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Résumé 
Cette thèse est dédiée à l’étude des contacts lubrifiés tore-plan sous diverses conditions. Ces contacts se situent 

à l’interface entre l’extrémité torique des rouleaux et le collet de la bague dans les roulements à rouleaux. La 

première complexité de cette étude provient de la géométrie particulière des solides concernés. La deuxième est 

générée par la cinématique complexe qui règne dans ces contacts. Afin de comprendre les mécanismes physiques 

à l’œuvre, une approche duale (expérimentale et numérique) est adoptée. 

Le banc d’essai Jérotrib permet une première étude basée sur l’hypothèse que le contact élastohydrodynamique 

tore-plan est similaire à un contact elliptique équivalent. Grâce à une méthode d’interférométrie optique en 

lumière blanche qui a été adaptée aux spécificités du contact en question, des mesures précises de l’épaisseur de 

film ont été effectuées dans un nombre significatif de conditions. Sur cette base, un modèle numérique thermo-

élastohydrodynamique a été validé avec précision. Ce dernier a permis d’étudier les écoulements de fluide à 

l’entrée du contact afin de mettre en évidence leur influence sur le champ d’épaisseur de film. 

Le modèle numérique a ensuite été amélioré afin de prendre en compte la vraie forme des solides. Il a été validé 

en épaisseur de film par le banc d’essai Tribogyr, dans des conditions similaires à celles rencontrées dans les 

vrais roulements. Il a été montré que le cisaillement du fluide est responsable de l’échauffement des solides, qui 

diminue par suite l’épaisseur de film : ceci souligne la nécessité de modéliser cet échauffement global pour 

prédire la séparation des surfaces. Par ailleurs, lors de l’étude, le champ de pression et d’épaisseur de film ont 

perdu leurs symétries à cause de la cinématique et de la forme des solides. Toutefois, le comportement du contact 

est resté similaire à celui d’un contact elliptique, en dehors de certains cas limites. 

 

Abstract 
This thesis is dedicated to the study of torus on plane contacts under various operating conditions. They can be 

found at the interface between the torus roller-end and the flange in roller bearings. The first challenge of this 

thesis is to deal with unusual mating geometries. The other challenge is the presence of a complex kinematic 

which operates in these contacts. In order to further develop the understanding of such a contact, a dual approach 

(experimental and numerical) is adopted. 

The Jérotrib test-rig enables a first study, by considering that the elastohydrodynamic torus on plane contact can 

be modelled by an elliptical equivalent contact. Thanks to a differential colorimetric interferometry method 

which was improved and adapted during the thesis, precise film thickness measurements are carried out under 

a rather wide range of operating conditions. A thermo-elastohydrodynamic numerical model is developed and 

validated by comparing its results to the ones of the test-rig. A numerical study on film forming is then proposed 

and the role of the contact ellipticity is investigated. 

The numerical model is improved in order to take into account the actual shape of the solids. A film thickness 

validation of the model is proposed, thanks to measurements performed on the Tribogyr test-rig. The operating 

conditions are very similar to the one encountered in actual bearings, and the mating solids have representative 

geometries: it is an actual torus-on-plane contact. It is demonstrated that the lubricant shearing is responsible for 

the solids temperature rise, which in its turn, reduces the film thickness. It appears mandatory to be able to 

predict this global warming of the bodies. It is also demonstrated that the pressure and film thickness 

distributions lose their symmetry because of the spinning kinematic and the solids shape. However, the 

behaviour of the torus-on-plane contact appears very similar to the one of an elliptical equivalent contact, apart 

from some limit cases.  
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Résumé étendu 

 

Introduction 

C’est après plusieurs décennies de progrès scientifiques et industriels, que l’humain a pris 

conscience à partir du milieu du XXème siècle des contraintes écologiques du monde qui 

l’entoure. Ces contraintes étant aussi couplées aux contraintes de rentabilité économique, les 

progrès industriels actuels et futurs sont conditionnés par une meilleure compréhension des 

phénomènes physiques qui les régissent. Cette thèse concerne les roulements, qui sont des 

éléments clés dans bon nombre de mécanismes. Afin d’améliorer la longévité et de décroitre 

les pertes d’énergie dans ces mécanismes, l’industrie d’aujourd’hui cherche à mieux maîtriser 

le comportement de ces roulements. Le centre d’intérêt est ici les contacts entre le collet et les 

rouleaux, qui se situent entre le flanc des éléments roulants et la bague extérieure et/ou 

intérieure. La Figure 1.1-1 situe un de ces contacts, localisé à l’extrémité de la flèche bleue. 

L’élément roulant est une pièce qui accommode la différence de vitesse de rotation entre les 

bagues. Il peut être de forme cylindrique (roulement à rouleaux cylindriques et à aiguilles), 

conique (roulement à rouleaux coniques), sphérique (roulement à billes) ou encore de forme 

plus complexe. C’est dans les deux premières catégories que l’on retrouve principalement le 

contact collet-rouleau. 

 

 

Figure 1.1-1 - Roulement à rouleaux d'origine industrielle 

 

Etant chargé d’accommoder les vitesses de rotation entre les deux bagues, une cinématique 

complexe s’applique au contact. Le champ de vitesse du rouleau dans le repère de la bague 

intérieure est montré sur la Figure 1.1-2. La bague intérieure étant immobile dans ce repère, 

un glissement a lieu à l’interface entre l’extrémité du rouleau et le collet. Afin de limiter l’usure 

et le frottement, on lubrifie cette zone du roulement. Par ailleurs, différentes géométries sont 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI131/these.pdf 
© [J-D. Wheeler], [2016], INSA Lyon, tous droits réservés



x 

données au flanc du rouleau, dans le but d’optimiser la performance de la lubrification. Ici on 

étudiera le contact collet-rouleau, lorsque l’extrémité du rouleau est une portion de tore. 

Cependant, pour espérer optimiser la lubrification de ce contact il est indispensable de 

développer une maîtrise avancée des différents phénomènes physiques qui entrent en jeu. A 

cause des charges importantes transmises par ces contacts, les solides se déforment 

significativement et le lubrifiant localisé dans l’entrefer est fortement comprimé. En réponse à 

cette compression, la viscosité du fluide augmente d’une façon considérable, ce qui lui permet 

de moins s’écouler, et d’assurer une séparation complète des surfaces lorsque celles-ci sont 

suffisamment lisses. Ce phénomène est appelé l’élasto-hydrodynamique (EHD). Cependant, 

la cinématique et la géométrie particulières sont à l’origine d’un cisaillement intense du 

lubrifiant, et cette sollicitation a pour effet :  

- de fluidifier le liquide (effet non-Newtonien rhéo-fluidifiant) : il s’agit d’un effet 

rhéologique, 

- et de provoquer une dissipation d’énergie importante. En réponse, la température du 

fluide augmente et ses propriétés rhéologiques diminuent: c’est un effet thermique.  

Ces effets physiques sont connus, mais leur pleine compréhension est encore hors de portée, 

surtout s’ils se trouvent couplés avec la présence de solides à la géométrie inhabituelle. 

 

 

Figure 1.1-2 – Le contact collet-rouleau 

 

Les solides en contact sont représentés sur la Figure 1.1-3. Le rouleau a une extrémité torique 

définie par le rayon mineur 𝑅𝑡 et le rayon majeur 𝑟𝑡. La bague, est de forme conique ou 

sphérique. Cependant, les rayons de courbures de la bague sont toujours importants, et par 

conséquent, la bague est représentée par un plan sur le schéma de la Figure 1.1-3 et dans la 
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suite de ce document. On remarque que la surface en contact à la fois avec le tore et le plan a 

une forme atypique : il s’agit d’un ellipsoïde courbée par l’arc de rayon 𝑅𝑡 + 𝑟𝑡sin (𝜆), tel que 

celui représenté dans l’encart entouré d’un trait rouge pointillé. L’angle entre la normale au 

plan du contact et l’axe de symétrie du roulement est 𝜆. On l’appelle angle de pivotement. 

 

 

Figure 1.1-3 – Le contact tore plan 

 

Faisant partie des contacts EHD ponctuels non-elliptiques, les contacts de cette étude ne 

trouvent que peu d’échos dans la littérature. Par conséquent, toute contribution expérimentale 

et numérique sur le sujet développera la connaissance que la communauté scientifique 

possède. Au sein des équipes de recherche et de l’industrie, on a associé pour l’instant ces 

contacts EHD ponctuels non-elliptiques à des contacts elliptiques équivalents qui ont les 

mêmes rayons de courbure au centre du contact. En l’occurrence il s’agit de contacts elliptiques 

étroits, mais eux aussi ont été relativement peu étudiés dans le passé. Par conséquent, on 

cherchera à les étudier au moyen d’une approche complémentaire de celles utilisées jusqu’ici. 

En particulier, on étudiera une plage variée de ratios d’ellipticité 𝑘 = 𝑏/𝑎, avec 𝑏 le demi-axe 

de l’ellipse perpendiculaire à l’écoulement, et 𝑎 le demi-axe parallèle à l’écoulement. Cette 

plage contiendra les contacts étroits, circulaires et larges, tels que décrits par la Figure 1.1-4, et 

on cherchera à isoler la variation de l’ellipticité par rapport aux variations des autres 

paramètres, tels que la charge ou la vitesse d’entrainement. 
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Figure 1.1-4 – Les différentes configurations de contacts elliptiques, lorsque 𝑘 varie (vitesse d’entrainement 
représentée par les flèches jaunes). 

Une première partie présentera les méthodes expérimentales employées dans cette thèse. On 

retrouvera en particulier la description d’une méthode de mesure d’épaisseur de film, et la 

description de deux tribomètres, Jérotrib et Tribogyr. 

Dans une deuxième partie, on décrira le modèle numérique développé et employé dans les 

différentes études. On distinguera le modèle elliptique et le modèle tore-plan, qui sont deux 

versions d’un même modèle de contact. 

Suite à la présentation de ces outils d’étude, une troisième partie présentera des validations 

apportées au modèle numérique par des expériences représentatives des conditions de 

fonctionnement des roulements industriels. 

Enfin, la quatrième partie sera consacrée à l’étude du comportement du contact collet-rouleau. 

La formation du film de lubrifiant dans un contact elliptique sera analysée, afin de mieux 

comprendre les mécanismes physiques en jeu. Puis, dans un contact tore-plan, le rôle de 

l’angle de pivotement sera mis en évidence. Pour finir, une comparaison entre le modèle tore-

plan et son équivalent elliptique sera proposée. 

Pour conclure, une dernière section fera le bilan du travail, et explicitera les perspectives pour 

des travaux futurs. 

 

Méthodes expérimentales 

Différents moyens expérimentaux ont permis d’étudier le contact EHD présenté dans 

l’introduction. La mesure de l’épaisseur de film est une approche assez développée dans la 

littérature, et elle a l’avantage de permettre à la fois l’obtention de valeurs locales de la 

séparation des surfaces et le champ complet de cette séparation dans la zone de contact. 

L’interférométrie colorimétrique en lumière blanche a été utilisée dans cette étude, et elle a été 

développée afin de l’adapter à des mesures sur des contacts de forme non-circulaire. Cette 

méthode a ensuite été employée pour des mesures avec deux bancs d’essais distincts. Le 

dispositif Jérotrib (présenté par Molimard (1)) a permis des mesures d’épaisseurs de film sur 

des contacts elliptiques étroits et larges, en plus des contacts circulaires déjà étudiés dans le 

passé. Tribogyr (présenté par Dormois (2)) a permis de reproduire des contact tore-plan dont 

la cinématique est représentative des contacts collet-rouleau de même géométrie. 
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Mesure de l’épaisseur de film 

L’interférométrie colorimétrique en lumière blanche a été utilisée avec succès pour des 

mesures d’épaisseur de film dans les contacts EHD circulaires. Sur la base d’une méthode 

développée par Molimard et al. (3), des adaptations ont été effectuées. En effet, la méthode 

initiale nécessite que les contacts étudiés soient circulaires, car : 

- dans les contacts sphère-plan statiques, on peut exprimer analytiquement l’épaisseur 

de film autour du contact, ce qui permet d’établir le lien entre l’épaisseur d’huile et 

l’intensité des couleurs des franges d’interférence, et donc d’obtenir la courbe 

d’étalonnage, 

- et ils comportent une symétrie circulaire, ce qui autorise de moyenner les relations 

épaisseur d’huile – couleur, afin de diminuer le bruit de la courbe d’étalonnage.  

Dans les contacts elliptiques ou tore-plan, il est possible de pallier l’absence d’expression 

analytique pour l’épaisseur de film autour du contact par l’analyse d’un interférogramme de 

ce contact en lumière monochromatique. Un de ces contacts tore-plan est représenté sur la 

Figure 1.1-5, sous un éclairage chromatique. Le même contact, dans les mêmes conditions 

opératoires, est cette fois-ci éclairé avec une lumière monochromatique, grâce à un filtre 

optique rouge de longueur d’onde 𝜆𝑚𝑐 = 635 ± 4 𝑛𝑚 : l’interférogramme est présenté sur la 

Figure 1.1-6. 

 

 

Figure 1.1-5 - Contact tore plan éclairé en lumière 
blanche pour l’étape de calibration 

 

Figure 1.1-6 - Contact tore plan éclairé en lumière 
monochromatique pour l’étape de calibration 

 

L’interférogramme de la Figure 1.1-6 permet de déterminer le bord du contact (défini par la 

frontière entre la zone centrale et la première frange), ainsi que le champ de l’épaisseur à la 

proximité du contact, grâce à la différence d’épaisseur de film qui existe entre deux franges 

sombres successives. Cet écart est : 

ℎ =
𝜆𝑚𝑐
2 𝑛𝑚𝑐

 Equation 1 

 

avec 𝑛𝑚𝑐 l’indice de réfraction du fluide. Toutefois, la connaissance de l’épaisseur de film au 

niveau des franges sombres n’est pas immédiate : l’épaisseur de film sur le lieu de la première 

frange sombre n’est pas connue à priori. Pour obtenir cette épaisseur, un solveur numérique a 

été créé. Il est capable d’obtenir la position de la frontière du contact et de calculer la hauteur 
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de film correspondant aux franges sombres. Sur cette base, le solveur fournit une carte de 

l’épaisseur de film à la proximité du contact statique. Etant donné que l’interférogramme 

chromatique donne la variation de la couleur sur la même zone, un second solveur établit une 

courbe d’étalonnage qui crée la relation entre épaisseur de film et couleur de l’image. 

Le traitement des images statiques a été facilité par le développement d’une interface 

utilisateur, qui permet d’exploiter la capacité des solveurs d’une manière simplifiée. 

Une fois la courbe d’étalonnage obtenue, il est possible d’analyser des interférogrammes EHD, 

comme celui représenté sur la Figure 1.1-7. En effet, la couleur de chaque pixel de 

l’interférogramme EHD peut être traduite en une unique épaisseur de film, permettant ainsi 

des mesures d’épaisseur de film précises sur ces contacts. On identifie en particulier 

l’épaisseur de film au centre ℎ𝑐, les minimums d’épaisseurs de film sur les côtés ℎ𝑚,𝑙− et ℎ𝑚,𝑙+ 

et le minimum de l’épaisseur de film le long de l’axe 𝑥 en sortie de contact qui est désigné 

par ℎ𝑚,𝑐. 

 

 

Figure 1.1-7 – Contact elliptique EHD étroit 

 

Jérotrib 

Afin d’appliquer des conditions opératoires précises, on emploi le banc d’essai Jérotrib 

représenté sur la Figure 1.1-8. Il permet de reproduire des contacts lubrifiés pour des charges 

allant jusqu’à 𝑤 = 400 𝑁 et une vitesse d’entrainement qui peut atteindre 7 𝑚/𝑠. Un disque 

(en verre, acier, saphir ou encore carbure de tungstène) est mis en contact avec un objet 

convexe de révolution en acier dont le rayon dans la direction de l’entrainement est 𝑅𝑥 =

12.7 𝑚𝑚 : le rayon transverse 𝑅𝑦 peut, quant à lui, varier ce qui autorise de reproduire des 

contacts elliptiques étroits et larges. Les deux éprouvettes ainsi que le bain d’huile dans lequel 

barbotte l’objet convexe sont représentés sur la Figure 1.1-9. La température de l’expérience 

est régulée précisément par la circulation d’un fluide caloporteur dans les parois de la cuve 

contenant le lubrifiant et les broches qui portent les deux éprouvettes. 
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Figure 1.1-8 – Banc d’essai Jérotrib 

 

Ce banc d’essai a été premièrement utilisé par Molimard et al. (1). Ces auteurs ont développé 

une méthode pour la mesure d’épaisseur de film dans les contacts circulaires, appelée 

interférométrie colorimétrique différentielle.  

 

 

Figure 1.1-9 – Les deux éprouvettes de Jérotrib 

 

Dans le contexte de cette thèse, il y a principalement deux éprouvettes convexes qui ont été 

utilisées sur Jérotrib. Elles sont toutes deux présentées dans la Table 1.1-1. 

 

Eprouvette convexe 𝑹𝒙 [mm] 𝑹𝒚 [mm] 𝒌 = 𝒃/𝒂 𝒂 [mm] * 𝒃 [mm] * 

Elliptique étroit 
12.70 

4.82 0.526 0.173 0.091 

Elliptique large 84 3.46  0.105 0.364 

Table 1.1-1 - Présentation des différentes éprouvettes convexes. Elles sont en acier (𝐸𝑏 = 210𝑒9 𝑃𝑎, 𝜈𝑏 = 0.3) et 
la dimension des ellipses (*) est calculée pour un contact avec un disque en verre (𝐸𝑡 = 72𝑒9 𝑃𝑎, 𝜈𝑡 = 0.23) 

pour 𝑤 = 20 𝑁 
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Par ailleurs, les propriétés physiques de ces éprouvettes sont détaillées Table 1.1-2. On 

remarque que les propriétés thermiques des matériaux sont données avec leurs propriétés 

élastiques. En effet, les contacts EHD sont sensibles à l’échauffement qui a lieu en leur sein : 

par conséquent les propriétés thermiques des éprouvettes en contact ont besoin d’être connues 

précisément.  

 

 

Propriétés du disque en verre 

Paramètre [Unité] Valeur 

𝐸𝑡  [𝑃𝑎] 72 × 109 

𝜈𝑡  [ − ] 0.23 

𝜌𝑡  [𝑘𝑔.𝑚
−3] 2530 

𝑘𝑡  [𝑊.𝑚
−1. 𝐾−1] 0.937 

𝐶𝑝𝑡 [𝐽. 𝑘𝑔
−1. 𝐾−1] 880 

  

 

Propriétés des éprouvettes en acier 

Paramètre [Unité] Valeur 

𝐸𝑏 [𝑃𝑎] 210 × 109 

𝜈𝑏 [ − ] 0.3 

𝜌𝑏 [𝑘𝑔.𝑚
−3] 7850 

𝑘𝑏 [𝑊.𝑚
−1. 𝐾−1] 50 

𝐶𝑝𝑏 [𝐽. 𝑘𝑔
−1. 𝐾−1] 470 

 

Table 1.1-2 – Propriétés des éprouvettes 

 

Tribogyr 

Un autre banc d’essai a été utilisé : il s’agit du dispositif Tribogyr représenté sur la Figure 

1.1-10. La particularité de cette machine est sa capacité à reproduire des contacts collet-rouleau 

dans des conditions opératoires similaires à celles rencontrées dans les vrais roulements à 

rouleaux. En effet, la charge appliquée sur le contact (800 − 3000 𝑁), les vitesses 

d’entrainement (0.5 − 10 𝑚/𝑠), les pressions de contact (300 − 1000 𝑀𝑃𝑎), ainsi que les 

particularités de la cinématique sont reproduites fidèlement. 

 

 

Figure 1.1-10 – Le banc d’essai Tribogyr 
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Le collet a une extrémité torique, telle que définie sur la Figure 1.1-3. Par ailleurs, la disposition 

des deux éprouvettes l’une par rapport à l’autre est définie sur la Figure 1.1-11. En particulier, 

on note que le rayon de giration sur l’éprouvette métallique est 𝑅𝑝 tandis qu’il est désigné par 

𝑅𝑑 sur le disque. La notion de rayon de giration est ici définie par la plus petite distance entre 

le contact rigide et l’axe de rotation. Les vitesses de rotation de ces éprouvettes sont 

respectivement 𝛺𝑏 et 𝛺𝑡. L’angle entre les axes de rotation des deux échantillons est 𝜆. 

 

 

Figure 1.1-11 – Cinématique des éprouvettes de Tribogyr 

 

Par conséquent, les vitesses à la surface des éprouvettes peuvent s’exprimer de la manière 

suivante : 

𝑢𝑡𝑥 = +(𝑅𝑑 − 𝑦) 𝛺𝑡 ≈ 𝑅𝑑  𝛺𝑡 as 𝑅𝑑 ≫ 𝑦 

𝑢𝑏𝑥 = −(𝑅𝑝 + 𝑦 cos (𝜆)) 𝛺𝑏 

𝑢𝑡𝑦 = 𝑥 𝛺𝑡 ≈ 0 as 𝑥 Ω𝑡 ≪ 𝑥 𝑐𝑜𝑠𝜆 Ω𝑏 

𝑢𝑏𝑦 = 𝑥 cos(𝜆)𝛺𝑏 

Equation 2 

 

où les indices 𝑡 et 𝑏 désignent respectivement le disque en verre et l’éprouvette en acier, tandis 

que 𝑥 et 𝑦 indiquent la direction de la composante du champ de vitesse. Afin de déterminer 

précisément les vitesses à la surface des éprouvettes, il est nécessaire de connaître 𝑅𝑝 et 𝑅𝑑 : 

pour cela, la procédure développée par Hervé Dormois dans sa thèse (2) est améliorée et 

adaptée aux éprouvettes toriques. En dehors des spécificités détaillées ci-dessus, le travail de 

Dormois (2) présente en français et avec beaucoup de détails ce banc d’essai hors normes. 
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Le modèle thermo-élastohydrodynamique 

Les deux dispositifs expérimentaux présentés possèdent une certaine flexibilité dans leur 

utilisation, mais un modèle numérique est beaucoup plus versatile. C’est pourquoi une grande 

attention a été portée au développement de cet outil numérique. Sur la base du travail de 

Habchi (4) et de Doki-Thonon (5), des adaptations ont été effectuées afin d’inclure les 

spécificités de la géométrie inhabituelle du contact tore-plan. 

 

Modèle de contact ponctuel elliptique 

Dans un premier temps, on adapte le modèle de contact circulaire Thermo-EHD (TEHD) non-

Newtonien aux contacts elliptiques. Ce modèle permet de reproduire un très grand nombre 

de configurations correspondants à des cas industriels comme à des cas d’étude scientifique. 

Etant donné que l’essentiel de ce modèle est décrit avec précision par Habchi (4) et Doki-

Thonon (5), seules les modifications apportées dans le cadre de ce travail sont exposées ici. On 

note en particulier sur la Figure 1.1-12 que 𝑅𝑥,𝑡 peut être différent de 𝑅𝑦,𝑡, et de 

même 𝑅𝑥,𝑏 et 𝑅𝑦,𝑏 peuvent différer. Ceci donne naissance aux contacts de forme elliptique. 

 

 

Figure 1.1-12 – Schéma du confinement d’un lubrifiant entre deux surfaces en mouvement l’une par rapport à 
l’autre (inspiré de Doki-Thonon (5)) 

 

Afin de traiter le problème EHD, on résout simultanément l’équation de Reynolds, les 

déformations élastiques dans les solides en contact et l’équilibre de la charge. Ces équations 

restent inchangées par rapport aux travaux antérieurs. Cependant, l’expression de l’épaisseur 

de film est enrichie par la possibilité de faire varier les rayons de courbure principaux 

indépendamment l’un de l’autre. 

 

ℎ(𝑥, 𝑦) = ℎ0 +
𝑥2

2𝑅𝑥
+
𝑦2

2𝑅𝑦
+ 𝛿(𝑥, 𝑦) Equation 3 
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Avec ℎ0 l’écart entre les deux solides rigides et 𝛿(𝑥, 𝑦) les déformations.  

Le modèle prend en compte les spécificités du comportement du lubrifiant sous haute 

pression, à savoir la compressibilité (au travers de l’équation d’état de Murnaghan (6)), la 

piézo-viscosité (au travers de l’équation de WLF modifié (7)) et la rhéo-fluidification (au 

travers de l’équation de Carreau-Yasuda (8)). Cette dernière caractéristique n’est cependant 

pas prise en compte dans le modèle utilisé dans la suite, faute d’avoir pu mettre en évidence 

le comportement non-Newtonien du lubrifiant avec les rhéomètres haute pression 

disponibles. 

De plus, la compression du lubrifiant ainsi que la cinématique des solides imposent un 

échauffement au sein du fluide. Ceci se traduit par une modification des propriétés locales du 

lubrifiant et un modèle thermique est donc couplé au modèle EHD pour prendre en compte 

ce phénomène. 

 

Modèle de contact ponctuel tore-plan 

Dans un deuxième temps, le modèle présenté est complexifié afin de traduire la vraie 

géométrie du confinement entre les deux solides : en effet, l’un des deux adopte une forme 

torique et il ne peut potentiellement plus être modélisé par un entrefer de forme parabolique 

tel que dans l’Equation 3. Cette équation est réécrite de sorte à ce qu’elle intègre la forme de 

l’entrefer du contact rigide à la place des termes paraboliques :  

ℎ(𝑥, 𝑦) = ℎ0 + ℎ𝑡𝑜𝑟𝑢𝑠(𝑥, 𝑦) + 𝛿(𝑥, 𝑦) Equation 4 

avec ℎ𝑡𝑜𝑟𝑢𝑠 la forme de l’entrefer du contact rigide. Pour parvenir à exprimer cet objet 

géométrique, on fait appel au dessin assisté par ordinateur. L’entrefer est dessiné 

virtuellement (voir Figure 1.1-13), puis l’expression de la hauteur de cet objet est convertie en 

une fonction qui dépend de la position dans le plan du contact : il s’agit de ℎ𝑡𝑜𝑟𝑢𝑠. 

 

Figure 1.1-13 – Entrefer rigide entre un tore et un plan 
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Validation du modèle numérique 

Après avoir été défini, le modèle numérique est évalué par rapport à des expériences 

représentatives des conditions industrielles. Le modèle de contact elliptique est le premier à 

faire l’objet d’une validation, et l’évaluation du modèle tore-plan est présentée ensuite. 

 

Modèle de contact elliptique (Jérotrib) 

Le banc d’essai Jérotrib est utilisé et on juxtapose les résultats d’épaisseur de film de 

l’expérience et ceux issus du modèle numérique.  

 

 

Figure 1.1-14 – Epaisseur de film le long des axes principaux du contact (𝑥 est représenté en bleu et 𝑦 en orange) 
d’un contact elliptique étroit chargé à 13 𝑁. La vitesse d’entrainement (𝑢𝑒 = 6.16 𝑚/𝑠) est représentée par la 

flèche jaune. 

 

La Figure 1.1-14 présente ces résultats, avec l’interférogramme en haut et les comparatifs le 

long des axes x et y en dessous. A partir de ces comparatifs, on remarque que le modèle est en 

mesure de prédire avec précision la distribution de l’épaisseur de film dans le contact EHD 

elliptique étroit. 

Modèle de contact tore-plan (Tribogyr) 

Fort de cette comparaison en contact elliptique, une comparaison similaire est effectuée dans 

le cas du contact tore plan. C’est avec l’aide de Tribogyr que les résultats expérimentaux sont 
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fournis. La Figure 1.1-15 expose ce comparatif, et on voit à nouveau que la distribution de 

l’épaisseur de film prédite par le modèle (en haut) et celle mesurée lors de l’expérience (en bas) 

sont très semblables. 

 

 

Figure 1.1-15 – Epaisseur de film dans et autour du contact EHD tore plan – comparaison des résultats 
numériques (en haut) et expérimentaux (en bas) - 𝑤 = 400 𝑁 & 𝑢𝑒𝑥,0 = 2 𝑚/𝑠 

 

Cependant, avec ce modèle numérique, on cherche aussi à prédire le frottement au sein du 

contact. Afin d’évaluer les capacités du modèle, on confronte ses prédictions à des mesures 

effectuées sur le contact tore plan.  

 

 

Figure 1.1-16 – Coefficient de frottement selon l’axe 𝑥 (a, à gauche) et y (b, à droite): comparaison entre les 
mesures (Exp.) et les prédictions numériques (Num.) pour 𝜆 = −2.5° 

Dans ce contexte, on montre que les résultats du modèle numérique sont bien moins proches 

que pour la prédiction d’épaisseur de film. La Figure 1.1-16 présente un comparatif qui 

souligne le manque de performance du modèle numérique pour prédire le frottement. Les 
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prédictions ne sont pas quantitatives, et qualitativement, les courbes numériques et 

expérimentales n’observent pas les mêmes tendances pour 𝐶𝑓𝑥. On retiendra cependant que 

les ordres de grandeur du coefficient de frottement sont correctement estimés par le modèle. 

En résumé, le modèle numérique présente de bonnes capacités à prédire l’épaisseur de film 

dans les contacts elliptiques et tore-plan, mais il est peu fiable pour prédire le frottement dans 

le contact. Pour cela, il faudrait probablement qu’une loi de comportement non-Newtonienne, 

basée sur une caractérisation indépendante, soit incluse dans le modèle numérique. 

 

Résultats 

Grâce aux évaluations du modèle numérique, il est possible de mener une étude quantitative 

sur le comportement du contact EHD. En premier lieu, on mène une étude sur l’influence de 

l’ellipticité sur le comportement du contact EHD. Dans un deuxième temps, on étudie le 

contact tore-plan et on cherche ensuite à identifier s’il est possible de le modéliser par un 

contact elliptique équivalent. 

 

Comportement du contact elliptique 

Le contact tore-plan a été traditionnellement modélisé par un contact elliptique étroit (voir 

Colin et al. (9)). Cependant, ce même contact elliptique étroit reste relativement peu étudié. 

On consacre donc une étude à cette configuration. Les configurations de contact circulaire et 

de contact elliptique large sont aussi étudiées. 

Dans le but d’isoler l’influence du ratio d’ellipticité 𝑘, on fait varier ce paramètre sans varier 

la pression de Hertz du contact ni son aire. Par conséquent, la charge reste constante et on 

maintient tous les autres paramètres identiques par ailleurs. La Figure 1.1-17 présente 

l’épaisseur de film en fonction de l’ellipticité. On peut faire plusieurs observations sur ce 

graphique : 

- l’épaisseur de film au centre ℎ𝑐 voit son maximum survenir pour 𝑘 ≈ 2/3, un contact 

elliptique étroit, 

- il en va de même pour le minimum d’épaisseur de film sur l’axe central ℎ𝑚,𝑐, 

- mais à l’opposé, ℎ𝑚 = min (ℎ𝑚,𝑙+, ℎ𝑚,𝑙−, ℎ𝑚,𝑐) le minimum d’épaisseur de film global 

atteint son maximum pour 𝑘 ≈ 2.4, un contact elliptique large. 

- Enfin, on constate que le minimum global d’épaisseur de film a lieu sur les côtés du 

contact pour 𝑘 ≤ 2.4 mais qu’il se déplace à la sortie du contact, le long de l’axe central 

pour 𝑘 ≥ 2.4. 

La position du maximum de ℎ𝑐 est assez surprenante, car on s’attendrait à ce que le contact 

elliptique le plus large soit celui qui assure la meilleure séparation des surfaces. Or c’est un 

contact elliptique plutôt étroit qui voit la meilleure séparation au centre dans le cadre de la 

variation des paramètres de cette étude. 
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Figure 1.1-17 – Epaisseur de film pour différents ratio d’ellipticité et pour 𝑤 = 800 𝑁 et 𝑢𝑒 = 2 𝑚/𝑠 

 

On note par ailleurs que les prédictions effectuées avec la formule de Chittenden et al. (10) 

sont qualitativement proches des résultats des simulations par la méthode des éléments finis. 

Au-delà de ça, la prédiction de l’épaisseur de film au centre ℎ𝑐 est juste à 10 − 20% près, mais 

est encore meilleure pour le cas circulaire. En ce qui concerne le minimum d’épaisseur de film, 

les prédictions sont relativement correctes (surestimation de 10 à 30%) pour le contact 

elliptique large. Par contre, dans le cas du contact elliptique étroit les prédictions de 

Chittenden et al. (10) surestiment très fortement les résultats numériques, qui sont réputés plus 

justes. Cette surestimation peut atteindre 300%, ce qui invite à être particulièrement méfiant 

sur l’usage de la formule. 

 

Les variations de l’épaisseur de film peuvent être reliés d’une certaine manière à la variation 

de la géométrie du convergent : il s’agit de la zone en amont du contact où le champ de 

pression se construit. Ce convergent varie en fonction de l’ellipticité. 
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Pour mieux comprendre les mécanismes à l’œuvre, une analyse des débits de fluide est menée 

dans la zone amont du contact. On définit la frontière d’étude F d’après la Figure 1.1-18. Au 

travers de cette frontière, on étudie les débits de Poiseuille et de Couette qui portent 

respectivement les indices 𝑝 et 𝑐. On distingue par ailleurs les débits latéraux des débits 

longitudinaux, annotés respectivement par les indices 𝑦 et 𝑥. On définit aussi les débits 𝑄𝑖𝑛 et 

𝑄𝑜𝑢𝑡 qui sont respectivement les débits totaux entrant et sortant de A par la frontière F. Ces 

derniers débits servent à exprimer des débits de Poiseuille et de Couette relatifs à la somme 

des débits entrants et sortant, afin de faciliter la comparaison entre les différentes 

configurations. 

 

 

Figure 1.1-18 – Aire de contact de Hertz (− −) et effective (appelée A, ∙ − ∙) avec les débits de fluides traversant 

la frontière F ; F est la partie gauche (marquée par ∙ − ∙) de la frontière de A , entre les points 𝐵 et 𝐶; A  est la 

surface où 𝑝 ≥ 10%𝑝ℎ  

 

Fort de ces grandeurs de débit, on s’attelle à identifier les rôles des différents écoulements, en 

fonction de l’ellipticité. Les débits relatifs tirés des simulations de la Figure 1.1-17 sont tracés 

sur la Figure 1.1-19. On remarque en particulier que le débit de Poiseuille longitudinal 

𝑄𝑥𝑝/(𝑄𝑖𝑛 + 𝑄𝑜𝑢𝑡)  représente l’essentiel des écoulements de Poiseuille dans le cas du contact 

elliptique large. Ceci révèle la présence d’un reflux important à l’entrée du contact. 

Inversement, on constate que 𝑄𝑦𝑝/(𝑄𝑖𝑛 + 𝑄𝑜𝑢𝑡) domine son équivalent longitudinal pour le 

contact étroit quand 𝑘 ≤ 0.34. Ceci indique que le fluide a principalement tendance à fuir le 

contact par les côtés. De plus, les fuites sont globalement plus importantes pour le contact 

elliptique étroit. Etant donné que 𝑅𝑥 est plus grand pour ce contact, les effets 

hydrodynamiques y sont plus faibles que pour le contact large. Ceci se cumulant avec les fuites 

plus importantes, la séparation des surfaces (en termes de minimum global) est moins 

importante pour le contact étroit. 
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Figure 1.1-19 – Variation des débits relatifs suite aux variations de l’ellipticité du contact pour 𝑢𝑒 = 2 𝑚/𝑠 & 
𝑤 = 800 𝑁 

 

 

Rôle de l’angle de spin dans le contact tore plan 

A présent, on utilise le modèle de contact tore-plan afin d’étudier cette configuration. En effet, 

l’influence de cette géométrie particulière sur le comportement du contact n’a encore jamais 

été étudiée et cela constitue un besoin particulier. On fait varier l’angle de spin, dénommé 𝜆 

dans la Figure 1.1-13. On choisit d’étudier les champs de pression et d’épaisseur de film afin 

de mieux comprendre le fonctionnement de ce contact atypique. 

 

Sur la Figure 1.1-20 on observe la distribution du champ de pression. On note en particulier 

qu’une modification de 1.5° de l’angle de spin se traduit par de nombreux changements. Le 

contact est plus allongé lorsque l’angle est proche de zéro et il est aussi un peu plus étroit. Au 

bilan, l’airecontact augmente et la pression diminue. De plus, lorsque 𝜆 se rapproche de zéro 

la zone pressurisée adopte une courbure caractéristique. L’intérieur de la courbe est tourné 

vers le centre de rotation de l’éprouvette torique. Malgré tout, la courbure reste ici modérée et 
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on peut s’interroger sur la nécessité de l’approche qui consiste à modéliser la vraie géométrie 

du tore. 

 

 

Figure 1.1-20 – Champ de pression EHD avec un glissement nul au centre et 𝜆 = −2.5° (haut) et 𝜆 = −1° (bas) 

 

Parallèlement, sur la Figure 1.1-21 on observe que le champ d’épaisseur de film adopte les 

mêmes contours : ils sont assez proche d’un contact elliptique pour 𝜆 = −2.5° et avec une 

courbure marquée pour 𝜆 = −1°. On note que les lignes d’iso-épaisseur de film à l’intérieur du 

contact suivent la courbure. Enfin, on remarque que le long de l’axe 𝑥 = 0, le maximum de 

l’épaisseur de film se situe à peu près au niveau de 𝑦 = 0 pour 𝜆 = −2.5° mais qu’il est décalé 

vers les 𝑦 négatifs pour 𝜆 = −1°. Une analyse détaillée montre que ce décalage est dû à 

l’asymétrie du champ de la vitesse d’entrainement (champ comportant du pivotement), mais 

aussi à l’asymétrie des objets en contact.  

Sur cette même figure, on remarque que les minima d’épaisseur de film sont réduits quand 𝜆 

s’approche de 0°. 
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Figure 1.1-21 – Champ de l’épaisseur de film avec un glissement nul au centre et 𝜆 = −2.5° (haut) et 𝜆 = −1° 
(bas) 

 

 

Opportunités de simplification du modèle de contact tore-plan 

Il a été montré que le contact tore plan reste relativement proche d’un contact elliptique étroit. 

Cependant, on souhaite quantifier cette proximité. Ainsi, on définit le contact elliptique 

équivalent (EE) au contact tore-plan (TOP) : le modèle EE a les mêmes rayons de courbures 

principaux équivalents que le modèle TOP au centre du contact. On compare ensuite les deux 

approches d’une manière quantifiée, sur l’épaisseur de film et le maximum de pression. Sur la 

Figure 1.1-22, on observe que l’épaisseur de film prédite avec les modèles TOP et EE est très 

semblable pour ℎ𝑐, ℎ𝑚,𝑙+ et ℎ𝑚,𝑙−. Cependant, on peut observer que pour 𝜆 = −0.5°, l’écart 

grandit sur les minima d’épaisseur de film. Cela n’est pas très visible sur la Figure 1.1-22, mais 

le tableau comparatif ci-dessous explicite les choses : 

 

 
TOP EE Ecart relatif 

min (ℎ𝑚,𝑙+, ℎ𝑚,𝑙−) [𝑛𝑚] 34 43 +27% 

 

Avec le modèle EE on surestime l’épaisseur de film. En effet, on observe en réalité un 

désaccord marqué entre la forme du champ de la vitesse d’entrainement et la forme de la zone 

pressurisée : le lubrifiant qui entre dans la zone du contact et sépare les surfaces est extrait 

d’une manière anticipée. Or ce phénomène n’est pas pris en compte par le modèle EE. Une 

quantité de lubrifiant plus faible sépare les surfaces que celle prédite par ce dernier modèle.  
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En règle générale, un modèle de type EE donnera des résultats satisfaisants, mais dans les cas 

où 𝜆 est faible voire très faible, on risque d’effectuer de mauvaises prédictions. 

 

 

Figure 1.1-22 – Comparaison de l’épaisseur de film et de la pression EHD maximum pour les modèles TOP et 
EE 

 

Conclusion 

Cette thèse portant sur les contacts tore-plan a pu apporter de nouveaux outils expérimentaux 

et numériques pour l’étude de cette configuration inhabituelle. Les obstacles liés à la présence 

de géométries particulières ont été levés et l’outil numérique présenté a été validé au travers 

d’expériences représentatives des conditions opératoires des roulements réels. 

En modélisant ce contact collet-rouleau de type tore-plan par une ellipse, on a pu déterminer 

le rôle de la géométrie sur l’écoulement de fluide ainsi que sur l’épaisseur de film. De plus, en 

utilisant le modèle représentant la géométrie tore-plan, il a été possible de montrer l’influence 

de la position du tore par rapport au plan sur le comportement du contact. Enfin, il a été 

montré que le contact tore-plan peut être modélisé par un contact équivalent elliptique au lieu 

d’un modèle tore-plan ; néanmoins cette simplification requiert de la prudence car les deux 

modèles prédisent des résultats qui diffèrent de plus en plus lorsque l’angle de pivotement 

s’approche de 0°. 

