very rapidly.

We consider a setting in which the location of all users and SBSs are known. This is
implemented by considering a snapshot of the users and SBSs PPPs. We develop an integer
optimization problem where we aim at minimizing the used power over the possible SBS-
cluster affectation. Thanks to channel inversion power control, minimizing the used power
is equivalent to reducing the distance between the users and the SBS caching the files they
are most likely to request. We define ωu,s, the weight of the link between user u and the SBS
s as follows:

ωu,s =

 r−αus if rus < R,

ω∞ otherwise,
(5.26)

where rus representing the distance between user u and the SBS s. ω∞ is an arbitrarily large
value. ω∞ assures that no user can communicate with a SBS at a distance larger than R.
We sort the links pathloss coefficients in decreasing order and denote by (s)u the SBS with
the s-th greatest pathloss coefficient to user u. Based on the considered system model, less
power is used when a user is served from a SBS within its neighborhood. Consequently,
maximizing ωu,s is equivalent to minimizing the transmit power and the distance between
the user and its serving SBS. The average number of SBS associated with each cluster k
is given by Nsk = λskπR

2
n. Since λsk, k = 1..Nc are computed in (24) so that EE is

maximized, it does not take into consideration their spatial repartition in the network. The
transmit power increases when users from the same cluster are not located within a reduced
area. In order to deal with this problem, we relax the constraint on the number of SBS per
cluster and we replace Nsk by N ′sk where N ′sk > Nsk. We consider the adjacency matrix Y ,
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where ys,k,∀s = 1..Ns, k = 1..Nc is given by:

ys,k =

 1 if SBS s is associated with cluster k.

0 otherwise.
(5.27)

The problem of optimal SBS allocation to their respective clusters can be formulated as:

max
Y

Nc∑
k=1

Ns∑
s=1

U∑
u=1

( ∑
f∈∆k

pfu
)
ωu,(s)u(y(s)u,k

s−1∏
i=1

(1− y(i)u,k)) (5.28)

subject to
Nc∑
k=1

ys,k ≤ 1,∀s = 1..Ns, (4.28a)

Ns∑
s=1

ys,k ≤ N ′sk, ∀k = 1..Nc. (4.28b)

Here, (4.28a) captures the fact that each SBS stores the most popular files of one unique
cluster. (4.28b) indicates that the number of SBSs allocated to each cluster should respect
the density vector Λ∗s which maximizes EE. The objective function in (4.28) guarantees that
each SBS caches the files that are most likely to be requested by nearby users. In fact,

(y(s)u,k

s−1∏
i=1

(1−y(i)u,k)) is an indicator function that refers to the case where the most popular

files of cluster k are cached in SBS (s)u and not in SBSs (i)u, i = 1, ..., s− 1. Consequently,
the objective function value is equal to the expected pathloss between users and their serving
SBSs. We show that the considered optimization problem is NP-hard. We then prove that
it can be formulated as the maximization of a submodular function over matroid constraints
and we provide an algorithm that enables to derive a (1 − 1

e
) approximation of the optimal

solution of problem (4.28). This formulation looks somehow similar to the considered prob-
lem in [45] where, the authors aim at optimizing the allocation of each individual file to a
set of femto access points in order to minimize the expected downloading time. Neverthe-
less, problem (4.28) consider a different objective function where, the aim is to minimize the
transmit power. While [45] aims at optimizing the assignment of each individual file to the
different femto access points, the objective in (4.28) is, actually, to assign predefined batches
of files from each cluster to the SBSs. Consequently, the problem formulation here enables to
considerably reduce the complexity of deriving a solution. In fact, the running time depends
on the number of popularity based clusters rather than the number of files. This is an impor-
tant impact of the present formulation in (4.28) since the number of files is typically very
large. The considered setting enables to solve problem (4.28) using sophisticated algorithms
that can be computationally prohibitive otherwise.
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5.5.1 Computational Intractability

We start by showing the computational intractability of problem (4.28).

Theorem 13. The considered optimization problem in (4.28) is NP-hard.

Proof. In order to show that (4.28) is NP-hard, we consider a special case of our setting
where N ′sk = N ∀k = 1..Nc and Ns = Nc. This special case means that the number of
SBS associated with each cluster is the same, which is the case when

∑U
u=1

∑
f∈∆k

pfu =
C, ∀k = 1..Nc. In this case, the resulting optimization problem can be written as follow:

max
Y

Nc∑
k=1

U∑
u=1

Ns∑
s=1

Cωu,(s)u(y(s)u,k

s−1∏
i=1

(1− y(i)u,k))

subject to
Nc∑
k=1

ys,k ≤ 1,∀s = 1..Ns,

Ns∑
s=1

ys,k ≤ N,∀k = 1..Nc.

(5.29)

In order to show NP-hardness, we use a reduction from the following NP-hard problem:
WeightedK-Set Packing Problem: K-Set packing is an NP-hard combinatorial problem. It is
one of the 21 problems of Karp [197]. The K-Set packing problem aims to find a maximum
number of pairwise disjoint sets, with at most K elements, in a family S of subsets of a
universal set V . The weighted version of theK-Set packing problem is obtained by assigning
a real weight to each subset and maximizing the total weight.
We consider a collection of SBS sets {vi, i = 1, ..., n}, associated each with a weight ωvi =∑U

u=1 max
s∈vi

ωu,s. Problem (28) can then be formulated as a Weighted K-Set Packing Problem:

maximize
X

∑
i

Cωvixi

subject to vi ∩ vj = ∅,∀i, j,
|vi| ≤ N, ∀k = 1..Nc,

xi ∈ {0, 1}.

(5.30)

Solving (30) results in at most Nc sets of SBSs. Since the resulting sets are disjoint, each
of them will be associated with a given cluster. The number of resulting sets could not
exceed Nc since Ns = Nc. We can see that solving the weighted K-Set Packing Problem,
for K = N and where the weight of each subset is given by Cωvi , is equivalent to solving
the special case of the SBS allocation problem in (4.29). Knowing that the Weighted K-Set
Packing Problem is NP-hard, we can then conclude that (4.28) is also NP-hard.
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5.5. Exploiting spatial correlation in users demand

5.5.2 Optimizing small base station allocation

In order to solve the considered optimization problem in (4.28), we start by showing that it is
equivalent to the maximization of a sub-modular set function over matroid constraints. The
definitions of matroids and sub-modular set functions can be found in [196]. This structure
allows the use the randomized algorithm proposed in [198] which achieves, at least, (1− 1

e
) of

the optimal value. Taking into consideration the problem constraints we have the following:

Lemma 14. The Considered Optimization problem in (4.28) is equivalent to a maximization
of a sub-modular set function over matroid constraints.

Proof. See C.4.

In order to solve the considered problem, we use the randomized algorithm proposed in
[198]. This algorithm provides a (1 − 1

e
)-approximation of the optimal solution for sub-

modular set function maximization with matroid constraints. This algorithm consists of
two steps. In the first one, a fractional solution of the relaxed problem is obtained using
a continuous greedy process. In the second part of the algorithm, the derived fractional
solution is rounded using a variant of the pipage rounding technique [199]. The detailed
algorithm is given in table 5.2.
We define the ground set G = {gs,k,∀s = 1, . . . , Ns, k = 1, . . . , Nc}, where each element
gs,k represents the allocation of SBS s to cluster k. We also define the function f over
G as a set function that is equivalent to the objective function of (5.28). We also define
fk, k = 1, . . . , Nc as the set functions associated with each cluster k = 1, . . . , Nc.

1. Run Continuous Greedy(f ) to obtain a fractional solution Ỹ

2. Run Pipage Rounding(Ỹ ) to obtain a discrete solution Y

Table 5.2: Randomized algorithm for Transmit power minimization over SBS-Cluster
association
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5.5. Exploiting spatial correlation in users demand

1. Define δ = 1
9d2

where d = Ns.

2. t←− 0 and ỹs,k(0) = 0,∀s, k

3. For k = 1, . . . , Nc

4.Define Rk(t), k = 1...Nc a set containing each SBS s with probability ỹs,k(t)

5. For all k = 1, . . . , Nc, s = 1, . . . , Ns

6. Define Ξs,k(t) = E[fk(Rk(t) + gs,k)− fk(Rk(t))] obtained

by averaging 10
δ2

(1 + ln(NcNs)) independent samples.

7. For s = 1, . . . , Ns

8. ks(t) = argmaxk(Ξs,k(t)) be the best cluster for SBS s.

9. Set ỹs,k(t+ δ)←− ỹs,k(t) + δ for k = ks(t) and

ỹs,k(t+ δ)←− ỹs,k(t) for k 6= ks(t)

10. t←− t+ δ

11. If t < 1 go back to step (3)

Table 5.3: Continuous Greedy(f)
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5.5. Exploiting spatial correlation in users demand

1. While Ỹ is not integral do

2. Pick ỹs,k and ỹs′,k be two fractional variables

3. Find A a minimal tight set such that gs,k ∈ A and gs′,k /∈ A

4. Denote ε+ the greatest value that can be added to ỹs,k without violating any constraints.

5. Denote ε− the greatest value that can be added to ỹs′,k without violating any constraints.

6. Ỹ +
s,k defined by setting ỹs,k ←− ỹs,k + ε+, ỹs′,k ←− ỹs′,k − ε+ and

ỹi,j ←− ỹi,j, ∀{i, j} 6= [{s, k}, {s, k′}]

7. Ỹ −s,k defined by setting ỹs,k ←− ỹs,k − ε−, ỹs′,k ←− ỹs′,k + ε− and

ỹi,j ←− ỹi,j, ∀{i, j} 6= [{s, k}, {s, k′}]

8. If F (Ỹ +
s,k) > F (Ỹ −s,k) then

9. Ỹ ←− Ỹ +
s,k

10. else

11. Ỹ ←− Ỹ −s,k

12. End while

Table 5.4: Pipage Rounding (Ỹ )

In a typical setting, randomly rounding a fractional solution of an optimization problem
does not preserve the feasibility of the solution, in particular when equality constraints are
considered. Nevertheless, the pipage rounding technique in [199] enables to round a frac-
tional solution so that the problem constraints are not violated. This can be seen in steps (4)
and (5) in 5.4.
In our case the running time of the algorithm is O((NsNc)

8) [198], where Ns = λsπR
2
n.

This is quite convenient since the running time of the algorithm does not depend on the
number of files in the catalog which can be very large. This an interesting result of content
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based clustering since it reduces the search space from the whole catalog to bins of files of
approximately equal size.

