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Résumé

Dans cette thèse, nous avons étudié les méthodes de régularisation pour la résolution numérique
de problèmes avec équilibres.

Dans une première partie, nous nous sommes intéressés aux problèmes de complémen-
tarité au travers de deux applications : les équations en valeur absolue et les problèmes de
parcimonie.

Dans une seconde partie, nous avons étudié les problèmes d'optimisation sous contraintes
de complémentarité. Après avoir dé�ni des conditions d'optimalité pour ces problèmes nous
avons proposé une nouvelle méthode de régularisation appelée méthode des papillons. À
partir d'une étude de la résolution des sous-problèmes de la régularisation nous avons dé�ni
un algorithme avec des propriétés de convergence forte.

Tout au long de ce manuscrit nous nous sommes concentrés sur les propriétés théoriques
des algorithmes ainsi que sur leurs applications numériques. La dernière partie de ce docu-
ment est consacrée aux résultats numériques des méthodes de régularisation.





Abstract

In this thesis, we studied the regularization methods for the numerical resolution of problems
with equilibria.

In the �rst part, we focused on the complementarity problems through two applications
that are the absolute value equation and the sparse optimization problem.

In the second part, we concentrated on optimization problems with complementarity
constraints. After studying the optimality conditions of this problem, we proposed a new
regularization method, so-called butter�y relaxation. Then, based on an analysis of the
regularized sub-problems we de�ned an algorithm with strong convergence property.

Throughout the manuscript, we concentrated on the theoretical properties of the al-
gorithms as well as their numerical applications. In the last part of this document, we
presented numerical results using the regularization methods for the mathematical programs
with complementarity constraints.





Remerciements

Cette thèse n'aurait pu être achevée sans l'aide, les encouragements et le soutien d'un grand
nombre de personnes à qui j'adresse ma plus sincère gratitude et considération.

Tout d'abord, je souhaiterais exprimer ma reconnaissance et toute mon amitié à mon
Directeur de thèse Mounir Haddou. Je n'aurai pu espérer personne plus disponible et sympa-
thique pour m'encadrer. J'ai beaucoup appris à ses côtés grâce à nos échanges et discussions.
Les mots sont faibles pour exprimer ma gratitude pour ses encouragements et son soutien
constant au cours de ces trois années.

Au cours de ma deuxième année de thèse, j'ai eu le plaisir et l'honneur de rencontrer
Jean-Pierre Dussault qui est par la suite devenu co-encadrant de la thèse. Je le remercie de
son soutien, des discussions éclairantes que nous avons eu et de m'avoir fait l'honneur de
m'inviter à Sherbrooke, séjours qui ont été très enrichissants tant sur le plan mathématiques
qu'humain.

Mes remerciements vont aussi à Samir Adly et Christian Kanzow, qui m'ont fait l'honneur
de rapporter le manuscript, ainsi qu'à Claudia Sagastizabal, Jocelyne Erhel, Jean Charles
Gilbert et Olivier Ley qui ont accepté de faire partie de mon jury de thèse.

Je remercie la composante IRMAR-Insa qui m'a accueilli et m'a permis de réaliser les
travaux présents dans ce manuscrit dans de bonnes conditions. Mes remerciements vont à
tous les membres de la composante ainsi que son personnel administratif dont le contact a
été à la fois source d'apprentissage et d'épanouissement.

Une partie des résultats obtenus au cours la thèse a été motivée par des discussions avec
d'autres chercheurs que mes encadrants. Je remercie Lina Abdallah pour son invitation au
Liban, son soutien et nos discussions. Mes remerciements vont également vers Jérémy Omer
pour ses précieux conseils et nos échanges qui ont bien souvent été source d'inspiration et de
motivation.

Durant ces trois années, j'ai pro�té de la présence de beaucoup de personnes qui ont fait
de cette thèse une succession de moments agréables. L'Insa a été un lieu de travail motivant,
mais également riche en rencontres. Je tiens à remercier Tuyen, Viet, Samuel, Trinh, Khang,
Duong, Kien pour les discussions et pauses café très agréables. Au cours de ces années mon
vietnamien ne s'est pas amélioré, mais un grand merci à Tuan qui m'a supporté dans son
bureau et dans sa ville natale à Da Nang. Je ne pourrai oublier mes deux co-bureaux Emilie
et Audrey qui en plus de me supporter sont amies, colocataires et co-voyageuses !

J'ai eu le plaisir de passer une partie de cette thèse à Sherbrooke et je remercie sincèrement
le BISOUS et les bisounours pour leur accueil, les 5 à 7, les parties de Mölky,. . . Merci à



Max', Luc, Jo', Sam et Mathieu.
Évidemment je ne saurai oublier tous ceux qui en dehors des universités étaient toujours

là quand le besoin de passer un bon moment se faisait sentir. J'ai le bonheur d'être entouré
de personnes toujours souriantes, positives et optimistes ! Mes remerciements vont ici aux
joueurs d'échecs, Bastien, Alexandre, Corina, Pierre, Raph, Mathilde, Remel, qui m'ont
accompagné sur les chemins obscurs des 64 cases. Un grand merci aux belettes pour leur
sourire, leur chaleur et leur gentillesse, ma petite s÷ur Fleur, Lucie et Vio. Je garderai
toujours un excellent souvenir des moments passés à DDL et des vacances. Merci également
à Cédric qui est là depuis le début et toujours disponible.

Plus important que tout, je remercie vivement ma famille. Leur soutien a été indéfectible
depuis toujours et ce même dans les moments di�ciles. Merci à mon frère, Jildaz, et Alice
pour nos retrouvailles à Rennes, leur soutien et les bons moments. En�n, un très grand merci
à mes parents, Martine et Alain, qui ont toujours été présents pour m'aider, me réconforter
et célébrer les bons moments. Il n'y a pas de mots pour leur exprimer toute ma gratitude.
Ce manuscrit leur est dédié.

À Rennes, octobre 2017
Tangi Migot



Travaux en lien avec la thèse

Les résultats présentés dans ce manuscript de thèse représentent les travaux réalisés au
cours des trois années de durée de la thèse. Au cours de cette période une majeure partie
des résultats obtenus ont été rendus accessibles en ligne, sur HAL1 ou optimization-online2,
et soumis à des revues spécialisées.

La première partie qui s'intéresse aux problèmes de parcimonie et de complémentarité
est constituée de deux articles [95] et [2] :

• A Smoothing Method for Sparse Optimization over Polyhedral Sets, M. Haddou & T.
Migot, 2015 ;

• Solving Absolute Value Equation using Complementarity and Smoothing Functions,
Journal of Computational and Applied Mathematics (accepted), L. Abdallah, M. Had-
dou & T. Migot, 2017.

La seconde partie est centrée autour des problèmes d'optimisation sous contraintes de
complémentarité, de leurs conditions d'optimalité et des méthodes de régularisation. Dans
cette partie nous proposons, une nouvelle méthode de régularisation introduite dans [64] :

• The New Butter�y Relaxation Methods for Mathematical Program with Complemen-
tarity Constraints, J.-P. Dussault, M. Haddou & T. Migot, 2016.

L'étude plus �ne des sous-problèmes régularisés pour les méthodes de régularisation est
réalisée dans [148] :

• How to Compute the Local Minimum of the MPCC, J.-P. Dussault, M. Haddou, A.
Kadrani & T. Migot, 2017.

Au delà des travaux présentés ici, une étude numérique sur les méthodes de points
intérieurs pour les problèmes de complémentarité linéaires a été réalisé dans [96] et est
disponible en annexe de ce document.

1hal.archives-ouvertes.fr
2optimization-online.org
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Résumé de la thèse

Motivation

En sciences, plus particulièrement en mathématiques appliquées et en optimisation, la mod-
élisation d'équilibres est un sujet fondamental pour les chercheurs depuis de nombreuses
années. Des problèmes d'équilibres sont naturellement rencontrés dans la réalité, par ex-
emple lors de changement de phases au cours d'une réaction chimique pour ne citer qu'un
exemple parmi d'autres dans divers domaines comme en physique (problème de contact),
en économie (équilibres de Nash),... Ces problèmes interviennent également de façon na-
turelle en optimisation et en recherche opérationnelle. Par exemple les conditions nécessaires
d'optimalité d'un problème d'optimisation ou la modélisation de variables binaires sont très
souvent reformulées avec des équilibres.

Dans le contexte des mathématiques appliquées, ces problèmes d'équilibres sont appelés
problèmes de complémentarité. Soit un cône K, c'est-à-dire que si x ∈ K alors τx ∈ K
pour tout τ ≥ 0, et deux fonctions G,H : K → Rq avec N 3 q ≤ n. Le problème de
complémentarité consiste à trouver x ∈ Rn qui satisfait

K 3 G(x) ⊥ −H(x) ∈ K◦,

où la notation ⊥ signi�e perpendiculaire et K◦ est le cône polaire de K dé�ni comme

K◦ := {d ∈ Rn | vTd ≤ 0, ∀v ∈ K} ;

c'est-à-dire queK◦ est l'ensemble des vecteurs qui forment un angle obtu avec chaque vecteur
de K. Il est commun dans la littérature de se limiter à proposer des méthodes numériques
où K = Rn

+, étant donné qu'ils couvrent une large majorité des applications qui intéressent
les ingénieurs et chercheurs. Dans ce cas, le problème de complémentarité consiste à trouver
x ∈ Rn qui satisfait :

0 ≤ G(x) ⊥ H(x) ≥ 0. (CP)

La condition de complémentarité peut ainsi être réécrite comme Gi(x)Hi(x) = 0 pour tout
i = 1, . . . , q.

Bien que ce problème ne soit pas un problème d'optimisation, mais simplement un prob-
lème de réalisabilité il est d'un grand intérêt pour l'optimisation. En e�et, les conditions
nécessaires d'optimalité de nombreux problèmes d'optimisation peuvent être représentées
sous la forme (CP). Soit le problème d'optimisation non linéaire (parfois appelé problème
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Figure 1: Ensemble des solutions du problème (CP).

de programmation non linéaire) dé�ni par une fonction objectif f : Rn → R et des fonctions
de contraintes g : Rn → Rp, h : Rn → Rm tel que

min
x∈Rn

f(x) s.à g(x) ≤ 0, h(x) = 0, (NLP)

où f, g, h seront supposées continûment di�érentiable. La résolution globale de ce problème
(i.e trouver le minimum global de la fonction f qui respecte les contraintes) est un prob-
lème très di�cile. Un domaine entier de l'optimisation, appelé optimisation globale, y est
exclusivement a�ecté.

L'objectif plus raisonnable est donc de trouver un minimum local de ce problème, c'est-
à-dire un point x∗ tel que pour tout x ∈ Vε(x∗) ∩ C véri�e

f(x) ≥ f(x∗),

où Vε(x∗) est un voisinage centré en x∗ de rayon ε et C l'ensemble des contraintes du problème.
On en déduit alors que x∗ véri�e aussi la relation

∇f(x∗)Td ≥ 0 ∀d ∈ TF ,

où TF := {d ∈ Rn | ∃tk ≥ 0 and xk →F x∗ s.t. tk(xk−x∗)→ d} est appelé le cône tangent à
F en x∗ et F est une notation pour l'ensemble des x réalisable de (NLP) (c.-à-d. les points
qui satisfont les contraintes de (NLP)). La recherche d'un minimum local (c.-à-d. trouver
le minimum dans un certain voisinage de la fonction f qui respecte les contraintes) est un
problème numériquement couteux sans hypothèse de convexité sur les fonctions en jeu. C'est
pourquoi dans un objectif numérique e�cace l'essentiel des algorithmes, y compris la plupart
des solveurs commerciaux, résout des conditions nécessaires d'optimalité.

En 1951, Kuhn et Tucker énoncent des conditions nécessaires du premier ordre pour
qu'un point x∗ soit un minimum local de (NLP). Plus tard, les chercheurs découvrirent que
ces conditions furent historiquement introduites par Karush dans son mémoire de maitrise
en 1939, [47]. Si les contraintes g(x) ≤ 0, h(x) = 0 donnent une "bonne" description de
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l'ensemble des points réalisables au voisinage d'un point x∗ (ils véri�ent une condition de
quali�cation), alors ce point x∗ est un point critique s'il véri�e

−∇f(x∗) =
m∑
i=1

λgi∇gi(x∗) +

p∑
i=1

λhi∇hi(x∗),

h(x∗) = 0, 0 ≤ −g(x) ⊥ λg ≥ 0.

(KKT)

On dit dans ce cas que le point x∗ véri�e les conditions de Karush-Kuhn-Tucker. Il apparait
clairement que ces conditions KKT forment un problème de complémentarité.

Les di�cultés majeures pour résoudre le problème de complémentarité (CP) viennent
de deux aspects essentiellement géométriques. D'une part, l'ensemble des solutions de ce
problème n'est en général pas convexe et pas connexe. D'autre part, l'intérieur relatif de
l'ensemble des solutions est vide, c'est-à-dire qu'il n'existe pas de x∗ solution de (CP) tel que
G(x∗) > 0, H(x∗) > 0.

Diverses méthodes numériques existent pour résoudre ce problème. Parmi celles-ci on
peut citer les méthodes de reformulation qui transforme (CP) comme un système d'équations
sans contraintes ou encore les méthodes d'activation de contraintes qui utilisent une procé-
dure combinatoire pour déterminer les contraintes actives. Au vu des di�cultés géométriques
énoncées plus haut, une approche naturelle est d'utiliser des techniques de relâchement,
autrement appelées techniques de régularisation. Ces techniques relâchent les contraintes
du problème pour le rendre plus simple, puis tentent de se rapprocher du problème initial.
Ce processus mène bien souvent à des méthodes itératives. Ce sont ces méthodes qui sont
au coeur de ce manuscrit. Parmi les méthodes de régularisation les plus connues, on peut
citer les méthodes de point-intérieur et les méthodes de pénalisations ou de fonctions de
mérites. Ces dernières transforment le problème de complémentarité (CP) comme un prob-
lème d'optimisation avec une fonction objectif qui incite à faire respecter les contraintes du
problème de complémentarité. La méthode des points-intérieurs peut aussi être interprétée
comme une reformulation avec une pénalité logarithmique.

Une généralisation naturelle du problème (CP) est de considérer la résolution d'un prob-
lème d'optimisation avec un problème de complémentarité inclus dans les contraintes. On
appelle problème d'optimisation sous contrainte de complémentarité le problème qui consiste
à minimiser une fonction f : Rn → R telle que

min
x∈Rn

f(x)

s.à g(x) ≤ 0, h(x) = 0,

0 ≤ G(x) ⊥ H(x) ≥ 0,

(MPCC)

pour des fonctions de contraintes g : Rn → Rp, h : Rn → Rm et G,H : Rn → Rq . De
nombreuses applications utilisent le problème (MPCC) par exemple en contrôle optimal, en
physique ou encore en recherche opérationnelle.
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Considérons le problème d'optimisation bi niveaux suivant qui consiste à minimiser une
fonction objectif f0 contrainte à la résolution d'un autre problème d'optimisation, c'est-à-dire

min
x,y∈Rn0×Rn1

f0(x, y)

s.à. g0(x, y) ≤ 0, h0(x, y) = 0,

y ∈ arg min
y∈Rn1

{f1(x, y) s.à. g1(y) ≤ 0, h1(y) = 0},
(BP)

où f0 : Rn0 × Rn1 → R, f1 : Rn1× → R et les fonctions de contraintes g0 : Rn0 × Rn1 →
Rm0 ,h0 : Rn0 × Rn1 → Rp0 et g1 : Rn1 → Rm1 ,h0 : Rn1 → Rp1 .

Dans ce cas, en remplaçant le problème d'optimisation "intérieur" par ses conditions
(KKT), on obtient alors un problème d'optimisation sous contraintes de complémentarité.
De nombreux problèmes d'économie sont notamment reformulés comme (MPCC) via cette
technique.

Les di�cultés géométriques mentionnées pour les problèmes de complémentarité ne font
qu'accentuer les di�cultés pour la résolution numérique de (MPCC). Bien que (MPCC) soit
un problème d'optimisation non linéaire de la forme de (NLP), les contraintes de complé-
mentarité font que d'une façon générique les quali�cations de contraintes ne sont en général
pas véri�ées et donc nous ne pouvons utiliser la théorie basée sur les conditions (KKT).

D'une façon similaire aux problèmes de complémentarité une approche naturelle est
de relâcher les contraintes de complémentarité de (MPCC) a�n d'obtenir des problèmes
d'optimisation non linéaire et ainsi utiliser les techniques très performantes développées sur
ces problèmes ces 60 dernières années.

Contributions de la thèse

Divisée en trois parties cette thèse comporte 9 chapitres. Tout au long de ce document, nous
nous intéresserons aux techniques de régularisation pour les problèmes de complémentar-
ité et les problèmes d'optimisation sous contraintes de complémentarité. Ces techniques de
régularisation ont notamment permis de développer di�érentes méthodes qui seront abordées
dans chacun des chapitres qui composent ce manuscrit.

Le premier chapitre est une introduction à l'optimisation et aux problèmes de complé-
mentarité. Dans ce chapitre nous dé�nirons ou rappellerons di�érentes notions qui sont
largement utilisées dans ce manuscrit et en optimisation en général. En première partie,
nous nous intéresserons en particulier à une technique de régularisation introduite dans [26]
et [94] et ses applications en parcimonie et aux équations en valeur absolue. La seconde
partie dé�nit de façon détaillée les conditions d'optimalité du premier ordre et les conditions
de quali�cations de contraintes accessibles aux problèmes d'optimisation sous contraintes
de complémentarité. Par la suite, nous discuterons des méthodes de régularisation pour
ces problèmes. En particulier, nous présenterons une nouvelle méthode de régularisation
appelée "méthode des papillons". Puis, nous présenterons pour un large spectre de méth-
odes de régularisation des résultats théoriques dans des conditions plus réalistes que celles
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présentés dans la littérature jusqu'à présent. La troisième partie est centrée sur l'application
numérique des méthodes de régularisation pour les problèmes d'optimisation sous contraintes
de complémentarité. En particulier, nous discuterons d'une comparaison de ces méthodes et
d'une implantation en JULIA de la méthode des papillons.

Nous nous concentrerons pour chacune des méthodes présentées ici à réaliser une étude
théorique complète. Par ailleurs, un soin particulier sera apporté à l'implantation des méth-
odes via des codes informatiques et à l'application de ces méthodes.

Partie I : Problèmes de complémentarité

Cette première partie se concentre sur de nouvelles méthodes numériques pour résoudre le
problème de complémentarité linéaire qui est une spécialisation de (CP) dé�ni en introduc-
tion pour G et H a�nes. Ce problème consiste à trouver x ∈ Rn tel que

0 ≤Mx+ q ⊥ x ≥ 0, (LCP)

pour une matrice M d'ordre n et un vecteur q ∈ Rn. Cette formulation pourrait être plus
générale en considérant le membre de droite comme une fonction a�ne également. Sans
perdre de généralité, nous nous conformons ici à cette formulation qui est la plus populaire
dans la littérature des problèmes de complémentarité.

Des travaux récents de M.Haddou dans [94] ont inspiré une technique de régularisation
pour les problèmes de complémentarité non linéaire. Nous présentons ici une interprétation
originale de cette technique. Le (LCP) est équivalent à

y = Mx+ q ≥ 0, x ≥ 0, ‖yi‖0 + ‖xi‖0 ≤ 1 ∀i = {1, . . . , n}, (1)

où ‖.‖0 indique la "norme `0" d'un vecteur, c'est-à-dire que pour un vecteur x ∈ Rn la norme
`0 de ce vecteur est donnée par

‖x‖0 =
∑

i∈{i|xi 6=0}

1. (`0)

Il est à noter ici que même si `0 est appelée norme dans la littérature, ce n'est pas une norme,
car elle ne véri�e pas la propriété d'homogénéité. Il est clair que ce nouveau problème n'est
pas plus simple que le problème initial essentiellement, car la norme `0 n'est pas continue.
Pour pallier à cette di�culté, nous introduisons une famille de fonctions θ qui approchent la
norme `0. Soit θ : R→]−∞, 1] qui satisfait les propriétés suivantes

1. θ est deux fois continûment di�érentiable ;

2. θ(0) = 0 ;

3. θ est une fonction croissante et concave ;

4. θ est négatif sur R−, c.-à-d. θ(< 0) < 0 ;
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5. θ est majorée par 1 et en particulier limx→∞ θ(x) = 1.

Ensuite, en introduisant une technique de mise à l'échelle similaire aux fonctions de per-
spectives en analyse convexe nous obtenons une famille de fonction θr(x) := θ(x/r) pour
un paramètre de relaxation r > 0. Les propriétés énoncées plus haut pour les fonctions θ
restent inchangées, la dernière propriété peut être précisée en fonction de r, ainsi

6. limr→0 θr(x) = 1 ∀x > 0.

Ces fonctions sont par la suite étendues comme des fonctions de Rn dans Rn composante
par composante, c'est-à-dire que pour un vecteur x ∈ Rn on a θr(x) = (θr(xi))1≤i≤n. Cette
famille de fonctions θ généralise un certain nombre de fonctions de densité ou d'entropie
utilisées dans divers domaines scienti�ques, nous donnons ici quelques exemples de fonctions
θr sur R :

• θ1
r(x) = x

x+r
;

• θWk
r (x) = 1− exp(−x/r)k (fonctions de densité des distributions de Weibull) ;

• θlog = log(1+x)
log(1+x+r)

.

La fonction θ1 jouera un rôle particulier dans notre étude et est bien souvent utilisée comme
"minimum" de cette classe de fonctions. En utilisant cette classe de fonctions, le problème
(1) est régularisé pour r > 0 comme

y = Mx+ q ≥ 0, x ≥ 0, θr(y) + θr(x) ≤ 1. (2)

D'après les propriétés des fonctions θr, lorsque r tend vers 0, ce problème régularisé devrait
être équivalent à (LCP). Cette partie divisée en 3 chapitres se consacre à l'étude de ces
méthodes de régularisation. Le premier chapitre étudie l'application des fonctions θr en
parcimonie. Le chapitre 2 considère la suite des problèmes (2) pour résoudre l'équation en
valeur absolue, qui est un problème équivalent à (LCP).

Chapitre 2 : Méthode de régularisation et application en parcimonie

Le problème de parcimonie consiste à minimiser la norme `0 d'un vecteur x sujet à un système
linéaire sous-déterminé. Autrement dit, soit A une matrice d'ordre n×m avec m < n et un
vecteur b ∈ Rm, on cherche à résoudre le problème :

min ‖x‖0 s.à x ∈ F := {x ∈ Rn | Ax ≤ b, x ≥ 0}. (P`0)

Il est à noter que prendre x ≥ 0 n'est en rien une perte de généralité, mais simpli�e l'exposé.
Ce problème a reçu récemment un intérêt tout particulier dans la communauté scienti�que
en particulier due à ses applications en apprentissage statistique et en acquisition comprimée
(compressed sensing en anglais). De la façon présentée en introduction, on utilise les fonctions
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θr pour approcher la norme `0. Ainsi pour des valeurs positives de r on obtient le problème
suivant :

min
x∈F

n∑
i=1

θr(xi). (Pr)

Cette approche généralise plusieurs techniques utilisées dans la littérature en considérant
diverses fonctions concaves dans [82, 167, 152, 44]. Le théorème suivant montre que la
séquence des problèmes (Pr) pour r ↓ 0 approche le problème initial.

Théorème (Theorem 2.2.1, p.31). Chaque point d'accumulation d'une séquence {xr} de
solutions de (Pr) pour r ↓ 0 est une solution de (P`0).

Par ailleurs, la Proposition 2.2.1 (p.32) ajoute que cette convergence se fait en temps �ni
grâce à la structure polyédrale des contraintes. Le problème (P`0) étant di�cile à résoudre
une approche plus simple très utilisée dans la littérature, [45], consiste à résoudre le problème
convexe en norme `1, à savoir

min
x∈F
||x||1. (P`1)

où ∀x ∈ Rn, ||x||1 =
∑n

i=1 |xi|. Cette approche peut-être interprétée comme une convexi�ca-
tion de (P`0), puisque la norme `1 est l'enveloppe convexe de de la norme `0 pour x ∈ [−1, 1]n.
Nous montrons dans le théorème suivant que cette approche peut servir d'initialisation à
notre schéma algorithmique, car lorsque r tend vers l'in�ni les solutions de (Pr) sont solu-
tions de (P`1).

Théorème (Theorem 2.2.2, p.32). Chaque point d'accumulation de la séquence {xr}r, tel
que xr est solution de (Pr), pour r ↑ ∞ est une solution optimale de (P`1).

L'idée de la preuve est d'utiliser une mise à l'échelle du problème (Pr) en considérant le
problème suivant :

min
x∈F

n∑
i=1

rθr(xi).

Ces deux théorèmes nous indiquent un schéma algorithmique qui consiste à initialiser le prob-
lème en utilisant (P`1), puis résoudre les problèmes (Pr) pour des valeurs de r décroissantes.
On peut noter ici qu'à une mise à l'échelle près, il existe une monotonicité des solutions
comme indiqué par le Théorème 2.2.3 (p.34). Partant de ces observations notre objectif
principal est que la séquence de problèmes (Pr) permette d'améliorer le résultat obtenu par
la résolution du problème convexe, (P`1).

La question qui reste pour ce schéma est de savoir quand la convergence peut-être atteinte.
Une étude de l'erreur nous a permis d'obtenir le résultat suivant, qui est un résultat de
pénalité exacte pour la séquence des problèmes (Pr). Ce type d'approche est nouveau par
rapport aux méthodes concaves proposées dans la littérature.

Théorème (Theorem 2.3.1, p.39). On considère les fonctions θ telles que θ ≥ θ1. Soit
N 3 k = ||x∗||0 < n la valeur optimale du problème (P`0) et x

r ∈ S∗r . Alors, on a

θ(min
xri 6=0

xri , r) ≥
k

k + 1
=⇒ xr ∈ S∗||.||0 .
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Dans le résultat précédant, on utilise la plus petite des composantes non nulles de xr. On
peut s'attendre à ce que la séquence {minxri 6=0 x

r
i}r soit décroissante par rapport à r comme

indiqué par le Lemme 2.3.3 (p.39). En pratique, on peut utiliser une borne plus grande, mais
indépendante de la valeur inconnue k en remarquant que pour tout xr ∈ F

‖xr‖0

‖xr‖0 + 1
≥ k

k + 1
.

Ce dernier résultat nous permet de conduire un schéma numérique complet. Dans le chapitre
2, nous proposons une implantation de schéma où à chaque itération on cherche un point
stationnaire du problème concave en utilisant une technique de linéarisation appelée SLA,
[140]. Les résultats numériques en �n de chapitre 2 montrent que dans la majorité des cas,
cette heuristique permet d'améliorer les résultats obtenus par l'approximation convexe, (P`1).
Ces résultats montrent la validité de notre approche.

Chapitre 3 : Régularisation du problème de complémentarité linéaire et appli-
cation aux équations en valeur absolue

Nous nous intéressons désormais à la résolution d'équations en valeur absolue, autrement dit
on cherche x ∈ Rn qui satisfait l'équation non linéaire suivante

Ax− |x| = b. (AVE)

Dans le cas "simple" où la matrice A possède des valeurs singulières toutes di�érentes de
1 et -1, on peut appliquer des méthodes de type Newton qui se sont avérées très e�caces.
Malheureusement dans un cadre plus général, ces méthodes ne peuvent être appliquées et
d'autre part il est bien souvent di�cile de résoudre ce problème. Dans des travaux récents de
Mangasarian qui traitent de ce problème, des formulations par fonctions de mérite bilinéaires
et concaves ont été proposées. Nous proposons ici une adaptation de notre méthode de
régularisation à ce problème (et ainsi au problème (LCP)).

En utilisant une décomposition de la valeur absolue, on se ramène facilement à un prob-
lème de complémentarité. Soit x+ = max(0, x) et x− = max(0,−x), il vient que x = x+−x−
et que |x| = x+ + x− pour tout x ∈ Rn si x+ et x− sont orthogonaux. D'où (AVE) est
équivalent au problème de réalisabilité suivant

A(x+ − x−)− (x+ + x−) = b, 0 ≤ x+ ⊥ x− ≥ 0. (AVE)

Maintenant, considérons la méthode de régularisation (2) pour r > 0 il vient

A(x+ − x−)− (x+ + x−) = b, x+ ≥ 0, x− ≥ 0, θr(x
+) + θr(x

−) ≤ 1.

Puis, nous traitons ce problème par une formulation sous forme de problème d'optimisation

min
x+,x−

n∑
i=1

θr(x
+
i ) + θr(x

−
i )

s.à A(x+ − x−)− (x+ + x−) = b,

x+ ≥ 0, x− ≥ 0,

x+ + x− ≥ g(r),
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où g(r) est une fonction qui va moins vite que r vers 0, par exemple g(r) = rα avec α ∈ (0, 1).
Cette dernière contrainte x+ + x− ≥ g(r) peut paraître surprenante, mais elle évite des
phénomènes de compensation dans la fonction objectif.

Il est clair que la contrainte d'égalité de ce problème risque d'être di�cile à satisfaire
et donc nous proposons de relâcher également cette contrainte, en considérant le problème
d'optimisation suivant pour r > 0 :

min
x+,x−

n∑
i=1

θr(x
+
i ) + θr(x

−
i )

s.à − g(r)|A|e− g(r)e ≤ A(x+ − x−)− (x+ + x−)− b ≤ g(r)|A|e+ g(r)e,

M ≥ x+ ≥ 0, M ≥ x− ≥ 0,

x+ + x− ≥ g(r),

(Pr)

où e est le vecteur dont toutes les composantes sont 1 et |A| est la matrice dont toutes
les composantes sont les valeurs absolues des composantes de la matrice A. La méthode
que nous étudions ici est la méthode itérative qui consiste à résoudre (Pr) pour di�érentes
valeurs de r qui tendent vers 0. À partir de maintenant, nous supposerons que l'ensemble
des solutions de (AVE) notées S∗(AV E) est non vide et notons S∗(Pr) l'ensemble optimal de
(Pr). A�n de simpli�er les notations, nous noterons x ∈ S∗(Pr) quand (x+, x−) ∈ S∗(Pr) avec
x = x+−x− et x+ = max(x, 0), x− = max(−x, 0). SoitM une constante strictement positive
telle que

M ≥ ||x∗||∞,

où x∗ est un élément de S∗(AV E). Cette hypothèse est su�sante pour garantir l'existence de
solutions du problème (Pr) comme prouvé dans le Théorème 3.3.1. On peut noter que le
problème peut admettre plusieurs solutions. Le résultat suivant prouve la convergence de
{xr}r>0, où xr := xr+ − xr− avec (xr+, xr−) solution optimale de (Pr), vers un élément de
S∗(AV E).

Théorème (Theorem 3.3.2, p.49). Chaque point d'accumulation de la séquence {xr} tel que
xr ∈ S(Pr) pour r > 0 est une solution de (AVE).

Nous avons aussi établi une estimation de l'erreur en fonction de r dans le résultat suivant.

Théorème (Theorem 3.4.1, p.52). Soit (x̄+, x̄−) un point limite de la séquence {xr+, xr−},
où on note x̄ = x̄+ − x̄− et xr = xr+ − xr−. Alors, pour r su�samment petit on a :

dS∗
(AVE)

(xr) = O(g(r)).

L'idée principale de la preuve de cette borne d'erreur est d'observer que le problème
(AVE) est un problème a�ne par morceau et d'utiliser le Lemme classique d'Ho�man [99].

Ces résultats théoriques permettent de dé�nir un schéma algorithmique pour résoudre le
problème (AVE). Dans le chapitre 3 sont dé�nis les outils nécessaires à une implantation de ce
schéma à savoir : trouver un point initial, heuristique pour résoudre les sous-problèmes, une
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technique hybride d'amélioration de la convergence et la gestion des di�érents paramètres.
Par ailleurs, cette implantation a été testée sur di�érents types d'exemples pour une valida-
tion de l'approche.

Le cas qui nous intéresse le plus consiste à résoudre des équations sans aucune hypothèse
sur l'ensemble des solutions à priori. Nous comparons notre approche aux méthodes pro-
posées dans [136] et [139] sur un ensemble de problèmes générés aléatoirement. Les résultats
de cette comparaison montrent que notre méthode réussit à résoudre un plus grand nombre
de problèmes.

Partie II : Problèmes d'optimisation sous contraintes de complémen-
tarité

Cette seconde partie continue l'étude des problèmes de complémentarité réalisée dans les
chapitres précédents dans un cadre plus général qui est l'étude des problèmes d'optimisation
sous contraintes de complémentarité dé�nie dans l'introduction et que nous rappelons ici.
On cherche à minimiser une fonction f : Rn → R tel que

min
x∈Rn

f(x)

s.à g(x) ≤ 0, h(x) = 0,

0 ≤ G(x) ⊥ H(x) ≥ 0,

(MPCC)

pour des contraintes g : Rn → Rp, h : Rn → Rm et G,H : Rn → Rq . En particulier
notre objectif est d'obtenir des méthodes e�caces et rapides qui n'utilisent que les dérivées
premières des fonctions en jeu pour obtenir des points critiques de ce problème. La condition
de di�érentiabilité implique que nous supposons que toutes les fonctions de ce problème sont
continûment di�érentiables.

L'étude de ce problème sera divisée ici en 4 chapitres. Le premier chapitre, Chapitre 4,
couvre l'extension des conditions (KKT) et des quali�cations de contraintes aux (MPCC).
Par la suite, nous nous intéresserons aux méthodes de régularisation pour (MPCC). Dans
le Chapitre 5, nous ferons un état de l'art sur les méthodes existantes et discuterons de
la technique de régularisation proposée dans la première partie. Puis, nous introduirons la
nouvelle méthode dite "des papillons" dans le Chapitre 6. Le Chapitre 7 se concentrera sur
la convergence d'une large famille de méthodes de relaxation, incluant celle des papillons,
dans un contexte proche des implantations pratiques. L'étude numérique de ces méthodes
et des problématiques soulevées dans cette partie sera le sujet de la troisième partie de ce
manuscrit.

Chapitre 4 : Stationarité et quali�cation de contraintes pour les
problèmes d'optimisation sous contraintes de complémentarité

Nous nous intéresserons maintenant à l'extension aux problèmes d'optimisation sous con-
traintes de complémentarité des notions de point stationnaire et de quali�cation de con-
traintes bien connues en optimisation non linéaire. Bien que ce problème soit un problème
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d'optimisation non linéaire, les conditions de (KKT) ne peuvent être utilisées directement
pour ces problèmes qui d'une façon générique ne véri�ent pas les conditions de quali�cation
de contrainte. Il est essentiel de noter ici que les di�cultés surviennent aux points où pour
certains indices i on a Gi(x) = Hi(x) = 0.

La contrainte de complémentarité rend le problème non convexe en général et donc le cône
tangent ne sera pas convexe. Cette observation a motivé l'introduction d'une "linéarisation"
du cône tangent spéci�que aux (MPCC),[181, 72, 159], que nous notons ici LMPCC :

LMPCC(x∗) := {d ∈ Rn | ∇gi(x∗)Td ≤ 0,∀i ∈ Ig(x∗),
∇hi(x∗)Td = 0 ∀i = 1, ...,m,

∇Gi(x
∗)Td = 0 ∀i ∈ I0+(x∗),

∇Hi(x
∗)Td = 0 ∀i ∈ I+0(x∗),

∇Gi(x
∗)Td ≥ 0,∇Hi(x

∗)Td ≥ 0 ∀i ∈ I00(x∗),

(∇Gi(x
∗)Td)(∇Hi(x

∗)Td) = 0 ∀i ∈ I00(x∗)},

où les ensembles d'indices correspondent à

I+0(x∗) := {i ∈ {1, . . . , q} | Gi(x
∗) > 0 and Hi(x

∗) = 0},
I0+(x∗) := {i ∈ {1, . . . , q} | Gi(x

∗) = 0 and Hi(x
∗) > 0},

I00(x∗) := {i ∈ {1, . . . , q} | Gi(x
∗) = 0 and Hi(x

∗) = 0},
Ig(x∗) := {i ∈ {1, . . . , p} | gi(x∗) = 0}.

De façon similaire au cas non linéaire, on peut ainsi dé�nir des conditions de Guignard
spéci�que aux (MPCC).

De�nition. Soit x∗ un point réalisable de (NLP). MPCC-Guignard CQ est véri�é en x∗ si
T ◦(x∗) = L ◦

MPCC(x∗).

De nombreuses conditions d'optimalité ont été dé�nies dans la littérature qui relâchent
la condition de signe sur les multiplicateurs des indices de I00. Ces conditions sont connues
sous le nom de faible-stationnarité, A-stationnarité, C-stationnarité et M-stationnarité. C'est
notamment cette dernière qui concentre notre attention. En e�et, en 2005 Flegel et Kanzow
dans [71] montrent le résultat suivant qui indique que les conditions d'optimalité sont celles
que l'on doit espérer calculer en pratique.

Théorème (Flegel et Kanzow, [71]). Soit x∗ un minimum local de (NLP). Si MPCC-GCQ
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est véri�é en x∗ alors il existe (λg, λh, λG, λH) tel que x∗ véri�e les conditions suivantes

−∇f(x∗) =

p∑
i=1

λgi∇gi(x∗) +
m∑
i=1

λhi∇hi(x∗)−
q∑
i=1

λGi ∇Gi(x
∗)−

q∑
i=1

λHi ∇Hi(x
∗),

h(x∗) = 0, 0 ≤ −g(x) ⊥ λg ≥ 0,

0 ≤ G(x∗) ⊥ H(x∗) ≥ 0,

λGi (x∗) = 0 ∀i ∈ I+0(x∗),

λHi (x∗) = 0 ∀i ∈ I0+(x∗),

either λGi > 0, λHi > 0 either λGi λ
H
i = 0 ∀i ∈ I00(x∗).

(M-stationnarité)

Dans le cadre (MPCC), on appellera ainsi MPCC-CQ une condition qui assure qu'un
minimum local est un point M-stationnaire indépendamment du choix de la fonction objectif
f . La plupart des CQ pour les problèmes (NLP) ont été étendues aux MPCC-CQ. Nous
avons continué cette approche en considérant le diagramme présenté en Figure 2.

MPCC-LICQ
⇐= =⇒

MPCC-MFCQ=⇒

MPCC-NNAMCQ
=⇒

MPCC-CRCQ

⇐=

MPCC-CPLD
⇐=

=⇒
MPCC-RCPLD=⇒

MPCC-CRSC=⇒

MPCC-CCP
=⇒

MPCC-ACQ=⇒

MPCC-GCQ
⇐=

MPCC-wGCQ

Figure 2: Quali�cations de contrainte pour (MPCC).

À propos de la plus faible MPCC-CQ

Une question naturelle est de savoir si la condition MPCC-GCQ est la plus faible que l'on
puisse espérer pour garantir les conditions de M-stationnarité en un minimum local. La
réponse est négative comme l'illustre l'exemple suivant.
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Exemple. Soit l'exemple suivant en dimension 1, dé�ni pour une fonction f : R → R
arbitraire.

min
x∈R

f(x) s.à 0 ≤ x ⊥ −x2 ≥ 0.

Il est clair que l'ensemble des points réalisables est réduit à l'origine Z = {0}. Ainsi, quel
que soit le choix de la fonction f , le point x∗ = 0 est un minimum local. Par ailleurs, il est
aisé de voir qu'il existe des multiplicateurs (λG, λH) tel que x∗ est un point M-stationnaire.
En e�et, le gradient du Lagrangien égal à zéro donne

−f ′(0) = −λG.

Véri�ons maintenant que MPCC-GCQ échoue en x∗. Étant donné que l'ensemble réalisable
est réduit à un singleton, on a que le cône tangent est donné par TZ(x∗) = {x∗} et ainsi le
polaire du cône tangent est T ◦Z (x∗) = R. Calculons maintenant le cône LMPCC,

LMPCC(x∗) ={d ∈ R | ∇G(x∗)Td ≥ 0,∇H(x∗)Td ≥ 0,

(∇G(x∗)Td)(∇H(x∗)Td) = 0},
=R+.

Par dé�nition du polaire d'un cône, on obtient L ◦
MPCC(x∗) = R−. Donc MPCC-GCQ échoue

au point x∗.

Partant de cette observation, nous avons dé�ni une nouvelle condition de quali�cation
que nous avons prouvé être la plus faible. On appelle MPCC-faible Guignard CQ (ou MPCC-
wGCQ) la condition suivante.

De�nition. Soit x∗ un point réalisable de (NLP). MPCC-wGCQ est véri�é en x∗ si T ◦(x∗) ⊂
PM où

PM(x∗) := {d ∈ Rn | ∃(λg, λh, λG, λH) ∈ Rp
+ × Rm × Rq × Rq

with λGi λ
H
i = 0 or λGi > 0, λHi > 0 ∀i ∈ I00(x∗),

d =
∑

i∈Ig(x∗)

λgi∇gi(x∗) +
m∑
i=1

λhi∇hi(x∗)

−
∑

i∈I0+(x∗)∪I00(x∗)

λGi ∇Gi(x
∗)−

∑
i∈I+0(x∗)∪I00(x∗)

λHi ∇Hi(x
∗)}.

Cette condition plus faible que MPCC-GCQ est une condition de quali�cation de con-
trainte pour les MPCC et de plus est la plus faible.

Théorème. MPCC-wGuignard CQ est véri�é en x∗ si et seulement si pour toute fonction f
continument di�érentiable et qui admet un minimum contraint x∗, il existe (λg, λh, λG, λH)
tel que x∗ véri�e les conditions de M-stationnarité.
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MPCC-CRSC et application numérique

Les conditions MPCC-GCQ et MPCC-wGCQ ont le défaut d'être di�ciles à véri�er en
pratique. Les conditions plus forte, mais plus simple à véri�er dé�nies pour les (NLP) sont
étendues aux (MPCC), en tenant compte du fait que les signes des multiplicateurs des indices
de I00 doivent être soit positif soit de produit nul.

Dans la majorité des cas, le bon comportement des algorithmes d'optimisation est garanti
pour des CQ plus forte que Guignard et l'extension aux (MPCC) ne déroge pas à cette règle.
Parmi la collection de MPCC-CQ disponible, la condition MPCC-CRSC a retenu notre
attention pour une application algorithmique.

De�nition. Soit x∗ ∈ Z. MPCC-CRSC tient en x∗ si pour n'importe qu'elle partition
I00

++ ∪ I00
0− ∪ I00

−0 = I00(x∗) tel que∑
i∈Ig

λgi∇gi(x∗) +
m∑
i=1

λhi∇hi(x∗)−
∑

i∈I0+(x∗)∪I00
++

λGi ∇Gi(x
∗)−

∑
i∈I+0(x∗)∪I00

++

λHi ∇Hi(x
∗)

+
∑
i∈I00
−0

λGi ∇Gi(x
∗) +

∑
i∈I00

0−

λHi ∇Hi(x
∗) = 0,

avec λgi ≥ 0 (i ∈ Ig(x∗)),λGi et λHi ≥ 0 (i ∈ I00
++), λGi > 0 (i ∈ I00

−0), λHi (i ∈ I00
0−) > 0, il

existe δ > 0 tel que la famille de gradients

{∇gi(x) (i ∈ I1), ∇hi(x) (i = 1, . . . ,m), ∇Gi(x) (i ∈ I3), ∇Hi(x) (i ∈ I4)}

a le même rang pour tout x ∈ Bδ(x∗), où

I1 := {i ∈ Ig(x∗)| − ∇gi(x∗) ∈ PM(x∗)},
I3 := I0+(x∗) ∪ {i ∈ I00

++|∇Gi(x
∗) ∈ PM(x∗)} ∪ I00

−0,

I4 := I+0(x∗) ∪ {i ∈ I00
++|∇Hi(x

∗) ∈ PM(x∗)} ∪ I00
0−.

Cette condition de quali�cation nous permet de démontrer que des séquences qui conver-
gent vers un point M-stationnaire (parfois appelée MPCC-AKKT) ont des multiplicateurs
bornés. Cette application algorithmique s'avère essentielle pour démontrer la convergence
de certaines méthodes de régularisation.

Corollaire. Soit x∗ ∈ Z tel que MPCC-CRSC tient en x∗. Soit la séquence {xk},{λk} tel
que xk → x∗ et λk tend vers une certaine limite λ∗ ∈ Rp

+ ×Rm+2q (possiblement in�nie) qui
satisfait

∇f(xk) +
m∑
i=1

λh,ki ∇hi(xk) +
∑

j∈Ig(x∗)

λg,kj ∇gj(xk)−
∑

j∈I0+(x∗)∪I00(x∗)

λG,kj ∇Gj(x
k)−

∑
j∈I+0(x∗)∪I00(x∗)

λH,kj ∇Hj(x
k)→ 0,

λgi = 0 ∀i /∈ Ig, λG,∗I+0 = 0, λH,∗I0+ = 0 either λG,∗i λH,∗i = 0 either λG,∗i > 0, λH,∗i > 0 for i ∈ I00(x∗),

et les gradients des multiplicateurs non-nuls sont linéairement indépendants.
Alors, la séquence {λk} est bornée.
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Chapitre 5 : Méthodes de régularisation pour les problèmes d'optimisation
sous contraintes de complémentarité

Il a été souligné que les notions bien connues en programmation non linéaire ne peuvent être
appliquées directement au problème (MPCC). La motivation des méthodes de régularisation
est d'introduire un paramètre pour dé�nir une séquence de sous-problèmes qui peuvent
être résolus par des solveurs classiques. À nouveau, résoudre signi�e ici trouver un point
stationnaire. Cette stratégie est ensuite intégrée dans un schéma itératif qui vise à réduire le
paramètre de relaxation pour se rapprocher du (MPCC). Ce genre de méthode s'apparente
à des méthodes homotopiques.

Le problème (Rtk,t̄k) de paramètre tk est dé�ni génériquement de la façon suivante :

min
x∈Rn

f(x)

s.à h(x) = 0, g(x) ≤ 0,

G(x) ≥ −t̄ke, H(x) ≥ −t̄ke,
Φ(G(x), H(x); tk) ≤ 0.

(Rtk,t̄k)

La régularisation de la contrainte de complémentarité est dé�nie par l'application Φtk :
Rq × Rq → Rq et véri�e la propriété suivante

lim
tk→0

Φ(a, b; tk) = ab.

La plupart des méthodes existantes dans la littérature considèrent tk ∈ R, mais on peut
très bien utiliser un vecteur de paramètres comme dans le cas de la méthode des papillons
présentée dans le chapitre suivant. Le paramètre t̄k bien souvent pris comme tk doit tendre
vers 0 lorsque tk tend vers 0. Ces méthodes ont été suggérées dès 2000 par Scheel et Scholtes,
[181], en prenant ∀i ∈ {1, . . . , q}

ΦSS
i (G(x), H(x); t) = Gi(x)Hi(x)− t. (SS)

Cette approche naturelle a été plus tard étendue par Demiguel, Friedlander, Nogales et
Scholtes dans [52] en relâchant aussi les contraintes de positivité : G(x) ≥ −t, H(x) ≥ −t.
Dans [185], les auteurs considèrent une régularisation concentrée uniquement sur la zone qui
pose problème, i.e G(x) = H(x) = 0 de la façon suivante

ΦSU
i (G(x), H(x); t) = Gi(x) +Hi(x)−

{
|Gi(x)−Hi(x)| si |Gi(x)−Hi(x)| ≥ t

tψ(Gi(x)−Hi(x)
t

) sinon
, (SU)

où ψ appartient à une certaine famille de fonctions introduite dans [185], par exemple ψ(z) =
2
π

sin(π
2
z + 3π

2
) + 1. Une approche di�érente qui considère une approximation du domaine

a été proposée dans [111] par Kadrani, Dussault et Benchakroun en 2009, en considérant
∀i ∈ {1, . . . , q}

ΦKDB
i (G(x), H(x); t) = (Gi(x)− t)(Hi(x)− t). (KDB)
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Figure 3: Ensemble réalisable des régularisations, (SS), (SU), (KDB) et (KS) dans leur forme
originale, c'est-à-dire avec ou sans régularisation des contraintes de positivité.

Cette méthode a par la suite été étendue comme une régularisation en utilisant une fonction
NCP, φ dans [112]: ∀i ∈ {1, . . . , q}

ΦKS
i (G(x), H(x); t) = φ(Gi(x)− t,Hi(x)− t). (KS)

Le domaine réalisable de la condition de complémentarité relâchée est présenté dans la Figure
4.2. En première partie de ce document, nous avons présenté une technique de régularisation
pour les problèmes de complémentarité, en considérant

Φθ
i (G(x), H(x); t) = θr(Gi(x)) + θr(Hi(x))− 1. (AH)

Cette méthode a été introduite pour les (MPCC) par Abdallah et Haddou dans [93]. Le
domaine réalisable introduit par ces relaxations peut être similaire à la méthode (SS), en
observant le résultat suivant.

Lemme. Soit θ1
r(x) = x/(x+ r). Alors, on a pour (a, b) ∈ R2

θ1
r(a) + θ1

r(b) = 1⇐⇒ ab = r2.

Dans chacun des cas présentés ci-dessus on peut s'intéresser à deux propriétés principales :

• Convergence des méthodes vers un point stationnaire pour (MPCC) ;

• Quali�cation de contrainte du sous-problème régularisé, (Rtk,t̄k).

Ces deux propriétés nécessitent dans chacun des cas la satisfaction de MPCC-CQ à la solu-
tion. La première propriété de convergence est spéci�quement intéressante dans notre cas et
notre objectif est de considérer des méthodes qui convergent vers des points M-stationnaires.
C'est le cas des méthodes (KDB) et (KS). En e�et, les méthodes (SS), (SU) et (θ) peuvent
converger vers des points indésirables appelés C-stationnaires.

Chapitre 6 : La méthode des papillons

Dans ce chapitre nous introduisons une nouvelle méthode de régularisation pour (MPCC)
appelée méthode des papillons qui utilise deux paramètres (t, r). Pour i ∈ {1, . . . , q}, notons

ΦB
i (G(x), H(x); t, r) :=

{
F1i(x; r, t)F2i(x; t, r), if F1i(x; r, t) + F2i(x; t, r) ≥ 0,

−1
2
(F1i(x; r, t)2 + F2i(x; t, r)2), if F1i(x; r, t) + F2i(x; t, r) < 0.

(Bu.)
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Figure 4: Domaine réalisable de la régularisation papillon pour θr(z) = z
z+r

avec de gauche
à droite : t = 2r et t = r3/2.

avec

F1i(x; t, r) := (Hi(x)− tθr(Gi(x))),

F2i(x; t, r) := (Gi(x)− tθr(Hi(x))).

où θr : R →] −∞, 1] est une fonction comme celles dé�nies précédemment. Notons, RB
(t,r)

le sous-problème régularisé (Rtk,t̄k) en utilisant (Bu.). La Figure 6.1 présente le domaine
réalisable de la contrainte de complémentarité pour di�érents choix de paramètres. Cette
méthode peut être vue comme une généralisation des méthodes (KDB) et (KS). L'exemple
suivant illustre même un exemple où cette nouvelle méthode évite de converger vers un point
indésirable.

Exemple.
min
x∈R2
−x1 s.à x1 ≤ 1, 0 ≤ x1 ⊥ x2 ≥ 0.

Dans cet exemple, il y a deux points stationnaires, le point (1, 0) qui est le minimum global
du problème et le point (0, 0). Contrairement aux régularisations (KDB) et (KS) où pour
tk = 1

k
une séquence xk = (tk tk)

T peut converger vers (0, 0), il n'existe pas de séquence de
ce type pour la méthode des papillons.

Le résultat suivant montre que la méthode des papillons converge toujours vers au moins
un point A-stationnaire et que pour un choix judicieux de paramètre, elle converge vers un
point M-stationnaire.

Théorème. Soient {tk} et {rk} deux séquences qui décroissent vers 0. Soit {xk, λk} une
séquence de points stationnaires de RB

(t,r) tel que x
k → x∗.

1. Supposons que MPCC-CRCQ est véri�ée en x∗. Alors, x∗ est un point A-stationnaire.
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2. Supposons que MPCC-CRSC est véri�ée en x∗ et tk = o(rk). Alors, x∗ est un point
M-stationnaire.

Ainsi pour t = o(r) la méthode des papillons atteignent notre but. Cette nouvelle méth-
ode converge vers des points M-stationnaires. L'existence d'une séquence de points station-
naire est un autre résultat important pour la dé�nition d'une méthode de relaxation.

Théorème. Soit x∗ ∈ Z tel que MPCC-LICQ tient en x∗. Alors, il existe t̄ > 0 et un
voisinage U(x∗) de x∗ tel que pour tout t ∈ (0, t̄], si x ∈ U(x∗)∩XB

t̂,t̄
, Guignard CQ pour RB

t̂,t̄
tient en x.

Ce résultat d'existence de point stationnaire est classique pour ces méthodes. Malgré
tout, ce résultat est légèrement décevant, car MPCC-LICQ est équivalent à Guignard CQ
pour le problème (MPCC). Le résultat suivant montre néanmoins que la di�culté est située
sur des points très ciblés.

Théorème. Soit x∗ ∈ Z tel que MPCC-LICQ tient en x∗. Alors, il existe t̄ > 0 et un
voisinage U(x∗) de x∗ tel que pour tout t ∈ (0, t̄], si x ∈ U(x∗) ∩ XB

t̂,t̄
et I00

GH(x; t̂) = ∅, alors
LICQ pour RB

t̂,t̄
tient en x.

Ces résultats d'existence de point stationnaire et de convergence permettent d'assurer la
bonne dé�nition de la méthode. Dans un contexte numérique, il est virtuellement impossible
de calculer un point stationnaire, on considère bien souvent des points ε-stationnaires.

De�nition. Soit un problème d'optimisation non linéaire (NLP) et ε ≥ 0. On dit que
(x, λ) ∈ Rn × Rp+m est un point ε-stationnaire (ou un point ε-KKT) s'il véri�e∥∥∥∥∥∇f(x) +

p∑
i=1

λgi∇gi(x) +
m∑
i=1

λhi∇hi(x)

∥∥∥∥∥
∞

≤ ε,

|hi(x)| ≤ ε, ∀i ∈ {1, . . . ,m},
gi(x) ≤ ε, λgi ≥ 0, |λgi gi(x)| ≤ ε ∀i ∈ {1, . . . , p}.

Dans le cas de convergence de séquence de points ε-stationnaires des relaxations, les
résultats théoriques de convergence peuvent s'en trouver fortement détériorés comme observé
par Kanzow et Schwarz dans [115]. La méthode des papillons en l'état n'échappe pas à la
règle, comme l'indique le résultat suivant.

Théorème. Soient {tk} et {rk} deux séquences qui décroissent vers 0 tel que tk = o(rk).
Soit {xk, λk} une séquence de points ε-stationnaires de RB

(t,r) tel que x
k → x∗.

1. Supposons que MPCC-CRSC tient en x∗ et εk = o(t̄k). Alors, x∗ est un point faiblement
stationnaire.

2. Si en plus, on suppose que εk = max(G(xk), H(xk)). Alors, x∗ est un point M-
stationnaire.

Cette di�culté pratique des méthodes de régularisation en général et de celle des papillons
en particulier est la motivation de l'étude réalisée dans le chapitre suivant. Une comparaison
des di�érentes méthodes de régularisation est présentée dans le Chapitre 8 et montre tout
l'intérêt de la méthode des papillons.
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Chapitre 7 : Étude théorique de la résolution des sous-problèmes
régularisés

Dans cette section, nous proposons une nouvelle approche pour pallier aux di�cultés de
convergence des séquences approchées de points stationnaires, pour une famille de régulari-
sation. On considère des relaxations de la forme (Rtk,t̄k) où l'application Φ;Rq × Rq → Rq

véri�e les hypothèses suivantes :

• Φ(G(x), H(x); t) est une application réelle continûment di�érentiable étendue com-
posante par composante, telle que Φi(G(x), H(x); t) := Φ(Gi(x), Hi(x); t).

• Φ(G(x), H(x); t) peut aussi être écrite comme une fonction de deux variables G(x)
et H(x). Ainsi, le gradient par rapport à x pour i ∈ {1, . . . , q} de Φi(G(x), H(x); t)
quelque soit x ∈ Rn est donné par

∇xΦi(G(x), H(x); t) = ∇Gi(x)αHi (x; t) +∇Hi(x)αGi (x; t),

où αH(x; t) et αG(x; t) sont des applications continues, qui satisfont ∀x ∈ Z

lim
‖t‖→0

αH(x; t)→ H(x) et lim
‖t‖→0

αG(x; t)→ G(x). (H2)

• À la limite, quand ‖t‖ tend vers 0, l'ensemble réalisable du problème non linéaire
paramétrique (Rtk,t̄k) doit converger vers l'ensemble réalisable du (MPCC). Autrement
dit, soit F(t) l'ensemble réalisable de (Rtk,t̄k), alors

lim
‖t‖→0

F(t) = Z, (H3)

où on considère une limite point par point.

• À la frontière de l'ensemble réalisable pour la relaxation de la contrainte de complé-
mentarité, il est véri�é que

Φ(G(x), H(x); t) = 0⇐⇒ FG(x; t) = 0 ou FH(x; t) = 0 (H4)

où

FG(x; t) = G(x)− ψ(H(x); t),

FH(x; t) = H(x)− ψ(G(x); t),

et ψ est une fonction à valeur réelle continûment di�érentiable étendue composante
par composante. On peut noter que la fonction ψ utilisée pour dé�nir FG pourrait
être di�érente de celle utilisée pour dé�nir FH tant qu'elles véri�ent les hypothèses
ci-dessous.

Ces fonctions ψ(H(x); t), ψ(G(x); t) sont positives pour tout x ∈ {x ∈ Rn | Φ(G(x), H(x); t) =
0} et satisfont ∀z ∈ Rq

lim
‖t‖→0

ψ(z; t) = 0. (H5)
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• Lorsque ‖t‖ tend vers 0, la dérivée de ψ par rapport à la première variable satisfait

lim
‖t‖→0

∂ψ(x; t)

∂x

∣∣∣∣
x=z

= 0 ∀z ∈ Rq. (H6)

Nous appellerons méthodes-UF, les méthodes qui satisfont ces hypothèses et on peut montrer
que (KDB), (KS) et (Bu.) font partie de cette famille. On peut également ajouter une
nouvelle méthode qui véri�e ces hypothèses, la régularisation "asymétrique" : Soit IG et IH
deux ensembles d'indices tels que IG∪IH = {1, . . . , q} et IG∩IH = ∅. Alors, la régularisation
asymétrique est dé�nie par

Φi(G(x), H(x); t) =

{
(G(x)− t)H(x) pour i ∈ IG,
G(x)(H(x)− t) pour i ∈ IH .

Pour assurer le bon comportement de ces méthodes, nous proposons de considérer des
séquences de points stationnaires approchés appelés points fortement ε-stationnaire

De�nition. xk est un point fortement εk-stationnaire pour (Rtk,t̄k) avec εk ≥ 0 s'il existe
νk ∈ Rm × Rp × R3q tel que ∥∥∇L1

Rt(x
k, νk; tk)

∥∥
∞ ≤ εk

et

|h(xk)| ≤ t̄k +O(εk) ∀i ∈ {1, . . . ,m},
gi(x

k) ≤ εk, ν
g,k
i ≥ 0, |gi(xk)νg,ki | ≤ εk ∀i ∈ {1, . . . , p},

Gi(x
k) + t̄k ≥ −εk, νG,ki ≥ 0,

∣∣νG,ki(Gi(x
k) + t̄k)

∣∣ ≤ εk ∀i ∈ {1, . . . , q},
Hi(x

k) + t̄k ≥ −εk, νH,ki ≥ 0,
∣∣νH,ki(Hi(x

k) + t̄k)
∣∣ ≤ εk ∀i ∈ {1, . . . , q},

Φi(G(xk), H(xk); tk) ≤ 0, νΦ,k
i ≥ 0,

∣∣∣νΦ,k
i Φi(G(xk), H(xk); tk)

∣∣∣ = 0 ∀i ∈ {1, . . . , q}.

La di�érence avec les points ε-stationnaires est qu'un point fortement ε-stationnaire véri�e
exactement la réalisabilité et la condition de complémentarité. Cette dé�nition peut en
partie être motivée par le fait que la contrainte de complémentarité a déjà été relaxée par
les paramètres t et ajouter un ε serait une relaxation supplémentaire.

Par ailleurs, on voit sur la Figure 5, qu'en relâchant la satisfaction de la contrainte de
complémentarité régularisée on obtient un domaine similaire à la méthode (SS). Le résultat
suivant montre l'intérêt de considérer des séquences de points fortement ε-stationnaires.

Théorème. Soit {tk} et {εk} deux séquences de paramètres qui décroissent vers zéro lorsque
k ∈ N tend vers l'in�ni. Supposons que εk = o(t̄k). Par ailleurs, soit {xk, νk}k une séquence
de points fortement εk stationnaires de (Rtk,t̄k) avec x

k → x∗ et que MPCC-CRSC est véri�ée
en x∗. Alors, x∗ est un point M-stationnaire de (MPCC).
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Figure 5: Domaine réalisable de la complémentarité relâchée satisfaite à ε près.

Nous nous sommes ensuite intéressés à l'existence des points fortement εk stationnaires
au voisinage d'un point M-stationnaire. Pour montrer ce type de résultat nous ferons les
hypothèses supplémentaires suivantes sur la fonction ψ pour tout t > 0 et x ∈ Rq:

•
∂ψ(x; t)

∂t
> 0. (A1)

•
∂ψ(x; t)

∂x
≥ 0. (A2)

• Pour un paramètre s strictement positif, ψ dois en plus satisfaire

ψ(ψ(‖t‖∞; t); t) ≤ s, (A3)

ψ(−‖t‖∞; t) ≤ s. (A4)

Le résultat d'existence que nous donnons ici concerne une version équivalente de (Rtk,t̄k)
formulée avec des variables d'écarts de la façon suivante :

min
(x,s)∈Rn×R2q

f(x)

s.à g(x) ≤ 0, h(x) = 0,

sG = G(x), sH = H(x),

sG ≥ −t̄, sH ≥ −t̄, Φ(sG, sH ; t) ≤ 0,

(Rs
t (x, s))

avec t̄ ↓‖t‖→0 0 et l'application de régularisation Φ(sG, sH ; t) : Rq → Rq dé�nie en remplaçant
G(x) et H(x) par sG et sH dans l'application Φ(G(x), H(x); t). L'existence de points forte-
ment εk stationnaires au voisinage d'un point M-stationnaire est donné par le résultat qui
ne nécessite aucune condition de quali�cation de contraintes.
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Théorème. Soit x∗ ∈ Z un point M-stationnaire et ε > 0 arbitrairement petit. Par ailleurs,
supposons que les hypothèses sur ψ et la relaxation faites plus haut sont véri�ées. Alors,
il existe des constantes strictement positives c, t̄∗ avec t̄∗ > cε et un voisinage U(x∗) de
(x∗, G(x∗), H(x∗))T tel que pour tous t ∈ (0, t∗) et toutes t̄ ∈ (0, t̄∗) il existe (x, s)T ∈ U(x∗),
qui est un point fortement εk stationnaire de (Rs

t (x, s)).