Grâce à ces développements, de nouveaux outils et de nouvelles notions sont disponibles pour 

la conception de roulements à rouleaux plus performants.
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Nomenclature 

Variable Unit Description 
Roman characters 

A [−] Name of the EHD representative contact area 

𝑎 [𝑚] Static contact dimension along x axis (elliptical contact), or along the 
arc of radius 𝑅 = 𝑅𝑡 + 𝑟𝑡 𝑠𝑖𝑛(𝜆)  (torus on plane contact) 

𝐴1, 𝐴2, 𝑏1, 
𝑏2, 𝐶1, 𝐶2 

[various] Modified WLF constants 

𝑎𝐶𝑌 [−] Carreau-Yasuda constant 

𝑎𝑣 [𝐾−1] Murnaghan EOS constant 

𝐵⃗  [𝑘𝑔. 𝑠−2. 𝐴−1] Magnetic field vector 

𝑏 [𝑚] Static contact dimension along y axis 

𝐶 [ − ] Contrast 

𝑐 [𝑚. 𝑠−1] Light celerity 

𝐶𝑓𝑥 [%] Friction coefficient along x direction 

𝐶𝑓𝑦 [%] Friction coefficient along y direction 

𝐶𝑝𝑓 [𝐽. 𝑘𝑔−1. 𝐾−1] Lubricant heat capacity 

𝐶𝑝𝑡, 𝐶𝑝𝑏 [𝐽. 𝑘𝑔−1. 𝐾−1] Heat capacity of top (𝑡) and bottom (𝑏) solids 

𝐶𝑥 , 𝐶𝑥
′  , 𝐶𝑦 , 𝐶𝑦

′  [various] Integration constants 

𝑑1 [𝑚] Intermediate distance to measure 𝑅𝑝 

𝑑2 [𝑚] Intermediate distance to measure 𝑅𝑝 

𝐸 [𝑃𝑎] Equivalent Young modulus 

𝐸′ [𝑃𝑎] Reduced Young modulus (2/𝐸′ = (1 − 𝜈𝑡
2)/𝐸𝑡 + (1 − 𝜈𝑏

2)/𝐸𝑏) 

𝐸𝑡 , 𝐸𝑏 [𝑃𝑎] Young moduli of top (𝑡) and bottom (𝑏) solids 

𝐸⃗  [𝑘𝑔.𝑚. 𝐴−1. 𝑠−3] Electric field vector 

𝑓 [ − ] Calibration function 

𝑓 [𝑚] Depth of the torus pin bore 

𝐹 [ − ] Modified WLF pressure term 

F [ − ] Name of the inlet EHD contact frontier 

𝐺 [ − ] Dimensionless material parameter (𝐺 = 𝛼∗𝐸′) 

𝐺𝐶𝑌 [ 𝑃𝑎 ] Carreau-Yasuda constant 

ℎ [𝑚] Film thickness 

𝐻 [ − ] Point on the section of the torus 

ℎ0 [𝑚] EHD gap between the rigid bodies at O 

ℎ𝑐 [𝑚] Film thickness at the contact centre, (𝑥; 𝑦) = (0; 0) 

ℎ𝑚 [𝑚] Minimum film thickness 

ℎ𝑚− [𝑚] Minimum film thickness on the side of the contact which is the 
closest to the disc rotation axis 

ℎ𝑚,𝑐  [𝑚] Minimum film thickness along the x axis 

ℎ𝑚,𝑙− , ℎ𝑚,𝑙+ [𝑚] Lateral minimum film thickness (+ stands for the side closest to the 
rotation centre of the surface, if existing) 
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ℎ𝑚+ [𝑚] Minimum film thickness on the side of the contact which is the 
furthest to the disc rotation axis 

ℎ𝑟 [𝑚] Film thickness in the rigid gap 

ℎ𝑡𝑜𝑟𝑢𝑠 [𝑚] Rigid gap between a plane and a torus 

𝐼0, 𝐼1… 𝐼𝑛 [ − ] Reflected beam names and their light intensity 

𝐼𝑚𝑎𝑥 [ − ] Maximum of the intensity of the interferences 

𝐼𝑚𝑖𝑛 [ − ] Minimum of the intensity of the interferences 

𝑗 [various] Norm of 𝐸⃗  or 𝐵⃗  
𝐽 [various] Wave amplitude of either 𝐸⃗  𝑜r 𝐵⃗  
𝑘 [ − ] Ellipticity ratio 

𝑘𝑓 [𝑊.𝑚−1. 𝐾−1] Lubricant conductivity 

𝑘𝑡, 𝑘𝑏 [𝑊.𝑚−1. 𝐾−1] Conductivity of top (𝑡) and bottom (𝑏) solids 

𝐾𝑀 [ − ] Murnaghan EOS temperature dependant term 

𝐾𝑀
′  [ − ] Murnaghan EOS constant 

𝑘𝑚𝑐 [ − ] Wavenumber 

𝐾𝑀𝑀 [ − ] Murnaghan EOS constant 

𝐿1, 𝐿2 [ − ] Parameters of the torus on plane static pressure distribution 

𝑁0 𝑛𝑜𝑛𝑒 Strait line 

𝑁𝐻 𝑛𝑜𝑛𝑒 Strait line 

𝑛𝐶𝑌 [ − ] Carreau-Yasuda constant 

𝑛𝑚𝑐 [ − ] Refractive index of the fluid 

𝑂 𝑛𝑜𝑛𝑒 Contact centre 

𝑝 [𝑃𝑎] Pressure 

𝑝ℎ [𝑃𝑎] Hertz pressure 

𝑃 [𝑊] Power dissipated inside of the contact 

𝑄𝑐𝑜𝑚𝑝 [𝐽] Compression heat source 

𝑄𝑠ℎ𝑒𝑎𝑟 [𝐽] Shearing heat source 

𝑄𝑖𝑛 , 𝑄𝑜𝑢𝑡 [𝑘𝑔. 𝑠−1] Total flow incomming and outcomming (respectively) through 𝐹 

𝑄𝑥𝑝 , 𝑄𝑦𝑝 [𝑘𝑔. 𝑠−1] Poiseuille mass flow rate in the x and y directions respectively 

𝑟 [𝑚] Distance from the contact centre (circular contact only) 

𝑟𝑡 [𝑚] Minor axis of the torus 

𝑅, 𝐺, 𝐵 [ − ] Light intensity of respectively the red, green and blue colours 

𝑅𝑎𝑝𝑝 [𝑚] Apparent gyration radius of the pin (from a top view) 

𝑅𝑑 [𝑚] Gyration radius on the disc 

𝑅𝑙𝑜𝑐𝑎𝑙 [𝑚] Local cuvature radius of the rigid torus 

𝑅𝑝 [𝑚] Gyration radius on the pin 

𝑅𝑡 [𝑚] Major radius of the torus 

𝑅𝑟 [𝑚] Bending radius of the torus on plane contact 

𝑅𝑥 [𝑚] Principle curvature radius along x axis 

𝑅𝑥𝑡 , 𝑅𝑦𝑡 , 

𝑅𝑥𝑏 , 𝑅𝑦𝑏 

[𝑚] Principal curvature radii of the top (𝑡) and bottom (𝑏) surfaces, along 
the x and the y axis 

𝑅𝑦 [𝑚] Principle curvature radius along y axis 

𝑆 [𝑚2] Contact surface 

𝑆𝑅𝑅(𝑥, 𝑦) [%] Slide to roll ratio (local description) 

𝑆𝑅𝑅𝑥,0 [%] Slide to roll ratio at O 

𝑡 [𝑠] Time 
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𝑇 [°𝐶] Temperature 

𝑇0 [°𝐶] Environment temperature 

𝑇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 [°𝐶] Function of the matter temperature at the numerical domain inlet 

𝑇𝑓0 [°𝐶] Fluid temperature at the numerical domain inlet 

𝑇𝑔 [𝐾] Glass transition temperature at a given pressure 

𝑇𝑔,0 [𝐾] Glass transition temperature at ambient pressure (contact 
environment condition) 

𝑇𝑅 [𝐾] Reference conditions temperature 

𝑇𝑠0 [°𝐶] Solid temperature at the numerical domain inlet 

𝑇𝑡 , 𝑇𝑏 [°𝐶] Bulk temperature of the top (t) and bottom (b) solids (generally 
equal to 𝑇0) 

𝑇𝑧 [𝑁.𝑚] Friction torque in the contact 

𝑈 [ − ] Dimensionless velocity (𝑈 = 𝜇0𝑢𝑒/(𝐸
′𝑅𝑥) ) 

𝑢𝑒 [𝑚. 𝑠−1] Entrainment velocity field 

𝑢𝑒𝑥,0 [𝑚. 𝑠−1] Entrainment velocity at the contact centre 

𝑢𝑓 [𝑚. 𝑠−1] Lubricant velocity field 

𝑢𝑓𝑥  , 𝑢𝑓𝑦 [𝑚. 𝑠−1] Lubricant velocity field components, in the x and y directions, 
respectively 

𝑢𝑡  , 𝑢𝑏 [𝑚. 𝑠−1] Velocity field at the top (𝑡) and bottom (𝑏) surfaces 

𝑢𝑡𝑥,0, 𝑢𝑡𝑦,0, 

𝑢𝑏𝑥,0 , 𝑢𝑏𝑦,0 

[𝑚. 𝑠−1] Velocity at the contact centre, on the top (𝑡) and bottom (𝑏) 
surfaces, along the x and the y axis 

𝑢𝑡𝑥 , 𝑢𝑡𝑦,

𝑢𝑏𝑥  , 𝑢𝑏𝑦 

[𝑚. 𝑠−1] Velocity field componants in the x and y direction, for the top (𝑡) and 
bottom (𝑏) surfaces 

𝑉 [𝑚−3] Volume 

𝑉0 [𝑚−3] Volume at the contact environment conditions 

𝑉𝑅 [𝑚3] Volume at the reference conditions 

𝑤 [𝑁] Load 

𝑊 [ − ] Dimensionless load (𝑊 = 𝑤/(𝐸′𝑅𝑥
2) 

𝑥, 𝑦, 𝑧 [ − ] Coordinates of the 3D space 

𝑋, 𝑌, 𝑍 [ − ] Coordinates of the dimensionless 3D space 

𝑥𝑚𝑐 [𝑚] Position on the light beam trajectory 

   

Greek characters 

𝛼∗ [ 𝑃𝑎−1 ] Piezoviscosity index, as defined by Blok (11): 
1

𝛼∗
= ∫

𝜇0

𝜇(𝑝)
𝑑𝑝

+∞

0.1
 

𝛽𝐾 [𝐾−1] Bulk modulus-temperature Murnaghan EOS constant 

𝛤0 none Strait line 

𝛤𝐻 none Strait line 

𝛿 [𝑚] Deformation sum of the mating bodies, in the z direction 

𝛿𝑚𝑐  [𝑚] Distance delay 

𝛥𝑢𝑥,0 [𝑚. 𝑠−1] Sliding velocity at the contact centre and along x axis 

𝛥𝑢𝑦,0 [𝑚. 𝑠−1] Sliding velocity at the contact centre and along y axis 

𝜃 [°] Intermediate angle to measure 𝑅𝑝 

𝜆 [°] Spin angle 

𝜆𝑚𝑐 [𝑚] Wavelength of the filter for the monochromatic light 

𝜇 / 𝜂 [𝑃𝑎. 𝑠] Newtonian viscosity / non-Newtonian viscosity 

𝜇𝑒, 𝜂𝑒 [𝑃𝑎. 𝑠] Viscosity integral number 1 

𝜇𝑒
′ , 𝜂𝑒

′  [𝑃𝑎. 𝑠] Viscosity integral number 2 
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𝜇𝐺  [𝑃𝑎. 𝑠] Viscosity constant of the modified WLF model 

𝜇0 [𝑃𝑎. 𝑠] Viscosity at ambient pressure and at 𝑇 = 𝑇0 

𝜈 [ − ] Equivalent Poisson ratio 

𝜈𝑡 , 𝜈𝑏 [ − ] Poisson ratios of top (𝑡) and bottom (𝑏) solids 

𝜉 [ − ] Phase shift at the reflection on the steel surface 

𝜌 [𝑘𝑔.𝑚−3] Lubricant density 

𝜌0 [𝑘𝑔.𝑚−3] Density at the contact environment conditions 

𝜌𝑅 [𝑘𝑔.𝑚−3] Density at the reference conditions 

𝜌𝑡 , 𝜌𝑏 [𝑘𝑔.𝑚−3] Density of the top (𝑡) and bottom (𝑏) solids 

𝜏 [𝑃𝑎] Shear stress 

𝜏𝑧𝑥  , 𝜏𝑧𝑦  [𝑃𝑎] z shear stress, in the x and y directions, respectively 

𝜑 [ − ] Phase at the origin of the light beam 

𝛺𝑡 , 𝛺𝑏 [𝑟𝑎𝑑. 𝑠−1] Rotation velocity of the mating top (𝑡) and bottom (𝑏) surfaces 

   

Abbreviations 

EE Elliptical Equivalent: it is addressed to the elliptical equivalent of a TOP contact 

EHD Elastohydrodynamic 

FREC Flange roller-end contact 

IS Investigative simulation: it indicates a computation case defined for investigation 
purposes 

TOP Torus on plane 
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General introduction 

This document summarises a thesis work dedicated to a specific contact which occurs in roller 

bearings and tapered roller bearings. It deals with the mating point between the roller ends 

and the flange of the rings. The mating bodies have unconventional shapes as one of the solids 

is a torus and the other one is a plane. A deeper understanding of these contact characteristics 

and behaviour is mandatory for an improvement of bearing designs. In order to develop this 

knowledge, a scientific approach is adopted. Numerical and experimental tools are used and 

developed in order to explore this specific subject. 

Four chapters constitute this thesis. The first one introduces and details the topic, together with 

its industrial and scientific context. Readers who have no background in Tribology will be led 

from general mechanic notions to the specificities of the topic. 

Based on the literature review, the second chapter presents a first approach: the torus on plane 

contact is approximated by an elliptical contact. Conclusions for torus on plane contacts are 

drawn but the knowledge on elliptical contacts in general is also enriched by a new study 

philosophy. 

At last, the third and fourth chapters investigate the torus on plane contact without the 

elliptical approximation: the actual bodies’ geometry is included in the analysis. Chapter 3 

presents the tools that are used in the analysis, whereas chapter 4 presents the investigation 

itself. Additional conclusions are developed on the torus on plane contact. This chapter also 

concludes on the strengths and the weaknesses of the elliptical approximation.  

Finally, a general conclusion will summarise the results and state the prospects. 
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Chapter I. Introduction  
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I. Introduction 

The present chapter aims to introduce the thesis topic to the reader. It will start with a basic 

description of the rolling element bearing. Then it will present the main questions that this 

document addresses together with their origins in the industrial context. Then the literature 

on the defined topic will be analysed by themes. 

 

1.1. Rolling element bearings 

A rolling element bearing can be defined as a mechanism which mission is to withstand a 

moving load by the mean of rolling elements (see Figure 1.1-1). In this figure, the rolling 

elements are able to accommodate the velocities between the moving mass and a static shelf. 

Rolling elements introduce a rolling friction instead of a sliding friction which occurs in case 

of direct shelf-mass contact. The former friction is much smaller than the latter, and therefore 

rolling element bearings are used to reduce friction losses. Historically, the first rolling element 

bearing mechanisms might be the well-known tree trunks arranged under heavy loads, as 

suggested by Figure 1.1-1.  

 

 

Figure 1.1-1 – Basic rolling element bearing 

 

However, the tree trunks were under the mass for a short time during the rolling, and the 

trunks had to be brought back at the front of the moving mass. It is the reason why modern 

rolling element bearings include a recirculation system. The most obvious of them is to place 

the rolling elements between two concentric rings as illustrated in Figure 1.1-2. This schematic 

rolling element bearing has a clamped inner ring. The mechanism allows the outer ring to bear 

a radial load while it rotates. Opposing to this rotation, there is a rather weak torque resistance 

due to the low friction generated at each contact between the rings and the rolling elements. 

In order to guide the rolling elements, a cage is generally added to the system (not 
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represented): the cage maintains the rolling elements axis parallel to the rings’ axes. However, 

the sliding contacts between the cage and the rolling elements contribute to the power losses. 

 

 

Figure 1.1-2 - Schematic classic rolling element bearing 

 

1.2. Flange-roller end contact: scientific challenge and 

industrial motivation 

So, after this brief introduction to rolling element bearings, the current section will present the 

problematic of the thesis and its context. Figure 1.2-1 presents an actual roller bearing which 

is much more complex than the schemes presented in section 1.1. 

 

 

Figure 1.2-1 - Industrial roller bearing 
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Rolling element bearings generally withstand a radial load, yet the load is hardly ever purely 

radial. This explains the complexity of the rolling element bearing in Figure 1.2-1. A load 

parallel to the rotation axis is generally present. Therefore, the rings are adapted to bear the 

axial load and to maintain the rolling elements inside the mechanism. For example, Figure 

1.2-2 shows one of the bearings: the roller bearing. Rollers are displayed between the two rings, 

sharing their rotation axis. Comparing to Figure 1.1-2, Figure 1.2-2 and Figure 1.2-3 show the 

flanges of the rings. The flanges (also called ribs in some references) are on the side of the rings 

and they mate the rollers at their end. Thanks to this ring’s special shape, the axial load can be 

transmitted from the outer ring to the clamped inner ring through the flange-roller end 

contacts (FREC, represented in brown). The reader should note that the FRECs are the focus 

of the thesis: for now, some aspects of their properties are not mastered. They will be studied 

in order to understand their behaviour under certain conditions that will be detailed later. For 

its part, the radial load is transferred through the blue areas. 

 

 

Figure 1.2-2 – Radial and axial loading of a roller bearing 

 

1.2.1. The flange roller-end contact kinematic 

The FREC is quite particular in the rolling element bearing as the roller kinematic involves a 

high sliding and a high spinning friction. Figure 1.2-3 is a zoom of Figure 1.2-2, and it shows 

the flange-roller end contact localisation (brown disc) and kinematic. Its area is located at the 

contacting interface between the end of the roller and the inner part of the flange. One can 

consider the radial load contact (in blue in Figure 1.2-3) as a non-sliding contact. Consequently, 

when the roller rotates around the inner ring, the roller instantaneous velocity field is the one 

represented with red arrows on Figure 1.2-3 (in the inner ring frame, 𝑂′, 𝑥′⃗⃗  ⃗, 𝑦′⃗⃗  ⃗, 𝑧′⃗⃗  ⃗). This shows 

the high sliding that the FREC may endure. In 1967 H. Korrenn (12) presented one of the 
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earliest experiments on this contact. He separated the flange from the rest of the ring in order 

to measure the friction torque that the flange endures. Karna (13) led a similar study and he 

also found that the FREC generates a low friction coefficient. 

 

 

Figure 1.2-3 - The flange - roller end contact 

 

To better describe the contact kinematics, one has to consider the velocity field in the contact 

frame (𝑂, 𝑥 , 𝑦 , 𝑧  with 𝑂 the contact centre). This frame is moving all around the ring at the same 

angular speed as the roller axis. Within this frame, the roller and the ring axis can be 

considered as static and the velocity fields are as presented on Figure 1.2-4 (on 𝑦 axis only, and 

along 𝑥 direction). Because of the frame change (the contact frame is different from the ring 

frame) there is a change in the aspects of the velocity field between Figure 1.2-3 and Figure 

1.2-4. The difference between the ring and the roller velocity fields is composed of both sliding 

and sliding-spinning components. The sliding and sliding-spinning velocity sum is the total 

velocity difference. The sliding velocity is constant everywhere, and is equal to the velocity 

difference at 𝑦 = 𝑥 = 0 (orange arrows in Figure 1.2-4). The sliding-spinning velocity (which 

is a sliding, but induced by the rotations of the mating bodies) is the total velocity difference 

when the sliding velocity is subtracted (blue arrows in Figure 1.2-4); contrary to the sliding 

velocity, the sliding-spinning velocity varies everywhere. 
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Figure 1.2-4 - Velocity field in the contact frame 

 

Another way to represent the velocity fields is to focus on one of the two surfaces. For each of 

them, the velocity field is composed of the longitudinal and the spinning velocities. Figure 

1.2-5 presents these two components in the contact frame, for the roller surface velocity field. 

With this point of view, the sliding-spinning is the difference between the spinning velocities 

of the two surfaces, and the sliding is the difference between the two longitudinal velocities. 

 

 

Figure 1.2-5 - Velocity field composition of the roller surface 

 

This complex decomposition of the kinematic is characteristic of the FREC, and it is mandatory 

to take it into account. 

 

1.2.2. The bodies’ unusual geometry 

Another particularity is the geometry that the contacting bodies have. According to Zhang et 

al. (14) the roller end can be either a sphere or a torus portion whereas the flange can either be 
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a concave spherical or conical surface. As a result, the area where the two bodies are in contact 

varies. In previous studies (2,5,15–17) and in section 1.2.1, the contact was schematically 

represented by a circular shape, but the contact is very likely to be different between a torus 

and a cone or a sphere. Initially, the contact between the rigid bodies is a point, but as these 

bodies follow a linear elasticity law, it extends to a non-zero area which has a shape defined 

by the curvature radii of the bodies. Contrary to usual contacts, the area contour is neither 

circular nor elliptical: it is a general shape which losses most of its symmetries. Figure 1.2-6 is 

a schematic diagram of such a contact configuration. The roller end torus is defined by the 

parameters 𝑟𝑡 (the minor torus axis), 𝑅𝑡 (the major torus axis) and 𝜆 (the spin angle), whereas 

the conical or spherical ring is modelled by a plane. Indeed, the cone and sphere curvature 

radii are very large at the contact centre. The subsequent contact area is represented in brown. 

To sum up, modelling the torus on plane FREC requires to take into account the bodies’ elastic 

behaviour (like all EHD contacts) but also to fully represent the unusual bodies’ shape. 

 

 

Figure 1.2-6 – Torus on plane contact 

 

1.2.3. Lubricant role 

In addition, a fluid is introduced in the bearings’ contacts in order to reduce wear and friction: 

it is the lubricant. Generally, the lubricant is constituted of an oil or a grease, to which some 

additives (anti-wear for instance) are added and represent about 5-15% of the lubricant. In the 

contact vicinity the grease releases oil (see Cann and Lubrecht (18)). So whether the lubricant 

is oil or grease, one can consider in a first approach that they both behave like an oil at the 

contact scale. In the following, the lubricant will be treated as a fluid which interacts with the 

surfaces, the interaction being mainly mechanical and chemical. However here, it is the 
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mechanical side which is studied. In the present thesis, a standard industrial oil was selected 

for its low proportion of additives and its properties at room temperature. 

 

Figure 1.2-7 - Elastohydrodynamic basics 

 

1.2.4. Elastohydrodynamic phenomenon 

As explained before, the contact between two non-conformal rigid bodies is a point. This point 

extends to a surface when a load is applied and when the solids are not rigid: indeed 

deformations of the loaded solids occurs in the contact vicinity. In the presence of lubricant 

and motion, the fluid and the mating solids start to have a significant influence on each other.  

To be more precise, the moving surfaces entrain the fluid through Couette flows (entrainment 

velocities are called 𝑢𝑡 and 𝑢𝑏 in Figure 1.2-7, where 𝑡 stands for “top” and 𝑏 stands for 

“bottom”). In the contact vicinity, the gap between the solids is drastically reduced, leading to 

a severe compression of the lubricant (pressure rises up to several GPa in the pressurised area). 

Under pressure, the lubricant flows away from the contact through Poiseuille flows. However 

the pressure increases the oil viscosity exponentially (piezoviscous effect) and therefore the 

Poiseuille flows become much lower at high pressure. Consequently, the piezoviscous fluid is 

dragged between the surfaces and can literally separate them. This phenomenon is at the 

origin of the wear and friction reduction as the solid-solid direct interaction disappears (for 

perfectly smooth surfaces). When the bodies’ deformation sum is larger than the surface 

separation generated by the presence of the fluid, the phenomenon is called elasto-

hydrodynamic (EHD) as it adds the elastic behaviour of the solids to the hydrodynamic effects. 

The hydrodynamic pressure imposes a deformation of the mating bodies, which modifies the 

contact inlet and influences in return the pressure build up. It is a complex problem with a 

strong coupling between fluid and solid mechanics. In the context of wear prediction, it is 

important to specify that the surface separation is not homogenous and that the pressure field 

generated in EHD contact leads to film thickness minima. It is these gap minima which can 

lead to solid-solid interaction (for rough surfaces). 
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In 1972, Wren and Moyer (19) adapted the EHD theory to the FREC and were the first to 

highlight the existence of a full film lubrication regime. Since then, industry and laboratories 

collaborated to develop the knowledge on EHD theory in this specific case and enable new 

products development. 

Indeed, the EHD problem is quite complex in itself, even at its basics. At first, it is a multiphysic 

problem as it gathers fluid mechanics and solid mechanics. Then, one shall add thermal effects 

due to the fluid compression and the shear-generated heat. Secondly, it is a multiscale 

problem: the solids are at the centimetre/decimetre scale, the contact surface is at the 

millimetre scale and the film thickness is at the micrometre/nanometre scale. At last, as it was 

previously said there are unusual velocity fields and shape of the contacting bodies, which 

make the problem more complex. As a consequence, any attempt to deepen the understanding 

on FREC requires dedicated investigations.  

 

1.2.5. Industrial needs and scientific challenges 

Bearing manufacturers need to predict the contacts behaviour precisely in order to design 

better and long lasting products. The FREC is one of the bearing critical contacts as it can 

generate high power losses, and also because it is harder to feed it with oil. Indeed, the flange 

is narrow and the rolling elements easily dispel the oil on it. Moreover, because of the large 

radii of the mating bodies, the exact location of the contact is hardly ever at the middle of the 

flange, but it is regularly on the sides: this leads to contact truncation. The power loss is 

converted into heat dissipation which changes the lubricant properties and tends to reduce the 

film thickness. Together with the harsh oil feeding, this film thickness reduction leads to 

premature wear and surface damage. The damage can even lead to the bearing jamming.  

So, for bearing designers, it is mandatory to have adequate models to evaluate the efficiency 

and the lifetime of their products.  

From the scientific point of view, the challenge is slightly different. The behaviour of such an 

unusual contact remains unknown even if some studies have already pertained to this topic. 

Due to the specifics of this EHD problem, there are even more parameters and physics to take 

into account. Experiments will be required to identify and demonstrate the influence of some 

governing parameters on the results. Moreover, numerical modelling will provide a tool to 

highlight the role of each parameter and distinguish the driving ones from the negligible ones. 

The expected results of this scientific analysis will be an improved understanding of the 

contact physics, and an efficient way to predict its behaviour.  

 

1.3. Literature overview 

This section presents the previous studies related to the EHD torus on plane FREC. They can 

be separated in several categories. Some rare works relate to the EHD torus on plane FREC. 

They will be presented first. Some more studies refer to other general EHD contacts, and it will 

be interesting to analyse the authors’ approach to the problem. This second category will be 
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used as an inspiration to the present work. Finally, other papers are dedicated to the EHD 

elliptical contacts. One should take them into account as their shape is often similar to the ones 

of the two first categories: the narrow elliptical contacts are used as approximation for the 

general or the torus on plane contacts. 

The two main concerns are the friction forces opposed to the motion in the contact, and the 

thickness of the oil film separating the contacting bodies. The former is of high interest to 

predict and minimize the power losses in the contact, whereas the latter is more related to 

wear prevention. Indeed, the more the surfaces are separated, the lower probability there is 

for the solid-solid damaging contact to occur. Film thickness can be accurately predicted 

nowadays through numerical models (like in Doki-Thonon et al. (17)). These numerical 

models gave birth to a few simplified predictive laws which are less accurate but easier to use. 

 

1.3.1. EHD Torus on plane flange roller-end contact 

Torus roller-end design is not a recent innovation and it can be found in different kind of roller 

bearings. Together with the industrial use of such a geometry, some studies were led to tackle 

this specific problem.  

In 1984, Gadallah and Dalmaz (20) presented their work on the torus on plane FREC. With a 

dedicated test rig, they were able to simultaneously measure the traction forces in the two 

directions of the contact plane and the film thickness by an interferometric method. They 

compared their film thickness results with three different predictive laws developed by 

Archard and Cowking (21), Hamrock and Dowson (22–24) and Kapitza (25). They showed 

rather good agreements with the last one under hydrodynamic conditions. Under EHD 

conditions, the discrepancy increased. According to the authors, it was mainly due to the 

starvation occurring at the experimental contact inlet. However, within all conditions, the 

theoretical results were based on elliptical contact simulations. The predictions did not take 

into account the actual bodies’ geometry. 
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Figure 1.3-1 - Gadallah and Dalmaz test-rig – from (20) 

 

In 1988, Zhang et al. (14) led a numerical study on FREC for different geometries, including 

torus roller end. They made the same geometry assumption: the torus on cone contact can be 

approximated by an elliptical contact. However, they were able to take into account the solids’ 

deformation: it was an isothermal Newtonian EHD model. They defined optimum radii ratios 

(for maximum surface separation and minimum friction) and showed that the FREC should 

be located at the middle of the flange track in order to maximise the surface separation. 

Nevertheless, more recent studies showed the importance of thermal effects (as Doki-Thonon 

et al. (5)) in the prediction of friction and, in a lesser extent, film thickness. Consequently, there 

is a need for thermal EHD studies pertaining to torus on plane FREC. 

In 1998, Colin et al. (9) studied the influence of starvation on the flange-roller end EHD 

lubrication with the same device as Gadallah and Dalmaz (20). They also developed a starved 

isothermal Newtonian EHD model. They were able to validate the model by their experiments. 

However, this validation required the choice of the starvation parameter which offered the 

best fit. The model was considering the toroidal on plane contact as an elliptical contact, and 

therefore, the actual bodies’ geometry influence was not investigated. They showed through 

the numerical model that the pressure distribution is no more symmetrical: the pressure 

maximum is shifted towards the side of the contact which is the further from the roller gyration 

axis. 

Apart from these few references, the EHD torus on plane contact was not investigated, to the 

best of our knowledge. However, this subject belongs to a wider topic: the EHD general shape 

contact. The torus on plane FREC contact topic is also related with other FREC and spinning 

contacts.  In order to gather more information on the state of the art of the torus on plane FREC, 

the next section (1.3.2) will relate the works dedicated to FREC and spinning contacts. The two 

last bibliography sections will present the works allotted to, respectively, the general shape 

EHD contacts and the elliptical EHD contacts. 
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1.3.2. Flange roller-end and spinning contacts 

Spinning kinematic in EHD contacts is not so widespread, but it can be found in FREC and the 

continuously variable transmissions (CVT) like the toroidal traction drive. 

In 1966 Poon et al. (26,27) published their friction results obtained on a test-rig which included 

spin. It was the very first work on spinning and they showed that the friction coefficient is 

altered by the presence of spin.  

One year later, Korrenn (12) adopted a macroscopic approach by using an apparatus in which 

the flange was detached from the tapered roller bearing in order to measure the torque 

between the flange and the inner ring. Therefore, it allowed to deduce the friction in the 

contacts. Karna (13) used the same kind of test rig (Figure 1.3-2) and they both found that the 

flange-roller end contact (circular spinning contact) has a low friction coefficient. Moreover, 

they showed the existence of the hydrodynamic effects in this contact, which occur with 

increasing rotation speed. 

 

 

Figure 1.3-2 - FREC friction measurement test-rig by Korrenn (12) 

 

Spinning contact can also occur in deep groove ball bearings. In 1969, Snidle and Archard (28) 

obtained a hydrodynamic solution for a spinning sphere in a groove. In other words, they 

computed a hydrodynamic spinning elliptical contact. They proposed an analytical formula 

to predict the maximum pressure. 

In 1988, Zhang et al. (14) studied elliptical spinning contacts in order to model the FREC with 

various contact geometries. They proposed an optimal ellipticity ratio for optimised surface 

separation.   
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In 1991, Dowson et al. (29)demonstrated that EHD elliptical contacts are influenced by the 

presence of spin. The rotation axis was located on the major axis of the ellipse. In this 

configuration, the pressure distribution was hardly affected whereas the film gap became 

highly asymmetrical in the presence of spin. Indeed, the entrainment velocity varies locally, 

and the side which is the furthest from the rotation axis sees a larger entrainment velocity than 

the other. These results were confirmed later on by Yang and Cui (30). 

Within the same configuration, Tanighuchi et al. (31) developed a predictive formula for the 

minimum film thickness for Newtonian isothermal spinning contacts. 

In 1999, Zou et al. (32) proposed a predictive formula for both central and minimum film 

thickness in elliptical Newtonian isothermal spinning contacts. Though thermal and non-

Newtonian effects were ignored, they explained that the central and minimum were reduced 

under spinning conditions by hydrodynamic effects. 

It is in the same period that the thermal effects and the non-Newtonian lubricant behaviour 

were introduced in EHD models. Indeed, both of them have a great influence on the friction, 

and in a lesser manner on the surface separation. In 1995, Jiang et al. (33) integrated in an EHD 

model the pressure and shear stress influence on the lubricant properties. They demonstrated 

that these rheological effects have a significant influence on friction and they proposed 

optimised FREC bearing designs. Their design guidelines pertained to the optimum curvature 

radii of the mating bodies in order to minimise friction and maximise film thickness. When the 

thermal effects are introduced separately from the non-Newtonian laws, the temperature rise 

is very likely to be overestimated, according to Ehret et al. (34). Similarly, Liu et al. (35) focused 

on the introduction of a non-Newtonian Eyring rheological model. They drew the same 

conclusion: thermal and non-Newtonian effects should be used together to be able to predict 

the temperature rise in sliding contacts. 

Dormois et al. (15) investigated circular spinning contacts through the Tribogyr test-rig and a 

non-Newtonian isothermal EHD model. They measured friction forces under various 

operating conditions and underlined the key role of thermal effects. Again, the need for both 

thermal and non-Newtonian modelling was emphasized. 

In 2008, Miyata et al. (36) proposed an experimental approach to obtain the temperature rise 

inside of the pressurised area in an elliptical spinning contact. Their measure was based on 

platinum thin film sensors. They showed that under moderate sliding, the spinning contact 

endure a larger thermal heating than the non-spinning contacts. For larger sliding, the 

difference diminishes. 

Doki-Thonon et al. (16,17) presented their work on circular spinning contacts. With a thermal 

non-Newtonian EHD model validated through independent experiments, they showed the 

influence of the spin on the contact behaviour. In particular, they highlighted the recirculation 

of the spinning body which can generate significant film thickness reductions. Indeed, the 

body’s temperature locally rises in the contact, and before this heated area cools down, it is 

reintroduced in the contact. At the contact inlet, the lubricant temperature is increased and the 

film thickness is reduced. 
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1.3.3. General shape EHD contacts  

Whereas most tribological applications can be modelled through line and/or elliptical 

simulations, one may notice that it is sometimes required to get rid of these common 

formulations to use a more suitable one. Indeed, some contacts have shapes which are too far 

from the classical line and elliptical configurations and consequently they may require 

dedicated studies. 

General contacts are found in wheel-rail contacts, wheel-rail flange contacts, in some flange-

roller end contacts and in some gear meshings. The bibliography about flange-roller end 

contact was detailed earlier: as it is the main topic of the author researches, it deserved a 

dedicated part. Moreover, even if the contact shape was general, it was always modelled by 

an elliptical contact. 

The work on wheel-rail contact is the widest, and the goal is generally to get a fast and accurate 

model as it is often part of a bigger computation, like vehicle system dynamic models. The 

wheel-rail contact simulations are free from lubricant considerations and are therefore not of 

the interest of the author. For more information on the several wheel-rail contact models, one 

may consider the models comparison of Sichani et al. (37) or the methods assessment by Wiest 

et al. (38). 

Worm, helical and hypoid gears are characterized by lubricated general contacts at meshing. 

The first point contact EHD solutions were developed for circular and elliptical contacts. Based 

on these previous studies and since the early 80’s, Simon has made an extensive numerical 

work on gear EHD lubrication. In 1981 and through the earliest thermal EHD model for 

general contacts, he showed (39) the importance to take into account thermal effects in hypoid 

gear models. No dimensionless parameter was used in this model. The film thickness was 

defined by the following formula: 

ℎ(𝑥, 𝑦) = ℎ𝑚𝑖𝑛 + 𝑑(𝑥, 𝑦) + 𝑔(𝑥, 𝑦) 

where ℎ𝑚𝑖𝑛 is the minimum film thickness due to hydrodynamic effects, and 𝑑(𝑥, 𝑦) is the 

normal elastic displacement of the teeth surfaces (caused by the pressure distribution). The 

separation due to the rigid geometries of the teeth surfaces is 𝑔(𝑥, 𝑦). It is obtained by resolving 

the equations defining the gap between the gear teeth. 

In 1985, Simon extended his study to worm gears and in 1988 to helical gears (40). He deduced 

several recommendations to design these kinds of gears. Simon continued his work on gears 

since then, but there is no significant numerical improvement after his thermo-EHD model. 

In 2001, Evans, Snidle et al. (41–43) published their work on elastohydrodynamic lubrication 

of worm gears. They developed a non-Newtonian thermal EHD model. This latter is also at 

the full scale and uses an iterative method to find the pressure distribution and the gap 

between the worm and the wheel under load in the dry contact. It only requires to 

know 𝑔(𝑥, 𝑦), the gap between the two bodies when touching under zero load. 𝑔 is obtained 

here by fitting high order polynomials (10th order was chosen) to the numerical results of the 

separation in order to remove the unwanted local gap fluctuation introduced by the 

discretized nature of the data. The EHD calculation included a limiting shear stress formula. 
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They have found that worm gears can be subjected to a severe thinning of the oil film thickness 

due to the specific kinematics and geometry of the meshing. Indeed, according to Figure 1.3-3 

(from (41)), there are several lubricant entrances in the contact. Figure 1.3-4 (from (41)) shows 

the line where the poor film generation occurs (due to poor alimentation). At the beginning of 

this line, there is the frontier between an inlet and an outlet area (see Figure 1.3-4), and this 

means that no entrainment occurs along this line. According to their observation, this line 

coincides with a low film thickness area. In addition, thermal thinning occurs because of the 

heat generated by the lubricant shearing. This heat generation leads to make the solids hotter 

which increases in his turn the lubricant temperature at the entrance of the contact. 

 

 

Figure 1.3-3 - Area of dry elastic contact of a worm gear meshing showing entrainment velocity vectors, from 
(41) 

 

 

Figure 1.3-4 - Line of predicted poor film generation for the same worm gear meshing, from (41) 

 

In (41), the authors compared their numerical results with the predictions of the formulae 

proposed by Chittenden et al. (10,44). These formulae were developed for elliptical EHD 

contacts, but they can be used as an approximation (explanation developed in section 1.3.4). 

They showed a rather good accordance between the formulae estimations and their isothermal 

numerical results. The discrepancy however reached 100% on central film thickness for some 

configurations. One shall then conclude that apart from Simon, and the team of Evans and 

Snidle, the general lubricated contact has not been widely studied with advanced numerical 

tools. Moreover, no experimental study was identified. Despite this low amount of 

publications, the different authors managed to obtain models which allowed to improve gear 

knowledge and performances through thermal non-Newtonian EHD simulations. However 

none of these models has been validated by comparison with experimental results, and none 

of them was applied to the torus on plane FREC. 

These models will inspire the development of a general contact solver for flange-roller end 

contacts. Existing models like the one developed by Habchi et al. (45) and improved by Doki-

Thonon et al. (16,17) showed really good agreements with experimental works. The work of 
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Doki-Thonon et al. was dedicated to circular FREC and constitutes a good basis. Even based 

on reliable approaches, the general contact model should be validated through experiments 

which include general shape properties. 

The EHD general shape contact subject is wider than the one this document deals with, this 

topic remains rather unexplored. However, as general shape contact was often approximated 

by an elliptical one, the next section explores this subject.  

 

1.3.4. EHD elliptical contacts  

As mentioned previously, the general shape contact is often approximated by an elliptical 

contact. The state of the art on the latter may help to understand the former. And consequently, 

it may help to analyse into details torus on plane FREC. To strengthen the link between this 

contact and its approximation, Figure 1.2-6 shows clearly the visual similarities between them: 

the torus on plane contact shape is analogous to an ellipse. The principal curvature radii are 

used to make the approximation. They are the curvature radii at the rigid contact point, along 

the two main directions of the contact. They are called 𝑅𝑥𝑡, 𝑅𝑦𝑡, 𝑅𝑥𝑏 and 𝑅𝑦𝑏 in Figure 1.3-5 

(where 𝑡 stands for “top body” and 𝑏 for “bottom body”). 