5.6 Numerical Results AND Discussion

In this section, we investigate the impact of the different system parameters on the Cache hit
probability and EE. We then investigate the impact of the SBS allocation algorithm on the
performances of the network. We consider a circular region with an area of A = 10Km2.
We simulate two PPP processes, one for the users and another for the SBSs over this area.
The respective densities of these process are λ and λsmax with λ >> λsmax . The considered
SBS density values are defined based on the typical communication range of a SBS. We
consider a catalog constituted of F = 2000 files with different randomly generated sizes
Li, i = 1...F in the range [10 MB...100 MB] [76]. We also consider the normalized cache
size η = M∑F

i=1 Li
. We characterize each cluster by a given popularity based file ordering. For

each user u, Pu is generated according to a Zipf distribution with parameter 1 [165], after
randomly selecting a cluster file ordering. This results in a random allocation of the users
to the different clusters. In order to run the clustering algorithm, we only need an interval
over which the search of the number of clusters is carried on. In our simulations we take
[Ncmin...Ncmax] = [5...30]. We consider a pathloss exponent α = 2.5. We consider the
following power values [76]:

ρo(dBm) 21 ρbh(W ) 10W

ρ(W ) 10.16 ρhd(W ) 12.5× 10−5

Figure 5.2 shows the evolution of the cache hit probability as a function of the commu-
nication radius R for different SBS densities. Figure 2 also shows a comparison between the
content popularity based clustering approach and the classical method of supposing the same
content popularity among all users. As an example, for a communication radius of 0.9 Km
and a SBS density of λs = 1, we notice a substantial gain with a cache hit probability of
0.736 for the clustering scheme compared with a probability equal to 0.41 when caching the
most popular files in all SBSs. We notice that the hit probability for the scheme without
clustering saturates at a low value. This is due to the fact that the same set of files is cached
in all the SBSs, which is clearly a suboptimal approach, especially when users are covered
by multiple SBSs. The increase in hit probability for the clustering method is mainly due to
the diversity of files cached in the SBS. Increasing the SBS density results in reducing the
average distance from mobile users, which, consequently, results in improving the cache hit
probability.

Figure 5.3 shows the evolution of the achievable EE as a function of the normalized
cache size for different SBS densities. Figure 3 also shows a comparison between the content
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Figure 5.2: Hit probability versus communication radius with different SBS densities (C= content based clus-
tering, UC= Unclustered approach), Normalized Cache Size η = 0.25

popularity based clustering approach and the classical method of supposing the same content
popularity among all users. We can see that the proposed clustering method outperforms the
classical approach of caching the same most popular files in all SBSs. For a normalized
cache size of 0.4 and an SBS density of 1.6 SBS/Km2, we notice an increase of 12.5%
in the achievable EE. This gain is mainly due to the fact that the proposed method scores
a higher hit probability than the unclustered approach. Consequently, the average energy
needed to fetch the requested content is lower when user clustering is used. Even though
restricting users to communicate with the closest SBS from their cluster, in the case of a
cache miss event, can lead to an increase in the average transmit power, the observed gain in
the energy used to fetch the desired content compensates for that. The gain in EE increases
as a function of the SBS density. For a normalized cache size of 0.4 and an SBS density of
1.9 SBS/Km2, we notice an increase of 14.2% in the achievable EE. This increase in EE
gain can be explained by the fact that the average transmit power is a decreasing function of
SBS density.

Figure 5.4 shows the performance of AIC model selection. We consider three settings
in which, the true numbers of clusters are 10, 15 and 20, respectively. The figure represents
the computed AIC per point over the estimation range. The lowest AIC value represents the
model that strikes the best trade-off between fitness and complexity. Note that the negative
values of the AIC are due to a negative bias which characterize the AIC with a small sample
number.
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Figure 5.3: EE vs normalized cache size with different SBS densities (C= content based clustering, UC=
Unclustered approach)
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115



5.7. Closing Remarks

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.8

1

1.2

1.4

1.6

·10−2

Normalized Cache Size η

E
E

Σ
[b
it
/H

z
/J

]

Op λs = 1.6
RA λs = 1.6
Op λs = 1.9
RA λs = 1.9

Figure 5.5: EE vs normalized cache size η with different SBS densities (RA= random SBS allocation, Op=
optimized SBS allocation)

Figure 5.5 shows the impact of the SBS allocation algorithm on EE. We can see that, for
different values of the SBS density, optimizing the SBS allocation results in a considerable
gain in the EE. For a SBS density of λs = 1.9 and a normalized cache size of 0.4, optimizing
the allocation of the SBSs results in an EE gain of 42.2%. As the SBSs density increases, the
allocation algorithm results in greater improvement in EE. Optimizing the cluster-SBS asso-
ciation results in less average transmit power which reduces the interference and improves
the achievable EE.

5.7 Closing Remarks

In this chapter, we studied a cache enabled small cell network with limited storage capabil-
ity. We have proposed a novel proactive caching framework that utilizes content popularity
based clustering in order to efficiently model traffic patterns and leverage the correlation
between users demand. Our approach showed that taking into account heterogeneous popu-
larity profiles and caching content accordingly yields a considerable increase in the networks
capabilities to predict user traffic. This results in a more efficient proactive caching that can
save substantial back-haul resources. We have also studied EE in cache enabled small cell
networks. Using the proposed Content popularity based clustering, the optimal active SBS
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density vector that maximizes EE was derived. We then went one step further and optimized
the networks EE with respect to cache placement. This allows to exploit any spatial corre-
lation in user request patterns by bringing the cached files closer to the users that are most
likely to request them. Numerical results shows that the proposed clustering framework con-
siderably outperforms the scheme in which the files popularity are obtained by an averaging
over all users. It also shows that optimized SBS allocation results in an improvement in the
achievable hit probability and EE.
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Chapter 6

Conclusions and Outlook

In this thesis, we have focused on improving the performance of 5G and beyond networks by
leveraging all available information including, among others, traffic patterns, channel second
order statistics and Doppler spread. The main idea was to exploit side information that can
be obtained with low signaling overhead, thanks to its slow variation, in order to enable high
efficiency wireless network operation. Indeed, filling the performance gap between LTE and
5G calls upon a more intelligent use of the available information and shifting part of the
network intelligence down to the RAN side.

In this context, we proposed different novel schemes that aims at enabling a more ser-
vice and user aware network. In particular, we focused on two key enablers of 5G, namely
massive MIMO and proactive caching. Based on the observation that, already available in-
formation at the network is somehow underexploited, we devised novel procedures that allow
for a more intelligent and efficient network.

In particular, in chapter 3 , we focused on TDD Massive MIMO systems and tried to
address one of their major bottlenecks, namely CSI acquisition. As a matter of fact, it is now
solidly established that massive MIMO can deliver a considerable increase in SE, EE and
area capacity. Nevertheless, in order to achieve these gains, accurate CSI is needed. Con-
sequently, if connection density is to be increased, more efficient CSI acquisition schemes
are needed. In chapter 3, spatial diversity was leveraged in order to optimize UL training
in TDD CSI systems. Based on the observation that, spatially independent users can be
allowed to utilize the same pilot sequences, we proposed a smart UL training scheduling
scheme that aims at increasing the connection density while, at the same time, improving the
achievable SE. Indeed, we provide efficient algorithms that associate users in copilot groups
based on their spatial information. In order to leverage a maximum of the Massive MIMO
system DoFs, we form the copilot groups so that the users in each group provide a maxi-
mum coverage of the signal’s spatial basis with minimum overlapping between user spatial
signature. This enables to increase the pilot reuse in each cell which results in increasing
connection density for the same training overhead. We provide two formulations of the user
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grouping problem. First, the problem of spatial basis coverage based copilot user selection
is formulated as a maximum coverage problem. In the second case, the problem of copilot
group generation is formulated as a Generalized maximum coverage problem. This allow us
to provide efficient algorithms to perform the desired grouping. In addition, we analyze the
performance of the proposed algorithms and we derive their achievable approximation ratios.
We go one step further and address inter-cell copilot interference through an efficient pilot
sequence allocation. Numerical results show that the provided schemes enable to mitigate
copilot interference while increasing both connection density and SE.

In chapter 4, we focused on another underexploited information, namely Doppler spread.
As a matter of fact, we noticed that current wireless systems assume the same time slot du-
ration for all devices regardless of the fact that users are subject to heterogeneous Doppler
spreads. This fact lead as to regard CSI estimation periodicity as an additional degree of free-
dom. The main idea in this chapter comes from the observation that users with low velocity
are not required to send UL training sequences with the same periodicity as faster moving
users due to the resulting heterogeneous coherence times. Consequently, a dynamic adapta-
tion of the TDD frame based on heterogeneous Doppler spreads can lead to improvement in
the network performance. In chapter 4, we proposed a planning framework where a network
of Massive MIMO BSs is enabled to learn the best UL training policy for long time periods.
Since channel changes result primarily from device mobility, location awareness was also
included in the learning process. The resulting planning problem was modeled as a two time
scale POMDP. Although complex, we proposed efficient algorithms that enables the network
to optimize its training decisions for long time spans while reducing the required signaling
overhead and processing complexity.

Traffic and service awareness is also a critical feature in high efficiency networks. As a
matter of fact 5G networks are expected to be User-centric, trading the conventional service
agnostic paradigm for a more intelligent and proactive one. This made proactive caching
a key technology that can address a large range of 5G requirements, including low latency,
energy efficiency and QoE. In chapter 5, we focused on improving proactive caching perfor-
mance by leveraging the diversity in user traffic patterns. We provided an adaptive content
popularity based clustering algorithm that enables the network to learn dominant traffic pat-
terns. This approach provides more detailed information on the content that is most likely
to be requested which enables a more efficient proactive caching. The proposed framework
strikes the optimal trade-off between complexity and truthfulness in user behavior modeling.
It also simplifies the management of the caching system since it groups files based on the
cache capacity and on the dominant user behaviors. Building on the proposed model, con-
tent placement was optimized in order to maximize a major KPI of 5G networks, namely
EE. Results show that a more detailed and truthful modeling of user preference can lead to
an increase in the majority of proactive caching KPIs.

Despite the fact that the proposed schemes in this thesis enable considerable gains in 5G
networks, there exists several challenges which need to be investigated in the future.
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In particular, in chapter 3 of the thesis where we have focused on exploiting spatial
diversity, we have the following future directions.