Dans le chapitre 7, nous présentons un exemple (Exemple 7.5.2) qui montre que sans
les variables d'écart ce type de résultat n'est pas évident. Nous présentons au Chapitre 9
une stratégie de pénalisation-activation de contraintes qui grâce à l'utilisation des variables
d'écart permet de calculer des points fortement ε-stationnaires.

Perspectives pour la partie II :

L'étude des méthodes de régularisation a des conséquences sur la résolution numérique de
plusieurs problèmes d'optimisation réputés di�ciles. D'une part, les méthodes de régulari-
sations peuvent être adaptées aux problèmes d'optimisation avec contraintes évanescentes et
aux problèmes d'optimisation avec contraintes de cardinalité. D'autre part, la résolution ef-
�cace des (MPCC) peut être utilisée pour résoudre les problèmes d'optimisation bi niveaux.
Le Chapitre 7.7.2 donne plus de détails concernant la formulation de ces problèmes ainsi que
l'utilisation de la méthode des papillons pour les résoudre.

Partie III : Numérique

Nous avons présenté dans la partie 2, une étude approfondie d'une part des conditions
d'optimalité pour les (MPCC), et d'autre part des méthodes de régularisation pour les ré-
soudre. En particulier, nous avons introduit la nouvelle méthode de régularisation "papillon".

Cette partie s'intéresse maintenant à l'application numérique de ces méthodes et sera
articulée en 2 chapitres. Le Chapitre 8 propose une comparaison numérique des di�érentes
méthodes de régularisation discutées tout au long de ce document. Ensuite, le Chapitre 9
discute d'une stratégie de pénalisation et d'activation de contraintes qui permet de calculer
des points fortement ε-stationnaires. Cette stratégie fait l'objet d'une implémentation en
JULIA d'un solveur pour résoudre (MPCC).

Chapitre 8 : Comparaison numérique des méthodes de régularisation

Nous nous sommes intéressés ici à une comparaison numérique entre les di�érentes méth-
odes de régularisation en prenant en compte les méthodes proposées dans la littérature en
particulier les méthodes (SS) et (KS) ainsi que trois versions de la méthode des papillons :

1. B(t=r) : (s = 0, t = r) ;

2. B(t=r3/2) : (s = 0, t = r3/2) ;

3. B(s=t,2t=r) : (s = t, 2t = r).
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Il est à noter que la troisième version utilise un nouveau paramètre s en considérant une
version étendue de la méthode dé�nie par

F1(s,t,r)i
(x) = (Hi(x)− s− tθr(Gi(x)− s)),

F2(s,t,r)i
(x) = (Gi(x)− s− tθr(Hi(x)− s)).

Si nous ne considérons que les méthodes (SS) et (KS); ce choix a été décidé après di�érentes
simulations numériques préliminaires qui ont montré que ces deux méthodes étaient les plus
e�caces sur nos notre large jeu de problèmes tests.

La comparaison est réalisée sur la collection de problèmes MacMPEC, [123], composée de
101 problèmes, d'où ont été omis les problèmes excédant 300 variables ou 300 contraintes et
ceux avec des problèmes d'évaluation des contraintes ou de la fonction objectif. Pour résoudre
les sous-problèmes, nous utilisons AMPL à partir de Matlab. En particulier, nous avons
utilisé les solveurs d'optimisation non linéaire : SNOPT, MINOS et IPOPT. L'algorithme
s'arrête si la valeur des paramètres est trop petite (ici 10−15) ou si le point courant est
considéré comme ε-solution (ici ε = 10−7) de (MPCC). Une solution approchée est dé�nie
telle que :

min_local(x) := max (νf (x), νcomp(x), νc(x)) ≤ ε, (3)

où

a) Réalisabilité de sous-problèmes régularisés : νf (x) := max(−g(x), |h(x)|,−Φ(x)),

b) Satisfaction des contraintes de complémentarité : νcomp(x) := min(G(x), H(x))2,

(c) La complémentarité entre les multiplicateurs de Lagrange et les contraintes :

νc(x) := max(‖g(x) ◦ λg‖∞, ‖h(x) ◦ λh‖∞, ‖G(x) ◦ λG‖∞,
‖H(x) ◦ λH‖∞, ‖ΦB(G(x), H(x); t̂)(x) ◦ λΦ‖∞).

Il est délicat d'être plus exigent sur la contrainte de complémentarité ici écrite comme le
minimum composante par composante tandis que la formulation relâchée considère le produit
des deux. Par ailleurs, la réalisabilité duale (i.e gradient du Lagrangien égal à zéro) n'est
pas prise en compte ici, car elle n'est pas un critère d'arrêt pour SNOPT et MINOS.

A�n de mesurer l'impact des paramètres sur ces méthodes nous considérons une étude
de sensibilité avec plusieurs choix de valeurs initiales (7 valeurs) et plusieurs stratégies pour
mettre à jour les paramètres de régularisations (5 valeurs). Le tableau 8.4 présente les résul-
tats en pourcentage de problèmes résolus pour un jeu de paramètre (paramètre initial et mise
à jour). Un problème est résolu s'il véri�e le critère dé�ni en (3). Ces résultats numériques
illustrent dans l'ensemble l'intérêt des méthodes de régularisation et en particulier celui des
régularisations papillon.
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Solver SNOPT NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

meilleur 92.08 94.06 96.04 96.04 97.03 96.04
moyenne 92.08 90.78 91.17 92.08 90.04 92.33
pire 92.08 83.17 86.14 87.13 82.18 87.13

écart-type 0 3.15 2.59 2.45 2.86 2.77
Solveur MINOS NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

meilleur 85.15 94.06 93.07 88.11 94.06 87.13
moyenne 85.15 90.94 90.18 81.92 90.04 80.11
pire 85.15 87.13 86.14 76.23 85.15 74.26

écart-type 0 1.50 1.62 2.65 2.31 2.95
Solveur IPOPT NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

meilleur 91.09 93.07 93.07 94.06 93.07 94.06
moyenne 91.09 91.82 89.84 89.05 88.80 89.02
pire 91.09 90.10 86.14 84.16 84.16 81.19

écart-type 0 1.14 2.19 3.09 2.72 3.86

Table 1: Étude de sensibilité sur la collection de problèmes MacMPEC avec l'optimalité de
(MPCC) comme critère de succès. Les résultats sont des pourcentages de succès. meilleur
: pourcentage de succès avec le meilleur jeu de paramètre. pire : pourcentage de succès
avec le pire jeu de paramètre. moyenne et écart-type indiquent l'écart-type et la moyenne
de pourcentage de succès.

Chapitre 9 : Implémentation d'une méthode de régularisation-pénalisation-
activation de contrainte

Dans le Chapitre 7, il a été dé�ni une version spéci�que d'approximation de points station-
naire pour les sous-problèmes régularisés de (MPCC). Nous présentons ici une stratégie qui
permet de calculer numériquement ces points dits fortement ε-stationnaires. Nous cherchons
donc à résoudre les sous-problèmes régularisés écrits avec des variables d'écart, (Rs

t (x, s)).
Ce problème régularisé est transformé en un problème pénalisé où sont laissées en contrainte
celles qui font l'objet d'une restriction d'après la dé�nition de points fortement ε-stationnaire.

min
x,s

Ψρ(x, s) := f(x) +
1

2ρ
φ(x, s)

s.à. sG ≥ −t̄, sH ≥ −t̄, Φ(sG, sH ; t) ≤ 0,

(P (x, s))

où φ est une fonction de pénalité, par exemple :

φ(x, s) := ‖max(g(x), 0), h(x), G(x)− sG, H(x)− sH‖2.

Une adaptation du théorème de convergence du Chapitre 7 donne le résultat suivant qui
valide l'approche pénalisée.
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Théorème. Soit {ρk} et {εk} deux séquences de paramètres qui décroissent vers zéro lorsque
k ∈ N tend vers l'in�ni. Supposons que εk = o(t̄k). Par ailleurs, soit {xk, νk} une séquence
de points fortement εk-stationnaires de (Rs

t (x, s)) avec xk → x∗ où MPCC-CRSC tient.
Alors, si x∗ est réalisable pour (Rs

t (x, s)), x
∗ est un point M-stationnaire de (MPCC).

Les contraintes restantes dans (P (x, s)) sont gérées par une stratégie d'activation de
contrainte. Les contraintes de bornes ne posent aucun problème par contre pour la régulari-
sation de la contrainte de complémentarité il est essentiel de noter que par hypothèse sur la
régularisation,

Φ(sG, sH ; t) = 0⇐⇒ sH = ψ(sG; t) or sG = ψ(sH ; t).

Ainsi, lorsque cette contrainte est active certaines variables sont "�xées" et on utilise une
technique de substitution pour travailler dans le sous-espace des variables libres. Le calcul
du gradient de la fonction objectif dans ce sous-espace se fait au travers des règles de compo-
sition de dérivées. L'algorithme complet de la résolution d'un sous-problème régularisé suit
itérativement les étapes suivantes :

1. Projection du point initial sur l'ensemble réalisable s'il n'est pas réalisable ;

2. Soit W(s; t, t̄) l'ensemble des contraintes actives parmi les contraintes

sG ≥ −t̄, sH ≥ −t̄, Φ(sG, sH ; t) ≤ 0 ;

3. Substitution des variables �xées par les contraintes actives ;

4. Minimisation du problème (P (x, s))

• Calcul du gradient dans le sous-espace de travail en utilisant les règles de compo-
sition de dérivées ;

• Restreindre le pas pour satisfaire les contraintes ;

5. Calcul exact des multiplicateurs de Lagrange ;

6. Relaxation (si nécessaire) de certaines contraintes actives ;

7. Réduction (si nécessaire) du paramètre de pénalité ρ.

Les étapes 1 et 4 garantissent que les contraintes du problème (Rs
t (x, s)) sont toujours sat-

isfaites. L'étape 5 assure que la condition de complémentarité entre les multiplicateurs de
Lagrange et les contraintes est toujours satisfaite. Ces deux missions étant celles requises
pour calculer un point fortement ε-stationnaire.
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Notations

We consider here classical notations:

• Rn: the n-dimensional real Euclidian vector space;

• For two vectors x, y ∈ Rn: xTy is the scalar product of x and y;

• ∅ denotes the empty set;

• For x ∈ Rn, supp(x) := {i ∈ {1, . . . , n} | xi 6= 0};

• e the vector whose components are all one.

We also use asymptotic Landau notations:

• f(x) = O(g(x)) as x → a if and only if there exists positive numbers δ and M such
that |f(x)| ≤M |g(x)| for all |x− a| ≤ δ;

• f(x) = Ω(g(x)) as x → a if and only if there exists positive numbers δ and M such
that |f(x)| ≥M |g(x)| for all |x− a| ≤ δ;

• f(x) = o(g(x)) as x→ a if and only if for all positive constantM there exists a positive
number δ such that |f(x)| ≤M |g(x)| for all |x−a| ≤ δ, in other words limx→a

f(x)
g(x)

= 0;

• f(x) = ω(g(x)) as x → a if and only if for all positive constant M there exists a
positive number δ such that |f(x)| ≥M |g(x)| for all |x− a| ≤ δ;

• f(x) ∼K (g(x)) as x→ a if and only limx→a
f(x)
g(x)

= K with K a positive �nite constant
and in a classical way f(x) ∼ (g(x)) when K = 1.



Acronyms

• NLP: Non-linear program;

• MPCC: Mathematical program with complementarity constraints;

• MPVC: Mathematical program with vanishing constraints;

• OPCC: Optimisation problem with cardinality constraints;

• BP: Bilevel program;

• CP: Complementarity problem;

• LCP: Linear complementarity problem;

• NCP: Non-linear complementarity problem;

• VI: Variational inequality;

• AVE: Absolute value equation;

• KKT: Karush-Kuhn Tucker;

• AKKT: Approximate Karush-Kuhn Tucker;

• CQ: Constraint quali�cation;

• MPCC CQ: MPCC constraint quali�cation;

• LICQ: Linear independence constraint quali�cation;

• MFCQ: Mangasarian Fromowitz constraint quali�cation;

• NNAMCQ: Non-abnormal multiplier constraint quali�cation;

• CRCQ: Constant rank constraint quali�cation;

• CPLD: Co-positive linear dependence;

• RCPLD: Relaxed co-positive linear dependence;



• CRSC: Constant rank in the subspace of components;

• CCP: Cone continuity property;

• ACQ: Abadie constraint quali�cation;

• GCQ: Guignard constraint quali�cation;
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Chapter 1

Introduction to optimisation and

complementarity

In this section we present basic results from convex analysis, variational analysis and non-
linear programming that are used through the following chapters. Among the major refer-
ences that have been used while studying these topics, we may cite some important books
such as [170] for convex analysis, [171] for variational analysis, [65] for variational inequali-
ties and complementarity problems and �nally [21] for various subjects on optimisation. A
special care has been taken to make the manuscript understandable for any undergraduate
student in applied mathematics.

This chapter is divided in 4 sections. Section 1.1 presents essential notions from convex
analysis. In particular, this section gives de�nitions and results on convex sets, cones and
polyhedral sets, convex functions and brie�y discuss error bounds. Section 1.2 discusses the
link between optimization problems, variational inequalities and complementarity problems.
Section 1.3 introduces optimality conditions for non-linear problems and gives several def-
initions of constraint quali�cations. The experienced reader may skip Section 1.1, 1.2 and
1.3. The �nal section of this chapter, Section 1.4, introduces a family of concave functions
and some of their properties that will be extensively used through this manuscript.
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1.1 Convex analysis and cones

In this section, we introduce elementary notions about convex sets, convex functions and
cones.

1.1.1 Convex sets

De�nition 1.1.1. A subset C of Rn is convex if ∀x, y ∈ C, ∀t ∈ [0, 1]

tx+ (1− t)y ∈ C.

A geometrical interpretation of this de�nition is that a set is convex if any segment joining
two points of this set also belongs to this set as illustrated on Figure 1.1.

Figure 1.1: Some examples of two convex sets and a non-convex set.

Some elementary operations that preserve the convexity of a set are collected in the
following proposition.

Proposition 1.1.1. For any collection {Ci | i ∈ I} of convex sets Ci ⊂ Rni we have:

1. C1 × · · · × Cm is convex in Rn1 × · · · × Rnm;

2. ∩i∈ICi is convex, here with ni = n for all i;

3. The �nite sum
∑m

i=1 Ci is convex, with ni = n for all i.

For a set C ⊂ Rn, the convex hull of C, denoted by conv C, is the intersection of all
convex sets containing C.

Proposition 1.1.2. For a set C ⊂ Rn, it holds that conv C is the set of all convex combi-
nations of elements of C, i.e.,

conv C = {
m∑
i=1

tixi | xi ∈ C, ti ≥ 0,
m∑
i=1

ti = 1}.
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A fundamental characterisation of convex sets is provided by Caratheodory's theorem.

Theorem 1.1.1. For any C ⊂ Rn, any element of conv C can be represented as a convex
combination of no more than (n+ 1) elements of C.

We now give a lemma that we extensively use to prove convergence results later in this
thesis. This result may be interpreted as a Caratheodory kind lemma. Proof of this result
can be found in [12], Lemma A.1 [185] or Lemma 7.1, [184]. We present here the proof of
the latter mentioned.

Lemma 1.1.1. Let {ai | i = 1, . . . , p}, {bi | i = 1, . . . ,m} and c be vectors in Rn and
α ∈ Rp

+, β ∈ Rm multipliers such that

p∑
i=1

αia
i +

m∑
i=1

βib
i = c.

Then there exist multipliers α∗ ∈ Rp
+ and β∗ with supp(α∗) ⊆ supp(α), supp(β∗) ⊆ supp(β)

and
p∑
i=1

α∗i a
i +

m∑
i=1

β∗i b
i = c

such that the vectors
{ai | i ∈ supp(α∗)} ∪ {bi | i ∈ supp(β∗)}

are linearly independent.

Proof. If the vectors
{ai | i ∈ supp(α)} ∪ {bi | i ∈ supp(β)}

are already linearly independent, we can choose a∗ = a, b∗ = b and are done. Otherwise,
there are scalar δi, i ∈ supp(a) and τi, i ∈ supp(b) not all equal to zero such that∑

i∈supp(a)

δia
i +

∑
i∈supp(b)

τib
i = 0.

If all δi are equal to zero, we can choose an arbitrary i∗ ∈ supp(τ) ⊂ supp(β) and de�ne

ᾱ := α, and β̄ :=

{
βi − βi∗

τi∗
τi, if i ∈ supp(β),

0 else.

Otherwise, we can assume without loss of generality that there is at least one αi > 0 and
choose i∗ as an index with

αi∗

δi∗
= min

{
αi
δi
|i ∈ supp(α), δi > 0

}
.
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In this case, we de�ne the new multipliers as

ᾱ :=

{
αi − αi∗

δi∗
δi, if i ∈ supp(α),

0 else,
and β̄ :=

{
βi − αi∗

τi∗
τi, if i ∈ supp(β),

0 else.

In both cases we have ᾱ ≥ 0 and supp(ᾱ, β̄) ( supp(α, β). Additionally, these multipliers
still have the property that

p∑
i=1

ᾱia
i +

m∑
i=1

β̄ib
i = c.

If the vectors
{ai | i ∈ supp(ᾱ)} ∪ {bi | i ∈ supp(β̄)}

are linearly independent, we can �nish here. Otherwise, we have to repeat the procedure
above. Since the support of (ᾱ, β̄) decreases each time, after a �nite number of iterations
either the vectors corresponding to non-vanishing multipliers are linearly independent or
supp(ᾱ, β̄) = ∅, in which case the assertion is trivially satis�ed.

1.1.2 Cones and polyhedral sets

Cones are fundamental geometric objects associated with sets. They play a key role in several
aspects of mathematics.

De�nition 1.1.2. A set K ⊂ Rn is called a cone if tx ∈ K for all x ∈ K and for all t > 0.

It can be observed that if K is a non-empty closed cone then 0 ∈ K. Examples of convex
cones include linear subspaces of Rn and the non-negative orthant Rn

+ := {x | xi ≥ 0, i =
1, . . . , n}. Other cones playing an important role in convex optimisation problems are the
cone of symmetric real positive semi-de�nite matrices of order n and the cone of Lorentz.
More examples of cones that are classical in the context of optimisation are given in the rest
of this section.

In the study of convergence of sequences involved in an optimisation context, one may be
interested to handle situations where a given sequence {xk} ⊂ Rn is unbounded. To derive
some convergence properties we are led to consider direction d = xk/‖xk‖ with xk 6= 0. This
motivates the study of the asymptotic cone of a set C.

De�nition 1.1.3. Let C be a non-empty set of Rn. Then, the asymptotic cone of C, denoted
C∞, is the set of vectors d ∈ Rn that are limits in direction of the sequences {xk} ⊂ C, that
is

C∞ := {d ∈ Rn | ∃tk →∞,∃xk ∈ C with lim
xk

tk
= d}.

This cone is sometimes called recession cone in the literature as in [170]. From the
de�nition it is clear that C∞ is a closed cone. One characterization of this cone in the
convex case is given in the following theorem.
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Theorem 1.1.2. [170, Theorem 8.4] Let C be non-empty convex set. The asymptotic cone
is a convex cone containing the origin. It is the same as the set of vectors y such that
C + y ⊂ C.

One property of importance that motivates the use of asymptotic cone is the following.

Proposition 1.1.3. [21, Prop. 2.1.2] A set C ⊂ Rn is bounded if and only C∞ = {0}.

These property will be useful to study existence of optimal solution of optimisation
problems as in Chapter 2.

We now study two more examples of cones that are the tangent cone and the normal
cone. Beforehand, we introduce the notion of polar cone.

De�nition 1.1.4. Given a cone K ⊂ Rn, the polar of K is the cone de�ned by

K◦ := {y ∈ Rn | yTx ≤ 0, ∀x ∈ K}.

The bipolar is the cone K◦◦ := (K◦)◦.

Proposition 1.1.4. For a cone K ⊂ Rn, the polar cone is closed and convex, and K◦◦ =
cl (convK). If K is also closed and convex, one then has K◦◦ = K.

An important and useful object in variational problems is the tangent cone of C at x̄,
given by

TC(x̄) := {d ∈ Rn | ∃t ≥ 0 and X 3 xk → x̄ s.t. t(xk − x̄)→ d}.

An example of the tangent cone and its polar are given in the following example.

Figure 1.2: The tangent cone at x.

Example 1.1.1. C = {(a, b) ∈ R2 | a ≥ 0, b ≥ 0, ab ≤ 0}. In this case, TC(x̄) = {d ∈
R2

+ | d1d2 = 0} and TC(x̄)◦ = R2
−.
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A cone that is very often related to the tangent cone in the literature is the normal cone
of a convex set C, de�ned as

NC(x̄) := {d ∈ Rn | dT (y − x̄) ≤ 0, ∀y ∈ C}.

In the case of a convex set C, the tangent cone and the normal cone are polar to each others.

Proposition 1.1.5. Let C be a convex subset of Rn and let x ∈ K be arbitrary. It holds
that

TC(x)◦ = NC(x).

Proof. First, It is straightforward from the de�nition to see that NC(x) ⊂ TC(x)◦.
Now, we show the converse. Let d be a vector from TC(x)◦ and let y ∈ C. By convexity

of the set C, it holds that y− x is tangent to C at x. Therefore, by the choice of d it follows
that dT (y − x) ≤ 0 and so d ∈ NC(x).

The proof of this result is rather classical and can be found for instance in [65, Prop. 1.3.2].
We can notice here that the convexity of the set C is only required in one inclusion. In the
non-convex case, there are various de�nitions of normal cones, which will not be developed
here. The interested reader may refer to [171] for more details.

Some useful operations on polar cones are summarised below.

Proposition 1.1.6. [21, Prop. 1.1.16] For cones Ki of Rn, i = 1, 2 one has

1. K1 ⊂ K2 =⇒ K◦2 ⊂ K◦1 and K◦◦1 ⊂ K◦◦2 ;

2. K = K1 +K2 =⇒ K◦ = K◦1 ∩K◦2 ;

3. K = K1∩K2 with Ki closed =⇒ K◦ = K◦1 ∩K◦2 . The closure operation can be removed
if 0 ∈ int(K1 −K2);

4. For a family of cones {Ki | i ∈ I} in Rn,

K = ∪i∈IKi =⇒ K◦ = ∩i∈IK◦i .

A cone K ⊂ Rn is said to be �nitely generated if it can be written as

K = {
p∑
i=1

tpap | ai ∈ Rn, ti ≥ 0, i = 1, . . . , p}.

A set P ⊂ Rn is called polyhedral if it has the form

P = {x ∈ Rn | aTi x ≤ b, i = 1, . . . , p},

where ai ∈ Rn, bi ∈ R, i = 1, . . . , p. When bi = 0, ∀i, then P is called a polyhedral cone.

Theorem 1.1.3 (Minkowski-Weyl Theorem). A cone K is polyhedral if and only if it is
�nitely generated.
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We conclude this section by an example of a cone that will be used in Part II.

Example 1.1.2. Given two continuously di�erentiable functions g : Rn → Rp, h : Rn → Rm

and Ig(x∗) ⊂ {1, . . . , p}, the linearised cone L at a point x∗ ∈ Rn is de�ned as

L (x∗) = {d ∈ Rn | ∇gi(x)Td ≤ 0 (i ∈ Ig(x∗)), ∇hi(x)Td = 0 (i = 1, . . . ,m)}.

This cone is polyhedral by the Minkowski-Weyl Theorem and therefore convex.

The polar of the linearised cone is a very useful tool for deriving optimality conditions of
non-linear problems as in Section 1.3.

Lemma 1.1.2. [23, Theorem 3.2.2] Let g : Rn → Rp, h : Rn → Rm be two continuously
di�erentiable functions and Ig(x∗) ⊂ {1, . . . , p}. The polar cone of

L (x) = {d ∈ Rn | ∇gi(x)Td ≤ 0, i ∈ Ig(x), ∇hi(x)Td = 0, i = 1, . . . ,m}

is given by

L (x)◦ = {v ∈ Rn | v =
∑

i∈Ig(x)

λgi∇gi(x) +
m∑
i=1

λhi∇hi(x) : λg ≥ 0}.

1.1.3 Convex functions

Let f : Rn → R ∪ {−∞,∞}. An important and useful set associated with a function f is
the epigraph de�ned by

epi f := {(x, α) ∈ Rn × R | α ≥ f(x)}.

The epigraph is thus a subset of Rn+1 that consists of all points of Rn+1 lying on or above
the graph of f . An optimisation problem can thus be expressed equivalently in terms of its
epigraph as

inf f = inf{α | (x, α) ∈ epi f}.

For an extended real-valued function f : Rn → R ∪ {+∞}, f is convex if and only if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), ∀x, y ∈ Rn, ∀t ∈ (0, 1).

The function is called strictly convex if the above inequality is strict for all x, y ∈ Rn with
x 6= y and t ∈ (0, 1). A function is concave whenever −f is convex.

A characterisation of the convexity of a function f can also be done using the epigraph
of the function.

De�nition 1.1.5. A function f : Rn → R ∪ {−∞,∞} with f 6=∞ is called convex if epi f
is a non-empty convex set.
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Figure 1.3: Epigraph of a convex function.

An illustration is given on Figure 1.3 and now we give some examples of convex and
concave functions.

Example 1.1.3. Examples of convex functions are:

x ∈ R 7→ |x|, x 7→ ‖x‖2, x ∈ R 7→ exp(x).

Examples of concave functions are:

x ∈ R+ 7→
√
x, x ∈ R+ 7→

x

x+ 1
, x ∈ R 7→ exp(−x).

Examples of functions that are neither convex nor concave:

x ∈ R 7→ sinx, x ∈ R 7→

{
0 if x = 0

1 otherwise
and x ∈ R 7→ 1

x
.

In the case of a minimisation problem, we do not necessarily need continuity of the
function but some weaker condition that we de�ne here. Recall that

lim inf
x→y

f(x) := sup
r>0

inf
x∈Br(y)

f(x),

where Br(y) denotes the ball centred in y of radius r. Lower limits are characterised via

lim inf
x→y

f(x) = min{α ∈ R ∪ {−∞,∞} | ∃xn → y with f(xn)→ α}.

Note that one always has lim infx→y f(x) ≤ f(y).
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De�nition 1.1.6. The function f : Rn → R ∪ {−∞,∞} is lower semi-continuous at x if

f(x) = lim inf
y→x

f(y),

and lower semi-continuous on Rn if this holds for every x ∈ Rn.

Example 1.1.4. The function x ∈ R 7→

{
0 if x = 0

1 otherwise
is not continuous but lower semi-

continuous.

1.1.4 Error bounds

An error bound is an estimation of the distance from a given point to some set. For a given
norm ‖.‖ on Rn (not necessarily the euclidean norm), we look for the distance de�ned by

dP (x) := inf
y∈P
‖y − x‖.

The simplest is the set P := {x̄}, where x̄ is the unique solution of the linear system Ax = b
with A any invertible matrix. For any x, it holds that x− x̄ = A−1(Ax− b). Thus, it follows

dP (x) 6 ‖A−1‖ ‖Ax− b‖.

Convex polyhedron

Let P := {x ∈ Rn : Ax ≤ b} be a convex polyhedron, where A ∈ Rm×n is a real matrix and
b ∈ Rm. We denote B(A) the convex cone of vectors b ∈ Rm such that P 6= ∅. For v ∈ Rm,
we denote v+ the vector from Rm such that the i-th component is equal to max(0, vi).

Lemma 1.1.3 (Ho�man Lemma [99]). There exists a constant h independent of A, ‖.‖ and
‖.‖′ such that

∀ b ∈ B(A), ∀x ∈ Rn : dP (x) 6 h ‖(Ax− b)+‖′.

Convex constraints

Whenever the considered set is given by

P := {x ∈ Rn : c(x) 6 0},

where c : Rn → Rm is convex, in general, we cannot have a Ho�man-type error bound, that
is

∃ β > 0, ∀x ∈ P : dP (x) 6 β ‖c(x)+‖,
without additional hypothesis. Indeed, it is necessary to have a constraint quali�cation
hypothesis to have a linear error bound or to take a non-linear error bound of the form
β ‖c(x)+‖α, with α > 0. An example is given by Robinson error bound [169], for a convex
set de�ned by a convex function and satisfying Slater constraint quali�cation.
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Figure 1.4: How to �nd the minimum of a function ?

1.2 Optimisation and variational inequalities

We discuss in this section the de�nition of an optimisation problem, a local minimum and
some related problems called variational inequalities and complementarity problems.

1.2.1 Optimisation problems and local minima

Consider the problem of minimising a continuous function f : Rn → R over a compact set
C ⊂ Rn denoted by

min
x∈C

f(x).

Existence of minimisers is given by the classical Weierstrass Theorem.

Theorem 1.2.1. Let f : K ⊂ Rn → R be a continuous function de�ned on a compact set
C. Then, there exists a global minimiser x∗ ∈ C of f on C, that is,

f(x∗) ≤ f(x), ∀x ∈ C.

It is to be mentioned here that the continuity hypothesis on f may be reduced to lower
semi-continuity. Minimising a non-linear smooth function over an arbitrary compact set is
already a very hard problem. An example is given in Figure 1.4. A more realistic and more
accessible goal for numerical methods is to compute a local minimum. A point x∗ ∈ C is a
local minimum of f over C if there exists ε > 0 such that for all x ∈ Vε(x∗)∩C it holds that

f(x∗) ≤ f(x),

where Vε(x∗) denotes a neighbourhood centred in x∗ of radius ε. A consequence of the
de�nition of a local minimum is that a local minimum may also be characterized by the fact
that there is no feasible descent direction, that is

∇f(x∗)Td ≥ 0, ∀d ∈ TC(x∗).

10



Using the polar of the tangent cone, this may also be written as

−∇f(x∗) ∈ T ◦C . (1.1)

Unfortunately those de�nitions are virtually impossible to use in practice, since checking
whether a point is a local minimum would require to compare its value with an in�nity of
other points. Thus, mathematical analysis usually focus on critical (or stationary) points
that satis�es some necessary conditions to be a local minimum.

In the special case of minimising a convex function over a compact convex set, then
every local minimum is also a global minimum. This observation makes the study of convex
optimisation problem especially useful. However, in the case of minimising a concave function
(or maximising a convex function) over a compact convex set minimising may be a hard task,
since there may be many local maxima besides the global maximum.

Example 1.2.1. f(x) = |x−a| with a ∈ R2 over a triangle C in R2. Minimise f over C can
be anywhere in C. Maximising is one of the three vertices but local maxima may well occur
at these vertices.

1.2.2 Variational inequalities and properties

Variational inequalities are intimately connected with optimisation problems. First, let us
de�ned a variational inequality.

De�nition 1.2.1. Given K ⊂ Rn and a mapping F : K → Rn, the variational inequality,
denoted (VI), is to �nd a vector x ∈ K such that

(y − x)TF (x) ≥ 0, ∀y ∈ K. (VI)

Using the normal cone for K convex, we can give a more geometric interpretation of this
problem as �nding x ∈ K such that

−F (x) ∈ NK(x).

The condition to be a local minimum given in (1.1) is therefore an instance of the (VI). A
special case of this problem is the complementarity problem, de�ned below.

De�nition 1.2.2. Given a cone K and a mapping F : K → Rn, the complementarity
problem, denoted (CP), is to �nd a vector x ∈ Rn satisfying the following conditions:

K 3 x ⊥ F (x) ∈ −K◦, (CP)

where the notation ⊥ means that xTF (x) = 0.

The complementarity problem, (CP), is actually equivalent to (VI), whenever K is a
cone.
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Proposition 1.2.1. [65, Prop. 1.1.3] Let K be cone in Rn. A vector x solves (VI) if and
only if x solves (CP)

Many special cases of the complementarity problem are very important in modelling. We
introduce two of the most important ones. When K is the non-negative orthant we can
notice that K = −K◦ and this leads us to the non-linear complementarity problem.

De�nition 1.2.3. Given a mapping F : Rn
+ → Rn, the (NCP) if to �nd a vector x ∈ Rn

satisfying
0 ≤ x ⊥ F (x) ≥ 0. (NCP)

In the special case of F being an a�ne function given by:

F (x) = Mx+ q

for some vector q ∈ Rn and matrix M ∈ Rn×n, we get the linear complementarity problem.

De�nition 1.2.4. Given a vector q ∈ Rn and a matrix M ∈ Rn×n, the (LCP) if to �nd a
vector x ∈ Rn satisfying

0 ≤ x ⊥Mx+ q ≥ 0. (LCP)

Variational inequalities and complementarity problems arise from a variety of interesting
sources. Foremost among these sources are di�erentiable constrained optimisation problems.
We already point out the link between the geometric interpretation of (VI) and (1.1) for
F = ∇f . Thus, it is not surprising to see the (LCP) as optimality condition of the quadratic
program for a polyhedron K

min
x∈K

qTx+
1

2
xTMx.

Many more applications than constrained optimisation may be a source of complementarity
problems among other we may cite geochemical model [149], Nash equilibrium, obstacle
problems, frictional contact problems,. . .
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1.3 Non-linear programming

Let a general non-linear program (NLP) be

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,
(NLP)

with h : Rn → Rm, g : Rn → Rp and f : Rn → R such that h, g and f are continuously
di�erentiable functions. We present in this section optimality conditions for (NLP). After
introducing essential notations in Sect. 1.3.1, we introduce the classical Karush Kuh Tucker
(KKT) optimality conditions in Sect. 1.3.2. These optimality conditions require some hy-
pothesis on the set {x ∈ Rn | g(x) ≤ 0, h(x) = 0} that are called constraint quali�cations.
A short review of some of these constraint quali�cations is presented in Sect. 1.3.3.

1.3.1 Notations

Denote F the feasible region of (NLP),

F := {x ∈ Rn | g(x) ≤ 0, h(x) = 0}.

The set of active indices Ig(x) is given by

Ig(x) := {i ∈ {1, ..., p} | gi(x) = 0}.

Let the generalised Lagrangian Lr(x, λ) be

Lr(x, λ) := rf(x) + g(x)Tλg + h(x)Tλh,

where λ = (λg, λh) is the vector of Lagrange multipliers.
We remind that the tangent cone of a set X at x∗ ∈ X is a closed cone de�ned by

TX(x∗) = {d ∈ Rn | ∃tk ≥ 0 and xk →X x∗ s.t. tk(xk − x∗)→ d}.

Another useful tool for our study is the linearised cone of (NLP) at x∗ ∈ F de�ned by

L (x∗) = {d ∈ Rn | ∇gi(x)Td ≤ 0 (i ∈ Ig(x∗)), ∇hi(x)Td = 0 (∀i = 1, . . . ,m)}.

1.3.2 Karush-Kuhn-Tucker optimality conditions

By de�nition, λ is an index r multiplier for (NLP) at a feasible point x if

(r, λ) 6= 0 and ∇xLr(x, λ) = 0, λg ≥ 0, g(x)Tλg = 0.

An index 0 multiplier is also called singular multiplier, [30], or an abnormal multiplier, [46].
We call a KKT point or a stationary point a couple (x, λ) with λ an 1-index multiplier at x.

The motivation to compute KKT point in non-linear programming is based on the fol-
lowing fundamental theorem from [120] that is well-known under the name KKT theorem,
[47]. This result requires that some constraint quali�cation hold at a local minimum. The
original result from [116] uses a stronger condition than Guignard CQ that will be considered
later.
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Theorem 1.3.1. Assume x∗ is a local minimum of (NLP), where the functions f , {gi} and
{hi} are once di�erentiable. Furthermore assume that a constraint quali�cation (CQ) holds
at x∗. Then, there exists a KKT point (or stationary point) at x∗.

The proof of this result, which can also be found in [69], relies on some duality argu-
ment. These optimality conditions are stronger than other optimality conditions known as
Fritz-John conditions [108] that do not require any constraint quali�cation. These weaker
optimality conditions that we do not formally state here give that there exists an index-r
multiplier at any local minimum. This result, however, su�er from the drawback that at any
point there always exists an index-r multiplier, the trivial solution.

Constraint quali�cations are independent of the objective function and measure the way
the feasible set is described by the inequality and equality constraints not the geometry of
the feasible set itself. It is to be noted that only active constraints among the inequality
constraints at x∗ are taking into account since others are not playing any role at this point.

During the past 60 years, a wide variety of constraint quali�cations has been derived.
Beyond their utility in the KKT theorem, they are also used in a quantity of algorithmic
applications. Indeed, a large number of algorithms for (NLP) including a majority of com-
mercial solvers solves the KKT conditions to determine a stationary point. To give some
examples, constraint quali�cations may give properties on the set of multipliers, existence of
a local error bound, metric regularity, di�erentiability in the central path,...

In practice, it is very di�cult to �nd a point that conforms exactly to the KKT conditions.
Hence, an algorithm may stop when such conditions are satis�ed approximately. We mention
here two approaches. A �rst approach is to consider epsilon-stationary points. It can be
noticed here that for ε = 0 we recover the classical stationary points.

De�nition 1.3.1. Given a general non-linear program (NLP) and ε ≥ 0. We say that
λ ∈ Rn × Rp+m is an epsilon-stationary point (or an epsilon-KKT point) if it satis�es∥∥∥∥∥∇f(x) +

p∑
i=1

λgi∇gi(x) +
m∑
i=1

λhi∇hi(x)

∥∥∥∥∥
∞

≤ ε,

with

|hi(x)| ≤ ε, ∀i ∈ {1, . . . ,m},
gi(x) ≤ ε, λi ≥ 0, |λgi gi(x)| ≤ ε ∀i ∈ {1, . . . , p}.

Another way to deal with this problem is to give necessary optimality conditions of the
point and its neighbourhood in the form of sequential optimality conditions. The most
popular among those conditions is the Approximate KKT (AKKT) conditions introduced in
[11].

De�nition 1.3.2. AKKT holds at a feasible point x∗ if there are sequences {xk} ⊂ Rn, {λg,k} ⊂
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Rp
+ and {λh,k} ⊂ Rm not necessarily feasible such that

lim
k→∞

xk = x∗,

lim
k→∞
∇f(xk) +∇g(xk)Tλg,k +∇h(xk)Tλh,k = 0,

λg,ki = 0 for i /∈ Ig(x∗).

The attractiveness of sequential optimality conditions is associated to three properties.
First, they are genuine necessary optimality conditions, independently of the ful�lment of a
CQ. Second, they are strong, in the sense that they imply the classical �rst order optimality
conditions. Third, there are many practical algorithms that generate sequences whose limit
points satisfy them. Many practical optimisation algorithms, such as augmented Lagrangian
methods, some SQP algorithms, interior-point methods and inexact restoration methods.

1.3.3 Constraint quali�cations for NLP

We now de�ne some of the classical constraint quali�cations. Note that there exists a wide
variety of such conditions and we de�ne here only those that are essential for our purpose.
In De�nition 1.3.3 the Linear Independence CQ (LICQ) and Constant Rank CQ (CRCQ)
are presented. Both are very classical the latter being de�ned �rst in [107].

De�nition 1.3.3 (LICQ and its Relaxations). Let x∗ ∈ F .

(a) LICQ holds at x∗ if the family of gradients

{∇gi(x∗) (i ∈ Ig(x∗)), ∇hi(x∗) (∀i = 1, ...,m)}

is linearly independent.

(b) CRCQ holds at x∗ if there exists δ > 0 such that for any subsets I1 ⊆ Ig(x∗) and
I2 ⊆ {1, ...,m} the family of gradients

{∇gi(x) (i ∈ I1), ∇hi(x) (i ∈ I2)}

has the same rank for all x ∈ Bδ(x∗).

We now introduce the de�nition of positive-linearly dependent vectors, which helps up
building constraint quali�cations since it takes into account the sign of some multipliers.

De�nition 1.3.4. A �nite set of vectors {ai|i ∈ I1}∪{bi|i ∈ I2} is said to be positive-linearly
dependent if there exist scalars αi (i ∈ I1) and βi (i ∈ I2), not all of them being zero, with
αi ≥ 0 for all i ∈ I1 and ∑

i∈I1

αia
i +
∑
i∈I2

βib
i = 0.

Otherwise, we say that these vectors are positive-linearly independent. In a usual way the
unsigned vectors are denoted with double brackets, that is {ai|i ∈ I1} ∪ {{bi|i ∈ I2}}.
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Another family of constraint quali�cations that take into account the non-negativity of
the Lagrange multiplier of inequality constraints can now be derived using this notion.

De�nition 1.3.5 (MFCQ and its Relaxations). Let x∗ ∈ F .

(a) PLICQ holds at x∗ if the family of gradients

{∇gi(x∗) | i ∈ Ig(x∗)} ∪ {{∇hj(x∗) | j = 1, ...,m}}

is positively linearly independent.

(b) CPLD holds at x∗ if, for each I ⊆ Ig(x∗) and J ⊆ {1, ...,m}, whenever

{∇gi(x∗) | i ∈ I} ∪ {{∇hj(x∗) | J}}

is positively linearly dependent, there exists δ > 0 such that for every x ∈ Bδ(x∗),

{∇gi(x), ∇hj(x) | i ∈ Ig(x∗), j = 1, ...,m}

is linearly dependent.

(c) RCPLD holds at x∗ if we assume J ⊆ {1, ...,m} be such that {∇hj(x∗)}j∈J is a basis
for span{∇hj(x∗)}mj=1 and if there exists δ > 0 such that

(i) {∇hj(x)}mj=1 has the same rank ∀x ∈ Bδ(x∗);
(ii) for each I ⊆ Ig(x∗), if

{∇gi(x∗) | i ∈ I} ∪ {{∇hj(x∗) | j ∈ J}}

is positively linearly dependent, then

{∇gi(x), ∇hj(x) | i ∈ Ig(x∗), j ∈ J}

is linearly dependent ∀x ∈ Bδ(x∗).

(d) CRSC holds at x∗ if there exists δ > 0 such that the family of gradients

{∇gi(x∗), ∇hj(x∗) | i ∈ J−, j = 1, ...,m}

has the same rank for every x ∈ Bδ(x∗), where J− = {i ∈ Ig | − ∇gi(x∗) ∈ L (x∗)◦}.

The Positive Linear Independence CQ is equivalent to Mangasatian Fromowitz CQ and
can also be called NNAMCQ (no non-zero abnormal multiplier) or BCQ (basic constraint
quali�cation). The usual de�nition of MFCQ given in the literature is given in the follow-
ing de�nition. Equivalence with PLICQ relies on a duality argument, for instance using
Motzkin's alternative lemma.
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De�nition 1.3.6. Let x∗ ∈ F . MFCQ holds at x∗ if there exists a vector d ∈ Rn that
satis�es

∇hi(x∗)Td = 0 ∀i = 1, . . . ,m and ∇gi(x∗)Td < 0 ∀i ∈ Ig(x∗).

The constant positive linear dependence de�ned by [162] has been proved to be a con-
straint quali�cation in [15]. Constant rank of the subspace component, CRSC, was intro-
duced recently in [13]. This latter de�nition considers an unusual set denoted J−, that can
be viewed as the set of indices of the gradients of the active constraints whose Lagrange
multiplier if they exist may be non-zero.

As pointed out earlier in equation (1.1), a local minimum is characterised by the fact
that there is no feasible descent direction for the objective function of (NLP), that is

−∇f(x∗) ∈ TF(x∗)◦.

From the other side the KKT conditions build ∇f using a linearisation of the active con-
straints. This motivates the following CQs de�ned as early as 1969 in [88] for GCQ and in
[1] for ACQ.

De�nition 1.3.7. A point x∗ ∈ F is said to satisfy Guignard CQ if TF(x∗)◦ = L ◦(x∗) and
satisfy Abadie CQ if TF(x∗) = L (x∗).

As proved in [86], Guignard CQ is the weakest constraint quali�cation that ensures that
a local minimum satis�es the KKT conditions independently of the objective function. It is
easy to see that for all x it holds that TF(x) ⊆ L (x) and so L ◦(x) ⊆ TF(x)◦ by Proposition
1.1.6. The fact that Abadie CQ holds at x∗ implies that Guignard CQ also holds at x∗ is
also a consequence of Proposition 1.1.6.

The supplementary condition necessary such that AKKT implies KKT is sometimes
called Strict Constraint Quali�cation, [14]. Motivation behind SCQ is to con�rm that an
AKKT sequence is approaching a true minimiser. This motivation is well illustrated by the
following example. For instance, ACQ is a CQs that is not SCQ.

Example 1.3.1 (AKKT but not minimizer).

min
(x1,x2)∈R2

x2 s.t. x1 ≥ 0, x1x2 = 0.

the feasible point x∗ = (0, 1) is neither a minimiser nor a KKT point, but it satis�es AKKT.
Computing the tangent cone at x∗ gives TF(x∗) = {0} × R and the linearised cone gives
L (x∗) = {d ∈ R2|d1 ≥ 0, x∗2d1 + x∗1d2 = 0} = TF(x∗). Thus, ACQ holds at x∗.

This has been a motivation to the de�nition of the CCP condition in [14] that is the
weakest constraint quali�cation that ensures that AKKT is actually a �rst order optimality
condition.
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De�nition 1.3.8. We say that a point x∗ ∈ F satis�es the Cone-Continuity Property (CCP)
if the set-valued mapping Rn 3 x⇒ K(x) such that

K(x) = {
∑

i∈Ig(x∗)

λgi∇gi(x) +
m∑
i=1

λhi∇hi(x) : λi ∈ R+, µi ∈ R}

is outer semi-continuous at x∗, that is

lim sup
x→x∗

K(x) := {u|∀xν → x∗,∃uν → u with uν ∈ K(xν)} ⊂ K(x∗).

The de�nition of outer semi-continuity and related properties can be found for instance
in [171, De�nition 5.4]. It is to be noted here that K(x) depends on x∗, since it considers
only active constraints at x∗. Clearly, K(x∗) is a closed convex cone and coincides with
the polar linearised cone L (x∗)◦. Moreover, K(x) is always inner semi-continuous, i.e.
K(x∗) ⊂ lim infx→x∗ K(x), due to the continuity of the gradients and the de�nition of K(x).
For this reason, outer semi-continuity is su�cient for the continuity of K(x) at x∗.

Theorem 1.3.2. [14, Theorem 3.1] CCP is the weakest property under which AKKT implies
KKT, independently of the objective function.

A corollary of this result is that CCP is a CQ. Besides, it has been shown in [14] that
CCP is strictly stronger than ACQ and weaker than CRSC.

We would like to insist on an essential characteristic of CQs that they measure the way the
feasible set is described and not its geometry as illustrated by the following simple example.

Example 1.3.2. Consider the following one-dimensional minimisation problem :

min
x∈R

x s.t x2 ≤ 0.

Obviously, the origin is the only feasible point and thus is the global minimum. Besides, since
F = {0} it follows that TF(0) = {0}, while the linearised cone is given by L (0) = R. Thus,
ACQ does not hold at the origin and neither does Guignard CQ, since the de�nition of the
polar of a cone yields L (0)◦ = {0} and TF(0)◦ = R.

We sum up the various CQs de�ned in this section by giving the diagram in Figure 1.5.
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LICQ
⇐=

=⇒
MFCQ

=⇒
CPLD=⇒

CRCQ
⇐=

RCPLD=⇒

CRSC=⇒

CCP=⇒

ACQ=⇒

GCQ

Figure 1.5: Relations between the constraint quali�cations for (NLP).

1.4 On the θ's functions

We consider a family of smooth functions that are extensively used in the various numerical
methods introduced in this manuscript. This family has already been used in the context of
complementarity [93, 94] and in image restoration [26]. These functions are non-decreasing
continuous smooth concave functions such that

θ : R→]−∞, 1[ with θ(x) < 0 if x < 0, θ(0) = 0 and lim
x→+∞

θ(x) = 1.

Example 1.4.1. Examples of this family are θ1(x) = x/(x + 1) if x ≥ 0 and θ1(x) = x if
x < 0, θ2(x) = 1− e−x with x ∈ R.

Then using a scaling technique similar to the perspective functions we de�ne θr(x) :=
θ
(
x
r

)
for r > 0 and we get

θr(0) = 0 ∀r > 0 and lim
r→0

θr(x) = 1 ∀x > 0.

In order to simplify the presentation we sometimes used the notation θr(x) to denote θ(x, r).

Example 1.4.2. For the previous examples of this family and x ≥ 0 we have θ1
r(x) =

x/(x+ r), θ2
r(x) = 1− e−x/r.

The function θ1
r(x) will be extensively used in this paper and is illustrated in Figure 1.6

for several values of r. The function θ2 is a special case of the Weibull distribution de�ned
for k ≤ 1 as θWr (x) := (1− e−(x

r
))k. Functions that possess these properties have been used

in several domains in the literature. This chapter and the whole manuscript in general study

19



Figure 1.6: Function θ1 for several values of r.

these functions in a general way, therefore allowing to extend existing results and derive new
ones.

It can be seen on the Figure 1.6 that the functions θr behave as a step function when
r becomes small. This observation has been the motivation of the study of Chapter 2.
Another asymptotic property of these functions can be obtained when r grows as given in
the following proposition, whose proof will be given in Theorem 2.2.2 (p.32).

Proposition 1.4.1. Let x be a non-negative vector. Then, it holds that

lim
r→∞

rθr(x) = θ′(0)x.

This property in particular has been very useful in Chapter 2 to �nd an initial point of
the regularisation scheme. We point out here that by composition of the derivative it always
holds that θ′r(0) = θ′(0)/r. Through the manuscript, θ′r(x) denotes the derivative of θr(x)
with respect to x, while the derivative with respect to r is explicitly noted.

A classical property shared by all concave functions that vanish in zero is the sub-
additivity.

Lemma 1.4.1. θr is sub-additive for non-negative values, i.e. given x, y ≥ 0 it holds that

θr(x) + θr(y) ≥ θr(x+ y).

Proof. Since θ is concave, we obtain

∀x 6= y ∈ R, ∀t ∈ (0, 1), tθr(x) + (1− t)θr(y) ≤ θ(tx+ (1− t)y),
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with equality if t = 0 or 1 and if x = y. Considering y = 0 and θr(0) = 0 yields

θr(tx) = θr(tx+ (1− t)y) ≥ tθr(x) ∀t ∈ (0, 1),

with equality if t = 0, 1 or x = 0. Let i ∈ {1, ..., n} and suppose that xi + yi 6= 0 (the case
xi = yi = 0 stay true)

θr(xi) + θr(i(x)) = θr((xi + yi)
xi

xi + yi
) + θr((xi + yi)

yi
xi + yi

),

≥ xi
xi + yi

θr((xi + yi)) +
yi

xi + yi
θr((xi + yi)),

= θr(xi + yi),

with equality if and only if xi = 0 or yi = 0. This concludes the proof.

Through this manuscript, we use the functions θr to regularise the complementarity
problem. The following lemma, whose proof will be given in Lemma 3.2.1 (p.46), provides
an intuition of the motivation behind such technique.

Lemma 1.4.2. Given x, y ∈ R+, we have

x ⊥ y ⇐⇒ lim
r↘0

θr(x) + θr(y) ≤ 1.

1.4.1 How to build θ's functions

In [94], the authors present a technique to construct functions close to the functions θr as a
solution of some di�erential equation. We o�er here a di�erent approach. One way to build
θ functions is to consider non-increasing probability density functions f : R+ → R+ and
then take the corresponding cumulative distribution function

∀x ≥ 0, θ(x) =

∫ x

0

f(y)dy and ∀x < 0, θ(x) < 0.

By de�nition of f we can verify that

lim
x→+∞

θ(x) =

∫ +∞

0

f(y)dy = 1 and θ(0) =

∫ 0

0

f(y)dy = 0.

The non-increasing hypothesis on f gives the concavity of θ.

1.4.2 Useful results

We conclude this section by giving several lemmas that are used in the sequel of this
manuscript. The �rst two results give more insight on the asymptotic behaviour of the
functions θr.

21



Lemma 1.4.3. Given {rk} a sequence of positive parameters decreasing to zero. Then, it
holds true that for all x ∈ R++

lim
k→∞

θ′rk(x) = 0.

Proof. By de�nition of the θr functions as perspective function, we can write

θ′rk(x) =
1

rk
θ′
(
x

rk

)
.

Thus, it is su�cient to prove that

lim
k→∞

xθ′rk(x) = lim
k→∞

x

rk
θ′
(
x

rk

)
= lim

z→∞
zθ′ (z) = 0.

Let z and z′ be two positive numbers such that z > z′. By the mean value theorem it follows
that there exists a constant c ∈ [z′, z] such that

θ(z)− θ(z′) = θ′(c)(z − z′) ≥ 0,

where the positivity comes from the non-decreasing hypothesis on θ. By concavity it follows
that

θ(z)− θ(z′) ≥ θ′(z)(z − z′) ≥ 0,

since θ′ ≥ 0. Taking z′ = z/2 yields

2(θ(z)− θ(z/2)) ≥ θ′(z)z ≥ 0.

Using that limz→∞ θ(z) = 1 and passing to the limit gives the result.

The following lemma concerns also the asymptotic behavior of θ′. We mention here that
this result should also be true without the assumption that θrk(y

k) = 1− θrk(xk) for all k.
Lemma 1.4.4. Given {rk} a sequence of positive parameters decreasing to zero. Given a
sequence {xk} ⊂ R such that xk → x ∈ R++. Then, it holds for all sequence {yk} ⊂ R with
yk → 0 and θrk(y

k) = 1− θrk(xk) that

θ′rk(x
k) = o(θ′rk(y

k)).

Proof. In order to prove that θ′rk(x
k) = o(θ′rk(y

k)) we show that

lim
k→∞

θ′rk(x
k)

θ′rk(y
k)

= 0.

By Lemma 1.4.3, it holds that limk→∞ θ
′
rk

(xk) = 0. Now, if limk→∞ θ
′
rk

(yk) 6= 0, then the
proof is complete.

So, let us assume that limk→∞ θ
′
rk

(yk) = 0. We show that this leads to a contradiction.
A direct consequence of this assumption is that necessarily limk→∞ y

k/rk 6= 0. Therefore, it
follows that limk→∞ θ(y

k/rk) 6= 0. However, this is a contradiction with the assumption that
yk satis�es θrk(y

k) = 1 − θrk(xk) for all k. Indeed, as k grows to in�nity θrk(x
k) goes to 1

and so θrk(x
k) must go to 0.

Thus, limk→∞ θ
′
rk

(yk) 6= 0 and the result follows.
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The following result illustrates the behaviour of functions θr and their derivatives when
t and r are going through zero.

Lemma 1.4.5. Given two sequences {rk} and {tk}, which converge to 0 as k goes to in�nity
and ∀k ∈ N, (rk, tk) ∈ R2

++. Then, for any x ∈ R+

lim
k→∞

tkθrk(x) = 0.

Furthermore, let {xk} be such that limk→∞ x
k = 0. Then, either xk = O(rk) and so there

exists a constant Cθ ∈ [0, θ′(0)] such that,

lim
k→∞

tkθ
′
rk

(xk) = lim
k→∞

Cθ
tk
rk
,

otherwise, i.e xk = ω(rk), then

lim
k→∞

tkθ
′
rk

(xk) ≤ lim
k→∞

θ′(1)
tk
rk
.

Proof. First part of the lemma follows from the de�nition of functions θr. Indeed, it holds
for all x ∈ R+ that θr(x) ∈ [0, 1]. Therefore, limk→∞ tkθrk(xk) = 0.

Second part of the lemma uses the fact that functions θr are de�ned as perspective
functions, that is for all xk ∈ R+

θrk(x
k) = θ

(
xk

rk

)
,

and so, computing the derivative gives

tkθ
′
rk

(xk) =
tk
rk
θ′
(
xk

rk

)
.

So, either xk = o(rk) and by 0 < θ′(0) <∞

lim
k→∞

tkθ
′
rk

(xk) = lim
k→∞

tk
rk
θ′
(
xk

rk

)
= lim

k→∞

tk
rk
θ′(0).

Either there exists a constant C > 0 such that xk = Crk and so

lim
k→∞

tkθ
′
rk

(xk) = lim
k→∞

tk
rk
θ′
(
Crk

rk

)
= lim

k→∞

tk
rk
θ′(C).

Otherwise for k su�ciently large rk ≤ xk and by concavity of θr

0 ≤ lim
k→∞

tkθ
′
rk

(xk) ≤ lim
k→∞

tkθ
′
rk

(rk) = lim
k→∞

tk
rk
θ′(1).
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Part I

Complementarity Problems
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This part focus on numerical methods to solve the linear complementarity problem, which
consists in �nding x ∈ Rn such that

0 ≤Mx+ q ⊥ x ≥ 0, (LCP)

withM a matrix of order n and a vector q ∈ Rn. Recent works by M. Haddou and P. Maheux
[94], inspired a regularisation technique to deal with the complementarity problems. Indeed,
the (LCP) is equivalent to

y = Mx+ q ≥ 0, x ≥ 0, ‖y‖0 + ‖x‖0 ≤ 1, (1.2)

where ‖.‖0 denotes the `0 norm of vectors, that is for a vector x ∈ Rn

‖x‖0 =
∑

i∈supp(x)

1. (`0)

It is to be noted here that even so `0 is very often called a norm in the literature, it is not one
since it does not satisfy the homogeneity property. This equivalent formulation is not easier
than the initial problem since the `0 is not continuous. Now, using the class of functions θ
used in [94] and de�ned in Section 1, we consider a regularisation of (1.2) for r > 0 by

y = Mx+ q ≥ 0, x ≥ 0, θr(y) + θr(x) ≤ 1. (1.3)

By construction of the functions θr we should recover the initial problem when r decrease to
0. An equivalent formulation to (LCP) is the absolute value equation, denoted AVE, that
has also received some interest in the literature.

This part is divided in two chapters that focus on the study of this regularisation tech-
nique. First chapter considers the functions θr to approximate the `0 norm and their appli-
cations in sparse optimisation. Second chapter deal with the sequence of problems (1.3) to
solve the AVE.
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Chapter 2

Relaxation methods and application to

sparse optimisation

This chapter is a paper submitted to RAIRO entitled:

A Smoothing Method for Sparse Optimization over Polyhedral
Sets

Authors:
M. Haddou, IRMAR-INSA Rennes
T. Migot, IRMAR-INSA Rennes

Abstract: In this paper, we investigate a class of heuristic schemes to solve the NP-
hard problem of minimizing `0-norm over a polyhedral set. A well-known approximation
is to consider the convex problem of minimizing `1-norm. We are interested in �nding im-
proved results in cases where the problem in `1-norm does not provide an optimal solution to
the `0-norm problem. We consider a relaxation technique using a family of smooth concave
functions depending on a parameter. Some other relaxations have already been tried in the
literature and the aim of this paper is to provide a more general context. This motivation
allows deriving new theoretical results that are valid for general constraint set. We use a
homotopy algorithm, starting from a solution to the problem in `1-norm and ending in a so-
lution of the problem in `0-norm. We show the existence of the solutions of the subproblem,
convergence results, a kind of monotonicity of the solutions as well as error estimates leading
to an exact penalization theorem. We also provide keys for implementing the algorithm and
numerical simulations.

Mathematics Subject Classi�cation. 90-08 and 65K05
Keywords : smoothing functions ; sparse optimization ; concave minimization ; l0-norm
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Introduction

Consider a polyhedron F de�ned by linear inequalities,
F = {x ∈ Rn| Ax ≤ b} ∩ Rn

+ for some b ∈ Rm and A ∈ Rm×n, which we suppose non-empty
and not reduced to a singleton. Although, we consider a polyhedron here, most of the
results presented in this article can be generalized as F being a closed convex set. One
should note that the hypothesis of considering polyhedron in the non-negative orthant is not
restrictive. It is only assumed to simplify the presentation and to avoid the absolute value
in the de�nition of the problem.

We are interested in �nding the sparsest point over this polyhedron, which is equivalent
to minimize the `0-norm, i.e.

min
x∈F
‖x‖0, (P`0)

where

∀x ∈ Rn, ‖x‖0 =
n∑
i=1

s(|xi|), where for t ∈ R, s(t) = {0 if t = 0 ; 1 otherwise}.

Note that the `0-norm is not a norm as it does not have the homogeneity property. (P`0) is
an NP-hard problem as shown in [156].

This problem has several applications and received a considerable interest recently. Spar-
sity is involved in several domains including signal and image processing [160, 85, 59, 133,
33], statistics [80, 189, 186], machine learning [31, 140, 142]. The compressed sensing [45,
61, 62, 58, 40, 39, 41] has been the most popular application involving sparsity and creating
cross-disciplinary attention in recent years and stimulates a plethora of new applications of
sparsity. For more details about applications in image and signal modelling as well as a
review on related questions see [33] or [188].

The problem (P0) being di�cult to solve, a classical approximation consists in solving
the convex problem in `1-norm. The `1-norm is denoted by

∀x ∈ Rn, ||x||1 =
n∑
i=1

|xi|. (2.1)

The convex problem in `1-norm is de�ned by

min
x∈F
||x||1. (P1)

It can be seen as a convexi�cation of (P0), because the absolute value of x is the convex
envelope of s(x) for x ∈ [−1, 1]. Furthermore, (P1) has the bene�ts that it can be reformu-
lated as a linear program. This approach has been extensively studied in [60, 38, 41, 45,
63, 81, 187] and in particular with inequality constraints. Moreover, several criteria have
been found which guarantee that solving (P1) will also solve (P0) under various assumptions
involving the coe�cients of the matrix A. These criteria show the e�ciency of this convex
approximation to solve (P`0).
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A more sophisticated version of this convex formulation could be to consider a reweighted-
`1 problem, [207]. For more details about applications in image and signal modelling as well
as a review on related questions see reviews in [33] or [188]. It is clear from these references
that the study of the convex problem (P1) to solve (P`0) is of great importance.

Also formulation (P1) does not solve all the time the initial problem. Consider for instance
the following example in two dimensions.

Example 2.0.3. Given a matrix A ∈ Rn×n and a vector b ∈ Rn such that

A =

(
−0.1 −1
−10 −1

)
and b =

(
−1
−10

)
.

Geometrical observation allows to conclude that the solution of problem (P1) is (10
11
, 10

11
)T ,

while solution of problem (P`0) are of the form (0, 10 + ε)T and (10 + ε, 0)T with ε ≥ 0.