 

 

Figure 1.3-5 - Principal curvature radii of the two contacting bodies 

 

Based on the principal curvature radii, principal equivalent curvature radii are defined, thanks 

to the following formulation: 

1

𝑅𝑥
=

1

𝑅𝑥𝑡
+

1

𝑅𝑥𝑏
 & 

1

𝑅𝑦
=

1

𝑅𝑦𝑡
+

1

𝑅𝑦𝑏
 

Figure 1.3-6 shows the equivalent body defined by the principal equivalent curvature radii (𝑅𝑥 

and 𝑅𝑦). This equivalent body is the one which inherits the curvature properties of real both 

surfaces, whereas the other one is flat and their contacting surface is in the flat plane.   
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Figure 1.3-6 - Principal equivalent curvature radii 

 

Based on these principal radii, one can simplify any non-conformal contact and model it by an 

elliptical contact. The EHD elliptical contacts have been quite widely studied since the 

development of numerical solutions. They can be separated into two categories. The first one 

is the slender or narrow elliptical contact (see Figure 1.3-7, on the left), where the ellipticity 

ratio is 𝑘 = 𝑏/𝑎 < 1 (with 𝑎 and 𝑏 the contact semi-axis respectively along 𝑥  and 𝑦  directions) 

and the entrainment direction is oriented along the major axis of the ellipse.  This configuration 

can model, for instance, the FREC for torus roller ends. The second category is the wide 

elliptical contact (see Figure 1.3-7, at the right), where 𝑘 > 1. The transition between the two 

categories is of course the circular contact (see Figure 1.3-7, at the middle) where 𝑘 = 1. 

 

 

Figure 1.3-7 - Contact configurations when 𝑘 varies (entrainment velocity represented by the yellow arrow). 

 

Since the 70’s, several investigations have been conducted on the influence of contacting solids’ 

geometry on point contacts.  In 1976, Hamrock and Dowson (22–24) were the first to publish a 

complete numerical solution of the EHD point contact problem.  Based on numerical 
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simulations, they developed a semi-analytic formula that can predict the minimum film 

thickness of elliptical contacts but, however, limited to contacts where the lubricant 

entrainment is along the minor axis of the ellipse (𝑘 > 1).   

In the following years, other works were focused on the slender elliptical contact (𝑘 < 1). The 

first numerical study on slender elliptical contacts was probably led by Mostophi and Gohar 

(46). In 1982, they published a study on elliptical contacts, for low loads and different 

entrainment velocity directions.  Through numerical simulations and experiments, they 

demonstrated that the film thickness minima are located on both sides of the contact (see 

Figure 1.3-8). Moreover, they underlined the drastic film thickness reduction which occurs in 

this configuration compared with the circular case. For wide elliptical contacts (𝑘 > 1) and low 

normal load, they also noticed that there is only one minimum, located at the centre of the exit 

zone.  From their numerical simulations, they proposed a minimum film thickness formula for 

lightly loaded elliptical contacts in a wide range of ellipticity ratios (from slender to wide 

ellipses). 

 

 

Figure 1.3-8 - Minimum film thickness on the sides (from Mostophi and Gohar (46), with indications added for 
clarity) 

 

The following year, Evans and Snidle (47) published a short note on heavily loaded slender 

elliptical contacts (𝑘 < 1).  They underlined the severe thinning that occurs on the contact 

sides, and explicitly blamed this film reduction on the slenderness of the contact. 

In 1985, Chittenden et al. (10,44) published new film thickness expressions for central and 

minimum film thicknesses.  These formulae cover a wide range of ellipticity ratios (from 

slender (𝑘 < 1) to wide (𝑘 > 1) elliptical contacts) and are still used nowadays for film 

thickness prediction.  Moreover, they also studied different entrainment directions: the long 

ellipse axis can be parallel (𝑘 < 1) or perpendicular (𝑘 > 1) to the entrainment direction, but it 

can also be an intermediate configuration. 
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Chittenden et al. investigated widely elliptical contacts, but varied the ellipticity ratio while 

keeping constant the dimensionless parameters (𝑈, the velocity parameter, 𝐺 the materials 

parameter and 𝑊 the load parameter, as defined in (23)). This choice led to vary the actual 

load in a large range together with the ellipticity. Chittenden et al. also explained that the 

minima on the contact sides act as lubricant seals which indeed limit side leakage and preserve 

the flow continuity.   

The numerical results presented above would not have made sense without validation from 

several experimental studies conducted during the same period. In 1972, Thorp and Gohar 

(48) published their work on the effect of entrainment direction on the elliptical contact.  

Thanks to experiments carried out under pure sliding, they concluded that the largest surface 

separation occurs for the wide elliptical contact (𝑘 > 1), while the slender one (𝑘 < 1) endures 

less favourable conditions. Shortly thereafter, Bahadoran and Gohar (49) studied 

experimentally the wide elliptical contact (𝑘 > 1) and compared their results with film 

thickness formulae. In 1978, Gledhill et al. (50) demonstrated through experimental 

observations that an EHD regime can take place when the lubricant entrainment direction is 

parallel to the major axis of the ellipse (𝑘 < 1).  They measured minimum film thicknesses with 

an interferometric method and compared them favorably with Hamrock and Dowson’s 

predictions (22–24). In 1981, Koye and Winer (51) evaluated experimentally the same formula.  

They concluded that the Hamrock and Dowson expression could be used to obtain a gross 

estimation of the minimum film thickness in the slender geometry (𝑘 < 1). Alongside their 

model development, Chittenden et al. (52) conducted an experimental study for several 

elliptical contact configurations which showed a good agreement with their numerical results.  

After the determination of film thickness formulae, other studies continued the research on 

elliptical contacts. In 1993, Evans and Snidle (53) focused on heavily loaded slender elliptical 

contacts, for Wildhaber-Novikov gears application.  One year later, Nijenbanning et al. (54) 

proposed a film thickness expression and underlined an asymptotic trend: the wide elliptical 

contact can be considered as a transition case between the circular and the line configurations.  

This transition between circular and line contact is presented in Figure 1.3-9 with a different 

ellipticity parameter: 𝐷 = 𝑅𝑥 𝑅𝑦⁄  (which varies inversely with 𝑘) as in (54).  
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Figure 1.3-9 – Influence of the ellipticity ratio 𝐷 = 𝑅𝑥 𝑅𝑦⁄  on the minimum and central film thickness – from 

Nijenbanning et al. (54) 

 

As a consequence, when the elliptical contact becomes wider and wider (increasing 𝑘 > 1), its 

behaviour tends to that of the line contact.  This asymptotic behaviour is one strength of their 

work, but similarly to Chittenden et al. (5,6), Nijenbanning et al. varied the dimensioned load 

while keeping some dimensionless parameters constant.  Therefore, the ellipticity influence 

was not studied by itself.  In 2000, Sharif et al. (55) proposed a comparison of their numerical 

work with Chittenden formulae (5,6).  They showed that a 50% discrepancy can occur between 

the analytical predictions and the isothermal solutions of the full EHD problem.   

In the same period, Kaneta et al. investigated the thermal effects in elliptical contacts with 

experiments under pure sliding conditions and a thermal Newtonian EHD model. At first with 

wide elliptical contacts (56), they showed the presence of dimples due to the thermal 

properties difference of the mating solids. Then, they continued their investigations with the 

slender elliptical contacts (57) and showed that this dimple can become unstable under certain 

sliding conditions. At last, they led experiments with different entrainment velocity directions 

(58), with the entrainment velocity vector which is not necessarily parallel to one of the axis of 

the ellipse. However, their numerical results only showed qualitative agreement with the 

experiments. A better lubricant characterisation would have certainly enhanced the 

correlation. As a confirmation, Kaneta et al. (35) underlined the need for non-Newtonian 

thermal EHD models in point EHD contacts. 

In 2003, Zhu (59) computed about 600 contact cases in order to evaluate Hamrock-Dowson 

(22–24) and Chittenden (10,44) formulae in extreme conditions (heavy load, high speed, high 

ellipticity).  Zhu ran calculations on a wide range of conditions, however the extreme cases’ 

results were contested (60,61).  In the same year, Damiens (62) analysed the influence of 

Poiseuille flows on starved wide elliptical contacts (𝑘 > 1).  He proposed a model to simulate 

the starvation in an EHD contact located on a bearing track after several passages of the rolling 

elements, based on the ejection of lubricant out of the rolling track through Poiseuille flows.   

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI131/these.pdf 
© [J-D. Wheeler], [2016], INSA Lyon, tous droits réservés



 

23 
 

In 2010, Venner and Lubrecht (63) published a paper on slender elliptical contacts (𝑘 < 1), 

based on numerical solutions.  They contributed to improve the knowledge of the ellipticity 

effect on the central to minimum film thickness ratio.  This may lead to an enhanced film 

thickness prediction for engineering applications.  However, the study is limited to the narrow 

case only and it is based on dimensionless parameters which makes the analysis of the 

ellipticity influence not trivial to untangle. The same year, Canzi et al. (64) published a study 

on the transition between circular and line contacts: the wide elliptical contact being an 

intermediate case. They proposed a formula to use this relationship for predicting the central 

film thickness under all wide elliptical conditions. 

More recently, Stahl et al. (65) investigated the EHD point contact with different entrainment 

velocity directions. They ran several experiments and showed a rather good agreement 

between film thickness measurements and numerical results under several load and 

entrainment cases. This was especially true for the film thickness minima. However, a non-

Newtonian and thermal modelling would have probably improved the correlation at the 

larger entrainment and sliding velocity conditions. Pu et al. (66) investigated numerically the 

influence of mixed lubrication in the same contacts. 

Moreover, despite the several experimental studies, precise validations of the EHD elliptical 

contact numerical models are still needed. With lacks in both numerical and experimental 

aspects, the EHD elliptical contact shall be studied as an unavoidable mean to improve the 

knowledge on torus on plane FREC. 

 

1.4. Outline of the thesis 

It was shown that the literature dedicated to flange roller-end contact (FREC) with torus roller 

end is nearly non-existent. Such a lack of references on the subject underlines the need for a 

dedicated study.  

The literature pertaining to the FREC with torus roller end was extended by other works which 

were addressed to other general shape contacts. The approach developed in these publications 

will also inspire the work which will be presented afterwards.  

As general shape contacts were often approximated by the elliptical ones, a bibliography 

pertaining to them was presented. It turned out that further developments are still required 

for this topic also. 

The literature report revealed lacks in the understanding of the FREC with torus roller end. 

Several questions were raised by Gadallah and Dalmaz (20), Zhang et al. (14) and Colin et al. 

(9). From a numerical point of view, nobody has computed FREC with the torus roller end 

actual geometry. Has the actual geometry an influence on the contact modelling? Or is the 

elliptical approximation sufficient? An advanced modelling should be developed in order to 

answer these questions. The works on the gear topic will inspire the development of this FREC 

focused model. 
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Moreover, the model validations showed differences with experimental results. It was 

suspected that a starvation occurred and penalized the film forming. But was it not the 

modelling choices (geometrical assumptions, the use of dimensionless parameters, the 

rheology hypothesis, thermal effects…) which may have been responsible? Similarly, did the 

experimental approaches mentioned before really represent the conditions expected? A better 

control of the experimental environment, more precise measurements and advanced models 

should be developed in order to provide stronger validations.  

As elliptical and general contact understanding are intimately related, the focus will also be 

drawn on the former in chapter 2. First of all, experimental validation should be furnished to 

the numerical model. Then, the influence of ellipticity ratio on the film forming capacity will 

be studied. This ratio should be varied independently from the other operating parameters, in 

order to complete the existing studies. 

Based on these tool improvements, it will be possible to extend and improve the 

understanding of the torus on plane FREC. In chapter 3, new tools to the study of this contact 

are presented, and in chapter 4, the influence of entrainment velocity and load on friction 

forces and film thickness will be investigated. As the kinematics is known to have a key role 

on FREC, its influence will also be investigated. This chapter will also give conclusions on the 

validity of the elliptical approximation. 
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II. The flange roller-end contact as a 

slender elliptical contact 

As mentioned in the previous chapter, the torus on plane flange roller-end contact may be 

considered, as a first approach, as an elliptical contact. In particular, it can be approximated 

by a slender elliptical contact. However, the literature review underlined the lack of 

knowledge on elliptical contacts, especially for the slender configuration. This chapter aims to 

bring further the understanding on both elliptical EHD contacts, by studying the slender ones, 

together with the other ellipticity ratios and flange roller-end contact. This ratio should be 

varied independently from the other operating parameters, in order to complete the existing 

studies. Thus experimental and numerical approaches were run in parallel. Jérotrib, a ball-on-

disc test-rig enabling friction and film thickness measurements, will be adapted for elliptical 

EHD contacts. Besides, a numerical model built on the basis of the ones of Habchi et al. (45) 

and Doki-Thonon et al. (16) will simulate elliptical EHD contacts. Some improvements were 

made in order to model the elliptical configurations. 

 

2.1. Numerical and experimental tools 

2.1.1. Jérotrib test-rig 

2.1.1.1. The test-rig 

The present bespoke apparatus (see Figure 2.1-1) was built at first to run tests on circular EHD 

contacts. Its precision and wide possibilities were demonstrated on several occasions for both 

friction and film thickness measurements. In Jérotrib, a load 𝑤 which can reach 400 𝑁 is 

applied between a convex sample and a disc. The disc can be made out of glass or sapphire for 

film thickness measurements and out of steel or tungsten carbide for other applications. 

Similarly the convex sample can be a steel or a tungsten carbide sample. In any case, both 

specimen are mirror polished (𝑅𝑎 ≤ 5 𝑛𝑚 in general, but 𝑅𝑎 ≤ 50 𝑛𝑚 for tungsten carbide 

samples). The different configurations allow for large contact pressures, up to 3 𝐺𝑃𝑎 in the 

context of two tungsten carbide samples. The convex sample has a curvature radius 𝑅𝑥 =

12.7 𝑚𝑚 along the entrainment direction. The entrainment velocity can be varied between a 

few millimetres per second and up to 7 𝑚/𝑠. Two independent spindles set the rotation of the 

samples. The spindles and specimen temperatures are set to the temperature of the experiment 

(i.e. the lubricant temperature) through a circulating heat transfer fluid. 
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Figure 2.1-1 – Jérotrib test-rig 

 

In 1999, Molimard et al. (3) developed an experimental method for film thickness 

measurement, the differential colorimetric interferometry (DCI), and led the first studies with 

it. Later on, Chaomleffel et al. (67) showed fair agreements in a wide range of operating 

conditions between the experimental results stemming from Jérotrib and predictive formulae 

once the physical properties of the lubricant were correctly accounted for. 

 

 

Figure 2.1-2 - Jérotrib contacting bodies 

 

Figure 2.1-2 shows the convex sample on which the normal load 𝑤 is applied in order to put 

it in contact with the flat disc. The convex sample dips into the tested oil reservoir and drags 

the lubricant to the contact, insuring fully-flooded conditions. The lubricant is filtered with a 

 0.47 𝜇𝑚 polymer filter. Unlike the previous studies on this test-rig, 𝑅𝑦 was varied while 𝑅𝑥 

remained constant. Several steel convex samples were designed and used. Their geometric 

properties are gathered in Table 2.1-1, whereas their mechanical properties are presented in 

Table 2.1-2. 
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Convex sample 𝑹𝒙 [mm] 𝑹𝒚 [mm] 𝒌 = 𝒃/𝒂 𝒂 [mm] * 𝒃 [mm] * 

“Slender Elliptical” 

12.70 

4.82 0.526 0.173 0.0910 

“Circular” 12.70 1 0.149 0.149 

“Wide Elliptical” 84 3.46  0.105 0.364 

Table 2.1-1 - Presentation of the different lower sample geometries. They are made of steel (𝐸𝑏 = 210𝑒9 𝑃𝑎, 𝜈𝑏 =
0.3) and the ellipse dimensions (*) are computed for a contact with a glass disc (𝐸𝑡 = 72𝑒9 𝑃𝑎, 𝜈𝑡 = 0.23) 

for 𝑤 = 20 𝑁. 

 

The flat disc was made of glass (properties displayed in Table 2.1-2). A thin chromium coating 

was applied to its lower side to improve the film thickness measurements, as the method used 

is the differential colorimetric interferometry. This layer has no noticeable influence on the disc 

thermal properties. Another coating was applied on the disc: it is a silica spacer layer. It is an 

optical tool to enable the measurement of very thin film thickness (down to a few nanometres) 

and was developed first by Westlake and Cameron (68) and used for instance by Hartl et al. 

(69).   

 

 

Glass disc properties 

Parameter [Unit] Value 

𝐸𝑡  [𝑃𝑎] 72 × 109 

𝜈𝑡  [ − ] 0.23 

𝜌𝑡  [𝑘𝑔.𝑚
−3] 2530 

𝑘𝑡  [𝑊.𝑚
−1. 𝐾−1] 0.937 

𝐶𝑝𝑡 [𝐽. 𝑘𝑔
−1. 𝐾−1] 880 

  

 

Steel sample properties 

Parameter [Unit] Value 

𝐸𝑏 [𝑃𝑎] 210 × 109 

𝜈𝑏 [ − ] 0.3 

𝜌𝑏 [𝑘𝑔.𝑚
−3] 7850 

𝑘𝑏 [𝑊.𝑚
−1. 𝐾−1] 50 

𝐶𝑝𝑏 [𝐽. 𝑘𝑔
−1. 𝐾−1] 470 

 

Table 2.1-2 – Sample properties 

 

The test rig temperature is set according to the experiment requirement. The temperature 

regulation is assumed within a precision of 0.1°C thanks to a platinum resistance located at 

the contact exit and a heat-carrying fluid which circulates around the sample and disc holders 

but also under the oil container. The aim is to set the whole contact environment to the desired 

temperature. In this chapter the temperature of the experiment environment is set to 𝑇0 =

30°𝐶. 

 

2.1.1.2. Optical interferometry principles 

White light interferometry appears as the most suitable technique to measure film thickness 

in EHD contacts within a few nanometres precision. A methodology has been defined by 

Molimard et al. (3), and it is based on a direct treatment of RGB (Red, Green, Blue) intensities 

of chromatic interferograms. The physic principle is quite widely known: it is this principle 

that gives their colours to the dirty oily puddles in the streets. Figure 2.1-3 shows one of these 
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oily puddles, with the colourful fringes that appear on it: the light is reflected at the air-oil 

interface but also at the oil-water interface. As a thin layer of oil floats on the water, there is an 

optical path difference between the two reflected light beams. This optical path difference is 

nothing more than two times the oil layer thickness and the resulting colour depends on this 

thickness. 

 

 

Figure 2.1-3 - Oily puddle 

 

A mono-chromatic configuration is selected to approach the interferometry phenomenon. 

Thanks to a mono-chromatic lighting (with 𝜆𝑚𝑐 the wavelength, the superscript 𝑚𝑐 stands 

for monochromatic), it is possible to predict the resulting interference fringes and to relate 

them to the optical path difference experimentally. Unlike chromatic light, mono-chromatic 

light interferences can be described more easily with analytical expression. In this thesis, a red 

filter (𝜆𝑚𝑐 = 635 ± 4 𝑛𝑚) was used to obtain a monochromatic radiation from a white light 

source. Besides, a Hitachi Kokusai HV-F22 camera and a microscope were used with the 

DyVa-s software from Alliance Vision in order to obtain digital pictures of the contact. 
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Figure 2.1-4 - Mono-chromatic interferometry in a static contact vicinity. 𝐼0 is the incident beam and 𝐼1 to 𝐼𝑛 are 
the reflected beams 

 

Electromagnetic waves are constituted of an electric field 𝐸⃗  and a magnetic field 𝐵⃗ . Their norm 

can be both described by the following expression: 

𝑗 = 𝐽 cos (
2𝜋

𝜆𝑚𝑐
(𝑐 𝑡 − 𝑛𝑚𝑐  𝑥𝑚𝑐) − 𝜙) 

Equation 
2.1-1 

 

with 𝐽 the wave amplitude, 𝜆𝑚𝑐 its wavelength, 𝑐 the light velocity, 𝑡 the time, 𝑛𝑚𝑐 the 

refractive index of the medium, 𝑥𝑚𝑐 the position, and 𝜙 the phase at the origin. When two 

beams of the same wave train meet, they interfere (like 𝐼1 and 𝐼3 in Figure 2.1-4). When the 

interfering beams have a path difference (of the length 𝛿𝑚𝑐) the resulting wave is different. The 

resulting light intensity (the square of 𝐽) is then: 

𝐼 = 𝐼1 + 𝐼3 + 2√𝐼1𝐼3 cos (
2𝜋𝛿𝑚𝑐
𝜆𝑚𝑐

) 
Equation 

2.1-2 

 

This means that 𝐼 varies between 𝐼𝑚𝑖𝑛 = 𝐼1 + 𝐼3 − 2√𝐼1𝐼3 and 𝐼𝑚𝑎𝑥 = 𝐼1 + 𝐼3 + 2√𝐼1𝐼3. In the 

present description, the reader may have notice that 𝐼4 to 𝐼𝑛 were neglected. It can be 

demonstrated that their contribution to 𝐼 is negligible. The optical path difference 𝛿𝑚𝑐 is twice 

the distance between the two samples. Indeed, the light beam crossed the 𝑛𝑚𝑐 index fluid 

before and after the reflection on the steel sample. Then, it comes that 𝛿𝑚𝑐 = 2 ℎ 𝑛𝑚𝑐 with ℎ the 

film thickness. At the reflection on the steel surface, the electromagnetic wave undergoes a 

phase shift 𝜉 (nota bene: a mirror polishing is applied to the convex sample before each 

experiment to insure a homogenous reflection on the steel surface). Equation 2.1-2 becomes: 

𝐼 = 𝐼1 + 𝐼3 + 2√𝐼1𝐼3 cos(2𝜋 (
2 𝑛𝑚𝑐  ℎ

𝜆𝑚𝑐
+ 𝜉)) 

Equation 
2.1-3 
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Consequently, the extrema of 𝐼 occur for ℎ = (𝑘𝑚𝑐 − 𝜉)𝜆𝑚𝑐/(2𝑛𝑚𝑐) (the maximum) and ℎ =

(𝑘𝑚𝑐 + 1/2 − 𝜉)𝜆𝑚𝑐/(2𝑛𝑚𝑐) (the minimum). The former is due to a constructive interference, 

whereas the latter is due to a destructive interference. The integer 𝑘𝑚𝑐 is the interference order, 

and it characterises the number of the interference. Indeed, the interferences fringes are similar 

to one another and the same pattern is repeated for each of them. The pattern has a period 

of 𝜆𝑚𝑐/(2𝑛𝑚𝑐), which means that two consecutive minima are separated by this period. 

 

 

Figure 2.1-5 – Narrow elliptical convex sample in a static contact with a glass disc illuminated by a 𝜆𝑚𝑐 =
635 𝑛𝑚 light. The interferences maxima and minima are indicated with their order. 

 

The mono-chromatic interferences are easy to describe analytically, but there is no bijective 

relationship between the colour and the optical path difference. Indeed the function is 

periodical in a wide range of gap. Moreover, Molimard (1) demonstrated that the analytical 

description of the mono-chromatic interferences is only valid at the black fringes location. 

These limits exclude the use of mono-chromatic interferometry to measure the EHD film 

thickness. However, Molimard (1) also explained that in the 0 ≤ ℎ ≤ 800 𝑛𝑚 range, the 

chromatic interferometry generates a bijective relationship between the interference colour 

and the optical path difference. This bijection property is very useful as it is the range of film 

thickness encountered in EHD contacts.  

Figure 2.1-6 shows the chromatic interferometry principle, applied to the oil gap between a 

steel and a glass surface. The white light incident beam 𝐼0 crosses the glass and is partially 

reflected on the semi-reflective chromium layer. This first reflection is 𝐼1. 𝐼3 is the reflection of 

𝐼0 on the steel surface. The oil gap introduces an optical path difference between 𝐼1 and 𝐼3 and 

the two reflected beams are consequently interfering (as they belong to the same wave train). 

The colour (defined by its decomposition in the RGB frames captured by a digital 3-CCD 

camera) resulting from the interference is representative of the optical path difference, and 

consequently of the thickness ℎ of the oil gap.  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI131/these.pdf 
© [J-D. Wheeler], [2016], INSA Lyon, tous droits réservés



 

32 

 

 

Figure 2.1-6 – Physical principle of interferences 

 

Molimard et al. (3) developed a method based on this principle to perform film thickness 

measurements in EHD contacts. In their method, the function 𝑓 relating the RGB light intensity 

triplet and the oil gap has to be determined to enable film thickness measurements. This 

function depends on a wide range of environment conditions such as, among them, the light 

source spectrum, the refractive index (and therefore the pressure) of the lubricant, the optical 

path, the surfaces chemical condition (which influences the light reflections and introduces a 

phase shift) or the chromium layer thickness. Due to all these complex causal links, each 

experiment has its own calibration function. Therefore, the determination of 𝑓 is a mandatory 

part of the film thickness measurement procedure. However, the method developed by 

Molimard et al. (3) is limited to the circular contacts, as the calibration step depends on 

Equation 2.1-4 which is only valid for sphere on plane conjunctions. 

The method for sphere on plane contact is based on an analytical formula which gives the gap 

height at the contact vicinity. Equation 2.1-4 was proposed by Johnson (70), and is presented 

below. This equation is valid for circular contacts only (𝑅𝑥 = 𝑅𝑦 and 𝑎 = 𝑏): 

ℎ(𝑟) =
𝑟2

2𝑅𝑥
−
𝑎2

𝑅𝑥
+

1

𝜋𝑅𝑥
[(2𝑎2 − 𝑟2) arcsin (

𝑎

𝑟
) + 𝑟2 (

𝑎

𝑟
)√1 − (

𝑎

𝑟
)
2

 ]  𝑓𝑜𝑟 𝑟 ≥ 𝑎 
Equation 

2.1-4 

 

with 𝑟 the distance from the contact centre (refer to (1) and (71) for more information). In the 

methodology defined by Molimard et al. (3), Equation 2.1-4 is mandatory. This equation gives 

the height between the mating bodies independently from the material mechanical properties. 
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Figure 2.1-7 – The function 𝑓, a typical white light interferometry calibration curve in the range 0 < ℎ <
800 𝑛𝑚 

 

Figure 2.1-7 presents the resulting function 𝑓 which is constituted of three curves. The contrast 

𝐶 = (𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛)/(𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛) of the light intensities will determine the measurement 

resolution of the dynamic oil gap. Consequently, 𝐶 should be maximized by adjusting the 

environment conditions. When the contrast has been maximized, one can obtain 𝑓 from a 

dedicated procedure. It was demonstrated by Molimard (1) that each RGB light intensity 

triplet corresponds to a single gap ℎ (bijection property), which avoids the confusions between 

interference order. Moreover, and apart from the variation of the oil refraction index with 

pressure, the relationship between the light intensities and the film thickness is considered 

identical for the static gap and the dynamic gap. 

 

2.1.1.3. The new calibration method 

However, the existing method to establish the calibration curve 𝑓 required static circular 

contacts (see Figure 2.1-8 at the centre). During this thesis, the experiments were run with the 

3 convex samples presented in Table 2.1-1 and a new method had to be developed. 
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Figure 2.1-8 - The different static contact for the 3 convex samples. From left to right: Slender Elliptical, 
Circular and Wide Elliptical static contacts. With 𝑎 the contact semi-axis along 𝑥 direction (entrainment 

velocity direction, when applied) and 𝑏 the contact semi-axis along 𝑦 direction. 

 

Unfortunately, the height expression Equation 2.1-4 has no analytical equivalent for the non-

circular contact. It is not possible to predict the deformed gap analytically for all other types 

of point contacts, and even for the elliptical conjunction, no analytical exact solution is 

available. Consequently, a new method is required to determine the height between the loaded 

bodies. 

In order to replace the missing height expression, a mono-chromatic interferogram is used. 

The minima of the interferogram can be used to define contour lines. As said previously, there 

is a 𝜆𝑚𝑐/(2𝑛𝑚𝑐) gap between two consecutive minimum contour lines. Thanks to an 

interpolation between the minima (where the gap is known), it is possible to define the relative 

shape of the gap at the contact vicinity. However, it is not trivial to define the absolute gap in 

this area as the very first minimum fringe gap is not known (due to the unknown phase shift 𝜉).  

The height at the first minimum contour line is a data which is not obvious to obtain, but a 

solver which uses interpolations was successfully developed during this thesis. The method 

was inspired by the demodulation work of Badulescu et al. (72). The solver determines the 

contact frontier by a detection algorithm which analyses the light intensity extinction at the 

limit of the mating area. Then, the solver extracts data from the three first black fringes and 

the contact frontier position: the height at these four positions is supposed to locally follow the 

function described in Equation 2.1-4. From this the solver computes the gap at the first black 

fringe via Newton-Raphson iterations. Based on the knowledge of the height at this first fringe, 

the entire gap can be determined.  

To sum-up, it is possible to fully determine the gap in the contact proximity by processing a 

contact picture illuminated by a well-defined mono-chromatic light. 

Then, the same contact is illuminated by a chromatic light under the same conditions, and it 

will give the RGB interferences at each location of the contact vicinity. The mono-chromatic 
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and the chromatic interferogram constitute an interferogram pair. The final step towards the 

calibration curve is to relate the height (coming from the mono-chromatic picture) to the RGB 

triplets (coming from the chromatic picture). This operation allows for the determination of 

the calibration curve 𝑓 (like in Figure 2.1-7) without any hypothesis on the materials or the 

optical system. The only hypothesis is the shape of the gap interpolation (cubic polynomial 

order was selected) between the fringes. The method was implemented in a program with a 

user interface (with MATLAB software). This algorithm allows for fast determination of the 

calibration curve of an experiment. Moreover, the user does not need a full understanding of 

the whole process as the program guides the different operations. This program was tested 

with several users and they obtained relevant and precise results. The different steps followed 

by the algorithm are summarised in Annexe A. 

Practically, in order to establish a calibration curve representative of an experiment, several 

calibrations are made from several interferogram pairs. These pairs are obtained all along the 

experiment. Habitually, 5 pairs are made previously to the EHD experiment, 5 pairs at mid-

experiment, and 5 at the end of the experiment. Each pair can provide a slightly different 

calibration curve, and the one which is the most representative of the curve group is selected. 

The differences between the different curves enable to track some potential variations of the 

whole experimental set up, and to evaluate if the calibration curve chosen is suitable for the 

entire experiment. 

 

 

Figure 2.1-9 – Calibration curve comparison between Molimard et al. (3) (“old”) and the present (“new”) 
methodologies. Comparison basis: a static circular contact made with the Jérotrib test-rig 
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The new method described was validated as it was able to establish a calibration curve very 

similar to the one obtained via the previous method for the same circular contact (see Figure 

2.1-9). Moreover, it enabled to measure the gap in the vicinity of a Hertzian elliptical contact: 

these measures agreed very well with the predictions of a numerical static contact model. An 

additional validation is proposed in Annexe A. 

 

2.1.1.4. Application 

Thanks to this new calibration method, one can measure the film thickness in the contact and 

its proximity under EHD conditions, for any general contact configuration (smooth surfaces), 

including the torus on plane contact. Figure 2.1-10 presents such a contact.  

 

 

Figure 2.1-10 - Slender elliptical EHD contact 

 

The entrainment direction is in the direction of the yellow arrow. According to the classical 

EHD theory, the contact has a classical horseshoe shape with a constriction occurring at the 

contact exit and on the sides. Like slender contacts from the literature, the minima are located 

on the two sides. They are called ℎ𝑚,𝑙+ and ℎ𝑚,𝑙−  as they are the lateral minima. The + sign 

indicates the side which is the closest to the rotation axis of the disc whereas the – sign indicates 

the furthest. The central film thickness ℎ𝑐 is measured by the interference colour in the central 

region, but a Lorentz-Lorenz correction (73) has to be applied. Indeed, the calibration is made 

with the lubricant at ambient pressure. However, the lubricant refractive index at the ambient 

pressure 𝑛0 actually varies with pressure, which changes the optical path length. To obtain the 

actual gap, an adjustment is required: 

ℎ(𝑝) × 𝑛(𝑝) = 𝑛0 × ℎ0 
Equation 

2.1-5 

 

with ℎ0 the apparent film thickness (without correction), ℎ(𝑝) the actual gap and 𝑛(𝑝) the 

refractive index predicted by the Lorentz-Lorenz correction. The index 𝑛(𝑝) can be determined 

from: 
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1

𝜌𝑓(𝑝)
×
𝑛(𝑝) − 1

𝑛(𝑝) + 2
=
1

𝜌0
×
𝑛0 − 1

𝑛0 + 2
 

Equation 
2.1-6 

 

where 𝜌𝑓(𝑝) is the fluid density at a given pressure and 𝜌0 at the ambient pressure. Thanks to 

this adjustment, the relationship between the film thickness and the light intensities is 

considered unchanged under static and dynamic conditions. The pressure dependence of the 

fluid density is modelled by the Murnaghan equation of state detailed later in Equation 2.1-7 

and Equation 2.1-8. For this operation, the lubricant pressure is supposed to be equal to the 

Hertzian pressure distribution. 

Jérotrib is one of the tools used to study the elliptical contacts, and by extension torus on plane 

flange roller-end contacts. It enabled to run experiments and obtain precise measurements of 

the characteristic values of the contact, like film thickness in circular and elliptical 

configurations. The results were used as powerful means to validate the numerical model. 

 

2.1.2. Numerical model 

The experimental set-up presented previously was completed with a numerical model. 

Indeed, the experimental results may not fully correspond to the torus on plane (TOP) flange 

roller-end contact (FREC) configuration (in terms of load or geometry for instance). Using 

numerical methods allowed for more flexibility in studying such a complex contact. A thermo-

elastohydrodynamic (TEHD) model was based on the work of Habchi et al. (45) and Doki-

Thonon et al. (16) and a supplementary component was added. The additional feature is the 

adaptation to the elliptic contact problem. It will be detailed in the following. Most of the 

influent parameters involved in the contact could be summarized in Figure 2.1-11. This 

schematic overview of the model introduces variables which will also be detailed in this 

section. Among these variables, some were obtained by solving the governing equation, while 

some others were defined by constitutive laws and depend on the other ones. The constitutive 

laws will be presented at first, and the rest of the model (equations, domains and solver) will 

be introduced afterwards. 
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Figure 2.1-11 – Schematic view of a lubricant trapped between two rolling-sliding-spinning solids (inspired 
from T. Doki-Thonon thesis) 

 

2.1.2.1. The constitutive laws 

The aim of the present numerical model is to predict the behaviour of an actual EHD contact. 

To do so, the lubricant physics had to be known and described by constitutive laws. The 

density and the viscosity of the lubricant are influenced by the large pressure occurring inside 

the contact. Besides, the temperature rise in the lubricant also had an influence on its density 

and viscosity. At last, the shear stress can also have a significant influence on viscosity. 

In order to generate results independently from the Jérotrib experimental results, other test-

rigs such as rheometers and viscometers were used to characterise the lubricant. The lubricant 

selected for this thesis is a standard mineral based turbine oil. Two different batches were used: 

lubricant 2 and lubricant 3, where lubricant 2 corresponds to the fluid called lubricant 2 in 

Doki-Thonon’s thesis (5). Lubricant 1 used by Doki-Thonon is not used here. In the present 

thesis, lubricant 3 is used when not otherwise specified. Lubricant 3 was characterized and its 

properties are displayed in Tables 2.1-4, whereas Lubricant 2 and its characteristics are 

displayed in Tables 2.1-3. 

 

Lubricant density 

A Murnaghan equation of state (EOS) (based on the work of Murnaghan (6)) was chosen 

(similarly to Doki-Thonon et al. (16)) to fit the density dependence on pressure and 

temperature: 

𝑉

𝑉0
=
𝜌0
𝜌𝑓
= (1 +

𝐾𝑀
′

𝐾𝑀
𝑝)

−
1

𝐾𝑀
′

 

Equation 
2.1-7 

 

where 𝑉 and 𝜌𝑓 are respectively the lubricant volume and density, K’M a constant. The 

superscript ( )0 stands for the environment conditions (𝑇 = 𝑇0, 𝑝 = 0). 
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                                                    𝐾𝑀 = 𝐾𝑀𝑀𝑒
−𝛽𝐾𝑇  

is a temperature related parameter, with 𝐾𝑀𝑀 a constant, 𝛽𝐾 the bulk modulus-temperature 

coefficient and 𝑇 the temperature. When 𝑇0 (at 𝑝 = 0 ), the environment temperature and 𝑇𝑅 (at 

𝑝 = 0 ), the reference temperature (at which the lubricant was characterized) are different, the 

density variation writes: 

𝑉0
𝑉𝑅
=
𝜌𝑅
𝜌0
= 1 + 𝑎𝑣(𝑇0 − 𝑇𝑅) 

Equation 
2.1-8 

 

This EOS was initially developed for geologic conditions, but was adapted to lubricant 

application. It suits to the pressure and temperature range encountered in the EHD conditions, 

and the parameters determined by experimental work are in Tables 2.1-3 and Tables 2.1-4. 

Lubricant viscosity 

Another lubricant parameter varies with temperature and pressure: the viscosity. For its part, 

the pressure is the most influent parameter: an important pressure rise occurs in EHD contacts, 

but an even larger rise of viscosity (several orders of magnitude) happens as a consequence. 

An independent characterisation was made at the LaMCoS with bespoke rheometers. The 

lubricant was tested in a wide range of temperature (0 ≤ 𝑇0 ≤ 150°𝐶) and pressure (0.1 ≤ 𝑝 ≤

800 𝑀𝑃𝑎) conditions. A modified Williams-Landel-Ferry (WLF) correlation (as defined by Bair 

et al. (7)) was selected (similarly to Raisin et al. (74)) to fit the results of the characterisation. It 

reads: 

𝜇(𝑝, 𝑇) = 𝜇𝐺  𝑒𝑥𝑝 [
−2.303 𝐶1 (𝑇 − 𝑇𝑔)𝐹

𝐶2 + (𝑇 − 𝑇𝑔)𝐹
] 

with 𝑇𝑔(𝑝) = 𝑇𝑔0 + 𝐴1ln (1 + 𝐴2𝑝) and 𝐹(𝑝) = (1 + 𝑏1𝑝)
𝑏2 

Equation 
2.1-9 

 

with 𝐶1, 𝐶2, 𝐴1, 𝐴2, 𝑏1 and 𝑏2 constants of the WLF law, 𝑇𝑔 the glass transition temperature at a 

given pressure, and 𝑇𝑔0 the glass transition temperature at ambient pressure. These parameters 

are displayed in Tables 2.1-3 and Tables 2.1-4. 
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Murnaghan EOS – Lubricant 2 

Parameter [Unit] Value 

𝑎𝑣  [𝐾
−1] 7.734 × 10−4 

𝛽𝐾 [𝐾
−1] 6.090 × 10−3 

𝐾00 [𝑃𝑎] 9.234 × 109 

𝐾0
′  [ − ] 10.545 

𝑇𝑅 [𝐾] 298 

𝜌𝑅 [𝑘𝑔.𝑚
−3] 872 

 

Modified WLF – Lubricant 2 

Parameter [Unit] Value 

𝐴1 [°𝐶]
∗ 188.86 

𝐴2 [𝑃𝑎
−1] 0.7190 × 10−9 

𝑏1 [𝑃𝑎
−1] 8.200 × 10−9 

𝑏2 [ − ] −0.5278 

𝐶1 [ − ] 16.09 

𝐶2 [°𝐶]
∗ 17.38 

𝑇𝑔,0 [°𝐶] −83.2 

𝜇𝐺  [𝑃𝑎. 𝑠] 1012 
 

Tables 2.1-3 - Lubricant 2 laws parameters (*implies to write 𝑇 in °𝐶) 

 

 

Murnaghan EOS – Lubricant 3 

Parameter [Unit] Value 

𝑎𝑣  [𝐾
−1] 7.734 × 10−4 

𝛽𝐾 [𝐾
−1] 6.090 × 10−3 

𝐾𝑀𝑀 [𝑃𝑎] 9.234 × 109 

𝐾𝑀
′  [ − ] 10.545 

𝑇𝑅 [𝐾] 298 

𝜌𝑅 [𝑘𝑔.𝑚
−3] 872 

 

Thermal properties – Lubricant 3 

Parameter [Unit] Value 

𝐶𝑝𝑓 [𝐽. 𝑘𝑔
−1. 𝐾−1] 1901 

𝑘𝑓 [𝑊.𝑚
−1. 𝐾−1] 0.118 

 

 

Modified WLF – Lubricant 3 

Parameter [Unit] Value 

𝐴1 [°𝐶]
∗ 188.951 

𝐴2 [𝑃𝑎
−1] 0.53321 × 10−9 

𝑏1 [𝑃𝑎
−1] 7.373 × 10−9 

𝑏2 [ − ] −0.6171 

𝐶1 [ − ] 15.9035 

𝐶2 [°𝐶]
∗ 14.1596 

𝑇𝑔,0 [°𝐶]
∗ −68.4697 

𝜇𝐺  [𝑃𝑎. 𝑠] 1012 

  

Tables 2.1-4 - Lubricant 3 laws parameters (*implies to write 𝑇 in °𝐶) 

 

The influence of the shearing on viscosity was investigated via a rheometer. Figure 2.1-12 

presents the results of this characterisation under various conditions, such as pressure, 

temperature and sheared gap. Despite the rather wide range of the operating conditions (shear 

stress up to 3 𝑀𝑃𝑎), the results are not obtained in the same conditions as the EHD contacts 

reproduced during this thesis in tribometers. Additionally, it is suspected that the non-

Newtonian effects have an important influence on friction in sliding contacts: this was 

demonstrated for lubricant 2 in Doki-Thonon thesis (5). As it was not possible to determine a 

Carreau law for lubricant 3 from Figure 2.1-12, the Carreau fit of another similar lubricant was 

used for a short study on non-Newtonian effects. This study is presented in Annexe C, and it 

demonstrated that this other lubricant was not similar enough to lubricant 3. The Carreau fit 

used did not correspond to behaviour of lubricant 3. Therefore, in the absence of a suitable 

model for non-Newtonian effects, the rest of the document will consider Lubricant 3 as 

Newtonian. 
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Figure 2.1-12 - Lubricant 3 viscosity dependence on shear stress, under various pressure and temperature 
conditions. 