• Include mobility and spatial information variation : In chapter 3, constant spatial in-
formation were considered. This is true when we are dealing with time spans during
which user mobility does not change the channel’s second order statistics. Devising
new training schemes that take into consideration mobility and that are able to track or
predict the signal subspace may enable more efficient CSI acquisition.

• Spatial division multiplexing and multicast communication in massive MIMO systems
: The potential of massive MIMO in the context of multicast transmission is consid-
erable. Indeed, owing to its ability to efficiently shape the transmitted signal, massive
MIMO is well suited to multicast communication. In this context, optimizing spatial
division multiplexing for multicast communication can lead to considerable improve-
ment of the network performance.

• Spatial division in CRAN systems :

Wireless networks are evolving from a cellular to a cell-free topology. CRAN makes
such distributed systems possible by centralizing part of the physical layer processing.
In this context, Cell-free Massive MIMO systems, where users are served by a large
number of distributed APs over the coverage area, is a very interesting architecture
that can fully benefit from a spatial information based user scheduling and a central-
ized processing. Owing to the resulting macro-diversity, Cell-free Massive MIMO has
an considerable potential in addressing the requirement of high density connection.
Nevertheless, in order to be able to handle a large number of connected devices, effi-
cient CSI acquisition schemes, that take into consideration the special architecture of
Cell-free Massive MIMO, need to be developed.

For the fourth chapter, our future directions for enabling a more self organizing and
intelligent massive MIMO network can be summarized as follows.

• Include handover and more sophisticated mobility patterns: Although user mobility
was considered in our work, handovers were not included in the analysis. Designing
more advanced learning algorithms for UL training with complex mobility patterns
and taking into consideration handovers can lead to longer time spans optimization.

• A fully dynamic TDD frame: The proposed scheme supposes that the TDD frame
can be defined in flexible manner depending on the required training overhead. The
concept of dynamic TDD, where the split between UL and DL resources is defined
dynamically is starting to attract more attention. However, the current state of develop-
ment of the latter concept does not include a dynamic allocation of training resources.
Consequently, combining the proposed scheme with the Dynamic TDD concept in a
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fully flexible frame where resources are allocated as a function of the actual UL, DL
and training needs may enable substantial improvement of different network KPIs.

• Efficient algorithms for high density connectivity: The analysis in our work payed spe-
cial attention to the planning algorithms complexity. Nevertheless, in high density sce-
narios, planning the network CSI estimation policy for long time periods becomes very
challenging. Consequently, more sophisticated planning algorithms that are suited to
these scenarios are needed. We can think about exploiting other side informations
such as traffic patterns in order to reduce the complexity of deriving optimal training
policies.

• CSI estimation planning in the mmWave range: mmWave communication is consid-
ered in the 5G standards. Although it enables huge SE gains, mmWave communi-
cations come with its toll of challenges, particularly, small coherence times. In this
range of frequency, efficient training becomes vital. An extension of CSI planning for
mmWave communications seems to be in order.

For the fifth chapter, our future directions for content popularity learning and algorithmic
aspects of proactive caching can be summarized as follows.

• Proactive caching for 5G vehicular networks:

Drivers and mobile users in general typically spend a non-negligible fraction of time in
vehicles. The development of 5G vehicular networks with specific protocols provides
unlimited peer-to-peer capabilities and additional communication opportunities that
can be exploited in proactive caching. Nevertheless, specific proactive caching are
needed in this case owing to a range of additional constraints that arise from high
mobility.

• A more detailed characterization of the demand: An interesting future direction of
this work is to conduct a more detailed characterization of the traffic which captures
different spatio-temporal content access patterns for caching.

• Proactive caching and multicast: Proactive caching provides more multi-casting op-
portunities at the BSs. Distinguishing between multicast-suited content and other pop-
ular files may allow to better exploit multicast communication while satisfying other
popular content demands.

• Social networks and relations: Involving social networks information can lead to better
understanding of traffic patterns. In fact, social influence is of paramount importance
when trying to predict human behavior. An intelligent learning framework for mutual
influence between users may enable to better predict future popular content and to
derive better cache placement strategies.
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• Leveraging high density networks through coded caching: The expected high density
deployment of connected devices can be leveraged in the framework of proactive con-
tent provisioning through coded caching. Intelligent coded caching schemes that take
into consideration the particularly tight EE and batteries life span constraints of some
devices need to be developed.
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Appendix A

TDD Massive MIMO systems:
Enhancing CSI estimation through
Spatial Division based training

A.1 Proof of Theorem 3

In order to derive a tight bound on the performance of the proposed algorithm in table 3.1,
we consider the worst case behavior of the greedy heuristic as in [198]. However in our case,
the problem is more sophisticated since it includes the combination of the greedy heuristic
with an approximation algorithm.

The optimization problem (3.12) can be decomposed intoNc independent problems, each
of which is defined in a given cell b = 1, . . . , Nc. We start by defining C [b]

k , k = 1, . . . , τ, b =
1, . . . , Nc as the maximum coverage at iteration k of the approximate algorithm in table I .
We define C [b]

kopt
, k = 1, . . . , τ, b = 1, . . . , Nc as the optimal maximum coverage that can be

obtained at iteration k. We also consider C [b]
opt as the optimal solution the problem of (3.12)

defined in each cell b = 1, . . . , Nc:

V (C
[b]
opt) = max

Y

τ∑
k=1

M∑
s=1

y
[k]
s,b (A.1)

s.t
∑
i

x
[k]
{i,b} ≤ U

[k]
b ∀k = 1...τ (A.1a)

∑
i,fs∈Fib

x
[k]
{i,b} ≥ y

[k]
s,b ∀k = 1...τ, (A.1b)

where V (C
[b]
opt) represents the value of the coverage C [b]

opt, b = 1, . . . , Nc. The objective
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function in (A.1) is modular. Consequently, the following property holds ∀b = 1, . . . , Nc:

V (C
[b]
opt) ≤

t−1∑
k=1

V (C
[b]
kopt

) + τV (C
[b]
topt) ,∀t = 1, ..., τ, (A.2)

In order to derive a bound on the achievable performance of the proposed algorithm, we
consider the worst case behavior of the greedy heuristic. Doing so is equivalent to solving
the following linear problems ∀ b = 1, ..., Nc:

P (b) = min
j∑

k=1

V (C
[b]
kopt

)

V (C
[b]
opt)

(A.3)

s.t
t−1∑
k=1

V (C
[b]
kopt

)

V (C
[b]
opt)

+ τ
V (C

[b]
topt)

V (C
[b]
opt)
≥ 1 ∀t = 1...j (A.3a)

Where the constraint (A.3a) is obtained from (A.2). Since (A.3) is a linear problem, we can
solve it by considering its dual ∀b = 1, ..., Nc which can be written as follows

D(b) = max
j+1∑
t=1

vt (A.4)

s.t τvk +

j+1∑
t=k+1

vt = 1 ,∀k = 1...j (A.4a)

vt ≥ 0 ∀t = 1...j + 1 (A.4b)

We now proceed by solving (A.4), and, consequently, by linear programming duality, (A.3).
Let υ = 1− vj+1, where vj+1 is defined in (A.4). Consequently, ∀k = 1...j, we have:

τvk +

j∑
t=k+1

vt = υ and vk =
υ −

∑j
t=k+1 vt

τ
(A.5)

Then vk are calculated iteratively ∀ k = 1...j. Indeed,

vj =
υ

τ
, vj−1 =

υ − vj
τ

=
υ − υ

τ

τ
=
υ

τ
(
τ − 1

τ
), . . . , v1 =

υ −
∑j

t=2 vt
τ

=
υ

τ
(
τ − 1

τ
)j−1.

(A.6)

Consequently, vk, ∀ k = 1...j are given by

vk =
υ

τ
(
τ − 1

τ
)j−k (A.7)
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Therefore, finding D(b),∀b = 1, ..., Nc is equivalent to the following :

D(b) = max
0≤υ≤1

(

j+1∑
t=1

vt) = max
0≤υ≤1

(υ(1− (
τ − 1

τ
)j)) (A.8)

which is achieved for υ = 1. It follows that, P (b) = 1− j
τ
( τ−1

τ
)j . Taking j = τ , we obtain:

P (b) = 1− (
τ − 1

τ
)τ (A.9)

Consequently, the obtained solution using a greedy sequential maximum coverage verifies:

V (C
[b]
opt)−

∑τ
k=1 V (C

[b]
kopt

)

V (C
[b]
opt)

≤ (
τ − 1

τ
)τ (A.10)

In order to derive the performance guarantee of the proposed algorithm in table 3.1, the
approximation ratio of the used algorithm to perform maximum coverage, at each iteration,
needs to be accounted for. We use the following result which is based on the approximation
ratio given in [79].

Lemma 15. For any given cell index b = 1, . . . , Nc and iteration k = 1, . . . , τ , the im-
plemented algorithm provides a (1 − 1

e
) approximation of the optimal cover, i.e C [b]

k ≥
(1− 1

e
)C

[b]
kopt

, k = 1, . . . , τ, b = 1, . . . , Nc.

Since at each iteration of the algorithm, in table 3.1, we obtain a (1 − 1
e
) approximation

of the optimal maximum coverage, we obtain the following for b = 1, . . . , Nc

τ∑
k=1

V (C
[b]
k ) ≥ (1− 1

e
)

τ∑
k=1

V (C
[b]
kopt

) (A.11)

τ∑
k=1

V (C
[b]
k ) ≥ (1− 1

e
)(1− (

τ − 1

τ
)τ )V (C

[b]
opt)

we can deduce that the algorithm in table I provides a (1 − ( τ−1
τ

)τ )(1 − 1
e
)-approximation

for each subproblem of (3.12). Taking the sum over b = 1, ..., Nc finishes the proof.