Nonconvex optimization has been one of the main approach to tackle this problem [197,
68, 28, 191, 122]. For instance, in [68, 28], the authors proposed a reformulation of the prob-
lem as a mathematical program with complementarity constraints. Thresholding algorithms
have also some recent popularity in [191, 51, 29, 157, 24, 132]. A Di�erence of Convex (DC)
decomposition of the `0-norm combined with DC Algorithm has been used in [122]. We are
interested here in nonconvex methods to improve the solution we get by solving (P1) in the
general case where this approach does not solve the initial problem. In this aim, several
concave relaxations of ||.||0 have been tried in the literature.

An intuitive approach trying to bridge the gap between the `1-norm and the `0-norm has
been to study homotopy methods based on the `p-norm for 0 ≤ p ≤ 1. This approach has
been initiated in [87] and later analyzed in [82, 44, 78, 121, 83], where the authors prove
the link between (P`0) and (P1) as well as conditions involving the coe�cients of A to show
a su�cient convergence condition, so that p does not have to decrease to 0 but only to
some small value. The homotopy method considers non-convex subproblems and solving the
problem in `p is not a trivial task. In [82], the authors study a linearization algorithm, while
in [83] the authors consider an interior-point method to solve the subproblems. Besides,
the problem of minimizing the `p-norm might lead to numerical di�culties due to the non-
di�erentiability at the origin, in [121] the authors consider a smoothing of the `p-norm to
circumvent this problem.

Following the progress made during the last decade in the study of reweighted `1-norm
and `p-norm, we study here smooth regularizations. In [152] and related works the authors
present a general family of smoothing function including the gaussian family and propose a
homotopy method starting from the `2-norm solutions.

Approximating the `0-norm by smooth functions through an homotopy method starting
from the `1-norm has been studied in the PhD thesis [167] and in [168, 166, 129]. In these
works, the authors consider a selection of minimization problems using smooth functions
such that (t+ r)p with r > 0 and 0 < p < 1, −(t+ r)−p with r > 0 and 1 < p, log(t+ r) with
0 < r << 1 or 1− e−rt with r > 0 and p ∈ N. The subproblems of the homotopy algorithm
are solved using a Frank and Wolfe approach [168], also called SLA in [82], and this method
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is further studied in [128].

The aim of this paper is to pursue the study of smooth concave approximation of the
`0-norm by o�ering a more general theoretical context for this study. Focusing on concave
functions is a logical choice considering that the `p-norm is itself concave. The motivation
here is to keep the good properties of the method from [168] and related work, a homotopy
method between the `1-norm and the `0-norm problems, and smoothness at the origin. In
particular, such a theoretical study has not been done in the literature.

The method considered here is a homotopy method with a parameter r such that the
method recovers the `1-norm problem for r large and the `0-norm problem for r small. We
provide here a complete analysis of the convergence of the algorithm as well as a monotonicity
study of the objective function during the iterations of the homotopy scheme. We also prove
the existence of the solutions of the subproblems without any boundedness assumption on
the constraints.

For the convex problem of minimizing the `1-norm, we already pointed out that several
criteria involving the coe�cients of the matrix A guarantee that solving the problem is
su�cient to compute a solution to (P`0). Such a result guarantees the good behavior of the
method. Considering our homotopy algorithm, we show a similar result independently of
the constraints that state that it is not necessary to tend r to zero to compute a solution of
(P`0). It can be seen as an exact penalty result. This property is a key to ensure the interest
of the method.

Most of the theoretical results presented here are valid for any non-empty closed convex
set F , which make them valid for several smoothing functions but also for several formulations
of the problem.

In order to validate our approach, we give technical details and some numerical results on
a Frank and Wolfe method to solve the subproblems of the homotopy scheme. In particular,
these results show that we manage to improve the results given by the `1 norm, which shows
the validity of our approach.

This document is organized as follows. Section 2.1 introduces a general formulation
of the relaxation methods using concave functions. Section 2.2 discusses convergence and
monotonicity results leading to a homotopy method. Section 2.3 proves error estimates
and an exact penalization theorem. Finally, Section 2.4 presents the algorithm with several
remarks concerning its implementation and numerical results can be found in Section 2.5.

2.1 A smoothing method

We consider a family of smooth functions designed to approximate the `0-norm. This family
has already been used in the di�erent context of complementarity [94] and image restoration
[26]. These functions are smooth non-decreasing concave functions such that

θ : R→]−∞, 1[ with θ(t) < 0 if t < 0, θ(0) = 0 and lim
t→+∞

θ(t) = 1.
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One way to build θ functions is to consider non-increasing probability density functions
f : R+ → R+ and then take the corresponding cumulative distribution function

∀t ≥ 0, θ(t) =

∫ t

0

f(x)dx and ∀t < 0, θ(t) < 0.

By de�nition of f we can verify that

lim
t→+∞

θ(t) =

∫ +∞

0

f(x)dx = 1 and θ(0) =

∫ 0

0

f(x)dx = 0.

The non-increasing hypothesis on f gives the concavity of θ.
Examples of this family are θ1(t) = t/(t+1) if t ≥ 0 and θ1(t) = t if t < 0, θ2(t) = 1−e−t

with t ∈ R.
Then using a scaling technique similar to the perspective functions in convex analysis we

de�ne θ(t, r) := θ
(
t
r

)
for r > 0 and we get

θ(0, r) = 0 ∀r > 0 and lim
r→0

θ(t, r) = 1 ∀t > 0.

For the previous examples of this family and t ≥ 0 we have θ1(t, r) = t/(t + r), θ2(t, r) =
1− e−t/r. The function θ1(t, r) will be extensively used in this paper.

Throughout this paper we will consider the concave optimization problem for r > 0

min
x∈F

n∑
i=1

θ(xi, r). (Pr)

Before moving to the proofs of convergence, we gives a result on the existence of solutions
of (Pr). The proof relies on an argument similar to the use of asymptotic cones and directions
as introduced in Chapter 1.

Theorem 2.1.1. Let F ⊂ Rn
+ be a non-empty closed convex set. The optimal set of (Pr)

for r > 0 is non-empty.

Proof. Since f(x) :=
∑n

i=1 θ(xi, r) is bounded below on the closed set F it admits an in�mum.
Now, assume by contradiction that there exists an unbounded sequence {xn} such that
xn ∈ F, ∀n and

lim
n→∞

f(xn) = inf
x∈F

f(x) < f(x0).

Let {dn} be the sequence de�ned for all n by

dn :=
xn − x0

‖xn‖
.

This sequence is bounded, therefore it converges, up to a subsequence, to some limit,
limn→∞ dn = limn→∞ xn/‖xn‖ = d ∈ F∞, where F∞ denotes the cone of asymptotic di-
rections of F , De�nition 1.1.3. Since F is a closed convex set, it holds for all x ∈ F that

x+ αd ∈ F, ∀α ≥ 0.
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Then, since F ⊂ Rn
+, we obtain that d ≥ 0.

Using component-wise monotonicity and continuity assumption on θ gives

lim
n→∞

f(x+ αndn) ≥ f(x), ∀x ∈ F

as long as αn > 0 for all n and the sequence {αndn} admits some limit. Choosing x = x0,
αn = ‖xn‖ and dn as de�ned above, we obtain

lim
n→∞

f(x0 + αndn) = lim
n→∞

f(xn) ≥ f(x0),

which is a contradiction with our initial assumption. This completes the proof.

2.2 Convergence

In this section, we will show the link between problems (P`0), (P1) and (Pr). We denote S∗||.||0
the set of solutions of (P`0), S

∗
||.||1 the set of solutions of (P1) and S∗r the set of solutions of

(Pr).
Our aim is to illustrate that for r su�ciently large (Pr) is close to (P1) (see Theorem 2.2.2),

and for r su�ciently small (Pr) is close to (P`0) (see Theorem 2.2.1). In this way, we de�ne
an homotopy method starting from r large and decreasing r step by step. Thus, we use the
convex approximation (P1) and come closer and closer to the problem we want to solve. A
monotonicity-kind result of the sequence computed by the homotopy scheme is proved in
Theorem 2.2.3. Finally, Theorem 2.2.4 shows that this formulation may also be of interest
for more complicated objective function than the one in (P`0).

Theorem 2.2.1 gives convergence of (Pr) to (P0) for r decreasing to 0.

Theorem 2.2.1 (Convergence to `0-norm). Let F ⊂ Rn
+ be a non-empty closed convex set.

Every limit point of any sequence {xr}r, such that xr ∈ S∗r and r ↓ 0, is an optimal solution
of (P`0).

Proof. Given x̄ the limit of the sequence {xr}r, up to a subsequence, and x∗ ∈ S∗||.||0 . Since
F is a closed set one has x̄ ∈ F . Furthermore, we have for all r in this subsequence that∑

i∈supp(x̄)

θ(xr,i, r) ≤
n∑
i=1

θ(xr,i, r) ≤
n∑
i=1

θ(x∗i , r) ≤ ‖x∗‖0. (2.2)

Moreover the de�nition of θ(., r) functions, for r > 0 and t ∈ Rn give

n∑
i=1

lim
r↓0

θ(ti, r) = ||t||0.

Passing to the limit into (2.2) we get

||x̄||0 ≤ ||x∗||0,
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and thanks to the de�nition of x∗

||x̄||0 = ||x∗||0.

We now give another convergence result from [82], which adds that the convergence
appears in a �nite number of iteration.

Proposition 2.2.1. Given a non-empty polyhedron F ⊂ Rn
+. Then there exists a r̄ such

that for all r ≤ r̄ a vertex of F is an optimal solution of (P`0) and (Pr≤r̄).

Proof. (Pr) is a problem of minimizing a concave function over a polyhedron F. We can use
Corollary 32.3.4 of [170], since there is no half-line in F such that θ(., r) is unbounded below,
so the in�mum over F is attained and it is attained at one of the extremal point of F .

Given that there is a �nite number of extremal point, one vertex, say x′, will repeadetly
solve (??) for some increasing in�nite sequence R = (r0, r1, r2, ...). Moreover the objective
function of (??) is non-increasing and bounded below by the in�mum of `0-norm, so

n∑
i=1

θ(x′i, rj) = min
x∈F

n∑
i=1

θ(xi, rj) ≤ inf
x∈F
||x||0. (2.3)

Going through the limit in R for j → ∞ and as the concave function is continuous and
x′ ∈ F , we have the results.

Theorem 2.2.2 and Proposition 2.2.1 show that the scheme converge to (P`0) as r decreases
to zero.

The next theorem shows that for r su�ciently large the solutions of (??) are the same
than solutions of (P1). This will be especially useful as an initialization of the homotopy
scheme.

Theorem 2.2.2 (Convergence to `1-norm). Let F ⊂ Rn
+ be a non-empty closed convex set.

Every limit point of any sequence {xr}r, such that xr ∈ S∗r for r ↑ ∞, is an optimal solution
of (P1).

Proof. As r > 0, we can use a scaling technique for S∗(2)
r = argmin

x∈F

∑n
i=1 rθ(xi, r)

min
x∈F

n∑
i=1

θ(xi, r) ⇐⇒ min
x∈F

n∑
i=1

rθ(xi, r), (2.4)

S∗r = S∗(2)
r . (2.5)

So, it is su�cient to show that every limit point of any sequence {xr}r, such that xr ∈ S∗r
for r ↑ ∞, is an optimal solution of (P1).

Given xr ∈ S∗(2)
r and x̄ ∈ S∗||.||1 . We use the �rst order Taylor's theorem for θ(t) in 0,

θ(t) = tθ′(0) + g(t), where lim
t→0

g(t)

t
= 0. (2.6)
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By concavity of the functions θ, it holds that θ′(0) > 0.
By de�nition of x̄, we get

n∑
i=1

rθ(xri , r) ≤
n∑
i=1

rθ(x̄i, r). (2.7)

Now, using (2.6) yields

n∑
i=1

xri θ
′(0) + rg(

xri
r

) ≤
n∑
i=1

xri θ
′(0) + rg(

x̄i
r

), (2.8)

n∑
i=1

xri −
n∑
i=1

x̄i ≤
r

θ′(0)

n∑
i=1

g(
x̄i
r

)− r

θ′(0)

n∑
i=1

g(
xri
r

), (2.9)

≤ 1

θ′(0)

∣∣∣∣∣
n∑
i=1

g( x̄i
r

)
x̄i
r

x̄i

∣∣∣∣∣+
1

θ′(0)

∣∣∣∣∣
n∑
i=1

g(
xri
r

)
xri
r

xri

∣∣∣∣∣ , (2.10)

≤ 1

θ′(0)

(
n∑
i=1

∣∣∣∣g( x̄i
r

)
x̄i
r

∣∣∣∣
)(

n∑
i=1

x̄i

)
, (2.11)

+
1

θ′(0)

(
n∑
i=1

∣∣∣∣∣g(
xri
r

)
xri
r

∣∣∣∣∣
)(

n∑
i=1

xri

)
, (2.12)

n∑
i=1

xri ≤

(
n∑
i=1

x̄i

)
1 + 1

θ′(0)

(∑n
i=1

∣∣∣g( x̄ir )
x̄i
r

∣∣∣)
1− 1

θ′(0)

(∑n
i=1

∣∣∣∣g(xrir )
xr
i
r

∣∣∣∣) . (2.13)

Then, we show that the right-hand side in previous equation goes to 1, when passing to the
limit.

It holds true that
lim

r→+∞

x̄

r
= 0. (2.14)

Besides, by de�nition of xr yields

n∑
i=1

θ(xri , r) ≤
n∑
i=1

θ(x̄i, r) (2.15)

lim
r→+∞

n∑
i=1

θ(xri , r) ≤ lim
r→+∞

n∑
i=1

θ(x̄i, r) ≤ 0. (2.16)

so, we get

lim
r→+∞

n∑
i=1

θ(xri , r) = 0. (2.17)
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By de�nition of functions θ, it is true that θ(x, r) := θ(x/r) and θ−1(0, r) = 0. Thus, by
previous equation we obtain

lim
r→+∞

xri
r

= 0 ∀i. (2.18)

Using (2.14) and (2.18) it follows

lim
r→+∞

x̄i
r

= 0 =⇒ lim
r→+∞

g( x̄i
r

)
x̄i
r

= 0, (2.19)

lim
r→+∞

xri
r

= 0 =⇒ lim
r→+∞

g(
xri
r

)
xri
r

= 0. (2.20)

Then going to the limit in (2.13) yields

lim
r→+∞

n∑
i=1

xri ≤
n∑
i=1

x̄i. (2.21)

However, by de�nition of x̄, it always hold that
∑n

i=1 x̄i ≤
∑n

i=1 xi for all x feasible for (P1).
Since, this is true for the limit point of the sequence {xr}r, the inequality in (2.21) is actually
an equality. So, the limit point of the sequence {xr}r is also a solution of (P1). This proves
the result.

The next theorem gives a monotonicity result, which illustrates the relations between the
three problems (P`0), (P1) and (Pr). By monotonicity, we mean that for a given feasible point
we want a relation of monotony in r for the objective function of (P1), (Pr) and (P`0). As the
components of the `0-norm and the θr(t) are in [0, 1[, it is necessary to put the components
of the `1-norm in a similar box, which explains the change of variable in the theorem.

Remark 2.2.1. In the following theorem we use the hypothesis that θ functions are convex
in r. This is not so restrictive as we think several functions verify it. If we take the three
examples of θ functions given in the introduction, θ1 and θlog := log(1 + x)/ log(1 + x + r)
are convex in r but not θ2.

Theorem 2.2.3 (Monotonicity of solutions). Let F ⊂ Rn
+ be a non-empty closed convex

set. Given x ∈ F , let y = x/(||x||∞ + ε) where ε > 0, so that y ∈ [0, 1[n. Let a function
Ψ(t, r) : [0, 1[→ [0, 1[ be de�ned as

Ψ(t, r) =
θ(t, r)

θ(1, r)
,

where θ(t, r) is the smooth function described in the introduction, which we will consider here
as convex in r. For r and r̄ such that 0 < r̄ < r < +∞, then one has

||y||1 ≤
n∑
i=1

Ψ(yi, r) ≤
n∑
i=1

Ψ(yi, r̄) ≤ ||y||0.
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Proof. The proof is divided in three step regarding the three inequalities.
The functions θ are sub-additive functions, since they concave and θ(0) = 0. Then, it

follows
θ(yi, r) ≥ yi θ(1, r).

Therefore, we get

n∑
i=1

Ψ(yi, r)− ||y||1 =
n∑
i=1

(
θ(yi, r)

θ(1, r)
− yi),

≥ 0,

which leads to the �rst inequality

||y||1 ≤
n∑
i=1

Ψ(yi, r).

We continue with the second inequality showing that Ψ(y, r) functions are non-increasing in
r, i.e.

n∑
i=1

Ψ(yi, r) ≤
n∑
i=1

Ψ(yi, r̄). (2.22)

The function Ψ(y, r) is non-increasing in r if its derivative with respect to r

∂

∂r
Ψ(y, r) =

( ∂
∂r
θ(y, r))θ(1, r)− ( ∂

∂r
θ(1, r))θ(y, r)

θ(1, r)2
, (2.23)

is negative. Since θ(y, r) is a non-decreasing function in y we have

θ(y, r)

θ(1, r)
≤ 1,

and
∂

∂r
θ(y, r) = − 1

r2

∂

∂y
θ(y, r) ≤ 0.

So, θ(y, r) is a non-increasing function in r. Using convexity of θ(y, r) in r it follows

∂
∂r
θ(y, r)

∂
∂r
θ(1, r)

=
∂
∂r
θ(1, r/y)
∂
∂r
θ(1, r)

≥ 1.

Then in (2.23) the derivative with respect to r is negative and we have (2.22). Finally, since
θ(y, r) is non-decreasing in y and y ∈ [0, 1[n one has

||y||0 −
n∑
i=1

Ψ(yi, r̄) =
n∑

i=1;yi 6=0

1− θ(yi, r̄)

θ(1, r̄)
≥ 0,

which gives the last inequality and completes the theorem.
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Remark 2.2.2. Both choices of scaling parameter in Theorem 2.2.2 and Theorem 2.2.3 are
linked. In the former, we set that limr→+∞ r

∑n
i=1 θ(xi, r) =

∑n
i=1 xi, so evaluating in one

dimension and x = 1 we have limr→+∞ rθ(1, r) = 1 and then we see that r and 1/θ(1, r)
have the same behaviour for r su�ciently large.

All this results lead us to the general behaviour of the method. First, we start from one
solution of (P1) then by decreasing parameter r the solution of (Pr) becomes closer to a
solution of (P`0).

Another approach would be to de�ne a new problem which selects one solution of the
possibly many optimal solution of (P`0). We consider the following problem which is a
selective version of (Pr)

min
x∈F

n∑
i=1

θ(xi, r) +
n∑
i=1

r
i

2n+1xi. (Pr−sel)

We use a lexicographic norm and we note

||y||lex < ||x||lex ⇐⇒ ∃i ∈ {1, ..., n}, yi < xi and ∀ 1 ≤ j < i, yj = xj.

In the next theorem we want to choose the solution of (P`0) which has the smallest lexico-
graphic norm. From the previous equation it is clear that this optimal solution is unique.

Theorem 2.2.4. [Convergence of the selective concave problem] We use functions θ such
that θ ≥ θ1. Given {xr}r a sequence of solutions of (Pr−sel) and x̄ the limit point of this
sequence. Then, x̄ is the unique solution of S∗||.||0 such that ∀y ∈ S∗||.||0 , ||x̄||lex ≤ ||y||lex.

Proof. Given x∗ an optimal solution of (P`0) such that ∀y ∈ S∗||.||0 , ||x
∗||lex ≤ ||y||lex and

x̄ the limit of a sequence of {xr}r solution of (Pr−sel). For all r, xr is the minimum of a
concave function over a bounded polyhedron thus by Theorem 32.3 of [170] it follows that
the minimum is attained at one of the �nitely many extreme point of F . Since, x̄ is assumed
to be limit point of the sequence {xr}r, we can extract a subsequence such that for all r in
this subsequence it holds that

n∑
i=1

θ(x̄i, r) +
n∑
i=1

r
i

2n+1 x̄i ≤
n∑
i=1

θ(x∗i , r) +
n∑
i=1

r
i

2n+1x∗i ≤ ‖x∗‖0 +
n∑
i=1

r
i

2n+1x∗i . (2.24)

Going to the limit for r ↓ 0 we have

||x̄||0 ≤ ||x∗||0,

which is an equality by de�nition of x∗ and prove the �rst part of the theorem. Now we need
to verify the selection of the solution. Using that for all x ∈ R θ(x, r) ≤ 1 in (2.24) one has

n∑
i=1

(θ(x̄i, r)− 1) +
n∑
i=1

r
i

2n+1 x̄i ≤
n∑
i=1

r
i

2n+1x∗i .
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Consider θ ≥ θ1, r su�ciently small (min{i|xi 6=0} x̄i ≥
√
r) and using that ||x̄||0 = k we have

− k r

r +
√
r

+
n∑
i=1

r
i

2n+1 x̄i ≤
n∑
i=1

r
i

2n+1x∗i . (2.25)

Dividing by r
1

2n+1 , we get

−k r

r
1

2n+1 (r +
√
r)

+ x1 +
n∑
i=2

r
i

2n+1 x̄i ≤ x∗1 +
n∑
i=2

r
i

2n+1x∗i .

Therefore, going to the limit for r ↓ 0 one has

x̄1 ≤ x∗1,

which is an equality by hypothesis on x∗ being the smallest ||.||lex solution of (P`0). So, as
x̄1 = x∗1 in (2.25) one has

−k r

r +
√
r

+
n∑
i=2

r
i

2n+1 x̄i ≤
n∑
i=2

r
i

2n+1x∗i .

By induction we get x̄i = x∗i , ∀i ∈ {1, ..., n} and so x̄ = x∗, because we have

lim
r→0

r

r
j

2n+1 (r +
√
r)

= 0, ∀j ∈ {1, ..., n}.

Finally we have the results as x̄ is the optimal solution which has the smallest lexicographic
norm.

Remark 2.2.3. If we try to get an equivalent result as in Theorem 2.2.2 for this selection
problem, it is clear that for r su�ciently large we will solve the `1-norm problem but with
a reversed lexicographical order than the one we are looking for, i.e for a non-decreasing
sequence of r

x̄ = lim
r→∞
{xr}r with xr ∈ S∗rj−sel =⇒ x̄ ∈ S∗||.||1 and x̄ = arg max

y∈S∗||.||1
||y||lex.

This will de�nitely prevent us of any kind of monotonicity result such as Theorem 2.2.3. So,
unless S∗||.||0 admits only one solution, the initial point as a solution of (P1) has no chance
of being a good initial point. This argument and the fact that this problem looks numerically
not advisable lead us not to follow the study of this selective problem.

2.3 Error estimate

In this section, we focus on what happen when r becomes small. We denote card(I) the
number of elements in a set I. Note that the following results are given for functions θ ≥ θ1.
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Lemma 2.3.1. Consider θ functions where θ ≥ θ1. Let N 3 k = ||x∗||0 < n be the optimal
value of problem (P`0) and I(x, r) := {i|xi ≥ kr}. Then one has

xr ∈ arg min
x∈F

n∑
i=1

θ(xi, r)⇒ card(I(xr, r)) ≤ k.

Proof. We use a proof by contradiction. Consider that card(I(xr, r)) ≥ k + 1 and we have
xr ∈ arg minx∈F

∑n
i=1 θ(xi, r), then

n∑
i=1

θ(xri , r) ≥ (k + 1)θ(kr, r) ≥ (k + 1)θ1(kr, r) = (k + 1)
kr

kr + r
= k,

which is a contradiction with the de�nition of xr.

This lemma gives us a theoretical stopping criterion for the decrease of r, as for r <
r̄ = minxri 6=0 x

r
i/k, x

r becomes an optimal solution. In the following lemma we look at the
consequences in the evaluation of θ.

Lemma 2.3.2. Consider θ functions where θ ≥ θ1. Let N 3 k = ||x∗||0 < n be the optimal
value of problem (P`0) and

r̄ := min
xri 6=0

xri/k.

Then one has

r ≤ r̄ ⇐⇒ θ(min
xri 6=0

xri , r) ≥
k

k + 1
.

Proof. We �rst show the equivalence in (??) for θ1. Assume that

θ1(min
xri 6=0

xri , r) ≥
k

k + 1
. (2.26)

Using the expression of θ1, it follows

θ1(min
xri 6=0

xri , r) =
minxri 6=0 x

r
i

minxri 6=0 xri + r
≥ k

k + 1
(2.27)

⇐⇒ min
xri 6=0

xri (k + 1) ≥ k(min
xri 6=0

xri + r) (2.28)

⇐⇒ min
xri 6=0

xri ≥ kr (2.29)

⇐⇒ r̄ =
minxri 6=0 x

r
i

k
≥ r. (2.30)

Considering the functions θ such that θ ≥ θ1, the equivalence follows in the exact same
way. This proves the result.

Both previous lemmas lead us to the following theorem, which is an exact penalization
result for our method.
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Theorem 2.3.1 (Exact Penalization Theorem). Consider θ functions where θ ≥ θ1. Let
N 3 k = ||x∗||0 < n be the optimal value of problem (P`0) and x

r ∈ S∗r . Then one has

θ(min
xri 6=0

xri , r) ≥
k

k + 1
=⇒ xr ∈ S∗||.||0 .

Proof. By Lemma 2.3.2 and with r̄ = minxri 6=0 x
r
i/k one has

θ(min
xri 6=0

xri , r) ≥
k

k + 1
⇐⇒ r ≤ r̄.

Then by Lemma 2.3.1 and using xr ∈ S∗r we have

xr ∈ argmin
x∈F

n∑
i=1

θ(xi, r)⇒ card(I(xr, r)) ≤ k.

Finally, using r ≤ r̄ and that k is the optimal value of problem in `0-norm we have the
result.

We use in the previous result the minimum non-zero component of xr, which is logical
as we expect that for r su�ciently small the sequence of {minxri 6=0 x

r
i}r should be increasing.

The following lemma gives us a clue on this behaviour.

Lemma 2.3.3. Consider θ functions where θ ≥ θ1. Let x∗ ∈ S∗||.||0, ||x
∗||0 = k and

r∗ :=
1

k
min
x∗i 6=0

x∗i .

Then one has
∀r ≤ r∗, xr ∈ S∗r =⇒ min

xri 6=0
xri ≤ min

x∗i 6=0
x∗i .

Proof. Suppose that min
xi 6=0

xi > min
x∗i 6=0

x∗i . Since x
r ∈ S∗r we have

n∑
i=1

θ(xr, r) ≥
n∑
i=1

θ(xr, r∗),

> (k + 1)θ(min
x∗i 6=0

x∗i , r
∗),

> (k + 1)
kr∗

kr∗ + r∗
,

= k,

which is in contradiction with the de�nition of xr.
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2.4 Algorithm

The previous results allow us to build a generic algorithm

[Thetal0]

{r
k}k∈N, r0 > 0 and lim

k→+∞
rk = 0,

�nd xk : xk ∈ arg min
x∈F

∑n
i=1 θ(xi, r

k).

Now, several questions remain to be answered such as initialization, choice of the sequence
{rk} and the method used to solve the concave minimization problems. In Sect. 2.3, we have
shown an exact penalization result, which help us building a stopping criterion. We make a
few remarks about these questions. Note that interesting related remarks can be found in
[152].

Remark 2.4.1 (On the behaviour of θ functions). These concave functions are acting as
step function for r su�ciently small. That is one has the following behaviour

θ(t, r) '

{
1 if t >> r,

0 if t << r.

which gives us a strategy to update r. Let xk be our current iterate and rk the corresponding
parameter. We divide our iterate into two sets, those with indices in I = {i | xki ≥ rk}
and the others with indices in Ī = {i | xki < rk}. We can see I as the set of indices of the
"non-zero" components and Ī as the set of indices of the "zero" components of xk. So we
will choose rk+1 around maxi∈Ī x

k
i to ask whether or not it belongs to zeros and we repeat

this operation until r is su�ciently small to consider Ī the set of e�ective zeros. Also this
is a general behaviour, to be sure to have decrease of r one should add a �xed parameter of
minimum decrease.

Remark 2.4.2 (Initialization). It is the main purpose of our method to start with the solution
x0 of the problem (P1), which is a convex problem. So, we need to �nd the r0 related to x0.
A natural, but non-trivial, way of doing this would be to �nd the parameter which minimizes
the following problem

min
r>0
||

N∑
i=1

θ(x0
i , r)− ||x0||1 ||22.

A simpler idea is to be inspired from last remark and put r0 as a value which is just beyond
the top value of x0

i .

Remark 2.4.3 (Stopping criterion). It has been shown, in Sect. 2.3, an exact penalization
theorem using the quantity k/(k + 1), which depends on the solution we are looking for.
Numerically, we can make more iterations but being sure to satisfy this criterion using the
fact that ||x0||0 ≥ k, which gives us the following criterion

θ(min
xri 6=0

xri , r) ≥
||x0||0
||x0||0 + 1

≥ k

k + 1
.
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Remark 2.4.4 (Algorithm for concave minimization). In the same way as in [82] and
[167] we will use a successive linearization algorithm (SLA) algorithm to solve the concave
minimization problem at each iteration in r. This algorithm is a �nitely timestep Franck &
Wolf algorithm, [141].

Proposition 2.4.1 (SLA algorithm for concave minimization). Given ε su�ciently small
and rk. We know xk and we �nd xk+1 as a solution of the linear problem

min
x∈F

xt∇xθ(x
k, rk),

with x0 a solution of the problem (P1). We stop when

xk+1 ∈ F and (xk+1 − xk)t∇xθ(x
k, rk) ≤ ε.

This algorithm generates a �nite sequence with strictly decreasing objective function values.

Proof. see [[141], Theorem 4.2].

We note that this algorithm didn't provide necessarily a global optimum as it ends in a
local solution, so we don't expect global solutions in our algorithm. Also when considering
the objective function of this linear program the gradient of functions θ tends to be very large
as θ′r(t) ≈ O(1/r), so it can be numerically e�cient to add a scaling parameter of order r.

2.5 Numerical simulations

Thanks to the previous sections we have keys for an algorithm. We will show now some
numerical results. These simulations have been done using MATLAB language, [146], with
the linear programming solver GUROBI, [92].

The precision in our simulations is ε = 10−8. We generate various polyhedron F =
{x ∈ Rn| b ∈ Rm, Ax ≤ b} ∩ Rn

+ with m < n. In the same way as in [82] we choose n =
(500, 750, 1000) and in each case m = (40%, 60%, 80%). For each pair (n,m) we choose
randomly one hundred problems. We take a random matrix A of size m × n and a default
sparse solution xinit with 10% of non-zero components. We get b by calculating the matrix-
vector product b = Axinit. In the end, we will compare the sparsity of the solution from
Thetal0-algorithm using θ1 (#θ1), the default sparse solution (#`0) and the initial iterate
(#`1). We get the initial iterate as a solution of problem (P1). The item # indicates the
number of non-zero components in a vector.

Results are sum up in Table 2.1. The �rst two columns give the dimensions of the
problems, Column 3 gives the number of problems where the solution of θ algorithm has at
least the same sparsity as the default sparse solution. Column 4 in the same vein compare
the sparsity of the solution in `1-norm with the default sparse solution. Column 5 gives
the number of problems where the solution by θ-algorithm improves strictly the solution by
`1-norm.
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Table 2.1: Numerical results with random F =
{
x ∈ Rn

+| b ∈ Rm, Ax ≤ b
}
, dimensions of

the problem are �rst 2 columns. Compare a default sparse solution with 10% of non-zero
components, #l0, the initial iterate solution of (P1), #l1, and the solution by θ-algorithm
with function θ1, #θ1. The item # indicates the number of non-zeros.

n m #`0 ≥ #θ1 #`1 ≤ #`0 #θ1 < #`1

1000 800 100 100 0
1000 600 100 98 2
1000 400 50 1 99
750 600 100 100 0
750 450 100 98 2
750 300 54 0 100
500 400 100 100 0
500 300 100 94 6
500 200 63 0 100

These results validate our algorithm, as in the majority of the cases it manages to �nd at
least an equivalent solution to the default sparse solution. One may notice that in many cases
the `1-norm minimization solution solves the problem in `0-norm, which is not surprising
according to [61].

In Figure 2.1, we show the behaviour of the minimum non-zero component of the current
iterate along the iterations in r for one example. We can see the increasing behaviour that
is the general behaviour expected in the Remark 2.4.3.

2.6 Conclusion and outlook

We proposed a class of heuristics schemes to solve the NP-hard problem of minimizing the
`0-norm. Our method requires to �nd a sequence of solution from concave minimization
problem, which we solved with a successive linearization algorithm. This method has the
bene�t that it can only improve the solution we get by solving the `1-norm problem. We
gave convergence results, an exact penalization theorem and keys to implement the method.
To con�rm the validity of this algorithm we gave numerical results from randomly generated
problems.

Further studies can investigate the special case where the `1-norm solves the `0-norm
problem, to �nd an improved stopping condition. Thanks to several studies, for instance
[61], we have criteria which can help us identifying the cases where the solution we get by
solving (P1) is an optimal solution of (P`0). We can wonder if there exists a better su�cient
condition than the one presented here in the case where xr ∈ S∗||.||1 ∩ S

∗
r

We can also study a very similar problem which is the one of minimizing `0-norm with
noise, see for instance [62] or [22], that is

(P0,δ) min ||x||0 s.t. Ax ≤ b+ δ.
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Figure 2.1: Evolution of the minimum non-zero component of xr in function of the parameter
r ↓ 0.

Figure 2.2: Performance of θ-algorithm in presence of noise, using function θ1. n = 500,
m = 200. Mean of SNR for 100 random problems in function of σ2.

As a �rst step in this direction we run our heuristic schemes on some perturbed problems. We
generate polyhedron in a similar way as in the previous section with noise in b = Axinit +ϑ,
where ϑ follows N (0, σ2In×n). We build a signal to noise ratio (SNR) for several values of
σ2 from 0.5 to 0,

SNR = 20 log(
||x∗||2

||x∗ − xb||2
),

where x∗ and xb are generated by our algorithm, the former comes from the problem without
noise and the later from the perturbed problem. We choose dimensions n = 500 andm = 200.
Then for one hundred randomly selected problems we compute the mean of the SNR. Results
in Figure 2.2 show very logical behaviour as more noise is present more informations are lost.
Further work could compare these results with existing methods and shows theoretical study,
which could help building an improved algorithm.
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Chapter 3

Relaxation methods to solve the absolute

value equation

This chapter is a paper accepted in Journal of Computational and Applied Mathematics
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ing Functions
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Abstract: In this paper, we reformulate the NP-hard problem of the absolute value
equation (AVE) as a horizontal linear complementarity one and then solve it using a smooth-
ing technique. This approach leads to a new class of methods that are valid for general
absolute value equation. An asymptotic analysis proves the convergence of our schemes and
provides some interesting error estimates. This kind of error bound or estimate had never
been studied for other known methods. The corresponding algorithms were tested on ran-
domly generated problems and applications. These experiments show that, in the general
case, one observes a reduction of the number of failures.
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3.1 Introduction

We consider the absolute value equation, which consists in �nding x ∈ RN such that

Ax− |x| = b, (AVE)

where A ∈ RN×N , b ∈ RN and |x| := (|x1|, . . . , |xN |)T . A slightly more general problem has
been introduced in [172]

Ax+B|x| = b, (AVP)

where A,B ∈ RM×N , b ∈ RM and unknown x ∈ RN . Here, we focus on (AVE), which has
been more popular in the literature. The recent interest in these problems can be explained
by the fact that frequently occurring optimization problems such as linear complementarity
problems and mixed integer programming problems can be reformulated as an (AVE), see
[161, 139]. The general NP-hard linear complementarity problem can be formulated as an
(AVE), which implies that it is NP-hard in general. Moreover, it has been proved in [161]
that checking if an (AVE) has one or an in�nite number of solutions is NP-complete.

Theoretical criteria regarding existence of solutions and unique solvability of (AVE) have
been studied in [161, 143, 176, 175, 130]. An important criterion among others is that (AVE)
has a unique solution if all of the singular values of the matrix A exceed 1. In the special case
where the problem is uniquely solvable, a family of Newton methods has been proposed �rst
in [134], then completed with global and quadratic convergence in [37], an inexact version
in [25] and other related methods [97, 154, 204]. Also, Picard-HSS iteration methods and
nonlinear HSS-like methods have been considered for instance in [180, 163, 206]. It is of
a great interest to consider methods that remain valid in the general case. Most of such
methods which are valid in the general case are due to Mangasarian in [136, 137, 138] by
considering a concave or a bilinear reformulation of (AVE) solved by a sequence of linear
programs. A hybrid method mixing Newton approach of [134] and [138] can be found in
[135]. A method based on interval matrix has been studied by Rohn in [173, 174].

The special case where (AVE) is not solvable also received some interests in the litera-
ture. Prokopyev shows numerical results using a mixed integer programming solver in [161].
Theoretical study in order to correct b and A to make (AVE) feasible can be found in [117,
118].

Our aim in this paper is to pursue the study of (AVE) without additional hypothesis
such as unique solvability and propose a new method, which solves a sequence of linear pro-
grams. The motivation is to diminish the number of instances where classical methods can
not solve the problem. We propose a new reformulation of (AVE) as a sequence of concave
minimization problems using complementarity and a smoothing technique.

The paper is organized as follows. In Section 2, we present the new formulation of (AVE)
as a sequence of concave minimization problems. In Section 3, we prove convergence to a
solution of (AVE) and in Section 4, we establish error estimate. Finally, Section 5 provides
numerical results on simple examples and randomly generated test problems.
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3.2 AVE as a sequence of concave minimization programs

We consider a reformulation of (AVE) as a sequence of concave minimization problems.
First, we use a classical decomposition of the absolute value to reformulate (AVE) as an
horizontal linear complementarity problem. Set x = x+ − x−, where x+ ≥ 0, x− ≥ 0 and
x+ ⊥ x−, so that x+ = max(x, 0) and x− = max(−x, 0). This decomposition guarantees
that |x| = x+ + x−. So (AVE) is equivalent to the following complementarity problem

A(x+ − x−)− (x+ + x−) = b,

x+ ≥ 0, x− ≥ 0,

x+ ⊥ x−.

(3.1)

Now, we reformulate this problem as a sequence of concave optimization problems using a
smoothing technique. This technique has been �rst studied in [150, 94] and uses a family of
non-decreasing continuous smooth concave functions θ : R→]−∞, 1[ that satis�es

θ(t) < 0 if t < 0, θ(0) = 0 and lim
t→+∞

θ(t) = 1.

One generic way to build such functions is to consider non-increasing probability density
functions f : R+ → R+ and then take the corresponding cumulative distribution functions

∀t ≥ 0, θ(t) =

∫ t

0

f(x)dx.

By de�nition of f

lim
t→+∞

θ(t) =

∫ +∞

0

f(x)dx = 1 and θ(0) =

∫ 0

0

f(x)dx = 0.

The hypothesis on f gives the concavity of θ on R+. We then extend the functions θ for
negative values in a di�erentiable way, for instance taking θ(t < 0) = tf(0).

Two interesting examples of this family are θ1(t) = t/(t + 1) if t ≥ 0 and θ1(t) = t if
t < 0, θ2(t) = 1− e−t with t ∈ R. In particular, θ1 will play a special role in our analysis.

We introduce θr(t) := θ
(
t
r

)
for r > 0. This de�nition is similar to the perspective

functions in convex analysis. These functions satisfy

θr(0) = 0 ∀r > 0 and ∀t > 0, lim
r↘0

θr(t) = 1.

Previous examples lead to θ1
r(t) = t/(t+ r) if t ≥ 0 and θ1

r(t) = t/r if t < 0, θ2
r(t) = 1− e−t/r

with t ∈ R.
The following lemma shows the link between this family of functions and the comple-

mentarity.

Lemma 3.2.1. Given s, t ∈ R+, we have

s ⊥ t ⇐⇒ lim
r↘0

θr(s) + θr(t) ≤ 1.
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Proof. Prove by contradiction that

lim
r↘0

θr(s) + θr(t) ≤ 1 =⇒ s ⊥ t.

Suppose s, t > 0, then

lim
r↘0

(θr(s) + θr(t)) = lim
r↘0

θr(s) + lim
r↘0

θr(t) = 2.

This leads to a contradiction and therefore s ⊥ t. Conversely it is clear that s ⊥ t implies
s = 0 or t = 0 and the result follows.

In the case of the function θ1
r , it holds that

θ1
r(s) + θ1

r(t) = 1⇐⇒ st = r2.

Using the previous lemma, problem (3.1) can be replaced by a sequence of concave
optimization problems for r > 0 :

min
x+,x−∈RN

N∑
i=1

θr(x
+
i ) + θr(x

−
i )− 1,

A(x+ − x−)− (x+ + x−) = b,

x+ ≥ 0, x− ≥ 0.

(3.2)

In order to avoid compensation phenomenon and generate strictly feasible iterates we
consider a relaxed version of (3.2):

min
x+,x−∈RN

N∑
i=1

θr(x
+
i ) + θr(x

−
i )− 1,

−g(r)|A|e−g(r)e≤A(x+−x−)−(x++x−)−b≤g(r)|A|e+g(r)e,

x+ + x− ≥ g(r)e,

0 ≤ x+ ≤M, 0 ≤ x− ≤M,

(Pr)

where e is the unit vector, |A| denotes the matrix where each element is the absolute value
of the corresponding element in A, M is some positive constant to be speci�ed later and
g : R∗+ → R∗+ is a function satisfuing

lim
r↘0

r

g(r)
= 0 and lim

r↘0
g(r) = 0.

For instance, we can choose g(r) = rα with 0 < α < 1.
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3.3 Convergence

From now on, we assume that the set of solutions of (AVE) denoted S∗(AV E) is non-empty and
denote S∗(Pr) the optimal set of (Pr). In order to simplify the notation, we denote x ∈ S∗(Pr)
when (x+, x−) ∈ S∗(Pr) with x = x+ − x− and x+ = max(x, 0), x− = max(−x, 0). Let M be
a positive constant such that

M ≥ ||x∗||∞,
where x∗ is some solution of S∗(AV E). The following theorem shows that for r > 0, the set of
solutions S∗(Pr) is non-empty.

Theorem 3.3.1. (Pr) has at least one solution for any r > 0.

Proof. Since S∗(AV E) 6= ∅, there exists a point x̄ ∈ S∗(AV E). We can write x̄ = x̄+ − x̄− with
x̄+ ⊥ x̄−. It follows that (yr+ := x̄++g(r),yr− := x̄−) is a feasible point of (Pr). Furthermore,
we minimize a continuous function over a non-empty compact set so the objective function
attains its minimum.

The following three lemmas will be used to prove the main convergence Theorem 3.3.2.

Lemma 3.3.1. For r > 0, functions θr and g de�ned above and x+, x− ∈ RN
+ , such that

x+ + x− ≥ g(r)e. It holds that

∀i ∈ {1, ..., N}, θr(x
+
i ) + θr(x

−
i )− 1 ≥ θr(g(r))− 1.

Proof. θr is concave and θr(0) = 0 so θr is sub-additive on R+. Thus, for all i ∈ {1, ..., N} it
follows that

θr(x
+
i ) + θr(x

−
i )− 1 ≥ θr(x

+
i + x−i )− 1.

Furthermore θr is non-decreasing and x+ + x− ≥ g(r)e therefore

θr(x
+
i ) + θr(x

−
i )− 1 ≥ θr(g(r))− 1.

Lemma 3.3.2. Given functions θr and g de�ned above we have

lim
r↘0

θr(g(r))− 1 = 0.

Proof. Since θr(g(r)) = θ r
g(r)

(1) and limr↘0 r/g(r) = 0, it follows that

lim
r↘0

θr(g(r)) = lim
r↘0

θ r
g(r)

(1) = 1. (3.3)

In the special case, where many solutions of (AVE) have at least a zero component, it
can be di�cult to �nd a feasible point (x+, x−) of (Pr) such that x+ + x− ≥ g(r)e. The
following lemma explains how to build such point in this case.
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Lemma 3.3.3. Let x̄ ∈ S∗(AV E) and r > 0 be such that g(r) < minx̄i 6=0 |x̄i|. Then yr :=

x̄+ g(r) is a solution of the following equation

Ax− |x| = b+ g(r)Ae− g(r)δ(x̄), ((AVE)r)

where δ(x) ∈ RN is such that δi(x) :=

{
1 if xi ≥ 0,

−1 if xi < 0.

Proof. x̄ is a solution of (AVE), that is

Ax̄− |x̄| = b.

Therefore it holds that

Ax̄+ g(r)Ae− |x̄| − g(r)δ(x̄) = b+ g(r)Ae− g(r)δ(x̄),

and so
A(x̄+ g(r)e)− |x̄+ g(r)e| = b+ g(r)Ae− g(r)δ(x̄).

Thus, yr = x̄+ g(r) is a solution of ((AVE)r).

We now prove the convergence of {xr}r>0, where xr := xr+−xr− with (xr+, xr−) ∈ S∗(Pr),
to an element of S∗(AV E). It is to be noted that S∗(Pr) is not necessarily a singleton.

Theorem 3.3.2. Every limit point of the sequence {xr} such that xr ∈ S(Pr) for r > 0 is a
solution of (AVE).

Proof. By Theorem 3.3.1 there exists at least one solution of (Pr). According to Lemma
3.3.3, we can build a sequence {yr}r>0 where yr = yr+ − yr− with yr+ ⊥ yr− that are
solutions of (AVE)r. Furthermore, for r su�ciently small (yr+, yr−) is a feasible point of
(Pr). Let xr = (xr+, xr−) with {xr}r>0 be a sequence of optimal solutions of (Pr), then

N∑
i=1

(θr(x
r+
i ) + θr(x

r−
i )− 1) ≤

N∑
i=1

(θr(y
r+
i ) + θr(y

r−
i )− 1) ≤ 0.

For all i ∈ {1, ..., N}, it holds that

θr(x
r+
i ) + θr(x

r+
i )− 1 ≤ −

N∑
j=1;j 6=i

(θr(x
r+
j ) + θr(x

r+
j )− 1).

By Lemma 3.3.1, we obtain for all i ∈ {1, ..., N}, that

θr(x
r+
i ) + θr(x

r−
i ) ≤ 1 + (N − 1)(1− θr(g(r))).

For any limit point x̄ = (x̄+, x̄−) of the sequence {xr}r, where x̄+ = limr↘0 x
r+ and x̄− =

limr↘0 x
r−, using Lemma (3.3.2) (limr↘0 1−θr(g(r)) = 0) and passing to the limit, it follows

that
lim
r↘0

θr(x̄
+
i ) + θr(x̄

−
i ) ≤ 1.
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Thus, x̄+ ⊥ x̄− by the previous inequality and Lemma 3.2.1.
Now, we verify that x̄ is a solution of (AVE). Let r > 0 and xr be a solution of (Pr), we

have

b− g(r)|A|e− g(r)e ≤ A(xr+ − xr−)− (xr+ + xr−) ≤ b+ g(r)|A|e+ g(r)e.

Passing to the limit when r ↘ 0, we obtain

A(x̄+ − x̄−)− (x̄+ + x̄−) = b.

So, x̄ = x̄+ − x̄− is a solution of (AVE).

We now continue the discussion on convergence by a characterization of the limit points
in the case where S∗(AV E) = ∅.

Theorem 3.3.3. Assume that S∗(AV E) is empty and that (3.2) admits a feasible point whose
in�nite norm is bounded by M . Then, every limit point of {xr} such that xr ∈ S(Pr) for
r > 0, does not satisfy the complementarity constraint.

Proof. A straightforward adaptation of Theorem 3.3.1 to the new assumption proves that
there exists a sequence {xr} such that xr ∈ S(Pr) for r > 0. Therefore, we can extract up to
a subsequence a limit point of this sequence since by assumption it is bounded.

By contradiction, if the limit point satis�es the complementarity constraint. Then, this
point will be a solution of (AVE). However, this is a contradiction with the assumption that
S∗(AV E) is empty.

In the case where no feasible point of (3.2) exists. It clearly holds that for r su�ciently
small the problem (Pr) becomes infeasible.

3.4 Error estimate

In this section we study, the asymptotic behaviour of the sequence {xr}r>0 for small values of
r. We remind the de�nition of the Landau notation O often used in the context of asymptotic
comparison. Given two functions f and h, one writes

f(x) = Ox→a(h(x))

if ∃C > 0, ∃d > 0 such that |f(x)| ≤ C|h(x)| when |x − a| ≤ d. This notation becomes
O(h(x)) when a is 0.

The following simple lemma will be useful for the rest of this section.

Lemma 3.4.1. Let θr be such that θr ≥ θ1
r . For x

r ∈ S∗(Pr) and r su�ciently small, we have

∀i ∈ {1, ..., N}, xr+i xr−i = O(rg(r)).
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Proof. Set i ∈ {1, ..., N}. Thanks to the convergence proof of the Theorem 3.3.2 for r
su�ciently small it holds that

θr(x
r+
i ) + θr(x

r−
i )− 1 ≤ (N − 1)(1− θr(g(r))).

Thus, it also holds, in particular for θ = θ1, that

θ1
r(x

r+
i ) + θ1

r(x
r−
i )− 1 ≤ (N − 1)(1− θ1

r(g(r))).

Therefore for r su�ciently small (i.e. such that g(r) ≥ r and (1− (N − 1)g(r)) > 0) it holds
that

xr+i
xr+i + r

+
xr−i

xr−i + r
− 1 ≤ (N − 1)(1− g(r)

g(r) + r
) ≤ (N − 1)g(r),

2xr+i xr−i + rxr+i + rxr−i − xr+i xr−i − rxr+i − rxr−i − r2

(xr+i + r)(xr−i + r)
≤ (N − 1)g(r),

xr+i xr−i − r2

(xr+i + r)(xr−i + r)
≤ (N − 1)g(r),

xr+i xr−i − r2 ≤ (N − 1)g(r)(xr+i xr−i + rxr+i + rxr−i + r2),

xr+i xr−i ≤ r2g(r)
1 + (N − 1)

1− (N − 1)g(r)
+ rg(r)

(N − 1)(xr+i + xr−i )

1− (N − 1)g(r)
,

and the results follows.

The following proposition gives a �rst error estimate that concerns only the components
of (xr+, xr−) converging to zero.

Proposition 3.4.1. Let θr be such that θr ≥ θ1
r . Let (x̄+, x̄−) be a limit point of the sequence

{xr+, xr−}r of optimal solutions of (Pr). The convergence of the components of the variable
xr+ or xr− to the possibly zero part of the accumulation point is done in O(r).

Proof. Set i ∈ {1, ..., N}. We work with one component. Assume that x̄+
i = 0. The opposite

case is completely similar. By assumption on xr+i , for r su�ciently small it holds that
max(xr+i , xr−i ) = xr−i . Thus, for r su�ciently small we have

g(r) ≤ xr+i + xr−i ≤ 2xr−i .

Additionally, by Lemma 3.4.1 it follows

xr+i xr−i = O(rg(r)),

=⇒ xr+i =
O(rg(r))

xr−i
,

=⇒ xr+i =
O(rg(r))

g(r)
,

=⇒ |xr+i − x̄+
i | = O(r).
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In the next theorem we provide an error estimate for the non-zero part of the solution in
the couple (x+, x−).

To establish this result, we use the classical Ho�man's lemma on linear inequalities.

Lemma 3.4.2 (Ho�man's lemma,[99]). Given a convex polyhedron P such that

P = {x ∈ Rn | Ax ≤ b}.

We set dP (x) the distance from x to P , by choosing a norm ||.||, where dP (x) = infy∈P ||y−
x||. There exists a constant K that only depends on A, such that

∀x ∈ Rn : dP (x) ≤ K||(Ax− b)+||.

It is to be noted that if the constraints are given by Ax = b with A a square full-rank
matrix instead of Ax ≤ b then the polyhedron is reduced to a singleton and one can choose
K = ||A−1||.

Theorem 3.4.1. Given (x̄+, x̄−) a limit point of the sequence {xr+, xr−}, if we denote x̄ =
x̄+ − x̄− and xr = xr+ − xr−. Then, for r su�ciently small

dS∗
(AVE)

(xr) = O(g(r)). (3.4)

We remind here that the function g can be chosen such that g(r) = rα with α ∈ (0, 1).
This means that (3.4) is almost a linear bound.

Proof. We split the proof in two cases, either mini∈{1,...,N} |x̄i| 6= 0, either ∃i ∈ {1, ..., N}, x̄i =
0 respectively denoted as a) and b).

a) First, assume that there is no zero component in x̄. Let V be a neighbourhood of x̄
de�ned as

V = B∞(x̄, α) = {x | max
1≤i≤N

|xi − x̄i| ≤ α},

where α = mini∈{1,...,N} |x̄i|/2. For all x ∈ V , x̄ and x have the same signs component-wise.

Denote D = diag(δ(x̄)), where δ(x) ∈ RN with δi(x) =

{
1 if xi ≥ 0,

−1 if xi < 0.

By taking S∗ = {x ∈ Rn | Ax−Dx = b}∩ V we obtain a convex polyhedron. This set is
non-empty because x̄ ∈ S∗. In the neighbourhood V , solving Ax−Dx = b gives a solution
of (AVE). Using Ho�man lemma [99] for r su�ciently small such that xr ∈ V there exists
a constant K such that

dS∗(x
r) ≤ K

∥∥∥∥∥∥
(A−D)xr − b
(xr − α− x̄)+

(−xr − α + x̄)+

∥∥∥∥∥∥ ≤ K(‖(A−D)xr − b‖+ ‖(xr − α− x̄)+‖

+ ‖(−xr − α + x̄)+‖),
= K‖(A−D)xr − b‖,
= K‖Axr − |xr| − b‖.
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Since xr is feasible for (Pr), it holds that

||Axr − |xr| − b|| = ||g(r)Ae− g(r)δ(xr)||,
= ||(Ae− δ(xr))g(r)||,
≤ ||Ae− δ(xr)|| |g(r)|,
= ||Ae− δ(xr)||g(r) = O(g(r)).

Combining both previous inequalities, we obtain

dS∗(x
r) ≤ K||Ae− δ(xr)||g(r) = O(g(r)).

b) Now we move to the case where ∃i ∈ {1, ..., N}, x̄i = 0. We denote σ(t) = {i|ti 6= 0}.
Set α = mini∈σ(x̄) |x̄i|/2 and a neighbourhood V of x̄ de�ned as

V = B∞(x̄, α) = {x | max
i∈σ(x̄)

|xi − x̄i| ≤ α}.

V is non-empty because x̄ ∈ V . For all x ∈ V , x̄ and x have the same signs for the
components i ∈ σ(x̄). Furthermore, for r su�ciently small we have xr ∈ V .

Taking S∗ = {x ∈ Rn | Ax−Dx = b , Dx ≥ 0}∩V withD = diag(δ(xr)) we obtain again
a convex polyhedron. The choice of D depending on xr is not restrictive as we can always
take a subsequence of the sequence {xr}r>0, which converge to x̄, with constant signs near x̄.
This set is non-empty because x̄ ∈ S∗. In the neighbourhood V , solving Ax−Dx = b with
the constraints Dx ≥ 0 gives a solution of (AVE). Using Ho�man lemma [99] there exists a
constant K such that

dS∗(x
r) ≤ K

∥∥∥∥∥∥∥∥
(A−D)xr − b
(xr − α− x̄)+

(−xr − α + x̄)+

(−Dx)+

∥∥∥∥∥∥∥∥ ≤ K(‖(A−D)xr − b‖+ ‖(xr − α− x̄)+‖

+ ‖(−xr − α + x̄)+‖+ ‖(−Dx)+‖),
= K‖(A−D)xr − b‖,
= K‖Axr − |xr| − b‖.

As xr is feasible for (Pr), we have

||Axr − |xr| − b|| ≤ ||g(r)Ae− g(r)δ(xr)||,
= ||(Ae− δ(xr))g(r)||,
≤ ||Ae− δ(xr)|| |g(r)|,
= ||Ae− δ(xr)||g(r) = O(g(r)).

Combining both previous inequalities, we obtain

dS∗(x
r) ≤ K||Ae− δ(xr)||g(r) = O(g(r)).

In both cases a) and b), the proof is complete since S∗ ⊂ S∗(AV E).
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Remark 3.4.1. We can be a bit more speci�c in the case where (A − D) is invertible. In
this case S∗ = {x̄}, so (3.4) becomes

||xr − x̄|| ≤ ||(A−D)−1|| ||Ae− δ(x)||g(r) = O(g(r)).

This case corresponds to the special cases where (AVE) has isolated solutions.

3.5 Algorithm

In the previous sections we present theoretical results about convergence and error estimate
of an algorithm to compute a solution of (AVE). In this section, we focus on the algorithm
and its implementation.

Consider the generic algorithm where Ck is the feasible set of (Prk):{rk}k∈N, r0 > 0 and lim
k→+∞

rk = 0

�nd xk : xk ∈ arg min
x∈Ck

∑n
i=1 θrk(x

+
i ) + θrk(x

−
i )− 1.

(TAVE)

In a practical implementation of (TAVE) one should probably more likely use the initial
problem (3.2) with the constraint x+ + x− ≥ g(r)e. The sequence of computed points will
probably be infeasible but we believe that it leads to improved numerical behaviour. The
constraint x+ + x− ≥ g(r)e prevents the sequence to possibly go to a local minimum with a
zero component.

Algorithm TAVE requires an initial point. In a same way as in [138, 135], one can use
the solution of the following linear program min

x+,x−∈RN+
(x+ + x−)T e,

A(x+ − x−)− (x+ + x−) = b.

Indeed, this program �nd an initial feasible point of (Pr) and the objective function may
encourage this point to satisfy the complementarity condition.

In this study we put the variables in a compact set. Indeed, the functions θr are more
e�cient when their arguments live in [0, 1]. Besides, we use one way to express comple-
mentarity with Lemma 3.2.1 another way, which will be used in the numerical study, is to
consider the following

θr(s) + θr(t)− θr(s+ t) = 0. (3.5)

In this case we don't necessarily need the constraint x+ + x− ≥ g(r), since it is a reformula-
tion of the complementarity and no longer a relaxation.

Regarding the choice of the parameters α, r0 and the update parameter of r, it is to be
noted that they are all used in the constraint x+ +x− ≥ g(r)e with g(r) = rα and 0 < α < 1.
Theorem 3.4.1 shows that the convergence to the zero part of the solution is a O(g(r)). So
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it is clear that α needs to be taken as big as possible, for instance α = 0.99. Also there is
a link between the value of α and the update rule for r. We choose to select a sequence of
values with an update constant T , so that rk+1 = rk

T
. The initial parameter r0 can be chosen

according the relation
θ1
r(s) + θ1

r(t) = 1⇐⇒ st = r2.

At each step in r, we solve a concave optimization problem to get the current point. The
following heuristic can be rather useful to accelerate convergence and assure a good precision
when we are close to the solution. After �nding the current point xk we solve if possible the
linear system

(A− diag(δ(xk)))z = b. (3.6)

If x solves (AVE), then we solved (AVE) with the same precision as we solved the linear
system. However, if x does not solve (AVE), we continue the iteration in r with xk. This
idea is similar to compute a Newton iteration.

3.6 Numerical simulations

We present numerical results on two examples and some randomly generated problems.
Those random problems can be divided into two di�erent classes: problems with singular
values exceeding one and problems that are completely general without any particular prop-
erty. The latter class is the most interesting for us since numerical methods can fail to obtain
a solution. This is the main motivation for our approach.

These simulations have been done using MATLAB, [147], with the linear programming
solver GUROBI, [92]. We used the Successive Linearisation Algorithm (SLA) of [141] to
solve concave minimization problems encountered at each iteration.

Proposition 3.6.1 (SLA for concave minimization). Given ε su�ciently small and rk. De-
note C the feasible set of (Prk). Given xk = xk+ − xk−, xk+1 is designed as a solution of the
linear problem

min
y+,y−∈C

(y+)T∇θrk(xk+) + (y−)T∇θrk(xk−),

with x0 = x0+ − x0− a random point. We stop when

xk+1 ∈ C and (xk+1 − xk)T∇θrk(xk) ≤ ε.

This algorithm generates a �nite sequence with strictly decreasing objective function values.

Proof. see [141, Theorem 4.2].

Along these simulations we use the parameters detailed in Table 3.1 for TAVE. The
maximum number of iterations in r for one instance is �xed to 20 and the maximum number
of linear programs for one SLA is �xed to 10. We measure the time in seconds, the number
of linear programs solved and the number of linear systems solved respectively denoted by
nb-LP-method and nb-lin-syst-method.

55



T initial r : r0 function θr α

1.8 1 θ2
r 0.99

Table 3.1: Parameters for the simulations

We consider two concrete examples and then two kinds of randomly generated problems.
The �rst one is a second order ordinary di�erential equation with initial conditions and the
second example is an obstacle problem. We remind that our main motivation is to consider
general absolute value equations and this has been treated in subsection 3.6.4.

3.6.1 An ordinary di�erential equation

We consider the ordinary di�erential equation

ẍ(t)− |x(t)| = 0, x(0) = x0, ẋ(0) = γ.

We get an (AVE) by using a �nite di�erence scheme in order to discretize this equation. We
use the following second-order backward di�erence to approximate the second derivative

xi−2 − 2xi−1 + xi
h2

− |xi| = 0.

This equation was derived with an equispaced grid xi = ih, i = 1, ...N . Neumann boundary
conditions were approximated using a centred �nite di�erence scheme

x−1 − x1

2h
= γ.

We compare the obtained solution by TAVE to the one of the prede�ned Runge-Kutta
ode45 function in MATLAB, [147]. The domain is t ∈ [0, 4], initial conditions x0 = −1,
γ = 1 and N = 100. Results are presented in Figure 3.1. TAVE solves the problem and
gives consistent results.

3.6.2 Obstacle problem

In this simple obstacle problem, we try to compute a trajectory joining the boundary of a
domain with an obstacle, g, and a minimal curvature, f . This can be formulated using the
following equation and inequalities: �nd u such that

(ü(x)− f(x))T (u(x)− g(x)) = 0, ü(x)− f(x) ≥ 0, u(x)− g(x) ≥ 0.
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We approximate the second order derivative with a second-order centred �nite di�erence
to get a discrete version on an equispaced grid xi = ih, i = 1, ...N .

(Du− f)T (u− g) = 0, Du− f ≥ 0, u− g ≥ 0, where D =


2
h2

−1
h2

−1
h2

. . . . . .