 

2.1.2.2. The EHD problem 

As presented in chapter 1, the EHD problem requires the solving of different systems of 

equations. 

 

The generalised Reynolds equation 

The Navier-Stokes equations represent the mechanical equilibrium of the fluid medium. One 

can consider the fluid as continuous and the flow not time dependent. Moreover, the inertia 

forces and the surface tension are considered negligible in comparison with viscous forces. 

The fluid flow occurs in a confined domain where the film thickness is small compared to the 

other dimensions of the contact. Moreover, this flow is considered as laminar. Under these 

conditions, the simplified Navier-Stokes equations read: 

{
  
 

  
 
𝜕𝑝

𝜕𝑥
=
𝜕

𝜕𝑧
𝜏𝑧𝑥

𝜕𝑝

𝜕𝑦
=
𝜕

𝜕𝑧
𝜏𝑧𝑦

𝜕𝑝

𝜕𝑧
= 0

 
Equation 

2.1-10 

 

(𝑥, 𝑦, 𝑧) being the 3 space coordinates, with 𝑧 oriented along the film thickness, 𝑝 the pressure 

and 𝜏𝑖𝑗 the 𝑖 shear stress in the 𝑗 direction. As one considers the fluid as viscous, these equations 

become: 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI131/these.pdf 
© [J-D. Wheeler], [2016], INSA Lyon, tous droits réservés



 

42 

{
  
 

  
 
𝜕𝑝

𝜕𝑥
=
𝜕

𝜕𝑧
(𝜇
𝜕𝑢𝑓,𝑥

𝜕𝑧
)

𝜕𝑝

𝜕𝑦
=
𝜕

𝜕𝑧
(𝜇
𝜕𝑢𝑓,𝑦

𝜕𝑧
)

𝜕𝑝

𝜕𝑧
= 0

 
Equation 

2.1-11 

 

where 𝑢𝑓,𝑖 is the velocity field of the lubricant in the direction 𝑖. The variable 𝜇 is the viscosity 

of the lubricant. After integrations along 𝑧, and considering that the viscosity may vary across 

the film thickness, the Navier-Stokes equations read:  

{
 
 

 
 𝑢𝑓,𝑥 =

𝜕𝑝

𝜕𝑥
 ∫

𝑧

𝜇
𝑑𝑧

𝑧

0

+ 𝐶𝑥∫
1

𝜇
𝑑𝑧

𝑧

0

+ 𝐶𝑥
′

𝑢𝑓,𝑦 =
𝜕𝑝

𝜕𝑦
 ∫

𝑧

𝜇
𝑑𝑧

𝑧

0

+ 𝐶𝑦∫
1

𝜇
𝑑𝑧

𝑧

0

+ 𝐶𝑦
′

 Equation 2.1-12 

 

with 𝐶𝑥, 𝐶𝑥
′ , 𝐶𝑦 and 𝐶𝑦

′  the integration constants. One considers no-slip at the fluid-structure 

interface: 

𝑢⃗ 𝑓|𝑧=0 = 𝑢⃗ 𝑏
𝑢𝑓|𝑧=ℎ(𝑥,𝑦) = 𝑢⃗ 𝑡

 Equation 2.1-13 

 

with ℎ(𝑥, 𝑦) the film thickness at the point (𝑥, 𝑦), ut and ub the velocity fields at the top (t) and 

bottom (b) surfaces. The boundary conditions presented previously enable to define the four 

integration constants: 

𝐶𝑥 = −
𝜕𝑝

𝜕𝑥

∫
𝑧
𝜇 𝑑𝑧

ℎ

0

∫
1
𝜇 𝑑𝑧

ℎ

0

+
𝑢𝑡,𝑥 − 𝑢𝑏,𝑥

∫
1
𝜇 𝑑𝑧

ℎ

0

𝐶𝑦 = −
𝜕𝑝

𝜕𝑦

∫
𝑧
𝜇 𝑑𝑧

ℎ

0

∫
1
𝜇 𝑑𝑧

ℎ

0

+
𝑢𝑡,𝑦 − 𝑢𝑏,𝑦

∫
1
𝜇 𝑑𝑧

ℎ

0

𝐶𝑥
′ = 𝑢𝑏,𝑥 𝐶𝑦

′ = 𝑢𝑏,𝑦

 Equation 2.1-14 

 

Then one inserts these constants into Equation 2.1-12 (with the notations: 
1

𝜇𝑒
= ∫

1

𝜇
𝑑𝑧

ℎ

0
 and 

1

𝜇𝑒
′ =

∫
𝑧

𝜇
𝑑𝑧

ℎ

0
): 

𝑢𝑓,𝑖 =
𝜕𝑝

𝜕𝑖
 (∫

𝑧

𝜇
𝑑𝑧

𝑧

0

−
𝜇𝑒
𝜇𝑒
′ ∫

1

𝜇
𝑑𝑧

𝑧

0

) + 𝜇𝑒(𝑢𝑡,𝑖 − 𝑢𝑏,𝑖)∫
1

𝜇
𝑑𝑧

𝑧

0

+ 𝑢𝑏,𝑖  for 𝑖 = {𝑥, 𝑦} 
Equation 2.1-15 

 

This expression describes the momentum. The following equation describes the mass 

conservation: 

𝜕𝑚𝑥

𝜕𝑥
+
𝜕𝑚𝑦

𝜕𝑦
= 0 with 𝑚𝑥 = ∫ 𝜌𝑢𝑓,𝑥𝑑𝑧

ℎ

0

 and 𝑚𝑦 = ∫ 𝜌𝑢𝑓,𝑦𝑑𝑧
ℎ

0

 Equation 2.1-16 
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By introducing Equation 2.1-15 into the mass flow expressions (Equation 2.1-16), one obtains: 

𝑚𝑖 = ∫ (𝜌
𝜕𝑝

𝜕𝑖
 (∫

𝑧′

𝜇
𝑑𝑧′

𝑧

0

−
𝜇𝑒
𝜇𝑒
′ ∫

1

𝜇
𝑑𝑧′

𝑧

0

) + 𝜇𝑒(𝑢𝑡,𝑖 − 𝑢𝑏,𝑖)∫
1

𝜇
𝑑𝑧′

𝑧

0

+ 𝑢𝑏,𝑖
′ )𝑑𝑧

ℎ

0

 

for 𝑖 = {𝑥, 𝑦} 

Equation 2.1-17 

 

Under this form, this expression is at the basis of the generalised Reynolds equation as defined 

by Najji et al. (75) and used by Habchi et al. (4) and Doki-Thonon et al. (16). Indeed, with the 

notations detailed below: 

𝜌𝑒 = ∫ 𝜌 𝑑𝑧
ℎ

0
,    𝜌𝑒

′ = ∫ (𝜌 ∫
1

𝜇
𝑑𝑧′

𝑧

0
) 𝑑𝑧

ℎ

0
,   𝜌𝑒

′′ = ∫ (𝜌 ∫
𝑧′

𝜇
𝑑𝑧′

𝑧

0
) 𝑑𝑧

ℎ

0
, 

ε̅ =
𝜇𝑒
𝜇𝑒
′ 𝜌𝑒

′ − 𝜌𝑒
′′, 𝜌𝑖

∗ = 𝜌𝑒
′𝜇𝑒(𝑢𝑡,𝑖 − 𝑢𝑏,𝑖) − 𝜌𝑒𝑢𝑏,𝑖 

Equation 2.1-18 

 

Equation 2.1-17 can be reformulated. When differentiated, it becomes: 

𝜕𝑚𝑖

𝜕𝑖
= −

𝜕

𝜕𝑖
(ε̅  
𝜕𝑝

𝜕𝑖
) +

𝜕

𝜕𝑖
(𝜌𝑖

∗) 
Equation 2.1-19 

 

When Equation 2.1-19 is inserted into Equation 2.1-16, one obtains the generalised Reynolds 

equation: 

∇⃗⃗ . (ε̅ ∇⃗⃗ 𝑝) − ∇⃗⃗ . 𝜌∗⃗⃗⃗⃗ = 0 Equation 2.1-20 

 

This expression is a mass conservation equation and it takes into account the viscosity and 

density variations along the 𝑧 axis.  

In Equation 2.1-20, the film thickness ℎ has a key role, even if it does not appear explicitly. The 

common choice to express it is to consider the rigid bodies as parabolic in the contact vicinity. 

The gap between the surfaces is then: 

h(x, y) = h0 +
𝑥2

2𝑅𝑥
+
𝑦2

2𝑅𝑦
+ 𝛿(𝑥, 𝑦) Equation 2.1-21 

 

with 𝛿(𝑥, 𝑦) the deformation sum of the bodies along 𝑧 under load, and ℎ0 the gap between 

the rigid bodies, at the contact centre. 

 

The elastic deformations 

The deformation term in Equation 2.1-21 is computed using linear elasticity equations. They 

are the second equation system of the EHD problem. Under the pressure generated by the 

hydrodynamic effects (described in the generalised Reynolds equation), the bodies are 

deformed, leading to a shape change of the fluid flow confinement. The solid mechanics side 

of this fluid-structure interaction is quite easily described by the classical elasticity equations.  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI131/these.pdf 
© [J-D. Wheeler], [2016], INSA Lyon, tous droits réservés



 

44 

However, it should be noticed that the equivalent body theory was applied to this problem. It 

is a common choice in the EHD domain (see Habchi (4) and Habchi et al. (45)). With this theory, 

one considers that the two mating solids can be reduced to a unique equivalent solid to 

compute the deformations. Its Young modulus 𝐸 and Poisson ratio 𝜈 are obtained from the 

ones of the original solids: 

𝐸 =
𝐸𝑏
2𝐸𝑡(1 + 𝜈𝑡)

2 + 𝐸𝑡
2𝐸𝑏(1 + 𝜈𝑏)

2

(𝐸𝑏(1 + 𝜈𝑡) + 𝐸𝑡(1 + 𝜈𝑏))
2  

𝜈 =
𝐸𝑏𝜈𝑡(1 + 𝜈𝑡) + 𝐸𝑡𝜈𝑏(1 + 𝜈𝑏)

𝐸𝑏(1 + 𝜈𝑡) + 𝐸𝑡(1 + 𝜈𝑏)
 

 

Equation 2.1-22 

 

with 𝐸𝑏 and 𝜈𝑏 the Young modulus and the Poisson ratio of the bottom solid, and 𝐸𝑡 and 𝜈𝑡 

the ones of the top solid. As a result, only one equivalent deformable solid has to be modelled. 

It is of great use to reduce the computational time.  

 

The load equilibrium equation 

The third and last equation which describes the EHD problem is the equilibrium of the load. 

One has to insure that the pressure sum generated over the EHD contact area is equal to the 

load applied on the solids. It simply writes: 

w =∬𝑝 𝑑𝑥𝑑𝑦

𝑆

 
Equation 2.1-23 

 

with 𝑤 the contact load and 𝑆 and the pressurized surface area. 

 

Computation domains 

The three equation systems presented above are solved simultaneously on two domains. 

Elastic deformations are solved on a cuboid (represented in grey in Figure 2.1-13). Its 

dimensions are chosen according to the literature (see Habchi (4)): they are much larger than 

the contact, and they model a semi-infinite body. Indeed, when they are large enough, their 

variation does not affect the results of the Reynolds equation. This equivalent body is clamped 

at its lower face, and a part of the upper face (represented in blue in Figure 2.1-13) undergoes 

the pressure generated in the contact. The other faces are free. 

This pressure is the result of the Reynolds equation. The domain on which this equation is 

solved is defined much larger than the contact area. In such a way, its dimensions do not affect 

the results of the Reynolds equation. In Figure 2.1-13, the Reynolds domain dimensions are 8𝑎 

along 𝑥 direction and 8𝑏 along 𝑦 direction, with 𝑎 and 𝑏 the Hertzian contact dimension 

respectively along the entrainment direction and perpendicular to it. These values are set 

according to the literature: Doki-Thonon (5) selected 9𝑎 for both directions (circular contacts) 

and Habchi selected (4) 6𝑎. The present study requires a smaller domain than Doki-Thonon’s, 
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as the spinning kinematic is less severe, but it was decided to use a wider domain than 

Habchi’s, because the ellipticity ratio varies and the pressure build up at the contact inlet varies 

with it. The selected dimensions were tested with success. At the limit of the Reynolds 

computation domain, the boundary 𝑝 = 0 is set (it sets that the ambient pressure is the 

reference of the relative pressure). The free boundary problem occurring at the contact exit is 

solved using a penalty method (Wu (76), Habchi (4)). Indeed, at the contact exit the oil film 

rupture occurs and at this place 𝑝 = 0. 

 

 

Figure 2.1-13 - Computation domain 

 

2.1.2.3. Thermal model 

Solving the EHD basic equations enables a good understanding of the contact behaviour. 

However, the equations previously presented do not permit to take into account more complex 

effects. Indeed, under EHD conditions, the lubricant endures a severe compression at the 

contact inlet, and a sudden pressure drop at its exit. These pressure variations constitute a heat 

source that writes: 

Qcomp = −
𝑇

𝜌

𝜕𝜌

𝜕𝑇
(𝑢𝑓⃗⃗⃗⃗ . ∇⃗⃗ 𝑝) 

Equation 2.1-24 

 

Moreover, due to the kinematic conditions, the lubricant experiences a moderate to high shear 

rate. The relative sliding of the mating surfaces imposes a shearing which induces thermal 

dissipation. This second heat source can be expressed as follows: 

Qshear = 𝜇 ((
𝜕𝑢𝑓,𝑥

𝜕𝑧
)

2

+ (
𝜕𝑢𝑓,𝑦

𝜕𝑧
)

2

) Equation 2.1-25 
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These heat sources operate in the lubricant film, and the temperature rise has a major influence 

on the lubricant properties. To be able to take into account these dependences, the following 

energy equation should be solved in the lubricant: 

−∇. (kf∇𝑇) + 𝜌𝑓𝑐𝑝𝑓𝑈𝑓⃗⃗ ⃗⃗ . ∇𝑇 = 𝑄𝑐𝑜𝑚𝑝 +𝑄𝑠ℎ𝑒𝑎𝑟 Equation 2.1-26 

 

and in the top (𝑡) and bottom (𝑏) solids: 

−∇. (ki∇𝑇) + 𝜌𝑖𝑐𝑝𝑖𝑢𝑖⃗⃗  ⃗. ∇𝑇 = 0 with 𝑖 = {𝑡, 𝑏} Equation 2.1-27 

 

The variable 𝑇 is the temperature, 𝑘𝑓 is the lubricant thermal conductivity and 𝑐𝑓 is its heat 

capacity.  

As the heat sources and the material parameters vary in the lubricant thickness, the 

computation domain should be in the three dimensions as mentioned in Figure 2.1-14. 

Moreover, because the two solids may be of different nature, they should be both represented 

and no symmetry assumption can be made.    

 

 

Figure 2.1-14 - Thermal model computation domain 

 

At the top and bottom boundaries, the temperature is set at 𝑇0 (the environment temperature), 

and the computation domain is defined so that the solids are infinitely thick comparing to the 

lubricant film thickness. The aim of this choice is to maintain a zero temperature gradient at 

the top and bottom boundaries. The lateral boundary conditions are set to the temperature 𝑇0 

as well, if the matter is entering the domain. Otherwise, a free-flux boundary condition is 

applied. Moreover, at the solid-liquid interfaces, the flux continuity is insured. 
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2.1.2.4. Solver 

The multiphysics aspects of this simulation, together with the complexity of the solution, make 

the fully-coupled solving within one step arduous. Each model equation must be initialised 

with a first guess which is as close as possible to the final solution. At first, the solid 

deformations are computed for a static Hertzian pressure distribution (a step called 

“Initialisation” in Figure 2.1-15). This deformation field is then used as an initial solution to 

the linear elasticity equations in the isothermal EHD fully coupled problem (“Isothermal EHD 

solver” in Figure 2.1-15), which means that the different equation systems are solved 

simultaneously. In this problem, the Reynolds pressure is initialised with the same static 

Hertzian pressure distribution. In parallel with this isothermal EHD computation, the thermal 

model is initialised by a one direction coupling with the EHD model: it is a loose coupling. The 

thermal model initialisation step solves the energy equation in isothermal EHD conditions, as 

if the thermal effects had no influence on these conditions. Finally the EHD model and the 

Thermal model are solved together in a fully coupled way. Such a process is similar to the 

stationary steps methodology chosen by Raisin et al. (77). The software used to compute all 

the equations described previously is COMSOL Multiphysics 4.4.  

 

 

Figure 2.1-15 – Resolution successive steps 

 

Despite the successive initialisation steps, the problem is highly non-linear: consequently 

several Newton-Raphson iterations are required to get the convergence at each step. The 

algorithm requires about 2h to converge on a classical computation (650 000 degrees of 

freedom) with a 3.5 GHz processor but without parallelisation. Moreover, the solution of one 

case can be used as an initial guess for other computations in order to save time. 
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The choice of the relative discrepancy criterion was made thanks to a numerical analysis, and 

the relative discrepancy is computed on the variation of ℎ𝑐. The results are presented in Table 

2.1-5, and it was decided to select the 0.001 relative discrepancy criterion.  

 

Relative discrepancy 0.005 0.003 0.0015 0.001 0.0002 

ℎ𝑐  [𝑛𝑚] 245.6 274.3 310.8 315.5 316.7 

ℎ𝑚 [𝑛𝑚] 182.9 180 180.5 180.9 181.6 

Table 2.1-5 – Influence of the relative discrepancy (convergence criterion) on the central and minimum film 
thicknesses for the Case 1 described in section 2.2.1 

 

The typical dimensionless mesh size inside the pressurized area is selected to be 0.02 according 

to Figure 2.1-16 which gathers the results of the numerical analysis on mesh convergence. This 

graphs shows that it is necessary to have a mesh size inside the Hertz zone of the Reynolds 

domain which is inferior or equal to 0.02 in order to reach a numerical accuracy below 0.1%. 

It corresponds to a numerical problem with approximately 106 degrees of freedom (DOF) for 

all the EHD isothermal Newtonian equations. A finer mesh does not contribute significantly 

to reduce the discretization error, but it increases the computation time. 

 

 

Figure 2.1-16 – Relative discrepancy on film thickness according to the mesh refinement which is specified in 
terms of degrees of freedom (DOF) number and mesh size for case 3 presented in section 2.2.1 

 

Even though the model was inspired by a rich and reliable literature, and in spite of the physics 

based constitution laws, the solution cannot be considered as correct without an experimental 

validation. 
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2.1.3. Model validation 

The model presented previously aims to predict accurately the EHD contact specifics in wide 

ranges of ellipticity ratios and velocity-load encountered under real EHD conditions. To 

evaluate its abilities, several experiments are considered. As this model was extensively 

validated for the 𝑘 = 1 (circular contact) configuration (in the work of Habchi et al. (78) or 

Doki-Thonon et al (17)), it is decided to present numerical-experimental comparisons for 𝑘 ≠

1 only. The first case considered is a slender configuration (as this one is in line with the torus 

on plane FREC), and a wide elliptical contact is presented after.  

A validation based on film thickness comparison is used here: indeed, it is possible to obtain 

a map of data from the experiment and to compare it with the numerical results. Because of 

the thin film conditions, an optical spacer layer is used in the experiments of this section. 

However, no friction study is proposed in this chapter. Further assessments of the model are 

presented in section 3.3 with friction comparisons between the model predictions and the 

measurements. 

2.1.3.1. Slender elliptical contact 

The “Slender elliptical” sample presented in Table 2.1-1 is used together with a glass disc, 

leading to a 𝑘 = 0.526 contact. The two specimen’s properties are detailed in Table 2.1-2. The 

oil used for the experiment is lubricant 3 and is presented in Tables 2.1-4. The operating 

conditions are presented in Table 2.1-6.  

 

Operating conditions 

Parameter [Unit] Value 

𝑘 [ − ] 0.526 

𝑤 [𝑁] 13 

𝑇0 [𝐾] 303 

𝑢𝑒 [𝑚/𝑠] 0.35 ≤ 𝑢𝑒 ≤ 6.16 𝑚/𝑠 

𝑝ℎ  [𝑃𝑎] 525 × 106 

Table 2.1-6 – Operating conditions of the slender elliptical EHD experiment 
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Figure 2.1-17 - Film thickness along the main axes (𝑥 is represented in blue and 𝑦 is in orange) of a slender 
elliptical contact. The entrainment velocity 𝑢𝑒 = 6.16 𝑚/𝑠 is represented by the yellow arrow 

 

For each entrainment condition, 10 interferograms are recorded in order to obtain an averaged 

result and its standard deviation. One of these interferograms is reported at the upper row of 

Figure 2.1-17. This picture is chosen as it is representative of the average values of the 10 

pictures of the same entrainment velocity.  

The maximum standard deviation is smaller than 5 𝑛𝑚 for both central (ℎ𝑐) and minimum film 

thickness (ℎ𝑚) under all operating conditions. For its part, the relative standard deviation on 

the experimental data is smaller than 5% (for ℎ𝑐) and than 16% (for ℎ𝑚).. 

The numerical study is performed for the same conditions as the experiments for comparison. 

The graphs displayed in Figure 2.1-17 gather the experimental and numerical film thicknesses 

along the contact main axes (𝑥 and 𝑦 according to the colour code) for one entrainment 

condition. Experimental and numerical results show good agreement all along these axes. To 

be more specific, there is a maximum difference of about 10 𝑛𝑚 only on the film thickness 

inside the Hertzian contact area. Another positive aspect is the ability to predict the position 

of the minima of this field: they are generally not easy to locate precisely. These encouraging 

results shows that the model is able to predict the gap between two bodies for slender elliptical 

EHD contacts. 

A similar comparison was made for the whole entrainment velocity range. The film thickness 

characteristic values (ℎ𝑐  and ℎ𝑚 = (ℎ𝑚,𝑙+ +  ℎ𝑚,𝑙−)/2 as presented in Figure 2.1-10) are 

measured for each condition and the average values were reported in Figure 2.1-18. A good 

agreement is shown between experimental and numerical results. The average relative 
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difference is 8.9% for ℎ𝑐 and 9.5% for ℎ𝑚: besides, the maximum is 16.9% on ℎ𝑐 (or 12 𝑛𝑚) and 

15.1% on ℎ𝑚 (or 10 𝑛𝑚). Differential colorimetric interferometry generally enables more 

precise results, but in this case the applied load corresponds to the minimum possible with 

this test-rig, leading to visible contact fluctuations. There is a slight reduction of the film 

thickness for the larger entrainment velocities. It is observable on the results from Jérotrib and 

on those from the model. It is also important to notice that the convex sample surface had a 

roughness 𝑅𝑎 ≈ 10 𝑛𝑚 which contributed to the dispersion of the results. One can notice this 

on Figure 2.1-18: the isothermal trend is the linear extrapolation of the film thickness variation 

with 𝑢𝑒 in the 𝑢𝑒 < 2 𝑚/𝑠 area, which is not influenced by thermal effects according to the 

thermal film thickness reduction coefficient 𝜑𝑡 proposed by Cheng (79). Moreover, the good 

agreement of Figure 2.1-17 (at the largest entrainment velocity and k< 1 configuration) also 

testifies of the model capabilities about thermal effects prediction. So even though there are 

some differences, the experiment confirms the accuracy of the model over a wide range of 

entrainment conditions. 

 

 

Figure 2.1-18 – Film thickness for a slender elliptical contact (k=0.526) and for various entrainment conditions 
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2.1.3.2. Wide elliptical configuration 

When 𝑘 > 1, the contact becomes a wide ellipse, with the entrainment velocity perpendicular 

to the large axis of the ellipse. The “wide elliptical” sample, with an ellipticity ratio 𝑘 = 3.46 

presented in Table 2.1-1 was used. The operating conditions are presented in Table 2.1-7. 

 

Operating conditions 

Parameter [Unit] Value 

𝑤 [𝑁] 150 

𝑘 [ − ] 3.46 

𝑇0 [𝐾] 303 

𝑢𝑒 [𝑚/𝑠] 0.05 ≤ 𝑢𝑒 ≤ 6.46 𝑚/𝑠 

𝑝ℎ  [𝑃𝑎] 489 × 106 

Table 2.1-7 – Operating conditions of the wide elliptical EHD experiment 

 

 

Figure 2.1-19 - Film thickness along the main axes (𝑥 is represented in blue and 𝑦 is in orange) on a wide 
elliptical contact (at 𝑢𝑒 = 1.79 𝑚/𝑠). The entrainment velocity is represented by the yellow arrow 

 

The same experimental procedure was applied here. For each entrainment condition, 10 

interferograms of each EHD contact and its vicinity were taken. Through post-treatment, the 

averaged central and minimum film thickness is obtained, together with their standard 

deviations. In all the operating conditions, the maximum standard deviation was smaller than 
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4 𝑛𝑚 for the central film thickness and smaller than 8 𝑛𝑚 (ie. smaller than 4% of the 

corresponding case) for the minimum film thickness. 

A focus is made on the 𝑢𝑒 = 1.79 𝑚/𝑠 condition. An interferogram was selected as it represents 

well the characteristic film thickness values observed on the 10 interferograms in this 

entrainment condition. This picture is displayed in Figure 2.1-19 together with its film 

thickness evaluation along the main axes of the contact. Through a numerical analysis with 

the model presented in section 2.1.2, the film gap is computed along the same axes. A 

comparison of the results shows a good agreement between the two approaches though some 

roughness is visible on the experimental curve. The simulation is able to predict the shape of 

the gap, but also the position of local phenomena such as the constriction at the exit and on 

the sides. 

For all entrainment velocities, the numerical and experimental results show a good 

accordance, as presented in Figure 2.1-20. The average relative difference is 5.5%. The 

maximum relative deviation is 12.6% for the central film thickness (corresponding to 3 𝑛𝑚) 

and 17.9% for the minimum film thickness (corresponding to 3.3 𝑛𝑚). Similarly to the slender 

elliptical contact of section 0, a bigger difference is found at lower entrainment velocities and 

thus at low film thickness. It is accountable to the absolute uncertainty of the measurement 

method and also the roughness of the convex sample. At larger film thicknesses, this 

uncertainty has a negligible role. Figure 2.1-19 and Figure 2.1-20 show that the model is able 

to predict the wide elliptical EHD contact physics and principle characteristics. 

Figure 2.1-20 gives a general overview of the film thickness results. The entrainment velocity 

is varied, both experimentally and numerically, and both central and minimum film thickness 

are gathered in the graph. The standard deviations are not reported as their representation is 

always smaller than the geometric symbol representing the mean values. Moreover, the 

isothermal trend is not reported either, as no significant deviation from it was observed at the 

largest velocities. 
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Figure 2.1-20 - Comparison between experimental and numerical TEHD results for a wide elliptical contact 
(𝑘 = 3.46) 

 

Thanks to the two experiments presented (for wide and slender elliptical contacts), one can 

consider the model presented in section 2.1.2 as valid for film thickness predictions. The 

demonstration was made over a quite wide range of entrainment velocities and under a 

pressure typically encountered in flange roller-end contacts. It confirms and extends the 

validity domain of the model which was previously tested on circular contacts only. The model 

can now be used with confidence to explore the influence of operating conditions (including 

ellipticity) on the contact behaviour. 

 

2.2. Ellipticity ratio influence 

2.2.1. Study philosophy 

With this validated model for film thickness predictions, the aim is now to extend the 

knowledge pertaining to the elliptical contacts, especially the slender ones which were less 

studied in the literature. The underlying idea is to develop the understanding of the slender 

contacts in order to use it as an approach to the torus on plane FREC. 

The thermal effects were not computed in order to simplify the identification of the physical 

mechanisms driven by the ellipticity. As a consequence, the terms of the generalized Reynolds 

equation (Equation 2.1-18 and the generalized viscosities 𝜇𝑒 and 𝜇𝑒
′ ) become: 

𝜌𝑒 = 𝜌𝑓 ∗ ℎ         𝜌𝑒
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2
(𝑢𝑡,𝑖 − 𝑢𝑏,𝑖) − 𝜌𝑓ℎ𝑢𝑏,𝑖 = 𝜌𝑓ℎ𝑢𝑒 

Equation 2.2-1 
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These simplifications transform the generalized Reynolds equation (Equation 2.1-20) into the 

classical Reynolds equation: 

𝜕

𝜕𝑥
(
𝜌𝑓ℎ

3

μ

𝜕𝑝

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝜌𝑓ℎ

3

μ

𝜕𝑝

𝜕𝑦
) − 12𝑢𝑒

𝜕(𝜌𝑓ℎ)

𝜕𝑥
= 0 Equation 2.2-2 

 

The lubricant 2 was used in this section. Its properties are presented in Tables 2.1-3. One may 

notice that the Murnaghan EOS parameters are the same but that the modified WLF 

parameters are slightly different. The model evaluations presented in section 2.1.3 are still 

valid with this different batch: the same characterisation process was used for the two 

lubricants. 

To explore the different entrainment conditions existing in FREC, five velocity-load reference 

cases (fully described in Table 2.2-1) were studied, with 𝑢𝑒 = 0.5, 2, 10 𝑚/𝑠, and 𝑤 = 120, 800, 

2500 𝑁. Table 2.2-1 also includes the corresponding Hertzian pressures and contact areas. 

The temperature of the contact is set to 𝑇0 = 313 𝐾. For each entrainment velocity-load case, 

different configurations were computed keeping the contact surface 𝑆 constant whereas the 

ellipticity was varied from 𝑘 = 0.2 to 𝑘 = 5. The corresponding values of 𝑅𝑥 and 𝑅𝑦 are 

reported in Table 2.2-2. Because the ellipse surface, defined by 𝑆 = 𝜋𝑎𝑏, was kept constant for 

a given load 𝑤, the Hertzian pressure, 𝑝ℎ, also remains constant when 𝑘 varies.  

𝑝ℎ =
3𝑤

2𝜋𝑎𝑏
  ⇒   𝑝ℎ =

3𝑤

2𝑆
=constant for a given 𝑤 Equation 2.2-3 
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𝒖𝒆 [ 𝒎/𝒔 ] 

0.5 2 10 

𝒘 [𝑵] 

(𝑝ℎ  [𝑀𝑃𝑎];  

𝑆 [𝑚𝑚²]) 

120  
(364; 0.49) 

- case 1 - 

800 
(686; 1.75) 

case 2 case 3 case 4 

2500 

(1002; 3.74) 
- case 5 - 

 

 

𝒌 [−] 𝑹𝒙 [𝒎𝒎] 𝑹𝒚 [𝒎𝒎] 

5.03 28.92 345.00 

3.96 33.00 270.00 

2.92 39.32 200.00 

1.98 49.84 140.00 

1.46 60.90 108.00 

1.00 80.00 80.00 

0.68 108.00 60.90 

0.50 140.00 49.84 

0.34 200.00 39.32 

0.25 270.00 33.00 

0.20 345.00 28.92 
 

Table 2.2-1 - Load, pressure and velocity of the five reference cases 
computed. In each case, 𝑘 varies by a change of both 𝑅𝑥 and 𝑅𝑦 (𝐸 =

210 𝐺𝑃𝑎, 𝜈 = 0.3, 𝑇0 = 313 𝐾, 𝜇0 = 0.00795 𝑃𝑎. 𝑠, 𝜌0 = 863 𝑘𝑔.𝑚
−3 

and 𝛼∗ = 20.2 𝐺𝑃𝑎−1 constant). 

 

Table 2.2-2 - 𝑘, 𝑅𝑥 and 𝑅𝑦 

values for the different 
ellipticity configurations 

 

 

As the load 𝑤 and the Hertzian pressure 𝑝ℎ remain constant, each case may correspond to a 

single industrial application in which the bodies’ geometry still has to be defined. The 

geometry is varied so that its influence is isolated from the influence of other parameters. The 

configurations in which 𝑘 < 1 correspond the most to the torus on plane FREC (see Colin et 

al. (9) for instance), but the 𝑘 ≥ 1 configurations are studied together to enable a more global 

view on elliptical contacts. 

Figure 2.2-1 shows a representation of the five reference cases described in Table 2.2-1. They 

are plotted on a 𝑀 − 𝐿 diagram and on a 𝑘 − 𝐿 diagram in order to give an overview of the 

various computed cases, 𝑀 and 𝐿 being the dimensionless parameters defined by Moes (80). 

The same data are plotted on the two graphs: they are the projection of data which are initially 

in a 3D space defined by 𝑀, 𝐿 and 𝑘. Each red line represents one of the five reference cases. 

The tabulated values of film thickness together with the dimensionless parameters are 

available in Annexe D. The Chittenden et al. (10,44) and the Hamrock and Dowson (22–24) 

computation cases were also reported on the graphs. These results enabled the development 

of useful prediction formulae. Chittenden et al. formulae were based on the results of Hamrock 

and Dowson but they added other computations dedicated to slender elliptical contacts. Like 

most EHD numerical studies, they were based on dimensionless parameter variation. In the 

present study, the choices explained previously were made, in order to make quantitative 

comparisons between the ellipticity configurations and to draw new conclusions. Thus, the 

current work is more in line with an engineering approach, when an optimum contact 

geometry for given (i.e. dimensioned) entrainment speed and normal load is being sought. 
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Figure 2.2-1 – Sum-up diagram: five velocity-load reference cases (red circles) together with the experimental 
validations cases presented in section 2.1.3 (green discs). The Chittenden et al. (10,44) and Hamrock-Dowson 

(22–24) computation configurations are also represented. 

 

2.2.2. Film thickness results 

Figure 2.2-2 shows the film thickness results for 𝑢𝑒 = 2 𝑚/𝑠 and 𝑤 = 800 𝑁.  While 

entrainment velocity and load remain constant, the ellipticity ratio varies between 𝑘 = 0.2 

and 𝑘 = 5, from the slender to the wide elliptical contact and including the circular 

configuration.  For comparison purposes, the central and minimum film thicknesses computed 

in this study are plotted together with the prediction from Chittenden et al. (10,44) given by 

the semi-analytical formulae below: 

ℎ𝑐 (𝐶ℎ𝑖𝑡𝑡𝑒𝑛𝑑𝑒𝑛) = 4.31 𝑈
0.68 𝐺0.49 𝑊−0.073 𝑅𝑥 (1 − 𝑒

−1.23(𝑅𝑦 𝑅𝑥⁄ )
2 3⁄

) 

ℎ𝑚 (𝐶ℎ𝑖𝑡𝑡𝑒𝑛𝑑𝑒𝑛) = 3.68 𝑈
0.68 𝐺0.49 𝑊−0.073 𝑅𝑥 (1 − 𝑒

−0.67(𝑅𝑦 𝑅𝑥⁄ )
2 3⁄

) 

Equation 2.2-4 
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with 𝐺 = 𝛼∗𝐸′ the dimensionless material parameter, 𝑊 the dimensionless load parameter, 

and 𝑈 the dimensionless speed parameter, as defined by Hamrock and Dowson (22). The 

piezo-viscous coefficient 𝛼∗, known as the reciprocal asymptotic isoviscous pressure and 

defined by Blok (11) was used here. The well-known predictive formulae developed by 

Hamrock and Dowson (22–24) are not used here as they are addressed to 𝑘 ≥ 1 contacts only 

(circular and wide elliptical). At the temperature  𝑇0 = 313𝐾 considered in this study, 𝛼∗ =

20.2 𝐺𝑃𝑎−1. 

 

 

Figure 2.2-2 - Film thickness for varying ellipticity ratio for 𝑤 = 800 𝑁 and 𝑢𝑒 = 2 𝑚/𝑠 

 

Figure 2.2-1 includes the 𝑀 − 𝐿 configurations from which Chittenden et al. derived their 

formulae.  These configurations are mainly corresponding to the cases of both low velocity 

and low load, but also the circular contact at the 𝑤 = 800 𝑁 load.   

Figure 2.2-2 shows ℎ𝑐 , the central film thickness, variations with a maximum occurring for 𝑘 ≈

2/3.  For 𝑘 < 2/3, when the ellipse becomes narrower and for 𝑘 > 2/3, when the ellipse 

becomes wider, ℎ𝑐 clearly decreases.  The overall minimum film thickness, ℎ𝑚, plotted in 

Figure 2.2-2 actually represents the minimum of two different physical quantities: the 

minimum film thickness on the contact central line, ℎ𝑚,𝑐, and the minimum film thickness on 

the contact sides ℎ𝑚,𝑙 (lateral position), according to the observations made by Hamrock and 

Dowson (23).  To be more precise, ℎ𝑚 = min (ℎ𝑚,𝑙  ; ℎ𝑚,𝑐).  For the wide elliptical contact,  ℎ𝑚,𝑐 

becomes the smallest and ℎ𝑚,𝑙 is a local minimum.  One may notice that ℎ𝑚,𝑐 is smaller than ℎ𝑐 

but follows its trend, whatever the ellipticity ratio.  Yet, ℎ𝑚,𝑙 has a totally different variation 

from ℎ𝑐 and even if it drastically decreases for low 𝑘, it becomes larger than ℎ𝑐 for 𝑘 ≥ 3.2.  The 

two minima ℎ𝑚,𝑙 and  ℎ𝑚,𝑐 are equal for 𝑘 ≈ 2.4 and in the following, ℎ𝑚,𝑙 and ℎ𝑚,𝑐 will not be 

represented anymore for the sake of clarity. The tabulated values of film thickness presented 

in this graph are reported in Annexe D. 
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In this EHD contact range, the central film thickness computed with Chittenden formula 

matches the computations of this study with a deviation of less than 7% (see Figure 2.2-3, 

case 𝑤 =  120 𝑁).  However the minimum film thickness difference can rise up to 30% at 120𝑁 

and much more at higher loads: this highlights the validity of the analytical models published 

in 1985 but also asks questions on the relevance of these formulae today.  They also provide 

acceptable trends outside of the domain used to establish them, however they do not allow for 

quantitative considerations (see Figure 2.2-3, for 𝑤 = 800𝑁 𝑜𝑟 2500 𝑁).  Given their precision 

limitations and their rather restricted range of application, the need for advanced film 

thickness prediction in EHD elliptical contacts is underlined here. 