A.2 Proof of Theorem 5

The proof for the performance bound of the proposed algorithm in table 3.2 follows the
same reasoning as the proof of Theorem 3. The main idea is also to consider the worst
case behavior of the greedy heuristic with a change in the achievable approximation ratio
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at each iteration. The optimization problem (3.13) can be decomposed into Nc independent
problems, each of which is defined in a given cell b = 1, . . . , Nc. We start by defining
C

[b]
k , k = 1, . . . , τ, b = 1, . . . , Nc as the maximum coverage at iteration k of the algorithm in

table 3.2. We define C [b]
kopt

, k = 1, . . . , τ, b = 1, . . . , Nc as the optimal maximum coverage

that can be obtained at iteration k. We also consider C [b]
opt as the optimal solution the problem

of (3.13) defined in each cell b = 1, . . . , Nc:

V (C
[b]
opt) = max

Y

τ∑
k=1

∑
i∈Γ(b)

∑
fs∈F

ζ
[s]
ib y

[s,k]
{i,b} (A.12)

subject to
∑

i∈Γ(b),fs∈Fib

y
[s,k]
{i,b} ≤ 1 ∀k = 1...τ, (A.12a)

∑
i∈Γ(b),fs∈Fib

x
[k]
{i,b} ≥ y

[s,k]
{i,b} ∀k = 1...τ (A.12b)

∑
i∈Γ(b)

x
[k]
{i,b} ≤ U

[k]
b ∀k = 1...τ, (A.12c)

The objective function in (A.12) is modular. Consequently, the following property holds
∀b = 1, . . . , Nc:

V (C
[b]
opt) ≤

t−1∑
k=1

V (C
[b]
kopt

) + τV (C
[b]
topt) ,∀t = 1, ..., τ, (A.13)

In order to derive a bound on the achievable performance of the proposed algorithm, we
consider the worst case behavior of the greedy heuristic. Doing so is equivalent to solving
the following linear problems ∀ b = 1, ..., Nc:

P (b) = min
j∑

k=1

V (C
[b]
kopt

)

V (C
[b]
opt)

(A.14)

s.t
t−1∑
k=1

V (C
[b]
kopt

)

V (C
[b]
opt)

+ τ
V (C

[b]
topt)

V (C
[b]
opt)
≥ 1 ∀t = 1...j (A.14a)

Where the constraint (30a) is obtained from (A.13). Here also (A.14) is solved using its
dual. It follows that, P (b) = 1− j

τ
( τ−1

τ
)j . Taking j = τ , we obtain:

P (b) = 1− (
τ − 1

τ
)τ ,∀b = 1, . . . , Nc. (A.15)

Consequently, the obtained solution using a greedy sequential maximum coverage verifies:

V (C
[b]
opt)−

∑τ
k=1 V (C

[b]
kopt

)

V (C
[b]
opt)

≤ (
τ − 1

τ
)τ (A.16)
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In order to derive the performance guarantee of the proposed algorithm in table 3.2, the
approximation ratio of the used algorithm , at each iteration, needs to be considered. We use
the following result which is based on the approximation ratio given in [80].

Lemma 16. For any given cell index b = 1, . . . , Nc and iteration k = 1, . . . , τ , using
an algorithm of approximation ratio β at step 3 of the algorithm in table 3.3, the im-

plemented algorithm provides a 1+β−βe−
1
β

1−e−
1
β

approximation of the optimal cover, i.e C [b]
k ≥

1+β−βe−
1
β

1−e−
1
β

C
[b]
kopt

, k = 1, . . . , τ, b = 1, . . . , Nc.

In this work, we use the greedy algorithm for knapsack problems in step 3 of the algo-
rithm in table 3.3. Consequently, in our case, β = 1

2
and the approximation ratio, at each

iteration, becomes
3
2
− e
−2

2

1−e−2

Since at each iteration of the algorithm, in table 3.2, we obtain a
3
2
− e
−2

2

1−e−2 approximation
of the optimal maximum coverage, we obtain the following for b = 1, . . . , Nc

τ∑
k=1

V (C
[b]
k ) ≥

3
2
− e−2

2

1− e−2

τ∑
k=1

V (C
[b]
kopt

) (A.17)

τ∑
k=1

V (C
[b]
k ) ≥

3
2
− e−2

2

1− e−2
(1− (

τ − 1

τ
)τ )V (C

[b]
opt) (A.18)

we can deduce that the algorithm in table 3.2 provides a (1 − ( τ−1
τ

)τ )
3
2
− e
−2

2

1−e−2 -approximation
for each subproblem of (3.13). Taking the sum over b = 1, ..., Nc finishes the proof.
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Appendix B

Dynamic TDD: Enhancing performance
by long term CSI estimation planning

B.1 Proof of Theorem 6

The network serves Ng copilot groups, τ of which are scheduled for UL training. At the
reception, each BS uses a matched filter receiver that is based on the latest available CSI
estimates. BS l detects the signal of user g in cell l by applying the following filter ugl(t) =
ĝ
[l]
gl (t−dg)

‖ĝ[l]gl (t−dg)‖
, t ≥ dg, where ĝ[l]

gl (t − dg) denotes the latest available CSI estimate for user g in

cell l. Consequently, the detected signal of user g in cell l is given by the following

u†gl(t)
Y

[l]
u (t)√
Pu

= u†gl(t)(

Ng∑
k=1

C∑
c=1

g
[l]
kc(t)Skc +

Wu(t)√
Pu

) (B.1)

= u†gl(t)((ρ
[l]
gl)

dg ĝ
[l]
gl (t− dg)Sgl +

C∑
c6=l

(ρ[l]
gc)

dg ĝ[l]
gc(t− dg)Sgc

+
C∑
c=1

(ρ[l]
gc)

dg g̃[l]
gc(t− dg)Sgc +

C∑
c=1

dg−1∑
j=0

(ρ[l]
gc)

j

√
β

[l]
gcε

[l]
gc(t− j)Sgc

+
Wu(t)√
Pu

+

Ng∑
k 6=g

C∑
c=1

g
[l]
kc(t)Skc)

= u†il(t)(I1(t) + I2(t) + I3(t)),
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with

I1(t) = (ρ
[l]
gl)

dg ĝ
[l]
gl (t− dg)Sgl, (B.2)

I2(t) =
C∑
c 6=l

(ρ[l]
gc)

dg ĝ[l]
gc(t− dg)Sgc, (B.3)

I3(t) =
C∑
c=1

(ρ[l]
gc)

dg g̃[l]
gc(t− dg)Sgc +

C∑
c=1

dg−1∑
j=0

(ρ[l]
gc)

j

√
β

[l]
gcε

[l]
gc(t− j)Sgc (B.4)

+

Ng∑
k 6=g

C∑
c=1

g
[l]
kc(t)Skc +

Wu(t)√
Pu

The third equality in Equation B.1 follows from the fact that g[l]
kc(t) =

√
β

[l]
kch

[l]
kc(t), h[l]

kc(t) =

ρ
[l]
kch

[l]
kc(t− 1) + ε

[l]
kc(t) for all t and g[l]

kc(t) = ĝ
[l]
kc(t) + g̃

[l]
kc(t) for all t. We note that I1(·) refers

to the useful signal, I2(·) represents the impact of pilot contamination and I3(·) regroups the
impact of the white noise, channel estimation error, non correlated interference due to users
with different pilot sequences and the impact of channel aging.
The instant spectral efficiency attained by user g in cell l is:

Rg,l =
(

1− τ

T

)
log

(
1 +

|u†gl(t)I1(t)|2

|u†gl(t)I2(t)|2 + |u†gl(t)I3(t)|2

)
. (B.5)

We now define Rg,l to be the average achievable sum rate of user g in cell l, namely,

Rg,l = E

(
E

((
1− τ

T

)
log

(
1 +

|u†gl(t)I1(t)|2

|u†gl(t)I2(t)|2 + |u†gl(t)I3(t)|2

)∣∣∣∣ĝ[l]
gl (t− dg)

))
, (B.6)

the last equality follows from the law of total expectation. Let us define R
0

g,l such that

R
0

g,l = E

((
1− τ

T

)
log

(
1 +

|u†gl(t)I1(t)|2

|u†gl(t)I2(t)|2 + |u†gl(t)I3(t)|2

)∣∣∣∣ĝ[l]
gl (t− dg)

)
, (B.7)

therefore, Rg,l = E(R
0

g,l). Based on the convexity of log(1 + 1
x+a

), and Jensen’s inequality
we obtain the following

R
0

g,l ≥
(

1− τ

T

)
log

(
1 +

|u†gl(t)(ρ
[l]
gl)

dg ĝ
[l]
gl (t− dg)|2

E(|u†gl(t)I2(t)|2|ĝ[l]
gl (t− dg)) + E(|u†gl(t)I3(t)|2|ĝ[l]

gl (t− dg))

)
,

(B.8)

since

E(|u†gl(t)I1(t)|2|ĝ[l]
gl (t− dg)) = |u†gl(t)(ρ

[l]
gl)

dg ĝ
[l]
gl (t− dg)|

2, (B.9)

132



B.1. Proof of Theorem 6

by the property E(f(Z)|Z) = f(Z) for a random variable Z.
We now aim at computing E(|u†gl(t)Ij(t)|2|ĝ

[l]
gl (t−dg)) for j = 2, 3. In order to do so, we are

first going to obtain an alternative expression for I2(t), that is,

I2(t) =
C∑
c 6=l

ĝ[l]
gc(t− dg)Sgc = ĝ

[l]
gl (t− dg)

C∑
c 6=l

β
[l]
gc

β
[l]
gl

Sgc, (B.10)

since ĝ[l]
gc(t − dg) = ĝ

[l]
gl (t − dg)

β
[l]
gc

β
[l]
gl

. Therefore, I2(t) and ĝ[l]
gl (t − dg) are correlated. Conse-

quently, we obtain

E
[
|u†gl(t)I2(t)|2|ĝ[l]

gl (t− dg)
]

=
∣∣∣u†gl(t)ĝ[l]

gl (t− dg)
∣∣∣2 C∑

c 6=l

(ρ[l]
gc)

2dg
β

[l]2

gc

β
[l]2

gl

. (B.11)

We will now compute E(|u†gl(t)I3(t)|2|ĝ[l]
gl (t − dg)). First note that, I3(t) is independent of

ĝ
[l]
gl (t − dg) and since u†gl(t) has unit norm, we have that E(|u†gl(t)I3(t)|2|ĝ[l]

gl (t − dg)) =
E(|I3(t)|2), therefore we obtain

E(|I3(t)|2) = E
(
|
C∑
c=1

(ρ[l]
gc)

dg g̃[l]
gc(t− dg)Sgc +

C∑
c=1

dg−1∑
j=0

√
β

[l]
gc(ρ

[l]
gc)

jε[l]
gc(t− j)Sgc (B.12)

+

Ng∑
k 6=g

C∑
c=1

g
[l]
kc(t)Skc +

Wu(t)√
Pu
|2
)

= E
( C∑

c=1

|(ρ[l]
gc)

dg g̃[l]
gc(t− dg)|2 +

C∑
c=1

dg−1∑
j=0

|
√
β

[l]
gc(ρ

[l]
gc)

jε[l]
gc(t− j)|2

+

Ng∑
k 6=g

C∑
c=1

|g[l]
kc(t)|

2 + |Wu(t)√
Pu
|2
)
,

where the last equality follows from noting the following four properties; (i) Skc · Sic′ = 0
for all k 6= i and all c, c′ ∈ {0, . . . , C}, (ii) E(ZWu(t)) = E(Z)E(Wu(t)) = 0 for all random
variables Z that are independent of Wu(t) (zero mean complex Gaussian noise), (iii) similar
to the previous property, E(Zε

[l]
ic(t)) = E(Z)E(ε

[l]
ic(t)) = 0 for all Z independent of ε[l]

ic(t)

(zero mean complex white Gaussian noise) and finally (iv) g[l]
kc and g̃[l]

k′c′ are independent for
all (k, c) 6= (k′, c′).