. . . . . . −1
h2

−1
h2

2
h2

 ,

gi = g(xi) and fi = f(xi). This can be written as a linear complementarity problem by
setting z = u− g, M = D and q = Dg − f , that is

(Mz + q)T z = 0, Mz + q ≥ 0, z ≥ 0. (3.7)

This equation is equivalent to an (AVE) whenever 1 is not an eigenvalue of M by proposition
2 of [136]:

(3.7)⇐⇒ (M − I)−1(M + I)x− |x| = (M − I)−1q.

We present results for our method and for the LPM method from [138], with g(x) =
max(0.8 − 20(x − 0.2)2,max(1 − 20(x − 0.75)2, 1.2 − 30(x − 0.41)2)), f(x) = 1, N = 50
in Figure 3.2. Both methods give 20 points on the curve g and none below g over 50 points.
Once again TAVE method gives consistent results.

3.6.3 Random easy problems with unique solution

We consider the special case where (AVE) has a unique solution. Following [205], we generate
data (A, b) by the following Matlab code for n = 100, 200, 400, 800

n=input('dimension of matrix A =');

rand('state',0);

R=rand(n,n);

b=rand(n,1);

A=R'*R+n*eye(n);

Then, the corresponding (AVE) has a unique solution and A is a symmetric matrix. The
required precision for solving (AVE) is 10−6 and thanks to the heuristic from Section 3.5 in
equation (3.6) we get in the worst case 10−10. For each n we consider 100 instances. TAVE is
compared to a Newton method from [134], which is denoted GN. Results are summarized in
Table 3.2, which gives for TAVE the number of linear programs solved, the time required to
solve all the instances and gives for GN the number of linear systems and the time required.
Note that other Newton methods like [37, 97, 154] should give similar conclusions so we do
not include them in our comparison. It is to be expected that the method GN is faster than
the method TAVE in particular when the dimension grows since it solves only linear systems
whereas TAVE solves linear programs.

Our method solves all the problems, which once again valid our approach. We observe
that the number of solved linear programs is very low. Indeed in each case, the initialization
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n nb-LP-TAVE time TAVE nb-lin-syst-GN time GN

32 100 0.1841 217 0.0403
64 100 0.4702 224 0.0553
128 100 1.5880 219 0.1079
256 100 14.5161 226 0.3924
512 100 129.1686 214 2.2327

Table 3.2: TAVE and Newton method from [134], GN, for (AVE) in the case with singular
values of A exceeds 1.

step has been su�cient to solve the problem. The method GN outperform in time TAVE as
it was expected. Since some other methods to solve (AVE) have no problem solving these
instances they are not our main focus here.

3.6.4 General problems

Now, we consider general (AVE) without any assumption on A. This kind of problems
correspond to the main goal of this paper. We generate for several n and several values of
the parameters one hundred instances of the problem following [136]:

"Choose a random A from a uniform distribution on [−10, 10], then choose a random x
from a uniform distribution on [−1, 1] and set b = Ax− |x|."

We compare 4 methods tailored for general (AVE):

• TAVE method from Algorithm TAVE;

• TAVE2 which is the same algorithm with the di�erent objective based on (3.5)

N∑
i=1

θr(x
+
i ) + θr(x

−
i )− θr(x+

i + x−i );

• concave minimization method CMM from [136];

• successive linear programming method LPM from [138].

In this situation GN method has not been applied since it has no guarantee of convergence.
In Tables 3.3�3.6,"nnztot" gives the number of violated expressions for all problems,

"nnzx" gives the maximum violated expressions for one problem, "out-iter" gives the number
of iteration in r and "in-iter" gives the number of linear programs solved for all the problems.
We also provide the time in seconds and the number of failures.

In each case our methods manage to reduce the number of unsolved problems. This
con�rm the interest of the relaxation method presented here. Also one should note that an
improved number of solved problems comes with a price, since it requires more time.
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Table 3.4 shows promising results for TAVE2. It is a slightly di�erent method, since it
is not a relaxation but a reformulation of the complementarity. In every case it gives the
smallest number of unsolved problem in a very reasonable time.

n nnztot nnzx out-iter in-iter time nb-failure

32 0 0 74 306 0.6234 0
64 3 1 156 491 2,8173 3
128 8 1 269 841 20,9447 8
256 8 1 324 1129 281,6190 8

Table 3.3: TAVE

n nnztot nnzx out-iter in-iter time nb-failure

32 0 0 33 164 0.3137 0
64 2 1 81 221 1,1280 2
128 4 1 136 303 6,3953 4
256 4 1 131 292 56,4148 4

Table 3.4: TAVE2

n nnztot nnzx out-iter in-iter time nb-failure

32 9 1 - 485 1.0823 9
64 8 1 - 458 2,9234 8
128 10 1 - 568 18,4404 10
256 11 1 - 595 124,5728 11

Table 3.5: CMM

Conclusion and perspectives

In this paper, we propose a class of heuristic schemes to solve the NP-hard problem (AVE).
A complete analysis is provided including convergence and error estimate.

Furthermore, a numerical study shows that our approach is full of interest. Indeed, our
methods turn out to be consistent with real examples and problems with unique solution.
We do not compare our method with those specially designed for these problems since they
do not belong to the same class. Finally, the last set of generated problems concerns general
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n nnztot nnzx out-iter in-iter time nb-failure

32 7 1 - 248 0.5546 7
64 19 4 - 342 2,5822 13
128 19 3 - 409 16,6830 13
256 29 5 - 439 143,0973 11

Table 3.6: LPM

(AVE). In comparison with some existing methods, our approach improves the number of
failures. This was our main goal.

It is of interest to note that the methods presented here can also solve the linear comple-
mentarity problem using the same technique as for the obstacle problem example.

Further studies could improve the choice of parameters in order to reduce the compu-
tational time to solve the problems, especially for large instances. Promising results were
shown by the modi�ed algorithm TAVE2, which considers a di�erent way to formulate the
penalty. So we may wonder if it is possible to improve our algorithms in this case and if
there exists other similar reformulations of the complementarity which can give even better
results.

We are working on a hybrid algorithm which can bene�t from both the minimization
methods and Newton methods as in [135]. Indeed, this philosophy is fully applicable here
and can lead to computational improvements.
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Figure 3.1: Numerical solution of (3.6.1) with ode45 and ThetaAVE.
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Figure 3.2: Numerical solution of the obstacle problem (3.6.2) with ThetaAVE and the
method from [136]
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Part II

Mathematical Programs with

Complementarity Constraints

62



We consider the mathematical program with complementarity constraint, denoted MPCC,
de�ned as

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

0 ≤ G(x) ⊥ H(x) ≥ 0,

(MPCC)

with f : Rn → R, h : Rn → Rm, g : Rn → Rp and G,H : Rn → Rq that are assumed
continuously di�erentiable. The notation 0 ≤ u ⊥ v ≥ 0 for two vectors u and v in Rq is a
shortcut for ui ≥ 0, vi ≥ 0 and uivi = 0 for all i ∈ {1, . . . , q}.

This problem has become an active subject in the literature in the last two decades and
has been the subject of several monographs [131, 158] and PhD thesis [70, 109, 100, 190,
184, 48]. The wide variety of applications that can be cast as an MPCC is one of the reasons
for this popularity. Among other we can cite truss topology optimisation [100], discrete
optimisation [3], image restoration [26], optimal control [10, 98]. Otherwise, another source
of problems are bilevel programming problems [53, 55], where the lower-level problem is
replaced by its optimality conditions. This may lead to a more general kind of problem
called Mathematical Program with Equilibrium Constraints [158] or Optimisation Problem
with Variational Inequality Constraints [200]. (MPCC) is a special case of the following
optimisation problem with a geometric constraint:

min f(x) s.t F (x) ∈ Λ, (3.8)

where F (x) := (g(x), h(x),Ψ(x)), Ψ(x) := (−G1(x),−H1(x), ...,−Gq(x),−Hq(x)), Λ :=
{0}m×]−∞, 0]p ×Cq and C := {(a, b) ∈ R2 | 0 ≤ a ⊥ b ≥ 0} . The MPCC formulation has
been the most popular in the literature motivated by more accessible numerical approaches.
(MPCC) is clearly a non-linear program and in general most of the functions involved in the
formulation are non-convex.

In this context solving the problem means �nding a local minimum. Even so this goal
apparently modest is hard to achieve in general due to the degenerate nature of the MPCC.
Therefore, numerical methods that consider only �rst order information may be expected to
compute a stationary point.

The wide variety of approaches with this aim computes the KKT conditions, which
require that some constraint quali�cations hold at the solution to be an optimality condition.
However, these constraint quali�cations never hold in general for (MPCC). For instance, the
classical MFCQ that is very often used to guarantee convergence of algorithms is violated
at any feasible point. This is partly due to the geometry of the complementarity constraint
that always has an empty relative interior.

These issues have motivated the de�nition of enhanced constraint quali�cations and op-
timality conditions for (MPCC) as in [200, 198, 181, 73] to cite some of the earliest research.
In 2005, Flegel & Kanzow provide an essential result that de�nes the right necessary optimal-
ity condition to (MPCC). This optimality condition is called M(Mordukhovich)-stationary
condition. This is the subject of the following chapter, Chapter 4.
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A wide range of numerical methods have been proposed to solve this problem such
as relaxation methods, interior-point methods [127, 164, 124], penalty methods [131, 104,
153], SQP methods [77], elastic mode [16, 48], dc methods [145], �lter methods [125] and
Levenberg-Marquardt methods [89] to cite some of them. This �rst family of method called
relaxation or regularisation method is developed in detail in this thesis. Despite the di�-
culties explained above, the methods reformulating (MPCC) as a non-linear program have
shown to be successful in practice in [75, 76]. However, the theoretical guarantee for this
approach is often far from the desired goal to compute M-stationary points.

In view of the constraint quali�cations issues that pledge the (MPCC), the relaxation
methods provide an intuitive answer. The complementarity constraints are relaxed using a
parameter so that the new feasible domain is not thin anymore. It is assumed here that
the classical constraints g(x) ≤ 0 and h(x) = 0 are not more di�cult to handle than the
complementarity constraints. Finally, as the relaxing parameter is reduced, convergence
to the feasible set of (MPCC) is obtained similar to a homotopy technique. The interest
for such methods has already been the subject of some PhD thesis in [184, 190] and is
an active subject in the literature. These methods are the central theme along the rest
of this part from Chapter 5 to Chapter 7. Chapter 5 presents the state of the art of the
relaxation methods proposed in the literature. Then, Chapter 6 introduces a new method
called Butter�y relaxation. The analysis of some of these methods in a numerical context is
made in Chapter 7.
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Chapter 4

Stationary and constraint quali�cations

for MPCC

We have introduced in Chapter 1, in the non-linear programming case, the most classical
necessary optimality conditions so-called KKT conditions. These optimality conditions also
called stationary conditions require some constraint quali�cation to hold at a local mini-
mum. The enhanced conditions for the (MPCC) presented in this chapter follow a similar
construction.

This chapter is divided in �ve sections. Section 4.1 introduces in a classical way the
alphabet of stationary conditions for the (MPCC). We point out the most important con-
ditions and de�ne what is an MPCC-constraint quali�cation, denoted MPCC-CQ for short.
Section 4.2 presents some of the various MPCC-CQs. In particular, we show an interesting
generic way to de�ne these conditions that encompass some of the existing conditions and
allows new ones to be introduced. The two following sections focus on two properties of the
MPCC-CQs. In Section 4.3, we discuss the weakest MPCC-CQ. In Section 4.4, we give some
algorithmic applications that will be useful for the study of relaxation methods. Particular
emphasis is given in the relations between these conditions. This is the subject of the �nal
section of this chapter, Section 4.5.

4.1 Stationary conditions for MPCC

The following example due to Kanzow and Schwartz, [112], exhibits a situation where all of
the functions are a�nes and the global minimiser is not a KKT point. We will return to this
example later on.

Example 4.1.1.
min
x∈R3

x1 + x2 − x3

s.t. g1(x) := −4x1 + x3 ≤ 0,
g2(x) := −4x2 + x3 ≤ 0,
0 ≤ G(x) := x1 ⊥ H(x) := x2 ≥ 0.
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The global solution is (0, 0, 0)t but is not a KKT point. Indeed, the gradient of the Lagrangian
equal to zero yields

0 =

 1
1
−1

+ λg1

−4
0
1

+ λg2

 0
−4
1

− λG1
1

0
0

− λH2
0

1
0

+ η

0
0
0

 ,

and since λg1+λg2 = 1(third line), summing the �rst two lines yields 2−4(λg1+λg2)−λG1 −λH2 = 0
and therefore λG1 + λH2 = −2; both cannot be non-negative.

This example is not a contradiction with the Theorem 1.3.1 (p.14). Indeed, there is no
constraint quali�cation holding here. We make some remarks about the use of constraint
quali�cation in this context. The following lemma shows that MFCQ fails to hold at any
feasible point of (MPCC).

Lemma 4.1.1. Let x∗ be in Z. Then, MFCQ fails to hold at x∗.

The proof is straightforward using the De�nition 1.3.6 of MFCQ. Now, consider the use
of ACQ on the following example, which is the simplest (MPCC).

Example 4.1.2.
min
x∈R2

f(x) s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

The tangent cone, T , at the origin is given by

TZ(x∗) = {d ∈ R2 | d1 = 0, d2 ≥ 0 or d1 ≥ 0, d2 = 0}.

The linearised cone, LZ(x∗), is given by

LZ(x∗) = R2
+.

Thus, we see that ACQ fails to hold at x∗ = 0.

The geometrical behaviour of the cones T and L in the previous example is typical for
(MPCC). Indeed, due to the complementarity constraint, the tangent cone is in general non-
convex, while the linearised cone is polyhedral and so convex. Thus, ACQ is very unlikely
to hold.

It is clear that we cannot expect to compute usual KKT point since classical constraint
quali�cations in general does not hold, so we introduce weaker stationary concepts as in
[181, 198]. Beforehand, let us introduce some notations. Let Z be the set of feasible points
of (MPCC). Given x∗ ∈ Z, we denote

I+0(x∗) = {i ∈ {1, . . . , q} | Gi(x
∗) > 0 and Hi(x

∗) = 0},
I0+(x∗) = {i ∈ {1, . . . , q} | Gi(x

∗) = 0 and Hi(x
∗) > 0},

I00(x∗) = {i ∈ {1, . . . , q} | Gi(x
∗) = 0 and Hi(x

∗) = 0},
Ig(x∗) = {i ∈ {1, . . . , p} | gi(x∗) = 0}.
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In order to derive weaker optimality conditions, we consider an enhanced Lagrangian func-
tion. Let LrMPCC be the generalised MPCC-Lagrangian function of (MPCC) such that

LrMPCC(x, λ) := rf(x) + g(x)Tλg + h(x)Tλh −G(x)TλG −H(x)TλH ,

with λ := (λg, λh, λG, λH) ∈ Rp+m+2q. The alphabet of stationary conditions can now be
de�ned.

De�nition 4.1.1. x∗ ∈ Z is said

• Weak-stationary if there exists λ = (λg, λh, λG, λH) ∈ Rp
+ × Rm × Rq × Rq such that

∇xL1
MPCC(x∗, λ) = 0,

λgi = 0 ∀i /∈ Ig(x∗), λGI+0(x∗) = 0, λHI0+(x∗) = 0.

• Clarke (C)-stationary point if x∗ is weak-stationary and

∀i ∈ I00(x∗), λGi λ
H
i ≥ 0.

• Alternatively or Abadie (A)-stationary point if x∗ is weak-stationary and

∀i ∈ I00(x∗), λGi ≥ 0 or λHi ≥ 0.

• Mordukhovich (M)-stationary point if x∗ is weak-stationary and

∀i ∈ I00(x∗), either λGi > 0, λHi > 0 or λGi λ
H
i = 0.

• Strong (S)-stationary point if x∗ is weak-stationary and

∀i ∈ I00(x∗), λGi ≥ 0, λHi ≥ 0.

Relations between these de�nitions are given in Figure 4.1 and follow in a straightforward
way from the de�nitions. It is also to be noted that if we assume strict complementarity,i.e.
for all i ∈ {1, . . . , q}

Gi(x
∗) +Hi(x

∗) > 0,

then all of the stationary conditions presented here are equivalent. For instance, this is the
case for the class of binary optimisation problems, whose integer constraints are replaced
by complementarity constraints. Local optimal solutions are often denoted Bouligand (B)-
stationary point in the literature, but this will not be used here.
An essential question here is to know what are the strongest stationary conditions that

can be expected to hold at a local minimum for a (MPCC) with non-degenerate description
of the constraints (i.e. satis�es some kind of constraint quali�cation). A �rst observation
based on De�nition 4.1.1 is that S-stationary condition correspond to usual KKT conditions
applied to (MPCC). However, as pointed out in Example 4.1.1 this condition is too stringent

67



Figure 4.1: Relations between the stationary de�nitions

Figure 4.2: Signs of λG, λH for indices i ∈ I00(x∗). From the left to the right : weak-
stationary, C-stationary, A-stationary, M-stationary and S-stationary.

for (MPCC) in general. The answer to this question is given in the following key result from
Flegel & Kanzow, which considers an MPCC-version of Guignard CQ. Based on Example
4.1.2 and our observation on LZ , an adaptation of this cone for MPCC, LMPCC , in [181,
72, 159] is de�ned such that:

LMPCC(x∗) := {d ∈ Rn|∇gi(x∗)Td ≤ 0,∀i ∈ Ig(x∗),
∇hi(x∗)Td = 0 ∀i = 1, ...,m,

∇Gi(x
∗)Td = 0 ∀i ∈ I0+(x∗),

∇Hi(x
∗)Td = 0 ∀i ∈ I+0(x∗),

∇Gi(x
∗)Td ≥ 0,∇Hi(x

∗)Td ≥ 0 ∀i ∈ I00(x∗),

(∇Gi(x
∗)Td)(∇Hi(x

∗)Td) = 0 ∀i ∈ I00(x∗)}.

This cone is not a polyhedral cone any more and consequently not necessarily convex. How-
ever due to [72], one always has the following inclusions

TZ(x∗) ⊆ LMPCC(x∗) ⊆ LZ(x∗).

Let us continue the study of Example 4.1.2.

Example 4.1.3. Example 4.1.2 continued. The cone LMPCC(x∗) at x∗ = 0 is given by

LMPCC(x∗) = {d ∈ R2 | d1 = 0, d2 ≥ 0 or d1 ≥ 0, d2 = 0}.

Thus, for this example it holds that LMPCC(x∗) = TZ(x∗).
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The condition illustrated in the previous example is an Abadie-kind CQ. We now de�ne
MPCC-Abadie CQ and MPCC-Guignard CQ, denoted respectively MPCC-ACQ and MPCC-
GCQ.

De�nition 4.1.2. Let x∗ ∈ Z. We say that MPCC-ACQ holds at x∗ if TZ(x∗) = LMPCC(x∗)
and MPCC-GCQ holds at x∗ if T ◦Z (x∗) = L ◦

MPCC(x∗).

The following theorem is a keystone to de�ne necessary optimality conditions for (MPCC).

Theorem 4.1.1 ([71]). A local minimum of (MPCC) that satis�es MPCC-GCQ or any
stronger MPCC CQ is an M-stationary point.

This result is coherent with Example 4.1.1, where the point (0, 0, 0)T is an M-stationary
point. Therefore, devising algorithms to reach KKT stationary points (S-stationary) is
not possible in general, and we must satisfy ourselves in devising algorithms reaching M-
stationary points. We already de�ned some MPCC CQ. We now formalise the discussion by
stating an explicit de�nition.

De�nition 4.1.3. Let x∗ ∈ Z. An MPCC CQ is a condition that holds independently of the
choice of the objective function and that ensures the relation

x∗ local minimum + MPCC CQ holds at x∗ =⇒ x∗ M-stationary.

In the context of (MPCC), MPCC-GCQ is not the weakest MPCC CQ as it will be shown
in the following section. Furthermore, due to the di�culty of computing the tangent cone,
a wide variety of stronger conditions, that are easier to verify, have been designed. Some of
these conditions are also useful for algorithmic applications.

We conclude this section by giving an interpretation of M-stationary based on non-linear
programming.

Proposition 4.1.1. Let x∗ ∈ Z be an M-stationary point of (MPCC) if and only if there
exists a partition of I00(x∗) = I00

++ ∪ I00
0− ∪ I00

−0, with (I00
++, I00

0−, I00
−0) disjointed two by two,

such that x∗ ∈ Z is a KKT point of the following non-linear program,

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

Gi(x) = 0, ∀i ∈ I0+(x∗), Hi(x) = 0, ∀i ∈ I+0(x∗),

Gi(x) ≤ 0, ∀i ∈ I00
−0, Hi(x) ≤ 0, ∀i ∈ I00

0−,

Gi(x) ≥ 0, Hi(x) ≥ 0, ∀i ∈ I00
++.

(MNLPI00
++,I00

0−
(x∗))

Proof. Assuming that x∗ is a KKT point of (MNLPI00
++,I00

0−
(x∗)) implies by de�nition that

there exists λ = (λg, λh, λG, λH) such that

0 = ∇f(x∗) +

p∑
i=1

λgi∇gi(x∗) +
m∑
i=1

λhi∇hi(x∗)−
q∑
i=1

λGi ∇Gi(x
∗)−

q∑
i=1

λHi ∇Hi(x
∗),

min(−g(x∗), λg) = 0, h(x∗) = 0, Gi(x
∗) = 0 ∀i ∈ I0+(x∗), Hi(x

∗) = 0 ∀i ∈ I+0(x∗),

min(Gi(x
∗), λGi ) = 0 ∀i ∈ I00

++, min(−Gi(x
∗), λGi ) = 0 ∀i ∈ I00

−0,

min(Hi(x
∗), λHi ) = 0 ∀i ∈ I00

++, min(−Hi(x
∗), λHi ) = 0 ∀i ∈ I00

−0.
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Additionally, x∗ feasible for (MPCC) yields

0 = ∇f(x∗) +

p∑
i=1

λgi∇gi(x∗) +
m∑
i=1

λhi∇hi(x∗)−
q∑
i=1

λGi ∇Gi(x
∗)−

q∑
i=1

λHi ∇Hi(x
∗),

min(−g(x∗), λg) = 0, h(x∗) = 0,

Gi(x
∗) = 0 ∀i ∈ I0+(x∗) ∪ I00(x∗), Hi(x

∗) = 0 ∀i ∈ I+0(x∗) ∪ I00(x∗),

λGi ≥ 0 ∀i ∈ I00
++, λ

G
i ≤ 0 ∀i ∈ I00

−0,

λHi ≥ 0 ∀i ∈ I00
++, λ

H
i ≤ 0 ∀i ∈ I00

0−.

(4.1)

Let us now verify that this condition is equivalent to the M-stationary conditions. It is clear
that assuming x∗ M-stationary point, then there exists λ such that (x∗, λ) veri�es (4.1).
Assume that (x∗, λ) veri�es (4.1). Therefore, x∗ is a weak-stationary point. To conclude to
M-stationary it is su�cient to see that for all i ∈ I00(x∗) then either λGi > 0, λHi > 0 or
λGi λ

H
i = 0. In particular, it holds

λGi ≥ 0, λHi ≥ 0 ∀i ∈ I00
++,

λGi ≤ 0, λHi = 0 ∀i ∈ I00
−0,

λGi = 0, λHi ≤ 0 ∀i ∈ I00
0−.

This concludes the proof.

This new interpretation of M-stationary will be especially useful for deriving constraint
quali�cations for (MPCC). Figure 4.3 highlight the feasible set of (MNLPI00

++,I00
0−

(x∗)).

Figure 4.3: Optimality zone of an M-stationary point.

4.2 Constraint quali�cations for MPCC

We present in this section an extension of the CQ that has been presented in Chapter 1 to
the MPCC. This does not cover all of the existing MPCC CQ, but we focus on those that
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have algorithmic applications. The study of these conditions have been an active subject in
the literature [183, 73, 74, 71, 199, 184, 90, 91, 201, 112, 103, 202, 165, 201, 202]. Apart from
MPCC-GCQ and MPCC-ACQ that have been presented earlier, one of the most principle
constraint quali�cations used in the literature is the MPCC-linear independance CQ, denoted
MPCC-LICQ, which is discussed in [183].

De�nition 4.2.1. MPCC-LICQ holds at x∗ ∈ Z if the gradients

{∇gi(x∗) (i ∈ Ig(x∗)), ∇hi(x∗) (∀i), ∇Gi(x
∗) (i ∈ I00(x∗)∪I0+(x∗)), ∇Hi(x

∗) (i ∈ I00(x∗)∪I+0(x∗))}

are linearly independent.

The following discussion illustrates the fact that S-stationary points (i.e. classical KKT
points) can be expected under MPCC-LICQ.

Example 4.2.1 (Continuation of Example 4.1.2). The most basic MPCC

min
x1,x2

f(x)

s.t. G(x) = x1 ≥ 0,

H(x) = x2 ≥ 0,

G(x)H(x) = x1x2 = 0.

(4.2)

We already point out that at x∗ = (0, 0)T it holds T (x∗) = {d ∈ R2
+ | d1d2 = 0} and

L (x∗) = R2
+. However, the polar cones coincide so GCQ holds at x∗. Besides, the gradients

of G and H at x∗ are obviously linearly independent. Thus, MPCC-LICQ also holds at x∗.

This observation is not a surprise due to the following result from [74].

Proposition 4.2.1 ([74]). Standard GCQ is always satis�ed under MPCC-LICQ and not
true for less.

Example 4.1.1 is an example, where GCQ fails to hold under less than MPCC-LICQ.
The following result about uniqueness of the multipliers is similar to the classical case.

Theorem 4.2.1 ([181]). Let x∗ ∈ Z be a local minimiser of (MPCC). If MPCC-LICQ holds
in x∗, then there exists a unique Lagrange multiplier λ∗ such that (x∗, λ∗) is S-stationary.

Apart from LICQ another constraint quali�cation that ignores the sign of the multipliers
is the MPCC-constant rank CQ. In a similar way we extend CRCQ as in [91].

De�nition 4.2.2. Let x∗ ∈ Z. MPCC-CRCQ holds at x∗ if there exists δ > 0 such that for
any subsets I1 ⊆ Ig(x∗), I2 ⊆ {1, . . . ,m}, I3 ⊆ I0+(x∗)∪I00(x∗), and I4 ⊆ I+0(x∗)∪I00(x∗),
the family of gradients

{∇gi(x∗) (i ∈ I1), ∇hi(x∗) (i ∈ I2), ∇Gi(x
∗) (i ∈ I3), ∇Hi(x

∗) (i ∈ I4)}

has the same rank for each x ∈ Bδ(x∗).
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In [184, 112, 103], the authors de�ned MPCC CQ by applying the classical de�nition of
CQ to the following non-linear program called Tighten NLP:

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

Gi(x) = 0, ∀i ∈ I00(x∗) ∪ I0+(x∗),

Hi(x) = 0, ∀i ∈ I00(x∗) ∪ I+0(x∗).

(TNLP (x∗))

In particular, they used MFCQ and CPLD applied to TNLP to prove convergence of relax-
ation methods for (MPCC).

De�nition 4.2.3. Let x∗ ∈ Z. We say that MPCC-MFCQ (resp. MPCC-TCPLD) holds at
x∗ if MFCQ (resp. CPLD) holds at x∗ for (TNLP (x∗)).

The notation MPCC-TCPLD means "Tighten CPLD" and is used to di�erentiate the
de�nition of MPCC-CPLD given in [103, 112] (MPCC-TCPLD) and in [91, 203] (MPCC-
CPLD de�ned in the de�nition below). The �aw of this approach is to ignore the signs of the
multipliers that should have the signs of the M-stationary conditions for indices in I00(x∗).
We now use the philosophy of the Proposition 4.1.1 to de�ne others MPCC CQ.

De�nition 4.2.4. Let x∗ ∈ Z. We say that MPCC-NNAMCQ (reps. MPCC-CPLD,
MPCC-RCPLD, MPCC-CRSC, MPCC-CCP, MPCC-mACQ, MPCC-mGCQ) holds at x∗

if for any partition of I00(x∗) = I00
++ ∪ I00

0− ∪ I00
−0, MFCQ (resp. CPLD, RCPLD, CRSC,

CCP, ACQ, GCQ) holds at x∗ for (MNLPI00
++,I00

0−
(x∗)).

Additionally, it can be noticed that de�ning MPCC-LICQ and MPCC-CRCQ in a same
way would lead to the same de�nitions than the one given in De�nitions 4.2.1 and 4.2.2.
We use the notation MPCC-mACQ and MPCC-mGCQ to underline the di�erence with
the de�nitions of MPCC-ACQ and MPCC-GCQ. A straightforward result from this de�ni-
tion is the relations between these conditions that come from their relations in the non-
linear programming case, noticing that MPCC-LICQ and MPCC-CRCQ de�ned above
are equivalent to LICQ and CRCQ applied to (MNLPI00

++,I00
0−

(x∗)) for any partition of
I00(x∗) = I00

++ ∪ I00
0− ∪ I00

−0.

Proposition 4.2.2. Let x∗ ∈ Z. The diagram given in Figure 4.4 is true.

MPCC-LICQ
=⇒

=⇒

MPCC-CRCQ=⇒

MPCC-NNAMCQ
=⇒

MPCC-CPLD=⇒MPCC-RCPLD=⇒MPCC-CRSC=⇒MPCC-CCP=⇒

MPCC-mACQ⇐=MPCC-mGCQ

Figure 4.4: Relation between the MPCC-constraint quali�cations

"MPCC-CQ1 =⇒ MPCC-CQ2" means that MPCC-CQ1 holds at x∗ implies that MPCC-
CQ2 holds at x∗.
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In the following section, we discuss the weakest MPCC CQ. A complete diagram contin-
uing the one introduced in Proposition 4.2.2 is given in Section 4.5.

4.3 On the weakest MPCC CQ

In this section, we discuss the weakest constraint quali�cation for (MPCC). This condition
is presented in the continuity of our approach from the previous section. Although, these
results have been �rst introduced in [90], we decide to present our approach that is slightly
di�erent than the original one. In [90], the authors use the formulation (3.8).

4.3.1 MPCC-weak Guignard CQ

In order to introduce our new MPCC CQ, we give a conic interpretation of the M-stationary
conditions. Let us de�ne the cone PM at x∗ ∈ Z as follows

PM(x∗) := {d ∈ Rn | ∃(λg, λh, λG, λH) ∈ Rp
+ × Rm × Rq × Rq

with λGi λ
H
i = 0 or λGi > 0, λHi > 0 ∀i ∈ I00(x∗),

d =
∑

i∈Ig(x∗)

λgi∇gi(x∗) +
m∑
i=1

λhi∇hi(x∗)

−
∑

i∈I0+(x∗)∪I00(x∗)

λGi ∇Gi(x
∗)

−
∑

i∈I+0(x∗)∪I00(x∗)

λHi ∇Hi(x
∗)}.

This cone is closed but in general not convex. A representation of this cone is given in the
following simple example.

Example 4.3.1.
min
x∈R2

f(x) s.t 0 ≤ x1 ⊥ x2 ≥ 0.

The cone PM(x∗) at x∗ = (0 0)T is given by

PM(x∗) = {d = −(λG λH)T with λGλH = 0 or λG > 0, λH > 0},

which is illustrated in the following Figure 4.5. In this example, the polar of LMPCC is the
negative orthant and coincide with the polar of the tangent cone.

The motivation to introduce this cone is given by the following lemma.

Lemma 4.3.1. Let x∗ ∈ Z. Then, the following holds

x∗ is an M-stationary point⇐⇒ −∇f(x∗) ∈ PM .
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Figure 4.5: Figure of the cone PM in Example 4.1.2

Let us now introduce our new condition denoted MPCC-weak Guignard constraint qual-
i�cation, or MPCC-wGCQ for short.

De�nition 4.3.1. Let x∗ ∈ Z. MPCC-wGCQ holds at x∗ ∈ Z if

TZ(x∗)◦ ⊂ PM ,

The reversed inclusion is very unlikely to hold, since PM is not a convex cone. However,
providing a sharper condition is not trivial.

The following lemma shows the relation between the widely used LMPCC and PM .

Lemma 4.3.2. Let x∗ ∈ Z. The following inclusion holds

LMPCC(x∗)◦ ⊂ PM(x∗).

Furthermore, the polar of LMPCC at x∗ is given by

LMPCC(x∗)◦ = {d ∈ Rn | ∃(λg, λh, λG, λH) ∈ Rp
+ × Rm × Rq × Rq

with λGi ≥ 0, λHi ≥ 0 ∀i ∈ I00(x∗),

d =
∑

i∈Ig(x∗)

λgi∇gi(x∗) +
m∑
i=1

λhi∇hi(x∗)

−
∑

i∈I0+(x∗)∪I00(x∗)

λGi ∇Gi(x
∗)

−
∑

i∈I+0(x∗)∪I00(x∗)

λHi ∇Hi(x
∗)}.

Proof. First, it is to be observed that the cone LMPCC can be rewritten as a union of
polyhedral cones such as

LMPCC(x∗) = ∪I∈I00(x∗)LMPCC(x∗, I),
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where LMPCC(x∗, I) is a notation for

LMPCC(x∗, I) := {d ∈ Rn | ∇gi(x∗)Td ≤ 0,∀i ∈ Ig(x∗),
∇hi(x∗)Td = 0 ∀i = 1, ...,m,

∇Gi(x
∗)Td = 0 ∀i ∈ I0+(x∗),

∇Hi(x
∗)Td = 0 ∀i ∈ I+0(x∗),

∇Gi(x
∗)Td ≥ 0,∇Hi(x

∗)Td = 0 ∀i ∈ I,
∇Gi(x

∗)Td = 0,∇Hi(x
∗)Td ≥ 0 ∀i ∈ I00(x∗)\I, }.

Computing the polar of LMPCC at x∗ using Proposition 1.1.6 gives

LMPCC(x∗)◦ = ∩I∈I00(x∗)LMPCC(x∗, I)◦.

We can easily compute the polar cone of LMPCC(x, I) given by

LMPCC(x∗, I)◦ := {d ∈ Rn | ∃(λg, λh, λG, λH) ∈ Rp
+ × Rm × Rq × Rq

with λGi ≥ 0 ∀i ∈ I, λHi ≥ 0 ∀i ∈ I00(x∗)\I,

d =
∑

i∈Ig(x∗)

λgi∇gi(x∗) +
m∑
i=1

λhi∇hi(x∗)

−
∑

i∈I0+(x∗)∪I00(x∗)

λGi ∇Gi(x
∗)

−
∑

i∈I+0(x∗)∪I00(x∗)

λHi ∇Hi(x
∗)}.

Now, computing the intersection in the equation above leads to

LMPCC(x∗)◦ := {d ∈ Rn | ∃(λg, λh, λG, λH) ∈ Rp
+ × Rm × Rq × Rq

with λGi ≥ 0, λHi ≥ 0 ∀i ∈ I00(x∗),

d =
∑

i∈Ig(x∗)

λgi∇gi(x∗) +
m∑
i=1

λhi∇hi(x∗)

−
∑

i∈I0+(x∗)∪I00(x∗)

λGi ∇Gi(x
∗)

−
∑

i∈I+0(x∗)∪I00(x∗)

λHi ∇Hi(x
∗)}.

This concludes the proof, since we prove the explicit formula for L ◦
MPCC and the inclusion

is direct by de�nition of PM .

In general the reversed inclusion never holds since L ◦
MPCC is convex and not PM . A

direct consequence of this lemma is that MPCC-GCQ is stronger than MPCC-wGCQ.
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Proposition 4.3.1. Let x∗ ∈ Z. If MPCC-GCQ holds at x∗, then MPCC-wGCQ holds at
x∗.

Proof. Since MPCC-GCQ holds at x∗ it follows that TZ(x∗)◦ = LMPCC(x∗)◦. Furthermore,
by Lemma 4.3.2, LMPCC(x∗)◦ ⊂ PM and so TZ(x∗)◦ ⊂ PM . This concludes the proof.

This relation is sharp, since Example 4.3.2 shows an example where MPCC-wGCQ holds
and not MPCC-GCQ.

Example 4.3.2.
min
x∈R
−x s.t 0 ≤ x ⊥ −x2 ≥ 0.

It is clear that Z = {0}, thus any function f admits a local minimum at x∗ = 0. Direct
computation shows that there exists multipliers (λG, λH) such that M-stationary condition
hold at x∗. Indeed, the gradient of MPCC-Lagrangian function equal to zero yields to

−f ′(0) = −λG.

We now show that MPCC-GCQ does not hold at x∗. The feasible set is reduced to the
singleton x∗, so the tangent cone is given by TZ(x∗) = {x∗} and therefore the polar of the
tangent cone is T ◦Z (x∗) = R. Let us compute the cone LMPCC,

LMPCC(x∗) ={d ∈ R | ∇G(x∗)Td ≥ 0,∇H(x∗)Td ≥ 0,

(∇G(x∗)Td)(∇H(x∗)Td) = 0},
=R+.

Furthermore, the de�nition of the polar cone gives LMPCC(x∗)◦ = R−. Therefore, MPCC-
GCQ does not hold at x∗. Let us compute the cone PM .

PM(x∗) = {d ∈ R | ∃(λG, λH) with λGλH = 0 or λG > 0, λH > 0 ,

d = −λG∇G(x∗)− λH∇H(x∗)},
=R.

In this particular case PM is a convex cone and so, PM(x∗) = T ◦Z (x∗) 6= LMPCC(x∗)◦. Thus,
MPCC-wGCQ holds at x∗.

It remains to prove that MPCC-wGCQ is a constraint quali�cation. The following theo-
rem is the analogous of Theorem 4.1.1 of [71], whose proof is now made very straightforward.

Theorem 4.3.1. A local minimum of (MPCC) that satis�es MPCC-wGCQ or any stronger
MPCC CQ is an M-stationary point.

Proof. Let x∗ be a local minimum of (MPCC). Therefore, using MPCC-wGCQ and Lemma
4.3.2 yields to

−∇f(x∗) ∈ TZ(x∗)◦ =⇒ −∇f(x∗) ∈ PM(x∗),

⇐⇒ x∗ M-stationary.

The last equivalence comes from Lemma 4.3.1 and concludes the proof.
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4.3.2 The weakest constraint quali�cation for MPCC

In the previous section, we have introduced a new weak constraint quali�cation for (MPCC).
We now prove that this new condition is the weakest MPCC CQ. In order to formalise the
discussion let us introduce the de�nition of (g, h,G,H) MPCC-regular at a feasible point
that is an extension of (g, h) regular in [86].

De�nition 4.3.2. (g, h,G,H) is said MPCC-regular at x∗, if for all function f that admits
a local constrained minimum at x∗, x∗ is an M-stationary point.

Indeed, it is very important to notice here that a constraint quali�cation must be inde-
pendent of the objective function, since it describes the feasible set only. Considering Lemma
4.3.1 applied to this de�nition yields to an analogous lemma.

Lemma 4.3.3. Assume that (g, h,G,H) is said MPCC-regular at x∗ ∈ Z. Then, for all
function f that admits a local constrained minimum at x∗ it holds that −∇f(x∗) ∈ PM(x∗).

Our main result is now stated as follows.

Theorem 4.3.2. (g, h,G,H) is MPCC-regular at x∗ ∈ Z ⇐⇒ MPCC-wGCQ holds at x∗.

Before advancing to the proof of our main theorem, we give an additional theorem whose
proof can be found in [86]. The original result is stated for local maximum, but there is no
loss of generality to write it for a local minimum.

Theorem 4.3.3. For every, y ∈ T (x∗)◦ there exists, an objective function f , which is
di�erentiable at x∗, which has a local constrained minimum at x∗ and for which −∇f(x∗) = y.

We can now go on the proof of Theorem 4.3.2.

Proof. The "⇐=" part is given by Theorem 4.3.1.
So, let us consider the "=⇒" part. Assume that (g, h,G,H) is MPCC-regular at x∗ ∈ Z

and prove that for any y ∈ TZ(x∗)◦ then y ∈ PM(x∗). By Theorem 4.3.3, for any y ∈ TZ(x∗)◦

there exists a function f such that y = −∇f(x∗).
Since we assume that (g, h,G,H) is MPCC-regular at x∗ ∈ Z it follows by Lemma 4.3.3

that for all functions f such that −∇f(x∗) ∈ TZ(x∗)◦ we have −∇f(x∗) ∈ PM(x∗).

A local minimum of some (MPCC) may satisfy the M-stationary conditions in a case
where MPCC-wGCQ fails to hold at x∗ as illustrated in the following Example 4.3.3. How-
ever, this would not be true independently of the choice of the objective function as illustrated
by Example 4.3.4. So, it does not contradict our result.

Example 4.3.3.
min
x∈R2
−x1 s.t. x2

1 + x2
2 ≤ 0, 0 ≤ x1 ⊥ x2 ≥ 0.
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The only feasible is the origin and therefore the global minimum of this problem. We can
easily verify that it is an M-stationary point for λG = −1, λH = 0. The polar of tangent cone
is given by T ◦Z = R2. Let us now verify that PM(x∗) 6= R2. The cone PM at x∗ is given by

PM(x∗) = {d ∈ Rn | ∃(λG, λH) ∈ R2 with λGλH = 0 or λG > 0, λH > 0, d = −
(
λG λH

)T},
which is obviously smaller than T ◦Z and thus MPCC-wGCQ fails to hold.

Example 4.3.4.
min
x∈R2

x1 s.t. x2
1 + x2

2 ≤ 0, 0 ≤ x1 ⊥ x2 ≥ 0.

The only feasible is the origin and therefore the global minimum of this problem. However
there is no multiplier such that x∗ = 0 is an M-stationary point.

4.4 Algorithmic applications of the MPCC CQs

This section focusses on some algorithmic applications of MPCC-CCP and MPCC-CRSC. We
remind that it has been proved earlier than the latter is a stronger condition. In particular,
we focus on the convergence of MPCC-AKKT sequences that are sequences, which satisfy
the M-stationary conditions only asymptotically. This de�nition has �rst been given in [165].

De�nition 4.4.1. We say that x∗ ∈ Z is an MPCC-AKKT point if there are sequences {xk}
(MPCC-AKKT sequence), {λk} such that

∇f(xk)+

p∑
i=1

λg,ki ∇gi(xk)+
m∑
i=1

λh,ki ∇hi(xk)−
q∑
i=1

λG,ki ∇Gi(x
k)−

q∑
i=1

λH,ki ∇Hi(x
k)→ 0, (4.3)

where supp(λg,k) ⊂ Ig(x∗), supp(λG,k) ⊂ I+0(x∗) ∪ I00(x∗), supp(λH,k) ⊂ I00(x∗) ∪ I0+(x∗)

and either λG,ki λH,ki = 0 or λG,ki > 0, λH,ki > 0 for each i ∈ I00(x∗).

The interest for MPCC-AKKT optimality conditions essentially relies on the fact that
it is a necessary condition to be a local minimiser that does not require any constraint
quali�cation as shown in Theorem 3.1 of [165]. Now, studying the convergence of algorithms
that compute MPCC-AKKT sequences, it is of interest to know under which condition these
sequences converge to an M-stationary point. A similar question has been answered in the
non-linear programming case in [14]. The extension to the MPCC is presented in [165]. We
state here the result that uses the MPCC-CCP constraint quali�cation de�ned in De�nition
4.2.4 and that we write explicitly here.

De�nition 4.4.2. We say that a feasible point x∗ satis�es the MPCC-CCP if the set-valued
mapping Rn 3 x⇒ KMPCC(x) such that

KMPCC(x) := {
∑

i∈Ig(x∗)

λgi∇gi(x) +
m∑
i=1

λhi∇hi(x)−
∑

i∈I0+(x∗)∪I00(x∗)

λGi ∇Gi(x)−
∑

i∈I+0(x∗)∪I00(x∗)

λHi ∇Hi(x)

: λgi ∈ R+ and , either λGi λ
H
i = 0 either λGi > 0, λHi > 0 for i ∈ I00(x∗)}
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is outer semi-continuous at x∗, that is

lim sup
x→x∗

KMPCC(x) ⊂ KMPCC(x∗).

MPCC-CCP has been proved to be an MPCC CQ in the Theorem 3.5 of [165]. The
following result from [165] states that this condition is actually the weakest condition that
ensures the converge of MPCC-AKKT sequences to a M-stationary point.

Theorem 4.4.1. MPCC-CCP holds if and only if every MPCC-AKKT point is an M-
stationary point.

It is to be noted that MPCC-CCP does not require any boundedness assumption on the
sequence {λk}. It may be of interest to know for which constraint quali�cation such property
is satis�ed. The answer turns out to be MPCC-CRSC that was de�ned in De�nition 4.2.4
and that we write explicitly here.

De�nition 4.4.3. Let x∗ ∈ Z. MPCC-CRSC holds at x∗ if for any partition I00
++ ∪ I00

0− ∪
I00
−0 = I00(x∗) such that

∑
i∈Ig(x∗)

λgi∇gi(x∗) +
m∑
i=1

λhi∇hi(x∗)−
∑

i∈I0+(x∗)∪I00
++

λGi ∇Gi(x
∗)−

∑
i∈I+0(x∗)∪I00

++

λHi ∇Hi(x
∗)

+
∑
i∈I00
−0

λGi ∇Gi(x
∗) +

∑
i∈I00

0−

λHi ∇Hi(x
∗) = 0,

with λgi ≥ 0 (i ∈ Ig(x∗)),λGi and λHi ≥ 0 (i ∈ I00
++), λGi > 0 (i ∈ I00

−0), λHi (i ∈ I00
0−) > 0,

there exists δ > 0 such that the family of gradients

{∇gi(x) (i ∈ I1), ∇hi(x) (i = 1, . . . ,m), ∇Gi(x) (i ∈ I3), ∇Hi(x) (i ∈ I4)}

has the same rank for every x ∈ Bδ(x∗), where

I1 := {i ∈ Ig(x∗)| − ∇gi(x∗) ∈ PM(x∗)},
I3 := I0+(x∗) ∪ {i ∈ I00

++|∇Gi(x
∗) ∈ PM(x∗)} ∪ I00

−0,

I4 := I+0(x∗) ∪ {i ∈ I00
++|∇Hi(x

∗) ∈ PM(x∗)} ∪ I00
0−.

It is not necessary to add that the gradients −∇Gi(x
∗) and −∇Hi(x

∗) belong to PM(x∗).
Indeed, we already require that λGi and λHi must be non-zero respectively for the indices
i ∈ I00

−0 and i ∈ I00
0− and so it implies that these gradients belong to this set. We prove that

under MPCC-CRSC any MPCC-AKKT sequence is bounded. Beforehand, we prove that
this result is true under MPCC-CRCQ. The following results give a characterisation of some
sequences that satisfy MPCC-CRCQ and MPCC-CRSC at their limit point. Note that this
result is essential for the convergence proof of relaxation methods for (MPCC) that will be
studied in the next section, since it proves boundedness of approximate stationary sequences.
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During the process of an iterative algorithm it is common to compute sequences {xk}
and {λk} ∈ Rp

+ × Rm × Rq × Rq such that xk → x∗ and

∇f(xk)+

p∑
i=1

λg,ki ∇gi(xk)+
m∑
i=1

λh,ki ∇hi(xk)−
q∑
i=1

λG,ki ∇Gi(x
k)−

q∑
i=1

λH,ki ∇Hi(x
k)→ 0, (4.4)

∀i /∈ Ig(x∗) lim
k→∞

λg,ki
‖λk‖∞

= 0, ∀i ∈ I+0 lim
k→∞

λG,ki

‖λk‖∞
= 0 and ∀i ∈ I0+ lim

k→∞

λH,ki

‖λk‖∞
= 0.

(4.5)
We will refer to (4.4) and (4.5) as Assumption 1. This condition may correspond to some
kind of sequential optimality conditions.

According to Lemma 1.1.1, we can build a sequence {λ̄k} that satis�es Assumption 1, such
that the gradients corresponding to non-vanishing multipliers in equation (4.4) are linearly
independent for all k ∈ N. This may change the multipliers, but a previously positive
multiplier will stay at least non-negative and a vanishing multiplier will remain zero.

Theorem 4.4.2. Let x∗ be in Z such that MPCC-CRCQ holds at x∗. Given two sequences
{xk},{λk} that satis�es Assumption 1 and the family of gradients of non-vanishing multipliers
in (4.4) are linearly independent for all k ∈ N. Then, the sequence {λk} is bounded.

Proof. Let {wk} be a sequence de�ned such that

wk :=
∑

j∈Ig(x∗)

λg,kj ∇gj(xk)+
m∑
i=1

λh,ki ∇hi(xk)−
∑

j∈I0+(x∗)∪I00(x∗)

λG,kj ∇Gj(x
k)−

∑
j∈I+0(x∗)∪I00(x∗)

λH,kj ∇Hj(x
k).

(4.6)
We prove by contradiction that the sequence {λk} is bounded. Assuming that λk is not

bounded, therefore there exists a subsequence such that

λk

‖λk‖∞
→ λ̄ 6= 0.

Here we consider a subsequence K, where the family of linearly independent gradients of
non-vanishing multipliers is the same for all k ∈ K. Note that this can be done with no
loss of generality, since there is a �nite number of such subsequences possible and altogether
they form a partition of the sequence.

Note that conditions (4.4) and (4.5) give that limk→∞w
k = limk→∞−∇f(xk)/‖λk‖∞ = 0.

Dividing by ‖λk‖∞ and passing to the limit in the equation above yields

w∗ =
∑

i∈Ig(x∗)

λ̄gi∇gi(x∗)+
m∑
i=1

λ̄hi∇hi(x∗)−
∑

i∈I0+(x∗)∪I00(x∗)

λ̄Gi ∇Gi(x
∗)−

∑
i∈I+0(x∗)∪I00(x∗)

λ̄Hi ∇Hi(x
∗) = 0,

with λ̄gj = 0 for j /∈ Ig(x∗), λ̄Gj = 0 for j ∈ I+0(x∗) and λ̄Hj = 0 for j ∈ I0+(x∗) by (4.5).
It follows that the gradients with non-zero multipliers involved in the previous equation

are linearly dependent.
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MPCC-CRCQ guarantees that these gradients remain linearly dependent in a whole
neighborhood. This, however, is a contradiction to the linear independence of these gradients
in xk since wk 6= 0 for k su�ciently large. Here, we used that for all k su�ciently large
supp(λ̄) ⊆ supp(λk). Consequently, our assumption was wrong and thus the sequence {λk}
is bounded.

The following result is similar to Theorem 4.4.2 and focus on the case where the limit
point is an M-stationary point.

Theorem 4.4.3. Given two sequences {xk},{λk} that satis�es Assumption 1 and the family
of gradients of non-vanishing multipliers in (4.4) are linearly independent. Suppose that
xk → x∗ ∈ Z, and MPCC-CRSC holds at x∗. Furthermore, assume that ∀i ∈ I00(x∗)

either lim
k→∞

λG,ki

‖λk‖∞
lim
k→∞

λH,ki

‖λk‖∞
= 0 or lim

k→∞

λG,ki

‖λk‖∞
> 0, lim

k→∞

λH,ki

‖λk‖∞
> 0. (4.7)

Then, the sequence {λk} is bounded.

Proof. The proof is completely similar to Theorem 4.4.2. Assuming that {λk} is not bounded,
we can extract a subsequence such that

λk

‖λk‖∞
→ λ̄ 6= 0.

Dividing by ‖λk‖∞ and passing to the limit in the equation (4.6) yields

∑
i∈Ig(x∗)

λ̄gi∇gi(x∗)+
m∑
i=1

λ̄hi∇hi(x∗)−
∑

i∈I0+(x∗)∪I00(x∗)

λ̄Gi ∇Gi(x
∗)−

∑
i∈I+0(x∗)∪I00(x∗)

λ̄Hi ∇Hi(x
∗) = 0,

with λ̄gj = 0 for j /∈ Ig(x∗), λ̄Gj = 0 for j ∈ I+0(x∗), λ̄Hj = 0 for j ∈ I0+(x∗) and
either λ̄Gj λ̄

H
j = 0 or λ̄Gj > 0, λ̄Hj > 0 for j ∈ I00(x∗) by (4.5) and (4.7).

It is clear that the family of gradients considered in the de�nition of MPCC-CRSC
corresponds to the gradients with non-zero multipliers in the previous equation. Indeed, by
linear dependence of the gradients at x∗ any gradient whose multiplier is non-zero may be
formulated as a linear combination of the other gradients.

Therefore, those gradients with non-vanishing multipliers belong to the polar of the M-
linearized cone. MPCC-GCRSC guarantees that these gradients remain linearly dependent
in a whole neighborhood.

In the same way as in Theorem 4.4.2, this leads to a contradiction. Thus, the sequence
{λk} is bounded.
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MPCC-LICQ
⇐= =⇒

MPCC-MFCQ=⇒

MPCC-NNAMCQ
=⇒

MPCC-CRCQ

⇐=

MPCC-CPLD
⇐=

=⇒
MPCC-RCPLD=⇒

MPCC-CRSC=⇒

MPCC-CCP
=⇒

MPCC-ACQ=⇒

MPCC-GCQ
⇐=

MPCC-wGCQ

Figure 4.6: Diagram of the relationships between the MPCC-Constraint Quali�cations.

4.5 Diagram of relationship between the MPCC CQs

The diagram connecting all the MPCC CQs de�ned in this chapter is given in Figure 4.6.
Most of these relation comes from Proposition 4.2.2. Proposition 4.5.1 proved below gives
that MPCC-mGCQ is equivalent to MPCC-wGCQ, therefore MPCC-GCQ implies MPCC-
mGCQ by Proposition 4.3.1. Some of these relationships have been known from the litera-
ture. By de�nition of the cone LMPCC , it can be obtained that MPCC-ACQ =⇒ MPCC-
GCQ, see [159, 181, 72]. MPCC-CPLD implies MPCC-ACQ was proved in [91] and [203].
MPCC-CCP and MPCC-ACQ have been proved to be independent in [165], while the same
hold for MPCC-RCPLD introduced in [91]. Relations between MPCC-LICQ [181], MPCC-
MFCQ [114, 181] and MPCC-NNAMCQ [114, 198] are straightforward from their de�nition
and their independence with MPCC-CRCQ has been illustrated in the aforementioned arti-
cles.

The following result shows that the conditions de�ned in De�nition 4.2.4 are indeed some
MPCC constraint quali�cations, since they imply the weakest MPCC CQ.

Proposition 4.5.1. Let x∗ ∈ Z. MPCC-mGCQ holds at x∗ if and only MPCC-wGCQ holds
at x∗.

Proof. We prove in Theorem 4.3.2 that

MPCC-wGCQ holds at x∗ ⇐⇒ (g, h,G,H) is MPCC-regular at x∗.

Now, by de�nition of MPCC-regular given in De�nition 4.3.2 and by De�nition of M-
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stationary it follows that

(g, h,G,H) is MPCC-regular at x∗ ⇐⇒((g,GI00
++
, HI00

++
, GI00

−0
, HI00

0−
), (h,GI0+(x∗), HI+0(x∗)))

regular for all partition I00(x∗) = I00
++ ∪ I00

0− ∪ I00
−0.

According to [86] a regular pair (g,h) at x∗ is equivalent to Guignard CQ holding at x∗ for
(NLP) and thus for all partition I00(x∗) = I00

++ ∪ I00
0− ∪ I00

−0

((g,GI00
++
, HI00

++
, GI00

−0
, HI00

0−
), (h,GI0+(x∗), HI+0(x∗))) regular⇐⇒GCQ holds at x∗

for (MNLPI00
++,I00

0−
(x∗)).

By de�nition 4.2.4, GCQ applied to each non-linear program (MNLPI00
++,I00

0−
(x∗)) for every

partition I00(x∗) = I00
++ ∪ I00

0− ∪ I00
−0 is MPCC-mGCQ. Since we use only equivalence the

result follows.

We conclude this section by providing counter-examples illustrating the relations of the
new MPCC-CRSC to other conditions. The �rst example shows that MPCC-CCP is strictly
weaker than MPCC-CRSC. This example will be later used in Section 6.2 to illustrate
convergence of relaxation methods.

Example 4.5.1. Consider the following two-dimensional set

{(x1, x2) ∈ R2 | 0 ≤ x2
1 ⊥ x1 + x2

2 ≥ 0}.

The feasible set of this example is the set Z = {(x1, x2)T ∈ R2 | x1 = 0} ∪ {(x1, x2)T ∈
R2 | x1 = −x2

2}. There is a unique stationary point (0, 0), which is M-stationary with
(λG, λH = 0).

It is easy to verify that MPCC-CCP holds at this point. However, MPCC-CRSC fails to
hold at any point (0, a ∈ R)T since the gradient of x2

1 is non-zero for x 6= 0.

The following example proves that MPCC-CRSC is strictly weaker than MPCC-RCPLD.

Example 4.5.2. Consider the following two-dimensional set

{(x1, x2) ∈ R2 | g(x) = x1 + x2
2 ≤ 0, 0 ≤ G(x) = −x1 + x2 ⊥ H(x) = x1 − x2 ≥ 0}

at a point x∗ = (0, 0). The gradients of the active constraints are given by

∇g(x∗) = (1, 0)T ,−∇G(x∗) = (−1, 1)T ,−∇H(x∗) = (1,−1)T .

The family of three gradients is positively linearly dependent and span the whole space. How-
ever, moving in a neighbourhood of x∗ the three gradients become linearly dependent. Thus,
MPCC-RCPLD fails to hold at x∗.

MPCC-CRSC holds at x∗, since J− = {2, 3} and these two vectors have the same rank
in a neighbourhood of x∗.
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We now consider the relation between MPCC-CRSC and MPCC-ACQ. Next example
shows that MPCC-ACQ may hold even when MPCC-CRSC does not.

Example 4.5.3. Consider the following two-dimensional set

{x ∈ R2 | 0 ≤ G(x) = x1 ⊥ H(x) = x2
1x

2
2 − x1 ≥ 0}.

The feasible set of this problem can be written as x1 = 0 or x1 = x2
1x

2
2. MPCC-ACQ

holds at x∗ = 0 since TZ = LMPCC = {d ∈ R2|d1 = 0}. The two active gradients verify
∇G(x∗) = −∇H(x∗) and so I3 = {1} and I4 = {1}. Moreover, in a neighbourhood of x∗

the gradients are not linearly dependent and thus MPCC-CRSC fails to hold at x∗.

The technique used in De�nition 4.2.4 may very well be used to extend all the constraint
quali�cations and their applications from (NLP) to (MPCC). Besides, we present here only
the �rst order constraint quali�cations, but necessary and su�cient conditions have also
been studies in the literature as in [91].
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Chapter 5

Relaxation methods for MPCC

In this section, we consider relaxation methods to solve (MPCC) and we review most of
the existing methods in the literature. We already point out in the previous section that
(MPCC) is a di�cult non-linear program due to the degeneracy of the complementarity
constraints. A relaxation of the complementarity constraints generates a sequence of non-
linear programs, which are more regular than the initial problem. Thus, we can apply the
well-studied numerical methods for non-linear programming.

The sketch of such a method is described in Algorithm 1 and behaves as follows: we
consider a non-linear parametric program Rtk,t̄k , which considers a relaxation of the comple-
mentarity constraints that depends on the parameters tk, t̄k. For each value tk > 0, t̄k > 0
of decreasing sequences {tk}, {t̄k} we compute a stationary point of Rtk,t̄k , which provides a
sequence {xk+1}. Such stationary points are computed using iterative methods that require
an initial point. We use the previous stationary point as an initial point. The precision
used to compute xk+1 may depend on the value of the parameters. For tk, t̄k su�ciently
small the sequence {xk+1} converge to an MPCC-stationary point of (MPCC). The relaxed

Data:
starting vector x0; initial relaxation parameter (t0, t̄0); update parameter
(σt, σt̄) ∈ (0, 1)2; pmin minimal value of the parameter; ε precision ;

1 Begin ;
2 Set k := 0 ;
3 while tk > pmin do
4 xk+1 stationary point of Rtk,t̄k with x

k initial point;
5 (tk+1, t̄k+1) := (tkσt, t̄kσt̄) ;
Algorithm 1: Generic relaxation method for (MPCC), with a corresponding relaxed
non-linear program Rtk,t̄k .
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sub-problems Rt,t̄ with parameters t and t̄ are written in a general form as

min
x∈Rn

f(x)

s.t. h(x) = 0, g(x) ≤ 0,

G(x) ≥ −t̄e, H(x) ≥ −t̄e,
Φ(G(x), H(x); t) ≤ 0.

(Rt,t̄)

The parameter t is not necessarily a real number, but can also be a vector of parameters.
Let #t be the length of the vector t. t̄ ∈ R is chosen such that lim‖t‖→0 t̄ = 0. The map
Φ : Rq × Rq → Rq is the relaxation map that is used to reformulate the complementarity
constraints. Most of the methods proposed in the literature consider sub-problems like (Rt,t̄).
One exception is the relaxation of G.-H. Lin & M. Fukushima, [126].

Through the rest of this chapter, we review some of the existing methods proposed in the
literature. We mainly focus on the convergence properties of such methods and the regularity
properties of the corresponding relaxed sub-problems. In particular, we are interested on the
stationary properties of the limit point attained by the sequence generated by Algorithm 1.
According to Chapter 4 our aim is to get an M-stationary point. This state of the art is split
in three parts:

• Regular relaxations [182, 126, 52, 93]: Section 5.1;

• A local relaxation [185]: Section 5.2;

• The paradigm of M-relaxations [111, 112]: Section 5.3

.

5.1 Regular relaxations

The �rst attempt in the literature to use a relaxation technique to deal with (MPCC) goes
back to S. Scholtes in 2001 in [182]. They consider a method with t ∈ R++ and t̄ = 0 de�ned
by the following relaxation map, ∀i ∈ {1, . . . , q}

ΦSS
i (G(x), H(x); t) := Gi(x)Hi(x)− t2. (SS)

According to the study in [182, 184], this method converges to a C-stationary point if
MPCC-MFCQ holds at its limit point and the non-linear program RSS

t,0 , de�ned as (Rt,t̄)
with (SS), satis�es classical MFCQ at any point feasible for RSS

t,0 in a neighbourhood of any
point feasible for (MPCC) that satis�es MPCC-MFCQ.

This relaxation is clearly more regular than (MPCC) since MFCQ is violated at any fea-
sible point of the original problem. The idea to additionally relax the positivity constraints,
i.e. consider t̄ > 0, has been introduced in [52] as an extension to the relaxation (SS).
Although, in [52], the motivation of the authors was not to decrease the two parameters
simultaneously.
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Figure 5.1: Feasible set of H. Scheel & S. Scholtes relaxation (SS).