 

 

Figure 2.2-3 - Film thickness for varying ellipticity ratios for three different normal loads and a constant 
entrainment velocity 𝑢𝑒 = 2 𝑚/𝑠 

 

Figure 2.2-3 shows the film thickness variations with ellipticity for the different load cases, 

while 𝑢𝑒 = 2 𝑚/𝑠 remained constant. The same trends are observed for the three 

configurations. Namely, ℎ𝑐 maximum does not occur for the wider elliptical contact but for 

𝑘 ≈ 1 at low load, 𝑘 ≈ 2/3 for intermediate load and 𝑘 ≈ 0.34 for the largest load.  Moreover, 

the largest ℎ𝑚 is found for 3 ≤ 𝑘 ≤ 4 whatever the load value.  For slender elliptical contacts, 

when 𝑘 decreases and especially at high load and low velocity, ℎ𝑚 decreases drastically and 

approaches zero film thickness.  ℎ𝑐 globally decreases as well, but it can be noticed that, at the 

lowest 𝑘 values, the load influence on ℎ𝑐 is opposite to the intuitive trend.  For instance at 𝑘 =

 0.20 and 𝑘 = 0.25, ℎ𝑐 is higher for 𝑤 = 2500 𝑁 than for 𝑤 = 800 𝑁 or 𝑤 = 120 𝑁.  As a 

consequence, in those conditions the ℎ𝑐/ℎ𝑚 ratio can take values as large as 10 or even 20, thus 

very far from those found in circular EHD contacts that rarely exceed 3.  Also, for the wide 

elliptical contact, increasing 𝑘 does not lead to an asymptotic value for ℎ𝑐 or ℎ𝑚.  However ℎ𝑐 

and ℎ𝑚 become closer and closer and thus follow the same tendency at high 𝑘.  This unusual 

result is simply due to the choice to maintain 𝑤, 𝑆 and 𝑢𝑒 constant, instead of dimensionless 

load and velocity.  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI131/these.pdf 
© [J-D. Wheeler], [2016], INSA Lyon, tous droits réservés



 

60 

 

 

Figure 2.2-4 - Film thickness for varying ellipticity ratios for three different entrainment velocity and a constant 
normal load 𝑤 = 800 𝑁 

 

Likewise, three different entrainment velocities were simulated for 𝑤 = 800 𝑁.  Because 𝑢𝑒 has 

a greater influence than 𝑤 on film thickness, the scaling is not the same between the graphs 

reported in Figure 2.2-4.  In the three entrainment velocity cases, ℎ𝑐 and ℎ𝑚 exhibit similar 

trends.  ℎ𝑐  maximum occurs for 𝑘 ≈ 1 at high entrainment velocity, 𝑘 ≈ 2/3 at intermediate 

velocity and 𝑘 ≈ 0.5 for the lowest velocity.  Similarly to the results presented in Figure 2.2-3, 

ℎ𝑚 is the largest for 3 ≤ 𝑘 ≤ 4, whatever the entrainment velocity.  Again, extremely low ℎ𝑚 

values are obtained for 𝑢𝑒 = 2 and 0.5 𝑚/𝑠, leading to unconventional ℎ𝑐/ℎ𝑚 ratio values close 

to 10 and even 20, respectively.  Nevertheless, compared to more classical (e.g. circular) EHD 

configurations, no counterintuitive trend of the entrainment velocity influence on film 

thickness was detected. 

Figure 2.2-3 and Figure 2.2-4 provide one last remarkable point concerning this time the central 

film thickness in circular contacts (𝑘 = 1).  A quantitative good agreement is found between 

the values predicted by the numerical model, and those obtained with the Chittenden et al. 

(10,44) formula, even though here the 𝑀− 𝐿 area exceeds the domain on which Equation 2.2-4 

was established.  At this stage, it is noteworthy that van Leeuwen (81) obtained a similar 

accordance, but by comparing his experimental ℎ𝑐 results with the analytical predictions from 

the same equation.  Moreover, he also found that the validity of Equation 2.2-4 transcended 

the area where it was originally designed for. 

So as film thickness varies according to ellipticity, load and velocity, hydrodynamic effects 

must be analyzed together with the fluid flow rates in order to understand more about the 

ellipticity influence.  For this purpose, the inlet and lateral characteristics will be described 

together with their influence on flow rates and pressure gradients in Section 2.3. 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI131/these.pdf 
© [J-D. Wheeler], [2016], INSA Lyon, tous droits réservés



 

61 
 

2.3. Discussion 

The film thickness variations can be influenced by several parameters.  When considering 

Reynolds classical equation, one may distinguish the Poiseuille terms (the two first terms of 

Equation 2.2-2) and the wedge effect due to the lubricant entrainment in a converging gap 

(coming from the second term of Equation 2.2-2).  

The wedge term, 𝜕(𝑢𝑒𝜌ℎ)/𝜕𝑥, generates pressure and is directly influenced by 𝑅𝑥, the radius 

of curvature along the entrainment direction.  Indeed, when 𝑅𝑥 decreases, 𝜕ℎ/𝜕𝑥 increases and 

the pressure gradient increases.  This phenomenon is at the basis of the hydrodynamic effect 

and contributes to the surfaces’ separation.  When the ellipse becomes wider, 𝑅𝑦 is increased 

and 𝑅𝑥 is reduced.  Consequently, the film thickness should monotonously increase as the 

wedge term is increased.  However here, for 𝑘 > 2/3 (see case 𝑢𝑒 = 2 𝑚/𝑠 in Figure 2.2-4) the 

central film thickness decreases when 𝑘 increases (or when 𝑅𝑥 is decreased).  Thus the 

hydrodynamic effect cannot explain by itself the film thickness variations reported in this 

work. 

 

 

Figure 2.3-1 - a) Velocity fields at the contact inlet, in the 𝑦 = 0 plane; b) Side flow represented by the velocity 
field at the contact side, in the 𝑥 = 0 plane. 

 

In the EHD contact, one also needs to consider the Poiseuille flow rates due to the pressure 

terms in the Reynolds equation.  To discuss into detail the film forming mechanisms occurring 

in elliptical contacts, the relative values of the different (incoming and outgoing) flow rates 

must be computed over a representative frontier.  Figure 2.3-1 presents schematically the 

lubricant’s flows at the contact inlet (Figure 2.3-1 a, Poiseuille and Couette contributions) and 

at the contact side (Figure 2.3-1 b, Poiseuille flow).  Whereas the Hertzian area of any dry 

contact is well defined by an ellipse on which the Hertzian pressure distribution applies, the 

pressurized zone of an elastohydrodynamically lubricated contact requires another definition. 
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Figure 2.3-2 - Hertzian (− −) & effective (called A, ∙ − ∙) areas together with fluid flows crossing the F frontier; 

F is the left part (denoted by ∙ − ∙) of A  frontier between the points 𝐵 and 𝐶; A is defined as the surface where 

𝑝 ≥ 10%𝑝ℎ 

 

A representative area A of the lubricated contact is arbitrarily defined here as the surface 

where 𝑝 ≥ 10% 𝑝ℎ (see a schematic representation in Figure 2.3-2).  This area A will be 

considered as the effective EHD contact surface on the two solids.  The flow rates crossing the 

frontier between the two representative areas will be investigated in order to explain film 

thickness variations.  The frontier F used for the fluid flows analysis corresponds to the left 

side of A (as illustrated schematically in Figure 2.3-2), represented by the dotted-dashed line 

between the points B and C in the (𝑥 , 𝑦 , 0) plane.  For mass conservation verification purposes, 

the frontier F was closed by a straight line between the points 𝐵 and 𝐶: it was found that 

conservation was insured within less than 1%.  Figure 2.3-2 also represents the fluid flows 

which will be considered in the following.  The Couette flow rate along 𝑥  in pure rolling is: 

𝑄𝑥𝑐 =∭ 𝜌(𝑥, 𝑦, 𝑧) ∗ 𝑢𝑒
ℱ

 𝑑𝑥 𝑑𝑦 𝑑𝑧 Equation 2.3-1 

 

Moreover, Poiseuille flow rate along 𝑥  is defined by: 

𝑄𝑥𝑝 =∭ 𝜌(𝑥, 𝑦, 𝑧) ∗ [(𝑢𝑓⃗⃗⃗⃗ ∙ 𝑥 
ℱ

− 𝑢𝑒) ∗ 𝑥 ] ∙ 𝑛⃗  𝑑𝑥 𝑑𝑦 𝑑𝑧 
Equation 2.3-2 

 

with 𝑢⃗  is the fluid velocity at point (𝑥, 𝑦, 𝑧) and 𝑛⃗  the outgoing vector normal to F.  𝑄𝑥𝑝 is the 

flow rate that limits the oil feeding of the contact due to the pressure gradient 𝜕𝑝/𝜕𝑥 at the 

inlet.  It is also called backflow rate.  
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There is another Poiseuille flow rate, along 𝑦 :  

𝑄𝑦𝑝 =∭ 𝜌(𝑥, 𝑦, 𝑧) ∗ [(𝑢𝑓⃗⃗⃗⃗ ∙ 𝑦 
ℱ

) ∗ 𝑦 ] ∙ 𝑛⃗  𝑑𝑥 𝑑𝑦 𝑑𝑧 Equation 2.3-3 

 

This flow rate is due to the pressure gradients 𝑑𝑝/𝑑𝑦 occurring on the contact sides and it 

evacuates the lubricant laterally. It is often known as side leakage.   

In Figure 2.3-2, 𝑄𝑖𝑛 and 𝑄𝑜𝑢𝑡 are also reported: they represent the total flow rates going into 

the contact through F and going out of the contact through F, respectively.  They are defined 

by: 

𝑄𝑖𝑛 =∭ 𝜌(𝑥, 𝑦, 𝑧) ∗ [𝑢𝑓⃗⃗⃗⃗ ∙ −𝑛⃗⃗ ⃗⃗  ⃗
ℱ

] ∗ [(𝑢⃗ ∙ 𝑛⃗ ) < 0] 𝑑𝑥 𝑑𝑦 𝑑𝑧 Equation 2.3-4 

𝑄𝑜𝑢𝑡 =∭ 𝜌(𝑥, 𝑦, 𝑧) ∗ [𝑢𝑓⃗⃗⃗⃗ ∙ 𝑛⃗ 
ℱ

] ∗ [(𝑢⃗ ∙ 𝑛⃗ ) > 0] 𝑑𝑥 𝑑𝑦 𝑑𝑧 
Equation 2.3-5 

 

with [(𝑢⃗ ∙ 𝑛⃗ ) < 0] = 1 if the condition is true and 0 otherwise, and [(𝑢⃗ ∙ 𝑛⃗ ) > 0] = 1 if the 

condition is true and 0 otherwise.   

𝑄𝑖𝑛 + 𝑄𝑜𝑢𝑡 will be used as a reference value to quantify the lubricant amounts that flow 

through F, driven by longitudinal and transverse gradients.  Due to the various contact 

configurations simulated here and in particular the resulting very different contact widths 𝑏, 

the amount of lubricant to consider is different from one contact to another.  However, the 

mass conservation leads the expressions given by Equation 2.3-1 to Equation 2.3-5 to 

verify 𝑄𝑖𝑛 + 𝑄𝑜𝑢𝑡 = 𝑄𝑥𝑐 +𝑄𝑥𝑝 + 𝑄𝑦𝑝 over the frontier F. 

 

 

Figure 2.3-3 -Relative fluid flows variations due to ellipticity ratio for 𝑢𝑒 = 2 𝑚/𝑠 & 𝑤 = 800 𝑁 
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In a similar manner to Damiens (62), the fluid flows are investigated for various ellipticity 

ratios. However, in the present case, it is their influence on film thickness which is analyzed.  

Figure 2.3-3 shows the relative fluid flow variations when the ellipticity varies, for 𝑤 = 800 𝑁 

and 𝑢𝑒 = 2 𝑚/𝑠. The reference flow for each ellipticity is 𝑄𝑖𝑛 + 𝑄𝑜𝑢𝑡 and the other flows are 

expressed relatively to this sum. The relative Poiseuille flow along 𝑥  is small for the slender 

configuration and increases for wider elliptical contacts. On the contrary, the relative 

Poiseuille flow along 𝑦  is high for the slender contacts and becomes lower for wider ones. This 

means that the relative backflow has a great influence on the wide elliptical contacts whereas 

the relative side flow is dominant in the slender configuration. Nonetheless, the graph in 

Figure 2.3-3 underlines the low variation of total relative leakage: its maximum is ≈ 60% larger 

than its minimum. Indeed, when 𝑘 increases, the backflow increase is almost compensated by 

the side leakage reduction. However the two Poiseuille flows do not have the same effect on 

film thickness. The side flow contributes to decrease the film thickness on the sides: according 

to Evans and Snidle (47), the minima act as seals toward the contact area forcing the minimum 

to occur on the sides. When the side flow is high enough, ℎ𝑚 can be dramatically reduced.  For 

its part, the backflow competes against the Couette flow and reduces the lubricant flow rate 

entering the contact. Moreover, for slender elliptical contacts, the high side leakage and the 

low hydrodynamic effects (a large 𝑅𝑥 reduces the wedge effect) are cumulated and, 

consequently, the resulting film thickness will be thinner, especially on the contact lateral 

edges. This certainly explains, to a large extent, the very thin or even extremely thin ℎ𝑚 values 

reported for low k in Figure 2.2-3 and Figure 2.2-4. On the contrary for the wide elliptical 

contact, the backflow influence on film thickness is balanced by the strong hydrodynamic 

effect (a small 𝑅𝑥 increases the wedge effect) and therefore the fluid film in this kind of contact 

remains rather thick. Simultaneously the typical minimum film thickness feature appearing 

onto the two contact lobes is gradually lost in favor to a single minimum occurring at the exit 

along the contact centerline. Figure 2.3-3 also shows that the backflow curve crosses the side 

leakage curve for 𝑘 ≈ 0.4 whereas in Figure 2.2-2, the maximum central film thickness occurs 

for 𝑘 ≈ 2/3. Thus, in the competition between Couette and Poiseuille flows, the former 

dominates the latter as it takes advantage of the low side leakage and low backflow. 

Consequently, as the hydrodynamic effect is less limited by the Poiseuille flows, the central 

film thickness optimum is reached for this ellipticity ratio range. When 𝑘 is becoming larger, 

the backflow contributes to decrease the surface separation, whereas when 𝑘 is smaller, the 

side flow reduces it as well, but in a different way. In addition, one may notice that the 

maximum of ℎ𝑐 does not occur for the same ellipticity range as the maximum of ℎ𝑚. The former 

happens where the Couette flow dominates the Poiseuille flow, whereas the latter happens 

where the position of the film thickness minimum changes. 

When the load or the velocity are varied, the conclusions remain similar (see Figure 2.3-4 and 

Figure 2.3-5). The Poiseuille flow sum varies slightly with ellipticity comparing to the 

turnaround observed between backflow and side leakage.  Again, the backflow is weak for 

slender contacts and strong for wide ones whereas an opposite variation is observed for the 

side leakage. 
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Figure 2.3-4 - Relative fluid flow variations due to ellipticity ratio for 𝑢𝑒 = 2 𝑚/𝑠 & various loads 

 

 

 

Figure 2.3-5 - Relative fluid flow variations due to ellipticity ratio for  𝑤 = 800 𝑁 and various entrainment 
velocities 

 

Finally, in order to understand fluid flow rates variations, one must consider the pressure 

gradients 𝜕𝑝/𝜕𝑥 and 𝜕𝑝/𝜕𝑦.  Indeed, the Poiseuille flows are pressure gradient driven.  These 

pressure gradients are ruled through the Reynolds equation (Equation 2.2-2) by the film 

thickness gradient which is influenced by the ellipticity ratio 𝑘.   

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI131/these.pdf 
© [J-D. Wheeler], [2016], INSA Lyon, tous droits réservés



 

66 

 

Figure 2.3-6 - Convergent shape influence on pressure gradients, a) along the 𝑥  axis and b) along the  𝑦  axis for 
𝑤 = 800 𝑁 & 𝑢𝑒 = 2 𝑚/𝑠 

 

Figure 2.3-6 represents the film thickness gradients 𝜕ℎ𝑟/𝜕𝑥 and 𝜕ℎ𝑟/𝜕𝑦 together with the 

pressure gradients for the case 𝑤 = 800 𝑁, 𝑢𝑒 = 2 𝑚/𝑠, and the configurations 𝑘 = 0.5, 1, 2.  

Along the 𝑥  axis (Figure 2.3-1 a) and upstream from the contact, the pressure gradients are 

different depending on the ellipticity ratio: 

𝜕𝑝

𝜕𝑥
|
𝑘=0.5

<  
𝜕𝑝

𝜕𝑥
|
𝑘=1

< 
𝜕𝑝

𝜕𝑥
|
𝑘=2

 Inequation 2.3-6 

 

Similarly for the film thickness gradients: 

−
𝜕ℎ𝑟
𝜕𝑥
|
𝑘=0.5

< −
𝜕ℎ𝑟
𝜕𝑥
|
𝑘=1

< −
𝜕ℎ𝑟
𝜕𝑥
|
𝑘=2

 Inequation 2.3-7 

 

Inequation 2.3-6 and Inequation 2.3-7 underline the well-known result that the thickness 

gradient drives the pressure gradient.  Thereafter, the pressure gradient along the 𝑥  direction 

leads the backflow to vary in the way described hereinbefore.  

As for the mechanisms occurring along the 𝑦  axis, the same observations are made from Figure 

2.3-1 b:  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI131/these.pdf 
© [J-D. Wheeler], [2016], INSA Lyon, tous droits réservés



 

67 
 

𝜕𝑝

𝜕𝑦
|
𝑘=0.5

>  
𝜕𝑝

𝜕𝑦
|
𝑘=1

> 
𝜕𝑝

𝜕𝑦
|
𝑘=2

 Inequation 2.3-8 

 

However, the configuration 𝑘 = 0.5 gives now the largest pressure gradient.  As these pressure 

gradients are directly responsible for the side flow, Inequation 2.3-8 correlates well with the 

ellipticity influence on side flow presented previously.  Moreover the film thickness gradients, 

responsible for the pressure gradients, are ranked in the same order (see Inequation 2.3-9 

below). 

−
𝜕ℎ𝑟
𝜕𝑦
|
𝑘=0.5

> −
𝜕ℎ𝑟
𝜕𝑦
|
𝑘=1

>  −
𝜕ℎ𝑟
𝜕𝑦
|
𝑘=2

  Inequation 2.3-9 

 

Through the pressure and film thickness gradients analysis, the link is made between 

ellipticity and film thickness.  Indeed, in our approach the ellipticity ratio determines the 

convergent shape through the radii of curvature of the solids.  These latter characterize the 

thickness gradients which drive the pressure gradients.  Finally, the pressure gradients 

determine the fluid flows, which in turn determine the film thickness. 

These results are key to the understanding of the torus on plane FREC. Even if the spinning 

kinematic was not studied here, the ellipticity role was underlined. The extremely narrow 

contacts will lead to a drastic reduction of the minimum film thickness. The central film 

thickness will remain rather large. Moreover, the use of the Chittenden prediction laws may 

be hazardous for 𝑘 < 1 outside of the range they were designed for. It is particularly on the 

minimum film thickness that the results are the most hazardous.  

It was demonstrated that the ellipticity drives the film thickness characteristics through the 

gap geometry.  

 

2.4. Conclusion 

In this chapter, the elliptical EHD contact was explored via experiments and numerical 

simulations. The Jérotrib test-rig was used to run tests under realistic flange roller-end contact 

(FREC) conditions. With the new calibration method, it was possible to investigate the film 

thickness variations with the entrainment velocity and the ellipticity. Two ellipticity ratios 𝑘 

were tested: a slender elliptical contact (which corresponds the most to the torus on plane 

FREC) and a wide elliptical contact. 

The numerical model presented consistent predictions of the film thickness under all 

experimental operating conditions, and it constitutes a new contribution to the literature. 

These operating conditions were in line with the numerical study introduced in this chapter. 

With an attempt to isolate the ellipticity influence on the EHD contact from the other 

parameters, it has been possible to explore the influence of 𝑘 on the film forming capacity. The 

ellipticity ratio affects the gap shape, which in turn drives the pressure gradients. The different 
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Poiseuille flows variations are influenced by these pressure gradient and they alter the film 

gap. The large lateral Poiseuille flows were quantified and related to the very thin lateral 

minimum film thickness. 

However, the convergent of the torus on plane contact is more complex than the one of an 

elliptical contact. The question consequently rises: is this complexity able to influence 

significantly the EHD contact behavior or is it possible to simplify it by a simple elliptical 

contact convergent?  

The actual shape modelling is a supplementary challenge to the quite complex EHD models. 

If the elliptical approximation appears sufficient for friction and film thickness condition, it 

would be very helpful for the different industrial applications which need better predictions. 

It is with these questions in mind that the next chapters will be presented. 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI131/these.pdf 
© [J-D. Wheeler], [2016], INSA Lyon, tous droits réservés



 

69 
 

 

Chapter 3. Torus on  

Plane Contact - Tools 
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III. Torus on plane contact - Tools 

Whereas chapter 2 presented tools to the study of torus-on-plane (TOP) flange-roller end 

contact (FREC) with the elliptical approximation, this third chapter presents new tools which 

include the real gap shape of the TOP FREC. For this purpose, a test-rig designed to reproduce 

FREC, Tribogyr, was adapted to run tests on torus on plane contacts. Concurrently, the 

numerical model presented in chapter 2 was modified to take into account the real gap of the 

TOP contacts. A comparison is also presented to evaluate the model capacity to predict friction 

and film thickness in this unusual contact. 

 

3.1. Tribogyr test-rig 

Tribogyr (for TRIBOlogy and GYRation), is a unique test-rig, built at LaMCoS to study large 

size spinning lubricated contacts. Figure 3.1-1 is a picture of the test machine. It has already 

delivered some exclusive results for circular contacts, by Dormois et al. (15) and Doki-Thonon 

et al. (17). In this thesis, the test-rig was adapted to the TOP contact. 

 

 

Figure 3.1-1 - Tribogyr test-rig 
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Tribogyr simulates at the full scale the behaviour of the spinning contacts in large-size bearing 

elements. Therefore, it is a large test-rig (3 𝑚 high, 1.5 𝑚 wide and long) which is able to 

impose a large load (up to 3000 𝑁) on the contact. In order to reproduce spinning contacts in 

their actual conditions, it is able to operate at rotation speeds of up to 22,000 rpm. The 

curvature radii of the mating bodies are also large, and therefore the contact pressures are 

generally moderate, that is to say < 1 𝐺𝑃𝑎. The kinematic is also representative of the FREC 

conditions and will be described in section 3.1.1. Film thickness and forces measurements can 

be performed simultaneously thanks to dedicated facilities.  The force sensors are located in 

the plane of the top body, which is also the plane of the contact. This allows for direct 

measurement of the forces themselves. The methods and principles related to these 

measurements will be presented in section 3.1.3 and 3.1.4. 

  

3.1.1. Tribogyr kinematics – the TOP case 

The test-rig enables a contact between a disc (either made of glass or steel) and a steel torus-

end, similarly to the experiment of Gadallah and Dalmaz (20). Figure 3.1-2 presents the torus 

specimen which was designed for this thesis work and the way it was defined. 𝑅𝑡 = 11 𝑚𝑚 

defines the major radius of the torus, whereas 𝑟𝑡 = 40 𝑚𝑚 is the minor radius. 

 

 

Figure 3.1-2 – Torus specimen 

 

As 𝑅𝑡 < 𝑟𝑡 it is not the familiar ring torus, it is the spindle torus (self-intersecting at two points). 

A bore is applied at the top of the specimen for machining reasons. This bore has a radius 

which is equal to 𝑅𝑡. The rest of the specimen is a cylinder which enables to clamp the specimen 

on the Tribogyr lower motor’s spindle. 
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Figure 3.1-3 - kinematic of the Tribogyr pin and disc 

 

Figure 3.1-3 presents the two contacting bodies, together with the rotation axes they have when 

they are installed on Tribogyr on their respective spindle. The gyration radii are 𝑅𝑑 (on the 

disc) and 𝑅𝑝 (on the pin): they are the shortest distance between the contact centre and their 

respective rotation axes. When it comes to TOP contact, its shape is neither circular nor 

elliptical: it is more complex. Its contact centre is defined as the contact point 𝑂 between the 

rigid lower and upper bodies. This point 𝑂 is also the frame centre. Unless otherwise specified, 

it is in this frame that the equations are written. The disc rotates at the velocity 𝛺𝑡 < 0 and the 

pin 𝛺𝑏 > 0 (where 𝑡 stands for “top” and 𝑏 stands for “bottom). A significant parameter is 

here 𝜆, the angle between the two rotation axes. It is called the “spin angle”. Within the 

considered frame, 𝜆 < 0. This geometrical construction results from the definition of the input 

physical parameters of the Tribogyr test-rig. 

Before the experiment, the spin angle is applied to the lower specimen through a well-defined 

process: the spinning angle 𝜆 is applied at first by tilting the spindle and its sample. Then, a 

shift in the contact plane is applied to the assembly supporting the top spindle so that the 

future contact will occur at the Tribogyr frame origin. Figure 3.1-3 presents the Tribogyr 

contact frame relatively to the mating bodies. It enables a precise positioning of the lower body 

relatively to the top one. The linear velocities of the top and bottom solids, respectively are 

then, along the 𝑥 axis: 

𝑢𝑡𝑥 = +(𝑅𝑑 − 𝑦) 𝛺𝑡 ≈ 𝑅𝑑  𝛺𝑡 as 𝑅𝑑 ≫ 𝑦 

𝑢𝑏𝑥 = −(𝑅𝑝 + 𝑦 cos (𝜆)) 𝛺𝑏 

Equation 
3.1-1 

 

Consequently, the velocity field varies all over the contact area and its vicinity. Similarly, along 

the 𝑦 axis: 
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𝑢𝑡𝑦 = 𝑥 𝛺𝑡 ≈ 0 as 𝑥 Ω𝑡 ≪ 𝑥 𝑐𝑜𝑠𝜆 Ω𝑏 

𝑢𝑏𝑦 = 𝑥 cos(𝜆)𝛺𝑏 

Equation 
3.1-2 

 

The top solid velocity vector is 𝑈𝑡⃗⃗⃗⃗ (𝑥, 𝑦) = (𝑢𝑡𝑥;  𝑢𝑡𝑦) and the bottom solid velocity vector 

is 𝑈𝑏⃗⃗ ⃗⃗  (𝑥, 𝑦) = (𝑢𝑏𝑥;  𝑢𝑏𝑦). Thus the entrainment velocity vector is 𝑈𝑒⃗⃗ ⃗⃗ (𝑥, 𝑦) =
1

2
(𝑈𝑡⃗⃗⃗⃗ (𝑥, 𝑦) +

𝑈𝑏⃗⃗ ⃗⃗  (𝑥, 𝑦)). With Equation 3.1-1 and Equation 3.1-2, 𝜆 close to 0 means that the spinning 

kinematic becomes more important. 

During the experiments, the radii 𝑅𝑑 and 𝑅𝑝 are determined through optical measurement 

with different actuators and optical devices including a microscope. A precise determination 

is absolutely mandatory to master the kinematic conditions. Whereas the 𝑅𝑑 measurement is 

quite straightforward, 𝑅𝑝 requires more attention. Indeed, 𝑅𝑑 is obtained by finding the 

positions of the contact centre and the one of the disc rotation centre. The distance between 

these two points is 𝑅𝑑, as they are in the same plane (𝑂, 𝑥, 𝑦), which is perpendicular to the 

microscope optical axis. For its part, the pin rotation centre (called 𝐼 in Figure 3.1-4) visible 

through the microscope is not in the same plane (𝑂, 𝑥, 𝑦) as the contact. 
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Figure 3.1-4 - Determination of the effective pin gyration radius from the apparent gyration radius 

 

Figure 3.1-4 presents the diagram of the contacting bodies together with the different 

parameters measured to obtain the effective gyration radius: 𝑅𝑝. The depth 𝑓 of the bore is 

measured with a depth gauge while the apparent gyration radius 𝑅𝑎𝑝𝑝 is measured with the 

microscope from the top: it is the distance between the pin apparent gyration centre and the 

contact centre, along the 𝑦 axis. From this diagram, one writes: 

𝑑1 = 𝑓 − (𝑟𝑡 − 𝑟𝑡 cos (𝜆)) = 𝑓 + 𝑟𝑡(cos(𝜆) − 1) 

𝑑2 = √𝑅𝑝
2 + 𝑑1

2 

𝑅𝑎𝑝𝑝 = 𝑑2 cos (𝜃 + 𝜆), with 𝑡𝑎𝑛(𝜃) =
𝑑1

𝑅𝑝
 

Equation 
3.1-3 

 

So, by reformulating the apparent gyration radius expression: 
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𝑅𝑎𝑝𝑝 = √𝑅𝑝
2 + (𝑓 + 𝑟𝑡(cos(𝜆) − 1))

2 cos(𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑓 + 𝑟𝑡(cos(𝜆) − 1)

𝑅𝑝
) + 𝜆) 

Equation 
3.1-4 

 

From Equation 3.1-4, the experimenter has to extract 𝑅𝑝. For this purpose, a Newton algorithm 

is used. The value of 𝑅𝑝 is initialised at the first step of the resolution by the value of 𝑅𝑎𝑝𝑝. This 

method supposes that the minor axis of the torus 𝑟𝑡 is known. As this dimension is not easy to 

machine, a variation of about 10% on 𝑟𝑡 may be encountered. However, with this method 𝑟𝑡 

has a negligible influence: 𝑅𝑝 varies only by about 1.4 ∙ 10−3%. 

A second method could be to consider that 𝑅𝑝 = 𝑅𝑡 + 𝑟𝑡 𝑠𝑖𝑛(𝜆), but then, a variation of 10% on 

𝑟𝑡 implies a variation of 1.4% on 𝑅𝑝. Moreover, this second method requires to know 𝑅𝑡 

precisely, even if it is not a measurable value. Finally, the fist method requires less hypothesis 

on the torus geometry (no need for 𝑅𝑡 and less influence of 𝑟𝑡) and introduces measurable 

values instead (like 𝑅𝑎𝑝𝑝 and 𝑓). Therefore this method provides reliable and precise results 

for the kinematic measurement needs. The gyration radius on the disc is typically about 𝑅𝑑 ≈

45 𝑚𝑚 and it can be determined within a 0.01 𝑚𝑚 precision. For its part, the gyration radius 

on the torus is about 𝑅𝑝 ≈ 12 𝑚𝑚 and it can be determined within a 0.1 𝑚𝑚 precision as well. 

The spin angle 𝜆 is determined within a precision of 0.01°. 

 

 

Figure 3.1-5 - Velocity field of the pin surface, together with the EHD pressurised contact area (for the friction 
reference case presented in section 3.3.1 with 𝜆 = −2.5°) represented by its iso-pressure line for 𝑝 = 10%𝑝ℎ 

 

As 𝑢𝑡𝑥 and 𝑢𝑏𝑥 can be known precisely, the kinematic conditions can be well defined from 

Equation 3.1-1 and Equation 3.1-2. The velocity field of the pin is represented together with 

the pressurised area contour on Figure 3.1-5. This contour is the same as in Figure 3.1-6 and is 

not an ellipse, because one of the two mating solids is a torus; this is presented later, in Figure 

3.1-8 for instance. Due to the differences between the top and the bottom velocity fields, a 

sliding occurs. It is characterised by the local slide-to-roll ratio: 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI131/these.pdf 
© [J-D. Wheeler], [2016], INSA Lyon, tous droits réservés



 

76 

𝑆𝑅𝑅(𝑥, 𝑦) =
|𝑈𝑡⃗⃗⃗⃗ (𝑥, 𝑦) − 𝑈𝑏⃗⃗ ⃗⃗  (𝑥, 𝑦)|

|𝑈𝑒⃗⃗ ⃗⃗ (𝑥, 𝑦)|
=
√(𝑢𝑡𝑥 − 𝑢𝑏𝑥)

2 + (𝑢𝑡𝑦 − 𝑢𝑏𝑦)
2

|𝑈𝑒⃗⃗ ⃗⃗ (𝑥, 𝑦)|
 

with 𝑈𝑒⃗⃗ ⃗⃗ (𝑥, 𝑦) =
1

2
(𝑈𝑡⃗⃗⃗⃗ (𝑥, 𝑦) + 𝑈𝑏⃗⃗ ⃗⃗  (𝑥, 𝑦)) =

1

2
√(𝑢𝑡𝑥 + 𝑢𝑏𝑥)

2 + (𝑢𝑡𝑦 + 𝑢𝑏𝑦)
2
 

then it comes that: 

𝑆𝑅𝑅(𝑥, 𝑦) = 2
√(𝑢𝑡𝑥 − 𝑢𝑏𝑥)

2 + (𝑢𝑡𝑦 − 𝑢𝑏𝑦)
2

√(𝑢𝑡𝑥 + 𝑢𝑏𝑥)
2 + (𝑢𝑡𝑦 + 𝑢𝑏𝑦)

2
 

Equation 
3.1-5 

 

 

Figure 3.1-6 - 𝑆𝑅𝑅(𝑥, 𝑦) plotted in the contact area and its vicinity (for the friction reference case presented in 
section 3.3.1 with 𝑆𝑅𝑅𝑥,0 = 0%) - the black contour is the pressurised contact area 

 

The slide-to-roll ratio introduced by the spinning velocity varies all over the contact area, as 
shown in Figure 3.1-6. It is also possible to define the slide-to-roll ratio in the x-direction as a 
parameter to quantify the relative sliding at the centre of the contact. It may be expressed as follows: 
 

𝑆𝑅𝑅𝑥,0 = 2
𝑢𝑡𝑥,0 − 𝑢𝑏𝑥,0
𝑢𝑡𝑥,0 + 𝑢𝑏𝑥,0

 
Equation 

3.1-6 

 

with 𝑢𝑡𝑥,0 and 𝑢𝑏𝑥,0 which are respectively the velocities 𝑢𝑡𝑥 and 𝑢𝑏𝑥 at the contact centre. 

Similarly the local entrainment velocity writes: 

𝑢𝑒(𝑥, 𝑦) =
√(𝑢𝑡𝑥 + 𝑢𝑏𝑥)

2 + (𝑢𝑡𝑦 + 𝑢𝑏𝑦)
2

2
 

Equation 
3.1-7 

 

Whereas the entrainment velocity at the contact centre is: 

𝑢𝑒𝑥,0(𝑥, 𝑦) =
𝑢𝑡𝑥,0 + 𝑢𝑏𝑥,0

2
 

Equation 
3.1-8 
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Comparing to the work of Doki-Thonon (5), the influence of the spinning kinematic on sliding 

is reduced as 𝑅𝑝 the gyration radius on the pin is much larger in the TOP case. Figure 3.1-7 

presents a case which is similar to the one in Figure 3.1-6. The former is a circular spinning 

contact with moderate spin. The spinning induced slide-to-roll ratio occurring in this contact 

is clearly larger than the one in the latter. Whereas in Doki-Thonon, an average slide-to-roll 

ratio was defined to express this large spinning induced sliding, 𝑆𝑅𝑅𝑥,0 is used to define the 

whole sliding condition of the contact: indeed, the spinning induced sliding in TOP FREC 

contact is relatively small. 

 

 

Figure 3.1-7 - 𝑆𝑅𝑅(𝑥, 𝑦) plotted in the contact area and its vicinity (according to Doki-Thonon’s thesis (5) 
friction case with moderate spin (p. 80) and 𝑆𝑅𝑅𝑥,0 = 0) - the black contour is the Hertz contact area 

 

This section introduced the Tribogyr test-rig and its specifics, with a focus on the kinematic 

occurring in the contact. There is another detail of the TOP FREC contact which still has to be 

presented: the contact shape itself. It is the topic of the next section. 

 

3.1.2. The torus on plane (TOP) contact 

As the TOP contact shape is not easy to comprehend, the torus defined previously is used in a 

static contact experiment. A contact between a glass disc and the defined pin is established in 

order to observe an actual TOP contact. 
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Figure 3.1-8 – White light interferometry static contact between a glass disc and the steel toroidal pin 

 

Figure 3.1-8 shows one of these TOP contacts, the first black line being the contact frontier. The 

contact is similar to an ellipse, however one may notice that this ellipse-like shape is bent along 

its larger dimension. It is characteristic of the TOP contact. 

The two samples have the properties defined in Table 3.1-1 and Table 3.1-2. Tribogyr test-rig 

enabled an angular positioning within 0.01° and linear positioning of the torus within 0.1°. 

However, even with well-known geometries and materials, it is not possible at this stage to 

obtain an approximation of the static contact dimensions.  

 

Parameter [Unit] Value 

𝐸𝑡  [𝑃𝑎] 62.8 × 109 

𝜈𝑡  [− ] 0.2 

𝜌𝑡  [𝑘𝑔.𝑚
−3] 2230 

𝑘𝑡  [𝑊.𝑚
−1. 𝐾−1] 1.14 

𝐶𝑝𝑡 [𝐽. 𝑘𝑔
−1. 𝐾−1] 749 

Table 3.1-1 - Glass disc properties 

Parameter [Unit] Value 

𝐸𝑡  [𝑃𝑎] 210 × 109 

𝜈𝑡  [− ] 0.3 

𝜌𝑡  [𝑘𝑔.𝑚
−3] 7850 

𝑘𝑡  [𝑊.𝑚
−1. 𝐾−1] 50 

𝐶𝑝𝑡 [𝐽. 𝑘𝑔
−1. 𝐾−1] 470 

Table 3.1-2 - Steel torus pin and steel disc properties 

 

A method consists in using the Hertz theory and the principal curvature radii presented in 

section 1.3.4. Figure 3.1-9 presents a TOP (torus on plane) contact, and from the scheme on the 

left, one deduces that 𝑅𝑦 = 𝑟𝑡 (with 𝑅𝑦 the principal curvature radius in 𝑦 direction). The other 

principal curvature radius, 𝑅𝑥, requires more attention: it is the curvature radius along the 𝑥 

direction at the contact centre 𝑂. As the curvature of the torus in the (𝑂, 𝑧, 𝑥) plane (see Figure 

3.1-9) varies all along the torus section, a dedicated calculation is mandatory. 
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Figure 3.1-9 - TOP contact (left) and a cut view of the contact (right) 

 

The straight line 𝛤0 is tangent to the torus section at the point 𝑂, and 𝛤𝐻 is tangent at 𝐻. 𝑁0 is 

the perpendicular line of 𝛤0 and they cross at 𝑂. Similarly, 𝑁𝐻 is perpendicular to 𝛤𝐻 and they 

intersect at 𝐻. The intersection of 𝑁𝐻 and 𝑁𝑂 is 𝐼. The equation of these straight lines (𝛤0, 𝛤𝐻 , 𝑁0 

and 𝑁𝐻) can be determined analytically but the details are not presented here. When 𝐻 → 𝑂, 

the intersection 𝐼 defines the centre of the local curvature of the torus section at (𝑥, 𝑦, 𝑧) =

(0,0,0). Then, it comes that: 𝑅𝑥 = lim
𝐻→𝑂

𝑂𝐼 = lim
𝐻→𝑂

𝐻𝐼. The analytical development leads to: 

𝑅𝑥 = |𝑅𝑡  ∙  
cos (2𝜆)

𝑠𝑖𝑛(𝜆)
| + 𝑟𝑡 

Equation 
3.1-9 

 

As a consequence, one can precisely estimate the contact dimensions and pressure (see Annexe 

B). The principal curvature radii 𝑅𝑥 and 𝑅𝑦 can be used with confidence in the Hertz theory: 

the contact maximum pressure and the contact dimensions 𝑎 and 𝑏 are predicted with success 

(see Annexe B). There is only one difference with the classical elliptical contacts: the longest 

dimension of the ellipse adopts a curved shape (see Figure 3.1-8). Consequently, the value of 

2𝑎 does not correspond to the segment 𝐴𝐵 (in Figure 3.1-8) between the contact extremities: it 

is the arc distance  between the contact extremities, along the arc of radius 𝑅𝑡 + 𝑟𝑡  sin (𝜆). 

However, when the load is moderate and |𝜆| ≥ −1°, the chord of the arc does not differ 

significantly from the arc.  

The actual shape of the contact can be obtained more precisely through a finite element 

analysis which includes a contact law. Annexe B presents the work done in this area which 

enabled to determine that the Hertz theory was reliable here. The finite element analysis was 

validated with experimental results and they show together that the Hertz theory is sufficient 

for precise predictions. 
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3.1.3. Film thickness measurement 

The film thickness measurement method is the same as the one presented in sections 2.1.1.3 

and 2.1.1.4. Indeed, the calibration does not require hypothesis on the contact shape, unlike 

the method of Molimard et al. (3). Based on this calibration, the film thickness measurement 

in EHD contacts can be done easily. 

 

 

Figure 3.1-10 - TOP contact under a chromatic light, 
for calibration 

 

Figure 3.1-11 – TOP contact under a monochromatic 
light, for calibration 

 

Figure 3.1-10 and Figure 3.1-11 show a pair of interferograms that were used to establish a 

calibration curve. Again, several pairs of pictures are used to determine a group of calibration 

curves. Among these curves, the one which represents the average value of the curve group is 

selected to measure film thickness in the whole dynamic experiment. This curve is very similar 

to the one in Figure 2.1-9. 