We now compute the four terms in Equation B.12. The last term, i.e.,

E(|Wu(t)/
√
Pu|2) =

1

Pu
. (B.13)
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We now compute the third term in Equation B.12, that is,

E

(
C∑
c=1

dg−1∑
j=0

|
√
β

[l]
gc(ρ

[l]
gc)

jε[l]
gc(t− j)|2

)
=

C∑
c=1

dg−1∑
j=0

β[l]
gc(ρ

[l]
gc)

2j(1− (ρ[l]
gc)

2) (B.14)

=
C∑
c=1

β[l]
gc

1− (ρ
[l]
gc)2dg

1− (ρ
[l]
gc)2

(1− (ρ[l]
gc)

2)

=
C∑
c=1

β[l]
gc(1− (ρ[l]

gc)
2dg),

for the second equality we have used the expression of finite geometric sums since (ρ
[l]
gc)2 < 1

for all g and c. Next we compute the second term in Equation B.12, namely,

E(
C∑
c=1

|(ρ[l]
gc)

dg g̃[l]
gc(t− dg)|2) =

C∑
c=1

(ρ[l]
gc)

2dg

β[l]
gc −

(β
[l]
gc)2

1
Pp

+
∑C

b=1 β
[l]
gb

 . (B.15)

the latter is satisfied due to the fact that the variance of g̃[l]
gc(t−dg) is given by β[l]

gc− (β
[l]
gc)

2

1
Pp

+
∑C
b=1 β

[l]
gb

for all g and c.

We are left with the first term in Equation B.12, that is,
Ng∑
k 6=g

C∑
c=1

E(|g[l]
kc(t)|

2) =

Ng∑
k 6=g

C∑
c=1

E(|
√
β

[l]
kch

[l]
kc(t)|

2) =

Ng∑
k 6=g

C∑
c=1

β
[l]
kc, (B.16)

Combining all four terms, that is, Equations B.13, B.14, B.15, B.16 and B.12, we obtain

E
[
|u†gl(t)I3(t)|2

]
=

Ng∑
k 6=g

C∑
c=1

β
[l]
kn +

C∑
c=1

β[l]
gc(1− (ρ[l]

gc)
2dg) +

C∑
c=1

(ρ[l]
gc)

2dg(β[l]
gc −

(β
[l]
gc)2

1
Pp

+
∑C

b=1 β
[l]
gb

)

(B.17)

=

Ng∑
k 6=g

C∑
c=1

β
[l]
kc +

C∑
c=1

(β[l]
gc − ρ[l]2dg

gc

β
[l]2

gc

1
Pp

+
∑C

b=1 β
[l]
gb

) +
1

Pu
.

Substituting the results in Equations B.17 and B.11 in Equation B.8, we obtain

R
0

g,l ≥
(

1− τ

T

)
log

(
1 +

(ρ
[l]
gl)

2dg |u†gl(t)ĝ
[l]
gl (t− dg)|2

F

)
, (B.18)

with

F =|u†gl(t)ĝ
[l]
gl (t− dg)|

2

C∑
c6=l

(ρ[l]
gc)

2dg
β

[l]2

gc

β
[l]2

gl

+

Ng∑
k 6=g

C∑
c=1

β
[l]
kc +

C∑
c=1

(β[l]
gc − ρ[l]2dg

gc

β
[l]2

gc

1
Pp

+
∑C

b=1 β
[l]
gb

) +
1

Pu
.

(B.19)
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From Equation B.6 and B.19 we obtain

Rg,l = E(R
0

g,l) = E

((
1− τ

T

)
log

(
1 +

(ρ
[l]
il )

2dg |u†il(t)ĝ
[l]
il (t− dg)|2

F

))
(B.20)

= E

((
1− τ

T

)
log

(
1 +

(ρ
[l]
gl)

2dg

G

))
,

where

G =
F

|u†gl(t)ĝ
[l]
gl (t− dg)|2

. (B.21)

In order to compute the final expression of the bound on the average rate, it now suffices to
compute the explicit expression of the right hand side (RHS) of Equation B.6. In order to do
so, we apply Jensen’s inequality to the RHS in Eq. B.6, that is,

Rg,l ≥
(

1− τ

T

)
log

(
1 +

(ρ
[l]
g,l)

2dg

E(G)

)
, (B.22)

with

E(G) =
C∑
c 6=l

(ρ[l]
gc)

2dg
β

[l]2

gc

β
[l]2

gl

+ E

(
1

|u†gl(t)ĝ
[l]
gl (t− dg)|2

)
(B.23)

·

 Ng∑
k 6=g

C∑
c=1

β
[l]
kc +

C∑
c=1

(β[l]
gc − ρ[l]2dg

gc

β
[l]2

gc

1
Pp

+
∑C

b=1 β
[l]
gb

) +
1

Pu

 .

Note that
∣∣∣u†gl(t)ĝ[l]

gl (t− dg)
∣∣∣2 has a Gamma distribution with parameters (M,

β
[l]2

gl

1
Pp

+
∑C
b=1 β

[l]
gb

).

Consequently, the mean value of 1∣∣∣u†gl(t)ĝ[l]gl (t−dg)
∣∣∣2 (that has an inverse Gamma distribution) is

equal to 1

(M−1)×
β
[l]2

gl

1
Pp

+
∑C
b=1

β
[l]
gb

. Combining this together with the results in Equations B.20 and

B.23 we obtain the desired lower bound on the average achievable spectral efficiency of user
g, l, that is,

Rg,l ≥
(

1− τ

T

)
log

(
1 +

(M − 1)(β
[l]
gl )

2(ρ
[l]
gl)

2dg

(M − 1)Ipgl + Ingl

)
, (B.24)
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where Ipgl and Ingl are given by

Ipgl =
C∑
c6=l

(ρ[l]
gc)

2dg(β[l]
gc)

2, and (B.25)

Ingl = (
1

Pp
+

C∑
b=1

β
[l]
gb) ·

 Ng∑
k 6=g

C∑
c=1

β
[l]
kc +

C∑
c=1

(β[l]
gc − ρ[l]2dg

gc

β
[l]2

gc

1
Pp

+
∑C

b=1 β
[l]
gb

) +
1

Pu

 . (B.26)

Summing the achievable spectral efficiency of all grouped users concludes the proof.

B.2 Proof of Theorem 7

The network serves Ng copilot groups, τ of which are scheduled for UL training. At the
reception, each BS uses a Zero Forcing receiver that is based on the latest available CSI
estimates.
BS l detects the signal of the users within the same cell by applying the following filter
U zf
l (t) = (Ĝo†

l (t)Ĝo
l (t))

−1Ĝo†

l (t), t ≥ dg. Consequently, the detected signal of the users in
cell l is given by the following

U zf
l (t)

Y
[l]
u (t)√
Pu

= U zf
l (t)(

C∑
c=1

G[l]
c (t)Sc +

Wu(t)√
Pu

)

= U zf
l (t)((Cl(t)Ĝ

o
l (t) + Cl(t)G̃

o
l (t) + εl(t))Sl +

C∑
c6=l

(B.27)

(Cc(t)Ĝ
o
c(t) + Cc(t)G̃

o
c(t) + εc(t))Sc +

Wu(t)√
Pu

)

= Cl(t) · INgSl + U zf
l (t)((Cl(t)G̃

o
l (t) + εl(t))Sl +

C∑
c 6=l

(Cc(t)Ĝ
o
c(t) + Cc(t)G̃

o
c(t) + εc(t))Sc +

Wu(t)√
Pu

),

where Cc(t) ∈ CM×Ng and εc(t) ∈ CM×Ng , ∀c = 1, . . . , C, are given by

Cc(t) = diag(ρ
[l]2dk

kc , k = 1, . . . , Ng), ∀c = 1, . . . , C, (B.28)

εc(t) = [

d1−1∑
j=0

(ρ
[l]
1c)

j

√
β

[l]
1cε

[l]
1c(t− j), . . . ,

dNg−1∑
j=0

(ρ
[l]
Ngc

)j
√
β

[l]
Ngc

ε
[l]
Ngc

(t− j)], ∀c = 1, . . . , C

(B.29)
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We define ∆ as

∆ = U zf
l (t)

(
(Cl(t)G̃

o
l (t) + εl(t))Sl +

C∑
c 6=l

(Cc(t)Ĝ
o
c(t) + Cc(t)G̃

o
c(t) + εc(t))Sc +

Wu(t)√
Pu

)
(B.30)(

(Cl(t)G̃
o
l (t) + εl(t))Sl +

C∑
c6=l

(Cc(t)Ĝ
o
c(t) + Cc(t)G̃

o
c(t) + εc(t))Sc +

Wu(t)√
Pu

)†
U

[zf ]†

l (t)

and

∆1 = U zf
l (t)(Cl(t)G̃

o
l (t) + εl(t))(Cl(t)G̃

o
l (t) + εl(t))

†U
[zf ]†

l (t) (B.31)

∆2 = U zf
l (t)

C∑
c6=l

(Cc(t)Ĝ
o
c(t) + Cc(t)G̃

o
c(t) + εc(t))(Cc(t)Ĝ

o
c(t) + Cc(t)G̃

o
c(t) + εc(t))

†U
[zf ]†

l (t)

(B.32)

∆3 = U zf
l (t)(

Wu(t)√
Pu

)(
Wu(t)√
Pu

)†U
[zf ]†

l (t) (B.33)

For user g in cell l, the SINR is given by ([Cl(t)]gg)
2[∆]−1

gg . Consequently, the average rate
of this user is

R̄g,l = E
((

1− τ

Ts

)
log
(
1 + ([Cl(t)]gg)

2[∆]−1
gg

))
(B.34)