The relaxation (SS) are very unlikely to satisfy LICQ at a point x∗ with I00(x∗) 6= ∅,
since this would mean that for t = 0 three constraints are active for only two gradients.
G.-H.Lin & M.Fukushima propose in [126] a relaxation with fewer constraints in order to
improve the regularity of the relaxed program by considering

min
x∈Rn

f(x)

s.t. h(x) = 0, g(x) ≤ 0,

Gi(x)Hi(x) ≤ t2, i = 1, . . . , q,

(Gi(x) + t)(Hi(x) + t) ≥ t2, i = 1, . . . , q.

(RLF
t )

The authors show in particular that if MPCC-LICQ holds at a point x∗ ∈ Z, this relaxation
satis�es the classical LICQ in any feasible points of RLF

t in a neighbourhood of x∗. Moreover,
this relaxation converges to a C-stationary point as t ↓ 0 as shown in [113].

In [93], M. Haddou extends the approach of [182] to a general family of relaxations,
considering t ∈ R, t̄ = 0 and ∀i ∈ {1, . . . , q}

Φθ
i (G(x), H(x); t) := θt(Gi(x)) + θt(Hi(x))− 1, (θ)

where θ : R+ → [0, 1] are the functions de�ned earlier in Chapter 1. The following lemma
shows that (θ) is indeed a generalisation of (SS).

Lemma 5.1.1. Let (a, b) ∈ R+ × R+. It holds true that for all t > 0

θ1
t (a) + θ1

t (b)− 1 ≤ 0⇐⇒ ab− t2 ≤ 0.
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Figure 5.2: Lin & Fukushima relaxation (RLF
t )

Proof. By de�nition of θ1 it holds that

θ1
t (a) + θ1

t (b)− 1 ≤ 0 ⇐⇒ a

a+ t
+

b

b+ t
− 1 ≤ 0,

⇐⇒ a(b+ t) + b(a+ t)− (a+ t)(b+ t)

(a+ t)(b+ t)
≤ 0,

⇐⇒ ab− t2

(a+ t)(b+ t)
≤ 0.

The result follows since (a+ t)(b+ t) > 0.

We now prove that a sequence of stationary point of (Rt,t̄) with the relaxation map (θ)
converges to a C-stationary point in a same way as the relaxation (SS).

Theorem 5.1.1. Given {tk}, {t̄k} two sequences decreasing to zero. Let {xk, νk} be a se-
quence of stationary points of Rtk,t̄k with a relaxation map (θ), with xk → x∗ such that
MPCC-CRCQ holds at x∗. Then, x∗ is a C-stationary point.

Proof. First, we identify the expressions of the multipliers of the complementarity constraints
in De�nition 4.1.1 in function of the stationary points ofRtk,t̄k . Let {xk, νg,k, νh,k, νG,k, νH,k, νΦ,k}
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be a sequence of KKT points of Rtk,t̄k for all k ∈ N, that by de�nition satis�es

0 = ∇f(xk) +

p∑
i=1

νg,ki ∇gi(xk) +
m∑
i=1

νh,ki ∇hi(xk)−
q∑
i=1

νG,ki ∇Gi(x
k)

−
q∑
i=1

νH,ki ∇Hi(x
k) +

q∑
i=1

νΦ,k
i ∇Φθ

i (G(xk), H(xk); tk),

with

νg,ki = 0, ∀i /∈ Ig(xk) and λg,ki ≥ 0, ∀i ∈ Ig(xk),
νG,ki = 0, ∀i /∈ IG(xk; t̄k) and λ

G,k
i ≥ 0, ∀i ∈ IG(xk; t̄k),

νH,ki = 0, ∀i /∈ IH(xk; t̄k) and λ
H,k
i ≥ 0, ∀i ∈ IH(xk; t̄k),

νΦ,k
i = 0, ∀i /∈ IΦ(xk; tk) and ν

Φ,k
i ≥ 0, ∀i ∈ IΦ(xk; t̂k).

By the de�nition of Φθ it holds that for all i ∈ {1, . . . , q}

∇Φθ
i (x

k; tk) = θ′tk(Gi(x
k))∇Gi(x

k) + θ′tk(Hi(x
k))∇Hi(x

k).

Thus, we can rewrite the equation above as

−∇f(xk) =

p∑
i=1

νg,ki ∇gi(xk) +
m∑
i=1

νh,ki ∇hi(xk)−
q∑
i=1

ηG,ki ∇Gi(x
k)−

q∑
i=1

ηH,ki ∇Hi(x
k),

where

ηG,ki =


νG,k, if i ∈ IG(xk; t̄k)

−νΦ,kθ′tk(Gi(x
k)), if i ∈ IΦ(xk; tk)

0, otherwise,

ηH,ki =


νH,k, if i ∈ IH(xk; t̄k)

−νΦ,kθ′tk(Hi(x
k)), if i ∈ IΦ(xk; tk)

0, otherwise.

These multipliers are well-de�ned since IG(xk; t̄k)∩IΦ(xk; tk) = ∅ and IH(xk; t̄k)∩IΦ(xk; tk) =
∅. Furthermore, the following inclusions hold true

I0+(x∗) ∪ I00(x∗) ⊂ IG(xk; t̄k) ∪ IΦ(xk; tk),

I+0(x∗) ∪ I00(x∗) ⊂ IH(xk; t̄k) ∪ IΦ(xk; tk).

Now, by Lemma 1.4.3 it holds that for ck = ‖νg,k, νh,k, ηG,k, ηH,k‖∞

∀i ∈ I+0(x∗) lim
k→∞

ηG,ki

‖ck‖∞
= 0 and ∀i ∈ I0+(x∗) lim

k→∞

ηH,ki

ck
= 0.
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Thus, applying Corollary 4.4.2 gives boundedness of the sequence {νg,k, νh,k, ηG,k, ηH,k}.
Therefore, this sequence converges, up to some subsequence, to some limit

{νg,k, νh,k, ηG,k, ηH,k} → (νg, νh, ηG, ηH).

We now prove that the point x∗ with multipliers (νg, νh, ηG, ηH) is a weak-stationary point
and then that it is a C-stationary point.

Let i ∈ I+0(x∗), weak-stationary conditions require that ηGi = 0. It holds that for k
su�ciently large i ∈ IH(xk; t̄k)∪IΦ(xk; tk). Consider two cases, since IH(xk; t̄k)∩IΦ(xk; tk) =
∅:

• For i ∈ I+0(x∗) ∩ IH(xk; t̄k), it holds that η
G,k
i = 0 and so ηGi = 0.

• For i ∈ I+0(x∗) ∩ IΦ(xk; tk), it holds that ηG,ki = −νΦ,k
i θ′tk(Gi(x

k)) and ηH,ki =

−νΦ,k
i θ′tk(Hi(x

k)). Assume by contradiction that ηGi 6= 0. Therefore, this assumption
yields to 1/νΦ,k

i = O(θ′tk(Gi(x
k))) since θ′tk(Gi(x

k)) → 0 by Lemma 1.4.3. However,
this is a contradiction with boundedness of {ηG,k, ηH,k} since by Lemma 1.4.4 it would
follow that |ηH,ki | → ∞. So, ηGi = 0.

By symmetry of the relaxation, it is similar to prove that ηHi = 0 for all i ∈ I0+(x∗).
Since ηGi = 0 for i ∈ I+0(x∗) and ηHi = 0 for i ∈ I0+(x∗), it is straightforward that

∇LMPCC(x∗, νg, νh, ηG, ηH) = 0. Then, x∗ is a weak-stationary point.
Let us verify that x∗ is a C-stationary point by showing that ηGi η

H
i ≥ 0 for all i ∈ I00(x∗).

Let i ∈ I00(x∗). Assume that for k su�ciently large i /∈ IGH(xk; tk), then η
G,k
i ≥ 0, ηH,ki ≥ 0

and so ηGi η
H
i ≥ 0. Now, assuming that for k su�ciently large i ∈ IGH(xk; tk) yields η

G,k
i =

−νΦ,k
i θ′tk(Gi(x

k)) ≤ 0, ηH,ki = −νΦ,k
i θ′tk(Hi(x

k)) ≤ 0 since θ is an increasing function and
νΦ,k
i ≥ 0. So, ηGi η

H
i ≥ 0. This completes the proof that x∗ is a C-stationary point.

We already point out that similar result was proved in [184] for the relaxation (SS) under
a slightly weaker condition that MPCC-CRCQ but stronger than MPCC-CPLD as de�ned
in the previous chapter. For completeness, we now give a result on existence of stationary
point in a neighbourhood of a regular point. This type of result is classical for relaxation
techniques, but was missing in the study [93].

Theorem 5.1.2. Let x∗ be feasible for Rtk,t̄k with (θ), such that MPCC-LICQ holds at x∗.
Then, there exists t̄ > 0 and a neighbourhood U(x∗) of x∗ such that for all t ∈ (0, t̄], LICQ
for Rtk,t̄k holds for all x ∈ U(x∗) feasible for Rtk,t̄k .

Proof. In particular, we verify that the family of active gradients of Rtk,t̄k with (θ) is linearly
independent in a neighbourhood U(x∗) of x∗. In other words, let us verify that the trivial
solution is the only solution of the equation for all x ∈ U(x∗):

0 =
∑

i∈Ig(x∗)

λgi∇gi(x) +
m∑
i=1

λhi∇hi(x) +
∑

i∈I00(x∗)∪I0+(x∗)

(λΦ
i θ
′
r(Gi(x))− λGi )∇Gi(x)

+
∑

i∈I+0(x∗)∪I00(x∗)

(λΦ
i θ
′
r(Hi(x))− λHi )∇Hi(x).
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Now, since MPCC-LICQ holds at x∗ and by continuity the gradients remain linearly inde-
pendent in a neighbourhood U(x∗) of x∗ such that

I00(x) ∪ I0+(x) ⊂ I00(x∗) ∪ I0+(x∗),

I00(x) ∪ I+0(x) ⊂ I00(x∗) ∪ I+0(x∗),

Ig(x) ⊂ Ig(x∗).

Thus, it follows that the solutions λ of the equation above satisfy

λgi = 0,∀i ∈ Ig(x), λhi = 0,∀i = 1, . . . ,m,

(λΦ
i θ
′
r(Gi(x))− λGi ) = 0, ∀i ∈ I00(x) ∪ I0+(x),

(λΦ
i θ
′
r(Hi(x))− λHi ) = 0, ∀i ∈ I00(x) ∪ I+0(x).

Noticing that supp(λG)∩supp(λH)∩supp(λΦ) = ∅ and that θ is an increasing function yields
λg = λh = λG = λH = λΦ = 0 and the result follows.

It is interesting to note that despite being an "extension" of the relaxation (SS). Splitting
the two parts of the complementarity constraints gives a more regular formulation. The main
reason of this phenomenon is that the gradient of relaxed complementarity constraint is now
non-zero on the boundary of the domain.

All of these methods enjoy very nice regularity properties. However they may converge
to some undesirable C-stationary points. This phenomenon is illustrated in the following
example.

Example 5.1.1.

min
x∈R2

1

2
(x1 − 1)2 +

1

2
(x2 − 1)2 s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

x∗ = (0, 0) is a C-stationary point with multipliers λG = λH = −1. The relaxations (SS),
(RLF

t ) and (θ) may produce a sequence of stationary points (tk, tk) converging to the origin.

In [126], the authors study some second-order conditions and conditions on the smallest
eigenvalue of the Hessian of the Lagrangian to ensure convergence to M-stationary points.
However, it is not convenient to assume second-order conditions, when computing �rst order
stationary points of the problem.

5.2 A local relaxation

In [185] and [190], S. Ste�ensen & M. Ulbrich study a family of local relaxations for all
i ∈ {1, . . . , q}

ΦSU
t (G(x), H(x); t) := Gi(x) +Hi(x)−

{
|Gi(x)−Hi(x)| if |Gi(x)−Hi(x)| ≥ t

tφ(Gi(x)−Hi(x)
t

) otherwise.
(SU)

φ : D ⊂ R → R, where D is an open subset of R with [−1, 1] ⊂ D and φ(z) satis�es the
following conditions:
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Figure 5.3: S. Ste�ensen & M. Ulbrich relaxation (SU)

• φ is twice continuously di�erentiable on [−1, 1];

• φ(1) = φ(−1) = 1;

• φ′(−1) = −1 and φ′(1) = 1;

• φ′′(−1) = φ′′(1) = 0;

• φ is strictly convex on [−1, 1].

As proposed in [185] a suitable choice of function φ can be φ(z) = 2
π

sin
(
π
2
z + 3π

2

)
+ 1. The

study in [184] reveals that this family of relaxations converges to a C-stationary point if
MPCC-TCPLD holds at the limit point. The non-linear programs RSU

t satisfy only ACQ
in any point feasible in a neighbourhood of a point that veri�es MPCC-LICQ. Therefore,
the non-linear programs associated with (SU) are less regular than the relaxations (SS), (θ),
and (RLF

t ). In the same way as the previous ones, these relaxations may converge to a
C-stationary point in Example 5.1.1 with the sequence 2π

π−2
(t, t).

5.3 The paradigm of M-relaxations

In 2009 A. Kadrani, J.-P. Dussault and A. Bechakroun introduce a method, which enjoys the
desired goal to converge to an M-stationary point, see [111]. Their original method considers
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an approximation of the complementarity constraints as a union of two boxes connected only
on one point (t, t), in the following way ∀i ∈ {1, . . . , q}:

ΦKDB
i (G(x), H(x); t) := (Gi(x)− t)(Hi(x)− t), (KDB)

with t̄ = t. This is not a relaxation but an approximation, since the feasible domain of

Figure 5.4: Boxes relaxation

RKDB
t does not include the feasible domain of (MPCC). The gap between approximation

and relaxation may be the source of computational problems as illustrated by the following
example.

Example 5.3.1.

min
x∈R2

x1 − x2

s.t. x1 ≤ 0, x2 ≤ 0,

0 ≤ x1 ⊥ x2 ≥ 0.

The feasible set of relaxation KDB is always empty for t > 0.

This method has latter been extended to a relaxation in [184, 103] using a piecewise NCP
function and considering ∀i ∈ {1, . . . , q}

ΦKS
i (G(x), H(x); t) := φ(Gi(x)− t,Hi(x)− t), (KS)
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where φ : R2 → R is a continuously di�erentiable NCP-function with for instance

φ(a, b) =

{
ab, if a+ b ≥ 0

−1
2
(a2 + b2), if a+ b < 0.

Both methods enjoy a very nice convergence property as stated in the following theorem.

Figure 5.5: L-shape relaxation

Theorem 5.3.1. Let {tk} be a decreasing sequence of positive parameters with tk ↓ 0. Let
{xk} such that xk → x∗ and let {xk, λk} ∈ Rn ×Rm ×Rp

+ ×Rq
− ×Rq

− ×Rq
+ be a sequence of

�rst-order stationary point of RKS
tk

(resp. RKDB
tk

), then

1. the sequence {xk, λk} converges to an M-stationary point of (MPCC) if MPCC-CCP
holds at x∗;

2. RKS
tk

(resp. RKDB
tk

) satis�es GCQ in any feasible point of RKS
tk

in a neighbourhood of
x∗, whenever MPCC-LICQ holds at x∗.

This theorem is a sum up of two results: 1- has been proved recently in [165] and 2- is the
original result from [111]. The former improves a previous result of [184], which considers
convergence under MPCC-TCPLD. These methods attain one of the main goals, that is to
converge to an M-stationary point. However, they do not handle the case where MPCC-
LICQ holds at the limit point and then M-stationary points can be undesirable. One typical
example is the following
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Example 5.3.2.

min
(x1,x2)∈R2

−x2 s.t. x1 ≥ 0, x2 ≥ 0, x1x2 ≤ 0.

This problem is unbounded as the global minimum is attained at (0,∞). Numerical methods
can compute a sequence of points {(xk, 0)T}∞k=1 converging to (0, 0), which is an M-stationary
point but obviously not a local minimum.

As pointed out in Section 4.1, M- and S-stationary points coincide if strict complemen-
tarity holds. That is why in the literature convergence to an S-stationary point is usually
guaranteed under a hypothesis relative of the indices that do not satisfy strict complemen-
tarity. In the Theorem 4.1 of [111], the authors proved convergence of the approximation
(KDB) to an S-stationary point if the sequence {xk} satis�es the asymptotically weakly
non-degenerate assumption.

De�nition 5.3.1. A sequence {xk} is asymptotically weakly non-degenerate, if {xk} → x∗

as {tk} → 0, and there is a t∗ > 0 such that for t ∈ (0, t∗) one has

−1 ≤ Gi(x
k)

Hi(xk)
≤ 1, i ∈ I00(x∗) ∩ {i|Gi(x

k) < t,Hi(x
k) > t},

and

−1 ≤ Hi(x
k)

Gi(xk)
≤ 1, i ∈ I00(x∗) ∩ {i|Gi(x

k) > t,Hi(x
k) < t}.

The following example illustrates this result.

Example 5.3.3.

minx2 − xy +
1

3
y2 − 2x s.t. x ≥ 0, y ≥ 0, xy ≤ 0.

There is one S-stationary point (1, 0). Using (KDB) we get two M-stationary point (1, 0) ∀t
and (t, 3

2
t) which doesn't satisfy asymptotically weakly non-degenerate assumption.

It should be noted that this theorem does not provide the equivalence as shown by the
following example.

Example 5.3.4.

min
(x1,x2)T∈R2

(2x1 − x2)4 +
1

x1x2 + 1
s.t 0 ≤ x1 ⊥ x2 ≥ 0.

It is clear that (0, 0)T is the global minimum and that it is an S-stationary point. Picture
proof shows that the relaxation KDB and KS possess a global minimum in x(t) = ( t

2
, t),

which converges to (0, 0)T as t goes to 0 and does not satisfy the asymptotically weakly non-
degenerate assumption.

We conclude this chapter with Table 5.1 that sum up the methods presented here and
their essential properties.
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Name Relaxation ? Convergence Regularity
SS yes C-stat. MFCQ
θ yes C-stat. LICQ
LF yes C-stat. LICQ
SU yes C-stat. ACQ
KDB no M-stat. GCQ
KS yes M-stat. GCQ

Table 5.1: Relaxations methods and their properties.
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Chapter 6

The new butter�y relaxation method

We de�ne in this chapter the new relaxation scheme so-called butter�y relaxation introduced
in [64]. This new scheme extends the methods (KDB) and (KS) by handling two relaxing
parameters instead of one.

In a �rst step, Section 6.1 introduces the new relaxation and some useful properties.
Then, we study the theoretical properties in Section 6.2, 6.3 and 6.4. In particular, we are
interested in convergence of a sequence of stationary points, existence of stationary points in
a neighbourhood of a solution and discuss brie�y convergence of a sequence of approximate
stationary points.

6.1 The butter�y relaxation method

We propose a new family of relaxations with two positive parameters (t, r) de�ned such that
for all i ∈ {1, . . . , q}

ΦB
i (G(x), H(x); t, r) = 0 =⇒ ΦB

i (G(x), H(x); t, r) := F1i(x; r, t)F2i(x; t, r), (6.1)

and ΦB
i (G(x), H(x); t, r) is extended in a continuously di�erentiable as a function with neg-

ative values for min(F1i(x; r, t), F2i(x; t, r)) < 0 and as a function with positive values other-
wise. Let us denote

F1i(x; r, t) := Hi(x)− tθr(Gi(x)) and F2i(x; t, r) := Gi(x)− tθr(Hi(x)),

where θr : R →] − ∞, 1] are the functions presented in Section 1.4. This new relaxation
handles two parameters r and t that satisfy

tθ′(0) ≤ r. (6.2)

This condition insures that the intersection point between the sets {x ∈ Rn | F1(x; r, t) = 0}
and {x ∈ Rn | F2(x; t, r) = 0} is reduced to the origin. In other words, the two branches of
the relaxation does not cross each other. A typical choice will be to take t = o(r) motivated
by strong convergence properties as discussed in Section 6.2.
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One way to write the relaxation for t < θ′(0)r uses the NCP function from [184] by
considering

ΦB
i (G(x), H(x); t, r) :=

{
F1i(x; r, t)F2i(x; t, r), if F1i(x; r, t) + F2i(x; t, r) ≥ 0,

−1
2
(F1i(x; r, t)2 + F2i(x; t, r)2), if F1i(x; r, t) + F2i(x; t, r) < 0.

(6.3)
This formulation will be used in the numerics and in the study of convergence of approximate
points in Section 6.4. Most of the results presented in this article is only sensitive to the
description of the constraint and its boundary.

Since these relaxations are an union of two convex sets connected on a single point we
may also consider a relaxation of the positivity constraints parametrized by t̄ ∈ R+.

This method is an extension of the work of [111, 110] and [102, 112] since handling two
parameters allows the two "wings" of the relaxation to be brought closer.

We now introduce some notations that will be extensively used in the sequel. Since the
butter�y relaxation handles two parameters we denote t̂ := (t, r) to simplify the notation
and by extension t̂k := (tk, rk). Let XB

t̂,t̄
be the feasible set of RB

t̂,t̄
, which corresponds to the

non-linear program related to the butter�y relaxation of the complementarity constraints
de�ned in (6.3), that is

min
x∈Rn

f(x)

s.t g(x) ≤ 0, h(x) = 0,

G(x) ≥ −t̄e, H(x) ≥ −t̄e,
ΦB(G(x), H(x); t̂) ≤ 0,

(RB
t̂,t̄
)

and

XB
t̂,t̄ := {x ∈ Rn | g(x) ≤ 0, h(x) = 0, G(x) ≥ −t̄e, H(x) ≥ −t̄e,ΦB(G(x), H(x); t̂) ≤ 0}.

Figure 6.1 shows the feasible set of the relaxed complementarity constraints for some relations
between t and r. The sets of indices used in the sequel are de�ned in the following way

IG(x; t̂) := {i = 1, . . . , q | Gi(x) + t̄ = 0},
IH(x; t̂) := {i = 1, . . . , q | Hi(x) + t̄ = 0},
IGH(x; t̂) := {i = 1, . . . , q | ΦB

i (G(x), H(x); t̂) = 0},
I0+
GH(x; t̂) := {i ∈ IGH(x; t̂) | F1i(x; t̂) = 0, F2i(x; t̂) > 0},
I+0
GH(x; t̂) := {i ∈ IGH(x; t̂) | F1i(x; t̂) > 0, F2i(x; t̂) = 0},
I++
GH(x; t̂) := {i ∈ IGH(x; t̂) | F1i(x; t̂) > 0, F2i(x; t̂) > 0},
I00
GH(x; t̂) := {i ∈ IGH(x; t̂) | F1i(x; t̂) = F2i(x; t̂) = 0}.

The following two lemmas give more insights on the relaxation.

Lemma 6.1.1. Let x ∈ XB
t̂,t̄
, then it is true for the relaxation (6.3) that:
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Figure 6.1: Feasible set of the butter�y relaxation for θr(z) = z
z+r

with from the left to the
right : t = 2r and t = r3/2.

(a) {i ∈ IGH(x; t̂) | F1i(x; t̂) = 0, F2i(x; t̂) < 0} = {i ∈ IGH(x; t̂) | F1i(x; t̂) < 0, F2i(x; t̂) =
0} = ∅;

(b) i ∈ IGH(x; t̂) =⇒ Gi(x) ≥ 0, Hi(x) ≥ 0.

Proof. Case (a) is direct considering that ΦB
i (G(x), H(x); t, r) 6= 0 for F1i(x; t̂)+F2i(x; t̂) < 0.

By symmetry of the relaxation it is su�cient to assume that F1i(x; t̂) = Hi(x)−tθr(Gi(x)) =
0 for some i = 1, . . . , q. Then, by de�nition of F2i(x; t̂) it holds that

F2i(x; t̂) = Gi(x)− tθr(Hi(x)) = Gi(x)− tθr(tθr(Gi(x))),

so Gi(x) ≥ 0 since in the other case by de�nition of the function θ it would follow that

F2i(x; t̂) = Gi(x)(1− (θ′(0)t/r)2),

which would be negative if Gi(x) < 0. Finally, Gi(x) ≥ 0 implies that Hi(x) ≥ 0 since
F1i(x; t̂) = 0.

The following lemma sum up some of the key features of the relaxation.

Lemma 6.1.2. XB
t̂,t̄

satisfy the following properties:

1. XB
0,0 = Z;

2. XB
ta,t̄b
⊂ XB

tb,t̄b
for all 0 < ta

ra
< tb

rb
and 0 < t̄a < t̄b;

3. ∩t,t̄≥0XB
t,t̄ = Z.

99



If the feasible set of the (MPCC) is non-empty, then the feasible set of the relaxed sub-
problems are also non-empty for all t ≥ 0. If for some parameter t ≥ 0 the set XB

t̂,t̄
is empty,

then it implies that Z is empty. Finally, if a local minimum of RB
t̂,t̄

already belongs to Z,
then it is a local minimum of the (MPCC).

We focus in the sequel on the properties of these new relaxation schemes. The asymptotic
behaviour of these methods are highlighted by Lemma 1.4.5 and Lemma 6.1.4. Then, we
move to convergence properties of the methods considering a sequence of stationary points,
which is proved to converge to an A-stationary point in Theorem 6.2.1 and to an M-stationary
point, Corollary 6.2.1, with some relation between the sequences {tk} and {rk}. In both
results we discuss weak constraint quali�cations necessary to ensure convergence of these
methods. The main motivation to consider relaxation methods for (MPCC) is to solve a
sequence of regular problems. Under classical assumptions the butter�y relaxed non-linear
programs satisfy the Guignard CQ, Theorem 6.3.1. A speci�c kind of butter�y methods,
where tkθ′(0) = rk, has improved properties since they satisfy Abadie CQ, Theorem 6.3.2. It
is more realistic to consider a sequence of ε-stationary points instead of classical stationary
points. Also there is a price to pay here since convergence properties of most of the relaxation
methods are damaged. This is discussed in Theorem 6.4.1 for the formulation with tk = o(rk).

Before moving to our main results regarding convergence and regularity properties of the
butter�y relaxation, we provide some useful results. Direct computation gives the gradient
of ΦB(G(x), H(x); t̂) in the following lemma.

Lemma 6.1.3. For all i ∈ {1, . . . , q}, the gradient of ΦB
i (G(x), H(x); t̂) w.r.t. x for the

relaxation (6.3) is given by

∇xΦ
B
i (G(x), H(x); t̂) =


(
F1i(x; t̂)− tθ′r(Gi(x))F2i(x; t̂)

)
∇Gi(x)

+
(
F2i(x; t̂)− tθ′r(Hi(x))F1i(x; t̂)

)
∇Hi(x), if F1i(x; t̂) ≥ −F2i(x; t̂),(

tθ′r(Gi(x))F1i(x; t̂)− F2i(x; t̂)
)
∇Gi(x)

+
(
tθ′r(Hi(x))F2i(x; t̂)− F1i(x; t̂)

)
∇Hi(x), if F1i(x; t̂) < −F2i(x; t̂).

The following lemma is a direct application of Lemma 1.4.5 on the convergence of the
butter�y relaxation when t and r go to zero.

Lemma 6.1.4. Assume that (MPCC) has a non-empty feasible set, i.e. Z 6= ∅. Given two
sequences {rk} and {tk}, which converge to 0 as k goes to in�nity and ∀k ∈ N, (rk, tk) ∈ R2

++.
Let {xk} be a sequence of points such that limk→∞ x

k = x∗ and satisfying for all i ∈ {1, . . . , q}
and for all k ∈ N

Gi(x
k) ≥ −t̄, Hi(x

k) ≥ −t̄, ΦB
i (G(xk), H(xk); t̂k) ≤ 0.

Then, x∗ is a feasible point for (MPCC) as long as g(x∗) ≤ 0 and h(x∗) = 0.

We conclude this introductory section by an example that shows that the butter�y relax-
ation may improve relaxations from [111] and [112]. Indeed, it illustrates an example where
there are no sequences of stationary point that converge to some undesirable point.
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Example 6.1.1.
min
x∈R2
−x1 s.t x1 ≤ 1, 0 ≤ x1 ⊥ x2 ≥ 0.

In this example, there are two stationary points: an S-stationary point (1, 0) that is the
global minimum and an M-stationary point (0, 0), which is not a local minimum. Unlike the
relaxations (KDB) and (KS) where for tk = 1

k
a sequence xk = (tk 2tk)

T , with λΦ,k = k,
may converge to (0, 0) as k goes to in�nity, there is no sequences of stationary point that
converges to this undesirable point with the butter�y relaxation.

6.2 Convergence

In this section, we focus on the convergence properties of the butter�y relaxation method and
the constraint quali�cations guaranteeing convergence of the sequence of stationary points
generated by the method. Our aim is to compute an M-stationary point or at least to provide
a certi�cate if we converge to an undesirable point.

We prove in Theorem 6.2.1 that the butter�y relaxation converges to an A-stationary
point and provide a certi�cate independent of the multipliers in the case it converges to
undesirable points. This result is improved to a convergence to M-stationary points for some
choices on the parameters t and r in Corollary 6.2.1.

Another main concern in the literature is to �nd the weakest constraint quali�cation,
which ensures convergence of the method. This has been extensively studied in the thesis
[184] and related papers mentioned herein, where they prove convergence of most of the
existing relaxation methods in the literature under a hypothesis close to MPCC-CRCQ.
More recently in [165], Ramos proves convergence of the relaxation from [111] and [112]
under MPCC-CCP.

Convergence of the butter�y relaxation under MPCC-CRCQ is proved in Proposition
6.2.1. An improved result for some choices of the parameter t and r is given in Proposition
6.2.2 that uses MPCC-CRSC. Example 6.2.3 shows that our methods may not converge un-
der MPCC-CCP, since it requires boundedness of some multipliers.

Theorem 6.2.1. Given two sequences {t̂k} and {tk} of positive parameters satisfying (6.2)
and decreasing to zero as k grows to in�nity. Let {xk, νk} be a sequence of points from
Rn × Rp × Rm × R3q that are stationary points of RB

t̂,t̄
for all k ∈ N with xk → x∗. Assume

that the sequence
{νg,k, νh,k, ηG,k, ηH,k}, (6.4)

is bounded, where for all i ∈ {1, . . . , q}

ηG,ki := νG,ki − νΦ,k
i

(
F1i(x

k; t̂k)− tkθ′rk
(
Gi(x

k)
)
F2i(x

k; t̂k)
)
,

ηH,ki := νH,ki − νΦ,k
i

(
F2i(x

k; t̂k)− tkθ′rk
(
Hi(x

k)
)
F1i(x

k; t̂k)
)
.

Then, one of the three following cases holds:
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(i) x∗ is an S-stationary point, if for all i ∈ I00(x∗) one of the following holds:

(i.a) there exists k̄ ∈ N such that Gi(x
k) = Hi(x

k) = −t̄k, ∀k ≥ k̄;

(i.b) the sequence of multiplier {νΦ,k
i } is bounded;

(i.c) {νΦ,k
i } is unbounded with lim

k→∞
νΦ,k
i F2i(x

k; t̂k) = 0 for i ∈ I0+
GH(xk; t̂k) and

lim
k→∞

νΦ,k
i F1i(x

k; t̂k) = 0 for i ∈ I+0
GH(xk; t̂k).

(ii) x∗ is an M-stationary point, if for all i ∈ I00(x∗) that does not satisfy conditions
(i) the sequence of multiplier {νΦ,k

i } is unbounded and either for i ∈ I0+
GH(xk; t̂k),

lim
k→∞

tkθ
′
rk

(Gi(x
k)) = 0 either for i ∈ I+0

GH(xk; t̂k), lim
k→∞

tkθ
′
rk

(Hi(x
k)) = 0.

(iii) x∗ is an A-stationary point, if the sequence of multipliers diverges or for all i ∈ I00(x∗)
that does not satisfy conditions (ii) the sequence of multiplier {νΦ,k

i } is unbounded and
either for all i ∈ I0+

GH(xk; t̂k), lim
k→∞

tkθ
′
rk

(Gi(x
k)) > 0 either for all i ∈ I+0

GH(xk; t̂k),

lim
k→∞

tkθ
′
rk

(Hi(x
k)) > 0.

The boundedness assumption on the sequence (6.4) is a classical assumption and is guar-
anteed under some constraint quali�cation as shown in the next Proposition 6.2.1.

Proof. First, we identify the expressions of the multipliers of the complementarity constraint
in De�nition 4.1.1 through the stationary points of RB

t̂,t̄
. Let {xk, νg,k, νh,k, νG,k, νH,k, νΦ,k}

be a sequence of KKT points of RB
t̂,t̄

for all k ∈ N, that by de�nition satis�es

0 = ∇f(xk) +

p∑
i=1

νg,ki ∇gi(xk) +
m∑
i=1

νh,ki ∇hi(xk)−
q∑
i=1

νG,ki ∇Gi(x
k)

−
q∑
i=1

νH,ki ∇Hi(x
k) +

q∑
i=1

νΦ,k
i ∇ΦB

i (G(x), H(x); t̂),

with

νg,ki = 0, ∀i /∈ Ig(xk) and νg,ki ≥ 0, ∀i ∈ Ig(xk),
νG,ki = 0, ∀i /∈ IG(xk) and νG,ki ≥ 0, ∀i ∈ IG(xk),

νH,ki = 0, ∀i /∈ IH(xk) and νH,ki ≥ 0, ∀i ∈ IH(xk),

νΦ,k
i = 0, ∀i /∈ IGH(xk; t̂k) and ν

Φ,k
i ≥ 0, ∀i ∈ IGH(xk; t̂k).

The representation of ∇ΦB immediately gives ∇ΦB
i (G(xk), H(xk); t̂k) = 0, ∀i ∈ I00

GH(xk; t̂k)
for all k ∈ N. Thus, we can rewrite the equation above as

−∇f(xk) =

p∑
i=1

νg,ki ∇gi(xk) +
m∑
i=1

νh,ki ∇hi(xk) +

q∑
i=1

ηG,ki ∇Gi(x
k) +

q∑
i=1

ηH,ki ∇Hi(x
k),
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where

ηG,ki =


νG,k, if i ∈ IG(xk; t̂k)

−νΦ,k
i tkθ

′
rk

(Gi(x
k))F2i(x

k; t̂k), if i ∈ I0+
GH(xk; t̂k)

νΦ,k
i F1i(x

k; t̂k), if i ∈ I+0
GH(xk; t̂k)

0, otherwise,

ηH,ki =


νH,k, if i ∈ IH(xk; t̂k)

−νΦ,k
i tkθ

′
rk

(Hi(x
k))F1i(x

k; t̂k), if i ∈ I+0
GH(xk; t̂k)

νΦ,k
i F2i(x

k; t̂k), if i ∈ I0+
GH(xk; t̂k)

0, otherwise.

Noticing that whenever i ∈ {i = 1, . . . , q | F1i(x
k; t̂k) = 0} implies that i ∈ I0+

GH(xk; t̂k) ∪
I00
GH(xk; t̂k) or symmetrically i ∈ {i | F2i(x

k; t̂k) = 0} implies that i ∈ I+0
GH(xk; t̂k)∪I00

GH(xk; t̂k)
by concavity and tkθ′(0) ≤ rk for all k ∈ N.

We observe that the sequence {νg,k, νh,k, ηG,k, ηH,k} is bounded, then it converges, up to
a subsequence, to some limit denoted by {νg,∗, νh,∗, ηG,∗, ηH,∗}.

These multipliers are well-de�ned since

IG(xk; t̂k) ∩ IGH(xk; t̂k) ∩
(
{1, . . . , q} \ I00

GH(xk; t̂k)
)

= ∅,
IH(xk; t̂k) ∩ IGH(xk; t̂k) ∩

(
{1, . . . , q} \ I00

GH(xk; t̂k)
)

= ∅,

and for k su�ciently large

supp(νG,k) ⊆ IG(xk; t̂k),

supp(νH,k) ⊆ IH(xk; t̂k),

supp(νG,k) ⊆ IGH(xk; t̂k),

supp(ηG,k) ⊆ IGH(xk; t̂k) ∩ ({1, . . . , q} \ I00
GH(xk; t̂k)),

supp(ηH,k) ⊆ IGH(xk; t̂k) ∩ ({1, . . . , q} \ I00
GH(xk; t̂k)).

Moreover, for k su�ciently large it holds

supp(νG,∗) ⊆ supp(νG,k),

supp(νH,∗) ⊆ supp(νH,k),

supp(ηG,∗) ⊆ supp(ηG,k),

supp(ηH,∗) ⊆ supp(ηH,k).

The proof that shows convergence of the sequence and weak-stationary of x∗ will be given
in Section 6.4 by Lemma 6.4.1 on page 115 for εk = 0.
Let us now verify that x∗ is an A-stationary point by computing the multipliers for indices
i ∈ I00(x∗). Consider the various possible cases, where we denote

νG0 := {i = 1, . . . , q | νG,∗i = ηG,∗i } and νH0 := {i = 1, . . . , q | νH,∗i = ηH,∗i } :
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1. If i ∈ supp(νG,∗)∩ supp(νH,∗), then for k su�ciently large i ∈ supp(νG,k)∩ supp(νH,k).
One has νG,ki ≥ 0, νH,ki ≥ 0 and

Gi(x
k) = Hi(x

k) = −t̄k.

2. If i ∈ supp(νG,∗)∩ supp(ηH,∗), then for k su�ciently large i ∈ supp(νG,k)∩ supp(ηH,k).
One has νG,ki ≥ 0, Gi(x

k) = −t̄k and necessarily i ∈ IGH(xk; t̂k), which is not possible.

3. The case i ∈ supp(ηG,∗) ∩ supp(νH,∗) is completely similar.

4. If i ∈ supp(νG,∗) ∩ νH0 , then ηG,∗i ≥ 0 and ηH,∗i = 0.

5. If i ∈ νG0 ∩ supp(νH,∗), then ηG,∗i ≥ 0 and ηH,∗i = 0.

6. If i ∈ νG0 ∩ νH0 , then ηG,∗i = ηH,∗i = 0.

7. If i ∈ νG0 ∩ supp(ηH,∗), then i ∈ νG0 ∩ supp(ηH,k). Since ηG,k = 0 and ηH,k free, one has
νΦ,k
i ≥ 0 and then i ∈ IGH(xk; t̂k).

ηG,ki = 0⇐⇒ F1i(x
k; t̂k) = tkθ

′
rk

(Gi(x
k))F2i(x

k; t̂k) or ν
Φ,k
i = 0.

Moreover tkθ′rk(Gi(x
k)) > 0, so either νΦ,k

i = 0 either F1i(x
k; t̂k) = F2i(x

k; t̂k) = 0. It
follows that ηG,∗i = ηH,∗i = 0.

8. The case i ∈ supp(ηG,∗) ∩ νH0 is completely similar to the previous case and leads to
ηG,∗i = ηH,∗i = 0.

9. If i ∈ supp(ηG,∗) ∩ supp(ηH,∗), then i ∈ supp(ηG,k) ∩ supp(ηH,k) for k su�ciently large
and i ∈ IGH(xk; t̂k).

(a). i ∈ I00
GH(xk; t̂k) implies that F1i(x

k; t̂k) = F2i(x
k; t̂k), therefore G(xk) = H(xk) = 0

and ηG,∗i = ηH,∗i = 0.

(b). If i ∈ I0+
GH(xk), then F1i(x

k; t̂k) = 0

0 < Hi(x
k) = tkθrk(Gi(x

k)) <
tkθ
′(0)

rk
Gi(x

k),

therefore F2i(x
k; t̂k) > 0. Assume νΦ,k

i is not bounded, then going through the
limit there is a non-negative constant C such that

lim
k→∞

νΦ,k
i F2i(x

k; t̂k) = C ≥ 0,

and so ηH,∗i = −C. If νΦ,k
i is bounded, it corresponds to the case C = 0. Further-

more either one has
lim
k→∞

tkθ
′
rk

(Gi(x
k)) ≥ 0,
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and so ηG,∗i ≥ 0 and ηH,∗i ≤ 0. Either one has

lim
k→∞

tkθ
′
rk

(Gi(x
k)) = 0,

and so ηG,∗i = 0 and ηH,∗i < 0.

(c). The case i ∈ I+0
GH(xk; t̂k) is completely similar to the previous case.

Indices that correspond to the �rst eight cases and 9.a) are indices that satisfy S-
stationary condition. Furthermore, the indices in cases 9.b) and 9.c) when the constant
C = 0 correspond to (i.c) and also have the sign of S-stationary indices. M- and A-stationary
indices may appear only in the case 9.b) when C 6= 0 and either tkθ′rk(Gi(x

k)) = 0 (ii) either
tkθ
′
rk

(Gi(x
k)) > 0 (iii) for i ∈ I+0

GH(xk; t̂k) and symmetrically in case 9.c).

The following proposition proves convergence of the sequence of multipliers under MPCC-
CRSC by a direct application of Theorem 4.4.2. Here, we focus on the sequence of multipliers
{νg,k, νh,k, ηG,k, ηH,k} de�ned in (6.4), where we assume that the gradients associated with the
non-vanishing multipliers in this sequence are linearly independent. Following the discussion
before Theorem 4.4.2, this can be done without loss of generality.

Proposition 6.2.1. Given two sequences {t̂k} and {t̄k} of positive parameters satisfying
(6.2) and decreasing to zero as k goes to in�nity. Let {xk, νk} be a sequence of points that
are stationary points of RB

t̂,t̄
for all k ∈ N with xk → x∗ such that MPCC-CRCQ holds at x∗.

Then, the sequence (6.4) is bounded.

Proof. In order to apply Theorem 4.4.2, we prove that Assumption 1 for {xk, νk} is veri�ed
here. Denote ‖ηk‖∞ := ‖νg,k, νh,k, ηG,k, ηH,k‖∞.

Obviously, (4.4) is satis�ed ∀k ∈ N, since {xk, νk} are stationary points of RB
t̂,t̄
.

Let us now verify condition (4.5). By de�nition of {νg,k} it holds that Ig(xk) ⊂ Ig(x∗)
and so ∀i /∈ Ig(x∗) lim

k→∞
νg,ki = 0. Let i ∈ I+0, we verify that lim

k→∞

ηG,ki

‖ηk‖∞ = 0. The case

∀i ∈ I0+ lim
k→∞

ηG,ki

‖ηk‖∞ = 0 will follow symmetrically.

We can already notice that νG,ki = 0, since by the stationary condition it holds that

νG,ki (Gi(x
k) + t̄k) = 0 and Gi(x

k)→ Gi(x
∗) > 0. Assume by contradiction that lim

k→∞

ηG,ki

‖ηk‖∞ 6=

0. By de�nition of ηG,k and since νG,ki = 0, this implies that νΦ,k > 0. As a consequence
i ∈ IGH and in particular i ∈ I0+

GH , since i ∈ I
+0
GH would be a contradiction with Gi(x

k) →
Gi(x

∗). Besides, it also holds that νH,k = 0, since supp(νΦ,k) ∩ supp(νH,k) = ∅. These
simpli�cations yields

ηG,ki = νΦ,k
i tkθ

′
rk

(Gi(x
k))F2i(x

k; t̂k) and η
H,k
i = −νΦ,k

i F2i(x
k; t̂k).

However, by hypothesis on the sequences {rk} and {tk}, this gives that

0 ≤ lim
k→∞

ηG,ki

‖ηk‖∞
≤ lim

k→∞

ηG,ki

|ηH,ki |
≤ lim

k→∞
tkθ
′
rk

(Gi(x
k)) = 0,
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leading to a contradiction, so ∀i ∈ I+0 lim
k→∞

ηG,ki

‖ηk‖∞ = 0.

In conclusion, {xk, νg,k, νh,k, ηG,k, ηH,k} satis�es the hypothesis of Theorem 4.4.2. The
result follows by its straightforward application.

In [165], the author proves similar convergence results for the relaxations [111] and [112]
using the very weak constraint quali�cation MPCC-CCP, obtained by deriving the sequen-
tial optimality conditions from [14] in non-linear programming to (MPCC). However, this
constraint quali�cation does not ensure boundedness of the sequence of multipliers (6.4),
which is necessary for our previous theorem.

The following example shows that the result of Proposition 6.2.1 is sharp since conver-
gence cannot be ensured assuming only that MPCC-MFCQ holds at the limit point. The
convergence cannot be ensured under MPCC-CRSC, which is weaker than MPCC-MFCQ.

Example 6.2.1. Consider the following two dimensional example

min
(x1,x2)∈R2

x2 s.t 0 ≤ x1 + x2
2 ⊥ x1 ≥ 0.

MPCC-MFCQ holds at (0, 0)T . However, MPCC-CRCQ obviously fails to hold at this point.
In this case, the point (0, 0)T is even not a weak-stationary point.

In this case, there exists a sequence of stationary points of the relaxation that converges
to the origin. Given a sequence {xk}, with {1} ∈ IGH(xk; tk), such that xk → (0, 0)T then
νG,k = νH,k = 0 and we can choose νΦ,k that satis�es

ηG,k = −ηH,k =
1

2xk2
.

The sequence of stationary points {xk}, {λk} converges to an undesirable point.

The main reason for this behaviour is that MPCC-GMFCQ does not give strong enough
conditions in the neighbourhood of a non-M-stationary point.

Theorem 6.2.1 describes the various sequences that can arise from these relaxation meth-
ods in a constructive way. Indeed, it shows that in general the butter�y relaxation may
converge to some undesirable A-stationary points. This theorem also provides a certi�-
cate independent of the computed multiplier that detects during the iterations, whether the
method converges to this kind of undesirable point. According to condition (iii) from The-
orem 6.2.1 if we detect for k su�ciently large that there exists an index i ∈ I00(x∗) such
that

either i ∈ I0+
GH(xk; t̂k), lim

k→∞
tkθ
′
rk

(Gi(x
k)) > 0 or i ∈ I+0

GH(xk; t̂k), lim
k→∞

tkθ
′
rk

(Hi(x
k)) > 0

then xk converges to an A-stationary point and not more. This is a priori not a trivial task,
since the set of multipliers at those points is not bounded and an M-stationary point may
be de�ned for only a subset of multipliers among the unbounded set of multipliers at this
point. The following examples illustrate this phenomenon.
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Example 6.2.2.

min
(x1,x2)∈R2

x2
1 + x1x2 + x2

2 −
1

2
x1 + x2 s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

There exist two stationary points : an A-stationary point (0, 0)T and the global minimum
(1

4
, 0)T . Similar computation gives two stationary points for the Butter�y relaxation (6.3)

with tk = rk, ∀k ∈ N : (1/2, 0)T and a point (x1, x2)T such that

x1 = tθr(x2), 0 =
1

2
+ tθr(x2) + 2x2 − tθ′r(x2)(1− 2tθr(x2)− x2).

The following corollary of Theorem 6.2.1 shows that for some choice of parameters we
can get rid of the undesirable A-stationary points. It is an essential result, since it shows
that a subfamily of the butter�y relaxation has the desired convergence property to converge
to an M-stationary point.

Corollary 6.2.1. Given two sequences {t̂k} and {t̄k} of positive parameters satisfying (6.2),
tk = o(rk), and decreasing to zero as k goes to in�nity. Let {xk, νk} be a sequence of points
that are stationary points of RB

t̂,t̄
for all k ∈ N with xk → x∗. Assume that the sequence (6.4)

is bounded. Then, x∗ is an M-stationary point.

Proof. The proof that x∗ is an A-stationary follows the same path than in the proof of
Theorem 6.2.1. Thus, it remains to verify that for i ∈ I00 there is no indices such that
ηG,∗i ηH,∗i < 0.

In the proof of the Theorem 6.2.1 we consider all the possible cases, and it follows the case
ηG,∗i ηH,∗i < 0 may only occur in the case (9).(b) (and by symmetry (9).(c)). In particular, if
the sequence {tk}, {rk} and {xk} satisfy

lim
k→∞

tkθ
′
rk

(Gi(x
k)) > 0.

However, by Lemma 1.4.5 this is a contradiction with tk = o(rk). So, x∗ is a M-stationary
point. This concludes the proof.

For this relation between the parameters t and r, we can improve the result of Proposition
6.2.1 by a straightforward application of Theorem 4.4.3.

Proposition 6.2.2. Given two sequences {t̂k} and {t̄k} of positive parameters satisfying
(6.2), tk = o(rk), and decreasing to zero as k goes to in�nity. Let {xk, νk} be a sequence of
points that are stationary points of RB

t̂,t̄
for all k ∈ N with xk → x∗ such that MPCC-CRSC

holds at x∗. Then, the sequence (6.4) is bounded.

In conclusion, a sequence of stationary points of the butter�y relaxation with tk = o(rk)
that satis�es MPCC-CRSC at its limit point converges to an M-stationary point. The
following example shows that this result is sharp, since it illustrates an example where
MPCC-CRSC does not hold and the method converges to an undesirable weak-stationary
point. This phenomenon only happens if the sequence of multipliers (6.4) is unbounded.
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Example 6.2.3 (Continuation of Example 4.5.1).

min
(x1,x2)∈R2

x2
2 s.t 0 ≤ x2

1 ⊥ x1 + x2
2 ≥ 0.

The feasible set of this example is the set Z = {(x1, x2)T ∈ R2 | x1 = 0} ∪ {(x1, x2)T ∈
R2 | x1 = −x2

2}. There is a unique stationary point (0, 0), which is M-stationary with
(λG, λH = 0).

It is easy to verify that MPCC-CCP holds at this point. However, MPCC-CRSC fails to
hold at any point (0, a ∈ R)T since the gradient of x2

1 is non-zero for x 6= 0.
In this example the butter�y relaxation method may fail to converge to a weak-stationary

point. Indeed, for x∗ = (0, a 6= 0)T we can �nd a sequence xk such that for tk, rk su�ciently
small F2(xk; t̂k) = 0 and

xk1 = tkθ
′
rk

(xk1 + a2), xk2 = a, νΦ,kF1(xk; t̂k) =
1

−tkθ′rk(x
k
1 + a2)

.

In this case, we have

ηG,k =
1

tkθ′rk(x
k
1 + a2)

→∞ and ηH,k = −1,

which is not a weak stationary point, since ηH,k 6= 0.

6.3 Existence of Lagrange multipliers of the relaxed sub-

problems

In this part, we consider regularity properties of the relaxed non-linear programs. Indeed,
in order to guarantee the existence of a sequence of stationary points the relaxed non-
linear programs must satisfy some constraint quali�cations in the neighbourhood of the
limit point. The butter�y relaxation satis�es Guignard CQ as stated in Theorem 6.3.1,
which is equivalent in terms of regularity to the relaxation (KS). The butter�y relaxation
with tθ′(0) = r are more regular as they satisfy Abadie CQ, see Theorem 6.3.2. In our proofs
we use the following results from [184] which allows the tangent cone of XB

t̂,t̄
and its polar to

be computed.

Lemma 6.3.1. [184, Lemma 8.10] For all t > 0 and all x feasible for RB
t̂,t̄
,

TXB
t̂,t̄

(x) = ∪I⊆I00
GH(x;t̂)TX (t̂,I)(x),

where X (t̂, I) is the feasible set of the non-linear program NLPt,I(x) with I ⊆ I00
GH(x; t̂)
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de�ned as

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

G(x) ≥ −t̄e, H(x) ≥ −t̄e,
ΦB
i (G(x), H(x); t̂) ≤ 0, i /∈ I00

GH(x; t̂),

F1i(x; t̂) ≤ 0, F2i(x; t̂) ≥ 0, i ∈ I,
F1i(x; t̂) ≥ 0, F2i(x; t̂) ≤ 0, i ∈ Ic,

(NLPt,I(x))

where I ∪ Ic = I00
GH(x; t̂) and I ∩ Ic = ∅.

We also need the following lemma that links the gradients of G and H with the gradients
of F1(x; t̂) and F2(x; t̂).

Lemma 6.3.2. Let I ∈ P(I00
GH(x; t̂)). Assume that the gradients

{∇gi(x) (i ∈ Ig(x)), ∇hi(x) (i = 1, . . . ,m),

∇Gi(x) (i ∈ I00
GH(x; t̂) ∪ I+0

GH(x; t̂)), ∇Hi(x
∗) (i ∈ I00

GH(x; t̂) ∪ I0+
GH(x; t̂))}

are linearly independent. Then, MFCQ holds at x for (NLPt,I(x)).

Proof. We show that the gradients of the constraints of (NLPt,I(x)) are positively linearly
independent. For this purpose, we prove that the trivial solution is the only solution to the
equation

0 =
∑

i∈Ig(x)

νgi∇gi(x) +
m∑
i=1

νhi ∇hi(x) +
∑

i∈IG(x;t̂)

νGi ∇Gi(x) +
∑

i∈IH(x;t̂)

νHi ∇Hi(x)

+
∑

i∈I+0
GH(x;t̂)∪I0+

GH(x;t̂)

νΦ
i ∇ΦB

i (G(x), H(x); t̂) +
∑
i∈I

νF1
i ∇F1i(x; t̂)−

∑
i∈I

νF2
i ∇F2i(x; t̂)

−
∑
i∈Ic

µF1
i ∇F1i(x; t̂) +

∑
i∈Ic

µF2
i ∇F2i(x; t̂),

with νg, νG, νH , νΦ, νF1 , νF2 , µF1 , µF2 ≥ 0. By de�nition of F1 and F2 it holds that

∇xF1i(x; t̂) = ∇Hi(x)− tθ′r(Gi(x))∇Gi(x),

∇xF2i(x; t̂) = ∇Gi(x)− tθ′r(Hi(x))∇Hi(x).

The gradient of ΦB is given by Lemma 6.1.3. We now replace those gradients in the equation
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above

0 =
∑

i∈Ig(x)

νgi∇gi(x) +
m∑
i=1

νhi ∇hi(x) +

q∑
i=1

∇Gi(x)
(
νGi + νΦ

i (F1i(x; t̂)− F2i(x; t̂)tθ′r(Gi(x)))
)

+

q∑
i=1

∇Gi(x)
(
−νF1

i tθ
′
r(Gi(x))− νF2

i + µF1
i tθ

′
r(Gi(x)) + µF2

i

)
+

q∑
i=1

∇Hi(x)
(
νHi + νΦ

i (F2i(x; t̂)− F1i(x; t̂)tθ′r(Hi(x)))
)
,

+

q∑
i=1

∇Hi(x)
(
−νF2

i tθ
′
r(Hi(x))− νF1

i + µF2
i tθ

′
r(Hi(x)) + µF1

i

)
,

with supp(νg) ⊂ Ig(x), supp(νG) ⊂ IG(x; t̂), supp(νH) ⊂ IH(x; t̂), supp(νΦ) ⊂ I+0
GH(x; t̂) ∪

I0+
GH(x; t̂), supp(νF1) ⊂ I, supp(νF2) ⊂ I and supp(µF1) ⊂ Ic, supp(µF2) ⊂ Ic where I ∪ Ic =
I00
GH(x; t̂) and I ∩ Ic = ∅. Using the assumption of linear independence of the gradients gives

that the solution of the equation above satisfy the following system of equations

νg = 0, νh = 0, νG = 0, νH = 0,

− νΦ
i F2i(x; t̂)tθ′r(Gi(x)) = 0 and νΦ

i F2i(x; t̂) = 0 ∀i ∈ I0+
GH(x; t̂),

νΦ
i F1i(x; t̂) = 0 and − νΦ

i F1i(x; t̂)tθ′r(Hi(x)) = 0 ∀i ∈ I+0
GH(x; t̂),

− νF1
i tθ

′
r(Gi(x))− νF2

i = 0 and − νF2
i tθ

′
r(Hi(x))− νF1

i = 0 ∀i ∈ I,
µF1
i tθ

′
r(Gi(x)) + µF2

i = 0 and µF2
i tθ

′
r(Hi(x)) + µF1

i = 0 ∀i ∈ Ic.

From the second and third equations it follows that νΦ
i = 0. The second last equation for

i ∈ I gives
νF2
i = −νF1

i tθ
′
r(Gi(x)).

This implies that νF1
i = νF2

i = 0 by non-decreasing hypothesis on θ and non-negativity of
νF1
i and νF2

i . We proceed in the exact same way with the last equation to get µF1
i = µF2

i = 0.
This completes the proof that the trivial solution is the only solution to our �rst equation
and so the result follows.

Now we move to the theorem stating the constraint quali�cations satis�ed by the butter�y
relaxation.

Theorem 6.3.1. Let x∗ ∈ Z such that MPCC-LICQ holds at x∗. Then, there exists t∗ > 0
and a neighbourhood U(x∗) of x∗ such that for all t ∈ (0, t∗], if x ∈ U(x∗)∩XB

t̂,t̄
, then standard

GCQ for RB
t̂,t̄

holds at x.

Proof. Let x ∈ Rn be such that x ∈ U(x∗) ∩ XB
t̂,t̄
.

First we note that it always holds that L ◦
XB
t̂,t̄

(x) ⊆ T ◦XB
t̂,t̄

(x). So, it su�cient to show the

reverse inclusion.
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The linearised cone of RB
t̂,t̄

is given by

LXB
t̂,t̄

(x) = {d ∈ Rn | ∇gi(x)Td ≤ 0, i ∈ Ig(x), ∇hi(x)Td = 0, i = 1, . . . ,m

∇Gi(x)Td ≥ 0, i ∈ IG(x), ∇Hi(x)Td ≥ 0, i ∈ IH(x)

∇ΦB
i (G(x), H(x); t̂)

T
d ≤ 0, i ∈ I0+

GH(x; t̂) ∪ I+0
GH(x; t̂)},

using that ∇ΦB
i (G(x), H(x); t̂) = 0 for all i ∈ I00

GH(x, t̂). Let us compute the polar of the
tangent cone. Consider the non-linear program (NLPt,I(x)) with I ⊂ I00

GH(x; t̂).
By construction of U(x∗) and t∗, the gradients {∇gi(x∗) (i ∈ Ig(x∗)),∇hi(x∗) (i =

1, . . . ,m),∇Gi(x
∗) (i ∈ I00(x∗) ∪ I0+(x∗),∇Hi(x

∗) (i ∈ I+0(x∗) ∪ I00(x∗))} remain linearly
independent for all x ∈ U(x∗) by continuity of the gradients in a neighbourhood and

Ig(x) ⊆ Ig(x∗),
IG(x) ⊆ I00(x∗) ∪ I0+(x∗),

IH(x) ⊆ I+0(x∗) ∪ I00(x∗),

I00
GH(x; t̂) ∪ I+0

GH(x; t̂) ⊆ I00(x∗) ∪ I0+(x∗),

I00
GH(x; t̂) ∪ I0+

GH(x; t̂) ⊆ I+0(x∗) ∪ I00(x∗).

Therefore, we can apply Lemma 6.3.2 that gives that MFCQ holds for (NLPt,I(x)) at x.
Furthermore, by Lemma 6.3.1 and since MFCQ in particular implies Abadie CQ it follows

TXB
t̂,t̄

(x) = ∪I⊆I00
GH(x;t̂)TNLP (t̂,I)(x) = ∪I⊆I00

GH(x;t̂)LNLP (t̂,I)(x).

By Proposition 1.1.6, passing to the polar yields

TXB
t̂,t̄

(x)◦ = ∩I⊆I00
GH(x;t̂)LNLP (t̂,I)(x)◦,

and by Lemma 1.1.2

LNLP (t̂,I)(x)◦ = {v ∈ Rn | v =
∑

i∈Ig(x)

νgi∇gi(x) +
m∑
i=1

νhi ∇hi(x)−
∑

i∈IG(x)

νGi ∇Gi(x)

−
∑

i∈IH(x)

νHi ∇Hi(x) +
∑

i∈I+0
GH(x;t̂)∪I0+

GH(x;t̂)

νΦ
i ∇ΦB

i (G(x), H(x); t̂)

−
∑
i∈I

νGi ∇Gi(x) +
∑
i∈Ic

νGi ∇Gi(x)−
∑
i∈I

νHi ∇Hi(x)

+
∑
i∈Ic

νHi ∇Hi(x) : νg, νG, νH , νΦ ≥ 0}.

Taking v ∈ TXB
t̂,t̄

(x)◦ implies v ∈ LNLP (t̂,I)(x)◦ for all I ⊆ I00
GH(x; t̂). If we �x such I, then
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there exists some multipliers νh and νg, νG, νH , νΦ ≥ 0 so that

v =
∑

i∈Ig(x)

νgi∇gi(x) +
m∑
i=1

νhi ∇hi(x)−
∑

i∈IG(x)

νGi ∇Gi(x)−
∑

i∈IH(x)

νHi ∇Hi(x)

+
∑

i∈I+0
GH(x;t̂)∪I0+

GH(x;t̂)

νΦ
i ∇ΦB

i (G(x), H(x); t̂)−
∑
i∈I

νGi ∇Gi(x) +
∑
i∈Ic

νGi ∇Gi(x)

−
∑
i∈I

νHi ∇Hi(x) +
∑
i∈Ic

νHi ∇Hi(x).

Now, it also holds that v ∈ LNLP (t̂,Ic)(x)◦ and so there exists some multipliers νh and
νg, νG, νH , νΦ ≥ 0 such that

v =
∑

i∈Ig(x)

νgi∇gi(x) +
m∑
i=1

νhi ∇hi(x)−
∑

i∈IG(x)

νGi ∇Gi(x)−
∑

i∈IH(x)

νHi ∇Hi(x)

+
∑

i∈I+0
GH(x;t̂)∪I0+

GH(x;t̂)

νΦ
i ∇ΦB

i (G(x), H(x); t̂) +
∑
i∈I

νGi ∇Gi(x)−
∑
i∈Ic

νGi ∇Gi(x)

+
∑
i∈I

νHi ∇Hi(x)−
∑
i∈Ic

νHi ∇Hi(x).

By construction of t∗ and U(x∗) the gradients involved here are linearly independent and so
the multipliers in both previous equations must be equal. Thus, the multipliers νGi and νHi
with indices i in I ∪ Ic vanish.
Therefore, v ∈ LXB

t̂,t̄
(x)◦ and as v has been chosen arbitrarily then TXB

t̂,t̄
(x)◦ ⊆ LXB

t̂,t̄
(x)◦.

The result follows since it always holds that LXB
t̂,t̄

(x)◦ ⊆ TXB
t̂,t̄

(x)◦.

This result is sharp as shown by the following example, since Abadie CQ does not hold
except for the special case where tθ′(0) = r.

Example 6.3.1.
min

(x1,x2)∈R2
f(x) s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

At x∗ = (0, 0)T it holds that ∇ΦB(G(x∗), H(x∗); t̂) = (0, 0)T and so LXB
t̂,t̄

(x∗) = R2, which is

obviously di�erent from the tangent cone at x∗ for t < θ′(0)r.
However, for tθ′(0) = r the tangent cone is the whole space and thus Abadie CQ holds at

x∗ in this case.

Regarding the butter�y relaxation with tθ′(0) = r an improved regularity result holds.