Based on this calibration curve, one can analyse the EHD contact pictures. Figure 3.1-12 

presents such a contact, together with the considerations made to obtain the characteristics of 

the film thickness field. At first, the contact centre is defined as the middle of the contact 

principal directions. There is no reason for it to correspond exactly to the rigid bodies’ contact 

point, but it is not too different and would have made less sense than the value obtained in 

dynamic conditions due to the large uncertainty in its localisation. The film thickness at the 

contact centre is ℎ𝑐, the central film thickness. The minimum film thickness on the 𝑦 = 0 axis 

is the central minimum film thickness ℎ𝑚,𝑐. The minimum thickness on the 𝑦 < 0 side it the 

furthest from the disc rotation centre: it is called ℎ𝑚−. On the contrary, the minimum thickness 

on the other side is the closest from the disc gyration centre and is called ℎ𝑚+. 
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Figure 3.1-12  White light interferometric TOP EHD contact with film thickness values at some points of 
interest. 

 

3.1.4. Friction forces measurement 
 

Besides the film thickness, the Tribogyr test-rig enables the measurement of the friction forces. 

The two specimens (pin and disc) are held and set in rotation by two different spindles. In 

their turn, the spindles are supported by two independent assemblies. 

 

 

Figure 3.1-13 - The two Tribogyr assemblies, together with their respective spindles and samples 

 

Figure 3.1-13 presents these two assemblies. They are each sustained by hybrid bearings, 

combining a hydrostatic thrust bearing together with a circular hydrostatic one. This bearing 

pair supports the dead-weight of each assembly and enables their free rotation in the (𝑂, 𝑥, 𝑦) 

plane, around the contact centre. It allows for the measurement of the friction torque generated 

in the contact. 
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The assemblies are both connected to the hydrostatic bearings by tri-axial piezoelectric force 

sensors. They are located in the contact plane to measure directly the friction forces (Fx and 

Fy), the normal load (w). Moreover, the torque (Tz,0) generated in the contact plane on each 

specimen contacting surface is directly obtained with the help of a lever and a very sensitive 

force sensor secured to the Tribogyr main frame. The torque and forces measurements are 

carried out on the two assemblies. 

 

3.1.5. Temperature measurements 

Mastering the experimental thermal conditions is certainly one of the main challenges of this 

work. Indeed, the thermal effects are one of the keys to understand spinning-sliding EHD 

contacts (see (5)). They drive contact friction, power losses and film thickness. It is mandatory 

to be able to predict their importance with precision. 

In the experimental context, rather large and unknown variations can occur if the experimental 

conditions are not set carefully. At this stage, it is important to describe the oil feeding system. 

An oil bath contains the lubricant that will be delivered to the contact with the help of a 

peristaltic pump and a hydrodynamic slider bearing. The temperature is controlled in this oil 

reservoir which is set so that 𝑇𝑓0 = 30°𝐶. 𝑇𝑓0 is the temperature of the oil just before being 

spread on the lower surface of the glass or steel disc, and in this work 𝑇0 = 𝑇𝑓0, with 𝑇0 the 

temperature of the experiment environment. However, in section 3.3.2, 𝑇0 will be replaced by 

more detailed boundary conditions.  

 

 

Figure 3.1-14 - Oil feeding of the contact and the measurement points 

 

The temperature measurements are made thanks to thermocouples. The first thermocouple is 

located inside of the pipe which brings the oil towards the hydrodynamic slider bearing. Then 

the lubricant is spread on the glass disc lower surface, on the same track than the contact. The 

amount of oil delivered to the contact is set so that the contact occurs under fully flooded 
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conditions. Another temperature measurement is performed, on the disc surface, at the 

opposite of the contact, but on its track. This temperature is 𝑇𝑠0 and will be considered as the 

temperature of the solids at the contact inlet in section 3.3.2. Indeed, 𝑇𝑠0 represents the disc 

global heating in the region of the contact track. Unless otherwise specified, 𝑇𝑓0 = 𝑇𝑠0 = 𝑇0 is 

applied. The measurement precision of the two thermocouples is 0.2°𝐶. 

 

3.2. Numerical model 

3.2.1. Film thickness expression 

In the past, Gadallah and Dalmaz (20) compared their experimental measurement with 

elliptical film thickness prediction formulae, and Colin et al. (9) and Zhang et al. (14) modelled 

such a gap by an elliptical contact gap. However, in the present study, the new geometry of 

the torus specimen leads to a new gap shape, for application to the study of flange roller-end 

contacts. 

This new geometry is introduced in Equation 2.1-21 and replaces the parabolic terms. It 

corresponds to a change of the rigid gap expression. Indeed, ℎ0 and 𝛿 remain unchanged. 

ℎ(𝑥, 𝑦) = ℎ0 + ℎ𝑡𝑜𝑟𝑢𝑠(𝑥, 𝑦) + 𝛿(𝑥, 𝑦) 
Equation 

3.2-1 

 

However, no analytical expression is known for ℎ𝑡𝑜𝑟𝑢𝑠 in the contact frame. A novel method 

to obtain ℎ𝑡𝑜𝑟𝑢𝑠 was then developed. This method is based on CAD (Computer Assisted 

Design) considerations: the adequate torus is drawn in the (𝑂, 𝑥, 𝑦, 𝑧) 3D frame and its position 

is arranged in accordance to the needs of the simulation (rigid contact point at 𝑂, the frame 

origin, and 𝜆 angle applied to the torus). This torus is plotted in Figure 3.2-1 where it is in the 

appropriate position. 

 

 

Figure 3.2-1 – Rigid gap between a torus and a plane in the (𝑂, 𝑥, 𝑦, 𝑧) Cartesian frame 
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The rigid gap is then simply the distance between the plane and the torus. This gap is 

represented in purple in Figure 3.2-1 and Figure 3.2-2. 

 

 

Figure 3.2-2 - Rigid gap between a torus and a plane in the (𝑂, 𝑋, 𝑌, 𝑍) dimensionless Cartesian frame 

 

Figure 3.2-2 presents a focus on the solid formed by the TOP rigid contact gap, in the contact 

vicinity. It was set in its dimensionless frame (𝑋 = 𝑥 𝑎⁄ ; 𝑌 = 𝑦 𝑏⁄ ; 𝑍 = 𝑧 × 𝑅𝑥 𝑎2⁄ ); in the real 

frame, the gap would look flat due to the large scale differences between the thickness and the 

in-plane dimensions of the contact. One may notice that the gap is not symmetrical relatively 

to the 𝑥𝑂𝑧 plane: it is due to the asymmetry between the two sides of the contact. Moreover, 

on the 𝑦 < 0 side, the curvature of the gap appears not constant.  

This model which includes the real gap geometry was used to run TOP EHD simulations, for 

various spin angle 𝜆, various loads and sliding. 

Besides, the elliptical point contact model as presented in section 2.1.2 was also used to model 

the TOP contact under the same conditions as in the model presented hereinabove (apart from 

the rigid gap shape). The simplified elliptical modelling is called an “Elliptical Equivalent” 

(EE) of the real TOP simulation. Comparisons were made between the two approaches, in 

order to conclude on the relevance of this actual gap model. 

 

3.2.2. Thermal boundary conditions (film thickness validation only) 

The thermal boundary conditions were modified in order to adapt to the conditions of the 

experiments. Indeed, because of the sliding that occurs in the contact, the disc and the pin 

temperature can increase significantly, together with the whole test-rig. It is not possible to 
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control this heating. However, it is possible to measure the global heating of the pin and of the 

disc. 

Film thickness predictions can be very precise, but the temperature of the lubricant and the 

bodies around the contact have to be known. A variation of about 0.5°𝐶 of the solids 

temperature can lead to a 5 𝑛𝑚 difference on ℎ𝑐: it is important to run simulations in the same 

thermal conditions as the experiments. For this purpose, and in the case of the film thickness 

validation only, the bodies’ temperature and the lubricant temperature are distinguished: 𝑇𝑓0 

addresses to the fluid’s boundary conditions, and 𝑇𝑠0 to the solids’ boundary conditions. 

Indeed, the solids encounter a heating all along the experiment due to the energy dissipated 

in the contact, whereas the lubricant’s temperature is more stable because it is regulated at the 

inlet of the contact. The measurements of 𝑇𝑠0 and 𝑇𝑓0 in the Tribogyr test-rig were described in 

section 3.1.5. Despite the efforts to record the heating of the system, it was not possible to 

measure the pin surface temperature. Consequently, a rough hypothesis is made: the pin 

temperature rise is considered equal to the one of the disc. 

In order to apply consistent thermal boundary conditions, a function 𝑇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 was defined in 

order to further develop the thermal model proposed in section 2.1.2.3. Indeed, as the solids’ 

and the lubricant temperatures on the boundary are not constant anymore, one shall define 

the temperature at the interfaces, in order to define coherent Dirichlet boundary conditions. 

For this purpose, 𝑇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 is based on an 𝑎𝑟𝑐𝑡𝑎𝑛 function and verifies the conditions: 

𝑇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 =
𝑇𝑠0+𝑇𝑓0

2
 at the interface, 𝑇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝑇𝑠0 at the solids boundaries, and 𝑇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 =

𝑇𝑓0 at the lubricant boundary. The function 𝑇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 is then presented in Figure 3.2-3. 

 

 

Figure 3.2-3 - Modified thermal model to reproduce the film thickness reference case experimental conditions 

 

It is important to mention that the use of experimental measurements in the numerical model 

is not a fitting of the results to the expected trend. Indeed, the numerical model is only 

addressed to the contact and its close vicinity: the further environment may vary in a large 
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extent. The experimental environment thermal conditions are measured, and are expressed by 

the boundary conditions. 

 

3.2.3. Lubricant characterisation limits 

At this stage, it becomes necessary to present with more details the lubricant characterisation. 

As presented in section 2.1.2.1, independent measurement were made on the fluid in order to 

define its properties under pressure and shearing for different temperatures. For this purpose, 

a viscometer and Couette rheometer were used. In spite of their advanced performances, they 

have not been able to run tests under all the conditions encountered in EHD sliding contacts. 

The viscometer is limited as it can apply a maximum pressure of 800 𝑀𝑃𝑎 on the fluid. 

Moreover, as it is a falling body viscometer, it is not possible to apply a large shear stress to 

the fluid: as a consequence, the moving part may not fall down in a reasonable amount of time 

above a certain viscosity limit, which is generally around 10+2 − 10+5 𝑃𝑎. 𝑠, according to the 

nature of the lubricant. At such a large viscosity, the lubricant is too viscous for the apparatus 

used in this study. As a consequence, and for the lower temperatures, the lubricant cannot be 

investigated at the full pressure range available. There are also limits in terms of temperature: 

the lubricant was characterised between 30°𝐶 and 150°𝐶. When the WLF model is used 

outside of these limits, it is an extrapolation of the experimental data that were used to 

establish the model, which suits for such extrapolations in the range 𝑇𝑔(0) + 300 °𝐶. However, 

the extrapolation in pressure can be hazardous. Indeed, above a certain viscosity, the influence 

of pressure on viscosity may increase significantly comparing to the influence it has inside of 

the range used for the characterisation. This means that the behaviour of the lubricant outside 

of the characterisation domain is not predictable from the data obtained inside of this domain 

but within a limited range of typically 500 to 900 MPa, for low to high temperatures 

respectively. Figure 3.2-4 summarises the characterisation range of the lubricant 3, and what 

is a reasonable use of extrapolation. 

 

 

Figure 3.2-4 – Characterisation domain, interpolation and extrapolation of the pressure and temperature 
dependence of the T9V3 viscosity 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI131/these.pdf 
© [J-D. Wheeler], [2016], INSA Lyon, tous droits réservés



 

87 
 

 

Similarly, the shear stress influence on viscosity was investigated. The Couette rheometer 

enabled characterisations between 20°𝐶 and 60°𝐶 for shear stresses up to 5 𝑀𝑃𝑎, see Figure 

2.1-12. Under the whole range of (𝑝, 𝑇) conditions represented in Figure 3.2-5, the lubricant 3 

showed a Newtonian behaviour. No shear-dependence was observed and consequently the 

lubricant was considered as Newtonian in the model.  

 

 

Figure 3.2-5 - Characterisation domain of the pressure and temperature dependence of the T9V3 viscosity 

 

In the tribometers, and in particular with Tribogyr, the shear stress that the lubricant 

withstands was much larger, especially during friction tests. In order to compare numerical 

predictions and experimental results, the lubricant was considered purely Newtonian under 

all conditions. However this was a necessarily extrapolation but which is not reliable from a 

certain point, as the lubricant is very likely to adopt a non-Newtonian behaviour outside of 

the shear range explored. Consequently, the interpretation of the simulation results had to be 

done with care.  

 

3.3. Experimental validation 

This section is dedicated to the validation of the model by the comparison of numerical 

solutions with results obtained from the Tribogyr test-rig. Numerical simulations were run on 

the model presented in chapter 2 and adapted for TOP contact with the new film thickness 

expression (Equation 3.2-1). At first, correlations on friction coefficient were performed. 

Experiments were run under realistic industrial conditions, presented in Table 3.3-1. The case 

presented in this table is the friction reference case: other entrainment velocities, loads and 

spin angles were applied to the contact but the reference one is chosen as the basis for 

validation. Its conditions are medium in terms of velocity and spin angle, but its load is the 

largest. The large load condition enables more accurate friction measurements on the test rig. 
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Secondly, a film thickness reference case was also defined to evaluate the model ability to 

predict film thickness. This second reference case is presented in Table 3.3-2. 

The oil used in this chapter is exclusively the lubricant 3, which was described previously in 

section 2.1.2.1. 

 

3.3.1. Friction prediction evaluation 

The conditions presented in Table 3.3-1 were applied to the numerical model and the test rig. 

The pin used in this thesis enables experiments with 𝜆 = −4.5° as well, but the 𝜆 = −2.5° leads 

to a contact shape which is more representative of the TOP contact specifics. The results for 

the other angle will be presented in the following. 

 

Parameter [Unit] Value 

𝑢𝑒𝑥,0 [𝑚/𝑠] 2 

𝑆𝑅𝑅𝑥,0 [%] [−45, 45]  

𝑤 [𝑁] 1500 

𝑅𝑡 [𝑚] 0.011 

𝑟𝑡  [𝑚] 0.040 

𝜆[°] −2.5 

𝑇0 [𝐾] 303 

𝛺𝑏 [𝑟𝑎𝑑/𝑠] Adjusted to 

the 𝑆𝑅𝑅𝑥,0 𝛺𝑡  [𝑟𝑎𝑑/𝑠] 
 

Parameter [Unit] Value 

𝑅𝑝 [𝑚𝑚] 12.54 

𝑅𝑑  [𝑚𝑚] 40.34 

𝑝ℎ  [𝑀𝑃𝑎] 765 

𝑎 [𝑚𝑚] 1.19 

𝑏 [𝑚𝑚] 0.32 

𝑘 [ − ] 0.272 

Disc material steel 

Pin material steel 
 

Table 3.3-1 – Friction reference case – Industrial like experimental conditions 

 

The slide-to-roll ratio was varied and the friction forces were measured in the two contact 

plane directions. The results are plotted in Figure 3.3-1. In Equation 3.3-1, the force 𝐹𝑥 is the 

friction force in the 𝑥 direction, and 𝐹𝑦 in the 𝑦 direction: 

𝐶𝑓𝑥 =
𝐹𝑥
𝑤
; 𝐶𝑓𝑦 =

𝐹𝑦

𝑤
 

Equation 
3.3-1 

 

In Figure 3.3-1a, experimental and numerical results only corroborate in terms of order of 

magnitude. This is verified for the longitudinal friction coefficient, where three regions can be 

distinguished (82): 

· For low 𝑆𝑅𝑅𝑥,0 (i.e. smaller than 5%), the longitudinal friction coefficient increases 

drastically and linearly. This is known as the linear region. In this region, the slope at the origin 

is not the same in the numerical and the experimental approaches. It is apparent from this that 

two effects can be evoked. The thermal EHD model only is not able to predict friction under 

low shear. Moreover, the lack of a non-Newtonian behaviour in the model might be 

accountable for the discrepancy in this region. 
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· For 𝑆𝑅𝑅𝑥,0 between 5 and 20%, the friction coefficient rate of increase is slowed down 

until a plateau value is reached. This decrease is mainly due to the non-Newtonian effects that 

lower the viscosity. In this second region, the 𝐶𝑓𝑥 discrepancy is very large too, and the lack of 

non-Newtonian model is critically underlined. A Carreau law, together with a limiting shear 

stress response model could decrease the difference of the numerical results comparing to the 

experimental curve. 

 

 · At high 𝑆𝑅𝑅𝑥,0 (i.e. 𝑆𝑅𝑅𝑥,0 larger than 20%) and after reaching the maximal plateau 

value, the friction coefficient drops gently. This region is known as the thermal region where 

thermal-thinning of the lubricant is predominant due to higher shear rates. These thermal 

effects lower the viscosity and thus decrease the friction despite the increasing sliding. This 

regime sees the best accordance between the curves, even if the difference is still about 40%, 

for very low friction values however. The slope of the curve is now very similar, though the 

numerical model overestimates the thermal thinning of the lubricant. 

 

The transverse friction coefficient 𝐶𝑓𝑦 is below 1% for both experimental and numerical results. 

However, the experiment shows a non-zero friction in the range 5 ≤ |𝑆𝑅𝑅𝑥,0| ≤ 35%, whereas 

the numerical model predicts a nearly zero friction. 

 

 

Figure 3.3-1 - Friction coefficient along x direction (a, left) and y direction (b, right): comparison between 
experimental measurements (Exp.) and numerical model (Num.) results – reference case presented in Table 

3.3-1 

 

To summarise, the numerical model is neither able to predict the friction quantitatively, nor 

qualitatively. Yet, a simple order of magnitude estimation is possible.  

This result is in accordance with the literature: the friction coefficient in highly-loaded EHD 

contacts cannot be predicted quantitatively (see (82)). There is a lack of knowledge on lubricant 

behaviour under very high shear stress: at first, the rheometers are not yet able to measure the 

viscosity under extreme shear stress. Secondly, the phenomenon commonly called “limiting 
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shear stress” is for now not well understood, and as a consequence it is not possible to model 

it either (if it is involved). 

There is still one case where the rheology models were sufficient: under high spinning 

conditions, the friction forces along the entrainment direction was successfully predicted by 

Doki-Thonon (5) through the same model as the one presented here. In the specific kinematic 

case he used, it appears that only a non-Newtonian Carreau law, together with thermal effects 

were required to forecast quantitatively the friction coefficient. 

 

3.3.2. Film thickness validation 

Thanks to the differential colorimetric interferometry, it was possible to perform film thickness 

measurement in TOP EHD contacts. Molimard et al. (3) developed an experimental procedure 

enabling measurements in circular EHD contacts, and this method was further developed  in 

this thesis and made suitable for elliptical and general shape EHD contacts. Sections 2.1.1.3 

and 2.1.1.4 and present this newly adapted method.  

For the film thickness validation, the conditions differ slightly from the ones of the friction 

reference case: the film thickness reference case is presented in Table 3.3-2.   

 

Parameter [Unit] Value 

𝑢𝑒𝑥,0 [𝑚/𝑠] 3 

𝑆𝑅𝑅𝑥,0 [%] 0 

𝑤 [𝑁] 400 

𝑅𝑡  [𝑚] 0.011 

𝑟𝑡  [𝑚] 0.040 

𝜆[°] −2.5 

𝑇𝑓0 [𝐾] 304.1 

𝑇𝑠0 [𝐾] 302.1 

𝛺𝑏 [𝑟𝑎𝑑/𝑠] 236.01 

𝛺𝑡  [𝑟𝑎𝑑/𝑠] 65.25 
 

Parameter [Unit] Value 

𝑅𝑝 [𝑚𝑚] 12.71 

𝑅𝑑  [𝑚𝑚] 45.98 

𝑝ℎ  [𝑀𝑃𝑎] 285 

𝑎 [𝑚𝑚] 1.57 

𝑏 [𝑚𝑚] 0.43 

𝑘 [ − ] 0.272 

Disc material glass 

Pin material steel 
 

Table 3.3-2 – Film thickness reference case – Industrial like experimental conditions 

 

Now, a glass disc has replaced the steel disc, and a lower load was applied in order to preserve 

the disc integrity. Nevertheless, this light load leads to a contact pressure which is still 

representative of FREC. For the case presented here, 10 interferogram pictures of the contact 

were taken. Thanks to this relatively large number of data for only one condition, means value 

of ℎ𝑐, ℎ𝑚,𝑐, ℎ𝑚+ and ℎ𝑚− were determined. The picture which represented at best these mean 

values is presented in Figure 3.3-2, at the bottom. 

Equivalent simulations were ran with the appropriate temperatures and the real TOP gap 

shape. A plot was realized using the experimental calibration curve as a scale bar. This scale 

bar enabled to compare on the same basis, see Figure 3.3-2, the film thickness distributions 
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obtained from the numerical and experimental approaches, over the whole contact area and 

its close vicinity. At first glance, there are only slight differences between the two results. The 

model predicts the whole TOP EHD gap with a good precision. 

 

 

Figure 3.3-2 - Film thickness in and around a TOP EHD contact – numerical (top) and experimental (bottom) 
comparison 

 

A quantitative comparison is proposed in Table 3.3-3, at the characteristic points of the EHD 

gap. These points are defined in section 3.1.3. Both central and minimum film thickness along 

the central line show a very good agreement: the numerical results slightly overestimate the 

experimental values, with a relative error less than 2%. Even under spinning conditions and 

for an unusual contact geometry, the numerical model presents a good ability to quantitatively 

predict film thickness. The minimum film thickness shows a slightly bigger deviation, but it is 

still a rather good agreement. The difference between the two minima is also well predicted. 

Similarly to the elliptical results, the experimental values in Table 3.3-3 are not stemming from 

a single picture, but they are the average value of about 10 interferograms taken in the same 

operating conditions.  

There is a rather large ℎ𝑐/ℎ𝑚 ratio (with ℎ𝑚 = (ℎ𝑚+ + ℎ𝑚−)/2) on both numerical and 

experimental results. Here, this ratio is larger than 3, which is consistent with the film 

thickness analysis developed in chapter 2: it was demonstrated that for slender elliptical 

contacts (TOP FREC are similar to this category), the ℎ𝑐/ℎ𝑚 ratio is large. 

 

 Experimental Numerical Relative gap difference 

ℎ𝑐  [𝑛𝑚] 509 516 1.3% 

ℎ𝑚,𝑐  [𝑛𝑚] 395 402 1.6% 

ℎ𝑚+ [𝑛𝑚] 145 152 4.7% 

ℎ𝑚− [𝑛𝑚] 140 149 6.0% 

Table 3.3-3 - Film thickness comparison at characteristic points 
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Figure 3.3-3 presents the film thickness profiles, along the line AB (Figure 3.3-2) which is 

actually the x axis, and along the line CD, which connects the two minima. Again, the 

experimental measurement and the numerical results show a good agreement. There is a 

dissymmetry on the film thickness variation along the CD line: the 𝑑ℎ/𝑑(𝐶𝐷) = 0 does not 

occur at the origin of the axis, but it is shifted towards the side of ℎ𝑚−. Again, this behaviour 

of the TOP EHD gap is the same in the experiment and in the model results. 

 

 

Figure 3.3-3 - Film thickness along the AB and CD axis as defined in Figure 3.3-2 – numerical and experimental 
comparison 

 

The model was evaluated in terms of film thickness and friction for 2 experimental reference 

cases. The comparison with experiments proved that the model cannot accurately predict the 

friction: it can only estimate an order of magnitude. However, the model is very relevant with 

regard to film thickness. 

Now, as the tools are defined in sections 3.1 and 3.2, and as their abilities and limits are known 

from section 3.3, it makes possible the investigation into details of the TOP EHD contact. The 

numerical model constitutes a helpful complementary mean to go further in the investigation 

of spinning TOP contacts. Indeed, for a given TOP geometry, Tribogyr does not have the 

capability to test a wide range of conditions, in particular the spin angle λ, whereas the model 

does. 

 

3.4. Conclusion 

In this chapter, several tools were used such as the Tribogyr test-rig and a numerical model. 

Both were dedicated to the study of torus on plane (TOP) flange roller-end contacts (FREC).  

As a consequence, a special pin with a torus end was machined. The new method developed 

to allow for interferometry measurements on non-circular contacts enabled precise 

measurements of the film thickness. Moreover, the friction forces, the friction torque, and the 

temperature were measured in some critical places in the test rig and on the samples.  
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Thanks to this test-rig, the model built to predict the FREC contact has shown its reliability. 

However, this TOP model (with the real torus geometry at the contact end) is not able to 

predict the contact friction with precision, but it can still be used as a prediction of the friction 

order of magnitude. The film thickness predictions are very faithful, and it is probably the first 

time that an experimental validation is applied to a non-elliptical point contact model. 

Thanks to evaluations and validations, it is possible to use the numerical model as a proper 

tool to study with more flexibility the TOP FREC contact. It is the topic of chapter 4. 
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Chapter 4. Torus on  

Plane Contact - Results 
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IV. Torus on plane contact – Results 

Thanks to dedicated numerical and experimental tools presented in chapter 3, an investigation 

on the torus on plane (TOP) EHD contact is lead. It aims to identify the role of the operating 

conditions on the contact behaviour. The attention is drawn to the particularities of this 

unusual EHD conjunction, where neither the gap nor the kinematic is symmetrical. 

At first, the influence of the spin angle 𝜆 on contact pressure, film thickness and friction is 

investigated. Then, the role of the sliding is explored, in order to identify its effect on friction 

and film thickness. At last, a comparison between the full torus on plane (TOP) model and a 

simplified elliptical equivalent (EE) one is performed. This comparison aims to identify the 

cases in which the torus on plane (TOP) modelling is mandatory, and the cases in which its 

elliptical equivalent (EE) is sufficient. 

 

4.1. Influence of the spin angle 

In this section, the effect of the spin angle, 𝜆, on the pressure distribution, film thickness and 

friction will be discussed. For this, the influence of the spin angle, a key parameter, will be 

studied with the experimental and numerical tools developed in this thesis. 

The 𝜆 angle drives the curvature radii in the x direction, in agreement with Equation 3.1-9. It 

also has an influence on the contact kinematic, according to Equation 2.1-4 and Equation 3.1-2. 

When 𝜆 varies, both the bodies’ geometry and the entrainment velocity field vary in the contact 

vicinity. This section investigates the consequences of these relationships between 𝜆 and the 

TOP EHD contact behaviour. For the reader’s convenience, a part of Figure 3.1-9 is presented 

here again in Figure 4.1-1, in order to remind the way the torus is defined. As previously said, 

within the considered frame, 𝜆 < 0. 

 

 

Figure 4.1-1 - The TOP contact and the spin angle 𝜆 
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4.1.1. Influence on EHD pressure 

At first, the contact pressure is investigated. As the model was validated through experimental 

film thickness comparisons, it is possible to study the numerical pressure results with 

confidence. Indeed, the gap distribution is validated by the interferometry experimental 

measurements: one can deduce that the Reynolds equation used to compute it is correctly 

solved. As a consequence, the pressure distribution is also correctly predicted by the model. 

The incapacity of the model to quantitatively predict friction does not invalidate the capacity 

to quantitatively predict pressure distribution: the rheology models hardly influence the 

pressure distribution. 

As the bodies’ geometry makes the situation more complex, a preliminary study under static 

conditions is proposed: the spin angle influence on the dry static contact dimensions and 

Hertzian pressure is briefly presented here. More details can be found in Annexe B. In this 

annexe, it was demonstrated that the dry static TOP contact characteristics (dimensions and 

pressure) can be well modelled by an elliptical equivalent (EE) contact if it has the same 

principal curvature radii. The dry static results are simply the results of this EE with the Hertz 

theory. 

The friction reference case is used here as a basis, but the spin angle is varied as follows: 

𝜆 = [−6°; −4.5°; −2.5°; −1.5°; −1°] 
Equation 

4.1-1 

 

Figure 4.1-2 presents the variations of the contact dimensions 𝑎 and 𝑏 together with the 

resulting Hertz pressure according to the spin angle. For low |𝜆|, the 𝑅𝑥 curvature radius is 

rising up to about 670 𝑚𝑚. As a result, the contact dimension increases along the 𝑥 direction: 

at 𝜆 = −1°, the contact is 2 ∗ 𝑎 ≈ 5.5 𝑚𝑚 long. The contact becomes a little thinner along the 

other direction, but still, the contact pressure decreases when |𝜆| becomes smaller. It reduces 

down to about 630 𝑀𝑃𝑎. The result of the contact dimension variation is also a variation of the 

ellipticity ratio 𝑘. This ratio varies between 𝑘 = 0.43 for the largest |𝜆| and 𝑘 = 0.161 for the 

smallest. This means that all TOP contacts presented here are slender contacts, and that the 

smaller |𝜆| is, the smaller 𝑘. 
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Figure 4.1-2 – Curvature radius, contact dimensions, ellipticity ratio, contact surface and Hertzian pressure of 
the friction reference case but for various spin angles 𝜆 

 

The results presented above on TOP dry static contact are preliminary results to the TOP EHD 

contacts. It was demonstrated how the spin angle drives the Hertz pressure, the contact 

dimensions and thus the contact surface. As the bodies’ geometry make the study more 

complex, this analysis under static conditions will help to understand the physics which is 

involved in the following. 

 

 

Figure 4.1-3 - EHD pressure fields for 𝑆𝑅𝑅𝑥,0 = 0% and 𝜆 = −2.5° (top) and 𝜆 = −1° (bottom) - all other 
parameters are the ones of the friction reference case 

 

When a piezoviscous lubricant and an entrainment velocity are involved in these contacts, a 

hydrodynamic pressure replaces the solid-solid contact pressure. Figure 4.1-3 shows the 
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pressure distribution in two TOP EHD contacts. At the larger values of |𝜆|, the pressurised 

area has a similar shape to the one of the dry static EHD contact (see Annexe B) similar to an 

ellipse: it becomes similar to a bent ellipse for the lower values of |𝜆|. Moreover, the pressure 

maximum is larger for the larger values of |𝜆|.  

To investigate with more details the pressure fields, Figure 4.1-4 presents pressure profiles 

along the x-direction and y-direction for different TOP contacts. In the left graph of this figure, 

the global shape of the pressure fields is classical, with a gradually increasing pressure at the 

inlet (left) and a pressures spike occurring just before the outlet (right) and its sudden pressure 

drop.  

 

 

Figure 4.1-4 - EHD contact pressure profiles along x axis (left) and y axis (right), for the friction reference case 
(with 𝜆 = −2.5°) and its declinations for other spin angles 

 

Similarly to the Hertz pressure, the EHD pressure varies when the spin angle changes. The 

EHD pressure is larger for the large values of |𝜆|, as the same load is transmitted from one 

solid to another through a smaller surface (see Figure 4.1-2). The pressure sum is unchanged 

for the 5 configurations presented in Figure 4.1-4: Equation 2.1-23 insures this. Because the 

curvature of the gap changes with 𝜆, the pressure field changes as a consequence. 

Figure 4.1-4 also presents a dissymmetry of the pressure field for the low |𝜆| configurations. 

Indeed, along the 𝑦 axis (right graph), the pressure field is not symmetrical relatively to the 

𝑦 = 0 point on the 𝑥 = 0 line when |𝜆|<4.5. This unusual behaviour obviously finds its origin 

in the asymmetry of one or more driving EHD parameters, which are here non-symmetrically 

distributed:  

- the entrainment velocity field, 

- and the rigid gap shape. 

The entrainment velocity is modified by the spin (as shown in Figure 1.1-5). However, it is 

known that the pressure field is hardly affected by the spin in both circular spinning contacts 
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(see Doki-Thonon’s thesis (5)) and elliptical spinning contacts (see Dowson et al. (29) and also 

Yang and Cui (30)) when the rotation axis is set along the major axis of the ellipse. In TOP for 

FREC case, the rotation axis is set along the minor axis of the TOP contact. The spin may have 

an influence in this case. Colin et al. (9) studied the TOP FREC contact but they used an EE 

contact to model it: they stated that the pressure field became asymmetrical because of the 

spin.  

 

Likewise, the rigid gap between the solids is not symmetrical. It is not possible to identify this 

on the rigid gap along the 𝑦 axis: the curvature radius in the 𝑦 direction is constant and equal 

to the principal curvature radius, that is to say 𝑅𝑦 = 𝑟𝑡. There is no asymmetry along this axis. 

However, the principal curvature radius 𝑅𝑥 in the other direction is a very local value: it is the 

curvature of the gap along the 𝑥 direction, at the (𝑥, 𝑦) = (0,0) point. But the curvature of the 

gap in the 𝑥 direction varies all over the contact area. For the 𝜆 = −1° case, the local curvature 

radius in the 𝑥  direction, 𝑅𝑙𝑜𝑐𝑎𝑙, was plotted over the contact area in Figure 4.1-5. This radius 

can be defined by: 

 

1

𝑅𝑙𝑜𝑐𝑎𝑙
=
𝜕2ℎ𝑟𝑖𝑔𝑖𝑑

𝜕𝑥2
 

Equation 
4.1-2 

 

with ℎ𝑟𝑖𝑔𝑖𝑑 the rigid gap between the torus and the plane. 

The plot of 𝑅𝑙𝑜𝑐𝑎𝑙 shows that the curvature varies in the range 0.3 ≤ 𝑅𝑙𝑜𝑐𝑎𝑙 ≤ 1.6 𝑚 inside of 

the contact area. Besides, on the (𝑥; 𝑦) = (0; 0.42) point, the curvature ratio 𝑅𝑙𝑜𝑐𝑎𝑙/𝑅𝑦 is four 

times smaller than on the (𝑥; 𝑦) = (0;−0.42) point. These two points are located at the limits 

of the contact along the 𝑦 axis. This variation of 𝑅𝑙𝑜𝑐𝑎𝑙 may have an influence on the pressure: 

it is known from Lubrecht and Venner (63) that when 𝑘 < 1 decreases (that is to say 𝑅𝑦 

decreases and/or 𝑅𝑥 increases), a higher pressure can occur. 
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Figure 4.1-5 – Top: Local curvature radius in the 𝑥 direction and along several lines, from one side of the contact 
(𝑦 = 0.42 𝑚𝑚) to the opposite side (𝑦 = −0.42 𝑚𝑚) – Bottom: Representation of the lines along which the 

curvature radius is obtained – For the friction reference case but with 𝜆 = −1° 

 

It is now established that both the spinning kinematic and the bodies’ geometry are likely to 

influence the TOP pressure field. In order to identify and distinguish the role of each of them, 

the numerical model was used to run virtual investigative simulations: with and without the 

spinning component of the velocity field, and also with the real TOP gap and with the EE one. 

These simulations did not aim to reproduce a possible experiment: as inherent components of 

the actual contact are numerically activated and deactivated, they should allow for uncoupling 

the mechanical effects and assessing their respective influence. 

Based on the friction reference case with 𝜆 = −1° and 𝑆𝑅𝑅𝑥,0 = 0% (Table 3.3-1), four 

investigative simulations (IS) were run. The first one is the realistic case, “TOP with spin”: the 

real TOP gap is represented and the spinning kinematic is activated. The second is similar to 

the first one, but the spinning kinematic is deactivated (𝛺𝑏 = 0); it is called “TOP without 

spin”. The third one corresponds to the EE of the first case, with the same spinning kinematic 
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(“EE with spin”). The last one is the EE in which the spinning kinematic is not activated (“EE 

without spin”). A summary of these IS is presented in Table 4.1-1. 

 

 Real TOP gap EE gap 

With spinning kinematic IS1: TOP with spin IS3: EE with spin 

Without spinning 

kinematic 

IS2: TOP without spin IS4: EE without spin 

Table 4.1-1 - The four investigative simulations, IS1 to IS4 

 

The computation of the four IS did not present any particular problem. In Figure 4.1-6, the 

pressure fields are plotted together with the entrainment velocity streamlines that enter the 

pressurised area at first. Both IS1 and IS2 pressurised areas have the curved ellipse shape, 

whereas IS3 and IS4 have an elliptical shape. The streamline which enters the pressurised area 

at first is plotted on each graph: because the contact shape changes, the position of this 

streamline is different. The streamlines are curved when the spinning kinematic is activated 

(IS1 and IS3) but they are straight when it is deactivated. This streamline has a specific 

influence on the pressure distribution that will be explored. It also has and influence on the 

film thickness that will be detailed in section 4.1.2. 

 

 

Figure 4.1-6 - The four investigative simulations: pressure fields and their inlet streamlines, friction reference 
case with λ=-1° and SRR_(x,0)=0% 

 

Even if the bodies’ shape is identical in the IS1 and IS2 configurations, the pressure 

distributions are not the same:  the spinning kinematic has a role in the pressure distribution. 

Similarly, even if the entrainment velocity field is the same in IS1 and IS3, the pressure 

distribution is different: the pressurised area shape is different, and also the maximum 

pressure is in the 𝑦 < 0 side for IS1 but in the 𝑦 > 0 side for IS3 (see Figure 4.1-7 for more 
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details). At this stage, it is demonstrated that both the spinning kinematic and the bodies’ 

shape influence the pressure distribution. 

 

 

Figure 4.1-7 - Comparison of the pressure profiles along the 𝑦 axis and x=0 for the four IS, the Hertz 
distribution was calculated for the elliptical configurations 

 

In Figure 4.1-7, the pressure profiles are plotted at x=0 along the 𝑦 axis. The IS1 curve is the 

same than in the Figure 4.1-4 (for 𝜆 = −1°). The four curves are all different from one another, 

and apart from the symmetrical case IS4, there is no obvious reason to attribute one 

distribution to a specific IS configuration. Indeed, IS4 has a symmetrical entrainment velocity 

field and a symmetrical gap: the resulting pressure field has to be symmetrical. It presents a 

prominence relatively to the Hertz distribution which is symmetrical. 

It is noticeable that IS1 and IS2 distributions are non-symmetrical: they present a prominence 

relatively to the Hertz distribution which is located on the 𝑦 < 0 side. The IS2 prominence is 

more shifted towards 𝑦 negative values than the IS1 one. The two contacts have in common 

the same non-symmetrical distribution of 𝑅𝑙𝑜𝑐𝑎𝑙 (local curvature radius of the gap, along the 𝑥 

direction) presented in Figure 4.1-5: 𝑅𝑙𝑜𝑐𝑎𝑙 is larger in the 𝑦 < 0 side than in the 𝑦 > 0 side. 

According to Venner and Lubrecht (63), in slender elliptical contacts, when the principal 

curvature radii ratio 𝑅𝑦/𝑅𝑥 becomes small, the maximum pressure rises. Moreover, they 

showed that the pressure distribution along the 𝑦 axis adopts a triangular-like shape which is 

detectable for IS4 in Figure 4.1-7. In the configurations of their study, the curvature radii were 

constant all over the contact area. Here, it is not the case for IS1 and IS2. But still, the pressure 

distribution seems influenced by the curvature variation of the gap, and the pressure 

prominence observed by Venner and Lubrecht in slender elliptical contacts was somehow 

transferred from the central position to the side where the ratio 𝑅𝑦/𝑅𝑙𝑜𝑐𝑎𝑙 was the smallest (𝑦 <

0). To summarise this paragraph: the gap curvature of the TOP contact has an influence on the 
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pressure distribution, it shifts the pressure prominence toward the side where 𝑅𝑦/𝑅𝑙𝑜𝑐𝑎𝑙 is the 

smallest. This shift is called here the asymmetric gap curvature shift. 

Despite their common gap shape and their prominence in the 𝑦 < 0 side, IS1 and IS2 do not 

have the same pressure profile. IS1 has a larger maximum pressure, which is quite local, 

whereas IS2 pressure field is more regularly allocated and its prominence is more shifted. This 

means that the spinning kinematic also has a role in the pressure distribution of the TOP EHD 

contact: it contributes to define the location of the prominence. In order to identify this role, a 

comparison is made between IS3 and IS4. The former also has a prominence, located in the 

𝑦 > 0 region, whereas the prominence of the latter is located at 𝑦 = 0. However, they both 

have constant curvature radii. This means that the entrainment velocity field tends to shift the 

prominence. The shift due to the kinematic field is toward the lateral contact boundary which 

is the closest from the inlet streamline. IS3 shows a prominence shift toward the positive values 

of 𝑦 comparing to IS4 which has no spin. Similarly, IS1 has a prominence which is shifted 

toward 𝑦 > 0 relatively to the IS2 prominence. This shift is called here the asymmetric 

kinematic shift. 