≥
(

1− τ

Ts

)
log
(
1 + E

(
([Cl(t)]gg)

2[∆]−1
gg

))
,

where the last inequality is obtained using the convexity of log(1 + x−1). We, now, compute
each component of E ([∆]gg).
[∆1]gg is the intra-cell interference due to the MMSE estimation error and the impact of
channel aging. Since Ĝo

l (t), G̃o
l (t) and εl(t) are mutually independent, we obtain

E ([∆1]) = E
(
U zf
l (t)(Cl(t)G̃

o
l (t) + εl(t))(Cl(t)G̃

o
l (t) + εl(t))

†U
[zf ]†

l (t)
)

(B.35)

= E
(
U zf
l (t)(C2

l (t)G̃o
l (t)G̃

o†

l (t) + εl(t)ε
†
l (t))U

[zf ]†

l (t)
)

= E
(
U zf
l (t)(C2

l (t)G̃o
l (t)G̃

o†

l (t) + εl(t)ε
†
l (t))U

[zf ]†

l (t)
)

= E
(
U zf
l (t)U

[zf ]†

l (t)
)
·
(
C2
l (t)E

(
G̃o
l (t)G̃

o†

l (t)
)

+ E
(
εl(t)ε

†
l (t)
))

,

In addition, we have [G̃o
l (t)]k ∼ CN

(
0,

(
β

[l]
kl −

β
[l]2

kl
1
Pp

+
∑C
b,b 6=l β

[l]
kl

)
IM

)
, and [εl(t)]k

∼ CN
(

0, β
[l]
kl(1− (ρ

[l]
kl)

2dk)IM

)
. Consequently, we obtain
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E ([∆1]gg) = E
(

[Ĝo†

l (t)Ĝo
l (t)]

−1
gg

)
· (B.36) Ng∑

k,k 6=g

ρ
[l]2dk

kl

β[l]
kl −

β
[l]2

kl

1
Pp

+
∑C

b,b 6=l β
[l]
kl

+

Ng∑
k,k 6=g

β
[l]
kl(1− (ρ

[l]
kl)

2dk)

 ,

Note that [Ĝo†

l (t)Ĝo
l (t)]

−1
gg has a Gamma distribution with M − Ng + 1 degrees of freedom.

Consequently, [Ĝo†

l (t)Ĝo
l (t)]

−1
gg has an inverse Gamma distribution with mean

( 1
Pp

+
∑C
b=1 β

[l]
gb)

β
[l]2

gl (M−Ng)

and we obtain the following

E ([∆1]gg) =
( 1
Pp

+
∑C

b=1 β
[l]
gb)

β
[l]2

gl (M −Ng)
·

Ng∑
k,k 6=g

β[l]
kl − ρ

[l]2dk

kl

β
[l]2

kl

1
Pp

+
∑C

b,b 6=l β
[l]
kl

 , (B.37)

[∆2]gg is the inter-cell interference. It includes the impact of coherent interference (pilot
contamination). Since Cc(t)Ĝo

c(t), Cb(t)G̃o
b(t) and εu(t) are mutually independent ∀u, c, b,

we have

E ([∆2]) =
C∑
c6=l

E
(
U zf
l (t)

(
C2
c (t)Ĝo

c(t)Ĝ
o†

c (t)
)
U

[zf ]†

l (t)
)

(B.38)

+ E
(
U zf
l (t)

(
C2
c (t)G̃o

c(t)G̃
o†

c (t)
)
U

[zf ]†

l (t)
)

+ E
(
U zf
l (t)

(
εc(t)ε

†
c(t)
)
U

[zf ]†

l (t)
)

Owing to pilot reuse, Ĝo
l (t) and Cc(t)Ĝo

c(t) are correlated for l 6= c. Since, for each copilot

group g, we have ĝ[l]
gc(t − dg) = ĝ

[l]
gl (t − dg)

β
[l]
gc

β
[l]
gl

, we obtain Ĝo†

l (t) = N l
cĜ

o†
c (t) where N l

c ∈

CNg×Ng , [N l
c] = diag(

β
[l]
kc

β
[l]
kl

, k = 1, . . . , Ng). Consequently,

C∑
c 6=l

E
(
U zf
l (t)

(
C2
c (t)Ĝo

c(t)Ĝ
o†

c (t)
)
U

[zf ]†

l (t)
)

=
C∑
c 6=l

C2
c (t)N [l]2

c (B.39)

Since U zf
l (t), G̃o

c(t) and εc(t) are mutually independent we have

C∑
c 6=l

E
(
U zf
l (t)

(
C2
c (t)G̃o

c(t)G̃
o†

c (t)
)
U

[zf ]†

l (t)
)

+ E
(
U zf
l (t)

(
εc(t)ε

†
c(t)
)
U

[zf ]†

l (t)
)

(B.40)

=
C∑
c 6=l

E
(
U zf
l (t)U

[zf ]†

l (t)
)
·
(
E
(
εc(t)ε

†
c(t)
)

+ E
(
C2
c (t)G̃o

c(t)G̃
o†

c (t)
))
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Combining the results of the two previous equations, we finally obtain E ([∆2]gg) as

E ([∆2]gg) =
C∑
c 6=l

( 1
Pp

+
∑C

b=1 β
[l]
gb)

β
[l]2

gl (M −Ng)
(

Ng∑
k

(β
[l]
kc − ρ

[l]2dk

kc

β
[l]2

kc

1
Pp

+
∑C

b,b 6=c β
[l]
kb

)) + (ρ[l]
gc)

2dg
β

[l]2

gc

β
[l]2

gl


(B.41)

[∆3]gg denotes the impact of UL noise. Using the same aforementioned reasoning, we obtain

E ([∆3]gg) = E
(
U zf
l (t)

Wu(t)√
Pu

(
Wu(t)√
Pu

)†U
[zf ]†

l (t)

)
=

1

Pu
E
(
U zf
l (t)U

[zf ]†

l (t)
)

(B.42)

=
1

Pu

( 1
Pp

+
∑C

b=1 β
[l]
gb)

β
[l]2

gl (M −Ng)

Combining the obtained results for E ([∆1]gg), E ([∆2]gg) and E ([∆3]gg), we obtain

([Cl(t)]gg)
2[∆]−1

gg = (B.43)

(M −Ng)(ρ
[l]
gl)

2dgβ
[l]2

gl

(M −Ng)
∑C

c 6=l(ρ
[l]
gc)2dgβ

[l]2
gc +

(
1
Pu

+
∑C

c

∑Ng
k β

[l]
kc − ρ

[l]2dk

kc
β
[l]2

kc
1
Pp

+
∑C
b,b 6=c β

[l]
kb

)
( 1
Pp

+
∑C

b=1 β
[l]
gb)

Which finishes the proof.

B.3 Proof of Theorem 8

In order to prove Theorem 8, we consider the asymptotic regime where the number of BS
antennas M grows very large. In this case the lower bound on the spectral efficiency of each
user g, l converges to the following limit:(

1− τ

Ts

)
log

1 +
β

[l]2

gl ρ
[l]2dg

gl∑C
b6=l ρ

[l]2dg

gb β
[l]2

gb

 . (B.44)

The proposed framework is compared with a reference massive MIMO system where, all
scheduled users are required to perform UL training. In the asymptotic regime, the lower
bound on the achievable spectral efficiency of each user g, l in the reference system converges
to the following limit: (

1− Ng

Ts

)
log

(
1 +

β
[l]2

gl∑C
b6=l β

[l]2

gb

)
. (B.45)
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The aim here, is to improve the achievable spectral efficiency of each scheduled users. Con-
sequently, the spectral efficiency of each user in the two considered systems should verify,
∀ g = 1...Ng, l = 1...C:

(
1− τ

Ts

)
log

1 +
β

[l]2

gl ρ
[l]2dg

gl∑C
b6=l ρ

[l]2dg

gb β
[l]2

gb

 ≥ (1− Ng

Ts

)
log

(
1 +

β
[l]2

gl∑C
b 6=l β

[l]2

gb

)
. (B.46)

(41) is equivalent to the following condition:

β
[l]2

gl ρ
[l]2dg

gl∑C
b 6=l ρ

[l]2dg

gb β
[l]2

gb

≥

(
1 +

β
[l]2

gl∑C
b 6=l β

[l]2

gb

)Ts−Ng
Ts−τ

− 1. (B.47)

We consider the extreme case where ρ2
gl = ρ̄

[min]2

g and ∀b 6= l, ρ2
gb = ρ̄

[max]2

g . Here ρ̄[min]
g

and ρ̄[max]
g denote respectively the minimum and maximum channel autocorrelation coeffi-

cients in group g. This means that we assume the worst case scenario for each user where,
its coherence time is always lower than its fellow copilot users. Finally, by considering

SINR
[∞]
g,l =

β
[l]2

gl∑C
b 6=l β

[l]2

gb

, we finish the proof.

B.4 Proof of Theorem 9

In order to prove theorem 9, we start by demonstrating that the objective function of prob-
lem (4.38), is submodular. In order to do so, we note that the sum of submodular functions is
submodular. Consequently, it is enough to prove the submodularity of fg for a given copilot
group g, where fg is given by

fg(~a(t0), . . . ,~a(tH−1), x, ~u) =

tH−1∑
t=t0

C∑
l=1

(
1− 1

Ts

NG∑
i=1

ai(t)
)

log
(
1 + SINRMRC

gl (~d(t), x, ~u)
)
,

(B.48)

We consider two sets of action vectors, {~a(t) ∈ A, , t = t0, . . . , tH−1} and {~a′(t) ∈ A, t =
t0, . . . , tH−1} such that, ∀t = t0, . . . , tH−1,

∑NG
i=1 ai(t) ≤

∑NG
i=1 a

′
i(t), and ∀i = 1, . . . , NG, ai(h) =

1⇒ a′i(h) = 1.
These two sets of action vectors result, respectively, in two sets of delay vectors {~d(t), t =

t0, . . . , tH−1} and {~d′(t), t = t0, . . . , tH−1} that can be obtained from ~a(t) and ~a′(t) accord-
ing to (4.37).
In order to prove the submodularity of fg, we need to prove that, for a given h and j such that
aj(h) = a′j(h) = 0, the marginal values of setting aj(h) = 1 is higher than that of a′j(h) = 1
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,i.e

fg(~a(t0), . . . ,~a(h)⊕ aj(h), . . . ,~a(tH−1), x, ~u)− fg(~a(t0), . . . ,~a(h), . . . ,~a(tH−1), x, ~u) ≥
(B.49)

fg(~a
′(t0), . . . ,~a′(h)⊕ a′j(h),~a′(tH−1), x, ~u)− fg(~a′(t0), . . . ,~a′(h), . . . ,~a′(tH−1), x, ~u).