Theorem 6.3.2. Let x∗ ∈ Z such that MPCC-LICQ holds at x∗. Then, there exists t∗ > 0
and a neighbourhood U(x∗) of x∗ such that the following holds for all t ∈ (0, t∗]. If x ∈
U(x∗) ∩ XB

tθ′(0)=r, then standard ACQ for RB
tθ′(0)=r holds in x.
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Proof. Let x ∈ Rn be such that x ∈ U(x∗) ∩ XB
tθ′(0)=r.

The proof follows exactly the ones of Theorem 6.3.1, until we compute the tangent cone
of XB

tθ′(0)=r as

TXB
tθ′(0)=r

(x) = ∪I⊆I00
GH(x;t̂)TNLP (t,I)(x) = ∪I⊆I00

GH(x;t̂)LNLP (t,I)(x),

since in particular ACQ holds in x for (NLPt,I(x)). A simple computation gives the linearised
tangent cone for (NLPt,I(x))

LNLPt,I (x) = {d ∈ Rn | ∇gi(x)Td ≤ 0, i ∈ Ig(x), ∇hi(x)Td = 0, i = 1, . . . ,m

∇Gi(x)Td ≥ 0, i ∈ IG(x), ∇Hi(x)Td ≥ 0, i ∈ IH(x)

∇F1i(x; t̂)
T
d ≤ 0, ∇F2i(x; t̂) ≥ 0, i ∈ I

∇F1i(x; t̂)
T
d ≥ 0, ∇F2i(x; t̂) ≤ 0, i ∈ Ic

∇ΦB
i (G(x), H(x); t̂)

T
d ≤ 0, i ∈ I0+

GH(x; t̂) ∪ I+0
GH(x; t̂)}.

Moreover one has for all I ⊆ I00
GH(x; t̂),

∇F1i(x; t̂) = ∇Hi(x)− tθ′r(Gi(x))∇Gi(x)

= ∇Hi(x)−∇Gi(x) = −∇F2i(x; t̂),

since tθ′(0) = r and for all i ∈ I00
GH(x; t̂) it follows that Gi(x) = Hi(x) = 0.

It is to be noted that

∪I⊆I00
GH(x;t̂){d ∈ Rn | ∇Hi(x)Td ≤ ∇Gi(x), i ∈ I ; ∇Hi(x)Td ≥ ∇Gi(x), i ∈ Ic} = Rn.

Therefore, it holds that

∪I⊆I00
GH(x;t̂)LNLP (t,I)(x) = {d ∈ Rn | ∇gi(x)Td ≤ 0, i ∈ Ig(x), ∇hi(x)Td = 0, i = 1, . . . ,m

∇Gi(x)Td ≥ 0, i ∈ IG(x), ∇Hi(x)Td ≥ 0, i ∈ IH(x)

∇ΦB
i (G(x), H(x); t̂)

T
d ≤ 0, i ∈ I0+

GH(x; t̂) ∪ I+0
GH(x; t̂)}.

Thus, ∪I⊆I00
GH(x;t̂)LNLP (t,I)(x) = LXB

tθ′(0)=r
(x) and the result follows.

This result is sharp since very weak constraint quali�cation CCP does not hold in the
example 6.3.1.

Example 6.3.2. We show that CRSC and CCP do not hold in x∗ = (0, 0)T for the relaxation
RB
tθ′(0)=r.
It holds that ∇ΦB

tθ′(0)=r(x
∗) = (0, 0)T , therefore ∇ΦB

tθ′(0)=r(x
∗) ∈ −L (x∗)◦. However, for

any x in a small neighbourhood around x∗ the gradient ∇ΦB
tθ′(0)=r(x

∗) 6= (0, 0)T . So, the rank
is not constant in this neighbourhood and CRSC does not hold in x∗.
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In order to verify that CCP does not hold in x∗, we check that there exists an AKKT
sequence that does not converge to a KKT point. Given {xk}, {νG,k}, {νH,k}, {νΦ,k} such
that

lim
k→∞
∇f(xk) + νΦ,k∇ΦB

(tθ′(0)=r)(x
k)− νG,k∇G(xk)− νH,k∇H(xk) = 0,

lim
k→∞

min(νΦ,k,−ΦB
(tθ′(0)=r)(x

k)) = 0,

lim
k→∞

min(νG,k, G(xk)) = 0,

lim
k→∞

min(νH,k, H(xk)) = 0.

We can �nd a sequence xk such that tkθ′rk(H(xk)) → 0, F1i(x
k; t̂k) = 0, F2i(x

k; t̂k) ≥ 0 and
νk = 1

kF2i(xk;t̂k)
, νG,k → 1

k
, νH,k → 0 so that CCP does not hold at x∗.

The following example shows that we cannot have a similar result with MPCC-MFCQ
instead of MPCC-LICQ for Theorem 6.3.2.

Example 6.3.3. Consider the two-dimensional set

{(x1, x2) ∈ R2 | 0 ≤ x1 + x2
2 ⊥ x1 ≥ 0}.

MPCC-MFCQ holds at x∗ = (0, 0)T , since the gradients are linearly dependent but only with
coe�cients λG = −λH and thus the gradients are positively linearly independent.

Now, taking a sequence of stationary point such that xk → x∗ = (0, 0)T and

F2(xk; t̂k) = 0,−tkθ′rk(H(xk))→ −1.

Since ∇G(x∗) = ∇H(x∗) it holds that ∇F2(x∗; 0) = (0 0)T and so MFCQ does not hold for
(NLPt,I(x)).

Both Theorem 6.3.1 and Theorem 6.3.2 are slightly disappointing since MPCC-LICQ is
quite a strong assumption. Fortunately, the following result guarantees that the di�culties
are only located in indices i of x∗ that belongs to I00(x∗).

Theorem 6.3.3. Let x∗ ∈ Z be such that MPCC-LICQ holds at x∗. Then, there exists
t∗ > 0 and a neighbourhood U(x∗) of x∗ such that the following holds for all t ∈ (0, t∗]. If
x ∈ U(x∗) ∩ XB

t̂,t̄
and I00

GH(x; t̂) = ∅, then standard LICQ for RB
t̂,t̄

holds in x.

Proof. Following the same path as Lemma 6.3.2, the gradient of the Lagrangian for RB
t̂,t̄

at
x ∈ U(x∗) for t̂ su�ciently small gives

0 =
∑

i∈Ig(x)

νgi∇gi(x) +
m∑
i=1

νhi ∇hi(x) +
∑

i∈IG(x)

∇Gi(x)νGi +
∑

i∈IH(x)

∇Hi(x)νHi

+
∑

i∈I+0
GH(x;t̂)

∇Gi(x)
(
νΦ
i (F1(x; r, t)i(x; t̂)− F2i(x; t̂)tθ′r(Gi(x)))

)
+
∑

i∈I0+
GH(x;t̂)

∇Hi(x)
(
νΦ
i (F2i(x; t̂)− F1i(x; t̂)tθ′r(Hi(x)))

)
.
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Using the assumption of linear independence of the gradients and

Ig(x) ⊆ Ig(x∗),
IG(x) ⊆ I00(x∗) ∪ I0+(x∗),

IH(x) ⊆ I+0(x∗) ∪ I00(x∗),

I+0
GH(x; t̂) ⊆ I00(x∗) ∪ I0+(x∗),

I0+
GH(x; t̂) ⊆ I+0(x∗) ∪ I00(x∗),

gives that the solution of the equation above satisfy the following system of equations

νg = 0, νh = 0, νG = 0, νH = 0,

− νΦ
i F2i(x; t̂)tθ′r(Gi(x)) = 0 and νΦ

i F2i(x; t̂) = 0 ∀i ∈ I0+
GH(x; t̂),

νΦ
i F1i(x; t̂) = 0 and − νΦ

i F1i(x; t̂)tθ′r(Hi(x)) = 0 ∀i ∈ I+0
GH(x; t̂).

From the second and third equations it follows that νΦ
i = 0. So, the only solution is the

trivial solution. Thus, the result follows.

6.4 Convergence of the epsilon-stationary points

Non-linear programming algorithms usually compute sequences of approximate stationary
points or epsilon-stationary points. This approach that has become an active subject recently
alter signi�cantly the convergence analysis of relaxation methods as stated in [111, 113, 115]
and [165]. Previous results in the literature in [115] provide convergence to C-stationary
point for the relaxation (SS) and the one from Lin and Fukushima, [126], at the limit
point and under the hypothesis on the sequence εk, respectively εk = O(tk) and εk = o(t2k).
Furthermore, they provide a counter-example with sequences converging to a weak-stationary
point if this conditions does not hold. Although in [115], the authors prove that relaxation
(SU), (KDB) and (KS) converge only to a weak stationary point and require more hypothesis
on the sequences εk and xk to improve to a C- or an M-stationary limit point.

In the following theorem we prove that the situation is similar with the new butter�y
relaxation method. For this study, we need more than just the describtion of the boundary
of the constraint, we consider the butter�y relaxation de�ned in equation (6.3).

Lemma 6.4.1. Given {t̂k} a sequence of parameters satisfying (6.2) and {εk} a sequence of
non-negative parameters such that both sequences decrease to zero as k ∈ N goes to in�nity
and for k su�ciently large εk = o(tk). Let {xk, νk} be a sequence of epsilon-stationary points
of (RB

t̂,t̄
) for all k ∈ N with xk → x∗. Let {ηG,k}, {ηH,k} be two sequences such that

ηG,ki :=

{
νG,ki +νΦ,k

i

(
tkθ
′
rk

(Gi(x
k))F2i(x

k; t̂k)−F1i(x
k; t̂k)

)
if F1i(x

k; t̂k)≥−F2i(x
k; t̂k)

νG,ki +νΦ,k
i

(
F2i(x

k; t̂k)−tkθ′rk(Gi(x
k))F1i(x

k; t̂k)
)
if F1i(x

k; t̂k)<−F2i(x
k; t̂k)

ηH,ki :=

{
νH,ki +νΦ,k

i

(
tkθ
′
rk

(Hi(x
k))F1i(x

k; t̂k)−F2i(x
k; t̂k)

)
if F1i(x

k; t̂k)≥−F2i(x
k; t̂k)

νH,ki +νΦ,k
i

(
F1i(x

k; t̂k)−tkθ′rk(Hi(x
k))F2i(x

k; t̂k)
)
if F1i(x

k; t̂k)<−F2i(x
k; t̂k)

(6.5)
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for i ∈ {1, . . . , q}. Assume that the sequence of multipliers {νh,k, νg,k, ηG,k, ηH,k} is bounded.
Then, x∗ is a weak-stationary point of (MPCC).

Proof. By de�nition, since xk is an epsilon-stationary point for RB
t̂,t̄

it holds for all k ∈ N∥∥∥∥∥∇f(xk) +

p∑
i=1

νg,ki ∇gi(xk) +
m∑
i=1

νh,ki ∇hi(xk)−
q∑
i=1

νG,ki ∇Gi(x
k)

−
q∑
i=1

νH,ki ∇Hi(x
k) +

q∑
i=1

νΦ,k
i ∇ΦB

i (G(xk), H(xk); t̂k)

∥∥∥∥∥
∞

≤ εk,

with

|hi(xk)| ≤ εk, ∀i ∈ {1, . . . ,m},

gi(x
k) ≤ εk, ν

g,k
i ≥ 0,

∣∣∣νg,ki gi(x
k)
∣∣∣ ≤ εk ∀i ∈ {1, . . . , p},

Gi(x
k) + t̄k ≥ −εk, νG,ki ≥ 0,

∣∣∣νG,ki (Gi(x
k) + t̄k)

∣∣∣ ≤ εk ∀i ∈ {1, . . . , q},

Hi(x
k) + t̄k ≥ −εk, νH,ki ≥ 0,

∣∣∣νH,ki (Hi(x
k) + t̄k)

∣∣∣ ≤ εk ∀i ∈ {1, . . . , q},

ΦB
i (G(xk), H(xk); t̂k) ≤ εk, ν

Φ,k
i ≥ 0,

∣∣∣νΦ,k
i ΦB

i (G(xk), H(xk); t̂k)
∣∣∣ ≤ εk ∀i ∈ {1, . . . , q}.

The representation of ΦB
i (G(xk), H(xk); t̂k) immediately gives∇ΦB

i (G(xk), H(xk); t̂k) = 0, ∀i ∈
I00
GH(xk; t̂k) for all k ∈ N. Thus, we can rewrite the equation above as∥∥∥∥∥∇f(xk) +

p∑
i=1

νg,ki ∇gi(xk) +
m∑
i=1

νh,ki ∇hi(xk)−
q∑
i=1

ηG,ki ∇Gi(x
k)

−
q∑
i=1

ηH,ki ∇Hi(x
k)

∥∥∥∥∥
∞

≤ εk.

Besides, the sequence of multipliers {νh,k, νg,k, ηG,k, ηH,k} is assumed bounded. Therefore, it
follows that the sequence converges up to some subsequence to some limit point so that

{νh,k, νg,k, ηG,k, ηH,k} → (νh, νg, ηG, ηH).

It is to be noted that for k su�ciently large it holds

supp(νg,k) ⊂ supp(νg),

supp(ηG,k) ⊂ supp(ηG),

supp(ηH,k) ⊂ supp(ηH).

We prove that (x∗, νh, νg, ηG, ηH) is a weak-stationary point. Obviously, since εk ↓ 0 it follows
that x∗ ∈ Z, ∇xL1

MPCC(x∗, νh, νg, ηG, ηH) = 0 by previous inequality and that νgi = 0 for
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i /∈ Ig(x∗). It remains to show that for indices i ∈ I+0(x∗), ηGi = 0. The opposite case for
indices i ∈ I0+(x∗) would follow in a completely similar way. So, let i be in I+0(x∗).
By de�nition of εk-stationarity it holds for all k that

|νG,ki (Gi(x
k) + t̄k)| ≤ εk.

Therefore, νG,ki →k→∞ 0 since εk ↓ 0 and Gi(x
k)→ Gi(x

∗) > 0.
Now, there is two possible cases either F1i(x

k; t̂k) + F2i(x
k; t̂k) ≥ 0 either F1i(x

k; t̂k) +
F2i(x

k; t̂k) < 0. Consider the case F1i(x
k; t̂k) + F2i(x

k; t̂k) ≥ 0 and denote

αH(xki ; t̂k) := −tkθ′rk(Gi(x
k))F2i(x

k; t̂k) + F1i(x
k; t̂k),

αG(xki ; t̂k) := −tkθ′rk(Hi(x
k))F1i(x

k; t̂k) + F2i(x
k; t̂k).

It remains to prove that αH(xki ; t̂k)ν
Φ,k
i →k→∞ 0. Assume by contradiction that

lim
k→∞

αH(xki ; t̂k)ν
Φ,k
i = C < 0, (6.6)

which is necessary a �nite value by boundedness hypothesis of the sequence of multipliers.
Obviously the sequence {νΦ,k} must be unbounded otherwise (6.6) does not hold.

Additionally, limk→∞ F1i(x
k; t̂k)ν

Φ,k
i = 0 since

∣∣∣νΦ,k
i ΦB

i (G(xk), H(xk); t̂k)
∣∣∣ ≤ εk. So,

by (6.3) we have that lim
k→∞

αGi (xk; tk) = Gi(x
∗) > 0 and therefore lim

k→∞
αG(xk; tk)ν

Φ,k
i =

lim
k→∞

Gi(x
k)νΦ,k

i =∞. Boundedness assumption in the statement of the theorem implies that

ηHi is bounded and so
lim
k→∞
|νH,ki − αG(xk; tk)ν

Φ,k
i | <∞.

The complementarity conditions on Hi(x
k) ≥ −t̄k give that necessary Hi(x

k) ∼ −t̄k other-
wise νH,ki would be unbounded. However, this leads to a contradiction with νΦ,k →∞, since
νΦ,k
i F1i(x

k; t̂k) → 0 gives that νΦ,k
i t̄k ≤ εk and we assume in the statement of the theorem

that εk = o(t̄k). So in the case F1i(x
k; t̂k) + F2i(x

k; t̂k) ≥ 0 it holds that ηG,∗i = 0.
Let us consider the case F1i(x

k; t̂k) + F2i(x
k; t̂k) < 0. As pointed out above it is true

by (6.3) that F1i(x
k; t̂k) → Hi(x

∗) and F2i(x
k; t̂k) → Gi(x

∗). Therefore, for k su�ciently
large this case never happen since we choose i ∈ I0+(x∗). This concludes the proof that
ηG,∗i = 0. The case i ∈ I0+(x∗) is completely similar by symmetry and gives that ηH,∗i = 0
for i ∈ I+0(x∗). So, x∗ is a weak-stationary point.

In order to attain the goal of computing a M-stationary, additional assumptions are
required as illustrated by the following result.

Lemma 6.4.2. Given {t̂k} a sequence of parameters satisfying (6.2) and {εk} a sequence of
non-negative parameters such that both sequences decrease to zero as k ∈ N goes to in�nity.
Assume that εk = o(max(G(xk), H(xk), t̄k)) and tk = o(rk). Let {xk, νk}k be a sequence of
epsilon-stationary points of (RB

t̂,t̄
) for all k ∈ N with xk → x∗. Let {ηG,k}, {ηH,k} be two

sequences de�ned in (7.3). Assume that the sequence of multipliers {νh,k, νg,k, ηG,k, ηH,k} is
bounded. Then, x∗ is an M-stationary point of (MPCC).
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The notation εk = o(max(|G(xk)|, |H(xk)|)) means here that for all i = 1, . . . , q, εk =
o(max(|Gi(x

k)|, |Hi(x
k)|)).

Proof. By Lemma 6.4.1, we already known that x∗ is a W-stationary point.
We now consider indices i ∈ I00. Our aim here is to prove that x∗ is a M-stationary point,

i.e. whenever ηG,ki ηH,ki → ηG,∗i ηH,∗i it holds that either ηG,∗i ηH,∗i = 0 or ηG,∗i > 0, ηH,∗i > 0 .
Without loss of generality suppose that max(|Gi(x

k)|, |Hi(x
k)|) = |Gi(x

k)| 6= 0, and so
limk→∞

εk
|Gi(xk)| = 0. If Gi(x

k) = 0, then it follows that Hi(x
k) = 0 and we are done. Let α

be such that

lim
k→∞

|Gi(x
k)|

|tkθrk(Hi(xk))|
= α.

It should be noticed that α > 1, otherwise |Gi(x
k)| ∼ |tkθrk(Hi(x

k))|, which is a contradiction
with |Gi(x

k)| ≥ |Hi(x
k)| and tk = o(rk).

If the sequence {λΦ,k} is bounded, then ηG,∗i ≥ 0, ηH,∗i ≥ 0 and we are done by non-
negativity of λG,k and λH,k. So, we focus on an unbounded sequence {λΦ,k}.

We consider separately the two cases F1i(x
k; t̂k)+F2i(x

k; t̂k) ≥ 0 and F1i(x
k; t̂k) + F2i(x

k; t̂k) < 0.

a) When F1i(x
k; t̂k) + F2i(x

k; t̂k) ≥ 0, we have∣∣∣∣λΦ,k
i F1i(x

k; t̂k)
F2i(x

k; t̂k)

Gi(xk)

∣∣∣∣ =

∣∣∣∣λΦ,k
i F1i(x

k; t̂k)

(
1− tkθrk(Hi(x

k))

Gi(xk)

)∣∣∣∣ ≤ εk
|Gi(xk)|

,

so λΦ,k
i F1i(x

k; t̂k)→ 0 and F2i(x
k; t̂k) > 0, since α > 1.

By the complementarity condition |λG,k(Gi(x
k) + t̄k)| ≤ εk, we obtain∣∣∣∣λG,ki

(
1 +

t̄k
Gi(xk)

)∣∣∣∣ ≤ εk
|Gi(xk)|

.

If limk→∞ λ
G,k
i = 0, then by boundedness assumption limk→∞ η

G,k
i = 0 and we are

done. So, we consider limk→∞ λ
G,k
i 6= 0, which implies that limk→∞Gi(x

k)/t̄k = −1.

In a similar way, if limk→∞ λ
H,k
i = 0, then limk→∞ η

H,k
i = 0 by boundedness assumption.

So, we consider limk→∞ λ
H,k
i 6= 0, which implies that limk→∞Hi(x

k)/t̄k = −1.

Using that Gi(x
k) < 0 and F2i(x

k; t̂k) > 0, we have

0 ≥ Gi(x
k)

t̄k
≥ tkθrk(Hi(x

k))

t̄k
∼ tkθ

′(0)Hi(x
k)

rk t̄k
∼ tkθ

′(0)

rk
,

where the �rst equivalence comes from Taylor formula of order 1 of functions θs at 0.
So, limk→∞Gi(x

k)/t̄k = 0. However, this contradicts limk→∞Gi(x
k)/t̄k = −1, which

completes the proof in this case.
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b) When F1i(x
k; t̂k) + F2i(x

k; t̂k) < 0, since
∣∣∣λΦ,k
i ΦB

i (G(xk), H(xk); t̂k)
∣∣∣ ≤ εk we have∣∣∣λΦ,k

i F2i(x
k; t̂k)

2
∣∣∣ ≤ 2εk ⇐⇒

∣∣∣∣λΦ,k
i F2i(x

k; t̂k)

(
1− tkθrk(Hi(x

k))

Gi(xk)

)∣∣∣∣ ≤ 2εk
|Gi(xk)|

.

This implies that limk→∞ λ
Φ,k
i F2i(x

k; t̂k) = 0, by assumption on εk and α > 1. Now, by
de�nition of functions θs and their �rst order Taylor formula at 0 we obtain

F1i(x
k; t̂k) + F2i(x

k; t̂k) = Gi(x
k) +Hi(x

k)− tk
(
θrk(Gi(x

k)) + θrk(Hi(x
k))
)
,

∼ (Gi(x
k) +Hi(x

k))(1− tkθ
′(0)

rk
),

≤ 2|Gi(x
k)|(1− tkθ

′(0)

rk
),

and so limk→∞ λ
Φ,k
i (F1i(x

k; t̂k) + F2i(x
k; t̂k)) = 0. As a consequence, it holds that

ηG,∗i = limk→∞ λ
G,k ≥ 0, ηH,∗i = limk→∞ λ

H,k ≥ 0.

So, x∗ is a M-stationary point.

Theorem 6.4.1. Given two sequences {tk} and {rk} satisfying (6.2) such that ∀k ∈ N,
(tk, rk) ∈ R2

+, both sequence decrease to zero as k goes to in�nity. Let {xk, νk} be a sequence
of points that are epsilon-stationary points of RB

t̂,t̄
for all k ∈ N with xk → x∗ such that

MPCC-CRSC holds at x∗. Furthermore assume that tk = o(rk) ∀k ∈ N su�ciently large and
that the sequence {εk} is such that εk = o(max(|G(xk)|, |H(xk)|) and εk = o(rk). Then, x∗ is
an M-stationary point.

Proof. The proof is direct by Lemma 7.4.1 and Corollary 4.4.3 that ensures boundedness of
the sequence (7.3) under MPCC-CRSC.

In the weaker conditions of Lemma 6.4.1 boundedness of the sequence should be expected
under MPCC-CRCQ in similar ways as Proposition 6.2.1.

The following example from [112] shows that the butter�y relaxation with tk = o(rk)
may converge to an undesirable A-stationary point without the additional hypothesis that
εk = o(max(|G(xk)|, |H(xk)|).

Example 6.4.1.
min

(x1,x2)∈R2
x2 − x1 s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

Let tk = r2
k and choose any positive sequences {rk} and {εk} such that rk, εk → 0. Consider

the following epsilon-stationary sequence

xk = (εk,
εk
2

)T , νG,k = 0, νH,k = 1− νΦ,k(r2
kθrk

(εk
2

)
F1(xk; t̂k)− F2(xk; t̂k))

and
νΦ,k =

1

r2
kθrk (εk)F2(xk; t̂k)− F1(xk; t̂k)

.

This sequence converges to x∗ = (0, 0), which is an A-stationary point.
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Based on this study it appears that the approximate resolution of the sub-problems must
be handled with care. This problematic is the central concern of the following chapter.
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Chapter 7

Theoretical study of the relaxed

sub-problems

We discuss here the convergence of relaxation methods for MPCC with approximate sequence
of stationary points by presenting a general framework to study these methods. It has
been pointed out in the literature, [115], and in Chapter 6.4 that relaxation methods with
approximate stationary points fail to give guarantees of convergence.

We show that by de�ning a new strong approximate stationary, we can attain the desired
goal of computing an M-stationary point. We also provide an algorithmic strategy to compute
such point. Existence of strong approximate stationary point in the neighbourhood of an
M-stationary point is proved.

7.1 A uni�ed framework for relaxation/approximation

methods

In the past decade, several methods have been proposed to compute an M-stationary point
of (MPCC). The �rst was the approximation scheme proposed by [111], which was later
improved as a relaxation by [112]. This relaxation scheme has been generalised recently in
[64] to a more general family of relaxation schemes. We propose in this section a uni�ed
framework that embraces those methods and may be used to derive new methods.

Consider the following non-linear parametric program Rt(x) parametrised by the vector t:

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

G(x) ≥ −t̄(t)e, H(x) ≥ −t̄(t)e, Φ(G(x), H(x); t) ≤ 0,

(Rt(x))

with t̄ : Rl
+ → R+ such that lim‖t‖→0 t̄(t) → 0 and the relaxation map Φ : Rn → Rq.

In the sequel we skip the dependency in t and denote t̄ to simplify the notation. It is
to be noted here that t is a vector of an arbitrary size denoted l as for instance in the
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previous chapter where l = 2. The generalised Lagrangian function of (Rt(x)) is de�ned for
ν ∈ Rm × Rp × Rq × Rq × Rq as

LrRt(x, ν) := rf(x) + g(x)Tνg + h(x)Tνh −G(x)TνG −H(x)TνH + Φ(G(x), H(x); t)TνΦ.

Let IΦ be the set of active indices for the constraint Φ(G(x), H(x); t) ≤ 0 so that

IΦ(x; t) := {i ∈ {1, . . . , q} | Φi(G(x), H(x); t) = 0}.

The de�nition of a generic relaxation scheme is completed by the following hypothesis :

• Φ(G(x), H(x); t) is a continuously di�erentiable real valued map extended component
by component, so that Φi(G(x), H(x); t) := Φ(Gi(x), Hi(x); t).

• Direct computations give that the gradient with respect to x for i ∈ {1, . . . , q} of
Φi(G(x), H(x); t) for all x ∈ Rn is given by

∇xΦi(G(x), H(x); t) = ∇Gi(x)αHi (x; t) +∇Hi(x)αGi (x; t),

where αH(x; t) and αG(x; t) are continuous maps by smoothness assumptions on Φ,
which we assume satisfy ∀x ∈ Z

lim
‖t‖→0

αH(x; t) = H(x) and lim
‖t‖→0

αG(x; t) = G(x). (H2)

• At the limit when ‖t‖ goes to 0, the feasible set of the non-linear parametric program
(Rt(x)) must converge to the feasible set of (MPCC). In other words, given F(t) the
feasible set of (Rt(x)) it holds that

lim
‖t‖→0

F(t) = Z, (H3)

where the limit is assumed pointwise.

• At the boundary of the feasible set of the relaxation of the complementarity constraint
it holds that for all i ∈ {1, . . . , q}

Φi(G(xk), H(xk); t) = 0⇐⇒ FGi(x; t) = 0 or FHi(x; t) = 0, (H4)

where

FG(x; t) := G(x)− ψ(H(x); t),

FH(x; t) := H(x)− ψ(G(x); t),
(7.1)

and ψ is a continuously di�erentiable real valued function extended component by
component. Note that the function ψ may be two di�erent functions in (7.1) as long
as they satisfy the assumptions below. Those functions ψ(H(x); t), ψ(G(x); t) are
non-negative for all x ∈ {x ∈ Rn | Φ(G(x), H(x); t) = 0} and satisfy ∀z ∈ Rq

lim
‖t‖→0

ψ(z; t) = 0. (H5)
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We prove in Lemma 7.4.1 that this generic relaxation scheme for (MPCC) converges to an
M-stationary point requiring the following essential assumption on the functions ψ. As t
goes to 0 the derivative with respect to the �rst variable of ψ satis�es ∀z ∈ Rq

lim
‖t‖→0

∂ψ(x; t)

∂x

∣∣∣∣
x=z

= 0. (H6)

We conclude this section by giving an explicit formula for the relaxation map at the
boundary of the feasible set.

Lemma 7.1.1. Given Φ(G(x), H(x); t) be such that for all i ∈ IΦ(x; t)

Φi(G(x), H(x); t) = FGi(x; t)FHi(x; t).

The gradient with respect to x of Φi(G(x), H(x); t) for i ∈ IΦ(x; t) is given by

∇xΦi(G(x), H(x); t) := ∇Gi(x)αHi (x; t) +∇Hi(x)αGi (x; t),

with

αGi (x; t) = FGi(x; t)− ∂ψ(x; t)

∂x

∣∣∣∣
x=Hi(x)

FHi(x; t),

αHi (x; t) = FHi(x; t)− ∂ψ(x; t)

∂x

∣∣∣∣
x=Gi(x)

FGi(x; t).

7.2 Existing methods under the uni�ed framework

In this section, we illustrate the fact that the existing methods in the literature fall under this
uni�ed framework. Indeed, the approximation method (KDB) as well as the two relaxation
methods (KS) and (6.3) satisfy those hypotheses. We conclude this section by presenting
a new asymmetric relaxation method that also belongs to our framework. An optimisation
method that satis�es all of the 6 hypotheses de�ned in the previous section is called an
UF-method.

7.2.1 The boxes approximation

The approximation method (KDB) illustrated on Figure 7.1 belongs to the framework de�ned
in previous section, despite the fact that the feasible domain of the relaxed problem does
not include the feasible domain of (MPCC).

Proposition 7.2.1. The approximation scheme (Rt(x)) with (KDB) is an UF-method.

Proof. Continuity of the map Φ as well as (H3) has been proved in [111].
(H4) is satis�ed by construction considering ψ(z; t) = t. In this case (H6) and (H5) are

obviously satis�ed.
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Figure 7.1: Feasible set of the approximation (KDB).

Now, we consider (H2). Direct computations give that the gradient of Φ for all i ∈
{1, . . . , q} is given by

∇xΦ
KDB
i (G(x), H(x); t) = ∇Gi(x)(Hi(x)− t) +∇Hi(x)(Gi(x)− t).

Therefore, αGi and αHi are given by

αHi (x; t) = Hi(x)− t,
αGi (x; t) = Gi(x)− t.

It clearly holds that αGi (x; t)→‖t‖→0 Gi(x) and αHi (x; t)→‖t‖→0 Hi(x). So, in this case (H2)
is satis�ed.

This completes the proof that all of the 6 hypotheses are satis�ed and so the approxima-
tion (KDB) is an UF-method.

7.2.2 The L-shape relaxation

The previous method has later been extended to a relaxation (KS) as illustrated on Figure
7.2. This extended method also satisfy our hypotheses.

Proposition 7.2.2. The relaxation scheme (Rt(x)) with (KS) is an UF-method.

Proof. Continuity of the map Φ as well as (H3) has been proved in [112].
(H4) is satis�ed by construction considering ψ(z; t) = t. In this case (H6) and (H5) are

obviously satis�ed.
Now, we consider (H2). Direct computations give that the gradient of Φ for all i ∈

{1, . . . , q} is given by

∇xΦ
KS
i (G(x), H(x); t) =

{
∇Gi(x)(Hi(x)− t) +∇Hi(x)(Gi(x)− t), if Hi(x)− t+Gi(x)− t ≥ 0,

−∇Gi(x)(Gi(x)− t)−∇Hi(x)(Hi(x)− t), otherwise.
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Figure 7.2: Feasible set of the relaxation (KS).

Therefore, αGi and αHi are given by

αHi (x; t) =

{
Hi(x)− t, if Hi(x)− t+Gi(x)− t ≥ 0,

−(Gi(x)− t), otherwise,

αGi (x; t) =

{
Gi(x)− t, if Hi(x)− t+Gi(x)− t ≥ 0,

−(Hi(x)− t), otherwise.

In the case Hi(x)− t+Gi(x)− t ≥ 0 it clearly holds that αGi (x; t)→ Gi(x) and αHi (x; t)→
Hi(x). So, in this case (H2) is satis�ed.

In the case Hi(x) − t + Gi(x) − t < 0 the opposite holds that is αGi (x; t) → −Hi(x)
and αHi (x; t) → −Gi(x). However, it is to be noted that sequences xt with xt →‖t‖→0 x

∗

that belongs to this case satisfy i ∈ I00(x∗). To sum up, in this case for x ∈ Z then
αGi (x; t) → Hi(x) = Gi(x) = 0 and αHi (x; t) → Gi(x) = Hi(x) = 0. This proves that (H2)
holds in this case too and so this hypothesis holds for this relaxation.

This completes the proof that all of the 6 hypotheses are satis�ed and so the relaxation
(KS) is an UF-method.

7.2.3 The butter�y relaxation

The butter�y relaxation introduced in Chapter 6 deals with two positive parameters (t1, t2).

Proposition 7.2.3. The relaxation scheme (Rt(x)) with (6.3) is an UF-method.

Proof. Continuity of the map Φ as well as (H3) has been proved in [64].
(H4) is satis�ed by construction considering ψ(z; t) = t1θt2(z). In this case (H5) and (H6)

are obviously satis�ed. The latter being insured by t1 = o(t2).
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Now, we consider (H2). The gradient of ΦB given in Lemma 6.1.3 yields αGi and αHi
given by

αHi (x; t) =

{
F1i(x; t)− t1θ′t2(Gi(x))F2i(x; t), if F1i(x; t) + F2i(x; t) ≥ 0,

t1θ
′
t2

(Gi(x))F1i(x; t)− F2i(x; t), otherwise,

αGi (x; t) =

{
F2i(x; t)− t1θ′t2(Hi(x))F1i(x; t), if F1i(x; t) + F2i(x; t) ≥ 0,

t1θ
′
t2

(Hi(x))F2i(x; t)− F1i(x; t), otherwise.

In the case F1i(x; t) + F2i(x; t) ≥ 0 it clearly holds that αGi (x; t) → Gi(x) and αHi (x; t) →
Hi(x). So, in this case (H2) is satis�ed.

In the case F1i(x; t) + F2i(x; t) < 0 the opposite holds that is αGi (x; t) → −Hi(x) and
αHi (x; t) → −Gi(x). However, it is to be noted that sequences xt with xt →‖t‖→0 x

∗ that
belongs to this case satisfy i ∈ I00(x∗). Therefore, in this case for x ∈ Z then αGi (x; t) →
Hi(x) = Gi(x) = 0 and αHi (x; t) → Gi(x) = Hi(x) = 0. This proves that (H2) holds in this
case too and so this hypothesis holds for this relaxation.

This completes the proof that all of the 6 hypotheses are satis�ed and so the butter�y
relaxation is an UF-method.

7.2.4 An asymmetric relaxation

Up till now we only consider relaxation methods that are symmetric. We can also de�ne
asymmetric relaxation methods illustrated on Figure 7.3 that respect the hypothesis of our
uni�ed framework. Let IG and IH be two sets of indices such that IG ∪ IH = {1, . . . , q} and
IG ∩ IH = ∅. Then, the relaxation constraint is de�ned with

Φi(G(x), H(x); t) =

{
(Gi(x)− t)Hi(x), for i ∈ IG,
Gi(x)(Hi(x)− t), for i ∈ IH .

(7.2)

Proposition 7.2.4. The relaxation scheme (Rt(x)) with (7.2) is an UF-method.

Proof. Continuity of the map Φ(G(x), H(x); t) as well as (H3) can be easily deduced from
the de�nition of (7.2).

(H4) is satis�ed by construction considering ψ(z; t) = t or 0. In this case (H5) and (H6)
are obviously satis�ed.

Now, we consider (H2). Direct computations give that the gradient of Φ for all i ∈
{1, . . . , q} is given by

∇xΦi(G(x), H(x); t)(x) =

{
∇Gi(x)Hi(x) +∇Hi(x)(Gi(x)− t), for i ∈ IG,
∇Gi(x)(Hi(x)− t) +∇Hi(x)Gi(x), for i ∈ IH .
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Figure 7.3: Feasible set of the relaxation (7.2) with IH = {1} and IG = ∅.

Therefore, αGi and αHi are given by

αHi (x; t) =

{
Hi(x), for i ∈ IG,
Hi(x)− t, for i ∈ IH ,

αGi (x; t) =

{
Gi(x)− t, for i ∈ IG,
Gi(x), for i ∈ IH .

Clearly in both cases (H2) is satis�ed.
This completes the proof that all of the 6 hypotheses are satis�ed and so the relaxation

(KS) is an UF-method.

7.3 Motivations on epsilon-solution to the regularised sub-

problems

We have seen in the previous sections a general framework to de�ne relaxations of (MPCC).
From an algorithmic point of view, the main idea of relaxation methods to solve (MPCC) is
to compute a sequence of stationary points, or more precisely approximate stationary points,
for each value of a sequence of parameters {tk}. The following de�nition is a specialisation
of De�nition 7.3.1 for (Rt(x)). It consists in replacing most �0� in (KKT) by small quantities
ε.

De�nition 7.3.1. xk is an epsilon-stationary point for (Rt(x)) with εk ≥ 0 if there exists
νk ∈ Rm × Rp × Rq × Rq × Rq such that∥∥∇L1

Rt(x
k, νk; tk)

∥∥
∞ ≤ εk
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and

|h(xk)| ≤ εk ∀i ∈ {1, . . . ,m},
gi(x

k) ≤ εk, ν
g,k
i ≥ 0, |gi(xk)νg,ki | ≤ εk ∀i ∈ {1, . . . , p},

Gi(x
k) + t̄k ≥ −εk, νG,ki ≥ 0,

∣∣νG,ki(Gi(x
k) + t̄k)

∣∣ ≤ εk ∀i ∈ {1, . . . , q},
Hi(x

k) + t̄k ≥ −εk, νH,ki ≥ 0,
∣∣νH,ki(Hi(x

k) + t̄k)
∣∣ ≤ εk ∀i ∈ {1, . . . , q},

Φi(G(xk), H(xk); tk) ≤ εk, ν
Φ,k
i ≥ 0,

∣∣∣νΦ,k
i Φi(G(xk), H(xk); tk)

∣∣∣ ≤ εk ∀i ∈ {1, . . . , q}.

Unfortunately, it has been shown in [115] (Theorems 9 and 12) or Theorem 6.4 (115) for
the KDB, L-shape and butter�y relaxations that under this de�nition, sequences of epsilon-
stationary points only converge to weak-stationary point without additional hypothesis.

Our goal of computing an M-stationary point with a realistic method is far from obvi-
ous. Indeed, epsilon-stationary points have two main drawbacks considering our goal. The
di�culties may come from the approximation of the complementarity condition and the ap-
proximate feasibility as shown in Example 7.3.1 or from the approximation of the feasibility
of the relaxed constraint as illustrated in Example 7.3.2. In those examples, we consider the
scheme (KDB) in order to simplify the presentation, but these observations can be easily
generalised to the other methods.
Kanzow and Schwartz provide the following example exhibiting convergence to aW-stationary
point.

Example 7.3.1.

min
(x1,x2)∈R2

x2 − x1 s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

If we perturb the relation νΦΦ(x1, x2; t) ≤ ε (leaving the other conditions νΦ ≥ 0, Φ(x1, x2; t) ≤
0), νΦ may be positive when the constraint Φ(x1, x2; t) is not active. For the case KDB
Φ(x1, x2; t) = (x1 − t)(x2 − t) = −ε2 with ε = t2, the point x(t, ε) = (t − ε, t + ε)T ≥ (0, 0)T

is epsilon�stationary for small enough ε: Φ(x1, x2; t) ≤ ε and the choice νΦ = 1
ε
makes the

Lagrangian (−1, 1)T + νΦΦ(x1, x2; t) vanish. x(t) converges to the origin when t, ε −→ 0 but
the origin is only weakly stationary.

Now, if the complementarity constraint is relaxed, but the complementarity condition is
guaranteed convergence may occur to C-stationary points as shown in the following example.

Example 7.3.2.

min
(x1,x2)∈R2

1

2
((x1 − 1)2 + (x2 − 1)2) s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

We specialise the relations in De�nition 7.3.1 as the following, for t and ε close to 0.∥∥∥∥( x1 − 1
x2 − 1

)
− νG

(
1
0

)
− νH

(
0
1

)
+ νΦ

(
x2 − t
x1 − t

)∥∥∥∥
∞
≤ ε,

0 ≤ νG, (x1 + t) ≥ 0, νG(x1 + t) ≤ ε,
0 ≤ νH , (x2 + t) ≥ 0, νH(x2 + t) ≤ ε,
0 ≤ νΦ, (x1 − t)(x2 − t) ≤ ε, νΦ [(x1 − t)(x2 − t)− ε] ≥ 0.
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The points (t+
√
ε, t+

√
ε)T together with νG = νH = 0 and νΦ = 1−t−

√
ε√

ε
↗ +∞ satisfy the

above relations. The limit point when t, ε −→ 0 is the origin, which is a C-stationary point
with νG = νH = −1.

On this example, the relaxed regularised complementarity constraint is active for any
small enough t, ε > 0; moreover, the relaxed regularised stationary point is a local maximum
for t+ 2

√
ε < 1. The origin is a local maximum for the original (MPCC). Another example

might help understanding the phenomenon.

Example 7.3.3.

min
(x1,x2)∈R2

−1

2
((x1 − 1)2 + (x2 − 1)2) s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

We again specialise the relations in De�nition 7.3.1 as the following, for t and ε close to 0.∥∥∥∥( 1− x1

1− x2

)
− νG

(
1
0

)
− νH

(
0
1

)
+ νΦ

(
x2 − t
x1 − t

)∥∥∥∥
∞
≤ ε,

0 ≤ νG, (x1 + t) ≥ 0, νG(x1 + t) ≤ ε,
0 ≤ νH , (x2 + t) ≥ 0, νH(x2 + t) ≤ ε,
0 ≤ νΦ, (x1 − t)(x2 − t) ≤ ε, νΦ [(x1 − t)(x2 − t)− ε] ≥ 0.

This time, the points (t +
√
ε, t +

√
ε)T are no more epsilon-stationary but the points x =

(1,−t)T , νH = 1 + t and x = (−t, 1)T , νG = 1 + t are. Their limits are (1, 0)T and (0, 1)T

which are KKT points for the original MPCC with νH = 1, νG = 0 or νH = 0, νG = 1. The
point (−t,−t)T with νH = 1 + t, νG = 1 + t is also stationary, and, of course, converges to
the origin, a local minimiser of the original MPCC.

In this example, the limit points are not minimisers for the original MPCC, but satisfy
the �rst order KKT conditions for a minimiser. The second order conditions fail for those
limit points. The two examples show limiting solutions of regularised sub-problems which
are not local minimisers of the original MPCC. The �rst one fails to satisfy a �rst order
condition while the second one satis�es such a �rst order condition but not the second order
one (it is a maximum on the active set).

The Figure 7.4 gives an intuition that explains the weak convergence in Example 7.3.2
by showing the ε-feasible set of the butter�y relaxed complementarity constraint. It can be
noticed that this feasible set is very similar to the relaxation from Scheel and Scholtes, [181].
Therefore, it is no surprise that we cannot expect more than convergence to a C-stationary
point in these conditions.

7.4 Convergence of strong epsilon-stationary sequences

We now address the convergence of sequences of epsilon�stationary points. Motivated by the
several issues pointed out in the previous section, we introduce the de�nition of a new kind
of epsilon-stationary point called strong epsilon-stationary point, which is more stringent
regarding the complementarity constraint.
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Figure 7.4: Butter�y relaxation with a constraint ΦB(x; t) ≤ ε.

De�nition 7.4.1. xk is a strong epsilon-stationary point for (Rt(x)) with εk ≥ 0 if there
exists νk ∈ Rm × Rp × R3q such that∥∥∇L1

Rt(x
k, νk; tk)

∥∥
∞ ≤ εk

and

|h(xk)| ≤ t̄k +O(εk) ∀i ∈ {1, . . . ,m},
gi(x

k) ≤ εk, ν
g,k
i ≥ 0, |gi(xk)νg,ki | ≤ εk ∀i ∈ {1, . . . , p},

Gi(x
k) + t̄k ≥ −εk, νG,ki ≥ 0,

∣∣∣νG,ki (Gi(x
k) + t̄k)

∣∣∣ ≤ εk ∀i ∈ {1, . . . , q},

Hi(x
k) + t̄k ≥ −εk, νH,ki ≥ 0,

∣∣∣νH,ki (Hi(x
k) + t̄k)

∣∣∣ ≤ εk ∀i ∈ {1, . . . , q},

Φi(G(xk), H(xk); tk) ≤ 0, νΦ,k
i ≥ 0,

∣∣∣νΦ,k
i Φi(G(xk), H(xk); tk)

∣∣∣ = 0 ∀i ∈ {1, . . . , q}.

In this case following a similar proof to the one of [115] and [64], we get an improved
result that keep the nice properties of the relaxations without strong assumption on the
sequence of {εk}. The following lemma shows that a sequence of strong epsilon-stationary
points converges to a weak-stationary point. This is not a new result since the same has
been proved in [115] and [64] for a sequence of epsilon-stationary points. However, the new
de�nition can be used to go further by showing convergence to an M-stationary point.

Lemma 7.4.1. Given {tk} a sequence of parameters and {εk} a sequence of non-negative
parameters such that both sequences decrease to zero as k ∈ N goes to in�nity. Assume
that εk = o(t̄k). Let {xk, νk} be a sequence of strong epsilon-stationary points of (Rt(x))
according to de�nition 7.4.1 for all k ∈ N with xk → x∗. Let {ηG,k}, {ηH,k} be two sequences
such that

ηG,k := νG,k − νΦ,kαH(xk; tk),

ηH,k := νH,k − νΦ,kαG(xk; tk).
(7.3)

Assume that the sequence of multipliers {νh,k, νg,k, ηG,k, ηH,k} is bounded. Then, x∗ is an
M-stationary point of (MPCC).
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Proof. The proof is divided in two parts. We �rst show that x∗ is a weak-stationary point
and then we prove that it is an M-stationary point.

Let us prove the �rst part of the lemma. By de�nition {xk, νk} is a sequence of strong
epsilon-stationary points of (Rt(x)). We make the condition on the Lagrangian∥∥∇L1

Rt(x
k, νk; tk)

∥∥
∞ ≤ εk

more explicit. By construction of Φ(G(x), H(x); t) this condition becomes∥∥∇f(xk) +∇g(xk)Tνg,k +∇h(xk)Tνh,k −∇G(xk)TηG,k −∇H(xk)TηH,k
∥∥
∞ ≤ εk. (7.4)

Besides, the sequence of multipliers {νh,k, νg,k, ηG,k, ηH,k} is assumed bounded. Therefore, it
follows that the sequence converges to some limit point

{νh,k, νg,k, ηG,k, ηH,k} → (νh, νg, ηG, ηH).

It is to be noted that for k su�ciently large it holds

supp(νg) ⊂ supp(νg,k),

supp(ηG) ⊂ supp(ηG,k),

supp(ηH) ⊂ supp(ηH,k).

We prove that (x∗, νh, νg, ηG, ηH) is a weak-stationary point. Obviously, since εk ↓ 0 it follows
that x∗ ∈ Z, ∇xL1

MPCC(x∗, νh, νg, ηG, ηH) = 0 by (7.4) and that νgi = 0 for i /∈ Ig(x∗).
It remains to show that for indices i ∈ I+0(x∗), ηGi = 0. The opposite case for indices
i ∈ I0+(x∗) would follow in a completely similar way. So, let i be in I+0(x∗).
By de�nition of strong εk-stationarity it holds for all k that

|νG,ki (Gi(x
k) + t̄k)| ≤ εk.

Therefore, νG,ki →k→∞ 0 since εk ↓ 0 and Gi(x
k)→ Gi(x

∗) > 0.
Without loss of generality we may assume that for k su�ciently large νΦ,k

i 6= 0 otherwise ηGi =
0 and the proof is complete. By strong ε-stationarity νΦ,k

i 6= 0 implies that FH,i(xk; tk) = 0
by (H4). (H2) yields αHi (xk; tk)→ Hi(x

∗) and so ηGi = 0 unless νΦ,k diverges as k grows. We
now prove that the latter case leads to a contradiction. Assume that νΦ,k →∞, boundedness
hypothesis on ηGi gives that there exists a �nite non-vanishing constant C such that

νΦ,k
i αHi (xk; tk)→ C.

Moreover, since ηHi is �nite and νΦ,k
i αGi (xk; tk)→∞ as Gi(x

k) > 0 then necessarily νH,ki →
∞. Furthermore, noticing that FH(xk; tk) = 0 gives Hi(x

k) ≥ 0, leads to a contradiction
with νH,ki →∞ since by ε-stationarity we get∣∣∣νH,ki (Hi(x

k) + t̄k)
∣∣∣ =

∣∣∣νH,ki Hi(x
k)
∣∣∣+
∣∣∣νH,ki t̄k

∣∣∣ ≤ εk
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and εk = o(t̄k). We can conclude that for i ∈ I+0(x∗), ηGi = 0 and therefore x∗ is a weak-
stationary point.
Now, let us prove that x∗ is even stronger than weak-stationary point since it is an M-
stationary point. We now consider indices i ∈ I00(x∗). Our aim here is to prove that either
ηGi > 0, ηHi > 0 or ηGi η

H
i = 0. It is clear that if νΦ,k

i = 0, then ηGi and ηHi are non-negative
values and the result holds true. So, without loss of generality we may assume that νΦ,k

i ≥ 0
and then Φi(G(xk), H(xk); tk) = 0 by De�nition 7.4.1.

By construction of Φi(G(xk), H(xk); tk) given in hypothesis (H4) it follows that

Φi(G(xk), H(xk); tk) = 0⇐⇒ FG,i(x
k; tk) = 0 or FH,i(xk; tk) = 0

where we remind that

FG,i(x
k; tk) = Gi(x

k)− ψ(Hi(x
k); tk),

FH,i(x
k; tk) = Hi(x

k)− ψ(Gi(x
k); tk),

Without loss of generality we assume that FG,i(xk; tk) = 0 since the other case is com-
pletely similar. Furthermore by construction of Φi(G(xk), H(xk); tk) it holds that Gi(x

k) is
non-negative in this case.

Considering one of the complementarity conditions of the strong ε-stationarity gives

εk ≥ |νG,ki (Gi(x
k) + t̄k)| = |νG,ki Gi(x

k)|+ |νG,ki t̄k|,

since Gi(x
k) is non-negative and it follows that

|νG,ki t̄k| ≤ εk.

Necessarily νG,ki →k→∞ 0 as we assume in our statement that εk = o(t̄k).
Now at xk we can use Lemma 7.1.1 that for FGi(xk; tk) = 0 gives

αGi (xk; tk) = − ∂ψ(x; tk)

∂x

∣∣∣∣
x=Hi(xk)

FHi(x
k; tk),

αHi (xk; tk) = FHi(x
k; tk).

Obviously, if FHi(xk; tk) = 0 we are done and so assume that FHi(xk; tk) 6= 0. By hypothesis
(H6), it holds that ∂ψ(x;tk)

∂x

∣∣∣
x=Hi(xk)

→k→∞ 0. Therefore, αGi (xk; tk)ν
Φ,k
i going to a non-zero

limits would imply that αHi (xk; tk)ν
Φ,k
i goes to in�nity. However, this is a contradiction with

ηGi being �nite. We can conclude that necessarily αGi (xk; tk)ν
Φ,k
i converges to zero.

Finally, we examine two cases regarding the sign of FHi(xk; tk). For FHi(xk; tk) ≤ 0,
we get ηGi , η

H
i non-negative, which satisfy the desired condition. For FHi(xk; tk) ≥ 0 we

get νH,ki →k→∞ 0 using the same argument as for νG,ki . Thus, it follows that ηHi = 0.
This concludes the proof that x∗ is an M-stationary point, since additionally to the proof
of weak-stationary of x∗ we proved for every i ∈ I00(x∗) that either ηHi > 0, ηGi > 0 or
ηHi η

G
i = 0.
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The following theorem is a direct consequence of both previous lemmas and is our main
statement.

Theorem 7.4.1. Given {tk} a sequence of parameters and {εk} a sequence of non-negative
parameters such that both sequences decrease to zero as k ∈ N goes to in�nity. Assume that
εk = o(t̄k). Let {xk, νk} be a sequence of epsilon-stationary points of (Rt(x)) according to
de�nition 7.4.1 for all k ∈ N with xk → x∗ such that MPCC-CRSC holds at x∗. Then, x∗ is
an M-stationary point of (MPCC).

Proof. The proof is direct by Lemma 7.4.1 and Corollary 2.3 of [64] that ensures boundedness
of the sequence (7.3) under MPCC-CRSC.

Theorem (7.4.1) attains the ultimate goal. However it is not a trivial task to compute such
a sequence of epsilon-stationary points. This is discussed later. Another important question
is the existence of strong epsilon-stationary points in the neighbourhood of an M-stationary
point. This problem is tackled in the following sections.

7.5 On Lagrange multipliers of the regularisation

The following example develops on Example 4.1.1 due to Kanzow and Schwartz exhibits a
situation where the regularised sub-problems have no KKT point.

Example 7.5.1. The KDB regularised problem is

min
x∈R3

x1 + x2 − x3

s.t. −4x1 + x3 ≤ 0,
−4x2 + x3 ≤ 0,
x1 ≥ −t,
x2 ≥ −t,
(x1 − t)(xs2− t) ≤ 0.

The point (t, t, 4t)t is feasible so that the minimum value of this program is ≤ −2t. Moreover,
whenever x1 > t, we must have x2 ≤ t to satisfy (x1− t)(x2− t) ≤ 0. This allows to conclude
that (t, t, 4t)t is the global minimum of the regularised problem. νG = νH = 0 and the gradient
of the Lagrangian equal to zero yields

0 =

 1
1
−1

+ νg1

−4
0
1

+ νg2

 0
−4
1

+ νΦ

0
0
0

 ,

which cannot be satis�ed.

This last example seems to contradict Theorem 4.6 in [112], but MPCC-LICQ is not
satis�ed by four constraints in R3. It has been pointed out earlier that a practical algorithm
may not be able to compute stationary point of the regularised sub-problem, but only some
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approximate epsilon-stationary point. An intuitive idea would be that weaker constraint
quali�cation may guarantee existence of such points. However, the following one-dimensional
example shows that things are not that simple taking for instance the approximate method
KDB, (KDB).

Example 7.5.2.
min
x∈R
−x, s.t 0 ≤ G(x) := x ⊥ H(x) := 0 ≥ 0.

G and H are linear functions, so MPCC-CRCQ holds at each feasible point. Clearly, x = 0
is an M-stationary point with λG = −1 and λH = 0. Indeed, the gradient of the Lagrangian
is given by

0 = −1− λG.

We now verify that there is no epsilon-stationary point of the approximation KDB for this
example :

min
x∈R
−x, s.t x ≥ −t, −t(x− t) ≤ 0.

Now, considering that the gradient of the Lagrangian function for this problem must be lower
or equal as ε gives

‖ − 1− νG − tνΦ‖ ≤ ε.

Noticing that νG, νH , νΦ ≥ 0 leads to

1 + νG + tνΦ ≤ ε,

which leads to a contradiction for ε < 1. So, there is no sequence of approximate stationary
points that goes to the origin.

The previous example illustrates the fact that even so strong constraint quali�cation holds
for the problem existence of epsilon-stationary point are not ensured at an M-stationary
point. Even so, this problem seems intractable by reformulating the (MPCC) with slack
variables things could be slightly di�erent.

Example 7.5.3. (Example 7.5.2 continued.) We now verify that there is a strong epsilon-
stationary point of the approximation KDB written with slack variables for this example
:

min
x∈R
−x, s.t sG = x, sH = 0 , sG ≥ −t, sH ≥ −t, (sG − t)(sH − t) ≤ 0.

Given δ > 0, consider the point x = 0, (sG, sH) = (t, t + δ) and Lagrange multiplier
(νsG , νsH , νG, νH , νΦ) = (−1, 0, 0, 0, 1

δ
).

• Condition on the gradient of the Lagrangian

|∇xL1(x, s, ν)| = | − 1− νsG| = 0,

|∇sGL1(x, s, ν)| = |νsG − νG + νΦ(sH − t)| = 0,

|∇sHL1(x, s, ν)| = |νsH − νH + νΦ(sG − t)| = 0.
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• Condition on the feasibility

|x− sG| = t ≤ ε,

|0− sH | = t+ δ ≤ ε,

sG + t = 2t ≥ −ε, sH + t = 2t+ δ ≥ −ε,
(sG − t)(sH − t) = 0.

• Condition on the complementarity

|(sG + t)νG| = 0, |(sH + t)νH | = 0,

|(sG − t)(sH − t)νΦ| = 0.

This completes the proof that there is a strong epsilon-stationary point for the formulation
with slack variables.

This example motivates the use of slack variables to de�ne the (MPCC) and in this case
study the existence of strong epsilon-stationary point in a neighbourhood of an M-stationary
point.

7.6 The MPCC with slack variables

Consider the following non-linear parametric program Rt(x, s) parametrised by t:

min
(x,s)∈Rn×R2q

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

sG = G(x), sH = H(x),

sG ≥ −et̄, sH ≥ −et̄, Φ(sG, sH ; t) ≤ 0,

(Rs
t (x, s))

with lim‖t‖→0 t̄ = 0+ and the relaxation map Φ(sG, sH ; t) : Rq×Rq → Rq is de�ned by replac-
ing G(x) and H(x) by sG and sH in the map Φ(G(x), H(x); t). The generalised Lagrangian
function of (Rs

t (x, s)) is de�ned as

Lrs(x, s, ν; t) :=rf(x) + g(x)Tνg + h(x)Tνh − (G(x)− sG)TνsG − (H(x)− sH)TνsH

− sGTνG − sHTνH + Φ(sG, sH ; t)TνΦ.

Let Fs be the feasible set of (Rs
t (x, s)). The following result is a direct corollary of Theorem

7.4.1 stating that the reformulation with slack variables does not alter the convergence result.

Corollary 7.6.1. Given {tk} a sequence of parameters and {εk} a sequence of non-negative
parameters such that both sequences decrease to zero as k ∈ N goes to in�nity. Assume that
εk = o(t̄k). Let {xk, νk} be a sequence of strong epsilon-stationary points of (Rs

t (x, s)) for
all k ∈ N with xk → x∗ such that MPCC-CRSC holds at x∗. Then, x∗ is an M-stationary
point of (MPCC).

135



Proof. Let h̃(x) : Rn → Rm×Rq×Rq be such that h̃(x) := (h(x), sG−G(x), sH−H(x)) and
x̃ := (x, sG, sH). It is clear that the non-linear program (Rs

t (x, s)) fall under the formulation
(Rt(x)). Therefore, we can apply 7.4.1 to conclude this proof.

The following lemma giving an explicit form of the gradient of the Lagrangian function
of (Rs

t (x, s)) can be deduced through direct computations.

Lemma 7.6.1. The gradient of Lrs(x, s, ν; t) is given by

∇xLrs(x, s, ν; t) = r∇f(x) +∇g(x)Tνg +∇h(x)Tνh −∇G(x)TνsG −∇H(x)TνsH ,

∇sGLrs(x, s, ν; t) = νsG − νG +∇sGΦ(sG, sH ; t)TνΦ,

∇sHLrs(x, s, ν; t) = νsH − νH +∇sHΦ(sG, sH ; t)TνΦ.

There is two direct consequences of this result. First, it is easy to see from this lemma
that computing a stationary point of Lrs(x, s, ν; t) is equivalent to computing a stationary
point of Lr(x, ν; t). Secondly, a stationary point of Lrs(x, s, ν; t) with r = 1 satis�es one of
the conditions of weak-stationary point of (MPCC) that is ∇L1

MPCC(x, ν) = 0.
In the next section, we now consider the existence of strong epsilon-stationary point for the
relaxation with slack variables (Rs

t (x, s)).

7.7 Existence of strong epsilon-stationary points for the

regularisation with slack variables

Before stating our main result, we give a series of additional hypothesis on the relaxation and
the function ψ. It is essential to note once again that all these hypotheses are not restrictive,
since they are satis�ed by the existing methods in the literature.

7.7.1 Assumptions

The assumptions made in this section are divided in two parts. The �rst part concerns
assumptions on the domain of the relaxation to be precised in the following subsection. The
second part is assumptions on the relaxation function ψ that as been used to de�ne the
relaxation map on the boundary of the feasible set in Section 7.1.

Assumptions on the relaxations

We denote Bcε((−t̄e,−t̄e)T ) the ball of radius cε and centred in (−t̄e,−t̄e)T . We assume that
the schemes considered in the sequel satisfy belong to one of two following cases for positive
constants c, ε and t̄ :

Case 1
Bcε((−t̄e,−t̄e)T ) ∩ {(sG, sH)T | sG ≥ −t̄e, sH ≥ −t̄e} ⊂ Fs; (F1)
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Case 2 (
Bcε((−t̄e, ψ(−t̄e; t))T ) ∪ Bcε((ψ(−t̄e; t),−t̄)T )

)
∩ {(sG, sH)T | sG ≥ −t̄e, sH ≥ −t̄e, Φ(sG, sH ; t) = 0} ⊂ Fs.

(F2)

The �rst case includes the butter�y relaxation and the KS relaxation, while the second case
includes the approximation KDB.

Assumptions on the relaxation function

For all t ∈ Rl
++, we make the following supplementary assumptions on the function ψ for all

x ∈ Rq. We remind here that the functions ψ are separable with respect to x.

•
∂ψ(x; t)

∂t
> 0; (A1)

•
∂ψ(x; t)

∂x
≥ 0; (A2)

•
ψ(ψ(‖t‖∞; t); t) ≤ ‖t‖∞; (A3)

•
ψ(−‖t‖∞; t) ≤ ‖t‖∞. (A4)

Hypothesis (A1) in particular implies some monotonicity on the feasible set of the relaxed
problems. Assumption (A4) is used for the second kind of relaxations only. It is to be noted
here that the assumptions (A1),(A2),(A3) and (A4) are not the weakest for obtaining the
following results. However, those assumptions are satis�ed by all the relaxations de�ned in
the literature.

Lemma 7.7.1. Assume that (A1), (A2) and (A3) hold true. Then, giving constants c > 0,
t̄ > 0 and ε > 0 the following holds true for all ‖t‖∞ ∈ (0, t̄+ cε)

t̄+ cε− ψ(ψ(t̄+ cε; t); t) > 0.

Proof. Using (A1), (A2) and that ‖t‖∞ ∈ (0, t̄+ cε) yields

t̄+ cε− ψ(ψ(t̄+ cε; t); t) > t̄+ cε− ψ(ψ(t̄+ cε; e(t̄+ cε)); e(t̄+ cε)) ≥ 0.