The origin of this kinematic shift can be found in the entrainment velocity field. The streamline 

that crosses the inlet at first is plotted in Figure 4.1-6. It is called here the inlet streamline 

whereby the firstly pressurised lubricant is conveyed.  Indeed, as soon as the lubricant enters 

the EHD pressurised area, the fluid Poiseuille flows are annihilated by the fluid colossal 

viscosity and its sub-micrometric confinement. Without any opportunity to escape the 

compression it endures, the highly viscous fluid follows the Couette flows, which are 

entrainment velocity driven. The only possibilities for the fluid to get away from the 

confinement before the outlet are towards the contact sides: the closer the sides are from the 

inlet streamline, the easier for the lubricant to flow away. When this lubricant escapes, the film 

thickness locally decreases and the pressure on the sides is smaller. Therefore the pressurised 

area neighbouring the contact outside carries a smaller load. As a consequence, the total load 

is mainly transmitted through the central pressurised region, where the pressure rises. This is 

the origin of the prominence. 

Additionally, when the spinning kinematic is introduced in slender contacts (cases IS1 and 

IS3), the inlet streamline is curved and becomes closer to the side which is located far from the 

pin rotation axis. On this side the lubricant will flow out more easily as the conveyed lubricant 

is closer to the contact side. The pressurised area then diminishes on this side, and the 

remaining lubricant endures a larger pressure. On the other side, the pressure decrease 

between the prominence and the exit happens on a larger distance and the pressurised area 

diminishes less. Consequently, the prominence does not happen on this side. This asymmetry 

of the flow is the origin of the prominence shifted position called the asymmetric kinematic 

shift. 

For its part the asymmetric gap curvature shift has another origin. A prominence is observed 

in slender elliptical EHD contacts. Lubrecht and Venner (63) showed that the more the contact 

is slender the more the prominence is obvious. In other words, the more 𝑘 ~ 𝑅𝑦 𝑅𝑥⁄ , the 

ellipticity ratio is low, the more the pressure prominence is large. Yet, in TOP contact, this ratio 

locally varies as 𝑅𝑥 varies, as presented in Figure 4.1-5. This ratio is lower on the 𝑦 < 0 side of 
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the contact than on the other side: consequently the 𝑦 < 0  side has a favourable context for a 

larger prominence than the other side. Therefore, the prominence observed by Lubrecht and 

Venner (63) appears on this 𝑦 < 0 side: it is the cause of the asymmetric gap curvature shift. 

With the asymmetric gap curvature shift and the asymmetric kinematic shift, the pressure 

prominence (relatively to the Hertz distribution) location changes. It is particularly visible in 

Figure 4.1-7. This location explains the values of the pressure maxima: in IS4, the prominence 

is located at 𝑦 = 0. It is exactly where the classical EHD pressure maximum usually is and it 

represents the largest value among the four IS. For IS1 and IS3, the prominence is shifted 

respectively at 𝑦 = −0.1 𝑚𝑚 and 𝑦 = 0.1 𝑚𝑚. On these locations the prominence is less large 

than for IS4. At last for IS2, the shift is hard to locate on the pressure distribution, but according 

to its inlet streamline, the prominence should be at 𝑦 = −0.24 𝑚𝑚. At such a distance from the 

contact centre, the pressure prominence is rather small and is not even able to form a local 

maximum. At this point, it is important to notice that IS1 and the other IS do not produce 

identical results even if these results are similar. For instance, it is not possible to use an EE (as 

in Colin et al. (9)) to model the detailed behaviour of this TOP spinning contact. 

According to the idea that the inlet streamline influences the contact, it is interesting to check 

whether the pressure distributions of the four IS show a similar shape or not along these 

streamlines. These distributions are plotted in Figure 4.1-8. The main difference between them 

is their maxima: this difference is also visible in Figure 4.1-7.  The four IS curves show a similar 

trend. The IS3 profile is slightly different: it starts and finishes closer from the contact centre, 

due to the slightly smaller length of its inlet streamline inside the pressurised area. 

 

 

Figure 4.1-8 - Comparison of the pressure field in the four IS, along their respective inlet streamlines. 
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From these four IS, one can deduce that the pressure prominence of the classical slender 

elliptical contact was shifted toward the 𝑦 < 0 region by the larger curvature radii 𝑅𝑙𝑜𝑐𝑎𝑙 which 

are present on this side. The same prominence was deviated toward the 𝑦 > 0 side by the 

presence of spinning kinematic because the inlet streamline was closer to the contact side in 

this region.  

It is now established that the spin angle 𝜆 has an influence on both the EHD pressure 

distribution and its maximum. As the pressure gradients drive film thickness, the relationship 

between 𝜆, the pressure field, and the film thickness will be investigated in the next section. 

 

4.1.2. Influence on film thickness 

Similarly to the previous section, when the spin angle is varied, one expects variations of the 

film gap. Indeed, the velocity field, the gap shape and the pressure distribution are influenced 

by 𝜆. In Figure 4.1-9, two variations of the friction reference case are presented: the one at the 

top is the exact friction reference case for 𝑆𝑅𝑅𝑥,0 = 0% (and 𝜆 = −2.5°) and the one at the 

bottom is the same, but for 𝜆 = −1°. Other simulations were run: the spin angle range was the 

same than in Equation 4.1-1. 

 

 

Figure 4.1-9 - Film thickness distribution of the friction reference case, at 𝜆 = −2.5° (top) and 𝜆 = −1° (bottom) 
and for 𝑆𝑅𝑅𝑥,0 = 0%  

 

Several parameters change when 𝜆 changes. When |𝜆| diminishes,  𝑅𝑥 (the curvature radius 

along the 𝑥 direction) increases together with 𝑎, but 𝑏 decreases. As a consequence, the 

ellipticity ratio, 𝑘 = 𝑏 𝑎⁄ , decreases as shown in Figure 4.1-2. These parameters are addressed 
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at first to the dry static contact, but they also apply to the EHD contact. In Figure 4.1-9, the film 

thickness distribution is more elongated for 𝜆 = −1° than for 𝜆 = −2.5°, and both are very 

characteristic of the slender contacts (see chapter 2). Moreover, the bending of the TOP gap is 

more visible in the 𝜆 = −1° case. 

When 𝜆 varies, one expects the film thickness to vary widely as the ellipticity ratio has a 

significant influence on minimum film thickness (see chapter 2). Figure 4.1-10 presents the 

variations of ℎ𝑐, ℎ𝑚,𝑐, ℎ𝑚+ and ℎ𝑚− according to 𝜆. The numerical values presented here are 

the ones of the 𝑆𝑅𝑅𝑥,0 = 0% case.  

 

 

Figure 4.1-10 –Film thicknesses for the friction reference case, with varying spin angle and 𝑆𝑅𝑅𝑥,0 = 0% – 
numerical results 

 

The variations of the film thickness are not very large in Figure 4.1-10, but the main change 

occurs for low |𝜆|. When the spin angle is close to 0°, film thickness clearly decreases. Between 

𝜆 = −6° and 𝜆 = −1°, the central film thickness ℎ𝑐 decreases by 21%, the minimum film 

thickness along central line ℎ𝑚,𝑐 by 35% and ℎ𝑚+ and ℎ𝑚− by respectively 31% and 36%. The 

film thickness drop can be explained by the contact geometry change. When |𝜆| decreases, the 

TOP contact becomes more slender (𝑘 = 0.43 for 𝜆 = −6° and 𝑘 = 0.161 for 𝜆 = −1°), and the 

film thickness decreases. 

A comparison can be made between these EHD conditions and the ones presented in chapter 

2, in the slender elliptical configurations of the 𝑢𝑒 = 2 𝑚/𝑠 and 𝑤 = 800 𝑁 case. The curvature 

radii and the entrainment conditions are very similar but the load and the viscosity at ambient 

conditions differ. In the case of purely elliptical contacts, when 𝑘 < 1 decreases, the film 

thickness decreases as well: between 𝑘 = 0.5 and 0.2, ℎ𝑐 and ℎ𝑚,𝑐 decrease by 22% and 

ℎ𝑚,𝑙  by 65%. Note that the minimum film thickness reduction on the sides is very large in the 

purely elliptical case because the 𝑅𝑦 radius was reduced together with the increase of 𝑅𝑥, 

which is not the case for the TOP contacts. In the elliptical case, it was demonstrated that the 
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side flow increase is responsible for the minimum film thickness reduction when 𝑘 < 0 

decreases. The same mechanism is involved in the TOP case. 

Similarly to the pressure field, the film thickness has no 𝑦 = 0 symmetry axis as there is a 

difference between ℎ𝑚+ and ℎ𝑚−. For all spin angles represented in Figure 4.1-10, ℎ𝑚+ is 

between 20% and 6% larger than ℎ𝑚−. This relative difference is larger than the relative error 

which is about 6% according to the difference between experimental and numerical results 

presented in section 3.3.2. This is a characteristic result of the spinning contact in which the 

kinematic is not symmetrical. The entrainment velocity is higher on the ℎ𝑚+ contact side than 

on the ℎ𝑚− border (by about +5 to +10%), and a larger film thickness on the ℎ𝑚+ side is 

expected. Indeed, the ℎ𝑚+ side is the closest from the disc rotation axis, but the furthest from 

the pin rotation axis (see Figure 3.1-5). However, this entrainment velocity difference is not 

very large, which explains the relatively low deviation between the minima.  

 

 

Figure 4.1-11 - Film thickness along the main axes of the EHD TOP friction reference case and for various 
values of the spin angle and for 𝑆𝑅𝑅𝑥,0 = 0% 

 

However, the film thickness asymmetry that was observed in Figure 4.1-9 and Figure 4.1-10 is 

presented with more details in Figure 4.1-11. In the bottom graph, when |𝜆| decreases, it is 

visible that the film minima decrease, that their position is shifted toward 𝑥 axis, but also that 

the film thickness in between is also asymmetrical. The film thickness maximum is located at 

𝑦 = −0.15 𝑚𝑚 for 𝜆 = −1° and at 𝑦 = 0 𝑚𝑚 for 𝜆 = −6°, and monotonously moves from one 

position to the other for the intermediate spin angles. Nevertheless, this maximum observed 

in Figure 4.1-11 (at the bottom) does not vary as much as ℎ𝑐: they are located in different places 

of the contact and the ℎ𝑐 reduction in Figure 4.1-10 is more due to the shift of the gap maximum 

than to an actual global decrease of the film thickness.  
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Similarly to section 4.1.1, the origin of such a film thickness maximum shift (visible in Figure 

4.1-11, at the bottom) is investigated. As the strongest shift occurs for 𝜆 = −1°, this case will be 

studied: the role of the spinning kinematic and the TOP gap curvature will be highlighted. The 

same four IS are used here, but it is now their film separation which is analysed. Figure 4.1-12 

presents IS1 to IS4 film thickness distributions together with the inlet streamlines. These 

streamlines are the same than in Figure 4.1-6, and they do enter the pressurised area at first.  

 

 

Figure 4.1-12 - The four investigative simulations IS (𝜆 = −1°): the film thickness distributions at 𝑆𝑅𝑅𝑥,0 =
0% and their inlet streamlines 

 

The outline of the EHD contact area is elliptical and a curved ellipse for respectively the EE 

and the TOP cases, as in Figure 4.1-6. When there is no spin, the iso-thickness lines located in 

the pressurised area follow the inlet streamline (see IS2 and IS4 in Figure 4.1-12): indeed, the 

lubricant which enters the pressurised area only flows according to the entrainment velocity 

until it exits the pressurised area. Therefore, when spin is activated, the spinning kinematic 

tends to bend the iso-thickness lines according to the entrainment velocity field bending (see 

IS1 and IS3 in Figure 4.1-12). Whether the spinning kinematic is activated or not, whether the 

gap is the one of a TOP contact or an EE, the lubricant follows the inlet streamline.  

In the four IS, the same scenario is repeated. The top graph in Figure 4.1-13 represents the film 

thickness along the respective inlet streamlines of the different IS configurations. They have 

the same slope at the inlet and they have nearly the same value in the central region: there is 

just IS3 which is a little shorter along the 𝑥 direction. The similarities between the different 

curves draw again the attention toward the key role of the inlet streamline. It is clearly along 

the inlet streamlines that the highly viscous fluid is mainly conveyed. Whatever the contact 

shape or the kinematic, the streamline has the same role toward the lubricant. This affirmation 

can be, however, tempered by the heat or shear thinning effects which are driven by the 

kinematic and may have an influence and counterbalance the streamline role. These effects 

will be introduced later, in section 4.2. There is also another limit to this statement: if the inlet 

streamline exits the contact before having crossed the whole contact length, the consequences 
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can be dramatic on film thickness: the inlet streamline will stop conveying the lubricant in the 

contact and accelerate its premature exit. Section 4.3.2 explains this case with more details. 

Along the transverse direction, the film thickness profile is quite different in the four IS. IS4 is 

the only one which is symmetrical: indeed, none of its driving parameters introduces an 

asymmetry. In particular, the inlet streamline is superposed with the 𝑥 axis. The other film 

thickness curves are shifted similarly to their respective pressure profiles, showed in Figure 

4.1-7. Indeed, in section 4.1.1, it was demonstrated that the TOP gap tends to shift the 

maximum pressure towards the negative values of 𝑦 in the present configuration. This is also 

the case for IS1 and IS2 film thickness maxima which are on the left side of the IS3 and IS4 

maxima. Besides, it was also demonstrated that the spinning kinematic tends to shift the 

maximum pressure towards the positive values of 𝑦 (in the present kinematic configuration). 

In terms of film thickness, this trend is also verified: IS1 and IS3 film maxima are on the right 

of, respectively, IS2 and IS4 ones.  

The positions of the inlet streamlines along the 𝑦 axis are also represented. The orange marks 

show that the inlet streamline of each IS is very close to the maximum thickness region. These 

two graphs show the key role played by the inlet streamlines. It also strongly demonstrates 

the role of the principal curvature radius 𝑅𝑥 which is the only gap shape common denominator 

between the four IS. Indeed, the IS3 and IS4 have a single curvature radius along the 𝑥 direction 

(see Equation 2.1-21), whereas the IS1 and IS2 cases have a continuously varying rigid gap 

curvature (see Figure 4.1-5). Moreover, the presence or the absence of spinning kinematic 

changes the rigid gap curvature along the inlet streamline. However, even if the kinematic 

changes and even if the gap curvature varies strongly, the key radius that drives the film 

forming is still a very local value: 𝑅𝑥 (together with 𝑅𝑦). 
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Figure 4.1-13 - Film thickness profiles for the four IS (𝜆 = −1°), along their inlet streamlines (top) and along 
the y axis at x=0  (bottom). The orange marks show the position of the streamlines. 

 

In the bottom graph of Figure 4.1-13, the minima and the maximum inside the contact are very 

similar between the curves. There is only the IS2 minimum at the 𝑦 < 0 side which differs from 

the other minima. This might be explained by the proximity of its maximum film thickness 

with the contact side. Apart from this specific case, the similarity of the gap minima underlines 

the key role of 𝑅𝑦 in the lateral minimum film thickness. Even if the kinematic changes, even 

if the gap curvature changes in the 𝑥 direction, the principal curvature 𝑅𝑦 still drives the 

minima and the maximum of the film thickness together with 𝑅𝑥. 

In this section, it was demonstrated that the spin angle has an influence on the film thickness 

distribution. When |𝜆| becomes smaller, the minima of the film thickness decrease together 

with ℎ𝑐 and ℎ𝑚,𝑐. However, the maximum of the film thickness along the 𝑦 axis (and between 

the two minima) remains rather constant. Comparing to the other IS, IS1 gives similar results 

on the characteristic values of the film thickness: it is mainly the location of these characteristic 

values which changes. This means that the TOP spinning contact can be modelled by a 

simplified model, but the actual behaviour of the contact would be partially predicted. 

 

4.1.3. Influence on friction 

The friction reference case described in Table 3.3-1 is used here again. The experimental and 

numerical friction results will be compared to the ones of other contacts, with various spin 

angles. Experimental data are here more representative of the industrial conditions, but the 

spin angle range of the specimen is limited to 𝜆 = [−4.5°; −2.5°].The numerical friction 
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coefficient was computed for various 𝜆 values, but the values obtained are only orders of 

magnitude.  

In Figure 4.1-14, the friction coefficients (𝐶𝑓𝑥) are presented according to 𝑆𝑅𝑅𝑥,0, and the 

numerical and experimental data are gathered. The numerical results show that, under any 

sliding condition, the larger |𝜆|, the larger 𝐶𝑓𝑥. This trend is confirmed in Figure 4.1-15, under 

various entrainment (𝑢𝑒 = 1, 2 or 4 𝑚/𝑠) and sliding conditions. 

In Figure 4.1-14, and for large sliding conditions (|𝑆𝑅𝑅𝑥,0| > 30%), the numerical friction 

coefficient computed for 𝜆 = −6° becomes slightly smaller than the one for 𝜆 = −4.5°. 

However, as these results are only orders of magnitude and can, at best, reveal trends, this 

particularity will not be investigated. A similar trend can be nevertheless observed in 

experimental results: the graph at 𝑢𝑒𝑥,0 = 4 𝑚/𝑠 in Figure 4.1-15 shows the friction coefficients 

for 𝜆 = −2.5° and −4.5° becoming identical. 

 

   

Figure 4.1-14 - Spin angle influence on friction: experimental (Exp.) and numerical (Num.) analysis for 𝑢𝑒𝑥,0 =
2 𝑚/𝑠, 𝑝ℎ = 600 𝑀𝑃𝑎 for 𝜆 = −1° and 𝑝ℎ = 900 𝑀𝑃𝑎 for 𝜆 = −6° 

 

To understand the causal link between the spin angle 𝜆 and the friction coefficient, one shall 

refer to Figure 4.1-2. As presented, 𝜆 drives the Hertz pressure but it drives the EHD pressure. 

Table 4.1-2 presents the different contact parameters including the Hertzian and EHD 

pressures for each spin angle case. Contradictory effects intervene and the numerical values 

involved are summarised in Table 4.1-2. Firstly, when |𝜆| decreases, the Hertzian and the EHD 

pressure decrease. This should lead to a decrease of the friction coefficient. Secondly, the 

contact surface increases when |𝜆| decreases. Consequently, the sheared surface increases 

which may increase 𝐶𝑓𝑥 with the decrease of |𝜆|. Among these two potential effects, it is not 

straightforward to identify the parameters which actually drive the friction. 
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However, to conclude on the different phenomenon that may influence friction, the viscosity 

integral over the contact area was computed and presented in Table 4.1-2. This calculation 

presents the viscosity sum for the 𝑆𝑅𝑅𝑥,0 = 5% case. It clearly shows that the outcome of the 

different contradictory effects is a 𝐶𝑓𝑥 rise when |𝜆| increases.   

 

𝝀 [°] 

Hertz 

pressure 

[MPa] 

EHD max. 

pressure [MPa] 

Contact 

ellipticity 

𝒌 [ − ] 

Contact 

surface 

[𝒎𝒎²] 

∬ 𝝁 𝒅𝑺
𝑺

 

[Pa.s.m²] for 

𝑺𝑹𝑹𝒙,𝟎  =  𝟓% 

−1 631 675 0.161 3.6 0.0038 

−1.5 687 735 0.204 3.3 0.0091 

−2.5 765 808 0.272 2.9 0.0251 

−4.5 864 903 0.372 2.6 0.0720 

−6 916 942 0.43 2.5 0.1131 

Table 4.1-2 - Friction key parameter variations with the spin angle, for 𝑢𝑒𝑥,0 = 2 𝑚/𝑠  and 𝑆𝑅𝑅𝑥,0 = 0% 

 

To summarise, in our conditions the spin angle has an important influence on friction as it 

drives the contact pressure and consequently the lubricant viscosity. When |𝜆| decreases the 

pressure decreases as well, and the friction coefficient is smaller.  

 

 

Figure 4.1-15 - Entrainment velocity influence on friction: experimental results for two spin angles  

 

However, when |𝑆𝑅𝑅𝑥,0| increases, the friction coefficients of the different 𝜆 configurations 

become closer and closer. This result is valid for all entrainment velocities and for both 

numerical and experimental results. This can be attributed to the thermal effects. Because of 

the high sliding, more energy is dissipated into heat. This temperature rise decreases the 

lubricant viscosity and decreases the friction as a consequence. The sliding heating will be 

investigated in details in the next section. 

In the effort to design optimised bodies’ geometry and kinematic, the engineer must take into 

account the influence of the parameter 𝜆 on pressure, friction and film thickness. For all other 

parameters kept constant, when |𝜆| is decreased, the pressure maximum decreases, the 
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pressure distribution is modified, the fully flooded EHD friction is reduced and the film 

thickness decreases as well. 

 

4.2. Influence of the sliding 

In real FREC, the sliding is an omnipresent and constituent part of the contact. This section 

deals with the different physical mechanisms which are involved in the sliding. First of all, the 

sliding is the result of a velocity difference between two mating surfaces. An accommodation 

occurs through the lubricant shearing in the pressurised area. Despite the sliding, the surfaces 

are still fully separated in the conditions that will be described here. 

The sliding produces friction, which is a force opposed to the relative motion: the product of 

this force by the sliding velocity is the power dissipated 𝑃 (or lost) in the contact. As a first 

approach, one writes: 

 

𝑃 = 𝑤 ∗ 𝐶𝑓𝑥 ∗ 𝛥𝑢𝑥,0 +𝑤 ∗ 𝐶𝑓𝑦 ∗ 𝛥𝑢𝑦,0 + 𝑇𝑧 ∗ (Ω𝑡 − Ω𝑏) 
Equation 

4.2-1 

 

with 𝛥𝑢𝑥,0 = 𝑢𝑏𝑥,0 − 𝑢𝑡𝑥,0 the sliding velocity along 𝑥 axis at the contact centre, 𝛥𝑢𝑦,0 = 𝑢𝑏𝑦,0 −

𝑢𝑡𝑦,0 the sliding velocity along 𝑦 axis at the contact centre, and 𝑇𝑧 the friction torque in the 

contact. 

The transverse dissipated power (𝑤 ∗ 𝐶𝑓𝑦 ∗ 𝛥𝑢𝑦,0) is non-existent in this formulation as 𝛥𝑢𝑦,0 =

0. The local transverse friction is however included in the torque contribution to the power 

losses. In the Tribogyr contacts, the dissipated power can reach about 50 𝑊 or more. This 

energy is transformed into heat, which has an influence on friction and film thickness. 

  

4.2.1. Influence on friction 

In order to investigate the effect of sliding on friction, the friction reference case was used here 

again. Other similar configurations were also experimentally explored: the entrainment 

velocity (𝑢𝑒𝑥,0 = 1; 2; 4 𝑚/𝑠), the load (𝑤 = 400; 1500 𝑁) and the spin angle (𝜆 = −2.5°; −4.5°) 

were varied, resulting in 12 different configurations. 

The friction coefficients of these 12 configurations are plotted against the 𝑆𝑅𝑅𝑥,0 in Figure 4.2-1. 

The graphs at the top correspond to 𝑤 = 1500 𝑁 whereas the ones at the bottom to 𝑤 = 400 𝑁. 

Similarly, the graphs on the left are at 𝜆 = −2.5° and the ones on the right are at 𝜆 = −4.5°. On 

each graph, three entrainment velocities are plotted: 𝑢𝑒𝑥,0 = 1; 2; 4 𝑚/𝑠. 

According to what was explained in section 4.1.3 for 𝑤 = 1500 𝑁, when |𝜆| increases, the 

friction coefficient 𝐶𝑓𝑥 increases. This is also valid at 𝑤 = 400 𝑁, even if here the error bars are 

much larger than the ones at 𝑤 = 1500 𝑁: at lower loads, the Tribogyr test-rig is more sensitive 
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to the parasitic oscillations induced by both the macro and micro flaws and imperfections of 

the many parts involved, including the two specimen. Despite the large error bars, the trend 

is clear: when |𝜆| increases, the friction coefficient 𝐶𝑓𝑥 increases: in the right graphs, |𝐶𝑓𝑥| 

reaches larger values than in the left graphs, for the two loads considered, even if the friction 

is low comparing to EHD friction in general. The reasons are the same for the two load 

configurations; at larger |𝜆|, the contact pressure is larger, and therefore viscosity increases. In 

its turn, the friction is larger. 

 

 

Figure 4.2-1 – Experimental friction curves at various entrainment velocities: at 𝑤 =  1500 𝑁 & 𝜆 = −2.5° 
(top left); 𝑤 = 1500 𝑁 & 𝜆 = −4.5° (top right); 𝑤 =  400 𝑁 & 𝜆 = −2.5° (bottom left); 𝑤 = 400 𝑁 & 𝜆 =

−4.5° (bottom right).  

 

For similar causes, the friction is larger at the largest load when the other parameters are kept 

constant: at larger load, the contact pressure is larger and the piezoviscous effects increase the 

viscosity. In its turn, the friction is increased. Indeed, in the bottom graphs, |𝐶𝑓𝑥| remains 

inferior to 0.04, but in the top graphs, the |𝐶𝑓𝑥| plateaus (i.e. the parts of the friction curves 

where the friction coefficient slope is close to zero) are all above 0.04.  

Within the four graphs of Figure 4.2-1, the slope at the origin seems similar, independently 

from the entrainment velocity. However, it is not possible to ensure that they are equal: there 

are only a few experimental points in this so-called linear area, the error bars are quite large 

and allow a non-negligible variation of the slopes, even at 𝑤 = 1500 𝑁, where the error bars 
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are about the size of the graph symbols. At last, it is not sure that the points are located close 

enough to the origin to actually represent the initial slope. However, even if they are probably 

not equal, they are similar. Surprisingly, it is not yet possible to fully explain the similarities 

between the different slopes at the origin. 

In the 𝑤 = 1500 𝑁 graphs and further from the origin (when |𝑆𝑅𝑅| > 15%), the curves show a 

significant difference. At this stage, the sliding is strong and the power dissipated within the 

few nanolitres of the contact becomes important. As it is a function of the sliding velocity 𝛥𝑢𝑥,0, 

this power and the friction coefficient are plotted against 𝛥𝑢𝑥,0 in Figure 4.2-2. With this way 

of plotting the friction coefficient, the different curves become closer after |Δux,0| > 0.4 𝑚/𝑠. 

Whether the configuration is 𝜆 = −2.5° or −4.5°, the friction curves tend to the same slope and 

value.  

 

 

Figure 4.2-2 – Experimental friction curves and dissipated power according to 𝛥𝑢𝑥,0 at 𝑤 =  1500 𝑁 & 𝜆 =
−2.5° (left),  𝜆 = −4.5° (right) 

 

The dissipated power curves, denoted by the letter 𝑃, are very similar within each graph of 

Figure 4.2-2. They represent the total dissipated power 𝑃 which is the sum of the sliding and 

the spinning losses. The lost power curves mainly depend linearly on the sliding velocity as it 

is visible on the graphs, whatever the entrainment velocity 

In Figure 4.2-2, the friction reductions at large sliding are explained by the larger power 

dissipated in the contact. As the latter remains very similar for the different entrainment 
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velocity configurations, the friction also remains almost constant. This accordance between the 

friction curves and the power losses curve underlines a known result: this area of the friction 

curve is driven by the thermal effects (82). 

This analysis shows the importance of the thermal effects. It also underlines the need for 

simulations that take into account the thermal effects but also the other lubricant thinning 

mechanisms, as its non-Newtonian behaviour.  

As thermal effects have a large responsibility on the friction through the variation on the 

viscosity, it is possible that they have a significant influence on film thickness. 

 

4.2.2. Influence on film thickness  

Whereas the friction variations are important for the power losses predictions in real systems, 

the film thickness reduction is more related to wear prediction or prevention. This section 

evaluates the model ability to predict the consequences on film thickness of the large power 

dissipated in the contact and the solids. Indeed, with large power losses transformed into heat, 

the lubricant viscosity may decrease significantly. This viscosity decrease should imply a film 

thickness decrease. 

In order to model the real contact conditions, the Tribogyr test-rig was used. In the following 

numerical and experimental analysis the film thickness reference case (described in section 

3.3.2) was used again, but the spin angle was varied: in the present section 𝜆 = −4.5°. The 

sliding was varied in two consecutive steps: the first step was an increase of |𝑆𝑅𝑅𝑥,0|, and the 

second was the 𝑆𝑅𝑅𝑥,0 = 0% configuration, right after the first step: 

 

First step: from 𝑆𝑅𝑅𝑥,0 = 0% to 𝑆𝑅𝑅𝑥,0 = −45% 

Second step: 𝑆𝑅𝑅𝑥,0 = 0% 

Equation 
4.2-2 

 

The two steps were done consecutively to isolate the global heating by comparing the 𝑆𝑅𝑅𝑥,0 =

0% cases of the first and the second step. Within both steps, a time interval separated each 

measurement point. Indeed, for each sliding configuration, the entrainment velocity was 

applied as the upper and the bottom samples were not in contact. Then the load was 

progressively applied on the two bodies and they were both mating during a couple of 

minutes before the actual load was reached. When the target load was obtained, the 

temperature was measured in the incoming oil pipe and on the disc (see section 3.1.5): several 

contact interferograms were made during approximatively 20 𝑠. Note that during the load 

adjustments and the related measurements, heat was already generated in the contact and the 

temperature of the bodies globally increased. Between two consecutive film thickness 

measurements, the temperature of the bodies decreased slowly when they were not mating 

(as the room temperature was approximately 25°C). These experimental details have to be 

taken into account for further discussions.  
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The mean film thicknesses obtained from the different interferograms under each sliding 

condition are plotted in Figure 4.2-3, together with the disc track temperatures. The incoming 

lubricant temperature remained stable at about 30°C. As two experimental steps are plotted 

together in the same graph, the coloured symbols represent the first step, while the black 

symbols represent the last step. To help the reader, arrows were plotted to indicate on the main 

curves the chronology. 

The minimum film thickness is still plotted here, but as the measurements are below 100 𝑛𝑚, 

the interferometry results are much less accurate: they were performed without any spacer 

layer unlike in section 2.1.3. They are still plotted as they give qualitative results. 

 

 

Figure 4.2-3 - Experimental (Exp.) and numerical (Num.) film thickness results with various 𝑆𝑅𝑅𝑥,0 for the film 
thickness reference case, but with 𝜆 = −4.5°. For the experimental results the chronology is given by Equation 

3.5 2.  

 

During the first step, when |𝑆𝑅𝑅𝑥,0| increases, the experimental film thickness globally 

decreases. Between the extreme sliding configurations, ℎ𝑐 decreased by 16% and ℎ𝑚,𝑐 by ≈

25%. The minima of the film thickness decreased both by more than 20%: because their 

measurement is not so precise, it is not the exact value which is underlined, but the decreasing 

trend. On its side, the temperature of the contact track on the disc increased by 2.6°𝐶. 

Unfortunately, the temperature of the contact track on the pin was not measured: the presence 

of the thermocouple tends to degrade its surface. Qualitatively, it is very likely that the 

temperature on the pin surface was larger than the one on the disc. Indeed:  

- the steel conductivity is about 40 times larger than the glass conductivity, 
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- the disc requires about twice more energy than the pin to rise its temperature by 1°𝐶, 

- and the track length on the pin is 3 times smaller than that on the disc. As a 

consequence, a portion of the pin track passes more frequently in the contact than for 

the disc track. 

In the second step, the kinematic configuration was the same than at the beginning of the first 

step. However, between the 𝑆𝑅𝑅𝑥,0 = 0% configurations of the first and second steps, ℎ𝑐 

decreased by 10% and ℎ𝑚,𝑐 by ≈ 9%. On its side, the disc track temperature is 1.1°𝐶 larger in 

the second step than at the beginning of the first one. 

Besides, the numerical film thickness did not decrease significantly with the sliding increase. 

The central film thickness only decreased by 4% and ℎ𝑚,𝑐 by 8% (decreases between 3 and 4 

times less than in the experiments). In the model, the incoming lubricant temperature and the 

solid’s temperature at the computation domain boundaries are constant and set to 𝑇0 = 30°𝐶. 

As the temperature rise due to friction mainly happens inside of the contact, the contact inlet 

area is nearly at 𝑇0 in the simulations. Because the film thickness is ruled by the conditions 

found in the inlet, the numerical model cannot predict a large film thickness decrease due to 

the sliding.  

To experimentally evaluate the global warming of the two specimens, it would be interesting 

to measure the temperature on the contact track for both of them. However, in Tribogyr, the 

oil is spread on the disc. Consequently, the torus is not continuously fed with lubricant and 

the thermocouple-torus contact may be starved during the adjustment of the rotation velocity 

of the specimen. Wear may occur fast and invalidate any film thickness measurement via 

interferograms.  

With Figure 4.2-3, it is possible to show that even a short running period with a single contact 

can lead to a film thickness reduction. This reduction is hard to predict as it depends on a 

global warming of the mating solids. A solution lies in the coupling with a global warming 

numerical model, at the scale of the solids dimensions. This model should be transient, and 

would be able to predict the track temperature from the knowledge of the power dissipated in 

the EHD contact. In its turn, the EHD model should be coupled with the global warming model 

by the temperature of the tracks at the inlet.  

The sliding influences film thickness and friction in different ways. The friction is driven by 

the lubricant rheology and thermal behaviour inside the contact: as a result, the mating surface 

temperatures increase. The TOP FREC contact has a behaviour which is very similar to any 

other EHD contact about this. For its part, the film thickness is mainly determined by the 

lubricant rheology and thermal behaviour at the contact inlet. Consequently, the surface 

temperatures increase tends to thin the lubricant in the inlet. As the dissipated power is rather 

large, this temperature rise has a noticeable influence even after a few hundreds of cycles. As 

a prospect, it would be fruitful to develop a global warming model to predict the temperature 

rise of the specimens. It would also be useful to measure the temperature on the two specimen 

during the experiment, even if some minor challenges are to be expected. 

So far in chapter 3, the TOP contact was modelled with its real gap geometry. In sections 4.1.1 

and 4.1.2, the EE models were used in order to identify the role of the torus gap in the contact 
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behaviour. These sections did not conclude on the relevance of the torus gap modelling: is it 

mandatory to model the gap by the real geometry, or is it possible to proceed to 

simplifications? Direct comparisons are proposed in the next section to offer some answers. 

  

4.3. Comparisons with equivalent elliptical (EE) contacts 

According to the hypothesis made by Hamrock and Dowson (22) and others since then, the 

principal curvature radii of the contact can be used to model the bodies’ geometry in the 

contact vicinity. However, with the large variations of the curvature radius in the TOP contact 

and the distorted kinematic fields, the principal curvature radii assumption (PCRA) may not 

be valid in all cases. This section aims to present the configurations in which the PCRA is valid 

and those in which the contact behaviour cannot be properly predicted. In these last cases, an 

alternative modelling is proposed. 

For this purpose, the TOP EHD contact model and its EE model will be used. They were 

validated respectively in section 2.1.3 and section 3.3. The comparison will be made in terms 

of film thickness and friction. Because the film thickness prediction abilities of the model were 

proved with strength, this kind of comparison will be reliable. Friction comparisons will only 

be considered as relative indications between two models: indeed, it was demonstrated that 

they are not able to predict quantitatively the actual EHD friction. 

 

4.3.1. Accordance of the models 

4.3.1.1. Film thickness and pressure 

The two models (TOP and EE) are compared in terms of ability to predict the characteristic 

values of the lubricant film thickness. In sections 4.1.1 and 4.1.2, a comparison was already 

established for one angular value of 𝜆 and with the aim to understand the behaviour of the 

contact. Here, the comparison aims to inform the reader on the reliability of the EE model. 

Indeed, in the context of an engineer approach, the simplifications of the EE model would be 

of great help. 

For the comparison, the friction reference case described in section 3.3.1 was used. The spin 

angle 𝜆 was varied between −6° and −1°. The film thickness characteristic values (ℎ𝑐 , ℎ𝑚,𝑐 , ℎ𝑚+ 

and ℎ𝑚−) were obtained according to the description of section 3.1.3. The results for the two 

models are plotted in Figure 4.3-1. 
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Figure 4.3-1 - Comparison between TOP and EE film thickness characteristic values and maximum EHD 
pressure (numerical results) for the friction reference case (𝑢𝑒𝑥,0 = 2 𝑚/𝑠 and 𝑤 = 1500 𝑁) with 𝑆𝑅𝑅𝑥,0 = 0% 

 

The reader may notice than in this figure, the trends are very similar between the two models: 

when |𝜆| decrease, the global film thickness decreases. However, there are some minor 

distinctions between the TOP and the EE models. The central minimum film thickness ℎ𝑚,𝑐 is 

about 50 𝑛𝑚 larger in EE results than in the TOP results: this is mainly due to a change of the 

localisation of the contact exit. According to the inlet streamline concept, the EE contact exit is 

located close the 𝑥 axis, whereas in the TOP gap, it clearly occurs on the 𝑦 < 0 side of the 

contact. Consequently ℎ𝑚,𝑐 (which is the minimum film thickness along the 𝑥 axis) from the 

EE model cannot correspond to the one from the TOP model. Another definition of ℎ𝑚,𝑐 may 

show closer results but would be sensitive to apply at the measurement stage. 

Besides, there are minor discrepancies in terms of central film thickness: according to the inlet 

streamline concept, the film thickness maxima do not occur at the same place of the contacts. 

However, the difference is less than 4%. At last, there is a difference at the film minima ℎ𝑚+ 

and ℎ𝑚−. In line with the literature (Dowson et al. (29), Taniguchi et al. (31), Doki-Thonon (5)) 

pertaining to spinning contact ℎ𝑚+ and ℎ𝑚− are different. In the present cases, the difference 

is negligible for 𝜆 = −6° but it is of about 10 𝑛𝑚 for 𝜆 = −1.5°. However, there is a significant 

difference between the results of the TOP and the EE models. Indeed, ℎ𝑚+ and ℎ𝑚− in the EE 

results follow respectively the values of ℎ𝑚− and ℎ𝑚+ in the TOP results. This means that the 

global minimum of the gap changed its position. It also means that the global minimum is 

located on the side of the contact where the inlet streamline is closer to the limit of the 

pressurised area. When the inlet streamline is close to a contact border, the lubricant is more 

likely to flow toward this border, to escape the contact and to reduce the film thickness locally.  
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However, the changes between the TOP and the EE results in terms of film thickness are not 

very important and it seems that the EE model can be used to predict within a reasonable 

confidence the TOP contact behaviour. 

The maximum pressure is very similar in the two models, as showed in Figure 4.3-1. There is 

a maximum deviation of about 1.5%. The EE model appears sufficient to predict the EHD 

contact pressure. 

With these rather good concordances in terms of maximum pressure (used in rolling contact 

fatigue prediction, for example) and film thickness (used to distinguish the mixed and the full 

film lubrication), the EE seems able to model the behaviour of the TOP contact with a good 

precision. 

 

4.3.1.2. Friction 

The friction results of the TOP and the EE model are compared in this sub-section. The cases 

computed here are the same than in the last sub-section 4.3.1, but the sliding was varied. 

Friction coefficient curves are plotted in Figure 4.3-2 

. 

 

Figure 4.3-2 - Friction curve comparison: TOP and EE model results for the friction reference case (𝑢𝑒𝑥,0 =
2 𝑚/𝑠 and 𝑤 = 1500 𝑁) 

 

It clearly appears that the two models agree very well. It was demonstrated that their 

predictions are not quantitative but rather good orders of magnitude. Despite this weakness 

in terms of modelling, the results are the same in the two models: the unusual bodies’ 

geometry in the TOP configuration did not affect the friction forces compared with the 

elliptical case. Whether the gap has the actual shape or an approximation, the shear stress 

integral in the pressurised lubricant did not change significantly. 
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Again, in the cases presented, the EE model seems sufficient to predict the behaviour of the 

contact. However, the role of the inlet streamline enables to consider a limit to the EE 

approximation: if this inlet streamline exits the contact before the end of the dry contact area, 

what happens to the entrapped lubricant? 

 

4.3.2. The limits of the EE model 

The EE model finds it limits when the TOP contact is too curved along the 𝑥 axis. Indeed, the 

kinematic is the same in the two models, but as the TOP contact shape changes significantly, 

there is a risk that the relation between the gap shape and the kinematic differs strongly 

between the two models. It is the case when 𝜆 becomes very close to 0, like 𝜆 = −0.5° for 

instance. It is a very small angle, but such a curved contact can be seen in the FREC but also in 

other applications, like in worm gears (see Kong et al. (41)). 

The contact characteristics are given in Table 4.3-1. It is a very elongated and very narrow 

contact. Consequently, as it follows the curvature of the torus shape, the curvature is easily 

visible. 