We will distinguish between two cases, j = g and j 6= g. For the first case, where j = g, the
difference between the two marginal values is given by:

Λ− Λ′ =
C∑
l=1

log
(
1 + SINRMRC

gl (0, x, ~u)
)(∑NG

i=1 a
′
i(h)−

∑NG
i=1 ai(h)

Ts

)
+
(
1−

∑NG
i=1 a

′
i(h)

Ts

)
log
(
1 + SINRMRC

gl (d′g(h), x, ~u)
)
−
(
1−

∑NG
i=1 ai(h)

Ts

)
log
(
1 + SINRMRC

gl (dg(h), x, ~u)
)

+

tH−1∑
t=h+1

C∑
l=1

(
1−

∑NG
i=1 ai(t)

Ts

)
log
(1 + SINRMRC

gl (dg(t)− 1, x, ~u)

1 + SINRMRC
gl (dg(t), x, ~u)

)
−
(
1−

∑NG
i=1 a

′
i(t)

Ts

)
log
(1 + SINRMRC

gl (d′g(t)− 1, x, ~u)

1 + SINRMRC
gl (d′g(t), x, ~u)

)
(B.50)

The difference in marginal values is positive as log
(1+SINRMRC

gl (dg(t)−1,x,~u)

1+SINRMRC

gl (dg(t),x,~u)

)
is decreasing

as a function of dg(t). We, now, consider the case where j 6= g. In this case, we have

Λ− Λ′ =
C∑
l=1

1

Ts
log
(1 + SINRMRC

gl (d′g(h), x, ~u)

1 + SINRMRC
gl (dg(h), x, ~u)

)
(B.51)

From the definition of ~a(h) and ~a′(h), we have
∑NG

i=1 ai(h) ≤
∑NG

i=1 a
′
i(h).

Hence SINRMRC
gl (d′g(h), x, ~u) ≥ SINRMRC

gl (dg(h), x, ~u) and the difference in marginal val-
ues is also positive, in this case. Consequently, fg is submodular.
Concerning the matroid constraints, let us consider the ground setG = {v1t1 , . . . , vNGt1 , . . . , v1tH−1

, . . . , vNGtH−1
},

where each element vgt represents the scheduling of copilot group g for training at slot t. It
is clear that the constraints of (4.38) form a partition matroid on G [206]. Consequently,
problem (4.38) is a maximization of a submodular function subject to matroid constraints.
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Appendix C

User-centric 5G networks: Energy
Efficiency under popularity based
Clustering in cache enabled SCN

C.1 Proof of Lemma 10

We derive the expression of the average consumed power in the network with cache enabled
SBSs. The average total power ρctotal is given by:

ρctotal = E {ρI}+ E {ρT}+ E {ρf} , (C.1)

where E {ρI} = ρλsπR
2
n and E {ρf} = λsπR

2
n (ρhdP {hit}+ ρbh (1− P {hit})) . Tak-

ing into account the considered system model, the average transmit power used by a given
user from cluster k, E

{
ρ

[k]
T

}
can be written as follows:

E
{
ρ

[k]
T

}
= E {ρk} (1−

∑
j 6=k

∑
i∈∆s

piu(1− e−λsjπR
2

)) +
∑
j 6=k

∑
i∈∆s

piu(1− e−λsjπR
2

)E {ρj} .

(C.2)

After averaging over all users in the network, the average consumed transmit power is given
by:

E {ρT} =
λsπR

2
n

U

Nc∑
k=1

∑
u∈Υk

(
E {ρk}+

∑
j 6=k

∑
i∈∆s

piu(1− e−λsjπR
2

)(E {ρj} − E {ρk})

)
.

(C.3)
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We need then to compute the average power used by the users to communicate with the
nearest SBS from any given cluster k , k = 1..Nc.
According to the PPP assumption for the location of the SBSs, the distance from a user to its
nearest SBS from cluster k, denoted by rk, has the following pdf [177]:

frk(r) = 2πλskre
−λskπr2 . (C.4)

The transmit power used by the user in this case is given by ρk = ρ0r
α
k . Then:

E [ρk] =

∫ R

0

2πλskr
α+1exp(−λskπr2)dr =

ρ0γ(α
2

+ 1, πλskR
2)

(λskπ)
α
2

. (C.5)

Following the same calculus for E [ρk] , k = 1..Nc, we obtain the final expression of the
average consumed power in the network:

ρctotal = λsπR
2
n(ρhdP {hit}+ ρbh (1− P {hit}) + ρ)

λsπR
2
n

U

Nc∑
k=1

∑
u∈Υk

(
ρ0γ(α

2
+ 1, πλskR

2)

(λskπ)
α
2

(C.6)

+
∑
j 6=k

∑
i∈∆s

piu(1− e−λsjπR
2

)(
ρ0γ(α

2
+ 1, πλsjR

2)

(λsjπ)
α
2

−
ρ0γ(α

2
+ 1, πλskR

2)

(λskπ)
α
2

)).

C.2 Proof of Lemma 11

We derive the achievable coverage probability when using channel inversion power control:

P {SINR ≥ θ} = E

[
P(‖hu‖2 ≥ (

σ2 +
∑Nc

k=1 Ik
ρ0

)θ)|Ik∀k

]
(C.7)

= E

[
exp(− θ

ρ0

(σ2 +
Nc∑
k=1

Ik))|Ik∀k

]
= exp(− θ

ρ0

σ2)
Nc∏
k=1

LIk(
θ

ρ0

).

We use the fact that ‖hu‖2 is exponentially distributed and LIk(s) is the Laplace transform
of Ik at s. To prove Lemma 5.21, we need to compute the Laplace transform of Ik,∀k. The
interfering base stations constitute multiple PPP processes φsk, k = 1...Nc, each associated
with a given cluster. The Laplace transform of Ik for a given k is obtained as:

LIk(
θ

ρ0

) = E

[
exp

(
−
∑
i∈φsk

ρik ‖hui‖2 r−αui

)]
= exp(−2πλsk

∫ ∞
0

(
1− E

[
e−θ‖h‖

2ρkr
−α
])
rdr)

(C.8)

= exp

(
−πλsk(

θ

ρ0

)
2
αE
[
ρ

2
α
k

]
Γ(1 +

2

α
)Γ(1− 2

α
)

)
.
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E
[
ρ

2
α
k

]
depends on the density of the small cells caching files from cluster k. E

[
ρ

2
α
k

]
can

be deduced from C.1 as; E
[
ρ

2
α
k

]
=

ρ
2
α
0 γ(2,πλskR

2)

λskπ
. Based on Slivnyak’s Theorem for Poisson

Point Processes [177], the obtained Expression is valid for any user within the network.

C.3 Proof of Theorem 12

We start by showing that the objective function is quasi-concave. Given the expression of Σ
as a function of the density vector Λs, it is difficult to prove its quasi-concavity by using its
gradient or Hessian matrix.
However, using the fact that a composition with an affine function preserves quasi-concavity
[200], this proof can be considerably simplified. To prove the quasi-concavity of Σ as a
function of the density vector Λs, we consider an affine function f(t) given by:

f(t) = tZ + Λ0
s, (C.9)

where Λ0
s ∈ RNc×1 such that

∑Nc
k=1 λ

0
sk ≤ λsmax , Z ∈ RNc×1 and t ∈ R. Since a composition

with an affine function preserves quasi-concavity, it is sufficient to prove the quasi-concavity
of Σ(tZ + Λ0

s) with respect to t in order to show the quasi-concavity of Σ with respect to Λs.
The objective Σ(tZ + Λ0

s) can be written as a product of two nonnegative functions:
U(tZ + Λ0

s) =
∑Nc

k=1(tzk + λ0
sk)πR

2
n log(1 + θ) P {SINR ≥ θ} and V (tZ + Λ0

s) = 1
ρctotal

.
We start by computing the derivatives of U(tZ + Λ0

s) and V (tZ + Λ0
s) with respect to t:

U ′ =
dU(tZ + Λ0

s )

dt
= (

Nc∑
k=1

zk)πR
2
n log(1 + θ)exp(− θ

ρ0

σ2)
Nc∏
k=1

LIku(
θ

ρ0

) (C.10)(
1−

Nc∑
k=1

Γ(1 +
2

α
)Γ(1− 2

α
)θ

2
απzkR

2e−(tzk+λ0sk)πR2

)
.

Then dU(tZ+Λ0
s )

dt
> 0. We do the same to V (tZ + Λ0

s) = 1
ρctotal

. We have:

V ′ =
dV(tZ + Λ0

s )

dt
=
−χ
P c2
total

, (C.11)

where χ is given by:

χ = (
Nc∑
k=1

zk)πR
2
n((ρhd − ρbh)P {hit}+ ρ+ ρbh) +

πR2
n

U
((

Nc∑
k=1

zk)χ1 + (
Nc∑
k=1

tzk + λ0
sk)χ2)

(C.12)

+ (
Nc∑
k=1

tzk + λ0
sk)πR

2
n

1

U

U∑
u=1

Nc∑
k=1

(∑
i∈∆k

piu

)
zkπR

2e−(tzk+λ0sk)πR2

.
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Here χ1 and χ2 are respectively given by:

χ1 =
Nc∑
k=1

∑
u∈Υk

(
ρ0γ(α

2
+ 1, π(tzk + λ0

sk)R
2)

((tzk + λ0
sk)π)

α
2

+
∑
j 6=k

∑
i∈∆s

piu(1− e−(tzj+λ
0
sj)πR

2

) (C.13)

ρ0(
γ(α

2
+ 1, π(tzk + λ0

sj)R
2)

((tzj + λ0
sj)π)

α
2

−
γ(α

2
+ 1, π(tzk + λ0

sk)R
2)

((tzk + λ0
sk)π)

α
2

)),

χ2 = ρ0

Nc∑
k=1

∑
u∈Υk

((zkπR
αe−(tzk+λ0sk)πR2 −

γ(α
2

+ 1, π(tzk + λ0
sk)R

2)αzkπ
2

((tzk + λ0
sk)π)

α
2
−1

((tzk + λ0
sk)π)α
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+
∑
j 6=k
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)).