The conclusion comes from the assumption (A3).

Lemma 7.7.2. Assume that (A1) and (A3) holds true. Then, giving constants c > 0, t̄ > 0
and ε > 0 the following holds true for all ‖t‖∞ ∈ (0, t̄+ cε]

ψ(t̄+ cε; t) ≤ t̄+ cε.
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Proof. Using assumption (A1) and then (A3) gives

ψ(t̄+ cε; t) < ψ(t̄+ cε; e(t̄+ cε)) ≤ t̄+ cε,

which concludes the proof.

Lemma 7.7.3. Given positive constants t̄, c, ε,K. There exists a t∗ > 0 such that for all
t ∈ (0, t∗] it holds that

∂ψ(x; t)

∂x

∣∣∣∣
x=t̄+cε

≤ Kε,

and

0 ≤ t̄− ∂ψ(x; t)

∂x

∣∣∣∣
x=cε

≤ Kε.

Proof. The proof is clear from Assumption (H6) on the relaxation.

Lemma 7.7.4. Assume that (A1) and (A4) holds true. Then, giving constants c > 0, t̄ > 0
and ε > 0 with t̄ > cε the following holds true for all ‖t‖∞ ∈ (0, t̄− cε]

ψ(t̄− cε; t) ≤ t̄+ cε.

Proof. Using assumption (A1) and then (A4) gives

ψ(t̄− cε; t) < ψ(t̄− cε; e(t̄− cε)) ≤ t̄− cε ≤ t̄+ cε,

which concludes the proof.

7.7.2 Main theorem on existence of Lagrange multiplier

All of the supplementary assumptions made above are now used to derive the following
result.

Theorem 7.7.1. Let x∗ ∈ Z be an M-stationary point and ε > 0 be arbitrarily small.
Furthermore, assume that the hypothesis (A1),(A2),(A3),(A4) on ψ and the hypothesis (F1)
or (F2) on the relaxation introduced above hold true. Then, there exists positive constants
c, t∗ and t̄∗ with t̄∗ > cε and a neighbourhood U(x∗) of (x∗, G(x∗), H(x∗))T such that for all
t ∈ (0, t∗) and t̄ ∈ (0, t̄∗) there exists (x, s)T ∈ U(x∗), which is a strong epsilon-stationary
point of the relaxation (Rs

t (x, s)).

Regarding the value of t∗ we need at least that ‖t‖∞ ≤ t̄− cε. The constant c is given in
the proof and depends on the multipliers of the M-stationary point.

Proof. The proof is conducted in two steps. First, we construct a point based on the solu-
tion that is a candidate to be a strong epsilon-stationary point. Then, we verify that this
candidate is actually a strong epsilon-stationary point.
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x∗ is assumed to be an M-stationary point. Therefore, there exists λ = (λg, λh, λG, λH)
such that

∇L1
MPCC(x∗, λ) = 0,

min(λg,−gi(x∗)) = 0, λGI+0(x∗) = 0, λHI0+(x∗) = 0,

either λGi > 0, λHi > 0 either λGi λ
H
i = 0 for i ∈ I00(x∗).

Let c be the positive constant bounding the value of the Lagrange multipliers so that

c := max
i∈supp(λG),j∈supp(λH)

1

|λGi |
+

1

|λHj |
.

Construction of the point (x̂, ŝ, ν̂) Let us construct a point (x̂, ŝ, ν̂) that satis�es the
strong epsilon-stationary conditions (7.4.1).

x̂ := x∗, ν̂g := λg, ν̂h := λh, ν̂sG := λG, ν̂sH := λH .

We now split into two cases (A) and (B) corresponding to the two di�erent kinds of
relaxations. Denote the following set of indices

I00
−0(x∗, λ) := {i = 1, . . . , q | λGi < 0, λHi = 0},
I00

0−(x∗, λ) := {i = 1, . . . , q | λGi = 0, λHi < 0},
IνG := supp(ν̂sG) \ (I00

−0(x∗, λ) ∪ I00
0−(x∗, λ)),

IνH := supp(ν̂sH ) \ (I00
−0(x∗, λ) ∪ I00

0−(x∗, λ)),

A) Consider the Case 1, we choose ŝG, ŝH , ν̂G, ν̂H and ν̂Φ such that :

ŝG :=


ψ(t̄+ cε; t), i ∈ I00

−0(x∗, λ)

t̄+ cε, i ∈ I00
0−(x∗, λ)

ε−t̄ν̂G
ν̂G

, i ∈ IνG
∈ F otherwise,

ŝH :=


t̄+ cε, i ∈ I00

0−(x∗, λ)

ψ(t̄+ cε; t), i ∈ I00
−0(x∗, λ)

ε−t̄ν̂H
ν̂H

, i ∈ IνH
∈ F otherwise,

ν̂G :=

{
ν̂sGi for i ∈ I0+(x∗) ∪ I00(x∗)\(I00

−0(x∗, λ) ∪ I00
0−(x∗, λ))

0 otherwise,

ν̂H :=

{
ν̂sHi for i ∈ I+0(x∗) ∪ I00(x∗)\(I00

−0(x∗, λ) ∪ I00
0−(x∗, λ))

0 otherwise.
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and �nally

ν̂Φ :=


−ν̂sGi
αHi (s;t)

for i ∈ I00
−0(x∗, λ)

−ν̂sHi
αGi (s;t)

for i ∈ I00
0−(x∗, λ)

0 otherwise.

(x̂, ŝ, ν̂) satisfy the stationary : Finally, we verify that in both cases we satisfy the strong
epsilon-stationary conditions, that is∥∥∇L1

s(x̂, ŝ, ν̂; t)
∥∥
∞ ≤ ε,

and

|hi(x̂)| ≤ t̄+ cε ∀i ∈ {1, . . . ,m},
gi(x̂) ≤ ε, ν̂gi ≥ 0, |gi(x̂)ν̂gi | ≤ ε ∀i ∈ {1, . . . , p},
|Gi(x̂)− ŝG,i| ≤ t̄+ cε ∀i ∈ {1, . . . , q},
|Hi(x̂)− ŝH,i| ≤ t̄+ cε ∀i ∈ {1, . . . , q},
ŝG,i + t̄ ≥ −ε, ν̂Gi ≥ 0,

∣∣ν̂Gi (ŝG,i + t̄)
∣∣ ≤ ε ∀i ∈ {1, . . . , q},

ŝH,i + t̄ ≥ −ε, ν̂Hi ≥ 0,
∣∣ν̂Hi (ŝH,i + t̄)

∣∣ ≤ ε ∀i ∈ {1, . . . , q},
Φi(ŝG, ŝH ; t) ≤ 0, ν̂Φ

i ≥ 0,
∣∣ν̂Φ
i Φi(ŝG, ŝH ; t)

∣∣ ≤ 0 ∀i ∈ {1, . . . , q}.

We split the rest of the proof of A) in 6 parts :

I. ‖∇xL1
s(x̂, ŝ, ν̂; t)‖∞ ≤ ε, gi(x̂) ≤ ε, ν̂gi ≥ 0, |gi(x̂)ν̂gi | ≤ ε ∀i ∈ {1, . . . , p} and |hi(x̂)| ≤

t̄+ cε ∀i ∈ {1, . . . ,m};

II. ‖∇sL1
s(x̂, ŝ, ν̂; t)‖∞ ≤ ε;

III. |Gi(x̂)− ŝG,i| ≤ t̄+ cε, |Hi(x̂)− ŝH,i| ≤ t̄+ cε ∀i ∈ {1, . . . , q};

IV. ŝG,i + t̄ ≥ −ε,
∣∣ν̂Gi (ŝG,i + t̄)

∣∣ ≤ ε, ŝH,i + t̄ ≥ −ε,
∣∣ν̂Hi (ŝH,i + t̄)

∣∣ ≤ ε ∀i ∈ {1, . . . , q};

V. Φi(ŝG, ŝH ; t) ≤ 0, ,
∣∣ν̂Φ
i Φi(ŝG, ŝH ; t)

∣∣ ≤ 0 ∀i ∈ {1, . . . , q};

VI. ν̂Gi ≥ 0, ν̂Hi ≥ 0, ν̂Φ
i ≥ 0.

Let us now run through these 6 conditions.
I. Since, x̂ = x∗ and (ν̂g, ν̂h, νsG , νsH ) = (λg, λh, λG, λH) it holds that∥∥∇xL1

s(x̂, ŝ, ν̂; t)
∥∥
∞ = 0

and

|hi(x̂)| = 0 ∀i ∈ {1, . . . ,m},
gi(x̂) ≤ 0, ν̂gi ≥ 0, |gi(x̂)ν̂gi | ≤ 0 ∀i ∈ {1, . . . , p}.
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II. The gradient of the Lagrangian with respect to s is given by

∇sGL1
s(x̂, ŝ, ν̂; t) = ν̂sG − ν̂G + ν̂ΦαH(ŝ; t),

∇sHL1
s(x̂, ŝ, ν̂; t) = ν̂sH − ν̂H + ν̂ΦαG(ŝ; t).

In the case I00
−0(x∗, λ) (the case I00

−0(x∗, λ) is similar by symmetry) it is true that ν̂Gi = ν̂Hi = 0

and ν̂Φ
i =

−ν̂sGi
αHi (ŝ;t)

. Therefore

∇sG,iL1
s(x̂, ŝ, ν̂; t) = 0,

∇sH,iL1
s(x̂, ŝ, ν̂; t) =

−ν̂sGi αGi (ŝ; t)

αHi (ŝ; t)
= ν̂sGi

∂ψ(x; t)

∂x

∣∣∣∣
x=t̄+cε

,

since for i ∈ I00
−0(x∗, λ) by construction of ŝG, ŝH it holds that FGi = 0 and ŝH,i = t̄ + cε.

The conclusion follows by Lemma 7.7.3, which gives

∂ψ(x; t)

∂x

∣∣∣∣
x=t̄+cε

≤ ε.

Now, in the cases I0+(x∗) ∪ I00(x∗) \ (I00
−0(x∗, λ) ∪ I00

0−(x∗, λ)) and
I+0(x∗)∪I00(x∗) \ (I00

−0(x∗, λ)∪I00
0−(x∗, λ)) the construction of the multipliers gives directly

that ∇(sG,sH)L1
s(x̂, ŝ, ν̂; t) = 0.

This concludes the proof of II.
III. x̂ feasible for the MPCC yields to

|Gi(x̂)− ŝG,i| = |ŝG,i| and |Hi(x̂)− ŝH,i| = 0, for i ∈ I0+(x∗),

|Gi(x̂)− ŝG,i| = 0 and |Hi(x̂)− ŝH,i| = |ŝH,i|, for i ∈ I+0(x∗),

|Gi(x̂)− ŝG,i| = |ŝG,i| and |Hi(x̂)− ŝH,i| = |ŝH,i|, for i ∈ I00(x∗).

By symmetry it is su�cient to consider the variables sG. We analyse the cases where i ∈
I00

0−(x∗, λ), I00
−0(x∗, λ) and IνG .

• Let i ∈ I00
0−(x∗, λ), then ŝG,i = t̄+ cε;

• Let i ∈ I00
−0(x∗, λ), then ŝG,i = ψ(t̄+ cε; t) ≤ t̄+ cε by Lemma 7.7.2;

• Let i ∈ IνG , then ŝG,i =
∣∣∣ εν̂Gi − t̄∣∣∣ ≤ ∣∣∣ εν̂Gi ∣∣∣+ t̄ ≤ t̄+ cε.

In every case it holds that |ŝG,i| ≤ t̄+ cε and so this III is veri�ed.
IV. By construction ŝG,i and ŝH,i are both non-negative as ψ(.; t) is assumed non-negative

for indices i such that Φi(ŝG, ŝH ; t) = 0.
It remains to verify the condition in the case where i ∈ IνG and i ∈ IνH . However, in

both cases it holds that

∀i ∈ IνG , ŝG,i + t̄ =
ε− t̄ν̂Gi
ν̂Gi

+ t̄ =
ε

ν̂Gi
> 0 ≥ −ε,

∀i ∈ IνH , ŝH,i + t̄ =
ε− t̄ν̂Hi
ν̂Hi

+ t̄ =
ε

ν̂Hi
> 0 ≥ −ε.
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So, the feasibility in condition IV is satis�ed. Now, regarding the complementarity condition
it holds that

∀i ∈ IνG , |(ŝG,i + t̄)ν̂Gi | =
∣∣∣∣(ε− t̄ν̂Giν̂Gi

+ t̄

)
ν̂Gi

∣∣∣∣ = ε,

∀i ∈ IνH , |(ŝH,i + t̄)ν̂Hi | =
∣∣∣∣(ε− t̄ν̂Hiν̂Hi

+ t̄

)
ν̂Hi

∣∣∣∣ = ε.

This proves that the complementarity condition holds true for the relaxed positivity con-
straints and so condition IV is veri�ed.

V. The feasibility Φi(ŝG, ŝH ; t) ≤ 0 and the complementarity condition
∣∣ν̂Φ
i Φi(ŝG, ŝH ; t)

∣∣ ≤
0 are satis�ed by construction and by hypothesis on the relaxation.

VI. The multiplier ν̂Φ is non-negative since for i ∈ I00
−0(x∗, λ) it holds that

αHi (ŝ; t) = FHi(ŝ; t)−
∂ψ(x; t)

∂x

∣∣∣∣
x=sG,i

FGi(ŝ; t) = FHi(ŝ; t) > 0,

since FGi(ŝ; t) = 0 by construction of ŝG,i and FH(t̄ + cε; t) > 0 by Lemma 7.7.1. The case
i ∈ I00

0−(x∗, λ) follows by symmetry.
The other multipliers are obviously non-negative by construction. This concludes the

case VI.

The veri�cation of all 6 cases proves that the point constructed above is strong epsilon-
stationary, which concludes the proof of the relaxations (A).

B) Consider the Case 2. Let ŝG, ŝH , ν̂G, ν̂H and ν̂Φ be such that :

ŝG :=



ψ(t̄+ cε; t), i ∈ I00
−0(x∗, λ)

t̄+ cε, i ∈ I00
0−(x∗, λ)

ε−t̄ν̂G
ν̂G

, i ∈ IνG ∩ IνH
ψ
(
ε−t̄ν̂H
ν̂H

; t
)
, i ∈ IνH \ IνG

∈ F otherwise,

ŝH :=



t̄+ cε, i ∈ I00
0−(x∗, λ)

ψ(t̄+ cε), i ∈ I00
−0(x∗, λ)

ψ
(
ε−t̄ν̂G
ν̂G

; t
)
, i ∈ IνG ∩ IνH

ε−t̄ν̂H
ν̂H

, i ∈ I2

∈ F otherwise,

ν̂G :=

{
ν̂sGi for i ∈ IνG ∩ IνH
0 otherwise,
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ν̂H :=

{
ν̂sHi for i ∈ IνH \ IνG
0 otherwise,

ν̂Φ :=


−ν̂sGi
αHi (ŝ;t)

for i ∈ I00
−0(x∗, λ)

−ν̂sHi
αGi (ŝ;t)

for i ∈ I00
0−(x∗, λ) ∪ IνG ∩ IνH

0 otherwise.

Once again we run through the 6 conditions. It is to be noted that the variables involved in
I. have not been changed so this condition stands true.

II. As pointed out earlier, the gradient of the Lagrangian with respect to s is given by

∇sGL1
s(x̂, ŝ, ν̂; t) = ν̂sG − ν̂G + ν̂ΦαH(ŝ; t),

∇sHL1
s(x̂, ŝ, ν̂; t) = ν̂sH − ν̂H + ν̂ΦαG(ŝ; t).

For indices i in I00
−0(x∗, λ) and I00

−0(x∗, λ) we refer to case (A). Let us consider indices i in

IνG ∩ IνH and IνH \ IνG . For i ∈ IνG ∩ IνH , then ν̂Gi > 0, ν̂Hi = 0 and ν̂Φ
i =

−ν̂sHi
αGi (ŝ;t)

and so
the gradient of the Lagrangian with respect to s becomes

∇sG,iL1
s(x̂, ŝ, ν̂; t) = ν̂sGi − ν̂Gi + ν̂Φ

i α
H
i (ŝ; t) =

−ν̂sHi αHi (ŝ; t)

αGi (ŝ; t)
,

∇sH,iL1
s(x̂, ŝ, ν̂; t) = ν̂sHi − ν̂Hi + ν̂Φ

i α
G
i (ŝ; t) = 0.

By construction of ŝG,i and ŝH,i, it holds that FHi(ŝ; t) = 0 and so

∇sGL1
s(x̂, ŝ, ν̂; t) =

−ν̂sHi αHi (ŝ; t)

αGi (ŝ; t)
= ν̂sHi

∂ψ(x; t)

∂x

∣∣∣∣
x=sG,i

= ν̂sHi
∂ψ(x; t)

∂x

∣∣∣∣
x= ε

ν̂
sG
i

−t̄
≤ ε,

for some t ∈ (0, t∗) according to Lemma 7.7.3.
Now, for indices i ∈ IνH \IνG it holds that ν̂sGi = 0 so by the choice of multipliers νG, νH

and νΦ the gradient of the Lagrangian with respect to s vanishes.
It follows that the condition II holds true.
III. Since x̂ is feasible for the MPCC therefore

|Gi(x̂)− ŝG,i| = |ŝG,i| and |Hi(x̂)− ŝH,i| = 0, for i ∈ I0+(x∗),

|Gi(x̂)− ŝG,i| = 0 and |Hi(x̂)− ŝH,i| = |ŝH,i|, for i ∈ I+0(x∗),

|Gi(x̂)− ŝG,i| = |ŝG,i| and |Hi(x̂)− ŝH,i| = |ŝH,i|, for i ∈ I00(x∗).

Let us consider the case where i ∈ IνG ∩ IνH noticing that i ∈ IνH \ IνG is similar by
symmetry. The other cases have been checked in case (A) of this proof. It follows that

|ŝG,i| =
∣∣∣∣ε− t̄ν̂Gν̂G

∣∣∣∣ ≤ ∣∣∣∣ εν̂Gi
∣∣∣∣+ t̄ ≤ t̄+ cε,

|ŝH,i| =
∣∣∣∣ψ(ε− t̄ν̂Giν̂Gi

; t

)∣∣∣∣ .
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The second condition is ensured by Lemma 7.7.4.
IV. and V. These conditions are straightforward and follow the same path that condition

IV. in the case A.
VI. The proof for indices is very similar to the condition VI in case (A) except in the

case where i is in IνG ∩ IνH . In this case

ν̂Φ
i =

−ν̂sHi
αGi (ŝ; t)

=
−ν̂sHi
FGi(ŝ; t)

,

since by construction of ŝG and ŝH , FHi(ŝ; t) = 0 here. Now, by de�nition of FG(ŝ; t) it
follows

ν̂Φ
i =

−ν̂sHi
ŝG,i − ψ(ŝH,i; t)

=
−ν̂sHi

ε/ν̂sGi − t̄− ψ(ŝH,i; t)
≥ 0,

for cε ≤ t̄ since ψ is non-negative whenever sG and sH are chosen such that FHi(s; t) = 0
(Assumption (H5)).

The veri�cation of all 6 cases proves that the point constructed above is strong epsilon-
stationary, which concludes the proof of the relaxations (B) and complete the whole proof.

It is to be noted that no constraint quali�cation is required for this result. This is a
clear improvement over what was obtained in the literature in the ideal case of sequence of
stationary points. For instance, Theorem 5.1 in [111] requires some second-order information
to get a result on existence of stationary points for the regularised sub-problems.

Theorem 7.7.2. For any M-stationary point of (MPCC) that satis�es MPCC-CRSC, there
exists a sequence of strong epsilon-stationary points of the relaxation (Rs

t (x, s)) that converges
to that point.

Proof. Theorem 7.7.1 gives more relations between the parameters that are compatible with
Corollary 7.6.1. Indeed for a chosen sequence of arbitrarily small parameters {εk}, Corollary
7.6.1 requires that εk = o(t̄k) and Theorem 7.7.1 requires that t̄k > cε and tk must be
su�ciently small, in particular smaller than t̄k − cεk.

Thus, a straightforward application of both of these results provides the result.

Previous section points out that such result cannot be obtained without a formulation
with slack variables. The various results obtained through this chapter leads to an algorith-
mic strategy with strong theoretical properties to solve the sub-problems of the relaxation
method. A discussion of the numerical implementation will be discussed in the last part,
Part III.
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Notes and perspectives of Part II

Through the Part II, we have discussed stationary conditions for MPCC as well as relaxation
methods to attain some optimality conditions. We raise the issue of solving approximately
the sub-problems of the relaxation scheme and suggest a speci�c approach to deal with
this issue. We brie�y discuss here the perspectives from this work on relaxation methods.
In particular, there are two di�erent extensions of this work. A �rst approach is to use
algorithms for MPCC to solve more di�cult problems, while another approach is to apply
the technique used to derive the butter�y relaxation to the Mathematical Programs with
Vanishing Constraints (MPVCs) and Optimisation Problems with Cardinality Constraints
(OPCCs). We give some more details about these perspectives.

Bilevel programming

The bilevel problem has been very popular for many applications, for instance in biology
[36] and in network design [144] to cite just a few examples. A very used technique is to
cast this problem as a (MPCC), see the monographs [53, 55] and some recent papers, for
instance [54]. Bilevel optimisation problems are optimisation problems where the feasible set
is determined (in part) using the graph of the solution set mapping of a second parametric
optimisation problem. This problem is given as

min
y
f(x, y) s.t g(x, y) ≤ 0, y ∈ T, (Foll(x))

where f : Rn → Rm, g : Rn×Rm → Rp, T ⊆ Rm is a (closed) set. Let Y : Rn ⇒ Rm denote
the feasible set mapping:

Y (x) := {y : g(x, y) ≤ 0},

ϕ(x) := min
y
{f(x, y) : g(x, y) ≤ 0, y ∈ T},

the optimal value function, and Ψ : Rn ⇒ Rm the solution set mapping of the problem
(Foll(x)) for a �xed value of x:

Ψ(x) := {y ∈ Y (x) ∩ T : f(x, y) ≤ ϕ(x)}.

Let
gphΨ := {(x, y) ∈ Rn × Rm : y ∈ Ψ(x)}
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be the graph of the mapping Ψ. Then the bilevel optimisation problem is given as

” min
x

”{F (x, y) : G(x) ≤ 0, (x, y) ∈ gphΨ, x ∈ X}, (BP)

where F : Rn × Rm → R, G : Rn → Rq, X ⊆ Rn is a closed set. Problem (Foll(x)) is called
the follower's problem and (BP) the leader's problem. The latter is the bilevel optimisation
problem.

Example (Example 1.2, [55]).

” min
x

”x2 + y : y ∈ arg min
y
{−xy : 0 ≤ y ≤ 1}.

We see on these �gures that for x = 0 if the solution y = 0 is taken, then there exists an

Figure 7.5: Mapping to be minimised in Example 7.7.2.

optimal solution (optimistic solution), otherwise the in�mum exists but there is no solution.
Also, note that the case y = 1 is called pessimistic case.

It follows from the example (7.7.2) that the problem (BP) is not well-posed if the follower's
answer is not a singleton for some values of x. That is why we use quotation marks in (BP) to
indicate this ambiguity. To overcome such an unpleasant situation, the leader has a number
of possibilities, we brie�y mention here two:

• The follower co-operate with the leader. In this case, we select the solution of the
problem (Foll(x)) that minimises the function F (x, .). This approach is discussed in
[55].

• The leader has no possibility to in�uence the follower's selection and neither he/she
has an intuition about the follower's choice. In this case, the leader has to accept a
worst case scenario. A penalisation technique is introduced in [27].

Among others, one approach to solve (BP) is to reformulate it as a one-level problem by
replacing the follower problem by its KKT conditions. Since the KKT condition is a com-
plementarity problem, this approach leads to the study of an (MPCC).
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Figure 7.6: Feasible set of the MPVC and the butter�y relaxation for θr(z) = z
z+r

with

t1 = t
3/2
2 .

Extensions of the butter�y relaxation

The study of numerical methods has been the motivation of extensions of this technique
to problems that are similar in the structure, but require an independent study. Among
others two problems that corresponds to this description are the Mathematical Program with
Vanishing Constraint (MPVC) and the Optimisation Program with Cardinality Constraints
(OPCC).

Mathematical programs with vanishing constraints

The (MPVC) is de�ned as the following optimisation problem:

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0, H(x) ≥ 0,

Gi(x)Hi(x) ≤ 0, ∀i ∈ {1, . . . , q}.
(MPVC)

with f : Rn → R, h : Rn → Rm, g : Rn → Rp and G,H : Rn → Rq that are assumed
continuously di�erentiable. The feasible set of the "vanishing constraint" is given in Figure
7.6. This problem was �rst proposed by Achtziger in [9] motivated by applications in topol-
ogy design and in mechanical structures problems. This problem can be reformulated as a
(MPCC), however this runs at some constraint quali�cations issues explaining why we need
to propose speci�c numerical methods even so they are very close to methods for (MPCC).
Relaxation methods from previous sections can be adapted to this case by considering the
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non-linear parametric program

min
x∈Rn

f(x)

s.t g(x) ≤ 0, h(x) = 0,

H(x) ≥ −t3,
Φ(G(x), H(x); t) ≤ 0.

Recent literature extend relaxation methods for (MPCC) to (MPVC): [8, 106] deal with the
smooth method by Scheel & Scholtes, [7] consider a non-smooth reformulation, [101] uses
the local regularisation from Ste�ensen & Ulbrich and �nally [102] adapt the new paradigm
of relaxation method with convergence to M-stationary point in particular the method by
Kanzow & Schwarz. Following the same path, we can extend the Butter�y relaxation method
for MPVC:

Φ(G(x), H(x); t) := Gi(x)(Hi(x)− t1 − t1θt2(Gi(x))), i = 1, . . . , q

where θ is de�ned as before and with t ∈ R3
++. The feasible set of the vanishing constraint

relaxed is given in Figure 7.6.
In order to validate this approach, we run the method on an application of MPVC to

truss topology optimisation that was described in depth in chapter 9 of the monograph [100].

Example.

min
x∈R2

4x1 + 2x2

s.t. x1 ≥ 0, x2 ≥ 0,

(5
√

2− x1 − x2)x1 ≤ 0,

(5− x1 − x2)x2 ≤ 0.

The feasible set of this example is given in Figure 7.7. As the geometry indicates, numeri-
cal methods based on feasible descent concepts generally converge to the point x̂ = (0, 5

√
2)T .

The unique global solution to the problem is the point x∗ = (0, 0)T . In practical applica-
tion this point must be excluded by an additional constraint, and then the unique optimal
solution to the problem is the point x̄ = (0, 5)T .

We run butter�y relaxation tailored to (MPVC) on Example 7.7.2 using an initial point
inside the feasible domain x0 = (6, 6)T . Results are presented in Table 7.1 with solvers
SNOPT, IPOPT and MINOS. In two cases the butter�y method manages to converge to
the global optimum and in the third case it converges to the point (0, 5) which is a local
minimum.

Optimisation problems with cardinality constraints

The (OPCC) is de�ned as the following non-smooth optimisation problem:

min
x∈Rn

f(x) s.t x ∈ X, ‖x‖0 ≤ κ, (OPCC)
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Figure 7.7: The feasible set of Example 7.7.2 from [100].

sovler x∗ f(x∗) last value of t
SNOPT (0, 5)T 10 0, 5
IPOPT (0, 0)T 0 4, 67.10−4

MINOS (0, 0)T 0 0, 5

Table 7.1: Butter�y (MPVC) relaxation with t = r3/2 on Example 7.7.2 with initial point
(6, 6)T .

with a set X ⊂ Rn described by some standard constraints

X := {x ∈ Rn | g(x) ≤ 0, h(x) = 0}

for g : Rn → Rp and h : Rn → Rm. f, g and h are assumed to be continuously di�erentiable
and κ < n, otherwise there would be no cardinality constraints. This problem has many
important applications, including portfolio optimisation [32], subset selection problem in
regression [151], or the compressed sensing technique used in signal processing [42]. Due to
the combinatorial behaviour of the `0 norm, (OPCC) is usually treated as a Mixed Integer
Non-linear Program in the literature. However, recent development in the literature has
started considering a formulation with continuous variables of (OPCC), see for instance [67,
35, 34, 43, 32]. In order to obtain a suitable reformulation of the cardinality constraints, we
may consider the mixed-integer problem

min
x∈Rn

f(x)

s.t g(x) ≤ 0, h(x) = 0,

eTy ≥ n− κ,
xiyi = 0, ∀i = 1, . . . , n,

y ∈ {0, 1}.
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Next, we consider the standard relaxation of this mixed-integer problem

min
x∈Rn

f(x)

s.t g(x) ≤ 0, h(x) = 0,

eTy ≥ n− κ,
xiyi = 0, ∀i = 1, . . . , n,

y ∈ [0, 1].

(7.5)

One of the main interests to study the relaxed problem (7.5) is the following two results from
[35, 34]. The �rst result concerns the equivalence of a global solution.

Theorem (Theorem 2, [35]). A vector x∗ ∈ Rn is a solution of (OPCC) if and only if there
exists a vector y∗ ∈ Rn such that the pair (x∗, y∗) is a solution of the relaxed problem (7.5).

As it could be expected, the same relation does not hold in general for local minimisers.
Nevertheless, one can still obtain useful result using local minimisers of the relaxed problem
(7.5).

Theorem (Theorem 5, [35]). Let (x∗, y∗) be a local minimiser of problems (7.5) satisfying
‖x∗‖0 = κ. Then, x∗ is a local minimiser of the cardinality-constrained problem (OPCC).

We now brie�y discuss the extension of regularisation techniques applied to the problem
(7.5).

Relaxation methods

The relaxation (SS) and (KS) discussed earlier in Chapter 5 were extended to (7.5) respec-
tively in [34] and [32] by considering

min
x∈Rn

f(x)

s.t g(x) ≤ 0, h(x) = 0,

eTy ≥ n− κ,
xiyi = 0, ∀i = 1, . . . , n,

Φ+(x, y; t) ≤ 0,Φ+(x, y; t) ≤ 0,

y ∈ [0, 1],

where for (KS) relaxation Φ+
i (x, y; t) = ϕ(xi, yi; t) and Φ−i (x, y; t) = ϕ(−xi, yi; t) with

ϕ(a, b; t) =

{
(a− t)(b− t), if a+ b ≥ 2t

−1
2
((a− t)2 + (b− t)2), if a+ b < 2t.
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and for (SS) relaxation Φ+
i (x, y; t) = xiyi − t and Φ−i (x, y; t) = −xiyi − t. Thus, a natural

application of the Butter�y technique to this formulation would consider for t ∈ R2

Φ+
i (x, y; t) =

{
(xi − t1θt2(yi))(yi − t1θt2(xi)), if xi − t1θt2(yi) + yi − t1θt2(xi) ≥ 0

−1
2

((xi − t1θt2(yi))
2 + (yi − t1θt2(xi))

2) , otherwise.

and Φ−i (x, y; t) = Φ+
i (−x, y; t).

Sparse theta-approximation

Another approach could use the relaxation of the `-0 norm presented in Chapter 2 to tackle
the problem (OPCC). Applying this technique would lead to an iterative method that solves
the following sub-problem at each step

min
x,y∈Rn×Rn

f(x) s.t (x, y) ∈ X ,
n∑
i=1

θr(yi) ≤ κ,

with a set X ⊂ Rn × Rn described by some standard constraints

X := {(x, y) ∈ Rn × Rn | g(x) ≤ 0, h(x) = 0, y ≥ 0, −y ≤ x ≤ y}.

In both cases, a careful theoretical study supported by numerical test is needed to show the
validity of these new methods.
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Part III

Numerics
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We discussed in the previous part relaxation methods to solve the (MPCC). Until now
the discussion has been essentially focus on the theoretical properties of the various existing
methods. We now focus on the numerical behaviour of these methods.

In Chapter 8, we present a numerical comparison between these methods. The non-
linear regularised sub-problems have been solved using di�erent solvers available via AMPL.
The classical set of test problems used in the literature, and also used in this document,
to compare the method is MacMPEC, [123]. The comparison has been made after de�ning
criteria of success and also using a methodology introduced by Dolan and More in [57] to
compare non-linear problems.

In Chapter 7, we pointed out that in order to keep the strong theoretical guarantees of
the relaxations, the regularised sub-problems need to be solved with care. We present in
Chapter 9 an implementation in JULIA of an algorithmic strategy that maintain the strong
guarantees of the relaxation methods. Preliminary results regarding this implementation are
given.
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Chapter 8

Numerical comparison between the

relaxation methods

In this chapter, we focus on the numerical implementation of the butter�y relaxation method.
Our aim is to compare this new method with the existing ones in the literature and show
some of their features. This comparison uses the collection of test problems MacMPEC
[123], that has been widely used in the literature to compare relaxation methods as in [100,
111, 185]. The test problems included in MacMPEC are extracted from the literature and
real-world applications.

Our comparison is based on two experiments. The �rst one, in Section 8.2, is a comparison
of the relaxation methods for various criteria and for several strategies of parameter with
a �xed precision. The second method, in Section 8.3, considers a methodology proposed in
the literature to benchmark non-linear programs independently of the stopping criteria of
the solvers. One of the bene�t of this approach is to determine the precision that must be
given to the solver.

Finally, we also present in Section 8.4 an example of an (MPCC) that illustrates some of
the di�culties that may occur by dealing with epsilon-stationary points.

8.1 On the implementation of the butter�y relaxation

As pointed out in Chapter 6, the butter�y relaxation handles two parameters t and r. It can
be practical to choose a relation between both parameters. Among the in�nite possibilities
of relationship between t and r, at least two are speci�c:

(i) t = r, since as stated in Theorem 6.3.2 this relaxation is more regular, but may converge
to undesirable A-stationary points according to Theorem 6.2.1;

(ii) t = o(r), for instance t = r3/2, which ensures convergence to M-stationary points as
stated in Corollary 6.2.1.

Practical implementation could also consider a slightly di�erent model by adding a new
parameter s in order to move the intersection of both wings in the point (G(x), H(x)) = (s, s).
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This can be done by rede�ning F1(x; r, t) and F2(x; t, r) such that for all i ∈ {1, . . . , q}

F1i(x; r, s, t) = (Hi(x)− s− tθr(Gi(x)− s)),
F2i(x; r, s, t) = (Gi(x)− s− tθr(Hi(x)− s)).

Even so we did not give any theoretical proof regarding this modi�ed system, this modi�-
cation does not alter the behaviour of the butter�y relaxation. Besides, this formulation is
clearly an extension of the method (KS).

The numerical comparison of the butter�y relaxation with other existing methods con-
sider the three following schemes:

1. B(t=r): (s = 0, t = r);

2. B(t=r3/2): (s = 0, t = r3/2);

3. B(s=t,2t=r): (s = t, 2t = r).

Each scheme can be duplicated whether we omit or not the relaxation of the positivity
constraints. We do not present here the results with the relaxation of the positivity con-
straints,i.e. t̄ = 0, since after preliminary tests it does not seem to be helpful.

8.2 Comparison of the relaxation methods

We provide in this section and in Algorithm 2 some more details on the implementation and
the comparison between relaxation methods. It is to be noted that our aim is to compare
the methods and so no attempt to optimise any method has been carried out. We use 101
test problems from MacMPEC, where are omitted the problems that exceed the limit of
300 variables or constraints and some problems with the evaluation error of the objective
function or the constraints. Algorithm 2 is coded in Matlab and uses the AMPL API.

Rt̂k
denotes the relaxed non-linear program associated with a generic relaxation, where

except from the butter�y method the parameter rk does not play any role. At each step we
compute xk+1 as a solution of Rt̂k

starting from xk. Therefore, at each step the initial point
is more likely to be infeasible for Rt̂k

. The iterative process stops when tk and rk are smaller
than some tolerance, denoted pmin which is set as 10−15 here, or when the solution xk+1 of
Rt̂k

is considered an ε-solution of (MPCC). To consider xk+1 as an ε-solution with ε set as
10−7 we check three criteria:

a) Feasibility of the last relaxed non-linear program: νf (x) := max(−g(x), |h(x)|,−Φ(x)),

b) Feasibility of the complementarity constraints: νcomp(x) := min(G(x), H(x))2,

(c) The complementarity between the Lagrange multipliers and the constraints of the last
relaxed non-linear program:

νc(x) := max(‖g(x) ◦ λg‖∞, ‖h(x) ◦ λh‖∞, ‖G(x) ◦ λG‖∞,
‖H(x) ◦ λH‖∞, ‖ΦB(G(x), H(x); t̂) ◦ λΦ‖∞).
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Obviously, it is hard to ask a tighter condition on the complementarity constraints, since
the feasibility only guarantees that the product component-wise is less than ε. Using these
criteria, we de�ne a measure of optimality

min_local(x) := max (νf (x), νcomp(x), νc(x)) .

A fourth criterion could be the dual feasibility, that is the norm of the gradient of the
Lagrangian. However, solvers like SNOPT or MINOS do not use this criterion as the stopping
criterion. One reason among others for the solvers to discard such a criterion is the numerical
issues implied by the degeneracy in the KKT conditions.

In the case of an infeasible or unbounded sub-problem Rt̂k
, the algorithm stops and return

a certi�cate.
Data:
starting vector x0; initial relaxation parameter t0; update parameter (σt, σr) ∈ (0, 1)2

and pmin the minimum parameter value, ε the precision tolerance ;
1 Begin ;
2 Set k := 0 ;
3 while max(tk, rk) > pmin and min_local(x) > ε do
4 xk+1 solution of Rtk,rk with x

k initial point;
5 (tk+1, rk+1) := (tkσt, rkσr) ;
6 return: fopt the optimal value at the solution xopt or a decision of infeasibility or
unboundedness.

Algorithm 2: Basic Relaxation methods for (MPCC), with a relaxed non-linear pro-
gram Rt̂k

.
Step 4 in Algorithm 2 is performed using three di�erent solvers accessible through AMPL,

[79], that are SNOPT 7.2-8 [84], MINOS 5.51 [155] and IPOPT 3.12.4 [192] with their default
parameters. Previous similar comparison in the literature only consider SNOPT to solve the
sub-problems.

We compare the butter�y schemes with the relaxations (SS) and (KS) that we respectively
denote SS and KS. Moreover, we also take into account results of the non-linear programming
solver without speci�c MPCC tuning and denote it NL.

In order to compare the various relaxation methods, we try to have a coherent use
of the parameters. In a similar way as in [184] we consider the value of the "intersec-
tion between G and H", which is (t, t) for KDB, KS and Butter�y, (

√
t,
√
t) for SS and

2π
π−2

(t, t) for SU. Then, we run a sensitivity analysis on several values of the parameters
T ∈ {100, 25, 10, 5, 1, 0.5, 0.05} and S ∈ {0.1, 0.075, 0.05, 0.025, 0.01}, which corresponds to
t0 and σt as described in Table 8.1.
In [103], the authors consider as a stopping criterion the feasibility of the last non-linear

parametric program in particular by considering the complementarity constraint by the min-
imum component-wise. Table 8.3 provides our results with this criterion. We provide ele-
mentary statistics by considering the percentage of success for each set of parameters. A
problem is considered solved in this case if criteria a) and b) are satis�ed.

First, we see that the method NL is giving decent results. It is not a surprise as was
pointed out in [76]. Practical implementation of relaxation methods would select the best
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Relaxation NL SS KS Butter�y
t0 none T 2 T T
σt none S2 S S

Table 8.1: Parameter links among the methods

SS KS Butter�y
(
√
t,
√
t) (t, t) (t, t)

Table 8.2: Link between the parameters of relaxation methods.

choice of parameters, so that we focus most of our attention to the line 'best'. In all cases,
the relaxations manage to improve or at least equal the number of problems solved by NL. By
using SNOPT, KS and the butter�y with t = r3/2 get 1% of improvement and with IPOPT
the butter�y with t = r3/2 is the only one that attains 100%. The relaxation methods seem
to make a signi�cant improvement over NL with MINOS. In this case, it is clear that the
butter�y methods bene�t from the introduction of the parameter s and the method with
s = t, 2t = r is very competitive.

Our goal by solving (MPCC) is to compute a local minimum. The results using the
local minimum criterion de�ned above as a measure of success are given in Table 8.4. Once
again we provide a percentage of success. In comparison with Table 8.3, this new criterion
is more selective. Independently of the solver, the relaxation methods with some correct
choices of parameters provide improved results. Using SNOPT as a solver, the methods KS
and butter�y give the highest number of success. The butter�y method with t = r3/2 even
improved the number of problems solved by SNOPT alone in average. In a similar way as in
the previous experiment the butter�y method bene�ts of the introduction of the parameter
s with the solver MINOS.

The methods (KDB) and (SU) have been discarded after preliminary results. We already
point out in Example 5.3.1 one reason for the method (KDB). It is to be noted that both
methods have received a special attention in [110] and [185] to solve the sub-problems that
handle potential issues.

8.3 Benchmarking MPCCs solvers

Recent works have tried to propose methodologies to benchmark solvers and algorithms on
some set of problems independently of the di�erences of technique and stopping criteria used.
In [57], the authors proposed a methodology to compare non-linear programming solvers that
uses the performance pro�le introduced in [56].

After giving some detailed about this methodology, we provide computational results of
an adaptation of this methodology to the (MPCC).
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Solver SNOPT NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

best 97.03 97.03 98.02 97.03 97.03 98.02
average 97.03 95.02 94.71 95.39 93.89 94.88
worst 97.03 91.09 91.09 92.08 91.09 91.09
std 0 1.64 2.09 1.50 1.97 2.42

Solver MINOS NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

best 89.11 94.06 93.07 90.10 95.05 89.11
average 89.11 91.20 90.89 83.54 91.06 81.92
worst 89.11 87.13 87.13 77.23 86.14 76.24
std 0 1.50 1.44 2.81 2.15 2.89

Solver IPOPT NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

best 98.02 99.01 98.02 99.01 98.02 100
average 98.02 98.16 96.38 94.03 93.89 94.79
worst 98.02 95.05 93.07 89.11 88.12 88.12
std 0 0.97 1.99 2.62 2.80 3.60

Table 8.3: Sensitivity analysis for MacMPEC test problems considering the feasibility of
(MPCC). Results are a percentage of success. best : percentage of success with the best
set of parameters, worst : percentage of success with the worst set of parameters, average :
average percentage of success among the distribution of (T, s), std : standard deviation

8.3.1 NLP benchmarking

The aim of this section is to de�ne a test of convergence (up to some precision τ) for the
problem

min f(x) s.t l ≤ c(x) ≤ u. (8.1)

This problem is an equivalent formulation to (NLP) used earlier in this manuscript. This
test of convergence verify the following essential properties:

• Does not need access inside the code of the solvers;

• Takes into account the absolute and relative error;

• Uses only the primal information given by the solvers;

• Is invariant of any scaling.

We use the following proximity measure

d(x, y) := min

(
|x− y|, |x− y|

|x|+ |y|

)
.

The set of indices of active constraints is given here as

Aτ (x) := {k : min (d(ck(x), lk), d(ck(x), uk)) ≤ τ}.
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Solver SNOPT NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

best 92.08 94.06 96.04 96.04 97.03 96.04
average 92.08 90.78 91.17 92.08 90.04 92.33
worst 92.08 83.17 86.14 87.13 82.18 87.13
std 0 3.15 2.59 2.45 2.86 2.77

Solver MINOS NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

best 85.15 94.06 93.07 88.11 94.06 87.13
average 85.15 90.94 90.18 81.92 90.04 80.11
worst 85.15 87.13 86.14 76.23 85.15 74.26
std 0 1.50 1.62 2.65 2.31 2.95

Solver IPOPT NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

best 91.09 93.07 93.07 94.06 93.07 94.06
average 91.09 91.82 89.84 89.05 88.80 89.02
worst 91.09 90.10 86.14 84.16 84.16 81.19
std 0 1.14 2.19 3.09 2.72 3.86

Table 8.4: Sensitivity analysis for MacMPEC test problems considering the optimality of
(MPCC). Results are a percentage of success. best : percentage of success with the best
set of parameters, worst : percentage of success with the worst set of parameters, average :
average percentage of success among the distribution of (T, s), std : standard deviation

Since we want to use only primal information given by the solver, we need to compute
ourselves the Lagrange multipliers by solving the following linear problem

min
v
‖∇f(x)−∇c(x)v‖∞ s.t v ∈ Sτ (x),

where Sτ (x) is the cone of multipliers, de�ned such that whenever x is a stationary point
then (x, ν) is a KKT-pair. Besides, we consider three measures:

1. feasibility:

νf := ‖min (d(c(x), l), d(c(x), u)) if c(x) /∈ [c, u]‖∞ ≤ ‖median (c(x)− l, 0, c(x)− u) ‖∞;

2. complementarity: νc := ‖min (d(c(x), l), d(c(x), u)) pour k ∈ Aτ (x)‖∞ ≤ νf ;

3. stationarity: νs := ‖d (∇f(x),∇c(x)λ(x, τ)) ‖∞ ≤ ‖∇f(x)−∇c(x)λ(x, τ)‖∞.

A point is said acceptable whenever νf ≤ τ and νs ≤ τ .
Now, that we have de�ned what is a success, we consider Algorithm 3. In theory, the

more precise the resolution is required the more time is needed to solve the problem. Thus,
we may compare the resolution of a problem by comparing the time required to solve the
last iteration.
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Data:
τ := 10−6 ; ε0 := default parameter ;

1 Begin ;
2 Set k := 0 ;
3 while (νkf > τ or νks > τ) and εk > 10−16 do
4 (νkf , ν

k
s ):=resolution of (8.1) ;

5 reduce εk ;
6 return: fopt the optimal value at the solution xopt or a decision of infeasibility or
unboundedness.

Algorithm 3: Dolan & More methodology to solve (8.1).

8.3.2 Application to MacMPEC

We now apply the methodology of Dolan & More to the (MPCC). In a similar way as
in Section 8.2 we add as a supplementary criterion the complementarity constraint νcomp.
The computation of the Lagrange multipliers is done in AMPL by using the solver gjh that
computes gradient, hessian matrix of the objective function and the jacobian matrix of the
constraints of an optimisation problem. At this point we notice that the result will most
probably be di�erent from those presented in the previous sections, since we consider the
dual feasibility as a new criterion.

We �rst run Algorithm 3 to compare the three solvers SNOPT, MINOS and IPOPT on
the test problems without any regularisation. Results are given in the performance pro�le
in Figure 8.1.

We see from this �gure that MINOS is the fastest solver, since it solves approximately
80% of the problems faster than the others. SNOPT manages to solve the largest number
of problems that is slightly up to 90 %. We also notice that MINOS does not improve with
more time.

We now apply the same approach with the relaxation methods KS, SS, B(t=r2/3) and
B(s=t,2t=r) for T = 0.5 and s = 0.01. The selected methods are the ones with the best results
according to the study in Section 8.2, while this choice of parameters rather median. The
tests are done with the three solvers and results are presented in Figure 8.2.

As a general remark we see on these results that despite its weaker theoretical properties
the relaxation method (SS) solves most of the problems faster. Moreover, it also solves more
problems than the other methods in most of the cases. The butter�y method with t = r2/3

manages to solve more problems with the solver MINOS and the same number of problems
with solver SNOPT. This method that has stronger convergence guarantees than (SS) is
clear second in the number of problems solved in a short time compared to the butter�y
relaxation with (s=t,2t=r) and the relaxation (KS). According to this study it seems that
all the methods bene�t from using SNOPT as a solver for the regularised sub-problems.
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Figure 8.2: Performance pro�le of relaxations KS, SS, B(t=r2/3) and B(s=t,2t=r) for T = 0.5
and s = 0.01. From the left to the right, up to above: relaxations with SNOPT, relaxations
with MINOS and relaxations with IPOPT.
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Figure 8.1: Performance pro�le that compares the time to solve the last iteration of Algo-
rithm 3 for the test problems of the library MacMPEC.

8.4 An example of numerical di�culties

In this section, we illustrate the possible numerical di�culties that can arise by solving a
(MPCC) with relaxation methods.

Example 8.4.1. Consider the problem

min
x∈R4

exp(−x2
1 − x2

2) + exp(−x3)

s.t. x2
3 ≤ (x2

1 + x2
2 − 1)(x2

1 + x2
2 − 10) + x4,

x2
1 + x2

2 − 10 ≤ 0, x2
4 ≤ 0,

0 ≤ x2
1 + x2

2 − 1 ⊥ x3(−x2
1 − x2

2 + 10) ≥ 0.

The feasible set is the union of two circles, {x ∈ R4 | x3 = x4 = 0, x2
1 + x2

2 = 1} and
{x ∈ R4 | x3 = x4 = 0, x2

1 + x2
2 = 10}. In this example, all the feasible points are local

minima.
Let us now compute the stationary points of the problem. The gradient of MPCC-

Lagrangian function equal to zero yields

−2 exp(−x2
1 − x2

2)x1 − 2λg1x1((x2
1 + x2

2 − 10) + (x2
1 + x2

2 − 1)) + 2λg2x1 − 2λGx1 + 2λHx1x3 = 0,

−2 exp(−x2
1 − x2

2)x2 − 2λg1x2((x2
1 + x2

2 − 10) + (x2
1 + x2

2 − 1)) + 2λg2x2 − 2λGx2 + 2λHx2x3 = 0,

− exp(−x3) + 2λg1x3 − λH(−x2
1 − x2

2 + 10) = 0,

−λg1 + 2λg3x4 = 0.
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x0
1\x

0
2 0 1 2 3

0 o C C M
1 C C C M
2 C C M M
3 M M M M

Table 8.5: Sensitivity analysis depending on the initial point (x0
1, x

0
2, 0, 0) on Example 8.4.1

by using the butter�y relaxation method t = r3/2 with T = 0.5, s = 0.01 and SNOPT as a
non-linear solver. Legend: o: error, C: circle x2 + y2 = 1, M: circle x2 + y2 = 10.

It is clear that necessarily x3 = x4 = 0, thus λg1 = 0 and

− exp(−x2
1 − x2

2)x1 + λg2x1 − λGx1 = 0,

− exp(−x2
1 − x2

2)x2 + λg2x2 − λGx2 = 0,

−1 = λH(−x2
1 − x2

2 + 10).

The third equality gives that x2
1 + x2

2 6= 10, thus λg2 = 0. Furthermore, by the inequality
constraints it is necessary that x2

1 +x2
2 = 1 and so either x1 or x2 is non-zero. It follows that

λH < 0 and
− exp(−1) = λG < 0.

To sum up, any point that satis�es x2
1 + x2

2 = 1 is C-stationary and is a local minimum,
while any point that satis�es x2

1 +x2
2 = 10 is not stationary, despite the fact that it is a global

minimum.
Up to this point, we may notice that the points that belong to the circle of centre 0

and radius
√

10 that are the global minima of the problem are sequentially M-stationary.
Indeed, let (xk1, x

k
2, x

k
3, x

k
4) = (0,

√
10 − 1

k
, 0, 1/k), λH,k = − 1

10−xk,22

< 0, λG,k = 0, λg,k1 =

− exp(−xk,21 −x
k,2
2 )

2λg,k1 (−xk,22 + 11
2

)
, λg,k2 = 0 and 2λg,k3 = kλg,k1 .

We run Algorithm 2 with T = 0, 5 and s = 0, 01. Table 8.5 shows that the butter�y
relaxation with t = r3/2 may converge to both circles depending on the initial point. Note
that for (x0

1, x
0
2) = (0, 0) the algorithm declares the problem infeasible. We do not give the

results for other methods and other solvers here, but it has a similar behavior.
Those results may be surprising since it is proved that this method should converge to

an M-stationary point and not less. So, in theory the algorithm should have some di�culties
to compute Lagrange multiplier at this point. We run Algorithm 1 with methods NL, SS,
KS and butter�y t = r3/2 on this example. Results are presented in Table 8.6.

We see that independently of the solver all of the methods converge to a C-stationary
point. In the cases of IPOPT and MINOS, the solvers exit with a success output and even
more, they satisfy our local minimum criterion.

Those disturbing results are explained by Theorem 6.4.1 and related results in the litera-
ture that illustrate the fact that computing ε-stationary point may perturb the convergence
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relaxation solver output last parameter x1 x2 x3 x4

(last iter.)
NL SNOPT 401 . 0.1929 0.9812 0.0117 0.0001
SS 401 2.5e− 13 0.1929 0.9812 0.0112 0.0001
KS 401 5.0e− 15 0.1930 0.9811 0.0112 0.0001

B(t=r3/2) 401 5.0e− 15 0.1927 0.9812 0.0116 0.0001
NL MINOS 0 . 0.7266 0.6870 0.0005 2.8389e-7
SS 0 2.5e− 9 0.7266 0.6870 0.0007 5.3595e-7
KS 0 5.0e− 5 0.7265 0.6870 0.0005 3.1903e-7

B(t=r3/2) 0 5.0e− 5 0.7266 0.6869 0.0005 3.5130e-7
NL IPOPT 0 . 0.1819 0.9833 0.0100 9.9999e-5
SS 0 0.25 0.1961 0.9805 0.0100 9.9999e-5
KS 0 0.5 0.1961 0.9805 0.0100 9.9999e-5

B(t=r3/2) 0 0.5 0.1961 0.9805 0.0100 9.9999e-5

Table 8.6: Example 8.4.1 with initial point (0.1, 0.5). output 0 is a success and output 401
is iteration limit message.

properties of these methods. We also point out here that local minima of the problem are not
M-stationary and so by Theorem 4.1.1 MPCC-GCQ does not hold at these points. Moreover,
this example does not contradict the Theorem 6.4.1 since in particular MPCC-CRSC is not
veri�ed at any feasible point of the problem.
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Chapter 9

How to compute strong

epsilon-stationary points

Chapter 7 introduces the new concept of strong epsilon-stationary point of the relaxed sub-
problems. In this chapter, we answer the non-trivial question of how to compute such an
approximate stationary point. We present here a generalisation of the penalisation with
active set scheme proposed in [110] and illustrate the fact that it has the desired property.

9.1 A penalized formulation

The following minimisation problem aims at �nding (x, s) ∈ Rn × R2q so that for ρ > 0

min
x,s

Ψρ(x, s) := f(x) +
1

2ρ
φ(x, s)

s.t. sG ≥ −t̄e, sH ≥ −t̄e, Φ(sG, sH ; t) ≤ 0,

(P (x, s))

where φ is the quadratic penalty function

φ(x, s) := ‖max(g(x), 0), h(x), G(x)− sG, H(x)− sH‖2.

An adaptation of Theorem 7.4.1 gives the following result that validates the penalisation
approach.

Theorem 9.1.1. Given a decreasing sequence {ρk} of positive parameters and {εk} a se-
quence of non-negative parameters that decrease to zero as k ∈ N goes to in�nity. Assume
that εk = o(t̄k). Let {xk, νk} be a sequence of strong epsilon-stationary points of (P (x, s))
according to de�nition 7.4.1 for all k ∈ N with xk → x∗ such that MPCC-CRSC holds at x∗.
If x∗ is feasible, then it is an M-stationary point of (MPCC).

Proof. Assuming that x∗ is feasible for (MPCC), the result is a straightforward adaptation
of Theorem 7.4.1.
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Unfortunately, the strong assumption on the previous theorem that x∗ must be feasible
is hard to avoid. Indeed, it is a classical pitfall of penalisation methods in optimisation to
possibly compute a limit point that minimises the linear combination of the constraints. In
other words, we compute a point x∗ infeasible that satis�es.

m∑
i=1

hi(x
∗)∇hi(x∗) +

p∑
i=1

max(−gi(x∗), 0)∇gi(x∗)−
q∑
i=1

max(Gi(x
∗), 0)∇Gi(x

∗)

−
q∑
i=1

max(Hi(x
∗), 0)∇Hi(x

∗) = 0.

This phenomenon has been well-known in non-linear programming methods for instance
with �lter methods. Such a point is sometimes called infeasible stationary point.

It is interesting to note that the way the penalty parameter ρ behave may provide some
information on the stationarity of the limit point. Indeed, if we �nd a stationary point
of the initial problem without driving ρ to zero, then we get an S-stationary point. This
observation was introduced in [48] in the context of elastic interior-point for (MPCC) and
then adapted to the penalisation technique from [110].

Theorem 9.1.2. Let (x, s) be a strong epsilon-stationary point of (P (x, s)) with ρ > 0. If
x is feasible for (MPCC), then x is an S-stationary point of (MPCC).

This fact was already observed in Theorem 2 of [110] in a slightly weaker but similar
framework. We do not repeat the proof here, but gives an interpretation of this result. It
has been made clear in the proof of the convergence theorem, Theorem 7.4.1, that the case
where x∗ is an M-stationary point only occur if the sequence of multipliers {νΦ,k} diverges.
Therefore, it is to be expected that the penalty parameter must be driven to its limit to
observe such phenomenon.

9.2 Active-set method for the penalised problem

We discuss here an active set method to solve the penalised problem (P (x, s)). This method
is an extension of the method proposed in [110] to the general class of methods presented in
previous sections. Let βt,t̄(x, s) denote the measure of feasibility of (Rs

t (x, s))

βt,t̄(x, s) :=‖max(g(x), 0)‖2 + ‖h(x)‖2 + ‖G(x)− sG‖2 + ‖H(x)− sH‖2+

‖max(−sG + t̄e, 0)‖2 + ‖max(−sH + t̄e, 0)‖2 + ‖max(−Φ(sG, sH ; t), 0)‖2.

Let W(s; t, t̄) be the set of active constraints among the constraints

sG ≥ −t̄e, sH ≥ −t̄e, Φ(sG, sH ; t) ≤ 0.

We can be even more speci�c when for some i ∈ {1, . . . , q} the relaxed constraint is active
since

Φi(sG, sH ; t) = 0⇐⇒ sH,i = ψ(sG,i; t) or sG,i = ψ(sH,i; t).
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Remark 9.2.1. It is essential to note here that active constraints act almost like bound
constraints since an active constraint means that for some i ∈ {1, . . . , q} one (possibly both)
of the two cases holds

sG,i =− t̄ or ψ(sH,i; t),

or

sH,i =− t̄ or ψ(sG,i; t).

Considering the relaxation from Kanzow and Schwartz it is obviously a bound constraint
since ψ(sG,i; t) = ψ(sH,i; t) = t. The butter�y relaxation gives ψ(sG,i; t) = t1θt2(sH,i) and
ψ(sH,i; t) = t1θt2(sG,i). This is not a bound constraint but we can easily use a substitu-
tion technique. This key observation is another motivation to use a formulation with slack
variables.

Furthermore, a careful choice of the function ψ may enable to compute an analytical
solution of the following equation in α for given values of sG, sH , dsG , dsH :

sG,i + αdsG,i − ψ(sH,i + αdsH,i , t) = 0.

Solving exactly this equation is very useful while computing the largest step so that the iterates
remain feasible along a given direction. For the butter�y relaxation with θt2(x) = x

x+t2
, the

equation above is reduced to the following second order polynomial equation if sH,i+αdsH,i ≥ 0:

(sH,i + αdsH,i + r)(sG,i + αdsG,i)− t(sH,i + αdsH,i) = 0. (9.1)

Algorithm 4 presents an active-set scheme to solve (P (x, s)), which is described in depth
in the sequel.
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Data:
Initial data xk−1, sk−1; precision ε > 0 ;
σρ ∈ (0, 1) update in ρ, ρ0 > 0 initial value of ρ, τvio ∈ (0, 1), ρmax ;
Initial estimate of the multiplier ν0;
Initial working set W0 of active constraints, A0 initial matrix of gradients of active
constraints.;
sat:=true

1 Begin ;
2 Set j := 0, ρ := ρ0 ;
3 (xk−1,0, sk−1,0)=Projection of (xk−1, sk−1) if not feasible for (P (x, s)) ;
4 while sat and(
‖∇L1(xk,j, sG

k,j, sH
k,j, νj; tk))‖2

∞ > ε‖νj‖∞ or min(νj) < 0 or βtk,t̄k(x
k,j, sk,j) > ε

)
do

5 Substitution of the variables that are �xed by the active constraints in Wj;
6 Compute a feasible direction dj that lies in the subspace de�ned by the working

set Wj (see (9.2)) and satisfy the conditions (SDD);
7 Compute ᾱ the maximum non-negative feasible step along dj

ᾱ := sup{α : zj + αdj ∈ Ft,t̄}

Compute a step length αj ≤ ᾱ (see (9.1)) such that Armijo condition (9.3) holds ;
8 if αj = ᾱ then
9 Update the working set →Wj+1 and compute Aj+1 the matrix of gradients of

active constraints
10 (xk,j+1, sk,j+1) = (xk,j, sk,j) + αjd

j ;
11 j:=j+1 ;
12 if βtk,t̄k(x

k,j+1, sk,j+1) ≥ max(τvioβtk,t̄k(x
k,j, sk,j), ε) & ρ < ρmax then

13 ρ = σρρ
14 else
15 Determine the approximate multipliers νj+1 = (νG, νH , νΦ) by solving

νj+1 ∈ arg min
ν∈RW|

‖ATj+1ν −∇Ψρ(z
j, t)‖2

Relaxing rule : if ∃ i, νj+1
i < 0 and (satisfy (9.4) or αj = 0 ) then

16 Update of the working set Wj+1 (with an anti-cycling rule) ;
17 sat:=‖dj‖ > ε

18 return: xk, sk or a decision of unboundedness.
Algorithm 4: Outer loop iteration : active set method for relaxed non-linear program
(P (x, s)).
At each step, the setWj denotes the set of active constraints of the current iterate xk,j. As

pointed out in Remark 9.2.1, these active constraints �x some of the variables. Therefore,
by replacing these �xed variables we can rewrite the problem in a subspace of the initial
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domain. Thus, we consider the following minimisation problem

min
(x,s)∈Rn×R2q

Ψ̃ρ(x, sSG∪SH ) := f(x) +
1

2ρ
φ̃(x, sSG∪SH )

s.t. sG,i ≥ −t̄ for i ∈ SG, sH,i ≥ −t̄ for i ∈ SH ,
Φi(sG, sH ; t) ≤ 0 for i ∈ SG ∪ SH ,

(P̃t(x, s))

with

IG := {i ∈ {1, . . . , q} | sGi = −t̄},
IH := {i ∈ {1, . . . , q} | sHi = −t̄},
I0+
GH := {i ∈ {1, . . . , q} | sHi = ψ(sG; t)},
I+0
GH := {i ∈ {1, . . . , q} | sGi = ψ(sH ; t)},
I00
GH := {i ∈ {1, . . . , q} | sGi = sHi = ψ(0; t)},
SG := {1, . . . , q}\(IG ∪ I+0

GH ∪ I
00
GH),

SH := {1, . . . , q}\(IH ∪ I0+
GH ∪ I

00
GH).

SG and SH respectively denote the set of indices where the variables sG and sH are free. Some
of the �xed variables are replaced by a constant and others are replaced by an expression
that depends on the free variables. It is rather clear from this observation that the use of
slack variables is an essential tool to handle the non-linear bounds.