 

Parameter [Unit] Value 

𝑎 [𝑚𝑚] 3.49 

𝑏 [𝑚𝑚] 0.375  

𝑘 [ − ] 0.11 

𝑝ℎ  [𝑀𝑃𝑎] 547 

Table 4.3-1 - Dry contact characteristics for the friction reference case with 𝜆 = −0.5° 

 

EHD pressure distribution is plotted in Figure 4.3-3, together with the inlet streamline. From 

this figure, it clearly appears that the latter, along which the lubricant compression occurs, 

exits the pressurised area very early. The lubricant which should be carrying the load tends to 

exit the contact very quickly, in the abscissa range −2 < 𝑥 < −1 𝑚𝑚. The load is reported on 

the part of the lubricant which does not escape, but the film forming should be disturbed.  
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Figure 4.3-3 - Friction reference case (𝑢𝑒𝑥,0 = 2 𝑚/𝑠 and 𝑤 = 1500 𝑁) with λ=-0.5° and 𝑆𝑅𝑅𝑥,0 = 0%: 
pressure distribution for the TOP model 

 

Moreover, after its exit, the inlet streamline drives some part of the lubricant back in the contact 

area. However, this second entrance in the contact may be of a poor quality: as a film 

separation has already happened, the second feeding may not be fully-flooded but starved. 

The model described in section 2.1.2, and section 3.2 does not describe the air-lubricant 

biphasic flow at the film separation. As a consequence, the lubrication of the contact at the 

second entrance of the inlet streamline is probably not well described by the model. Because 

starvation and diphasic flow were note taken into account, the present model may not be 

sufficient to fully describe the 𝜆 = −0.5° configuration, especially on the 𝑥 > 0 side. 

Despite these model insufficiencies, it still appears that the pressure distribution is very 

unusual. In Figure 4.3-3, in the central part of the contact along the x axis (the area where the 

inlet streamline is outside of the contact) the pressure is reduced. Indeed, because of the exiting 

flow, the pressure cannot be maintained locally. This pressure is reported on other places of 

the contact, where the lubricant cannot flow away. It appears that the kinematic field and the 

contact shape have lost their coherence. This lack of coherence leads to exiting lubricant and a 

degraded pressure distribution. 

Figure 4.3-4 shows the film thickness distribution for the same case: the same elongated shape 

is observed. The inlet streamline has indeed crossed the local film thickness minimum on the 

side of the contact. It has entrained some lubricant out of the pressurised area. At the point 𝐴, 

the film thickness is approximately ℎ = 300 𝑛𝑚 but at the point 𝐵, ℎ = 250 𝑛𝑚. These two 

points are at the middle of the contact width and in another contact there would correspond 

to a very similar film thickness. But in the present case, some lubricant was lost before the exit, 

leading to a film thickness reduction. 
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Figure 4.3-4 - Friction reference case (𝑢𝑒𝑥,0 = 2 𝑚/𝑠 and 𝑤 = 1500 𝑁) with λ=-0.5° and 𝑆𝑅𝑅𝑥,0 = 0%: film 
gap for the TOP model 

 

The summary of the characteristic values of the film thickness is showed in Figure 4.3-5 

together with the results of the larger |𝜆| configurations. The global film thickness minimum 

is 34 𝑛𝑚 for 𝜆 = −0.5°, which corresponds to the dark blue area in the right bottom side in 

Figure 3.6-4: it is nearly twice smaller than the minimum in the same contact but with 𝜆 = −6°. 

However, this film minimum may be even smaller, as in the present model, the diphasic flow 

and the starvation are not represented.  

 

 

Figure 4.3-5 - Comparison between TOP and EE film thickness characteristic values and maximum EHD 
pressure (like in Figure 4.3-1 but with the 𝜆 = −0.5° case). 
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On its side, the EE model also predicts an elongated contact. In Figure 4.3-6, the pressure 

distribution is represented together with the inlet streamline. In the EE results, the inlet 

streamline does not exit the pressurised area. This has a significant influence on the quality of 

the surface separation. Indeed, there is no pressure drop at the middle of the contact, as there 

is no unusual leakage due to the lack of coherence between the kinematic and the contact 

shape. This means that the EE model fails, in some situations, to predict the TOP FREC 

behaviour.  

However, the EE model was reasonably correct in its prediction of the TOP maximum EHD 

pressure: it is only 5% larger in the EE model than in the TOP model. 

 

 

Figure 4.3-6 - Friction reference case (𝑢𝑒𝑥,0 = 2 𝑚/𝑠 and 𝑤 = 1500 𝑁) with λ=-0.5° and 𝑆𝑅𝑅𝑥,0 = 0%: 
pressure distribution for the EE model 

 

Though asymmetric, the pressure distribution of the EE model is more conventional than in 

the TOP model. As a result, the film thickness is also more conventional (see Figure 4.3-7): the 

lubricant does not exit prematurely the contact and the surface separation is better. In Figure 

4.3-7, the iso-thickness lines follow the inlet streamline. This means that the lubricant which 

enters the pressurised area at the inlet, is driven throughout the contact area by the 

entrainment velocity, and finally exits the contact at its classical outlet, on the opposite side. 

All along the contact, the lubricant is able to separate the surfaces. At the 𝐴 point of the contact 

(see Figure 4.3-7), the film thickness is equal to 300 𝑛𝑚, and it is still of 290 𝑛𝑚 at the point 𝐵. 
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Figure 4.3-7 - Friction reference case (𝑢𝑒𝑥,0 = 2 𝑚/𝑠 and 𝑤 = 1500 𝑁) with λ=-0.5° and 𝑆𝑅𝑅𝑥,0 = 0%: film 
gap for the EE model 

 

Figure 4.3-5 presents the film thickness comparison between the TOP model results, and the 

ones stemming from the EE simulations. The EE model now predicts a 23 𝑛𝑚 larger film 

thickness than the TOP model on ℎ𝑐. The difference in the model predictions is more 

particularly true at the global minimum: even if it is not very visible on this global graph, it is 

actually 30% larger in the EE model than in the TOP configuration. Moreover, the global 

minimum was ℎ𝑚+ in all configurations of the EE model, but it is ℎ𝑚− in the 𝜆 = −0.5° 

configuration. In terms of film thickness prediction, the EE model also has some limits and it 

cannot predict with confidence the behaviour of all TOP contacts studied here, especially if the 

TOP contact it is supposed to model has lost its kinematic-shape coherence. 

To summarise, the EE model generally models well a TOP contact gap in the context of EHD 

lubrication. However, if the TOP contact loses its kinematic-shape coherence, the EE model 

may predict wrong results. It is very likely that it would over-estimate the film thickness. To 

detect this limit of the EE model, a simulation is not mandatory: indeed, the inlet streamline 

can be predicted without computation, together with the shape of the contact. So by gathering 

the information from the kinematic and the bodies’ geometry, it is possible to anticipate the 

modelling risk and to model the TOP gap in an appropriate way. 
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4.4. Conclusion   

This last chapter investigated the torus on plane (TOP) EHD conjunction in order to identify 

the role of the different operating conditions and to propose a simplification of the numerical 

model. 

The spin angle 𝜆 appeared as the key parameter in the analysis of the TOP EHD contact: the 

spin angle drives the size, the surface, the shape of the contact but also its pressure (both EHD 

and Hertz pressures). With the same sample, the contact dimensions can be very different, 

whether the spin angle is close to zero or not. The larger spin angle configurations are quite 

similar to an elliptical contact, whereas small spin angle configurations are so elongated along 

the torus that it is strongly curved by the bodies’ geometry. Because the spin angle drives the 

maximum pressure, it also influences the viscosity increase in the contact and, ultimately, the 

spin angle drives the friction. 

This spinning contact can exhibit a significant power dissipation. A sliding occurs even when 

the sliding at the contact centre is zero, and the mating bodies’ temperature rises, leading to 

an interaction between the thermal aspects of the contact at its own scale, and the thermal 

behaviour of the whole solids, at their scale. For better predictions, it appeared mandatory to 

couple these two scales. 

For the present torus pin and both moderate and large spin angle, it is possible to predict the 

torus on plane contact behaviour by the elliptical equivalent model. Indeed, under such 

conditions, the torus on plane contact is very similar to an elliptical one. 

When the spin angle is small, the behaviour of the torus on plane contacts is less conventional 

and differs to the one of an elliptical contact. In this context, the concept of “inlet streamline” 

was developed: it is the streamline that enters the pressurised area at first, and it is the one 

along which the pressure generally is the largest. In non-spinning contacts, this streamline 

remains on the symmetry axis of the contact and the distance between the streamline and the 

contact borders is the same on both sides. However, when the spinning kinematic is 

introduced together with the curved contact, this inlet streamline is not located on the 

symmetry axis anymore. It becomes closer to one frontier, and the whole contact is then 

disturbed in terms of pressure and film separation.  

When the spin angle becomes very small, the inlet streamline may exit the pressurised area 

much before the end of the contact. In this case, the predictions of the elliptical equivalent 

model significantly differ from the ones of the torus on plane model. It is also very likely that 

the torus on plane numerical model presented in this thesis may not be able to describe its 

actual behaviour, which may include diphasic flows and possibly starvation. It would be 

interesting to improve the current numerical model with these features that may occur for the 

configurations with the smallest values of the spin angle. 
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Conclusions and Prospects 
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Conclusions and prospects 

General conclusion 

After a general introduction to the flange roller-end and the EHD contacts, the torus on plane 

flange roller-end contact problem was introduced in chapter 1. Following this introduction, 

the literature pertaining to this topic was presented. This bibliography analysis underlined the 

need for more investigations on elliptical contacts and more specifically slender elliptical 

contacts, which are similar to the torus on plane flange roller-end contact. Moreover, it 

evidenced the lack of torus on plane flange roller-end contact study which included the real 

mating bodies’ geometry. 

Following the literature review, chapter 2 addressed the investigations of the elliptical 

contacts, as a first approach to the torus on plane flange roller-end contact. This analysis was 

made with a test-rig, Jérotrib, which enabled reliable film thickness measurements. Thanks to 

the experimental results, a numerical model was evaluated and a good film thickness 

prediction capacity was demonstrated. This validation constitutes a progress in the elliptical 

EHD model literature. This model was used to investigate the influence of the ellipticity on 

the contact behaviour. A focus on the fluid flow was presented in order to understand the 

causal links between the upstream gap shape – which are driven by the ellipticity – and the 

film forming capacity. 

Chapter 3 and 4 were dedicated to the study of the torus on plane flange roller-end contacts 

with the actual bodies’ geometry. Chapter 3 presented the numerical model, the Tribogyr test-

rig and a validation of the model via the experimental measurements of the test-rig. It is very 

likely that such an experimental-numerical comparison is proposed for the first time to a non-

elliptical point contact. Then chapter 4 provides an analysis of the torus on plane contact. It 

was demonstrated that the spin angle is the key parameter. It defined the contact pressure, the 

contact shape and the contact kinematic. As the pin end was a torus, the local curvature radii 

varied significantly and it influenced the whole contact. In most cases, the torus on plane 

flange roller-end contact could be approached by an elliptical equivalent flange roller-end 

contact. The film gap was well predicted by this simplified model. Indeed, the inlet streamline 

did remain inside the pressurised area in the two models. However, when the spin angle 

became very small, the inlet streamline exited the torus on plane model pressurised area but 

it did not in the elliptical equivalent model. This difference led to differences in the results of 

the two models. However, the torus on plane model was probably not able to predict the actual 

contact case behaviour as diphasic flow and starvation probably occurred due to the inlet 

streamline unusual trajectory. Besides, the torus on plane flange roller-end contact is a 

spinning and sliding contact: rather large power losses are evidenced. They have a large 

influence on the mating surface temperatures and consequently on film thickness. It was 

however not possible to predict the global heating of the solids.  

To summarise, a model was developed in this thesis to predict the elliptical and general shape 

EHD contact behaviour. The model ability to predict film thickness was validated through two 
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different test rigs with two different contact types. This model failed to predict precisely the 

friction but better lubricant characterisation may enhance the prediction reliability. Thanks to 

this model, new conclusions were presented for the elliptical contact and the torus on plane 

contact. 

Thanks to improved understanding and advanced numerical models, the film thickness in 

non-conventional EHD contact may be predicted with great confidence. As a better knowledge 

of the surface separation allows for better predictions, the future rolling bearings will be 

designed with an improved precision. This will lead to an advanced prognosis of the wear 

occurring in this poorly lubricated flange roller-end contact. Moreover, the prediction of film 

thickness can also be made with a simplified elliptical equivalent model in some well-defined 

cases. Indeed, as long as the inlet streamline remains inside of the torus on plane contact area, 

the film thickness can be predicted by both the torus on plane model and its elliptical 

equivalent. 

 

Recommendations for future work 

Many aspects of the torus on plane contacts were extensively investigated in this work and a 

new understanding of these unusual contacts was presented. However, new questions were 

raised: they will be a good basis for future investigations. 

At first, the model developed in this study showed very good film thickness prediction 

abilities but was not able to predict precisely the friction. It was demonstrated that this lack of 

precision came from the limits of the lubricant characterisation: though covering several 

physical parameters and a wide range of conditions for all of them, some restrictions penalised 

the model. Indeed, the shear dependence of the lubricant was evaluated in conditions that did 

not activate non-Newtonian behaviour. For further works, a wider characterisation of the 

lubricant may be required. This requirement is a call for progress in the development of new 

high-pressure rheometers. 

It was established that for low spin angle cases (very elongated and curved contacts, similar 

to the flange roller-end contact in cylindrical roller bearings), the inlet streamline can exit the 

pressurised area before the end of the contact. Moreover, this streamline then enters the 

pressurised area again, but with less lubricant: a starvation may occur together with a diphasic 

flow. A diminution of the film thickness was exhibited. However, this configuration was not 

observed in the experiments, and the model may find some of its limits as it is not able to 

predict starvation and diphasic flows. New experiments and a more advanced model would 

be required to conclude on the film thickness reduction occurring in low spin angle cases. 

Thermal effects were observed in this large sliding contact. The Tribogyr test-rig enabled to 

underline the global heating of the specimens which occurs during the experiment. However, 

the model was not built to be able to predict these thermal evolutions: indeed the global 

heating occurs at a time scale which is much longer than the characteristic heating time in the 

contact vicinity. Future models should include this longer time scale: indeed, the EHD contact 

dissipates power which heat the mating specimen. However, the specimen temperature has a 
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great influence on the contact behaviour itself. This reciprocal influence pleads for a full 

coupling between the two time scales.  

In the introduction, the concave conical and spherical flanges were approximated by a plane 

as the curvature radii of the cone and the sphere are large at the contact. However, in some 

cases the finite curvature radius of the cone and the sphere may be of the same order of 

magnitude than the torus larger curvature radius at the contact centre. Moreover, it may be 

equal and even smaller than the torus larger curvature radius.
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V. Annexes 

5.1. Annexe A: The calibration method  

During this thesis, the differential colorimetric interferometric method developed by 

Molimard et al. (3,69) was improved in order to enable measurements on non-circular contacts. 

The previous method required a circular Hertzian contact because this method is based on the 

rotational invariant properties of the circle. In elliptical or torus on plane contact, this property 

is lost. Moreover, in circular contacts, an analytical expression of the gap in the Hertzian 

contact vicinity exists (see Equation 2.1-4), but no gap function is available for non-circular 

contacts. 

 

 

Figure 5.1-1 – Algorithm of the new differential colorimetric method 

 

Therefore, a new method was developed, and its algorithm is presented in Figure 5.1-1. It is 

based on 2 calibration pictures made under the same conditions: a chromatic and a mono-

chromatic interferogram of the Hertzian contact. Through the mono-chromatic interferogram, 
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the frontier of the contact is determined at first. Based on the position of this frontier and the 

dark fringes, the distribution of the gap is obtained in the contact vicinity: ℎ(𝑥, 𝑦) is now 

determined. Through the chromatic interferogram, the distribution of the colour (defined by 

its decomposition in the RGB frames captured by a digital 3-CCD camera) is obtained. Then, 

a combination of the colour distribution and the gap distribution is made to get the calibration 

curve ℎ(𝑅, 𝐺, 𝐵). 

Thanks to this calibration curve, interferograms of static and EHD contact can be analysed. 

Indeed, any colour defined in the calibration curve corresponds to a single film thickness in 

the range 0 − 800 𝑛𝑚. In sections 2.1.3 and 3.3.2, the new differential colorimetric 

interferometry method is validated by the good accordance between the measurements and 

the numerical predictions under EHD conditions.  

In Figure 5.1-2, the comparison is made between the film thickness measurement in a Hertzian 

static contact vicinity and a numerical result. The numerical model used here is the one 

described in Annexe B. The mating specimens are described in Table 2.1-1 and Table 2.1-2, 

where the steel convex specimen is the “Slender elliptical”. The contact load is 𝑤 = 11.3 𝑁. 

There is a very good accordance between the experimental and numerical results, in the two 

ellipse directions. The two graphs of Figure 5.1-2 confirm the validity of the new method 

developed in this thesis. 

 

 

Figure 5.1-2 – Comparison between the numerical results and the new method results in the vicinity of an 
elliptical Hertzian contact
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5.2. Annexe B: torus on plane static contact investigations 

The biggest novelty of the thesis is the shape of the contact: it is neither elliptical nor linear. It 

is another shape, more complex than the elliptical contact, but still similar to it. 

 

a) Experimental tool 

One of the challenges of the thesis is to apprehend this new contact and develop the 

geometrical tools to define it under static conditions. For this purpose, a dual approach is 

adopted. The Tribogyr test-rig described in section 3.1 provides opportunities to make contacts 

between a torus and a plane with a good positioning precision for the mating bodies (see 

Figure 5.2-1). Moreover, the plane is a glass disc and it enables to measure the position of the 

contact frontier by an in-situ observation. With this tool, it is possible to establish an 

experimental approach of the static contact behaviour. 

 

Figure 5.2-1 - Steel torus and glass disc definition and geometrical relative positions in the Tribogyr test-rig 
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Table 5.2-1 presents the conditions of the experiments with the test-rig. The data presented are 

the same than in chapter 4 but for the reader’s convenience they are detailed in this annexe.   

 

Parameter [ Unit ] Value Description 

𝑅𝑡 [𝑚𝑚] 0.011 Torus major radius 

𝑟𝑡  [𝑚𝑚] 0.040 Torus minor radius 

𝐸𝑏 [𝑃𝑎] 210 × 109 Bottom solid Young 

modulus 

𝐸𝑡  [𝑃𝑎] 62.8 × 109 Top solid Young modulus 

𝜈𝑏 [ − ] 0.3 Bottom solid Poisson ratio 

𝜈𝑡  [ − ] 0.2 Top solid Poisson ratio 

𝜆 [°] [−0.5 to−6] Spin angle 

𝑤 [𝑁] varying Contact load 

𝑒𝑛 [𝑁.𝑚
−3] 1018 Penalty contact law 

parameter 

𝑡𝑛 [𝑁.𝑚
−2] 108 Penalty contact law 

parameter 

𝑑𝑒𝑝𝑡ℎ [𝑚] varying Penetration depth of the 

torus in the fictional plane 

𝐹  [𝑀𝑃𝑎] varying Contact pressure 

Table 5.2-1 - Operating conditions for the static contact considered 

 

Under the conditions defined in Table 5.2-1, the contact is observed by a microscope through 

the glass disc. Figure 5.2-2 presents one of these contacts. The minor semi axis is defined 

similarly to the one of a classical ellipse, but the major semi axis has another definition: it is 

the distance between the two furthest extremities of the torus, along the arc of radius 𝑅𝑟 =

𝑅𝑡 + 𝑟𝑡 sin(𝜆). This new definition was proposed by Sany (83) and has no great influence on 

the value of 2𝑎 when 𝑎 ≪ 𝑅𝑟. But when 𝜆 becomes close to zero, 𝑎 increases significantly and 

𝑅𝑟 decreases. As a consequence the contact shape sticks to the curvature of the arc defined by 

the radius 𝑅𝑟. 
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Figure 5.2-2 - TOP contact, w=240 N and 𝜆 = −3° 

 

b) Numerical tool 

A numerical tool was also developed to study the TOP static conjunction. It is a finite element 

(FE) model. The model was developed jointly with Nicolas Fillot during the master thesis of 

Romain Sany (83). Figure 5.2-3 presents the contact law: it is based on a single body 

representation (the torus) on which a load is applied so that it mating a fictional half space. 

This half space is not represented in the actual model, but the reaction force is computed on 

the basis of the penetration depth of the torus in this half space. If 𝑑𝑒𝑝𝑡ℎ defined in Figure 5.2-3 

is strictly negative it means that a penetration occurs and a very large stiffness response is 

applied. If 𝑑𝑒𝑝𝑡ℎ ≥ 0 there is no penetration and no contact pressure should occur. However, 

for consistency requirements, a 2nd order continuity of the 𝐹 (𝑑𝑒𝑝𝑡ℎ) function is required and 

a negligible pressure is still applied. The torus body is supposed to have a linear elastic 

behaviour, defined by an equivalent Young modulus: 

𝐸𝑒 =
𝐸𝑡 × 𝐸𝑏
𝐸𝑡 + 𝐸𝑏

 Equation 5.2-1 

and Poisson ratio: 

𝜈𝑒 =
𝜈𝑡 × 𝐸𝑏 + 𝜈𝑏 × 𝐸𝑡

𝐸𝑡 + 𝐸𝑏
 Equation 5.2-2 

 

This method is quite simple to implement, and gives reliable results under static conditions. 

The challenge is to define the adequate parameters 𝑒𝑛 and 𝑡𝑛. The larger they are, the stiffer 

the contact reaction is and the more precise is the contact behaviour determination. However, 

above 𝑒𝑛 = 10
19 and 𝑡𝑛 = 10

9, the convergence is very long. As a result, the parameters are 

defined as: 

𝑒𝑛 = 10
18 and 𝑡𝑛 = 10

8 Equation 5.2-3 

 

This choice is confirmed by a good accordance in more simple contacts (linear, circular and 

elliptical contacts) with Hertz theory. Though the results are not presented here, the developed 

model showed a good ability to predict the circular and elliptical contact pressure and 
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dimensions: the relative difference was below 1% between numerical and analytical 

predictions. 

 

Figure 5.2-3 - Penalty based contact model 

 

The evaluation of the model in the context of the TOP contact is done thanks to experimental 

measurements, as no precise analytical solution are available. 

Indeed, the Hertz theory only proposes to model the bodies shape by their principal equivalent 

curvature radii (see section 1.3.4) at the contact centre. In the present case, the curvature radii 

of the mating surface vary in a large extent all over the contact area (see Figure 4.1-5). Hence 

the question: is it possible to approximate the TOP contact by an elliptical equivalent model? 

If not, is it possible to have a simplified model which allows for predicting the contact 

behaviour? 

c) Experimental validation 

Tribogyr test-rig was used under precise conditions to generate TOP contacts. Though the 

model is already successfully validated by elliptical and linear contact comparison with 

analytical solutions, the contribution of an adequate experiment in the TOP case is useful. 

Three load cases are reported here, 𝑤 = [240; 306; 610] 𝑁 and the spin angle 𝜆 = −3° was 

applied. The results for the model and the experiment are presented in Table 5.2-2. There is a 

good precision for the value of the major axis 𝑎 of the contact: it is a good news as it is in this 

direction that the curvature radii of the torus varies the most. However, the difference is larger 

for the value of the minor axis 𝑏. This may be explained by the difficulty to control the 

machining curvature radius in this direction: it should be 𝑟𝑡 = 40 𝑚𝑚 but a precise 

measurement of this radius is not possible. 
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w [N] 
Experimental Numerical Differences on: 

2a [mm] 2b [mm] 2a [mm] 2b [mm] a [%] b [%] 

610 3.38 1.08 3.36 1.02 −0.6 −5.7 

306 2.71 0.86 2.64 0.80 −2.5 −7.0 

240 2.55 0.82 2.46 0.75 −3.6 −9.1 

Table 5.2-2 - Experimental validation of the model 

 

As a consequence of the comparison between numerical and experimental results, the model 

is validated and can be used to study the TOP contact. 

 

d) The influence of the spin angle 𝝀  

Thanks to the numerical model which was validated previously, a numerical study is 

proposed. The influence of the spin angle is investigated and a pressure distribution analytical 

model is proposed. 

Spin angle has a significant influence on the static contact properties. From the same torus 

body and the same contact load, several spin angle values can generate very different contact 

shapes and pressure. Consequently, the spin angle is varied as follows: 

𝜆 = [−0.25°;−0.5°;−1.5°;−2.5°;−3.5°;−6°] Equation 5.2-4 

 

It corresponds to the range of configurations of the TOP FREC in real industrial applications. 

In this range, the numerical model is used, and the results are summarised in Figure 5.2-4. The 

numerical results are defined as presented in Figure 5.2-2 of Annexe B, but the analytical 

results are simply the ones defined by the Hertz theory. 
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Figure 5.2-4 - Comparison between analytical and numerical models 

 

The good accordance of Figure 5.2-4 confirms that the contact major axis should be considered 

as the distance along the radius 𝑅𝑟 between the extremities of the contact area. Figure 5.2-5 

presents the contact with the smallest spin angle: it appears clearly that the pressurised area is 

not an ellipse but that it is a curved ellipse. Moreover, the curvature follows the 𝑅𝑟 arc. 

 

 

Figure 5.2-5 – Pressure field of a TOP contact: 𝜆 = 0.25°; 𝑎 = 6.4 𝑚𝑚; 𝑏 = 0.5 𝑚𝑚; 𝑚𝑎𝑥(𝑝) = 346 𝑀𝑃𝑎 

 

As a consequence, one proposes to use the Hertz theory for the prediction of the TOP contact 

pressure distribution. The subtlety of the proposed analytical prediction is that the TOP 

contact is not an ellipse, but it is an ellipse that follows the 𝑅𝑟 arc. Moreover, it is proposed 

that the pressure field is the one of the equivalent Hertz elliptical contact, but again it follows 

the arc. By substituting cylindrical and Cartesian system variables, the proposed pressure field 

reads (in the contact frame): 

𝑝 = {
√1 − 𝐿1

2 − 𝐿2
2  , if 𝐿1

2 + 𝐿2
2 ≤ 1;

0, otherwise,

 Equation 5.2-5 
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with 𝐿1 = (
√𝑥2+(𝑦+𝑅𝑟)

2−𝑅𝑟

𝑏
) and 𝐿2 = (

𝑅𝑟∗arctan (
𝑥

𝑦+𝑅𝑟
)

𝑎
) 

 

This proposed pressure fields corresponds well to the numerical pressure field. Figure 5.2-6 

presents the comparison. Given that the characteristic values 𝑎, 𝑏 and 𝑝ℎ were already 

compared in Figure 5.2-4, the comparison of Figure 5.2-6 only pertains to the global field. 

Thanks to these two figures, an analytical approach of the static TOP contact pressure 

distribution appears very precise despite the differences with a classical elliptical contact. 

Indeed, the Hertz contact is originally dedicated to elliptical contacts. 

 

 

Figure 5.2-6 – Pressure field comparison between analytical (based on Equation 5.2-5) and numerical solution 

 

In his analysis, Hertz (84) was maybe more visionary than he thought, and his work enables 

precise predictions in non-conventional configurations. 
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5.3. Annexe C: non-Newtonian lubricant hypothesis  

In order to build a reliable and precise EHD model, advanced rheology models were 

established. They were based on an independent test campaign with three different 

rheometers. Figure 5.3-1 presents the characterisation results in terms of shear stress for 

Lubricant 3. It did not present any non-Newtonian behaviour in the tested range. Within the 

extended operating conditions of the Couette rheometer, it was not possible to increase the 

shear stress high enough to see a discrepancy to the Newtonian behaviour. Lubricant 2 

presented similar results. 

To investigate the transition between the Newtonian and the non-Newtonian regime, an oil 

from the literature and similar to Lubricant 3 and Lubricant 2 was selected; this oil had been 

characterised in a wider shear stress range and the non-Newtonian thinning was observed. A 

Carreau-Yasuda fit was applied to the experimental data of this supplementary oil. The 

Carreau-Yasuda fit was used to extrapolate how the Lubricant 3 would be thinned if it had 

behaved like the supplementary oil. In Figure 5.3-1, the Carreau extrapolation shows that a 

non-Newtonian trend may occur at a shear stress a little larger than the one explored. If the 

high pressure Couette rheometer was able to increase the shearing condition, a shear thinning 

may have been observed. 

 

 

Figure 5.3-1 – Lubricant 3 characterisation data and Carreau extrapolation 
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Thanks to this consistent explanation to the absence of the shear thinning, it is possible to run 

simulations with a non-Newtonian model of the lubricant. 

The generalized Carreau-Yasuda formulation (8) was selected and it reads: 

𝜂 =
𝜇

[1 + (
𝜏
𝐺𝐶𝑌

)
𝑎𝐶𝑌
]

1
𝑛𝐶𝑌

−1

𝑎𝐶𝑌

 
Equation 5.3-1 

 

with 𝜇 the Newtonian viscosity, 𝜏 = √𝜏𝑧𝑥
2 + 𝜏𝑧𝑦

2  the shear stress norm, 𝜏𝑧𝑥 and 𝜏𝑧𝑥 the shear 

stresses in the contact plane along the x and y directions and 𝑎𝐶𝑌, 𝑛𝐶𝑌 and 𝐺𝐶𝑌 are constants 

that were defined according to the experimental characterisation of the lubricant similar to 

Lubricant 2 and 3. The values of the constants are reported in Table 5.3-1.  

 

Carreau-Yasuda 

parameters 

Parameter [Unit] Value 

𝑎𝐶𝑌 [ − ] 5 

𝐺𝐶𝑌 [𝑃𝑎] 7 × 106 

𝑛𝐶𝑌 [ − ] 0.35 

Table 5.3-1 – Parameters of the Carreau-Yasuda model 

 

With the non-Newtonian description of the lubricant, the generalised viscosities become: 

1

ηe
=∫

1

η
𝑑𝑧

h

0
 and 

1

𝜂𝑒
′ = ∫

𝑧

𝜂
𝑑𝑧

ℎ

0
 Equation 5.3-2 

 

This means that the Equation 2.1-18 becomes: 

𝜌𝑒 = ∫ 𝜌 𝑑𝑧
ℎ

0
, 𝜌𝑒

′ = ∫ (𝜌 ∫
1

η
𝑑𝑧′

𝑧

0
) 𝑑𝑧

ℎ

0
, 𝜌𝑒

′′ = ∫ (𝜌 ∫
𝑧′

η
𝑑𝑧′

𝑧

0
) 𝑑𝑧

ℎ

0
, 

ε̅ =
η𝑒

η𝑒
′ 𝜌𝑒

′ − 𝜌𝑒
′′, 𝜌𝑖

∗ = 𝜌𝑒
′η𝑒(𝑢𝑡,𝑖 − 𝑢𝑏,𝑖) − 𝜌𝑒𝑢𝑏,𝑖 

Equation 5.3-3 

 

And at last, the generalised Reynolds equation (Equation 2.1-20) becomes: 

∇⃗⃗ . ((ε̅)∇⃗⃗ 𝑝) − ∇⃗⃗ . 𝜌∗⃗⃗⃗⃗ = 0 Equation 5.3-4 

 

With this new formulation of the numerical model, Thermal non-Newtonian EHD simulations 

are possible. As the friction calculation are likely to be affected by the changes, the friction 

validation case presented in section 3.3.1 is computed anew and presented in Figure 5.3-2. 
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Figure 5.3-2 - Friction coefficient along x direction (a, left) and y direction (b, right): comparison between 
experimental measurements (Exp.), thermal EHD numerical model (Num. (TEHD)) and thermal non-
Newtonian EHD numerical model (Num. (TEHDnN)) results – reference case presented in Table 3.3-1 

 

The new numerical friction results (Thermal non-Newtonian EHD model) are different from 

the previous numerical results (Thermal EHD model): the new friction coefficient along x axis 

(see Figure 5.3-2a) is smaller with the non-Newtonian model, and the two numerical curves 

are different everywhere, but they follow similar trends. Indeed, after a nearly linear slope in 

the Newtonian region (−5 < 𝑆𝑅𝑅𝑥,0 < 5%), the two curves experience a limitation in the non-

Newtonian region (5% < |𝑆𝑅𝑅𝑥,0| < 20%). Then, the friction coefficient decreases in the 

thermal region (20% < |𝑆𝑅𝑅𝑥,0|).  

The experimental curve is different from both numerical approaches. However, in the 

Newtonian region, the non-Newtonian friction curve is closer to the experimental results than 

the Newtonian one. To be more specific, the curve slope in the Newtonian region of the curve 

is very similar on the experimental and the non-Newtonian curve. On the contrary, the 

Newtonian curve is stiffer in this region. In the other regions, the experimental friction curve 

is clearly not similar to the numerical curves, whether the non-Newtonian effects are neglected 

or not. 

Along the y axis, there is no significant change on the friction coefficient between the 

Newtonian and the non-Newtonian approaches: both of them appear similar, and they differ 

from the experimental friction coefficient. 

It is noticeable that taking into account the non-Newtonian behaviour of the lubricant confers 

an improvement of the modelling precision, especially in the Newtonian region. However, 

this improvement does not allow for a quantitative prediction of the friction coefficient by the 

numerical model under more severe sliding conditions. There are still significant differences 

between the model and the experimental results. To diminish the discrepancies, it would be 
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mandatory to base the Carreau-Yasuda characterisation on the same oil than the one used 

during the friction experiments. 

Another way to model the specifics of the lubricant in the torus-on-plane case was also 

explored. It consists in computing a Thermal EHD simulation (the same modelling than in the 

Chapters 2 and 3 of this document), but doing a post-treatment of the results with a limiting 

shear stress (LSS) assumption. The LSS model proposed initially by Ståhl and Jacobson (85) 

was used, with the revisions proposed by Habchi et al. (86) and Raisin et al. (74).  

In this revised definition, the shear stress becomes independent of the apparent strain rate 

(defined by the velocity difference of the mating surfaces) when the shear stress reaches the 

limiting value: 

τL = 𝛬𝑝 Equation 5.3-5 

 

with 𝛬 the limiting shear stress coefficient and 𝑝 the pressure in the contact. Ståhl and Jacobson 

(85)  affirm that 𝛬 typically varies between 0.03 and 0.15. In the absence of lubricant 

characterisation, and similarly to Raisin et al. (74), the LSS coefficient was arbitrary defined 

as 𝛬 = 0.05. 

 

 

Figure 5.3-3 – Friction coefficient along x direction: comparison between experimental measurements (Exp.), 
thermal EHD numerical model (Num. (TEHD)) and thermal EHD numerical model with limiting shear stress 

(Num. (LSS)) results – reference case presented in Table 3.3-1 

 

The results are presented in Figure 5.3-3 and a comparison is made between the thermal EHD 

model friction coefficient with and without LSS. As expected, there is a difference between the 

two numerical approaches, especially at the largest values of friction. In the non-Newtonian 

region of the curves (5% < |𝑆𝑅𝑅𝑥,0| < 20%), the model which includes the LSS has a lower 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI131/these.pdf 
© [J-D. Wheeler], [2016], INSA Lyon, tous droits réservés



 

156 

friction coefficient than the one without LSS. In the other regions, the two numerical curves 

are similar.  

Though the extrema of the numerical curve with LSS is closer to the extrema of the 

experimental curve, none of the numerical curves follows the trend of the experimental results. 

In the context of EHD friction prediction, the thermal EHD approach shows the need for a 

more complex rheology modelling of the lubricant. For instance, a non-Newtonian modelling 

is mandatory. In the heavily loaded contacts, it is also necessary to take into account the LSS. 

However, this advanced approach should be based on an independent characterisation of the 

lubricant used in the experiment: it is probably what is missing here. 
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5.4. Annexe D: Tabulated values, elliptic cases  

  U  [ - ] W  [ - ] G  [ - ] M [ - ] L [ - ] k [ - ] hc [nm] hm [nm] hm,c [nm] hm,l [nm] 
C

a
se

 1
 

2.38E-12 6.22E-07 4671 193 6.90 5.03 263 219 219 243 

2.09E-12 4.78E-07 4671 163 6.68 3.96 274 227 227 236 

1.75E-12 3.36E-07 4671 131 6.39 2.92 287 230 238 230 

1.38E-12 2.09E-07 4671 97.6 6.02 1.98 302 220 251 220 

1.13E-12 1.40E-07 4671 76.0 5.73 1.46 311 206 257 206 

8.61E-13 8.13E-08 4671 54.0 5.35 1.00 316 181 260 181 

6.38E-13 4.46E-08 4671 37.1 4.96 0.683 307 151 252 151 

4.92E-13 2.65E-08 4671 26.8 4.65 0.504 290 129 236 129 

3.45E-13 1.30E-08 4671 17.2 4.26 0.342 255 96 203 96 

2.55E-13 7.13E-09 4671 11.8 3.95 0.252 219 74 174 74 

2.00E-13 4.37E-09 4671 8.70 3.71 0.199 186 58 151 58 

C
a

se
 2

 

5.96E-13 4.14E-06 4671 3635 4.88 5.03 83 71 71 304 

5.22E-13 3.18E-06 4671 3082 4.72 3.96 88 76 76 199 

4.38E-13 2.24E-06 4671 2476 4.52 2.92 93 79 79 109 

3.46E-13 1.40E-06 4671 1841 4.26 1.98 99 62 84 62 

2.83E-13 9.35E-07 4671 1433 4.05 1.46 104 48 88 48 

2.15E-13 5.42E-07 4671 1019 3.78 1.00 107 34 92 34 

1.59E-13 2.97E-07 4671 700 3.51 0.683 113 25 95 25 

1.23E-13 1.77E-07 4671 506 3.29 0.504 113 18 96 18 

8.61E-14 8.67E-08 4671 324 3.01 0.342 111 10 93 10 

6.38E-14 4.76E-08 4671 223 2.79 0.252 101 7.6 86 7.6 

4.99E-14 2.91E-08 4671 164 2.63 0.199 96 6.5 81 6.5 

C
a

se
 3

 

2.38E-12 4.14E-06 4671 1285 6.90 5.03 217 186 186 394 

2.09E-12 3.18E-06 4671 1090 6.68 3.96 226 194 194 303 

1.75E-12 2.24E-06 4671 875 6.39 2.92 238 203 203 222 

1.38E-12 1.40E-06 4671 651 6.02 1.98 254 169 217 169 

1.13E-12 9.35E-07 4671 507 5.73 1.46 263 141 225 141 

8.61E-13 5.42E-07 4671 360 5.35 1.00 275 111 237 111 

6.38E-13 2.97E-07 4671 248 4.96 0.683 279 83 239 83 

4.92E-13 1.77E-07 4671 179 4.65 0.504 274 63 235 63 

3.45E-13 8.67E-08 4671 115 4.26 0.342 259 41 224 41 

2.55E-13 4.76E-08 4671 78.8 3.95 0.252 226 34 206 34 

2.00E-13 2.91E-08 4671 58.0 3.71 0.199 214 24 184 24 

C
a

se
 4

 

1.19E-11 4.14E-06 4671 384 10.3 5.03 674 578 578 696 

1.04E-11 3.18E-06 4671 326 10.0 3.96 701 601 601 648 

8.76E-12 2.24E-06 4671 262 9.56 2.92 736 606 629 606 

6.91E-12 1.40E-06 4671 195 9.01 1.98 778 558 664 558 

5.66E-12 9.35E-07 4671 152 8.57 1.46 802 505 685 505 

4.31E-12 5.42E-07 4671 108 8.00 1.00 821 428 701 428 

3.19E-12 2.97E-07 4671 74.0 7.42 0.683 812 345 692 345 

2.46E-12 1.77E-07 4671 53.5 6.96 0.504 778 280 659 280 

1.72E-12 8.67E-08 4671 34.3 6.36 0.342 695 203 583 203 

1.28E-12 4.76E-08 4671 23.6 5.90 0.252 597 149 508 149 

9.99E-13 2.91E-08 4671 17.3 5.55 0.199 515 112 443 112 

C
a

se
 5

 

2.38E-12 1.30E-05 4671 4016 6.90 5.03 195 170 170 665 

2.09E-12 9.95E-06 4671 3406 6.68 3.96 204 179 179 438 

1.75E-12 7.01E-06 4671 2736 6.39 2.92 217 187 187 246 

1.38E-12 4.36E-06 4671 2034 6.02 1.98 229 144 200 144 

1.13E-12 2.92E-06 4671 1583 5.73 1.46 240 109 210 109 

8.61E-13 1.69E-06 4671 1126 5.35 1.00 252 79 221 79 

6.38E-13 9.29E-07 4671 774 4.96 0.683 260 55 229 55 

4.92E-13 5.53E-07 4671 559 4.65 0.504 262 41 226 41 

3.45E-13 2.71E-07 4671 358 4.26 0.342 262 22 223 22 

2.55E-13 1.49E-07 4671 246 3.95 0.252 239 18 209 18 

2.00E-13 9.10E-08 4671 181 3.71 0.199 223 13 189 13 
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