Consequently dV(tZ+Λ0
s )

dt
< 0. In what follows we distinguish two cases depending on the

existence of a point t∗ such that dΣ(tZ+Λ0
s )

dt t=t∗
= 0. If ∃t∗ such that dΣ(tZ+Λ0

s )
dt t=t∗

= 0 then:

dΣ(tZ + Λ0
s )

dt t=t∗
= 0⇔ U ′V + V ′U = 0⇔ −U

′V

V ′U
= 1. (C.15)

We compute the derivative of L(t) = −U ′V
V ′U

with respect to t. The expression of the derivative
is omitted here for brevity. We find that L′(t) > 0. Since L(t) is a strictly increasing function
then, according the Theorem of intermediate value, if ∃t∗ such that L(t∗) = 1 then this point
is unique. Finally, depending on the existence of t∗, we have two cases:

• If ∃ t∗ such that L(t∗) = 1 then this point is unique and Σ(f(t)) is increasing for t < t∗

and decreasing for t > t∗.

• If, on the other hand, t∗ does not exists, then Σ(f(t)) is a strictly monotone function.

This proves that Σ(f(t)) is a quasi-concave function of t. Since composition with an affine
function preserves quasi-concavity, we can deduce that Σ(Λs) is a quasi-concave function of
Λs and that, if ∃Λ∗s such that∇Σ(Λ∗s) = 0 then this vector is unique .
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C.4. Proof of Theorem 13

In the second step of the proof, we need to show that the constraint C(Λs) = ρctotal− ρnctotal is
also quasi concave. This is done in a similar way as in the first step by considering C(f(t)).
After computing the derivative of C(f(t)) with respect to t, we find that:dC(f(t))

dt
< 0.

Then the first constraint is quasi concave. Using the same method, it is trivial to show that
the second constraint is also quasi-concave. In order to finish the proof, we need to show
that the optimal solution can be found with zero duality gap. This will be done using results
on quasi-concave programming from [195]. Since d(ρctotal−ρ

nc
total)

dλsk
6= 0,∀k = 1...Nc then,

according to the Necessity Theorem in [195], any solution of the optimization problem 5.24
satisfies the KKT conditions.
We, now, distinguish between two case:

• If ∃ Λ∗s such that ∇Σ(Λs)Λs=Λ∗s = 0 and Λ∗s satisfies the constraints then, Λ∗s is unique
and it is a global optimum of (23). The uniqueness of Λ∗s, if it exists, was shown in the
first step of the proof.

• If ∇Σ(Λs) ≥ 0, ∀Λs such that Λ†s1 ≤ λsmax , the sufficiency Theorem in [195] is
verified. Consequently, by combining the necessity and sufficiency results, the optimal
SBS density vector can be derived using KKT.

C.4 Proof of Theorem 13

First we need to prove that the objective function Ω is sub-modular. We consider two SBSs
allocations X and Y such that X ⊆ Y and we need to prove that the marginal value of
adding a new allocated SBS l to cluster i in X and Y verifies:

Ω (X ∪ {yli})− Ω (X) ≥ Ω (Y ∪ {yli})− Ω (Y ) . (C.16)

Monotonicity is trivial since any new SBS allocation cannot decrease the value of the ob-
jective function. In order to show submodularity of the function, we compare the marginal
values of adding yli to X and Y .
Here we consider Πi(X ∪ {yli}) referring to the users that change their serving SBS from
cluster i. µ(u, i) refers to the index of the SBS from cluster i serving user u.

A user changes its serving SBS when the new allocated one is closer which induces less
transmit power. Consequently, the marginal values of adding yli to X and Y are as follows:

Ω (X ∪ {yli})− Ω (X) =
∑

u∈Πi(X∪{yli})

(∑
f∈∆i

pfu

)(
ω

(X∪{yli})
uµ(u,i) − ω(X)

uµ(u,i)

)
, (C.17)

Ω (Y ∪ {yli})− Ω (Y ) =
∑

u∈Πi(Y ∪{yli})

(∑
f∈∆i

pfu

)(
ω

(Y ∪{yli})
uµ(u,i) − ω(Y )

uµ(u,i)

)
. (C.18)
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C.4. Proof of Theorem 13

Since X ⊆ Y we can deduce that Πi(Y ∪ {yli}) ⊆ Πi(X ∪ {yli}). Since a user changes
its serving SBS only when a closer allocated one is available then ω(Y ∪{yli})

uµ(u,i) − ω(Y )
uµ(u,i) > 0

which proves that Ω (X ∪ {yli})− Ω (X) ≥ Ω (Y ∪ {yli})− Ω (Y ).

Consequently, Ω is a sub-modular set function. It is simple to verify that the constraints∑Ns
s=1 ysk ≤ Nsk,∀k = 1..Nc are equivalent to a matroid constraints [45]. Then the con-

sidered optimization problem is equivalent to maximizing a sub-modular function subject to
matroid constraints.
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[46] Ejder Baştuğ and Mehdi Bennis and Mérouane Debbah, Anticipatory Caching in
Small Cell Networks: A Transfer Learning Approach, 1st KuVS Workshop on An-
ticipatory Networks, 2014.
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[72] Ejder Baştuğ and Mehdi Bennis and Marios Kountouris and Mérouane Debbah,
Cache-enabled Small Cell Networks: Modeling and Tradeoffs,EURASIP Journal on
Wireless Communications and Networking, 2015.

[73] Bartlomiej Blaszczyszyn and Anastasios Giovanidis, Optimal Geographic Caching In
Cellular Networks, IEEE International Conference on Communications (ICC), 2015.

[74] Mihaela Mitici and Jasper Goseling and Maurits de Graaf and Richard J. Boucherie,
Deployment vs. data retrieval costs for caches in the plane, University of Twente,
Department of Applied Mathematics, 2013.

154



Bibliography
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Titre : L’amélioration des performances des systèmes sans fil 5G par groupements adaptatifs des utilisateurs 

Mots clés : Mise en cache proactive, MIMO massif, apprentissage automatique, réseaux cellulaires, 5G 

 

Résumé: 5G est prévu pour s'attaquer, en plus d'une 

augmentation considérable du volume de trafic, la tâche 

de connecter des milliards d'appareils avec des 

exigences de service hétérogènes. Afin de relever les 

défis de la 5G, nous préconisons une utilisation plus 

efficace des informations disponibles, avec plus de 

sensibilisation par rapport aux services et aux 

utilisateurs, et une expansion de l'intelligence du RAN. 

En particulier, nous nous concentrons sur deux 

activateurs clés de la 5G, à savoir le MIMO massif et la 

mise en cache proactive. Dans le troisième chapitre, 

nous nous concentrons sur la problématique de 

l'acquisition de CSI dans MIMO massif en TDD. Pour 

ce faire, nous proposons de nouveaux schémas de 

regroupement spatial tels que, dans chaque groupe, une 

couverture maximale de la base spatiale du signal avec 

un chevauchement minimal entre les signatures 

spatiales des utilisateurs est obtenue. Ce dernier permet 

d'augmenter la densité de connexion tout en améliorant 

l'efficacité spectrale. MIMO massif en TDD est 

également au centre du quatrième chapitre. Dans ce cas, 

en se basant sur les différents taux de vieillissement des 

canaux sans fil, la périodicité d'estimation de CSI est 

supplémentaire. Nous le faisons en proposant un 

exploité comme un degré de liberté supplémentaire. 

Nous le faisons en proposant une adaptation dynamique 

de la trame TDD en fonction des temps de cohérence 

des canaux hétérogènes. Les stations de bases MIMO 

massif sont capables d'apprendre la meilleure politique 

d’estimation sur le uplink pour de longues périodes. 

Comme les changements de canaux résultent 

principalement de la mobilité de l'appareil, la 

connaissance de l'emplacement est également incluse 

dans le processus d'apprentissage. Le problème de 

planification qui en a résulté a été modélisé comme un 

POMDP à deux échelles temporelles et des algorithmes 

efficaces à faible complexité ont été fournis pour le 

résoudre. Le cinquième chapitre met l'accent sur la mise 

en cache proactive. Nous nous concentrons sur 

l'amélioration de l'efficacité énergétique des réseaux 

dotes de mise en cache en exploitant la corrélation dans 

les modèles de trafic en plus de la répartition spatiale 

des demandes. Nous proposons un cadre qui établit un 

compromis optimal entre la complexité et la véracité 

dans la modélisation du comportement des utilisateurs 

grâce à la classification adaptative basée sur la 

popularité du contenu. Il simplifie également le 

problème du placement de contenu, ce qui se traduit par 

un cadre d'allocation de contenu rapidement adaptable 

et économe en énergie.

 

Title: Performance improvement of 5G Wireless Systems through adaptive grouping of users 

Keywords: Massive MIMO, proactive caching, machine learning, cellular networks, 5G

 

Abstract: 5G is envisioned to tackle, in addition to a 

considerable increase in traffic volume, the task of 

connecting billions of devices with heterogeneous 

service requirements. In order to address the challenges 

of 5G, we advocate a more efficient use of the available 

information, with more service and user awareness, and 

an expansion of the RAN intelligence. In particular, we 

focus on two key enablers of 5G, namely massive 

MIMO and proactive caching. In the third chapter, we 

focus on addressing the bottleneck of CSI acquisition in 

TDD Massive MIMO. In order to do so, we propose 

novel spatial grouping schemes such that, in each group, 

maximum coverage of the signal’s spatial basis with 

minimum overlapping between user spatial signatures is 

achieved. The latter enables to increase connection 

density while improving spectral efficiency. TDD 

Massive MIMO is also the focus of the fourth chapter.  

Therein, based on the different rates of wireless 

channels aging, CSI estimation periodicity is 

 

exploited as an additional DoF. We do so by proposing 

a dynamic adaptation of the TDD frame based on the 

heterogeneous channels coherence times. The Massive 

MIMO BSs are enabled to learn the best uplink training 

policy for long periods. Since channel changes result 

primarily from device mobility, location awareness is 

also included in the learning process. The resulting 

planning problem was modeled as a two-time scale 

POMDP and efficient low complexity algorithms were 

provided to solve it. The fifth chapter focuses on 

proactive caching. We focus on improving the energy 

efficiency of cache-enabled networks by exploiting the 

correlation in traffic patterns in addition to the spatial 

repartition of requests.  We propose a framework that 

strikes the optimal trade-off between complexity and 

truthfulness in user behavior modeling through adaptive 

content popularity-based clustering. It also simplifies 

the problem of content placement, which results in a 

rapidly adaptable and energy efficient content allocation 

framework.

 