A major consequence here is that the gradient of Ψ in this subspace must be done with
care using the composition of the derivative formula :

∇Ψ̃ρ(x, sSG∪SH ) = JTW̄j
∇Ψρ(x, s), (9.2)

where JW̄j
is an (n+ 2q)× (n+ #SG + #SH) matrix de�ned such that

JW̄j
:=

 JxW̄j

JsGW̄j

JsHW̄j

 .

The three sub-matrices used to de�ne JW̄j
are computed in the following way

JxW̄j
= Idn,

JsGW̄j ,i
=


eTi , for i ∈ SG
∂ψ(x;t)
∂x

∣∣∣
x=sH

eTi , for i ∈ I+0
GH

0, for i ∈ ({1, . . . , q}\SG)\I+0
GH ,
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JsHW̄j ,i
=


eTi , for i ∈ SH
∂ψ(x;t)
∂x

∣∣∣
x=sG

eTi , for i ∈ I0+
GH

0, for i ∈ ({1, . . . , q}\SH)\I0+
GH ,

where JW̄j ,i denotes the i-th line of a matrix and ei is a vector of zero whose i-th component
is one. We may proceed in a similar way to compute the hessian matrix of Ψ̃ρ(x, sSG∪SH , t).

The feasible direction dj is constructed to lie in a subspace de�ned by the working set
and satisfying the su�cient-descent direction conditions:

∇Ψ(zj)dj ≤ −µ0‖∇Ψ(zj)‖2,

‖dj‖ ≤ µ1‖∇Ψ(zj)‖,
(SDD)

where µ0 > 0, µ1 > 0.
The step length αj ∈ (0, ᾱ] is respectively computed to satisfy the Armijo and Wolfe

conditions:
Ψ(zj + αjd

j) ≤ Ψ(zj) + τ0αj∇Ψ(zj)Tdj, τ0 ∈ (0, 1), (9.3)

∇Ψ(zj + αjd
j)Tdj ≥ τ1∇Ψ(zj)Tdj, τ1 ∈ (τ0, 1). (9.4)

If ᾱ satis�es the Armijo condition (9.3), the active set strategy adds a new active constraint
and the Wolfe condition (9.4) is not enforced. Otherwise, the Armijo condition requires
α < ᾱ and the Wolfe condition is enforced.

The relaxing rule is given by the following scheme. Relax some constraint i0 if and only
if the two following conditions are ful�lled:

1. νji0 < 0;

2. No constraint was added at the arrival point zj and no constraint was deleted at the
previous iteration.

The convergence result will rely on the fact that at least one step satisfying Wolfe's condition
will be performed before removing an active constraint.

Convergence of the original algorithm has been shown in [110] and its adaptation to
Algorithm 4 is the subject of future research. It is clear by construction of the Algorithm
that the multipliers of the relaxed constraints satisfy exactly the complementarity condition
and the relaxed constraints are satis�ed exactly.

9.3 Numerical results

In what follows, we present a small set of instances to show the behaviour of our algo-
rithm. Beforehand, we give some supplementary information regarding the implementation
of Algorithm 2 and Algorithm 4. An extended butter�y relaxation has been used, which
consider

ψ(z; r, s, t) = s+ tθ1
r(z − s),
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where θ1
r(z − s) = z−s

z−s+r for z ≥ s and θ1
r(z − s) = z−s

r
− (z−s)2

2r2 for z < s. The list of
parameters used in the process is detailed in Table 9.1. It is to be noted that no attempt
has been made to optimise the performance of the algorithm and the results come from a
straightforward implementation of the algorithm in the JULIA programming language.

The direction dj used in Algorithm 4 is computed through a Newton method. The
computation of the constrained step length along this direction is computed through a back-
tracking line search technique. A comparison between some methods to compute the descent
direction has been conducted in [110]. We now introduce three examples and give the result

parameter function default value
Parameters for Algorithm 2

(r0, s0, t0) relaxation parameter (0.1,0.1,0.01)
(σr, σs, σt) update of relaxation parameters (0.1,0.1,0.01)

t̄
ε sequence of precision max(r, s, t)
ε∞ precision of (MPCC) 10−4

Parameters for Algorithm 4
ρ0 1
σρ 2
ρmax 108

τvio 0.5
τ0 Armijo parameter 0.25
τ1 Wolfe parameter 0.9

Table 9.1: List of parameters for Algorithm 2 and their default values.

of our method. The �rst example is the continuation of Example 7.3.1, which illustrates a
case where (0, 0) is a weak-stationary point.

Example 9.3.1.
min

(x1,x2)∈R2
x1 − x2

s.t. 0 ≤ x1 ⊥ x2 ≥ 0, x2 ≤ 1.

By starting from the initial point (x1, x2) = (1.0, 1.0), our algorithm �nds the solution
after 9 iterations. Table 9.2 summarises the results of the algorithm. The last example
is a continuation of Example 4.1.1 and illustrates a case where the solution (0, 0, 0)t is an
M-stationary point.

Example 9.3.2.
min
x∈R3

x1 + x2 − x3

s.t. −4x1 + x3 ≤ 0,
−4x2 + x3 ≤ 0,
0 ≤ x1 ⊥ x2 ≥ 0.
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Iter xk sk f(xk) ρ # inner Iter
0 (1.0,1.0) - 0.0 - -
1 (-0.2,1.1) (-0.1,1.1) -1.3 10.0 5
2 (-0.06,1.05) (-0.06,1.05) -1.11 20.0 5
3 (-0.026,1.025) (-0.001,1.025) -1.051 40.0 4
4 (-0.0126,1.0125) (-0.0001,1.0) -1.0251 80.0 4
5 (-0.0031,1.0031) (-1.0e-5,1.0031) -1.0062 320.0 5
6 (-0.0031,1.0015) (-1.0e-6,1.0015) -1.0031 640.0 5
7 (-0.0007,1.0) (-1.0e-7,1.0007) -1.0015 1280.0 4
8 (-0.0001,1.0002) (-1.0e-8,1.002) -1.0003 5120.0 5
9 (-9.7657e-5,1.0001) (-1.0e-9,1.0001) -1.0001 10240.0 4

Table 9.2: Solutions and optimal values of Example 9.3.1.

Iter xk sk f(xk) ρ # inner Iter
0 (0.5,1.0,0.0) - 1.5 - -
1 (0.2078,0.2140,0.8687) (0.1053,0.2140) -0.4468 20.0 4
2 (0.0600,0.0632,0.2591) (0.0100,0.0632) -0.1358 40.0 4
3 (0.0260,0.0275,0.1133) (0.0010,0.0275) -0.0598 80.0 4
4 (0.0063,0.0067,0.0277) (0.0001,0.0067) -0.0146 320.0 5
5 (0.0015,0.0016,0.0068) (1.0000e-5,0.0016) -0.0036 1280.0 5
6 (0.0007,0.0008,0.0034) (1.0e-6,0.0008) -0.0018 2560.0 4
7 (0.0003,0.0004,0.0017) (1.0e-7,0.0004) -0.0009 5120.0 4
8 (0.0001,0.0002,0.0008) (1.0e-8,0.0002) -0.0004 10240.0 4

Table 9.3: Solutions and optimal values of Example 9.3.2.

By starting from the initial point (x1, x2, x3) = (0.5, 1.0, 1.0), our algorithm �nds the
solution after 8 iterations. Table 9.3 summarises the results of the algorithm.

In both cases, we see that the algorithm manages to converge to the optimal solution,
while satisfying exactly the complementarity constraint. Further research may focus on
improvement of the algorithm and its application to some test problems coming from non-
linear programs and (MPCC).
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Concluding remarks
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This manuscript presents di�erent regularisation/relaxation methods for complementar-
ity problems and related formulations. In particular, in Section 1.4 we introduce a family
of smoothing functions that are central in the regularisations proposed through this docu-
ment. Considering here a general family of smoothing functions allows us to extend existing
results/methods from the literature or derive new ones.

By construction, these functions have been used to approximate the `0-norm of a vector
and therefore we use them in Chapter 2 for the problem of �nding the sparsest solution
over a polyhedron. This approach was a generalisation of other approaches in the literature
and in particular was used to obtain a new exact penalisation theorem that gives a strong
stopping criterion for an algorithm. We also suggest an implementation of this method that
uses a successive linearisation algorithm. This implementation may thus be interpreted as a
weighted `1 method.

Then, we used the smoothing functions to propose a regularisation technique for com-
plementarity problems. This technique has been applied in Chapter 3 to (AVE), which is an
equivalent formulation of (LCP). Additionally, to convergence of the method we provide an
error bound and numerical results that motivates the validity of our approach.

Thereafter, we considered the extension of this technique to solve the (MPCC). One
of the di�culty here is that we no longer try to just �nd a feasible point, but we optimise
an objective function on a thin domain. The di�culties and our goal has been clari�ed in
Chapter 4.

The direct application of the regularisation technique used in Chapter 3 has �rst been
used in [93] and we give in Chapter 5 additional results on this method. As pointed out
in this section, this technique does not satisfy our goal since it may converge to spurious
solutions. We also mention a series of other methods with the same drawbacks.

Inspired by a method from [111] latter extended in [112], we propose in Chapter 6 a new
regularisation method so-called butter�y relaxation method. This method that uses the θ's
functions in a di�erent way can be seen as an extension to the existing methods. Besides,
we prove that this new method has similar strong theoretical guarantees than methods in
[111] and [112].

In order to continue the study of the family of methods that satisfy our goal, we consider
in Chapter 7 a general framework of relaxation methods. We prove that existing methods
including the butter�y relaxation belong to this framework and some new methods can also
be derived using this framework. A key result in this chapter concern the convergence of
sequence of approximate stationary points of the relaxation. Indeed, it has been pointed
out in [115] and in Chapter 6 that by solving approximatively the sub-problems of the re-
laxation the strong theoretical properties are not longer guaranteed. In order to overcome
this di�culty, we provide a speci�c de�nition of approximate stationary point that would be
su�cient to keep the strong convergence of the methods. Moreover, we prove existence of
these strong approximate stationary point in the neighborhood of a solution.
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The last part of this manuscript focus on the numerical behavior of the regularisation
methods applied to the (MPCC). In Chapter 8, we compare the various methods discussed in
this document on the test problems MacMPEC, [123]. The sub-problems of the methods are
here solved using well-known non-linear programming solver that are available via AMPL1.

We run two experiments. First, after de�ning a success criterion we compare the percent-
age of success of the methods for various strategies of reducing the relaxation parameters.
This experiment shows the validity of the relaxation approach that manages to improve
the results given by just applying the non-linear solver to the (MPCC). Furthermore, the
butter�y method shows to be very competitive. A second experiment uses the methodology
proposed in [57] to benchmark non-linear programs. This methodology has the bene�t to
handle the choice of the precision used to solve the sub-problems. This experiment con�rms
the conclusion from the previous one and once again shows that the butter�y relaxation is
competitive.

The last chapter of this document is focus on the implementation of relaxation methods.
We de�ned in Chapter 7 a speci�c kind of approximate stationary point that are needed
to keep the strong theoretical properties. We propose in Chapter 9 a penalisation-active
set strategy that attains this goal. We discuss here the algorithm as well as preliminary
results in JULIA on a small set of examples. We let detailed numerical application of this
implementation to further research.

1www.ampl.com
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Appendix A

A generalized direction in interior point

method for monotone linear

complementarity problems

This chapter is a paper submitted to Optimization Letters entitled:

A Generalized Direction in Interior Point Method for Monotone
Linear Complementarity Problems

Authors:
M. Haddou, IRMAR-INSA Rennes
T. Migot, IRMAR-INSA Rennes
J. Omer, IRMAR-INSA Rennes

Abstract: In this paper, we present a new interior point method with full Newton
step for monotone linear complementarity problems. The speci�city of our method is to
compute the Newton step using a modi�ed system similar to that introduced by Darvay in
[49]. We prove that this new method possesses the best known upper bound complexity
for these methods. Moreover, we extend results known in the literature since we consider
a general family of smooth concave functions in the Newton system instead of the square root.

Mathematics Subject Classi�cation. 49M05 and 90C33 and 90C51
Keywords : concave functions ; interior-point methods ; linear programming ; linear com-
plementarity problems ; polynomial time complexity
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A.1 Introduction

In this paper we focus on the simplest interior point methods (IPMs) : the full Newton step
interior point method [179], this method is one among the IPMs with the best worst-case
complexity. Therefore, naturally any new try in the IPM framework must be validated on this
method. In particular, we focus on this method applied to the monotone complementarity
problem [119]. This problem is a generalization of the linear optimization problem and has
been very popular in the literature due to its numerous applications [66]. In the literature
of IPM, this problem has also been an active subject [119].

Darvay [49, 50], introduces a modi�cation in the interior point method for �nding search
directions for linear optimization problems, based on an algebraic transformation of the cen-
tral path. In particular, he applied the square root function to both sides of the centering
equation, and he used Newton's method to obtain the new direction. He proved that the
corresponding full Newton step algorithm has O(

√
nL) iteration complexity. This new di-

rection using the square root has become an active subject in the past few years [5, 4, 6, 18,
17, 20, 19, 194, 195, 193, 196]. Several authors generalized this approach to a wide class of
optimization problems, for example for linear complementarity problems [5, 6, 18, 17, 20, 19,
196], convex quadratic programming [4], second-order cone optimization [195], semide�nite
optimization [194] and symmetric cone optimization [19, 193].

Inspired by Darvay's new approach we introduce here a new class of IPMs by considering
a large family of smooth concave functions instead of the square root. This new class
of methods generalizes the classical path-following IPMs, since we obtain them as a special
case. The technique presented here does not include Darvay's algorithm, but we can consider
a smoother version that belongs to our family of methods. Our main contribution is that
we prove that the algorithm with the new directions converges to a solution with the best
known complexity for this family of methods.

In Section 2, we introduce the problem and our new directions. In Section 3, we show
the polynomial complexity of our new class of methods.

Notations

Through this paper we will use the following notations: Rn
+ = {x ∈ Rn | x ≥ 0}, Rn

++ = {x ∈
Rn | x > 0} and e denotes the vector with all entries equal to one and whose dimension can
be deduced from the context. Given two vectors z, s ∈ Rn, we denote by zT s the usual scalar
product and by zs the Hadamard product of two vectors, that is zs = (zisi)1≤i≤n. Moreover,
we extend this component-wise operation to the division of two vectors and to the square
root, that is ∀z ∈ Rn, s ∈ (R \ {0})n, z/s = (zi/si)1≤i≤n and ∀z ∈ Rn

++,
√
z = (

√
zi)1≤i≤n

with zi ≥ 0 for all i ∈ 1 ≤ i ≤ n.
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A.2 Preliminaries and Problem Settings

An LCP consists in �nding z, s ∈ Rn such that for a square matrix M ∈ Rn×n and a vector
q ∈ Rn

s = Mz + q, z, s ≥ 0, zs = 0. (LCP)

A couple (z, s) such that s = Mz+ q is said to be feasible for the LCP if we have z, s ≥ 0
and strictly feasible if z, s > 0. From now on, we use standard notation F+ := {(z, s) ∈
Rn

++ × Rn
++ | s = Mz + q} for the set of strictly feasible points of (LCP). In this paper

we consider a monotone linear complementarity problem, i.e. an LCP where M is positive
semi-de�nite. In this case the set of solutions of (LCP) is a convex set.

The main strategy of IPMs is to follow the central path (z(µ), s(µ)) for µ ∈ Rn
++, de�ned

by
s = Mz + q, z, s ≥ 0, zs = µ . (LCPµ)

The couples (z(µ), s(µ)) are also called µ-centers and de�ne an homotopic path. The limit
when µ → 0 satis�es the complementarity condition, and hence yields optimal solutions
whenever the limit exists.

IPMs follow the central path approximately by solving an approached version of the non-
linear system in (LCPµ) for several values of µ. The main tool to solve such a system is
the Newton method. A Newton step (∆z,∆s) is given as the solution of the following linear
system {

M∆z = ∆s

z∆s+ s∆z = µ− zs
(A.1)

There exists a wide variety of di�erent IPMs that are based on this principle. In this
paper we focus on the simplest IPM (see Algorithm 5): the full Newton step interior point
method (FN-IPM).

Input: an accuracy parameter ε > 0 ;
a sequence of update parameters {θk}, 0 < θk < 1 ∀k ∈ N ;
initial values (z0, s0) ∈ F+, µ

0 = z0s0;
1 z := z0, s := s0, µ := µ0, k := 0 ;
2 while zT s ≥ nε do
3 µ := (1− θk)µ;
4 solve system (A.1) to �nd (∆z,∆s) ;
5 (z, s) := (z, s) + (∆z,∆s);
6 k := k + 1;

Algorithm 5: Full Newton step IPM (FN-IPM)

In [50], Darvay introduces a modi�cation in (LCPµ) by considering

s = Mz + q, z, s ≥ 0, ϕ(zs) = µ , (A.2)
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where ϕ : Rn
+ → Rn

+ is assumed to be a smooth function such that ϕ(0) = 0 and ϕ is
de�ned by a component-wise extension of a real-valued function ϕ to Rn, i.e. for t ∈ Rn

ϕ(t) = (ϕ(ti))1≤i≤n.
Darvay's method modi�es the Newton steps. More precisely, the Newton step (∆z,∆s)

is given by the linear system{
M∆z = ∆s

ϕ′(zs)(z∆s+ s∆z) = µ−ϕ(zs)
(A.3)

In this paper we consider functions ϕ ∈ C3(R+) such that ϕ(0) = 0, ϕ is increasing and
concave, and ϕ′′′(t) ≥ 0 ∀t ∈ R+. This class of functions allows for a generalization of the
classical IPMs, since we obtain the classical central path system (LCPµ) for ϕ(t) = t. The
square root function does not belong to this family since it is not di�erentiable at 0, but
we can build a smooth version with ϕε>0 : t 7→

√
t+ ε −

√
ε. We modify Algorithm 5 to

solve (A.3) instead of (A.1) at step 4, and call the resulting algorithm ϕ-FN-IPM. The main
result of this article is that ϕ-FN-IPM, converges to an ε-solution in at most O

(√
n log(n

ε
)
)

iterations. This upper bound is the best one known for the FN-IPM.

A.3 Polynomial Complexity

In this section, we consider the worst-case complexity of the ϕ-FN-IPM described in Algo-
rithm 6 with ϕ : R+ → R+ verifying

(i) ϕ(0) = 0;

(ii) ϕ ∈ C3([0,+∞));

(iii) ϕ′(t) > 0, ∀t ≥ 0, i.e. ϕ is increasing;

(iv) ϕ′′(t) ≤ 0, ∀t ≥ 0, i.e. ϕ is concave;

(v) ϕ′′′(t) ≥ 0, ∀t ≥ 0.

These functions are invertible and can be extended in a smooth way for negative t by consid-
ering : ϕ(t) = tϕ′(0)+ t2

2
ϕ′′(0)+ t3

6
ϕ′′′(0). Function ϕ : Rn 7→ Rn is then de�ned component-

wisely: ∀t ∈ Rn,ϕ(t) = (ϕ(ti))1≤i≤n.
One important characteristic of ϕ is the existence of a constant T de�ned by

− ϕ′′(0) = T (ϕ′(0))2 . (A.4)

By conditions (iii) and (iv), T ≥ 0 and T = 0 for ϕ(t) = t. It should be noted that arbitrary
values of T > 0 can be achieved by scaling ϕ.

Note that t 7→
√
t, in the same way as any function t 7→ tq, 0 < q < 1, does not satisfy

these hypotheses since it is not di�erentiable in 0. However we can consider a smooth version
for ε > 0 with t 7→ (t + ε)q − (ε)q. As said in the introduction the classical method is given
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Input: an accuracy parameter ε > 0 ;
a sequence of update parameters {θk}, 0 < θk < 1 ∀k ∈ N ;
initial values (z0, s0) ∈ F+, µ

0 = z0s0;
1 z := z0, s := s0, µ := µ0, k := 0 ;
2 while

∑n
i=1 ϕ(zisi) ≥ nε do

3 µ := (1− θk)µ;
4 solve system (A.3) to �nd (∆z,∆s) ;
5 (z, s) := (z, s) + (∆z,∆s);
6 k := k + 1 ;

Algorithm 6: ϕ-Full Newton step IPM (ϕ-FN-IPM)

by ϕ(t) = t. Other examples are ϕ : t 7→ log(1 + t) and functions constructed as in [94,
150]: for instance ϕ : t 7→ t

t+1
and ϕ : t 7→ 1− exp(−t). It is interesting to note two latter

functions ϕ are bounded. Moreover, notice that if a function ϕ satis�es all these hypotheses,
then t 7→ αϕ(Ct) with α,C ∈ R++ also satis�es these hypotheses.

The main result of this section (Theorem A.3.5) states the polynomial worst-case com-
plexity of the ϕ-FN-IPM described in Algorithm 6. In order to achieve this result we de�ne
a measure of the proximity to the central path in Section A.3.1. Then, in Section A.3.2,
Theorem A.3.1 estimates the error made at each Newton step. Sections A.3.3 and A.3.4
present conditions to ensure the correct behaviour of the algorithm: strict feasibility of the
iterates (Theorem A.3.2) and quadratic convergence of the Newton process (Theorem A.3.3).
Section A.3.5 provides the sequence of update parameters (Theorem A.3.4).

A.3.1 Proximity Measure

At each iteration, after updating parameter µ, we compute the Newton direction (∆z,∆s)
as a solution of system (A.3). Then we update the iterates with

z+ = z + α∆z and s+ = s+ α∆s . (A.5)

Note that here we consider a damping factor α ∈ [0, 1] to be more general. In this case we
denote by (α∆z, α∆s) the Newton step with length α and call it the α-Newton step. Then
the full Newton step is given for α = 1.

In order to measure the distance to the target on the central path we consider a proximity
measure δϕ(z, s,µ) de�ned by

δϕ(z, s,µ) :=
1

2

∥∥∥∥ ϕ′(0)

ϕ′(zs)

(
(vϕ(z, s,µ)−1 − vϕ(z, s,µ)

)∥∥∥∥
2

,

with

vϕ(z, s,µ) :=

√
ϕ(zs)

µ
and vϕ(z, s,µ)−1 :=

√
µ

ϕ(zs)
.
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We may omit the arguments of vϕ(z, s,µ) and δϕ(z, s,µ), when it is clear from the context.
Notice that this proximity measure is a generalization of the one presented in [179], where
the authors consider

δt7→t :=
1

2

∥∥∥∥√ µ

zs
−
√
zs

µ

∥∥∥∥
2

.

Both proximity measures are equal for ϕ(t) = t. Moreover for any function ϕ, the two
proximity measures are asymptotically similar (for zs ↓ 0).

The following two lemmas link the iterates and the proximity measure.

Lemma A.3.1. If (z, s) ∈ F+ and δϕ ≤ 1, then ϕ(zs) ≤ 6µ.

Proof. Assume by contradiction that there exists i ∈ {1, . . . , n} such that ϕ(zisi) > 6µi.
Since ϕ′ is decreasing and zs > 0:

2δϕ ≥
∥∥vϕ−1 − vϕ

∥∥
2

=

∥∥∥∥∥
√
µ√

ϕ(zs)
−
√
ϕ(zs)
√
µ

∥∥∥∥∥
2

≥

∣∣∣∣∣
√
µi√

ϕ(zisi)
−
√
ϕ(zisi)√
µi

∣∣∣∣∣
=

√
ϕ(zisi)√
µi

−
√
µi√

ϕ(zisi)

>
√

6− 1√
6
≈ 2, 04 ,

where the penultimate step comes from the increasing property of the function x 7→ x− 1/x
on R++. This is in contradiction with δϕ ≤ 1.

The following lemma gives bounds on δϕ that depend on some constant Γ(‖µ‖∞) de�ned
as

Γ(‖µ‖∞) :=

(
1− ϕ′′(0)ϕ−1(6‖µ‖∞)

ϕ′(ϕ−1(6‖µ‖∞))

)
.

Lemma A.3.2. Let δ = 1
2
‖vϕ−1 − vϕ‖2, then

δ ≤ δϕ ≤
(

1− ϕ′′(0)‖zs‖∞
ϕ′(‖zs‖∞)

)
δ .

Furthermore in a close neighbourhood of the central path, i.e. δϕ ≤ 1, we have

δ ≤ δϕ ≤ Γ(‖µ‖∞)δ . (A.6)

Proof. By convexity of function ϕ′ for all i ∈ {1, . . . , n}

ϕ′(zisi) ≥ ϕ′(0) + ϕ′′(0)zisi .

Then, for all i ∈ {1, . . . , n}

1 ≤ ϕ′(0)

ϕ′(zisi)
≤ 1− ϕ′′(0)zisi

ϕ′(zisi)
≤ max

i

(
1− ϕ′′(0)zisi

ϕ′(zisi)

)
.

182



Hence, by de�nition of δ and δϕ

δ ≤ δϕ ≤
(

1− ϕ′′(0)‖zs‖∞
ϕ′(‖zs‖∞)

)
δ .

The sharpest result when δϕ ≤ 1 is deduced from Lemma A.3.1.

In the previous lemma, equation (A.6), we de�ne Γ as a function of ‖µ‖∞ which depends
on the choice of ϕ. For ϕ(t) = t, we get Γ(‖µ‖∞) = 1 for all µ. Moreover, for any function
ϕ, Γ is increasing with respect to ‖µ‖∞, and converges to 1 as ‖µ‖∞ ↓ 0. Moreover, in the
course of the proof we showed that if δϕ ≤ 1

ϕ′(0)

ϕ′(zisi)
≤ Γ(‖µ‖∞), ∀i ∈ {1, . . . , n}. (A.7)

This result will be useful in a future proof.

A.3.2 Error Bound of the Newton Step

We use the �rst order Taylor-Lagrange formula applied to ϕ in zs. There exists ξ ∈ [z+s+, zs]
(or ξ ∈ [zs, z+s+] if zs < z+s+) such that

ϕ(z+s+) = ϕ(zs) + αϕ′(zs)(z∆s+ s∆z)

+ α2∆z∆sϕ′(zs) +
ϕ′′(ξ)

2

(
z+s+ − zs

)2
,

(A.8)

with (∆z,∆s) solution of (A.3). The update of µ will be chosen such that ϕ(z+s+) < ϕ(zs)
and thus 0 < z+s+ < zs. Therefore the error we make when we say that ϕ(z+s+) is the
µ-center is

η(α) := α2∆z∆sϕ′(zs) +
ϕ′′(ξ)

2

(
z+s+ − zs

)2
. (A.9)

The following sequence of lemmas aims to bound this error in terms of the proximity measure.
Before doing so, we recall a useful lemma from [105].

Lemma A.3.3 (Lemma 5.1, [105]). Let (z, s) ∈ F+ and a ∈ Rn. Assume that matrix M is
a positive semide�nite matrix. Let (∆z,∆s) be the solution of{

−M∆z + ∆s = 0

s∆z + z∆s = a
.

Then

||∆z∆s||1 ≤ C1

∥∥∥∥ a√
zs

∥∥∥∥2

2

,

||∆z∆s||2 ≤ C2

∥∥∥∥ a√
zs

∥∥∥∥2

2

,
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||∆z∆s||∞ ≤ C∞

∥∥∥∥ a√
zs

∥∥∥∥2

2

,

with C1 = 1/2, C2 = 1/(2
√

2) and C∞ = 1/4.

Through the rest of this article we denote by Cp for p ∈ {1, 2,∞} the constants de�ned
as

C1 =
1

2
, C2 =

1

2
√

2
and C∞ =

1

4
.

Straightforward application of this lemma for a=µ−ϕ(zs)
ϕ′(zs)

and vϕ =
√

ϕ(zs)
µ

gives the following
lemma.

Lemma A.3.4. Let (z, s) ∈ F+, (∆z,∆s) be the solution of (A.3) and p ∈ {1, 2,∞}, then

‖∆z∆s‖p ≤ Cp

∥∥∥∥∥
√
ϕ(zs)

√
µ

√
zs ϕ′(zs)

(vϕ
−1 − vϕ)

∥∥∥∥∥
2

2

.

The next lemma will bound ||∆z∆sϕ′(zs)||p for p ∈ {1, 2,∞}.

Lemma A.3.5. Let (z, s) ∈ F+, (∆z,∆s) be the solution of (A.3) and p ∈ {1, 2,∞}, then

||∆z∆sϕ′(zs)||p ≤ ||∆z∆sϕ′(0)||p ≤ 4Cp‖µ‖∞δ2
ϕ .

Proof. By concavity of ϕ we have that ϕ(zisi) ≤ ϕ′(0)zisi, ∀i, so

ϕ(zs)ϕ′(0)

zs(ϕ′(zs))2
≤ (ϕ′(0))2

(ϕ′(zs))2
. (A.10)

Furthermore for p ∈ {1, 2,∞} and using Lemma A.3.4, followed by (A.10)

||∆z∆sϕ′(zs)||p ≤ ||∆z∆s||pϕ′(0)

≤ Cp

∥∥∥∥∥
√
ϕ(zs)

√
µ

√
zs ϕ′(zs)

((vϕ
−1 − vϕ))

∥∥∥∥∥
2

2

ϕ′(0)

≤

(
n∑
i=1

Cp
ϕ(zisi)µi

zisi (ϕ′(zisi))2
(vϕ
−1
i − vϕi)

2

)
ϕ′(0)

≤
n∑
i=1

Cpµi

(
ϕ′(0)

ϕ′(zisi)

)2

(vϕ
−1
i − vϕi)

2

≤ 4Cp‖µ‖∞δ2
ϕ .

Now we move to the main result which gives a bound for the complete error.
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Lemma A.3.6. Let (z, s) ∈ F+ and (∆z,∆s) be the solution of (A.3). For p ∈ {2,∞} we
have

‖η‖p ≤ (4Cp + 2Tϕ(‖zs‖∞))α2‖µ‖∞δ2
ϕ

+
(
C∞
√
ϕ(‖zs‖∞) + αC2

p

√
‖µ‖∞δϕ

)
8α3T‖µ‖∞3/2δ3

ϕ

Proof. By equation (A.9) we have

η =α2∆z∆sϕ′(zs) +
α2ϕ′′(ξ)

2
(z∆s+ s∆z)2 +

α4ϕ′′(ξ)

2
(∆s∆z)2

+ α3ϕ′′(ξ)(∆s∆z)(z∆s+ s∆z)

Taking the p-norm for p ∈ {2,∞} and using triangle inequalities

‖η‖p ≤α2 ‖∆z∆sϕ′(zs)‖p+α
2

∥∥∥∥ϕ′′(ξ)2
(z∆s+s∆z)2

∥∥∥∥
p

+ α4

∥∥∥∥ϕ′′(ξ)2
(∆s∆z)2

∥∥∥∥
p

+ α3 ‖ϕ′′(ξ)(∆s∆z)(z∆s+ s∆z)‖p
.

We now bound each term of the above right-hand side. First, Lemma A.3.5 gives

‖∆z∆sϕ′(zs)‖p ≤ 4Cp‖µ‖∞δ2
ϕ .

Using successively (A.4), (µ − ϕ(zs))2 = (µvϕ(vϕ
−1 − vϕ))2 = µϕ(zs)(vϕ

−1 − vϕ)2 and
ϕ(zisi) ≤ ϕ(‖zs‖∞), ∀i ∈ {1, ..., n}, we obtain step by step∥∥∥∥ϕ′′(ξ)2

(z∆s+ s∆z)2

∥∥∥∥
p

≤
∥∥∥∥ϕ′′(0)

2
(z∆s+ s∆z)2

∥∥∥∥
p

=
T

2

∥∥∥∥∥
(
ϕ′(0)

ϕ′(zs)

)2

(µ−ϕ(zs))2

∥∥∥∥∥
p

≤ Tϕ(‖zs‖∞)‖µ‖∞
2

∥∥∥∥∥
(
ϕ′(0)

ϕ′(zs)
(vϕ
−1 − vϕ)

)2
∥∥∥∥∥
p

≤ 2Tϕ(‖zs‖∞)‖µ‖∞δ2
ϕ .

To bound the third term, we use Lemma A.3.5, equality (A.4) and ‖u2‖p ≤ ‖u‖2
p ∀u ∈ Rn∥∥∥∥ϕ′′(ξ)2

(∆s∆z)2

∥∥∥∥
p

≤ T

2

∥∥(ϕ′(0)∆s∆z)2
∥∥
p
≤ T

2
‖ϕ′(0)∆s∆z‖2

p

≤ T

2
(‖µ‖∞4Cpδ

2
ϕ)2 = 8TC2

p‖µ‖∞
2δ4
ϕ .
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Finally, the de�nition of vϕ implies that

‖ϕ′(0)(z∆s+ s∆z)‖p =

∥∥∥∥ ϕ′(0)

ϕ′(zs)
µvϕ(vϕ

−1 − vϕ)

∥∥∥∥
p

≤
∥∥∥∥ ϕ′(0)

ϕ′(zs)

√
‖µ‖∞

√
ϕ(‖zs‖∞)(vϕ

−1 − vϕ)

∥∥∥∥
p

Using the above inequality, as well as ‖uw‖p ≤ ‖u‖∞‖w‖p, ∀(u,w) ∈ Rn × Rn, and (A.4),
we get

‖ϕ′′(ξ)(∆s∆z)(z∆s+ s∆z)‖p ≤ T ‖ϕ′(0)(∆s∆z)‖∞ ‖ϕ
′(0)(z∆s+ s∆z)‖p

≤ 8TC∞
√
ϕ(‖zs‖∞)‖µ‖∞3/2δ3

ϕ,

which completes the proof.

In the special case where we are in a close neighbourhood of the central path we get an
improved version of the result:

Theorem A.3.1. Let (z, s) ∈ F+, δϕ ≤ 1 and (∆z,∆s) be the solution of (A.3) and
p ∈ {2,∞}, we have

‖η‖p ≤ (4Cp + 12T‖µ‖∞)α2‖µ‖∞δ2
ϕ + (

√
6C∞ + αC2

pδϕ)α38T‖µ‖∞2δ3
ϕ (A.11)

Proof. The proof is similar to the proof of Lemma A.3.6, but we use ϕ(zs) ≤ 6µ from
Lemma A.3.1 instead of ϕ(zisi) ≤ ϕ(‖zs‖∞), ∀i.

For instance, with α = 1, using δqϕ ≤ δϕ for q ≥ 1, (A.11) becomes

‖η‖∞ ≤

(
‖µ‖∞ +

(
25 + 4

√
6

2

)
T‖µ‖∞2

)
δ2
ϕ .

For ϕ(t) = t we get the same result as in [177]: ‖η‖∞ ≤ ‖µ‖∞δ2
ϕ.

A.3.3 Feasibility of the Newton Step

A Newton step is feasible (strictly feasible) if the couple (z+, s+) de�ned by (A.5) is feasible
(strictly feasible).

Theorem A.3.2. Let α be in [0,1] and δϕ ≤ 1. The α-Newton step is strictly feasible for
(z, s) if

αδ2
ϕ <

1

1 +
(

25+4
√

6
2

)
T‖µ‖∞

. (A.12)

Note that for α = 1, the above condition makes the full Newton step be strictly feasible.
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For α = 1 condition (A.12) implies that the proximity measure, δϕ, must be less than 1,
which will not be a restrictive assumption.

Proof. For α = 0 the result trivially holds. Therefore, we can assume without loss of gen-
erality that α ∈]0, 1]. Let β ∈]0, α], and de�ne zβ := z + β∆z and sβ := s + β∆s, where
(∆z,∆s) is the solution of (A.3). The proof rests upon a continuity argument. Indeed, we
assume z, s > 0 so ϕ(zs) > 0 and, using equations (A.3) and (A.8):

ϕ(zβsβ) = ϕ(zs) + βϕ′(zs)(z∆s+ s∆z) + η(β)

= ϕ(zs)(1− β) + β

(
µ+

η(β)

β

)
≥ ϕ(zs)(1− β) + β

(
µ− e‖η(β)‖∞

β

)
which is positive for all z, s > 0 if ‖µ‖∞ > ‖η(β)‖∞/β. Using Lemma A.3.6 this condition
holds if

‖µ‖∞ >(4C∞ + 2Tϕ(‖zs‖∞))β‖µ‖∞δ2
ϕ

+
(
C∞
√
ϕ(‖zs‖∞) + βC2

∞

√
‖µ‖∞δϕ

)
8β2T‖µ‖∞3/2δ3

ϕ

.

The right-hand side is increasing with respect to β, so it is su�cient to verify

‖µ‖∞ >(4C∞ + 2Tϕ(‖zs‖∞))α‖µ‖∞δ2
ϕ

+
(
C∞
√
ϕ(‖zs‖∞) + αC2

∞

√
‖µ‖∞δϕ

)
8α2T‖µ‖∞3/2δ3

ϕ

.

Therefore, since δϕ ≤ 1, using Lemma A.3.1, it su�ces to have

1− δ2
ϕα
(

4C∞ +
(

12 + 8
√

6C∞ + 8C2
∞

)
T‖µ‖∞

)
> 0 ,

which corresponds to our assumption. It follows that for all β ∈ [0, α], ϕ(zβsβ) > 0.
By continuity of ϕ, this implies that none of zβ or sβ vanish for β ∈ [0, α], so the result
follows.

A.3.4 Quadratic Decrease of the Proximity Measure

The Newton method is known to behave well in a close neighbourhood of the solution.
The following theorem states a condition on the proximity measure, δϕ := δϕ(z, s,µ), that
ensures a quadratic convergence of the Newton step. We denote by δϕ := δϕ(z+, s+,µ) and
vϕ := vϕ(z+, s+,µ) the proximity measure and the function vϕ after the Newton step.

Theorem A.3.3. Let (z, s) ∈ F+ and (z+, s+) be de�ned as in (A.5) for α = 1. Let Γ(‖µ‖∞)
de�ned in (A.6) and

Q(‖µ‖∞) :=
1−

(
Γ(‖µ‖∞)(

√
2 + (13 + 2

√
6)T‖µ‖∞)

)2
/4

1 +
(

25+4
√

6
2

)
T‖µ‖∞

. (A.13)

If δ2
ϕ ≤ Q(‖µ‖∞), then δϕ ≤ δ2

ϕ.
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Proof. Let Γ(‖µ‖∞) be de�ned as in Section A.3.1:

δϕ ≤
Γ(‖µ‖∞)

2
‖(vϕ)−1 − (vϕ)‖2 =

Γ(‖µ‖∞)

2
‖(vϕ)−1(e− (vϕ)2)‖2 (A.14)

≤ Γ(‖µ‖∞)

2

∥∥∥∥∥∥
η(α)
µ√

e + η(α)
µ

∥∥∥∥∥∥
2

(A.15)

≤
Γ(‖µ‖∞)

∥∥∥η(α)
µ

∥∥∥
2

2

√
1−

∥∥∥η(α)
µ

∥∥∥
∞

. (A.16)

Let δ2
ϕ ≤ Q(‖µ‖∞) ≤ 1, using Theorem A.3.1 with a full step, i.e. α = 1, it follows

δϕ ≤ δ2
ϕΓ(‖µ‖∞)

4C2 + (12 + 8
√

6C∞ + 8C2
2)T‖µ‖∞

2
√

1− δ2
ϕ(4C∞ +

(
12 + 8

√
6C∞ + 8C2

∞
)
T‖µ‖∞)

.

So, δϕ ≤ δ2
ϕ if δ2

ϕ ≤ Q(‖µ‖∞).

Considering ϕ(t) = t, the condition of Theorem A.3.3 becomes the same as in [177]:
δ2
ϕ ≤ 1/2.

Remark A.3.1. The condition in Theorem A.3.3 implies the condition in Theorem A.3.2.
So, if the iterates locate in the neighbourhood of quadratic convergence, the full Newton step
will provide strictly feasible iterates.

Remark A.3.2. Notice that since the proximity measure is always non-negative, the condi-
tion from Theorem A.3.3 can hold only when µ is su�ciently small, i.e. when

Γ(‖µ‖∞)
(√

2 + (13 + 2
√

6)T‖µ‖∞
)
≤ 2.

This is not a restrictive assumption, because we can always scale a given initial point so that
it satis�es this condition.

A.3.5 Updating Parameter Strategy

The sequence of parameters {θk} must be chosen such that the iterates remain strictly
feasible and satisfy the condition of Theorem A.3.3. In this section, Proposition A.3.1 gives
an upper bound on the proximity measure after an update on µ, that is µ+ = µ(1 − θk),
and then Theorem A.3.4 describes how to build the sequence {θk}.

First, we provide an upper bound of the proximity measure after an update of the param-
eter, denoted δ+

ϕ := δϕ(z+, s+,µ(1− θk)), in terms of the update θk, the proximity measure
before this update, denoted δϕ := δϕ(z+, s+,µ), and the proximity measure before the New-
ton step, denoted δϕ := δϕ(z, s,µ). The computation of this upper bound is based on the
following lemma.
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Lemma A.3.7. Let (z, s) ∈ F+ and (∆z,∆s) be the solution of (A.3). Then,

n∑
i=1

ϕ(z+
i s

+
i )

µi
≤ n+ 2δϕ .

Proof. We �rst show that ∥∥∥∥∆z∆sϕ′(zs)

µ

∥∥∥∥
1

≤ 2δϕ. (A.17)

For this, we apply Lemma A.3.3 with ∆z/
√
µ, ∆s/

√
µ and a= µ−ϕ(zs)√

µϕ′(zs)
to obtain∥∥∥∥∆z∆s

µ

∥∥∥∥
1

≤ 1

2

∥∥∥∥ µ− ϕ(zs)
√
µϕ′(zs)

√
zs

∥∥∥∥2

2

.

Then, we get (A.17) by following the same steps as in the proof of Lemma A.3.5.
From equation (A.8) and by concavity of ϕ, ϕ(z+s+)/µ ≤ e + ∆z∆sϕ′(zs)/µ. So,∑n
i=1ϕ(z+

i s
+
i )/µi ≤

∑n
i=1 1 + |∆zi∆siϕ′(zisi)/µi| ≤ n+ 2δϕ.

Proposition A.3.1. Let vϕ := vϕ(z+, s+,µ) and v+
ϕ := (z+, s+,µ+), where µ+ := (1 − θk)µ.

Then,

(δ+
ϕ )2 ≤ (1− θk)(δϕ)2 +

Γ(‖µ‖∞)2

4(1− θk)
(
n(θk)2 + (4θk − 2(θk)2)δ2

ϕ

)
.

Furthermore, assuming that δ2
ϕ ≤ Q(‖µ‖∞) yields

(δ+
ϕ )2 ≤ (1− θk)Q(‖µ‖∞)2 +

Γ(‖µ‖∞)2

4(1− θk)
(
n(θk)2 + (4θk − 2(θk)2)Q(‖µ‖∞)

)
.

Proof. Noticing that v+
ϕ = vϕ/

√
1− θk, it follows that

(δ+
ϕ )2 =

1

4

n∑
i=1

(
ϕ′(0)

ϕ′(z+
i s

+
i )

)2

((v+
ϕ i

)−2 + (v+
ϕ i

)2 − 2)

=
1

4

n∑
i=1

(
ϕ′(0)

ϕ′(z+
i s

+
i )

)2(
(1− θk)(vϕi)

−2 +
vϕ

2
i

(1− θk)
− 2

)
= (1− θk)(1

4

n∑
i=1

(
ϕ′(0)

ϕ′(z+
i s

+
i )

)2 (
(vϕi)

−2 + vϕ
2
i − 2)

)
+

1

4

n∑
i=1

(
ϕ′(0)

ϕ′(z+
i s

+
i )

)2(
−2θk +

2θk − (θk)2

1− θk
vϕ

2
i

)
= (1− θk)(δϕ)2 +

1

4

n∑
i=1

(
ϕ′(0)

ϕ′(z+
i s

+
i )

)2(
−2θk +

2θk − (θk)2

1− θk
vϕ

2
i

)

189



Using successively equation (A.7), Lemma A.3.7 and Γ(‖µ+‖∞) ≤ Γ(‖µ‖∞), we obtain

(δ+
ϕ )2 ≤ (1− θk)(δϕ)2 + Γ(‖µ+‖∞)2

(
−2θk

4
n+

2θk − (θk)2

4(1− θk)
(n+ 2δ2

ϕ)

)
≤ (1− θk)(δϕ)2 + Γ(‖µ‖∞)2

(
n(θk)2

4(1− θk)
+

2θk − (θk)2

2(1− θk)
δ2
ϕ

)
.

This proves the �rst part of the proposition.
Now, assuming that δϕ ≤ Q(‖µ‖∞) allows us to use Theorem A.3.3 and so δϕ ≤ δ2

ϕ ≤
Q(‖µ‖∞)2 gives the result.

We conclude this section by a description of the choice of the update parameters θk.

Theorem A.3.4. Let µ be such that Q(‖µ‖∞) > 0 and (z, s) ∈ F+ such that δ2
ϕ ≤ Q(‖µ‖∞).

De�ne θk as

θk =
−b+

√
b2 − 4ac

2a
,

with
a = Γ(‖µ‖∞)2n− 2Γ(‖µ‖∞)2Q(‖µ‖∞) + 4Q(‖µ‖∞)2 ,

b = 4Γ(‖µ‖∞)2Q(‖µ‖∞)− 8Q(‖µ‖∞)2 + 4Q(‖µ‖∞) ,

c = 4Q(‖µ‖∞)2 − 4Q(‖µ‖∞) .

The proximity measure δ+
ϕ := δϕ(z+, s+,µ(1 − θk)) satis�es the conditions of feasibility in

Theorem A.3.2 and quadratic convergence of the Newton step in Theorem A.3.3.

By de�nition Q(‖µ‖∞) < 1, thus c is negative. Furthermore, for n su�ciently large a is
positive and so b2 − 4ac and θk are positive.

We would also like to point out that the value of θk is of order 1/
√
n for n large. This

observation is fundamental considering the complexity of the algorithm.

Proof. As pointed out earlier in Remark A.3.1 the condition of Theorem A.3.2 is weaker
than the condition of Theorem A.3.3. Thus, it is su�cient to satisfy the latter condition to
ensure strict feasibility of the iterates.

According to the condition of Theorem A.3.3, after an update of µ, i.e. µ+ = (1− θk)µ,
the proximity measure δ+

ϕ must satisfy

(δ+
ϕ )2 ≤ Q(‖µ+‖∞) .

As Q is decreasing with respect to ‖µ‖∞, it is su�cient to ensure that

(δ+
ϕ )2 ≤ Q(‖µ‖∞) .

By Proposition A.3.1 in the case δ2
ϕ ≤ Q(‖µ‖∞), we can choose any θk satisfying

(1− θk)Q(‖µ‖∞)2 +
Γ(‖µ‖∞)2

4(1− θk)
(
n(θk)2 + (4θk − 2(θk)2)Q(‖µ‖∞)

)
≤ Q(‖µ‖∞) .
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Therefore, it is su�cient to choose θk > 0 such that

θk ≤ −b+
√
b2 − 4ac

2a
,

with a, b and c de�ned as in the statement of the theorem.

Remark A.3.3. For a more explicit characterization of θk, we can study its asymptotical
behaviour. By de�nition of Γ and Q,

lim
µ→0

Q(‖µ‖∞) = 1/2 and lim
µ→0

Γ(‖µ‖∞) = 1,

so lim
µ→0

θk = −1+
√

1+4n
2n

≤ 1√
n
.

A.3.6 Complexity Analysis of the Full Newton Step IPM

The complexity of this algorithm is obtained by the extension of a classical lemma, whose
proof can be found for instance in [179].

Lemma A.3.8. Let θ̄ be such that 0 < θ̄ ≤ θk ∀k ∈ N. The ϕ-FN-IPM for monotone LCP
described in Algorithm 6 provides an ε-solution (z, s), which satis�es

∑n
i=1 ϕ(zisi) ≤ nε after

at most log (
∑n

i=1 ϕ(z0
i s

0
i )/ε) /θ̄ iterations.

The sequence {θk} is given by Theorem A.3.4. As already stated, θk is of order 1/
√
n for

n large, which justify the existence of θ̄. Moreover, we can choose θ̄ of order 1/
√
n without

loss of generality. As a result, we can now state our main theorem.

Theorem A.3.5. Let µ0 = z0s0. Algorithm 6, with the sequence of update parameters θk

described above, guarantees strict feasibility of the iterates and quadratic convergence of the
proximity measure. Moreover, it provides an ε-solution (z, s), which satis�es

∑n
i=1 ϕ(zisi) ≤

nε after at most O
(√

n log
(
n
ε

))
iterations.

Preliminary computational experiments give similar results to the classical method on
a small selection of LPs from the NETLIB repository1. This con�rms the validity of our
approach. Some informations regarding these results are presented on Appendix A.5. Further
investigations on more sophisticated methods may get the best out of this new direction.

A.4 Conclusions

The method presented in this article shows a generalization of the FN-IPM with polyno-
mial upper bound complexity for monotone LCPs considering a general family of smooth
increasing concave functions. The main contributions of this article are that we extend the

1http://www.netlib.org/lp/
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classical path-following method and Darvay's method with ϕ(t) =
√
t and prove that these

new methods have the best known worst-case complexity.
Further research may extend this result to a more general family of LCPs such that

P∗(κ)-LCPs or P0-LCPs with bounded level sets as in [18, 17, 196].
Recent developments by Roos in [178] consider an infeasible IPM with full Newton step

using only one feasibility step. More investigations regarding the method presented in this
paper could extend the results in [178].

Despite having the best worst case upper-bound for IPMs the full Newton step is not
the most used approach for numerics, since this upper-bound is attained in general [179].
We believe that the philosophy applied in this paper can be generalized to other IPMs
approaches. In particular, we are planning to study a predictor-corrector implementation of
this approach.

A.5 Numerics

To validate the theoretical results, we �rst implemented the ϕ-FN-IPM described in Al-
gorithm 6 with the sequence of update parameters given by Theorem A.3.4 and with the
functions ϕ given in Table A.1. The datasets and the residuals after convergence are de-

Name Id. θ1 log ( )α

Fct. t t
t+1

log(1 + t) (t+ 10−3)α − (10−3)α with α ∈ (0, 1)

Table A.1: ϕ-functions used in the computational tests

tailed in Table A.2. The stopping criterion is zT s ≤ nε, where ε = 10−6, and we compute
the residuals as ‖zs‖∞ × 106. For every ϕ function that appears in Table A.1, the method
converged in the same number of iterations, so we only display the number of iterations
once. This phenomenon is not surprising, since the ϕ-FN-IPM used here stays very close
to the central path, as shown by Theorem A.3.3. Therefore, this implementation does not
exploit fully the new directions. Nonetheless, some small di�erences remain in the residuals
as illustrated in Table A.2.

To illustrate the possible di�erences between the functions ϕ, we run another experiment
that considers a �xed value for θk = 1√

n
for all k ∈ N. Table A.3 illustrates the di�erent

behaviours observed for di�erent choices of ϕ. We notice that a smaller number of iterations
seems to be required when the derivative in zero is larger for the methods with α = 0.25, 0.5
and 0.75. Thus, further research exploring interior-point methods in large neighbourhood of
the central path may get the best out of these di�erences.
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Instance Iter. Id. θ1 log α = 0.25 α = 0.5 α = 0.75
ADLITTLE 268 0.995583 0.995853 0.995856 0.995851 0.995855 0.995854
AFIRO 170 0.943919 0.944204 0.944207 0.944200 0.944205 0.944205

BEACONFD 418 0.995479 0.995728 0.995730 0.995724 0.995727 0.995728
BOEING2 420 0.974064 0.974307 0.974309 0.974309 0.974309 0.974307
BLEND 264 0.984332 0.984599 0.984602 0.984600 0.984599 0.984599
GROW7 406 0.983538 0.983785 0.983788 0.983780 0.983787 0.983785
ISRAEL 428 0.988911 0.989157 0.989155 0.989148 0.989154 0.989156
KB2 203 0.944257 0.944530 0.944532 0.944530 0.944531 0.944530

RECIPELP 332 0.960634 0.960884 0.960887 0.960884 0.960885 0.960885
SC50A 218 0.951084 0.951353 0.951356 0.951350 0.951354 0.951354
SC50B 218 0.951084 0.951353 0.951356 0.951350 0.951354 0.951354
SC105 316 0.973217 0.973472 0.973475 0.973473 0.973474 0.973473

SCAGR7 342 0.985376 0.985631 0.985633 0.985632 0.985632 0.985632
SHARE1B 372 0.968387 0.968633 0.968635 0.968634 0.968632 0.968634
SHARE2B 310 0.972849 0.973105 0.973107 0.973102 0.973107 0.973106
STOCFOR1 324 0.982774 0.983031 0.983033 0.983033 0.983031 0.983031

Table A.2: Value of Res.=‖zs‖∞ × 106, after the algorithm reaches zT s ≤ nε = 10−6n

Instance Id. θ1 log α = 0.25 α = 0.5 α = 0.75
Res. Iter. Res. Iter. Res. Iter. Res. Iter. Res. Iter. Res. Iter.

ADLITTLE 0.995 268 0.975 255 0.993 263 0.967 212 0.983 226 0.966 245
AFIRO 0.943 170 0.988 161 0.930 167 0.970 134 0.972 143 0.954 155

BEACONFD 0.995 418 0.998 397 1.000 410 0.984 330 0.996 352 0.968 382
BOEING2 0.974 420 0.974 399 0.977 412 0.986 331 0.967 354 0.975 383
BLEND 0.984 264 0.975 251 0.986 259 0.950 209 0.954 223 0.973 241
GROW7 0.983 406 0.973 386 0.996 398 0.993 320 0.982 342 0.992 370
ISRAEL 0.988 428 0.976 407 0.987 420 0.976 338 0.972 361 0.998 390
KB2 0.944 203 0.938 193 0.957 199 0.968 160 0.954 171 0.959 185

RECIPELP 0.960 332 0.978 315 0.992 325 0.963 262 0.991 279 0.995 302
SC50A 0.951 218 0.960 207 0.946 214 0.962 172 0.999 183 0.944 199
SC50B 0.951 218 0.960 207 0.946 214 0.962 172 0.999 183 0.944 199
SC105 0.973 316 0.982 300 0.976 310 0.989 249 0.983 266 0.982 288

SCAGR7 0.985 342 0.981 325 0.968 336 0.978 270 0.988 288 0.981 312
SHARE1B 0.968 372 0.984 353 0.969 365 0.989 293 0.983 313 0.979 339
SHARE2B 0.972 310 0.996 294 0.981 304 0.957 245 0.981 261 0.962 283
STOCFOR1 0.982 324 0.975 308 0.979 318 0.967 256 0.980 273 0.961 296

Table A.3: Value of Res.=‖zs‖∞ × 106 after the algorithm reaches zT s ≤ nε = 10−6n and
number of iterations (Iter.).
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Appendix B

Formations complémentaires et

participations aux conférences

Au-delà des travaux présentés dans ce document, les trois années de la thèse ont été l'occasion
de participer à des conférences et des formations complémentaires. Cette section présente
quelques détails à propos de ces activités parallèles.

J'ai participé à des formations complémentaires en optimisation lors de mini-cours or-
ganisés par le GdR MOA à Limoges du 15 au 17 mai 2015 ("Numerical methods for comple-
mentarity problems and applications" par Mounir Haddou, "Bundle methods for nonsmooth
optimization" par Dominikus Noll et "Nonsmooth, nonconvex optimization with applica-
tions to polynomial and eigenvalue optimization" par Michael Overton) et à Toulouse le 21
et 22 mars 2016 (Problèmes de contrôles par Frédéric Bonnans).

Par ailleurs, j'ai suivi des cours lors d'une école d'été à Rome du 6 au 10 juin 2016 intitulée
COST/MINO PhD School on Advanced Optimization Methods ("Polyhedral Combinatorics"
par Santanu Dey, "Interior Point methods" par Jordi Castro, "Structured Dantzig-Wolfe De-
composition" par Antonio Frangioni et "Semide�nite Programming" par Veronica Piccialli).

Le 25 et 26 janvier 2017, j'ai suivi un séminaire du programme Gaspard Monge donné
par Marc Teboulle et intitulé "First Order Optimization Methods".

À la frontière entre formation et vulgarisation, j'ai participé à deux reprises à la Semaine
d'Étude Math-Entreprise (SEME) organisée par AMIES. La première fois à Rouen en octo-
bre 2014 sur le thème "Modelling Gas Regulators" proposé par le groupe GCE tandis que la
deuxième participation était à Nice en janvier 2016 sur le thème "Recalibration de modèles
pharmacocinétiques" proposé par l'entreprise ExactCure.

Au cours de ces compléments en optimisation, j'ai également béné�cié de la possibilité de
réaliser trois stages de recherche à l'étranger: Université Libanaise à Beyrouth au Liban invité
par Lina Abdallah, 1 semaine en novembre 2015 ; Université de Sherbrooke au Canada invité
par Jean-Pierre Dussault, 4 mois entre septembre et décembre 2016 et 1 mois en juin/juillet
2017. Ces stages de recherche ont été soutenus �nancièrement par des bourses de mobilités :
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• (2016) bourse de mobilité de l'Ecole des Docteurs de l'Université Bretagne-Loire et du
Conseil Régional de Bretagne, montant 2000 euros ;

• (2017) bourse de mobilité du GDR Recherche Opérationnelle, montant 700 euros ;

• (2017) bourse de mobilité de l'Ecole des Docteurs de l'Université Bretagne-Loire et du
Conseil Régional de Bretagne, montant 1000 euros.

Outre les compléments de formations en optimisation, j'ai également eu l'opportunité
d'être moniteur et encadrant. J'ai donné des cours à l'INSA de Rennes sur l'année 2015-16
(64 h Analyse 1 en 1ère année de Licence) et 2016-17 (48 h Géométrie en 2ème année de
Licence ; 16 h Optimisation numérique en 3ème année de Licence). Par ailleurs, j'ai participé
à l'encadrement de deux stages de Master:

• (avril à juin 2017) �Relaxation methods for MPCC� par Cao Van Kien de l'Université
Paris 13 ;

• (avril à juin 2017) �Optimization methods for complementarity problems� par Nguyen
Dinh Duong de l'Université Paris Est.

J'ai participé aux tâches administratives de la vie du laboratoire à l'INSA de Rennes en
étant d'une part membre du bureau de la composante IRMAR-INSA et d'autre part membre
du comité d'organisation de la conférence de �n de projet ANR HJNET à Rennes du 30 mai
au 3 juin 2016 et du Groupe de Travail en Programmation Mathématiques du GdR RO à
Rennes le 13 et 14 juin 2016.

Tout au long de la durée de la thèse j'ai participé à des conférences en donnant des
exposés:

• Conférence invité : A Smoothing Method for Sparse Optimization over Polyhedral Sets,
Groupe de Travail Programmation Mathématiques, Dijon, 2015.

• Exposés lors de séminaires :

� Problèmes de complémentarité en optimisation non lisse, Séminaire LANDAU des
jeunes doctorants en analyse, Rennes, 2015.

� Méthodes numériques pour l'optimisation non linéaire, Séminaire LANDAU des
jeunes doctorants en analyse, Rennes 2016.

� Une méthode numérique pour les problèmes d'optimisation biniveaux, Séminaire
LANDAU des jeunes doctorants en analyse, Rennes 2017.

� Problèmes d'optimisation sous contraintes et parcimonie, séminaire informatique
de l'Université de Sherbrooke. Sherbrooke, 2017

• Exposés lors de conférences :
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� A Smoothing Method for Sparse Optimization over Polyhedral Sets, MCO Metz,
2015.

� A new direction in polynomial time interior-point methods for monotone linear
complementarity problem, Journées SMAI-MODE, Toulouse, 2016.

� A new relaxation method for Mathematical Program with Complementarity Con-
straint, poster in HJNET, Rennes, 2016.

� A new relaxation method for Mathematical Program with Complementarity Con-
straint, INFORMS Annual Meeting, Nashville, 2016.

� How to Compute a Stationary Point of the MPCC?, EUROPT, Montréal, 2017.

� Computation of a Local Minimum of the MPCC, PARAOPT XI, Prague, 2017.

En�n, certaines collaborations extérieures au projet de thèse ont mené à des présentations
lors de conférences :

• avec F. Monteiro et al. (Luxembourg Centre for Systems Biomedicine, University of
Luxembourg, Luxembourg). Robust Prediction of Minimal Medium Composition Using
Sparse Optimization, poster in 4th Conference on Constraint-Based Reconstruction and
Analysis, Heidelberg 2015.

• avec J. Erhel (INRIA Rennes). About Some Numerical Models for Geochemistry.
HPSC Hanoi, 2015.

• avec J. Erhel (INRIA Rennes). About Some Numerical Models for Geochemistry.
Workshop MoMas on reactive transport, 2015.

• avec J. Erhel and S. Sabit (INRIA Rennes). Reactive transport simulations using a
global approach. Computational Methods in Water Resources, Toronto, 2016.
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Résumé

Dans cette thèse, nous avons étudié les méthodes de régularisation 
pour la résolution numérique de problèmes avec équilibres.

Dans une première partie, nous nous sommes intéressés aux 
problèmes de complémentarité au travers de deux applications : les 
équations en valeur absolue et les problèmes de parcimonie.

Dans une seconde partie, nous avons étudié les problèmes 
d’optimisation sous contraintes de complémentarité. Après avoir 
défini des conditions d’optimalité pour ces problèmes nous avons 
proposé une nouvelle méthode de régularisation appelée méthode des 
papillons. A partir d’une étude de la résolution des sous-problèmes de 
la régularisation nous avons défini un algorithme avec des propriétés 
de convergence forte.

Tout au long de ce manuscrit nous nous sommes concentrés sur les 
propriétés théoriques des algorithmes ainsi que sur leurs applications 
numériques. 

La dernière partie de ce document est consacrée aux résultats 
numériques des méthodes de régularisation. 

Abstract

In this thesis, we studied the regularization methods for the numerical 
resolution of problems with equilibria.

In the first part, we focused on the complementarity problems through 
two applications that are the absolute value equation and the sparse 
optimization problem.

In the second part, we concentrated on optimization problems with 
complementarity constraints. After studying the optimality conditions 
of this problem, we proposed a new regularization method, so-called 
butterfly relaxation. Then, based on an analysis of the regularized sub-
problems we defined an algorithm with strong convergence property.

Throughout the manuscript, we concentrated on the theoretical 
properties of the algorithms as well as their numerical applications. 

In the last part of this document, we presented numerical results 
using the regularization methods for the mathematical programs with 
complementarity constraints.
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